
Machine Learning
Proceedings of the Fifteenth

International Conference (ICML '98)

Edited by Jude Shavlik
MADISON, WISCONSIN

JULY 24-27, 1998

fc ,■& -f.i ^

MORGAN KAUFMANN

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

July 1998
3. REPORT TYPE AND DATES COVERED

Final, 7/10/98-9/30/98
4. TITLE AND SUBTITLE

Machine Learning: Proceedings of the
Fifteenth International Conference

6. AUTHOR(S)

Jude Shavlik (editor)

5. FUNDING NUMBERS

N00014-98-1-0810

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)

Computer Sciences Department
University of Wisconsin
1210 W. Dayton Street
Madison, WI 53706

PERFORMING ORGANIZATION
REPORT NUMBER

144-HD17

9. SPONSORING /MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

Office of Naval Research
Program Officer Michael O. Shneir
Code 311, Ballston Tower One
800 N. Quincy Street

 Arlington, VA 22217-5660

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release. fProccedingq■ may„

12. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Contains 66 technical articles on recent international advances in
the artificial intelligence subfield of machine learning.

.e;
?|*Auwwi Ud;^;;Ji

14. SUBJECT TERMS

Machine learning, neural networks,
genetic algorithms, artificial intelligence

15. NUMBER OF PAGES

580
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OFABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL
standard Form 29B (Rev. 2-S9)
Presetted by ANISE Sad 239-18
298-102

University of Wisconsin - Madison

Jude W. Shavlik Department of Computer Sciences
Professor 1210 West Dayton Street
Phone: (608)262-7784 Madison, Wisconsin 53706
Fax: (608) 262-9777 USA
Email: shavlik@cs.wisc.edu
URL: http://www.cs.wisc.eduTshavlik/

August 5,1998

Defense Technical Information Center
8725 John J. Kingman Road
STE 0944
Ft. Belvoir, VA 22060-6218

Please find enclosed one (1) copy of the proceedings of the Fifteenth International
Conference on Machine Learning and one (1) copy of SF-298. Program Officer Michael O.
Shneier of the Office of Naval Researcher provided partial financial support for this meeting.

Sincerely,

'Jude W. Shavlik
Professor

MACHINE
LEARNING

Proceedings
of the Fifteenth

International Conference
(ICML '98)

Edited by

Jude Shavlik
Department of Computer Sciences
University of Wisconsin, Madison

Madison, Wisconsin

July 24-27,1998

MORGAN KAUFMANN PUBLISHERS
WJIO QUALITY INSPECTED 1 San Francisco, California

Production, design, type, and manufacturing management
provided by Professional Book Center, Denver, Colorado.

Cover image, satellite photograph of Madison, Wisconsin, courtesy
of the United States Geological Service.

Morgan Kaufmann Publishers, Inc.
Editorial Office:
340 Pine St., 6th Floor
San Francisco, CA 94104
http: / / www.mkp.com

ISBN 1-55860-556-8

ISSN 1049-1910

Copyright © 1998 by Morgan Kaufmann Publishers, Inc.

All rights reserved.

Printed in the United States

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means^lectronic, mechanical, photocopying, recording, or otherwise without the prior written
permission of the publisher.

01 00 99 98 4 3 2 1

Contents

Preface

Advisory Committee

Program Committee
Tutorials

Workshops

Query Learning Strategies Using Boosting and Bagging 1
Naoki Abe and Hiroshi Mamitsuka

Genetic Programming and Deductive-Inductive Learning: A Multi-Strategy Approach 10
Ricardo Aler, Daniel Borrajo, and Pedro Isasi

An Experimental Evaluation of Coevolutive Concept Learning 19
Cosimo Anglano, Attilio Giordana, Giuseppe Lo Bello, and Lorenza Saitta

KnightCap: A Chess Program That Learns by Combining TD(?i) with Game-Tree Search 28
Jonathan Baxter, Andrew Tridgell, and Lex Weaver

Combining Nearest Neighbor Classifiers Through Multiple Feature Subsets 37
Stephen D. Bay

Learning Collaborative Information Filters 46
Daniel Billsus and Michael J. Pazzani

Top-Down Induction of Clustering Trees 55
Hendrick Blockeel, Luc De Raedt, and Jan Ramon

A Supra-Classifier Architecture for Scalable Knowledge Reuse 64
Kurt D. Bollacker and Joydeep Ghosh

Learning Sorting and Decision Trees with POMDPs 73
Blai Bonet and Hector Geffner

Feature Selection via Concave Minimization and Support Vector Machines 82
Paul S. Bradley and Olvi L. Mangasarian

Refining Initial Points for K-Means Clustering 91
Paul S. Bradley and Usama M. Fayyad

Finite-Time Regret Bounds for the Multiarmed Bandit Problem 100
Nicold Cesa-Bianchi and Paul Fischer

Bayesian Classifiers Are Large Margin Hyperplanes in a Hubert Space 109
Nello Cristianini, John Shawe-Taylor, and Peter Sykacek

The MAXQ Method for Hierarchical Reinforcement Learning 118
Thomas G. Dietterich

iv Contents

A Process-Oriented Heuristic for Model Selection 127

Pedro Domingos

Relational Reinforcement Learning 13°
Saso Dzeroski, Luc De Raedt, and Hendrik Blockeel

Generating Accurate Rule Sets Without Global Optimization I44

Eibe Frank and Ian H. Witten

Using a Permutation Test for Attribute Selection in Decision Trees 152

Eibe Frank and Ian H. Witten

Multistrategy Learning for Information Extraction 161

Dayne Freitag

An Efficient Boosting Algorithm for Combining Preferences 170

Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer

Bayesian Network Classification with Continuous Attributes: Getting the Best of
Both Discretization and Parametric Fitting 179

Nir Friedman, Moises Goldszmidt, and Thomas]. Lee

The Kernel-Adatron Algorithm: A Fast and Simple Learning Procedure for
Support Vector Machines iy°

Thilo-Thomas Friefl, Nello Cristianini, and Colin Campbell

Multi-criteria Reinforcement Learning 197

Zoltän Gabor, Zsolt Kalmar, and Csaba Szepesväri

Local Cascade Generalization 2^"
Joäo Gama

A Learning Rate Analysis of Reinforcement Learning Algorithms in Finite-Horizon 215
Frederick Garcia and Seydina M. Ndiaye

Well-Behaved Borgs, Bolos, and Berserkers 224

Diana F. Gordon

Solving a Huge Number of Similar Tasks: A Combination of Multi-Task Learning
and a Hierarchical Bayesian Approach 233

Tom Heskes

Multiagent Reinforcement Learning: Theoretical Framework and an Algorithm 242
Junling Hu and Michael P. Wellman

Coevolutionary Learning: A Case Study 251

Hugues Juille and Jordan B. Pollack

Near-Optimal Reinforcement Learning in Polynomial Time 26°
Michael Kearns and Satinder Singh

A Fast, Bottom-Up Decision Tree Pruning Algorithm with Near-Optimal Generalization 269
Michael Kearns and Yishay Mansour

An Analysis of Actor/Critic Algorithms Using Eligibility Traces:
Reinforcement Learning with Imperfect Value Function 278

Hajime Kimura and Shigenobu Kobayashi

Contents v

Using Learning for Approximation in Stochastic Processes 287
Daphne Koller and Raya Fratkina

An Information-Theoretic Definition of Similarity 296
Dekang Lin

Structural Machine Learning with Galois Lattice and Graphs 305
Michael Liquiere and Jean Sallantin

Learning a Language-Independent Representation for Terms from a Partially Aligned Corpus 314
Michael L. Littman, Fan Jiang, and Greg A. Keim

Using Eligibility Traces to Find the Best Memoryless Policy in Partially Observable
Markov Decision Processes 323

John Loch and Satinder Singh

Learning to Locate an Object in 3D Space from a Sequence of Camera Images 332
Dimitris Margaritis and Sebastian Thrun

Multiple-Instance Learning for Natural Scene Classification 341
Oded Maron and Aparna Lakshmi Ratan

Employing EM and Pool-Based Active Learning for Text Classification 350
Andrew Kachites McCallum and Kamal Nigam

Improving Text Classification by Shrinkage in a Hierarchy of Classes 359
Andrew McCallum, Ronald Rosenfeld, Tom Mitchell, and Andrew YNg

A Case Study in the Use of Theory Revision in Requirements Validation 368
T. L. McCluskey and M. M. West

Stochastic Resonance with Adaptive Fuzzy Systems 377
Sanya Mitaim and Bart Kosko

Q2: Memory-Based Active Learning for Optimizing Noisy Continuous Functions 386
Andrew W. Moore, JeffG. Schneider, Justin A. Boyan, and Mary S. Lee

Collaborative Filtering Using Weighted Majority Prediction Algorithms 395
Atsuyoshi Nakamura and Naoki Abe

On Feature Selection: Learning with Exponentially Many Irrelevant Features
as Training Examples 404

Andrew Y Ng

On the Power of Decision Lists 413
Richard Nock and Pascal Jappy

An Analysis of Direct Reinforcement Learning in Non-Markovian Domains . 421
Mark D. Pendrith and Michael J. McGarity

A Randomized ANOVA Procedure for Comparing Performance Curves 430
Justus H. Piater, Paul R. Cohen, Xiaoqin Zhang, and Michael Atighetchi

Classification Using O-Machines and Constructive Function Approximation 439
Doina Precup and Paul E. Utgoff

The Case against Accuracy Estimation for Comparing Induction Algorithms 445
Foster Provost, Tom Fawcett, and Ron Kohavi

vi Contents

Theory Refinement of Bayesian Networks with Hidden Variables 454
Sowmya Ratnachandran and Raymond J. Mooney

Learning to Drive a Bicycle Using Reinforcement Learning and Shaping 463
Jette Randlov and Preben Alstrom

Learning First-Order Acyclic Horn Programs from Entailment 472
Chandra Reddy and Prasad TadepalH

RL-TOPS: An Architecture for Modularity and Re-Use in Reinforcement Learning 481
Malcolm R. K. Ryan and Mark D. Pendrith

Evolving Structured Programs with Hierarchical Instructions and Skip Nodes 488
Rafai Sdustowicz and Jürgen Schmidhuber

An Investigation of Transformation-Based Learning in Discourse 497
Ken Samuel, Sandra Carberry, and K. Vijay-Shanker

Automatic Segmentation of Continuous Trajectories with Invariance
to Nonlinear Warpings of Time 506

Lawrence K. Saul

Ridge Regression Learning Algorithm in Dual Variables 515
C. Saunders, A. Gammerman, and V. Vovk

Value Function Based Production Scheduling 522
Jeff G. Schneider, Justin A. Boyan, and Andrew W. Moore

Heading in the Right Direction 531
Hagit Shatkay and Leslie P. Kaelbling

A Neural Network Model for Prognostic Prediction 540
W. Nick Street

Learning the Grammar of Dance 547
Joshua M. Stuart and Elizabeth Bradley

Intra-Option Learning about Temporally Abstract Actions 556
Richard S. Sutton, Doina Precup, and Satinder Singh

Teaching an Agent to Test Students 565
Gheorghe Tecuci and Harry Keeling

The Problem with Noise and Small Disjuncts 574
Gary M. Weiss and Haym Hirsh

Author Index 579

Preface

This volume contains the 66 technical papers presented at the Fifteenth International Conference on Machine
Learning (ICML '98), held July 24r-27,1998, in Madison, Wisconsin U.S.A. These articles were selected based
on the rigorous review and discussion of 215 submissions. All papers were presented orally as well as at an
evening poster session.

ICML '98 was one of ten AI-related conferences held in Madison during mid-summer 1998, in an ambitious,
first-time experiment to see what kind of synergies would result from all this collocation. In particular, ICML
'98 was held in the same building as, and concurrently with, the Computational Learning Theory (COLT)
and Uncertainty in Artificial Intelligence (UAI) conferences. It also overlapped one day with the Inductive
Logic Programming (ILP) conference.

Registrants were allowed to attend, without additional costs, the technical sessions of the other conferences.
COLT, ICML, and UAI each invited one of the plenary speakers and jointly invited the banquet speaker, plus
there was a joint poster session and wrapup panel. The poster session contained about 150 papers, allowing
conference attendees a chance to see or further discuss research presented during the four to five parallel
tracks and fostering interaction among the various communities.

I especially wish to thank:

• the authors of all the papers for their technical contributions toward the advancement of machine learn-
ing.

• Richard Sutton, who was the IMCL representative among the three joint invited speakers and spoke on
"Reinforcement Learning: How Far Can It Go?"; Ron Kohavi, who was the second ICML invited speaker,
discussing "Crossing the Chasm: From Academic Machine Learning to Commercial Data Mining"; and
David Spiegelhalter, who was the jointly invited banquet speaker, describing "2.5 Millennia of Directed
Graphs."

• the advisory committee for their suggestions regarding the program committee and the invited speakers.

• the program committee for their efforts initially reviewing about a dozen submissions each and then par-
ticipating in in-depth discussions regarding which should be accepted.

• the organizers of the COLT, UAI, and ILP conferences for all their efforts spent coordinating our collocated
meetings, and all the invited speakers and technical-paper presenters that these communities provided.

• Carol Hamilton of the American Association of Artificial Intelligence (AAAI) for her invaluable help coor-
dinating AAAI '98 with ICML '98, and to AAAI in general for publicizing ICML '98, for processing ICML's
advance registrations, for the organization of several ML-related workshops and tutorials, and for the use
of the Madison convention center for some of the ICML '98 events.

• those sponsors (listed below) who provided financial support, allowing for reduced registrations fees and
providing partial travel support to some needy graduate students and the invited speakers.

• the organizers of the joint AAAI/ICML workshops (listed below) and to the presenters of ML-related
AAAI tutorials.

viii Preface

• Jacque Girard and Patricia Danek of the University of Wisconsin Business School, where the bulk of the
conference's events were held, and to Maureen Sundell of the Wisconsin Office of Conference Services for
their excellent help with local arrangements.

• Bradley Schwarzhoff for ably serving as a conference assistant, Laura Cuccia for secretarial help, and
Sheila Beattie, Virginia Werner, Marie Johnson, Margaret Roth, and Benjamin Griffiths for processing much
paperwork related to financial and legal matters.

• all the student volunteers who served before and during the conference, especially Tina Eliassi-Rad, Daniel
Shiovitz, Chongmeng Chow, and Carolyn Allex.

• Morgan Kaufmann Publishers for distributing the volume; to Professional Book Center for producing it,
and offering ICML contributors an experimental option to deliver their finished papers as PostScript files
via the Internet (more than half of them did so); and to Steve Reiter of the United States Geological Service
for his extraordinary help in locating and obtaining the cover image.

]ude Shavlik

Acknowledgments

The financial support of the following organizations is greatly acknowledged:

• Daimler-Benz Research and Technology

• United States Office of Naval Research

• Microsoft Research

• AT&T Research

• NEC Research Institute

• University of Wisconsin

• American Association of Artificial Intelligence

Preface ix

Advisory Committee
Ivan Bratko

William Cohen

Thomas Dietterich

Douglas Fisher

Leslie Pack Kaelbling

Ron Kohavi

Tom Mitchell

Stuart Russell

Lorenza Saitta

Derek Sleeman

Paul Utgoff

Program Committee
David Aha

Christopher Atkeson

Shumeet Baluja

Andrew Barto

Richard Belew

Ivan Bratko

Eric Brill

Carla Brodley

Claire Cardie

Richard Caruana

Corinna Cortes

Gerald Dejong

Luc De Raedt

Thomas Dietterich

Pedro Domingos

Usama Fayyad

Douglas Fisher

Nir Friedman

Zoubin Ghahramani

Diana Gordon

David Heckerman

Lisa Hellerstein

Lawrence Hunter

Jeffrey Jackson

George John

Michael Jordan

Leslie Pack Kaelbling

Dennis Kibler

Ron Kohavi

Igor Kononenko

David Lewis

Michael Littman

Richard Maclin

Sridhar Mahadevan

Maja Mataric

Tom Mitchell

Andrew Moore

Stephen Muggleton

Filippo Neri

David Opitz

Foster Provost

Celine Rouveirol

Lorenza Saitta

Claude Sammut

Dale Schuurmans

Satinder Singh

Derek Sleeman

Salvatore Stolfo

Richard Sutton

Prasad Tadepalli

Sebastian Thrun

Paul Utgoff

Manuela Veloso

Grace Wahba

Stefan Wrobel

Preface

Workshops (Joint with AAAI '98)

Developing ML Applications: Problem Definition, Task Decomposition, and Technique Selection
(Robert Engels, Floor Verdenius, and David Aha)

Learning for Text Categorization
(Mehran Sahami, Mark Craven, Thorsten Joachims, and Andrew McCallum)

Predicting the Future: AI Approaches to Time-Series Analysis
(Andrea Danyluk, Thomas Fawcett, and Foster Provost)

CONTRIBUTED
PAPERS

Query Learning Strategies using Boosting and Bagging

Naoki Abe Hiroshi Mamitsuka
Theory NEC Laboratory, RWCP*

c/o NEC C& C Media Research Laboratories
4-1-1 Miyazaki, Miyamae-ku, Kawasaki 216-8555 JAPAN

{abe, mami}@ccm.cl.nec.co.jp

Abstract 1 Introduction

We propose new query learning strategies by
combining the idea of query by committee
and that of boosting [Sch90, FS95] and bag-
ging [Bre94]. Query by committee is a query
learning strategy which makes use of a ran-
domized component learning algorithm and
works by querying the function value of a
point at which the predictions made by many
copies of the component algorithm are max-
imally spread. The requirement of query by
committee on the component algorithm that
it be an ideal randomized algorithm makes
it hard to apply in practice when we have
only a moderately performing deterministic
algorithm. To address this issue, we bor-
row the ideas of boosting and bagging, which
are both techniques to enhance the perfor-
mance of an existing learning algorithm by
running it many times on a set of re-sampled
data and combining the output hypotheses
to make a prediction by (weighted) majority
voting. We propose two query learning meth-
ods, query by bagging and query by boosting,
which select the next query point by picking
a point on which the (weighted) majority vot-
ing by the obtained hypotheses has the least
margin. We empirically evaluate the perfor-
mance of these methods on a wide range of
real world data. Our experiments show that,
when using C4.5 as the component learning
algorithm and run on data sets in UCI Ma-
chine Learning repository, both query learn-
ing methods significantly improve data effi-
ciency as compared to both C4.5 itself and
boosting applied on C4.5. A typical increase
in data efficiency achieved was 2 to 4-fold.

*Real World Computing Partnership

Query learning is a sub-area of machine learning at-
tracting increasing attention both in theory and in
practice with the expectation that it may bring down
both computational and sample complexities that
plague passive learners, (c.f. [LC94, CS94, LG94])
For example, there is a rich body of work on the algo-
rithmic approach to query learning as initiated by An-
gluin's query learning model [Ang87]. Another promis-
ing approach is the Bayesian or information theoretic
approach to query learning [PK95, SOS92], in which a
query learner tries to maximize the information gain
on each query. Of the latter approach, 'query by com-
mittee' [SOS92] is an especially attractive and general
query learning strategy with theoretical performance
guarantee. In the present paper, we propose new vari-
ants of query by committee, which we call 'query by
boosting' and 'query by bagging,' by combining query
by committee with the techniques of boosting and bag-
ging-

'Query by committee' [SOS92] is a query learning
strategy which makes use of many copies of an ideal
randomized learning algorithm. More concretely, it
uses a number of copies of Gibbs algorithm (a random-
ized algorithm that picks a hypothesis from a given hy-
pothesis class according to the posterior distribution
and predicts according to it) and queries the func-
tion value of a point at which their predictions are
maximally spread. The idea is that, by choosing a
query point with maximum uncertainty of estimation
of its function value, the information gain can be max-
imized. Indeed, there is a theoretical guarantee of the
near-optimality of the data efficiency of this method,
but it. is based on the assumption that the component
learning algorithm is Gibbs algorithm. This assump-
tion poses two problems when one tries to apply this
technique in practice: One is the problem of computa-
tional complexity, because Gibbs algorithms for inter-
esting hypothesis classes tend to be computationally
intractable. The other is that it cannot be applied on

Abe and Mamitsuka

a deterministic component learning algorithm. The
two methods we propose in the present paper, 'query
by boosting' and 'query by bagging,' are motivated to
address these two issues.

'Boosting' and 'bagging' are both techniques to en-
hance the performance of an existing learning algo-
rithm by running it many times on a set of re-sampled
data and combining the output hypotheses to make a
prediction. Bagging, due to Brieman [Bre94], is the
simpler of the two, and it works by re-sampling from
the input data with the same (uniform) distribution
and its final hypothesis is obtained by taking major-
ity vote over the predictions of the output hypotheses.
Boosting1 [Sch90, FS95] is a more complicated method
that can be used to boost the performance of a rela-
tively weak learning algorithm by use of sophisticated
re-sampling on the training data. It does so by repeat-
edly re-sampling on the input training data, with the
sampling distribution varied each time so as to focus
more and more on the part of the training data on
which the previously obtained hypotheses did poorly
on. The final prediction of boosting is made by taking
a weighted majority (or average) of the predictions of
all the hypotheses thus obtained.

As noted earlier, one of the weakness of query by com-
mittee is that it cannot be applied on a deterministic
component algorithm. If the component learning al-
gorithm we have available is deterministic, the idea of
bagging offers a natural alternative; namely apply bag-
ging to obtain a set of hypotheses, let these hypothe-
ses predict on a set of candidate points, and pick the
point on which the predictions have the largest vari-
ance. When making a prediction, predict by majority
vote over all the hypotheses. Since query by bagging
introduces randomness in the form of re-sampling from
the input data, it can be used on a component algo-
rithm that is deterministic.

When the learning problem of interest is sufficiently
complex, efficient implementation of Gibbs algorithm
is not possible. If such is the case and the best known
learning algorithm does not have a very good perfor-
mance, then it makes sense to use boosting to enhance
its performance. Recall that the most notable charac-
teristic of boosting is its tolerance on the performance
of the component learning algorithm. Thus, appro-
priately combining the idea of boosting and query by
committee, we may obtain a query learning method
that is tolerant on the performance of the component
learning algorithm.

Recent experimentation using boosting has shown a re-
markable fact (e.g. [DSS92]) that even after boosting

boosting was first discovered by Schapire [Sch90] in
the context of proving the equivalence of 'weak learnability'
with the strong PAC learnability. It was subsequently im-
proved by Freund [Fre90], and Freund and Schapire [FS95].

has achieved perfect prediction on the training data,
it keeps boosting its predictive performance on unseen
data. This seemingly contradicts known facts about
over-learning, but recently Schapire et al [SFBL97]
have given an account of this fact. That is, even after
realizing perfect predictive performance on the train-
ing data, boosting keeps increasing its confidence of
prediction, or more specifically the difference between
the total weight assigned to the correct prediction and
that assigned to a wrong prediction. (This is called
the 'margin' of the prediction.) In their paper, they
prove that a hypothesis having a larger margin on
the training data performs better on unseen data as
well. Based on this observation, the method we pro-
pose here, query by boosting, selects as the next query
a point on which the margin obtained by the boosting
algorithm is minimum, and attempts to maximize the
uncertainty of prediction and hence the information
gain on each query.

We conducted experiments using real world data to
evaluate the performance of the proposed query learn-
ing methods. In particular, we tested them on a large
part of the UCI Machine Learning data repository, us-
ing Quintan's C4.5 as the component algorithm. Here
we note that testing query learning algorithms on these
databases is not possible in a strict sense, since not
all the query points can be answered. We therefore
used our query strategies as methods of selective sam-
pling to pick more informative queries from a fixed
set of training data. (c.f. [LG94]) On almost all the
data sets we tested these learning methods, both query
by boosting and query by bagging achieved significant
increase in data efficiency as compared to both C4.5
and boosting applied on C4.5. The increase in data
efficiency measured by the data size required by the
query learning methods to reach the same accuracy
achieved by C4.5 (near the end of the data set) was
anywhere from 2 to 5-fold. As compared to boosting
applied on C4.5, the increase in data efficiency of the
query methods was 2 to 4-fold on most data sets.

On one of the eight data sets above, tic-tac-toe, we
ran analogous experiments using a different compo-
nent learning algorithm - a randomized version of a
weighted majority prediction algorithm for learning n-
ary relations proposed in [ALN95] called WMP1. In
addition to the two query methods, we also tested the
original query by committee method, as the compo-
nent algorithm is now randomized. It was found that,
with randomized WMP1 as the component algorithm,
both query by boosting and query by bagging per-
formed better than query by committee.

Query Learning Strategies using Boosting and Bagging 3

Algorithm: Query-by-Committee(QBC)
Notation: In general, we use St- to denote the
unlabeled sample corresponding to S.

Input: Number of trials: N
Randomized component learning algorithm: A
Number of times A is called: T
Number of query candidates: R
A set of query points: Q

Initialization: Si = (xi,f(x1)} for random xi
For i=l, ...,7V

1. Run A on S,- T times to obtain hi, ...,/iT.
2. Randomly generate a set of R points C C Q \ S'{

with respect to uniform distribution over Q\S'{.
3. Pick a point x* e C split most evenly: x* = arg
min^c \\{t < T\ht{x) = 1}| - \{t < T\ht(x) = 0}||
4. Query the function value at x* and obtain f(x*).
5. Update the past data as follows
Sj+i = append(Sit (x*,f(x*)))

End For
Output: Output as the final hypothesis:

hfi„(x) = argmaxyey \{t < T\ht(x) = y}\
where ht are hypotheses of the final (JV-th) stage

Figure 1: Query by Committee (QBC)

Algorithm: Query-by-Bagging(QBag)
Input: Number of trials: N
Component learning algorithm: A
Number of times re-sampling is done: T
Number of query candidates: R
A set of query points: Q

Initialization: Si = (a;i,/(:ci)) for random xi
Fori- 1,...,N

1. By resampling according to uniform distribution
on Si, obtain sub-samples S[, ..,S'T each of size m.

2. Run A on each sub-sample and obtain hi,..., hT.
3. Randomly generate a set of R points C CQ\S'{.
with respect to uniform distribution over Q \ St'.

4. Pick a point x* £ C split most evenly: x* = arg
min^c ||{* < T\ht{x) = 1}| - \{t < T\ht(x) = 0}||
5. Query the function value at x* and obtain f(x*).
6. Update the past data as follows
S,-+i = append(Si, (x*,f(x*)))

End For
Output: Output as the final hypothesis:

hfin(x) = argmaxyey \{t < T\ht(x) = y}\
where ht are hypotheses of the final (AT-th) stage

Figure 2: Query by Bagging (QBag)

2 Query Learning Methods

2.1 Query by Committee

We briefly describe the original query by committee
method, generalized to use an arbitrary randomized
component algorithm. At any point in time, query by
committee runs the component algorithm on the past
data a number of times to obtain many hypotheses.
It picks the next query point by choosing from among
a set of randomly generated candidate points a point
such that the predictions by the hypotheses are split
most evenly. The details are given in Figure 1. Here,
if Q is a pre-determined set of points on which the
function values can be obtained, then the algorithm
as described is a method of selective sampling. If, on
the other hand, Q is set to the entire domain, then it
is a genuine query learning algorithm, which is free to
choose any point in the domain as a query point.

2.2 Query by Bagging

'Bagging'[Bre94] re-samples from the input sample
with a fixed distribution, and the final hypothesis is
obtained by averaging the outputs of the hypotheses
thus obtained. This method is based on the idea that
prediction error consists of the 'bias,' which is the es-
timation error necessitated by the input data size, and
the 'variance' which is due to the statistical variation
existing in the specific data. The claim is that bag-
ging can isolate the two factors and can minimize the

variance component of the error. Query by bagging is
like query by committee, except it applies bagging on
the input sample and picks as the next query point a
point at which the predictions of the hypotheses are
most evenly split. The details of query by bagging are
also given in Figure 2.

2.3 Query by Boosting

We will now describe the query by boosting method
in detail. In query by boosting, we pick as the next
query point a point at which the weighted voting of
the final hypothesis obtained by boosting the compo-
nent learning algorithm has the least 'margin.' When
the target function is 0,1-valued, this means that the
query point is one for which the difference between the
total weight for the value 1 and that for 0 is minimum
among all candidate points. We give the details of this
procedure in Figure 3, where we also supply the details
of AdaBoost [FS95] for completeness.

Note that the original query by committee, query by
bagging, and query by boosting form a natural pro-
gression. In query by committee, all the samples are
identical, and the variance of the component algo-
rithm's predictions is taken with respect to the ran-
domness that exists within the component algorithm.
In query by bagging, subsamples are obtained from
the input sample using an identical distribution, and
the variance of the component algorithm's predictions
is with respect to the randomness in re-sampling. In

Abe and Mamitsuka

Algorithm: Query-by-Boosting(QBoost)
Input: Number of trials: N
Component learning algorithm: A
Number of times re-sampling is done: T
Number of query candidates: R
A set of query points: Q

Initialization: Si = (xi,f{xi)) for random xx

For i= 1,...,N
1. Run AdaBoost on input (S,-, A, T) and get:

hjin(x) = argmaxyey T,h,(*)=y loß jl
2. Randomly generate a set of R points C C Q \ S[.
with respect to uniform distribution over Q\S[.

3. Pick a point I'EC with the minimum margin:

x* = argminx6c|£h,(r)=ologj^-£Mr).= iloS/7l
4. Query the function value at x* and obtain* f{x*).
5. Update the past data as follows
Si+i = append{Si,(x*,f(x*)))

End For
Output: Output hfin in the last stage as the output.

Subroutine: AdaBoost [FS95]
Input: Sample: S = ((xi, yi),.., (xit */,),.., (xm, ym))
(Here, assume Vj/* € Y = {0,1}.)
Component learning algorithm: A
Number of times re-sampling is done: T

Initialization: Vi < m,Di(x,) = ^
For* = l,..,r

1. Run J4 on a sample of size m generated w.r.t. £>,.
2. Let its output hypothesis be ht.
3. Compute its error rate e< by:

4. Calculate /?, by /?* = ^
5. Update the re-sampling distribution Dt + \\

Dt+1{Xi) = ^%^ if ht{Xi) = »,-
A+iC1») = Dt(xi) otherwise

(Here Z is a normalization constant satisfying
Ei=1,..,mA+1(x,) = l.)

Output: Output as the final hypothesis:

■*h,(x)=y J hjin(x) = arg maxygy Eh,(r)=y loS ft

Figure 3: Query by boosting (QBoost)

attributes missing
name #ex. disc. cont. values
liver-disorders 345 - 6 -
ionosphere 351 - 34 -
house-votes-84 435 16 - 0

wdbc 569 - 32 -
crx 690 9 6 0

breast-cancer-Wisconsin 699 9 - 0

pima-indians-diabetes 768 - 8 -
tic-tac-toe 958 9 - -

Table 1: The eight data sets used in our experiments.

query by boosting, the re-sampling distribution itself
is changed depending on the properties of the obtained
hypotheses, and the variance of the component algo-
rithm's predictions is measured with respect to the
uncertainty involved in weighted voting by the various
hypotheses.

3 Experimental procedures

We evaluate the proposed query learning methods on
the learning problem for concepts (or 0,1-valued func-
tions) over a number of attributes, which arc either
binary, discrete or numerical. A special case of this
is when all the attributes are discrete, and the target
function can be regarded as an n-ary relation over n
finite sets. In our experiments, we use existing data
sets for training and test data, without an explicitly
defined target function. Since it is not possible to use
query learning algorithms genuinely as query learners
in this setting, we use them as methods for selective
sampling, that is, ways to select a smaller set of more
effective data from a large data set.

The data sets we used in our experiments were bor-
rowed from the machine learning data repository of
University of California at Irvine.2 Of the large num-
ber of data sets available from the repository, wc se-
lected 8 (not all) data sets satisfying the following con-
ditions: (1) The target function is 0,1-valucd; (2) The
data size is moderate (more than 300 and less than
1,000); Table 1 summarizes the data sets wc selected
and their basic characteristics.

On these data sets, we compared the performance of
C4.5, boosting applied on C4.5, query by boosting ap-
plied on C4.5, and query by bagging applied on C4.5.
For each data set, we performed 10-fold cross valida-
tion, with one-tenth of the available data (selected ran-
domly) reserved as the test data and the rest used as
the training data, or query data. For each of the 10

ltory

2This data set, abbreviated as the 1CI ML rcpos-
n what follows, is available at URL address:

http://www.ics. uci.edu/~mlearn/MLReposit.ory.html"

Query Learning Strategies using Boosting and Bagging

pairs of training and test data sets, we averaged the
results over two randomized runs, a total of 20 runs
for each data set.3

The query learning algorithms are used to pick the
next query point from the training (query) data with-
out replacement and are tested using the (separate)
test data. When the specified number of candidates
exceeded what is left of the training data, we went
on with as many candidates as there were left. On
one occasion, we also examined their predictive perfor-
mance on the query data, from which query learners
have selected a subset to learn from, instead of using
the separate test data.

Finally, the parameters T and R in all the query learn-
ing methods were set at T = 20 and R = 100 in all of
our experiments.

4 Experimental Results

We now discuss the results of our experiments on the
UCI Machine Learning Repository. Figure 5 plots the
learning curves obtained for the four learning methods
on each of the eight data sets. Each graph plots the
predictive accuracy (in percentage) of the four learning
methods measured using the separate test data at ev-
ery 50 trials. It is clearly seen from these graphs that
in all eight data sets, the two proposed query learn-
ing methods achieve significant improvement in data
efficiency as compared to C4.5. One can see that at
very early stage in learning, say around 50 to 150 tri-
als depending on the data set, the prediction accuracy
of the query learning methods reaches a level that is
achieved by C4.5 only towards the end of the data set.
Table 2 gives concrete figures that quantify this ob-
servation. Here, 'the target error rate' was calculated
using the error rate of C4.5 in the last 100 trials.4

Then, we checked to see how many trials it took for
all four methods to reach that error rate. In parenthe-
ses, we also exhibit the ratio of the number of trials
required by each of the methods to that of C4.5. One
can see that typically the data efficiency is improved
by a factor of 2 to 4.

The speed-up achieved by the two query learning
methods compared against boosting applied on C4.5
is less dramatic but still significant. From the
graphs, one can see that on five of the eight data
sets, namely breast-cancer-wisconsin, tic-tac-toe, iono-
sphere, house-votes-84 and wdbc, the advantage of the
query methods over boosting is clear, while on the

3The results involving WMPl were obtained by averag-
ing over 10 runs, not 20 runs.

4For this calculation, we fed a randomly chosen test
example after each trial, and the prediction error of the
current trial was calculated by the average prediction error
over the last 50 test trials.

other three it is less obvious. These three data sets,
crx, liver-disorders, and pima-indians-diabetes appear
to have a common feature: That a certain level of ac-
curacy is achieved with relatively few examples, but
from then on the accuracy is hardly improved as the
data size increases. It may be that the target function
of these data sets is sufficiently noisy that no learning
method can break this barrier. The increase in data
efficiency achieved by the query learning methods in
comparison to boosting is summaried in Table 3, sim-
ilarly as before.

All the evaluation discussed thus far has been based
on the prediction accuracy measured using test data,
which are disjoint from the training data or the query
data from which the query learning methods selected
query points. As we remarked earlier, this is selec-
tive sampling and not genuine query learning. If we
measure the prediction accuracy of query learning al-
gorithms with respect to the query data, then this
would translate to a genuine query learning scenario,
except the function being learned is solely defined by
the query data, only on those points that are in the
data. We took this view point and examined the learn-
ing curves for the four methods with respect to this
measure. Figure 6 plots these learning curves for the
eight data sets as before. One can more clearly see the
effect of query learning here - with respect to all but
one data set (pima-indians-diabetes), the accuracy of
the two query learning methods rise much faster than
either C4.5 or boosting on C4.5., typically achieving
an increase in data efficiency of fator 3 to 6.

On one of the eight data sets, tic-tac-toe, we ran the
analogous experiments as above using a randomized
version of WMPl as the component learning algo-
rithm. Figure 4 plots the prediction accuracy achieved
by each of the five methods at the end of every 50 tri-
als. Note that query by committee can now be applied
because we use a randomized component algorithm.
Here much of the tendency observed using C4.5 car-
ries over. Notice, however, that here the two proposed
methods, query by boosting and query by bagging,
out-perform query by committee. Also, in this case
query by boosting seems to do better than query by
bagging, at least for a wide range of data sizes. The
relative performance of the competing query learning
methods appear to depend on the component learn-
ing algorithm (and the learning problem). Note fur-
ther that boosting and the query methods applied on
WMPl achieve much higher accuracy than those ap-
plied on C4.5 on this particular problem. Interestingly,
WMPl itself does not have a higher accuracy than
C4.5, but both boosting and query by boosting applied
on WMPl are significantly more effective than those
applied on C4.5.. This observation suggests that on
component algorithms and problems on which boost-
ing is effective, query by boosting may do better than

Abe and Mamitsuka

target

query by query by total error rate

name bagging boosting boosting C4.5 size (C4.5)

liver-disorders 86(0.30) 96(0.34) 108(0.38) 286(1.0) 310 0.3685

ionosphere 91(0.39) 97(0.41) 143(0.61) 236(1.0) 315 0.0935

house-votes-84 65(0.21) 72(0.24) 145(0.48) 303(1.0) 391 0.0465

wdbc 82(0.26) 88(0.28) 208(0.66) 314(1.0) 512 0.054

crx 64(0.50) 100(0.79) 119(0.94) 127(1.0) 621 0.171

breast-cancer-Wisconsin 86(0.40) 83(0.39) 209(0.98) 213(1.0) 629 0.072

pima-indians-diabetes 67(0.44) 63(0.41) 81(0.53) 152(1.0) 691 0.2895

tic-tac-toe 236(0.39) 243(0.40) 308(0.51) 609(1.0) 862 0.1445

Table 2: Data efficiency increase achieved with respect to C4.5

target

query by query by total error rate

name bagging boosting boosting C4.5 size (boosting)

liver-disorders 111(0.86) 126(0.98) 129(1.0) - 310 0.3305

ionosphere 121(0.50) 119(0.49) 243(1.0) - 315 0.073

house-votes-84 71(0.34) 136(0.65) 210(1.0) 366(1.74) 391 0.04

wdbc 97(0.32) 130(0.43) 300(1.0) 506(1.69) 512 0.0455

crx 86(0.60) 140(0.97) 144(1.0) - 621 0.146

breast-cancer-Wisconsin 103(0.34) 92(0.31) 301(1.0) 391(1.30) 629 0.0495

pima-indians-diabetes 99(0.56) 191(1.09) 176(1.0) - 691 0.2475

tic-tac-toe 438(0.52) 517(0.62) 836(1.0) - 862 0.053

Table 3: Data efficiency increase achieved with respect to boosting

0 50 100150200250300350400450500
training data

Figure 4: Prediction accuracy on test data on tic-tac-toe.
Right: Using C4.5 as the component algorithm.

Q by boosting
Q by bagging

boosting
C4.5

0 100 200 300 400 500 600 700
training data

Left: Using WMP1 as the component algorithm,

Query Learning Strategies using Boosting and Bagging 7

the other query learning methods as well.

The time complexity of all three query learning meth-
ods we considered is of the order 0(NTR ■ F(N)),
where F(N) is the time complexity of the component
algorithm when run on an input sample of size N.
This is a tractable but significant increase in compu-
tation cost as compared to the component algorithm.
The judgement of whether the data efficiency brought
about by these methods justifies the additional com-
putational burden would depend on the exact applica-
tion under consideration. Also note that both query
by committee and query by bagging are parallelizable
with respect to T and R, but query by boosting is par-
allelizable only with respect to R, and not T. Thus,
only when query by boosting buys significantly more
data efficiency, would it be the method of choice.

5 Concluding Remarks

We proposed two variants of query by committee that
can be applied on an arbitrary component algorithm,
be it deterministic or randomized, by incorporating
the ideas of boosting and bagging. Experiments on
data sets from the UCI Machine Learning repository
demonstrated that, when using them with C4.5 as
the component algorithm, the proposed query learn-
ing methods achieve significant increase in data effi-
ciency as compared to both C4.5 and boosting applied
on C4.5. On one of the data sets which can be cast
as an n-ary learning problem, we tested these methods
using a randomized weighted majority prediction algo-
rithm for n-ary relations as the component algorithm,
and found that the proposed methods performed bet-
ter than query by committee. In the near future, we
plan to carry out more systematic evaluation to verify
the robustness of the proposed query methods on the
choice of the component algorithm and the learning
problem.

A cknowledgement

We thank Dr. S. Goto, Dr. S. Doi of NEC and Dr. K.
Takada of NIS for their support. We would also like to
thank those involved with the UCI Machine Learning
repository for making the data sets available.

References

[ALN95] N. Abe, H. Li, and A. Nakamura. On-
line learning of binary lexical relations us-
ing two-dimensional weighted majority al-
gorithms. In Proc. 12th Int'l. Conference
on Machine Learning, July 1995.

[Ang87] D. Angluin. Learning regular sets from
queries and counterexamples. Inform. Corn-
put., 75(2):87-106, November 1987.

[Bre94] L. Breiman. Bagging predictors. Techni-
cal Report 421, University of California at
Berkeley, 1994.

[CS94] Mark W. Craven and Jude W. Shavlik. Us-
ing sampling and queries to exctract rules
from trained neural networks. In Machine
Learning: Proceedings of the 11th Interna-
tional Conference, pages 37-45, 1994.

[DSS92] H. Drucker, R. Schapire, and P. Simard.
Improving performance in neural networks
using a boosting algorithm. In Advances
in Neural Information Processing Systems.
Morgan Kaufmann, 1992.

[Fre90] Y. Freund. Boosting a weak learning al-
gorithm by majority. In Proc. 3rd Annu.
Workshop on Comput. Learning Theory,
pages 202-216. Morgan Kaufmann, San
Mateo, CA, 1990.

[FS95] Y. Freund and R. Schapire. A decision-
theoretic generalization of on-line learning
and an application to boosting. In Pro-
ceedings of the Second European Conference
on Computational Learning Theory (Euro-
COLT'95), pages 23-37, 1995.

[LC94] David D. Lewis and Jason Catlett. Het-
erogeneous uncertainty sampling for super-
vised learning. In Machine Learning: Pro-
ceedings of the 11th International Confer-
ence, pages 148-156, 1994.

[LG94] David D. Lewis and William A. Gale. A
sequential algorithm for training text clas-
sifiers. Proceedings of 17th Annual Interna-
tional ACM-SIGIR Conference of Research
and Development in Information Retrieval,
pages 3-12, 1994.

[PK95] G. Paass and J. Kindermann. Bayesian
query construction for neural network mod-
els. In Advances in nueral information pro-
cessing systems 7, pages 443-450, 1995.

[Sch90] R. E. Schapire. The strength of weak learn-
ability. Machine Learning, 5(2):197-227,
1990.

[SFBL97] R. Schapire, Y. Freund, P. Bartlett, and
W. S. Lee. Boosting the margin: A new
explanation for the effectiveness of vot-
ing methods. In Proceedings of the Four-
teenth International Conference on Ma-
chine Learning (ICML'97), pages 322-330,
1997.

[SOS92] H. S. Seung, M. Opper, and H. Som-
polinsky. Query by committee. In Proc.
5th Annu. Workshop on Comput. Learning
Theory, pages 287-294. ACM Press, New
York, NY, 1992.

8 Abe and Mamitsuka

liver-disorders ionosphere
68

66

64

62

60

58

56

54

52

98

97

96

95

94

93

92

91

90

89

 1 1— 1 _^

Q by boosting
Q by bagging -

boosting
C4.5

i i i

87

86

85

84

83

82

81

80

79

50 100 150
training data

house-votes-84

200

Q by boosting
Q by bagging

boosting
C4.5

50 100 150 200
training data

crx

250

-1 1 1 1 1 1 r

' Q by boosting
O by bagging

boosting
C4.5

0 50 100150 200 250 300 350 400 450 500
training data

pima-indians-diabetes

76
 1 1 1 T 1

-
.'/"~\"N<' "■ Jy^~^~- '-"■y^--. ^\

,' / ,_-*-^Sci—*^ •■ -*-.

74 '''/"•'
5?
" 72 - S* -
&
3 70 - /"
u

Q by boosting v
68 - / Q by bagging

boosting
66 C4.5

■ i ■ i i

0 100 200 300 400 500 600 700
training data

94

92

90
S?

& 8«
n
8 86
o
" 84

82

80

• Q by boosting
Q by bagging

boosting
C4.5

50 100 150
training data

wdbc

200

Q by boosting
Q by bagging

boosting
C4.5

0 50 100 150 200 250 300 350 400
training data

breast-cancer-Wisconsin
98

96 (-

94

92

90

88

Q by boosting
Q by bagging

boosting
C4.5

86
50 100150200250300350400450500

t training data
tic-tac-toe

Q by boosting
Q by bagging

boosting
C4.5

100 200 300 400 500 600 700
training data

Figure 5: Learning curves for four learning methods on the UCI ML Repository.

Query Learning Strategies using Boosting and Bagging 9

liver-disorders

90

85

& 80

I 75
CO

70

65

100

98

96

94

92

90

Q by boosting
Q by bagging

boosting
C4.5

0 50 100 150
training data

house-votes-84

200

L _1_ _1_

50 100 150 200
training data
crx

250

Q by boosting
Q by bagging

boosting
C4.5

0 50 100150200250300350400450500
training data

pima-indians-diabetes

65

Q by boosting
Q by bagging

boosting
C4.5

100 200 300 400 500 600 700
training data

100

98

96

£ 94 -

| 92

1 90
88

86

84

ionosphere
"1 1 1

/y~~ .--""":

// ...--'•';'-• -
Vsy'X'''

/ Q by boosting
Q by bagging

boosting
C4.5 -

' '' '
50 100 150

training data

wdbc

200

Q by boosting
Q by bagging

boosting
C4.5

breast
100

100 150 200 250 300 350 400
training data

cancer-Wisconsin

Q by boosting
Q by bagging

boosting
C4.5

0 50 100150200250300350400450500
training data

tic-tac-toe

65

Q by boosting
Q by bagging

boosting
C4.5

100 200 300 400 500 600 700
training data

Figure 6: Learning curves on 'query data' for four learning methods on the UCI ML repository.

10

Genetic Programming and Deductive-Inductive Learning: a
Multi-strategy Approach

Ricardo Aler, Daniel Borrajo, Pedro Isasi
Departamento de Informätica, Universidad Carlos III de Madrid

28911 Leganes (Madrid), Spain
email: {aler@inf,dborrajo@ia,isasi@ia}.uc3m.es

Abstract

Genetic Programming (GP) is a machine
learning technique that was not conceived
to use domain knowledge for generating new
candidate solutions. It has been shown that
GP can benefit from domain knowledge ob-
tained by other machine learning methods
with more powerful heuristics. However, it
is not obvious that a combination of GP
and a knowledge intensive machine learning
method can work better than the knowledge
intensive method alone. In this paper we
present a multi-strategy approach where an
analytical and inductive approach (HAMLET)

and an evolutionary technique based on GP
(EvoCK) are combined for the task of learn-
ing control rules for problem solving in plan-
ning. Results show that both methods com-
plement each other, supplying to the other
method what the other method lacks and ob-
taining better results than using each method
alone.

1 INTRODUCTION

Genetic Programming (GP) is a machine learning
technique based on a search over a huge state
space [Koza and Rice, 1991]. Therefore, as any search
method, it can be defined in terms of three elements:
an initial state, a set of operators, and a heuristic func-
tion (called fitness function). GP expands the ideas
of Genetic Algorithms by using structured representa-
tions (trees). The use of this type of representation
is more appropriate for solving symbolic tasks than
Genetic Algorithms.

One of such tasks consists on learning control knowl-
edge for problem solving. Problem solving can also be
described in terms of a search in another state space
than the one of GP. Traditional approaches use domain
independent planners for generating plans [Blum and
Fürst, 1995, Penberthy and Weld, 1992]. PRODIGY,
an architecture for planning and learning that uses a
means-ends analysis nonlinear planner, is one of such
systems [Veloso et al, 1995]. However, planning be-
comes impractical for large problems. In order to gain
efficiency, PRODIGY must be supplied with domain-
dependent search control knowledge which can be ap-
plied at decision points in the planning reasoning cycle.
This control knowledge has the form of control rules,
as further explained later on.

In this type of tasks, the use of all available domain
knowledge is essential for an efficient learning process.
Classically, GP systems have only used domain knowl-
edge for the fitness function. We propose the use of
background knowledge coming from the use of a pre-
vious learning technique also in another two search
elements [Aler et al, 1998a]: first, the initial state will
not be created randomly, but using control knowledge
learned by another method, HAMLET in this case [Bor-
rajo and Veloso, 1997]. Second, genetic operators will
use knowledge in the form of examples, obtained as a
sub-product of HAMLET learning process.

In [Aler et al, 1998a] we have shown that GP ob-
tains much better results in planning by using such
background knowledge. The purpose of this paper is
to show that a multi-strategy approach using GP and
HAMLET works better than using each method alone.
This multi-strategy approach can be seen as a com-
bination of learning bias from different methods: GP
and HAMLET. In this paper, we have used PRODIGY,
but in the future other planners such as UCPOP or
GRAPHPLAN might be used.

Genetic Programming and Deductive-Inductive Learning 11

Section 2 explains the role of learning in planning. Sec-
tion 3 describes our multi-strategy approach for learn-
ing in planning. Section 4 describes our experimental
setup and the results obtained. Section 5 discusses
these results, and presents the conclusions. Finally,
Section 6 surveys related work.

2 THE LEARNING TASK

The learning task can be stated as: given a set of traces
belonging to problems solved by PRODIGY in a particu-
lar planning domain, induce a set of control rules that
perform well in that planning domain. Control rules
help PRODIGY to make decisions at several points in
its search process. If there are no applicable control
rules in a decision point, PRODIGY will make a default
decision. It has five kinds of decision points:1

• Select, prefer or reject a goal from the set of pend-
ing goals.

• Select, prefer or reject an operator to achieve a
goal.

• Select, prefer or reject a binding for the chosen
operator.

• Choose whether to apply an instantiated applica-
ble operator or to subgoal on an unachieved goal.

• Select, prefer or reject an instantiated operator
from the set of applicable instantiated operators.

Figure 1 shows an example of a control rule
for the blocksworld domain. current-goal, and
true-in-state are meta-predicates. The control rule
says that if PRODIGY is working on trying to hold an
object, <objectl>, and this object is on top of an-
other, <object2>, in the current state, then PRODIGY
should select the operator UNSTACK and reject the rest
of operators that could achieve the same goal.

(control-rule select-operators-unstack

(if (and (current-goal (holding <objectl>))

(true-in-state (on <objectl> <object2>))))
(then select operator unstack))

Figure 1: Example of a control rule for making the
decision of what operator to use.

'HAMLET only generates selection control rules. In this
article, GP will look just for that kind of control rules, so
that it can be properly compared with HAMLET.

At every decision point, PRODIGY is in a particular
search meta-state. Let ME be the set of all possi-
ble meta-states. Now, helping PRODIGY to take de-
cisions can be stated as: for each possible decision
(for example: select goal (on x y)) find a parti-
tion of ME into ME+ (where the decision should be
taken) and ME- (where the decision should not be
taken). That is, control rules are actually classifica-
tion rules: they partition the space of meta-states into
those meta-states that belong to a possible decision
and those that do not. And this looks like traditional
machine learning concept induction, where classifica-
tion rules have to be induced from a set of examples.
In this case, it has the following characteristics:

• Several target concepts have to be learnt from the
same data (set of traces). Not only there are dif-
ferent kinds of target concepts associated to each
kind of decision (select operator, select goal, etc)
but each kind of decision has several associated
target concepts. For instance, there will be one
target concept of the type select operator for each
possible (operator, goal) pair of a particular do-
main.

• Target concepts will generally be disjunctive (that
means that several control rules will be needed to
represent a target concept).

• The representation of concepts is relational, so we
are dealing with an ILP problem.

Therefore, when using GP, each individual will be a set
of control rules, represented as a structure that will be
explained in Section 3.2. A GP population is made of
several such individuals.

3 A MULTI-STRATEGY
APPROACH FOR LEARNING
CONTROL KNOWLEDGE

In this section we will describe the architecture of the
learning system, and define the learning behavior in
terms of its three learning biases.

3.1 ARCHITECTURE OF THE
LEARNING SYSTEM

The general architecture of our system consists of five
blocks (as also shown in Figure 2). The main blocks
are EvoCK ("Evolution of Control Knowledge") and
HAMLET.

12 Aler, Borrajo, and Isasi

Control Rules and Problem
+\ Prodigy j

Search Tree

Problem
Generator

Performance

Planning Problems

Individual
and Problems

EvoCK

n—
Best Individual

 ^. Hamlet
• Individual

Background
Knowledge
Population

Figure 2: General Architecture of the multi-strategy
approach.

EvoCK is the module that implements the GP
paradigm adapted for evolving planning control rules.
EvoCK is supplied with fitness cases generated by a
problem generator. These fitness cases are planning
problems generated at random by the problem gener-
ator. In order to evaluate individuals from the popula-
tion with the fitness cases set, EvoCK tells PRODIGY
to load the individual and try to solve each one of
the fitness cases. Performance of this individual with
these fitness cases is returned to EvoCK. HAMLET has
a similar relation with PRODIGY and the problem gen-
erator but in this case the information returned by
PRODIGY is the search tree that HAMLET will use to
generalize and refine its control-rules.

EvoCK and HAMLET are weakly coupled in the fol-
lowing way. First, HAMLET is run to learn from a set
of randomly generated problems. Then, two of its out-
puts are used as background knowledge for EvoCK:
the set of rules learned by HAMLET ("HAMLET indi-
vidual") are used to seed the EvoCK initial popu-
lation. Also, the HAMLET supplies a set of positive
examples ("Background Knowledge Population") that
will be taken as input by one of the genetic operators
(knowledge based crossover [Aler et al, 1998a]). This
will be explained in subsection 3.3.

When EvoCK gets to the maximum number of evalu-
ations allowed for learning, it returns its best individ-
ual obtained so far. Although not shown in Figure 2,
best individuals are tested with a different set of plan-
ning problems (also obtained from the problem gener-
ator) to check how well they have generalized from the
training data.

In the next three sections, we describe the system by
explaining its learning biases. These biases are classi-
fied following Utgoff [Utgoff, 1986] in language biases,
exploration biases and evaluation biases.

3.2 THE LANGUAGE BIAS

Usually, in GP there are no constrains in the struc-
ture that is to evolve: any combination of functions
and terminals will be valid and crossover points can
be taken at any place in the individual. But, in
our case, PRODIGY restricts what are valid structures
and what are not. For instance, a meta-predicate
like TRUE-IN-STATE2 can only be passed as argument
a goal like (on <x> <y>) but not an operator like
PUT-DOWN. Other general constrains are imposed by the
structure of the rule language itself (if < condition >
then <action>, etc). In many cases this problem can
be solved by achieving operational closure, that is,
by allowing each function to accept any type of re-
sult [Koza and Rice, 1991]. However, this is not pos-
sible in this case, since PRODIGY fixes the structure of
the language for representing control rules and feeding
it with non-valid control rules would make it fail.

Therefore, we have chosen to constrain structures to
PRODlGY-valid ones (in the literature, such structures
are called "constrained structures" [Koza and Rice,
1991] or "strongly typed structures" [Montana, 1995]).
In order to achieve it, the following three steps must
be followed: create only valid structures, crossover
points must be of the same type and mutation op-
erators must take into account the type of the mu-
tation point. The first step is achieved by using an
special-purpose production grammar. An example of
an individual generated by the grammar might be the
one that appears in Figure 3. This individual consists
of two control rules for the blocksworld domain. The
first one checks whether there is a block with no other
blocks on it and if the planner is trying to solve ei-
ther putting that object on another object or having
the robot arm hold a third different object. If both
conditions succeed, then the planner will work next
in the (on <object-l> <object-2>) goal. The other
control rule says that if there is an object on the table
and the system is trying to bind the pick-up operator,
then it should be bound to that object.

3.3 THE EXPLORATION BIAS

The exploration bias includes everything related to the
search policy: search operators, background knowl-
edge to constrain the search, etc. The system uses

2Meta-predicates are functions that have access to
PRODIGY meta-state. Therefore they can check whether
a condition is true or not in the meta-state. For instance
TRUE-IN-STATE tests if a particular condition is true in the
current planning state

Genetic Programming and Deductive-Inductive Learning 13

(list (rule (and (true-in-state (clear <object-l>))

(some-candidate-goals

(goals-list (on <object-l> <object-2>))

(holding <object-3>)))

(select-goal (on <object-l> <object-2>)))
(rule (true-in-state (on-table <object-l>))

(select-bindings (pick-up-b <object-l>))))

Figure 3: Example of EvoCK individual.

the traditional GP operators (crossover and mutation)
and some others specially tailored for the learning task.
The whole operator set is:

• Copy: reproduction without modification.

• Xover: traditional crossover. It takes two con-
strained structures and produces one constrained
structure

• Changingjnutation: it chooses a mutation
point, and changes the whole subtree by another
randomly generated subtree. This mutation is
equivalent to Xover with a randomly generated
individual (as the second parent).

• Xover_add: some points in the evolving struc-
ture allow for lists of elements of the same kind
(as, for instance, lists of goals). In those cases,
crossover adds elements to the lists from the other
parent, instead of replacing the whole list.

• Chopping_off_mutation: in those points where
lists of elements of the same kind are allowed, it
removes one of the elements.

• Growing_mutation: it adds a random subtree
at those points where lists of elements of the same
type are allowed. It is equivalent to Xover_add
with a randomly generated individual (as the sec-
ond parent).

All these operators are simple variations of genetic op-
erators traditionally used in GP. The next two opera-
tors are specially tailored for this learning task.

• Join: it selects one variable in the control rule
(like <object-l>) and substitutes it by any other
variable in the control rule. The rationale behind
this operator is that sometimes there are condi-
tions in a rule that are not related with other
conditions by common variables. Sometimes that
is undesirable. For instance, if we have a control
rule to pick-up an object <obj 1> when some con-
ditions are true, our experience says that many

of those conditions should refer to <objl>. The
join operator is a simple way of creating these
references.

• Up_the_hierarchy: objects (the elements to
which the planning operators are applied) in
PRODIGY are organized in a tree-shaped type hi-
erarchy. For instance, in logistics transportation
planning domain, there are trucks and planes,
which are both denned as carriers. This genetic
operator would take a truck-typed variable in the
left hand side of the rule and would substitute all
its instances by a carrier-typed variable. Thus,
the control rule would become more general.

The related specialization operators (i.e. disjoin and
down_the_hierarchy) are not included in the operator
pool; we are imposing a strong bias towards general-
ization. However, the system can still specialize by
means of the other generic operators (mutation, etc).

Background knowledge can be introduced to the sys-
tem in order to restrict the search. So far, we have
used two kinds of background knowledge:

• Seeding the initial population with an individual
coming from HAMLET.

• The early phase of HAMLET returns a set of posi-
tive and negative examples as a sub-product. Pos-
itive examples are those where PRODIGY made the
right decision in the planning process. These pos-
itive examples can be easily transformed into con-
trol rules and then into GP individuals. Then, the
crossover operator will be able to draw individ-
uals from the background knowledge population
instead of the evolving population (this is what
we have called "knowledge-based crossover opera-
tor" [Aler et al, 1998a]). In that way, background
knowledge can be injected into the evolving pop-
ulation.

Finally, we use a steady state GP with a generational
gap of 1. 2-tournaments are held for both selection and
replacement. This has been shown experimentally to
behave well.

3.4 THE EVALUATION BIAS

The evaluation bias concerns the preference criteria
used by GP for selecting an individual over another,
which is coded as a fitness function. In our case, we
devised a hierarchical fitness function that contains the

14 Aler, Borrajo, and Isasi

following components [Aler et al, 1998b, Aler et al,
1998a]:

1. Performance in fitness cases: to maximize.
How well the individual performs when PRODIGY
tries to solve the training planning problems when
guided by the individual (acting as a set of control
rules). It will explained later in more detail.

2. Number of different variables: to minimize.
This fitness component is related to the same bias
than the join operator. We want to have as many
meta-predicates in the left hand side of the control
rules inter-related by common variables as possi-
ble.

3. Number of different true-in-state meta-
predicates: to minimize. The fewer true-in-state
meta-predicates, the more general and faster will
run the set of control rules.

4. Number of different goals in some-
candidate-goals meta-predicates: to maxi-
mize. This meta-predicate returns true if at least
one of its arguments is a candidate goal to be
solved by the planner. So, the more goals has
some-candidate-goals, in more cases it will be ap-
plicable and the more general it will be (although
less compact).

5. Number of different some-candidate-goals:
to maximize. Another way of making a rule
more general is to get rid of unnecessary some-
candidate-goals checking. This also makes it
faster.

6. Number of control rules: To minimize. The
fewer control rules, the faster will the individual
solve the problems.

7. Individual size (in nodes): To minimize.

All individuals in the tournament set that have the
same score in the first comparison will pass to the sec-
ond one and so on. The rest will be dropped off the
tournament. If more than one individual happen to
pass the last comparison, the tournament winner is
chosen randomly.

The first criteria, performance in fitness cases, was
formerly computed by measuring how many steps of
the solution of a given planning problem the individ-
ual managed to follow (solutions to all the planning
problems were known by EvoCK in advance by let-
ting PRODIGY solve those problems and storing the

search trees). However, although we obtained good re-
sults, we realized that an individual managing to follow
many steps in the solution didn't guarantee that the
individual would actually solve the problem. There-
fore, we have decided to change it for a set of three
new criteria:

• Number of problems solved by PRODIGY be-
ing guided by the individual with a maximum
node limit. To maximize. This node limit is four
times the amount of nodes that would be needed
to solve the problem if PRODIGY could go straight-
forward to the solution.

• Number of problems solved by the individ-
ual more efficiently than PRODIGY alone. To
maximize. Efficiency in this case means fewer
nodes expanded.

• Total number of nodes expanded by the in-
dividual. To minimize.

In order to test an individual with these new criteria, it
has to be loaded into PRODIGY. Then, PRODIGY will be
run for each of the planning problems for learning (or
fitness cases, in GP terminology). However, complex
problems need to be given a high node limit if they
are to be solved. As many such evaluations must be
performed for each generation, only simple problems
can be used for learning (otherwise the fitness function
would take too long). This is another bias to take
into account.3 However, [Borrajo and Veloso, 1997]
shows empirically that training with simple problems
is enough for learning control knowledge useful to solve
more complex problems.

4 EXPERIMENTAL RESULTS

In order to test our multi-strategy approach, the fol-
lowing steps were carried out:

1. Hamlet was trained with 400 learning planning
problems. Two domains were used: blocksworld
and logistics. A set of control rules and a set of
positive examples were obtained for each domain.
They were used as background knowledge in the
next step.

2. EvoCK was trained in the blocksworld and logis-
tics with 192 and 188 learning planning problems

3 [Aler et al, 1998b, Aler et al, 1998a] was not con-
strained by this bias.

Genetic Programming and Deductive-Inductive Learning 15

respectively. A population size of 2 was used. Cer-
tainly, a population size of 2 is not common in GP.
Previous work [Aler et al, 1998a] shows that using
a bigger population seems to be good but results
are not conclusive: the interaction between popu-
lation size and seeding the initial population is not
properly understood yet. In our case, the seeding
individual (coming from HAMLET) is much better
than the other initial individuals (randomly gen-
erated) therefore two things might happen: first,
during the earlier generations the seeding individ-
ual would not be selected very often, so some time
would be spent evaluating individuals that con-
tain no knowledge. Second, if the seeded individ-
ual is much better than the randomly generated
individuals, in the long term all members might
contain similar genetic information to the seeded
individual [Eraser and Rush, 1994]. In this paper
a population of 2 has been chosen because in that
way, we make sure that genetic operators will al-
ways act on individuals which contain knowledge
and therefore, the impact of knowledge will be
better controlled. In any case, we plan to carry
out several experiments that will study the pop-
ulation size-population seeding interaction in de-
tail. Performing crossover in such a small popu-
lation is not meaningful, so standard crossover is
not used in this paper. However, EvoCK can
use it in general. Background knowledge from
the previous step was used in the two ways de-
scribed in subsection 3.3. As GP is a stochastic
method, several experiments were carried out for
each domain: 47 for the blocks world and 54 for
logistics. Each experiment ran for 100.000 eval-
uations. From each experiment, a set of control
rules was obtained.

3. HAMLET was trained in a similar manner than
EvoCK. HAMLET started with the sets of control
rules obtained in step 1 and refined them with
the rest of the learning problems used to train
EvoCK. Two sets of control rules were obtained
(one for each domain).

4. Finally the sets of control rules obtained by
EvoCK and HAMLET were tested with a new
set of problems (416 for the blocksworld and 347
for logistics) in the same conditions. Results are
shown in Table 1. As EvoCK obtained one set
of rules from each experiment, two quantities are
shown: the number of problems solved by the best
of all sets of control rules (along with the number
of control rules for that individual) and the aver-

age number of problems solved over all sets.

Table 1: Results for PRODIGY, HAMLET and EvoCK
in both the blocksworld and logistics domains.

% Prob.
Solved

Number
of Rules

Average
% P. Solv.

Blocksworld
PRODIGY ALONE 21%

HAMLET SEED 58% 12
HAMLET 18% 13

EvoCK (best indiv.) 87% 4 80%
Logistics

PRODIGY ALONE 43%
HAMLET SEED 52% 56

HAMLET 46% 64
EvoCK (best indiv.) 95% 19 65%

Table 1 shows that when HAMLET tries to refine and
improve a set of control rules previously learned (HAM-

LET seed in Table 1), the percentage of test problems
actually solved drops: in the blocksworld it goes from
58% to 18%, in logistics it gets from 52% to 46%. On
the other hand, EvoCK improves the set of control
rules given as seed for the initial population: 58% to
87% in the blocksworld and 52% to 95% in logistics.
Next section comments on these results. It is also no-
ticeable that EvoCK produces individuals with fewer
control rules than the seeding individual (12 to 4 con-
trol rules in the blocksworld and 56 to 19 in logistics)
hence returning more efficient individuals. In order
to show that the control rules learned are general and
useful for more complex problems, a breakdown of the
results are displayed in Tables 2 and 3.

Table 2: Breakdown of the number of testing problems
solved in the blocksworld by HAMLET and EvoCK ac-
cording to the number of goals and of objects).

Goals # Objects PRODIGY HAMLET
seed

HAMLET EvoCK

50 50 0% 0% 0% 56%
20 50 6% 31% 4% 81%
20 20 6% 27% 4% 69%
10 50 21% 67% 19% 96%
10 20 15% 56% 15% 83%
10 15 31% 48% 15% 85%
5 50 15% 70% 2% 92%
5 20 15% 82% 18% 95%
5 15 40% 82% 35% 98%
5 10 50% 85% 60% 95%

Tables 2 and 3 show a breakdown of the number
of problems solved by the different methods in the
blocksworld according to problem complexity. This

16 Aler, Borrajo, and hasi

Table 3: Breakdown of the number of testing problems
solved in logistics by HAMLET and EvoCK according
to the number of goals and of objects).

Goals # Objects PRODIGY HAMLET
seed

HAMLET EvoCK

50 50 0% 0% 0% 75%

20 50 3% 0% 0% 100%

20 20 7% 28% 0% 83%

10 50 13% 0% 0% 100%

10 20 20% 53% 33% 100%

10 15 20% 67% 47% 100%

10 10 7% 67% 40% 100%

5 50 42% 0% 0% 100%

5 20 58% 83% 67% 100%

5 15 42% 42% 67% 100%

5 10 25% 58% 67% 100%

5 5 33% 83% 92% 100%

2 50 90% 60% 20% 100%

2 20 90% 100% 100% 100%

2 15 90% 90% 100% 100%

2 10 90% 80% 90% 100%

2 5 100% 100% 100% 100%

2 2 100% 100% 100% 100%

50 100% 100% 80% 100%

20 90% 100% 100% 100%

15 90% 100% 100% 100%

10 90% 100% 100% 100%

5 100% 100% 100% 100%

2 100% 100% 100% 100%

complexity is measured by the number of goals and
objects in the planning problem. It is easy to see that
EvoCK improves drastically with respect to the ini-
tial seed (HAMLET seed) by solving very hard prob-
lems. The percentage of testing problems solved for
PRODIGY working alone, the initial HAMLET seed and
the final HAMLET result are also shown.

5 DISCUSSION AND
CONCLUSIONS

After having experimented both systems (EvoCK and
HAMLET) we can draw the following conclusions and
comparisons.

• HAMLET does not have a trade-off between cor-
rect knowledge and utility of that knowledge.
HAMLET manages to learn quite correct knowl-
edge [Borrajo and Veloso, 1997] but sometimes
having a lot of correct control rules is not an ad-
vantage, because it takes a long time to use it
(this is called the utility problem [Minton, 1988]).
This explains in part HAMLET bad behavior. On
the other hand, our results in [Aler et al., 1998a]
show that it is more difficult for GP alone to ob-
tain correct knowledge. However, it is very easy to
take into account the utility problem in the fitness
function (several of its components press to that

end). Thus, we see that our multi-strategy ap-
proach works better than the two methods alone
by combining both methods biases.

» Another problem that HAMLET has is that as it
is a lazy incremental system, in order to refine an
incorrect control rule it assumes that eventually it
will find an appropriate set of negative examples.
Given that the potential problem space is infinite
(huge from a computational point of view), the
likelihood of finding that appropriate set might be
very small. In any case, previous work has shown
that in the long run HAMLET tends to converge to
the correct knowledge [Borrajo and Veloso, 1997].
Since GP a non-incremental system, it is able to
detect negative examples at once by evaluating
the whole set of training problems. On the other
hand, non-incremental methods are less efficient
when learning in complex domains. Again, the
complementary aspects of both systems allow to
overcome both systems deficiencies.

• Another difference between using GP in this
way and more traditional learning techniques
is that even using background knowledge, its
generalization and specialization operators do
not have knowledge about how planning acts.
On the contrary, learning techniques such
as PRODIGY/EBL [Minton, 1988], or HAMLET

"know"4 how to generalize or specialize in plan-
ning domains. GP has no such knowledge, so
many of the genetic modifications will not work.
Besides, genetic operators are not so constrained
by powerful heuristics, so they might get different
and new results than those of more traditional
methods. Another way to see this is that HAM-
LET (and many other learning methods) take ad-
vantage of the specific-to-general ordering of the
control rule space: HAMLET trajectory through
the control rule space consists of generalization
or specialization steps, in reaction to new exam-
ples [Shapiro, 1983]. GP does not take much
advantage of this specific-to-general ordering. A
mixture of generalizations and specializations are
performed at each step in the search. Besides,
generalization operators that take advantage of
the ordering heuristic are easily added to the op-
erator pool, as our system shows.

• Given that genetic operators do not handle much
knowledge, they are faster than classical learning
search operators.

4Or at least, they have powerful heuristics.

Genetic Programming and Deductive-Inductive Learning 17

• HAMLET is deterministic: from the same set of
training cases, it will always obtain the same set
of control rules. On the other hand, GP is stochas-
tic: it can be run several times and obtain differ-
ent knowledge every time.

• There is a trade-off between understandability
and efficiency. HAMLET tends to produce control
knowledge which is easier to understand whereas
EvoCK control knowledge is more difficult to un-
derstand (but more efficient).

• Finally, an important advantage of GP over the
rest of learning techniques applied to problem
solving is its flexibility. Very different learning bi-
ases can be tested without changing the method
itself. Following Utgoff's classification [Utgoff,
1986], GP biases are:

- The language bias can be changed easily.
That is not the case with many other learn-
ing techniques applied to problem solving,
because their search operators depend heav-
ily on the representation language used. For
instance, HAMLET only uses a subset of the
control rule language allowed by PRODIGY,
while GP could use the whole set easily.

- The exploration bias. GP uses just two task
independent operators (crossover and muta-
tion). However, as this paper shows, many
possible variations of these operators can be
added, as, for instance, task dependent oper-
ators (like generalization and specialization).

- The evaluation bias. In GP, different evalu-
ation biases can be easily combined in the
same evaluation function. Also, it is very
easy to change from a fitness function to
another. In fact, in this paper we have
presented a new fitness function that im-
proves previous results obtained using our
scheme [Aler et al., 1998a, Aler et al, 1998b].

6 RELATED WORK

There have been different approaches to acquire con-
trol knowledge for non-trivial (non-linear) problem
solving. Some of them use analogy [Kambhampati,
1989, Veloso and Carbonell, 1993], others pure de-
duction [Katukam and Kambhampati, 1994, Minton
and Zweben, 1993], p'ure induction [Leckie and Zuker-
man, 1991], and some combine deduction and induc-
tion [Borrajo and Veloso, 1997, Estlin and Mooney,
1996]. The main difference with our approach is that

they did not combine incremental knowledge intensive
and non-incremental methods (GP).

Some innovative approaches to problem solving use ge-
netic programming [Koza, 1992]. This approach was
started by Koza [Koza, 1989, Koza, 1992], who evolved
a planner that solved a very specific set of problems
in the blocks world domain. Handley [Handley, 1994]
used GP to evolve plans for specific problems in the
blocksworld domain. Muslea [Muslea, 1997] general-
ized, extended, and formalized this idea, and showed
how any planning problem could be translated to an
equivalent GP problem. He tested it successfully in
several domains. Spector [Spector, 1994] proposed and
analyzed several ways in which GP could be used for
planning. The main difference with our approach is
that they used GP to search in the plans space.

References

[Aler et al, 1998a] Ricardo Aler, Daniel Borrajo, and
Pedro Isasi. Evolving heuristics for planning. In Pro-
ceedings of the Seventh Annual Conference on Evo-
lutionary Programming, Lecture Notes in Artificial
Intelligence, San Diego, CA, March 1998. Springer-
Verlag.

[Aler et al., 1998b] Ricardo Aler, Daniel Borrajo, and
Pedro Isasi. Genetic programming of control knowl-
edge for planning. In Reid Simmons, Manuela
Veloso, and Stephen Smith, editors, Proceedings of
the Fourth International Conference on Artificial
Intelligence Planning Systems (AIPS-98), Pitts-
burgh, PA, June 1998.

[Blum and Fürst, 1995] Avrim L. Blum and Mer-
rick L. Fürst. Fast planning through planning graph
analysis. In Chris S. Mellish, editor, Proceedings of
the 14th International Joint Conference on Artificial
Intelligence, IJCAI-95, volume 2, pages 1636-1642,
Montral, Canada, August 1995. Morgan Kaufmann.

[Borrajo and Veloso, 1997]
Daniel Borrajo and Manuela Veloso. Lazy incre-
mental learning of control knowledge for efficiently
obtaining quality plans. AI Review Journal. Special
Issue on Lazy Learning, ll(l-5):371-405, February
1997.

[Estlin and Mooney, 1996] Tara A. Estlin and Ray-
mond Mooney. Hybrid learning of search control
for partial-order planning. In New Directions in AI
Planning, pages 115-128. IOS Press, 1996.

18 Aler, Borrajo, and Isasi

[Fräser and Rush, 1994] Adam P. Fräser and Jon R.
Rush. Putting ink into a biro: A discussion of prob-
lem domain knowledge for evolutiaonary robotics.
In AISB Workshop, Evolutionary Computing, April
llth-13th 1994.

[Handley, 1994] Simon G. Handley. The automatic
generations of plans for a mobile robot via genetic
programming with automatically defined functions.
In Kenneth E. Kinnear, Jr., editor, Advances in Ge-
netic Programming, chapter 18, pages 391-407. MIT
Press, 1994.

[Kambhampati, 1989] Subbarao Kambhampati. Flex-
ible Reuse and Modification in Hierarchical Plan-
ning: A Validation Structure Based Approach.
PhD thesis, Computer Vision Laboratory, Center
for Automation Research, University of Maryland,
College Park, MD, 1989.

[Katukam and Kambhampati, 1994] Suresh Katukam
and Sub"
barao Kambhampati. Learning explanation-based
search control rules for partial order planning. In
Proceedings of the Twelfth National Conference on
Artificial Intelligence, pages 582-587, Seattle, WA,
1994. AAAI Press.

[Koza and Rice, 1991] John R. Koza and James P.
Rice. Genetic generation of both the weights and
architecture for a neural network. In Proceedings of
IJCNN-91, volume II, pages 397-404, 1991.

[Koza, 1989] J. R. Koza. Hierarchical genetic algo-
rithms operating on populations of computer pro-
grams. In N. S. Sridharan, editor, Proceedings of
the Eleventh International Joint Conference on Ar-
tificial Intelligence IJCAI-89, volume 1, pages 768-
774. Morgan Kaufmann, 20-25 August 1989.

[Koza, 1992] John R. Koza. Genetic Programming:
On the Programming of Computers by Natural Se-
lection. MIT Press, Cambridge, MA, USA, 1992.

[Leckie and Zukerman, 1991] C. Leckie and I. Zuker-
man. Learning search control rules for planning: An
inductive approach. In Proceedings of the Eighth In-
ternational Workshop on Machine Learning, pages
422-426, Evanston, IL, 1991. Morgan Kaufmann.

[Minton and Zweben, 1993] Steven
Minton and Monte Zweben. Learning, planning and
scheduling: An overview. In Steven Minton, editor,
Machine Learning Methods for Planning, chapter 8.
Morgan Kaufmann, 1993.

[Minton, 1988] Steven Minton. Learning Effective
Search Control Knowledge: An Explanation-Based
Approach. Kluwer Academic Publishers, Boston,
MA, 1988.

[Montana, 1995] David J. Montana. Strongly typed
genetic programming. Evolutionary Computation,
3(2):199-230, 1995.

[Muslea, 1997] Ion Muslea. SINERGY: A linear plan-
ner based on genetic programming. In Sam Steel,
editor, Recent Advances in AI Planning. 4th Eu-
ropean Conference on Planning, ECP'97, number
LNAI 1348 in Lecture Notes in Artificial Intelli-
gence, pages 312-324, Toulouse, France, September
1997. Springer-Verlag.

[Penberthy and Weld, 1992] J. S. Penberthy and D. S.
Weld. UCPOP: A sound, complete, partial order
planner for ADL. In Proceedings of KR-92, pages
103-114, 1992.

[Shapiro, 1983] E. Y. Shapiro. Algorithmic. Program
Debugging. MIT Press, 1983.

[Spector, 1994] L. Spector. Genetic programming and
AI planning systems. In Proceedings of Twelfth Na-
tional Conference on Artificial Intelligence, Seattle,
Washington, USA, 1994. AAAI Press/MIT Press.

[Utgoff, 1986] Paul Utgoff. Machine Learning: An
Artificial Intelligence Approach, volume II, chapter
Shift of Bias for Inductive Concept Learning, pages
107-148. Morgan Kaufmann, Los Altos, CA, 1986.

[Veloso and Carbonell, 1993] Manuela M. Veloso and
Jaime G. Carbonell. Derivational analogy in
PRODIGY: Automating case acquisition, storage,
and utilization. Machine Learning, 10(3):249-278,
March 1993.

[Veloso et al., 1995] Manuela Veloso, Jaime Car-
bonell, Alicia Perez, Daniel Borrajo, Eugene Fink,
and Jim Blythe. Integrating planning and learning:
The PRODIGY architecture. Journal of Experimental
and Theoretical AI, 7:81-120, 1995.

19

An Experimental Evaluation of Coevolutive Concept Learning

Cosimo Anglano Attilio Giordana Giuseppe Lo Bello
Dipartimento di Informatica, Universitä di Torino

Corso Svizzera 185, 10149 Torino, Italy
{mino,attilio,lobello,saitta}@di.unito.it

Lorenza Saitta

Abstract

In this paper an extensive experimental eval-
uation of an evolutionary approach to con-
cept learning is presented. The experimen-
tation, performed with the system G-NET,
investigates the effectiveness of the approach
along the following dimensions: Robustness
with respect to parameter setting, effective-
ness of the MDL criterion coupled with a
stochastic search bias, impact of coevolution
on the quality of the solution and on the com-
putational effort required, and ability to face
problems requiring structured representation
languages. A discussion of the obtained re-
sults and a suggestion on when this type of
approach might be useful is also provided.

1 INTRODUCTION

Supervised concept learning has been tackled, so far,
with several approaches, including symbolic, connec-
tionist and evolutive ones. Different approaches are
better suited to different classes of problems, depend-
ing, for instance, on the nature of data or the avail-
ability of domain-specific knowledge.

In the hope of making a little step ahead in the di-
rection of matching learning algorithms to problems,
in this paper we present an experimental exploration
of an evolutionary approach to the task of learning
concept descriptions. Our exploration is articulated
along three dimensions: The capability of dealing with
complex representation languages, such as subsets of
predicate logics; the exploitation of distributed archi-
tectures, allowing coevolution to be efficiently imple-
mented; the interaction between the stochastic search
bias and the Minimum Description Length (MDL)

principle (Rissanen, 1978), used as evaluation crite-
rion of the concept description.

The experimentation has been conducted with a new
version of G-NET (Version 2.0), a descendant of the
system REGAL (Giordana and Neri, 1996). G-NET's
architecture relies on a computational model charac-
terized by the absence of global memory, which ex-
tends the diffusion model (Manderik and Spiessens,
1989) previously developed for genetic algorithms.
With respect to a previous implementation (Anglano
et al., 1997), the version described here includes an ex-
plicit coevolutionary strategy based on (Potter et al.,
1995), a new objective function based on the MDL
principle, and an improved set of genetic operators.

A first point emerged from the experimentation, using
both G-NET and REGAL, is that evolutionary search
techniques can indeed be fruitfully exploited in concept
acquisition. On standard benchmarks they showed
performances at least comparable with the best ones
presented in the literature (Neri and Saitta, 1996).

A second point is that good performance does not
come for free: Using a simple genetic algorithm, easy
to understand and quick to implement, may not be a
solution. The evolutionary inference engine has to be
integrated into a possibly complex architecture, allow-
ing sophisticated description languages, flexible heuris-
tic learning strategies, and distributed computation to
be accommodated.

A third point is that evolutionary search proved to be
quite robust, because it did not require any parame-
ter tuning over a range of different problems. Finally,
stochastic search bias proved to be well suited to differ-
ent evaluation criteria (Anglano et al., 1997), includ-
ing the MDL (Rissanen, 1978). G-NET is based, as
REGAL was, on the theory of niches and species for-
mation, which already proved to be effective in learn-

20 Anglano, Giordana, Lo Bello, and Saitta

ing disjunctive concept definitions (Giordana and Neri.
1996). As niches and species formation is a way of ad-
dressing mult.imodal search problems, disjunctive con-
cept induction naturally fits in this framework. How-
ever, methods based on species formation may require
large populations when weak species must survive in
the presence of much stronger ones (Giordana and

Neri, 1996).

In order to cope with this problem. G-NET 2.0 uses
a new learning method, which combines the Universal
Suffrage selection scheme (Giordana and Neri, 1996)
with an explicit (revolutionary strategy, similar to the
one proposed in (Potter et al., 1995). Finally, G-NET
2.0 uses a new set of genetic operators, which explic-

itly aims at preserving the diversity in the population,
reducing thus premature convergence and increasing

the effectiveness of the genetic search.

2 EVOLUTIONARY ALGORITHM

As its ancestor REGAL, G-NET learns concept de-
scriptions in a language similar to VL21 (Michalski,
1983). More specifically, a concept is described by a
set $ = {tpi,tp2,- • -iVn} of Horn clauses, in which the
construct of internal disjunction is also allowed. In
Logic Programming, an internal disjunction is a spe-
cial term describing a set of constants. By setting a
limit on the maximum complexity, Horn clauses can
be encoded as fixed length bitstrings. A detailed de-
scription of the language used by G-NET can be found
in (Giordana and Neri, 1996; Giordana et al., 1997).

G-NET's inductive engine exploits a stochastic algo-
rithm organized in two levels. The lower level, named
Genetic layer (G-layer), searches for Horn clauses
representing partial definitions f of the concept to
learn. The architecture of the G-layer derives from
the diffusion model (Manderik and Spiessens, 1989).
and integrates different ideas originated inside the
field of evolutionary computation and tabu search
(Rayward-Smithet al., 1989). The upper level, namely
the Supervisor, builds up a global disjunctive defini-
tion $, out of the partial definitions y>,-'s generated
inside the G-layer, using a greedy set covering algo-
rithm. Moreover, the Supervisor interacts with the G-
layer according to a coevolutionary strategy (Potter
et al., 1995), which aims at increasing the probability
of evolving clauses useful to improve the quality of the
disjunctive concept description currently in progress.

From a computational point of view, the G-layer con-
sists of a set of elementary searching nodes called G-
nodes. Every G-node, G,-, is associated with a single

concept instance f+ and executes a local evolutionary
search aimed at constructing an inductive hypothesis
covering f+, and having a fitness value as high as pos-
sible. The same instance e+ can be assigned to more

than one G-node.

The association between G-nodes and concept in-
stances is dynamically established by the Supervisor,
which decides what regions of the hypothesis space to

search, and how much.

Every G-node is provided with a small local memory,
where it stores the set of current hypotheses it is work-
ing on (local population). Basically, the search algo-
rithm executed by a G-node resembles a simple Ge-

netic Algorithm:

G-node Search Algorithm

repeat

1. Select two clauses <pi and ip2 from the local mem-
ory with probabilities proportional to their fitness;

2. Create two new clauses tp[and ip'2, both different

from tpi and if2;

3. Evaluate ip\ and <p2 on the learning set;

4. Broadcast the new clauses to every G-node asso-
ciated with some instance e+ they correctly cover;

until a halt condition is reached

The outcome of the evaluation step is a fitness value
JLW) corresponding to the quality of the clause <p (see
below). By generalizing a formula covering the associ-
ated instance e+, a G-node can implicitly generate for-
mulas also covering other instances which are assigned
to different G-nocles. The aim of the broadcasting step
is to propagate these formulas to the G-nodes, which
potentially can benefit from them. When a clause is
broadcast to another G-node, it competes for entering
the local memory by playing a kind of stochastic tour-
nament (Harik, 1995), based on the fitness value /;,.
As the policy we adopt, enforces diversify in the local
memories, a clause is allowed to play the tournament
only if no copy of it is already there. At the beginning,
the population of a G-node is initialized with only one
individual and can grow up to a maximum predeter-
mined size. The tournament step is performed only

after the maximum size has been reached.

This way of propagating inductive hypotheses among
G-nodes promotes the formation of families of hy-
potheses, which cluster the concept instances into

An Experimental Evaluation of Coevolutive Concept Learning 21

groups, roughly corresponding to different modalities
of the target concept. From the point of view of evo-
lutionary computation this process can be seen as a
process of niches and species formation (Goldberg and
Richardson, 1987).

The emergence of species (i.e. concept modalities) is
the baseline for the coevolutionary strategy adopted
by the Supervisor. Periodically, the Supervisor (a)
collects the best representatives of each species, and
works out a global concept description, (b) reassigns
the concept instances to the G-nodes in order to in-
crease the search efforts where emerging species still
correspond to low quality inductive hypotheses, and
(c) supplies a corrective term to be added to the fitness
of the inductive hypotheses in the G-layer, helping the
species that better contribute to the global solution to
develop further.

3 THE FITNESS EVALUATION

In G-NET, two different fitness functions, fa and /t,
are used in order to evaluate global (disjunctive) and
local (conjunctive) concept descriptions, respectively.
Both measures are based on the Minimum Descrip-
tion Length Principle (Rissanen, 1978). The function
/G($) is the sum of three terms:

/G(«) = MDIMAA-Mßi(e+ ($)+e- ($))-MDL($)

(1)
being MDLMAX the MDL of the whole learning set,
IM(f+($) + r($)) the MDL of the set e+ of posi-
tive concept instances not covered by $ and of the set
of negative instances e~ covered by $, and MDL{<f>)
the minimum description length of the syntactic form
of $. In turn, MDL{§) is computed as the sum
MDL{<S>) = J2iMDL{<pi) of the MDL of the sin-
gle clauses belonging to $. In all cases, the expres-
sions for the MDL of the different terms have been ob-
tained using Stirling's approximation, as in (Oliveira
and Sangiovanni-Vincentelli, 1996). The definition of
/G has been chosen in order to have a function which
increases when the MDL decreases, because it is eas-
ier to transform it into a probability, used to guide the
stochastic search.

The local fitness /L for evaluating a single clause ip in
a G-node takes the form:

h{<p) = MDLMAX -MDL{<p) +

-MDL(c-(<p)) + (/G($0 - /G(*))(2)

being $ the current global description constructed by
the Supervisor, and $' the formula obtained by adding

ip to $ and eliminating all redundant disjuncts but p.
In other words, the second and third term evaluate
how simple and consistent <p is. The fourth term is
the bias for enforcing the coevolutionary strategy and
evaluates how well <p combines with the other existing
partial descriptions in order to form a global solution,
covering the instance e+ associated to the G-node and
as much as possible of the other instances.

4 THE COEVOLUTION STRATEGY

The Supervisor enforces coevolution by means of two
algorithms, which are executed periodically at the end
of a macro-cycle. A macro-cycle is measured by count-
ing the number of iterations of the Search Algorithm
(/^-cycles) globally performed, in the G-layer, by the
G-nodes. The first algorithm computes a global con-
cept description $ out of the best representatives of
the species emerged in the G-layer, and is based on
a hill climbing optimization strategy. At first, from
every G-node the locally best hypothesis is collected
and is then merged into a redundant disjunctive de-
scription $'. Then, $' is optimized by eliminating the
disjuncts, which are not necessary. This is done by
repeating the following cycle until $' reaches a final
form $, which cannot be optimized further:

1. Search the clause <p such that /G($' — <p) shows
the greatest improvement.

2. Set $' = $' ■<P

The second algorithm computes the assignment of the
(positive) concept instances to the G-nodes. The ba-
sic strategy consists in focusing the search on the con-
cept instances which are covered by poor inductive hy-
potheses, without omitting to continue the refinement
of the other hypotheses. This is done by balancing the
computation among the different emerging species, in
such a way that species covering smaller niches will
get the same computational power as the ones cover-
ing larger niches.

The Supervisor keeps track of the solution state of ev-
ery positive instance e+ £ E+ (the set of all positive
instances), i.e., the best solution found for it. More-
over, it also records the number c,- of //-cycles, related
to e,- + , occurred during the past computation. The
kernel of the coevolutionary control strategy is the
method used for accounting the //-cycles related to ev-
ery e, + . As soon as clauses covering many examples
will begin to develop, we will find spontaneously born

22 Anglano, Giordano, Lo Bello, and Saitta

clusters of G-nodes that elect the same clause as cur-
rent best hypothesis in their population. This can be
interpreted as a form of implicit cooperation, which
leads to the generation of a clause, representative of
the work of all of them. Therefore, the Supervisor at-
tributes to an instance e,+ all the //-cycles executed
by the G-nodes whose local memory contains a copy

of the best clause attributed to e, + .

At the end of a macro-cycle, the concept instances are
reassigned to G-nodes with the goal of balancing the
work spent for every f, + , on the basis of the num-
ber c.i of /«-cycles. Let C the maximum value for c,
(1 < i < \E+\). The Supervisor computes for every

e,+_the amount 9i = C - c, of /(-cycles necessary to
balance the computational cost for it. Afterwards, the

instances are stochastically assigned to G-nodes with
probability proportional to gt. When a G-node G is
assigned to a new instance e+, it is restarted. If the
global description $ contains a clause <pe, covering e+,
ipe is inserted in the population of G. Otherwise, it
will be initialized by means of the seeding operator

described below.

5 THE GENETIC OPERATORS

In the same way as REGAL, G-NET represents Horn
clauses as fixed length bitstrings ((Giordana et al.,
1997)); then, search operators can be implemented as
in standard Genetic Algorithms (Goldberg, 1989). As
a matter of fact, G-NET uses three basic operators:
seeding, crossover and mutation. The seeding operator
(Giordana and Neri, 1996) is used for initializing the
local memory in the G-nodes when it is empty. When
called in a G-node G,-, it stochastically generates a
clause tpi, which is guaranteed to cover the instance
c+ currently associated with (/,.

Crossover and mutation operators can be applied m
different modalities, depending upon the clauses they
are applied to, and are guaranteed to produce new hy-
potheses different from the parents (original clauses).

The crossover is a combination of the two point
crossover with a variant of the uniform crossover

(Syswerda, 1989), modified in order to perform ei-
ther generalization or specialization of the hypotheses.
More specifically, the crossover operator can be acti-
vated in three different modalities: exchanging, spe-
cializing and generalizing, which are stochastically se-
lected depending on the consistency and completeness
of the selected clauses. Given a pair of clauses y?i, y?2,
the modality to use is stochastically decided in two
steps. In the first step it is decided whether to apply

the exchanging modality, with probability pcc (by de-
fault ptc - 0.1), or to proceed to the second step, with
probability l-ptc- Afterwards, if the second step is en-
tered, the system decides whether to apply generaliza-
tion or specialization to each one of the parent clauses.
Let ft be one of the parents; the probability />ac(</>i)>

of using generalization, and psc{<Pi) = 1 - Pgc(<Pi), of
using specialization, are computed according to the

rule:

Pgc(v.) = (^(^)/('"+(^) + e"(^))) (3)

being m+ the number of positive instance correctly

classified by tpt and e~ the number of negative in-
stances, as previously defined. Afterwards, if the
same modality has been chosen for both operands, the
crossover will be applied with this modality. Other-
wise, if the modalities are discordant, the exchanging

modality will be used.

In this way, the generalizing modality tends to be used
when the parents are both consistent, the specializing
modality when the parents are both inconsistent, and
the exchanging modality when one is consistent and
the other is inconsistent. The first decision step guar-
antees that an assigned percentage of pure information

exchange takes place in any case.

In order to guarantee the actual exchange of infor-
mation, the crossover algorithm first constructs an in-
dex / = {t'i, ?2, • • •, in] of pointers to the positions in
the bitstring where the corresponding bits in the two
parents have different values. Afterwards, if general-
ization/specialization has been chosen, two temporary
clauses i/'i and V'-J. identical to ipi and ^ respectively,

are created.

Then, for every element /,- € / the following procedure

is repeated:

• if generalizing modality has been chosen thon
with probability?),, replace in V'i and V'2 the value
of the bit 6(?';) with the logical or of the corre-

sponding bits in the operands <f\ alu' V?2-

• if specializing modality has been chosen then
with probability pu replace in Vi and i>2 the value
of the bit b(ij) with the logical and of the corre-

sponding bits in ^i and <fi.

If, after applying this stochastic procedure, no bit has
been changed, one bit chosen at random in / is gener-

alized/specialized.

An Experimental Evaluation of Coevolutive Concept Learning 23

When the exchanging modality is chosen, the classical
two-point crossover is applied, with the difference that,
in order to guarantee an information exchange, the
two crossover points are chosen on the index vector /
instead of on the whole bitstring.

The mutation operator adopts a strategy similar to the
one described so far for crossover, and tries to general-
ize or to specialize an individual, depending on its con-
sistency or inconsistency. Also the mutation operator
can have three modalities, namely seeding, generaliz-
ing or specializing, which are selected with probability
Pseed (by default pseed = 0.1), pgm and psm, respec-
tively. The probabilities pgm for generalizing mutation
and psm for specializing mutation are computed with
the rule:

Psm = (1 -Pseed)(e~/{e~ + m+)),

Pgm = I -Pseed-Psm, (4)

where the argument of e~ and ra+ has been omitted
for brevity. If the specializing mutation is chosen, the
mutation is applied as follows: let nx be the number
of bits set to "1" in the bitstring; then, the mutation
operator turns to "0" a fraction 7 of them, which is ob-
tained by randomly selecting a real number in the in-
terval [0, ni/10]. The bits to be set to "1" are selected
in an analogous way, when the generalizing mutation
is chosen.

It is easy to recognize that generalizing and specializ-
ing mutations are nothing else than the dropping con-
dition and adding condition operators denned in (Jong
et al., 1993).

In the cycle executed by each G-node, two clauses are
selected at each iteration with probability proportional
to. their fitness fL. If the population is empty, a new
individual will be created using the seeding operator.
Otherwise, if the two selected clauses tpi and <p2 are
different, crossover is applied. On the contrary, if the
same clause is selected two times, two new clauses are
created using mutation.

The nice aspect of this strategy is that it automatically
adapts to the composition of the population. When
the population in a node is dominated by a clause that
has a fitness much higher than the others (and, then,
it is frequently selected for reproduction with itself),
the search turns into a stochastic hill climbing.

6 EXPERIMENTAL EVALUATION

In the following we present an extensive evaluation
of G-NET made on a variety of datasets, selected

with the aim of testing the system with respect to
the dimensions mentioned in Section 1: language bias,
robustness to evaluation criteria, and overall perfor-
mance. The parameters to tune are actually very few
(the genetic operators constants are not user tunable)
and correspond to the local population size P„, the
macro-cycle size Mc and the number of G-nodes Ng.
In all the previous experimentation done, they did not
appeared to be critical at all and the following setting
has been chosen as a default: Ps = 10, Mc = 300, Ng =
100. The results reported in the following have been
obtained using the default setting.

Table 1 reports a first group of results on datasets used
to test the system Smog (Oliveira and Sangiovanni-
Vincentelli, 1996), which exploits the MDL as hy-

. pothesis evaluation criterion. Results by C4.5 are
used as a baseline. The performance for Smog and
C4.5 are those reported in (Oliveira and Sangiovanni-
Vincentelli, 1996); Smog used many other datasets,
but only some of them are available at the U.C. Irvine
repository (Merz et al., 1991).

G-NET has always been run with a set of 100 G-nodes
and has been stopped after creating 40000 hypotheses.
The specific goal of the test was twofold: to investi-
gate how G-NET is affected by changing its evalua-
tion criterion, all the rest being the same, and whether
the MDL could still be effective when coupled with a
stochastic search bias, such as the one provided by G-
NET, very different from the ones used in Smog and
in C4.5. The answer has been positive in both cases.

By considering the results on the Monk-2 dataset, the
effectiveness of G-NET's species formation mechanism
is evident: the system always found 26 disjuncts, some-
times the correct ones and sometimes little different;
this explains the small error of the acquired knowledge
base. The species formation stability is also confirmed
by the fact that in all cases G-NET found the same
number of disjuncts, differing for small variations.

Table 2 reports results of an experiment aimed at veri-
fying the utility of increasing the computational power
of the search when approaching a more large and diffi-
cult problem. The dataset used is the Splice Junctions
dataset (Towell and Shavlik, 1994). The task is that
of identifying boundaries between coding (exons) and
non-coding (introns) regions of genes occurring in eu-
karyote DNA.

The Splice Junctions dataset has been previously used
to test the system REGAL, which presented the best
results so far among the many reported in the liter-
ature (Neri and Saitta, 1996). While increasing the

24 Anglano, Giordana, Lo Bello, and Saitta

Table 1: Comparison Between G-NET, Smog And C4.5 With Respect To The Average Error Rate Of The So-

lution, Evaluated With The 10-fold Crossvalidation

A verage Error % Average N.

Problem Dataset. size of Disjunrts

G-NET Smog C4.5 G-NET

monkl 432 10-fold 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 3.0

monk2 432 10-fold 2.80 ±3.80 0.00 ±0.00 32.83 ±10.66 26.0

monk3 432 10-fold 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 3.0

tictactoe 958 10-fold 0.97 ±0.62 2.82 ±1.97 7.07 ±1.82 10.5

credit 690 10-fold 15.8 ±4.40 19.57 ±5.08 14.03 ±3.28 14.0

breast 699 10-fold 5.29 ±2.89 6.72 ± 2.44 5.85 ±3.32 2.6

vote 435 10-fold 5.10 ±3.20 5.29 ±2.64 4.63 ±3.05 2.0

Table 2: Comparison Between G-NET And REGAL With Respect To The Average Error Rate And The Com-

plexity Of The Solution

Problem Dataset size Average Error % N. of Disjuncts
G-NET REGAL G-NET REGAL

splice-j. (El) 2000+1190 3.40 4.40 7 19

splice-j. (IE) 2000+ 1190 2.90 4.20 10 26

splice-j. (Neither) 2000 + 1190 3.30 5.20 11 21

mushrooms 4000 + 4124 0.00 0.00 3 6

system parallelism and decreasing the complexity, G-
NET achieved even lower average error rate (error rate
is an average over 3 runs). The second best results
were achieved by KBANN (Towell and Shavlik, 1994):
7.56% for El, 8.47% for IE, and 4.62% for Neither.
This comparison suggests that genetic search could be

better suited to complex problems.

Finally, Table 3 reports the results of experiments
aimed at confirming that C-NET (as its predecessor
REGAL) is able to effectively deal with more complex
languages, such as predicate logic based ones.

The first row in Table 3 refers to the rmttagencsis
dataset, a challenging problem widely used in the ILP
community for testing induction algorithms in First
Order Logic (King et al., 1995). The problem consists
in learning rules for discriminating substances having
cancerogenetic properties on the basis of their chemical
structure. The difficulty lies mainly in the complexity
of matching formulas in First Order Logic, which limits
the exploration capabilities of any induction system.
To our knowledge, the best results with this database
have been obtained by STILL (Sebag, 1997) a stochas-
tic induction algorithm that easily reaches error rates
below 10%, and, with a careful setting of the control

parameters, made the best hit at 6.4%. Many other
systems, going from Linear Regression to PROGOL
and FOIL, reported error rates ranging between 11%
and 14%. G-NET, using only the predicates used in
(Sebag, 1997), obtained an error rate of 8.8%.

The second case study is a classification problem (Es-
posito et al., 1992) of documents acquired through a
scanner, and processed by an image processing pro-
gram that produces a structured description of the lay-
out. The dataset contains structured data described
with 5 symbolic and 3 numeric attributes, and has
been used to test learners with the capability of deal-
ing with numerical features in FOL (Esposito et al.,
1992; Botta and Giordana, 1993). G-NET does not
have, at the moment, any specific strategy for deal-
ing with numerical features, and so we transformed
the problem into a symbolic one by discrctizing the
numeric features. Each numeric feature has been dis-
cretized by subdividing the range into 16 equal length
intervals. G-NET easily reached an error rate below
the 1%, approximately the same as SMART+ which
has specific strategies for dealing with numerical fea-

tures.

Finally, the last case study (Train Checkout-3) is a

An Experimental Evaluation ofCoevolutive Concept Learning 25

Table 3: Experiments With First Order Problems. Error Rate For The Tram Check-out
Runs

' Is An Average Of 3

Problem Dataset size Average Erroi % N. of Disjuncts
G-NET STILL SMART +

FONNs
G-NET

mutagenesis
office-doc
train check-out 3

230 10-fold
210+160

500 + 6000

8.80 ±7.90 6.4 ±4.5
0.89 ±0.72 n.a.
11.3± 0.47 n.a.

n.a.
0.80
16.8

3
11
2

difficult artificial dataset generated for testing FONNs
(Botta et al., 1997), a kind of neural network recently
proposed for refining numerical terms in Horn Clauses.
The dataset contains the description of a set of trains,
similar to the one proposed by Michalski, where each
coach is described by means of a set of 5 symbolic and
4 numerical attributes. In (Botta et al., 1997) three
different learning problems of increasing difficulty are
presented, related to this dataset. The problems con-
sist in learning sets of rules for assessing when a train
meets the safety conditions required for travelling on
a given line. The one we considered here is the most
difficult among them and the challenge is to discover
the rule used for classifying the concept instances:

a train cannot go if it contains two near
cars, both without brakes and heavier
than a threshold we3 or if it contains
two near cars carrying an unstable load
(special material) and heavier than a
threshold we^ < we^.

FONNs could easily reach an error rate below 2% on a
test set of 6000 instances starting from a handcrafted
knowledge base, which correctly described the struc-
ture of the rule hidden in the data, but only reached
an error rate of about 17% starting from a set of rules
learned by SMART+ from 500 learning instances. Re-
shaping the problem in propositional calculus, C4.5
and CART could not go below an error rate of 27%,
and neural networks such as multi-layer perceptron
and cascade correlation where performing even more
poorly (Botta et al., 1997).

G-NET has been run by discretizing every numeric
attribute into a range of 30 intervals. As it appears
from the last row in Table 3, it was able to find two
clauses which show an error rate around 11%.

7 DISCUSSION

As it appears from the results reported above, G-NET
is a very flexible system, able to deal with many dif-
ferent problems, producing good results. Moreover, as
already stated, the results have been obtained with-
out performing any specific tuning, so that the system
proved to be quite robust and easy to use. This looks
surprising considering that a major complain against
GAs is the difficulty of tuning parameters.

We point out that, in spite of its architecture strongly
resembling a Genetic Algorithm, G-NET cannot be
considered a classical GA, because the principles which
control the evolution are substantially different. In our
opinion, two aspects determine the success of G-NET:
the enforcement of diversity in the local populations
and the coevolution.

In their basic formulation GAs use genetic pressure,
i.e. the capability of the most fit individuals to re-
produce more quickly, so that the weakest ones are
eliminated from the population. This mechanism has
the positive effect of focusing the search on the most
fit individuals, so that, in the best case, the algorithm
will climb up a maximum of the fitness function. Un-
fortunately, the mechanism is unstable and a too quick
convergence prevents reaching optimal solutions. An-
other drawback is that, in this way, many identical
individuals will be present in the population, so that
the search can become ineffective because the major
search operator (crossover) reproduces again and again
the same individuals.

A trend in the GA literature, which at least par-
tially relieves this problem, is related to the theory
of species and niches formation. Species formation
can be promoted in many ways by limiting the ge-
netic pressure between species (Goldberg and Richard-
son, 1987). Species formation offers some benefits,
such as the possibility of restricting crossover to the
individuals of the same species (crossover among dif-

26 Anglano, Giordana, Lo Bello, and Saitta

ferent species is essentially deceptive), increasing the
search effectiveness and allowing the discovery of mul-
tiple modalities. For instance, in G-NET, as well as
in REGAL, this has been exploited for learning dis-
junctive concept descriptions. However, even in this
framework, genetic pressure continues to be used in-
side a same species as a mechanism of focus of atten-
tion. Requiring that a population (the local memory
of G-nodes) contains individuals (clauses) all different,
is a definite departure from this mechanism, and dras-
tically limits any form of genetic pressure. Therefore,
the algorithm becomes much more stable and less sen-
sitive of crossover type, and of crossover and mutation
rates. Furthermore, in the place of genetic pressure

other strategies, tailored to the specific task, can be
used for guiding the search. In our case, the «revolu-
tion is now the major strategy that focuses the search
where it is necessary instead of letting it follow the
stream enforced by the genetic pressure. A second
component is represented by the local search opera-
tors, which are context sensitive and make the best
effort in order to increase the exploration capability of

the algorithm.

Both the idea of maintaining the population diversity
and the one of coevolution originated before G-NET,
whose originality consists in the adaptation to the spe-
cific task and to the integration of these ideas into a
unique framework. On the one hand, diversity in GAs
has been already proposed by several authors (Augier
et al., 1995), although no one speculates on the rea-
sons why a GA should benefit from it. On the other
hand, diversity could be related to tabu search. The lo-
cal memory of a G-nodes works as an elementary tabu
list which prevents the algorithm from reprocessing al-
ready generated instances without an explicit will to

do so.

Coevolution appeared inside the GA community sev-
eral years ago (Husbands and Mill. 1991), and has been
considered by few others in the following. The coevo-
lution model, described here, conforms to the one pro-
posed by (Potter et al., 1995), properly re-interpreted
in the framework of concept learning, which naturally

conforms to it.

Finally, the reassignment of the examples to be cov-
ered to G-nodes, performed by the Supervisor, can be
considered a kind of boosting (Shapire, 1990): in sub-
sequent runs, the search efforts shall be concentrated
on those parts of the hypothesis space not yet ade-
quately covered. Currently, the series of found hy-
potheses are combined into a unique formula, which
differentiate this approach from a genuine boosting.

However, nothing hinders the Supervisor from keeping
apart the hypotheses and using them according to a
majority voting classification strategy, instead of com-
bining them. This possibility has not been explored

yet.

8 CONCLUSIONS

In this paper we presented a new induction system
based on an evolutionary approach, which is the out-
come of several years of investigation in this direction.

Given the good results obtained across a variety of
datasets, languages, and evaluation criteria, it should

be evident that a system like G-NET can be profitably
used to explore the structure of new learning problems,
when little a priori information, clearly pointing to
another approach, is available.

Moreover, thanks to its computational model, G-NET
is able to effectively exploit parallel computing sys-
tems, allowing to deal with large and complex datasets.
As a matter of fact, in addition to the possibility of
distributing the search among many G-nodes, G-NET
offers also the possibility of distributing the hypotheses
evaluation on several processors. Although this aspect
has not been described here, because it is outside the
scope of the paper, the current implementation of G-
NET runs on a cluster of workstations (Anglano et al.,
1997). This facility has been extensively exploited for
the experiments on Mutagcnesis and Splirc Junctions
datasets, so that the results for every run have been
obtained in a few hours.

The conclusion is that G-NET seems to be very well-
suited to learning structured concepts, such as the ones
typically learned by ILP methods, and. in addition, to
face learning problems on large databases.

References

Anglano, C, Giordana, A., Lo Bello, G., and Saitta, L.
(1997). A network genetic algorithm for concept
learning. In Int. Conf. on Gun tic Algorithms,
pages 434-441, Lansing, MI. Morgan Kaufmann.

Augier, S., Venturini, G., and Kodratoff, Y. (1995).
Learning first order rules with a genetic algorithm.
In Proc. of the First International Conference On

Knowledge Discovery and Data mining, pages 21-
26, Montreal, Quebec, CA. AAAI Press.

Botta, M. and Giordana, A. (1993). SMART+:
A multi-strategy learning tool. In IJCA1-93,

An Experimental Evaluation of Coevolutive Concept Learning 27

Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence, volume 2,
Chambery, France.

Botta, M., Giordana, A., and Piola, R. (1997).
Form: Combining first order logic with connec-
tionist learning. In 14-th International Confer-
ence on Machine learning ICML-97, pages 157-
166, Nashville, TN. Morgan Kauffman.

Esposito, F., Malerba, D., and Semeraro, G. (1992).
Classification in noisy environments using a dis-
tance measure between structural symbolic de-
scriptions. IEEE trans, on Pattern Analisys and
Machine Intelligence, 14(3):390-402.

Giordana, A. and Neri, F. (1996). Search-intensive
concept induction. Evolutionary Computation,
3:375-416.

Giordana, A., Neri, F., Saitta, L., and Botta, M.
(1997). Integrating multiple learning strategies in
first order logics. Machine Learning, pages 209-
240.

Goldberg, D. (1989). Genetic Algorithms. Addison-
Wesley.

Goldberg, D. and Richardson, J. (1987). Genetic al-
gorithms with sharing for multimodal function
optimization. In Int. Conf. on Genetic Algo-
rithms, pages 41-49, Cambridge, MA. Morgan
Kaufmann.

Harik, G. (1995). Finding multimodal solutions using
restricted tournament selection. In Int. Conf. on
Genetic Algorithms, pages 24-31, Pittsburgh, PA.
Morgan Kaufmann.

Husbands, P. and Mill, F. (1991). Co-evolving para-
sites improve simulated evolution as an optimiza-
tion procedure. In Jtth Int. Conf. on Genetic Al-
gorithms, pages 264-270, Fairfax, VA. Morgan
Kaufmann.

Jong, K. D., Spears, W., and Gordon, F. (1993). Using
genetic algorithms for concept learning. Machine
Learning Journal, 13, pages 161-188.

King, R., Srinivasan, A., and Stenberg, M. (1995). Re-
lating chemical activity to structure: an examina-
tion of ilp successes. New Generation Computing,
13.

Manderik, B. and Spiessens, P. (1989). Fine-grained
parallel genetic algorithms. In Int. Conf. on Ge-
netic Algorithms, pages 428-433, Fairfax, VA.
Morgan Kaufmann.

Merz, C, Murphy, P., and Aha, D. (1991). Reposi-
tory of Machine Learning Databases. University
of California, Irvine, CA.

Michalski, R. (1983). A theory and methodology of
inductive learning. In Michalski, R., Carbonell,
J., and Mitchell, T., editors, Machine Learning:
An Artificial Intelligence Approach, pages 83-134,
Los Altos, CA. Morgan Kaufmann.

Neri, F. and Saitta, L. (1996). Genetic algorithms for
pattern recognition. IEEE Transaction on Pat-
tern Analysis and Machine Intelligence, PAMI-
18:1135-1142.

Oliveira, A. and Sangiovanni-Vincentelli, A. (1996).
Using the minimum description length principle
to infer reduced ordered decision graphs. Machine
Learning, pages 23-50.

Potter, M., DeJong, K., and Grefenstette, J. (1995).
A coevolutionary approach to learning sequential
decision rules. In Int. Conf. on Genetic Algo-
rithms, pages 366-372, Pittsburgh, PA. Morgan
Kaufmann.

Ray ward-Smith, V., Osman, I., Reeves, C, and Smith,
G. (1989). Modern Heuristic Search Methods. Wi-
ley, New York, NY.

Rissanen, J. (1978). Modeling by shortest data de-
scription. Automatica, 14:465-471.

Sebag, M. (1997). Tractable induction and classifi-
cation in first order logic. In 15th International
Joint Conference on Artificial Intelligence, Tokyo,
Japan.

Shapire, R. (1990). The strength of weak learnability.
Machine Learning, 5:197-227.

Syswerda, G. (1989). Uniform crossover in genetic
algorithms. In 3th Int. Conf. on Genetic Algo-
rithms, pages 2-9, Fairfax, VA. Morgan Kauf-

Towell, G. and Shavlik, J. (1994). Knowledge based
artificial neural networks. Artficial Intelligence,
70(4):119-166.

28

KnightCap: A chess program that learns by combining TD(A) with game-tree
search

Jonathan Baxter
Department of Systems Engineering

Australian National University
Canberra 0200, Australia
Jon.Baxter@anu.edu.au

Andrew Tridgell
Department of Computer Science

Australian National University
Canberra 0200, Australia

Andrew.Tridgell @ anu .edu.au

Lex Weaver
Department of Computer Science

Australian National University
Canberra 0200, Australia
Lex.Weaver@anu.edu.au

Abstract

In this paper we present TDLeaf(A), a varia-
tion on the TD(A) algorithm that enables it to
be used in conjunction with game-tree search.
We present some experiments in which our
chess program "KnightCap" used TDLeaf(A)
to learn its evaluation function while play-
ing on the Free Internet Chess Server (FICS,
f ics . onenet. net). The main success we re-
port is that KnightCap improved from a 1650 rat-
ing to a 2150 rating in just 308 games and 3 days
of play. As a reference, a rating of 1650 corre-
sponds to about level B human play (on a scale
from E (1000) to A (1800)), while 2150 is human
master level. We discuss some of the reasons for
this success, principle among them being the use
of on-line, rather than self-play.

1 Introduction

Temporal Difference learning, first introduced by Samuel
[5] and later extended and formalized by Sutton [7] in his
TD(A) algorithm, is an elegant technique for approximat-
ing the expected long term future cost (or cost-to-go) of a
stochastic dynamical system as a function of the current
state. The mapping from states to future cost is imple-
mented by a parameterized function approximator such as
a neural network. The parameters are updated online af-
ter each state transition, or possibly in batch updates after
several state transitions. The goal of the algorithm is to im-
prove the cost estimates as the number of observed state
transitions and associated costs increases.

Perhaps the most remarkable success of TD(A) is Tesauro's
TD-Gammon, a neural network backgammon player that
was trained from scratch using TD(A) and simulated self-
play. TD-Gammon is competitive with the best human

backgammon players [9]. In TD-Gammon the neural net-
work played a dual role, both as a predictor of the expected
cost-to-go of the position and as a means to select moves.
In any position the next move was chosen greedily by eval-
uating all positions reachable from the current state, and
then selecting the move leading to the position with small-
est expected cost. The parameters of the neural network
were updated according to the TD(A) algorithm after each
game.

Although the results with backgammon are quite striking,
there is lingering disappointment that despite several at-
tempts, they have not been repeated for other board games
such as othello, Go and the "drosophila of AI" — chess
[10,12,6].

Many authors have discussed the peculiarities of backgam-
mon that make it particularly suitable for Temporal Dif-
ference learning with self-play [8, 6, 4]. Principle among
these are speed of play: TD-Gammon learnt from sev-
eral hundred thousand games of self-play, representation
smoothness: the evaluation of a backgammon position
is a reasonably smooth function of the position (viewed,
say, as a vector of piece counts), making it easier to find
a good neural network approximation, and stochasticity:
backgammon is a random game which forces at least a min-
imal amount of exploration of search space.

As TD-Gammon in its original form only searched one-
ply ahead, we feel this list should be appended with: shal-
low search is good enough against humans. There are two
possible reasons for this; either one does not gain a lot
by searching deeper in backgammon (questionable given
that recent versions of TD-Gammon search to three-ply
and this significantly improves their performance), or hu-
mans are simply incapable of searching deeply and so TD-
Gammon is only competing in a pool of shallow searchers.
Although we know of no psychological studies investigat-
ing the depth to which humans search in backgammon, it
is plausible that the combination of high branching fac-

KnightCap: A learning chess program 29

tor and random move generation makes it quite difficult to
search more than one or two-ply ahead. In particular, ran-
dom move generation effectively prevents selective search
or "forward pruning" because it enforces a lower bound on
the branching factor at each move.

In contrast, finding a representation for chess, Othello or
Go which allows a small neural network to order moves at
one-ply with near human performance is a far more diffi-
cult task. It seems that for these games, reliable tactical
evaluation is difficult to achieve without deep lookahead.
As deep lookahead invariably involves some kind of mini-
max search, which in turn requires an exponential increase
in the number of positions evaluated as the search depth
increases, the computational cost of the evaluation func-
tion has to be low, ruling out the use of expensive evalua-
tion functions such as neural networks. Consequently most
chess and othello programs use linear evaluation functions
(the branching factor in Go makes minimax search to any
significant depth nearly infeasible).

In this paper we introduce TDLeaf(A), a variation on the
TD(A) algorithm that can be used to learn an evaluation
function for use in deep minimax search. TDLeaf(A) is
identical to TD(A) except that instead of operating on the
positions that occur during the game, it operates on the leaf
nodes of the principal variation of a minimax search from
each position (also known as the principal leaves).

To test the effectiveness of TDLeaf(A), we incorporated it
into our own chess program—KnightCap. KnightCap has
a particularly rich board representation enabling relatively
fast computation of sophisticated positional features, al-
though this is achieved at some cost in speed (KnightCap is
about 10 times slower than Crafty—the best public-domain
chess program—and 6,000 times slower than Deep Blue).
We trained KnightCap's linear evaluation function using
TDLeaf(A) by playing it on the Free Internet Chess Server
(FICS, fics.onenet.net) and on the Internet Chess
Club (ICC, chessclub.com). Internet play was used
to avoid the premature convergence difficulties associated
self-play'.The main success story we report is that starting
from an evaluation function in which all coefficients were
set to zero except the values of the pieces, KnightCap went
from a 1650-rated player to a 2150-rated player in just three
days and 308 games. KnightCap is an ongoing project with
new features being added to its evaluation function all the
time. We use TDLeaf(A) and Internet play to tune the co-
efficients of these features.

The remainder of this paper is organized as follows. In
section 2 we describe the TD(A) algorithm as it applies to
games. The TDLeaf(A) algorithm is described in section 3.
Experimental results for internet-play with KnightCap are
given in section 4. Section 5 contains some discussion and
concluding remarks.

2 The TD(A) algorithm applied to games

In this section we describe the TD(A) algorithm as it applies
to playing board games. We discuss the algorithm from the
point of view of an agent playing the game.

Let S denote the set of all possible board positions in the
game. Play proceeds in a series of moves at discrete time
steps t = 1,2, — At time t the agent finds itself in
some position xt € 5, and has available a set of moves,
or actions AXt (the legal moves in position xt). The agent
chooses an action a € AXt and makes a transition to state
xt+i with probability p(xt, xt+i, a). Here xt+i is the po-
sition of the board after the agent's move and the oppo-
nent's response. When the game is over, the agent receives
a scalar reward, typically "1" for a win, "0" for a draw and
"-1" for a loss.

For ease of notation we will assume all games have a fixed
length of N (this is not essential). Let T(XN) denote the re-
ward received at the end of the game. If we assume that the
agent chooses its actions according to some function a(x)
of the current state x (so that a(x) € Ax), the expected
reward from each state x £ S is given by

J*(x) := EXN{xr(xN), (1)

'Randomizing move choice is another way of avoiding prob-
lems associated with self-play (this approach has been tried in Go
[6]), but the advantage of the Internet is that more information is
provided by the opponents play.

where the expectation is with respect to the transition prob-
abilities p(xt,xt+i,a(xt)) and possibly also with respect
to the actions a(xt) if the agent chooses its actions stochas-
tically.

For vary large state spaces S it is not possible store the
value of J* (x) for every x € 5, so instead we might try
to approximate J* using a parameterized function class
J: S xRk ->■ K, for example linear function, splines, neu-
ral networks, etc. J(-, w) is assumed to be a differentiable
function of its parameters w — (tui,..., Wk). The aim is to
find a parameter vector w £Rk that minimizes some mea-
sure of error between the approximation J(-, w) and ./*(•)•
The TD(A) algorithm, which we describe now, is designed
to do exactly that.

Suppose xi,..., JEJV-1 , XN is a sequence of states in one
game. For a given parameter vector w, define the temporal
difference associated with the transition xt '-¥ xt+i by

dt := J(xt+i,w) - J(xt,w). (2)

30 Baxter, Tridgell, and Weaver

Note that dt measures the difference between the reward
predicted by J(-, w) at time t + 1, and the reward predicted
by J{-,w) at time t. The true evaluation function 3* has
the property

Ex,+i\x, [J*(Xt+l) r(xt)] = o,

so if J(-,w) is a good approximation to J*, EXt+1\Xtdt

should be close to zero. For ease of notation we will assume
that J(XN,W) = r(xjv) always, so that the final temporal
difference satisfies

dN-t = J(xN,w)- J(xN-!,w) = r(xN)-J(xN-i,w).

That is, djv-i is the difference between the true outcome
of the game and the prediction at the penultimate move.

At the end of the game, the TD(A) algorithm updates the
parameter vector w according to the formula

N-l

W := w + a 2_. VJ(xt,w)
t=i

N-l

i=t
(3)

where V J(-, w) is the vector of partial derivatives of J with
respect to its parameters. The positive parameter a con-
trols the learning rate and would typically be "annealed"
towards zero during the course of a long series of games.
The parameter A € [0,1] controls the extent to which tem-
poral differences propagate backwards in time. To see this,
compare equation (3) for A = 0:

w
N-l

:=w + a 2~] VJ{xt,w)dt

N-l

=w + a ^2 VJ(xt,w) I J(xt+\,w) - J(xt,w)\

and A = 1:

t=i

7V-1

(4)

w :—w + a^2 VJ(xt,w) \r(xpf) - J(a;t,tu) . (5)

Consider each term contributing to the sums in equations
(4) and (5). For A = 0 the parameter vector is being ad-
justed in such a way as to move J(xt, w)—the predicted
reward at time t—closer to J{xt+\, w)—the predicted re-
ward at time t +1. In contrast, TD(1) adjusts the parameter
vector in such away as to move the predicted reward at time
step t closer to the final reward at time step N. Values of
A between zero and one interpolate between these two be-
haviors. Note that (5) is equivalent to gradient descent on

the error function E(w) := J^t^i1 r(xN) - J(xt,w)

Successive parameter updates according to the TD(A) al-
gorithm should, over time, lead to improved predictions of
the expected reward J(-,w). Provided the actions a(xt)
are independent of the parameter vectors, it can be shown
that for linear J{-,w), the TD(A) algorithm converges to a
near-optimal parameter vector [11]. Unfortunately, there is
no such guarantee if J(-, w) is non-linear [11], or if a(xt)
depends on w [2].

3 Minimax Search and TD(A)

For argument's sake, assume any action a taken in state x
leads to predetermined state which we will denote by x'a.
Once an approximation J(-,w) to J* has been found, we
can use it to choose actions in state x by picking the action
a € Ax whose successor state x'a minimizes the opponent's
expected reward2:

a*(x) :=argminQ6j4iJ(x^,w). (6)

This was the strategy used in TD-Gammon. Unfortunately,
for games like othello and chess it is very difficult to ac-
curately evaluate a position by looking only one move or
ply ahead. Most programs for these games employ some
form of minimax search. In minimax search, one builds
a tree from position x by examining all possible moves
for the computer in that position, then all possible moves
for the opponent, and then all possible moves for the com-
puter and so on to some predetermined depth d. The leaf
nodes of the tree are then evaluated using a heuristic eval-
uation function (such as J(-,w)), and the resulting scores
are propagated back up the tree by choosing at each stage
the move which leads to the best position for the player on
the move. See figure 1 for an example game tree and its
minimax evaluation. With reference to the figure, note that
the evaluation assigned to the root node is the evaluation
of the leaf node of the principal variation; the sequence of
moves taken from the root to the leaf if each side chooses
the best available move.

In practice many engineering tricks are used to improve the
performance of the minimax algorithm, a — ß search being
the most famous.

Let Jd(x, w) denote the evaluation obtained for state x by
applying J(-,w) to the leaf nodes of a depth d minimax
search from x. Our aim is to find a parameter vector w
such that Jd(-, w) is a good approximation to the expected
reward J*. One way to achieve this is to apply the TD(A)
algorithm to Jd(x,w). That is, for each sequence of posi-

2If successor states are only determined stochastically by the
choice of a, we would choose the action minimizing the expected
reward over the choice of successor states.

KnightCap: A learning chess program 31

"■---_ 4

C

4,-' \5

1*1 G

I'VI /\
] m N 0

-9

4,---'''

A

"""■--. 4

B C

4.-'' \jO 4. ''^\5
D E

H I J [K]
4* -9 10 8

E G

>>_ /\
E IM] N o
4* 2 -9 5

Figure 1: Full breadth, 3-ply search tree illustrating the
minimax rule for propagating values. Each of the leaf
nodes (H-O) is given a score by the evaluation function,
J(-, w). These scores are then propagated back up the tree
by assigning to each opponent's internal node the minimum
of its children's values, and to each of our internal nodes the
maximum of its children's values. The principle variation
is then the sequence of best moves for either side starting
from the root node, and this is illustrated by a dashed line
in the figure. Note that the score at the root node A is the
evaluation of the leaf node (L) of the principal variation. As
there are no ties between any siblings, the derivative of As
score with respect to the parameters w is just V J(L, w).

tions xi,..., XN in a game we define the temporal differ-
ences

dt := Jd(xt+i,w) - Jd(xt,w) (7)

as per equation (2), and then the TD(A) algorithm (3) for
updating the parameter vector w becomes

JV-1

w ■■w + a^jT VJd(xt,w)
t=i

JV-l

£ *-'*
3=t

(8)

One problem with equation (8) is that for d > 1, Jd(x, w)
is not a necessarily a differentiable function of w for all
values of w, even if J(-,w) is everywhere differentiable.
This is because for some values of w there will be "ties" in
the minimax search, i.e. there will be more than one best
move available in some of the positions along the principal
variation, which means that the principal variation will not
be unique (see figure 2). Thus, the evaluation assigned to
the root node, Jd(x, w), will be the evaluation of any one
of a number of leaf nodes.

Fortunately, under some mild technical assumptions on the
behavior of J(x, w), it can be shown that for each state x,
the set of w e 1* for which Jd(x, w) is not differentiable
has Lebesgue measure zero. Thus for all states x and for
"almost all" w 6 Rk, Jd{x, w) is a differentiable function

Figure 2: A search tree with a non-unique principal varia-
tion (PV). In this case the derivative of the root node A with
respect to the parameters of the leaf-node evaluation func-
tion is multi-valued, either VJ(H,w) or VJ(L,w). Ex-
cept for transpositions (in which case H and L are identical
and the derivative is single-valued anyway), such "colli-
sions" are likely to be extremely rare, so in TDLeaf(A) we
ignore them by choosing a leaf node arbitrarily from the
available candidates.

of w. Note that Jd(x, w) is also a continuous function of
w whenever J(x, w) is a continuous function of w. This
implies that even for the "bad" pairs (x,w), VJd(x,w) is
only undefined because it is multi-valued. Thus we can
still arbitrarily choose a particular value for VJd(x,w) if
w happens to land on one of the bad points;

Based on these observations we modified the TD(A) al-
gorithm to take account of minimax search in an almost
trivial way: instead of working with the root positions
#i,..., XN, the TD(A) algorithm is applied to the leaf po-
sitions found by minimax search from the root positions.
We call this algorithm TDLeaf(A). Full details are given in
figure 3.

4 TDLeaf(A) and Chess

In this section we describe the outcome of several ex-
periments in which the TDLeaf(A) algorithm was used
to train the weights of a linear evaluation function in
our chess program "KnightCap". KnightCap is a reason-
ably sophisticated computer chess program for Unix sys-
tems. It has all the standard algorithmic features that
modern chess programs tend to have as well as a num-
ber of features that are much less common. For more
details on KnightCap, including the source code, see
wwwsyseng.anu.edu.au/lsg.

32 Baxter, Tridgell, and Weaver

Let J(-, w) be a class of evaluation functions parameterized by w € E*. Let xu. ..,xN be N positions that occurred
during the course of a game, with T(XN) the outcome of the game. For notational convenience set J{XN,W) := T(XN)-

1. For each state xu compute Jd(xi,w) by performing minimax search to depth d from x* and using J(-, w) to score the
leaf nodes. Note that d may vary from position to position.

2. Let x[denote the leaf node of the principle variation starting at n. If there is more than one principal variation, choose
a leaf node from the available candidates at random. Note that

Jd{xi,w) = J(x\,w).

3. For t = 1,..., N - 1, compute the temporal differences:

dt := J{x[+1,w) - J{x[,w).

(9)

(10)

4. Update w according to the TDLeaf(A) formula:

N-l

w := w + a ^2 VJ(x{,u>)
t=i

N-l

i=t
do

Figure 3: The TDLeaf(A) algorithm

4.1 Experiments with KnightCap

In our main experiment we took KnightCap's evaluation
function and set all but the material parameters to zero.
The material parameters were initialized to the standard
"computer" values: 1 for a pawn, 4 for a knight, 4 for a
bishop, 6 for a rook and 12 for a queen. With these pa-
rameter settings KnightCap (under the pseudonym "Wimp-
Knight") was started on the Free Internet Chess server
(FICS, fics.onenet.net) against both human and
computer opponents. We played KnightCap for 25 games
without modifying its evaluation function so as to get a rea-
sonable idea of its rating. After 25 games it had a blitz (fast
time control) rating of 1650 ± 503, which put it at about
B-grade human performance (on a scale from E (1000) to
A (1800)), although of course the kind of game KnightCap
plays with just material parameters set is very different to
human play of the same level (KnightCap makes no short-
term tactical errors but is positionally completely ignorant).
We then turned on the TDLeaf(A) learning algorithm, with
A = 0.7 and the learning rate a = 1.0. The value of A was
chosen heuristically, based on the typical delay in moves
before an error takes effect, while a was set high enough
to ensure rapid modification of the parameters. A couple of
minor modifications to the algorithm were made:

The raw (linear) leaf node evaluations J(x\,w) were
converted to a score between -1 and 1 by computing

v\ —t&nhlßJix'i,™)]

This ensured small fluctuations in the relative values
of leaf nodes did not produce large temporal differ-
ences (the values v\ were used in place of J(x\,w)
in the TDLeaf(A) calculations). The outcome of the
game r(xpf) was set to 1 for a win, -1 for a loss
and 0 for a draw, ß was set to ensure that a value

of tanh [/3J(x'j, tw) 1 = 0.25 was equivalent to a ma-

terial superiority of 1 pawn (initially).

The temporal differences, dt = vl
t+1 - v[, were mod-

ified in the following way. Negative values of dt

were left unchanged as any decrease in the evalua-
tion from one position to the next can be viewed as
mistake. However, positive values of dt can occur
simply because the opponent has made a blunder. To
avoid KnightCap trying to learn to predict its oppo-
nent's blunders, we set all positive temporal differ-
ences to zero unless KnightCap predicted the oppo-
nent's move4

3the standard deviation for all ratings reported in this section
is about 50

4In a later experiment we only set positive temporal differ-
ences to zero if KnightCap did not predict the opponent's move
and the opponent was rated less than KnightCap. After all, pre-
dicting a stronger opponent's blunders is a useful skill, although
whether this made any difference is not clear.

KnightCap: A learning chess program 33

• The value of a pawn was kept fixed at its initial value
so as to allow easy interpretation of weight values
as multiples of the pawn value (we actually experi-
mented with not fixing the pawn value and found it
made little difference: after 1764 games with an ad-
justable pawn its value had fallen by less than 7 per-
cent).

Within 300 games KnightCap's rating had risen to 2150, an
increase of 500 points in three days, and to a level compa-
rable with human masters. At this point KnightCap's per-
formance began to plateau, primarily because it does not
have an opening book and so will repeatedly play into weak
lines. We have since implemented an opening book learn-
ing algorithm and with this KnightCap now plays at a rating
of 2400-2500 (peak 2575) on the other major internet chess
server: ICC, chessclub.com5 It often beats Interna-
tional Masters at blitz. Also, because KnightCap automati-
cally learns its parameters we have been able to add a large
number of new features to its evaluation function: Knight-
Cap currently operates with 5872 features (1468 features
in four stages: opening, middle, ending and mating6. With
this extra evaluation power KnightCap easily beats ver-
sions of Crafty restricted to search only as deep as itself.
However, a big caveat to all this optimistic assessment is
that KnightCap routinely gets crushed by faster programs
searching more deeply. It is quite unlikely this can be eas-
ily fixed simply by modifying the evaluation function, since
for this to work one has to be able to predict tactics stat-
ically, something that seems very difficult to do. If one
could find an effective algorithm for "learning to search se-
lectively" there would be potential for far greater improve-
ment.

Note that we have twice repeated the learning experiment
and found a similar rate of improvement and final perfor-
mance level. The rating as a function of the number of a
games from one of these repeat runs is shown in figure 4
(we did not record this information in the first experiment).
Note that in this case KnightCap took mearly twice as long
to reach the 2150 mark, but this was partly because it was
operating with limited memory (8Mb) until game 500 at
which point the memory was increased to 40Mb (Knight-
Cap's search algorithm—MTD(f) [3]—is a memory inten-
sive variant of a-ß and when learning KnightCap must

'There appears to be a systematic difference of around 200-
250 points between the two servers, so a peak rating of 2575 on
ICC roughly corresponds to a peak of 2350 on FICS. We trans-
ferred KnightCap to ICC because there are more strong players
playing there.

6In reality there are not 1468 independent "concepts" per stage
in KnightCap's evaluation function as many of the features come
in groups of 64, one for each square on the board (like the value
of placing a rook on a particular square, for example)

! 1 1 1 1 1 1 1 TT— 1 . ' J U

2000 -

/M%i*J'

/..'/T^
1800 ■ U

1750 - / , .

I. JV ji Y
 1 1 1 1 1 1 1 l l l r i , , , ,

-100-50 0 50 1001502002503003504004505005506006507007508008509009501000050
Games

Figure 4: KnightCap's rating as a function of games played
(second experiment). Learning was turned on at game 0.

store the whole position in the hash table so small mem-
ory really hurts the performance). Another reason may also •
have been that for a portion of the run we were performing
paramater updates after every four games rather than every
game.

Plots of various parameters as a function of the number of
games played are shown in Figure 5 (these plots are from
the same experiment in figure 4). Each plot contains three
graphs corresponding to the three different stages of the
evaluation function: opening, middle and ending7.

Finally, we compared the performance of KnightCap with
its learnt weight to KnightCap's performance with a set of
hand-coded weights, again by playing the two versions on
ICC. The hand-coded weights were close in performance
to the learnt weights (perhaps 50-100 rating points worse).
We also tested the result of allowing KnightCap to learn
starting from the hand-coded weights, and in this case it
seems that KnightCap performs better than when start-
ing from just material values (peak performance was 2632
compared to 2575, but these figures are very noisy). We are
conducting more tests to verify these results. However, it
should not be too surprising that learning from a good qual-
ity set of hand-crafted parameters is better than just learn-
ing from material parameters. In particular, some of the
handcrafted parameters have very high values (the value of
an "unstoppable pawn", for example) which can take a very
long time to learn under normal playing conditions, partic-
ularly if they are rarely active in the principal leaves. It is

KnightCap actually has a fourth and final stage "mating"
which kicks in when all the pieces are off, but this stage only uses
a few of the coefficients (opponent's king mobiliity and proximity
of our king to the opponent's king).

34 Baxter, Tridgell, and Weaver

DOUBIED.PAWN

Owping -

En*()

100 150 200 250 300 350 400 450 S00 550
Girr»»

CASTLE.BONUS

350 400 450 500 550

Figure 5: Evolution of two paramaters (bonus for castling
and penalty for a doubled pawn) as a function of the num-
ber of games played. Note that each parameter appears
three times: once for each of the three stages in the evalua-
tion function.

not yet clear whether given a sufficient number of games
this dependence on the initial conditions can be made to
vanish.

4.2 Discussion

There appear to be a number of reasons for the remarkable
rate at which KnightCap improved.

1. As all the non-material weights were initially zero,
even small changes in these weights could cause very
large changes in the relative ordering of materially
equal positions. Hence even after a few games Knight-
Cap was playing a substantially better game of chess.

2. It seems to be important that KnightCap started out
life with intelligent material parameters. This put it

close in parameter space to many far superior param-
eter settings.

3. Most players on FICS prefer to play opponents of sim-
ilar strength, and so KnightCap's opponents improved
as it did. This may have had the effect of guiding
KnightCap along a path in weight space that led to
a strong set of weights.

4. KnightCap was learning on-line, not by self-play. The
advantage of on-line play is that there is a great deal
of information provided by the opponent's moves. In
particular, against a stronger opponent KnightCap was
being shown positions that 1) could be forced (against
KnightCap's weak play) and 2) were mis-evaluated by
its evaluation function. Of course, in self-play Knight-
Cap can also discover positions which are misevalu-
ated, but it will not find the kinds of positions that
are relevant to strong play against other opponents. In
this setting, one can view the information provided by
the opponent's moves as partially solving the "explo-
ration" part of the exploration/exploitation tradeoff.

To further investigate the importance of some of these
reasons, we conducted several more experiments.

Good initial conditions.
A second experiment was run in which KnightCap's co-
efficients were all initialised to the value of a pawn. The
value of a pawn needs to be positive in KnightCap be-
cause it is used in many other places in the code: for
example we deem the MTD search to have converged if
a < ß + 0.07*PAWN. Thus, to set all parameters equal to
the same value, that value had to be a pawn.

Playing with the initial weight settings KnightCap had a
blitz rating of around 1250. After more than 1000 games
on FICS KnightCap's rating has improved to about 1550,
a 300 point gain. This is a much slower improvement
than the original experiment. We do not know whether
the coefficients would have eventually converged to good
values, but it is clear from this experiment that starting
near to a good set of weights is important for fast con-
vergence. An interesting avenue for further exploration
here is the effect of A on the learning rate. Because the
initial evaluation function is completely wrong, there
would be some justification in setting A = 1 early on so
that KnightCap only tries to predict the outcome of the
game and not the evaluations of later moves (which are
extremely unreliable).

Self-Play
Learning by self-play was extremely effective for TD-

KnightCap: A learning chess program 35

Gammon, but a significant reason for this is the randomness
of backgammon which ensures that with high probabil-
ity different games have substantially different sequences
of moves, and also the speed of play of TD-Gammon
which ensured that learning could take place over several
hundred-thousand games. Unfortunately, chess programs
are slow, and chess is a deterministic game, so self-play by
a deterministic algorithm tends to result in a large number
of substantially similar games. This is not a problem if the
games seen in self-play are "representative" of the games
played in practice, however KnightCap's self-play games
with only non-zero material weights are very different to
the kind of games humans of the same level would play.

To demonstrate that learning by self-play for KnightCap is
not as effective as learning against real opponents, we ran
another experiment in which all but the material parame-
ters were initialised to zero again, but this time KnightCap
learnt by playing against itself. After 600 games (twice as
many as in the original FICS experiment), we played the re-
sulting version against the good version that learnt on FICS
for a further 100 games with the weight values fixed. The
self-play version scored only 11% against the good FICS
version.

Simultaneously with the work presented here, Beal
and Smith [1] reported positive results using essentially
TDLeaf(A) and self-play (with some random move choice)
when learning the parameters of an evaluation function that
only computed material balance. However, they were not
comparing performance against on-line players, but were
primarily investigating whether the weights would con-
verge to "sensible" values at least as good as the naive (1,3,
3,5,9) values for (pawn, knight, bishop, rook, queen) (they
did, within 2000 games, and using a value of A = 0.95
which supports the discussion in "good initial conditions"
above).

5 Conclusion

We have introduced TDLeaf(A), a variant of TD(A) suitable
for training an evaluation function used in minimax search.
The only extra requirement of the algorithm is that the leaf-
nodes of the principal variations be stored throughout the
game.

We presented some experiments in which a chess evalua-
tion function was trained from B-grade to master level us-
ing TDLeaf(A) by on-line play against a mixture of human
and computer opponents. The experiments show both the
importance of "on-line" sampling (as opposed to self-play)
for a deterministic game such as chess, and the need to
start near a good solution for fast convergence, although
just how near is still not clear.

On the theoretical side, it has recently been shown that
TD(A) converges for linear evaluation functionsfll] (al-
though only in the sense of prediction, not control). An
interesting avenue for further investigation would be to de-
termine whether TDLeaf(A) has similar convergence prop-
erties.

Acknowledgements

Thanks to several of the anonymous referees for their help-
ful remarks. Jonathan Baxter was supported by an Aus-
tralian Postdoctoral Fellowship. Lex Weaver was sup-
ported by an Australian Postgraduate Research Award.

References

[1] D. F. Beal and M. C. Smith. Learning Piece values
Using Temporal Differences. Journal of The Interna-
tional Computer Chess Association, September 1997.

[2] D. P. Bertsekas and J. N. Tsitsiklis. A'euro-Dynamic
Programming. Athena Scientific, 1996.

[3] A. Plaat, J. Schaeffer, W Pijls, and A. de Bruin. Best-
First Fixed-Depth Minmax Algorithms. Artificial In-
telligence, 87:255-293,1996.

[4] J. Pollack, A. Blair, and M. Land. Coevolution of
a Backgammon Player. In Proceedings of the Fifth
Artificial Life Conference, Nara, Japan, 1996.

[5] A. L. Samuel. Some Studies in Machine LEarning
Using the Game of Checkers. IBM Journal of Re-
search and Development, 3:210-229,1959.

[6] N. Schraudolph, P. Dayan, and T. Sejnowski. Tempo-
ral Difference Learning of Position Evaluation in the
Game of Go. In J. Cowan, G. Tesauro, and J. Alspec-
tor, editors, Advances in Neural Information Process-
ing Systems 6, San Fransisco, 1994. Morgan Kauf-
mann.

[7] R. Sutton. Learning to Predict by the Method of Tem-
poral Differences. Machine Learning, 3:9-44,1988.

[8] G. Tesauro. Practical Issues in Temporal Difference
Learning. Machine Learning, 8:257-278,1992.

[9] G. Tesauro. TD-Gammon, a self-teaching backgam-
mon program, achieves master-level play. Neural
Computation, 6:215-219,1994.

[10] S. Thrun. Learning to Play the Game of Chess. In
G. Tesauro, D. Touretzky, and T. Leen, editors, Ad-
vances in Neural Information Processing Systems 7,
San Fransisco, 1995. Morgan Kaufmann.

36 Baxter, Tridgell, and Weaver

[11] J. N. Tsitsikilis and B. V. Roy. An Analysis of Tem-
poral Difference Learning with Function Approxi-
mation. IEEE Transactions on Automatic Control,
42(5):674-690,1997.

[12] S. Walker, R. Lister, and T. Downs. On Self-Learning
Patterns in the Othello Board Game by the Method
of Temporal Differences. In C. Rowles, H. liu,
and N. Foo, editors, Proceedings of the 6th Aus-
tralian Joint Conference on Artificial Intelligence,
pages 328-333, Melbourne, 1993. World Scientific.

37

Combining Nearest Neighbor Classifiers Through Multiple Feature
Subsets

Stephen D. Bay*
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697, USA

sbay@ics.uci.edu

Abstract

Combining multiple classifiers is an effective
technique for improving accuracy. There are
many general combining algorithms, such as
Bagging or Error Correcting Output Coding,
that significantly improve classifiers like deci-
sion trees, rule learners, or neural networks.
Unfortunately, many combining methods do
not improve the nearest neighbor classifier.
In this paper, we present MFS, a combining
algorithm designed to improve the accuracy
of the nearest neighbor (NN) classifier. MFS
combines multiple NN classifiers each using
only a random subset of features. The ex-
perimental results are encouraging: On 25
datasets from the UCI Repository, MFS sig-
nificantly improved upon the NN, k near-
est neighbor (kNN), and NN classifiers with
forward and backward selection of features.
MFS was also robust to corruption by irrele-
vant features compared to the kNN classifier.
Finally, we show that MFS is able to reduce
both bias and variance components of error.

1 INTRODUCTION

The nearest neighbor (NN) classifier is one of the old-
est and simplest methods for performing general, non-
parametric classification. It can be represented by the
following rule: to classify an unknown pattern, choose
the class of the nearest example in the training set as
measured by a distance metric. A common extension

* Research performed while at the University of Water-
loo, Department of Systems Design Engineering, Waterloo,
Ont., N2L 3G1, Canada.

is to choose the most common class in the k nearest
neighbors (kNN).

Despite its simplicity, the NN classifier has many ad-
vantages over other methods. For example, it can learn
from a small set of examples, can incrementally add
new information at runtime, and often gives competi-
tive performance with more modern methods such as
decision trees or neural networks.

Since its inception by Fix and Hodge (1951), re-
searchers have investigated many methods for improv-
ing the NN classifier, but most work has concen-
trated on changing the distance metric or manipulat-
ing the patterns in the training set (Dasarathy, 1991).
Recently, researchers have begun experimenting with
general algorithms for improving classification accu-
racy by combining multiple versions of a single classi-
fier, also known as a multiple model or ensemble ap-
proach. The outputs of several classifiers are combined
in the hope that the accuracy of the whole is greater
than the parts. Unfortunately, many combining meth-
ods do not improve the NN classifier at all.

For example, in Breiman's (1996) experiments with
Bagging, he found no difference in accuracy between
the bagged NN classifier and the single model ap-
proach. His results suggest that other combining
methods that involve any significant degree of resam-
pling or replication of patterns will not work with the
NN classifier. Kong and Dietterich (1996) also con-
cluded that Error Correcting Output Coding (ECOC),
a method of combining classifiers by decomposing
multi-class problems into multiple two-class problems,
will not improve classifiers that use local information
because of high error correlation. For example, with
the NN classifier we predict the class of the closest pat-
tern. This pattern is the same in all of the two-class
problems, and hence if it gives an incorrect prediction,
all the predictions in the ECOC ensemble will be in-

38 Bay

correct .

In this paper, we present a new method of combining
nearest neighbor classifiers with the goal of improv-
ing classification accuracy. Our approach manipulates
the features that the individual classifiers use. In con-
trast, other combining algorithms may manipulate the
training patterns (Bagging, Boosting) or the class la-
bels (ECOC).

In the next section, we describe the MFS algorithm
for combining multiple NN classifiers. In Section 3,
we evaluate the algorithm on datasets from the UCI
Repository for accuracy, computational complexity,
and robustness to irrelevant features. In Section 4, we
analyze the algorithm's bias and variance components
of error. In Section 5, we discuss related work, and
follow it by conclusions and future work in Section 6.

2 CLASSIFICATION FROM
MULTIPLE FEATURE SUBSETS

We start by describing the MFS algorithm and then
we discuss the motivation behind it and the dangers in
using it. We then explain how we set the algorithm's
parameters.

2.1 THE MFS ALGORITHM

The algorithm for nearest neighbor classification from
multiple feature subsets (MFS) is simple and can be
stated as:

Using simple voting, combine the out-
puts from multiple NN classifiers, each
having access only to a random subset
of features.

We select the random subset of features by sampling
from the original set. We use two different sampling
functions: sampling with replacement, and sampling
without replacement. In sampling with replacement, a
feature can be selected more than once which is equiv-
alent to increasing its weight.

Each of the NN classifiers uses the same number of
features. This is a parameter of the algorithm which
we set by cross-validation performance estimates on a
tuning dataset (see Section 2.2). Each time a pattern

Recently Ricci and Aha (1998) have developed a
method for combining NN classifiers and ECOC which
solves the correlation problem. We discuss this in section 5.

is presented for classification, we select a new random
subset of features for each classifier.

As an example of MFS classification, consider Fisher's
iris plant classification problem (Fisher, 1936; Duda
and Hart, 1973). In this domain, we try to classify
iris plants into their specific species: iris-setosa, iris-
virginica, and iris-versicolor, based on the following
four features: petal length, petal width, sepal length,
and sepal width. With MFS we might use three NN
classifiers each using a random subset of features. The
first NN classifier might use {petal length, sepal width,
sepal length}, the second might use {petal width, petal
length, sepal width}, and the third might use {petal
width, sepal width, sepal width} which we would treat
as {petal width, 2 x sepal width}.

The idea of using only a random subset of features
may seem counter intuitive, as we are throwing away
potentially valuable information. The accuracy of the
NN classifiers is likely to decrease compared to a clas-
sifier that has access to all the features. Should we
not use all the information and make each classifier as
accurate as possible? Why should we create a set of
classifiers each less accurate than a single one trained
on all the information?

The answer to these questions lies in the dynamics
of simple voting among a set of classifiers. The in-
dividual models do not need to be very accurate for
the system as a whole to achieve high accuracy, if the
models make different errors. In particular, Hansen
and Salamon (1990) showed that under simple voting
if the models make independent errors, then the over-
all error will decrease monotonically with increasing
numbers of classifiers. Ali and Pazzani (1996) verified
empirically that combining models with uncorrelated
errors could significantly reduce the overall error. Se-
lecting different features is an attempt to force the NN
classifiers to make different and uncorrelated errors.
We are trading off accuracy for error diversity.

There is no guarantee that using different feature sets
for the NN classifiers will decorrelate error. However,
Turner and Ghosh (1996) found that with neural net-
works, selectively removing features could decorrelate
errors. Unfortunately, the error rates in the individual
classifiers increased, and as a result there was little or
no improvement in the ensemble. Cherkauer (1996)
was more successful, and was able to combine neural
networks that used different hand selected features to
achieve human expert level performance in identifying
volcanoes from images.

Combining Nearest Neighbor Classißers 39

One method of generating a diverse ensemble of clas-
sifiers is to perturb some aspect of the training inputs
for which the classifier is unstable. For example, Bag-
ging (Breiman, 1996) perturbs the training patterns
available to each classifier in the ensemble. Since deci-
sion trees are unstable to the patterns, Bagging gener-
ates a diverse and effective ensemble. Nearest neigh-
bor classifiers are stable to the patterns, so Bagging
generates poor NN ensembles. Nearest Neighbor clas-
sifiers, however, are extremely sensitive to the features
used. For example, Langley and Iba (1993) found that
adding just a few irrelevant features could drastically
change the NN classifier's outputs (and reduce accu-
racy). MFS attempts to use this instability to generate
a diverse set of NN classifiers with uncorrelated errors.

The above discussion hopefully provides motivation for
why we expect that MFS will improve the accuracy
of the nearest neighbor classifier. However, there are
three major dangers that we should be aware of when
using MFS:

1. Simple voting can only improve accuracy if the
classifiers select the correct class more often than
any other class. Breiman refers to this as order
correctness. If the classifiers are not order correct,
then simple voting will increase the expected er-
ror. For two class problems, we require slightly
more than 50% accuracy in the voting classifiers
to improve accuracy. With multiple classes, the
required accuracy may drop as low as ^ where C
is the number of classes.

2. The Bayes error rate can only increase by using a
subset of features. This may make it difficult for
the NN classifiers used by MFS to meet the re-
quirements in point 1. For example, in the parity
problem, a domain with highly interacting fea-
tures, the Bayes error rate in any proper subset
of features is 50% (as opposed to 0% for the full
feature space). There is no guarantee that ran-
dom subsets will have the necessary information
for accurate classification.

3. By using the nearest neighbor classifier in the
MFS scheme we lose its asymptotic optimality
properties. Specifically, as the number of train-
ing examples approaches infinity the NN classifier
is bounded by twice the Bayes error rate (Cover,
1967). The kNN classifier is Bayes optimal in the
limit with proper choice of k (Fix and Hodges,
1951). We can make no such claims about MFS.

2.2 PARAMETER SELECTION

The MFS algorithm has two parameter values that
need to be set: the size of the feature subsets, and the
number of classifiers to combine.

We set MFS's subset size parameter based on cross-
validation accuracy estimates on the training set for
the entire ensemble. We evaluated ten evenly spaced
intervals over the size of the original feature set. For
example, if a domain had 34 features then the subset
sizes at 3,7,10,... ,34 were evaluated. In the case of
ties, the smaller value was chosen.

We set the number of classifiers by evaluating the per-
formance of MFS on seven development datasets vary-
ing the number of classifiers from 10 to 1000. Based on
the results, we set the number of classifiers to 100 as
a reasonable trade-off between computational expense
and accuracy.

3 EXPERIMENTS

3.1 METHODS

We evaluated the performance of MFS using two dif-
ferent sampling functions: sampling with replacement
(MFS1) and sampling without replacement (MFS2).
We compared these to four other algorithms: near-
est neighbor (NN), k nearest neighbor (kNN), nearest
neighbor with forward (FSS) and backward (BSS) se-
quential selection of features (Aha and Bankert, 1994).

The use of FSS and BSS should provide an interesting
contrast with MFS. FSS and BSS try to find a sin-
gle good subset of features, while MFS uses multiple
random subsets without regard to their performance.

All classifiers used unweighted Euclidean distance for
continuous features and Hamming distance for sym-
bolic features. Missing values were treated as infor-
mative and considered to be a specific symbolic value.
In the case of continuous features (normalized to [0,1]),
a missing value is considered to have a distance of 1
to all non missing values. For the kNN classifier, the
value of k was set using cross-validation performance
estimates on the training set. For feature selection,
we used cross-validation accuracy on the training set
for our objective function (also known as a wrapper
approach (Kohavi and John, 1996)).

We evaluated the algorithms on twenty-five datasets
from the UCI Repository of Machine Learning
Databases (Merz and Murphy, 1998). We first normal-
ized the datasets so that continuous features ranged

40 Bay

from [0,1], and then we ran thirty trials where the
training set contained 2/3 of the patterns (randomly
selected) and the test set contained the remaining 1/3.

There were a few exceptions to this procedure. For
Waveform, we used 300 training cases and 4700 test
cases to maintain consistency with reported results
(Quinlan, 1996). For Satimage, we used the origi-
nal division into a training and test set, so the results
represent one run of each algorithm. For the Musk
dataset, which has 166 features, FSS and BSS took
too long to run (over 24 hours for a single trial) and
no results were obtained.

3.2 ACCURACY

The accuracy and parameter selection results (average
k or number of features selected) are shown in Table 1.
The first seven datasets were used in the development
of the MFS algorithm. The default accuracy is the
frequency of the most common class.

The results show that MFS is promising: MFS1 and
MFS2 were about 2% more accurate over all domains
than it's nearest competitor kNN. MFS1 was best on
16 domains out of 25 (not including MFS2). MFS2 was
best on 14 domains and tied in 3 (not including MFS1).
For a formal comparison, we used the Wilcoxon signed
rank test and found that MFS1 and MFS2 were signif-
icantly better than all others with a confidence level
greater than 99%.

MFS only performed poorly on two datasets: Iris and
Tic-Tac-Toe. For Iris, both MFS1 and MFS2 gave the
lowest accuracy out of all the classifiers. This can pos-
sibly be explained by the small number of features in
the Iris dataset. With only four features, many of the
feature subsets would be identical. This would lead
to identical errors and high error correlation. For Tic-
Tac-Toe, MFS1 performed extremely poorly, having
an error rate almost five times that of the NN and
kNN classifiers. MFS1 probably performed poorly be-
cause in the Tic-Tac-Toe domain the features have a
high amount of interaction. We need to examine all
the features to determine which side has won. Taking
a random subset of features does not make sense and
would probably lead to a greatly increased Bayes error
rate for the individual classifiers. MFS2 did not experi-
ence the same degradation as MFS1 because sampling
without replacement degenerated into selecting all the
features and hence performing identically to NN.

Comparing MFS1 to MFS2, it is not clear which clas-
sifier performed better. MFS1 was better than MFS2
on 15 domains, worse on 7, and tied in 3. However,

MFS2 had a slightly better average accuracy as it did
not have a catastrophic failure on Tic-Tac-Toe. The
Wilcoxon test did not detect a significant difference
between them.

3.3 COMPUTATIONAL COMPLEXITY

The nearest neighbor classifier is often criticized for
slow runtime performance, so we will briefly comment
on the complexity of MFS and then present actual
running times from the experiments.

The NN classifier computes the distance between the
test pattern and every pattern in the training set. This
requires 0(ef) time, where e is the number of ex-
amples, and / is the number of features. For MFS,
we use n NN classifiers, so its complexity is 0(nef).
For training, we use cross-validation and MFS requires
0(ne2fv) time, where v is the number of folds (Bay,
1997).

This analysis shows how the computational require-
ments of MFS change as a function of the number of
examples and features. However, it does not give any
indication of actual running times on real datasets.
Therefore in Table 2 we list the actual running times
on an Intel Pentium Pro processor for NN and MFS
on the three slowest datasets.

Table 2: Time Requirements for NN and MFS1

Domain
Classification Training

NN MFS1 MFS1
Satimage
Segment
Annealing

0.080s/pat 0.415s/pat 4.6h
0.015s/pat 0.075s/pat 19.9m
0.018s/pat 0.073s/pat 5.5m

Note that even though we are combining 100 classifiers
in MFS, it was only about five times as slow as the NN
classifier. We attribute this speed up to caching the
difference in feature values between the test pattern
and all patterns in the training set (i.e. in d(x,y) =

(£/(*/ - y/)2)=>we cache (xf - yj)2)-

3.4 ROBUSTNESS TO IRRELEVANT
FEATURES

A major drawback of the NN classifier is its sensitivity
to irrelevant features. This concerns us because the
MFS algorithm uses multiple NN classifiers and hence
raises the question: how will the ensemble behave? If
the accuracy of the individual NN classifiers drops too
low, simple voting can increase the error rate. Since

Combining Nearest Neighbor Classifiers 41

Table 1: Accuracy and Parameter Selection Results (average k or number of features selected)

Accuracy Average Parameter Settings
Domain Pat/F Def. NN kNN FSS BSS MFS1 MFS2 kNN FSS BSS MFS1 MFS2
Glass 214/9 35.5 67.9 66.8 72.3 72.5 75.8 76.1 1.7 4.8 5.5 4.4 3.6
Hepatitis 155/19 79.4 79.2 80.4 80.3 77.2 82.7 82.6 6.7 2.4 12.8 8.1 7.0
Ionosphere 351/34 64.1 86.5 85.5 88.2 87.9 93.5 92.7 1.8 4.6 21.9 6.9 6.5
Iris 150/4 33.3 94.3 95.1 93.7 93.5 92.5 92.7 6.1 1.4 2.3 2.8 2.8
Liver-Disorders 345/7 58.0 60.4 61.3 56.8 60.0 65.4 64.4 9.7 1.9 4.2 4.1 3.2
Pima Diabetes 768/8 65.1 69.7 73.6 67.7 68.5 72.5 72.3 11.5 2.0 6.5 4.8 4.2
Sonar 208/60 53.4 85.0 85.1 76.0 84.3 87.3 87.0 1.1 6.3 38.2 15.4 13.2
Annealing 898/38 76.2 98.0 98.0 98.8 98.8 98.6 98.6 1.0 8.2 9.0 31.6 21.3
Automobile 205/25 32.7 70.9 70.9 74.2 72.8 72.5 73.3 1.0 3.3 10.3 8.7 6.3
Breast Cancer 286/9 70.3 65.9 74.3 71.0 70.0 74.0 74.0 8.0 1.9 5.0 6.7 4.6
Credit 690/15 55.5 81.6 85.5 85.7 81.6 86.3 85.8 12.4 3.2 10.5 8.8 6.3
German 1000/20 70.0 70.5 73.1 70.6 68.8 74.4 74.2 10.8 3.0 15.7 15.4 11.2
Horse Colic 368/22 63.0 76.8 79.8 83.9 76.5 80.2 79.8 15.1 2.4 14.8 9.8 7.8
Labor 57/16 64.9 92.1 90.4 78.6 89.5 94.2 94.6 2.3 2.8 7.5 6.7 5.1
Lymphography 148/18 54.7 74.6 77.0 74.8 76.7 81.9 80.4 8.7 3.7 12.1 11.6 8.3
Musk 476/166 56.5 84.3 83.9 na na 88.9 88.6 1.4 na na 18.1 19.1
Primary-Tumor 339/17 24.5 37.0 43.5 37.8 38.9 44.5 45.0 13.8 6.3 11.2 10.6 8.1
Satimage 6435/36 22.8 89.5 90.4 88.0 89.4 91.5 91.0 3 10 33 14 11
Segment 2310/19 14.3 93.5 93.0 96.5 96.6 96.8 96.6 4.6 4.8 9.9 10.3 7.9
Soybean-Large 683/35 13.0 90.7 90.5 93.2 90.7 93.4 93.2 1.5 11.9 20.2 21.9 14.9
Tic-Tac-Toe 958/9 65.3 98.1 98.1 87.8 98.1 91.1 98.1 1.0 6.6 9.0 9.0 9.0
Vehicle 946/18 25.8 68.1 67.7 66.6 70.4 71.4 71.4 5.7 5.4 12.5 9.7 6.8
Vote 435/16 54.8 92.9 93.1 95.8 94.6 94.9 94.5 4.3 2.8 9.2 11.8 8.4
Waveform 5000/21 33.9 74.9 81.4 70.3 74.4 81.0 80.9 13.7 7.4 16.8 10.0 8.1
Wine 178/13 39.9 95.2 96.7 92.8 94.8 97.6 97.9 9.8 4.1 7.8 3.8 3.5
average 49.1 79.9 81.4 79.2 80.3 83.3 83.4 6.3 4.6 12.8 10.6 8.3

we are unsure of how the ensemble will behave, we
experimentally investigated the robustness of MFS to
irrelevant features.

We used the same basic procedure in Section 3.1. We
added 10, 20, and 30 boolean irrelevant features to
each of the datasets and then measured the accuracy of
kNN and MFS1. We chose boolean irrelevant features
because they are more difficult for nearest neighbor
methods to handle than continuous irrelevant features.
This is because while they both have the same range
and mean, boolean variables have greater variance.

Table 3 shows the results for several domains. The
remaining results (Bay, 1997) are not shown here for
space reasons, but they follow a similar pattern.

As expected, irrelevant features always hurt both kNN
and MFS to some degree. However, the results are
surprising because they reveal that on some domains
kNN is critically sensitive while MFS is stable. For ex-
ample, on Vehicle and Wine with 10 added irrelevant
features, kNN drops in accuracy by over 20% while
MFS drops by less than 2%. In general, MFS had only
minor degradations in accuracy and was occasionally
very robust. For example, MFS's accuracy on Iono-

sphere degrades by so little (from 93.5% to 90.1%), it
is still better on the dataset corrupted by 30 irrelevant
features, than all of the other classifiers on the original
dataset.

One possible explanation for MFS's performance lies
in how random voters affect the margins of victory
in simple voting. For simplicity, let us divide all vot-
ers into two types: informed (using relevant features)
and uninformed (random) voters. The informed vot-
ers cast their ballots, and the winner will have a given
margin of votes compared to the next closest competi-
tor. The uninformed, random voters then cast their
ballots. The random voters vote with equal proba-
bility and equal expectation for all competitors (ac-
cording to a multinomial distribution). In order for
random voting to change the outcome, the number
of random votes for class X must meet the follow-
ing inequality: randvotes(X) — randvotes(trueclass) >
margin(trueclass, X). Unless the margins from the in-
formed voters are small, this is unlikely to occur since
the E(randvotes(X)) = E(randvotes(trueclass)).

As a numerical example, consider a two class problem
with fifty informed voters and fifty random voters. The
fifty informed voters cast their ballots and the outcome

42 Bay

is 30 votes for class A and 20 votes for class B. The
fifty uninformed voters then cast their ballots. In order
for the uninformed voters to change the outcome of
the vote (class A wins) at least 30 must vote for class
B. The probability that the decision will change is
approximately 8%.

This situation is analogous to what occurs when MFS
is applied to domains with irrelevant features. The NN
classifiers are the voters, and can become uninformed
and random when both of the following conditions are
met: (1) the randomly selected features are irrelevant,
and (2) the occurrence of the classes in the training
set are roughly equal (this is true in many of the UCI
datasets). Note that if only the first condition is met,
the NN classifier will be random but will choose classes
roughly in proportion to their frequencies in the train-
ing set.

4 BIAS-VARIANCE ANALYSIS OF
ERROR

The expected error of an algorithm can be divided into
two components: bias which is the consistent error
that the algorithm makes over many different runs,
and variance which is error that fluctuates from run
to run. This decomposition is a useful method for ex-
plaining how changes to an algorithm affect the final
error rates. It allows us to decompose the error into
meaningful components and to see how the error com-
ponents change with variations in the algorithm.

Several researchers have used the bias-variance analy-
sis of error to show how multiple model approaches
work. For example, both Breiman (1996b) and
Schapire et al. (1997) showed that Bagging improves
performance by reducing the variance component of
error. Kong and Dietterich (1996) showed that ECOC
could reduce both bias and variance.

The bias variance decomposition of error originated
in squared error for regression. For classification, 0-1
loss (misclassification rate) is commonly used, but this
does not have a straightforward or unique decomposi-
tion. Recently, many authors have proposed similar
decompositions (Kong and Dietterich, 1996; Breiman,
1996b; James and Hastie, 1997; Tibshirani, 1996; Ko-
havi and Wolpert, 1996).

We used Kong and Dietterich's (1996) definitions.
They define bias to be "the error of the ideal voted hy-
pothesis," which is the result we would get from com-
bining an infinite number of classifiers, each trained
on an independent set of examples. Variance is the

"difference between the expected error rate and the
ideal voted hypothesis error rate." Formally, where A
is the algorithm, m is the training set size, x is the
unknown test point, f(x) is the class of x, f*(x) is the
ideal voted hypothesis of the algorithm A at x, and
Error(A, m, x) is the expected error of algorithm A at
x using training sets of size m, then bias and variance
are:

Bias(A, m,x) {!
if/•(*) =/(a:)
if/•(*)*/(*) (1)

Variance(A, m, x) = Error{A, m, x) - Bias {A, m, x)
(2)

Note that the Bayes error is incorporated into the bias
error. Also, the variance can be negative. This oc-
curs when the algorithm is usually wrong, but makes
a lucky guess and predicts the correct class.

We investigated the bias-variance components of error
on three datasets originally used by Breiman (1996b)
and later by Schapire et. al (1997) to evaluate mul-
tiple model approaches. The datasets are two class
problems, with the individual classes composed of 20-
dimensional gaussians.

We compared four classifiers: NN, kNN, MFS1 with
1 classifier (1-MFS1), and MFS1 with 100 classifiers.
The NN classifier is the control, to which we can com-
pare the kNN and MFS algorithms. 1-MFS1 should
allow us to determine the changes to the error compo-
nents that are caused by random feature selection and
the changes that are caused by voting among multiple
classifiers.

We used a test set of 3000 instances and 100 inde-
pendent training sets of size 300 to estimate the bias,
variance, and error of the four classifiers. We approx-
imated /* (x) by voting over the classifiers trained on
the 100 independent training sets. The results are
shown in Table 4.

In Twonorm and Threenorm, selecting a single ran-
dom subset of features (1-MFS1) destabilizes the NN
classifier and causes the variance error to significantly
increase. During voting (MFS1) the variance error is
reduced to a much smaller value than the variance of
the original NN classifier, thus reducing the overall er-
ror significantly.

For Ringnorm, the feature selection process does a dra-
matic trade of bias for variance. The bias error drops
from 47.1% to only 4.6%, while the variance increases

Combining Nearest Neighbor Classifiers 43

Table 3: Accuracy of kNN and MFS Under Corruption by Irrelevant Features

kNN MFS1
Domain 0 10 20 30 0 10 20 30
Breast Cancer 74.3 71.0 70.3 69.8 74.0 71.5 71.3 70.5
German 73.1 72.0 70.9 70.5 74.4 72.6 71.3 70.7
Ionosphere 85.5 73.7 71.7 69.5 93.5 91.3 91.4 90.1
Soybean-Large 90.5 80.6 75.2 71.1 93.4 87.7 81.2 76.9
Vehicle 67.7 37.8 35.5 34.1 71.4 69.7 66.0 64.2
Vote 93.1 91.8 91.1 90.9 94.9 93.0 92.0 91.3
Wine 96.7 72.5 62.2 61.2 97.6 96.9 93.7 91.8

Table 4: Bias Variance Decomposition of Error

Domain Opt. NN 1-MFS1 MFS1 kNN
Twonorm

bias 2.3 2.4 2.6 2.4 2.4
variance - 4.9 17.8 1.3 1.0
error 2.3 7.3 20.4 3.7 3.4

Threenorm
bias 10.5 10.5 11.6 10.42 11.2
variance - 13.6 22.5 6.3 4.4
error 10.5 24.1 34.1 16.8 15.6

Ringnorm
bias 1.3 47.1 4.6 3.7 47.1
variance - -7.9 25.8 2.0 -7.9
error 1.3 39.2 30.4 5.7 39.2

from -7.9% to 25.8%. Voting then drops the variance
to only 2% greatly improving accuracy.

From these datasets, we see that MFS has two modes
of operation: (1) decreasing variance through voting,
and (2) trading bias for variance through random fea-
ture selection. Taken together, MFS is able to reduce
both bias and variance components of error.

In comparison to MFS, the kNN classifier reduced only
variance. On Twonorm and Threenorm the error of
NN was dominated by variance (the bias error was
nearly optimal) and like MFS, kNN was able decrease
error by reducing the variance. In fact, kNN did a
better job than MFS at variance reduction. On Ring-
norm, the error of the NN classifier was dominated by
bias and kNN was not able to improve performance.

The value for bias should always be greater than or
equal to the Bayes error rate (10.5%), however, because
of estimation error from finite sample sizes, it is possible
to obtain bias estimates which are lower than the optimal
bound.

5 RELATED WORK

Although there is a large body of research on multi-
ple model methods for classification, very little specif-
ically deals with combining NN classifiers. We are
only aware of Skalak's (1996) work on combining NN
classifiers with small prototype sets, Alpaydin's (1997)
work with condensed nearest neighbor (CNN) classi-
fiers (Hart, 1968), and Ricci and Aha's (1998) work on
combining NN, feature selection, and ECOC.

Skalak and Alpaydin approach the problem of combin-
ing NN classifiers similarly. They drastically reduce
the size of each classifier's prototype set to destabilize
the NN classifier. Skalak investigates several differ-
ent strategies for finding a reduced prototype set and
even pursues an approach called "radical destabiliza-
tion" where the NN classifier has just a single proto-
type per class. He was able to improve accuracy over
the baseline NN classifier in 10 of 13 UCI domains.
Interestingly, MFS did well on Glass and Lymphog-
raphy (average increase of over 7% compared to the
NN classifier); these are two domains where Skalak re-
ported that no combining algorithm improved perfor-
mance. Alpaydin uses dataset partitioning (bootstrap
or disjoint) in combination with the CNN classifier to
edit and reduce the prototypes. He also reported im-
provements over the NN classifier if the training sets
were sufficiently small and thus able to generate di-
verse classifiers.

Ricci and Aha (1998) applied ECOC to the NN clas-
sifier (NN-ECOC). Normally, applying ECOC to NN
would not work as the errors in the two-class problems
would be highly correlated; however, they found that
applying feature selection to the two-class problems
decorrelated errors if different features were selected.
With this method they were able to improve perfor-
mance in many of the domains tested, and they noted
that ECOC accuracy gains tended to increase with in-

44 Bay

creased diversity among the features selected for the
two-class problems.

NN-ECOC is similar to MFS as they both use NN
classifiers with different features. They differ in that
NN-ECOC uses active selection of features (and out-
put coding) while MFS uses random selection. A head
to head comparison would be useful to determine if
NN-ECOC and MFS achieve their accuracy gains in
the same areas of the feature space. Ricci and Aha
also analyzed NN-ECOC for bias and variance and
concluded that NN-ECOC reduces bias but slightly
increases variance. Unfortunately, because we used
different a definition of bias and variance our results
are not directly comparable.

Regardless of which method has better accuracy, MFS
appears to have two main advantages over NN-ECOC:
(1) MFS is the simpler algorithm, and (2) MFS is not
constrained by ECOC to multiclass problems.

6 CONCLUSIONS AND FUTURE
WORK

We introduced MFS, a new algorithm for combining
multiple NN classifiers. In MFS, each NN classifier has
access to all the patterns in the original training set
but only to a random subset of the features.

Our experiments showed that MFS was effective in
improving accuracy. But beyond accuracy improve-
ments, MFS is a significant advance because it allows
us to incorporate many desirable properties of the NN
classifier in a multiple model framework. For example,
one of the primary advantages of the NN classifier is
its ability to incrementally add new data (or remove
old data) without requiring retraining. MFS maintains
this property and new data can be added (old data re-
moved) at runtime. Another useful property of the
NN classifier is its ability to predict directly from the
training data without using intermediate structures.
As a result, no matter how many classifiers we com-
bine in MFS, we require only the same memory as a
single NN classifier. (The combined NN classifiers can
share a common dataset, and the features are selected
randomly at runtime.)

MFS has disadvantages and it should not be used in-
discriminantly. In particular, MFS loses the asymp-
totic optimality properties of the NN and kNN classi-
fiers. Additionally, on domains with highly interacting
features, such as Tic-Tac-Toe, the error rate can in-
crease too much in the feature subsets resulting in poor
ensemble performance. As with all multiple model ap-

proaches, we lose comprehensibility compared to a sin-
gle model. The individual must judge if the potential
accuracy increases is worth these disadvantages.

MFS is our first attempt at using random feature selec-
tion to generate effective NN ensembles, and although
successful at improving accuracy, there are still many
unanswered questions and open areas for future work:

1. Why does MFS work? We made an initial at-
tempt at answering this question with our anal-
ysis of irrelevant features and the bias-variance
decomposition of error. But clearly more work
needs to be done as we cannot even characterize
the domains MFS will do well on.

2. Application to other classifiers. We showed that
random feature selection is useful for generating
ensembles of NN classifiers. Can we apply this
technique to other learning algorithms?

3. Implications for feature selection and feature
weighting. The experimental results showed that
combining multiple random feature subsets can
significantly improve performance over the single
best subset of features found by FSS or BSS. This
implies that instead of searching for the single best
set of features, we should be searching for multiple
feature sets that work well together.

4. Other Improvements. In this paper, we kept the
design of MFS as simple as possible; however,
there are a number of obvious improvements that
may help accuracy and speed. In particular, we
would like to investigate: (1) different weighting
schemes, (2) varying the number of features each
classifier uses, (3) postpruning the ensemble, (4)
combining more sophisticated versions of the NN
classifier, and (5) editing the prototypes.

Acknowledgements

I thank Michael Pazzani for his support and encour-
agement. I also thank Cathy Blake, Yang Wang, and
the anonymous reviewers for providing many com-
ments that improved this paper. This work was par-
tially supported by an NSERC PGS A scholarship.

References

D. W. Aha and R. L. Bankert. (1994). Feature se-
lection for case-based classification of cloud types: An
empirical comparison. In Proceedings of the AAAI-94
Workshop on Case-Based Reasoning, pages 106-112.

Combining Nearest Neighbor Classifiers 45

K. M. Ali and M. J. Pazzani. (1996). Error reduc-
tion through learning multiple descriptions. Machine
Learning, 24:173-202.

E. Alpaydin. (1997). Voting over multiple condensed
nearest neighbors. Artificial Intelligence Review, 11(1-
5):115-132.

S. D. Bay. (1997). Nearest neighbour classification
from multiple data representations. Master's thesis,
University of Waterloo, Department of Systems Design
Engineering.

L. Breiman. (1996). Bagging predictors. Machine
Learning, 24:123-140.

L. Breiman. (1996b). Bias, variance, and arcing clas-
sifiers. Technical Report 460, Statistics Department,
University of California, Berkeley.

K. J. Cherkauer. (1996). Human expert-level perfor-
mance on a scientific image analysis task by a system
using combined artificial neural networks. In P. Chan,
editor, Working Notes of the A A AI Workshop on Inte-
grating Multiple Learned Models, pages 15-21. Avail-
able from http://www.cs.fit.edu/~imlm.

T. M. Cover and P. E. Hart. (1967). Nearest neighbor
pattern classification. IEEE Transactions on Informa-
tion Theory, 13(l):21-27.

B. V. Dasarathy. (1991). Nearest Neighbor (NN)
Norms: NN Pattern Classification Techniques. IEEE
Computer Society Press, Los Alamitos, CA.

R. 0. Duda and P. E. Hart. (1973). Pattern Classifi-
cation and Scene Analysis. John Wiley, New York.

R. A. Fisher. (1936). The use of multiple mea-
surements in taxonomic problems. Annual Eugenics,
7:179-188.

E. Fix and J. L. Hodges. (1951). Discriminatory
analysis: Nonparametric discrimination: Consistency
properties. Technical Report Project 21-49-004, Re-
port Number 4, USAF School of Aviation Medicine,
Randolf Field, Texas.

L. K. Hansen and P. Salamon. (1990). Neural network
ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12:993-1001.

P. E. Hart. (1968). The condensed nearest neigh-
bor rule. IEEE Transactions on Information Theory,
14:515-516.

G. James and T. Hastie. (1997). Generalizations of
the bias/variance decomposition for prediction error.
http://stat.stanford.edu/~gareth.

R. Kohavi and G. H. John. (1996). Wrappers for
feature subset selection. Artificial Intelligence, 97(1-
2):273-324.

R. Kohavi and D. H. Wolpert.- (1996). Bias plus
variance decomposition for zero-one loss functions. In
Machine Learning: Proceedings of the Thirteenth In-
ternational Conference.

E. B. Kong and T. G. Dietterich. (1996). Error-
correcting output coding corrects bias and variance.
In Proceedings of the Twelfth National Conference on
Artificial Intelligence, pages 725-730.

P. Langley and W. Iba. (1993). Average-case anal-
ysis of a nearest neighbor algorithm. In Proceedings
of the Thirteenth International Joint Conference on
Artificial Intelligence, pages 889-894.

C. J. Merz and P. M. Murphy. (1998). UCI repository
of machine learning databases. University of Califor-
nia, Irvine, Dept. of Information and Computer Sci-
ence. http://www.ics.uci.edu/~mlearn/.

J. R. Quinlan. (1996). Bagging, Boosting, and C4.5.
In Proceedings of the Thirteenth National Conference
on Artificial Intelligence, pages 725-730.

F. Ricci and D. W. Aha. (1998). Error-correcting
output codes for local learners. In Proceedings of the
10th European Conference on Machine Learning.

R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee.
(1997). Boosting the margin: A new explanation for
the effectiveness of voting methods. In Machine Learn-
ing: Proceedings of the Fourteenth International Con-
ference.

D. B. Skalak. (1996). Prototype Selection for Com-
posite Nearest Neighbor Classifiers. PhD thesis, De-
partment of Computer Science, University of Mas-
sachusetts.

R. Tibshirani. (1996). Bias, variance and prediction
error for classification rules. Technical report, Depart-
ment of Statistics, University of Toronto.

K. Turner and J. Ghosh. (1996). Error correlation
and error reduction in ensemble classifiers. Connec-
tion Science, 8:385-404. Special issue on combining
artificial neural networks: ensemble approaches.

46

Learning Collaborative Information Filters

Daniel Billsus and Michael J. Pazzani
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425

(dbillsus, pazzani}@ics.uci.edu

Abstract

Predicting items a user would like on the basis of
other users' ratings for these items has become a
well-established strategy adopted by many rec-
ommendation services on the Internet. Although
this can be seen as a classification problem, algo-
rithms proposed thus far do not draw on results
from the machine learning literature. We propose
a representation for collaborative filtering tasks
that allows the application of virtually any ma-
chine learning algorithm. We identify the short-
comings of current collaborative filtering tech-
niques and propose the use of learning algo-
rithms paired with feature extraction techniques
that specifically address the limitations of previ-
ous approaches. Our best-performing algorithm
is based on the singular value decomposition of
an initial matrix of user ratings, exploiting latent
structure that essentially eliminates the need for
users to rate common items in order to become
predictors for one another's preferences. We
evaluate the proposed algorithm on a large data-
base of user ratings for motion pictures and find
that our approach significantly outperforms cur-
rent collaborative filtering algorithms.

1 INTRODUCTION

Research on intelligent information agents in general, and
recommendation systems in particular, has recently at-
tracted much attention. The reasons for this are twofold.
First, the amount of information available to individuals is
growing steadily. Information overload has become a
popular buzzword of our times and people feel over-
whelmed when navigating through today's information
and media landscape. This leads to a clear demand for
automated methods, commonly referred to as intelligent
information agents, that locate and retrieve information

with respect to users' individual preferences. Second, the
number of users accessing the Internet is also growing.
Not only does this lead to an incredible variety of subjects
that can be learned about online, it opens up new possi-
bilities to organize and recommend information. The cen-
tral idea here is to base personalized recommendations for
users on information obtained from other, ideally like-
minded, users. This is commonly known as collaborative
filtering or social filtering.

The underlying techniques used in today's recommenda-
tion systems fall into two distinct categories: content-
based and collaborative methods. Content-based methods
require textual descriptions of the items to be recom-
mended and draw on results from both information re-
trieval and machine learning research (e.g., Pazzani and
Billsus, 1997). In general, a content-based system ana-
lyzes a set of documents rated by an individual user and
uses the content of these documents, as well as the pro-
vided ratings, to infer a profile that can be used to rec-
ommend additional items of interest. In contrast, collabo-
rative methods recommend items based on aggregated
user ratings of those items, i.e. these techniques do not
depend on the availability of textual descriptions. Both
approaches share the common goal of assisting in the
user's search for items of interest, and thus attempt to
address one of the key research problems of the informa-
tion age: locating needles in a haystack that is growing
exponentially.

In this paper we focus on collaborative filtering tech-
niques. A variety of algorithms have previously been re-
ported in the literature and their promising performance
has been evaluated empirically (Shardanand and Maes,
1995; Hill et al. 1995; Resnick et al. 1994). These results,
and the continuous increase of people connected to the
Internet, led to the development and employment of nu-
merous collaborative filtering systems. Virtually all topics
that could be of potential interest to users arc covered by
special-purpose recommendation systems: web pages,
news stories, movies, music videos, books, CDs, restau-
rants, and many more. Some of the best-known represen-

Learning Collaborative Information Filters 47

tatives of these systems, such as FireFly
(www.firefly.com) or WiseWire (www.wisewire.com)
have turned into commercial enterprises. Furthermore,
collaborative filtering techniques are becoming increas-
ingly popular as part of online shopping sites. These sites
incorporate recommendation systems that suggest prod-
ucts to users based on products that like-minded users
have ordered before, or indicated as interesting. For ex-
ample, users can find out which CD they should order
from an online CD store if they provide information about
their favorite artists, and several online bookstores (e.g.
amazon.com) can associate their available titles with other
titles that were ordered by like-minded people.

Although there seems to be an increasingly strong de-
mand for collaborative filtering techniques, only a few
different algorithms have been proposed in the literature
thus far. Furthermore, the reported algorithms are based
on rather simple predictive techniques. Although collabo-
rative filtering can be seen as a classification task, the
problem has not received much attention in the machine
learning community. It seems likely that predictive per-
formance can be increased through the development of
special-purpose algorithms that draw on results from the
machine learning literature.

This paper can be outlined as follows. We briefly present
the central ideas of previously reported collaborative fil-
tering algorithms. We identify the main shortcomings of
these approaches and motivate the need for techniques
that do not suffer from these limitations. We then explain
how the task of computing collaborative recommenda-
tions can be represented as a classification task. Within
this framework we present a learning algorithm that ad-
dresses the limitations of previous approaches. The pro-
posed method is based on dimensionality reduction
through the singular value decomposition (SVD) of an
initial matrix of user ratings, exploiting latent structure
that essentially eliminates the need for users to rate com-
mon items in order to become predictors for one another's
preferences. An artificial neural network is used to com-
pute final recommendations. We evaluate our algorithm
on a large database of user ratings for motion pictures and
show that it significantly outperforms previously pro-
posed algorithms.

2 COLLABORATIVE FILTERING
ALGORITHMS

In this section we briefly outline the main ideas of col-
laborative filtering algorithms reported in the literature.
Shardanand and Maes, 1995, discuss a variety of social
filtering algorithms and evaluate them in the context of
their music recommendation system Ringo (predecessor
to FireFly). These algorithms are based on a simple intui-
tion: predictions for a user should be based on the simi-

larity between the interest profile of that user and those of
other users. Therefore, the first step of these algorithms is
to compute similarities between user profiles. Suppose we
have a database of user ratings for items, where users in-
dicate their interest in an item on a numeric scale. It is
now possible to define similarity measures between two
user profiles, U and J, where a user profile simply con-
sists of a vector of numeric ratings. A measure proposed
by Shardanand and Maes is the Pearson correlation coef-
ficient, rm. Once the similarity between profiles has been
quantified, it can be used to compute personalized
recommendations for users. All users whose similarity is
greater than a certain threshold t are identified and
predictions for an item are computed as the weighted
average of the ratings of those similar users for the item,
where the weight is the computed similarity. Note that
this prediction scheme leads to cases where predictions
cannot be computed for all items in the database. If the
threshold t is set to a high value, only a few very similar
users are considered and it becomes increasingly likely
that ratings for some specific item are not available. In
order to avoid this problem, (Resnick et al, 1994)
compute predictions according to the following formula,
where Ux is a rating to be predicted for User U on item x
and rV} is the correlation between users U and /.

JJ TT i JeRatersofx

JeRaters of x

where

r„, =
^(U-U)(J-J)

If no ratings for item x are available, the prediction is
equivalent to the mean of all ratings from user U. Similar
algorithms were reported and evaluated in (Hill et al.
1995).

While these correlation-based prediction schemes were
shown to perform well, they suffer from several limita-
tions. Here, we identify three specific problems: First,
correlation between two user profiles can only be com-
puted based on items that both users have rated, i.e. the
summations and averages in the correlation formula are
only computed over those items that both users have
rated. If users can choose among thousands of items to
rate, it is likely that overlap of rated items between two
users will be small in many cases. Therefore, many of the
computed correlation coefficients are based on just a few
observations, and thus the computed correlation cannot be
regarded as a reliable measure of similarity. For example,
a correlation coefficient based on three observations has
as much influence on the final prediction as a coefficient

48 Billsus and Pazzani

based on 30 observations. Second, the correlation ap-
proach induces one global model of similarities between
users, rather than separate models for classes of ratings
(e.g. positive rating vs. negative rating). Current ap-
proaches measure whether two user profiles are positively
correlated, not correlated at all or negatively correlated.
However, ratings given by one user can still be good pre-
dictors for ratings of another user, even if the two user
profiles are not correlated. Consider the case where user
A's positive ratings are a perfect predictor for a negative
rating from user B. However, user A's negative ratings do
not imply a positive rating from user B, i.e. the correlation
between the two profiles could be close to zero, and thus
potentially useful information is lost. Third, and maybe
most importantly, two users can only be similar if there is
overlap among the rated items, i.e. if users did not rate
any common items, their user profiles cannot be corre-
lated. Due to the enormous number of items available to
rate in many domains, this seems to be a serious stum-
bling block for many filtering services, especially during
the startup phase. However, just knowing that users did
not rate the same items does not necessarily mean that
they are not like-minded. Consider the following exam-
ple: Users A and B are highly correlated, as are users B
and C. This relationship provides information about the
similarity between users A and C as well. However, in
case users A and C did not rate any common items, a cor-
relation-based similarity measure could not detect any
relation between the two users. We believe that poten-
tially useful information is lost if this kind of transitive
similarity relation cannot be detected.

3 COLLABORATIVE FILTERING AS A
CLASSIFICATION PROBLEM

In this section we present collaborative filtering in a ma-
chine learning framework and suggest the use of an algo-
rithm that specifically addresses the aforementioned
limitations of correlation-based approaches.

Collaborative filtering can be seen as a classification task.
Based on a set of ratings from users for items, we are
trying to induce a model for each user that allows us to
classify unseen items into two or more classes, for exam-
ple like and dislike. Alternatively, if our goal is to predict
user ratings on a continuous scale, we have to solve a
regression problem.

Our initial data exists in the form of a sparse matrix,
where rows correspond to users, columns correspond to
items and the matrix entries are ratings. Note that sparse
in this context means that most elements of the matrix are
empty, because every user typically rates only a very
small subset of all possible items. The prediction task can
now be seen as filling in the missing matrix values. Since
we are interested in learning personalized models for each

user, we associate one classifier (or regression model)
with every user. This model can be used to predict the
missing values for one row in our matrix.

Table 1: Exemplary User Ratings

I, h h 14 h
u, 4 3
u2 1 2
u, 3 4 2 4

u4 4 2 1 ?

With respect to Table 1, consider that we would like to
predict user 4's rating for item 5. We can train a learning
algorithm with the information that we have about user
4's previous ratings. In this example user 4 has provided 3
ratings, which leads to 3 training examples: //, I2, and I3.
These training examples can be directly represented as
feature vectors, where users correspond to features ([/;,
U2, Us) and the matrix entries correspond to feature val-
ues. User 4's ratings for /;, I2 and I3 are the class labels of
the training examples. However, in this representation we
would have to address the problem of many missing fea-
ture values. If the learning algorithm to be used cannot
handle missing feature values, we can apply a simple
transformation. Note that we cannot introduce an addi-
tional numeric value that indicates a missing feature, be-
cause this would conflate the new value and the observed
ratings. However, every user can be represented by up to
n Boolean features, where n is the number of points on the
scale that is used for ratings. For example, if the full n-
point scale of ratings is used to represent ratings from m
users, the resulting Boolean features are of the form "User
m's rating was i", where 0 < i < n. We can now assign
Boolean feature values to all of these new features. If this
representation leads to an excessive number of features
that only appear rarely throughout the data, the rating
scale can be further discretized, e.g. into the two classes
like and dislike. The resulting representation is simple and
intuitive: a training example E corresponds to an item that
the user has rated, the class label C is the user's discre-
tized rating for that item, and items are represented as
vectors of Boolean features F,.

Table 2: Exemplary Feature Vectors

E, E2 E,

U,like 1 0 1
Uidislike 0 0 0
U2like 0 0 0
U2dislike 0 1 0
UJike 1 1 0
Uidislike 0 0 1

Class like dislike dislike

Learning Collaborative Information Filters 49

Table 2 shows the resulting Boolean feature vectors (true
= 1 mi false = 0) for user 4, where a rating of either 1 or
2 corresponds to the class dislike, and a rating of either 3
or 4 corresponds to the class like.

After converting a data set of user ratings for items into
this format, we can draw on the machine learning litera-
ture and apply virtually any supervised learning algorithm
that, through analysis of a labeled training sample T = {Eß

Cj}, can induce a function/.- E—> C.

However, if we look back at the correlation-based ap-
proaches described earlier and express them in our learn-
ing framework, we notice that these algorithms solve a
classification problem in a somewhat unconventional
way. If features and classes are represented as ordinal
values (no discretization), these algorithms measure the
degree of correlation between features and class labels.
Predictions for unseen examples are then computed as a
weighted average of feature values. While this approach
seems to work reasonably well for the domain at hand, it
is not supported by a sound theory that we could use to
motivate the algorithms' use for either a classification or
regression task. It comes as no surprise that researchers in
machine learning have thus far not attempted to solve any
task with this algorithm. It seems likely that theoretically
well-founded algorithms that have the discrimination
between classes as their specific goal, can outperform
correlation-based approaches.

3.1 REDUCING DIMENSIONALITY

Our goal is to construct or apply algorithms that address
the previously identified limitations of correlation-based
approaches. As mentioned earlier, the computation of
correlation coefficients can be based on too little infor-
mation, leading to inaccurate similarity estimates. When
applying a learning algorithm, we would like to avoid this
problem. In particular, we would like to discard informa-
tion that we do not consider informative for our classifi-
cation task. Likewise, we would like to be able to take
possible interaction and dependencies among features into
account, as we regard this as an essential prerequisite for
users to become predictors for one another's preferences
even without rating common items. Both of these issues
can be addressed through the application of appropriate
feature extraction techniques. Furthermore, the need for
dimensionality reduction is of particular importance if we
represent our data in the proposed learning framework.
For large databases containing many users we will end up
with thousands of features while our amount of training
data is very limited. Learning under these conditions is
not practical, because the amount of data points needed to
approximate a concept in d dimensions grows exponen-
tially with d, a phenomenon commonly referred to as the
curse of dimensionality (Bellman, 1961). This is, of
course, not a problem unique to collaborative filtering.

Other domains with very similar requirements include the
classification of natural language text or, in general, any
information retrieval task. In these domains the similarity
among text documents needs to be measured. Ideally, two
text documents should be similar if they discuss the same
subject or contain related information. However, it is of-
ten not sufficient to base similarity on the overlap of
words. Two documents can very well discuss similar
subjects, but use a somewhat different vocabulary. A low
number of common words should not imply that the
documents are not related. This is very similar to the
problem we are facing in collaborative filtering: the fact
that two users rated different items should not imply that
they are not like-minded. Researchers in information re-
trieval have proposed different solutions to the text ver-
sion of this problem. One of these approaches, Latent
Semantic Indexing (LSI) (Deerwester et al., 1990) is
based on dimensionality reduction of the initial data
through singular value decomposition (SVD). We will
now show how the SVD can be used as a dimensionality
reduction technique for our collaborative filtering task. A
more detailed description of underlying algebraic princi-
ples can be found in (Berry et al., 1994).

3.2 COLLABORATIVE FILTERING AND THE
SVD

We start our analysis based on a rectangular matrix con-
taining Boolean values that indicate user ratings for items
(see Table 2). This matrix is typically very sparse, where
sparse means that most elements are zero, because each
item is only rated by a small subset of all users. Further-
more, many features appear infrequently or do not appear
at all throughout this matrix. However, features will only
affect the SVD if they appear at least twice. Therefore, we
apply a first preprocessing step and remove all features
that appear less than twice in our training data. The result
of this preprocessing step is a matrix A containing zeros
and ones, with at least two ones in every row. Using the
SVD, the initial matrix A with r rows, c columns and rank
m can be decomposed into the product of three matrices:

A = U1VT

where the columns of U and V are orthonormal vectors
that define the left and right singular vectors of A, and .Tis
a diagonal matrix containing corresponding singular
values. Since the derived vectors are orthonormal, no
vector can be reconstructed as a linear combination of the
others, f/isanmxc matrix and the singular vectors cor-
respond to columns of the original matrix. V is an r x m
matrix and the singular vectors correspond to rows of the
original matrix. The singular values quantify the amount
of variance in the original data captured by the singular
vectors. This representation provides an ideal framework
for dimensionality reduction, because one can now quan-
tify the amount of information that is lost if singular val-

50 BiUsus and Pazzani

ues and their corresponding singular vector elements are
discarded. The smallest singular values are set to zero,
reducing the dimensionality of the new data representa-
tion. The underlying intuition is that the n largest singular
values together with their corresponding singular vector
elements capture the important "latent" structure of the
initial matrix, whereas random fluctuations are elimi-
nated. The usefulness of the SVD for our task can be fur-
ther explained by its geometric interpretation. If we
choose to retain the k largest singular values, we can in-
terpret the singular vectors, scaled by the singular values,
as coordinates of points representing the rows and col-
umns of the original matrix in k dimensions. In our con-
text, the goal of this transformation is to find a spatial
configuration such that items and user ratings are repre-
sented by points in /c-dimensional space, where every item
is placed at the centroid of every user rating that it re-
ceived and every user rating is placed at the centroid of all
the items that it was assigned to. While the position of
vectors in this ^-dimensional space is determined through
the assignment of ratings to items, items can still be close
in this space even without containing any common rat-
ings. Likewise, user ratings can be close to each other,
although they were never assigned to a common set of
items. Many different strategies for classification of items
are theoretically possible using this ^-dimensional repre-
sentation. We will now describe the complete algorithm
for item classification that we used in our experiments.

3.3 USING SINGULAR VECTORS AS TRAINING
EXAMPLES

Our training data is a set of rated items, represented as
Boolean feature vectors (see Table 2). We compute the
SVD of the training data and discard the n smallest sin-
gular values, reducing the dimensionality to k. Currently,
we set k to 0.9 ■ m, where m is the rank of the initial ma-
trix. This value was chosen because it resulted in the best
classification performance (evaluated using a tuning set,
see Section 4). The singular vectors of matrix U scaled by
the remaining singular values represent rated items in k
dimensions. These vectors become our new training ex-
amples. Since we compute the SVD of the training data,
resulting in real-valued feature vectors of size k, we need
to specify how we transform examples to be classified
into this format. Based on the geometric interpretation of
the SVD, the solution to this problem is straightforward.
We compute a ^-dimensional vector for an item, so that
with appropriate rescaling of the axes by the singular val-
ues, it is placed at the centroid of all the user ratings that it
contains. Mathematically, we can compute this vector as:

vt=vrt/tz;'

where v is a Boolean feature vector containing user rat-
ings, Uk is a matrix of singular vectors with k elements in

each vector, and 2i is a diagonal matrix containing the k
largest singular values.

At this point we need to pick a suitable learning algorithm
that takes real-valued feature vectors as its input and
learns a function that either predicts class membership or
computes a score a user would assign to an item. Ideally,
we would like to use a learning paradigm that allows for
maximum flexibility in evaluating this task as either a
regression or classification problem. Therefore, we se-
lected artificial neural networks as the method of choice
for our purposes (Rumelhart and McLelland, 1986). It can
be shown that neural networks with linear output units
and a single hidden layer can approximate any continuous
function/by increasing the size of the hidden layer (Ri-
pley, 1996). This allows us to solve a regression problem.
Alternatively, if we replace the linear output units by lo-
gistic units, we can use the same framework to perform
logistic regression, or learn to discriminate between
classes. We ran various experiments on a tuning set of the
data available to us, to determine a network topology and
learning paradigm that resulted in good performance (see
Section 4 for details on the experimental evaluation). The
winning approach was a feed-forward neural network
with k input units, 2 hidden units and 1 output unit. The
hidden units use sigmoid functions, while the output unit
is linear. Weights are learned with backpropagation. Al-
though the task at hand might suggest using a user's rat-
ing as the function value to predict, we found that a
slightly different approach resulted in better performance.
We determined the average rating for an item1 and trained
the network on the difference between a user's rating and
the average rating. This function appeared to be easier to
learn, presumably because the function values take on
extreme values less frequently and in these cases express
a user's individual taste. In order to predict scores for
items, the output of the network needs to be added to the
mean of the item. We then used a threshold t (depending
on the rating scale of the domain, see next section) to
convert the predicted rating to a binary class label. In
summary, our algorithm for collaborative filter induction
proceeds in the following steps:

Training:

• Convert the training data, a sparse matrix of user
ratings, to Boolean feature vectors, resulting in a ma-
trix filled with zeros (false) and ones (true).

• Compute the SVD of the training data.

• Select k, the number of dimensions to retain, and
reduce the extracted singular vectors accordingly.

• Train a neural network with singular vectors scaled
by singular values.

1 The average is computed using ratings from all users who rated
the item, except the user whose rating is to be predicted.

Learning Collaborative Information Filters 51

Predicting:

• Convert the item's user ratings to a Boolean feature
vector.

• Scale the feature vector into the k-dimensional space.

• Feed the resulting real-valued vector to the trained
neural network to compute a prediction.

4 EXPERIMENTAL EVALUATION

In this section we report results of the experimental
evaluation of our proposed algorithm. We describe the
data set used, the experimental methodology, as well as
performance measures we consider appropriate for this
task.

4.1 THE EACHMOVIE DATABASE

We ran experiments using data from the EachMovie col-
laborative filtering service. The EachMovie service was
part of a research project at the Systems Research Center
of Digital Equipment Corporation. The service was avail-
able for a period of 18 months and was shut down in
September 1997. During that time the database grew to a
fairly large size, containing ratings from 72,916 users on
1,628 movies. User ratings were recorded on a numeric
six-point scale (0.0, 0.2, 0.4, 0.6, 0.8, 1.0). The data set is
publicly available and can be obtained from Digital
Equipment Corporation (McJones, 1997).

Although data from 72,916 users is available, we restrict
our analysis to the first 2,000 users in the database. These
2,000 users provided ratings for 1,410 different movies.
We restricted the number of users considered, because we
are interested in the performance of the algorithm under
conditions where the ratio of users to items is low. This is
a situation that every collaborative filtering service has to
go through in its startup-phase, and in many domains we
cannot expect to have significantly more users than items.
We also believe that the deficiencies of correlation-based
approaches will be more noticeable under these condi-
tions, because it is less likely to find users with consider-
able overlap of rated items.

4.2 PERFORMANCE MEASURES

We are most interested in a system that can accurately
distinguish between movies a user would like and all
other movies rather than a method that accurately predicts
the numeric rating of every movie. Of course, a method
that predicts the actual ratings most exactly could also be
the best classifier for this classification task. To analyze
this, we defined two classes, hot and cold, that were used
to label movies. When transforming movies to training
examples for a particular user, we label movies as hot if

the rating for the movie was 0.8 or 1.0, or cold otherwise.
We decided to use this threshold since we are interested in
identifying movies the user would like and feel strongly
about. Since the correlation-based approaches as well as
the neural network predict numeric ratings, we base the
classification of movies on this numeric prediction, and
classify them as hot if the predicted rating exceeds the
threshold 0.7 (midpoint between the two possible user
ratings 0.6 and 0.8). At the same time, we can still use the
predicted score to rank-order classified movies. Not only
does assigning class labels allow us to measure classifica-
tion accuracy, we can also apply additional performance
measures, such as precision and recall, commonly used
for information retrieval tasks. In our domain, precision is
the percentage of movies classified as hot that are hot, and
recall is the percentage of hot movies that were classified
as hot. We believe that these measures are appropriate for
our study, because we would like to quantify performance
for a task that has the identification of relevant items as its
goal.

It is important to evaluate precision and recall in con-
junction, because it is easy to optimize either one sepa-
rately. However, for a classifier to be useful for our pur-
poses we demand that it be precise as well as have high
recall. In order to quantify this with a single measure,
(Lewis and Gale, 1994) proposed the F-measure, a
weighted combination of precision and recall that pro-
duces scores ranging from 0 to 1. Here we assign equal
importance to precision and recall:

F =
2 ■ precision ■ recall

precision + recall

In summary, we measure the overall performance of the
algorithms using classification accuracy and the
F-measure. Since we see the F-measure as a useful con-
struct to compare classifiers, but think that it is not an
intuitive measure to indicate a user's perception of the
usefulness of an actual system, we use an additional
measure: precision at the top n ranked items (here, we
report scores for n = 3 and n = 10).

4.3 EXPERIMENTAL METHODOLOGY

Since we are interested in the performance of the algo-
rithms with respect to the number of ratings provided by
users, we report learning curves where we vary the num-
ber of rated items from 10 to 50. For each user we ran a
total of 30 paired trials for each algorithm. For an indi-
vidual trial of an experiment, we randomly selected 50
rated items to use as a training set, and 30 as a test set. We
then started training with 10 examples out of the set of 50
and increased the training set incrementally in steps of 10,
measuring the algorithms' performance on the test set for
each training set size. Final results for one user are then
averaged over all trials. We repeated this for 20 users and

52 Billsus and Pazzani

70-,

68

u 64-^

62

60

Classification Accuracy

..—■■ ■

70-1

65
a» u
9
« 60
s ■
to

 1 1 1 1 1 1 1

0 10 20 30 40 50 60
Training Examples (rated items)

55

50

F-Measure

^*"

0 10 20 30 40 50 60

Training Examples (rated items)

Correlation -A- SVD / ANN InfoGain/ANN D
Precision at top 3

85-1
^-^*~~~~*

m 80- *s>^* *
e
Z 75- #'" 's* '"

m-~-m'""m

•i70-
|-

60- 1 1 1 1 1 1 1

Precision at top 10

75-
——*^~*

70- & 0 # --#• ~"
m ■—-^

65-

60- 1 1 1 1 1 1 1

0 10 20 30 40 50 60
Training Examples (rated items)

0 10 20 30 40 50 60
Training Examples (rated items)

Figure 1: Learning Curves

the final curves reported here are averaged over those 20
users.

The actual size of the feature vectors used to train the
neural network depends on the number of rated items in
the current training set, as well as the particular rated
items. Initially, every training example consists of 4000
Boolean values (2000 users * 2 features per user). Delet-
ing all features that appear less than twice reduces the
number of features approximately by a factor of 4 (see
section 3.2), i.e. if we start to train our algorithm with 10
examples, we have an initial 10 x 1000 matrix of training
data. After decomposing this matrix using the SVD, the
matrix U that represents rated items in a space of lower
dimensions is a 10 x 10 matrix (because the initial matrix
has 10 columns and this is also the rank of the matrix).
Since we keep only 90% of the singular values, the re-
sulting feature vectors consist of 9 real values. Likewise,
if we have 50 examples in the training set, the resulting
size of every training example after dimensionality re-
duction is 45.

We determined parameters for our algorithms using a
tuning set of 20 randomly selected users. The results re-
ported here are averaged over 20 different users. The
training data for these users is based on ratings from the
first 2000 users of the database, as described earlier. We

selected users randomly, but with the following con-
straints. First, only users whose prior probability of liking
a movie is below 0.75 are considered. Otherwise, scores
that indicate high precision of our algorithms might be
biased by the fact that there are some users in the database
who either like everything or just gave ratings for movies
they liked. Second, only users that rated at least 80 mov-
ies were selected, so that we could use the same number
of training and test examples for all users.

4.4 SUMMARY OF RESULTS

Figure 1 summarizes the performance of three different
algorithms. The algorithm labeled Correlation is the cor-
relation-based approach that performed best on this data
out of the strategies described in Section 2. This approach
uses the prediction formula as described in (Resnick et al
1994) and summarized in Section 2. We consider all cor-
relations, i.e. we do not require correlations to be above a
certain threshold. The algorithm labeled SVD/ANN is our
dimensionality reduction approach coupled with a neural
network as described in Section 3.3. Since this algorithm
is a combination of a feature extraction technique (SVD)
and a learning algorithm (ANN), the observed perform-
ance does not allow us to infer anything about the relative
importance of each technique individually. Therefore, we
report the performance of a third algorithm, labeled Info-

Learning Collaborative Information Filters 53

Gain/ANN, in order to quantify the importance of our
proposed feature extraction technique. InfoGain/ANN uses
the same neural network setup as SVD/ANN, but applies a
different feature selection algorithm. Here, we compute
the expected information gain (Quinlan, 1986) of all the
initial features and then select the n most informative
features, where n is equivalent to the number of features
used by SVD/ANN for each training set size. Since ex-
pected information gain cannot detect interaction and de-
pendencies among features, the difference between
SVD/ANN and InfoGain/ANN allows us to quantify the
utility of the SVD for this task.

The results show that both SVD/ANN, as well as Info-
Gain/ANN, performed better than the correlation ap-
proach. In addition, SVD/ANN is more accurate and sub-
stantially more precise than InfoGain/ANN. At 50 training
examples Correlation reaches a classification accuracy of
64.4%, vs. 67.9% for SVD/ANN. While predictive accu-
racy below 70% might initially seem disappointing, we
need to keep in mind that our goal is not the perfect clas-
sification of all movies. We would like to have a system
that identifies many interesting items and does this with
high precision. This ability is measured by the F-measure
and we can see that SVD/ANN has a significant advantage
over the correlation approach (at 50 examples 54.2% for
Correlation vs. 68.8% for SVD/ANN). Finally, if we re-
strict our analysis to the top 3 or top 10 suggestions of
each algorithm, we can see that SVD/ANN is much more
precise than the other two algorithms. At 50 training ex-
amples Correlation reaches a precision of 72.6% at the
top 3 suggestions, InfoGain/ANN's precision is 78.3% and
SVD/ANN reaches 83.9%. These results are encouraging
and provide empirical evidence that the use of theoreti-
cally well-founded learning algorithms can lead to im-
proved predictive performance on collaborative filtering
tasks. Furthermore, we have shown that an additional
performance increase can be obtained through the use of
appropriate dimensionality reduction techniques, such as
the SVD.

5 DISCUSSION AND FUTURE WORK

Our experiments illustrate the potential of dimensionality
reduction techniques that exploit the underlying "latent
structure" of user ratings. The key to success of this
method is that it can utilize information from users whose
ratings are not correlated, or who have not even rated
anything in common. However, since we are computing
the SVD of the training data, i.e. a matrix consisting only
of feature vectors for all items a user has rated, we might
not be exploiting the full potential of the method. Includ-
ing feature vectors of items that the user has not rated in
the matrix to decompose will affect the position of the
singular vectors corresponding to labeled training exam-
ples in k-dimensional space. Future experiments will re-

veal if further performance improvements can be
achieved through the addition of unlabeled training data.

We believe that additional knowledge about the similarity
of users and items can be gained through the analysis of
textual descriptions of items. Our long-term goal of this
work is to combine collaborative and content-based fil-
tering techniques. Similarity between users could then be
influenced by similarity between descriptions of rated
items. This is a very desirable characteristic, as it would
further reduce the need for ratings of common items. We
believe that content-based techniques will fit nicely into
the learning framework presented in this paper. Since
items correspond to feature vectors, one could extend
these feature vectors to contain content-based features.
We started to run initial experiments using textual de-
scriptions of movies, extending feature vectors with Boo-
lean features indicating the presence or absence of words.
These experiments have not yet led to significant per-
formance improvements. However, we assume that the
reason for this is the form of textual movie descriptions
available to us for these first experiments, rather than the
viability of the method itself.

While the proposed SVD/ANN approach leads to per-
formance gains, it is significantly more computationally
expensive than the other approaches discussed here. The
SVD implementation used in our experiments is a single-
vector Lanczos method which is part of the publicly
available software package SVDPACKC (Berry, 1992). Its
computational complexity is 0(3Dz), where z is the num-
ber of non-zero elements in the matrix and D is the num-
ber of dimensions to be computed. In our experiments we
observed training times (SVD + network training) ranging
from 0.4 seconds for 10 training examples to 2.3 seconds
for 50 training examples2. While these times would allow
for the application of the algorithm as part of an intelli-
gent information agent operating under real-time condi-
tions, we need to keep in mind that we restricted our ex-
periments to 2000 users. Including more users leads to
larger matrices to be decomposed and the algorithm will
slow down. Therefore, it remains to be seen if similar
techniques could be applied to collaborative-filtering
services that have accumulated large amounts of data and
need to compute predictions under real-time conditions.
However, note that the SVD would not have to be recom-
puted for each user. The SVD of large portions of the
available data could be precomputed, and new items that
were not part of this analysis could be scaled into the k-
dimensional space as described in Section 3.3. The
viability, performance and complexity of this approach
will be the subject of future research.

' Measured on a 200Mhz Pentium Pro system.

54 Billsus and Pazzani

6 SUMMARY AND CONCLUSIONS

In this paper we have identified the shortcomings of cor-
relation-based collaborative filtering techniques and
shown how these problems can be addressed through the
application of classification algorithms. We believe that
the contributions of this paper are twofold. First, we have
presented a representation for collaborative filtering tasks
that allows the use of virtually any machine learning algo-
rithm. We hope that this will pave the way for further
analysis of the suitability of learning algorithms for this
task. Second, we have shown that exploiting latent struc-
ture in matrices of user ratings can lead to improved pre-
dictive performance. In a set of experiments with a data-
base of ratings for motion pictures, we used the singular
value decomposition to project user ratings and rated
items into a lower dimensional space. This allows users to
become predictors for one another's preferences even
without any overlap of rated items. Since our society is
already being characterized as an information society that
suffers from steadily increasing information overload, we
regard the automated induction of personalized informa-
tion filters as an important research problem. The Internet
opens up new possibilities to collect enormous amounts of
information about users' likes and dislikes. We hope this
paper will help develop new ideas for more effective use
of this information.

Acknowledgements

We would like to thank the System Research Center of
Digital Equipment Corporation for making the Each-
Movie database available for research.

References

Lewis, D. and Gale, W. A. (1994). A sequential algorithm
for training text classifiers. In Proceedings of the Seven-
teenth Annual International ACM-SIGIR Conference on
Research and Development in Information Retrieval, 3-
12, London, Springer-Verlag.

McJoncs, P. (1997). EachMovie collaborative filtering
data set. DEC Systems Research Center.
http://www.research.digital.com/SRC/eachmovie/.

Pazzani M., and Billsus, D. (1997). Learning and Revis-
ing User Profiles: The identification of interesting web
sites. Machine Learning 27, 313-331.

Quinlan, J.R. (1986). Induction of decision trees. Machine
Learning, 1:81-106.

Resnick, P., Neophytos, I., Mitesh, S. Bergstrom, P. and
Riedl, J. (1994) GroupLens: An Open Architecture for
Collaborative Filtering of Netnews. In Proceedings of
CSCW94: Conference on Computer Supported Coopera-
tive Work, 175-186, Chapel Hill, Addison-Wesley.

Rumelhart, D. E. and McClelland, J. L. (eds) (1986) Par-
allel Distributed Processing: Explorations in the Micro-
structure of Cognition. Volume I: Foundations. Cam-
bridge, MA: The MIT Press.

Ripley, B. D. (1996) Pattern Recognition and Neural
Networks. Cambridge: Cambridge University Press.

Shardanand, U. and Maes, P. Social Information Filtering:
Algorithms for Automating Word of Mouth', In Pro-
ceedings of the Conference on Human Factors in Com-
puting Systems (CHI95), 210-217, Denver, CO, ACM
Press.

Bellman, R. (1961). Adaptive Control Processes: A
Guided Tour. New Jersey: Princeton University Press.

Berry, M. W. (1992). Large scale singular value compu-
tations. International Journal of Supercomputer Applica-
tions, 6(1), 13-49.

Berry, M. W., Dumais, S. T., and O'Brien, G.W. (1995).
"Using linear algebra for intelligent information re-
trieval." SIAM Review, 37(4), 1995, 573-595.

Deerwester, D., Dumais, S. T., Landauer, T. K., Furnas,
G.W., and Harshman, R.A. (1990). "Indexing by latent
semantic analysis.'! Journal of the Society for Information
Science, 41(6), 391-407.

Hill, W., Stead, L., Rosenstein, M., and Furnas, G.
(1995). Recommending and Evaluating Choices in a Vir-
tual Community of Use. In Proceedings of the Conference
on Human Factors in Computing Systems (CHI95), 194-
201, Denver, CO, ACM Press.

55

Top-down induction of clustering trees

Hendrik Blockeel Luc De Raedt Jan Ramon*
Katholieke Universiteit Leuven, Department of Computer Science

Celestijnenlaan 200A, B-3001 Heverlee, Belgium
{Hendrik.Blockeel, Luc. DeRaedt, Jan. Ramon }@cs.kuleuven. ac.be

Abstract

An approach to clustering is presented that
adapts the basic top-down induction of de-
cision trees method towards clustering. To
this aim, it employs the principles of instance
based learning. The resulting methodology
is implemented in the TIC (Top down In-
duction of Clustering trees) system for first
order clustering. The TIC system employs
the first order logical decision tree representa-
tion of the inductive logic programming sys-
tem TILDE. Various experiments with TIC
are presented, in both propositional and re-
lational domains.

1 INTRODUCTION

Decision trees are usually regarded as representing the-
ories for classification. The leaves of the tree contain
the classes and the branches from the root to a leaf
contain sufficient conditions for classification.

A different viewpoint is taken in Elements of Machine
Learning [Langley, 1996]. According to Langley, each
node of a tree corresponds to a concept or a cluster,
and the tree as a whole thus represents a kind of taxon-
omy or a hierarchy. Such taxonomies are not only out-
put by decision tree algorithms but typically also by
clustering algorithms such as e.g. COBWEB [Fisher,
1987]. Therefore, Langley views both clustering and
concept-learning as instantiations of the same general
technique, the induction of concept hierarchies. The
similarity between classification trees and clustering
trees has also been noted by Fisher, who points to
the possibility of using TDIDT (or TDIDT heuristics)

* The authors axe listed in alphabetical order.

in the clustering context [Fisher, 1993] and mentions
a few clustering systems that work in a TDIDT-like
fashion [Fisher and Langley, 1985].

Following these views we study top-down induction of
clustering trees. A clustering tree is a decision tree
where the leaves do not contain classes and where
each node as well as each leaf corresponds to a cluster.
To induce clustering trees, we employ principles from
instance based learning and decision tree induction.
More specifically, we assume that a distance measure
is given that computes the distance between two exam-
ples. Furthermore, in order to compute the distance
between two clusters (i.e. sets of examples), we employ
a function that computes a prototype of a set exam-
ples. A prototype is then regarded as an example,
which allows to define the distance between two clus-
ters as the distance between their prototypes. Given
a distance measure for clusters and the view that each
node of a tree corresponds to a cluster, the decision
tree algorithm is then adapted to select in each node
the test that will maximize the distance between the
resulting clusters in its subnodes.

Depending on the examples and the distance measure
employed one can distinguish two modes. In super-
vised learning (as in the classical top-down induction
of decision trees paradigm), the distance measure only
takes into account the class information of each exam-
ple (see e.g. C4.5 [Quinlan, 1993], CART [Breiman et
al, 1984]). Also, regression trees (SRT [Kramer, 1996],
CART) should be considered supervised learning. In
unsupervised learning, the examples may not be clas-
sified and the distance measure does not take into ac-
count any class information. Rather, all attributes or
features of the examples are taken into account in the
distance measure.

The Top-down Induction of Clustering trees approach
is implemented in the TIC system. TIC is a first order

56 Blocked, De Raedt, and Ramon

clustering system as it does not employ the classical
attribute value representation but that of first order
logical decision trees as in SRT [Kramer, 1996] and
TILDE [Blocked and De Raedt, 1998]. So, the clusters
corresponding to the tree will have first order defini-
tions. On the other hand, in the current implemen-
tation of TIC we only employ prepositional distance
measures.

Using TIC we report on a number of experiments.
These experiments demonstrate the power of top-down
induction of clustering trees. More specifically, we
show that TIC can be used for clustering, for regres-
sion, and for learning classifiers.

This paper significantly expands on an earlier ex-
tended abstract [De Raedt and Blocked, 1997] in that
TIC now contains a pruning method and also that this
paper provides new experimental evidence.

This paper is structured as follows. In Section 2 we
discuss the representation of the data and the induced
theories. Section 3 identifies possible applications of
clustering. The TIC system is presented in Section
4. In Section 5 we empirically evaluate TIC for the
proposed applications. Section 6 presents conclusions
and related work.

2 THE LEARNING PROBLEM

2.1 REPRESENTING EXAMPLES

We employ the learning from interpretations setting
for inductive logic programming. For the purposes of
this paper, it is sufficient to regard each example as a
small relational database, i.e. as a set of facts. Within
learning from interpretations, one may also specify
background knowledge in the form of a Prolog pro-
gram which can be used to derive additional features
of the examples.1 See [De Raedt and Dzeroski, 1994;
De Raedt, 1996; De Raedt et al., 1998] for more details
on learning from interpretations.

For instance, examples for the well-known mutage-
nesis problem [Srinivasan et al., 1996] can be de-
scribed by interpretations. Here, an interpreta-
tion is simply an enumeration of all the facts we
know about one single molecule: its class, lumo
and logp values, the atoms and bonds occurring
in it, certain high-level structures.. .We can rep-
resent it e.g. as follows: {logmutag(-0.7), neg,
lumo(-3.025), logp(2.29), atom(dl89_l,c,22,-0.11),

atom(X,Y,14,Z)?

^he interpretation corresponding to each example e is
then the minimal Herbrand model of B A e.

Figure 1: A clustering tree

atom(dl89^,c,22,-0.11),bond(dl89-l,dl89_2,7),
bond(dl89-2,dl89J3,7), ...}

2.2 FIRST ORDER LOGICAL DECISION
TREES

First order logical decision trees are similar to stan-
dard decision trees, except that the test in each node
is a conjunction of literals instead of an test on an at-
tribute. They are always binary, as the test can only
succeed or fail. A detailed discussion of these trees is
beyond the scope of this paper but can be found in
[Blockeel and De Raedt, 1998]. We will use these trees
to represent clustering trees.

An example of a clustering tree, in the mutagenesis
context, is shown in Figure 1. Note that in a classical
logical decision tree leaves would contain classes. Here,
leaves simply contain sets of examples that belong to-
gether. Also note that variables occurring in tests are
existentially quantified. The root test, for instance,
tests whether there occurs an atom of type 14 in the
molecule. The whole set of examples is thus divided
into two clusters: a cluster of molecules containing an
atom 14 and a cluster of molecules not containing any.

This view is in correspondence with Langley's view-
point that a test in a node is not just a decision crite-
rion, but also a description of the subclusters formed
in this node. In [Blockeel and De Raedt, 1998] we
show how a logical decision tree can be transformed
into an equivalent logic program, which could alterna-
tively be used to sort examples into clusters. The logic
program contains invented predicates that correspond
to the clusters.

2.3 INSTANCE BASED LEARNING AND
DISTANCES

The purpose of conceptual clustering is to obtain clus-
ters such that intra-cluster distance (i.e. the distance
between examples belonging to the same cluster) is
as small as possible and the inter-cluster distance (i.e.

Top-down induction of clustering trees 57

the distance between examples belonging to different
clusters) is as large as possible.

In this paper, we assume that a distance measure d
that computes the distance d(ei,e2) between exam-
ples ei and e2 is given. Furthermore, there is also a
need for measuring the distance between different clus-
ters (i.e. between sets of examples). Therefore we will
assume as well the existence of a prototype function p
that computes the prototype p(E) of a set of examples
E. The distance between two clusters C\ and C2 is
then defined as the distance d(p(Ci),p(C2)) between
the prototypes of the clusters. This shows that the
prototypes should be considered as (possibly) partial
example descriptions. The prototypes should be suf-
ficiently detailed as to allow the computation of the
distances.

For instance, the distance could be the Euclidean dis-
tance di between the values of one or more numerical
attributes, or it could be the distance d2 as measured
by a first order distance measure such as used in RIBL
[Emde and Wettschereck, 1996] or KBG [Bisson, 1992]
or [Hutchinson, 1997].

Given the distance at the level of the examples, the
principles of instance based learning can be used to
compute the prototypes. E.g. d\ would result in a
prototype function pi that would simply compute the
mean for the cluster, whereas d2 could result in func-
tion p2 that would compute the (possibly reduced)
least general generalisation2 of the examples in the
cluster.

Throughout this paper we employ only propositional
distance measures and the prototype functions that
correspond to the instance averaging methods along
the lines of [Langley, 1996]. However, we stress that -
in principle - we could use any distance measure. No-
tice that although we employ only propositional dis-
tance measures, we obtain first order descriptions of
the clusters through the representation of first order
logical decision trees.

2.4 PROBLEM-SPECIFICATION

By now we are able to formally specify the clustering
problem:

Given

2 Using Plotkin's [1970] notion of 0-subsumption or
the variants corresponding to structural matching [Bisson,
1992; De Raedt et a/., 1997].

• a set of examples E (each example is a set of tuples
in a relational database or equivalently, a set of
facts in Prolog),

• a background theory B in the form of a Prolog
program,

• a distance measure d that computes the distance
between two examples or prototypes,

• a prototype function p that computes the proto-
type of a set of examples,

Find: a first order clustering tree.

Before discussing how this problem can be solved we
take a look at possible applications of clustering trees.

3 APPLICATIONS OF
CLUSTERING TREES

Following Langley's viewpoint, a system such as C4.5
can be considered a supervised clustering system
where the "distance" metric is the class entropy within
the clusters : lower class entropy within a cluster
means that the examples in that cluster are more sim-
ilar with respect to their classes. Since C4.5 employs
class information, it is a supervised learner.

Clustering can also be done in an unsupervised manner
however. When making use of a distance metric to
form clusters, this distance metric may or may not use
information about the classes of the examples. Even
if it does not use class information, clusters may be
coherent with respect to the class of the examples in
them.

This principle leads to a classification technique that
is very robust with respect to missing class informa-
tion. Indeed, even if only a small percentage of the
examples is labelled with a class, one could perform
unsupervised clustering, and assign to each leaf in the
concept hierarchy the majority class in that leaf. If
the leaves are coherent with respect to classes, this
method would yield relatively high classification accu-
racy with a minimum of class information available.
This is quite similar in spirit to Emde's method for
learning from few classified examples, implemented in
the COLA system [Emde, 1994].

A similar reasoning can be followed for regression,
leading to "unsupervised regression"; again this may
be useful in the case of partially missing information.

58 Blocked, De Raedt, and Ramon

We conclude that clustering can extend classification
and regression towards unsupervised learning. An-
other extension in the predictive context is that clus-
ters can be used to predict many or all attributes of
an example at once.

Depending on the application one has in mind, mea-
suring the quality of a clustering tree is done in differ-
ent ways. For classification purposes predictive accu-
racy on unseen cases is typically used. For regression
an often used criterion is the relative error, which is
the mean squared error of predictions divided by the
mean squared error of a default hypothesis always pre-
dicting the mean. This can be extended towards the
clustering context if a distance measure and prototype
function are available:

RE = E^fo.p)2

with t{ the examples, e,- the predictions and p the pro-
totype. (A prediction is, just like a prototype, a par-
tial example description that is sufficiently detailed to
allow the computation of a distance).

If clustering is considered as unsupervised learning of
classification or regression trees, the relative error of
only the predicted variable or the accuracy with which
the class variable can be predicted is a suitable quality
criterion. In this case classes should be available for
the evaluation of the clustering tree, though not during
(unsupervised) learning. Such an evaluation is often
done for clusters, see e.g. [Fisher, 1987].

4 TIC: TOP-DOWN INDUCTION
OF CLUSTERING TREES

A system for top-down induction of clustering trees
called TIC has been implemented as a subsystem of
the ILP system TILDE[Blockeel and De Raedt, 1998].
TIC employs the basic TDIDT framework as it is also
incorporated in the TILDE system. The main point
where TIC and TILDE differ from the propositional
TDIDT algorithm is in the computation of the (first
order) tests to be placed in a node, see [Blockeel and
De Raedt, 1998] for details. Furthermore, TIC differs
from TILDE in that it uses other heuristics for split-
ting nodes, an alternative stopping criterion and alter-
native tree post-pruning methods. We discuss these
topics below.

4.1 SPLITTING

The splitting criterion used in TIC works as follows.
Given a cluster C and a test T that will result in two
disjoint subclusters Ci and C2 of C, TIC computes
the distance d(p(d),p(C2)), where p is the prototype
function. The best test T is then the one that, maxi-
mizes this distance. This reflects the principle that the
inter-cluster distance should be as large as possible.

If the prototype is simply the mean, then maximiz-
ing inter-cluster distances corresponds to minimizing
intra-cluster distances, and splitting heuristics such
as information gain [Quinlan, 1993] or Gini index
[Breiman et a/., 1984] can be seen as special cases
of the above principle, as they minimize intra-cluster
class diversity. In the regression context, minimizing
intra-cluster variance (e.g. [Kramer, 1996]) is another
instance of this principle.

Note that our distance-based approach has the advan-
tage of being applicable to both numeric and symbolic
data, and thus generalises over regression and classifi-
cation.

4.2 STOPPING CRITERIA

Stopping criteria are often based on significance tests.
In the classification context a x2-test is often used to
check whether the class distributions in the subtrees
differ significantly [Clark and Niblett, 1989; De Raedt
and Van Laer, 1995]. Since regression and clustering
use variance as a heuristic for choosing the best split,
a reasonable heuristic for the stopping criterion seems
to be the F-test. If a set of examples is split into two
subsets, the variance should decrease significantly, i.e.

F =
SS/(n - 1)

(SSL + SSR)/(n - 2)

should be significantly large (SS is the sum of squared
differences from the mean inside the set of examples,
SSL and SSR is the same for the two created subsets
of the examples, n is the total number of examples) ,3

4.3 PRUNING USING A VALIDATION
SET

The principle of using a validation set to prune trees
is very simple. After using the training set to build a

3The F-test is only theoretically correct for normally
distributed populations. Since this assumption may not
hold, it should here be considered a heuristic for deciding
when to stop growing a branch, not a real statistical test.

Top-down induction of clustering trees 59

tree, the quality of the tree is computed on the valida-
tion set (predictive accuracy for classification trees, in-
verse of relative error for regression or clustering trees).
For each node of the tree the quality of the tree if it
were pruned at that node Q' is compared with the
quality Q of the unpruned tree. If Q' > Q then the
tree is pruned.

Such a strategy has been successfully followed in the
context of classification and regression (e.g. CART
[Breiman et al, 1984]) as well as clustering (e.g.
[Fisher, 1996]). Fisher's method is more complex than
ours in that for each individual variable a different
subset of the original tree will be used for prediction.

In the current implementation of TILDE validation set
based pruning is available for all settings. For clus-
tering and regression it is the only pruning criterion
that is implemented. It is only reliable for reasonably
large data sets though. When learning from small data
sets performance decreases because the training set be-
comes even smaller and with a small validation set a
lot of pruning is due to random influences.

5 EXPERIMENTS

5.1 DATA SETS

We used the following data sets for our experiments:

• Soybeans: this database [Michalski and Chi-
lausky, 1980] contains descriptions of diseased soy-
bean plants. Every plant is described by 35 at-
tributes. A small data set (46 examples, 4 classes)
and a large one (307 examples, 19 classes) are
available at the UCI repository [Merz and Mur-
phy, 1996].

• Iris: a simple database of descriptions of iris
plants, available at the UCI repository. It con-
tains 3 classes of 50 examples each. There are 4
numerical attributes.

• Mutagenesis: this database [Srinivasan et al,
1996] contains descriptions of molecules for which
the mutagenic activity has to be predicted. Orig-
inally mutagenicity was measured by a real num-
ber, but in most experiments with ILP systems
this has been discretized into two values (positive
and negative). The database is available at the
ILP repository [Kazakov et al, 1996].

Srinivasan et al [1995] introduce four levels of
background knowledge; the first 2 contain only
structural information (atoms and bonds in the

molecules), the other 2 contain higher level infor-
mation (attributes describing the molecule as a
whole and higher level submolecular structures).
For our experiments the tests allowed in the
trees can make use of structural information only
(Background 2), though for the heuristics numer-
ical information from background 3 can be used.

• Biodegradability: a set of 62 molecules of which
structural descriptions and molecular weights are
given. The biodegradability of the molecules is to
be predicted. This is a real number, but has been
discretized into four values (fast, moderate, slow,
resistant) in most past experiments. The dataset
was provided to us by S. Dzeroski but is not yet
in the public domain.

The data sets were deliberately chosen to include both
propositional and relational data sets. For each indi-
vidual experiment the most suitable data sets were
chosen (w.r.t. size, suitability for a specific task, and
relevant results published in the literature).

Distances were always computed from all numerical
attributes, except when stated otherwise. For the Soy-
beans data sets all nominal attributes were converted
into numbers first.

5.2 EXPERIMENT 1: PRUNING

In this first experiment we want to evaluate the effect
of pruning in TIC on both predictive accuracy and tree
complexity. We have applied TIC to two databases:
Soybeans (large version) and Mutagenesis. We chose
these two because they are relatively large (as noted
before, the pruning strategy is prone to random influ-
ences when used with small datasets).

For both data sets tenfold crossvalidations were per-
formed. In each run the algorithm divides the learning
set in a training set and a validation set. Clustering
trees are built and pruned in an unsupervised manner.
The clustering hierarchy before and after pruning is
evaluated by predicting the class of each test example.

In Figure 2, the average accuracy of the clustering hi-
erarchies before and after pruning is plotted against
the size of the validation set (this size is a parameter
of TIC), and the same is done for the tree complex-
ity. The same results for the Mutagenesis database are
summarised in Figure 3.

From the Soybeans experiment it can be concluded
that TIC's pruning method results in a slight decrease
in accuracy but a large decrease in the number of

60 Blocked, De Raedt, and Ramon

\ accurracy of unpruned tree
''■. accurracy of pruned tree

S

15 20 25 30 35 40 45 50 55
size validation set (%)

90

80

70
5 c 60

50

.0 40

30

20

size ot unpruned tree
size ol pruned tree

15 20 25 30 35 40 45 50 55
size validation set (%)

Figure 2: Soybeans: a) Accuracy before and after
pruning; b) number of nodes before and after prun-

ing

nodes. The pruning strategy seems relatively stable
w.r.t. the size of the validation set. The Mutage-
nesis experiment confirms these findings (though the
decrease in accuracy is less clear here).

5.3 EXPERIMENT 2: COMPARISON
WITH OTHER LEARNERS

In this experiment we compare TIC with propositional
clustering systems and with classification and regres-
sion systems. A comparison with propositional cluster-
ing systems is hard to make because few quantitative
Tesults are available in the literature, therefore we also
compare with supervised learners.

We applied TIC to the Soybean (small) and Iris
databases, performing tenfold crossvalidations. Learn-
ing is unsupervised, but classes are assumed to be
known at evaluation time (the class of a test exam-
ple is compared with the majority class of the leaf
the example is sorted into). Table 1 compares the re-
sults with those obtained with the supervised learner
TILDE.

We see that TIC obtains high accuracies for these
problems. The only clustering result we know of is
for COBWEB, which obtained 100% on the Soybean
data set. This difference is not significant. TILDE'S ac-

I

15 20 25 30 35 40 45 50 55
size validation set (%)

•B

.a

50

45

40

35

30

25

20

15

size of pruned tree
size of unpruned tree

15 20 25 30 35 40 45 50 55
size validation set (%)

Figure 3: Mutagenesis: Accuracy and size of the clus-
tering trees

Database
Soybean
Iris

TIC
ace.
97%
92%

tree size
3.9 nodes
15 nodes

TILDE

ace.
100%
94%

tree size
3 nodes
4 nodes

Table 1: Comparison of TIC with a supervised learner
(averages over 10-fold crossvalidation).

curacies don't differ much from those of TIC which in-
duced the hierarchy without knowledge of the classes.
Tree sizes are smaller though.

We have also performed an experiment on the
Biodegradability data set, predicting numbers. For
this dataset the F-test stopping criterion was used (sig-
nificance level 0.01), but no validation set was used
given the small size of the data set. The distance used
is the difference between class values. Table 2 com-
pares TIC's performance with TILDE'S (classification,
leave-one-out) and SRT's (regression, sixfold).

Our conclusions are that a) for unsupervised learning
TIC performs almost as well as other unsupervised or
supervised learners, if classification accuracy is mea-
sured; and b) while there is clearly room for improve-
ment with respect to using TIC for regression, post-
discretization of the regression predictions shows that
this approach is competitive with classical approaches
to classification.

Top-down induction of clustering trees 61

l.o.o. TILDE

l.o.o. TIC
l.o.o. TIC

classification
regression
classif. via regression

ace. = 0.532
RE = 0.740
ace. = 0.565

6-fold SRT
6-fold TIC

regression
regression

RE = 0.34
RE = 1.13

Table 2: Comparison of regression and classification
on the biodegradability data (l.o.o.=leave-one-out).

5.4 EXPERIMENT 3: PREDICTING
MULTIPLE ATTRIBUTES

Clustering allows to predict multiple attributes. Since
examples in a leaf must resemble each other as much
as possible, attributes must also agree as much as pos-
sible.

By sorting unseen examples down a cluster tree and
comparing all attributes of the example with the pro-
totype attributes, we get an idea of how good the tree
is. This is an extension of the classical evaluation, as
each attribute in turn is a class now.

We did a tenfold crossvalidation for the following ex-
periment: using the training set a clustering tree is
induced. Then, all examples of the test set are sorted
in this hierarchy, and the prediction for all of their
attributes is evaluated. For each attribute, the value
that occurs most frequently in a leaf is predicted for
all test examples sorted in that leaf.

We used the large soybean database, with pruning.
Table 3 summarizes the accuracies obtained for each
attribute and compares with the accuracy of major-
ity prediction. The high accuracies show that most
attributes can be predicted very well, which means
the clusters are very coherent. The mean accuracy of
81.6% does not differ significantly from the 83 ± 2%
reported in [Fisher, 1996].

5.5 EXPERIMENT 4: HANDLING
MISSING INFORMATION

It can be expected that clustering, making use of more
attributes than just class attributes, is more robust
with respect to missing values. We showed in Experi-
ment 2 that unsupervised learners (where the heuris-
tics do not use any class information at all) can yield
trees with predictive accuracies close to those of su-
pervised learners, but all class information was still
available for assigning classes to leaves after the tree
was built.

In this experiment, we measure the predictive accu-

name range default ace.
date 0-6 21.2% 46.3%
plant_stand 0-1 52.1% 85.0%
precip 0-2 68.4% 79.2%
temp 0-2 58.3% 75.6%
hail 0-1 68.7% 71.3%
cropJiist 0-3 32.2% 45.0%
area.damaged 0-3 32.9% 54.4%
severity 0-2 49.2% 63.2%
seed.tmt 0-2 45.6% 51.1%
germination 0-2 32.2% 45.0%
plant-growth 0-1 65.8% 96.4%
leaves 0-1 89.3% 96.4%
leafspotsJialo 0-2 49.5% 85.3%
leafspots.marg 0-2 52.2% 86.6%
leafspots_size 0-2 47.8% 87.0%
leaf_shread 0-1 75.9% 81.4%
leafjnalf 0-1 87.3% 88.3%
leafjnild 0-2 83.7% 88.9%
stem 0-1 54.1% 98.4%
lodging 0-1 80.7% 80.0%
stem_cankers 0-3 58.3% 90.6%
canker Jesion 0-3 49.1% 88.9%
fruiting-bodies 0-1 73.6% 84.3%
external-decay 0-2 75.6% 91.5%
mycelium 0-1 95.8% 96.1%
int-discolor 0-2 86.6% 95.4%
sclerotia 0-1 93.2% 96.1%
fruit_pods 0-3 62.7% 91.2%
fruit_spots 0-4 53.4% 87.0%
seed 0-1 73.9% 85.7%
mold-growth 0-1 80.5% 86.6%
seed_discolor 0-1 79.5% 84.0%
seed_size 0-1 81.8% 88.6%
shriveling 0-1 83.4% 87.9%
roots 0-2 84.7% 95.8%
mean 81.6%

Table 3: Prediction of all attributes together in the
Soybean data set

racy of trees when class information as well as other
information may be missing, not only for learning, but
also for assigning classes to leaves afterwards, and this
for several levels of missing information. Our aim is to
investigate how predictive accuracy deteriorates with
missing information, and to compare clustering sys-
tems that use only class information with systems that
use more information.

We have used the Mutagenesis data set for this exper-
iment (for each example, there was a fixed probabil-
ity that the value of a certain attribute was removed
from the data; this probability was increased for con-
secutive experiments), comparing the use of only class
information (logmutag) with the use of three numer-
ical variables (among which the class) for computing

62 Blocked, De Raedt, and Ramon

available numerical data logmutag all three

100% 0.80 0.81
50% 0.78 0.79
25% 0.72 0.77
10% 0.67 0.74

Table 4: Classification accuracies obtained for Muta-
genesis with several distance functions, and on several
levels of missing information.

distances. This experiment is similar in spirits to the
ones performed with COLA [Emde, 1994]. Table 4
shows the results. As expected, performance degrades
less quickly when more information is available, which
supports the claim that the use of more than just class
information can improve performance in the presence
of missing information.

6 CONCLUSIONS AND RELATED
WORK

We have presented a novel first order clustering sys-
tem TIC within the TDIDT class of algorithms. TIC
integrates ideas from concept-learning (TDIDT), from
instance based learning (the distances and the pro-
totypes), and from inductive logic programming (the
representations) to obtain a clustering system. Several
experiments were performed that illustrate the type of
tasks TIC is useful for.

As far as related work is concerned, our work is re-
lated to KBG [Bisson, 1992], which also performs first
order clustering. In contrast to the current version of
TIC, KBG does use a first order similarity measure,
which could also be used within TIC. Furthermore,
KBG is an agglomerative (bottom-up) clustering algo-
rithm and TIC a divisive one (top-down). The divi-
sive nature of TIC makes TIC as efficient as classical
TDIDT algorithms. A final difference with KBG is
that TIC directly obtains logical descriptions of the
clusters through the use of the logical decision tree
format. For KBG, these descriptions have to be de-
rived in a separate step because the clustering process
only produces the clusters (i.e. sets of examples) and
not their description.

The instance-based learner RIBL
[Emde and Wettschereck, 1996] uses an advanced first
order distance metric that might be a good candidate
for incorporation in TIC.

While [Fisher, 1993] first made the link between
TDIDT and clustering, our work is inspired mainly

■by [Langley, 1996]. From this point of view, our work

is closely related to SRT [Kramer, 1996], who builds
regression trees in a supervised manner. TIC can be
considered a generalization of SRT in that TIC can
also build trees in an unsupervised manner, and can
predict multiple values. Finally, we should also refer to
a number of other approaches to first order clustering,
which include Kluster [Kietz and Morik, 1994], [Yoo
and Fisher, 1991], [Thompson and Langley, 1991] and
[Ketterlin et al, 1995].

Future work on TIC includes extending the system so
that it can employ first order distance measures, and
investigating the limitations of this approach (which
will require further experiments).

Acknowledgements

Hendrik Blocked is supported by the Flemish Institute
for the Promotion of Scientific and Technological Re-
search in Industry (IWT). Luc De Raedt is supported
by the Fund for Scientific Research of Flanders.

This work is part of the European Community Es-
prit project no. 20237, Inductive Logic Programming
2. The authors thank Stefan Kramer, who performed
the SRT experiments, Saso Dzeroski, who provided
the Biodegradability database, Luc Dehaspe and Kurt
Driessens for proofreading the paper, and the anony-
mous referees for their very valuable comments.

References

[Bisson, 1992] G. Bisson. Conceptual clustering in a first
order logic representation. In Proceedings of the 10th Eu-
ropean Conference on Artificial Intelligence, pages 458-
462. John Wiley & Sons, 1992.

[Blocked and De Raedt, 1998]
H. Blockeel and L. De Raedt. Top-down induction of
first order logical decision trees. Artificial Intelligence,
1998. To appear.

[Breiman et al., 1984] L. Breiman, J.H. Friedman, R.A.
Olshen, and C.J. Stone. Classification and Regression
Trees. Wadsworth, Belmont, 1984.

[Clark and Niblett, 1989] P. Clark and T. Niblett. The
CN2 algorithm. Machine Learning, 3(4):261-284, 1989.

[De Raedt and Blockeel, 1997] L. De Raedt and H. Bloc-
keel. Using logical decision trees for clustering. In Pro-
ceedings of the 7th International Workshop on Inductive
Logic Programming, volume 1297 of Lecture Notes in
Artificial Intelligence, pages 133-141. Springer-Verlag,
1997.

[De Raedt and Dzeroski, 1994] L. De Raedt and
S. Dzeroski. First order jfc-clausal theories are PAC-
learnable. Artificial Intelligence, 70:375-392, 1994.

Top-down induction of clustering trees 63

[De Raedt and Van Laer, 1995]
L. De Raedt and W. Van Laer. Inductive constraint
logic. In Proceedings of the 5th Workshop on Algorith-
mic Learning Theory, volume 997 of Lecture Notes in
Artificial Intelligence. Springer-Verlag, 1995.

[De Raedt et al., 1997] L. De Raedt, P. Idestam-Almquist,
and G. Sablon. 0-subsumption for structural matching.
In Proceedings of the 9th European Conference on Ma-
chine Learning, pages 73-84. Springer-Verlag, 1997.

[De Raedt et al., 1998] L. De Raedt, H. Blocked, L. De-
haspe, and W. Van Laer. Three companions for first
order data mining. In N. Lavrac and S. Dzeroski, edi-
tors, Inductive Logic Programming for Knowledge Dis-
covery in Databases, Lecture Notes in Artificial Intelli-
gence. Springer-Verlag, 1998. To appear.

[De Raedt, 1996] L. De Raedt. Induction in logic. In
R.S. Michalski and Wnek J., editors, Proceedings of the
3rd International Workshop on Multistrategy Learning,
pages 29-38, 1996.

[Emde and Wettschereck, 1996] W. Emde and
D. Wettschereck. Relational instance-based learning. In
L. Saitta, editor, Proceedings of the 13th International
Conference on Machine Learning, pages 122-130. Mor-
gan Kaufmann, 1996.

[Emde, 1994] W. Emde. Inductive learning of character-
istic concept descriptions. In S. Wrobel, editor, Pro-
ceedings of the 4th International Workshop on Inductive
Logic Programming, volume 237 of GMD-Studien, pages
51-70, Sankt Augustin, Germany, 1994. Gesellschaft für
Mathematik und Datenverarbeitung MBH.

[Fisher and Langley, 1985] D. Fisher and P. Langley. Ap-
proaches to conceptual clustering. In Proceedings of the
9th International Joint Conference on Artificial Intel-
ligence, pages 691-697, Los Altos, CA, 1985. Morgan
Kaufmann.

[Fisher, 1987] D. H. Fisher. Knowledge acquisition via
incremental conceptual clustering. Machine Learning,
2:139-172, 1987.

[Fisher, 1993] D. H. Fisher. Database management and
analysis tools of machine induction. Journal of Intelli-
gent Information Systems, 2, 1993.

[Fisher, 1996] D. H. Fisher. Iterative optimization and
simplification of hierarchical clusterings. Journal of Ar-
tificial Intelligence Research, 4:147-179, 1996.

[Hutchinson, 1997] A. Hutchinson. Metrics on terms and
clauses. In Proceedings of the 9th European Conference
on Machine Learning, Lecture Notes in Artificial Intel-
ligence, pages 138-145. Springer-Verlag, 1997.

[Kazakov et al., 1996] D. Kazakov, L. Popelinsky, and
O. Stepankova.
ILP datasets page [http://www.gmd.de/ml-archive/-
datasets/7. ilp-res.html] , 1996.

[Ketterlin et al., 1995] A. Ketterlin, P. Gancarski, and J.J.
Korczak. Conceptual clustering in structured databases
: a practical approach. In Proceedings of KDD-95, 1995.

[Kietz and Morik, 1994] J.U. Kietz and K.. Morik. A poly-
nomial approach to the constructive induction of struc-
tural knowledge. Machine Learning, 14:193-217, 1994.

[Kramer, 1996] S. Kramer. Structural regression trees. In
Proceedings of the 13th National Conference on Artificial
Intelligence (AAAI-96), 1996.

[Langley, 1996] P. Langley. Elements of Machine Learning.
Morgan Kaufmann, 1996.

[Merz and Murphy, 1996] C.J. Merz and P.M. Mur-
phy. UCI repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/mlrepository.html]
, 1996. Irvine, CA: University of California, Department
of Information and Computer Science.

[Michalski and Chilausky, 1980] R.S. Michalski and R.L.
Chilausky. Learning by being told and learning from ex-
amples: an experimental comparaison of the two meth-
ods of knowledge acquisition in the context of developing
an expert system for soybean disease diagnosis. Policy
analysis and information systems, 4, 1980.

[Plotkin, 1970] G. Plotkin. A note on inductive generaliza-
tion. In Machine Intelligence, volume 5, pages 153-163.
Edinburgh University Press, 1970.

[Quinlan, 1993] J. Ross Quinlan. C4.5: Programs for Ma-
chine Learning. Morgan Kaufmann series in machine
learning. Morgan Kaufmann, 1993.

[Srinivasan et al., 1995] A. Srinivasan, S.H. Muggleton,
and R.D. King. Comparing the use of background
knowledge by inductive logic programming systems. In
L. De Raedt, editor, Proceedings of the 5th International
Workshop on Inductive Logic Programming, 1995.

[Srinivasan et al., 1996] A. Srinivasan, S.H. Muggleton,
M.J.E. Sternberg, and R.D. King. Theories for muta-
genicity: A study in first-order and feature-based induc-
tion. Artificial Intelligence, 85, 1996.

[Thompson and Langley, 1991] K. Thompson and P. Lan-
gley. Concept formation in structured domains. In
D. Fisher, M. Pazzani, and P. Langley, editors, Con-
cept formation: knowledge and experience in unsuper-
vised learning. Morgan Kaufmann, 1991.

[Yoo and Fisher, 1991] J. Yoo and D. Fisher. Concept for-
mation over explanations and problem-solving experi-
ence. In Proceedings of the 12th International Joint
Conference on Artificial Intelligence, pages 630 - 636.
Morgan Kaufmann, 1991.

64

A Supra-Classifier Architecture for Scalable Knowledge
Reuse

Kurt D. Bollacker and Joydeep Ghosh
Department of Electrical and Computer Engineering,

University of Texas at Austin,
Austin, TX 78712

{kdb,ghosh}@pine.ece.utexas.edu

Abstract classifier when faced with very few
training examples.

When faced with inadequate infor-
mation, humans often use knowl-
edge gained from previous experi-
ence to help them in making de-
cisions. Even when this knowl-
edge is spread thinly among many
previous experiences, humans are
able to effectively accumulate and
apply it to a current classifica-
tion task of interest. Inspired by
human knowledge reuse, we have
previously introduced a general
framework for the use of knowl-
edge embodied in existing classi-
fiers to aid in a new classification
task. In this framework, a supra-
ciassifier is built to make deci-
sions based on the outputs of large
numbers of previously trained clas-
sifiers designed for different, but
possibly relevant tasks. In this
article, we discuss the Hamming
Nearest Neighbor (HNN) supra-
classifier architecture and mathe-
matically show its usefulness. Ex-
periments on public domain data
sets demonstrate the practicality
of the framework and HNN supra-

Keywords: Knowledge Transfer,
Nearest Neighbor, Curse of Di-
mensionality

1 INTRODUCTION

In this paper we mathematically analyze the
Hamming Nearest Neighbor (HNN) supra-
classifier architecture for integrating multi-
ple knowledge sources, based on a recently
introduced framework for knowledge reuse
(Bollacker & Ghosh, 1997). We demon-
strate the ability of the HNN supra-classifier
to theoretically approach optimal perfor-
mance even with minimal training samples,
if enough relevant knowledge is available. In
particular, we show that in the limit of hav-
ing only one training sample of each tar-
get class but with an infinite number of in-
dependent, (at least weakly) relevant pre-
viously trained classifiers available, a per-
fect supra-classifier is approached. We first
review the motivation for and existing re-
search related to knowledge reuse and sum-
marize our supra-classifier based knowledge
reuse framework.

A Supra-Classißer Architecture for Scalable Knowledge Reuse 65

1.1 MOTIVATION

A person is able to quickly and robustly
recognize patterns from very few samples.
This is due, at least in part, to the use of
the vast reservoir of experiential knowledge
from which he/she may draw. He/she may
use relevant learned knowledge to better un-
derstand the problem domain, thus help-
ing to constrain the interpretation of cur-
rent data. One of the most impressive traits
of human knowledge reuse is the ability to
draw simultaneously from a large number
of previous experiences quickly and easily.
Each bit of learned knowledge may not help
much, but as a whole, the knowledge gained
from the whole of many experiences can
paint a very clear picture of the problem
domain.

Unlike humans, artificial classification sys-
tems often depend greatly on the set of
training samples to make classification de-
cisions. If the training set insufficiently rep-
resents the "essence" of a classification task,
then creation of a well generalizing classifier
for that task may not be possible. It is natu-
ral then, to suggest that in the construction
of artificial classifiers, the inclusion of pre-
viously learned knowledge embodied in pre-
viously existing classifiers is a potential ap-
proach to the problem of inadequate train-
ing data.

Also unlike humans, artificial systems have
often failed in their ability to use a large
number of weakly relevant information
sources. For example, the "curse of dimen-
sionality" (e.g. see (Friedman, 1994)) is
given this name (at least partially) because
of the difficulties it represents for the cre-
ators of well performing artificial classifiers
when faced with a high dimensional input.
An ideal architecture for classifier knowl-
edge reuse would be scalable in the sense
that it can effectively handle the high di-

mensional input resulting from use of large
numbers of previously trained classifiers,
even if most of them are only marginally
relevant.

1.2 PREVIOUS RESEARCH

The most common approaches to knowledge
reuse are ones that are often not considered
to be "knowledge reuse" per se, but instead
cast previously gained relevant knowledge
as a "domain" which is crafted (often in
an ad hoc manner) to represent the under-
lying semantic or physical structure of the
problem. For example, Bayesian approaches
(e.g. (Mackay, 1995)) reuse knowledge in
the form of prior class probabilities and
prior distributions assumed for the model
parameters, while many classifier architec-
tures use the structure and value of model
parameters to represent domain knowledge
(e.g. the discriminant function in statisti-
cal classifiers (Fukunaga, 1990), size and or-
der of features in decision trees (Mitchell,
1997), and the type and number of hidden
units, amount and form of regularization
in feed-forward neural networks (Ghosh &;
Turner, 1994)). Such approaches can work
very well if the inductive bias matches the
problem very closely. However, in practice
it may be quite difficult to select and tune a
proper model. Also, standard assumptions
used (independence among variables, Gaus-
sian distributions, etc.) to make the prob-
lem tractable often result in a loss of accu-
racy (Heckerman, 1997; Mackay, 1995).

There has been much work on knowledge in-
tensive learning focusing on symbolic rules
extracted from and used in the creation of
neural classifiers (e.g. (Towell & Shavlik,
1994; Mahoney & Mooney, 1993)). If knowl-
edge can be represented as rules, then it may
be used to build a better classifier. However,
most of the approaches cannot reuse knowl-

66 Bollacker and Ghosh

edge from general classifiers and have not
demonstrated scalability to a large number
of simultaneous weak information sources.

Some recent work in knowledge reuse has
focused on the automated extraction and
reuse of knowledge from the data sets of
other relevant classifiers, including reuse of
the trained classifiers themselves. Under
the belief that related classification tasks
may benefit from common internal features,
Caruana (Caruana, 1995) has created a mul-
tilayer perceptron (MLP) based multiple
classifier system that is trained simultane-
ously to perform several related classifica-
tion tasks. Baxter (Baxter, 1994) has de-
veloped a rigorous analysis of a similar type
of architecture, showing that as the number
of simultaneously trained tasks increases,
the number of examples needed per task
for good generalization decreases. Pratt
(Pratt, 1994) has explored a similar knowl-
edge reuse method in which some of the
trained weights from one MLP network are
used to initialize weights in an MLP to be
trained for a later, related task. A differ-
ent approach is taken by Thrun (Thrun &
O'Sullivan, 1996), who proposed a method
to estimate classifier relevance by measuring
how much better a classifier performs with
a reused scaling vector for Nearest Neighbor
classifiers. Tasks with mutually helpful scal-
ing vectors can be "clustered" into related
groups.

Recently, popular approaches such as stack-
ing, committees, ensembles, and mixture of
experts also use multiple classifiers. How-
ever, since most these classifiers try to solve
the same task (though they may specialize
in different input regions) and do not use
previously created classifiers, they are sim-
ply good methods of decomposing a classi-
fication task into simpler tasks and do not
generally reuse previous knowledge.

2 KNOWLEDGE REUSE
FRAMEWORK

In our framework for knowledge reuse (Bol-
lacker & Ghosh, 1997), classifiers previ-
ously trained to perform (potentially rele-
vant) classification tasks are termed support
classifiers as indicated in Figure 1. Support

CT*J Ijfcrl c,(l>

Figure 1: A Supra-Classifier Reuse Archi-
tecture.

classifiers are generally (but not always) de-
signed for tasks other than the current tar-
get classification task of interest. Our reuse
strategy is to apply the input values of each
of the training samples available for the tar-
get task to all available classifiers sharing
the input domain with the target classi-
fier. The output class labels of the tar-
get and support classifiers are observed by
a second stage supra-classifier which makes
the ultimate classification (cT(-) in the fig-
ure). Since no internal information is being
used, the support classifiers can be of any
type. All classifiers feeding into the supra-
classifier must share an ultimately common
input domain. This domain may be broad,
such as the domain of all images.

2.1 A FEW DEFINITIONS

Let the target classification task be r, and
let T have discrete range ST and d di-

A Supra-Classißer Architecture for Scalable Knowledge Reuse 67

mensional input domain space Ud. Let
{X,V}T E Ud,y E ST be the set of
training examples for task r. We assume
that {x,y}T is a sample set from the true
distribution for task r with associated ran-
dom variable (XT,YT) e (Kd,ST). Our
goal is to find the most likely value of the
conditional marginal YT\(XT — x) and de-
fine this maximum likelihood function to
be t(x) = argmaxj/P(yr = y\XT = x).
Thus, £(•) : £(•) € ST is the target func-
tion that we would like to approximate us-
ing the information in {x,y}T. Let B be
a set of support classification tasks which
have the same input domain space 5Rd as
task r. Let {cf,(-)} : b € B be the corre-
sponding set of classifiers where each Cb(-)
maps 5Rd >-> <S6 : b e B.1 Let XT be the
random variable associated with the input
values of training sample set {x,y}T. Let
Tr :TT = tT(XT) be defined as the random
variable associated with the target function
of XT. Similarly, let Cb : Cb = Cb(XT) be
the random variables resulting from the ap-
plication of XT to the support classifiers.

An Ideal Supra-Classifier c*(x) will always
choose the most likely class of the y £ ST

given the class labels {cb(x)} : b e B. More
specifically, For any given {z& : Zb € Sb} '■
b e B we can define the maximum proba-
bility function m(-) as m({zb} : b € B) =
argmaxy P(TT = y\{Cb = zb} : B G B). We
can then define an ideal classifier based on
this maximum probability function as

c*T(x)=m({cb(x)}:beB). (1)

where c*(-) has associated random variable
C* : C* = c*{XT). In practice if the number
of support classifiers is quite large, Equation
1 is not directly scalable due to the curse

1 Although some of the support classifiers
may have been trained for task r directly, in
general b ^ T and ST ^ Sb, as the tasks are
different.

of dimensionality (Friedman, 1994). There-
fore, approximating approaches to Equation
1 are required. An empirical comparison of
several such approaches was made in (Bol-
lacker & Ghosh, 1997). Somewhat surpris-
ingly, for the case of few training examples,
the simple Hamming Nearest Neighbor was
seen to provide the best knowledge reuse
performance. In this paper we provide a
mathematical analysis of the HNN architec-
ture to better understand its excellent per-
formance and scalable properties.

3 HAMMING NEAREST
NEIGHBOR (HNN)
SUPRA-CLASSIFIER

The HNN classifier is similar to a tradi-
tional nearest neighbor which operates in
a Euclidean space. The HNN operates in
a "Hamming space" where the distance be-
tween two discrete values is 0 if they are the
same and 1 if different. If /(•) is the in-
dicator function, then the (Hamming) dis-
tance measure between two samples xtmin
and xtest can be calculated as

ti \Xtrain i %test) =

22 I(Cb(xtrain) ^ Cb(xtest))-
b:b=l...\{B}\

For each test sample, the Hamming Nearest
Neighbor (HNN) supra-classifier will choose
the class label of the training sample with
the smallest Hamming distance from it. We
now proceed to analyze the HNN classifier
to show that under certain assumptions, as
more support classifiers are included, the
supra-classifier can approach perfect perfor-
mance, even if the supporting classifiers are
not very relevant to the current task. Proofs
of the following lemmas are given in (Bol-
lacker & Ghosh, 1998b).

Definitions and Assumptions

68 Bollacker and Ghosh

Let K C Kd be a region of space in which
a distribution of samples {x} of non-zero
density lie. Let t(x) € ST = {1,...,N}
be the true classifier label of some sample
x € Tl where {l,...,iV} is the finite set
of discrete target class labels. Let cb(x) €
Sb = {1,..., M} be a support classifier la-
beling. Define pi : Pj = P(t(x) = j), and
P/ : P? = P(t(x) = j\cb{x) = i) where x
is a sample chosen randomly from Tl. PJ

can be interpreted to mean the probability
of choosing a sample of target class j when
picking randomly from Tl. P\ is the proba-
bility of choosing a sample of target class j
when picking randomly from the subset of
samples in Tl which are of support class i. It
can be seen that if we have two samples xa

and x1, randomly and independently drawn
from Tl, then the probability of them having
the same target class label j is (PJ)2.

Lemma 1:
If the target classes j : j = 1... N have
equal prior probabilities PJ, then

N

w.£tf>a*F

This result is used to show that knowing
that two samples have the same support
class label improves their chance of being
of the same target class.

Lemma 2:
If xa and x1 are drawn randomly and in-
dependently from Tl, and the target classes
j : j = 1...N have equal prior probabilities
P', then

P(t{xa) = t(xy)\cb(xQ) = cb(x7)) >

P{t{xa) = t{xy)).

The proof consists of noticing that the
chance of two random samples being the
same target class is minimized when all of
the PJ are equal (Lemma 1) and that for

any partitioning of the set of samples in 71
induced by the labels {i} : cb{-) = i,i =
1...M, the probability of two samples be-
ing the same target class cannot be reduced
further.

Now we can use Lemma 2 to show that two
samples randomly and independently cho-
sen from V, have as good or better chance
of being of the same support class if they
are of the same target class than if they are
of different target classes.

Lemma 3:
If xQ, xp, and x7 are drawn randomly and
independently from Tl, then

P{cb(xa) = cb{x7)\t(xa) = t(xy))

> P(cb(x0) = c(xj\t(xß) # i(x7)).

The case of equality occurs only when cb{-)
is independent of <(■).

This Lemma is interesting in the context of
a Nearest Neighbor classifier. Let xa and
Xß be two training samples and x7 be a test
sample.

Now let us consider the use of n support
classifiers to build an HNN supra-classifier.
Taking the complements of the events in
Lemma 3, P(cb(xß) ^ cb(xn)\t{xß) ^
t(x-,)) > P(cb(xa) ^ cb(xy)\t{xa) = t(x7)),
and summing over all b : b = 1... n, we can
write

n

Y,P(cb(xß) ? CbfaMxp) ? t(xj) >
6=1

n

Y^P(Cb(Xa) ^ Cb(Xy)\t(Xa) = t(Xy)).
6=1

If we let Sb > 0 be the difference between
each pair of terms in the sums, and let 6n =
52"_i ^S then we can write

n

Y,PMxß) 1 Cb(xy)\t(Xß) JA t(xy)) -
6=1

A Supra-Classißer Architecture for Scalable Knowledge Reuse 69

Y^P(Cb(Xa) ^ Cb{x^)\t{xa) = t(x7))
6=1

nSn. (2)

Note that Sb = 0 only if ct(-) is indepen-
dent of £(•), and thus is of no use for the
target task. We will assume, as the number
of support classifiers grows, the fraction of
useful ones does not approach zero, (i.e. Let
<J°° = lirrin^ö" > 0).

Returning to the definition of the HNN clas-
sifier, we write the Hamming distances

n

^I{cb(xa) ^ cb{xy)\t(xa) = f(z7)) (3)
6=1

Dn(xp,x7) =
n

J21(cb(x0) ± cb(xj\t(xß) ^ t(xj) (4)
6=1

Theorem 1:
If the support classifiers cb(-) are indepen-
dent of each other conditionally on the tar-
get class £(•), t(xa) = t(xy) ^ t(xp), and the
priors (PJ) for each target class are equal,
then

lim P(Dn((xß,x7) > Dn(xa,x~,)) = 1.
n—*oo

Proof: We
will apply the weak law of large numbers
as given in (Billingsley, 1979), which states

limn^TOP(|^='yi-fiig[yi]l > e) = 0
for independent trials Yi and all e >
0. Noticing that P(cb(xi) ^ Cbfa)) -
E[I(cb(xi) y£ cb(x2)} where /(•) is the indi-
cator function and substituting from Equa-
tions 2, 3, and 4, we can write

lim P(\
D„(xß,x~,) - Dn(xa,x7) -n6n

n
> e) = 0,

which leads to

= Um p(\Dn(xß>x-r) ~ Dn(xa,xy) - nön

n—yoo n '

<e) = l.

_v jjm p/DnKXßfXn/) — Dn(xa,x7)

n-¥oo n

>Sn-e) = l,

Since we assume 6°° > 0, we can choose a
sufficiently small e : e < S°° and write

~ ^P(J2Dn^X0'X^ > £>n(xa,X7))

= 1. D

6=1

Theorem 1 states that in the limit of an in-
finite number of conditionally independent
and (at least barely useful) support clas-
sifiers being available, the probability that
the HNN classifier will predict the true tar-
get class approaches 1. It should also be
noted that Theorem 1 holds even if there
is only one training sample of each target
class. This results leads to the observa-
tion that under certain conditions, a wealth
of features can compensate for a dearth of
samples. This is counter to the conven-
tional wisdom that more feature usually re-
quires more training samples. The trick
is that we are not working in a Euclidian
feature space, and so do not fall victim so
easily to the typical curse of dimensional-
ity problems. Despite this compelling anal-
ysis of the HNN classifier, a careful sep-
aration of theory from practice should be
made. While a perfect classifier is theoreti-
cally possible, in general it would be impos-
sible to gather an infinite number of inde-
pendent, relevant support classifiers. Also,
since the HNN supra-classifier is computa-
tionally linear in the number support clas-
sifiers, an infinite number could generally
never be used. However, the results lead us

70 Bollacker and Ghosh

to believe that as more independent support
classifiers or training samples are included,
the better HNN will perform. This is sup-
ported by empirical evidence (Bollacker &
Ghosh, 1998a). The question of how fast
the HNN classifier approaches perfect per-
formance is only answerable for a specific
set of training samples and included support
classifiers. An analysis of large deviations
as in (Billingsley, 1979) suggests that HNN
would approach its limit exponentially fast
as a function of the relevance of the support
classifiers.

4 EXPERIMENTS

Previously, we have explored the empiri-
cal performance of the HNN supra-classifier
(Bollacker k Ghosh, 1997), with some of the
results discussed here. We used three public
domain data sets from the U.C Irvine Ma-
chine Learning database and partitioned the
samples from each data set into two disjoint
and unequal sized subsets based on their
class labels. The larger subset was used to
create several two-class (non-target) prob-
lems using all combinations of two classes
not to be used as target classes. First, a
20000 sample capital English letter data set
(LR) was divided into the target data set
consisting of the five classes "H", "L", "O",
"R", and "S", and 210 other classifier data
sets consisting of two-class combinations of
the other 21 classes. Second, a spoken vowel
data set (VOW) consisted of 990 samples
evenly distributed among 11 spoken vowels.
The two classes "hud" and "hed" were cho-
sen to form the target classifier task and
the remaining 9 classes were used to con-
struct 36 other 2-class classification tasks in
a manner similar to the LR data set. Third,
the well known soybean data set (SOY) con-
sisting of 683 samples. The three classes
"phytophthora-rot", "brown-spot", and "al-

ternaria leaf-spot" were chosen to be the
target classes, and the remaining 16 classes
were used to generate 120 other (2-class)
classifiers.

The three data sets were randomly parti-
tioned into equal sized training and test sets.
The target training set was used to create
MLP and single nearest neighbor (1-NN)
classifiers for each target problem. The 210
LR 2-class classifiers were trained MLP's,
while the 120 soy and 36 VOW other 2-
class classifiers were single Nearest Neigh-
bor (1-NN) classifiers. These classifier archi-
tectures were chosen for their good perfor-
mance on those tasks. In order to consider
the case of few available target training sam-
ples, only a fraction of the available target
training samples was actually used. The set
of support classifiers for each problem con-
sisted of simple classifiers for the target class
and all of the 2-class classifiers built using
non-target class samples. Target training
sets over a range of sizes were applied to
the support classifiers for the three prob-
lems. The outputs of these support clas-
sifiers were then used as the input vector
for an HNN supra-classifier. Results using
the LR data set (averaged over 20 trials),
SOY data set (100 trials), and VOW data
set (100 trials) can be seen in Figures 2, 3,
and 4 respectively. For all three data sets,
the HNN supra-classifier showed improved
performance over all of the unaided classi-
fiers, especially with small target training
sets. Moreover, the difference between the
HNN and unaided 1-NN for few examples
was calculated to be statistically significant
with greater than a 99% certainty.

5 CONCLUSIONS AND
FUTURE WORK

We have discussed the motivation for
reuse of knowledge from previously trained

A Supra-Classifier Architecture for Scalable Knowledge Reuse 71

100 200 300 400

Number of Training Examples

Figure 2: Test rate vs. number of training
samples on the letter recognition data set.

classifiers and presented a framework for
such reuse which includes the concept of
supra-classifiers. We introduce the Ham-
ming Nearest Neighbor supra-classifier and
demonstrate its usefulness both analytically
and empirically. This gives evidence that
the HNN supra-classifier architecture would
be a useful approach to the problems of in-
adequate training samples.

In the future, we intend to do further analy-
sis of the HNN supra-classifier to determine
the convergence rate as more support classi-
fiers and target training samples are added.
A practical extension will be an application
to a truly complex problem domain. We en-
vision the eventual construction of a "ware-
house" of previously constructed reusable
classifiers for a large domain of interest (e.g.
image databases), where the set of support
classifiers will serve as an efficient represen-
tation of the problem domain knowledge.

Unaided l-NN
Unaided MLP
Unaided C4.5

S 10 15 20

Number ol Training Examples

Figure 3: Test rate vs. number of training
samples on the soybean data set.

Acknowledgements

This work was supported by the Army Re-
search Office contracts DAAH-94-G-0417
and DAAH 049510494, Texas ATP grant
#442, and the National Science Foundation.

References

Baxter, J. (1994). Learning Internal Repre-
sentations. Ph.D. thesis, The Flinders
University of South Australia.

Billingsley, P. (1979). Probability and Mea-
sure. John Wiley and Sons, New York.

Bollacker, K. D., & Ghosh, J. (1997).
Knowledge reuse in multiple classifier
systems. Pattern Recognition Letters,
18(11-13), 1385-1390.

Bollacker, K. D., & Ghosh, J. (1998a).
On the design of supra-classifiers for
knowledge reuse. In Proceedings of

72 Bollacker and Ghosh

5 10 15 20 25

Number of Training Examples

Figure 4: Test rate vs. number of training
samples on the vowel data set.

the 1998 International Joint Confer-
ence on Neural Networks.

Bollacker, K. D., k Ghosh, J. (1998b). A
supra-classifier architecture for scal-
able knowledge reuse. University
of Texas Technical Report UT-CVIS-
TR-98-001.

Caruana, R. (1995). Learning many related
tasks at the same time with backprop-
agation. In Advances in Neural Infor-
mation Processing Systems 7, pp. 657-
664.

Friedman, J. H. (1994). An overview of pre-
dictive learning and function approx-
imation. In Cherkassky, V., Fried-
man, J. H, k Wechsler, H. (Eds.),
From Statistics to Neural Networks,
Proc. NATO/ASI Workshop, pp. 1-
61. Springer Verlag.

Fukunaga, K. (1990). Introduction to Sta-
tistical Pattern Recognition. Academic
Press, San Diego, CA.

Ghosh, J., k Turner, K. (1994). Struc-
tural adaptation and generalization
in supervised feedforward networks.
Journal of Artificial Neural Networks,
1 (4), 431-458.

Heckerman, D. (1997). Bayesian networks
for data mining. Data Mining and
Knowledge Discovery, 1{1), 79-120.

Mackay, D. J. C. (1995). Probable networks
and plausible predictions - a review
of practical Bayesian methods for su-
pervised neural networks. Network:
Computation in Neural Systems, 6(3),
469-505.

Mahoney, J. J., k Mooney, R. J. (1993).
Combining connectionist and sym-
bolic learning to refine certainty fac-
tor rule bases. Connection Science, 5,
339-364. Nos. 3 and 4.

Mitchell, T. M. (1997). Machine Learning.
McGraw hill, New York.

Pratt, L. Y. (1994). Experiments on the
transfer of knowledge between neu-
ral networks. In Hanson, S., Drastal,
G., k Rivest, R. (Eds.), Compu-
tational Learning Theory and Natu-
ral Learning Systems, Constraints and
Prospects, chap. 19, pp. 523-560. MIT
Press.

Thrun, S., k O'Sullivan, J. (1996). Dis-
covering structure in multiple learning
tasks: The TC alogorithm. In The
13th International Conference on Ma-
chine Learning.

Towell, G., k Shavlik, J. (1994).
Knowledge-based artificial neural net-
works. Artificial Intelligence, 70(1-2),
119-165.

73

Learning sorting and decision trees with POMDPs

Blai Bonet
Departamento de Computacion

Universidad Simon Bolivar
Aptdo. 89000, Caracas 1080-A

Venezuela
bonet@usb.ve

Hector Geffner
Departamento de Computacion

Universidad Simon Bolivar
Aptdo. 89000, Caracas 1080-A

Venezuela
hector@usb.ve

Abstract

POMDPs are general models of sequential de-
cisions in which both actions and observa-
tions can be probabilistic. Many problems
of interest can be formulated as POMDPs, yet
the use of POMDPs has been limited by the
lack of effective algorithms. Recently this
has started to change and a number of prob-
lems such as robot navigation and planning
are beginning to be formulated and solved
as POMDPs. The advantage of the POMDP

approach is its clean semantics and its abil-
ity to produce principled solutions that inte-
grate physical and information gathering ac-
tions. In this paper we pursue this approach
in the context of two learning tasks: learn-
ing to sort a vector of numbers and learning
decision trees from data. Both problems are
formulated as POMDPs and solved by a gen-
eral POMDP algorithm. The main lessons and
results are that 1) the use of suitable heuris-
tics and representations allows for the solu-
tion of sorting and classification POMDPS of
non-trivial sizes, 2) the quality of the result-
ing solutions are competitive with the best
algorithms, and 3) problematic aspects in
decision tree learning such as test and mis-
classification costs, noisy tests, and missing
values are naturally accommodated.

1 INTRODUCTION

POMDPS are general models of sequential decisions in
which both actions and observations can be proba-
bilistic (Sondik 1971; Cassandra, Kaebling, & Littman
1994). Many problems of interest can be formulated

as POMDPS yet the use of POMDPS has been limited
by the lack of effective algorithms (Cassandra, Kae-
bling, & Littman 1995). Recently this has started to
change and a number of problems such as robot nav-
igation and planning are beginning to be formulated
and solved as POMDPS (Cassandra, Kaebling, & Kurien
1996; Geffner & Bonet 1998a). The advantage of the
POMDP approach is its clean semantics and its ability
to produce principled solutions that integrate physi-
cal and information gathering actions. In this paper
we pursue this approach in the context of two learn-
ing tasks: learning to sort a vector of numbers and
learning decision trees from data. Both problems are
formulated as POMDPS and solved by a general POMDP
algorithm (Geffner & Bonet 1998b) based on the ideas
of Real Time Dynamic Programming (Barto, Bradtke,
& Singh 1995).

The choice of the two tasks requires an explanation.
Both are sequential decision problems that can be nat-
urally seen as POMDPs. Yet the difficulties and insights
that result from modeling and solving each problem as
a POMDP are different. Sorting involves finding a se-
quence of comparisons and swaps that would sort any
vector of size n. This is a challenging planning prob-
lem and we are not aware of any contingent planner
that can model and solve problems of this type. Mod-
eling and solving the problem from the perspective of
POMDPs is challenging too. For n = 10, the num-
ber of possible states in the problem is greater than
106. Until recently POMDPs with more than 20 states
could not be reasonably solved, especially when they
involved information-gathering actions. Here we pro-
vide solutions for POMDPS of size n = 10 that involve
more than a million states. Moreover the solutions
are good: on average they involve half the number of
comparisons and swaps as Quicksort, one of the best
sorting algorithms (Aho, Hopcroft, & Ullman 1983).
The solution method relies on good heuristic func-

74 Bonet and Geffner

tions, compact representations of beliefs, and suitable
decompositions.

The sorting problem is difficult and we use it not to
learn about sorting but to learn about POMDPS. The
focus on decision tree induction is different as we ex-
pect that the POMDP approach may contribute to a
better understanding of decision tree induction on as-
pects such as noisy data and tests, missing values,
and tests and misclassification costs. All these as-
pects fit into the POMDP formulation of decision tree
learning in a natural way. We evaluate this formula-
tion over a number of datasets from (Murphy & Aha
1998). Our goal is to show that the POMDP approach
may be competitive with the standard approaches
and potentially more general. Indeed POMDPS pro-
vide a unifying framework for modeling and solving
not only sorting and induction, but other AI tasks as
well such as robot navigation, planning, control, diag-
nosis, etc. (Cassandra, Kaebling, & Littman 1994;
Geffner & Bonet 1998a). On the other hand, the
POMDPS algorithms we use do not scale up yet to learn-
ing problems over very large datasets.

The rest of the paper is organized as follows. First
we review MDPs, POMDPS, and the POMDP algorithm
(Sections 2 and 3). Then we formulate the problems
of sorting and decision tree induction as POMDPS, and
report empirical results (Sections 4 and 5). Finally we
summarize the main lessons and ideas (Section 6).

2 BACKGROUND

POMDPs are a generalization of a model of sequen-
tial decision making formulated by Richard Bellman in
the 50's called Markov Decision Processes or MDPs, in
which the state of the environment is assumed known
(Bellman 1957). MDPs provide the basis for under-
standing POMDPS so we turn to them first.1

2.1 MDPs

The type of MDPs that we consider is a generalization
of the standard search model used in AI in which ac-
tions can have probabilistic effects. Goal MDPs, as we
call them, are characterized by:

1. a state space S

1For some recent books on MDPs, sec (Puterman 1994;
Bertsekas & Tsitsiklis 1996); for an AI perspective, sec
(Boutilier, Dean, & Hanks 1995; Barto, Bradtke, & Singh
1995).

2. actions A(s) C A applicable in each state .s

3. positive costs c(a, s) of performing action a in s

4. transition probabilities Pa(s'\s) of ending up in
state s' after doing action a € A(s) in state s

5. goal states G C S

Since the effect of actions is assumed to be observable
but not predictable, the solution of an MDP is not an
action sequence but a function that maps states s into
actions a G A(s). Such a function is called a policy,
and its effect is to assign a probability to each state
trajectory. We assume that goal states are absorbing
in the sense that actions in those states have no effects
and zero costs. As a result, state trajectories that
contain goal states have finite costs, while others have
infinite costs. The expected cost of a policy from an
initial state is the weighted average of the costs of all
the state trajectories starting in that state times their
probability. A policy is optimal when its expected cost
from any state is minimal. General conditions for the
existence of such policies can be found in (Puterman
1994; Bertsekas & Tsitsiklis 1996).

3 POMDPs

POMDPs generalize MDPs allowing the state to be par-
tially observable (Sondik 1971; Cassandra, Kaebling,
& Littman 1994; Russell & Norvig 1994). The solution
of a POMDP is no longer a mapping from states into
actions, but a mapping from belief states into actions,
where belief states are probability distributions over
the states. A POMDP agent or controller starts with a
prior belief state that adjusts as a result of the actions
it performs and the observations it gathers. It is as-
sumed that the agent has a model of both the actions
and the sensors. Formally, a goal POMDP is defined in
terms of:

1. states s £ S

2. actions A(s) C A applicable in each state s

3. positive costs c(a, s) of performing action a in s

4. transition probabilities P„(s'|s) of ending up
in state s' after doing action a G A(s) in state .s

5. initial belief state bo

6. final belief states bp

7. observations o in state s after action a with
probabilities Pa(o\s)

The first four components define an MDP that is ex-
tended with prior and final beliefs, and a sensor model.

Learning sorting and decision trees with POMDPs 75

POMDPs can be formulated as information or belief
MDPs in which states are replaced by belief states
(Sondik 1971; Cassandra, Kaebling, & Littman 1994).
The task is to find a mapping ir from belief states to
actions that will take us from the initial belief state
bo to a final belief state bF at a minimum expected
cost. The way actions and observations affect the belief
state is given by the equations (Cassandra, Kaebling,
& Littman 1994):

ba(s)

ba(o)

K(s)

= E Pa(s\s')b(s')
s'es

= $>>IS)M«)

(1)

(2)
ses

= Pa{o\s)ba(s)/ba{o) iffca(o)#0 (3)

where ba is the belief state that results after doing
action a in b, ba{o) is the probability of observing o
after doing a in b, and b° is the belief state that re-
sults after doing action a in b and then observing o.
The cost c(a,b) of an action a in b is the weighted
average £s€Sc(a,s)6(s). The exception are the final
belief states bF that are assumed to be absorbing; i.e.,
c(a, bF) is defined as 0, and ba and b° are defined as b,
when b is a final belief state. Finally, the set of actions
A(b) applicable in b excludes the actions a that are not
applicable in states s with b(s) > 0.

Solving belief MDPs is difficult and until recently only
very small problems could be solved reasonably well
especially when they involved information-gathering
actions. This has started to change (Cassandra, Kae-
bling, & Littman 1995) and here we use a POMDP al-
gorithm introduced in (Geffner & Bonet 1998b) that
is based on the ideas of Real Time Dynamic Program-
ming (Barto, Bradtke, & Singh 1995).

RTDP-BEL is a hill-climbing algorithm that from any
state b searches for the goal states bF by performing
actions a that lead to new states b° with probability
ba(o) (Figure 1). Estimates V{b) of the expected costs
to reach bF guide the search. The main difference with
standard hill-climbing is that these estimates are up-
dated dynamically. Initially V(b) is set to h(b), where
h is a suitable heuristic function, and every time the
state b is visited V(b) is updated to make it consistent
with the values V(b') of its possible successor states
b' (Korf 1990). In the implementation, the estimates
V(b) are stored in a hash table that initially contains
an estimate for V(b0)-only. Then when the value V(b')
of a state b' that is not in the table is needed, a new
entry with V(b') set to h(b') is created. Usually belief
states need to be discretized (Geffner & Bonet 1998b)

1. Evaluate each action a applicable in 6 as

Q(a,b) = c(a,b) + J2b«(o)V(K)

initializing V(b°a) to h(b°a) when b°a not in table

2. Apply action a that minimizes Q(a,b) breaking
ties randomly

3. Update V(b) toQ(a,6)

4. Observe o

5. Compute b°a using Equations 1-3

6. Exit if b°a is a final belief state, else set 6 to b"a and
go to 1

Figure 1: RTDP-BEL

but this is not needed in the tasks considered in this
paper.

RTDP-BEL combines search and simulation, and in ev-
ery trial selects a random initial state s with proba-
bility b0(s) on which the effects of the actions applied
by RTDP-BEL (Step 2) are simulated. More precisely,
when action a is chosen, the current state s in the simu-
lation changes to s' with probability Pa(s'\s) and then
produces an observation o with probability Pa(o\s').
The complete RTDP-BEL algorithm is shown in Fig. 1.

4 SORTING

The sorting problem involves arranging a vector of
numbers in increasing order. We simplify the problem
slightly assuming that no two numbers in the vector
are equal. There are two types of actions available:
swap(i,j) that exchanges the elements in positions i
and j, and cmp(i,j) that tests whether the element
in position i is smaller than the element in position
j. One of the best algorithms for sorting is Quicksort,
which takes in the order of n log(n) operations on av-
erage, where n is the size of the problem (the number
of elements to be sorted).

4.1 FORMULATION

We formulate the problem as a goal POMDP in which
we have to go from an initial belief state to a final belief
state by means of a number of tests and swaps. The
state s reflects the way in which the elements in the
input vector may be ordered; for example, the state
s = [3,1,2] for n = 3 says that the first element in the
input vector is the third smallest element, the second
element is the smallest element of all, and the third el-

76 Bond and Geffner

ement is the second smallest element. More generally,
a state s will be a vector of size n such that s[i] = j,
for 1 < i, j < n and s[i] ^ s[j] for i ^ j. The meaning
of s[i] = j is that the i-th element in the input vector
is the j-th smallest element.

Given an input vector, there is a single state that is
the true state associated with the input vector and
the swaps performed. The actions cmp(i,j) yield in-
formation about such state and the actions swap(i,j)
mutate it. The resulting 'sorting' POMDP for a partic-
ular problem size n consists of:

1. states given by the vectors s of size n such that
s[i] = j for 0 < i, j < n and s[i] ^ s[j] if i # j

2. actions swap(i, j) and cnip(i, j) for 0 < i < j < n

3. transition probabilities Pa(s'\s) = 1 for a =
cmp(i,j) and s' = s, and a = swap(i,j) and s'
such that s'[j] = s[i], s'[i\ = s[j], and s'[fc] = s[k]
for k ^ i, k / j. Otherwise Pa(s'\s) = 0

4. action costs c(a, s) = 1 for all a and s

5. initial belief state 60 uniform over all states

6. final belief state bF for which bF(G) = 1, where
s = G is the sorted state for which s[i] = i for
i = 1,... ,n

7. observations oi = (i < j) or o2 = (j < «)
from the actions a = test(i,j) with probabil-
ities Pa(oi\s) equal to 1 (0) when s[i] < s[j]
(s[i] > s[j]), and complementary probabilities for
Pa(o2\s).

4.2 IMPLEMENTATION

Finding a policy to take us from bo to bp at a nearly op-
timal expected cost is difficult, and for the RTDP-BEL

algorithm to solve this problem for even small values
of n, suitable belief representations and heuristic func-
tions are needed.

4.2.1 Representation of Beliefs

The beliefs b(s) encode the probability that state s
represents the way the elements in the input are or-
dered. For a sorting problem of size n, the size of the
state space is n!. For n = 10, this means 106 states.
Such large state spaces introduce problems of memory
and time in RTDP-BEL and other POMDP algorithms.
Memory is a potential problem as in the worst case
the size of the hash table grows with the size of the

belief space which is in the order of 2"!. This prob-
lem, however, can be ameliorated by the use of good
heuristic functions as discussed below.

The time complexity is more troublesome. The
RTDP-BEL loop involves the computation of the be-
lief states ba and b°a from the original belief state b as
dictated by Equations 1-3. In the worst case the time
for these computations grows with \S\2 and \S\\0\ re-
spectively. If belief states had few non-zero entries, a
suitable sparse representation could be used, but this
is not true in sorting where the initial belief state is
uniform.

The representation that we use exploits features of
the sorting problem that we expect would arise in
other tasks as well.2 First of all, since the prior is
uniform and the 'sensors' (i.e., tests) are noiseless,
belief states 6 can be represented by sets of states
Sb = {s\b(s) > 0}. Indeed, from Bayes' rule it follows
that b{s) = l/\Sb\ if s £ Sb and b{s) = 0 otherwise.
Furthermore, in sorting such sets can be conveniently
encoded by collection of 'links' of the form i -> j for
0 < i,j < n, where each link i -4 j is a constraint that
excludes all states s for which s[i] £ s[j]. The initial
belief state b0 is represented by an empty set of such
links, while the representation of 6° is obtained from
the representation of ba by adding the link i -4 j if
o = (i < j), and j -)• i if o = (j < i). The repre-
sentation of ba and b are equal for a = cmp{i,j) and
the first is obtained from the second by exchanging the
occurrences of i and j when a = swap(i,j). Our imple-
mentation extends this idea with a simple mechanism
that removes redundant links after any observation (a
link is redundant when it can be inferred by transitiv-
ity). The result of this representation is that we reduce
the complexity of updating beliefs b into b°a from |5|2

to |0| which is significantly smaller.

4.2.2 Updating the values of belief states

The structures used to represent belief states need to
be converted into numbers for computing the values

Q(a,6):=c(a,&) + £K(l£)M<>)
o€0

This expression involves a probability ba(o) that has
to be obtained from the representation of ba. One
way to compute ba(o) is by computing the proportion
of states s in ba that satisfy o (s satisfies (i < j) if

2 In particular wc expect, similar ideas to apply to the
problem of handling continuous attributes in decision tree
learning, but we don't deal with such problems here.

Learning sorting and decision trees with POMDPs 77

s[i] < s[j]). This operation, however, is very costly as
it grows linearly with \S\. For this reason we pursue a
different approach approximating ba(o) for o = (i <
j) as:

{1 if i -> j in ba

0 if j -> »in ba (4)
1/2 otherwise

where i —► j is in &a when the link forms part of
the representation of ba or can be derived from such
links by transitivity. The approximation here is that
probabilities that are neither 0 nor 1 are mapped into
1/2. This amounts to assuming that a test cmp(i,j)
whose outcome is not predictable can go either way
with equal probability. This assumption is not true in
general but speeds up the computation and does not
appear to do harm, as it is approximately correct for
the tests that are optimal. We'll discuss later a similar
approximation in the context of decision tree learning.

4.2.3 Heuristic Functions

The representation of beliefs reduces the complexity
of updating beliefs b into b°, while the approximation
eliminates the cost of computing the probability ba(o).
Both optimizations together speed up considerably the
inner loop of the RTDP-BEL algorithm that selects and
applies actions. To speed up the solution of problems
we need also to consider and apply as few actions as
possible. We do this by means of an heuristic function
h(b) that provides an estimate of the minimal expected
number of actions needed to go from b to the final
belief state bp. We consider the combination of two
heuristics:

1. the longest chain heuristic hi(b) is based on the
longest sequence of links i\ < ii < is < ... im

that appear explicitly in the representation of b,
with hi(b) defined asn-m

2. the number of misplaced elements heuristic hm(b)
applies to definite belief states only; i.e., those b's
such that b(s) = 1 for some state s. In such a
case hm(b) is defined as the number of positions
i = 1,..., n, for which s[i] ^ i

These heuristics are not admissible in the sense that
they may overestimate the minimum expected cost to
the goal, and as a result may prevent the estimates
V(b) to approach the optimal values.3 Yet the admis-
sible heuristics we have tried were not as informative,

Sorting 5 Elements

h = 0 •
h = longest -

h = decomposition -
quicksort -

3 See (Barto, Bradtke, & Singh 1995) for the relation
between admissibility and optimality in RTDP algorithms.

1000 2000 3000 «X» 5000 6000 7000 8000 9000 10000
trials

Figure 2: Average number of actions vs Number of
Trials for sorting problems of sizes n = 5 and n = 10.
Top line is the curve for Quicksort.

led the algorithm to visit too many belief states, and
in general resulted in memory problems.

A final point about the implementation is that we im-
pose the precondition that the ordering between the
elements at positions i and j be known before consid-
ering a swap between them. This is done by making
an action swap(i,j) applicable in b only when a link
i -*• j or j -y i is in the representation of b. This
condition tends to reduce the branching factor of the
problem which is still large as it grows linearly with n.

4.3 EVALUATION

We tried the above implementation of the RTDP-BEL
algorithm on sorting problems of two sizes. Figure 2
shows the performance of the sorting policies com-
puted by RTDP-BEL for problems of size n = 5 and
compares them with the ones obtained by Quicksort.
The y-axis measures the average number of actions
performed and the as-axis the number of trials. For
n = 5, there are 5! = 120 states, 20 actions, and 40
observations. The curves for RTDP-BEL correspond to
the heuristic h = 0, h = hi and the decomposition
method to be explained below. The point at trial i
for i = 1000,2000,3000,... 10000, indicates the aver-
age cost to reach the goal over 1000 simulations using
the greedy policy determined by the estimates in the
table at trial i. RTDP-BEL shows improvement with
the heuristics h = 0 and hi but no improvement with
the decomposition method. In all cases they arrive
to an expected cost that is slightly below 11 which is
half the expect cost incurred by Quicksort (which is
the top line in the figure). A run of 10000 trials with
h — 0 takes in the order of 1.36 minutes and leaves
4230 entries in the hash table. The heuristic hi and
the decomposition method are slightly faster.

78 Bonet and Geffner

For larger sizes, neither of the two heuristics h = 0 nor
h = hi scale up, and only the decomposition method
works. We tried this method for n = 10 that generates
a POMDP with several million states, 45 actions and 90
observations. The resulting curve is flat with a cost of
37. The average curve for Quicksort is also flat with
an average cost of 64. The idea of the decomposition
method is the following: the sorting problem is divided
into two subproblems by introducing the definite be-
lief states b'F as subgoals, where the b'F's are such that
b'p(s) = 1 for some s. We deal with the problem of
going from bo to some b'F, and from b'F to bp sepa-
rately. That is, each subproblem has its own heuristic
function and its own hash table. The second subprob-
lem is triggered after a belief b'F is obtained with b'F as
the initial belief state. For the first subproblem, the
heuristic hi is used, while for the second subproblem,
hm is used.

For both n = 5 and n = 10 the resulting curves for
the decomposition method are practically flat. This
means that the resulting algorithm starts off well but
then does not improve. As mentioned above this is the
result of the non-admissibility of the heuristics hi and
hm for each of the two subproblems. We actually ran
the same algorithm for both values of n eliminating
the update step in RTDP-BEL. The resulting algorithm
is a purely greedy algorithm and produced the same
results while consuming constant memory (the table
with the estimates is not needed). However even this
simplification is not good for very large values of n as
the branching factor (the number of actions) grows lin-
early with n. For such problems other optimizations
are needed. An alternative that we have considered is
the use of 'indexicals' to control the actions that can
be considered at any given point. The indexicals in
this problem can be just a pair of vector subscripts
so that only comparisons and swaps of elements with
those subscripts can be considered, in addition to the
operation of incrementing and decrementing those in-
dices. Schemes such as these reduce the branching
factor of the problem but push the solutions deeper in
search space. Whether and when such tradeoff speeds
up computation remains an open question.

4.4 SUMMARY

Sorting is a challenging problem that can be effec-
tively modeled and solved as a POMDP provided suit-
able heuristics, representations and decompositions
are used. In this way we have solved a POMDP that
involves millions of states and have obtained solutions
that compare favorably with Quicksort in terms of the

number of steps. The obvious weakness of the resulting
sorting policy is that it applies to a particular prob-
lem size. An interesting challenge is the extraction of
a concise and generalized representation of the policy
that could be applied to problems of any size.

5 DECISION TREES

Decision trees are classifiers that map instances into
classes by sequentially testing the value of a finite set
of attributes (Mitchell 1997). The standard way to
learn decision trees from data is by a top-down greedy
strategy in which the attribute that is most informa-
tive for classification according to the data is used to
split the data first, and for each possible outcome, the
attribute that is most informative according to the
remaining data is used second and so on, until ei-
ther there are no more data or no more uncertainty
regarding the classification (Breiman et al. 1984;
Quinlan 1993). The generalization power of decision
tree algorithms is measured by the classification error
over part of the data that is left aside for testing. De-
cision tree learning algorithms have been applied to a
number of domains (Murthy 1998) and a number of
variations and extensions have been considered (Diet-
triech 1997).

5.1 FORMULATION

The problem of learning decision trees can be seen as
a sequential decision problem that involves two types
of actions: report(i) by which the current instance s is
classified in class Ci, and test(j) by which the attribute
tj of s is observed. The goal is to have the instance
s classified, and this can be achieved by any of the
actions report(i), i = l,...,n where n is the num-
ber of classes. The expected cost associated with such
actions depends on the true class of s. The actions
test(j) provide information about s. The 'classifica-
tion' POMDP consists thus of:

1. states s that are the instances in the training set
supplemented by a separate goal state G

2. actions report{i) for each of the classes Cj, and
test(j), for each of the attributes tj

3. transition probabilities Pa(.s'|,s) = 1 for a =
test(j) and ,s' = ,s, and a = report(i) and s' = G.
Otherwise P„(.s'|.s) = 0

4. action costs c(report(i),s) = dj for class(s) =
Cj and c(test.(j),s) = Cj for all s

Learning sorting and decision trees with POMDPs 79

5. initial belief state 60 uniform over the non-goal
states and zero over the goal state

6. final belief state bF for which bF(G) = 1

7. observations o after action a = test(j) with
probabilities P„(o|s) = 1 if o = Vj(s) and 0 oth-
erwise, where Vj(s) stands for the value of s over
the attribute £,•

The POMDP formulation suggests generalizations of the
standard decision tree learning setting such as different
test and misclassification costs Cj and dj, noisy tests
with Pa(o|s) € [0,1], etc. By default we assume here
that the cost of tests and correct classifications is 1,
while the cost dj of misclassifications for i ^ j, is
some constant C > 1.

5.2 IMPLEMENTATION

We represent belief states as sets of states (training
set instances), taking advantage of the the uniform
prior over the instances and the noiseless 'sensors'.
With this representation, the complexity of a single
RTDP-BEL cycle reduces from |5|2 to \S\. The value
ba(o) for a = test(j) in Equation 2 is obtained as the
proportion of states s in b for which Vj(s) = o, a pro-
portion that is computed as |b°|/|6|.

We use the non-informative heuristic h = 0. Heuris-
tics based on measures such as information gain (Quin-
lan 1990) could be used as well but they only make a
difference in the first trials of RTDP-BEL as they are
not calibrated with the expected classification costs.
It may be possible to calibrate such heuristics to ac-
celerate convergence but we don't know how to do that
yet.

5.3 EVALUATION

Table 1 compares RTDP-BEL with two standard deci-
sion tree learning algorithms, ID3 and C4.5 (Quinlan
1990; 1993) over some small datasets obtained from
the UCI Repository (Murphy & Aha 1998) for two
different misclassification costs C.4 For each dataset,

4The figures for ID3 and C4.5 were taken from (Fried-
man, Kohavi, & Yun 1996). The column named 'Test'
in the table indicates how the generalization performance
of the algorithms was measured. The Monk-n datasets
come with separate training and test data; on the other
two problems the test-data was generated by 5-fold cross
validation: the data were partitioned into five segments,
and fives runs were performed by leaving one different seg-
ment as test data. The results are the averages over these
fives runs.

we constructed the corresponding POMDP and ran the
RTDP-BEL algorithm with the non-informative heuris-
tics h = 0 for 10000 trials. The curve in Figure 3 shows
the average classification accuracy as a function of the
number of trials in the Monk-1 and Monk-2 datasets.
A run of 10000 trials over the Monk datasets takes a
few minutes on average and leaves a few thousand en-
tries in the hash table. For the larger Votes dataset,
the run takes 24 minutes on average and leaves around
16000 entries in the hash table. During testing, when-
ever a new belief state b°a was generated that was not in
the hash table, b° was approximated to b. This means
that unexpected values in the test set are regarded as
'missing' values. This is not too different from the
approach taken in decision tree learning when test in-
stances get to a node with no compatible branches,
and are classified by the distribution of instances in
that node.

5.3.1 Missing Values

In the presence of missing values in the training set,
the sum of the beliefs ba(o) over the real observations
o may fail to add up to 1 due to the mass ba(m) ^ 0
over the missing values. In such cases, the beliefs ba{6)
are normalized by dividing them by the sum £V ba{oi)
taken over the real observations Oj. This amounts to
assuming that having 'observed' a missing value m is
like having observed a real observation o; with proba-
bility ba(oi). This implies that b™ = ba, in agreement
with the interpretation of missing values as missing ob-
servations. The dataset Votes in Table 1 has missing
values.

5.3.2 Misclassification Costs and Overfitting

As expected, misclassification costs have an influence
on the level of overfitting in noisy datasets. Very high
misclassification costs induce the algorithm to fit the
training data as much as possible, which in those cases
may increment the error rate on the test set. This can
be seen in the last row in Table 1, where the error rate
in the Votes data set goes up by almost 10 points when
the misclassification costs are increased from C = 25
to C = 10000. In general these costs do not have to
be all equal and can be tuned to produce a minimal
error rate by leaving aside part of the training data
for that purpose. In other problems (e.g., medicine),
these costs can be chosen to approximate the real mis-
classification costs.

80 Bonet and Geffner

Classification Accuracy for Monk-I Daiasct Classification Accuracy for Monk-2 Dalasct

2000 4000 6000 8000 10000 12000
trials

2000 4000 6000 8000 10000 12000
trials

Figure 3: Classification Accuracy vs. Trials for Monk-1 and Monk-2

Table 1: Accuracy after 10000 trials compared with ID3 and C4.5

RTDP

Dataset Feat. Miss Train Test ID3 C4.5 C = 25 C = 10000
monk-1 6 no 124 432 81.25 ±1.89 75.70 ±2.07 97.39 ±0.29 97.39 ± 0.35
monk-2 6 no 169 432 69.91 ±2.21 65.00 ±2.30 64.42 ±1.13 64.40 ±0.81
monk-3 6 no 122 432 90.28 ± 1.43 97.20 ± 0.80 95.16 ±0.49 94.33 ± 0.78
hayes-roth 4 no 160 CV-5 68.75 ± 8.33 74.38 ± 4.24 77.70 ±4.65 72.04 ± 5.44
votes 16 yes 435 CV-5 93.10 ±2.73 95.63 ± 0.43 94.42 ± 1.88 83.12 ±6.75

5.3.3 Approximations

In another set of experiments we introduced an ap-
proximation in the evaluation of the probability ba(o),
which in this case stands for the probability of ob-
serving a value Vj after testing an attribute tj in a
given context. The exact value of ba(o) is given by the
number of instances in b whose attribute tj has value
Vj over the total number of instances in 6. Following
a similar approximation used in sorting, we approxi-
mated ba(o) uniformly as 1/n, where n is the number
of values that attribute tj takes in the training set.
As before the intuition was that the best action would
be the most informative and would tend to split the
data in that way. The results confirmed this intuition
and matched up almost exactly the ones reported in
Table 1. The CPU times were reduced three times
on average. Yet even with this approximation, larger
datasets could not be handled as memory tends to ex-
plode. The main problem is the lack of an informa-
tive heuristic that can guide the search, while leaving
a large fraction of the (belief) state space unvisited.
Heuristics such as 'information gain' (Quinlan 1990)
are informative but are not calibrated with the ex-
pected costs.5 As a result, they produce a focused

5That is, information gain is not. a good estimate of the
expected costs.

search for the goal in the first few trials, but then be-
come useless as some of the heuristic values are re-
placed (updated) by cost estimates. It seems that it
should be possible to speed up the convergence of RTDP
algorithms by the use of uncalibrated heuristics, but
how to do that appears to be an open question.

5.4 SUMMARY

We have shown that decision tree induction can be
modeled and solved as a POMDP problem and that so-
lutions, while more expensive to compute, may com-
pete in quality with the standard approaches. POMDPs
may provide a fresh perspective on the problem of
inferring decision trees from data as aspects such as
noisy tests and data, tests and misclassifkation costs,
and missing values, fit into the POMDP approach in
a natural way. The POMDP algorithm used, however,
does not scale up yet to large datasets involving many
attributes, nor does it apply to datasets involving con-
tinuous attributes.

6 CONCLUSIONS

We aimed to show two things. One is that POMDPs
can be used to solve complex problems of sequential
decision by the use of suitable heuristics, representa-

Learning sorting and decision trees with POMDPs 81

tions, and decompositions. The second is that POMDPs
provide a novel perspective on the problem of inferring
decision trees from data that may be worth exploring
in further depth. We have been able to solve very large
POMDPs with million of states and obtain solutions
that compete in quality with those produced by some
of the best algorithms (Quicksort, C4.5). We expect
that some of the lessons learned will be applicable to
other problems such as the problem of handling contin-
uous attributes in decision tree learning that appears
to have many aspects in common with sorting. We also
think that the POMDP methods used in this paper can
be refined so that larger datasets could be handled.
A number of interesting questions that may be rele-
vant for the application of POMDP methods to other
problems remain open; e.g., how can sorting policies
be generalized to arbitrary array sizes, whether mis-
classification costs can be used effectively to deal with
the problem of overfitting, how uncalibrated heuristics
can be used to speed up converge of RTDP algorithms,
etc.

Acknowledgments

This work was supported in part by a grant from
Conicit, Sl-96001365.

References

Aho, A.; Hopcroft, J.; and Ullman, J. 1983. Data
Structures and Algorithms. Addison-Wesley.

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning
to act using real-time dynamic programming. Artifi-
cial Intelligence 72:81-138.

Bellman, R. 1957. Dynamic Programming. Princeton
University Press.

Bertsekas, D., and Tsitsiklis, J. 1996. Neuro-Dynamic
Programming. Athena Scientific.

Boutilier, C; Dean, T.; and Hanks, S. 1995. Plan-
ning under uncertainty: structural assumptions and
computational leverage. In Proceedings of EWSP-95.

Breiman, L.; Friedman, J.; Olshen, R.; and Stone,
C. 1984. Classification and Regression Trees.
Wadsworth International Group.

Cassandra, A.; Kaebling, L.; and Kurien, J. 1996.
Acting under uncertainty: Discrete bayesian model
for mobile robot navigation. In Proceedings of
IEEE/RSJ International Conference on Intelligent
Robot and Systems.

Cassandra, A.; Kaebling, L.; and Littman, M. 1994.
Acting optimally in partially observable stochastic
domains. In Proceedings AAAI94, 1023-1028.

Cassandra, A.; Kaebling, L.; and Littman, M. 1995.
Learning policies for partially observable environ-
ments: Scaling up. In Proc. of the 12th Int. Conf.
on Machine Learning.

Diettriech, T. 1997. Machine learning research. Ar-
tificial Intelligence Magazine 18(4):97-136.

Friedman, J.; Kohavi, R.; and Yun, Y. 1996. Lazy de-
cision trees. In Proceedings AAAI-96, 717-724. MIT
Press.

Geffner, H., and Bonet, B. 1998a. High-
level plannig and control with incomplete
information using POMDP's. Available at
http://www.ldc.usb.ve/~hector.

Geffner, H., and Bonet, B. 1998b. Solving large
POMDPs using real time dynamic programming.
Available at http: //www. ldc.usb. ve/~hector.

Korf, R. 1990. Real-time heuristic search. Artificial
Intelligence 42:189-211.

Mitchell, T. 1997. Machine Learning. McGraw-Hill.

Murphy, P. M., and Aha, D. W. 1998.
UCI repository of machine learning databases,
http://www.ics.uci.edu/learn.

Murthy, S. 1998. Automatic construction of decision
trees from data: A multidisciplinary survey. Techni-
cal report, Siemens Corporate Research.

Puterman, M. 1994. Markov Decision Processes -
Discrete Stochastic Dynamic Programming. John Wi-
ley and Sons, Inc.

Quinlan, J. R. 1990. Induction of decision trees.
Machine Learning 1(1).

Quinlan, J. R. 1993. C4-5: Programs for Machine
Learning. Morgan Kauffman.

Russell, S., and Norvig, P. 1994. Artificial Intelli-
gence: A Modern Approach. Prentice Hall.

Sondik, E. 1971. The Optimal Control of Partially
Observable Markov Processes. Ph.D. Dissertation,
Stanford University.

82

Feature Selection via Concave Minimization and Support Vector
Machines

P. S. Bradley
Computer Sciences Department

University of Wisconsin
Madison, WI 53706
paulb@cs.wisc.edu

O. L. Mangasarian
Computer Sciences Department

University of Wisconsin
Madison, WI 53706

olvi@cs.wisc.edu

Abstract 1 INTRODUCTION

Computational comparison is made between
two feature selection approaches for finding a
separating plane that discriminates between
two point sets in an n-dimensional feature
space that utilizes as few of the n features
(dimensions) as possible. In the concave min-
imization approach [19, 5] a separating plane
is generated by minimizing a weighted sum of
distances of misclassified points to two par-
allel planes that bound the sets and which
determine the separating plane midway be-
tween them. Furthermore, the number of di-
mensions of the space used to determine the
plane is minimized. In the support vector
machine approach [27, 7, 1, 10, 24, 28], in
addition to minimizing the weighted sum of
distances of misclassified points to the bound-
ing planes, we also maximize the distance be-
tween the two bounding planes that generate
the separating plane. Computational results
show that feature suppression is an indirect
consequence of the support vector machine
approach when an appropriate norm is used.
Numerical tests on 6 public data sets show
that classifiers trained by the concave min-
imization approach and those trained by a
support vector machine have comparable 10-
fold cross-validation correctness. However, in
all data sets tested, the classifiers obtained by
the concave minimization approach selected
fewer problem features than those trained by
a support vector machine.

The feature selection problem addressed here is that
of discriminating between two finite point sets in n-
dimensional feature space R" by a separating plane
that utilizes as few of the features as possible.

Classification performance is determined by the in-
herent class information available in the features pro-
vided. It seems logical to conclude that a large number
of features would provide more discriminating ability.
But, with a finite training sample, a high-dimensional
feature space is almost empty [12] and many separators
may perform well on the training data, but few may
generalize well. Hence the importance of the feature
selection problem in classification [15]. The optimiza-
tion formulations in Section 2 exploit one realization
of the Occam's Razor bias [3]: compute a separat-
ing plane with a small number of predictive features,
discarding irrelevant or redundant features. These for-
mulations can be considered wrapper models as defined
in [14].

The first approach [19, 5], described in Section 2, in-
volves the minimization of a concave function on a
polyhedral set. A plane is constructed such that a
weighted sum of distances of misclassified points to
the plane is minimized and as few dimensions of the
original feature space R" are used. This is achieved
by constructing two parallel bounding planes, in as
small dimensional space as possible, that bound each
of the two sets to the extent possible by placing the
two sets on two opposite halfspaces determined by the
two planes. The two planes are determined such that
the sum of weighted distances of points in the wrong
halfspace to the bounding plane is minimized. This
leads to the minimization of a concave function on a
polyhedral set (problems (6) and (8) below) for which
a stationary point can be obtained a successive lin-

Feature Selection via Concave Minimization and Support Vector Machines 83

earization algorithm (Algorithm 2.1 below). The fi-
nal separating plane is taken midway between the two
bounding parallel planes.

The second approach, that of a support vector ma-
chine [27, 7, 1, 10, 24, 28], described in Section 3, con-
structs two parallel bounding planes in n-dimensional
space Rn as in the first approach outlined above, but
in addition attempts to push these planes as far apart
as possible. The justification for this, apart from re-
ducing the VC dimension [27] which in turn improves
generalization, is that for the linearly separable case,
the further apart the planes, the smaller the halfspace
assigned to each of the two sets, reducing the possi-
bility that new unseen points from the wrong set lie
in that halfspace. Although improved generalization
is the primary purpose of the support vector machine
formulation, it turns out that the linear program (13)
resulting from employing the co-norm to measure the
distance between the two bounding planes, leads also
to a feature selection method, whereas the linear pro-
gram resulting from the use of the 1-norm (12) and
the quadratic program resulting from the 2-norm (14)
do not lead to feature selection methods.

In Section 4 we describe our computational experi-
ments on 6 publicly available data sets using the ap-
proaches described in Sections 2 and 3. The goal
is to evaluate the generalization ability of classifiers
trained by solving: the concave optimization problem
(8), three versions of the support vector machine prob-
lem with different norms (12), (13), (14) as well as the
robust linear program RLP (4). RIP, which underlies
the proposed feature selection methods here, has no
feature suppression capability built in. We measure
generalization ability by 10-fold cross-validation [26].
Numerical tests on 6 public data sets show that clas-
sifiers trained by the concave minimization approach
and those trained by a support vector machine have
comparable 10-fold cross-validation correctness. How-
ever, in all data sets tested, the classifiers obtained
by the concave minimization approach selected fewer
problem features than those trained by a support vec-
tor machine. Further, computational time for the
normally used quadratic programming approach for
SVMs, was orders of magnitude larger than the pro-
posed linear programming approaches.

We now describe our notation and give some back-
ground material. All vectors will be column vectors
unless transposed to-a row vector by a superscript T.
For a vector x in Rn, \x\ will denote a vector in Rn of
absolute values of the components of x. For a vector
x 6 i?n, i+ denotes the vector in Rn with components

max{0,Xj}. For a vector x € Rn, x* denotes the vec-
tor in Rn with components (x„)i = 1 if Xi > 0 and
0 otherwise (i.e. x* is the result of applying the step
function component-wise to x). The base of the nat-
ural logarithm will be denoted by s, and for a vector
y e Rm, e~y will denote a vector in Rm with compo-
nents e~Vi, i = 1,... , m. For x G Rn and 1 < p < co:

For a general norm
Rn is defined as

• NU = max \XJ\
l<J<n

on Rn, the dual norm on

tall' = max x'y.
IMI=i

The 1-norm and oo-norm are dual norms, and so are
a p-norm and a g-norm for which 1 < p, q < co and
i + i = 1. The notation A € RmXn will signify a

real m x n matrix. For such a matrix AT will denote
the transpose of A and Ai will denote the i-th row
of A. A vector of ones in a real space of arbitrary
dimension will be denoted by e. A vector of zeros in
a real space of arbitrary dimension will be denoted by
0. The notation arg min f(x) will denote the set of

minimizers of f(x) on the set S. A separating plane,
with respect to two given point sets A and B in Rn, is a
plane that attempts to separate Rn into two halfspaces
such that each open halfspace contains points mostly
of A or B.

2 FSV: FEATURE SELECTION VIA
CONCAVE MINIMIZATION

In this part of the paper we describe a feature selection
procedure that has been effective in medical and other
applications [5, 19].

Given two point sets A and B in Rn represented by
the matrices A € ßmXTl and B £ #*x" respectively,
we wish to discriminate between them by a separating
plane:

P = {x\xeRn,xTw = i}, (1)

with normal w e Rn and 1-norm distance to the origin
111 of -r—r— [20]. We shall attempt to determine w and 7

IMIoo
so that the separating plane P defines two open halfs-
paces {x\ x £ Rn,x w > 7} containing mostly points
of A, and {x \ x e Rn, xTw < 7} containing mostly

84 Bradley and Mangasarian

points of B. Hence, upon normalization, we wish to
satisfy

Aw > e7 + e, Bw < cy — e. (2)

to the extent possible. Conditions (2) can be satisfied
if and only if, the convex hulls of .4 and B are disjoint.
This is not the case in many real-world applications.
Hence, we attempt to satisfy (2) in some "best" sense
by minimizing some norm of the average violations of
(2) such as

min /(tu,7) = min —1|(—Arw + cy + e)+||i
ui,7 tu,7 m

+ l||(B«;-C7 + e)+||i. (3)

Recall that for a vector x, x+ denotes the vector with
components max{0,a:i}. Two principal reasons for
choosing the 1-norm in (3) are: (1) problem (3) is
then reducible to a linear program (4) with many im-
portant theoretical properties making it an effective
computational tool [2], (2) the 1-norm is less sensitive
to outliers such as those occurring when the underly-
ing data distributions have pronounced tails, hence (3)
has a similar effect to that of robust regression [13],[11,
pp 82-87].

The formulation (3) is equivalent to the following ro-
bust linear programming formulation (RLP) proposed
in [2] and effectively used to solve problems from real-
world domains [21]:

minimize

subject to

m ^ k

—Aw + cy + e < y,
Bw - ej + e < z,

y>0,z>0.

(4)

The linear program (4) or, equivalently, the formu-
lation (3), define a separating plane P that approx-
imately satisfies the conditions (2) in the following
sense. Each positive value of y< determines the dis-
tance A [20, Theorem 2.2] between a point At of
A lying on the wrong side of the bounding plane
xTw = 7 + 1 for A, that is At lying in the open halfs-
pace

{x | xTw < 7 + 1},

and the bounding plane xTw = 7 + 1. Similarly for
B and xTw = 7 - 1. Thus the objective function of

the linear program (4) minimizes the average sum of
distances, weighted by ||iu||', of misclassified points to
the bounding planes. The separating plane P (1) is
midway between the two bounding planes and parallel
to them.

Feature selection [19, 5] is imposed by attempting to
suppress as many components of the normal vector
w to the separating plane P that is consistent with
obtaining an acceptable separation between the sets
A and B. We achieve this by introducing an extra
term with parameter A G [0,1) into the objective of
(4) while weighting the original objective by (1 - A) as
follows:

minimize

-Aw + e7 + e < y,
subject to Bw - ey + e < z,

y>0,z>0.

(5)

Note that the vector |tu|» € Rn has components which
are equal to 1 if the corresponding components of w
are nonzero and components equal to zero if the cor-
responding components of w are zero. Recall that e
is a vector of ones and eT\w* is simply a count of
the nonzero elements in the vector w. Problem (5)
balances the error in separating the sets A and B,
(eTy | eTz\

\ m k /
., and the number of nonzero elements

m k
of w, (eT|io|„). Further, if an element of w is zero, the
corresponding feature is removed from the problem.

By introducing the variable 7; we are able to eliminate
the absolute value from problem (5) which leads to
the following equivalent parametric program (for A G

[0,D):

minimize (1 - A) (sLt + s^.) + \e
Tv,

ui,7,y,2,u \ /

-Aw + ej + e < y,
Bw - ej + e < z,

y>0,z>0,
—v<w<v.

subject to
(6)

Since v appears positively weighted in the objective
and is constrained by -v < w < v, it effectively mod-
els the vector \w\. This feature selection problem will
be solved for a value of A G [0,1) for which the result-
ing classification obtained by the separating plane (1)
midway between the bounding planes xTw = 7 ± 1,

Feature Selection via Concave Minimization and Support Vector Machines 85

generalizes best, estimated by a cross-validation tun-
ing procedure. Typically this will be achieved in a fea-
ture space of reduced dimensionality, that is eTv* < n
(i.e. the number of features used is less than n).

Because of the discontinuity of the step function term
eTvt, we approximate it by a concave exponential on
the nonnegative real line [19]. The approximation of
the step vector v* of (6) by the concave exponential :

u* « t(v, a) = e - e av, a > 0, (7)

leads to the smooth problem (FSV:Feature Selection
Concave):

minimize

subject to

—Aw + ej + e < y,
Bw — ej + e < z,

y>0,z>0,
—v<w<v.

(8)

It can be shown [4, Theorem 2.1] that for a finite
value of a (appearing in the concave exponential) the
smooth problem (8) generates an exact solution of the
nonsmooth problem (6). We note that this problem is
the minimization of a concave objective function over
a polyhedral set. Even though it is difficult to find a
global solution to this problem, a fast successive linear
approximation (SLA) algorithm [5, Algorithm 2.1] ter-
minates finitely (usually in 5 to 7 steps) at a stationary
point which satisfies the minimum principle necessary
optimality condition for problem (8) [5, Theorem 2.2]
and leads to a sparse w with good generalization prop-
erties. For convenience we state the SLA algorithm
below.

Algorithm 2.1
Successive Linearization Algorithm (SLA) for
FSV (8). Choose X G [0,1). Start with a random
(w°, 7°, y°, z°, v°). Having (wl,7l,yt,zl,v%) deter-
mine (wl+1,Y+1,y1+1,zl+1,vl+1) by solving the linear
program:

minimize (1 - X)(^ + ^Li) + Xa (e-avi) (v-v1)

—Aw + ey + e < y,
Bw — e7 + e < z,

y>0,z>0,
— V < W < V.

Stop when

m k

Xa (e-avi) T (vi+1 -vi)=0. (10)

Comment: The parameter a was set to 5. The pa-
rameter X was chosen to "maximize" generalization
performance.

We have found useful solutions to (8) for the fixed
value a = 5 [5, 4]. Another approach, involving more
computation, is to solve (8) for an increasing sequence
of a values.

3 SVM: FEATURE SELECTION
VIA SUPPORT VECTOR
MACHINES

The support vector machine idea [27, 1, 10, 24, 28],
although not originally intended as a feature selection
tool, does in fact indirectly suppress components of the
normal vector w to the separating plane P (1) when
an appropriate norm is used for measuring the dis-
tance between the two parallel bounding planes for the
sets being separated. The SVM approach consists of
adding another term, ^-, to the objective function of
the RLP (4) in a similar manner to the appended term
eT|iü|« of problem (5). Here, || • ||' is the dual of some
norm on Rn used to measure the distance between the
two bounding planes. The justification for this term
is as follows. The separating plane P (1) generated by
the RLP linear program (4) lies midway between the
two parallel planes wTx = 7 + 1 and wTx = 7 — 1.
The distance, measured by some norm || • || on Rn,
between these planes is precisely TTAT [20, Theorem
2.2]. The appended term to the objective function of

the RLP (4), ^-, is the reciprocal of this distance,
thus driving the distance between these two planes up
to obtain better separation. This results then in the
following mathematical programming formulation for
the SVM formulation:

subject to

minimize

subject to

(l-X)(eTy + eTz) + ±\\w\\'

-Aw + cy + e < y, ^j\
Bw — ey + e < z,

y>0,z>0.

(9)
Points At G A and J3, G B appearing in active con-
straints of the linear program (11) with positive dual

86 Bradley and Mangasarian

variables constitute the support vectors of the prob-
lem. These points are the only data points that are
relevant for determining the optimal separating plane.
Their number is usually small and it is proportional to
the generalization error of the classifier [24].

If we use the 1-norm to measure the distance between
the planes, then the dual to this norm is the oo-norm
and accordingly ||iu||' = |MU in (11) which leads to
the following linear programming formulation:

minimize
ui,7,j/,z,i>

subject to

(l-X)(eTy + eTz) + \

-Aw + ej + e < y,
Bw - ej + e < z,

—ev <w<eu,
y >0,z>0.

(12)

Similarly if we use the oo-norm to measure the distance
between the planes, then the dual to this norm is the 1-
norm and accordingly ||w||' = |M|iin(ll) which leads
to the following linear programming formulation:

minimize
u;,7,y,z,s

subject to

(l-A)(eTy + eTz) + feTs

—Aw + ej + e < y,
Bw — ey + e < z,

—s<w<s,
y>0,z>0.

(13)

We note that the first paper on the multisurface
method on pattern separation [17] also proposed and
implemented, just as does the support vector machine
approach, forcing the two parallel planes that bound
the sets to be separated to be as far apart as possible.

Usually the support vector machine problem is formu-
lated using the 2-norm in the objective [27, 1]. Since
the 2-norm is dual to itself, it follows that the dis-
tance between the parallel planes defining the separat-
ing surface is also measured in the 2-norm when this
formulation is used. In this case \\w\\' = ||to||2, and

one usually appends the term -IMI2 to the objective

of (11) resulting in the following quadratic program:

minimize
u;,7,y,z (1- - \)(e

Ty + eTz) + %wT

—Aw + cy + e < y,
subject to Bw - e7 + e < z,

y>0,z>0.

w

(14)

Nonlinear separating surfaces, which are linear in their
parameters, can also easily be handled by the formu-
lations (8), (12) and (13) [161. If the data are mapped
nonlinearly via $: Rn -» R , a nonlinear separating

surface in R" is easily computed as a linear separator
in Rl. In practice, one usually solves (14) by way of its
dual [18]. In this formulation, the data enter only as
inner products which are computed in the transformed
space via a kernel function K{x,y) = $(x) • $(?/)
[6, 27, 28].

We note that separation errors in (12) - (14) are
weighted equally conforming to the SVM formulations
in [6, 27]. In contrast, the formulations (4) and (8)
measure average separation error. Minimizing average
separation error in (4) ensures that the solution w = 0

eTA eTB
occurs iff = ——, in which case it is not unique

m
[2, Theorem 2.5].

We turn our attention now to computational testing
and comparison.

4 COMPUTATIONAL RESULTS

4.1 DATA SETS

The Wisconsin Prognostic Breast Cancer Database
consists of 198 instances with 35 features represent-
ing follow-up data for one breast cancer case [23].

We used 2 variants of this data set. The first data set
was created where the elements of the set A were 30
nuclear features plus diameter of excised tumor and
number of positive lymph nodes of instances corre-
sponding to patients in which cancer had recurred in
less than 24 months (28 points). The set B consisted
of the same features for patients in which cancer had
not recurred in less than 24 months (127 points). The
second variant of the data set consisted of the same 32
features, but but splits the data into A and B differ-
ently. Elements of A corresponds to patients with a
cancer recurrence in less than 60 months (41 points)
and B corresponds to patients which cancer had not
recurred in less than 60 months (69 points).

The Johns Hopkins University Ionosphere data set
consists of 34 continuous features of 351 instances [23].
Each instance represents a radar return from the iono-
sphere. The set A consists of 225 radar returns termed
"good" or showing some type of structure in the iono-
sphere. The set B consists of 126 radar returns termed
"bad"; their signals pass through the ionosphere.

The Cleveland Heart Disease data set consists of 297
instance with 13 features (see documentation [23]). Set
A consist of 214 instance. The set B consists of 83
instances.

Feature Selection via Concave Minimization and Support Vector Machines 87

Correctness vs. X [Tune", Test]

Figure 1: Tuning and testing sets correctness for a support
vector machine (13) versus the sparsity-inducing parameter
A on the WPBC (24 months) data set. Dashed = "tuning"
correctness, Solid = test correctness.

The Pima Indians Diabetes data set consists of 768
instances with 8 features plus a class label (see doc-
umentation [23]). The 500 instances with class label
"0" were place in A, the 268 instances with class label
"1" were placed in B.

The BUPA Liver Disorders data set consists of 345
instances with 6 features plus a selector field used to
split the data into 2 sets (see documentation [23]). Set
A consists of 145 instances, the set B consists of 200
instances.

4.2 EXPERIMENTAL METHODOLOGY

Our goal was to evaluate the generalization ability of
the classifiers obtained by solving: the concave mini-
mization problem FSV (8), SVM 1-norm problem (13),
the SVM oo-norm problem (12), the SVM 2-norm
problem (14) and the robust linear program (RLP)
(4). We estimate the generalization ability of a classi-
fier via 10-fold cross-validation [26].

We note that the objective function parameter A,
which can induce sparsity, must be chosen carefully
to maximize the generalization ability of the resulting
classifier. Choosing A = 0 will maximize the training
correctness of the resulting classifier, but often this
classifier performs poorly on data not in the train-
ing set [25]. We employ the following "tuning set"
procedure for choosing A at each fold of 10-fold cross-
validation: For each A in a candidate set A, we perform
the following: (i) set aside 10% of the training data as

a "tuning" set, («') obtain a classifier for the given
value of A, (iii) determine correctness on the "tuning"
set, (iv) repeat steps (i)-(m) ten times, each time set-
ting aside a different 10% portion of the training data.
The "score" for this value of A is the average of the 10
correctness values determined in (in).

We fix the value of A as that with the best "score" de-
termined from the tuning procedure (ties are broken by
choosing the smallest A-value). This is the value used
for the given fold of 10-fold cross-validation. The set A
is a set of candidate values and for these experiments
was set at: A = {0.05,0.10,0.20,... ,0.90,0.95}. The
curves in Figure 1 indicate that the value of A that
maximizes the "tuning" score (dashed curve in Figure
1) is a good estimate of the value of A that maximizes
the test set correctness (solid curve).

4.3 EXPERIMENTAL RESULTS

Table 1 summarizes the average number of original
problem features selected by the classifiers trained by
each of the methods.

Table 2 summarizes the results of the 10-fold cross-
validation experiments on 6 real-world data sets. All
"Train" and "Test" numbers presented are average
correctnesses over 10-folds. The p-value is an indicator
of significance difference in "Test" correctness between
the classifiers obtained by solving FSV (8) and the
classifiers obtained by solving the SVM 1-norm prob-
lem (13) x. Recall that a high p-value indicates that
the difference is not significant. We note that p-values
were not calculated for the other pairwise comparisons
because the solutions obtained by solving the SVM
oo-norm, SVM 2-norm and the RLP did not suppress
problem features (see Table 1).

4.4 DISCUSSION

The FSV (8) and the SVM 1-norm (13) problems
where the only ones exhibiting feature selection (Ta-
ble 1). On the 6 data sets tested, the SVM 1-norm
classifiers performed slightly better on 3 data sets and
FSV classifiers performed slightly better on 3 data sets.
The minimum p-value is 0.1246 indicates that classi-
fiers obtained by the FSV (8) and the SVM 1-norm
(13) methods have similar generalization properties.
Applying the paired t-test to 10-fold cross validation
results may indicate a difference in the average test

1 Specifically, this is the p-value of a two-tailed paired
t-test testing the hypothesis that the difference in "Test"
correctnesses for the FSV and SVM 1-norm classifiers is

88 Bradley and Mangasarian

set correctness when one is not present [9]. Thus the
results of these experiments may be more similar than
indicated by the p-values.

We note that the classifiers obtained by solving the
SVM oo-norm (12) suppressed none of the original
problem features for all but the largest values of A
(near 1.0), which in general is of little use because it
is often accompanied by poor set separation. Simi-
lar behavior was observed by solving the SVM 2-norm
(14) problem. Note that the co-norm is sensitive to
outliers, as is the 2-norm squared.

The classifiers obtained by solving the FSV problem
(8) selected fewer problem features than the any of the
SVM formulations (12), (13), (14) and the RLP (4)
FSV classifiers reduced the number of features used
over SVM 1-norm by as much as 39.5% (WPBC 60
month), while maintaining comparable generalization
performance.

On the WPBC 24 month dataset, both the FSV clas-
sifiers (8) and the SVM 1-norm classifiers (13) most
often selected a nuclear area feature and number of
lymph nodes removed from the patient. These fea-
tures are deemed relevant to the prognosis problem.

All linear programs formulations were solved using the
CPLEX package [8] called from within MATLAB [22].
The quadratic programming problem (14) was solved
using MATLAB's quadratic optimization solver, which
encountered difficulty on conditioning the QP con-
straint matrix, which may affect the interpretation of
the results for this approach. See Table 3 for average
solve times.

5 SUMMARY AND FUTURE
WORK

Computational comparisons of classifiers obtained by
solving four mathematical optimization problems are
presented. The optimization formulations are either
linear (4), (12) and (13), or quadratic (14), or can be
solved by a finite sequence of linear programs (solv-
ing (8) via Algorithm 2.1). Classifiers obtained
by solving the FSV problem (8) and the SVM
1-norm problem (13) exhibit feature suppres-
sion and have comparable generalization per-
formance on six publicly available real world
data sets tested. The classifiers obtained by
solving the FSV problem (8) suppressed more
features than the corresponding SVM 1-norm
classifiers (13). The quadratic SVM (14) took
orders of magnitude more time than the linear-

programming-based SVMs (12) and (13).

When the distance between the 2 parallel planes defin-
ing the separating surface in the SVM problem is cho-
sen to be the 1-norm, the resulting SVM optimization
problem has the oo-norm (dual norm to the 1-norm)
appearing in the objective. The classifiers obtained by
solving this problem (SVM oo-norm (12)) did not ex-
hibit feature selection. Similar behavior was observed
for classifiers obtained by solving the SVM 2-norm (14)
problem. The generalization ability of these classifiers
in comparison with the others presented needs to be
further investigated.

Future work includes further analysis of the benefits
of measuring the distance between the bounding par-
allel planes defining the separating plane and the re-
sulting optimization problem utilizing the dual norm
(11). A characterization of classes of data sets which
lend themselves to better separation with the choice
of one norm over another will allow practitioners to
choose a priori an optimization formulation believed
to be "best" suited to the separation problem at hand.

Acknowledgements

This work was supported by National Science Foun-
dation Grants CCR-9322479, CCR-9729842 and Air
Force Office of Scientific Research Grant F49620-97-1-
0326 as Mathematical Programming Technical Report
98-03, February 1998.

References

[1] K. P. Bennett and J. A. Blue. A support vector
machine approach to decision trees. Department
of Mathematical Sciences Math Report No. 97-
100, Rensselaer Polytechnic Institute, Troy, NY
12180,1997. http://www.math.rpi.edu/ bennek/.

[2] K. P. Bennett and O. L. Mangasarian. Robust
linear programming discrimination of two linearly
inseparable sets. Optimization Methods and Soft-
ware, 1:23-34, 1992.

[3] A. Blumer, A. Ehrenfeucht, D. Haussler, and
M. K. Warmuth. Occam's razor. Information
Processing Letters, 24:377-380, 1987.

[4] P. S. Bradley,
O. L. Mangasarian, and J. B. Rosen. Parsimo-
nious least norm approximation. Technical Re-
port 97-03, Computer Sciences Department, Uni-
versity of Wisconsin, Madison, Wisconsin, March

Feature Selection via Concave Minimization and Support Vector Machines 89

Table 1: Average number of features selected in the classifiers. (Asterisk * indicates that the full experiment had
not been carried out because of excessive time (see Table 3),hence results are averaged over folds completed.)

Data Set FSV (8) SVM || • |Ji (13) SVM || • II«, (12) SVM || • HI (14) RLP (4)

WPBC (24 mo.) 3.9 5.4 32 32 32
WPBC (60 mo.) 2.6 4.3 32 32 32

Ionosphere 10.4 11.1 34 33* 33
Cleveland 6.4 9.3 13 13* 13

Pima Indians 5.3 6.0 8 * 8
BUPA Liver 4.5 5.8 6 6* 6

Table 2: Ten-fold cross-validation correctness results on 6 publicly available data sets. (Asterisk * indicates that
the full experiment had not been carried out because of excessive time (see Table 3), hence results are averaged
over folds completed.)

Data Set FSV (8)
Train
Test

SVM || • ||x (13)
Train
Test

p-Value SVM || • II«, (12)
Train
Test

SVM || ■ Hi (14)
Train
Test

RLP (4)
Train
Test

WPBC (24 mo.) 73.97
66.42

74.40
71.08 0.1246

73.69
71.04

82.86
75.46

85.23
67.12

WPBC (60 mo.) 70.70
67.05

71.21
66.23 0.6408

73.34
66.38

75.54
66.21

87.58
63.50

Ionosphere 90.47
84.07

88.92
86.10 0.1254

89.65
84.06

94.56*
85.75*

94.78
86.04

Cleveland 83.57
80.94

85.30
84.55 0.1819

85.82
82.52

84.70*
75.86*

86.31
83.87

Pima Indians 75.22
74.60

75.52
74.47 0.8889

76.01
74.99

*
*

76.48
76.16

BUPA Liver 68.18
65.20

67.83
64.03 0.1696

68.73
64.63

60.22*
60.95*

68.98
64.34

1997. Computational Optimization and Appli-
cations, to appear, ftp://ftp.cs.wisc.edu/math-
prog/tech-reports/97-03.ps.Z.

[5] P. S. Bradley, O. L. Mangasarian, and W. N.
Street. Feature selection via mathematical pro-
gramming. INFORMS Journal on Computing,
1998. To appear, ftp://ftp.cs.wisc.edu/math-
prog/tech-reports/95-21.ps.Z.

[6] C. J. C. Burges. A tutorial on support vector ma-
chines. Data Mining and Knowledge Discovery, 2,
1998. To appear.

[7] C. Cortes and V. Vapnik. Support vector net-
works. Machine-Learning, 20:273-279, 1995.

[8] CPLEX Optimization Inc., Incline Village,
Nevada. Using the CPLEX(TM) Linear Opti-

mizer and CPLEX(TM) Mixed Integer Optimizer
(Version 2.0), 1992.

[9] T. G. Dietterich. Approximate statistical tests for
comparing supervised classification learning algo-
rithms. Neural Computation, 1997. To appear.
http://www.cs.orst.edu/ tgd/cv/pubs.html.

[10] F. Girosi. An equivalence between sparse
approximation and support vector machines.
A.I. Memo 1606, Artificial Intelligence Labo-
ratory, MIT, Cambridge, Massachusetts, 1997.
http://www.ai.mit.edu/people/girosi/home-
page/svm.html.

[11] M. H. Hassoun. Fundamentals of Artificial Neural
Networks. MIT Press, Cambridge, MA, 1995.

90 Bradley and Mangasarian

Table 3: Average running: Ionosphere data set.

Method Time (Seconds)

Algorithm 2.1 30.94

II-Hi (13) 3.09

II ■ IU (12) 1.42

ii • ni (i4) 2956.8

RLP (4) 1.28

[12] J. Hertz, A. Krogh, and R. G. Palmer. Intro-
duction to the Theory of Neural Computation.
Addison-Wesley, Redwood City, California, 1991.

[13] P. J. Huber.
York, 1981.

Robust Statistics. John Wiley, New

[14] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant
features and the subset selection problem. In Pro-
ceedings of the 11th International Conference on
Machine Learning, San Mateo, CA, 1994. Morgan
Kaufmann.

[15] D. Koller and M. Sahami. Toward optimal feature
selection. In L. Saitta, editor, Machine Learning-
Proceedings of the Thirteenth International Con-
ference (ICML '96)-Bari, Italy July 3-6, 1996,
pages 284-292, San Francisco, CA, 1996. Morgan
Kaufmann.

[16] 0. L. Mangasarian. Linear and nonlinear separa-
tion of patterns by linear programming. Opera-
tions Research, 13:444-452, 1965.

[17] O. L. Mangasarian. Multi-surface method of pat-
tern separation. IEEE Transactions on Informa-
tion Theory, IT-14:801-807, 1968.

[18] 0. L. Mangasarian. Nonlinear Programming.
McGraw-Hill, New York, 1969. Reprint:
SIAM Classic in Applied Mathematics 10, 1994,
Philadelphia.

[19] O. L. Mangasarian. Machine learning via
polyhedral concave minimization. In H. Fis-
cher, B. Riedmueller, and S. Schaeffler, edi-
tors, Applied Mathematics and Parallel Comput-
ing - Festschrift for Klaus Ritter, pages 175-
188. Physica-Verlag A Springer-Verlag Company,
Heidelberg, 1996. ftp://ftp.cs.wisc.edu/math-
prog/tech-reports/95-20.ps.Z.

[20] O. L. Mangasarian. Arbitrary-norm separat-
ing plane. Technical Report 97-07, Computer

Sciences Department, University of Wisconsin,
Madi-
son, Wisconsin, May 1997. Operations Research
Letters, submitted, ftp://ftp.cs.wisc.edu/math-
prog/tech-reports/97-07.ps. Z.

[21] O. L. Mangasarian, W. N. Street, and W. H.
Wolberg. Breast cancer diagnosis and progno-
sis via linear programming. Operations Research,
43(4):570-577, July-August 1995.

[22] MATLAB. User's Guide. The Math Works, Inc.,
1992.

[23] P. M. Murphy and D. W. Aha. UCI reposi-
tory of machine learning databases. Technical re-
port, Department of Information and Computer
Science, University of California, Irvine, 1992.
www.ics.uci.edu/ mlearn/MLRepository.html.

[24] E. Osuna, R. Freund, and F. Girosi. Train-
ing support vector machines: an applica-
tion to face detection. In IEEE Confer-
nece on Computer Vision and Pattern Recogni-
tion, Puerto Rico, June 1997, 130-136, 1997.
http://www.ai.mit.edu/people/girosi/home-
page/svm.html.

[25] J. W. Shavlik and T. G. Dietterich (editors).
Readings in Machine Learning. Morgan Kaufman,
San Mateo, California, 1990.

[26] M. Stone. Cross-validatory choice and assessment
of statistical predictions. Journal of the Royal
Statistical Society, 36:111-147, 1974.

[27] V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer, New York, 1995.

[28] G. Wahba. Support vector machines, reproduc-
ing kernel
Hilbert spaces and the randomized gacv. Techni-
cal report no. 984, Department of Statistics, Uni-
versity of Wisconsin, Madison, WI 53706, 1997.
ftp://ftp.stat.wisc.edu/pub/wahba/index.html.

91

Refining Initial Points for K-Means Clustering

P. S. Bradley
Computer Sciences Department

University of Wisconsin
Madison, WI53706, USA

paulb@cs.wisc.edu

Abstract
Practical approaches to clustering use an iterative
procedure (e.g. K-Means, EM) which converges
to one of numerous local minima. It is known
that these iterative techniques are especially
sensitive to initial starting conditions. We
present a procedure for computing a refined
starting condition from a given initial one that is
based on an efficient technique for estimating the
modes of a distribution. The refined initial
starting condition allows the iterative algorithm
to converge to a "better" local minimum. The
procedure is applicable to a wide class of
clustering algorithms for both discrete and
continuous data. We demonstrate the application
of this method to the popular K-Means clustering
algorithm and show that refined initial starting
points indeed lead to improved solutions.
Refinement run time is considerably lower than
the time required to cluster the full database.
The method is scalable and can be coupled with
a scalable clustering algorithm to address the
large-scale clustering problems in data mining.

1. BACKGROUND
Clustering is an important area of application for a variety
of fields including data mining [FPSU96], statistical data
analysis [KR89.BR93], compression [ZRL97], and vector
quantization. Clustering has been formulated in various
ways in the machine learning [F87], pattern recognition
[DH73.F90], optimization [BMS97.SI84], and statistics
literature [KR89,BR93,B95,S92,S86]. The fundamental
clustering problem is that of grouping together
(clustering) data items which are similar to each other.
The most general approach to clustering is to view it as a
density estimation problem [S86, S92.BR93]. We assume
that in addition to the observed variables for each data
item, there is a hidden, unobserved variable indicating the
"cluster membership" of the given data item. Hence the
data is assumed to arrive from a mixture model and the
mixing labels (cluster identifiers) are hidden. In general, a
mixture model M having K clusters C„ i=l,...,K, assigns
a probability to a data point x as follows:

Usama M. Fayyad
Microsoft Research

Redmond, WA 98052, USA
fayyad @ microsoft.com

http://research.microsoft.com/~fayyad

K

Pr(x I M) = X W,;■ Pt(x \Cj,M) where Wt are called the

mixture weights. Many methods assume that the number
of clusters K is known or given as input.

The clustering optimization problem is that of finding
parameters associated with the mixture model M (W, and
parameters of components C,) which maximize the
likelihood of the data given the model. The probability
distribution specified by each cluster can take any form.
The EM algorithm [DLR77, CS96] is a well-known
technique for estimating the parameters in the general
case. K-Means clustering is a popular method (historically
also known as Forgy's method [F65] or MacQueen's
algorithm [M67]). It is really a special case of EM that
assumes:

1) Each cluster is modeled by a spherical Gaussian
distribution;

2) Each data item is assigned to a single cluster;
3) The mixture weights (WJ are equal.

Note that K-Means [DH73.F90] is defined over numeric
(continuous-valued) data since it requires the ability to
compute the mean. A discrete version of K-Means exists
and is sometimes referred to as harsh EM [NH98]. The K-
Means algorithm finds locally optimal solutions
minimizing the sum of the L2 distance squared between
each data point and its nearest cluster center ("distortion")
[BMS97.SI84], which is equivalent to a maximizing the
likelihood given the assumptions listed above.

There are various approaches to solving the problem of
determining (locally) optimal values of the parameters
given the data. Iterative refinement approaches, which
include EM and K-Means, are the most effective. The
basic algorithm works as follows:

1) Initialize the model parameters to a current model;
2) Decide memberships of the data items to clusters,

assuming that the current model is correct;
3) Re-estimate the parameters of the current model

assuming that the data memberships obtained in 2)
are correct, producing new model;

4) If current model and new model are sufficiently close
to each other, terminate, else go to 2).

92 Bradley and Fayyad

Figure 1. Two Gaussian bumps in 2-d: full sample versus small subsample.

We focus on the initialization step 1. Given the initial
condition of step 1, the algorithms define a deterministic
mapping from initial point to solution. Both the K-Means
and EM algorithms converge finitely to a point (set of
parameter values) that is locally maximal for the
likelihood of the data given the model. The deterministic
mapping means the locally optimal solution is sensitive to
the initial point choice.
There is little prior work on initialization methods for
clustering. According to [DH73] (p. 228):

"One question that plagues all hill-climbing
procedures is the choice of the starting point.
Unfortunately, there is no simple, universally
good solution to this problem."

"Repetition with different random selections" [DH73]
appears to be the defacto method. Most presentations do
not address the issue of initialization or assume either
user-provided or randomly chosen starting points [DH73,
R92, KR89]. A recursive method for initializing the
means by running K clustering problems is mentioned in
[DH73]. A variant of this method consists of taking the
mean of the entire data and then randomly perturbing it K
times [TMCH97]. This method does not appear to be
better than random initialization in the case of EM over
discrete data [MH98]. In [BMS97], the values of initial
means along any one of the d coordinate axes is
determined by selecting the K densest "bins" along that
coordinate.
Methods to initialize EM include K-Means solutions,
hierarchical agglomerative clustering (HAC) [DH73,R92,
MH98] and "marginal+noise" [TMCH97]. It was found
that for EM over discrete data initialized with either HAC
or "marginal+noise" showed no improvement over
random initialization [MH98].

For the remainder of this paper we focus on the K-Means
algorithm although the method can refine an initial point
for other clustering algorithms. Our focus on K-Means is
justified by the following: 1) it is a standard technique for
clustering, used in a wide array of applications and even
as way to initialize the more expensive EM clustering
algorithm [B95, CS96, MH98]; 2) regardless of which
clustering algorithm is being used, K-Means is employed
internally by our initialization refinement method; 3) the

purpose of the paper is to illustrate the refinement
procedure, not to evaluate a variety of clustering
algorithms.

2. REFINING INITIAL CONDITIONS
We address the problem of initializing a general
clustering algorithm, but limit our presentation of results
to K-Means. Since no good method for initialization
exists [MH98], we compare against the defacto standard
method for initialization: randomly choosing an initial
starting point. However, the method can be applied to any
starting point provided.
A solution of the clustering problem is a parameterization
of each cluster model. This parameterization can be
performed by determining the modes (maxima) of the
joint probability density of the data and placing a cluster
centroid at each mode. Hence one clustering approach is
to estimate the density and attempt to find the maxima
("bumps") of the estimated density function. Density
estimation in high dimensions is difficult [S92], as is
bump hunting [F90]. We propose a method, inspired by
this procedure that refines the initial point to a point likely
to be closer to the modes. The challenge is to perform
refinement efficiently.

The basic heuristic is that severely subsampling the data
will naturally bias the sample to representatives "near" the
modes. In general, one cannot guard against the
possibility of points from the tails appearing in the
subsample. We have to overcome the problem that the
estimate is fairly unstable due to elements of the tails
appearing in the sample. Figure 1 shows data drawn from
a mixture of two Gaussians (clusters) in 2-D with means
at [3,2] and [5,5]. On the left is the full data set, on the
right a small subsample is shown, providing information
on the modes of the joint probability density function.
Each of the points on the right may be thought of as a
"guess" at the possible location of a mode in the
underlying distribution. The estimates are fairly varied,
but they certainly exhibit "expected" behavior. Worthy of
note here is that good separation between the two clusters
is achieved. This observation indicates that the solutions
obtained by clustering over a small subsample may

Refining Initial Points for K-Means Clustering 93

k-Mean solution over Random Sample 1 k-Mean solution over Random Sample 3

•* t

Figure 2: Result of clustering two different samples drawn from the same distribution, and
initialized with the same starting point (produced solution indicated by '+').

provide good refined initial estimates of the true means,
or centroids, in the data. However, this method often
produces noisy estimates due to single small subsamples,
especially in skewed distributions and high dimensions
(Figure 2). This behavior is fairly common when
clustering over small subsamples. In fact it is surprisingly
frequent even in low dimensions using data from well-
separated Gaussians1. Figure 2 can also be used to
illustrate the importance of the problem of having a good
initial points. An initial cluster center attracting no data
may remain empty (Figure 2, left), while a starting point
with no empty clusters usually produces better solutions
(right).

A1

X
B1

C3 D3

B3
A3

C1

B2
D2

X True solution
A's: solutions from trial 1
B's: solutions from trial 2
C's: solutions from trial 3
D's: solutions from trial 4

D1 A2 C2

Figure 3. Multiple Solutions from Multiple Samples.

2.1 Clustering Clusters

In order to overcome the problem of noisy estimates, we
employ the following procedure. Multiple subsamples,
say J, are drawn and clustered independently producing J
estimates of the true cluster locations. To avoid the noise
associated with each of the J solutions, we employ a
"smoothing" procedure. However, to "best" perform this
smoothing, one needs to solve the problem of grouping
the K*J points (7 solutions, each having K clusters) into K
groups in an "optimal" fashion. Figure 3 shows 4

1 In fact data from well-separated Gaussians in low-D are a "best-case"
scenario for the behavior of a random sampling based approach. Note
the idealized conditions: no noise, algorithm given the correct number
of clusters K. With real-wold data ideal conditons are difficult to
achieve, hence the behavior is expected to be worse (and indeed it is).

solutions obtained for A=3, 7=4. The "true" cluster means
are depicted by "X". The A's show the 3 points obtained
from the first subsample, B's second, C's third, and D's
fourth. The problem then is determining that Dl is to be
grouped with Al but A2 should not be grouped with {Al,
B1.C1.D1}.

2.2 The Refinement Algorithm

The refinement algorithm initially chooses J small
random sub-samples of the data, 5„ i=l,...,J. The sub-
samples are clustered via K-Means with the proviso that
empty clusters at termination will have their initial centers
re-assigned and the sub-sample will be re-clustered. The
sets CMj, i-l,...,J are these clustering solutions over the
sub-samples which form the set CM. CM is then clustered
via K-Means initialized with CMt producing a solution
FA/,. The refined initial point is then chosen as the FMt

having minimal distortion over the set CM.

Clustering CM is a smoothing over the CMj to avoid
solutions "corrupted" by outliers included in the sub-
sample St. The refinement algorithm takes as input: SP
(initial starting point), Data, K, and J (number of small
subsamples to be taken from Data):

Algorithm Refine(SP, Data, K, J)

0. CAf = <(>
1. Fori=l,...,7

a. Let Sj be a small random subsample of
Data

b. Let CM, = KMeansMod^P, 5„ K)
c. CM=CMKJ CMJ

FMS = 4>
For i=l,...,7

a. Let FM, = KMeans(CMj, CM, K)
b. Let FMS=FMSv FMt

Let FM = ArgMin{Distortion(FM;, CM)}

5. Return (FM)

2.
3.

4.

94 Bradley and Fayyad

We define the following functions
called by the refinement algorithm:
KMeans(), KMeansMod() and
Distortion(). KMeans is simply a
call to the classic K-Means
algorithm taking: an initial starting
point, dataset and the number of
clusters K, returning a set of K d-
dimensional vectors, the estimates
of the centroids of the K clusters.
KmeansMod takes the same
arguments as KMeans (above) and
performs the same iterative
procedure as classic K-Means
except for the following slight
modification. When classic K-
Means has converged, the K clusters
are checked for membership. If any
of the K clusters have no
membership (which often happens when clustering over
small subsamples), the corresponding initial estimates of
the empty cluster centroids are set to data elements which
are farthest from their assigned cluster center, and classic
K-Means is called again from these new initial centriods.

The heuristic re-assignment is motivated by the
following: if, at termination of K-Means, there are empty
clusters then reassigning all empty clusters to points
farthest from their respective centers decreases distortion
most at this step. An example of clusters having zero
membership is depicted in Figure 3 (left).

Distortion takes set of K estimates of the means and the
data set and computes the sum of squared distances of
each data point to its nearest mean. This scalar measures
the degree of fit of a set of clusters to the dataset. The K-
Means algorithm terminates at a solution which is locally
optimal for this distortion function [SI84]. The refinement
process is illustrated in the diagram of Figure 4.

2.3 Computational Complexity and Scalability to
Large Databases

The refinement algorithm is primarily intended to work
on large databases. When working over small datasets
(e.g. most data sets in the Irvine Repository), applying the
classic K-Means algorithm from many different starting
points is a feasible option. However, as database size
increases (especially in dimensionality), efficient and
accurate initialization becomes critical. A clustering
session on a data set with many dimensions and tens of
thousands or millions of records can take hours to days.
In [BFR98], we present a method for scaling clustering to
very large databases, specifically targeted at databases not
fitting in RAM. We show that accurate clustering can be
achieved with improved results over classic K-Means
applied to an appropriately sized random subsample of the

Cluster multiple
subsamples

Select

Solution

£
Subsample

J" Multiple Sample Cluster Solutions
Solutions (multiple starts)

Figure 4. The Starting Point Refinement Procedure

database [BFR98]. Scalable clustering methods
obviously benefit from better initialization.

Since our method works on very small samples of the
data, the initialization is fast. For example, if we use
sample sizes of 1% (or less) of the full dataset size, trials
over 10 samples can be run in time complexity that is less
than 10% of the time needed for clustering the full
database. For very large databases, the initial sample
becomes negligible in size.

If, for a data set D, a clustering algorithm requires Iter(D)
iterations to cluster it, then time complexity is IDI *
Iter(D). A small subsample S a D, where ISI << IDI,
typically requires significantly fewer iteration to cluster.
Empirically, it is safe to expect that Iter(S) < Iter(D).
Hence, given a specified budget of time that a user
allocates to the refinement process, we simply determine
the number J of subsamples to use in the refinement
process. When IDI is very large, and 151 is a small
proportion of IDI, refinement time is essentially
negligible, even for large J.

Another desirable property of the refinement algorithm is
that it easily scales to very large databases. The only
memory requirement is to hold a small subsample in
RAM. In the secondary clustering stage, only the
solutions obtained from the J subsamples need to be held
in RAM.

Note we assume that it is possible to obtain a random
sample from a large-scale database. While this sounds
simple, in reality this can be a challenging task. Unless
one can guarantee that the records in a database are not
ordered by some property, random sampling can be as
expensive as scanning the entire database (using some
scheme such as reservoir sampling, e.g. [J62]). Note that
in a database environment, what one thinks of as a data

Refining Initial Points for K-Means Clustering 95

+ T . ^^ ++'4.
■ * ++ + v +++*! ■+■ + *+*.+ +4- + + i++ .4*H+

♦**!*♦

*** 1JT + +

□ Random Initial Centroida

O k-Moan Solution

t*+ •♦**;♦ *

d4+ f -H-+ +

♦ t 4+i#b+V +
+

+
+ +

+ + + +
+

O Random Initial Controids

P Raflnad Initial Cantraids

Figure 5: Left: K-Mean solution (large red circles) from random initial point (blue squares). Right:
Refined initial point (red circles), random initial point (blue squares).

table (a view) may not exist as a physical table. The result
of a query may involve joins, groupings, and sorts. In
many cases database operations impose a special ordering
on the result set, and "randomness" of the resulting
database view cannot be assumed in general.

2.4 An Example

Figure 5 illustrates the sensitivity of K-Means solutions to
initial conditions. Elements are sampled from three
Gaussians in 2 dimensions. Note that the Gaussians in
this case happen to be centered along a diagonal. The
reason for this choice is that even as the dimensionality of
the data goes higher, any 2 dimensional projection of the
higher dimensional data will have this same form, making
the data set easy for a visualization-based approach.
Simply project the data to 2 dimensions, and the clusters
reveal themselves. This is a rare property since, if the
Gaussians are not aligned along the diagonal, any lower-
dimensional projection may result in overlaps and
separability in 2 dimensions is lost. The left figure shows
a random starting point and the corresponding K-Means
solution. The right figure shows the same initial random
points and the result of the refinement procedure on this
random initial point. Note that in this case the refined
point is very close to the true solution. Running K-Means
from the refined point converges to the true solution.

It is important to point out that this example is for
illustrative purposes only. The interesting cases are high-
dimensional data sets with more data items.
Computational results indicate that the refinement method
scales well to higher dimensions (100-D and more).

3. RESULTS ON SYNTHETIC DATA
3.1 Data Set Description

Synthetic data was created for dimension d = 2, 3, 4, 5,
10, 20, 40, 50 and 100. For a given value of d, data was
sampled from 10 Gaussians (hence K=10) with elements
of their mean vectors (the true means) ju sampled from a
uniform distribution on [-5,5]. Elements of the diagonal
covariance matrices E were sampled from a uniform
distribution on [0.7,1.5]. The number of data points
sampled was chosen as 20 times the number of
parameters estimated by K-Means. The K=\0 Gaussians
were not evenly weighted.

3.2 Experimental Methodology

The goal of this experiment is to evaluate how close the
means estimated by classic K-Means are to the true
Gaussian means generating the synthetic data. We
compare 3 initializations:

1. point chosen

3.

No Refinement: random starting
uniformly on the range of the data.
Refinement (J=10): a starting point refined from (1)
using our method. The size of the random subsamples
being 10% of full dataset size and the number of
subsamples taken being 10.
Refinement (J=l): same as 2 but over a single
random subsample of size 10%.

Once classic K-Means has computed a solution over the
full dataset from any of the 3 initial points described
above, the estimated means must be matched with the true
Gaussian means in some optimal way prior to computing
the distance between these estimated means the true

Gaussian means. Let 1 = 1 K be the K true

Gaussian means and let 3c', / = 1,..., K be the K means

estimated by classic K-Means over the full dataset. A
"permutation" 71 is determined so that the following

96 Bradley and Fayyad

Ratios of Distances to Truth

2 3 4 5 10 20 40 50 100

■ Refined (J=10) nUnreflned DRefined (J=1) Dimension

Figure 6. Comparing performance as dimensionality increases

quantity is minimized: / Jju .-»(/) , The "score" for
/=i

a solution computed by classic K-Means over the full
dataset is simply the above quantity divided by K. This is
the average distance between the true Gaussian means and
those estimated by K-Means over the full dataset from a
given initial starting point.

3.3 Experimental Results

Figure 6 summarizes results averaged over 10 random
initial points determined uniformly on the range of the
data. Note that the K-Means solution computed from
"Refined (J=10)", is consistently nearer to the true
Gaussian means generating the dataset than the K-Means
solution computed from either the random initial point or
the "Refined (J=l)" initial point. On the left we
summarize ratios of average distance to the true Gaussian
means relative to the average distance for the classic K-
Mean solution computed from the refined initial point.
Worthy of note in these results are the following facts:

1. For dimensions 2-50, the refinement method (Refined
(J=10)) always did better than the random starting
point (Unrefined) and the point refined over 1
subsample (Refined (J=l)).

2. For dimension 100, in 9 of the 10 independent trials
our refinement method did better than the random
starting point.

3. Refiner solutions are between 2.34 (d-3) and 6.44
(d=50) times closer to the true Gaussian means than
solutions from the random initial point and between
1.09 (d=3) and 4.80 (d=50) times closer than solution
computed from "Refined (J=l)" initial point.

In one run, we did slightly worse. This explains the large
variance number for 100 dimensions. If we exclude that
one data point, the variance drops to within range of all
other dimensions. The fact that the minimum ratio occurs
for datasets with small dimensionality and the maximum
ratio occurs for datasets with large dimensionality
indicates the utility of the refinement algorithm for large-
dimensional datasets.

4. RESULTS ON REAL-WORLD DATA
We present computational results on 2 classes of publicly
available "real-world" datasets. We are primarily more
interested in large databases - hundreds of dimensions
and tens of thousands to millions or records. It is for
these data sets that our method exhibits the greatest value.
The reason is simple: a clustering session on a large
database is a time-consuming affair. Hence a refined
starting condition can insure that the time investment pays
off.

To illustrate this, we used a large publicly available data
set available from Reuters News Service. The data is
described in Section 4.2. We also wanted to demonstrate
the refinement procedure using data sets from the UCI
Machine Learning Repository. For the most part, we
found that these data sets are too easy: they are low
dimensional and have a very small number of records.
With a small number of records, it is feasible to perform
multiple restarts efficiently. Since the sample size is small
to begin with, sub-sampling for initialization is not
effective. Hence most of these data sets are not of interest
to us. Nevertheless, we report on our general experience
with them as well as detailed experience with one of these
data sets to illustrate that the method we advocate is
useful when applied to smaller data sets. We emphasize,
however, that our refinement procedure is best suited for
large-scale data. The refinement algorithm operates over
small sub-samples of the database and hence run-times
needed to determine a "good" initial starting point (which
speeds the convergence on the full data set) arc orders of
magnitude less than the total time needed for clustering in
a large-scale situation.

We note that it is very likely that the cluster labeling
associated with many real-world databases do not
correspond to the distortion measure minimized by K-
Means.

4.1 Datasets from UCI ML Repository

Refining Initial Points for K-Means Clustering 97

We evaluated our method on several Irvine data sets. First
we present results on the Image Segmentation data set,
then we discuss the results over the other data sets.

Image Segmentation Data Set

This data set consists of 2310 data elements in 19
dimensions. Instances are drawn randomly from a
database of 7 outdoor images (brickface, sky, foliage,
cement, window, path, grass). Each of the 7 images is
represented by 330 instances.2

Experimental Methodology

Random initial starting points were computed by
sampling uniformly over the range of the data. We
compare solutions achieved by the classic K-Means
algorithm starting from: 1) random initial starting points,
and 2) initial points refined by our method.

Once classic K-Means has converged, the "quality" of the
solution must be determined. Unlike the case of synthetic
data, we cannot measure distance to the true solution
since "truth" is not known. However, we can use average
class purity within each cluster as one measure of quality.
The other measure, which is not dependent on a
classification, is the distortion of the data given the
clusters. Quality scoring methods are:

Information Gain: estimates the "amount of information"
gained by clustering the database as measured by the
reduction in class impurity within clusters. For a database

with L known classes, let c be the number of data
elements in class / where / = 1,..., L. Let m be the total
number of data points in the database. The Total Entropy

of the database is: Total Entropy = X
fc1^

Vmj

log
'c<^

m
v J

Upon convergence of the classic K-Means algorithm from
a given initial starting point, the 'Weighted Entropy is
computed over the given clustering as follows: Form the
K X L cluster/class matrix C with the (i, j) -th element

being the number of elements of class j belonging to

cluster i. Notice that the clustering will completely
recover the assigned classes if the cluster/class matrix has
a permuted identity nonzero structure. Let CSk be the size
of the k-th cluster, then class entropy for the k-th cluster is

(
given by: ClusterEntropy(k) = £

C k,l

cst
log

A

J

-k,l

csh \ J
The weighted entropy of the entire clustering is given by:

WeightedEntropy(K) = £
Jt=i

CS, \
OlusterEntropy(k).

Information Gain =Total Entropy - Weighted Entropy(K).

M
J

For a more detailed description of the data, see the the Irvine ML Data
Repository at http://www.ics.uci.edu/-mlearn/MLRepository.html

Distortion: Given the K means estimated by the classic
K-Means algorithm, the distortion value that we consider
is simply the sum of the L2 distance squared between the
data items and the mean of their assigned cluster. A
smaller value for the distortion measure indicates that the
model parameters (i.e. means) are a better fit to the
database given the K-Means assumptions are true.

Results: Image Segmentation Database

Average information gain over 10 random initial points
for classic K-Mean without refining the initial point was
0.312510.3188 (±one standard deviation). Average
information gain for K-Mean initialized from a refined (J
= 10) starting point was 0.8195 ± 0.1458. The amount of
information gained on average by the solutions computed
from the refined point was 2.6222 time that of the
solution computed over the random initial point.

Furthermore, on average, solutions computed from the
refined initial points (7=70) reduced distortion by 44.41%
over solutions computed from random initial points.

4.2 Other Real World Datasets

We evaluated the refinement procedure on other data sets
such as Fisher's IRIS, Star-Galaxy-Bright, etc. Because
these data sets are very low dimensional and their sizes
small, the majority of the results were of no interest.

Clustering these data sets from random initial points and
from refined initial points led to approximately equal gain
in entropy and equal distortion measures in most cases.
We did observe, however, that when a random starting
point leads to a "bad" solution, then refinement indeed
takes it to a "good" solution. So in those (admittedly
rare) cases, refinement does provide expected
improvement. We use the Reuters information retrieval
data set to demonstrate our method on a real and difficult
clustering task.

Reuters Information Retrieval Data Set

The Reuters text classification database is derived from
the original Reuters-21578 data set made publicly
available as part of the Reuters Corpus, through available
as part of the Reuters Corpus, through Reuters, Inc.,
Carnegie Group and David Lewis3. This data consists of
12,902 documents. Each document is a news article about
some topic: e.g. earnings, commodities, acquisitions,
grain, copper, etc... There are 119 categories, which
belong to some 25 higher level categories (there is a
hierarchy on categories). The Reuters database consists of
word counts for each of the 12,902 documents. There are
hundreds of thousands of words, but for purposes of our
experiments we selected the 302 most frequently

3
See: http://www.research.att.com/~lewis/ reuters21578/ README.txt

for more details on this data set.

98 Bradley and Fayyad

30.00%

0.00%

Figure 7: Results on Reuters Data from 5 Starting
Points: percentage total distortion of refined solution
relative to unrefined solution.

occurring words, hence each instance has 302 dimensions
indicating the integer number of times the corresponding
word occurs in the given document. Each document in
the IR-Reuters database has been classified into one or
more categories. We use K=25 for clustering purposes to
reflect the 25 top-level categories. The task is then to find
the best clustering given K=25.

Reuters Results
For this data set, because clustering the entire database
requires a large amount of time, we chose to only evaluate
results over 5 randomly chosen starting conditions.
Results are shown in the chart of Figure 7. The chart
shows a significant decrease in the total distortion
measure. On average the distortion of a solution obtained
by starting from a refined initial point was about 80% of
the corresponding distortion obtained by clustering from
the corresponding randomly chosen initial starting point.

Since each document belongs to a category (there are 119
categories), we can also measure the quality of the
achieved by any clustering by measuring the gain in
information about the categories that each cluster gives
(i.e. pure clusters are informative). This is done in the
same manner we measure entropy for the image
segmentation dataset of Section 4.1. The quality of the
clusters can be measured by the average category purity
in each cluster. In this case the average information gain
for the clusters obtained from the refined starting point
was 4.13 times higher than the information gain obtained
without refining the initial points. The information gain
for the refined clustering was 0.071 with a standard
deviation of 0.001. While the unrefined initial points
resulted in an average information gain of 0.017 with a
standard deviation equal to 0.011.

5. CONCLUDING REMARKS
A fast and efficient algorithm for refining an initial
starting point for a general class of clustering algorithms
has been presented. The refinement algorithm operates

over small subsamples of a given database, hence
requiring a small proportion of the total memory needed
to store the full database and making this approach very
appealing for large-scale clustering problems. The
procedure is motivated by the observation that
subsampling can provide guidance regarding the location
of the modes of the joint probability density function
assumed to have generated the data. By initializing a
general clustering algorithm near the modes, not only are
the true clusters found more often, but it follows that the
clustering algorithm will iterate fewer times prior to
convergence. This is very important as the clustering
methods discussed here require a full data-scan at each
iteration and this may be a costly procedure in a large-
scale setting.

Computational results on synthetic Gaussian data indicate
that solutions computed by the K-Means algorithm from
the refined initial points are superior to the random initial
starting points and to a point refined over a single random
subsample. Results on the small real-world Image
Segmentation data set indicate that the K-Means solution
from the refined points provide twice as much
"information" than the solutions computed from the
random initial point. Furthermore, the average distortion
is decreased by 9%. Computational results on the Reuters
database of newswire stories in 300 dimensions indicate a
drop in distortion by about 20%. Information gain was
improved by a factor of 4.13 times on this data set.

We believe that our method's ability to obtain a
substantial refinement over randomly chosen starting
points is due in large part to our ability to avoid the empty
clusters problem that plagues traditional K-Mcans. Since
during refinement we reset empty clusters to far points
and reiterate the K-Means algorithm, a starting point
obtained from our refinement method is less likely to lead
the subsequent clustering algorithm to a "bad" solution.
Our intuition is confirmed by the empirical results.

The refinement method presented so far has been in the
context of the K-Means algorithm. However, we note that
the same method is easily be generalized to other
algorithms, and even to discrete data (on which means are
not defined). The generalized method and its use for
initializing the EM algorithm, along with empirical
results, is presented in [FRB98b]. The key insight here is
that if some algorithm ClusterA is being used to cluster
the data, then ClusterA is also used to cluster the
subsamples. The algorithm ClusterA will produce a
model. The model is essentially described by its
parameters. The parameters are in a continuous space.
The stage which clusters the clusters (i.e. step 3 of the
algorithm Refine in Section 2.2) remains as is; i.e. we use
the K-Means algorithm in this step. The reason for using
K-Means is that the goal at this stage is to find the

Refining Initial Points for K-Means Clustering 99

"centroid" of the models, and in this case the harsh
membership assignment of K-Means is desirable.

Acknowledgements
We thank Cory Reina for help on implementation,
debugging, and running results over the large datasets;
Sue Dumais and Mehran Sahami for making the Reuters
data set available to us; and Chris Meek for valuable
comments on an earlier draft.

References
[BR93] J. Banfield and A. Raftery, "Model-based
gaussian and non-Gaussian Clustering", Biometrics, vol.
49: 803-821, pp. 15-34, 1993.

[B95] C. Bishop, 1995. Neural Networks for Pattern
Recognition. Oxford University Press.

[BMS97] P. S. Bradley, O. L. Mangasarian, and W. N.
Street. 1997. "Clustering via Concave Minimization", in
Advances in Neural Information Processing Systems 9,
M. C. Mozer, M. I. Jordan, and T. Petsche (Eds.) pp 368-
374, MIT Press, 1997.

[BFR98] P. S. Bradley, U. Fayyad, and C. Reina, "Scaling
Clustering Algorithms to Large Databases", To appear,
Proc. 4th International Conf. on Knowledge Discovery
and Data Mining (KDD-98). AAAI Press, Aug. 1998.

[CS96] P. Cheeseman and J. Stutz, "Bayesian
Classification (AutoClass): Theory and Results", in
[FPSU96], pp. 153-180. MIT Press, 1996.

[DLR77] A.P. Dempster, N.M. Laird, and D.B. Rubin,
"Maximum Likelihood from Incomplete Data via the EM
algorithm". Journal of the Royal Statistical Society, Series
B, 39(1): 1-38, 1977.

[DH73] R.O. Duda and P.E. Hart, Pattern Classification
and Scene Analysis. New York: John Wiley and Sons.
1973

[FHS96] U. Fayyad, D. Haussler, and P. Stolorz. "Mining
Science Data." Communications of the ACM 39(11),
1996.

[FPSU96] Fayyad, U., G. Piatetsky-Shapiro, P. Smyth,
and R. Uthurusamy (Eds.) Advances in Knowledge
Discovery and Data Mining. MIT Press, 1996.

[FRB98] U. Fayyad, C. Reina, and P. S. Bradley,
"Refining Initialization of Expectation Maximization
Clustering Algorithms", To appear, Proc. 4th

International Conf. on Knowledge Discovery and Data
Mining (KDD-98). AAAI Press, Aug. 1998.

[F87] D. Fisher. "Knowledge Acquisition via Incremental
Conceptual Clustering". Machine Learning, 2:139-172,
1987.

[F65] E. Forgy, "Cluster analysis of multivariate data:
Efficiency vs. interpretability of classifications",
Biometrics 2\:16%. 1965.

[F90] K. Fukunaga, Introduction to Statistical Pattern
Recognition, San Diego, CA: Academic Press, 1990.

[J62] Jones, "A note on sampling from a tape file".
Communications of the ACM, vol 5, 1962.

[KR89] L. Kaufman and P. Rousseeuw, 1989. Finding
Groups in Data, New York: John Wiley and Sons.

[M67] J. MacQueen, "Some methods for classification
and analysis of multivariate observations. In Proceedings
of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability. Volume I, Statistics, L. M. Le
Cam and J. Neyman (Eds.). University of California
Press, 1967.

[MH98] M. Meila and D. Heckerman, 1998. "An
experimental comparison of several clustering methods",
Microsoft Research Technical Report MSR-TR-98-06,
Redmond, WA.

[NH98] R. Neal and G. Hinton, "A view of the EM
algorithm that justifies incremental, sparse, and other
variants", in M. I. Jordan (Ed.), Learning in Graphical
Models, Kluwer: 1998.

[R92] E. Rasmussen, "Clustering Algorithms", in
Information Retrieval Data Structures and Algorithms,
Frakes and Baeza-Yates (Eds.), pp. 419-442, New Jersey:
Prentice Hall, 1992.

[S92] D. W. Scott, Multivariate Density Estimation, New
York: Wiley. 1992

[SI84] S. Z. Selim and M. A. Ismail, "K-Means-Type
Algorithms: A Generalized Convergence Theorem and
Characterization of Local Optimality." IEEE Trans, on
Pattern Analysis and Machine Intelligence, Vol. PAMI-6,
No. 1, 1984.

[S86] B.W. Silverman, Density Estimation for Statistics
and Data Analysis, London: Chapman & Hall, 1986.

[TMCH97] B. Thiesson, C. Meek, D. Chickering, and D.
Heckerman, 1997. "Learning Mixtures of Bayesian
Networks", Microsoft Research Technical Report TR-97-
30, Redmond, WA.

[ZRL97] T. Zhang, R. Ramakrishnan, and M. Livny.
"BIRCH: A new data clustering algorithm and its
applications", Data Mining and Knowledge Discovery,
vol. 1, no. 2, 1997.

100

Finite-time Regret Bounds
for the Multiarmed Bandit Problem

Nicolo Cesa-Bianchi
DSI, University of Milan

via Comelico 39,
1-20315 Milano, Italy

cesabian@dsi.unimi.it

Paul Fischer
Lehrstuhl Informatik II
Universität Dortmund

D-44221 Dortmund, Germany
paulfSgoedel.informatik.uni-dortmund. de

Abstract

We show finite-time regret bounds for the mul-
tiarmed bandit problem under the assumption
that all rewards come from a bounded and fixed
range. Our regret bounds after any number T of
pulls are of the form a+b log T+c log2 T, where
a, b, and c are positive constants not depending
on T. These bounds are shown to hold for vari-
ants of the popular £-greedy and Boltzmann al-
location rules, and for a new simple determin-
istic allocation rule. Moreover, our results also
apply to an extension of the basic bandit prob-
lem in which reward distributions can depend, to
some extent, from previous pulls and observed
rewards. Finally, we discuss the empirical perfor-
mance of our algorithms with respect to specific
choices of the reward distributions.

1 INTRODUCTION
One of the fundamental issues in reinforcement learning is
the exploration versus exploitation dilemma, whose sim-
plest instance is, perhaps, the bandit problem. In its most
basic formulation, a bandit problem is a set of N (with
N > 1) gambling machines. When a machine is played
(i.e., the "arm" of a bandit is pulled) it delivers a reward,
which we assume here to be a number from a fixed and
bounded real interval. A crucial feature is that each reward
is an independent random variable. Moreover, all rewards
delivered by the same machine are identically distributed
according to some unknown and fixed law (note, however,
that different machines may have different reward distribu-
tions). The goal of the player in the optimality model con-
sidered here is to minimize its regret, that is, the difference

between the expected total reward gained in a sequence of
T plays and the expected total reward one could gain by
playing T times any machine with maximum expected re-
ward. The exploration versus exploitation dilemma is now
clear: the player must trade-off the need to sample differ-
ent machines, in order to compute reliable estimates of their
expected reward, with the need of exploiting the machine
with the highest current reward estimate, in order to keep
the regret as low as possible throughout the sequence of
plays.

A strategy for the player, also called "adaptive alloca-
tion rule", is a method for selecting the arm to pull at each
time t based on the rewards obtained during the previous
t - 1 pulls. The classical result of Lai and Robbins [14]
states that, asymptotically, the regret of any player strat-
egy must be n(logT), provided that the reward distribu-
tions satisfy some mild assumptions. In the same paper,
Lai and Robbins also propose a general adaptive allocation
rule that, whenever the reward distributions belong to some
known parametric family, yields the optimal asymptotical
regret 0(log T) — see [1,13] and references therein for ex-
tensions of these results. In this paper we show that simple
variants of the popular e-greedy and Boltzmann heuristics
(see [11, 16] for a review of heuristics for the bandit prob-
lem) achieve a regret of the form o + MogT + clog2 T
for all T (where a, b, and c are positive constants) when
a lower bound on the difference between the highest and
second-highest expected reward is known in advance. We
also prove that the same regret bound holds for a new deter-
ministic allocation rule. Our results do not require any fur-
ther knowledge about the distributions of rewards and hold
for any set of distributions with bounded rewards. Finally,
our bounds apply, without modification, to a relaxed vari-
ant of the bandit problem, where the reward distributions
can adversarially change after each play provided that each
reward expectation is kept fixed.

2 DEFINITIONS AND NOTATION
Fix a positive integer N > 1. The N-armed bandit prob-
lem (with bounded rewards) is a collection of N random
processes {Xjtt : t = 1,2,...}, j = 1,...,N, satisfying

Finite-time Regret Bounds for the Multiarmed Bandit Problem 101

0 < Xjjt < 1 (this choice for the range of rewards is not
crucial, by an appropriate scaling of the regret bounds any
other bounded real interval would work). Each Xjtt repre-
sents the random reward a player can obtain by pulling arm
j at time t. An adaptive allocation rule for the ./V-armed
bandit problem is an algorithm that, at each time t, chooses
the index It € {1,..., N} of the next arm to pull based on
the sequence

h, Xilti, ■ • •, It-i, Xjt_ut-i

of past pulls and observed rewards. We will also investigate
randomized allocation rules, whose behavior depends on an
additional internal random source. The (expected) regret
after the first T pulls of the allocation rule that pull arms
Ii,...,ITis

max E
l<j<N

Y^{Xjtt-XIut)
t=i

(1)

Here the expectation E [•] is understood with respect to the
stochastic generation of rewards and, for randomized rules,
also with respect to the internal randomization of the rule.

In the standard formulation of the bandit problem it
is assumed that the rewards delivered by the arms are in-
dependent random variables X^t with stationary means
ßj, fort = 1,2... and j =' 1,...,JV. All of our
results will hold under this assumption. Moreover, all
of our results will also hold under the weaker assump-
tion that E [Xjj | jFt-i] = ßj for each t and j, where
Tt-i denotes the er-field generated by random variables
h,Xilti,..., It-i,Xit_ltt-i- In other words the distri-
bution of each new random reward can depend in an adver-
sarial way on the previous pulls and observed rewards, as
long as its mean is kept fixed.

Throughout the paper, without loss of generality as-
sume that ßi > ßj for all j = 2,...,n and let
A(/xi,..., ßjsf) = min2<j<jv (ßi — ßj) ■ Furthermore,
let Aj = ßi - ßj for each j = 1,..., N and let

D = Ylj=i Aj- Our allocation rules have an input pa-
rameter d > 0 and our regret bounds hold only if 0 <
d < A(ßi,...,ßN), where ßi,..., ßN are the unknown
problem parameters. Furthermore, our bounds grow like
fi(l/cP), so d should be chosen as close as possible to
A(ßi,...,ßN). However, if an arbitrary value of d is fed
to the allocation rules described in Section 3, we can still
prove some weaker form of regret bound.

Finally, we use In for the natural logarithm and log for
the base 2 logarithm.

3 REGRET BOUNDS

Many heuristics for the bandit problem assign to each arm
i a probability of being pulled that is proportional to the
current reward estimate for arm i. A popular example is
the Boltzmann Exploration (BE) heuristic (see [3] and ref-
erences therein). This allocation rule, at each time t, draws
the arm to pull according to the exponential distribution

efii,t-i/r/Zt for i = 1,..., N, where /iM_i is the cur-
rent estimate of the expected reward for arm i, the quan-
tity r > 0 is a "temperature" parameter, and Zt is a nor-
malization factor. Note that, for r -> 0, BE reduces to
the greedy rule always choosing to pull the arm with the
highest current reward estimate. On the other hand, for
r -> oo arms are pulled independently and uniformly at
random. Similarly to the Simulated Annealing optimiza-
tion method [12,17], one can obtain empirical convergence
to the best arm by letting r = rt monotonically decrease to
0 according to some "cooling shedule". A natural question
is then whether there exists a cooling schedule which prov-
ably yields convergence to the best arm. We now introduce
a variant of BE, called SOFTMIX, for which we can con-
struct such an "optimal" cooling schedule. The algorithm
SOFTMIX (see Figure 1) uses the exponential distribution
mixed with the uniform distribution.1 This is equivalent
to saying that, at each time t, we flip a biased coin to de-
cide whether the next arm to pull should be drawn from the
exponential distribution (with a prescribed finite tempera-
ture value) or from the uniform distribution (corresponding
to the exponential distribution with infinite temperature).
We use 7t to denote the bias (which we also call mixing
coefficient) of the coin. A crucial aspect is that both the
temperature parameter rt and the mixing coefficient 7J de-
crease with t following a schedule chosen so to minimize
the regret bound in our analysis. More precisely, we set
jt = Q(ln(t)/t) and Tt = Q(l/ln(t)). For notationalcon-
venience, rt is replaced by an "inverse temperature" param-
eter 1/%. The performance of SOFTMIX is analyzed in the
following result.

Theorem 3.1 For all integers N > 1 and for all N-armed
bandit problems with parameters ßi,..., ßjy, ifO<d<
A(ßi,...,ßN) then, for all T > 1, the regret after the
first T pulls of the randomized allocation rule SOFTMIX
described in Figure 1 is at most

H* o, 5N 5i 2^

^V81n^-+2lnT; + DlnT,

Recall that in the "zero temperature limit", i.e. when
the temperature parameter r approaches 0, BE becomes
greedy: at each time t, the arm i maximizing the reward es-
timate ßitt-i gets pulled (ties are broken at random). The
obvious flaw in this strategy is that an early unlucky sam-
pling of some suboptimal arm might prevent the optimal
arm from being sampled enough. A more successful vari-
ant of the greedy rule is the so-called e-greedy heuristic
(see, e.g., [18]). At each time t, this strategy pulls with
probability 1 - e any arm with the highest reward estimate
and pulls with probability e a randomly chosen arm. Now
note that the zero temperature limit of SOFTMIX (attained
when the inverse temperature parameter r)t approaches in-
finity) corresponds to the e-greedy heuristic with the setting

'The same mix was used in [2]. However, here the mixing co-
efficient is dynamically adapted to minimize the regret uniformly
over time, whereas in [2] it was kept constant.

102 Cesa-Bianchi and Fischer

Randomized allocation rule: SOFTMIX.

Input: Real number 0 < d < 1.
Initialization: Define sequences ft € (0,1] and r)t > 0,
t = l,2,...,by

and

It =

Vt =

fmin{l,^!^}if*>2. (2)
1 1 otherwise

W^~lln{1+2Nhl-cP)- (3)

Lets., =0forj = l,...,iV.
Loop: For each t = 1,2,...

• Pull an arm drawn from the distribution
{Pi)t,...,Pjv,t}, where

PM = (1"7f)E^ + £' W

• Let it be the index of the pulled arm and xit the
reward obtained. Add xit /Pit,t to si(.

Figure 1: Description of the randomized allocation rule
SOFTMIX.

e = 7t. This observations suggests that the two allocation
rules might have similar behaviour, especially when t is
large. The experiments of Section 6 (see Figure 4) confirm
this conclusion: SOFTMIX has a better start but, for t large
enough, the two algorithms exhibit the same behavior. On
the other hand, we now state an upper bound on the regret
of the 7t-greedy heuristic identical to the one we proved
for SOFTMIX. SO, with respect to our analysis, the more
sophisticated selection method used by SOFTMIX does not
provide any extra benefit.

Theorem 3.2 For all integers N > 1 and for all N-armed
bandit problems with parameters ßi,...,ßN, ifO < d <
A(ni,... ,HN) then, for allT > 1, the regret after the first
T pulls of the randomized allocation rule GREEDYMlX de-
scribed in Figure 2 is at most

K'-S+I-T) + D\nT.

Some heuristics for the bandit problem, like the so-called
"optimism in the face of uncertainty" exhibit a two-phase
behaviour (see [11, Section 2.2.1] for a list of references).
In the first phase exploration is favored; in the second phase
exploitation takes over and the heuristic operates in a com-
pletely greedy way. By extending the initial explorative
phase long enough one can make arbitrarily small (though
not vanishing) the risk of converging to a suboptimal arm.

Randomized allocation rule: GREEDYMlX.
Input: Real number 0 < d < 1.
Initialization: Define the sequence jt £ (0,1], * =
1,2,..„by

It
_/min{l,$^}if
\l ot

t>2,

otherwise.

Lets, = Oforj = 1,...,7V.
Loop: For each t = 1,2,...

• Let I be the subset of arms such that, for each i G
I, Si = maxi<j<;v Sj.

• With probability 1 - jt pu" a random arm in 1,
with probability 7t pull a random arm.

• Let it be the index of the pulled arm and xit the
reward obtained. Add xit /Qit ,f to sit, where Qj<t

is the probability of it = j according to the rule
above, that is

Q
lt)/\l\ + 7t/N if j el, (5)

otherwise.

Figure 2: Description of the randomized allocation rule
GREEDYMlX.

We propose a new strategy, called ROUNDS, where a
purely explorative phase is alternated with a purely ex-
ploitative phases. To guarantee a good bound on the regret,
the length of the r-th exploitation is 2r whereas the length
of the exploration phases grows only linearly. The theoret-
ical performance of ROUNDS (which is a deterministic al-
location rule) turns out to be comparable to that of the ran-
domized strategies SOFTMIX and GREEDYMlX. On the
other hand, our experiments indicate that both randomized
rules have an expected performance better than ROUNDS,
especially for small values of T.

Theorem 3.3 For all integers N > 1 and for all N-armed
bandit problems with parameters p\,.. .,HN, if0<d<
A(/xi,..., nN) then, for all T > 1, the regret after the
first T pulls of the deterministic allocation rule ROUNDS
described in Figure 3 is at most

2D\og(2N)

d2
+ l)riog(T + l)l + 2^riog(T + l)r

Our results of Section 3 hold under the assumption that a
lower bound d > 0 on the smallest difference fii - p,j,
j' ^ 1 is known. Arbitrary values of d, however, still allow
to prove reasonable bounds on the regret. In fact, the re-
gret bound is similar as before with an additional AT term,
where A is the difference between ßi (the highest expected
reward) and the smallest Hi strictly bigger than /xi - d. (If

Finite-time Regret Bounds for the Multiarmed Bandit Problem 103

Allocation rule: ROUNDS.

Input: Real number 0 < d < 1.

Loop: For each round r — 0,1,...

• LetTr = \2Qog2(2N)+r)/<P].

• For each arm i = 1,..., N: Pull the arm i for Tr

times and let Si,r the total reward obtained.

• Let k be such that s*>r = maxi<j<jv Sj,r. Pull
arm k for 2r times.

Figure 3: Description of the deterministic allocation rule
ROUNDS.

d not larger than the smallest difference ßi — ßj (j ^ 1),
then A is 0 and we recover the previous bound.)

Corollary 3.4 For all integers N > 1, for all N-armed
bandit problems with parameters ßi,..., ßN, and for all
T > 1, the regret of both randomized allocation rules
SOFTMIX and GREEDYMlX with input d>0is at most

Ai(d) =

where

and

max Ai
{i: fii>/j.i-d}

D(d) = J2 Ai
{j:fij<ßi-d}

4 REMARKS

Unbiased estimates. The randomized allocation rules
SOFTMIX and GREEDYMIX use a special kind of estimate,
§i,t/t, for the expected reward of each arm i. If Pi,, is the
probability of pulling arm i at time s, then the reward esti-
mate at time t for arm i is

Sj,t-1

t-1

t-i

TEA. (6)
s=l

where Xi,s = X^./Pi,. if arm i was pulled at time s and
Xi,s = 0 otherwise. This estimate, which was previously
used in [2] to solve a variant of the bandit problem substan-
tially different from the one studied here, has the correct
expectation ßi for each arm i. In fact, we have

E [A- = E ^j± Pilt+0(1-Pit.)
l,S

ßi

We could not prove our results for a different choice of the
reward estimates.

Cooling schedule. In order to compare the inverse tem-
perature parameter r)t of SOFTMIX with the temperature
parameter rt of BE, in Section 3 we said that the se-
quence of values r)t for t — 1,2,... corresponds to a cool-
ing schedule rt = 0(1/ In t). To see why, recall that
the expression for the probability of drawing arm i in BE
has ßi,t-iln at the exponent, where ßi,t-i is the cur-
rent estimate of the expected reward for arm i. The cor-
responding exponent for the probability of drawing arm i
in SOFTMIX is Si,t-i% (we are disregarding the contribu-
tions of the factor 1 - jt and of the term jt/N, both negli-
gible for t large). As, by (6), SOFTMIX'S reward estimate
is Si,t-i/(t - 1), we get that ßi,t-i/Tt = ßi,t-i{t - 1)774.
Hence rt = l/((t - 1)%). Asymptotically, the quantity
(t — l)t]t shows a logarithmic growth

lim

Recall that the idea of BE with cooling is borrowed from
the Simulated Annealing (SA) optimization method. A re-
markable fact is that the cooling schedule necessary and
sufficient for convergence (with probability 1) of SA to the
global optimum is also 0(1/ In t), as shown in [7].

Instantaneous regret bounds. The proof of Theo-
rems 3.1 and 3.2 also yields bounds on the instantaneous
regret of both SOFTMIX and GREEDYMIX. In particular,
for all t > \{8N/d?) In^N/d2)],

D 5Dln(t-l)
E[Xltt-Xittt]< — +

t-1 <P(t-l)

where it is the arm pulled at time t by any allocation rule
between SOFTMIX and GREEDYMIX.

Similarity of the regret bounds. The dominant term
in the regret bound for the three allocation rules consid-
ered here is, recalling that D = O(N), of the order of
(N/d2) log2 T. This similarity is not by accident. In Sec-
tion 5 we show how the regret of both SOFTMIX and
GREEDYMIX can be reduced to the expectation of the
product of moment generating functions for certain random
variables — see (9) and (15). This product is bounded term
by term using Taylor expansion of the exponential function.
For the deterministic rule ROUNDS, we control the accuracy
of the worst current reward estimate via standard Hoeffd-
ing bounds. As Hoeffding bounds are again proven through
Taylor bounds on the moment generating function, we get
similar rates for the regret. Observe that, in both cases, the
Taylor expansion heavily relies on the boundedness of the
rewards.

Interval estimation method. Another popular allocation
rule, which works very well in empirical trials, is Kael-
bling's interval estimation method [10]. This method op-
erates by computing upper bound estimates Ui,t for the ex-
pected reward ßi of each arm i satisfying

P {ßi > Ui,t} = 9 (7)

104 Cesa-Bianchi and Fischer

for some parameter 6 > 0. The interval estimation rule
picks, at each time t, the arm i maximizing Uj,< for a fixed
value of 6. Clearly, to compute ui}t satisfying (7) one
needs some information on the reward distributions. For
Bernoulli bandits (with rewards chosen in {0,1} for each
arm), one can use the Normal approximation to the bino-
mial distribution and then apply standard formulae to com-
pute the quantities u*,*. For unknown reward distributions,
which is the case of our setup, one must resort to general
estimates in much the same way we used Hoeffding bounds
to control the regret of ROUNDS.

5 PROOFS

We will make use of the following fact which can be easily
verified by Taylor expansion of the exponential function (a
proof can be found in [15, page 155]).

Fact 5.1 For every real c > 0, define the function <(>c on
the positive reals by <pc(z) = (e" - 1 - cz)/c2. Then, for
every y < c and every z > 0, ezy < 1 + zy + <f>c(z)y2.

Proof of Theorem 3.1. Let Pjtt = P {/* = j | Tt-i)
be defined as in (4). Recall that we are assuming H\ =
max.i<i<N Hi- We rewrite the regret (1) as follows

" T

/J (Xj,t - Xit.t) max E
l<j<N

t-1

= E
t=l

= £E[XM-X/„t]

T

= 5]E[E[X1,t-X/„4|^-i]] (8)

T

-E«
t=i

T

TV

Y,±jP{It=3\?t-i}
3=2

N

t=l j=2

In (8) the inner conditional expectation is understood with
respect to both the random choice of It and the random re-
alization of the reward Xiut. The outer expectation simply
averages over the past t — 1 pulls and obtained rewards.
Define random variables

v- _ / Xj,t/Pj,t if i* = J
J,t ~ \ 0 otherwi otherwise.

Note that Xjtt < l/Pj,t < N/jt, a fact which we use
several times throughout this section. We have

E[PM] = (l-7t)E
yN

- J=le

»■* EU -*<■•

E::; **.• Vt N

Ri> El:1, **••
N

< (i - 7t)E :, +
e"' E,=, *>••

= (i-7t)E[e,"E:;1
l^--*'-)] + ^

= (1 - 7*)E

< e-(«-l)l<AiE

t-1

nE^'i^-i]

+
N

+ lt (9)

for Ziit = Xitt - Xi,t + A*.

In the last step we multiplied and divided by the same quan-
tity e(t_1^'Ai and then we dropped the factor 0 < 1—7t <

1. In view of bounding each factor E ie"'^- | T8-\ I via

Fact 5.1, first we compute the conditional expectation for
each s,

E [ziit | T.-i\

= E [Xi,. | F.-i] - E [xu. | ^._i] + Ai
= m - HI + Ai = 0 .

Second, observing that 7. is positive and nonincreasing in
s, we get Zit, = Xi,, - Xlt. + A{ < Nfrt + 1. Third,
using the same observation, we also bound the conditional
variance for each s as follows.

E i?. | T..i] = E [(£,. - Xx,.)2 | ^.-i

+ A?+2Ai(/xi-/xi)

= Ef(xil,-X1,.)
2|^._i| -A?

= E[x?.|*-.-1]+E[x1
a
i.|JV-1]

-2E[Xi,.Xj,. |^._i]-A?

= E [Xl | ^-x] + E
as Xi<8 = OorÄ"*,. =

^i,s I -^»-lj

= 0

E
Y2

t,8

+ E -^1,8

P2 Pi,.+ 0(1-PM) |^,-i A?

1 1 A, 2JV A2

as Pi,. >it/Nfwi = l,...,N.

i, applying Fact 5.1 with c = iV/7
id that

E [e**'" I .P.-i] < E [l + i^Z,,. + Z?, AOfc) I T.-y

Hence, applying Fact 5.1 with c = iV/7t + 1 and z = T)t
we find that

Finite-time Regret Bounds for the Multiarmed Bandit Problem 105

A?Uc(fft).
V It

< exp Uc(rit) (A?

for all s = l,...,t-l. Thus

E[PM]

< e-(*-l)liAig S«P(^)(^-A?))

= exp (-(t - 1) hfcAj - <j>c(f}t)— + MVt)^2i J J

+ 11
N

< expf-(t-l) \ntd-<j)c{r)t) + (t>c(Vt)d?) j

+
N

(10)

where (10) is shown using the assumption d <
A(lii,...,pN). By letting (t - l)d - K and (t -
l)(2JV/7t - d2) = cr2 the term at the exponent in (10)
becomes

-Kr,t + <t>c{rit)a
2 . (11)

Rewriting % in the simpler form (1/c) ln(l + cK/a2), re-
placing <j>c with its definition, and using the elementary in-
equality ln(l + x) > 2x/(2 + x), x > 0, we get that the
quantity in (11) is smaller or equal to -K2/(2a2 + cK).
Hence, plugging back in the original expression for K, <r ,
and c, and simplifying the t - 1 factor, we find that (10) is
smaller or equal to

exp
("

(t - l)d?
4N/jt -2<P + d(N/jt 't + l)j

+
N

(12)

Now, for t > T0 = \(8N/<P) In^N/d2)], we have that

5N ln(t - 1)
It

<P t-1
<1.

The choice of jt balances the contributions of the terms in
the right-hand side of (12). Thus, for all t > T0 and all
j € {2,..., TV}, we can further bound the right-hand side
of (12) as follows

exp
(i-1)^74 \ , lt

5N j + N ~ t-1 ' cP t-1
1 5 ln(t - 1)

For t < To the mixing coefficient 7* is 1. Hence, for each
such t, the regret is Aj with probability 1/N for each j.
Piecing everything together we obtain the desired bound

on the regret

T

E 2J(-Xi)t -Xit,t)
U=l

N

j=l \t=l t=T0+l J

N £ 1
= J:^[J:^+ E EP*]

3=1 \t=l t=TQ+l J

~ ■, [d2 & ^ t-1 3=1 \ t=T0+l

5 v^
+ W2 E

ln(t - 1)
d2 ^ f-1

t=T0+l

In a;
dx

5iV 5

Proof of Theorem 3.2. The regret (1) can be re-written as
follows

max E
l<j<N

■ T

= E
■ T

E(*M-*'«.*)
.«=1

T

=]TE[XM-X/t,t]

T A"

t=l j=2

N

i=2

A -
\t=i >)

(13)

We now bound P {It = j} for each j e {2,..., iV}. To
this end, define random variables

X- = [Xi'tlQjt if/* =3'
**' 1 0 otherwise

where the probability QJyt = P {It — j \ Ft-i} is defined
in (5). Let 2* be the subset of {1,..., N} such that, for
eachi e It,

t-i t-i

EA^^E^.'
s=l s=l

106 Cesa-Bianchi and Fischer

For any fixed j, we have

P{/t = 3} = PUt =i I J G 2»}P{J G It}
+ P{I«=j|j*2t}P{j*2t} (14)

(w + ^)PÜ62i>+^Pü^ }
^««Hä

< P{j'€lt} + 2i
AT

=p{™nE(^-*-)^°}+^

U=i
r,t(t-l)Aj\ + %

for Zjit = X,-,t -Xi,t + Aj and 77* > 0 arbitrary

= P{eK:>'^--'"(t-1)A'>i} + ^

<E[eS::i'"^-'"(f-i)^] + ^
as P {X > 1} < E [X] for any positive r.v. X

- e-»)<(t-l)AjE TTm \-mZi. 1 -r- I , It

.8=1

+ #.(.5)

The proof is concluded by noting that jt is chosen as in (2),
rjt can be set as in (3), and (15) is thus equal to (9) as in the
proof of Theorem 3.1. D

Proof of Theorem 3.3. Fix a positive integer T and choose
any integer r > 0. Let p.j<r = Sj,r/Tr, where Sj,r is
the total reward for arm j during round r. By hypothe-
sis, E [Xj,t I Tt-i\ = ßj for all j = 1,..., N and all t.
Thus we can apply Hoeffding bounds [8] and obtain,2 for
each fixed j and for A = A(/*i,..., HN),

P{|Ai,r-MJ|>A/2}<2e-A2T-/2

<2e-^<^.

Hence, P {3j |£iiP - Mil > A/2} < 2~r. Therefore, the
regret during round r is at most

£ A, j Tr + 2ri < 2) r2(log(2JV) + r)/d2} + 1.

2Note that Hoeffding bounds can be applied, without modi-
fication, also to the more general bandit model where the reward
distributions can adversarially change after each play provided the
reward expectations are kept fixed.

Let I the total number of rounds. That is, I is the smallest
integer such that

1

Y^ (NTr + 2r)>T.
r=0

Clearly, I < £', where I' is the smallest integer such that
£r=o2r > T. Thus t + 1 < flog(T + 1)1. Without loss
of generality, assume the last round ends exactly at time T
(if it ends before, then the bound gets better). We find that

max E
l<j<7V

"52(xj,t - Xiut)
,t=i

<D^2 [2(log(2A0 + r)/d2] + £+l

<D(2S^)(/+1)+«^a)+«+i

<
^m+1yl+1) + ^l+ir

<

2D\og(2N)
) Rog(T + i)i

-* +1

-r^riog(T+i)i

This concludes the proof.

Proof of Corollary 3.4. Following (13), the regret of
GREEDYMIX can be written as

D

max E
l<j<N

^2,(Xj,t-Xittt)
.t=i

j=2 \t=\ /

<E EA*p^ = i>
T N

+ E 5>jp</t=;>
t=l{j:itj<fi-d}

< I max Av)

+ E EAjp{/f=J}
t=Hj-fj<^-<i}

= Ai{d)T + J2 £ AjP{It=j}.
t=x {J:Mj</»l-rf}

The proof now goes along the same lines as the proof of
Theorem 3.1. The analysis of the regret of SOFTMIX is
similar. D

Finite-time Regret Bounds for the Multiarmed Bandit Problem 107

0.3

0.25

0.15

0.05

SoftMix
GreedyMix

Rounds

500
Blocks (1 block = 100 pulls)

1000

2
■s

0.75

0.65

SoftMix
GreedyMix

Rounds

500
Blocks (1 block = 100 pulls)

1000

Figure 4: The two graphs are averages over 1,000 runs of 100,000 pulls each. We divided each run in 1000 blocks of 100
pulls each. At left we plot the fraction of times the true best arm was pulled in each block. At right we plot the average
reward per block divided by the highest expected reward for that run.

6 EXPERIMENTS

We tested the three algorithms on a ten-armed bandit prob-
lem. Due to the boundedness condition, the rewards were
drawn from beta distributions whose range is the unit inter-
val [0,1]. In our experiments we averaged 1,000 runs. In
each run the two parameters of the beta distributions were
chosen uniformly and independently for each arm from the
real interval [2,12]. The parameter d was set to the best
possible choice A(^l5..., /^jv). All other constants were
set as shown in Figures 1, 2, and 3. In the plots of Figure 4
we compare the performance of SOFTMIX, GREEDYMIX,
and ROUNDS on 100,000 pulls. Observe that SOFTMIX
and GREEDYMIX have a similar performance, although
SOFTMIX performs slightly better after a slower short ini-
tial phase. ROUNDS has the slowest convergence, probably
due to the long initial domination of explorative phases.
Tests with up to 400,000 pulls show that the ranking of the
three algorithms stays the same, though ROUNDS consid-
erably improves in the long run as exploitation takes over
exploration. Note that our setting of the constants for the
mixing coefficient jt is independent of any property of the
reward distributions other than the parameter d. Hence, it
is conceivable (as we indeed observed in the experiments)
that more informed choices of the constants in jt could lead
to a better empirical performance for specific reward distri-
butions. Finally, we ran tests for two other distributions
of the rewards: Bernoulli distribution (rewards in {0,1}
with expectation of reward 1 chosen independently and uni-
formly from [0,1] for every arm) and uniform distributions
on [0,o], where the parameter a is chosen independently
and uniformly from [0,1] for every arm. The empirical re-
sults did not differ much from those obtained for the beta

distribution. We plan to carry out experiments in order to
test our algorithms against Boltzmann Exploration and In-
terval Estimation.

7 CONCLUSIONS

The main contribution of this paper is the derivation of
finite-time regret bounds for variants of widely used heuris-
tics for the bandit problem. Our results demonstrate that
the average reward per pull obtained by any one of these
variants converges to that of the best arm, and we show
explicit bounds on the convergence rate. We remark that,
rather than improving the empirical performance on spe-
cific domains, our main interest is the understanding of the
nature of basic methods like Boltzmann Exploration, and
the derivation of rigorous regret bounds that are guaranteed
to hold in a vast range of situations.

Our work can be extended in many ways. A more
general version of the bandit problem is obtained by re-
moving the stationarity assumption on reward expecta-
tions (see [4, 6] for extensions of the basic bandit prob-
lem). For example, suppose that a stochastic reward pro-
cess {Xi(s) : s = 1,2,...} is associated to each arm i =
1,..., N. Here, pulling arm i at time t yields a reward
Xi(s) and causes the current state s of arm i to change to
s + 1, whereas the states of the other arms remain frozen.
A well studied problem in this setup is the maximization of
the total expected reward in a sequence of T pulls. There
are methods, like the Gittins allocation indices, that allow
to find the optimal arm to pull at each time t by considering
each reward process independently from the others (even
though the globally optimal solution depends on all the pro-

108 Cesa-Bianchi and Fischer

cesses).3 However, computation of the Gittins indices re-
quires preliminary knowledge about the reward processes.
To overcome this requirement, one can learn the Gittins in-
dices, as proposed in [5] for the case of finite-state Marko-
vian reward processes. However, there are no finite-time
regret bounds shown for this solution. At the moment, we
do not know whether our techniques could be extended to
these more general bandit problems.

Another open problem is whether the bounds we prove
are tight for each one of the three algorithms, and whether
they are optimal for the bandit problem considered here.

Acknowledgements

Both authors gratefully acknowledge support from ES-
PRIT Working Group EP 27150, Neural and Computa-
tional Learning II (NeuroCOLT II). Thanks to the referees
for their many useful suggestions.

References
[1] R. Agrawal. Sample mean based index policies

with 0(log n) regret for the multi-armed bandit prob-
lem. Advances in Applied Probability, 27:1054-1078,
1995.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E.
Schapire. Gambling in a rigged casino: The adver-
sarial multi-armed bandit problem. In Proceedings
of the 36th Annual Symposium on the Foundations of
Computer Science, pages 322-331. IEEE press, 1995.

[3] A.G. Barto, S.J. Bradtke, and S.P. Singh. Learning to
act using real-time dynamic programming. Artificial
Intelligence, 72(1):81-138,1995.

[4] D.A. Berry and B. Fristedt. Bandit Problems. Chap-
man and Hall, 1985.

[5] M.O. Duff. Q-learning for bandit problems. In Pro-
ceedings of the 12th International Conference on Ma-
chine Learning, pages 209-217. Morgan Kaufmann,
1995.

[6] J.C. Gittins. Multi-Armed Bandit Allocation Indices.
Wiley-Interscience series in Systems and Optimiza-
tion. John Wiley and Sons, 1989.

[7] B. Hajek. Cooling schedules for optimal annealing.
Mathematics of Operations Research, 13(2):311-329,
1985.

[8] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58:13-30,1963.

[9] T. Ishikida and P. Varaiya. Multi-armed bandit prob-
lem revisited. Journal of Optimization Theory and
Applications, 83(1): 113-154,1994.

[10] L.P. Kaelbling. Learning in Embedded Systems. MIT
Press, Cambridge, 1993.

[11] L.P. Kaelbling, M.L. Littman, and A.W Moore. Re-
inforcement learning: A survey. Journal of Artificial
Intelligence Research, 4:237-285,1996.

[12] S. Kirkpatrick, CD. Gelatt, and M.P. Vecchi.
Optimization by simulated annealing. Science,
220(4598):671-680,1983.

[13] S.R. Kulkarni and G. Lugosi. Mimimax lower bounds
for the two-armed bandit problem. Technical Report,
Pompeu Fabra University, Barcelona, Spain, 1998.

[14] T.L. Lai and H. Robbins. Asymptotically efficient
adaptive allocation rules. Advances in Applied Math-
ematics, 6:4-22,1985.

[15] J. Neveu. Discrete Parameter Martingales. North-
Holland, 1975.

[16] R.S. Sutton and A.G. Barto. Reinforcement Learning,
an Introduction. MIT Press / Bradford Books, Cam-
bridge, 1998.

[17] V. Cerny. Thermodynamical approach to the travel-
ing salesman problem: An efficient simulation algo-
rithm. Journal of Optimization Theory and Applica-
tions, 45:41-51,1985.

[18] C.J.C.H. Watkins. Learning from Delayed Rewards.
PhD thesis, Cambridge University, Cambridge, Eng-
land, 1989.

3See [9] for an application of the Gittins indices to the average
(undiscounted) reward criterion used here.

109

Bayesian Classifiers are Large Margin Hyperplanes
in a Hilbert Space

Nello Cristianini
Dept of Engineering Maths

University of Bristol,
Bristol, UK

nello.cristianiniSbristol.ac .uk

John Shawe-Taylor
Dept of Computer Science

RHBNC
Egham, UK

j stOdcs.rhbnc.ac.uk

Peter Sykacek
Austrian Research Institute

for Artificial Intelligence
Vienna, Austria

peterOai.univie.ac.at

Abstract
Bayesian algorithms for Neural Networks are known to
produce classifiers which are very resistent to overfit-
ting. It is often claimed that one of the main distinc-
tive features of Bayesian Learning Algorithms is that
they don't simply output one hypothesis, but rather
an entire distribution of probability over an hypothesis
set: the Bayes posterior. An alternative perspective is
that they output a linear combination of classifiers,
whose coefficients are given by Bayes theorem. One
of the concepts used to deal with thresholded convex
combinations is the 'margin' of the hyperplane with
respect to the training sample, which is correlated to
the predictive power of the hypothesis itself.

We provide a novel theoretical analysis of such clas-
sifiers, based on Data-Dependent VC theory, proving
that they can be expected to be large margin hyper-
planes in a Hilbert space. We then present experimen-
tal evidence that the predictions of our model are cor-
rect, i.e. that bayesian classifers really find hypotheses
which have large margin on the training examples.

This not only explains the remarkable resistance to
overfitting exhibited by such classifiers, but also co-
locates them in the same class of other systems, like
Support Vector machines and Adaboost, which have a
similar performance.

Keywords: Bayesian Classifiers, Large margin hyper-
planes, Hilbert space

1 INTRODUCTION

Bayesian learning algorithms for neural networks of
the kind described in [3] are often claimed to have the
distinctive feature of outputting an entire distribution
of probability over the hypothesis space, rather than
a single hypothesis. Such a distribution, the Bayes

posterior, depends on the training data and on prior
distribution, and is used to make predictions by aver-
aging the predictions of all the elements of the set, in
a weighted majority voting scheme.

The posterior is computed according to Bayes' rule,
and such a scheme has the remarkable property that -
as long as the prior is correct and the computations can
be performed exactly - its expected test error is mini-
mal. Typically, the posterior is appoximated by com-
bining a gaussian prior and a simplified version of the
likelihood (the data-dependent term, that is the term
that reflects the information gleaned from the train-
ing set). Such a distribution is then sampled with a
Montecarlo method, to form a committee whose com-
position reflects the posterior probability. The predic-
tive integral over a posterior distribution can hence be
replaced by a sum.

The classifiers obtained with this method are known to
be highly resistent to overfitting. Indeed, neither the
committee size nor the network size strongly affect the
performance, to such an extent that it is not uncom-
mon - in the bayesian literature - to find computations
with "infinite networks" [4], [10], meaning by this the
posterior over the complete (infinite) hypothesis space.

Statistical Learning Theory, on the other hand, is con-
cerned with the problem of bounding the test error (in
the worst case and with high probability) using quan-
tities that are observable in the training set or known
a priori [9].

The expressions obtained for such a bound typically
depend on the training error, the sample size and the
VC dimension of the classifier. Given that the number
of tunable parameters gives a rough estimation of the
VC dimension, the size of the network and that of the
committee do matter.

A more refined, Data-Dependent, version of the theory
introduced in [8], shows that it is possible to replace

110 Cristianini, Shawe-Taylor, and Sykacek

the VC dimension in the above mentioned bounds with
a quantity which depends on the margin of the classi-
fier on the training examples.

In this paper we provide a novel description of
Bayesian classifiers which makes it possible to per-
form margin analysis on them, and hence to apply
Data-Dependent VC theory. In particular, by view-
ing the posterior distribution as a linear functional in
a Hilbert space, the margin can be computed and gives
a bound on the generalization error via an 'effective'
VC dimension which is much lower than the number
of parameters.

Finally, experimental study is performed with a stan-
dard bayesian algorithm [5] on real world data, in order
to test the predictions of our model. The results of the
experiments confirm that the model captures the rel-
evant features of these classifiers, and that they can
indeed be regarded as large margin hyperplanes in a
Hilbert space.
Margin-distribution graphs are provided for different
data sets, different network sizes, committee sizes and
choices of prior, always showing the same qualitative
behaviour: a clear bias toward large margin on train-
ing examples.

Our plots can be directly compared with the ones pre-
sented in the inspiring paper by Shapire et al. [7],
where this concept was introduced, as we have used
the same datasets. In that paper, a bound on the test
error as a function of the margin distribution was first
obtained.

These theoretical and experimental results not only ex-
plain the remarkable resistance to evrfitting observed
in bayesian algorithms, but also provide a surprising
unified description of three of the most effective learn-
ing algorithms: Support Vector Machines, Adaboost
and now also Bayesian classifiers.

2 BAYESIAN LEARNING THEORY

The result of Bayesian learning is a probability distri-
bution over the (parametrized) hypothesis space, ex-
pressing the degree of belief in a specific hypothesis as
approximation of the target function. Such distribu-
tion is then used to make predictions.

To start the process of bayesian learning, one must
define a prior distribution P{w) over the parameter
space, possibily encoding some prior knowledge. After
observing the data, the prior distribution is updated
using Bayes' Rule:

P{w\D) oc P{D\w)P(w),

where P(w\D) is the probability of the parameters
given the data D, P(D\w) the probability of the data
given the parameters, and P(w) the prior distribution
over the parameters. The posterior distribution so ob-
tained, hence, encodes information coming from the
training set (via the likelihood function P(D\w)) and
prior knowledge.

To predict the label of a new point, bayesian classifiers
integrate the predictions made by every element of the
hypothesis space, weighting them with the posterior
associated to each hypothesis, obtaining a distribution
of probability over the set of possible labels (note that
hw is the function parametrised by tu):

P{y\x,D) = I hw(x)p{w\D)dw
J w

This predictive distribution can be used to minimize
the number of misclassifications in the test set; in the
2-class case this is achieved simply by outputting the
label which has received the highest vote.

3 BAYESIAN CLASSIFIERS AS
LARGE MARGIN
HYPERPLANES

Hence, the actual hypothesis space used by Bayesian
systems is the Convex Hull of H, rather than H. The
output hypothesis is a hyperplane, whose coordinates
are given by the posterior.

In order to study the margin of such hyperplanes,
we will introduce some simplifications in the general
model. We assume that the base hypothesis space,
H is formed by Boolean valued functions, and that
it is sufficiently rich that all dichotomies can be im-
plemented. Further, initially we will assume that the
average prior probability over functions in a particular
error shell does not depend on the number of errors.

These are the only assumptions we make, and the sec-
ond will to be relaxed in a second stage. A natural
choice for the evidence function in a Boolean valued
hypothesis space is e~ha, where k is the number of
mistakes made by the hypothesis and a > 0 an ap-
propriately chosen constant. The expression has the
required property of giving low likelihood to the pre-
dictors which make many mistakes on the training set,
and to which the usual Bayesian evidence collapses in
the Boolean case. Our analysis will also suggest suit-
able choices for cr.

It can be interpreted with an assumption of Gaussian
noise corrupting the data after they have been labelled
by a target function which belongs to H, the variance
of the noise depending on \/<x.

Bayesian Classifiers are Large Margin Hyperplanes in. a Hubert Space 111

The assumption that all the dichotomies can be im-
plemented with the same probability corresponds to
an 'uninformative' prior, where no knowledge is avail-
able about the target function. In a second stage we
will examine the effect of inserting some knowledge in
the prior, by slightly perturbing the uninformative one
towards the target hypothesis. We will see that even
slightly favourable priors can give a much smaller VC
dimension than the uninformative one.

3.1 THE UNINFORMATIVE PRIOR

The actual hypothesis space used by Bayesian systems,
hence, is the Convex Hull of H, rather than H. The
output hypothesis is a hyperplane, whose coordinates
are given by the posterior.

In this section we give an expression for the margin of
the composite hypothesis, as a function of a parame-
ter related to our model of likelihood. The result is
obtained in the case of a uniform prior, and for the
pattern recognition case.

Let us start by stating some simple results and defini-
tions which will be useful in the following.

Definition 3.1 Let Bi be the balance of the hypothe-
sis hi over a given sample of size m, that is the num-
ber of successes S{ minus the number of failures fi:
B{ = S{- fi, m- Si+ fi.

Therefore Bi = m — 2fi, which implies Bi/m = 1 — 2e{,
where e^ = f/rn is the empirical error of h{.

During the next proof we will need to know the prob-
ability in the prior distribution of hypotheses in our
parameter space with a fixed empirical error. Given
that this information is in general not available, we will
initially make the simplifying assumption that all be-
haviours on the training sample can be realised. This
implies that the hypothesis space has VC dimension
greater than or equal to the sample size m.

We make the further assumption that the prior prob-
ability of hypotheses which have error e = k/m is

m!
2m(me)!(m-me)!'

in other words that the average prior probability for
functions realising different patterns of k errors is 2~m.
We will assume that the posterior distribution for a
hypothesis which has k training errors is proportional
to e~ak = Ch, where C = e~". We are now ready to
give the main result of this section.

Theorem 3.2 Under the above assumptions the mar-

gin of the Bayes Classifier is given by

1-™-.
1 + C

Proof: Let the set of training examples be
(xi,...,xm) with classifications y = {yi,...,ym) €
{-1, l}m. Let the margin M of example i be M,-.
Consider first the average margin

<M> = ^E^ = ^E»^)
»65 »es

= —Y]yi ahh(xi)dP{h)

= -E^E^M*»)
»65 j€J

where hj, j £ J are representatives of each possible
classification of the sample. We are denoting by Pj the
prior probability of classifiers agreeing with hj. The
quantity aj Pj is the posterior probability of these clas-
sifiers, where the coefficient Oj = Ae~°me' = ACme>
is the evidence, which depends only on the empirical
error and the normalising constant A. By assumption,
we have

.?__ Pj ~ (*) i h error shell

Hence,

<M> = — E^E^M**)
3€J «65

J6J

(1)
J6J

by the observation concerning the balance Bj of hj
and the fact that the posterior distribution has been
normalised, that is 1 = fHa.hdP(h) = ^2j€jCtjPj-

We now regroup the elements of the sum on the right
hand side of the above equation by decomposing the
hypothesis space into error shells. Hence, we can write
the above sum as

jeJ fc=o v /
(2)

112 Cristianini, Shawe-Taylor, and Sykacek

Solving for A and substituting, gives

£aipiei =
jtJ EiC*(?)

We can now use the equality £* C*(") = (1 + C)m,
and the observation that £fc C* (™)A: can be written as
ciuT,kck (?) = mC'(1 + c)m_1 to obtain the result

for the average margin.

To complete the proof we must show that the average
margin is in fact the minimal margin. We will demon-
strate this by showing that the margin of all points is
equal. Intuitively, this follows from the symmetry of
the situation, there being nothing to distinguish be-
tween different training points in the structure of the
hypothesis. The formal proof relies on performing a
permutation on the training points, but has had to be
omitted in this shortened version. ■

There are three relevant bounds on the generalization
error in terms of the margin on the training set. We
will quote all three here and then discuss their appli-
cability in the current context. The first two appear
in Schapire et dl. [7].

Following [7], let H denote the space from which the
base hypotheses are chosen (for example Neural Net-
works, or Decision Trees). A base hypothesis h G H is
a mapping from an instance space X to {-1, +1 }.

Theorem 3.3 Let S be a sample of m examples cho-
sen independently at random according to D. Assume
that the base hypothesis space H has VC dimension d,
and let be 8 > 0. Then, with probability at least 1 — 8
over the random choice of the training set S, every
weighted average function f £ C satisfies the follow-
ing bound for all 6 > 0:

PD[yF(x)<0]<Ps[yF(x)<0}+

»(^(^»+H
1/2N

Theorem 3.4 Let S be a sample of m examples cho-
sen independently at random according to D. Assume
that the base hypothesis space H is finite, and let be
8 > 0. Then, with probability at least 1 — 8 over the
random choice of the training set S, every weighted av-
erage function f £ C satisfies the following bound for
alle > 0:

PD[yF{x) < 0] < PS[yF{x) <0} +

f log2 (m) log | ff |
O

■s/rn 62)+log(l/8 f)

As observed by the authors, the theorem applies to
every majority vote method, including boosting, bag-
ging, ECOC, etc.

The third is contained in Shawe-Taylor etal [8] and
involves the fat shattering dimension of the space of
functions.

Theorem 3.5 Consider a real valued function class
T having fat shattering function bounded above by the
function afat : M —>• N which is continuous from the
right. Fix 6 £ M. If a learner correctly classifies m
independently generated examples x with h = T$(f) £
Te(T) such that erz(/i) = 0 and 7 = min \f(x{) - 9\,
then with confidence 1 — 8 the expected error of h is
bounded from above by

e(m,k,8) = I (*Iog (^p) log(32m) -flog (^)) ,

where k = afat(7/8).

Since the assumption that the underlying hypothesis
space can perform any classification of the training set
implies that its VC dimension is at least m, we can-
not expect that learning is possible in the situation
described. Indeed, we have augmented the power of
the hypothesis space by taking our functions from the
convex hull of H which would appear to make the sit-
uation yet worse.

Hence, in order to obtain useful applications of any
of the theorems we will need to consider deviations
from the most general situation described above. The
deviation should not have a significant impact on the
margin, while reducing the expressive power of the hy-
potheses.

In order to apply Theorem 3.4 the number of hypothe-
ses in the base class H must be finite. The logarithm of
the number of hypotheses appears in the result. Since
we have assumed that all possible classifications of the
training set can be performed the number of hypothe-
ses must be at least 2m making the bound uninter-
esting. To apply this theorem we must assume that
a very large proportion of the hypotheses have zero
weight in the prior, while those that have significant
weights in the posterior (i.e. have low empirical er-
ror) are retained. Making this assumption the bound
will become significant. However, we are interested in
capturing the effect of non-discrete priors, that is sit-
uations where potentially all of the base hypotheses
are included, but those with high empirical error have
lower prior probability.

In order to apply Theorem 3.3 the underlying hypothe-
sis class H must be assumed to have low VC dimension

Bayesian Classißers are Large Margin Hyperplanes in a Hubert Space 113

in such a way that no significant impact is made on
the margin. This could be achieved by removing high
error functions. Note that the functions would have
to be removed, in other words given prior probabil-
ity 0. Hence, the bound obtained would be no better
than a standard VC bound in the original space. A
situation where this approach and analysis might be
advantageous is where the consistent hypothesis Ay is
not included in H. This will reduce the margin by ap-
proximately a/, 2"m = (1+C)_TO, since Bh = m (see

equation (1)). The approximation arises from not ad-
justing the normalisation to take account of the miss-
ing hypothesis and is thus a very small error.

These applications are unable to take into account the
prior distribution in a flexible way. In the next section
we will present an application of the third approach to
show how this can take advantage of a beneficial prior.

3.2 THE EFFECT OF THE PRIOR
DISTRIBUTION ON THE MARGIN
BOUND

We will consider the situation where the prior decays
arithmetically with the error shells. In other words
the prior on hypotheses with error k is multiplied by
ak for some a < 1. We first repeat the calculations of
Theorem 3.2 for this case. The sum (2) must take into
account that in this case

k error shell

The factor (1 + a)m cancels and the factor a appears
wherever C appears, that is

V aPjej = ^_ V Ac"ak (™) *-,
1GJ k=0

while

£cv
(l+a)m^-'~ \k v ' fc=0

m
= 1.

Hence, the margin can be computed as

2aC
1

1 + aC

We now quote a theorem due to Gurvits [2] that
bounds the fat shattering dimension of linear function-
als in Banach spaces which we will need to bound the
effective VC dimension.

Theorem 3.6 [2] Consider a Banach space B of type
p and the class of linear functions L of norm less than
or equal to one restricted to the unit sphere. Then
there is a constant D such that fatj,(7) < Df~p^p~1^.

Note that for Hilbert spaces which we will consider the
value of p = 2.

In order to apply Theorems 3.5 and 3.6 we need
to bound the radius of the sphere containing the
points and the norm of the linear functionals involved.
Clearly, scaling by these quantities will give the mar-
gin appropriate for application of the theorem. The
Hilbert space we consider is that given by the input
space X with inner product

(x,y)= [h(x)h{y)dP(h).
JH

Hence, the norm of input points is 1 and they are con-
tained in the unit sphere as required. The linear func-
tionals considered are those determined by the poste-
rior distribution. The norm is given by

H|2 = / a\dP{h).
JH

We must compute this value for the posterior func-
tional in the prior described above. The integral in
this case is given by

m h / \ lion2 = ra^ = ri2c2'-Vr
(l + a)TO(l + aC2)m

(1 + aC)2m

Hnece, the bound on the fat shattering dimension be-
comes,

9(a,C):--
2\m (l + q)m(l + aC2)

(1 + aC)2m-2(l - aC)2

In the rest of this section we will consider how this
function behaves for various choices of C and a, show-
ing that for careful choices of C, values of a close to 1
can give dimensions significantly lower than m, hence
give good bounds on the generalization error. The
analysis shows that using this approach it is possible
to make use of a beneficial prior. At the same time it
suggests a value of C most likely to take advantage of
such a prior.

First consider the case when a = 1. Hence,

fl(l,C) =
2ro(l + C2) 2\m

(1 + C)2m-2(1 - Cf

The parameter C can be chosen in the range [0,1).
However, g{l,C) —>c^i °°, while ff(l,0) = 2m.
Clearly, the optimal choice of C needs to be deter-
mined if the bound is to be useful. A routine calcu-
lation establishes that the value of C which minimises

114 Cristianini, Shawe-Taylor, and Sykacek

the expression is, Co = (m - y/m - l)/(m - 2), which
gives a value of

m-l

g{l,Co) = m 1 +
.-1

This confirms that the effective VC dimension is not
increased excessively provided C is chosen around
1 - 2/v/m. In order to study the effect of allowing
a to move slightly below 1, we will perform a Taylor
expansion about a = 1.

Let C" = aC and the function

i n<\ (n'l \ (l + ")m(l + C'2A»)m

Si (a, C) := g{a, C /a) = * + c')7m-*(l - C')2 '

Note that d9i°f"> oc = 0, and so M§££

a = l
d-^+°-S^n€- Hence,

dg(a,C0) _d9l(a,C)
da

Differentiating gives

dgi(a,C)

da
Q = l

ml >m — 1

öa
(i + c'7 ;2\m-l

(1 + C")2m-3(1-C)
a = l

We can now perform a Taylor series expansion of
g(a,Co) about a = 1 to obtain g(a, CQ) K; em{\ +
(a — \)y/m — 1), where we have omitted some routine
calculations. Hence, the bound on the generalization
error is (ignoring log factors) 0(1 - (1 -a)s/m - 1), so
that to obtain generalization error of order e, we need

1-e
1-

J m 1

Hence, for values of a very close to 1, the prior can
result in very good generalization properties.

4 EXPERIMENTS

In this section we will look at some experiments where
we calculated margin distributions for two data sets.
We used the vehicle data and the satimage data, both
taken from the StatLog l database. These datasets
were used by [7] for a comparison of the margin distri-
butions of Bagging and Boosting. We used satimage
as provided, there are 4435 samples in the training and
2000 in the test set. The vehicle data were merged, 500
samples were used for training and 252 for testing.

'The data are available via the UCI machine learning
repository at
http://www.ics.uci.edu/ mlearn/MLRepository.html.

4.1 EXPERIMENTAL SETUP

Both datasets are polychotomous classification prob-
lems. To arrive at a reasonable posterior probability
density over weight space besides a prior we need a
proper data model and likelihood term.

According to [1], the best thing we can do in the case
of polychotomous classification is to use (3), the gen-
eralized logistic or softmax transformation of the out-
put layer activations. Given distributions of hidden
unit activations, which are members of the exponential
family, this transformation guarantees that the net-
work outputs may be interpreted as probabilities for
classes.

exp(afc)
p(Ck | z) (3)

Ek'exp(a*')
In (3) the value a* is the value at output node k before
applying softmax activation.

Having sampled a sufficient number of weights we are
ready to predict. In a Bayesian framework each in-
put value leads to a predictive distribution of network
outputs. In the case of classifications, the network out-
put is simply given by integrating over the predictive
distribution. Having sampled from the posterior over
weights, in our case the expectation is approximated
by a sum over the weights.

The experiments were performed for both datasets
with different settings. Initially we sampled 600
weights using the standard method without ARD-
priors (Automatic Relevance Determination [3]). The
network size was fixed to 25 hidden units for both
datasets. This experiment was used to investigate the
dependence of the margin distribution of the number
of weights used to represent the posterior. Discarding
50 initial weights, we calculated the margin distribu-
tion of a committee consisting of the next 150 weights
and compared it to the margin distribution when using
all 550 remaining weights.

To assess whether the margin distribution changes
while increasing the size of the network, we per-
formed two further experiments sampling 150 weights
for a network with 50 and 200 hidden units respec-
tively, again using conventional priors without ARD.
A fourth experiment should reveal the influence of an
ARD-prior on the margin distribution. We sampled
150 weights for a network with 25 hidden units using
an ARD-prior on the input to hidden layer weights.

Figure 1 shows plots of the resulting margin distribu-
tions for the vehicle dataset. The margin distributions
for the satimage data are shown in Figure 2. Look-
ing at the plots of the margin distributions, we see
that they are different. It is interesting to investigate

Bayesian Classifiers are Large Margin Hyperplanes in a Hubert Space 115

whether these differences are significant and whether
the differences in the margin distributions are corre-
lated with the performance of the classifier on an in-
dependent test set. From theory we expect that a clas-
sifier which shows larger margins on the training data
should also show a better generalization error.

For both experiments with the 200 hidden units net-
works we see a trend towards lower margins. This
fact can be understood when remembering that the
prior variance of the hidden to output weights scales
inversely with the number of hidden units. Increas-
ing the number of hidden units forces smaller hidden
to output weights which leads to a smaller complex-
ity of the network and therefore to underfitting and
increased errors on the training set.

4.2 RESULTS

In order to compare the margin distribution with the
generalization error, we used each classifier to predict
class labels on an independent test set. The different
experimental setups and the resulting generalization
errors are summarized in table 1.

Table 2: Generalization error and margin distributions

Satimage data Vehicle data
Error Mean margin Error Mean margin
9.2% 0.929 15.5% 0.73
8.9% 0.932 14.7% 0.72
8.6% 0.926 13.5% 0.78
7.7% 0.898 24.2% 0.45
9.7% 0.895 17.5% 0.70

larger mean values of the margin distribution corre-
spond to smaller generalization errors. Looking at the
satimage experiments, we see that this is true for the
large committee experiment and for the ARD-prior ex-
periment when compared to the first experiment. For
the vehicle data we see the expected correlation for
both large network scenarios and for the ARD-prior
experiment again comparing with the results of the
first experiment.

5 CONCLUSIONS

Table 1: Network size, information about prior dis-
tribution, committee size, and generalization error for
satimage (sat) and vehicle (veh) data.

$
s i o° / /

25 no r(0.05,0.5) 150 9.2% 15.5%
25 no r(0.05,0.5) 550 8.9% 14.7%
50 no r(0.05,0.5) 150 8.6% 13.5%

200 no r(0.05,0.5) 150 7.7% 24.2%
25 yes r(0.05,0.5) 150 9.7% 17.5%

In order to test our hypothesis that a better perfor-
mance on the test set is indicated by larger margins
on the training data, we will use the first experiment as
reference and compare its margin distribution with the
margin distributions of the second to fifth experiment.

Four one sided t-tests were used to assess whether the
observed differences of means are significant. Assum-
ing independent individual experiments, this approach
suffers from the fact that the risk of having incorrectly
rejected one of the hypothesis is as large as the sum of
the individual significance levels. In this case we get
no problem because each experiment was highly signif-
icant. In table 2 we show the generalization error, the
means of the margin distributions. We expect that

Our theoretical analysis and experimental results show
that Bayesian Classifiers of the kind described in [3]
can be regarded as large margin hyperplanes in a
Hubert space, and consequently can be analysed with
the tools of Data-Dependent VC theory.

The non-linear mapping from the input space to the
Hubert space is given by the initial choice of network
architecture, while the coordinates of the hyperplane
are given by the Bayes' posterior and hence depend
both on the training data and on the chosen prior.

The choice of the prior turns out to be a crucial
one, since we have shown how even slightly correctly
guessed priors can be translated into a much lower VC
dimension of the resulting classifier (and this - coupled
with high training accuracy - ensures good general-
ization). But even with a totally uninformative prior
there is at least no harm in using these apparently
overcomplex systems.

Experiments performed on real world data confirm the
predictions of the model, highlighting a strong bias
toward large margins in all experimental conditions
and with different data sets. Their correlation with
test error has also been studied.

The practical utility of VC bounds, however, does not
lie in quantitative predictions of the test error (the
price for their universality is often a certain looseness),
but rather in providing an analytical expression of the
test error which can be used to study the role of the dif-

116 Cristianini, Shawe-Taylor, and Sykacek

ferent parameters and design choices on the final per-
formance. Also, via the SRM principle, such bounds
provide a theoretically sound indicator of performance.
The results obtained in this work can be incorporated
in actual learning systems, to provide for example an
independent stopping criterion: the VC bound on the
error could be calculated during the learning, and the
training could be stopped when no significant increase
in performance is observed. Also, the other choices
like net size, committee size, type of prior, could be
performed using as a guideline their effect on the mar-

gin.

On the theoretical side, the surprising result of this
paper is to co-locate Bayesian Classifiers in the same
category of other systems - namely Support Vector
Machines and Adaboost - which were motivated by
very different considerations but which exhibited very
similar behaviours (e.g. with respect to overfitting).

A unified analysis of the three systems is now possi-
ble, which can make potentially fruitful comparisons
or cross-fertilizations much easier.

Acknowledgements

Nello Cristianini is funded by EPSRC research grant

number GR/L28562.

This work was supported by the Australian Research
Council, and the ESPRIT Working Group in Neural
and Computational Learning (NeuroCOLT Nr. 8556).

P. Sykacek is funded by the European Commission
(Biomed-2 project SIESTA, grant BMH4-CT97-2040).
The Austrian Research Institute for Artificial In-
teligence is funded by the Austrian Federal Ministery

of Science and Transport.

The authors would like to express their gratitude to
the Isaac Newton Institute for Mathematical Sciences
for having been invited for several stays during the Ma-
chine Learning and Neural Networks programm, orga-
nized at the institute between August and December
1997. This joint work was initiated there.

Thanks also to Chris Williams for useful discussions
and to Radford Neal for making his code freely avail-

able over the Internet.

[3] Radford Neal, Bayesian Learning in Neural Networks,
Springer Verlag, 1996

[4] Radford Neal, Priors for Infinite Networks, Techni-
cal Report CRG-TR-94-1 (Dept. of Computer Science,
University of Toronto),
http://www.cs.toronto.edu/-radford/pin.ps.Z.

[5] http://www.cs.toronto.edu/
"radford/software-online.html

[6] Carl Rasmussen, Evaluation of Gaussian Processes
and Other Methods for Non-Linear Regression, PhD
Thesis.
http://www.cs.toronto.edu/pub/carl/thesi8.pB.gz

[7] R. Schapire, Y. Freund, P. Bartlett, W. Sun Lee,
Boosting the Margin: A New Explanation for
the Effectiveness of Voting Methods, Proceedings of
the International Conference on Machine Learning
(ICML'97), 1997

[8] John Shawe-Taylor, Peter L. Bartlett, Robert C.
Williamson, Martin Anthony, Structural Risk Min-
imization over Data-Dependent Hierarchies, Neuro-
COLT Technical Report NC-TR-96-053, 1996.
(ftp:I Ittp.des.rhbnc.ac.uk/
pub/neurocolt/tech_reports).

[9] Vladimir N. Vapnik, The Nature of Statistical Learn-
ing Theory, Springer-Verlag, New York, 1995

[10] Chris Williams, Computation with Infinite Networks,
in Advances in Neural Information Processing Sys-
tems, NIPS 96, Morgan Kaufmann, 1997.

References

[1] C. M. Bishop. Neural Networks for Pattern Recogni-
tion. Clarendon Press, Oxford, 1995.

[2] Leonid Gurvits, A note on a scale-sensitive dimension
of linear bounded functionals in Banach spaces, In
Proceedings of Algorithmic Learning Theory, ALT-97,
and as NECI Technical Report, 1997.

Bayesian Classifiers are Large Margin Hyperplanes in a Hubert Space 117

Margin distribution: 150 networks, 25 hidden units, no ARD Margin distribution: 150 networks, 25 hidden units, no ARD

-1 -0.8 -0,6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Margin distribution: 550 networks, 25 hidden units, no ARD

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Margin distribution: 150 networks, 50 hidden units, no ARD

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Margin distribution: 150 networks, 200 hidden units, no ARD

0.5

1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Margin distribution: 150 networks, 25 hidden units, ARD-pri or

, i — 1 ■ '

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Margin distribution: 550 networks, 25 hidden units, no ARD

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
Margin distribution: 150 networks, 50 hidden units, no ARD

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Margin distribution: 150 networks, 25 hidden units, ARD-pri or

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
Margin distribution: 150 networks, 200 hidden units, no ARD

0.8

-1 -0.8 -0.6 -0.4 0.2 0.4 0.6 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

Figure 1: Plot of margin distribution of the vehicle
data. The different experimental setups lead to differ-
ent margin distributions. Further investigations show
that these differences are highly significant. Using the
first experiment as reference, the third to fifth margin
distribution indicate the correct trend in the general-
ization error for the third to fifth classifier respectively,
whereas the conclusion we would draw from the second
margin distribution is misleading.

Figure 2: Plot of margin distribution of the satim-
age data. Also in this case we get different margin
distributions. Again using the first experiment as ref-
erence, the margin distributions of these experiments
allow to predict the correct trend of the generalization
performance for the second and fifth experiment. The
conclusion of the third and fourth margin distribution
which indicates worse generalization performance com-
pared to the first experiment is again misleading.

118

The MAXQ Method for Hierarchical Reinforcement Learning

Thomas G. Dietterich
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

tgd@cs.orst.edu

Abstract

This paper presents a new approach to hier-
archical reinforcement learning based on the
MAXQ decomposition of the value function.
The MAXQ decomposition has both a procedu-
ral semantics—as a subroutine hierarchy—and a
declarative semantics—as a representation of the
value function of a hierarchical policy. MAXQ
unifies and extends previous work on hierarchical
reinforcement learning by Singh, Kaelbling, and
Dayan and Hinton. Conditions under which the
MAXQ decomposition can represent the optimal
value function are derived. The paper defines a
hierarchical Q learning algorithm, proves its con-
vergence, and shows experimentally that it can
learn much faster than ordinary "flat" Q learn-
ing. Finally, the paper discusses some interest-
ing issues that arise in hierarchical reinforcement
learning including the hierarchical credit assign-
ment problem and non-hierarchical execution of
the MAXQ hierarchy.

1 Introduction

Hierarchical approaches to reinforcement learning (RL)
problems promise many benefits: (a) improved exploration
(because exploration can take "big steps" at high levels of
abstraction), (b) learning from fewer trials (because fewer
parameters must be learned and because subtasks can ig-
nore irrelevant features of the full state) and (c) faster learn-
ing for new problems (because subtasks learned on previ-
ous problems can be re-used).

Recent research has explored three general approaches to
reaching these goals. The first approach, introduced by
Dean and Lin (1995), exploits a hierarchical decomposi-
tion primarily as a computational device to accelerate the

computation of the optimal policy. The second approach,
introduced by Parr and Russell (1998) relies on a program-
mer to design a hierarchy of abstract machines that con-
strains the possible policies to be considered. Their method
computes the policy that is optimal subject to these hier-
archical constraints by effectively flattening the hierarchy.
We will call this kind of policy hierarchically optimal, be-
cause it is the best policy consistent with the imposed hi-
erarchy. The third approach, pioneered by Singh (1992),
Kaelbling (1993), and Dayan and Hinton (1993), also re-
lies on a programmer-designed hierarchy. In this hierarchy,
each subtask is defined in terms of goal states or termina-
tion conditions. Each subtask in the hierarchy corresponds
to its own Markov Decision Problem (MDP), and the meth-
ods seek to compute a policy that is locally optimal for each
subtask. We will call such policies recursively optimal. Re-
cent work by Precup, Sutton. and Singh (1998) studies as-
pects of both the first third approaches.

In this paper, we extend the research on recursively opti-
mal policies by introducing the MAXQ method for hier-
archical reinforcement learning. The methods introduced
by Singh, Kaelbling, and Dayan and Hinton arc all spe-
cific to particular tasks. The Feudal Q learning method
of Dayan and Hinton suffers from the problem that at all
non-primitive levels of a Fcudal-Q hierarchy, the learning
task can become non-Markovian, and therefore difficult to
solve. In contrast, the MAXQ method is general purpose.
At each level of the hierarchy, the task is Markovian and
can be solved by standard RL methods. In many cases,
state abstractions can be introduced without destroying the
optimality of the learned policy. Like Kaclbling's work,
MAXQ supports non-hierarchical execution of the learned
policy, which permits it to behave well even when the opti-
mal policy violates the structure of the hierarchy.

This paper is organized as follows. First, we introduce the
MAXQ hierarchy using an example and define its procedu-
ral and declarative semantics. Then we introduce two thco-

The MAXQ Method for Hierarchical Reinforcement Learning 119

R G
o

Y B
0 12 3 4

Figure 1: The Taxi Domain

rems that describe the conditions under which the MAXQ
hierarchy can successfully represent the value function of
a fixed hierarchical policy. Section 4 introduces a learning
algorithm for training a MAXQ hierarchy and shows ex-
perimentally and theoretically that it works well. Finally,
the paper shows how a non-hierarchical policy can be com-
puted and executed using the MAXQ hierarchy.

2 The MAXQ Hierarchy

We will introduce the MAXQ method using the simple Taxi
Problem shown in Figure 1. A taxi inhabits a 5-by-5 grid
world. There are four specially-designated locations in this
world, marked as R(ed), B(lue), G(reen), and Y(ellow).
The taxi problem is episodic. In each episode, the taxi starts
in a randomly-chosen state and with a randomly-chosen
amount of fuel (ranging from 5 to 12 units). There is a
passenger at one of the four locations (chosen randomly),
and that passenger wishes to be transported to one of the
four locations (also chosen randomly). The taxi must go to
the passenger's location (the "source"), pick up the passen-
ger, go to the destination location (the "destination"), and
put down the passenger there. (To keep things uniform, the
taxi must pick up and drop off the passenger even if he/she
is already located at the destination!) The episode ends
when the passenger is deposited at the destination location.

There are seven primitive actions in this domain: (a) four
navigation actions that move the taxi one square North,
South, East, or West (each of these consumes one unit of
fuel), (b) a Pickup action, (c) a Putdown action, and (d) a
Fillup action (which can only be executed when the taxi is
at location F(uel)). Each action is deterministic. There is
a reward of — 1 for each action and an additional reward of
+20 for successfully delivering the passenger. There is a
reward of —10 if the taxi attempts to execute the Putdown
or Pickup actions illegally. If a navigation action would
cause the taxi to hit a wall, the action is a no-op, and there
is only the usual reward of — 1. Finally, the episode also
ends (with a reward of -20) if the fuel level falls below

zero.

We seek a policy that maximizes the average reward per
step. In this domain, this is equivalent to maximizing the
total reward per episode. The optimal policy—which is
non-trivial to implement by hand—attains an average re-
ward per step of 0.92 (computed over 5000 trials). There
are 8,750 possible states: 25 squares, 5 locations for the
passenger (counting the four starting locations and the
taxi), 5 destinations, and 14 fuel levels.

This task has a simple hierarchical structure in which there
are three sub-tasks: Get the passenger, Refuel the taxi, and
Deliver the passenger. Each subtask involves navigating
to one of the five locations and then performing a Pickup,
Fillup, or Putdown action. While the taxi is navigating to
a location, only that location is relevant. We would like to
capture this hierarchical structure and take advantage of it
during learning and performance.

Figure 2 shows a MAXQ graph for this problem. This
graph contains two kinds of nodes: Max nodes (indicated
by triangles) and Q nodes (indicated by ovals). Max nodes
with no children denote primitive actions in the domain;
Max nodes with children represent subtasks. In this sim-
ple problem, there are five such subtasks: (a) Navigate(f)
(move the taxi to target location t), (b) Get (move to the
passenger's location and pick up the passenger), (c) Put
(move to the passenger's destination and put down the pas-
senger), (d) Refuel (move to F and Fillup), and (e) Root
(perform the overall task of picking up and delivering the
passenger). Notice that the Navigate task is shared by the
Get, Put, and Refuel tasks.

The immediate children of each Max node are Q nodes.
Each Q node represents an action that can be performed
to achieve its parent's subtask. For example, the MaxGet
node has a child QNavigateForGet which represents the
action of navigating from the current state to the passen-
ger's location. The distinction between Max nodes and Q
nodes is critical to ensuring that subtasks can be shared and
reused. Each Max node will learn the context independent
expected cumulative reward of performing its subtask. For
example, MaxNavigate(f) will estimate the expected cu-
mulative reward of navigating from any state to one of the
five target locations t. Each Q node will learn the con-
text dependent expected cumulative reward of performing
its subtask. For example, QNavigateForGet(f) will learn
the expected cumulative reward of navigating to location
t and then completing the Get task. On the other hand,
QNavigateForPut(f) will learn the expected cumulative re-
ward of navigating to location t and then completing the
Put task. Both of these Q nodes will "ask" MaxNavigate(f)
how much it will cost to get to location t, and they will use

120 Dietterich

QGet)

'MaxGetN^

/
/

\
QPickup QNavigateForGet(t) QNavigateForRefuel(i) QFillup QNavigateForPut(t) QPutdown

/ 'Fillup^ \ A ̂ utdowi^

Figure 2: A MAXQ graph for the Taxi Domain

this to help them compute their Q values. The value func-
tion computed by MaxNavigate is context independent and
can be shared by all three of its parent Q nodes.

In rest of the paper, we will say that Max node a is the
child of Max node i if there is a Q node whose parent is i
and whose child is a.

To define the semantics of the MAXQ graph more formally,
let us suppose that the overall task is to solve a Markov
Decision Problem (MDP) M defined over a set of states S
and actions A with reward function R(s'\s,a) (the reward
received upon entering state s' after performing action a
in state s) and transition probability function P(s'\s,a) (the
probability of entering state s' as a result of performing a in
s). In this paper, we will assume that the MDP M defines an
undiscounted stochastic shortest path problem. All of the
results can be extended to the infinite-horizon discounted
case.

Each Max node i corresponds to a separate subtask A/,. The
children of Max node i are the actions of A/,-. Each subtask
Mj divides the set 5 of all states into two disjoint subsets:
Sj and 7}. The set 7} is the set of terminal states for M;.

Subtask Mj will terminate whenever the environment enters
one of the states in 7}. A subset G, C 7} of the terminal
states are the goal states of A/,. Below, we will discuss the
details of defining a reward function that will encourage
Mi to terminate in one of these goal states. Let us define
7t, to be some (arbitrary) policy for subtask /. This policy
"attempts" to get from any state in 5,- to one of the goal
states in G,.

A hierarchical policy for a MAXQ graph is a set of poli-
cies 7t = {7to,... ,7t„}, one for each Max node, that indicate
how each Max node should choose its actions. The hierar-
chical policy is executed the same way that subroutines are
executed in ordinary programming languages. The Root
policy chooses one of its child actions to perform, say, Get.
The Get policy then chooses one of its child actions, say,
Pickup. Then the Pickup action is executed, since it is a
primitive. A Max node's policy is executed until that Max
node enters a terminating state, at which point, "control"
returns to its parent Max node.

Therefore, we can view the MAXQ graph as a subroutine
call graph. Like subroutines, Max nodes can be parame-
terized. In this graph, MaxNavigate takes one parameter,

The MAXQ Method for Hierarchical Reinforcement Learning 121

f, which specifies which of the five locations (R, B, G, Y,
F) is the target of the MaxNavigate. One way in which the
graph is different from an ordinary program is that the chil-
dren of each Max node are unordered. They can be called
in any order, and a Max node can execute each of its chil-
dren multiple times before it completes its subtask. The
MAXQ graph is therefore a kind of incompletely-specified
non-deterministic program. One result of learning will be
to determine a policy for each Max node that tells how and
when to invoke its children. This will make the MAXQ
graph a completely-specified deterministic program (inter-
acting with a non-deterministic environment).

Thus far, our formulation of the MAXQ method is essen-
tially the same as the Feudal Q learning method of Dayan
and Hinton (1993). However, an important improvement
over Feudal Q learning is the ability to interpret the MAXQ
graph as a representation of the value function for a hierar-
chical policy. Consider Max node i, and define V^s) to be
the expected cumulative reward for following the hierarchi-
cal policy Jt starting in state $ until we enter some state in
7J. For a fixed hierarchical policy 7t, subtask M; has a well-
defined transition probability function P^s'lsja), which is
the probability that the environment will move from state
s to state s' when Af; executes action a. This probability
is well defined, because the child Ma is executing a fixed
policy %a (as are all of its descendants). Hence, node i can
treat action a as an atomic action. The immediate reward
for node i of executing a will be the expected reward for
node a of moving from the current state s to a terminal state
in Ta according to policy na. This is denoted V£(s). Hence,
we can write

TO = TO+X^MTO). CD

where a = 7C,(i). This gives us a recursive decomposition
of the value function so that the value function of the root
node is the value function of the entire MDP M and each
subtask Mi is a separate MDP.

This recursive expression becomes more useful when we
switch to the action-value (or "Q") representation of the
value function. Define Qf (s,a) to be the expected cumu-
lative reward for MDP M,- of performing action a in state s
and then following the hierarchical policy n thereafter. De-
fine the second term on the right-hand side of Eq. (1) to be
Cf(s,a), which we will call the completion function. This
is the expected cumulative reward of completing MDP Af;
following policy K after executing action a in state s. With
these definitions, we can rewrite Eq. (1) as

where

TO
| QUsMs))

Zs,p(s'\s,i)R(s'\s,i)
i composite
i primitive

cT(*,a) = X/VMTO)
s1

(3)

(4)

Q?(s,a) = V?(s) + Cf(s,a) (2)

These completely define the value-function semantics of
the MAXQ hierarchy. Each Q node with parent i and child
a stores the information Cf (s,a) for each state s in 5,-. Each
Max node / returns the Q value of the child chosen by it,-.

To compute the value of a hierarchical policy n in state s,
we begin at MaxRoot (node 0) and compute Qft(s,Ko(s)).
This requires that we ask our child node a\ = 7to(s) for
its value V£ (s). Our child recursively asks its child «2 =
nai (s) for its value, and so on until a leaf node an is reached.
Let (ai,ü2,... ,an) be the path that was traversed through
the MAXQ graph. Now leaf node an returns V£(s), to
which its parent adds C%n (s,a„) and so on recursively.
The value returned by MaxRoot is

TO = W + <£-! M + • • • + C, (*.A2) + C5(s,ai)
(5)

Figure 3 shows how the sequence of rewards r\, n,... re-
ceived from the primitive actions is decomposed hierarchi-
cally into the sum of the C terms.

3 Representation Theorems

Under what conditions can this hierarchy represent the
value function of a fixed, hierarchical policy? We will say
that a MAXQ graph is a full-state graph if separate Cf (s,a)
values are stored for each state s £ S,. In most applications,
including Figure 1, it will be desirable to introduce an ab-
straction function Xj(s) that will provide a set of features
that abstract essential information from the state. Each
Q node will then store the function Cf(Xi(s),a), with one
value for each distinct abstract state X;(s).

For full-state graphs, it is easy to prove the following theo-
rem by expanding Equations (2-4):

Theorem 1 Letn= {7i,-;i = 0,...,n} be a hierarchical pol-
icy defined over a full-state MAXQ graph and let i = 0 be
the root node of the graph. Then there exist values for C,
(for internal Max nodes) and Vj (for primitive, leaf Max
nodes) such that Vo(s) is the expected cumulative reward of
following policy n in state s.

A more important and difficult question is to understand
the conditions under which an abstract-state MAXQ graph
can exactly represent the value function of a hierarchical
policy. The following theorem establishes one condition:

122 Dietterich

KJ')

W Q-,^.«« c5(j,Ai

'2 »"3 '4 '5 '8 '9 HO r\\ r\2 H3 H4

Figure 3: The MAXQ decomposition; r,,..., rH denote the sequence of rewards received from primitive actions at times 1,..., 14.

Theorem 2 For all Max nodes i and actions a, let
Resultf{s,a) = {s'\P?{s'\s,a) > 0} be the set of states that
can result from applying abstract action a in state s at node
i while following hierarchical policy n. If the following
condition holds, then the MAXQ graph with abstraction
functions Xj(s,a) can represent the value function of any
policy 7C whose value function can be represented by the
MAXQ graph with no abstraction functions:

For all Max nodes i, actions a, states s € 5„
and distinct states s\ ,S2 € Resultf(s,a) whenever
Cf(s\,a) ^ Cf{s2,a) it is the case thatXi{s\,a) ^
Xi(s2,a)

In other words, if an abstraction function X, treats a pair of
result states s\ and 52 as identical, then their un-abstracted
values must be equal. Otherwise, the value function cannot
be properly represented. The four children of MaxNavigate
all satisfy this condition. The expected reward of complet-
ing the MaxNavigate action depends only on the current lo-
cation of the taxi, the target location, and the amount of
fuel remaining. If we are navigating to F (for refueling),
for example, the expected reward does not depend on the
source or destination locations.

The introduction of abstractions can create a hierarchical
credit assignment problem. For example, in our imple-
mentation, we used only the taxi location and the target
location to represent the C functions for QNorth, QSouth,
QEast, and QWest. We wanted these nodes to learn a nav-
igation policy that was independent of how much fuel re-
mained. But this means that when the fuel is exhausted and
a -20 penalty is received, these Q nodes cannot represent
the reason for this penalty! This is the hierarchical credit
assignment problem: to determine which node is respon-
sible for a reward that is received. Our solution is for the
designer of the MAXQ hierarchy to also decompose the re-

ward function. When each reward is generated, a marker
is attached that indicates which Q nodes are potentially re-
sponsible for this reward. For the -20 empty fuel penalty,
the QGet, QPut, and QRefuel nodes are held responsible,
because their parent, MaxRoot, must compare their Q val-
ues to decide when to refuel to avoid the penalty. Their C
functions must therefore be able to represent the rewards.

This requires a change to the decomposition equations. Let
/?,(.y'|s,a) be the portion of the reward that is assigned to
node /. Then we write the following:

Cf(s,a) = X/>(s'l*,«(*'M + W)]

V?(s) -{ ß?(*,*/W)
^P^\s,i)Ri(sf\s,i)

i composite
/ primitive

(6)

(7)

In many domains, we believe it will be easy for the de-
signer of the hierarchy to also decompose the reward func-
tion. However, an interesting problem for future research
is to develop algorithms for autonomously solving the hi-
erarchical credit assignment problem.

4 A Learning Algorithm

The preceding section has shown that the hierarchy can cor-
rectly represent the value function of any hierarchical pol-
icy if the full state is employed to represent the C, func-
tion in each node i. Hence, we could apply Parr and Rus-
sell's HAM-Q algorithm to learn the best hierarchical pol-
icy. However, because we arc committed to employing
state abstractions, we have chosen instead to develop a rein-
forcement learning algorithm for finding a recursively op-
timal policy.

It turns out that in general there can be many different re-
cursively optimal policies, and that some of them achieve

The MAXQ Method for Hierarchical Reinforcement Learning 123

better expected rewards than others. The problem is that
a subtask may have many policies that are locally optimal,
but some of them are more useful than others for the over-
all task. For example, suppose we changed the taxi domain
so that if the taxi hits a wall, the trial is terminated with a
reward of -5. Then for MaxNavigate(f), if the target loca-
tion t is more than 5 steps away, the locally optimal policy
would be to hit a wall. This would not be part of any hi-
erarchically optimal policy, however! Dayan and Hinton
faced this same problem, and they solved it by providing a
penalty of 10 points to subtask i for entering an undesired
terminal state (i.e., a state in 7] but not in G,). This has
the proper effect, but in the MAXQ hierarchy, it causes the
value function computed by the entire hierarchy to be in-
correct, because it incorporates the (often non-zero) proba-
bility of receiving these terminal state penalties.

A better method is to define, for each Max node MDP M,-, a
parallel Markov decision problem M,- with the same states,
actions, and transition probabilities as Af; but with a second
reward function /?, that is zero except for undesired termi-
nal states, where it provides a large penalty. (We used a
penalty of -100 points). Our learning algorithm will seek
a locally optimal policy ft* for M,-. However, it will also
compute the value function for executing ft* in the original
MDP Mi, and this is the value that will be passed "up" the
MAXQ hierarchy.

Specifically, our learning algorithm MAXQ-Q is a variant
of Q learning that performs the following. At each compos-
ite Max node, we maintain two tables Q(s,a) and Cj(s,a).
The algorithm chooses an action a to perform according to
its current exploration policy. It executes a, observes the
resulting state s' and reward Rj(s'\s,a), and computes the
following:

a : = argmaxfä(s',a') + Vfl'(jO] (8)

Q(s,a) :--

Q(s,a) :--

(l-at(i))Ci(s,a) + a,(i)-

[Ri{s') +Ri(s'\s,a) + Q(s',a*) + Va.(s')]

(9)
(l-cttWCiis^ + Otii)-

[Ri(s'\s,a)+Q(s',a*) + Va*{s')]

(10)

Here a* is the best action in s' according to the current C
and V values. Both C and C are updated using a*. At each
leaf node i, the update is slightly different:

Vi(s) := (l-OtMViW + OkWiis'lsJ). (11)

The quantity ty (i) is the learning rate for node i at time step
t.

In order to prove convergence of this algorithm, we must
make several assumptions. First, we must assume that all
deterministic policies in MDP M are proper (i.e., they all
terminate with probability 1). Second, we must assume
that all locally optimal policies, ft*, give the same transi-

tion probability distribution Ff"(s'\s,ä). This ensures that
all locally optimal policies at node a give rise to the same
MDP at any node i that is a parent of a. (A consequence
of this assumption is that all recursively optimal policies
will have the same value function.) Third, we must as-
sume that \Vj\, |C,|, and \Q\ are bounded at all times (this
is easy to enforce). Fourth, the exploration policy executed
at each node i during learning must be a GLIE (greedy in
the limit with infinite exploration) policy—that is, a policy
that executes each action infinitely often in every state that
is visited infinitely often, and that is greedy with respect to
Qi with probability 1. Finally, the learning rates a,(i) must
satisfy the usual conditions:

lim y.ovO) = °° and lim "Y.o£(i) <
r-+. r=l T-x>

(12)
r=l

Theorem 3 Under the assumptions listed above, with
probability 1, MAXQ-Q will converge to a recursively op-
timal policy for MDP M consistent with MAXQ hierarchy
H.

Proof Sketch: The proof employs a stochastic approxima-
tion argument similar to those introduced to prove the con-
vergence of Q learning and SARSA(0) (Jaakkola, Jordan, &
Singh, 1994; Bertsekas & Tsitsiklis, 1996; Singh, Jaakkola,
Littman, & Szpesvari, 1998). The proof is by induction on
the levels of the tree, starting at the Max nodes all of whose
children are primitive leaf nodes. At these "first-level" Max
nodes, the standard results for Q learning can be applied to
prove that the Q values will converge with probability 1
to the optimal value function. Furthermore, because each
node i is executing a GLIE exploration policy, the policy
at these nodes will also converge with probability 1 to a
locally optimal policy.

Now consider a Max node j all of whose children are ei-
ther primitive nodes or "first-level" Max nodes. Define
Pj{s'\s, i) to be the transition probabilities observed by par-
ent node j when it invokes child node i in state 5 at time t
in the learning process. Because the first-level Max nodes
are executing GLIE policies, Pj(s'\s, i) will converge (with
probability 1) to the state transitions P*^^,!') that will be
produced by any of the locally optimal policies for node
i (by assumption, all of these locally optimally policies
give the same state transition probabilities). This enables
us to prove that node j also converges with probability 1
to the optimal Cj values and a locally-optimal policy. The

124 Dietterich

key is to decompose the error in any particular Cj backup
into two terms. One term—corresponding to the difference
between a sample backup (using the observed state tran-
sition) and a full Bellman backup (using Pj(.y'|.s,i))—has
expected value of zero. The other term—corresponding to
the difference between doing a full Bellman backup using
the current transition probabilities, Pj(s'|s,/) and doing a
full Bellman backup using the final transition probabilities
Pj (s'|s, i)—converges to zero with probability 1. By apply-
ing a stochastic approximation result (Proposition 4.5 from
Bertsekas and Tsitsiklis, 1996), we can prove that node j
will converge to a locally optimal policy. Hence, by induc-
tion, we can prove that the entire hierarchy converges to a
recursively optimal policy. End of Proof Sketch.

There is one interesting method that can be employed to
accelerate learning in the higher nodes of the graph. When
an action a is chosen for Max node i in state s, the exe-
cution of a will move the environment through a series of
states s\,... ,Sk,ty+i = s'. If a was indeed the best action
to choose in si, then it should also be the best action to
choose (at node i) in states S2 through Sk- Hence, equations
(9) and (10) can be applied in all of these states. This re-
flects an important difference between standard subroutine
calls and the MAXQ hierarchy. In standard subroutines,
there is a set of preconditions that must be true at the start
of the subroutine. A partially-executed subroutine can of-
ten make these preconditions false, so that it is not possi-
ble to interrupt a subroutine and then call it again without
first re-establishing the preconditions. In the MAXQ hier-
archy, however, a Max node i can be invoked in any state
s € Si, and it must "complete" execution of the task from
that state onward. This means that the execution of the Max
node can be interrupted and restarted with no change to the
hierarchy.

We applied algorithm MAXQ-Q to the Taxi task using a
tabular representation of the C functions. We employed
state abstraction as follows. For the QNorth, QSouth,
QEast, and QWest nodes, the C function ignores the pas-
senger source and destination locations and the amount of
fuel. The C function of QPickup ignores the passenger des-
tination and fuel, but it must know the source location and
taxi location in order to predict the effects of illegal Pickup
actions. Similarly, QPutdown ignores the passenger source
location and the fuel, and QFiilup ignores the source and
destination locations and the fuel. QNavigateForGet can
represent its C function by a single value, because after
a successful Navigate, only a Pickup remains to complete
the Get action. The same is true for QNavigateForPut and
QNavigateForRefuel. Because of the hierarchical credit as-
signment, QGet and QRefuel need to see the entire state,
but QPut can ignore all of the state information, because

K.

1

/ f
V^WtJ

Jn*

^^VV^-V^'" y

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Trial

Figure 4: Online performance of flat and hierarchical Q learning
on the Taxi task. Each curve is smoothed using a 200-trial moving
average. The horizontal line shows the average performance of
the optimal policy.

once it succeeds, the task is completed. All of these ab-
stractions mean that instead of a set of seven 8,750-element
Q functions (61,250 values) for flat Q learning, the MAXQ
hierarchy requires only 18,253 values to represent the C
functions.

Figure 4 compares the online performance of flat and hi-
erarchical Q learning. For flat Q learning, we employed
Boltzmann exploration with an initial temperature of 50.
This was decreased by a factor of 0.997 after each suc-
cessful trial. We experimented with many different cool-
ing schedules, but we were unable to get flat Q learning to
converge to the optimal policy within 50,000 trials. This
was the fastest cooling schedule that was able to attain (at
least briefly) the optimal expected reward. For hierarchical
Q learning, we employed a separate temperature for each
Max node. The starting temperature for all nodes was 50
except MaxRoot, which used 100. Each node decreased its
temperature when it successfully reached a goal terminal
state. MaxRoot was cooled by a factor of 0.9986, the sec-
ond level Max nodes at 0.997, and MaxNavigate at 0.995.
In all cases, a learning rate of a = 1 was employed, since
all actions and rewards are deterministic.

These cooling rates were chosen so that the lower Max
nodes in the graph can become reasonably competent at
their subtasks before the nodes higher in the graph try to
learn. If care is not taken, a Max node i may conclude that
a subtask a is very expensive (because the subtask has not
yet learned a good policy), and therefore, it sets the C value
for a very low. When this is combined with Boltzmann ex-
ploration, the result is that the subtask may never be tried
again. Hence, we only performed an update for a Q node
if that node completed its subtask with an average absolute

The MAXQ Method for Hierarchical Reinforcement Learning 125

Bellman error per step of less than 0.2. (This parameter
was not tuned at all.)

Figure 4 shows that the hierarchical method is able to learn
the task much faster and achieve a higher level of perfor-
mance than flat Q learning. Of course, both methods could
be improved by employing techniques for accelerating Q
learning, such as eligibility traces (e.g., Peng & Williams,
1996).

5 Non-Hierarchical Execution

We have shown that the MAXQ hierarchy can learn an op-
timal policy for an MDP if that policy is a recursively opti-
mal hierarchical. However, there are situations in which the
optimal policy is almost—but not quite—hierarchical. For
example, consider a modified Taxi task (the "fickle Taxi
problem") in which as soon as the taxi picks up the pas-
senger and moves one square, the passenger can randomly
change the destination with probability 0.3. This change
comes after the hierarchical policy has committed to exe-
cuting QNavigateForPut(f) for the original destination. As
a result, the MaxNavigate subtask will take the taxi to the
old destination. Then control will return to MaxPut, which
will invoke QNavigateForPut to move the taxi to the new
destination.

Such "almost hierarchical" MDP's raise the question of
whether there is a way to convert a recursively-optimal hi-
erarchical policy into an optimal non-hierarchical policy.

To answer this question, we implemented the Fickle Taxi
domain. We removed all aspects of fuel from the domain
so that we could figure out the optimal policy and hand-
code it. Figure 5 compares the performance of flat Q learn-
ing and hierarchical Q learning on this modified task. The
optimal policy can achieve an average reward per step of
1.172; but the best hierarchical policy (compatible with the
MAXQ graph of Figure 2) can only achieve 1.002. Hier-
archical learning with MAXQ-Q is able to attain this level
rapidly. Flat Q learning approaches the optimum, but does
not reach it within 10,000 trials. We tuned each algorithm
to optimize its performance. We employed a learning rate
of 0.35 and decayed the initial temperature of 50.0 by a fac-
tor of .460 (for flat Q) and .211 (for hierarchical Q) when-
ever a goal terminal state was reached.

An alternative to hierarchical execution of the MAXQ
graph is polling execution, as first suggested by Kaelbling
in her (1993) Hierarchical Distance to Goal method. In the
polling approach to MAXQ, each action is chosen by start-
ing at MaxRoot and computing the path (from root to leaf)
with the highest Q value. The primitive action at the end of
this path is then executed, and the process is repeated. This

is equivalent to computing the one-step greedy lookahead
policy given the current value function. If the hierarchi-
cal policy is not optimal, then this one-step greedy policy
will be closer to an optimal policy, because it corresponds
to one step of policy improvement in the policy iteration
algorithm (Bertsekas, 1995). This informally proves the
following:

Theorem 4 For all states s, the value of the policy com-
puted by polling execution of the MAXQ hierarchy is > the
value of the policy computed by hierarchical execution.

Hence, polling execution of a MAXQ graph can produce a
non-hierarchical policy that is better than the hierarchical
policy represented by the graph.

We tested this on the Fickle Taxi task by first training the
MAXQ hierarchy by MAXQ-Q for 1000 trials and then
continuing the training with polling execution. Figure 6
shows that there is an initial loss of performance when we
switch to polling execution. This is because during hierar-
chical training, the more abstract Q nodes in the graph have
only learned their C values well in states where they were
frequently executed. Under polling, they are now executed
in other states as well, and they rapidly learn the correct
values so that performance is able to reach the level of the
optimal non-hierarchical policy. In this domain, polling ex-
ecution of the best hierarchical policy can produce the op-
timal policy.

6 Concluding Remarks

This paper has defined the MAXQ value function decom-
position for hierarchical reinforcement learning. The pa-
per has shown that the MAXQ graph can represent the
value function of any hierarchical policy implemented by
the graph. A learning algorithm based on Q learning was
introduced, proved to converge, and shown experimentally
to perform much better than ordinary, non-hierarchical Q
learning.

The most important aspect of the MAXQ method is the sep-
aration between the context-independent policy and value
function (represented by the Max nodes) and the context-
dependent value function (represented by the Q) nodes.
This permits the value functions of subtasks to be learned
independent of their context, and this enhances the re-
usability of the subtasks and makes it easier to employ state
abstraction within the subtasks. However, optimality of the
learned policy is lost in general, and hierarchical credit-
assignment problems may be introduced. Fortunately, the
ability of the MAXQ hierarchy to represent the value func-
tion of the hierarchical policy permits the non-hierarchical
execution of a one-step greedy policy that is better than the

126 Dietterich

Optimal Non-Hierarchic a]

Optimal Hierarchical

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Trial

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Trial

Figure 5: Online performance of flat and hierarchical Q learning
on the Fickle Taxi task. Each curve is the average of 10 runs;
the returns from each run were smoothed by a 200-trial moving
average.

Figure 6: Online performance on the Fickle Taxi task. The first
1000 trials are trained hierarchically. The remaining trials are
trained while polling.

hierarchical policy.

Acknowledgements. The author thanks Eric Chown for
many helpful discussions of this work and Valentina Bayer,
William Langford, and Wesley Pinchot for helpful com-
ments on an earlier draft. The support of ONR grant
N00014-95-1-0557 and of NSF grant IRI-9626584 is grate-
fully acknowledged.

References

Bertsekas, D. P. (1995). Dynamic programming and optimal con-
trol. Athena Scientific, Belmont, MA.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-Dynamic Pro-
gramming. Athena Scientific, Belmont, MA.

Dayan, P., & Hinton, G. (1993). Feudal reinforcement learning.
NIPS, 5, pp. 271-278. Morgan Kaufmann, San Francisco,
CA.

Dean, T, & Lin, S.-H. (1995). Decomposition techniques for
planning in stochastic domains. Tech. rep. CS-95-10,
Dept. of Computer Science, Brown University, Provi-
dence, Rhode Island.

Jaakkola, T, Jordan, M. I., & Singh, S. P. (1994). On the con-
vergence of stochastic iterative dynamic programming al-
gorithms. Neur. Comp., 6(6), 1185-1201.

Kaelbling, L. P. (1993). Hierarchical reinforcement learning: Pre-
liminary results. ICML-93, pp. 167-173 San Francisco,
CA. Morgan Kaufmann.

Parr, R., & Russell, S. (1998). Reinforcement learning with hier-
archies of machines. NIPS, Vol. 10 Cambridge, MA. MIT
Press.

Peng, J., & Williams, R. J. (1996). Incremental multi-step Q-
learning. Mach. Learn., 22, 283-290.

Singh, S., Jaakkola, T, Littman, M. L., & Szpesvari, C.
(1998). Convergence results for single-step on-policy
reinforcement-learning algorithms. Tech. rep., University
of Colorado, Dept. Comp. Sei.

Singh, S. P. (1992). Transfer of learning by composing solutions
of elemental sequential tasks. Mach. Learn., 8, 323-339.

Sutton, R. S., Precup, D., & Singh, S. (1998). Between MDPs and
Semi-MDPs: Learning, planning, and representing knowl-
edge at multiple temporal scales. Tech. rep., University of
Mass., Dept. Comp. Inf. Sei., Amherst, MA.

127

A Process-Oriented Heuristic for Model Selection

Pedro Domingos
Artificial Intelligence Group
Instituto Superior Tecnico

Lisbon 1096, Portugal
pedrod@gia.ist.utl.pt

Abstract

Current methods to avoid overfitting are ei-
ther data-oriented (using separate data for
validation) or representation-oriented (penal-
izing complexity in the model). This paper
proposes process-oriented evaluation, where
a model's expected generalization error is
computed as a function of the search pro-
cess that led to it. The paper develops
the necessary theoretical framework, and ap-
plies it to one type of learning: rule induc-
tion. A process-oriented version of the CN2
rule learner is empirically compared with
the default CN2. The process-oriented ver-
sion is more accurate in a large majority
of the datasets, with high significance, and
also produces simpler models. Experiments
in artificial domains suggest that process-
oriented evaluation is particularly useful in
high-dimensional domains.

1 INTRODUCTION

Overfitting avoidance is often considered the central
problem of machine learning (e.g., (Cheeseman &
Oldford, 1994)). If a learner is sufficiently powerful,
it must guard against selecting a model that fits the
training data well but captures the underlying phe-
nomenon poorly. Current methods to address this
problem fall into two broad categories. Data-oriented
evaluation uses separate data to learn and validate
models, and includes methods like cross-validation
(Breiman, Friedman, Olshen & Stone, 1984; Stone,
1974), the bootstrap (Efron & Tibshirani, 1993), and
reduced-error pruning (Brunk & Pazzani, 1991). It
has several disadvantages: it is often computationally

intensive, reduces the data available for learning, can
be unreliable if the validation set is small, and is it-
self prone to overfitting if a large number of models is
compared (Ng, 1997). Representation-oriented evalu-
ation seeks to avoid these problems by using the same
data for training and validation, but a priori penaliz-
ing some models as more likely to overfit. Bayesian ap-
proaches in general fall into this category (Cheeseman,
1990; MacKay, 1992). Representation-oriented mea-
sures typically contain two terms, one reflecting fit
to the data, and one penalizing model complexity
(Akaike, 1978; Schwarz, 1978; Wallace & Boulton,
1968; Rissanen, 1978; Moody, 1992). This approach is
only appropriate when the simpler models are truly the
more accurate ones, and there is mounting evidence
that this is typically not the case ((Domingos, 1998;
Domingos, 1997; Schuurmans, Ungar & Foster, 1997;
Lawrence, Giles & Tsoi, 1997; Webb, 1996; Schaf-
fer, 1993; Murphy & Pazzani, 1994), etc.). Structural
risk minimization (Vapnik, 1995) and PAC learning
(Kearns & Vazirani, 1994) are representation-oriented
methods that seek to bound the difference between
training and generalization error using a function of
the model space's (effective) dimension. This typically
produces bounds that are overly broad, and requires
severely restricting the model space.

In this paper we argue that representation-oriented
evaluation has these limitations because it only con-
siders the learner's model space, and not its search
process. A learner with an unlimited model space can
avoid overfitting as long as it attempts only a limited
number of hypotheses (even if it is not possible a priori
to predict which). If these hypotheses are correlated,
the chance of overfitting is further reduced. Given
the sequence of hypotheses that a learner attempts,
it is possible to estimate the generalization error of
the "current best" hypothesis taking into account the
process that led to it. Intuitively, the more hypotheses

128 Domingos

Learner L i

K

Learner L 2

Best \
on /

data /

"2,1

h
"2,2

Figure 1: A simple example of an overfitting avoidance
problem.

This notion can be quantified. If a hypothesis h's true
error rate is e and S consists of n independently drawn
examples, the number of errors e committed by h on
5 is a binomially distributed variable with parameters
n and e:

p{e n,e) = &(e|n,e)=(^)ee(l-er (1)

Let B(e\n,e) be the probability that the number of
errors is greater than e:

that have been attempted and the less correlated they
are, the higher the generalization error we expect for a
given training-set error. This paper begins to develop
this approach, which we will call process-oriented eval-
uation (POE for short). The basic theoretical frame-
work is presented, and then applied to the standard
"separate and conquer" rule induction process (Clark
& Niblett, 1989). An empirical study demonstrates
the effectiveness of POE. The paper concludes with
sections on related and future work.

2 PROCESS-ORIENTED
EVALUATION

Consider the simplest example of an overfitting avoid-
ance problem, in a classification context. Suppose
learner L\ consists of drawing one hypothesis at ran-
dom from some model space and returning it, and
learner L2 consists of drawing two hypotheses at ran-
dom (independently) from the same model space as L\,
and returning the one with lowest error on a training
sample S. This situation is shown schematically in
Figure 1. Let hi be the hypothesis returned by L\,
hi the hypothesis returned by Li, n the number of
examples in 5, and e; the number of examples hi mis-
classifies. The goal is to choose the hypothesis with
lowest true error t{ (i.e., ej is the probability of hi
misclassifying an example, given the true example dis-
tribution). Suppose n = 100, e\ = 12, and ei = 11.
Should we prefer h\ or h21 According to the maximum
likelihood principle (DeGroot, 1986), €1 = 0.12 and
e2 = 0.11, so hi should be chosen. Assuming the two
hypotheses have the same complexity or prior prob-
ability, representation-oriented evaluation would give
the same answer. However, Li had two opportunities
to draw a hypothesis with low training error, and so
the probability of e2 being low merely by chance is
higher than for e\. Thus hi may in fact have a higher
true error rate than h\.

B(e\n,e) = ^2 b(e\n,e) (2)
i=e+l

Notice that this notation is the opposite of the usual
notation for a cumulative distribution function (i.e.,
B(e\n,e) = 1 - Binomial_cdf(e|n,e)). It will be more
convenient for what follows.

The probability of hi misclassifying ei examples is
p(ei|n,ei) = 6(ei|n,ei). This can be used with Bayes's
theorem to compute the expected value of ei given n
and ei, £[ei|n,ei]. By finding a similar expression for
p(ei\n,ei), we can compute 2£[e2|",e2] and choose the
hypothesis with lowest expected error. Let the two
hypotheses drawn by Li be /i2,i and /i2,2 (with true
errors €2,1 and 62,2 respectively, and numbers of train-
ing errors e2,i and e2,2). From these, L2 chooses the
one with lowest training error (i.e., hi = h2j, where
j = argmini61 2 e2,i)- Then the probability of L2 re-
turning a hypothesis hi that misclassifies ei training
examples is the probability that /i2,i misclassifies ei
training examples and /i2,2 misclassifies more, or vice-
versa, or both hi 1 and h2 2 misclassify e2 examples:

p(e2\n,ei) = b(ei\n,e2A)B(ei\n,ei,i)

+B(ei\n,eiti)b(e2\n,eiti)

+ b{ei\n,eiii)b{e2\n,€2ti) (3)

Our goal is to use this equation to compute the ex-
pected value of e2. We are hindered by the fact that
in addition to e2 (whether it is £2,1 or e2,2) the equa-
tion contains another unknown parameter (whichever
e2,i is not e2). Since we are not interested in e2|i or
£2,2 per se, but only in the effect on t2 of trying two
hypotheses instead of of one, we propose the following
heuristic: assume that e2)i = e2,2 = £2- This approx-
imation will be good if e2,i and e2,2 are similar, and
poor if they are very different. However, this heuristic

A Process-Oriented Heuristic for Model Selection 129

may yield good results even in the latter case, because
a close approximation of £?[e2|n,e2] is not required;
all that is required is that E[e2\n,e2] > E[ei\n,ei] iff
€2 > ci, which is a much weaker condition (Domingos
& Pazzani, 1997). If £2,1 = £2,2 = £2 Equation 3 be-
comes:

p(e2|n,e2) = &(e2|n,e2)5(e2|n,e2)

-t-ß(e2|n,e2)&(e2|n,€2)

+ &(e2|n,e2)&(e2|n,e2)

= [B(e2\n,e2) + b(e2\n,e2)]2

-B2(e2|n,e2)

= B2(e2-l|n,e2)-.B
2(e2|n,e2) (4)

Applying Bayes's theorem:

p{e2\n,e2) ocp(e2)p(e2|n,e2) (5)

p(e2) can be used to incorporate prior beliefs about the
error rate of the hypotheses considered by L2. Here it
will simply be assumed uniform:1

p(em\n,em) oc p(em\n, em)

= Bm(em-l\n,em)-Bm{em\n,em)

(8)

Notice that this formula makes intuitive sense: as m
increases, the mass of probability is shifted to higher
and higher em's; but as n increases, higher and higher
m's are needed to make this happen to the same de-
gree. To see this, consider the binomial expansion

Bm(em-l\n,em)

= [B(em|n,em) + 6(eTO|n,em)]m

= Bm(em\n,em) + mBrn~1{em\n,em)b(em\n,em)
m(m ~ 1) nm-2,. . , NL2/ + - LB" '(em|n,em)62(em|n,em) +

(9)

and consider that, for all but the smallest sample sizes,
B(em\n,em) » 6(em|n,em). Thus:

p(e2\n,e2) ocp(e2|n,€2) (6)

The expected value of (.2 can now be computed by
integration:

■E[e2|rc,e2]
/ C2p{e2\n,

Jo
£2) de2

/ P(e2\n,
Jo

(7)
£2) de2

Doing this for 62 = 11, n = 100 results in Efaln, e%\ =
0.134. A similar treatment for e\, using e\ = 12, n =
100 and p(ei\n,e{) = &(ei|n,ei), yields I5[ei|n,e{\ =
0.127. Thus the hypothesis output by L\ would be
preferred, even though L2's has a lower training error.

Equation 4 can be readily generalized to a learner Lm

that draws m hypotheses at random and chooses the
one with lowest training error:

'This is an unrealistic assumption, and is made solely
for the sake of simplicity. As the following sections show,
the proposed method can be effective even when this as-
sumption is used. This can be attributed to the fact that,
except for very small sample sizes and/or very extreme pri-
ors, the effect of the likelihood term p(e2|n, €2) will easily
dominate the prior's. In any case, a version of POE using
beta priors is currently being implemented.

p(em\n, em) a p(em\n, em)

= Bm(em-l\n,em)-Bm(em\n,em)

~ mö(em|n,em)ßm_1(em|n,em)

(10)

When m = 1, this reduces to b(em\n, em), as expected.
When m = 2, 6(em|n,em) is multiplied by a constant
and by B(em\n,em). Since the latter is a function
that increases monotonically with em for a given n and
em, the effect of this is to decrease the probability of
lower em's and increase the probability of higher ones,
and thus to increase the expected em. Asm increases,
b(em\n, em) is multiplied by higher and higher powers
of B(em\n,em). This further decreases the probabil-
ity of low em's and increases the probability of high
ones, leading to an ever-increasing expected em. As
an example, Figure 2 shows 6(25150, em) (magnified
by a factor of five) and several powers of B(25|50, em).
The resulting E[em|50,25] (not shown) has a roughly
similar shape to &(25|50, eTO), but shifts rightward in
step with B (25150, em). For larger n, the same process
takes place, but 6(em|n, em) is more sharply peaked,
B(em\n,em) also transitions from values close to zero
to values close to one more sharply, and the advance
of Bm(em\n, em) to the right becomes correspondingly
slower (since, for any 0 < k < y < 1, asy->l with

130 Domingos

0.8

0.6

0.4

0.2

0.2

 ' I" 1 1

5*b(25l50,eps)
B(25l50,eps)

BA2(25l50,eps)
BA4(25l50,eps) ■■-

/ /

/ / / / / /
/
/ / ;

/

/ / / /
\

0.3 0.4 0.5
eps

0.6 0.7 0.8

Figure 2: Variation of 6(em|n,em) and powers of
f?(em|n,em) with tm for n = 50, em = n/2.

0.8

0.6

0.4

0.2

15*b(250l500,eps)
B(250l500,eps)

BA2(250l500,eps)
BA4(250l500,eps)

0.2 0.3 0.4 0.5
eps

0.6 0.7 0.8

Figure 3: Variation of 6(em|n,em) and powers of
B(em\n,em) with em for n = 500,em = n/2.

k held constant higher and higher m's are needed to
make ym < k). This can be seen by comparing Fig-
ure 2 with Figure 3, which shows the corresponding
plots for n = 500.

Equation 8 still assumes that all m hypotheses drawn
are independent, but it can be further generalized to
include the dependent case:

p{tm\n,em) oc p(em\n,cm)

= p(Vi<;<m em,i > em|n,em)

-p(Vi<i<m em,i > em|n,em) (11)

Evaluating this expression when high-order dependen-
cies are present will generally not be feasible, but
the standard Bayesian network approach (Heckerman,
1996) is applicable here: the number of training errors
em,i of each hypothesis hm<i generated by Lm can be
viewed as a node in a Bayesian network, whose par-
ents are the training errors of the hypotheses hmj it is
primarily dependent on. For example, in many greedy
search processes (e.g., standard decision tree induc-
tion), if hm,3 was derived from hm>2, which in turn
was derived from ftm,i, em$ will be approximately in-
dependent of em,i given em^. In general, the Bayesian
network for a given learning process will have the DAG
(directed acyclic graph) of the search process itself as
a subgraph (e.g., in a greedy search each node em,i
will have arcs to the training errors of the hypotheses
that were generated from /im,j). If par(emjl) are the
parents of em<i in the Bayesian network, Equation 11
above reduces to:

p(em|n,em) ocp(em\n,em) =
m

JJp(em,i > em|n,e„,,Vem i6par(em <) emj > em)
t=i

— |^P(em,i > 6m|n, em, VCm ,epar(em,;) em,j > em]

(12)
t=i

L\ and Li above were considered to be different learn-
ers, but they can equally well be considered different
stages of the same learner. For example, Li can take
the hypothesis output by L\ as its own first hypothesis.
More generally, Lm can be the result of continuing the
search of learner Ljt (k < m) with m-k more hypothe-
ses. Thus this framework can be applied to problems
like decision tree and rule pruning, to which we now
turn.

3 AN APPLICATION: RULE
INDUCTION

Most rule induction systems employ a set covering or
"separate and conquer" search strategy (Michalski,
1983; Clark k Niblett, 1989). Rules are induced one
at a time, and each rule starts with a training set com-
posed of the examples not covered by any previous
rules. A rule is induced by adding conditions one at a
time, starting with none (i.e., the rule initially covers
the entire instance space). The next condition to add
is chosen by attempting all possible conditions. Con-

A Process-Oriented Heuristic for Model Selection 131

ditions on symbolic attributes are typically of the form
Oj = Vij, where Vij is a possible value of attribute Oj.
Conditions on numeric attributes are typically of the
form üi < v^ or a; > %■, where the thresholds Uy are
usually values of the attribute that appear in the train-
ing set. In the beam search process used by many rule
learners, at each step the best b versions of the rule
according to some evaluation function are selected for
further specialization. AQ (Michalski, 1983) continues
adding conditions until the rule is "pure" (i.e., until it
covers examples of only one class). This can lead to se-
vere overfitting. The latest version of the CN2 system
(Clark & Boswell, 1991) uses a simple and effective
Bayesian method to combat this: induction of a rule
stops when no specialization improves its error rate,
and the latter is computed using a Laplace correction
or m- estimate. If nT is the number of examples covered
by a rule r, and er is the number of those examples
it misclassifies, the conventional estimate of the rule's
error rate is er/nr, but its m-estimate is:

er =
er + meo
nr + m

(13)

where eo is the rule's a priori error, which CN2 takes to
be the error obtained by random guessing if all classes
are equally likely: e0 = (c - l)/c, where c is the num-
ber of classes. This prior value is given a weight of m
examples (i.e., the behavior of Equation 13 is equiva-
lent to having m additional examples covered by the
rule, one of each class). CN2 uses m=c. As condi-
tions are added, the rule covers fewer and fewer ex-
amples, and er tends to eo. Thus a rule making more
misclassifications may be preferred if it covers more
examples, causing induction to stop earlier and reduc-
ing overfitting. Clark and Boswell (Clark & Boswell,
1991) found this version of CN2 to be more accurate
than C4.5 (Quinlan, 1993) on 10 of the 12 bench-
mark datasets they used for testing. However, this
scheme ignores that, as more and more conditions are
attempted, the probability of finding one that appears
to reduce the rule's error merely by chance increases.
This will lead the m-estimate to underestimate the
chosen condition's true error, and CN2 to overfit. The
upward correction made to er should increase with the
number of conditions attempted. The process-oriented
evaluation framework described in the previous section
allows us to do this in a systematic way.

Let each hypothesis be one version of the rule at-
tempted during the beam search. The main change
to Equation 8 required is to take into account that
different versions of a rule will cover different numbers

of training examples. In other words, n is now a func-
tion of the hypothesis, and the hypothesis with lowest
ei/rti is chosen. Let nm = («i,..., n*,..., nm), where
rii is the number of examples covered by rule version i,
and let em = mini<i<m {ei/m} be the lowest training-
set error rate found so far. Equation 8 becomes:

p{em\nm,em) ocp(em|nm,em) =
m m

Y[B(riiem - IK, em) - JJ B{rnem\n.i, em)
i=l i=l

(14)

This equation does not need to be computed for ev-
ery rule version generated during the beam search, but
only once for each round. One round consists of gen-
erating every possible one-step specialization of each
rule version in the beam, and selecting the b best.
Thus, if there are a attributes and v is the maximum
number of values of any attribute (in the worst case,
v = n for numeric attributes), one round corresponds
to 0(bav) rule versions. Let m* be the total num-
ber of rule versions generated up to, and including,
round k. Round 1 consists of the initial rule with
no conditions, and mi = 1. Induction stops when
E[emk\nmk,£mk] > •E[emfc_1|nmfc_1,emfc_1], for k > 1.

Equation 14 is of course only a first approximation.
Many other aspects of the rule induction process can
be taken into account using Equation 12, and making
approximations as needed for computational efficiency.
A version of CN2 that takes into account the depen-
dence between each rule version and its parent (i.e.,
the rule version it specializes by one condition) is cur-
rently being implemented.

4 EMPIRICAL STUDY

In order to test the effectiveness of process-oriented
evaluation, default and process-oriented versions of
CN2 were compared on the benchmark datasets previ-
ously used by Clark and Boswell (1991).2 The process-
oriented version was implemented by adding the nec-
essary facilities to the CN2 source code. Numerical in-
tegration (Equation 7) was performed using Simpson's
rule, and B(e\n,e) (Equation 2) was computed using
the incomplete beta function (Press, Teukolsky, Vet-
ter ling & Flannery, 1992). Integrating Equation 14 ev-
ery time E[emk\nmk,emk] needs to be computed (once

2 With the exception of pole-and-cart, which is not avail-
able in the UCI repository (Merz, Murphy k Aha, 1997).

132 Domingos

per round) would generally significantly slow down the
rule induction process. Instead, it was approximated
by:

p(em\n,em) ocp(em\n,em) =

Bm(nem-l\n,em) - Bm(nern\n,em) (15)

where n = ^ Z)£Li ni- This replaces each of the prod-
ucts with a single-step computation, speeding up eval-
uation by 0(m). CN2's Laplace estimates are still used
to choose the best b specializations in each round. This
is preferable to using uncorrected estimates, since as
implemented POE has no preference between hypothe-
ses within the same round, and this is also a factor in
avoiding overfitting. However, the Laplace correction
distorts the values used by Equation 15. This will be
particularly pronounced when there are many classes,
since CN2 uses m = c. In order to minimize this prob-
lem, m = 2 was used with POE.3

The experimental procedure of (Clark & Boswell,
1991) was followed. Each dataset was randomly di-
vided into 67% for training and 33% for testing, and
the error rate and theory size (total number of condi-
tions) were measured for default CN2 and CN2-POE.
This was repeated 20 times. The average results and
their standard deviations are shown in Table l.4

POE reduces CN2's error rate in 8 of the 11 datasets.
Using a sign test, these results are significant at the
4% level. In other words, POE improves CN2 with
high confidence. It also produces simpler rule sets in
all but two of the datasets. With the approximation
used, POE did not noticeably increase CN2's running
time. This is also due to the fact that POE tends to
make induction stop sooner than in default CN2, as
evinced by the theory size results.

While these results are encouraging, they do not nec-
essarily prove that CN2-POE reduces overfitting by
taking into account the increasing number of rule ver-
sions generated as search progresses. If this is indeed
what is taking place, the difference in error between de-
fault CN2 and CN2-POE (errorCN2 -errorCN2-poE)
should increase with the dataset's number of at-

3Simply changing m = c to m = 2 in default CN2 does
not change its performance on the datasets used.

4There are some differences between CN2's results and
those reported in (Clark &; Boswell, 1991). This may be
due to the fact that the default version of CN2 uses a beam
size of 5, whereas Clark and Boswell used b = 20. The
distribution version of CN2 may also differ from the one
used in (Clark & Boswell, 1991).

tributes, since this will increase the number of rule
versions generated in each round. In order to test this
hypothesis, experiments were carried out in artificial
domains. Concepts defined as Boolean functions in
disjunctive normal form were used as targets. The
datasets were composed of 100 training examples and
1000 test examples described by a variable number of
attributes a. The number of literals d in each dis-
junct was generated at random, with a mean of d = 5
and a variance of 5 x (1 - |). This is obtained by
including each literal in the disjunct with probability
-. Literals were negated or not with equal probabil-
ity. The number of disjuncts was set to 2d_1 = 16,
which ensures the concept covers roughly half the in-
stance space. Equal numbers of positive and negative
examples were included in the dataset, and positive ex-
amples were divided evenly among disjuncts. In each
run a different target concept was used. One hundred
runs were conducted for each value of a between 10
and 100 (at intervals of 5), and the correlation be-
tween {errorcNi — ZTTOTCNI-POE) and a was mea-
sured. This was found to be highly positive (p = 0.66),
confirming our hypothesis.

5 RELATED WORK

The literature on model selection and error estimation
is very large, and we will not attempt to review it
here. The incompleteness of representation-oriented
evaluation was noted 20 years ago by Pearl (1978):

It would, therefore, be more appropriate to
connect credibility with the nature of the se-
lection procedure rather than with properties
of the final product. When the former is not
explicitly known ... simplicity merely serves
as a rough indicator for the type of processing
that took place prior to discovery.

Huber (St. Amant & Cohen, 1997; Huber, 1994) ex-
presses thus the need for process-oriented evaluation:

Data analysis is different from, for exam-
ple, word processing and batch programming:
the correctness of the end product cannot be
checked without inspecting the path leading
to it.

Several pieces of previous work take into account the
number of hypotheses being compared, and so can be
considered early steps towards process-oriented eval-
uation. This includes notably systems that use the

A Process-Oriented Heuristic for Model Selection 133

Table 1: Empirical results: error rates and theory sizes of default CN2 and CN2 with process-oriented evaluation
(CN2-POE).

Dataset Error rate Theory size
CN2 CN2-POE CN2 CN2-POE

Breast 30.0±1.4 29.7±1.4 114.5±2.4 58.7±2.6
Echocardio 32.7±1.2 32.3±1.3 42.9Ü.2 35.4±2.1
Glass 39.0±1.5 38.3±1.7 51.8±1.0 54.7±1.1
HeartC 20.8±0.8 22.5±0.8 57.8±0.9 52.0±1.0
HeartH 22.4±1.1 21.8±1.3 69.2Ü.5 60.3Ü.4
Hepatitis 21.2±0.9 19.2±1.3 40.2±1.7 34.0±1.3
Lympho 21.4±1.1 24.1Ü.1 39.5±0.7 38.7±1.0
Soybean 19.5±1.0 19.4±1.0 116.7±2.3 110.9±3.1
Thyroid 4.1±0.2 3.8±0.2 97.5±2.0 104.8±2.0
Tumor 60.1Ü.0 65.1Ü.3 302.8±4.6 273.9±4.4
Voting 4.8±0.4 4.3±0.3 61.7±2.9 49.6±2.5

Bonferroni correction when testing significance (e.g.,
(Kass, 1980; Gaines, 1989; Jensen & Schmill, 1997);
see also (Miller, 1981; Klockars & Sax, 1986; Westfall
& Wolfinger, 1997)). A key difference between these
systems and what is proposed here is that they require
a somewhat arbitrary choice of significance threshold,
while this paper directly attempts to optimize the end
goal (expected generalization error). Also, the Bonfer-
roni correction does not take hypothesis dependencies
into account, while the present framework offers (at
least in principle) a way of doing so.

Quinlan and Cameron-Jones's (1995) "layered search"
method for automatically selecting CN2's beam width
can also be considered a form of process-oriented eval-
uation. While layered search and CN2-POE have sim-
ilar aims, their biases differ: layered search limits the
search's width, while CN2-POE limits its length. The
latter may be more effective in reducing the fragmenta-
tion and small disjuncts problems (Pagallo &: Haussler,
1990; Holte, Acker & Porter, 1989). The assumptions
made by the heuristic proposed here are also clearer
than those implicit in Quinlan and Cameron-Jones's
measure.

Evaluating models that are the result of a search
process, not just of fitting the parameters of a pre-
determined structure, has traditionally not been a con-
cern of statisticians. However, this is beginning to
change (Chatfield, 1995).

Some of the arguments made here for taking into ac-
count the number of hypotheses attempted are made
in greater detail in (Cohen & Jensen, 1997) and (Ng,
1997). The present paper goes further in arguing that
other aspects of the search process should also be taken

into account whenever possible (for example, in rule
induction, the number of examples covered by each
hypothesis).

6 FUTURE WORK

The development and evaluation contained in this pa-
per are obviously only preliminary. As mentioned
above, a version of CN2-POE that takes hypothesis
dependencies into account is currently being imple-
mented. Applications of POE to decision tree in-
duction, backpropagation, instance selection, feature
selection and discretization are also areas for future
work. In each case, the main issue is likely to be find-
ing the optimal trade-off between the computational
and mathematical complexity of POE and its payoff
in reduced error rates. The success of the enterprise is
likely to hinge on distinguishing strong dependencies
from weak ones that can be ignored, and on finding ef-
ficient but roughly correct approximations. For most
learners in most domains, it is probably not realis-
tic to expect large error reductions from POE, since
it does not change the underlying representation or
search process. However, if POE's gains are small but
consistent across a broad spectrum of learners and do-
mains, it will still be worth developing.

The POE error estimates introduced in this paper have
two types of statistical bias. One stems from the fact
that, because evaluation focuses on the lowest error
found, low outliers have a stronger effect than high
ones, leading to a negative bias (i.e., underestimating
error). This bias can be estimated and the POE val-
ues corrected. This is an area of current work. The

134 Domingos

second source of bias is the assumption that all hy-
potheses tried by the learner have similar error rates.
This will lead to a positive bias when the error rate
is decreasing (i.e., POE will tend to overestimate er-
ror at least up to the point where the learner starts
overfitting). One way to overcome this is to intro-
duce explicit expectations about the evolution of the
learner's error as search progresses. For example, a
specific type of curve may be assumed, or an "expected
curve" can be compiled by cross-validation. Another
approach is to avoid the assumption of similar error
rates, for example by marginalizing over the true error
rates of all hypotheses but the chosen one, or by us-
ing their maximum-likelihood estimates. Both of these
approaches are also currently being studied.

The ultimate goal of POE is to accurately predict a
hypothesis's generalization error from its training-set
error, using knowledge of how the hypothesis was ob-
tained. How far this is possible remains an open ques-
tion.

7 CONCLUSION

Two main types of model selection are currently avail-
able. In data-oriented evaluation, a hypothesis's score
does not depend on its form or how the hypothe-
sis was found, but only on its performance on the
data. In representation-oriented evaluation, the score
depends on the data and on the hypothesis's form,
but not on the search process that led to it. This pa-
per argued that the latter cannot be ignored, and pro-
posed process-oriented evaluation (POE), which takes
all three factors into account. An application of POE
to the CN2 rule induction system was found to reduce
error in 8 of 11 benchmark datasets, and produce sim-
pler theories in 9. Experiments in artificial domains
support the hypothesis that these gains stem at least
partly from CN2-POE's use of search process informa-
tion.

References

Akaike, H. (1978). A Bayesian analysis of the mini-
mum AIC procedure. Annals of the Institute of
Statistical Mathematics, 30A, 9-14.

Breiman, L., Friedman, J. H., Olshen, R. A., k Stone,
C. J. (1984). Classification and Regression Trees.
Belmont, CA: Wadsworth.

Brunk, C, k Pazzani, M. J. (1991). An investigation
of noise-tolerant relational concept learning algo-
rithms. Proceedings of the Eighth International

Workshop on Machine Learning (pp. 389-393).
Evanston, IL: Morgan Kaufmann.

Chatfield, C. (1995). Model uncertainty, data min-
ing and statistical inference. Journal of the Royal
Statistical Society A, 158.

Cheeseman, P. (1990). On finding the most proba-
ble model. In J. Shrager k P. Langley (Eds.),
Computational Models of Scientific Discovery and
Theory Formation (pp. 73-95). San Mateo, CA:
Morgan Kaufmann.

Cheeseman, P., k Oldford, R. W. (1994). Preface.
In P. Cheeseman k R. W. Oldford (Eds.), Select-
ing Models from Data: Artificial Intelligence and
Statistics IV. New York: Springer-Verlag.

Clark, P., k Boswell, R. (1991). Rule induction with
CN2: Some recent improvements. Proceedings of
the Sixth European Working Session on Learning
(pp. 151-163). Porto, Portugal: Springer-Verlag.

Clark, P., k Niblett, T. (1989). The CN2 induction
algorithm. Machine Learning, 3, 261-283.

Cohen, P. R., k Jensen, D. (1997). Overfitting ex-
plained. Preliminary Papers of the Sixth Inter-
national Workshop on Artificial Intelligence and
Statistics (pp. 115-122). Fort Lauderdale, FL: So-
ciety for Artificial Intelligence and Statistics.

DeGroot, M. H. (1986). Probability and Statistics (2nd
ed.). Reading, MA: Addison-Wesley.

Domingos, P. (1997). Why does bagging work? A
Bayesian account and its implications. Proceed-
ings of the Third International Conference on
Knowledge Discovery and Data Mining (pp. 155-
158). Newport Beach, CA: A A AI Press.

Domingos, P. (1998). Occam's two razors: The sharp
and the blunt. Submitted.

Domingos, P., k Pazzani, M. (1997). On the optimal-
ly of the simple Bayesian classifier under zero-one
loss. Machine Learning, 29, 103-130.

Efron, B., k Tibshirani, R. J. (1993). An Introduction
to the Bootstrap. New York: Chapman and Hall.

Games, B. R. (1989). An ounce of knowledge is worth
a ton of data. Proceedings of the Sixth Interna-
tional Workshop on Machine Learning (pp. 156-
159). Ithaca, NY: Morgan Kaufmann.

Heckerman, D. (1996). Bayesian networks for knowl-
edge discovery. In U. M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, k R. Uthurusamy (Eds.), Ad-
vances in Knowledge Discovery and Data Mining
(pp. 273-305). Menlo Park, CA: A A AI Press.

A Process-Oriented Heuristic for Model Selection 135

Holte, R. C, Acker, L. E., k Porter, B. W. (1989).
Concept learning and the problem of small dis-
juncts. Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence (pp.
813-818). Detroit, MI: Morgan Kaufmann.

Huber, P. J. (1994). Languages for statistics and data
analysis. In P. Dirschedl & R. Ostermann (Eds.),
Computational Statistics. Heidelberg: Physica-
Verlag.

Jensen, D., & Schmill, M. (1997). Adjusting for mul-
tiple comparisons in decision tree pruning. Pro-
ceedings of the Third International Conference on
Knowledge Discovery and Data Mining (pp. 195-
198). Newport Beach, CA: AAAI Press.

Kass, G. V. (1980). An exploratory technique for inves-
tigating large quantities of categorical data. Ap-
plied Statistics, 29, 119-127.

Kearns, M. J., & Vazirani, U. V. (1994). An Intro-
duction to Computational Learning Theory. Cam-
bridge, MA: MIT Press.

Klockars, A. J., & Sax, G. (1986). Multiple Compar-
isons. Beverly Hills, CA: Sage.

Lawrence, S., Giles, C. L., k Tsoi, A. C. (1997).
Lessons in neural network training: Overfitting
may be harder than expected. Proceedings of the
Fourteenth National Conference on Artificial In-
telligence (pp. 540-545). Providence, RI: AAAI
Press.

MacKay, D. (1992). Bayesian interpolation. Neural
Computation, 4, 415-447.

Merz, C. J., Murphy, P. M., k Aha, D. W. (1997). UCI
repository of machine learning databases. Depart-
ment of Information and Computer Science, Uni-
versity of California at Irvine, Irvine, CA.

Michalski, R. S. (1983). A theory and methodology
of inductive learning. Artificial Intelligence, 20,
111-161.

Miller, Jr., R. G. (1981). Simultaneous Statistical In-
ference (2nd ed.). New York: Springer-Verlag.

Moody, J. E. (1992). The effective number of pa-
rameters: An analysis of generalization and reg-
ularization in learning systems. In J. E. Moody,
S. J. Hanson, k R. P. Lippmann (Eds.), Advances
in Neural Information Processing Systems 4 (pp.
847-854). San Mateo, CA: Morgan Kaufmann.

Murphy, P., k Pazzani, M. (1994). Exploring the de-
cision forest. Journal of Artificial Intelligence Re-
search, 1, 257-275.

Ng, A. Y. (1997). Preventing "overfitting" of cross-
validation data. Proceedings of the Fourteenth In-
ternational Conference on Machine Learning (pp.
245-253). Nashville, TN: Morgan Kaufmann.

Pagallo, G., k Haussler, D. (1990). Boolean feature
discovery in empirical learning. Machine Learn-
ing, 3, 71-99.

Pearl, J. (1978). On the connection between the com-
plexity and credibility of inferred models. Inter-
national Journal of General Systems, 4, 255-264.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., k
Flannery, B. P. (1992). Numerical Recipes in C
(2nd ed.). Cambridge, UK: Cambridge University
Press.

Quinlan, J. R. (1993). C4-5: Programs for Machine
Learning. San Mateo, CA: Morgan Kaufmann.

Quinlan, J. R., k Cameron-Jones, R. M. (1995). Over-
searching and layered search in empirical learning.
Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (pp. 1019-
1024). Montreal, Canada: Morgan Kaufmann.

Rissanen, J. (1978). Modeling by shortest data de-
scription. Automatica, 14, 465-471.

Schaffer, C. (1993). Overfitting avoidance as bias. Ma-
chine Learning, 10, 153-178.

Schuurmans, D., Ungar, L. H., k Foster, D. P. (1997).
Characterizing the generalization performance of
model selection strategies. Proceedings of the
Fourteenth International Conference on Machine
Learning (pp. 340-348). Nashville, TN: Morgan
Kaufmann.

Schwarz, G. (1978). Estimating the dimension of a
model. Annals of Statistics, 6, 461-464.

St. Amant, R, k Cohen, P. R. (1997). Building
an EDA assistant: A progress report. Prelimi-
nary Papers of the Sixth International Workshop
on Artificial Intelligence and Statistics (pp. 501-
512). Ft. Lauderdale, FL: Society for Artificial In-
telligence and Statistics.

Stone, M. (1974). Cross-validatory choice and assess-
ment of statistical predictions. Journal of the
Royal Statistical Society B, 36, 111-147.

Vapnik, V. N. (1995). The Nature of Statistical Learn-
ing Theory. New York: Springer-Verlag.

Wallace, C. S., k Boulton, D. M. (1968). An informa-
tion measure for classification. Computer Journal,
11, 185-194.

Webb, G. I. (1996). Further experimental evidence
against the utility of Occam's razor. Journal of
Artificial Intelligence Research, 4, 397-417.

Westfall, P. H., k Wolfinger, R. D. (1997). Multiple
tests with discrete distributions. American Statis-
tician, 51, 3-8.

136

Relational Reinforcement Learning

Saso Dzeroski
Department of Intelligent Systems

Jozef Stefan Institute
Jamova 39, SI-1000 Ljubljana, Slovenia

Saso.DzeroskiQijs.si

Luc De Raedt, Hendrik Blockeel
Department of Computer Science

Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

{Luc.DeRaedt, Hendrik.Blockeel}®cs.kuleuven.ac.be

Abstract

Relational reinforcement learning is pre-
sented, a learning technique that combines
reinforcement learning with relational learn-
ing or inductive logic programming. Due to
the use of a more expressive representation
language to represent states, actions and Q-
functions, relational reinforcement learning
can be potentially applied to a new range of
learning tasks. One such task that we inves-
tigate is planning in the blocks world, where
it is assumed that the effects of the actions
are unknown to the agent and the agent has
to learn a policy. Within this simple domain
we show that relational reinforcement learn-
ing solves some existing problems with rein-
forcement learning. In particular, relational
reinforcement learning allows us to employ
structural representations, make abstraction
of specific goals pursued and exploit the re-
sults of previous learning phases when ad-
dressing new (more complex) situations.

1 INTRODUCTION

Within the field of machine learning, both reinforce-
ment learning [8] and inductive logic programming (or
relational learning) [12,10] have received a lot of atten-
tion since the early nineties. It is therefore no surprise
that both Leslie Pack Kaelbling and Richard Sutton
(in their invited talks at IJCAI-97, Nagoya, Japan)
suggested to study the combination of these two fields.

From the reinforcement learning point of view, this
could significantly extend the application perspective.
Most representations used in reinforcement learning
are inadequate for describing planning tasks such as
the simple blocks world. Even reinforcement learning

work that involves generalization has largely employed
an attribute-value representation. Furthermore, due
to the use of variables in relational representations, it
is possible to make abstractions of some specific details
of the learning tasks, such as the goal pursued. Indeed,
when learning to plan in the blocks world, one would
expect that the results of learning how to stack block
a onto block b would be similar to stacking c onto d.
Current approaches to reinforcement learning have to
retrain from scratch if the goal is changed in this man-
ner. Using relational reinforcement learning retraining
is unnecessary. Relational reinforcement learning also
allows us to exploit the results of learning in a simple
domain when learning in a more complex domain (e.g.,
going from 3 blocks to 4 blocks in the blocks world).

From the inductive logic programming point of view,
it is important to address domains such as reinforce-
ment learning. So far, inductive logic programming
has mainly studied concept-learning, and largely ig-
nored the rest of machine learning. By demonstrating
the potential of relational representations for reinforce-
ment learning, we hope to show that the relational
learning methodology does not only apply to concept-
learning but to the whole field of machine learning.

With this in mind, we present a preliminary ap-
proach to relational reinforcement learning and ap-
ply it to simple planning tasks in the blocks world.
The planning task involves learning a policy to select
actions. Learning is necessary as the planning agent
does not know the effects of its actions. Relational re-
inforcement learning employs the Q-learning method
[14, 8, 11] where the Q-function is learned using a re-
lational regression tree algorithm (see [6, 9]). A state
is represented relationally as a set of ground facts. A
relational regression tree in this context takes as input
a relational description of a state, a goal and an action,
and produces the corresponding Q-value.

Relational Reinforcement Learning 137

This paper is organized as follows. In section 2, we
view planning (under uncertainty) as a reinforcement
learning task, and in section 3, we briefly review re-
inforcement and in particular Q-learning. Section 4
introduces relational reinforcement learning that com-
bines Q-learning and logical regression trees. In sec-
tion 5, we present some experiments, and finally, in
section 6, we conclude and touch upon related work.

2 LEARNING TO PLAN AS
REINFORCEMENT LEARNING

Consider a planning agent with the following task:

Given

c, and the floor. Blocks can be on the floor or
can be stacked on each other. Each state can
be described by a set (list) of facts, e.g., si =
{clear(a), on(a,b),on(b,c),on(c, floor)}. The avail-
able actions are then move(x,y) where x ^ y and
x € {a, b,c}, y € {a, b,c, floor}.

It is then possible to define the preconditions and ef-
fects of actions. The Prolog code below defines pre
and S respectively. The predicate pre defines the pre-
conditions for the action move(X,Y) while the predi-
cate delta defines its effects: delta(S, A, SI) succeeds
when S(S, A) = SI. States are represented as lists of
facts and the auxiliary predicate holds (S, Query) suc-
ceeds when Query would succeed in the knowledge base
containing the facts in S only.

• a set of possible states S,

• a set of possible actions A,

• an UNKNOWN function 6: S x A -> A,

• a function pre:S x A —> {t, /},

• a goal goat.S —> {t, /}, and

• a starting state s £ S,

find a sequence of actions ai,..., an (a; € A) such that

• goal(S(...6(s, ai))...),an)) = t, and

• pre(£(...<5(s,ai))...),...a;)) = t.

The agent can be in one of the states of S. It can exe-
cute action o € A in a given state s if the preconditions
for a are true in s (pre(s,a) = t), e.g., as in STRIPS
[7]. Executing an action a in a state s will put the
agent in a new state S(s,a). When placed in a state s
the task of the agent is to find a (shortest) sequence
of actions ai,...,an that will lead it to a goal state.
The prototypical AI task belonging to this category is
planning.

It is assumed here that the agent does not know the
effect of its actions, hence the function 6 is unknown
to the agent. The above task specification thus con-
trasts with classical planning in that the S function is
unknown to the agent. Therefore, this task requires a
learning component.

Example: The best known (toy)-domain to study
planning is the blocks world. Consider the situ-
ation where we have three blocks called a, b and

pre(S,move(X,Y)) :-
holds(S, [clear(X), clear(Y),

not X=Y, not on(X.floor)]).
pre(S,move(X,Y)) :-
holds(S,[clear(X), clear(Y),

not X=Y, on(X.floor)]).
pre(S,move(X,floor)) :-

holds(S,[clear(X), not on(X,floor)]).

holds(S,[]).
holds(S,[not X=Y I R]) :-

not X=Y, !, holds(S.R).
holds(S,[not A I R]) :-

not member(A.S), holds(S,R).
holds(S,[A I R]) :-

member(A,R). holds(S.R).

delta(S,move(X,Y), NextS) :-
holds(S,[clear(X), clear(Y),

not X=Y, not on(X.floor)]),
delete([clear(Y),on(X,Z)],S,S1),
add([clear(Z),on(X,Y)],SI,NextS).

delta(S,move(X,Y), NextS) :-
holds(S,[clear(X), clear(Y),

not X=Y, on(X,floor)]),
delete ([clear (Y), on (X, floor)], S, SI),
add([on(X,Y)],SI,NextS).

delta(S,move(X,floor), NextS) :-
holds(S,[clear(X), not on(X,floor)]),
delete([on(X,Z)] ,S,S1),
add([clear(Z),on(X,floor)],SI,NextS).

The goal is to stack a onto b,
goal(S) :- member(on(a,b),S).

i.e.
D

3 REINFORCEMENT LEARNING

Planning with incomplete knowledge as outlined above
can be recast as a reinforcement learning problem.

138 Dzeroski, De Raedt, and Blocked

3.1 THE BASICS OF REINFORCEMENT
LEARNING

The basic notions of reinforcement learning can be
outlined as follows (we follow the notation used by
Mitchell [11]).

• The task of the agent is to learn a policy IT : S ->
A for selecting its next action at based on the
current state st; that is 7r(sf) = at.

• The reward at time t is rt = r(st,at). We will
assume here that rt = 1 if goal(5(st,at)) = t and
st 7^ o~{st,at); otherwise rt = 0. The reward func-
tion r is unknown to the learner as it relies on
the unknown 6. The reward function only gives a
reward in goal states.

• The state at time t + 1 is st+i = 6(st,at) if
goal(st) = /; otherwise st+\ = st. This captures
the idea that goal states are absorbing states, i.e.,
once a goal state is reached the only available ac-
tion is to stay in the state.

• The learned policy should be optimal, i.e., it
should maximize

oo

v"r(st) = E^+i

i=o

where 0 < 7 < 1. We will denote the optimal
policy by 7r*.

The optimal policy 7r* allows us to compute the short-
est plan to reach a goal state. So, learning the optimal
policy (or approximations thereof) will allow us to im-
prove our planning performance.

3.2 Q-LEARNING

It is well-known that under the conditions sketched in
the previous subsection, Q-learning allows us to ap-
proximate the optimal policy.

The optimal policy IT* will always select the action
that maximizes the sum of the immediate reward and
the value of the immediate successor state, i.e.,

7r*(s) = argmaxa(r(s,a) + jV (6(s,a)))

The problem with this formulation of 7r* is that it re-
quires knowledge of 6 and r, which the learner does
not have at its disposal.

The Q-function is defined as follows :

Q(s,a) = r(s,a)+jV7r'(S(s1a))

Knowing Q allows us to rewrite the definition of ir* as
follows :

7T*(s) = argmaxaQ(s,a)

According to Mitchell, this rewrite is important as it
shows that if the agent can learn the Q function instead
of the VK* function, it will be able to act optimally.
The Q-function for a fixed goal can then be approxi-
mated by Q, for which a look-up table is learned by
the following algorithm (cf. [11]).

for each s, a do
initialize the table entry Q(s,a) — 0

do forever
i :=0
generate a random state so
while not goal(si) do

select an action a; and execute it
receive an immediate reward r* = r(sj,Oi)
observe the new state Si+i
i:=i+l

for j=i-l to 0 do
update Q(sj,a,j) :— rt + ^maxa'Q(sj+i,a')

It is common in Q-learning to select action a in state
s probabilistically so that P(a\s) is proportional to
Q(s,a), e.g.,

P(ai|s) = Jfc<5<''°'V£*<5(''°i) (1)

Higher values of k give stronger preference to actions
with high values of Q causing the agent to exploit what
it has learned, while lower values of k reduce this pref-
erence allowing the agent to explore actions that cur-
rently do not have high values of Q.

4 RELATIONAL
REINFORCEMENT LEARNING

4.1 THE NEED FOR RELATIONAL
REPRESENTATIONS

Given the above classical framework for Q-learning we
could now learn to plan in the blocks world sketched
earlier. Using the approach as it stands we could
store all the state-action pairs encountered and mem-
orize/update the corresponding Q values, having in
effect an explicit look-up table for state-action pairs.
This has however a number of disadvantages:

Relational Reinforcement Learning 139

move(cfloor) move(b,c)
r=0 r=0
Q=0.81 Q=0.9

■»
■>

move(a.b)
r move(a,floor)
Q=1 r=0 (

Q=0

->

Figure 1: A blocks-world example for relational Q-learning.

• It is impractical for all but the smallest state-
spaces. Furthermore, using look-up tables does
not work for infinite state spaces which could arise
when first order representations are used (e.g., if
the number of blocks in the world is unkown or
infinite the above method does not work).

• Despite the use of a relational representation for
states and actions, the above method is unable
to capture the structural aspects of the planning
task.

• Whenever the goal is changed from say on(a, b) to
on(b, c) the above method would require retrain-
ing the whole Q function.

• Ideally, one would expect that the results of learn-
ing in a world with 3 blocks could be (partly) re-
cycled when learning in a 4 blocks world later on.
It is unclear how to achieve this with the lookup
table.

The main point where RRL differs from the algorithm
in section 3.2 is in the for-loop where the Q function
is modified. This for-loop now becomes :

for j=i-l to 0 do
generate example (sj,a,j,qj),

where qj := ri + rymaxafQe(sj+i,a')
update Qe using TILDE-RT

to produce Qe+\ using the examples (sj,aj,qj)

TILDE-RT [6] is an algorithm for learning logical re-
gression trees and will be described briefly below.

The initial tree Qo assigns zero value to all state-action
pairs. From each goal state g encountered, an example
(g,a,0) is generated for each action a whose precondi-
tions are satisfied in g. The rationale for this is that
no reward can be expected from applying an action in
an absorbing goal state.

The first problem can be solved by using an inductive
learning algorithm (e.g., a neural network) to approx-
imate Q. The three other problems can only be solved
by using a relational learning algorithm that can make
abstraction of the specific blocks and goals using vari-
ables. We now present such a relational learning algo-
rithm.

4.2 THE RRL ALGORITHM

The relational reinforcement learning (RRL) algo-
rithm is obtained by combining the classical Q-
learning algorithm with stochastic selection of actions
and a relational regression algorithm. Instead of hav-
ing an explicit lookup table, an implicit representation
of the Q-function is learned in the form of a logical re-
gression tree, called a Q-tree.

Example: A possible initial episode (e = 0) in the
blocks world with three blocks a, b, and c, where the
goal is to stack a on b (i.e., goal(on(a, b))) is depicted in
Figure 1. The discount factor 7 is 0.9 and the reward
given is one on achieving a goal state, zero otherwise.

The examples generated by RRL use the actions and
the Q-values listed above the arrows representing the
actions. The actual format of these examples is listed
in Table 1. It is exactly this input that would be used
by TILDE-RT to generate the Q-tree Qx. D

TILDE-RT is not incremental, so we currently simu-
late the update of Q by keeping all (s, a) pairs encoun-
tered and the most recent q value for each pair, and
inducing a relational regression tree Qe from these ex-
amples after each episode e. This tree is then used to
select actions in episode e + 1.

140 Dzeroski, De Raedt, and Blocked

Table 1: Examples for TILDE-RT generated from the blocks-world Q-learning episode in Figure 1.

qvalue(0.81). qvalue(0.9). qvalue(l.O). qvalue(O.O).

action(move(c,floor)). action(move(b.c)). action(move(a,b)). action(move(a,floor)).

goal(on(a,b)). goal(on(a,b)). goal(on(a,b)). goal(on(a,b)).

clear(c). clear(b). clear(a). clear(a).

on(c,b). clear(c). clear(b). on(a,b).

on(b,a). on(b,a). on(b,c). on(b,c).

on(a,floor). on(a,floor). on(a,floor). on(c,floor).

on(c,floor). on(c,floor).

4.3 TOP-DOWN INDUCTION OF
LOGICAL REGRESSION TREES

Logical regression trees are similar to propositional re-
gression trees [3]: leaves predict a value for a continu-
ous class, while internal nodes contain conditions that
partition the example space. The difference is that
examples here are not feature or attribute-value vec-
tors, but sets of relational facts, representing, e.g., a
state of the blocks world, a goal, and an action to be
taken, all at the same time. Similarly, internal nodes
are not restricted to attribute-value tests but can be
first order literals containing predicates, variables and
complex terms.

The TILDE-RT system [6] induces such first order logi-
cal regression trees (or relational regression trees) from
examples (cf. [9] for a related approach). The input
for TILDE-RT is a set of state-action pairs together
with the corresponding Q-values, represented as sets of
facts. From this TILDE-RT induces (using the classi-
cal TDIDT-algorithm) a tree in which the classes cor-
respond to real numbers (Q-values).

To illustrate the above notions, consider the episode
shown in Figure 1. The examples for TILDE-RT gen-
erated by the RRL algorithm are given in Table 1. The
relational regression tree induced by TILDE-RT from
these examples is shown in Figure 2.

Nodes in the tree correspond to Prolog-queries. If
the query succeeds in an example the yes subtree is
taken, otherwise the no subtree. Different nodes in
the tree may share variables, e.g., the bottom node
in the tree (containing act ion (move (D,B))) refers to
the variable D that first appear in the root of the tree
(goal(on(C,D))). The Prolog program corresponding
to the tree is shown in the lower part of Figure 2.

The semantics of logical decision trees is extensively
discussed in [1], as well as the correspondence between
a tree and a Prolog program. The method to induce
the trees is described in [6] and is - for the case of
regression trees - very similar to Kramer's SRT system
[9]. We refer to these papers for more details on the
representation and learning of such trees.

To find the Q-value corresponding to a state-action
pair, one has to construct a Prolog knowledge base
containing the Prolog program (corresponding to the
tree), all facts in the state, the action, and the goal.
Running the query ?-qvalue(Q) will then return the
desired result. E.g., the Q-tree above will return a Q-
value of zero for all actions if the goal is on(C,D) and
on(C,D) holds in the state (goal states are absorbing).
On the other hand, if the goal on(C,D) does not yet
hold and the action is move(C.D)), then a Q-value of
one is returned (reward of one for achieving a goal
state).

action(move(A,B)) , goal(on(C,D))
on(C,D) ?
+—yes: [0]
+—no: action(move(C,D)) ?

+—yes: [1]
+—no: action(move(D,B)) ?

+—yes: [0.9]
+--no: [0.81]

qvalue(0) :-
action(move(A,B)) , goal(on(C,D)) ,
on(C,D), !.

qvalue(1) :-
action(move(A,B)) , goal(on(C,D)) ,
action(move(C,D)), !.

qvalue(0.9) :-
action(move(A,B)) , goal(on(C,D)) ,
action(move(D,B)), !.

qvalue(0.81).

Figure 2: A relational regression tree generated by
TILDE-RT from the examples in Table 1 and its equiv-
alent Prolog program.

Relational Reinforcement Learning 141

action(move(A,B)) , goal(on(C,D))
on(C,D) ?
+—yes: [0]
+—no: action(move(C,D)) ?

+—yes: [1]
+~no: on(B,C) ?

+~yes: [0.729]
+—no: on(B,D) ?

+—yes: [0.729]
+—no: action (move (A, O) ?

+—yes: [0.81]
+—no: action(move(A,D)) ?

+--yes: [0.81]
+—no: clear(D) ?

+~yes: on(C,B) ?
1 +—yes: on(A,C) 7

1 1 +—yes: [0.9]
1 I +—no: clear(C) ?
1 1 +--yes: [0.9]
1 1 +—no: [0.81]
1 +—no: [0.9]
+--no: clear(C) ?

+—yes: on(C,B) 7

1 +—yes: [0.9]
1 +--no: [0.81]
+~no: [0.81]

Figure 3: The Q-tree generated by RRL in the 3 blocks world after 10 episodes.

5 EXPERIMENTS

We applied the RRL algorithm described above to
learn how to stack one block onto another in worlds
with three and four blocks, respectively. In particular,
the goal to achieve was on(a,b), the two other blocks
being c and d. An example episode in the three blocks
world is depicted in Figure 1.

The discount factor 7 had the value 0.9. When select-
ing states stochastically according to equation 1, the
constant k was set to e02. Examples for learning Q-
trees were generated after each episode, as described
in the section above.

Using the above settings, the RRL algorithm was first
run for 10 episodes in the 3 blocks world. The tree
shown in Figure 3 was generated by TILDE-RT after
the final episode. This tree represents the optimal pol-
icy for the given reinforcement learning problem. The
top two levels of the tree match those of the tree in
Table 1, which was generated from a single episode.

It is important to note that the individual blocks are
not referred to in the tree itself directly, but only
through the variables of the goal. This means that the
tree represents the optimal policy not only for achiev-
ing the goal on(a,b), but also on(b,c) and on(c,a).
This is one of the major advantages of using a relation
representation for Q-learning.

TILDE-RT was used to induce an updated Q-tree after
each episode. The minimal number of cases in a leaf
was set to one and TILDE-RT generated unpruned
trees, which exactly reproduce the Q-values for the
state-action pairs seen during the learning phase.

The Q-tree obtained after 10 episodes in the 4 blocks
worlds was much larger (44 nodes as opposed to the 12
nodes of the 3-blocks Q-tree). It also represents an op-
timal policy: it chooses a shortest path to a goal state
from all initial states, if the action with the highest
Q-value is always selected.

142 Dzeroski, De Raedt, and Blocked

The 3 top levels of the tree match with the tree from
the 3 blocks world. This indicates that the result of
learning in the 3 blocks world could be used to boot-
strap learning in the 4 blocks world. Indeed, if we take
the Q-tree learned in the 3 blocks world shown in Fig-
ure 3 and use it to select actions in the 4 blocks world,
it selects an optimal path to a goal state from all but
9 of the 73 possible initial states. In 4 of the 9 cases a
looping behavior is produced, in the remaining 5 cases
one extra action is needed as compared to an optimal
plan.

Using the Q-tree from Figure 3 to bootstrap RRL in
the 4 blocks world helps improve performance, espe-
cially in the initial episodes. Without bootstrapping,
after two episodes a tree is learned which produces
nonoptimal behavior in 12 of the 73 initial states.
With bootstrapping, the behavior of the learned tree is
nonoptimal for 8 of the 73 possible initial states. After
ten episodes, the learned Q-tree produces optimal be-
havior and is much smaller (27 nodes) as compared to
the Q-tree learned without bootstrapping (44 nodes).

6 DISCUSSION

We have presented an approach to planning with
incomplete knowledge that combines reinforcement
learning and relational regression into a technique
called relational reinforcement learning. The advan-
tages of this approach include the ability to use struc-
tured representations, which enables us to also de-
scribe infinite worlds, and the ability to use variables,
which allows us to abstract away from specific details
of the situations (such as, e.g., the goal). The ability
to use results of simpler tasks to bootstrap learning in
more complex tasks is also an advantage worth men-
tioning. Finally, it is easy to incorporate nondetermin-
istic actions within the proposed approach.

Even for standard reinforcement learning, scaling-up
as the dimensionality of the problem increases can be
a problem. Using a richer description language may
seem to make things even worse. However, there are
reasons to expect that using a richer representation ac-
tually enables relational Q-learning to scale-up better
than standard Q-learning. Let us illustrate these on
the blocks world.

First, in the representation employed, the relational
theories learned abstract away the block names, caus-
ing the number of states that are essentially differ-
ent to decrease. For instance, with goal(on(a,b))
the states {on(a,c),on(c, b), on(b, floor),on(d, floor)}
and {on(a,d),on(d,b),on(b, floor), on(c,floor)} are

essentially the same as c and d are interchangeable.
In standard Q-learning, they would be considered dif-
ferent. In our 4-blocks example, the number of states
that essentially differ from one another is 73 for a stan-
dard Q-learner, but only 38 for a relational one. This
ratio increases combinatorially (since all blocks that
do not occur in the goal have no special status and are
thus interchangeable, the ratio increases roughly with
(n - 2)!, where n is the total number of blocks).

Second, the use of background knowledge makes it pos-
sible to abstract even further from specific situations
that do not essentially differ. For instance, when a
has to be cleared in order to be able to move it, it is
not essential whether there are 1, 5 or 17 blocks above
a: the top of the stack on a should be moved. Using
background definitions such as above(X, Y) (the recur-
sive closure of on(X, Y)) it is possible to state a rule
such as "if there are blocks on a, move the topmost of
those blocks to the floor" which captures a very large
set of specific cases.

However, the exact scale-up behavior of relational re-
inforcement learning has still to be determined ex-
perimentally. The experimental evaluation of our ap-
proach done so far is preliminary and is mainly in-
tended to highlight the principal advantages of using
a relational representation for reinforcement learning.
We hope that this paper will inspire further research
into the combination of relational and reinforcement
learning, as much work remains to be done. This
includes work in the line of proper performance as-
sessment, both in terms of standard performance tests
in reinforcement learning fashion (root mean square
errors of learned Q-values wrt. the Q-values of the
optimal policy) and in considering more complex and
demanding planning problems.

More complex problems can be obtained by increasing
the number of blocks in the world, considering more
complex goals, such as building a stack of all available
blocks, and considering problems outside the blocks
world.

This work is related to work on generalization in re-
inforcement learning, which has however mainly ad-
dressed the use of neural networks for this purpose [13].
The closest related work is probably Chapman's and
Kaelbling's decision tree algorithm that was specif-
ically designed for reinforcement learning [5]. Note
however that our approach is distinguished from the
mainstream work in reinforcement learning by the use
of a relational representation.

Relational Reinforcement Learning 143

Relational representations are commonly used in plan-
ning approaches. There have also been some at-
tempts to combine planning with relational learning
within those approaches, e.g., within the PRODIGY
approach [2]. Our approach is related to them through
the use of a relational representation. However, it
seems that the combination of planning, reinforcement
learning and relational learning has not been addressed
so far.

The reinforcement learning part of the work presented
in this paper is admittedly simple. We have taken a
standard textbook description of reinforcement learn-
ing [11] and incorporated an implementation of it
within our approach. We have considered a deter-
ministic setting and a goal-oriented formulation of the
learning problem. However, both restrictions can be
easily lifted to extend to non-zero rewards on non-
terminal states (the RRL algorithm actually makes no
assumption on the reinforcement received) and non-
deterministic actions. To handle nondeterministic ac-
tions an appropriate update rule (see page 382 of [11])
has to be used to generate examples for the TILDE-
RT algorithm. Other points where the reinforcement
learning part can be improved include the initializa-
tion of Q values and the exploration strategy.

The current implementation of TILDE-RT is - accord-
ing to reinforcement standards - not optimal. One of
the reasons is that it is not incremental. However, in-
crementality is not enough, as the (estimated) values
of Q are changing with time. These problems are taken
care of within the Chapman and Kaelbling's decision
tree algorithm that was specifically designed for rein-
forcement learning [5]. A natural direction for further
work is thus to develop a first order regression tree al-
gorithm combining the representations of TILDE-RT
with the algorithm and performance measures of the
approach by Chapman and Kaelbling. Such an in-
tegrated approach, which is currently under develop-
ment, would not suffer from the abovementioned prob-
lems.

Acknowledgements

This work was supported in part by the ESPRIT IV
Project 20237 ILP2. Luc De Raedt is supported by
the Fund for Scientific Research of Flanders. Hendrik
Blockeel is supported by the Flemish Institute for the
Promotion of Scientific and Technological Research in
Industry (IWT).

References

[I] Blockeel, H., and De Raedt, L. (1997) Experi-
ments with Top-down Induction of Logical Deci-
sion Trees. Artificial Intelligence. Forthcoming.

[2] Borrajo, D., and Veloso, M. (1997) Lazy incremen-
tal learning of control knowledge for efficiently ob-
taining quality plans. AI Review, 11(1-5): 371-405.

[3] Breiman, L., Friedman, J. H., Olshen, R. A., and
Stone, C. J. (1984) Classification and Regression
Trees. Wadsworth, Belmont.

[4] Blockeel, H., and De Raedt, L. (1997) Lookahead
and discretization in ILP. In Proc. 7th Intl. Work-
shop on Inductive Logic Programming, pages 77-
84, Springer, Berlin.

[5] Chapman, D., and Kaelbling, L. (1991) Input gen-
eralization in delayed reinforcement learning: An
algorithm and performance comparisons. In Proc.
12th Intl. Joint Conf. on Artificial Intelligence,
Morgan Kaufmann, San Mateo, CA.

[6] De Raedt, L., and Blockeel, H. (1997) Using logi-
cal decision trees for clustering. In Proc. 7th Intl.
Workshop on Inductive Logic Programming, pages
133-141, Springer, Berlin.

[7] Fikes, R.E., and Nilsson, N.J. (1971) STRIPS: A
new approach to the application of theorem prov-
ing. Artificial Intelligence, 2(3/4): 189-208.

[8] Kaelbling, L., Littman, M., and Moore, A. (1996)
Reinforcement learning: A survey. Journal of Ar-
tificial Intelligence Research, 4: 237-285.

[9] Kramer, S. (1996) Structural regression trees. In
Proc. 13th Natl. Conf. on Artificial Intelligence.
AAAI Press, Menlo Park, CA.

[10] Lavrac, N. and Dzeroski, S. (1994) Inductive Logic
Programming: Techniques and Applications. Ellis
Horwood, Chichester.

[II] Mitchell, T. (1997) Machine Learning. McGraw-
Hill, New York.

[12] Muggleton, S., and De Raedt, L. (1994) Inductive
logic programming : Theory and methods. Journal
of Logic Programming 19/20: 629-679.

[13] Tesauro, G. (1995) Temporal difference learning
and TD-GAMMON. Communications of the ACM,
38(3): 58-68.

[14] Watkins, C, and Dayan, P. (1992) Q-learning.
Machine Learning, 8: 279-292.

144

Generating Accurate Rule Sets
Without Global Optimization

Eibe Frank
Department of Computer Science

University of Waikato
Hamilton, New Zealand
eibe@cs.waikato.ac.nz

Ian H. Witten
Department of Computer Science

University of Waikato
Hamilton, New Zealand

ihw@cs.waikato.ac.nz

Abstract

The two dominant schemes for rule-learning,
C4.5 and RIPPER, both operate in two
stages. First they induce an initial rule set
and then they refine it using a rather com-
plex optimization stage that discards (C4.5)
or adjusts (RIPPER) individual rules to
make them work better together. In con-
trast, this paper shows how good rule sets
can be learned one rule at a time, with-
out any need for global optimization. We
present an algorithm for inferring rules by
repeatedly generating partial decision trees,
thus combining the two major paradigms
for rule generation—creating rules from de-
cision trees and the separate-and-conquer
rule-learning technique. The algorithm is
straightforward and elegant: despite this, ex-
periments on standard datasets show that it
produces rule sets that are as accurate as and
of similar size to those generated by C4.5,
and more accurate than RIPPER's. More-
over, it operates efficiently, and because it
avoids postprocessing, does not suffer the ex-
tremely slow performance on pathological ex-
ample sets for which the C4.5 method has
been criticized.

1 Introduction

If-then rules are the basis for some of the most popular
concept description languages used in machine learn-
ing. They allow "knowledge" extracted from a dataset
to be represented in a form that is easy for people to
understand. This gives domain experts the chance to
analyze and validate that knowledge, and combine it

with previously known facts about the domain.

A variety of approaches to learning rules have been
investigated. One is to begin by generating a deci-
sion tree, then to transform it into a rule set, and
finally to simplify the rules (Quinlan, 1987a); the re-
sulting rule set is often more accurate than the original
tree. Another is to use the "separate-and-conquer"
strategy (Pagallo & Haussler, 1990) first applied in
the AQ family of algorithms (Michalski, 1969) and
subsequently used as the basis of many rule learning
systems (Fiirnkranz, 1996). In essence, this strategy
determines the most powerful rule that underlies the
dataset, separates out those examples that are covered
by it, and repeats the procedure on the remaining ex-
amples.

Two dominant practical implementations of rule-
learners have emerged from these strands of research:
C4.5 (Quinlan, 1993) and RIPPER (Cohen, 1995).
Both perform a global optimization process on the set
of rules that is induced initially. The motivation for
this in C4.5 is that the initial rule set, being gener-
ated from a decision tree, is unduly large and redun-
dant: C4.5 drops some individual rules (having pre-
viously optimized rules locally by dropping conditions
from them). The motivation in RIPPER, on the other
hand, is to increase the accuracy of the rule set by re-
placing or revising individual rules. In either case the
two-stage nature of the algorithm remains: as Cohen
(1995) puts it, "... both RIPPER* and C4.5rules start
with an initial model and iteratively improve it using
heuristic techniques." Experiments show that both
the size and the performance of rule sets are signifi-
cantly improved by post-induction optimization. On
the other hand, the process itself is rather complex and
heuristic.

This paper presents a rule-induction procedure that
avoids global optimization but nevertheless produces

Generating Accurate Rule Sets Without Global Optimization 145

accurate, compact rule sets. The method combines
the two rule learning paradigms identified above. Sec-
tion 2 discusses these two paradigms and their incar-
nation in C4.5 and RIPPER. Section 3 presents the
new algorithm, which we call "PART" because it is
based on partial decision trees. Section 4 describes an
experimental evaluation on standard datasets compar-
ing PART to C4.5, RIPPER, and C5.0, the commercial
successor of C4.5.1 Section 5 summarizes our findings.

2 Related Work

We review two basic strategies for producing rule sets.
The first is to begin by creating a decision tree and
then transform it into a rule set by generating one
rule for each path from the root to a leaf. Most rule
sets derived in this way can be simplified dramatically
without losing predictive accuracy. They are unnec-
essarily complex because the disjunctions that they
imply can often not be expressed succinctly in a deci-
sion tree. This is sometimes known as the "replicated
subtree" problem (Pagallo k Haussler, 1990).

When obtaining a rule set, C4.5 first transforms an
unpruned decision tree into a set of rules in the afore-
mentioned way. Then each rule is simplified separately
by greedily deleting conditions in order to minimize the
rule's estimated error rate. Following that, the rules
for each class in turn are considered and a "good"
subset is sought, guided by a criterion based on the
minimum description length principle (Rissanen, 1978)
(this is performed greedily, replacing an earlier method
that used simulated annealing). The next step ranks
the subsets for the different classes with respect to each
other to avoid conflicts, and determines a default class.
Finally, rules are greedily deleted from the whole rule
set one by one, so long as this decreases the rule set's
error on the training data.

The whole process is complex and time-consuming.
Five separate stages are required to produce the final
rule set. It has been shown that for noisy datasets,
runtime is cubic in the number of instances (Cohen,
1995). Moreover, despite the lengthy optimization
process, rules are still restricted to conjunctions of
those attribute-value tests that occur along a path in
the initial decision tree.

Separate-and-conquer algorithms represent a more di-
rect approach to learning decision rules. They gen-
erate one rule at a time, remove the instances cov-

ered by that rule, and iteratively induce further rules
for the remaining instances. In a multi-class setting,
this automatically leads to an ordered list of rules,
a type of classifier that has been termed a "decision
list" (Rivest, 1987). Various different pruning methods
for separate-and-conquer algorithms have been inves-
tigated by Fiirnkranz (1997), who shows that the most
effective scheme is to prune each rule back immediately
after it is generated, using a separate stopping criterion
to determine when to cease adding rules (Fiirnkranz
& Widmer, 1994). Although originally formulated for
two-class problems, this procedure can be applied di-
rectly to multi-class settings by building rules sepa-
rately for each class and ordering them appropriately
(Cohen, 1995).

RIPPER implements this strategy using reduced error
pruning (Quinlan, 1987b), which sets some training
data aside to determine when to drop the tail of a
rule, and incorporates a heuristic based on the mini-
mum description length principle as stopping criterion.
It follows rule induction with a post-processing step
that revises the rule set to more closely approximate
what would have been obtained by a more expensive
global pruning strategy. To do this, it considers "re-
placing" or "revising" individual rules, guided by the
error of the modified rule set on the pruning data. It
then decides whether to leave the original rule alone or
substitute its replacement or revision, a decision that
is made according to the minimum description length
heuristic. It has been claimed (Cohen, 1995) that RIP-
PER generates rule sets that are as accurate as C4.5's.
However, our experiments on a large collection of stan-
dard datasets—reported in Section 3—do not confirm
this.

As the following example shows, the basic strategy of
building a single rule and pruning it back can lead to
a particularly problematic form of overpruning, which
we call "hasty generalization." This is because the
pruning interacts with the covering heuristic. General-
izations are made before their implications are known,
and the covering heuristic then prevents the learning
algorithm from discovering the implications.

Here is a simple example of hasty generalization. Con-
sider a Boolean dataset with attributes a and b built
from the three rules in Figure 1, corrupted by ten per-
cent class noise. Assume that the pruning operator is
conservative and can only delete a single final conjunc-
tion of a rule at a time (not an entire tail of conjunc-
tions as RIPPER does). Assume further that the first

1A test version of C5.0 is available from
http://www.rulequest.com.

146 Frank and Witten

Rule Coverage

Training Set Pruning Set

© e © e

1: a = true => © 90 8 30 5

2: a = false A b = true =>■ © 200 18 66 6

3: a = false A b = false => Q 1 10 0 3

Figure 1: A hypothetical target concept for a noisy domain.

rule has been generated and pruned back to

o = true => ©

(The training data in Figure 1 is solely to make this
scenario plausible.) Now consider whether the rule
should be further pruned. Its error rate on the pruning
set is 5/35, and the null rule

has an error rate of 14/110, which is smaller. Thus the
the rule set will be pruned back to this single, trivial,
rule, instead of the patently more accurate three-rule
set shown in Figure 1.

Hasty generalization is not just an artifact of reduced
error pruning: it can happen with pessimistic prun-
ing (Quinlan, 1993) too. Because of variation in the
number of noisy instances in the data sample, one can
always construct situations in which pruning causes
rules with comparatively large coverage to swallow
rules with smaller (but still significant) coverage. This
can happen whenever the number of errors committed
by a rule is large compared with the total number of
instances covered by an adjacent rule.

3 Obtaining Rules From Partial
Decision Trees

The new method for rule induction, PART, combines
the two approaches discussed in Section 2 in an at-
tempt to avoid their respective problems. Unlike both
C4.5 and RIPPER it does not need to perform global
optimization to produce accurate rule sets, and this
added simplicity is its main advantage. It adopts the
separate-and-conquer strategy in that it builds a rule,
removes the instances it covers, and continues creat-
ing rules recursively for the remaining instances until
none are left. It differs from the standard approach

in the way that each rule is created. In essence, to
make a single rule a pruned decision tree is built for
the current set of instances, the leaf with the largest
coverage is made into a rule, and the tree is discarded.
This avoids hasty generalization by only generalizing
once the implications are known (i.e., all the subtrees
have been expanded).

The prospect of repeatedly building decision trees only
to discard most of them is not as bizarre as it first
seems. Using a pruned tree to obtain a rule instead of
building it incrementally by adding conjunctions one
at a time avoids the over-pruning problem of the basic
separate-and-conquer rule learner. Using the separate-
and-conquer methodology in conjunction with decision
trees adds flexibility and speed. It is indeed wasteful to
build a full decision tree just to obtain a single rule, but
the process can be accelerated significantly without
sacrificing the above advantages.

The key idea is to build a "partial" decision tree in-
stead of a fully explored one. A partial decision tree
is an ordinary decision tree that contains branches to
undefined subtrees. To generate such a tree, we inte-
grate the construction and pruning operations in order
to find a "stable" subtree that can be simplified no fur-
ther. Once this subtree has been found, tree-building
ceases and a single rule is read off.

The tree-building algorithm is summarized in Figure 2:
it splits a set of examples recursively into a partial tree.
The first step chooses a test and divides the examples
into subsets accordingly. Our implementation makes
this choice in exactly the same way as C4.5. Then
the subsets are expanded in order of their average en-
tropy, starting with the smallest. (The reason for this
is that subsequent subsets will most likely not end up
being expanded, and the subset with low average en-
tropy is more likely to result in a small subtree and
therefore produce a more general rule.) This continues
recursively until a subset is expanded into a leaf, and

Generating Accurate Rule Sets Without Global Optimization 147

Procedure Expand Subset

choose split of given set of examples into subsets
while there are subsets that have not been expanded and

all the subsets expanded so far are leaves
choose next subset to be expanded and expand it

if all the subsets expanded are leaves and
estimated error for subtree > estimated error for node
undo expansion into subsets and make node a leaf

Figure 2: Method that expands a given set of examples into a partial tree

Stage 1 Stage 2 Stage 3

Stage 4 Stage 5

Figure 3: Example of how our algorithm builds a partial tree

then continues further by backtracking. But as soon
as an internal node appears which has all its children
expanded into leaves, pruning begins: the algorithm
checks whether that node is better replaced by a single
leaf. This is just the standard "subtree replacement"
operation of decision-tree pruning, and our implemen-
tation makes the decision in exactly the same way as
C4.5. (C4.5's other pruning operation, "subtree rais-
ing," plays no part in our algorithm.) If replacement
is performed the algorithm backtracks in the standard
way, exploring siblings of the newly-replaced node.
However, if during backtracking a node is encountered
all of whose children are not leaves—and this will hap-
pen as soon as a potential subtree replacement is not
performed—then the remaining subsets are left unex-
plored and the corresponding subtrees are left unde-
fined. Due to the recursive structure of the algorithm
this event automatically terminates tree generation.

Figure 3 shows a step-by-step example. During stages
1-3, tree-building continues recursively in the normal
way—except that at each point the lowest-entropy sib-
ling is chosen for expansion: node 3 between stages 1
and 2. Gray nodes are as yet unexpanded; black ones
are leaves. Between Stages 2 and 3, the black node will
have lower entropy than its sibling, node 5; but cannot
be expanded further since it is a leaf. Backtracking oc-
curs and node 5 is chosen for expansion. Once stage
3 is reached, there is a node—node 5—which has all
of its children expanded into leaves, and this triggers
pruning. Subtree replacement for node 5 is consid-
ered, and accepted, leading to stage 4. Now node 3 is
considered for subtree replacement, and this operation
is again accepted. Backtracking continues, and node
4, having lower entropy than 2, is expanded—into two
leaves. Now subtree replacement is considered for node
4: let us suppose that node 4 is not replaced. At this
point, the process effectively terminates with the 3-leaf

148 Frank and Witten

D
0.
O

le+06
(ab+bcd+defg) with 12 irrelevant binary attributes and uniformly distributed examples

100000

PART with no class noise -♦— ■
PART with 20% class noise -■•—

a*x*2
a*x'log(x)

10000 ...--•■■'

.-••-""""' .-""'"
1000

.*■'*" -*"''

,.-**"" ,-+-*" "11^-^

''^^^^^^^ ^

' ' 1 ' 1

625 1250 2500 5000 10000
number of examples

20000 40000

Figure 4: CPU times for PART on artificial dataset

partial tree of stage 5.

This procedure ensures that the over-pruning effect
discussed in Section 2 cannot occur. A node can only
be pruned if all its successors are leaves. This can
only happen if all its subtrees have been explored and
either found to be leaves, or are pruned back to leaves.
Situations like that shown in Figure 1 are therefore
handled correctly.

If a dataset is noise-free and contains enough instances
to prevent the algorithm from doing any pruning,
just one path of the full decision tree has to be ex-
plored. This achieves the greatest possible perfor-
mance gain over the naive method that builds a full
decision tree each time. The gain decreases as more
pruning takes place. For datasets with numeric at-
tributes, the asymptotic time complexity of the algo-
rithm is the same as for building the full decision tree2

because in this case the complexity is dominated by
the time needed to sort the attribute values in the
first place.

Once a partial tree has been built, a single rule is ex-
tracted from it. Each leaf corresponds to a possible
rule, and we seek the "best" leaf of those subtrees (typ-
ically a small minority) that have been expanded into
leaves. Our implementation aims at the most general
rule by choosing the leaf that covers the greatest num-
ber of instances. (We have experimented with choosing

Assuming no subtree raising.

the most accurate rule, that is, the leaf with the lowest
error rate, error being estimated according to C4.5's
Bernoulli heuristic, but this does not improve the rule
set's accuracy.)

Datasets often contain missing attribute values, and
practical learning schemes must deal with them ef-
ficiently. When constructing a partial tree we treat
missing values in exactly the same way as C4.5: if
an instance cannot be assigned deterministically to a
branch because of a missing attribute value, it is as-
signed to each of the branches with a weight propor-
tional to the number of training instances going down
that branch, normalized by the total number of train-
ing instances with known values at the node. During
testing we apply the same procedure separately to each
rule, thus associating a weight with the application of
each rule to the test instance. That weight is deducted
from the instance's total weight before it is passed to
the next rule in the list. Once the weight has reduced
to zero, the predicted class probabilities are combined
into a final classification according to the weights.

The algorithm's runtime depends on the number of
rules it generates. Because a decision tree can be
built in time O (an log n) for a dataset with n exam-
ples and a attributes, the time taken to generate a
rule set of size k is 0(kanlogn). Assuming (as the
analyses of (Cohen, 1995) and (Fiirnkranz, 1997) do)
that the size of the final theory is constant, the over-
all time complexity is O (an log n), as compared to

Generating Accurate Rule Sets Without Global Optimization 149

Table 1: Datasets used for the experiments

Dataset Instances Missing Numeric Nominal Classes
values (%) attributes attributes

anneal 898 0.0 6 32 5
audiology 226 2.0 0 69 24
australian 690 0.6 6 9 2
autos 205 1.1 15 10 6
balance-scale 625 0.0 4 0 3
breast-cancer 286 0.3 0 9 2
breast-w 699 0.3 9 0 2
german 1000 0.0 7 13 2
glass (G2) 163 0.0 9 0 2
glass 214 0.0 9 0 6
heart-c 303 0.2 6 7 2
heart-h 294 20.4 6 7 2
heart-statlog 270 0.0 13 0 2
hepatitis 155 5.6 6 13 2
horse-colic 368 23.8 7 15 2
hypothyroid 3772 5.5 7 22 4
ionosphere 351 0.0 34 0 2
iris 150 0.0 4 0 3
kr-vs-kp 3196 0.0 0 36 2
labor 57 3.9 8 8 2
lymphography 148 0.0 3 15 4
mushroom 8124 1.4 0 22 2
pima-indians 768 0.0 8 0 2
primary-tumor 339 3.9 0 17 21
segment 2310 0.0 19 0 7
sick 3772 5.5 7 22 2
sonar 208 0.0 60 0 2
soybean 683 9.8 0 25 19
splice 3190 0.0 0 61 3
vehicle 846 0.0 18 0 4
vote 435 5.6 0 16 2
vowel 990 0.0 10 3 11
waveform-noise 5000 0.0 40 0 3
zoo 101 0.0 1 15 7

O (an log2 n) for RIPPER. In practice, the number of
rules grows with the size of the training data because of
the greedy rule learning strategy and pessimistic prun-
ing. However, even in the worst case when the num-
ber of rules increases linearly with training examples,
the overall complexity is bounded by 0(an2 logn). In
our experiments we only ever observed subquadratic
run times—even for the artificial dataset that Cohen
(1995) used to show that C4.5's performance can be
cubic in the number of examples. The results of timing
our method, PART, on this dataset are depicted on a
log-log scale in Figure 4, for no class noise and for 20
percent class noise. In the latter case C4.5 scales as
the cube of the number of examples.

4 Experimental Results

In order to evaluate the performance of PART on a di-
verse set of practical learning problems, we performed
experiments on thirty-four standard datasets from the
UCI collection (Merz & Murphy, 1996).3 The datasets
and their characteristics are listed in Table 1.

As well as the learning algorithm PART described
above, we also ran C4.5,4 C5.0 and RIPPER on all
the datasets. The results are listed in Table 2. They
give the percentage of correct classifications, averaged
over ten ten-fold cross-validation runs, and standard

following Holte (Holte, 1993), the G2 variant of the
glass dataset has classes 1 and 3 combined and classes 4 to
7 deleted, and the horse-colic dataset has attributes 3, 25,
26, 27, 28 deleted with attribute 24 being used as the class.
We also deleted all identifier attributes from the datasets.

4We used Revision 8 of C4.5.

150 Frank and Witten

Table 2: Experimental results: percentage of correct classifications, and standard deviation

Dataset PART C4.5 C5.0 RIPPER
anneal 98.4±0.3 98.6±0.2 t 98.7±0.3 0 98.3±0.1
audiology 78.7Ü.1 76.3±1.2 .t 77.3±1.2 t 72.3±2.2 •
australian 84.3±1.2 84.8±1.1 • 85.4±0.7 85.3±0.7
autos 74.5±1.4 76.5±2.9 t 79.1±2.1 ot 72.0±2.0 •
balance-scale 82.3±1.2 78.0±0.7 • 79.0±1.0 • 81.0±1.1
breast-cancer 69.6±1.6 70.3±1.6 73.6±1.6 o 71.8±1.6 0

breast-w 94.9±0.4 95.5±0.6 t 95.5±0.3 0 95.6±0.7
horse-colic 84.4±0.8 83.0±0.6 • 85.0±0.5 85.0±0.8
german 70.0±1.4 71.9±1.4 o 72.3±0.5 0 71.4±0.7 0

glass (G2) 80.0±3.6 79.4±2.3 t 80.2±1.8 t 80.9±1.4
glass 70.0±1.6 67.3±2.4 68.4±2.8 t 66.7±2.1 •
heart-c 78.5±1.7 79.7Ü.5 79.1±0.9 78.5±1.9
heart-h 80.5±1.5 79.7±1.7 80.7±1.1 78.7±1.3 •
heart-statlog 78.9±1.3 81.2Ü.3 0 81.9±1.4 0 79.0±1.4
hepatitis 80.2±1.9 79.7Ü.0 t 81.1±0.7 77.2±2.0 •
hypothyroid 99.5±0.1 99.5±0.1 t 99.5±0.0 • ' 99.4±0.1 •
ionosphere 90.6±1.3 89.9±1.5 t 89.3±1.4 •' 89.2±0.8 •
iris 93.7±1.6 95.1±1.0 o+ 94.4±0.7 94.4±1.7
kr-vs-kp 99.3±0.1 99.4±0.1 o+ 99.3±0.1 99.1±0.1 •
labor 77.3±3.9 81.4±2.6 ot 77.1±3.7 83.5±3.9 0

lymphography 76.5±2.7 78.0±2.2 76.8±2.7 76.1±2.4
mushroom lOO.OiO.O lOO.OiO.O .t 99.9±0.0 • ' lOO.OiO.O
pima-indians 74.0±0.5 74.2±1.2 t 75.5±0.9 o' 75.2±1.1 0

primary-tumor 41.7Ü.3 40.1±1.7 • 28.7±2.5 • 38.5±0.8 •
segment 96.6±0.4 96.1±0.3 .t 96.3±0.4 95.2±0.5 •
sick 98.6±0.1 98.4±0.2 • 98.4±0.1 • 98.3±0.2 •
sonar 76.5±2.3 74.4±2.9 t 75.3±2.2 75.7±1.9
soybean 91.4±0.5 91.9±0.7 92.2±0.6 92.0±0.4
splice 92.5±0.4 93.4±0.3 0 94.3±0.3 0 93.4±0.2 0

vehicle 72.4±0.8 72.9±0.9 72.4±0.8 69.0±0.6 •
vote 95.9±0.6 95.9±0.6 t 96.0±0.6 95.6±0.3
vowel 78.Ü1.1 77.9±1.3 t 79.9±1.2 o* 69.6±1.9 •
waveform-noise 78.0±0.5 76.3±0.4 • 79.4±0.5 o 79.1±0.6 0

zoo 92.2±1.2 90.9±1.2 .t 91.5±1.2 t 87.8±2.4 •

deviations of the ten are also shown. The same folds
were used for each scheme.5 Results for C4.5, C5.0
and RIPPER are marked with o if they show signif-
icant improvement over the corresponding results for
PART, and with • if they show significant degrada-
tion. (The f marks are discussed below.) Through-
out, we speak of results being "significantly different"
if the difference is statistically significant at the 1%
level according to a paired two-sided i-test, each pair
of data points consisting of the estimates obtained in
one ten-fold cross-validation run for the two learning
schemes being compared. Table 3 shows how the dif-
ferent methods compare with each other. Each entry

5The results of PART and C5.0 on the hypothyroid
data, and of PART and C4.5 on the mushroom data, are
not in fact the same-
place.

-they differ in the second decimal

indicates the number of datasets for which the method
associated with its column is significantly more accu-
rate than the method associated with its row.

We observe from Table 3 that PART outperforms C4.5
on nine datasets, whereas C4.5 outperforms PART on
six. The chance probability of this distribution is 0.3
according to a sign test: thus there is only very weak
evidence that PART outperforms C4.5 on a collection
of datasets similar to the one we used. According to
Table 3, PART is significantly less accurate than C5.0
on ten datasets and significantly more accurate on six.
The corresponding probability for this distribution is
0.23, providing only weak evidence that C5.0 performs
better than PART. For RIPPER the situation is dif-
ferent: PART outperforms it on fourteen datasets and
performs worse on six. The probability for this dis-
tribution is 0.06, a value that provides fairly strong

Generating Accurate Rule Sets Without Global Optimization 151

evidence that PART outperforms RIPPER on a col-
lection of datasets of this type.

Table 3: Results of paired t-tests (p=0.01): number in-
dicates how often method in column significantly out-
performs method in row

PART C4.5 C5.0 RIPPER
PART - 6 10 6
C4.5 9 - 9 4
C5.0 6 5 - 4
RIPPER 14 10 12 -

As well as accuracy, the size of a rule set is impor-
tant because it has a strong influence on comprehen-
sibility. The f marks in Table 2 give information
about the relative size of the rule sets produced: they
mark learning schemes and datasets for which—on
average—PART generates fewer rules (this never oc-
curs for RIPPER). Compared to C4.5 and C5.0, the
average number of rules generated by PART is smaller
for eighteen datasets and larger for sixteen.

5 Conclusions

This paper has presented a simple, yet surprisingly
effective, method for learning decision lists based on
the repeated generation of partial decision trees in a
separate-and-conquer manner. The main advantage of
PART over the other schemes discussed is not perfor-
mance but simplicity: by combining two paradigms of
rule learning it produces good rule sets without any
need for global optimization. Despite this simplicity,
the method produces rule sets that compare favorably
with those generated by C4.5 and C5.0, and are more
accurate (though larger) than those produced by RIP-
PER.

An interesting question for future research is whether
the size of the rule sets obtained by our method can be
decreased by employing a stopping criterion based on
the minimum description length principle, as is done
in RIPPER, or by using reduced error pruning instead
of pessimistic pruning.

Acknowledgements

We would like to thank the anonymous reviewers for
their comments, which significantly improved the ex-
position. We would also like to thank all the people
who have donated datasets to the UCI repository.

References

Cohen, W. W. (1995). Fast effective rule induction.
In Proceedings of the 12th International Confer-
ence on Machine Learning (pp. 115-123). Morgan
Kaufmann.

Fürnkranz, J. (1996). Separate-and-conquer rule
learning. Technical Report TR-96-25, Austrian
Research Institute for Artificial Intelligence, Vi-
enna. [ftp://ftp.ai.univie.ac.at/papers/oefai-tr-
96-25.ps.Z].

Fürnkranz, J. (1997). Pruning algorithms for rule
learning. Machine Learning, 27(2), 139-171.

Fürnkranz, J. & Widmer, G. (1994). Incremental re-
duced error pruning. In Proceedings of the 11th
International Conference on Machine Learning
(pp. 70-77). Morgan Kaufmann.

Holte, R. (1993). Very simple classification rules per-
form well on most commonly used datasets. Ma-
chine Learning, 11, 63-91.

Merz, C. J. & Murphy, P. M. (1996). UCI Repos-
itory of Machine Learning Data-Bases. Irvine,
CA: University of California, Department of In-
formation and Computer Science. [http://www.
ics.uci.edu/~mlearn/MLRepository.html].

Michalski, R. S. (1969). On the quasi-minimal solu-
tion of the covering problem. In Proceedings of the
5th International Symposium on Information Pro-
cessing (FCIP-69), Vol. A3 (Switching Circuits)
(pp. 125-128). Bled, Yugoslavia.

Pagallo, G. & Haussler, D. (1990). Boolean feature dis-
covery in empirical learning. Machine Learning,
5(1), 71-99.

Quinlan, J. R. (1987a). Generating production rules
from decision trees. In Proceedings of the 10th
International Joint Conference on Artificial In-
telligence (pp. 304-307). Morgan Kaufmann.

Quinlan, J. R. (1987b). Simplifying decision trees. In-
ternational Journal of Man-Machine Studies, 27,
221-234.

Quinlan, J. R. (1993). C4-5: Programs for Machine
Learning. San Mateo, CA: Morgan Kaufmann.

Rissanen, J. (1978). Modelling by shortest data de-
scription. Automatica, 14, 465-471.

Rivest, R. L. (1987). Learning decision lists. Machine
Learning, 2, 229-246.

152

Using a Permutation Test for Attribute Selection in Decision Trees

Eibe Frank
Department of Computer Science

University of Waikato
Hamilton, New Zealand
eibe@cs.waikato.ac.nz

Ian H. Witten
Department of Computer Science

University of Waikato
Hamilton, New Zealand

ihw@cs.waikato.ac.nz

Abstract

Most techniques for attribute selection in
decision trees are biased towards attributes
with many values, and several ad hoc solu-
tions to this problem have appeared in the
machine learning literature. Statistical tests
for the existence of an association with a
prespecified significance level provide a well-
founded basis for addressing the problem.
However, many statistical tests are computed
from a chi-squared distribution, which is only
a valid approximation to the actual distri-
bution in the large-sample case—and this
patently does not hold near the leaves of a
decision tree. An exception is the class of
permutation tests. We describe how permu-
tation tests can be applied to this problem.
We choose one such test for further explo-
ration, and give a novel two-stage method for
applying it to select attributes in a decision
tree. Results on practical datasets compare
favorably with other methods that also adopt
a pre-pruning strategy.

1 Introduction

Statistical tests provide a set of theoretically well-
founded tools for testing hypotheses about relation-
ships in a set of data. One pertinent hypothesis, when
selecting attributes for a decision tree, is whether there
is a significant association between an attribute's val-
ues and the classes. With r attribute values and c
classes, this equates to testing for independence in the
corresponding r x c contingency table (White & Liu,
1994), and statistical tests designed for this purpose
can be applied directly. Unlike most commonly-used

attribute selection criteria, such tests are not biased
towards attributes with many values, which is impor-
tant because it prevents the decision tree induction al-
gorithm from selecting splits that overfit the training
data by being too fine-grained.

Statistical tests are based on probabilities derived from
the distribution of a test statistic. Two popular test
statistics for assessing independence in a contingency
table have been proposed for attribute selection: the
chi-squared statistic \2 an^ the log likelihood ratio
G2 (White & Liu, 1994). For large samples, both are
distributed according to the chi-squared distribution.
But this is not the case for small samples (Agresti,
1990)—and small samples inevitably occur close to the
leaves in a decision tree. Thus it is inadvisable to use
probabilities derived using the chi-squared distribution
for decision tree induction.

Fortunately, there is an alternative that does apply in
small frequency domains. In statistical tests known as
"permutation tests" (Good, 1994), the distribution of
the statistic of interest is calculated directly instead
of relying on the chi-squared approximation—in other
words they are "non-parametric" rather than "para-
metric." Such tests do not suffer from the small ex-
pected frequency problem because they do not use the
chi-squared approximation.

This paper describes the application of permutation
tests to attribute selection in a decision tree. We ex-
amine one such test—the Freeman and Halton test—
in detail by performing experiments on artificial and
practical datasets: the results show that this method
is indeed preferable to a test that assumes the chi-
squared distribution. The statistic of the Freeman and
Halton test is the exact probability pj of a contin-
gency table / given its marginal totals (Good, 1994).
Recently, Martin (1997) investigated the use of this
statistic, p/, directly for attribute selection. We show

Using a Permutation Test for Attribute Selection in Decision Trees 153

that results can be improved by using it in conjunction
with the Freeman and Halton test.

Section 2 introduces the idea of permutation tests and
how they can be used to test significance in a contin-
gency table. In Section 2.2 we describe the Freeman
and Halton test. The test is expensive, but simple
computational economies are described in Section 2.3.
Section 2.4 describes a novel two-stage method, based
on these ideas, for selecting attributes in a decision
tree. Section 3 presents experimental results on arti-
ficial and standard datasets. We verify that the Free-
man and Halton test does not prefer attributes with
many values, whereas the test statistic pj by itself is
biased. We also verify that the parametric version of
the chi-squared test is biased in small-frequency do-
mains. Finally, we demonstrate that good results are
obtained when the new method is applied to decision-
tree building. Section 4 reviews existing work on us-
ing statistical tests for contingency tables in machine
learning, while Section 5 contains some concluding re-
marks.

2 A Permutation Test and its
Application to Attribute Selection

The procedure for permutation tests is simple (Good,
1994). First, a test statistic is chosen that measures
the strength of the effect being investigated, and is
computed over the data. The null hypothesis is that
the observed strength of the effect is not significant.
Next, the labels of the original data are permuted
and the same statistic is calculated for the relabeled
data; this is repeated for all possible permutations of
labels. The idea is to ascertain the likelihood of an
effect of the same or greater strength being observed
fortuitously on randomly labeled data with identical
marginal properties. Third, the test statistic's value
for the original data is compared with the values ob-
tained over all permutations, by calculating the per-
centage of the latter that are at least as extreme, or
more extreme, than the former. This percentage con-
stitutes the significance level at which the null hypoth-
esis can be rejected, in other words, the level at which
the observed strength of the effect can be considered
significant.

2.1 Permutation Tests for Contingency
Tables

strength of the dependency between two variables
(Good, 1994), the two most common being the chi-
squared statistic x2 and the log likelihood ratio Gi-
The standard tests using these statistics are based on
the fact that the sampling distribution of both statis-
tics is well-approximated by the chi-squared distribu-
tion. They calculate the significance level directly from
that distribution.

Unfortunately, as noted in the introduction, the chi-
squared distribution assumption is only valid for either
statistic when the sample size is large enough. The
chi-squared distribution approximates the true sam-
pling distribution poorly if the sample size is small
(or the samples are distributed unevenly in the con-
tingency table). In a decision tree the sample size be-
comes smaller and smaller and the distribution of the
samples more and more skewed the closer one gets to
the leaves of the tree. Thus one cannot justify using
a test based on the chi-squared approximation for sig-
nificance testing throughout a decision tree (although
one might at the upper levels where samples are large).
Permutation tests offer a theoretically sound alterna-
tive that is admissible for any sample size.

The standard permutation test for r x c contingency
tables, which we have also chosen to employ for this
paper, is based on the statistic p/, the exact probabil-
ity of a contingency table given its marginal totals. It
is known as the "Freeman and Halton" test and it is
a generalization of Fisher's exact test for 2 x 2 tables
(Good, 1994). However, we emphasize that other test
statistics could equally well be used, thereby obtaining
exact, non-parametric, versions of conventional para-
metric tests that are valid in small-frequency domains
(Good, 1994).1

2.2 Testing the Significance of an Attribute

For attribute selection, we seek to test whether there is
a significant association between an attribute's values
and the class values. With r attribute values and c
classes, this is the same as testing for independence in
the corresponding r x c contingency table (White &
Liu, 1994).

If the r x c contingency table / contains the frequencies
fij with column marginals f.j and row marginals /;.,
the probability pj of this table is given by

Contingency tables summarize the observed relation-
ship between two categorical response variables. Sev-
eral different statistics can be used to measure the

*We have also used a permutation test based on x2,
instead of on pf, in all the experiments described in Section
3, and obtained almost identical results.

154 Frank and Witten

Permuting the instances' class labels does not affect
the row and column totals, and therefore the set of all
permutations of the class labels corresponds to the set
of all contingency tables with the same row and column
totals. If p is the proportion of tables for which pf is
less than or equal to the probability p0 of the original
table, then

where J(.) denotes the indicator function, constitutes
the p-value of the Freeman and Halton test. The func-
tion computing p is known as a multiple hypergeomet-
ric distribution (Agresti, 1990). The resulting value
of p is simply compared with a prespecified desired
significance level.

2.3 Approximating the Exact Test

Exact computation of the p-value of a permutation
test is only possible for sparsely populated tables, and
is computationally infeasible for most tables resulting
from practical machine learning datasets. Fortunately,
p can be approximated to arbitrary precision by Monte
Carlo sampling as follows (Good, 1994).

For each of n trials the class labels are randomly per-
muted, the test statistic is computed, and its value is
compared to the value for the original (unpermuted)
data. The percentage of trials for which the arti-
ficially generated value is less than or equal to the
original value constitutes an estimate p of the ex-
act significance level p. This estimate is a bino-
mial random variable with standard error se(p) =
y/p(l —p)/n, and so its 100(1 - a)% confidence inter-
val is p±tn-i(a/2)se(p), where t„_i(a/2) is obtained
from Student's redistribution.

This information is used to decide when to stop per-
forming trials. Let pßxed be the prespecified desired
minimum significance level that an attribute must
achieve unless it is to be considered independent of
the class—the level at which the null hypothesis of
"no significant dependence" is to be rejected. Then,
with probability (1 — a),

P>Pfixed if Pfixed <p-tn-i(a)se(p),

and

P<PRxed if Pfixed >P+*n-l(a)se(p)).

If the first inequality holds we judge the attribute to
be significant; if the second holds we do not.2 As n
increases, the likelihood that one of the two inequal-
ities will be true increases, but if p is very close to
Pfixed, neither inequality will become true in a rea-
sonable amount of time. Therefore the procedure is
terminated when the number of trials reaches a pre-
specified maximum,3 and any attribute that survives
this number of trials is considered significant. The in-
troduction of this cut-off point slightly increases the
probability that an attribute is incorrectly judged to
be significant.

2.4 Procedure for Attribute Selection

At each node of a decision tree we must decide which
attribute to split on. This is done in two steps. First,
attributes are rejected if they show no significant as-
sociation to the class according to a pre-specified sig-
nificance level. To judge "significance" we employ
the Freeman and Halton test, approximated by Monte
Carlo sampling as described above. Second, from the
attributes that remain, the one with the lowest value
of pf is chosen.4 The selected attribute is then used to
split the set of instances, and the algorithm recurses.

The division into two steps is a crucial part of the pro-
cedure. It distinguishes clearly between the different
concepts of significance and strength. For example, it
is well known that the association between two distri-
butions may be very significant even if that association
is weak—if the quantity of data is large enough (Press,
Teukolsky, Vettering k Flannery, 1988, p. 628). First,
we test the significance of an association using a per-
mutation test (specifically, the Freeman and Halton
test); then we consider its strength (as measured by
the exact probability pj).

If no significant attributes are found in the first step,
the splitting process stops and the subtree is not ex-
panded any further. This gives an elegant, uniform,
technique for pre-pruning.

3 Experimental Results

We begin with two controlled experiments that are de-
signed to verify the relative performance of (a) the use

2Here, a is used instead of a/2 because the comparisons
are one-sided. In our experiments we set a to 0.005.

3We use at least 100 and at most 1000 trials in our
experiments.

4 Other attribute selection criteria could be employed at
this stage; p/ was chosen to allow a direct comparison with
the method proposed by Martin (1997).

Using a Permutation Test for Attribute Selection in Decision Trees 155

Table 1: Average probabilities for random data (600 instances; uniformly distributed attribute values)

Attribute Values Class Values (a)p (b)P/ (c)Px
2
2
2

2
5

10

0.525
0.511
0.506

0.045
1.63e-05
1.80e-10

0.488
0.509
0.505

5
5
5

2
5
10

0.497
0.500
0.491

1.55e-05
9.25e-18
6.62e-35

0.496
0.497
0.487

10
10
10

2
5

10

0.498
0.520
0.512

1.77e-10
7.84e-35
4.89e-68

0.495
0.515
0.503

ibilities for random data (20 instances; non-uniformly distri

Attribute Values Class Values (a)p (b)P/ (c)Px
2
2
2

2
5
10

0.745
0.674
0.741

0.285
0.024
0.004

0.515
0.466
0.446

5
5
5

2
5
10

0.549
0.561
0.632

0.027
1.02e-4
1.80e-6

0.444
0.448
0.418

10
10
10

2
5
10

0.548
0.581
0.639

0.004
1.72e-6
1.42e-8

0.430
0.425
0.382

of the exact-probability pf statistic in the Freeman
and Halton test, (b) the use of pj by itself with no
significance test (Martin, 1997), and (c) the use of the
parametric version of the chi-squared test, that is, the
probability of \2 calculated from the chi-squared dis-
tribution (White & Liu, 1994). The first experiment
exhibits an artificial dataset for which method (b) per-
forms poorly because it is biased towards many-valued
attributes, whereas (a) performs well (and so does (c)).
The second exhibits another dataset for which method
(c) is biased towards towards many-valued attributes
and performs poorly (and (b) performs even worse),
whereas (a) continues to perform well.

The third subsection presents results for building deci-
sion trees on practical datasets using the new method.

the parametric chi-squared test px are calculated for
this artificial, non-informative, attribute.5 This pro-
cedure is repeated 1000 times with different random
seeds used to generate the instances.

Table 1 shows the average values obtained. It can
be seen in column (b) that pf systematically decreases
with increasing number of classes and attribute values.
Even more importantly, it is always close to zero. If
used for pre-pruning at the 0.01 level (as proposed by
Martin, 1997), it would fail to stop splitting in every
situation except that represented by the first row. On
the other hand, neither p nor px varies systematically
with the number of attribute and class values. For
these reasons it is inadvisable to use pf for attribute
selection without preceding it with a significance test.

3.1 Using the Exact Probability pf is Biased s-2 Parametric Chi-Squared Test is Biased

In order to show that the exact probability pf is bi-
ased towards attributes with many values, we adopt
the experimental setup of White and Liu (1994). This
involves an artificial dataset that exhibits no actual
association between class and attribute values. For
each class, an equal number (300) of instances with
random, uniformly distributed attribute values is gen-
erated. The estimated p- value of the Freeman and Hal-
ton test p, the exact probability pf, and the p- value of

A similar experimental procedure was used to show
that the parametric chi-squared test is biased in small
frequency domains with unevenly distributed samples.
Instead of generating the attribute values uniformly,
they are skewed so that more samples lie close to the
zero point. This is done using the distribution [kx2\,
where k is the number of attribute values and x is

5Our experiments use N = 1000 Monte Carlo trials to
estimate p.

156 Frank and Witten

distributed uniformly between 0 and 1. The number
of instances is reduced to twenty.

Table 2 shows the average values obtained using this
procedure. It can be seen that px decreases system-
atically as the number of attribute values increases,
whereas this is not the case for p. The test based on
px is too liberal in this situation. There also exist sit-
uations in which it is too conservative (Good, 1994).
If used for pruning in a decision tree, a test that is too
liberal does not prune enough, and a test that is too
conservative prunes too much.

3.3 Comparison on Practical Datasets

Results are now presented for building decision trees
for thirty-one UCI datasets (Merz k Murphy, 1996) us-
ing the method described above. We eliminated miss-
ing values from the datasets by deleting all attributes
with more than 10% missing values, and subsequently
removing all instances with missing values. The result-
ing datasets are summarized in Table 3. All numeric
attributes were discretized into four intervals of equal
width.6

We compare pre-pruned trees built using (a) p/ with
prior significance testing using the Freeman and Hal-
ton test p, (b) the exact probability p/, (c) p/ with
prior significance testing using the parametric chi-
squared test px, and (d) post-pruned trees built us-
ing C4.5's pessimistic pruning with default parameter
settings (Quinlan, 1993). We also include results for
pruned and unpruned trees as built by C4.5. Note that
for (a) and (c) we are now applying the two-step at-
tribute selection procedure developed in Section 2.4,
first discarding insignificant attributes and then se-
lecting the best among the remainder. Results are
reported for three significance levels: 0.01, 0.05 and
0.10. All results were generated using ten-fold cross-
validation repeated ten times with different random-
izations of the dataset. The same folds were used for
each scheme.7

Table 4 shows how method (a) compares with the oth-
ers. Each row contains the number of datasets for
which it builds significantly more (+) or less (-) ac-
curate trees, and significantly smaller (+) or larger (-)
trees than the method associated with this row. We
speak of results being "significantly different" if the

Table 3: Datasets used for the experiments

Dataset Size Attributes
(numeric/total)

Classes

anneal 898 6/38 5
audiology 216 0/67 24
australian 653 6/15 2
autos 193 14/24 6
balance-scale 625 4/ 4 3
breast-cancer 277 0/ 9 2
breast-w 683 9/ 9 2
german 1000 7/20 2
glass (G2) 163 9/ 9 2
glass 214 9/ 9 6
heart-c 296 6/13 2
heart-h 261 5/10 2
heart-statlog 270 13/13 2
hepatitis 137 3/16 2
hypothyroid 3404 2/24 4
ionosphere 351 34/34 2
iris 150 4/ 4 3
kr-vs-kp 3196 0/36 2
lymphography 148 3/18 4
mushroom 8124 0/21 2
pima-indians 768 8/ 8 2
primary-tumor 336 0/15 21
segment 2310 19/19 7
sick 3404 2/24 2
sonar 208 60/60 2
soybean 630 0/16 15
splice 3190 0/61 3
vehicle 846 18/18 4
vote 312 0/15 2
vowel 990 10/13 11
zoo 101 1/16 7

6If the class information were used when discretizing the
attributes, the assumptions of the statistical tests would be
invalidated.

7Appendix A lists the average accuracy and standard
deviation for a representative subset of the methods.

difference is statistically significant at the 1% level ac-
cording to a paired two-sided i-test, each pair of data
points consisting of the estimates obtained in one ten-
fold cross-validation run for the two learning schemes
being compared. Results are shown for three different
significance levels: note that this refers to the level
at which attributes are rejected prior to the selection
process.

Observe first that pre-pruning using p outperforms
pre-pruning using p/ (the three rows marked (b)), con-
firming our findings from Section 3.1. For all three sig-
nificance levels p dominates p/ in both accuracy and
size of the trees produced. These results show that if
the splitting attribute is selected based on the value of
Pf, it is better to use a significance test first.

One might think that p/ performs poorly with respect
to p because the former does not prune sufficiently—
it is inferior in terms of both accuracy and tree size.
Consequently, we also ran pre-pruning using p/ at the
0.005 and 0.001 levels, and found that the performance

Using a Permutation Test for Attribute Selection in Decision Trees 157

Table 4: Number of times p performs significantly better (+) or worse (-) than (b) pf, (c) px, (d) post-pruned
trees, and pruned and unpruned C4.5 trees with respect to accuracy and tree size

Accuracy Tree Size
P + - + —

Pfixed = 0.01 (b)p/
(c)px
(d) post-pruned

C4.5 pruned
C4.5 unpruned

8
9
4

3
11

5
3

14

17
11

17
8

20

20
31

6
11

7

7
0

Pfixed = 0.05 (b)pf

(c)p*
(d) post-pruned

C4.5 pruned
C4.5 unpruned

8
6
4

2
8

2
6
9

16
9

22
24

8

11
29

3
2

17

15
2

Pfixed = 0.1 (b)P/
(c)Px
(d) post-pruned

C4.5 pruned
C4.5 unpruned

9
5
4

3
8

2
5

12

16
8

24
24

5

3
29

1
0

22

24
2

Table 5: Number of times p with gain ratio (Method a') performs significantly better (+) or worse (-) than p
with pf (Method a), and pruned and unpruned C4.5 trees

Accuracy Tree Size
p with gain ratio + - +

Pfixed = 0.01 p with pf

C4.5 pruned
C4.5 unpruned

8

3
13

3

14
7

10 10

21 6
30 1

Pfixed = 0.05 p with pf

C4.5 pruned
C4.5 unpruned

10

0
12

4

10
7

11 14

10 14
30 1

Pfixed =0.1 p with pf

C4.5 pruned
C4.5 unpruned

10

1
13

5

15
8

11 12

6 22
30 0

difference between p/ and p can not be eliminated by
adjusting the significance level.

Next, observe from the three rows marked (c) that for
the 0.01 significance level, pre-pruning using p beats
pre-pruning using px with respect to the accuracy
of the resulting trees. For this significance level the
two methods produce trees of similar size. However,
for both the 0.05 and the 0.1 levels p produces trees
that are significantly smaller than those produced by
px. For these two significance levels the two methods
perform comparably as far as accuracy is concerned.
These facts indicate that for both the 0.05 and the
0.1 levels px is a more liberal test than p if applied
to attribute selection and pre-pruning; px stops later
than p—as for the artificial dataset used in Section

3.2. However, it is sometimes more conservative—in
particular for the 0.01 level. The two tests really do
behave differently: they cannot be forced to behave
in the same way by adjusting their significance levels.
However, the results show that trees produced by p are
preferable to those produced by px.

Table 4 also shows that post-pruning consistently
beats pre-pruning using p, so far as accuracy is con-
cerned (rows marked (d)). Our findings show that all
the investigated pre-pruning methods perform signifi-
cantly worse than pessimistic post-pruning.8 For both
the 0.01 and the 0.05 levels, there are five datasets

8This contradicts a previous result (Martin, 1997) that
trees pre-pruned using p/ are as accurate as, and smaller
than, trees post-pruned using pessimistic pruning.

158 Frank and Wüten

on which all pre-pruning methods consistently per-
form significantly worse than post-pruning: hypothy-
roid, kr-vs-kp, sick, splice, and vowel. On kr-vs-kp and
vowel the pre-pruning methods stop too early, on the
other three they stop too late. This means that the
problem cannot be solved by adjusting the significance
level of the pre-pruning methods.

For reference Table 4 also includes results for pruned
and unpruned decision trees built by C4.5. C4.5's
method for building pruned trees differs from post-
pruning method (d) only in that it employs the gain
ratio9 instead of p/ for attribute selection.

Suprisingly, Table 4 shows that p does not perform
better than C4.5's unpruned trees as far as accuracy is
concerned, although p performs better than unpruned
trees built using p/ (results not shown). This indicates
that the gain ratio produces more accurate trees than
Pf. We therefore replaced attribute selection using p/
in the second step of pre-pruning method (a) by selec-
tion based on the gain ratio. As Table 5 shows, the new
method (a')—selection based on the gain ratio with
prior significance testing using the Freeman and Hal-
ton test p—indeed performs better than method (a),
and it also outperforms C4.5's unpruned trees. How-
ever, as Table 5 also shows, post-pruning—in this case
represented by C4.5's pruned trees—still consistently
beats pre-pruning using p.

4 Related Work

Several researchers have applied parametric statistical
tests to attribute selection in decision trees (White &
Liu, 1994; Kononenko, 1995) and proposed remedies
for their shortcomings (Martin, 1997). These are re-
viewed in the next section. Following that we discuss
work on permutation tests for machine learning, none
of which has been concerned with attribute selection
in decision trees.

4.1 Use of Statistical Tests for Attribute
Selection

White and Liu (1994) compare several entropy-based
selection criteria to parametric tests that rely on the
chi-squared distribution. More specifically, they com-
pared the entropy-based measures to parametric tests
based on both the chi-squared and log likelihood ra-
tio statistics. They conclude that each of the entropy

measures favors attributes with larger numbers of val-
ues, whereas the statistical tests do not suffer from this
problem. However, they also mention the problem of
small expected frequencies with parametric tests and
suggest the use of Fisher's exact test as a remedy. The
extension of Fisher's exact test to r x c tables is the
Freeman and Halton test that we have used above.

Kononenko (1995) repeated and extended these exper-
iments and investigated several other attribute selec-
tion criteria as well. He shows that the parametric test
based on the log likelihood ratio is biased towards at-
tributes with many values if the number of classes and
attribute values relative to the number of instances
exceed the corresponding figures considered by White
and Liu (1994). This is not surprising: it can be traced
to the problem of small expected frequencies. For the
log likelihood ratio the effect is more pronounced than
for the chi-squared statistic (Agresti, 1990).

Kononenko also observes another problem with sta-
tistical tests. The restricted floating-point precision
of most computer arithmetic makes it difficult to use
them to discriminate between different informative at-
tributes. The reason for this is that the association
to the class is necessarily highly significant for all in-
formative attributes.10 However, there is an obvious
solution, which we pursue in this paper: once it has
been established that an attribute is significant, it can
be compared to other significant attributes using an at-
tribute selection criterion that measures the strength
of the association.

Recently, Martin (1997) used the exact probability of
a contingency table given its marginal totals p/ for at-
tribute selection and pre-pruning. Our method differs
from his only in that we employ a significance test,
based on p/ but not identical to it, to determine the
significance of an attribute before selecting the best of
the significant attributes according to p/. As Section 3
of this paper establishes, direct use of p/ for attribute
selection produces biased results.

4.2 Use of Permutation Tests in Machine
Learning

Apparently the first to use a permutation test for ma-
chine learning, Gaines (1989) employs an approxima-
tion to Fisher's exact test to judge the quality of rules
found by the INDUCT rule learner.11 Instead of the

9More precisely, it selects the attribute with maximum
gain ratio among the attributes with more than average
information gain.

10The probability that the null hypothesis of no asso-
ciation between attribute and class values is incorrectly
rejected is very close to zero.

11 He uses the one-tailed version of Fisher's exact test.

Using a Permutation Test for Attribute Selection in Decision Trees 159

Figure 1: Two 2 x 2-tables which both optimize the
test statistic

3 0
0 3

0 3
3 Ü

hypergeometric distribution he uses the binomial dis-
tribution, which is a good approximation if the sam-
ple size is small relative to the population size (smaller
than 10 percent).

Jensen (1992) gives an excellent introduction to per-
mutation tests.12 He discusses several alternatives,
points out their weaknesses, and deploys the method-
ology in a prototypical rule learner. However, he does
not mention the prime advantage of permutation tests,
which makes them especially interesting in the context
of decision trees: their applicability to small-frequency
domains.

5 Conclusions

We have applied an approximate permutation test
based on the multiple hypergeometric distribution to
attribute selection and pre-pruning in decision trees,
and explained why it is preferable to tests based on
the chi-squared distribution. We have shown that us-
ing the exact probability of a contingency table given
its marginal totals without a prior significance test is
biased towards attributes with many values and per-
forms worse in comparison. Although we were able to
improve on existing methods for pre-pruning, we could
not achieve the same accuracy as post-pruning.

Apart of the standard explanation that pre-pruning
misses hidden attribute interactions, there are two
other possible reasons for this result. The first is that
we did not adjust for multiple comparisons when test-
ing the significance of an attribute. Recently, Jensen
and Schmill (1997) showed how to reduce the size of
a post-pruned tree significantly by taking multiple hy-
potheses into account using a technique known as the
"Bonferroni correction." The second reason is that
tests for r x c contingency tables are inherently multi-
sided. Consider the table shown at the left of Fig-
ure 1, which corresponds to a perfect classification of
two classes using an attribute with two values. There is
another permutation of class labels, shown at the right,
that also results in a contingency table with the same
optimum value of the test statistic. The significance

12He uses the term "randomization test" instead of per-
mutation test.

level achieved by the original table is only half as great
as it would be if there were only one table that opti-
mized the test statistic. In the case of two attributes
and two classes, the one-sided version of Fisher's exact
test avoids this problem. Generalizing this to the rxc
case appears to be an open problem.

References

Agresti, A. (1990). Categorical Data Analysis. New
York: John Wiley & Sons.

Gaines, B. (1989). An ounce of knowledge is worth
a ton of data. In Proceedings of the 6th Interna-
tional Workshop on Machine Learning (pp. 156-
159). Morgan Kaufmann.

Good, P. (1994). Permutation Tests. New York:
Springer-Verlag.

Jensen, D. (1992). Induction with Randomiza-
tion Testing. PhD thesis, Washington Uni-
versity, St. Louis, Missouri. [http://eksl-www.
cs.umass.edu/~jensen/papers/dissertation.ps].

Jensen, D. & Schmill, M. (1997). Adjust-
ing for multiple comparisons in decision tree
pruning. In Proceedings of the Third Inter-
national Conference on Knowledge Discovery
and Data Mining. AAAI Press. [http://eksl-
www.cs.umass.edu/~jensen/papers/kdd97.ps].

Kononenko, I. (1995). On biases in estimating multi-
valued attributes. In Proceedings of the 14th In-
ternational Joint Conference on Artificial Intelli-
gence (pp. 1034-1040). Morgan Kaufmann.

Martin, J. K. (1997). An exact probability metric
for decision tree splitting and stopping. Machine
Learning, 28(2,3), 257-291.

Merz, C. J. & Murphy, P. M. (1996). UCI Repos-
itory of Machine Learning Data-Bases. Irvine,
CA: University of California, Department of In-
formation and Computer Science. [http://www.
ics.uci.edu/~mlearn/MLRepository.html].

Press, W. H., Teukolsky, S., Vettering, W. & Flannery,
B. (1988). Numerical Recipes in C (2nd Ed.).
Cambridge University Press.

Quinlan, J. R. (1993). C4-5: Programs for Machine
Learning. San Mateo, CA: Morgan Kaufmann.

White, A. P. & Liu, W. Z. (1994). Bias in information-
based measures in decision tree induction. Ma-
chine Learning, 15(3), 321-329.

160 Frank and Wüten

A Accuracy for Practical Datasets

Table 6: Experimental results: percentage of correct classifications, and standard deviation using p, p/,px, post-
pruned trees, p with gain ratio, C4.5's pruned trees, and C4.5's unpruned trees. Because of space constraints,
we could only include results for one of the three pfixed vales used in Table 4: we chose pfixed = 0.05. In the last
six columns, figures are marked with • if they are significantly worse than the corresponding results for p, and
with o if they are significantly better.

P PS Px post- p with C4.5 C4.5
pruned gain ratio pruned unpruned

anneal 98.6±0.1 98.5±0.0 • 99.0±0.1 o 98.4±0.1 • 98.3±0.3 98.0±0.3 • 98.3±0.3
audiology 71.6±1.9 70.3±1.9 • 71.5Ü.7 71.9±1.3 73.8±1.2 o 74.8Ü.0 o 74.8±1.3 o
australian 85.7±0.5 86.7±0.5 o 85.0±0.5 • 86.4±0.0 o 84.8±0.5 • 85.2±0.4 83.8Ü.0 •
autos 67.3±2.2 67.2±2.4 72.7±2.4 o 70.5±2.4 o 73.3±2.3 o 73.0±2.0 o 72.9±2.3 o
balance-scale 66.1±0.9 70.5±1.2 o 65.9Ü.2 67.3Ü.0 67.2±1.2 o 67.9±1.0 o 74.1±1.0 o
breast-cancer 69.0±1.5 65.0±1.4 • 69.8Ü.2 67.6Ü.1 72.5±1.1 o 74.4±1.2 o 66.6±1.4 •
breast-w 95.2±0.7 95.1±0.6 95.0±0.7 95.2±0.6 95.7±0.3 96.0±0.3 o 95.6±0.3
german 70.3±0.7 70.4±0.7 70.4±1.1 70.5±0.5 70.5±0.8 70.9±0.8 67.2±1.2 •
glass (G2) 70.5±4.3 70.6±2.5 70.5±3.3 71.3±1.7 67.3±2.5 79.7Ü.4 o 79.5±1.6 o
glass 59.8±1.4 59.3±1.4 59.6±1.1 60.2Ü.3 60.1±1.6 59.9±2.1 59.3±1.4
heart-c 78.2±1.1 76.8±1.4 76.6±0.9 • 79.2±2.4 77.0Ü.2 77.5Ü.2 75.1Ü.4 •
heart-h 73.9±0.9 72.6±1.6 74.8±1.2 73.7±0.9 77.8±1.2 o 79.5±0.8 o 76.6±1.0 o
heart-statlog 79.2±1.5 77.7±1.7 • 78.1Ü.9 • 80.1±0.7 76.2±1.6 • 78.5±1.9 75.7±2.0 •
hepatitis 79.8±2.4 79.5±2.2 79.5Ü.7 80.7±1.6 84.4±1.8 o 84.4±1.3 o 80.7±1.4
hypothyroid 91.7±0.1 91.7±0.0 91.7±0.0 91.9±0.0 o 91.7±0.0 91.9±0.0 o 91.7±0.1
ionosphere 87.0±1.0 86.7±0.8 87.4±0.8 88.1±0.5 o 87.8±1.4 87.2±0.6 86.6±0.7
iris 91.8±0.3 91.5±0.9 91.8±0.3 91.5±0.8 91.9±0.2 91.5±0.9 90.7±1.1
kr-vs-kp 99.3±0.1 99.3±0.1 99.3±0.1 99.4±0.1 o 99.3±0.1 99.5±0.1 o 99.5±0.1 o
lymphography 75.2±0.8 76.3±2.1 75.2±1.5 76.0±2.4 76.1±1.6 78.6±1.6 o 75.8±2.0
mushroom lOO.OiO.O lOO.OdbO.O lOO.OiO.O lOO.OiO.O lOO.OiO.O lOO.OdbO.O lOO.OiO.O
pima-indians 74.0±0.8 72.9±0.7 74.2±0.5 71.9±0.4 • 74.1±0.6 74.1±0.5 69.4±0.8 •
primary-tumor 39.8±1.1 36.Ü1.4 • 37.6±1.4 • 35.7±1.4 • 38.7±1.9 40.0±0.5 40.3±1.1
segment 91.0±0.2 91.2±0.3 91.1±0.2 o 91.3±0.2 91.5±0.3 o 91.8±0.2 o 91.8±0.3 o
sick 93.3±0.1 93.3±0.1 93.2±0.1 • 93.4±0.0 o 93.3±0.1 93.4±0.0 o 93.2±0.1 •
sonax 68.8±2.5 68.3±2.5 68.6±3.5 69.1±2.4 70.3±2.6 71.5±2.2 70.5±3.1
soybean 75.Ü0.8 72.2±0.8 • 76.Ü0.7 o 73.5±0.6 • 77.6±0.5 o 77.7±0.5 o 76.7±0.7 o
splice 92.6±0.3 92.3±0.3 • 92.2±0.3 • 93.4±0.2 o 93.2±0.2 o 94.2±0.2 o 92.2±0.2 •
vehicle 63.4±0.9 62.0±0.6 • 64.1±1.0 o 64.2±0.7 65.7±0.7 o 66.Ü0.5 o 64.2±0.7
vote 95.4±0.4 95.5±0.4 95.5±0.3 95.6±0.5 95.5±0.4 95.5±0.4 96.2±0.5 o
vowel 77.9±1.0 78.0±1.0 79.5±1.0 o 80.8±1.0 o 73.8±0.6 • 76.6±0.5 • 78.2±0.7
zoo 92.5±1.8 92.8Ü.6 94.0±2.0 94.8±2.1 o 89.6±1.4 • 90.8±1.5 91.5±1.4

161

Multistrategy Learning for Information Extraction

Dayne Freitag
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
dayneQcs.emu.edu

Abstract

Information extraction (IE) is the problem
of filling out pre-defined structured sum-
maries from text documents. We are in-
terested in performing IE in non-traditional
domains, where much of the text is often
ungrammatical, such as electronic bulletin
board posts and Web pages. We suggest that
the best approach is one that takes into ac-
count many different kinds of information,
and argue for the suitability of a multistrat-
egy approach. We describe learners for IE
drawn from three separate machine learning
paradigms: rote memorization, term-space
text classification, and relational rule induc-
tion. By building regression models mapping
from learner confidence to probability of cor-
rectness and combining probabilities appro-
priately, it is possible to improve extraction
accuracy over that achieved by any individ-
ual learner. We describe three different mul-
tistrategy approaches. Experiments on two
IE domains, a collection of electronic seminar
announcements from a university computer
science department and a set of newswire ar-
ticles describing corporate acquisitions from
the Reuters collection, demonstrate the effec-
tiveness of all three approaches.

1 INTRODUCTION

Information extraction (IE) poses the following prob-
lem: Suppose each document in a collection describes
some entity or event drawn from a semantically coher-
ent domain. For example, the collection may consist of
newswire articles describing terrorist attacks in Latin

America, or of personal home pages from a univer-
sity computer science departments. Given a document
from the collection and a set of questions defined for
the domain, find the answer to each question in the
form of a fragment of text from the document. In the
case of articles on terrorism, the object might be to
find the title of the group responsible for the attack,
the instrument of the attack, and the victim's name;
from home pages, we might seek to extract the owner's
name, home address, and university affiliation.

There are many possible uses for a successful IE sys-
tem. As a front end, an IE system can enable database
mining and knowledge discovery in textual domains,
where such processing would otherwise be limited or
impossible. In hypertext, it can support directed and
efficient automatic navigation. It can serve as a source
of high-quality features for document categorization.
And the output of an IE system can be viewed as a
kind of succinct and directed summarization.

Although traditional IE (Cowie & Lehnert, 1996)
concentrates on domains consisting of grammatical
prose, we are interested in extracting information from
"messy" text, such as Web pages, email, and fin-
ger plan files. Our goal is the development of ma-
chine learning methods for such domains. To per-
form well, these methods must be prepared to ex-
ploit non-linguistic information, such as stock phrases,
document formatting, meta-textual structure (e.g., in
HTML), and term frequency statistics.

Several learning IE systems have been proposed which
are also targeted at such domains (Soderland, 1997)
(Califf k Mooney, 1997) (Kushmerick, 1997). These
previous investigations all take a single approach or
attack a particular kind of domain. However, given
the wealth of information in a typical document and
the difficulty of adequately representing this informa-
tion for learning, we surmise that no individual learn-

162 Freitag

ing approach is best for all IE problems. An individual
learner embodies biases that make it more suitable for
some kinds of information and aspects of a problem
than for others. A statistical learner like Naive Bayes,
for example, is useful for problems in which each fea-
ture contributes some evidence toward the determina-
tion of class membership, and in which violations of
the independence assumption do not predominate. It
is less suitable for problems involving elaborate fea-
ture sets, in which some features are abstractions or
combinations of others (i.e., where the independence
assumption is directly violated). Symbolic learners,
on the other hand, work quite well for problems with
elaborate feature sets, especially for those classes ex-
pressible in logical terms using a small subset of fea-
tures. These considerations suggest at multistrategy
approach.

Multistrategy learning is an attempt to devise sys-
tems which, by employing multiple constituent learn-
ers, which are typically drawn from diverse paradigms,
achieve performance superior to any single learner
(Michalski & Tecuci, 1994). The bulk of emphasis
in past research in this area has been on systems
which combine analytical and empirical techniques.
Our work, however, is an example of what has been
called "empirical multistrategy learning" (Domingos,
1996). All constituent learners are inductive, each de-
signed to solve the IE problem individually. Elsewhere
we have shown that heuristic combination of two learn-
ers from different paradigms can yield substantial per-
formance improvements for the IE problem (Freitag,
1997). Here, we ask how we might profitably com-
bine component learners by treating them as black
boxes. This approach has been called "meta-learning"
in the literature (Chan & Stolfo, 1993). Although we
might expect a heuristic combination to achieve better
performance, there are clear advantages to the meta-
learning approach. It is modular and flexible, making
no assumptions about the design of component learn-
ers or the number of learners available.

In this paper, we introduce three machine learning al-
gorithms for IE, each drawn from a different paradigm
and each suitable for particular kinds of IE problems.
Next, we describe three ways of combining the basic
learners, all variations of the meta-learning idea. Fi-
nally, we describe a set of experiments on two IE do-
mains.

2 LEARNING TO EXTRACT

In the simplest version of the information extraction
problem, a single set of questions is applied to each
document in a domain, and a single text fragment is
sought as the answer to each question. We call a sin-
gle question a field; the answer fragment from an in-
dividual document is a field instance or instantiation.
For example, in a domain consisting of newswire arti-
cles describing terrorist attacks, one field might be the
perpetrator of the attack, and the instantiation of this
field in a given article might be "FMLN."

A field can be formalized as a function T(D) = (bb,be)
that maps a document to the boundaries of a text frag-
ment (bb and be are the indexes of the beginning and
ending boundary terms, respectively). Given a set of
documents in which this mapping is labeled, the goal
of a ML system is to learn the function T that best
approximates T. This can be realized in the form of
an auxiliary function Q(D,bb,be) = RU{nil}, which,
given a candidate fragment, either returns a confidence
that it is a field instance or declines to issue a confi-
dence (nil). The form of Q has a convenient affinity
with any number of ML algorithms (the nil in its range
constitutes a failure to match, for algorithms that in-
clude a notion of matching). The three approaches we
will discuss, all based on standard ideas from ML, each
implement Q.

Note that this learning task is only a part of the
functionality of a typical participating system at the
Message Understanding Conference (MUC) (Cardie,
1997). What we have called fields correspond to slots
in the MUC setting. A slot is a component of a larger
structure, called a template, which summarizes the rel-
evant information contained in a document. In ad-
dition to the slot-filling task, which we address here,
the more general MUC problem includes tasks such
as document relevance determination, discourse anal-
ysis, and template merging. Thus, our results are best
regarded as a piece of the larger IE puzzle.

2.1 ROTE LEARNING

Perhaps the simplest possible learning approach to
the IE problem is to memorize field instances verba-
tim. Presented with a novel document, this memo-
rizing learner simply matches text fragments against
its "learned" dictionary, saying "field instance" to any
matching fragments and rejecting all others.

As a slightly more sophisticated approach, we can es-
timate the probability that the matched fragment, is

Multistrategy Learning for Information Extraction 163

indeed a field instance. The dictionary learner we ex-
periment with here, which we call Rote, does exactly
this. Training Rote involves scanning the training cor-
pus and storing all distinct field instances verbatim
in its dictionary. Dictionary construction is followed
by a second pass through the training corpus. For
each text fragment in its dictionary, Rote counts the
number of times it appears as a field instance (pos)
and the number of times it occurs over all (tot). Dur-
ing test, Rote's confidence in a prediction is the value
(pos + 1)/(tot + 2), i.e., a Laplace estimate that the
matching fragment is genuine.

This approach, simple as it is, is nevertheless surpris-
ingly applicable in a wide variety of domains. Its confi-
dence, moreover, correlates well with actual probabil-
ity of correctness. Because of this, even low-confidence
predictions are potentially useful.

2.2 TERM-SPACE LEARNING

It is straightforward to adapt ideas from document
classification to the IE setting. A simple mapping
might transform every field instance into a miniature
"document" and apply "bag-of-words" algorithms di-
rectly, such as Rocchio with TFIDF term weighting or
Naive Bayes. Such an approach could be viewed as a
generalization of Rote.

In contrast with document classification, however, pos-
itive examples in an IE setting always occur embedded
within some larger context. This context is often crit-
ical in disambiguating field instances from other frag-
ments. Although it is hard to exploit contextual regu-
larities by memorizing, statistical approaches are well
suited for this.

We base our bag-of-words learner, which we call Bayes,
on the Naive Bayes algorithm, as used in document
classification and elsewhere (originally in (Maron,
1961)). Each fragment of text in a document (of ap-
propriate size) is regarded as a competing hypothesis.
Given a document, we want to find the most likely
hypothesis (the fragment most likely to be a field in-
stance) . Bayes Rule tells us how to maintain our belief
in a set of disjoint hypotheses (Hi) in reaction to ob-
served data (D):

Pr(Hi\D) =
Fr(D\Hj) Pv(Hj)

£"=1Pr(£|i^)Pr(#i)

As in Naive Bayes as used elsewhere, the important
terms to estimate are Pr(iJj) (the prior probability)
and Pi(D\Hi) (the conditional data probability).

We assume a hypothesis takes the form, "the field
instance starts at token s and is k tokens long" (let
HSik represent such a hypothesis). In other words, a
single hypothesis consists of two parts, position and
length. We can estimate the probability of a partic-
ular position or length from training data. In our
implementation we treat these two estimates as in-
dependent, which is different from the typical Naive
Bayes data independence assumption, but similar in
spirit. Thus, our prior Pr(HSik) is simply the product
of Pr(position = s) and Pr(length = k).

Bayes's data likelihood estimate, Px(D\HS:k), is based
on the terms that occur in and around the text frag-
ment to which HSik corresponds. This estimate is
formed in a way similar to Naive Bayes for document
classification (a product of individual term estimates),
but with a few modifications for the IE setting. In
particular, a context window parameter w is set prior
to training, and the w tokens on either side of a frag-
ment are used to form the estimate, in addition to the
in-field tokens. The algorithm is described in greater
detail elsewhere (Freitag, 1997).

2.3 RELATIONAL LEARNING

Both Bayes and Rote are hobbled by their inability to
take into account anything but simple term frequency
statistics. It may be the case, however, that the in-
formation needed to perform information extraction
comes in other forms. More abstract clues may be
important, such as linguistic syntax, document lay-
out, or simple orthography. In addition, statistical
approaches like Bayes work by summing all available
evidence, whereas in IE a more fruitful approach may
involve identifying simple patterns that serve to dis-
tinguish sub-classes of a field.

Symbolic learning algorithms from the "covering" fam-
ily form hypotheses that match such data spaces well.
Previous research has shown the effectiveness of such
methods for the IE problem (Soderland, 1996) (Califf
& Mooney, 1997). Our relational learner, called SRV,
is a variant of FOIL (Quinlan, 1990). Its example
space consists of all text fragments from the train-
ing document collection as long (in number of tokens)
as the smallest field instance in the training corpus
but no longer than the largest. A negative example
is any fragment that is not tagged as a field instance.
Note that this includes fragments that contain, are
contained by, and overlap with field instances.

Induction proceeds as with FOIL: Starting with a null
rule that matches all examples not covered by previ-

164 Freitag

ously learned rules, SRV greedily adds predicates us-
ing FOIL's information gain metric. In addition to
the tagged document collection, SRV takes as input a
set of features to use in conducting search. These fea-
tures come in two varieties, simple features, which map
from an individual token to an arbitrary value (e.g.,
capitalized? or noun?), and relational features, which
map from a token to another token (e.g., next-token or
subject-verb).

An individual predicate in SRV belongs to one of a few
predefined types:

• length(Relop N): The number of tokens in a frag-
ment is less than, greater than, or equal to some
integer.

• some(Var Path Feat Value): This is a feature-
value test for some token in the sequence (e.g.,
"the fragment contains some token that is cap-
italized"). One argument to this predicate is a
variable. For a rule to match a text fragment,
each distinct variable in a rule (used in this or ei-
ther of the position predicates below) must bind
to a distinct token in the fragment.

• every(Feat Value): Every token in a fragment
passes some feature-value test (e.g., "every token
in the fragment is non-numeric").

• position(Var From Relop N): This constrains the
position of a token bound by a some-predicate in
the current rule. The position is specified relative
to the beginning or end of the sequence.

• relpos(Varl Var2 Relop N): This constrains the or-
dering and distance between two tokens bound by
distinct variables in the current rule.

Relational features are used only in the Path argu-
ment to the some predicate. This argument can be
empty, in which case the some predicate is asserting a
feature-value test for a token actually occurring within
a field, or it can be a list of relational features. In the
latter case, it is positing both a relationship about a
field token with some other nearby token, as well as
a feature-value for the other token. For example, the
assertion:

some(?A [prev-token prev-token] capitalized true)

amounts to the English statement, "There is some to-
ken preceded by a capitalized token two tokens back."

0.85 0.63 0.45 0.77

A A A
-60.2 0.4 0.6 0.75 -45.3

f^ m h A A

...will meet in JBH 303|,!in the|300 [corridor Of |Baker Half;..

Figure 1: Hypothetical Extraction of a Seminar Lo-
cation. Each box style is intended to represent a dif-
ferent learner. By combining evidence from multiple
learners, we can correct for the mistakes of individual
learners.

In order to enable SRV to return confidences with its
predictions, training is followed by a validation step.
Rather than train on the entire training collection, we
set aside a fraction of the documents (one-third here)
for validation. With each rule learned by SRV we store
its performance on the hold-out set. From this perfor-
mance we estimate a rule's actual accuracy. The confi-
dence of a prediction made by SRV is formed from the
estimated accuracy of matching rules. For additional
details on SRV, please refer to (Freitag, 1998).

3 COMBINING LEARNERS

Certain features of the IE problem make it particularly
amenable to a multistrategy approach. Among these
are the following:

• Examples have multiple representations.
Because documents and text fragments are "nat-
ural" objects which must be mapped to appro-
priate representations for learning, multiple map-
pings are possible. Although some information is
necessarily lost in any one mapping, we can hope
that taking multiple views of a document will per-
mit better overall performance.

• The problem is essentially Boolean. As out-
lined above, performing extraction can be reduced
to the task of accepting or rejecting candidate
text fragments. Consequently, we can gauge a
learner's performance on validation documents in
an attempt to model the relationship between pre-
diction confidence and probability of correctness.

• Each document is a case study. In contrast
with a traditional classification problem, each per-

Multistrategy Learning for Information Extraction 165

Final prediction scores

Combiner

X } Regression
Models

Learner A Learner B Learner C

Figure 2: The Basic Combination Scheme. Regression
models based on learner performance on hold-out sets
are used to map raw confidence scores to probabili-
ties. The combiner uses these probabilities to order
all predictions.

formance unit, a document, is a collection of test
problems. Overgeneration, the problem of saying
yes to too many text fragments, can be regarded
as an asset when multiple learners are available. It
both affords more data for our attempt to model
a learner's usefulness, and holds forward the hope
that the poor predictions of a single learner can be
corrected by checking them against those of other
learners.

Figure 1 shows a hypothetical excerpt from a semi-
nar announcement and how such correction might take
place.

3.1 BASIC COMBINATION METHOD

Within the constraint that all learners assign a con-
fidence to any predictions they make (any fragments
they accept), a wide range of behaviors is possible.
In particular, for a number of reasons, we cannot as-
sume that the confidences bear any resemblance to
true probability of correctness, or even that they are
comparable across learners. Bayes's confidences are
large negative log probabilities, for example.

We do assume, however, that probability of correctness
increases with increasing confidence for all learners.
The basic idea, therefore, is to attempt to compute a
mapping for each learner from confidence to probabil-
ity of correctness. Figure 2 shows this in outline. The
specific steps involved are:

1. Validate performance on a hold-out set. Re-
serve a part of the training set for validation.
After training each learner, store its predictions,
with confidences, on the hold-out set.

Use regression to map confidences to prob-
abilities. Based on the learner's performance on
the hold-out set, attempt to model how its perfor-
mance varies with confidence. What is modeled,
and the kind of regression used, depends on the
combination method.

3. Use the regression models and calculated
probabilities to make the best choice on the
test set.

We experimented with three basic methods of combi-
nation. The first two, which we will call Max and Prob,
both attempt to work with regression models that map
directly from confidence to probability of correctness.
The third, which we will call CBayes, uses Bayes Rule
to make combination decisions.

3.2 REGRESSION TO ESTIMATE
CORRECTNESS

If a learner's confidence numbers are meaningful, then
the probability that a prediction is correct will increase
with increasing confidence. We use linear regression
to model the rate at which this probability increases.
For each prediction made we create a datapoint (x,y),
where x is the prediction confidence, and y is 1, if
the prediction was correct (the corresponding fragment
was a field instance), else 0.

The result is a line equation which we use directly
to map from learner confidence to probability of suc-
cess. Both Max and Prob use the resulting estimates
to arbitrate among multiple learners' predictions for a
document. Estimates are computed for each learner's
predictions, and the prediction with the highest esti-
mate is chosen as the top combined prediction. The
two methods differ only in how they handle the case in
which multiple learners offer predictions for the same
text fragment. In such an event, Max simply takes the
larger estimate as the probability that the fragment is
a field instance.

We believe, however, that the fact that two or more
learners agree on a prediction provides more informa-
tion than either prediction alone. Indeed, if we as-
sume that two probability estimates of an event, Pa

and Pb, are independent, then the combined probabil-
ity is the probability that they are not both wrong, i.e.,
1 — (1 — Pa)(l — Pb)- Prob's estimate is based on this
assumption. Given a set of probability estimates Pi, its
estimate for the combined probability is 1 —f|s(l —Pj).

166 Freitag

3.3 BAYESIAN PREDICTION
COMBINATION

Although Prob may exploit the availability of predic-
tions from multiple learners better than Max, it still
leaves something to be desired. In particular, it ig-
nores some of the available information, such as the
frequency with which a learner tends to predict at a
given confidence level and any notion of prior proba-
bilities.

For our final combination method, we attempt to apply
Bayes Rule, which tells us how to maintain our prob-
ability estimates in response to incoming data. Using
Bayes Rule offers two advantages over Prob: It allows
us to incorporate priors into our estimates, and it tells
us how to maintain our hypothesis space so that the
resulting estimates are closer to true probabilities—an
advantage in terms of the accuracy-coverage trade-off.

Here, a hypothesis Hi takes the form, "the fragment
at this place in the document is a field instance." Let
Pai = C be the event, Learner A predicted fragment
i is a field instance with confidence C. For each frag-
ment i chosen by any of the learners, we maintain two
hypotheses explicitly, Hi and —>/7,-. Individual learner
predictions Pai = C are treated as events which cause
us to update hypotheses. We want, therefore, to model
Pr(Pai = C\Hi) and Pr(Pai = Chi/,). It is more con-
venient, however, to model the event Pa, >= C, i.e.,
the probability of a prediction with confidence at least
C. Modeling the cumulative probability yields better
statistics and allows us to avoid the arbitrary decisions
inherent in binning.

We use exponential regression to model these two
probabilities, i.e., we perform linear regression on pairs
of the form (z,log(;/)), where x is a confidence level,
and y is the cumulative probability of seeing a predic-
tion for a fragment given that it either is or is not a
field instance. As an example, consider the problem
of creating the "positive" model Pr(Pfll- >= C\H{) for
some learner A. Let F be the total number of field
instances in the validation set, and let Ga{C) be the
number of field instances identified by Learner A with
predictions having confidence equal to or greater than
C. For every prediction made by Learner A, we add a
regression datapoint (x, log(y)), where x is the confi-
dence of the prediction and y = Ga(x)/F. The "neg-
ative" model Pr(Pai >= c\->Hi) is constructed in the
same way, except over non-field-instance fragments—
any fragment in the validation set identified by any of
the learners. We settled on exponential regression em-
pirically, but it is easy to see why it works better than

Table 1: Accuracy-Coverage Results for the Seminar
Announcement Domain.

speak«
Ace Cov

location
v4cc Cov

Rote 57.4 ±8.8 11.8 89.5 ±2.2 64.9
Bayes 36.1 ±3.5 70.8 59.6 ±2.8 98.7
SRV 60.4 ±3.0 96.6 75.9 ±2.6 92.3

Max 59.8 ±3.0 98.8 75.6 ±2.5 99.7
Prob 60.8 ±3.0 98.8 76.0 ±2.5 99.7
C Bayes 62.5 ±3.0 98.8 75.6 ±2.5 99.7

stime etime
Rote 73.7 ± 2.5 99.6 75.1 ±3.7 95.4
Bayes 98.2 ±0.7 100.0 96.1 ±1.6 99.6
SRV 98.6 ±0.7 99.8 94.1 ±2.0 98.4

Max 96.6 ±1.0 100.0 93.6 ±2.0 100.0
Prob 99.3 ±0.5 100.0 95.4 ±1.7 100.0
CBayes 99.3 ±0.5 100.0 96.3 ±1.6 100.0

linear regression. Low-confidence predictions tend to
be more frequent than high-confidence ones, obeying
something like Zipf's Law.

With each prediction, we use the two models associ-
ated with a learner to adjust the posterior probabilities
of the two mutually exclusive hypotheses regarding the
affected fragment, always normalizing so they sum to
1.

4 EXPERIMENTS

We experimented with data from two IE domains. One
consists of 485 postings to electronic bulletin boards,
which describe upcoming seminars in a university en-
vironment. The earliest of these announcements dates
to October, 1982; the most recent was posted in Au-
gust, 1995. We manually tagged these announcements
for four fields: speaker, location, stime (start time),
and etime (end time). The other domain is a collec-
tion of 600 newswire articles on corporate acquisitions
from the Reuters data set (Lewis, 1992). We defined
nine fields for this domain and manually annotated the
collection to identify all instances of them. We selected
five of the fields for these experiments: acquired (the
official name of the company or resource that is being
purchased), purchaser, acqabr (the short name for
acquired used in the body of the article), purchabr,
and dlraait (the price paid).

The performance numbers we report here are the re-
sult of five-fold experiments in each domain. In each
iteration the datasets were randomly divided into two
partitions of equal size. One partition was used for
training, the other for testing.

Multistrategy Learning for Information Extraction 167

Table 2: Accuracy-Coverage Results for the Acquisi-
tion Domain.

acquir
Ace

ed
Cov

purchaser
Ace Cov

Rote 56.1 ±5.6 20.5 47.5 ±5.6 22.3
Bayes 22.4 ±2.2 96.4 41.4 ±2.6 99.7
SRV 41.1 ±2.6 96.0 49.7 ±2.7 97.8
Max 43.4 ± 2.5 99.8 51.4 ±2.7 99.9
Prob 45.0 ±2.5 99.8 53.2 ±2.7 99.9
C Bayes 45.8 ±2.5 99.8 54.7 ±2.6 99.9

acqab r purchabr
Rote 31.7 ±4.2 43.8 24.7±4.1 38.5
Bayes 33.1 ±2.8 99.7 52.0 ±2.9 99.9
SRV 45.0 ±3.0 99.8 54.0 ±2.9 99.6
Max 42.7 ±2.9 100.0 57.4 ±2.9 100.0
Prob 47.6 ±3.0 100.0 61.0 ±2.9 100.0
C Bayes 47.2 ±3.0 100.0 60.0 ±2.9 100.0

dlramt
Rote 77.2 ±4.7 48.1
Bayes 62.2 ±4.3 76.9
SRV 74.4 ±3.5 90.1
Max 72.0 ±3.5 95.5
Prob 73.1 ±3.5 95.5
C Bayes 70.2 ±3.5 95.5

Table 3: Fl Scores. Two scores are shown for each
result: Full, the Fl score for the accuracy-coverage re-
sults reported in Tables 1 and 2, and Peak, the highest
Fl score along the full accuracy-coverage curve.

spe
Full

aker
Peak

loc;
Full

it ion
Peak

St
Full

ime
Peak

Rote 19.6 19.6 75.3 75.3 84.7 84.7
Bayes 47.8 48.0 74.3 75.1 99.1 99.1
SRV 74.3 74.3 . 83.3 83.3 99.2 99.2
Max 74.5 74.5 86.0 86.4 98.3 98.3
Prob 75.3 75.3 86.3 86.6 99.6 99.6
C Bayes 76.6 76.6 86.0 86.0 99.6 99.6

etime acquired purchaser
Rote 84.0 84.0 30.0 30.0 30.3 30.3
Bayes 97.8 97.8 36.4 38.3 58.5 59.3
SRV 96.2 96.2 57.5 58.3 65.9 66.4
Max 96.7 96.7 60.5 61.2 67.9 68.0
Prob 97.6 97.6 62.0 62.7 69.5 69.7
C Bayes 98.1 98.1 62.8 63.2 70.7 71.1

acqabr purchabr dlramt
Rote 36.8 37.2 30.1 30.8 59.3 59.3
Bayes 49.7 52.8 68.4 68.6 68.8 68.8
SRV 62.0 62.0 70.0 70.2 81.5 81.5
Max 59.8 59.8 72.9 72.9 82.1 82.1
Prob 64.5 64.5 75.8 75.8 82.8 82.8
C Bayes 64.1 64.1 75.0 75.0 80.9 80.9

A third of the training set, randomly selected, was set
aside for validation. Each learner was trained on the
remaining two-thirds, and tested on the validation set.
Following this validation step, each learner was again
trained on the entire training set and tested on the test
set. The goal of the combining methods was to use
performance results on the validation set to arbitrate
among predictions on the test set.

The performance of all methods is summarized in Ta-
ble 1, for the seminar announcement fields, and Ta-
ble 2, for the acquisition fields. The unit of measure-
ment here, as elsewhere in this paper, is a document.
When assessing a learner's performance for a single
document, we can distinguish among four basic out-
comes: no prediction from the learner, prediction on a
document lacking a field instance (spurious), top pre-
diction is incorrect (wrong), and top prediction is cor-
rect (correct). The coverage column (Cov) shows for
what fraction of those documents containing a field
instance a learner actually made a prediction. The
number in the accuracy column (Ace) shows the frac-
tion of correct predictions over documents for which
the learner made a prediction and which contained
a field instance, i.e., it ignores spurious predictions.
Note that if any single learner makes a spurious pre-
diction, all combining methods also make one, since
they are limited to ordering the predictions made by
actual learners. Thus, counting spurious predictions
as errors, while generally appropriate, tends to obscure
the differences between the learners and the combining
methods.

Both the accuracy and coverage values should be
considered together. There are cases, for example,
where the accuracy number makes Rote look like the
strongest extraction method. Its accuracy, however,
is usually measured over a much smaller number of
documents. While it can typically recognize a fraction
of field instances with reasonable accuracy (especially
locations), it does not stand up well to overall com-
parison with the other learners. For convenience in
comparing systems, it is common in information re-
trieval and information extraction to combine preci-
sion and recall into a single, summary number, called
the F-measure:

F =
(ß2 + 1.0)PR

(ß2P) + R
The parameter ß determines how much to favor recall
over precision. Researchers in information extraction
frequently report the Fl score of a system (ß = 1),
which weights precision and recall equally. We can do
the same with our accuracy-coverage results. Table 3

168 Freitag

■■*-•*■-

« "B

"♦•"I-4-.-.I,..

Rot« -♦—
Bay« -+--

SRV D
Max *
Prob -*■ -

CBayM -*■ -

0.4 0.6
Coverage

Speaker

Bot* -♦—
Bayes -*--

SRV D
Max ■
Prob -*■-

CBay« •* •

:-i:.^-.,;t
■■■-»..« t-

Coverao«

Purchaser

Figure 3: Plots of accuracy vs. coverage for all meth-
ods on two fields, speaker and purchaser.

shows the Fl scores for all learners and fields.

For the purchabr field there is clear statistical separa-
tion between the best individual learner (SRV) and the
top two combining methods (Prob and CBayes). Note,
as Table 3 makes clear, that even in the cases where
the difference is less apparent, the combining meth-
ods tend to outperform the best individual method at
higher coverage levels. Among the three combining
methods there is not one case of statistical separation,
but across all fields a clear picture emerges in which
Prob and CBayes are better than Max. Note that even
in cases where a combining method performs only as
well as the best individual learner, it has served a valu-
able purpose—that of relieving us of the requirement
of choosing a single learner. If a combining method
can do this in most cases, while providing added value
in a few, we account it a clear success.

Perhaps more interesting than summary statistics are

Table 4: Overlap in Learner Behavior for the Speaker
Field. Numbers are the probability that column
learner predicted correctly, given that the row learner
predicted correctly.

Rote Bayes SRV Max Prob CBayes
Rote 1 0.81 0.81 0.90 0.96 0.97
Bayes 0.22 1 0.68 0.86 0.89 0.86
SRV 0.09 0.30 1 0.93 0.93 0.97

Max 0.10 0.37 0.92 1 0.99 0.98
Prob 0.11 0.38 0.90 0.98 1 0.98
CBayes 0.11 0.35 0.92 0.93 0.95 1

accuracy-coverage (similar to precision-recall) graphs.
Each point x along the horizontal axis represents the
x% most confident predictions. The vertical value at
this point is the accuracy of these predictions. If the
accuracy-coverage curve declines monotonically, it sug-
gests that the learner's confidence correlates well with
actual accuracy.

Figure 3 shows the accuracy-coverage curves for all
methods on two of the fields. The speaker and
purchaser fields are the ones for which CBayes docs
best. These graphs make clear what the summary
statistics cannot: That combining learners allows us to
make better accuracy-coverage judgments than we can
with a single learner. The anomalous high-confidence
behavior of Prob and Max in the purchaser curve
may be due to an over-reliance on Rote, which has
similar behavior. Note that the high-confidence (low-
coverage) end of the curve is the part with the least
statistical certainty. Also, although CBayes appears
better than any individual learner, an examination of
the graphs for all fields does not support a preference
of it over Prob, or vice versa. There are cases where
CBayes has high-confidence difficulties similar to those
shown here for Prob and Max. We believe that better
regression models will mitigate some of these phenom-
ena.

The strength of a meta-learning approach depends on
the mutual independence of the constituent learners.
Table 4 shows where some of the power of combining
learners comes from on the speaker field, a relatively
challenging task. In this table we ask the question,
given that Learner A has predicted correctly on some
document, what is the probability that Learner B will
also predict correctly? The number in entry (?', j) is the
fraction of all documents correctly handled by method
i which method j also correctly handled. Based on
this table, it is evident that Rote and Bayes are more
closely related to each other than either to SRV.

Multistrategy Learning for Information Extraction 169

The column for a combining method allows us to infer
which learners it depends on most for its performance.
It appears from this that all three methods rely more
on Rote than on Bayes. We would hope to see this,
based on Figure 3, since the few Rote predictions that
are available for this field tend to have higher accuracy
than most Bayes predictions. It is also gratifying that
all methods appear to rely heavily on SRV, since it is
the best individual learner in this case.

5 CONCLUSION

The experimental results presented here show that
multistrategy learning can be useful for the problem of
information extraction. We present one form of multi-
strategy learning, in which the component learners are
treated as black boxes and only their reliability, as a
function of confidence, is modeled. Nothing in the ba-
sic framework requires the information extraction set-
ting or makes any assumptions about the number or
structure of component learners. It is only necessary
that learners be instrumented to associate a confidence
with any prediction they make, something which is al-
ready part of the design of many learners, and which
can be readily added to others.

We do not claim that the multistrategy results re-
ported here are the best that can be achieved. Many
details remain to be filled in, such as how best to con-
duct validation and which statistical assumptions are
appropriate. We have experimented with two kinds of
regression to model learner reliability, but would not
be surprised if other methods which we have not tried,
such as logistic regression or a simple neural network,
might afford increased accuracy. We regard this as
future work.

It also remains to be seen how these results might be
fit into a more traditional information extraction set-
ting, in which slot filling is performed as part of a
larger system and as one of several interacting tasks.
Still, the approaches described here are immediately
applicable to a number of unconventional information
extraction problems. And we can begin to see how
information extraction from ungrammatical text, and
other "natural" problems admitting multiple abstract
representations, can be addressed with machine learn-
ing methods.

A cknowledgement s

This research was supported in part by the DARPA
HPKB program under contract F30602-97-1-0215.

References

Califf, M. E., and Mooney, R. J. 1997. Relational
learning of pattern-match rules for information ex-
traction. In Working Papers of ACL-97 Workshop
on Natural Language Learning.

Cardie, C. 1997. Empirical methods in information
extraction. AI Magazine 18(4):65—79.

Chan, P., and Stolfo, S. 1993. Experiments on multi-
strategy learning by meta-learning. In Proceedings of
the Second International Conference on Information
and Knowledge Management (CIKM 93), 314-323.

Cowie, J., and Lehnert, W. 1996. Information ex-
traction. Communications of the A CM 39(1).

Domingos, P. 1996. Unifying instance-based and rule-
based induction. Machine Learning 24(2):141—168.

Freitag, D. 1997. Using grammatical inference to
improve precision in information extraction. In Notes
of the ICML-97 Workshop on Automata Induction,
Grammatical Inference, and Language Acquisition.

Freitag, D. 1998. Information extraction from html:
Application of a general machine learning approach.
In Proceedings of the Fifteenth National Conference
on Artificial Intelligence (AAAI-98).

Kushmerick, N. 1997. Wrapper Induction for Infor-
mation Extraction. Ph.D. Dissertation, University of
Washington. Tech Report UW-CSE-97-11-04.

Lewis, D. 1992. Representation and Learning in
Information Retrieval. Ph.D. Dissertation, Univ. of
Massachusetts. CS Tech. Report 91-93.

Maron, M. 1961. Automatic indexing: An experimen-
tal inquiry. Journal of the Association for Computing
Machinery 8:404-417.

Michalski, R., and Tecuci, G., eds. 1994. Machine
Learning: A Multistrategy Approach. San Mateo, CA:
Morgan Kaufmann.

Quinlan, J. R. 1990. Learning logical definitions from
relations. Machine Learning 5(3):239—266.

Soderland, S. 1996. Learning Text Analysis Rules for
Domain-specific Natural Language Processing. Ph.D.
Dissertation, University of Massachusetts. CS Tech.
Report 96-087.

Soderland, S. 1997. Learning to extract text-based in-
formation from the world wide web. In Proceedings of
the 3rd International Conference on Knowledge Dis-
covery and Data Mining.

170

An Efficient Boosting Algorithm for Combining Preferences

Yoav Freund Raj Iyer* Robert E. Schapire
AT&T Labs MIT Laboratory for Computer Science AT&T Labs

yoav@research.att.com rajiyer@mit.edu schapire@research.att.com

Yoram Singer
AT&T Labs

singer@research.att.com

Abstract. The problem of combining preferences arises in sev-
eral applications, such as combining the results of different search
engines. This work describes an efficient algorithm for combin-
ing multiple preferences. We first give a formal framework for the
problem. We then describe and analyze a new boosting algorithm
for combining preferences called RankBoost. We also describe an
efficient implementation of the algorithm for a restricted case. We
discuss two experiments we carried out to assess the performance
of RankBoost. In the first experiment, we used the algorithm to
combine different WWW search strategies, each of which is a
query expansion for a given domain. For this task, we compare
the performance of RankBoost to the individual search strategies.
The second experiment is a collaborative-filtering task for mak-
ing movie recommendations. Here, we present results comparing
RankBoost to nearest-neighbor and regression algorithms.

1 Introduction
Consider the following movie-recommendation task, some-
times called a "collaborative-filtering" problem [8, 14]. In
this task, a new user, Alice, seeks recommendations of
movies that she is likely to enjoy. A collaborative-filtering
system first asks Alice to rank movies that she has already
seen. The system then examines the rankings of movies
provided by other viewers and uses this information to re-
turn to Alice a list of recommended movies. To do that, the
recommendation system looks for users whose preferences
are similar to those of Alice and combines their recommen-
dations.

One important property of this problem is that the most
relevant information to be combined represents relative
preferences rather than absolute ratings. In other words,
even if the ranking of movies is expressed by assigning
each movie a numeric score, we would like to ignore the
absolute values of these scores and concentrate only on
their relative order. This distinction becomes very impor-
tant when we combine the rankings of many users who
often use completely different ranges of scores to express
identical preferences. Situations where we need to combine
the ranking of different models also arise in meta-searching
problems [5] and in information-retrieval problems [11,10].

In this paper, we introduce and analyze an efficient
algorithm called RankBoost for combining multiple rank-

*Research conducted while visiting AT&T Labs and with sup-
port from an NSF Graduate Fellowship.

ings. This algorithm is based on Freund and Schapire's [6]
AdaBoost algorithm and its recent successor developed by
Schapire and Singer [13]. Similar to other boosting al-
gorithms, RankBoost works by combining many "weak"
rankings of the given instances. Each of these may be only
weakly correlated with the target ranking that we are at-
tempting to approximate. We show how to combine such
weak rankings into a single highly accurate ranking, and we
prove a bound on the quality of this final ranking in terms
of the quality of the weak rankings.

For the movie task, we use very simple weak rankings
which partition all movies into only two equivalence sets,
those which are more preferred and those which are less
preferred. For instance, we might use another user's ranked
list of movies partitioned according to whether or not he
prefers them to some particular movie that appears on his
list. Such partitions of the data have the advantage that they
only depend on the relative ordering defined by the given
rankings rather than absolute ratings. Despite their appar-
ent weakness, their combination using RankBoost performs
quite well experimentally.

Besides giving a theoretical analysis of the quality of
the ranking produced by RankBoost, we also analyze its
complexity and show how it can be implemented efficiently.
We discuss further improvements in efficiency which are
possible in certain natural cases.

We report the results of experimental tests of our ap-
proach on two different problems. The first is the mcta-
searching problem. In a meta-search application, the goal
is to combine the rankings of several WWW search strate-
gies. Each search strategy is an operation which takes as
input a query, performs some simple transformation of the
query (such as adding search directives such as "AND", or
search tokens such as "homepage") and sends it to a partic-
ular search engine. The outcome of using each strategy is
a list of URLs which are proposed as answers to the query.
The goal is to combine the strategies that work best for a
given set of queries.

The second problem is the movie-recommendation prob-
lem described above. For this problem, there exists a
large publicly available dataset which contains ratings of
movies by many different people. We compared RankBoost
to nearest-neighbor and regression algorithms which have
been previously studied for this application using several
evaluation measures.

An Efficient Boosting Algorithm for Combining Preferences 171

Despite the wide range of applications that use and com-
bine rankings, this problem has received relatively little at-
tention in the machine-learning community. The few meth-
ods that have been devised for combining rankings tend
to be based either on nearest-neighbor methods [9, 14] or
numerical-optimization techniques [1,3]. In the latter case,
the rankings are viewed as real-valued scores and the prob-
lem of combining different rankings reduces to numerical
search for a set of parameters that will minimize the dis-
parity between the combined scores and the feedback of a
user.

While the above (and other) approaches might work
well in practice, they still do not guarantee that the com-
bined system will match the user's preference when we
view the scores as a means to express preferences. Re-
cently, Cohen, Schapire and Singer [4] proposed a frame-
work for manipulating and combining multiple rankings in
order to directly minimize the number of disagreements. In
their framework, the rankings are used to construct prefer-
ence graphs and the problem is reduced to a combinatorial
optimization problem which turns out to be NP-complete;
hence, an approximation is used to combine the different
rankings. They also describe an efficient on-line algorithm
for a related problem.

The algorithm we present in this paper uses a similar
framework to theirs, but sidesteps the intractability prob-
lems. Furthermore, RankBoost is more appropriate for
batch settings where there is "enough" time to find a good
combination. Thus, the two approaches complement each
other. Together, these algorithms constitute a viable ap-
proach to the problem of combining multiple rankings, that,
as our experiments indicate, work very well in practice.

2 A formal model of the ranking problem

In this section, we describe our formal model for studying
ranking. Let ^bea set called the domain or instance
space. Elements of X are called instances. For example,
in the movie-ranking task, each movie is an instance.

A learning algorithm in our model accepts as input a
set of ranking features f\,..-,fn- These are intended to
provide a base level of information about the ranking task.
Said differently, the learner's job will be to learn a ranking
expressible in terms of the ranking features, similar to or-
dinary features in more conventional learning settings. For
the movie task, each ranking feature corresponds to a single
viewer's past ratings of movies.

Formally, each ranking feature fi is a function of the
form fi : X ->• R. The set E consists of all real numbers,
plus one additional element <f> which indicates that no rank-
ing is given and which is defined to be incomparable to all
real numbers. For two instances XQ and x\, we interpret
fi{%\) > fi(xo) to mean that x\ is ranked higher than XQ
by fi. If fi(x) = <f> then x is unranked by /,. For the movie
ranking task, fc(x) is simply the numerical rating provided
by movie-viewer i on movie x, or <j> if the movie was not
rated.

The final input to the learning algorithm is a feedback
function O. This function encodes known relative ranking

information about a subset of the instances. Typically, the
learner will try to approximate <E> to produce a ranking of
unseen instances. For the movie task, the feedback consists
of the known movie preferences provided by the current
movie-viewer (i.e., the one for whom the system is currently
attempting to recommend movies).

Formally, we assume the feedback function has the form
O : X x X ->• R with the interpretation that <!>(xo,x\)
represents the degree to which xi should be correctly ranked
above xo. Large positive values mean that x\ should be
ranked above xo while negative values mean the opposite;
a value of zero indicates no preference between xo and
x\. Consistent with this interpretation, we assume that
®(x, x) = 0 for all x £ X, and that O is anti-symmetric in
the sense that «I>(xo, x\) = — <J>(a;i, XQ) for all xo, x\ G X.
Note, however, that we do not assume transitivity of the
feedback function.

For the movie task, we can define <&(a;o, x j) to be +1 if
movie x\ was preferred to movie XQ by the current viewer,
— 1 if the opposite was the case, and 0 if either of the movies
was not seen or if they were equally rated.

We generally assume that the support of <i> is finite. Let
Xu, denote the set offeedback instances, i.e., those instances
which occur in the support of O:

X<t = {x£X\3x' £X : 4>(x,x') # 0}.

Also, let |3>| be the size of the support of <&:

|<D| = |{(ao,a:,) e X x X | ^(x0,Xi) ? 0}|.

In some settings, it may be appropriate for the learner to
accept a set of feedback functions <J>i,..., <l>m. However,
all of these can be combined into a single function <& sim-
ply by adding them: 3> = ^. <J>j. (If some have greater
importance than others, then a weighted sum can be used.)

Formally, we require the learner to output a ranking of
all instances represented in the form of a function H : X —►
R with a similar interpretation to that of the ranking features,
i.e., x\ is ranked higher than #o by H if H(x\) > H(XQ).
For the movie task, this corresponds to a complete ordering
of all movies (with possible ties allowed).

The goal of the learner is to produce a "good" ranking
of all instances, including those not observed in training.
For instance, for the movie task, we would like to find a
ranking of all movies which accurately predicts which ones
a movie-viewer will like more or less than others; obviously,
this ranking should include movies that the viewer has not
already seen. As in other learning settings, how well the
learning system performs on unseen data depends on many
factors, such as the number of instances covered in training
and the representational complexity of the ranking produced
by the learner.

There are various methods that can be used to evaluate
such a ranking. Some of these are discussed in Section 5.
The boosting algorithm described in the next section at-
tempts to minimize one possible measure called the ranking
loss.

172 Freund, Iyer, Schapire, and Singer

Given: initial distribution D over X x X.
Initialize: D\ = D.
Fort= 1,...,T:

• Train weak learner using distribution Dt.
• Get weak hypothesis ht : X -4 R.
• Choose at 6 R.
• Update:

Dt(xo,x\)exp(at(ht(x0)-ht(xi)))
Dt+\{xo,x\) =

At
where Zt is a normalization factor (chosen so that Dt+\ will
be a distribution).

T

Output the final hypothesis: H(x) = \]cttht(x).
t=i

Figure 1: The RankBoost algorithm.

3 A boosting algorithm for the ranking task
In this section, we describe an approach to the ranking prob-
lem based on a machine learning method called boosting, in
particular, Freund and Schapire's [6] AdaBoost algorithm
and its successor developed by Schapire and Singer [13].
Boosting is a method of producing highly accurate predic-
tion rules by combining many "weak" rules which may be
only moderately accurate.

In the current setting, we seek a learning algorithm
which will produce a function H : X -> R whose induced
ordering of X will approximate the relative orderings en-
coded by the feedback function <t>. To formalize this goal,
let D(xo,x\) — c • max{0,4>(xo,a;i)} so that all negative
entries of <I> (which carry no additional information) are set
to zero. Here, c is a positive constant chosen so that

^2 D{x0,xi) = 1.
Xo,X\

(When a specific range is not specified on a sum, we always
assume summation over all of A".) Apairxo,xi is said to be
crucial if 4>(£o, x\) > 0 so that the pair receives non-zero
weight under D.

Our boosting algorithm is designed to find an H with a
small weighted number of crucial-pair misorderings, namely,

££>(*<>,*,)[Jf(a;,) <ff(a:o)]

= Vt{x0tX^D[H{xx)<H{xQ)]. (1)

Here and throughout this paper, we define [ir] to be 1 if
predicate n holds and 0 otherwise. We call the quantity in
Eq. (1) the ranking loss and we denote it by T\OSSD(H).

3.1 The RankBoost algorithm

We call our boosting algorithm RankBoost, and its pseu-
docode is shown in Figure 1. Like all boosting algorithms,
RankBoost operates in rounds. We assume access to a
separate procedure called the weak learner which, on each
round, is called to produce a weak hypothesis. RankBoost
maintains a distribution Dt over X x X which is passed on
round t to the weak learner. This distribution encodes the
relative importance to the weak learner that one instance is
ranked above another.

Weak hypotheses have the form ht : X -> R. We think
of these as providing ranking information in the manner
described above. The weak learner we used in our exper-
iments is based on the given ranking features; details are
given in Section 4.

The boosting algorithm uses the weak hypotheses to
update the distribution as shown in Figure 1. Suppose that
ZOJZI is a crucial pair so that we want xi to be ranked higher
than XQ (in all other cases, Dt will be zero). Assuming for
the moment that the parameter at > 0 (as it usually will be),
this rule has the effect of decreasing the weight Dt (xo, x\) if
ht gives a correct ranking (ht(x\) > ht(xo)) and increases
the weight otherwise. Thus, Dt will tend to concentrate
on the pairs whose relative ranking is hardest to determine.
The actual setting of at will be discussed shortly.

The final or combined hypothesis if is a weighted sum
of the weak hypotheses. We can prove the following bound
on the ranking loss of H. This theorem also provides guid-
ance in choosing at and in designing the weak learner as
we discuss below. Note that this theorem only concerns
performance on the training data. As in more standard clas-
sification problems, the loss on a separate test set can also be
theoretically bounded given appropriate assumptions using
uniform-convergence theory [2, 7, 12, 15].

Theorem 1 Assuming the notation of Figure 1, the ranking
loss ofH is

r\ossD(H) <f[Zt .
t=i

Proof: Unraveling the update rule, we have that

D(xo,xi)exp(H(x0) - H(x\))
DT+\{XQ,X\) =

n«Zi t*t

Note that [x > 0] < ex for all real x. Therefore, the ranking
loss with respect to initial distribution D is

Y/D(x0,xi)lH(x0)>H(xl)]

< £jD(z0):r,)exp(#(a:o)-ff(a:i))

= ^2DT+](x0,xl)Y[Zt = Y[Zt.
Xo,X] t t

This proves the theorem. ■
Note that RankBoost generally requires 0(101) space

and time per round.

3.2 Choosing a, and criteria for weak learners

Thus to minimize ranking loss, on each round t we should
choose at and construct weak hypotheses ht in a manner
that tends to minimize

Zt=^2 Dt(x0,xi)exp(at{ht(xo) - ht(xi))) .
X0,X\

There are various methods for achieving this end. Here we
sketch three. Let us fix t and drop all t subscripts when

An Efficient Boosting Algorithm for Combining Preferences 173

clear from context. (In particular, for the time being, D will
denote Dt rather than an initial distribution.)

First and most generally, for any given weak hypothesis
h, it can be shown that Z, viewed as a function of a, has
a unique minimum which can be found numerically via a
simple binary search (except in trivial degenerate cases).
Details are omitted.

The second method of minimizing Z is applicable in
the special case that h has range {0,1}. In this case, we can
minimize Z analytically as follows: For be {-1,0, +1},
let

Wb = Y, D(xo,xi)[h{xo) - h(xi) = &].

Also, abbreviate W+i by W+ and W-\ by W_. Then Z -
W-e~a + Wo + W+ea. Using simple calculus, it can be
verified that Z is minimized by setting a = \ In (W- /W+)

which yields Z = Wo + 2^/W-W+. Thus, if we are using
weak hypotheses with range restricted to {0,1}, we should
attempt to find h which tends to minimize this value of Z
and we should then set a accordingly.

For weak hypotheses with range [0,1], we can use a
third method based on an approximation of Z. Specifically,
note that

< i^y+M
for all real a and x £ [-
Zby

Z <

!,+!]. Thus, we can approximate

h(x0) -h(xi)\ 0

2)e
^2D(X0,XI) (

+ n-h(x0) + h(Xl)\ g_,

(2)

where

r=Yl D(x0,xi)(h(xi) - h(x0)). (3)

The right hand side of Eq. (2) is minimized when

a = | In

which, plugging into Eq. (2), yields Z < \/l - r2. Thus,
to approximately minimize Z using weak hypotheses with
range [0,1], we can attempt to maximize \r\ as defined in
Eq. (3) and then set a as in Eq. (4). This is the method used
in our experiments.

3.3 An efficient implementation for bipartite
feedback

In this section, we describe a more efficient implementation
of RankBoost for feedback of a special form. We say that
the feedback function is bipartite if there exists disjoint
subsets Xo and X\ of X such that O ranks all instances
in X\ above all instances in XQ and says nothing about

Given: disjoint subsets Xo and X\ of X.
Initialize: vi(x) = (\X0\ |X,|)-'/2;

SW-| _i ifx€X0

¥oTt= 1,...,T:

• Train weak learner using distribution Dt (as defined by
Eq. (5))

• Get weak hypothesis ht : X -¥ E.
• Choose at e M..

vt(x)exp(-ats(x)ht(x))
• Update: vt+i(x) = j=

where Zt =

(^vt(x)exp(ai/it(x))| I y^vt{x)exp(-atht{x))\.
x€X0 / \i6X, /

T

Output the final hypothesis: H(x) = ^ atht(x).
t=i

Figure 2: A more efficient version of RankBoost for bipartite
feedback.

any other pairs. That is, formally, for all xo e XQ and all
xi € X\ we havethatO(zo,a;i) = +1. ^{xi,x0) = -1
and <& is zero on all other pairs.

Such feedback arises naturally, for instance, in docu-
ment rank-retrieval tasks common in the field of informa-
tion retrieval. Here, a set of documents may have been
judged to be relevant or irrelevant, and the goal is to find a
ranking of all documents which will tend to rank all rele-
vant documents above all irrelevant documents. A feedback
function which encodes these preferences will be bipartite.

If RankBoost is implemented naively as in Section 3.2,
then the space and time-per-round requirements will be
0(|A"o| |-X"i|)- In this section, we show how this can be
improved to O(|-Xo| + l-X'il)- Note that, in this section,
X® = XQ U X i.

The main idea is to maintain a set of weights vt over
X (rather than the two-argument distribution Dt), and to
maintain the condition that, on each round,

£»t(a;o,xi) = vt(x0)vt(xi) (5)

for all crucial pairs XQ, X\ (recall that Dt is zero for all other
pairs).

The pseudocode for this implementation is shown in
Figure 2. Eq. (5) can be proved by induction. Details
omitted for lack of space.

Finally, note that all space requirements and all per-
round computations are O (\X0\ + \XX \), with the possible
exception of the call to the weak learner. However, if we
want the weak learner to maximize \r\ as in Eq. (3), then
we also only need to pass |X<p\ weights to the weak learner,
all of which can be computed in linear time. Omitting t
subscripts, and defining s() as in Figure 2, we can rewrite
r as

r = ^ D(x0,x\)(h(xi) -h(x0))

174 Freund, Iyer, Schapire, and Singer

= Yl Y2 v(x0)v(xi)(h(xi)s(x1) + h(x0)s(x0))
xoGXo X]£X\

s(x0) h(x0)

+ H {v(x\)]T v(x0)\s(xl)h{x])
xi£X\ \ xo€Xo /

= £d(x)s(z)/i(x) (6)
x

whered(z) = v(x) T,X':s(x)^s(x') v(x')- All of the weights
d(x) can be computed in linear time by first computing the
sums which appear in this equation for the two possible
cases that x is in XQ or X\. Thus, we only need to pass
\X®\ weights to the weak learner in this case rather than the
full distribution Dt of size |Xo| |Xi|.

4 Weak hypotheses for ranking
As described in Section 3, our algorithm RankBoost re-
quires access to a weak learner to produce weak hypotheses.
In this section, we describe an efficient implementation of
a weak learner for ranking.

Perhaps the simplest and most obvious weak learner
would find a weak hypothesis h which is equal to one of the
ranking features fi, except on unranked instances. That is,

h{x) { fi(x iffi{x) el
if fi(x) = (f>

for some qM G E.
The main problem with such a weak learner is that it

depends critically on the actual values defined by the rank-
ing features, rather than relying exclusively on the relative-
ordering information which they provide. We believe that
learning algorithms of the latter form will be much more
general and applicable. Such methods can be used even
when features provide only an ordering of instances and
no scores or other information are available. Such meth-
ods also side-step the issue of combining ranking features
whose associated scores have different semantics (such as
the different scores assigned to URL's by different search
engines).

For these reasons, we focus in this section and in our
experiments on {0, l}-valued weak hypotheses which use
the ordering information provided by the ranking features,
but ignore specific scoring information. In particular, we
will use weak hypotheses h of the form

h(x) =
iffi(x)>0
if fi(x) <e
if fi(x) = 4>

(7)

where 6 G K and q^ £ {0,1}. That is, a weak hypothesis
is derived from a ranking feature fi by comparing the score
of /, on a given instance to a threshold 6. To instances
left unranked by f,, the weak hypothesis assigns the default
score (jfdCf. For the remainder of this section, we show how
to choose the "best" feature, threshold and default score.

Let us fix t and drop it from all subscripts to simplify
the notation. Since the ranges of our weak hypotheses are
bounded in [0,1], we can use the third method1 described in
Section 3.2 to guide us in our search for a weak hypothesis.
Recall that, according to this method, the weak learner
should seek a weak hypothesis which maximizes \r\ as
given by Eq. (3). For a given candidate weak hypothesis,
we can compute r directly in 0(|<J>|) time. Moreover, for
each of the n ranking features, there are at most \X<t>\ + 1
thresholds to consider (as defined by the range of fi on X®)
and two possible default scores (0 and 1). Thus, naively, \r\
canbemaximizedin0(n|O||A'(D|) time. We now describe a
time and space efficient algorithm for maximizing \r\ which
requires only 0(n|Ao| -I-1*1) time. (In case of bipartite
feedback, if the boosting algorithm of Section 3.3 is used,
only 0(n| A^i,|) time is needed.)

We begin by rewriting r for a given D and h as follows:

r = Y2 D{xo, x\) {h{x\) - h(x0))
xo,x>

= Y2 D(xo, x\)h{x\) - Y2 D(xo>x')Hxo)
Xo,X\ XQ,X\

XX' x x'

x x'

= £>(*)*(*), (8)
X

where we define TT(X) = ^2xi(D(x',x) — D(x,x')) as the
potential of x. Note that 7r(a;) depends only on the current
distribution D. Hence, the weak learner can precompute
all the potentials at the beginning of each boosting round
in 0(|0|) time and 0(1^1) space. When the feedback is
bipartite, comparing Eqs. (6) and (8), we see that TT(X) —
d(x)s(x) where d and s are defined in Section 3.3; thus, in
this case, n can be computed even faster in only 0(|A"<i>|)
time.

Now let us address the problem of finding a good thresh-
old value 6 and default value qiQi. We need to scan the
candidate ranking features fi and evaluate \r\ (defined by
Eq. (8)) for each possible choice of fi, 6 and qicf. For h
defined by Eq. (7), we have that

= Yl ^{x) + qM Y2 7r^)- (9)
x:fi(x)>$ x:fi{x) = 4>

For a fixed ranking feature fi, let Xj. = {x £ X® \ fi(x) ^
<f>} be the set of feedback instances ranked by fi. We
only need to consider \Xj{ \ + 1 threshold values, namely,
{fi(x) | i £ A/JU {oo} since these define all possible
behaviors on the feedback instances. Moreover, we can
straightforwardly compute the first term of Eq. (9) for all
thresholds in this set in time 0{\Xji |) simply by scanning

'Although the second method could have been used, we chose
to focus on the third method because it is slightly simpler. Exper-
iments using the second method are in our future plans.

An Efficient Boosting Algorithm for Combining Preferences 175

ML Domain
Top
1

Top
2

Top
5

Top
10

Top
20

Top Avg
30 Rnk

RankBoost
Best (Top 1)
Best (Top 10)
Best (Top 30)

102
117
112
95

144
137
147
129

173
154
172
159

184
167
179
178

194
177
185
187

202 4.38
181 6.80
187 5.33
191 5.68

University Domain
RankBoost
Best single query

95
112

141
144

197
198

215
221

247
238

263 7.74
247 8.17

Table 1: Comparison of the combined hypothesis and individual
search templates.

down a presorted list of threshold values and maintaining
the partial sum in the obvious way.

For each threshold, we also need to evaluate \r\ for the
two possible assignments of qie! (0 or 1). To do this, we
simply need to evaluate Y^x-fdx^A^fa) once- Naively,
this takes 0(|Ao - Xft\) time, i.e., linear in the number
of unranked instances. We would prefer all operations to
depend instead on the number of ranked instances since,
in applications such as meta-searching and information re-
trieval, each ranking feature may rank only a small fraction
of the instances. To do this, note that J2X n(x) — 0 by
definition of n(x). This implies that

]T vr(x) = - Y, 7r(x)-
x:fi(x)=<l> x:fi(x)^4>

The right hand side of this equation can clearly be computed
in 0(1^1) time.

Thus, for a given ranking feature, the total time required
to evaluate \r\ for all candidate weak hypotheses is only
linear in the number of instances that are ranked by that
feature.

5 Experimental evaluation of RankBoost
In this section, we report experiments with RankBoost on
two ranking problems. The first is a simplified Web meta-
search task, the goal of which was to build a search strategy
for finding homepages of machine-learning researchers and
universities. The second task is a collaborative-filtering
problem of making movie recommendations for a new user
based on the preferences of previous users.

In each experiment, we divided the available data into
training data and test data, ran each algorithm on the training
data, and evaluated the output hypothesis on the test data.
Details are given below.

5.1 Meta-search task

We first present experiments on learning to combine the
results of several Web searches. This problem exhibits
many facets that require a general approach such as ours.
For instance, approaches that learn to combine similarity
scores are not applicable since the similarity scores of Web
search engines are often unavailable.

In order to test RankBoost on this task, we used the
data of Cohen, Schapire and Singer [4]. Their goal was to
simulate the problem of building a domain-specific search
engine. As test cases, they picked two fairly narrow classes

of queries—retrieving the homepages of machine-learning
researchers (ML), and retrieving the homepages of uni-
versities (UNIV). They chose these test cases partly be-
cause the feedback was readily available from the Web.
They obtained a list of machine-learning researchers, iden-
tified by name and affiliated institution, together with their
homepages,2 and a similar list for universities, identified by
name and (sometimes) geographical location from Yahoo!
We refer to each entry on these lists (i.e., a name-affiliation
pair or a name-location pair) as a base query. The goal is
to learn a meta-search strategy which, given a base query,
will generate a ranking of URL's that includes the correct
homepage at or close to the top.

Cohen, Schapire and Singer also constructed a series of
special-purpose search templates for each domain. Each
template specifies a query expansion method for converting
a base query into a likely seeming AltaVista query which we
call the expanded query. For example, one of the templates
has the form+"NAME" +machine +learning which
means that AltaVista should search for all the words in
the person's name plus the words 'machine' and 'learning'.
When applied to the base query 'Joe Researcher from Learn-
ing University' this template expands to the expanded query
+"Joe Researcher" +machine +learning.

A total of 16 search templates were used for the ML
domain and 22 for the UNIV domain. Each search template
was used to retrieve the top thirty ranked documents. If
none of these lists contained the correct homepage, then
the base query was discarded from the experiment. In the
ML domain, mere were 210 base queries for which at least
one search template returned the correct homepage; for the
UNIV domain there were 290 such base queries.

It is instructive to see how this ranking problem can be
mapped into our framework. Formally, the instances now
are all pairs of the form (q, u) where q is a base query and
u is one of the URL's returned by one of the search tem-
plates for this query. Each ranking feature f, is constructed
from a corresponding search template i by assigning the j'th
URL u on its list (for base query q) a rank of -j; that is,
fi((q, u)) = -j. If u was not ranked for this base query,
then we set fi((q,u)) = <f>. We also construct a separate
feedback function <bq for each base query q which ranks
the correct homepage URL u* above all others. That is,
9((g, «),(?,«)) = 4-1 and *,((g,«»)»(«»«)) = -lfor

all u ■£ u». All other entries of ®q are set to zero. All
the feedback functions <&q were then combined into one
feedback function 4> by summing as described in Section 2.

Given this mapping of the ranking problem into our
framework, we can immediately apply RankBoost. This
mapping implies that each weak hypothesis is defined by a
search template i (corresponding to ranking feature /j), and
a threshold value 9. Given a base query q and a URL u,
this weak hypothesis outputs 1 or 0 if u is ranked above or
below the threshold 6 on the list of URL's returned by the
expanded query associated with search template i applied to
base query q. As usual, the final hypothesis if is a weighted

2From 'http://www.aic.nrl.navy.mil/~aha/research/machine-
learning.html'.

176 Freund, Iyer, Schapire, mid Singer

Disagreements Coverage

0.67 - '* ■

0.66

0.65 ~ •—-
0.64

0.63
♦

0.62 "*-.
0.61 .':'V*-.. *-- »;::

■—■«

Predicted-rank-oMop Rank-of-predlcted-top

Figure 3: Performance of algorithms with respect to feature sets of sizes 100,200,500,750,1000,2000.

sum of the weak hypotheses. Thus, given a test base query
q, we first form all of the expanded queries and send these to
the search engine to obtain lists of URL's. We then evaluate
H as above on each pair (q, u), where u is a returned URL,
to obtain a predicted ranking of all of the URL's.

For evaluation, we divided the data into training and
test sets using four-fold cross-validation. We created four
partitions of the data, each one using 75% of the base queries
for training and 25% for testing. Of course, the learning
algorithms had no access to the test data during training.

Experimental parameters and evaluation. Since all
search templates had access to the same set of documents, if
a URL was not returned in the top 30 documents by a search
template, we interpreted this as ranking the URL below all
of the returned documents. Thus we set the parameter
qit.(, the default value for weak hypotheses, to be 0 (see
Section 4).

In order to determine a good number of boosting rounds,
we first ran RankBoost on each partition of the data and
produced a graph of the average training error (omitted due
to space constraints). On average, the training error reached
zero after 85 rounds of boosting, so that is the number
of boosting rounds that we used in all of the meta-search
experiments.

To evaluate the performance of the individual search
templates in comparison to the combined hypothesis out-
put by RankBoost, we measured the number of queries for
which the correct document was in the top k ranked doc-
uments, for various values of k. We then compared the
performance of the combined hypothesis to that of the best
search template for each value of k. The results for the
ML and UNIV domains are shown in Table 1. All columns
except the last give the number of base queries for which
the correct homepage was retrieved above rank k. Bold
figures give the maximum value over all of the search tem-
plates on the test data. Note that the best search template is
determined based on its performance on the test data, while
RankBoost only has access to training data.

For the ML data set, the combined hypothesis closely
tracked the performance of the best expert at every value of
k, which is especially interesting since no single template
was the best for all values of k. For the UNIV data set, a
single template was the best-' for all values of k, and the
combined hypothesis performed almost as well as the best
template for k = 1,2,..., 10 and then outperformed the
best template for k = 20,30.

We also computed (an approximation to) average rank,
i.e., the rank of the correct homepage URL, averaged over
all base queries in the test set. Since the correct URL
was sometimes not ranked or given a very high rank, we
artificially assigned a rank of 31 to every document that was
either unranked or ranked above rank 30. We also limited
the maximum rank in the output generated by RankBoost
to 31 to compensate for the fact that 31 was the maximum
rank that can be assigned by any single search template.

The last column of Table 1 gives average rank. This
table illustrates the robustness of the combined hypothesis
on the ML domain. It outperforms the best template for
all measures except top 1, where it differs from the best
expert by 12%, and top 2, where it differs by 2%. On the
UNIV queries, the combined hypothesis is almost always
competitive with the best template for every value of k,
with the exception of k = 1, where it trails the best expert
by 15%. (Nevertheless, since this domain included such
a good template, there is little reason to use something as
complicated as RankBoost.)

5.2 Movie recommendations

We also tested RankBoost on the movie-recommendations
task described in the introduction. For our experiments,
we used publicly available4 data provided by the Digi-
tal Equipment Corporation which ran its own EachMovie
recommendation service for eighteen months from March
1996 to September 1997 and collected user preference
data. Users were able to assign a movie a score from
the set R = {0.0,0.2,0.4,0.6,0.8,1.0}, 1.0 being the
best. We used the data of 61,625 users entering a total
of 2,811,983 numeric ratings for 1,628 different movies
(films and videos).

Most of the mapping of this problem into our frame-
work was described in Section 2. For our experiments, we
selected a subset C of the users to serve as ranking features:
each user in C defined an ordering of the set of movies
which he or she viewed. Wc did not set the parameter <2»dcf,
allowing the weak learner to choose it adaptivcly. The feed-
back function <I> was then defined as in Section 2 using the
movie ratings of a single target user. We used half of the
movies viewed by the selected target user for the feedback
function in training, and used the other half of the viewed
movies for testing as described below. We then averaged
all results over many runs with many different target users.
In these experiments, we ran RankBoost for 100 rounds.

3The best query expansion heuristic for the UNIV domain was
"NAME" PLACE.

4From 'http://www.research.digital.com/SRC/eachmovic/'.

An Efficient Boosting Algorithm for Combining Preferences 177

100 150

Figure 4: Performance of the algorithms on different feature densities.

We compared the performance of RankBoost on this
data set to two other algorithms, a regression algorithm and
a nearest-neighbor algorithm.

Regression. We used a regression algorithm similar
to the ones used by Hill and others [8]. The regression
algorithm employs the assumption that the preferences of a
target user Alice can be described as a linear combination
of the preferences of other users. Formally, let o be a row
vector whose components are the scores Alice assigned to
movies (discarding unranked movies). Let C be a matrix
containing the scores of the other users for the subset of
movies that Alice has ranked. Since some of the users have
not ranked movies that were ranked by Alice, we need to
decide on a default rank for these movies. For each user
represented by a row in C, we set the score of the user's
unranked movies to be the user's average score over all
movies. We next use linear regression to find a vector w
of minimum length which minimizes | \w C — a\ \. This can
be done using standard numerical techniques (we used the
package available in Matlab). Given w we can now predict
the ratings of all the movies.

Nearest neighbor. Given a target user Alice with
certain movie preferences, the nearest-neighbor algorithm
(NN) finds a user Bob whose preferences are most similar
to Alice's and then uses Bob's preferences to make rec-
ommendations for Alice. More specifically, we find the
ranking feature fi (corresponding to one of the other movie
viewers) which gives an ordering most similar to that of the
target user as encoded by the feedback function O. The
measure of similarity we use is the ranking loss of fi with
respect to the same initial distribution D which was con-
structed by RankBoost. Thus, in some sense, NN can be
viewed as a single weak hypothesis output after one round
of RankBoost (although no threshold of/j is performed).

A problem with this algorithm is that the user it selects
may not rank all the movies ordered by the target user. To
fix this, we modified NN to associate with each feature fi a
default rank qit! € R which /, assigns to unranked movies.
When searching for the best feature, NN chooses qit(by
calculating and then minimizing the ranking loss for each
possible value of qia!. If it is the case that this user ranks all
of the movies seen by the target user, then NN sets gdef to
the average rank over all movies that it ranked (including
those not ranked by the target user).

In order to evaluate and compare performance, we used
four different error measures. We assume that the learning
system produces a real-valued function H which orders
instances in the usual way (x\ ranked higher than XQ if

H(x\) > H(XQ))- We compare the ordering of H to a
"correct" ordering c over test instances, also represented
formally as a real-valued function. For simplicity, we here
only give definitions for these measures when H defines a
total order of all instances so that no ties occur in either
order. The definitions can be extended by assuming that
ties are broken randomly and taking expectations (details
omitted for lack of space).

All our measures have range [0,1], with a value 0 being
a "perfect" score.

Disagreement. Disagreement is the fraction of distinct
pairs of instances which are misordered by H (with respect
to c). If c were used to construct a feedback function, this
would be equivalent to the ranking loss of H.

Predicted-rank-of-top (PROT). This is the minimum
rank (according to H) of any of the truly top-rated instances
(according to c). The score is then rescaled to have a
possible range of [0,1].

Coverage. This is the maximum rank (according to H)
of any of the truly top-rated instances (according to c). The
score is then rescaled to have a possible range of [0,1].
(Note that coverage and PROT are equal if there is a unique
top-rated instances according to c.)

Rank-of-predicted-top (ROPT). This is the number
of instances ranked strictly higher (according to c) than the
predicted top-rated instance (according to H). The score is
then rescaled to have a possible range of [0,1].

We now describe our experimental results. We ran
a series of three tests, examining the performance of the
algorithms as we varied the number of features, the density
of the features (number of movies ranked by each user), and
the density of the feedback.

We first experimented with the number of features used
for ranking. We selected two disjoint random sets T and V
of 2000 users each. We further divided T into six subsets
TUT2,...,T6 of respective sizes 100,200,500,750,1000,
2000, such that Tx C T2 C ■ • • C T6. Each Tj served as
a feature set for training on half of a target user's movies
and testing on the other half, for each user in T". For
each algorithm, we calculated the measures described above
averaged over the 2000 test users. We ran the algorithms
on five disjoint random splits of the data into feature and
feedback sets, and we averaged the results, which are shown
in Figure 3.

RankBoost was the clear winner for all four perfor-
mance measures. The performance of regression was much
poorer, and NN was in between. For the most part, the
performance of the algorithms improved as the number of

178 Freund, Iyer, Schapire, and Singer

50 100 150 0 50 100 150

Figure 5: Performance of algorithms on different feedback densities
50 100 150

features increased. RankBoost and NN did reasonably well
with respect to disagreement, which they directly tried to
minimize, while regression's error rate was just slightly bet-
ter than 50%. All three algorithms did well on PROT and
ROPT, although again regression was worse (about 30%
worse than RankBoost). All three algorithms had difficulty
with coverage. In all cases, RankBoost was better able to
use the increased number of features.

We next explored the effect of the features and feedback
density, the number of movies ranked by each user. We
partitioned the set of features into bins according to their
density. The bins were 10-20, 21-40, 41-60, 61-100, 101-
1455, where 1455 was the maximum number of movies
ranked by a single user in the data set. We selected a random
set of 1000 features (users) from each bin to be evaluated
on a disjoint random set of 1000 feedback users (of varying
densities). We ran the algorithms on six such random splits,
calculated the averages of the four error measures on each
split, and then averaged them together. The results are
shown in Figure 4. The ^-coordinate of each point is the
average density of the features in a single bin; for example,
80 is the average density of features whose density is in the
range 61-100. The relative performance of the algorithms
was the same as in Figure 3. RankBoost was again able
to use the denser features to obtain lower error rates, while
the improvement of NN was less dramatic. Regression
actually performed the same or worse as the feature density
increased.

We varied the feedback densities in the same way as the
feature densities. We used a random set of 1000 features and
again ran on six random splits, taking averages. The results
appear in Figure 5. As feedback density increased, Rank-
Boost and NN improved with respect to disagreement and
ROPT, while regression performed worse. All three algo-
rithms did well on PROT, as might be expected, since larger
feedback sets will likely have many top-ranked movies.
For the same reason, all three algorithms were very poor on
coverage.

We see from these graphs that RankBoost performed the
best on this ranking task. RankBoost's approach of order-
ing based on relative comparisons performed much better
than regression which treats the movie scores as absolute
numerical values. RankBoost also improved on the nearest-
neighbor algorithm by combining multiple features to form
an accurate prediction rule.

References
[1] Brian T. Bartell, Garrison W. Cottrell, and Richard K. Belew.

Automatic combination of multiple ranked retrieval systems.
In Proceedings of the 17th Annual International ACMSIGIR
Conference on Research and Development in Information
Retrieval, 1994.

[2] Peter L. Bartlett. The sample complexity of pattern classifi-
cation with neural networks: the size of the weights is more
important than the size of the network. IEEE Transactions
on Information Theory, 1998 (to appear).

[3] Rich Caruana, Shumeet Baluja, and Tom Mitchell. Using
the future to "sort out" the present: Rankprop and multitask
learning for medical risk evaluation. In Advances in Neural
Information Processing Systems 8, pages 959-965, 1996.

[4] William W. Cohen, Robert E. Schapire, and Yoram Singer.
Learning to order things. In Advances in Neural Information
Processing Systems 10, 1998.

[5] O. Etzioni, S. Hanks, T. Jiang, R. M. Karp, O. Madani, and
O. Waarts. Efficient information gathering on the internet.
In 37th Annual Symposium on Foundations of Computer
Science, 1996.

[6] Yoav Freund and Robert E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119-139, August 1997.

[7] David Haussler. Decision theoretic generalizations of the
PAC model for neural net and other learning applications.
Information and Computation, 100(1):78-150, 1992.

[8] Will Hill, Larry Stead, Mark Roscnstein, and George Furnas.
Recommending and evaluating choices in a virtual commu-
nity of use. In Human Factors in Computing Systems CHl'95
Conference Proceedings, pages 194-201, 1995.

[9] Paul Resnick, Neophytos Iacovou, Mitesh Sushak, Peter
Bergstrom, and John Riedl. Grouplens: An open archi-
tecture for collaborative filtering of netnews. In Proceedings
of Computer Supported Cooperative Work, 1995.

[10] Gerard Salton. Automatic text processing: the transfor-
mation, analysis and retrieval of information hy computer.
Addison-Wesley, 1989.

[11] Gerard Salton and Michael J. McGill. Introduction to Mod-
ern Information Retrieval. McGraw-Hill, 1983.

[12] Robert E. Schapire, Yoav Freund, Peter Bartlett, and
Wee Sun Lee. Boosting the margin: A new explanation
for the effectiveness of voting methods. Annals of Statistics,
to appear.

[13] Robert E. Schapire and Yoram Singer. Improved boosting
algorithms using confidence-rated predictions. In Proceed-
ings of the Eleventh Annual Conference on Computational
Learning Theory, 1998.

[14] Upcndra Shardanand and Pattie Macs. Social information
filtering: Algorithms for automating "word of mouth". In
Human Factors in Computing Systems CHI'95 Conference
Proceedings, 1995.

[15] V. N. Vapnik. Estimation of Dependences Based on Empiri-
cal Data. Springer-Verlag, 1982.

Bayesian Network Classification with Continuous Attributes:
Getting the Best of Both Discretization and Parametric Fitting

179

Nir Friedman*
Computer Science Division

University of California
Berkeley, CA 94920

nirScs.berkeley.ed

Moises Goldszmidt
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

moisesSerg.sri.com

Thomas J. Lee
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

tomlee@erg.sri.com

Abstract
In a recent paper, Friedman, Geiger, and Goldszmidt [8]
introduced a classifier based on Bayesian networks, called
Tree Augmented Naive Bayes (TAN), that outperforms
naive Bayes and performs competitively with C4.5 and
other state-of-the-art methods. This classifier has several
advantages including robustness and polynomial compu-
tational complexity. One limitation of the TAN classifier
is that it applies only to discrete attributes, and thus, con-
tinuous attributes must be prediscretized. In this paper,
we extend TAN to deal with continuous attributes directly
via parametric (e.g., Gaussians) and semiparametric (e.g.,
mixture of Gaussians) conditional probabilities. The result
is a classifier that can represent and combine both discrete
and continuous attributes. In addition, we propose a new
method that takes advantage of the modeling language of
Bayesian networks in order to represent attributes both in
discrete and continuous form simultaneously, and use both
versions in the classification. This automates the process
of deciding which form of the attribute is most relevant
to the classification task. It also avoids the commitment
to either a discretized or a (semi)parametric form, since
different attributes may correlate better with one version
or the other. Our empirical results show that this latter
method usually achieves classification performance that is
as good as or better than either the purely discrete or the
purely continuous TAN models.

1 INTRODUCTION
The effective handling of continuous attributes is a cen-
tral problem in machine learning and pattern recognition.
Almost every real-world domain, including medicine, in-
dustrial control, and finance, involves continuous attributes.
Moreover, these attributes usually have rich interdependen-
cies with other discrete attributes. Many approaches in
machine learning deal with continuous attributes by dis-
cretizing them. In statistics and pattern recognition, on the
other hand, the typical approach is to use a parametric family
of distributions (e.g. Gaussians) to model the data.

Each of these strategies has its advantages and disadvan-
tages. By using a specific parametric family, we are making
strong assumptions about the nature of the data. If these
assumptions are warranted, then the induced model can be a

*Current address: Institute of Computer Science, The
Hebrew University, Givat Ram, Jerusalem 91904, Israel,
nir@cs.huji.ac.il.

good approximation of the data. In contrast, discretization
procedures are not bound by a specific parametric distribu-
tion; yet they suffer from the obvious loss of information.
Of course, one might argue that for specific tasks, such as
classification, it suffices to estimate the probability that the
data falls in a certain range, in which case discretization is
an appropriate strategy.

In this paper, we introduce an innovative approach for
dealing with continuous attributes that avoids a commit-
ment to either one of the strategies outlined above. This
approach uses a dual representation for each continuous
attribute: one discretized, and the other based on fitting
a parametric distribution. We use Bayesian networks to
model the interaction between the discrete and continuous
versions of the attribute. Then, we let the learning proce-
dure decide which type of representation best models the
training data and what interdependencies between attributes
are appropriate. Thus, if attribute B can be modeled as a
linear Gaussian depending on A, then the network would
have a direct edge from A to B. On the other hand, if the
parametric family cannot fit the dependency of B on A, then
the network might use the discretized representation of A
and B to model this relation. Note that the resulting models
can (and usually do) involve both parametric and discretized
models of interactions among attributes.

In this paper we focus our attention on classification tasks.
We extend a Bayesian network classifier, introduced by
Friedman, Geiger, and Goldszmidt (FGG) [8] called "Tree
Augmented Naive Bayes" (TAN). FGG show that TAN out-
performs naive Bayes, yet at the same time maintains the
computational simplicity (no search involved) and robust-
ness that characterize naive Bayes. They tested TAN on
problems from the UCI repository [16], and compared it
to C4.5, naive Bayes, and wrapper methods for feature se-
lection with good results. The original version of TAN
is restricted to multinomial distributions and discrete at-
tributes. We start by extending the set of distributions that
can be represented in TAN to include Gaussians, mixtures
of Gaussians, and linear models. This extension results in
classifiers that can deal with a combination of discrete and
continuous attributes and model interactions between them.
We compare these classifiers to the original TAN on sev-
eral UCI data sets. The results show that neither approach
dominates the other in terms of classification accuracy.

We then augment TAN with the capability of representing

180 Friedman, Goldszmidt, and Lee

each continuous attribute in both parametric and discretized
forms. We examine the consequences of the dual represen-
tation of such attributes, and characterize conditions under
which the resulting classifier is well defined. Our main hy-
pothesis is that the resulting classifier will usually achieve
classification performance that is as good or better than both
the purely discrete and purely continuous TAN models. This
hypothesis is supported by our experiments.

We note that this dual representation capability also has
ramifications in tasks such as density estimation, cluster-
ing, and compression, which we are currently investigating
and some of which we discuss below. The extension of
the dual representation to arbitrary Bayesian networks, and
the extension of the discretization approach introduced by
Friedman and Goldszmidt [9] to take the dual representation
into account, are the subjects of current research.

2 REVIEW OF TAN
In this discussion we use capital letters such as X, Y, Z
for variable names, and lower-case letters such as x,y,z
to denote specific values taken by those variables. Sets
of variables are denoted by boldface capital letters such as
X, Y, Z, and assignments of values to the variables in these
sets are denoted by boldface lowercase letters x, y, z.

A Bayesian network over a set of variables X =
{X\,... ,Xn] is an annotated directed acyclic graph that
encodes a joint probability distribution over X. Formally,
a Bayesian network is a pair B — (G, C). The first com-
ponent, G, is a directed acyclic graph whose vertices cor-
respond to the random variables X\,... ,Xn, and whose
edges represent direct dependencies between the variables.
The second component of the pair, namely £, represents
a set of local conditional probability distributions (CPDs)
L\,..., L„, where the CPD for X, maps possible values x,
of Xi and pa(Xi) of Pa(Xj), the set of parents of X{ in G,
to the conditional probability (density) of Xi given pa(X;).
A Bayesian network B defines a unique joint probability
distribution (density) over X given by the product

pB(xu. ..,*„) = nr=,£i(*iipa(*,o) ■ (i)
When the variables in X take values from finite discrete

sets, we typically represent CPDs as tables that contain pa-
rameters BXi\pa(Xi) for all possible values of Ar, andPa(A*).
When the variables are continuous, we can use various para-
metric and semiparametric representations for these CPDs.

As an example, let X = {A\,... ,A„,C}, where the
variables A\,..., An are the attributes and C is the class
variable. Consider a graph structure where the class variable
is the root, that is, Pa(C) = '0, and each attribute has the
class variable as its unique parent, namely, Pa(.A;) = {C}
for all 1 < i < n. For this type of graph structure, Equa-
tion 1 yields Pr(yl,,..., An, C) = Pr(C) • U"=\ MMC)-
From the definition of conditional probability, we get
?r(C\Au . ..,An) = Q-Pr(C) ■ njL, Pr^lC), where a is
a normalization constant. This is the definition of the naive
Bayesian classifier commonly found in the literature [5].

The naive Bayesian classifier has been used extensively
for classification. It has the attractive properties of being
robust and easy to learn—we only need to estimate the CPDs
Pr(C) and Pr(Ai | C) for all attributes. Nonetheless, the
naive Bayesian classifier embodies the strong independence

v ss c" ;■ -

Figure 1: A TAN model learned for the data set "glass2." The
dashed lines represent edges required by the naive Bayesian clas-
sifier. The solid lines are the tree augmenting edges representing
correlations between attributes.

assumption that, given the value of the class, attributes arc
independent of each other. FGG [8] suggest the removal
of these independence assumptions by considering a richer
class of networks. They define the TAN Bayesian classifier
that learns a network in which each attribute has the class and
at most one other attribute as parents. Thus, the dependence
among attributes in a TAN network will be represented via a
tree structure. Figure 1 shows an example of a TAN network.

In a TAN network, an edge from Ai to Aj implies that the
influence of Ai on the assessment of the class also depends
on the value of Aj. For example, in Figure 1, the influence
of the attribute "Iron" on the class C depends on the value of
"Aluminum," while in the naive Bayesian classifier the in-
fluence of each attribute on the class is independent of other
attributes. These edges affect the classification process in
that a value of "Iron" that is typically surprising (i.e., P{i\c)
is low) may be unsurprising if the value of its correlated
attribute, "Aluminum," is also unlikely (i.e., P(i\c, a) is
high). In this situation, the naive Bayesian classifier will
overpenalize the probability of the class by considering two
unlikely observations, while the TAN network of Figure 1
will not do so, and thus will achieve better accuracy.

TAN networks have the attractive property of being lcarn-
able in polynomial time. FGG pose the learning problem as
a search for the TAN network that has the highest likelihood
LL(B : D) = PB(D), given the data D. Roughly speaking,
networks with higher likelihood match the data better. FGG
describe a procedure Construct-TAN for learning TAN
models and show the following theorem.
Theorem 2.1: [8] Let D be a collection of N instances of
C,A\,...,A„. The procedure Construct-TAN builds a
TAN network B that maximizes LL(B : D) and has time
complexity 0(n2 ■ N).

The TAN classifier is related to the classifier introduced
by Chow and Liu [2]. That method learns a different tree
for each class value. FGG's results show that the TAN and
Chow and Liu's classifier perform roughly the same. In
domains where there is substantial differences in the inter-
actions between attributes for different class values, Chow
and Liu's method performs better. In others, it is possible
to learn a better tree by pooling the examples from different
classes as done by TAN. Although we focus on extending
the TAN classifier here, all of our ideas easily apply to clas-
sifiers that learn a different tree for each class value.

3 GAUSSIAN TAN
The TAN classifier, as described by FGG, applies only to
discrete attributes. In experiments run on data sets with

Bayesian Network Classification with Continuous Attributes 181

continuous attributes, FGG use the prediscretizion described
by Fayyad and Irani [7] before learning a classifier. In
this paper, we attempt to model the continuous attributes
directly within the TAN network. To do so, we need to learn
CPDs for continuous attributes. In this section, we discuss
Gaussian distributions for such CPDs. The theory of training
such representations is standard (see, for example, [1, 5]).
We only review the indispensable concepts.

A more interesting issue pertains to the structure of the
network. As we shall see, when we mix discrete and contin-
uous attributes, the algorithms must induce directed trees.
This is in contrast to the procedure of FGG, which learns
undirected trees and then arbitrarily chooses a root to define
edge directions. We describe the procedure for inducing
directed trees next.

3.1 THE BASIC PROCEDURE
We now extend the TAN algorithm for directed trees. This
extension is fairly straight forward and similar ideas have
been suggested for learning tree-like Bayesian networks
[12]. For completeness, and to facilitate later extensions,
we rederive the procedure from basic principles. Assume
that we are given a data set D that consists of N identically
and independently distributed (i.i.d.) instances that assign
values to A\,...,An and C. Also assume that we have
specified the class of CPDs that we are willing to consider.
The objective is, as before, to build a network that maxi-
mizes the likelihood function LL(B : D) = log PB {D).

Using Eq. (1) and the independence of training instances,
it is easy to show that

LL(B:D) = EiE^ilogLi^lPaprO')

= EiS{Xi\Ptk{Xi):Li), (2)

where x{ and Pa(Xt)J' are the values of Xi and Pa(Xj) in the
j'th instance in D. We denote by S(Xi | Pa(Xj)) the value
attained by S(Xi | Pa(Xj),Lj) when L* is the optimal
CPD for this family, given the data, and the set of CPDs
we are willing to consider (e.g., all tables, or all Gaussian
distributions). "Optimal" should be understood in terms of
maximizing the likelihood function in Eq. (2).

We now recast this decomposition in the special class
of TAN networks. Recall that in order to induce a TAN
network, we need to choose for each attribute At at most
one parent other than the class C. We represent this selection
by a function n(i), s.t., if ir(i) = 0, then C is the only parent
of Ait otherwise both A^ and C are the parents of A,. We
define LL(n : D) to be the likelihood of the TAN model
specified by it, where we select an optimal CPD for each
parent set specified by n. Rewriting Eq. (2), we get

LL(TT : D)
= Tli^(i)>oS{Ai\C,AAi)) +

£^(i)=o^i|C) + S(C|0)

= EiMi)>o(S(Ai | C, 4r(i)) - S(Ai | C)) +

£.S(Aj | C) + S(C | 0)

= Ei,w(i)>o(5(^ I C, AAi)) - S{M | O) + c,
where c is some constant that does not depend on it. Thus,
we need to maximize only the first term. This maximization

can be reduced to a graph-theoretic maximization by the
following procedure, which we call Directed-TAN:
1. Initialize an empty graph Q with n vertices labeled

l,...,n.
2. For each attribute Aj, find the best scoring CPD for

P(Ai | C) and compute S(Ai \ C). For each Aj with
j ^ i, if an arc from Aj to Ai is legal, then find the
best CPD for P{A{ \ C, Aj), compute S(Aj | C,Aj),
and add to Q an arc j —> i with weight S(Ai | C, Aj) -
S(At | C).

3. Find a set of arcs A that is a maximal weighted branching
in Q. A branching is a set of edges that have at most one
member pointing into each vertex and does not contain
cycles. Finding a maximally weighed branching is a
standard graph-theoretic problem that can be solved in
low-order polynomial time [6, 17].

4. Construct the TAN model that contains arc from C to
each Ai, and arc from Aj to Aj if j —> i is in A. For each
Ai, assign it the best CPD found in step 2 that matches
the choice of arcs in the branching.

From the arguments we discussed above it is easy to see that
this procedure constructs the TAN model with the highest
score. We note that since we are considering directed edges,
the resulting TAN model might be a forest of directed trees
instead of a spanning tree.
Theorem 3.1: The procedure Directed-TAN constructs
a TAN network B that maximizes LL(B : D) given the
constraints on the CPDs in polynomial time.

In the next sections we describe how to compute the op-
timal 5 for different choices of CPDs that apply to different
types of attributes.

3.2 DISCRETE ATTRIBUTES
Recall that if Aj is discrete, then we model P(Aj | Pa(Aj))
by using tables that contain a parameter 0ai|pa(>i;) f°r eacn

choice of values for Aj and its parents. Thus,

5(Aj|Pa(Aj)) = ^logP(aJ | pa(^)J)
3

= N 5Z P*(ai, pa(Ai)) log öa; |pa(j4 (),
Oi,pa(>li)

where P(-) is the empirical frequency of events in the train-
ing data. Standard arguments show that the maximum like-
lihood choice of parameters is P(x \ y) = P(x \ y).
Making the appropriate substitution above, we get a nice
information theoretic interpretation of the weight of the arc
fromAjtoA^SCAj | C,Aj)-S{Ai \ C) = N-I{Ai\Aj \
C). The /() term is the conditional mutual information be-
tween Aj and Aj given C [3]. Roughly speaking, it
measures how much information Aj provides about Aj if
already know the value of C. In this case, our procedure
reduces to Construct-TAN of FGG, except that they use
J(Aj-, Aj | C) directly as the weight on the arcs, while we
multiply these weights by N.

3.3 CONTINUOUS ATTRIBUTES
We now consider the case where X is continuous. There
are many possible parametric models for continuous vari-
ables. Perhaps the easiest one to use is the Gaussian

182 Friedman, Goldszmidt, and Lee

distribution. A continuous variable is a Gaussian with
mean (i and variance a2 if the pdf of X has the form

(p(x : ß,cr2) — J—^e 2" • If a" tne parents of a
continuous Ai are discrete, then we learn a conditional
Gaussian CPD [11, 15] by assigning to A, different mean
^a;|pa(^i) and variance cr2„v|pa(yii) f°r eacn joint value of
its parents. Standard arguments (e.g., see [1]) show that we
can rewrite S(Ai | Pa(A;)) as a function of E\Aj | pa(Aj)]
and E[A2 | pa(v4,)]—the expectations of At and A2 in
these instances of the data where Pa(;4,-) take a particular
value. Standard arguments also show that we maximize the
likelihood score of the CPD by choosing

ßAi\MAi) = E\Ai I Pa(^i)l

*
2
IP-() = E[A] | pa(A)] - E2[AX | pa(A)] •

When we learn TAN models in domains with many con-
tinuous attributes, we also want to have families where one
continuous attribute is a parent of another continuous at-
tribute. In the Gaussian model, we can represent such
CPDs by using a linear Gaussian relation. In this case,
the mean of At depends, in a linear fashion, on the value
of Aj. This relationship is parameterized by three parame-
ters: aAi\AhC,ßAi\Aj<c and a2

A,\AjtC for each valuccof the
class variable. The conditional probability for this CPD is a
Gaussian with mean aAi\A tc + AjßAi\Ajtc ar|d variance
a2Ai\A-,c- Again, by using standard arguments, it is easy to
show that S(Ai \ Aj,C) is a function of low-order statistics
in the data, and that the maximal likelihood parameters are

ßAi\Aj,c

aAi\Aj,c

a\

ElA^-E^AM

E[Ai\c]-ßAMi<c*E\Ai

E[A2 | c] - E2\Ai
c]

c -

{ElAjAM-ElA^ElA^c})2

E[AJ\c}-E^A}\c]

In summary, to estimate parameters and to evaluate the
likelihood, we need only to collect the statistics of each
pair of attributes with the class, that is, terms of the form
E[Ai | dj,c] and E[A{Aj | c]. Thus, learning in the case of
continuous Gaussian attributes can be done efficiently in a
single pass over the data.

When we learn TAN models that contain discrete and
Gaussian attributes, we restrict ourselves to arcs between
discrete attributes, arcs between continuous attributes, and
arcs from discrete attributes to continuous ones. If we want
also to model arcs from continuous to discrete, then we need
to introduce additional types of parametric models, such as
logistic regression [1]. As we will show, an alternative
solution is provided by the dual representation approach
introduced in this paper.

3.4 SMOOTHING
One of the main risks in parameter estimation is overfit-
ting. This can happen when the parameter in question is
learned from a very small sample (e.g., predicting Ai from
values of Aj and of C that are rare in the data). A standard
approach to this problem is to smooth the estimated param-
eters. Smoothing ensures that the estimated parameters will

not be overly sensitive to minor changes in the training data.
FGG show that in the case of discrete attributes, smoothing
can lead to dramatic improvement in the performance of the
TAN classifier. They use the following smoothing rule for
the discrete case

a _ iyP(pa(^,))P(n,|pa(/t,)) + .iP(a,)
Ca,|pa(.4,) - N-P(pa{Ai)) + i>

where s is a parameter that controls the magnitude of the
smoothing (FGG use .s = 5 in all of their experiments.)
This estimate uses a linear combination of the maximum
likelihood parameters and the unconditional frequency of
the attribute. It is easy to sec that this prediction biases the
learned parameters in a manner that depends on the weight
of the smoothing parameter and the number of "relevant"
instances in the data. This smoothing operation is similar to
(and motivated by) well-known methods in statistics such
as hierarchical Bayesian and shrinkage methods [10].

We can think of this smoothing operation as pretending
that there are s additional instances in which Aj is dis-
tributed according to its marginal distribution. This imme-
diately suggests how to smooth in the Gaussian case: we
pretend that for these additional s samples A,, A2 have the
same average as what we encounter in the totality of the
training data. Thus, the statistics from the augmented data
are

E[AtlMAi)] = N-PirtAy^^.E^

E[AUMAi)] = ^(MA^E^^EM

We then use these adjusted statistics for estimating the mean
and variance of A{ given its parents. The same basic smooth-
ing method applies for estimating linear interactions be-
tween continuous attributes.

4 SEMIPARAMETRIC ESTIMATION

Parametric estimation methods assume that the data is (ap-
proximately) distributed according to a member of the given
parametric family. If the data behaves differently enough,
then the resulting classifier will degrade in performance.
For example, suppose that for a certain class c, the attribute
Ai has bimodal distribution, where the two modes x\ and
xi are fairly far apart. If we use a Gaussian to estimate the
distribution of A{ given C, then the mean of the Gaussian
would be in the vicinity of /i = Xl^T1. Thus, instances
where Ai has a value near \i would receive a high probabil-
ity, given the class c. On the other hand, instances where A,
has a value in the vicinity of either x,\ or x,j would receive a
much lower probability given c. Consequently, the support
c gets from Ai behaves exactly the opposite of the way it
should. It is not surprising that in our experimental results,
Gaussian TAN occasionally performed much worse than the
discretized version (see Table 1).

A standard way of dealing with such situations is to al-
low the classifier more flexibility in the type of distribu-
tions it learns. One approach, called semiparamctric esti-
mation, learns a collection of parametric models. In this
approach, we model P(Ai | Pa(/i;)) using a mixture of
Gaussian distributions: P(Ai | pa(.A;)) = Ylj'fii^i '■

Bayesian Network Classification with Continuous Attributes 183

M^|pa(J4i),^°'2>i,|pa(>ii),i)
w^i|pa(Ai)j'

where the parame-
ters specify the mean and variance of each Gaussian in the
mixture and w^. |pa(Ai),j aretne weights of the mixture com-
ponents. We require that the WAi\pa{Ai),j sum up to 1, for
each value of Pa(^4,).

To estimate P(Ai \ pa(Aj)), we need to decide on the
number of mixture components (the parameter j in the equa-
tion above) and on the best choice of parameters for that mix-
ture. This is usually done in two steps. First, we attempt to
fit the best parameters for different number of components
(e.g., j = 1,2,...), and then select an instantiation for j
based on a performance criterion.

Because there is no closed form for learning the pa-
rameters we need to run a search procedure such as the
Expectation-Maximization (EM) algorithm. Moreover,
since EM usually finds local maxima, we have to run it
several times, from different initial points, to ensure that we
find a good approximation to the best parameters. This op-
eration is more expensive than parametric fitting, since the
training data cannot be summarized for training the mixture
parameters. Thus, we need to perform many passes over
the training data to learn the parameters. Because of space
restrictions we do not review the EM procedure here, and
refer the reader to [1, pp. 65-73].

With regard to selecting the number of components in the
mixture, it is easy to see that a mixture with k+1 components
can easily attain the same or better likelihood as any mixture
with k components. Thus, the likelihood (of the data) alone
is not a good performance criterion for selecting mixture
components, since it always favors models with a higher
number of components, which results in overfitting. Hence,
we need to apply some form of model selection. The two
main approaches to model selection are based on cross-
validation to get an estimate of true performance for each
choice of fc, or on penalizing the performance on the training
data to account for the complexity of the learned model. For
simplicity, we use the latter approach with the BIC/MDL
penalization. This rule penalizes the score of each mixture
with ^\-3k, where k is the number of mixture components,
and N is the number of training examples for this mixture
(i.e., the number of instances in the data with this specific
value of the discrete parents).

Once more, smoothing is crucial for avoiding overfitting.
Because of space considerations we will not go into the de-
tails. Roughly speaking, we apply the Gaussian smoothing
operation described above in each iteration of the EM proce-
dure. Thus, we assume that each component in the mixture
has a preassigned set of s samples it has to fit.

As our experimental results show, the additional flexi-
bility of the mixture results in drastically improved perfor-
mance in the cases where the Gaussian TAN did poorly (see,
for example, the accuracy of the data sets "anneal-U" and
"balance-scale" in Table 1). In this paper, we learned mix-
tures only when modeling a continuous feature with discrete
parents. We note, however, that learning a mixture of linear
models is a relatively straightforward extension that we are
currently implementing and testing.

5 DUAL REPRESENTATION

The classifiers we have presented thus far require us to make
a choice. We can either prediscretize the attributes and use
the discretized TAN, or we can learn a (semi)parametric
density model for the continuous attributes. Each of these
methods has its advantages and problems: Discretization
works well with nonstandard densities, but clearly loses
much information about the features. Semiparametric esti-
mation can work well for "well-behaved" multimodal den-
sities. On the other hand, although we can approximate any
distribution with a mixture of Gaussians, if the density is
complex, then we need a large number of training instances
to learn a mixture with large number of components, with
sufficient confidence.

The choice we are facing is not a simple binary one, that
is, to discretize or not to discretize all the attributes. We can
easily imagine situations in which some of several attributes
are better modeled by a semiparametric model, and others
are better modeled by a discretization. Thus, we can choose
to discretize only a subset of the attributes. Of course, the
decision about one attribute is not independent of how we
represent other attributes. This discussion suggests that we
need to select a subset of variables to discretize, that is, to
choose from an exponential space of options.

In this section, we present a new method, called hybrid
TAN, that avoids this problem by representing both the con-
tinuous attributes and their discretized counterparts within
the same TAN model. The structure of the TAN model deter-
mines whether the interaction between two attributes is best
represented via their discretized representation, their con-
tinuous representation, or a hybrid of the discrete represen-
tation of one and the continuous representation of the other.
Our hypothesis is that hybrid TAN allows us to achieve per-
formance that is as good as either alternative. Moreover,
the cost of learning hybrid TAN is about the same as that of
learning either alternative.

Let us assume, that the first k attributes, A\,...,Ak,
are the continuous attributes in our domain. We denote by
A*,..., A*k the corresponding discretized attributes (i.e., A*
is the discretized version of A\), based on a predetermined
discretization policy (e.g., using a standard method, such
as Fayyad and Irani's [7]). Given this semantics for the
discretized variables, we know that that each A* is a de-
terministic function of A{. That is, A* state corresponds
to the interval [x 1,2:2] if and onry if M € [11,3:2]. Thus,
even though the discretized variables are not observed in the
training data, we can easily augment the training data with
the discretized version of each continuous attribute.

At this stage one may consider the application of one of
the methods we described above to the augmented training
set. This, however, runs the risk of "double counting" the
evidence for classification provided by the duplicated at-
tributes. The likelihood of the learned model will contain
a penalty for both the continuous and the discrete versions
of the attribute. Consequently, during classification, a "sur-
prising" value of an attribute would have twice the (neg-
ative) effect on the probability of the class variable. One
could avoid this problem by evaluating only the likelihood
assigned to the continuous version of the attributes. Unfor-
tunately, in this case the basic decomposition of Eq. (2) no

184 Friedman, Goldszmidt, and Lee

longer holds, and we cannot use the TAN procedure.

5.1 MODELING THE DUAL REPRESENTATION

Our approach takes advantage of Bayesian networks to
model the interaction between an attribute and its discretized
version. We constrain the networks we learn to match our
model of the discretization, that is, a discretized attribute is
a function of the continuous one. More specifically, for each
continuous attribute At, we require that PB{A* \ Ai) = 1
iff Ai is in the range specified by A*. It is easy to
show (using the chain rule) that this constraint implies that
PB{A\,...,An,A],...,Al) = PB(Au...,An) avoiding
the problem outlined in the previous paragraph.

Note that by imposing this constraint we are not requiring
in any way that Ai be a parent of A*. However, we do need
to ensure that P{A* \ Ai) is deterministic in the learned
model. We do so by requiring that A{ and A* are adjacent
in the graph (i.e., one is the parent of the other) and by
putting restrictions on the models we learn for P(Ai \ A*)
and P(A* \ Ai). There are two possibilities:

If Ai —> A*; is in the graph, then the conditional distri-
bution P{A* I Ai,C) is determined as outlined above; it
is 1 if Ai is in the range defined by the value of A* and 0
otherwise.

If A* —► Ai is in the graph, then we require that
P(Ai | A* ,C) = 0 whenever Ai is not in the range spec-
ified by A*. By Bayes rule P(A* | A{) oc £c P(A{ \
A*,C)P(A*,C); Thus, if A{ is not in the range of A',
then P(A* \ Ai) oc £c° x p(AhQ = 0. Since the
conditional probability of A* given Ai must sum to 1, we
conclude that P(A* | A{) = 1 iff Ai is in the range of A*.

There is still the question of the form of P(Ai \ A*,C).
Our proposal is to learn a model for At given A* and C, using
the standard methods above (i.e., a Gaussian or a mixture
of Gaussians). We then truncate the resulting density on
the boundaries of the region specified by the discretization,
and we ensure that the truncated density has total mass 1 by
applying a normalizing constant. In other words, we learn
an unrestricted model, and then condition on the fact that
Ai can only take values in the specified interval.

Our goal is then to learn a TAN model that includes both
the continuous and discretized versions of each continuous
attribute, and that satisfies the restrictions we just described.
Since these restrictions are not enforced by the procedure of
Section 3.1, we need to augment it. We start by observing
that our restrictions imply that if we include B —» A in the
model, we must also include A —> A*. To see this, note that
since A already has one parent (B) it cannot have additional
parents. Thus, the only way of making A and A* adjacent
is by adding the edge A —+ A*. Similarly, if we include the
edge B —> A*, we must also include A* —> A.

This observation suggests that we consider edges between
groups of variables, where each group contains both versions
of an attribute. In building a TAN structure that includes
both representations, we must take into account that adding
an edge to an attribute in a group, immediately constraints
the addition of other edges within the group. Thus, the TAN
procedure should make choices at the level groups. Such a
procedure, which we call hybrid-TAN is described next.

© ©: ;® ©

(a) (b) (c)

Figure 2: The three possible ways of placing an edge from {B, B'}
into {-4, A"). The parameterization of possible arcs arc as follows:
B' —> A' is a discrete model, both B" —► A and B -> A
are continuous models (e.g., Gaussians), A' —> A is a truncated
continuous model (e.g., truncated Gaussian), and A —> A' is a
deterministic model.

5.2 HYBRID-TAN
We now expand on the details of the procedure. As with
the basic procedure, we compute scores on edges. Now,
however, edges are between groups of attributes. Each group
consisting of the different representations of an attribute.

Let A be a continuous attribute. By our restriction, either
A G Pa(i4*), or A* € Pa(.4). And since each attribute has
at most one parent (in addition to the class C), we have that at
most one other attribute is in Pa(.4)UPa(j4*)- {A, A* ,C).
We define a new function T(A \ B) that denotes the best
combination of parents for A and A* such that either B or
B* is a parent of one of these attributes. Similarly, T(A | 0)
denotes the best configuration such that no other attribute is
a parent of A or A*.

First, consider the term T(A | 0). If we decide that
neither A nor A* have other parents, then we can freely
choose between A —> A* and A* —» A. Thus

T(A\9)= max(S(A \ C,A*) + S(A* | C),
S(A\C) + S(A*\C,A)),

where S{A | C,A*) and S{A* \ C,A) arc the scores of
the CPDs subject to the constraints discussed in Subsec-
tion 5.1 (the first is a truncated model, and the second is a
deterministic model).

Next, consider the case that a continuous attribute B is
a parent of A. There are three possible ways of placing an
edge from the group {B, B*} into the group {,4, A*}. These
cases are shown in Figure 2. (The fourth case is disallowed,
since we cannot have an edge from the continuous attribute,
B to the discrete attribute, A*.) It is easy to verify that in
any existing TAN network, we can switch between the edge
configurations of Figure 2 without introducing new cycles.
Thus, given the decision that the group B points to the group
A, we would choose the configuration with maximal score:

T(A\B)= max(S(A\C,B*) +S(A* \C,A),
S(A\C,A*) + S(A* \C,B*),
S{A\C,B) + S(A* \C,A))

Finally, when B is discrete, then T(A \ B) is the maximum
between two options (B as a parent of A or as a parent of
B*), and when A is discrete, then T(A \ B) is equal to one
term (either S(A | C, B) or S(A | C,B*), depending on
JB'S type).

Wc now define the Hybrid-TAN procedure:

Bayesian Network Classification with Continuous Attributes 185

Figure 3: A hybrid TAN model learned for the data set "glass2." For clarity, the edges from the class to all the attributes are not shown.
The attributes marked with asterisks (*) correspond to the discretized representation. Dotted boxes mark two versions of the same
attribute.

Mixture Hybrid Training Data

Figure 4: Differences in the modeling of the interaction between attributes, for mixtures of Gaussians and the hybrid model. The graphs
show the interaction between Calcium (C) and Magnesium (M) in the "glass2" data set, given a specific value of the class.

1. Initialize an empty graph Q with n vertices labeled
l,...,ra.

2. For each attribute Ai, compute the scores of the form
S(Ai | C), S(A* | C), S(Ai | C,A*), etc. For each
Aj with j T^ i, add to Q an arc j —* i with weight
T(Ai\Aj)-T(Ai\9).

3. Find a maximal weighted branching A in Q.
4. Construct the TAN model that contains edges from C to

each Ai and ^4*. If j —> i is in A, add the best configu-
ration of edges (and the corresponding CPDs) from the
group Aj into Ai. Hi does not have an incoming arc in
A, then add the edge between Ai and A\ that maximizes
T(Ai : 0).

It is straight forward to verify that this procedure performs
the required optimization:
Theorem 5.1: The procedure Hybrid-TAN constructs in
polynomial time a dual TAN network B that maximizes
LL(B : D), given the constraints on the CPDs and the
constraint that Ai and A* are adjacent in the graph.

5.3 AN EXAMPLE
Figure 3 shows an example of a hybrid TAN model learned
from one of the folds of the "glass2" data set.1 It is instruc-
tive to compare it to the network in Figure 1, which was
learned by a TAN classifier based on mixtures of Gaussians
from the same data set. As we can see, there are some
similarities between the networks, such as the connections
between "Silicon" and "Sodium," and between "Calcium"
and "Magnesium" (which was reversed in the hybrid ver-
sion). However, most of the network's structure is quite

'Some of the discrete attributes do not appear in the figure,
since they were discretized into one bin.

different. Indeed, the relation between "Magnesium" and
"Calcium" is now modulated by the discretized version of
these variables. This fact, and the increased accuracy of hy-
brid TAN for this data set (see Table 1), seem to indicate that
in this domain attributes are not modeled well by Gaussians.

As a further illustration of this, we show in Figure 4 the
estimate of the joint density of "Calcium" and "Magnesium"
in both networks (given a particular value for the class), as
well as the training data from which both estimates were
learned. As we can see, most of the training data is centered
at one point (roughly, when M = 3.5 and C — 8), but
there is fair dispersion of data points when M = 0. In the
Gaussian case, C is modeled by a mixture of two Gaussians
(centered on 8.3 and 11.8, where the former has most of
the weight in the mixture), and M is modeled as a linear
function of C with a fixed variance. Thus, we get a sharp
"bump" at the main concentration point on the low ridge in
Figure 4a. On the other hand, in the hybrid model, for each
attribute, we model the probability in each bin by a truncated
Gaussian. In this case, C is partitioned into three bins and
M into two. This model results in the discontinuous density
function we see in Figure 4b. As we can see, the bump
at the center of concentration is now much wider, and the
whole region of dispersion corresponds to a low, but wide,
"tile" (in fact, this tile is a truncated Gaussian with a large
variance).

6 EXPERIMENTAL EVALUATION
We ran our experiments on the 23 data sets listed in Table 1.
All of these data sets are from the UCI repository [16], and
are accessible at the MLC+-1- ftp site. The accuracy of
each classifier is based on the percentage of successful pre-

186 Friedman, Goldszmidt, and Lee

10 15 20 25 30 35 40 45 50
Disc

10 15 20 25 30 35 40 45 50
H/Mix

10 15 20 25 30 35 40 45 50
H/MiX

(a) (b) (c)

Figure 5: Scatter plots comparing the performance (a) of Disc (x axis) vs. Mix (y axis), (b) of H/Mix (x axis) vs. Disc and Mix (y axis),
and (c) of H/Mix (x axis) vs. H/Mix-FS (y axis). In these plots, each point represents a data set, and the coordinates correspond to the
prediction error of each of the methods compared. Points below the diagonal line correspond to data sets where the y axis method is
more accurate, and points above the diagonal line correspond to data sets where the x axis method is more accurate. In (b), the dashed
lines connect points that correspond to the same data set.

dictions on the test sets of each data set. We estimate the
prediction accuracy of each classifier as well as the variance
of this accuracy by using the MLC++ system [14]. Ac-
curacy was evaluated using 5-fold cross validation (using
the methods described in [13]). Since we do not currently
deal with missing data, we removed instances with missing
values from the data sets. To construct discretizations, we
used a variant of the method of Fayyad and Irani [7], using
only the training data, in the manner described in [4]. These
preprocessing stages were carried out by the MLC++ sys-
tem. We note that experiments with the various learning
procedures were carried out on exactly the same training
sets and evaluated on exactly the same test sets.

Table 1 summarizes the accuracies of the learning proce-
dures we have discussed in this paper: (1) Disc-TAN clas-
sifier based on prediscretized attributes; (2) Gauss-TAN
classifier using Gaussians for the continuous attributes and
multinomials for the discrete ones; (3) Mix-TAN classifier
using mixtures of Gaussians for the continuous attributes;
(4) H/Gauss-hybrid TAN classifier enabling the dual repre-
sentation and using Gaussians for the continuous version of
the attributes; (5) H/Mix-hybrid TAN classifier using mix-
tures of Gaussian for the continuous version of the attributes;
and (6) H/Mix-FS-same as H/Mix but incorporating a prim-
itive form of feature selection. The discretization procedure
often removes attributes by discretizing them into one inter-
val. Thus, these attributes are ignored by the discrete version
of TAN. H/Mix-FS imitate this feature selection by also ig-
noring the continuous version of the attributes removed by
the discretization procedure.

As we can see in Figure 5(a), neither the discrete TAN
(Disc) nor the mixture of Gaussians TAN (Mix) outper-
forms the other. In some domains, such as "anneal-U" and
"glass," the discretized version clearly performs better; in
others, such as "balance-scale," "hayes-roth," and "iris," the
semiparametric version performs better. Note that the latter
three data sets are all quite small. So, a reasonable hypothe-
sis is that the data is too sparse to learn good discretizations.

On the other hand, as we can see in Figure 5(b), the hybrid
method performs at roughly the same level as the best of
either Mix or Disc approaches. In this plot, each pair of
connected points describes the accuracy results achieved by
Disc and Mix for a single data set. Thus, the best accuracy of
these two methods is represented by the lower point on each
line. As we can see, in most data sets the hybrid method
performs roughly at the same level as these lower points. In
addition, in some domains such as "glass2," "hayes-roth,"
and "hepatitis" the ability to model more complex interac-
tions between the different continuous and discrete attributes
results in a higher prediction accuracy. Finally, given the
computational cost involved in using EM to fit the mixture
of Gaussians we include the accuracy of H/Gauss so that
the benefits of using a mixture model can be evaluated. At
the same time, the increase in prediction accuracy due to
the dual representation can be evaluated by comparing to
Gauss.

Due to the fact that H/Mix increases the number of pa-
rameters that need to be fitted, feature selection techniques
are bound to have a noticeable impact. This is evident
in the results obtained for H/Mix-FS which, as mentioned
above, supports a primitive form of feature selection (see
Figure 5(c)). These results indicate that we may achieve bet-
ter performance by incorporating a feature selection mech-
anism into the classifier. We leave this as a topic for future
research.

7 CONCLUSIONS
The contributions of this work are twofold. First, we extend
the TAN classifier to directly model continuous attributes by
parametric and semiparametric methods. We use standard
procedures to estimate each of the conditional distributions,
and then combine them in a structure learning phase by
maximizing the likelihood of the TAN model. The resulting
procedure preserves the attractive properties of the original
TAN classifier—we can learn the best model in polynomial
time. Of course, one might extend TAN to use other para-

Bayesian Network Classification with Continuous Attributes 187

Table 1: Experimental Results. The first four column describe the name of the data sets, the number of continuous and discrete attributes,
and the number of instances. The remaining columns report percentage classification error and std. deviations from 5-fold cross validation
of the tested procedures (see text).

Attr. Prediction Errors
Data set C D Size Disc Gauss Mix H/Gauss H/Mix H/Mix-FS
anneal-U 6 32 898 2.45 +-1.01 23.06 +- 3.49 7.46+-3.12 10.91 +-1.79 4.12+-1.78 4.34+-1.43
australian 6 8 690 15.36 +- 2.37 23.77 +- 3.26 18.70+-4.57 17.10+-2.83 16.23+-2.38 15.80+-1.94
auto 15 10 159 23.93 +- 8.57 28.41 +- 10.44 29.03 +- 10.04 27.10+-8.12 26.47 +- 8.44 21.41 +- 4.27
balance-scale 4 0 625 25.76 +- 7.56 11.68+-3.56 9.60+-2.47 11.84+-3.89 13.92+-2.16 13.92+-2.16
breast 10 0 683 3.22+1.69 5.13+-1.73 3.66+-2.13 3.22 +-1.69 4.34+-1.10 4.32 +- 0.96
carsl 7 0 392 26.52 +- 2.64 25.03+-7.11 26.30 +- 4.44 25.28 +- 6.54 24.27 +- 7.85 25.79 +- 6.21
cleve 6 7 296 18.92+-1.34 17.23+-1.80 16.24+-3.97 16.24+-3.97 15.89+-3.14 16.23+-3.58
crx 6 9 653 15.01 +-1.90 24.05 +- 4.44 19.76+-4.04 17.31 +- 1.60 15.47+-1.87 15.47+-2.09
diabetes 8 0 768 24.35 +- 2.56 25.66 +- 2.70 24.74+-3.74 22.65 +- 3.21 24.86 +- 4.06 24.60 +- 3.45
echocardiogram 6 1 107 31.82+-10.34 28.23 +-13.86 30.13+-14.94 29.18+-14.05 29.18+-14.05 30.95+-11.25
flare 2 8 1066 17.63 +- 4.19 17.91 +- 4.34 17.63 +- 4.46 17.91 +- 4.34 17.63 +- 4.46 17.63 +- 4.19
german-org 12 12 1000 26.30 +- 2.59 25.30 +- 2.97 25.60+-1.39 25.70 +- 3.47 25.20 +-1.75 26.60+-2.27
german 7 13 1000 26.20+-4.13 25.20+-2.51 24.60+-1.88 25.10+-2.07 25.30+-3.33 25.70+-4.40
glass 9 0 214 30.35 +- 5.58 49.06 +- 6.29 48.13+-8.12 32.23 +- 4.63 31.30+-5.00 33.16+-5.65
glass2 9 0 163 21.48 +- 3.73 38.09+-7.92 38.09 +- 7.92 34.39 +- 9.62 31.27+-9.63 23.30+-6.22
hayes-roth 4 0 160 43.75 +- 4.42 33.12+-11.40 31.88+-6.01 29.38 +- 10.73 18.75+-5.85 14.38 +- 4.19
heart 13 0 270 16.67+-5.56 15.56+-5.65 15.19 +- 5.46 15.19 +- 3.56 17.41+-4.65 15.93+-5.34
hepatitis 6 13 80 8.75 +- 3.42 12.50+-4.42 10.00 +- 3.42 12.50+-7.65 10.00+-5.59 11.25+-5.23
ionosphere 34 0 351 7.70+-2.62 9.13+-3.31 9.41 +- 2.98 6.85 +- 3.27 6.85 +- 3.27 7.13+-3.65
iris 4 0 150 6.00 +-2.79 2.00+-2.98 2.00 +- 2.98 4.67+-1.83 4.67+-1.83 4.67+-1.83
liver-disorder 6 0 345 41.16+-1.94 40.29+-5.16 33.33+-4.10 36.52 +- 7.63 30.43 +- 5.12 41.74+-2.59
pima 8 0 768 24.87 +- 2.82 24.35+-1.45 24.35 +- 3.47 22.92 +- 3.96 25.52 +- 2.85 24.48 +- 2.87
post-operative 1 7 87 29.74 +-13.06 34.38 +- 10.09 30.98+-11.64 34.38 +-10.09 30.98+-11.64 29.74+-13.06

metric families (e.g., Poisson distributions) or other semi-
parametric methods, (e.g., kernel-based methods). The gen-
eral conclusion we draw from these extensions is that if the
assumptions embedded in the parametric forms "match" the
domain, then the resulting TAN classifier generalizes well
and will lead to good prediction accuracy. We also note
that it is straightforward to extend the procedure to select,
at learning time, a parametric form from a set of parametric
families.

Second, we introduced a new method to deal with differ-
ent representations of continuous attributes within a single
model. This method enables our model learning procedure
(in this case, TAN) to automate the decision as to which rep-
resentation is most useful in terms of providing information
about other attributes. As we showed in our experiments,
the learning procedure managed to make good decisions on
these issues and achieve performance that roughly as good
as both the purely discretized and the purely continuous
approaches.

This method can be extended in several directions. For
example, to deal with several discretizations of the same
attributes in order to select the granularity of discretization
that is most useful for predicting other attributes. Another
direction involves adapting the discretization to the particu-
lar edges that are present in the model. As argued Friedman
and Goldszmidt [9], it is possible to discretize attributes to
gain the most information about the neighboring attributes.
Thus, we might follow the approach in [9] and iteratively
readjust the structure and discretization to improve the score.
Finally, it is clear that this hybrid method is applicable not
only to classification, but also to density estimation and
related tasks using general Bayesian networks. We are cur-
rently pursuing these directions.

Acknowledgments
We thank Anne Urban for help with the experiments. M. Gold-
szmidt and T. Lee were supported in part by DARPA's High

Performance Knowledge Bases program under SPAWAR contract
N66001-97-C-8548. N. Friedman was supported in part by ARO
under grant DAAH04-96-1-0341.

References
[1] C. M. Bishop. Neural Networks for Pattern Recognition, 1995.
[2] C. K. Chow and C. N. Liu. Approximating discrete probability distributions

with dependence trees. IEEE Trans, on Info. Theory, 14:462-467,1968.
[3] T. M. Cover and J. A. Thomas. Elements of Information Theory, 1991.
[4] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised dis-

cretization of continuous features. In ICML '95. 1995.
[5] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis, 1973.
[6] S. Even. Graph Algorithms, 1979.
[7] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-

valued attributes for classification learning. In IJCAI '93.1993.
[8] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers.

Machine Learning, 29:131-163, 1997.
[9] N. Friedman and M. Goldszmidt. Discretization of continuous attributes while

learning Bayesian networks. In ICML '96. 1996.
[10] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis.

1995.
[11] D. Heckerman and D. Geiger. Learning Bayesian networks: a unification for

discrete and Gaussian domains. In UAI '95. 1995.
[12] D. Heckerman, D. Geiger, and D. M. Checkering. Learning Bayesian net-

works: The combination of knowledge and statistical data. Machine Learning,
20:197-243, 1995.

[13] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In IJCAI '95. 1995.

[14] R. Kohavi, G. John, R. Long, D. Manley, and K. Pfleger. MLC++: A machine
learning library in C++. In Proc. 6'th Inter. Conf. on Tools with AI, 1994.

[15] S. L. Lauritzen and N. Wermuth. Graphical models for associations between
variables, some of which are qualitative and some quantitative. Annals of
Statistics, 17:31-57, 1989.

[16] P. M. Murphy and D. W. Aha. UCI repository of machine learning
databases, http: //www.ics.uci.edu/"mlearn/MLRepository.
html, 1995.

[17] R. Tarjan. Finding optimal branching. Networks, 7:25-35, 1977.

188

The Kernel-Adatron Algorithm: a Fast and Simple Learning
Procedure for Support Vector Machines

Thilo-Thomas Frieß
Dept. of Automatic Control

and Systems Engineering
University of Sheffield, UK
friessQacse.shef.ac.uk

Nello Cristianini Colin Campbell
Dept. of Engineering Mathematics Dept. of Engineering Mathematics

University of Bristol, UK University of Bristol, UK
nello.cristianiniObristol.ac.uk c.campbellQbristol.ac.uk

Abstract

Support Vector Machines work by mapping
training data for classification tasks into a
high dimensional feature space. In the fea-
ture space they then find a maximal margin
hyperplane which separates the data. This
hyperplane is usually found using a quadratic
programming routine which is computation-
ally intensive, and is non trivial to imple-
ment. In this paper we propose an adap-
tation of the Adatron algorithm for clas-
sification with kernels in high dimensional
spaces. The algorithm is simple and can
find a solution very rapidly with an exponen-
tially fast rate of convergence (in the number
of iterations) towards the optimal solution.
Experimental results with real and artificial
datasets are provided.

Keywords: Support Vector Machine, Large Margin Clas-
sifier, Adatron, Statistical Mechanics

1 INTRODUCTION

Support Vector (SV) machines are an algorithm in-
troduced by Vapnik and co-workers [5, 4] theoretically
motivated by VC theory. They are based on the fol-
lowing idea: input points are mapped to a high dimen-
sional feature space, where a separating hyperplane
can be found. The algorithm is chosen in such a way
to maximize the distance from the closest patterns, a
quantity which is called the margin.

This is achieved by reducing the problem to a
quadratic programming problem, which is then usu-
ally solved with optimization routines from numerical
libraries. This step is computational intensive, can be

subject to stability problems and it is non trivial to
implement.

SV machines have a proven impressive performance on
a number of real world problems such as optical char-
acter recognition and face detection [5, 6,19,17]. How-
ever, their uptake has been limited in practice because
of the mentioned problems with the current training
algorithms.

An analogous problem has been studied in the Statis-
tical Mechanics literature, which has produced a num-
ber of perceptron learning procedures aimed at find-
ing maximal margin hyperplanes in the input space
[11, 15, 13]. For some of them also theoretical guaran-
tees are provided, as in the case of Adatron [2], where
not only the convergence toward the optimal solution
has been proved, but also an exponential rate of con-
vergence in the number of iterations.

We propose a "hybrid" algorithm, the Kernel-Adatron
(KA), which combines the implementational simplicity
of Adatron with the capability of working in nonlin-
ear feature spaces as SV machines do. By introducing
Kernels into the algorithm it is possible to maximize
the margin in the feature space, which is equivalent
to nonlinear decision boundaries in the input space.
The algorithm comes with all the theoretical guaran-
tees given by VC theory for large margin classifiers,
as well as the convergence properties studied in the
Statistical Mechanics literature.

The result is a fast, robust and extremely simple proce-
dure which implements the same ideas and principles
as SV machines at much smaller cost. Experimental
results are provided which show that indeed the pre-
dictive power of our algorithm is equivalent to that of
a SV machine. Furthermore, we show that the running
time can be orders of magnitude faster.

Kernel-Adatron SV Machines 189

2 SUPPORT VECTOR MACHINES

Support Vector (SV) machines implement complex
(nonlinear) decision rules in terms of hyperplanes in
high dimensional spaces and were originally introduced
by Vapnik and co-workers [24, 5, 10].

The decision function realized by SV machines can
conceptually be described in two steps: first the train-
ing points are mapped by a nonlinear function <j> to
a high-dimensional space where they are linearly sep-
arable. Then a separating hyperplane is found which
maximizes its distance from the training set, called the
margin.

Theoretical results exist from VC theory [24, 21],
which guarantee that such solution has high predic-
tive power, in the sense that it minimizes an upper
bound on the test error (a complete survey covering
the generalization power of SV machines can be found
in [3]).

Let S = {(x1,yi),(x2,y2),—,{xp,yP)} be a sample of
points Xi 6 X labelled by yi £ {—1,+1}.

Consider a hyperplane defined by (w,6), where w is a
weight vector and 6 a threshold value. Let S = (X, Y)
a labeled sample of inputs from X that has empty
intersection with the hyperplane, so that

e(m,7) = i(Hog(^)log(32m) + log(^))

where k= [577R2/j2\.

The quantity which upper bounds the generalization
error does not depend on the dimension of the input
space, and this is the theoretical reason why SV ma-
chines can use high dimensional spaces without over-
fitting.

Two main ideas (data-dependent representation and
kernels) make it possible to efficiently deal with very
high dimensional feature spaces.

The first is based on the identity:

N p

^Wifatx) + 0 = ^2 ak<l>(xk)<t>(x) + 9
i=l fc=l

which provides an alternative, data-dependent, repre-
sentation of the hypothesis itself, and the other is the
use of kernels:

tf(x',x) =]T &(*')&(*)

7 = min | (x, w) + 6\ > 0

We call this distance the margin of the hyperplane w
with respect to the sample S.

We also say that the hyperplane is in canonical form
with respect to the sample if

min \(x,w) +6\ = 1

which are equivalent to computing the dot product
of the images of two vectors in the feature space [1],
provided some (nontrivial) conditions are satisfied.

A common choice are Radial Basis Functions (RBF)
such as gaussians,

:(,*') = e-n*-*'ii2/2*2

or polynomial kernels

It is possible to prove that for canonical hyperplanes K(x,x') = {(x,x') + l)d

7 = l/|Hl2

The following theorem holds:

Theorem: [21] Suppose inputs are drawn indepen-
dently according to a distribution whose support is
contained in a ball in 3fn centered at the origin, of ra-
dius R. If we succeed in correctly classifying m such
inputs by a canonical hyperplane with ||w|| = I/7 and
|0| < R, then with confidence 1 - S the generalization
error will be bounded from above by

which satisfy such conditions.

The use of the kernels instead of the dot product,
in the data-dependent representation of the decision
function, automatically provides a way to represent
hyperplanes in a feature space rather than in the in-
put space, as first described in [1].

The second conceptual step, aimed at finding the large
margin hyperplane, is performed in SV machines by
trasforming the problem into a Quadratic Program-
ming one, subject to linear constraints.

190 Frieß, Cristianini, and Campbell

Kuhn-Tucker theory [24] provides the framework un-
der which the problem can be solved and gives the
properties of the solution.

In the data-dependent representation, the lagrangian

p v

t=i x,j'=l

has to be maximized with respect to the a*, subject to
the constraints

(Xi>0 Yl^i
i=i

This formulation has a number of interesting proper-
ties, characterizing the behaviour of the optimal hy-
perplane.

There is a Lagrange multiplier a, for each training
point. Only the points which lie closest to the hy-
perplane, (on parallel hyperplanes at distance 7 from
the optimal one) have a* > 0 and are called support
vectors. All the others have a* = 0.

This means that in the representation of the solution,
only the points which are closest to the hyperplane
contribute: in fact they represent the hypothesis it-
self, (and their number can also be used to give an
independent bound on its reliability [3]).

The resulting decision function can be written as:

f(x) = sign I ^ Vi<x°iK(x, xt) - 6 \
\t€SV /

where a° is the solution of the constrained maximiza-
tion problem and SV represents the (indexes of) sup-
port vectors.

Such a scheme has proved to be very resistent to over-
fitting in many classification problems [19, 6, 24]. How-
ever this scheme is non trivial to implement, and com-
putationally expensive. Furthermore, in some condi-
tions, it can suffer from numerical conditioning prob-
lems.

It is interesting to note that other algorithms which
were developed with different motivations have been
shown to use a similar technique, equivalent to map-
ping points to a high dimensional feature space and
separating them with a large margin hyperplane. This
is the case for Adaboost [18], and for Bayesian Clas-
sifiers [7] where the margin distribution over all the

training set is used as an estimator, rather than the
margin.

This is justified by a theorem from Schapire et al.
[18] proving that the fraction of training points which
are classified with large margin controls the predictive
power, and that valid generalization can be guaran-
teed even when few points lie near the boundary and
hence the margin of the sample is small.

3 THE KERNEL-ADATRON (KA)
ALGORITHM

In the Statistical Mechanics approach to learning [25],
a very similar problem has been studied, with different
motivations. The "perceptron with optimal stability"
has been the object of extensive theoretical and exper-
imental work, [15, 11, 2], and a number of simple iter-
ative procedures have been proposed, aimed at finding
hyperplanes which have "optimal stability" or - in our
terms - maximal margin.

One of them, the Adatron, comes with theoretical
guarantees of convergence to the optimal solution, and
of a rate of convergence exponentially fast in the num-
ber of iterations [2,15], provided that a solution exists.

We demonstrate that such models can be adapted,
with the introduction of kernels, to operate in a high-
dimensional feature space, and hence to learning non-
linear decision boundaries. This provides a procedure
which emulates SV machines but doesn't need to use
the quadratic programming toolboxes.

In this section we will briefly sketch the Adatron algo-
rithm, and we will list the theoretical results which can
be proved for it (in the Statistical Mechanics frame-
work), pointing to the relevant papers for the proofs
of the theorems. Finally we will show how it is pos-
sible to introduce the kernels. The next section will
be devoted to experimental comparisons between KA
and SV machine, and to benchmarking.

The Adatron is a an on-line algorihm for learning
perceptrons which has an attractive fixed point cor-
responding to the maximal-margin consistent hyper-
plane, when this exists.

By writing the Adatron in the data-dependent repre-
sentation, and by substituting the dot products with
kernels, we obtain the following algorithm:

Kernel-Adatron SV Machines 191

The Kernel-Adatron Algorithm.

1. Initialise a, = 1.

2. Starting from pattern i = 1, for labeled points
(xi,yi) calculate zt = yi Yfj=.i ajVjK(xi^xj)-

3. For all patterns i calculate 7« = y%Zi and execute
steps 4 to 5 below.

4. Let Sa* = 77(1 - 7*) be the proposed change to the
multipliers a*.

5.1. If (a* + Sot*) < 0 then the proposed change to
the multipliers would result in a negative a1. Conse-
quently to avoid this problem we set a% = 0.

5.2 If (a* + Sot1) > 0 then the multipliers are updated
through the addition of the Sa% i.e. a1 <— a1 + 8a%.

6. Calculate the bias b from

b = - (min (*<+) + max (zt))

where zf are those patterns i with class label +1 and
zj are those with class label — 1.

7. If a maximum number of presentations of the pat-
tern set has been exceeded then stop, otherwise return
to step 2.

The kernel K(x,x') can be any function satisfying
Mercer's condition, in particular it is possible to use
RBF or polynomial kernels given in section 2.

Important Remarks

Using results reported in the Statistical Mechanics lit-
erature, the following important properties of the Ada-
tron can be derived:

1. (Anlhauf and Biehl [2]) Every stable point for
the Adatron algorithm is a maximal margin point and
vice versa.

Proof Sketch

By inserting the Kuhn-Tucker conditions for the max-
imal margin («j > 0 — 7» = 1, on = 0 - 7* > 1)
in the Adatron updating rule it follows that the opti-
mal margin is a fixed point. Vice versa by imposing
Scti = 0 Vi the Kuhn-Tucker conditions are obtained.

2. (Anlhauf and Biehl [2]) The algorithm converges
in a finite number of steps to a stable point if a solution
exists.

Proof Sketch The functional

f

L = ^2,ai- l/2'Yll<Xi<X}ViVj(xiixi)
i=l «J

can be shown to be upper bounded, and to increase
monotonically at each updating step of the Adatron.
So it has to find a fixed point in a finite number of
steps.

3. (Opper [16], [15]) The rate of convergence to
the optimal solution follows an exponential law in the
number of iterations.

The proof makes use of replica calculations from Sta-
tistical Mechanics (and the standard assumptions of
that model [25]).

Note: The convergence proof relies on an adequate
choice of 77, which also controls the speed of the con-
vergence itself. The issues regarding the choice of n
cannot be discussed here for lack of space, but we ob-
serve that the theory provides an interval within which
a valid n can be chosen. Results will be presented else-
where.

4 EXPERIMENTAL RESULTS

We have evaluated the performance of the KA algo-
rithm with gaussian kernels on a number of standard
classification datasets, both artificial and real. The
artificial datasets include the two-spirals problem [8],
n-parity [14], mirror symmetry [14]. The real world
data include the sonar classification problem [9], the
Wisconsin breast cancer dataset [23] and a database of
handwritten digits collected by the US Postal Service
[12].

4.1 THE TWO SPIRALS PROBLEM AND
n-PARITY

For the two spirals problem the task is to discriminate
between two sets of points which lie in two spirals in
a plane.

The solution found by the KA algorithm is illustrated
in Figure 2 and compared with the solution provided
by a kernel-perceptron, i.e. a generic hyperplane in
the feature space (Fig. 1).

The diagrams present different decision functions; in
the kernel-perceptron's case the small margin yields a
highly non smooth boundary while for the KA algo-
rithm a smooth and centered solution has been found.

192 Frieß, Cristianini, and Campbell

20 -jr-^^M
40 .i&SS^I
«1 ■ ff H^fr^: ^-M ■I . l^L-^^7 f H • ,V H

^ft. ■■^^.--•<^g .^g J
80 ^■ES^J

100

120 ^^H
20 40 BO 80 100 120

Useful insight about the differences between these two
learning machines can be obtained by observing the
margin distribution graphs in Fig. 3, which present the
cumulative distribution of the margins of all individual
training points, i.e. the fraction of patterns (vertical
axis) which have a margin larger than a given value
8 (horizontal axis). It is interesting to note that the
effect on the margin distribution of the training in KA
is similar to the one in Adaboost, discussed in [18].

The solution for the n-parity problem [14], which is
hard to separate for neural networks, was found in 1
epoch for n = 3 and n = 6, while it took respectively
3 and 5 epochs to maximise the margin.

Figure 1: Kernel-Perceptron (small margin) clearly
overfits

20 -^-"4^1
40 ^^*"*^^
80

80 ^hSjjJÜr^
100 -^Ml^^^l
120 ^M

20 40 60 80 100 120

Figure 2: Kernel-Adatron learns a much smoother
boundary

i

0.9

0.8

0.7

0.6

0.5

0.4

0.3

02

0.1

/f^'.
i;

1;

/

J
!
i

--• Kerne -Perceptron
-AdatronMQiterations)
-Adatron(lUO iterations

- - Kerne / .
— Kerne •'

100
margin distribution

Figure 3: Cumulative margin distribution for kernel-
perceptron and for KA. Note the scaling of the mar-
gins: we denote with 100 the null margin (points on
the boundary).

4.2 MIRROR SYMMETRY

In the mirror symmetry problem [14] the output y is
a 1 if the input pattern x (with components from {-1,
+1}) is exactly symmetrical about its centre, other-
wise the output is a —1. For randomly constructed
input strings the output would be a —1 with a high
probability. Consequently the labels ±1 are selected
with a 50% probability and the first half of the input
string is randomly constructed from components in {-
1,-1-1} (both selected with a 50% probability) and the
second half of the string is symmetrical or random de-
pending on the target value given. Generalisation was
evaluated using a test set drawn from the same distri-
bution (eliminating any instances for which the input
string is identical to a member of the training set).

In Figure 4 we plot the generalisation error on the
test set (100,000 examples including repetitions) ver-
sus a for the KA algorithm trained to 200 epochs with
j] = 1.0. 200 training examples were used with in-
put strings consisting of 30 components. The gen-
eralisation error passes through a mimimum between
cr = 4 — 5 with a maximum generalisation of 95.1%.
To compare with other algorithms in a machine inde-
pendent way we have implemented all algorithms in
MATLAB (using its optimization toolbox) and esti-
mated the individual speeds using FLOPS (Table 1).
We see that the KA algorithm is substantially faster
that Support Vector machines while also having a com-
parable generalisation performance to the latter (TR
is the number training errors, TS the number of test
errors on a set of 100 patterns). It also performs much
better than /c-nearest neighbour (fcNN) on the test set.

Kernel-Adatron SV Machines 193

Alg. EP. a TR. TS. FLOPS
kNN(k=l) - - 0 25 0
kNN(k=7) - - 0 22 0
SVM - 3.5 0 3 0.173 xl0a

SVM - 4.2 0 2 0.318 xl0y

SVM - 5.0 0 5 0.694 xl0a

KA 10 3.5 0 4 1210000
KA 10 4.2 0 5 1210000
KA 10 5.0 0 6 1210000
KA 100 3.5 0 3 12100000
KA 100 4.2 0 3 12100000
KA 100 5.0 0 4 12100000
KA 250 3.5 0 3 30250000
KA 250 4.2 0 4 30250000
KA 250 5.0 0 5 30250000

Table 1: comparison for mirror symmetry

4.3 SONAR CLASSIFICATION

The sonar classification problem of Gorman and Se-
jnowski [9] consists of 208 instances formed by 60
analogue inputs, representing returns from a roughly
cylindrical rock or a metal cylinder, equally divided
into training and test sets. For the aspect-angle de-
pendent dataset [9] they trained a standard back-
propagation neural network with 60 inputs and 2 out-
put nodes. Experiments were performed with up to
24 hidden nodes and each neural network was trained
with 300 epochs through the training set. Their results
are reproduced in Table 2.

Figure 4: Generalisation error (vertical axis) vs. a
(horizontal axis): mirror symmetry problem

hidden 0 2 3 6 12 24
% gen. 73.1 85.7 87.6 89.3 90.4 89.2

Table 2: Gorman and Sejnowki results for sonar

For the KA algorithm we plot a against generalisation

error in Figure 5 and the best generalisation perfor-
mance is 95.2% by comparison. The KA algorithm is
also very fast. Figure 6 illustrates the approach of the
margin towards 1 (for a = 1.0 and r\ — 1.0). The train-
ing error fell to 0 in the second epoch (it was 0.077 at
the end of the first epoch). We also show the generali-
sation error versus number of epochs (Figure 7). As for
mirror symmetry we give a comparison with Support
Vector Machines in Table 3.

Alg. EP. <T TR. TS. FLOPS
kNN(k=l) - - 0 10 0
kNN(k=3) - - 0 19 0
SVM - 0.57 0 8 3.476 xl0a

SVM - 0.71 0 7 6.750 xl0a

SVM - 0.85 0 7 8.878 xl0y

KA 10 0.57 0 6 329680
KA 10 0.71 0 9 329680
KA 10 0.85 0 8 329680
KA 100 0.57 0 6 3296800
KA 100 0.71 0 6 3296800
KA 100 0.85 0 7 3296800
KA 250 0.57 0 6 8242000
KA 250 0.71 0 6 8242000
KA 250 0.85 0 7 8242000

4.4

Table 3: comparison for sonar classification

WISCONSIN BREAST CANCER
DATASET

The Wisconsin breast cancer dataset contains 699 pat-
terns with 10 attributes for a binary classification task
(the tumour is malignant or benign).

This dataset has been extensively studied by other
authors. CART gives a generalisation of 94.2%, an
RBF neural network gave 95.9%, a linear discriminant
method gave 96.0% and a multi-layered neural network
(trained via Back-Propagation) 96.6% (all the results
have been obtained using 10-fold cross-validation [23]).
Our optimal test performance was of 99.48%, which is
superior to the previous reported results. However we
regard this result as simply indicating that we are com-
parable with other approaches, as this difference can
also be due to other factors and requires further inves-
tigation. Among them are differences in the handling
of instances with missing values (16 in the database),
in the preprocessing (we have removed the first column
of the database reporting the patient's code number,
like some other authors) and in the choice of a. We
note that the test error is insensitive to the choice of v
in a broad interval, as can be seen in Fig. 11. In this
diagram we give a plot of generalisation error versus
a for 10-fold cross validation on the 699 instances (50
iterations were used and 77 = 1.0).

194 Frieß, Cristianini, and Campbell

0.45 ■

0.4
■

0.35
■

0.3 -

0.25
■

0.2
■

015

-\o_rJ

r->

0.1

0.05

 ^J

0.5 1 1.6

Figure 5: Generalisation error of KA (vertical axis) vs.
a (horizontal axis) for the sonar classification problem.

50 100 150 200 250 300 350 4O0

Figure 6: Margin (vertical axis) vs. number of epochs
(horizontal axis) for sonar classification (a = 1.0, T) =
1.0).

50 100 150 200 250 300 350 400

Figure 7: Generalization error (vertical axis) vs. num-
ber of epochs (horizontal axis) for sonar classification
{a = 1.0, i\ = 1.0).

Furthermore, for a particular split of the database with
550 training examples and 149 test examples, a = 3.2
and 77 = 1.0, we give plots of the generalisation error
(Fig. 8), margin (Fig. 9) (all versus number of epochs
and the final spectrum of a values (Figure 10).

To compare the computational cost of KA with other
classifiers we have used a matlab implementation of
them, and run it on a reduced subset of the database
(199 training and 168 testing points) using the FLOPS
as an indication of the algorithmic complexity. The re-
sults are reported in Table 4 and indicate that KA can
achieve about the same generalization performance of
SV machines at a cost which is orders of magnitude
smaller.

Alg. EP. a TR. TS. FLOPS
kNN(k=l) - - 0 13 0
kNN(k=3) - - 0 9 0
SVM - 0.28 0 11 2.4541 xl0u

SVM - 0.35 0 10 2.7763 xl0y

SVM - 0.42 0 11 2.8043 xlO9

KA 10 0.28 0 8 1197980
KA 10 0.35 0 9 1197980
KA 10 0.42 0 11 1197980
KA 100 0.28 0 10 11979800
KA 100 0.35 0 9 11979800
KA 100 0.42 0 9 11979800
KA 250 0.28 0 10 29949500
KA 250 0.35 0 9 29949500
KA 250 0.42 0 10 29949500

Table 4: comparison for cancer classification (a subset has
been used for this comparison

4.5 US POSTCODE DATABASE

The benchmarking of classification algorithms of the
class of SV machines has traditionally been performed
using the database of handwritten digits from US
Postal Codes [12, 20].

This dataset consists of a training set of 7,291 exam-
ples and a test set of 2,007. Each digit is given by a
16 x 16 vector with components which lie in the range
— 1 to 1. In this experiment we have performed two-
class classification i.e. separating a particular digit
from the others. To find suitable values for er the train-
ing set was split into a smaller training set of 6,000
examples and a validation set of 1,291. The best value
of a was found by evaluating performance on the val-
idation set across the range (1,10). The full training
set of 7,291 was then used with the selected value of
a to train the system to classify each digit.

The results are shown in Table 5 where the last column
shows the best value of a found from the validation

Kernel-Adatron SV Machines 195

50 100 150 200 250 300 350 4O0

Figure 8: Generalization error (vertical axis) vs. num-
ber of epochs (horizontal axis) for cancer classification

150 200 250 300 350 400

Figure 9: Margin (vertical axis) vs. number of epochs
(horizontal axis) for cancer classification

iUHiMii.hl.Uinllll.llii L i m HL

Figure 10: Spectrum of a values for the 550 patterns
found by the KA algorithm (cancer classification ex-
periment

0.35

0.3 ^ ■

0.25
■

0.2
■ ■

0.15
■

0.1 •

0.05

10 12 14 16 16 20

Figure 11: Generalisation error (vertical axis) vs. a
(horizontal axis) for cancer classification (77 = 1.0)

study. The other columns show the number of errors
on the test set of 2,007 examples for the KA algorithm
and 3 comparative algorithms as reported by [20]. The
latter three algorithms are an RBF neural network, a
Support Vector Machine (SVM) and a hybrid model in
which the support vectors found by the SVM are used
as the centers of receptive fields in an RBF network
[20].

Digit RBF SVM Hybrid KA a
0 20 16 9 13 1.8
1 16 8 12 10 1.6
2 43 25 27 21 2.4
3 38 19 24 24 2.0
4 46 29 32 26 4.0
5 31 23 24 19 1.8
6 15 14 19 15 2.4
7 18 12 16 11 2.8
8 37 25 26 26 3.2
9 26 16 16 14 1.6

Table 5: comparative performance on the USPS database
(number of errors in a 2007 points test set)

The performance of KA is comparable with the other
algorithms.

5 CONCLUSIONS AND FUTURE
WORK

We have presented an algorithm which finds maxi-
mal margin hyperplanes in a high dimensional feature
space, emulating Vapnik's Support Vector machines.

Experiments performed on artificial and real data show
that the generalization performance of this algorithm

196 Frieß, Cristianini, and Campbell

is comparable with that of SV machines, while the
computational cost of finding the hypothesis is signif-
icantly smaller. Also, the introduction of kernels into
the Adatron provides a very simple, compact and ro-
bust algorithm.

Further work is now needed to introduce the capabil-
ity of tolerating training errors, so that the machine
can deal with outliers and noisy datasets, following the
soft-margin approch used in SV machines.

Acknowledgements This work was partially funded by
EPSRC. Nello wishes to thank John Shawe-Taylor and Ja-
son Weston for many useful discussions. Thilo would like to
thank Rob Harrison and Klaus-Robert Müller, and Univ.
of Sheffield/AC&SE for support.

References

[1] Aizerman, M., Braverman, E., and Rozonoer, L.
(1964). Theoretical Foundations of the Potential Func-
tion Method in Pattern Recognition Learning, Automa-
tions and Remote Control, 25:821-837.

[2] Anlauf, J.K., and Biehl, M. (1989). Europhysics Letters
10:687

[3] Bartlett P., Shawe-Taylor J., (1998). Generaliza-
tion Performance of Support Vector Machines and
Other Pattern Classifiers. 'Advances in Kernel Meth-
ods - Support Vector Learning', Bernhard Schölkopf,
Christopher J. C. Burges, and Alexander J. Smola
(eds.), MIT Press, Cambridge, USA.

[4] Böser, B., Guyon, I., Vapnik, V. (1992). A training
algorithm for optimal margin classifiers. Fifth Annual
Workshop on Computational Learning Theory. ACM
Press.

[5] Cortes, C, and Vapnik, V. (1995). Support Vector net-
works, Machine Learning 20:273-297.

[6] Cortes, C. (1995). Prediction of Generalization Abil-
ity in Learning Machines. PhD Thesis, Department of
Computer Science, University of Rochester.

[7] Cristianini, N., Shawe-Taylor, J., Sykacek, P., (1998).
Bayesian Classifiers are Large Margin Hyperplanes in
a Hubert Space, in Shavlik, J., ed., Machine Learning:
Proceedings of the Fifteenth International Conference,
Morgan Kaufmann Publishers, San Francisco, CA.

[8] FrießT-T., Harrison R.F., (1998), Pattern Classifica-
tion using Support Vector Machines, Eng. and Int. Sys.
(EIS98 Conf. Proc.)

[9] Gorman R.P. k Sejnowski, T.J. (1988) Neural Net-
works 1:75-89.

[10] Guyon, I., Matic, N., k Vapnik, V. (1996). Discov-
ering Informative Patterns and Data Cleaning, Ad-
vances in Knowledge Discovery and Data Mining ed

by U.M.Fayyad, G. Piatelsky-Shapiro, P. Smyth and
R. Uthurusamy AAAI Press/ MIT Press.

[11] Kinzel, W.,(1990) Statistical Mechanics of the Percep-
tron with Maximal Stability. Lecture Notes in Physics
(Springer-Verlag) 368:175-188.

[12] LeCun, Y., Jackel, L. D., Bottou, L., Brunot, A.,
Cortes, C, Denker, J. S., Drucker, H., Guyon, I.,
Müller, U. A., Sackinger, E., Simard, P. and Vap-
nik, V., (1995). Comparison of learning algorithms for
handwritten digit recognition, International Confer-
ence on Artificial Neural Networks, Fogelman, F. and
Gallinari, P. (Ed.), pp. 53-60.

[13] Krauth W. and Mezard. M. (1987) J.Phys. A20:L745

[14] Minsky M.L. k Papert, S.A. (1969) Perceptrons, MIT
Press: Cambridge.

[15] Opper, M. (1988). Learning Times of Neural Net-
works: Exact Solution for a Perceptron Algorithm.
Physical Review A38:3824

[16] Opper, M. (1989). Learning in Neural Networks: Solv-
able Dynamics. Europhysics Letters, 8:389

[17] Osuna E., Freund R., Girosi F., (1997) "Training Sup-
port Vector Machines: An Application to Face Detec-
tion", Proc. Computer Vision and Pattern Recognition
'97, 130-136

[18] Schapire. R., Freund, Y., Bartlett, P., k Sun Lee, W.
(1997). Boosting the Margin: A New Explanation for
the Effectiveness of Voting Methods, Proceedings of In-
ternational Conference on Machine Learning.

[19] Schoelkopf, B., (1997). Support Vector Learning. PhD
Thesis. R. Oldenbourg Verlag, Munich.

[20] Schoelkopf, B., Sung, K., Burges, O, Girosi, F.,
Niyogi, P., Poggio, T., and Vapnik, V., Comparing
Support Vector Machines with Gaussian Kernels to Ra-
dial Basis Function Classifiers, M.I.T. Preprint (A.I.
Laboratory), A.I. Memo No. 1599.

[21] Shawe-Taylor, J., Bartlett, P., Williamson, R. k An-
thony, M. (1996). Structural Risk Minimization over
Data-Dependent Hierarchies NeuroCOLT Technical
Report NC-TR-96-053 (ftp://ftp.dcs.rhbnc.ac.uk
/pub/neurocolt/tech.reports).

[22] (Sonar dataset)
http://www.boltz.cs.emu.edu/benchmarks/sonar.html

[23] Ster, B., k Dobnikar, A. (1996) Neural networks in
medical diagnosis: comparison with other methods. In
A. Bulsari et al. (ed.) Proceedings of the International
Conference EANN'96, p. 427-430.

[24] Vapnik, V. (1995) The Nature of Statistical Learning
Theory, Springer Verlag.

[25] Watkin, T., Ran, A. k Biehl, M. (1993). The Statis-
tical Mechanics of Learning a Rule, Rev. Mod. Phys.
65(2).

197

Multi-criteria Reinforcement Learning

Zoltän Gabor, Zsolt Kalmar and Csaba Szepesvari
Associative Computing Ltd.

Budapest 1121, Konkoly Thege M. dt 29-33
e-mails: {gzoli,kalmar,szepes}@mindmaker.kfkipark.hu

Abstract

We consider multi-criteria sequential decision
making problems where the vector-valued
evaluations are compared by a fixed total or-
dering of the vectors. Conditions for the op-
timality of stationary policies and the Bell-
man optimality equation are given for a spe-
cial, but important class of problems, when
the evaluation of policies can be computed
componentwise. The analysis requires special
care as the topology introduced by pointwise
convergence and the order-topology intro-
duced by the preference order are in general
incompatible several. Reinforcement learn-
ing algorithms are then proposed and an-
alyzed. Preliminary computer experiments
confirm the validity of the derived algo-
rithms. These type of multi-criteria problems
are most useful when there are several opti-
mal solutions to a problem and one wants to
choose the one among these which is optimal
according to another fixed criterion. Possible
application in robotics and repeated games
are outlined.

1 Introduction

Scalar-valued reinforcement learning (RL) algorithms
are capable of solving difficult multi-step decision
problems when the decision criteria can be expressed
in a recursive way as a function of the immediate scalar
reinforcement. However, there are some important
cases when there is no simple way to express the opti-
mization criteria as a function of a single scalar rein-
forcement value. Consider, for example, the dilemma

of Buridan's ass.1 This poor animal is placed at equal
distances away from two platefuls of food. He is hun-
gry so he feels like going to one of the plates. However,
if he goes to one plate then there is a chance that the
dish from the other one gets stolen. Since the ass is
greedy (he does not want any dish to be stolen away)
he will never move and will, eventually, die.

In this example the ass has two different objectives
competing with one another. The first one is to eat
so that he can stay alive, the second one is to prevent
the dishes from being stolen. A reasonable compro-
mise, which could be termed the "watchmen's com-
promise" , is to minimize the number of dishes stolen
per unit time such that the ass manages to stay alive:
liniT^oo i ££=o St -¥ min s.t. liniT-yoo y E£=O

Rt ^
i?cr;t. Here St G {0,1} is the indicator of whether a
plate was stolen at time t, Rt = {0,1} is the indicator
of whether the ass was consuming at time t, and RCTlt

is the critical amount of food per unit time needed for
staying alive. We can use a Tauberian approximation
to the above criterion [Ross, 1970]:

^2 llSt -> min s.t. ^ ^Rt > R'c crit' (1)
t=0 t=0

where 0 < 7 < 1 is a value sufficiently close to 1,

1Buridan, a French philosopher of the mediaeval pe-
riod, wrote several significant commentaries on the classi-
cal philosophical, logical, and physical works of Aristotle,
including the Physics. Actually, he never referred to the
infamous ass in his extant writings, but this concept was
invented by his opponents to ridicule his use of animals
in the examples he used to expound his theories on free
will. In the original version of the story a hungry ass stood
between two haystacks, both of which were equally appe-
tizing. Unable to decide from which stack to eat, the ass
eventually starved to death. However, the example in this
form did not serve well our purposes so we felt free to mod-
ify it slightly.

198 Gabor, Kalmar, and Szepesväri

R'crit = .Rcrit/(1 _ 7)- 2 Since the decision should be
made on the basis of both the amount of food eaten
and the number of plates stolen and both of these
should be computed separately, the normal form of
reinforcement at time t will be (Rt,St)-

Note that there exists other ways to formalize the
dilemma of Buridan's ass. Another reasonable com-
promise, e.g., is to maximize the weighted sum of pro-
tected plates and the amount eaten: Y!,u=o 7* (wi 0- ~
St) + wiRt) -► max, where w\,W2 > 0. This reduces
the problem to the case of scalar-valued reinforcement
values. Here, we do not want to argue against this or
other reductions, but we want to show that under cer-
tain conditions reinforcement learning algorithms can
be extended to the vector-valued case in a sensible way.

If the immediate reinforcement is vector-valued then so
will be the long-term reinforcement, and, specifically,
the evaluation of policies. Then the comparison of
policies becomes problematic. The requirements for a
meaningfull comparioson are the following: we want
to compare any pairs of policies and, in particular, we
want a transitive and reflexive comparison operator.
Several approaches will be shown below. No matter
how the policies are compared the notion of an optimal
policy can be defined at this point: an optimal policy
is one which compares favorably with any other policy.

The comparison methods are best illustrated by the
above problem. Let v* (x) 6 R2 denote the evaluation
of policy 7T in state x with v„(x)T = (v„,i(x),vn,2(x)),
where vn>i(x) is the maximum of the amount of food
eaten and Rent, while vnfi(x) is the number of plates
stolen, both being computed when policy n is being
used beginning from state x. The criterion of the in-
troduction suggests to compare any pair of policies
(TIJI^) by first comparing the first components of
their respective evaluation functions: 7Ti is better than
7T2 if vni<i(x) > v„2^(x). Since evaluations are cut at
■Rcrit we may expect that vnui(x) and 1^2(2;) will
be equal in a large number of cases. Then, we com-
pare the second components: ni is better than -KI if
^1,2(2;) < ^2,2(2:) (note the reversed relational sym-
bol). That is, among policies which let Buridan's ass
stay alive, the ones with a smaller number of stolen
plates are preferred. Since here the policies are com-
pared on the basis of an ordering among the vector-
components of the policy evaluation functions, this
problem is one example of ordinal multi-criteria deci-

2In order to simplify the presentation we implicitly as-
sume here that the decision process is deterministic. How-
ever, this assumption is in no way essential to the subse-
quent developments and will be abandoned later.

sion problems, which were considered a long time ago
by Mitten [1964] and Sobel [1975] in terms of prefer-
ence relations over "partial policies". In order the sub-
ordinate criteria to be useful at all, the optimization
problem corresponding to the main objective should
have multiple solutions. This can be achieved using
reduced reinforcement-spaces. As an interesting exam-
ple note that Asimov's robots obey multi-criteria rules
of this form. The "laws of robotics" claims that robots
have to i) defend human beings, ii) defend themselves
unless this conflicts with rule i); and Hi) serve human
beings unless this conflicts with rules i) or ii). This
can be clearly understood as an ordinal multi-criteria
optimization problem. This type of criterion is also
related to solving MDPs in parallel, a problem sim-
ilar to that of considered by Singh and Cohn [1997]
and empirically Asada et al. [1994] for football playing
robots. In this latter case a robot's primary goal could
be to win the game, while it's subordinate goal could
be to keep clear of opponents as much as it is possible.

Criterion (1) can also be viewed as one that defines
a discounted optimization problem subject to a dis-
counted constraint. Structural properties of such prob-
lems were studied extensively in the control and oper-
ations research literature, e.g. by Prid [1972], Heyman
and Sobel [1984], Altman and Schwartz [1991].

Another approach is to compare any pair of policies,
(fli > 7r2), by comparing the weighted sum of the compo-
nents of theirs evaluation functions, e.g. wiv„ui(x) +
W2Vnu2(x) and wiv^^ix) + w2v7r2,2(x) (wi,w2 e R).
Note that this criterion, often called the weighted cri-
terion (see Feinberg and Schwartz [1995] and the ref-
erences therein), is different from the one obtained by
the linear combination of the immediate reinforcement
values iff the discount factors of the two components
are different.

If there is no natural weighing of components then
one can still use the canonical ordering over the re-
turn space. In this case, however, not all policies will
be comparable and so the notion of optimality needs
to be adjusted. The natural choice is then Pareto-
optimality: a policy IT is called Pareto-optimal in state
x if no other policy can majorize ir at x, i.e., if there
is no policy IT' s.t. tv(a;) > v„(x). A policy is called
Pareto-optimal iff it is Pareto-optimal for each state.
It turns out, that Pareto-optimality is equivalent to
weighted optimality with appropriately chosen weights
and if each component of the evaluation is computed
as the total discounted reward for some reward func-
tion [Feinberg and Schwartz, 1995, Lemma 7.4]. In
the above example, assuming that the amount of con-

Multi-criteria Reinforcement Learning 199

sumed food is not truncated, a Pareto-optimal pol-
icy would be one for which there is no other policy
that would allow the ass to consume more (than the
amount ensured by the Pareto-optimal policy) while
assuring a smaller number of stolen plates at the same
time. Pareto-optimality has been studied by many re-
searchers from the point of view of providing condi-
tions which ensure the existence of optimal policies
of certain forms (stationary policies are not Pareto-
optimal in general).

Apparently the earliest result for dynamic vector-
valued models are those of Brown and Strauch [1965],
who considered abstract return spaces having a general
multiplicative lattice structure and who showed that
the "principle of optimality" holds for finite-horizon
problems. Their results were later extended to infi-
nite horizon problems in many special cases (see, e.g.
[Feinberg, 1982, Henig, 1983, Feinberg and Schwartz,
1994]).

In this article we present a general framework based on
abstract dynamic programming models, and which is a
mixture of the above approaches [Denardo, 1967, Bert-
sekas, 1977, Littman and Szepesväri, 1996, Szepesväri,
1998]. Namely, we suggest an approach based on the
notion of reinforcement-propagating operators, which
now act on function spaces defined over an abstract
return space with a given ordering. In this way we
can address constrained problems, lexicographic crite-
ria, lattice return spaces and different reinforcement
propagation scenarios within the same framework.

The article is organized as follows: in Section 2 we
introduce the concepts necessary for the development
and list some basic results concerning the Bellman-
optimality equation and the existence of optimal sta-
tionary policies. Reinforcement learning algorithms
are introduced in Section 3. Some computer experi-
ments, illustrating the theory, are given in Section 4
and conclusions are drawn in Section 5.

2 Abstract ordinal dynamic
programming

An Abstract Dynamic Programming (ADP) problem
can be given as a 5-tuple (11, X, A, A, Q), where X is
the state-space of the decision problem, A is the set
of actions, A : X -¥ A, A(x) are the actions feasi-
ble in state x, 7?. is the return space and Q : TZX ->
TZXxA is the so-called reinforcement-propagator op-
erator [Szepesväri, 1998]. 3 In order to explain the

meaning of these components consider the problem of
Buridan's ass once again. A simplified representation
of that problem could be the following : the ass's state
assumes three values: being in the middle, at the plate,
or at the right plate. The plates can be empty or full.
A state of the decision problem is composed of the
position of the ass, and the states of the plates. So
the state space (X) has 12 elements. The actions
taken by the ass can be to stay at that position, move
to the left, or move to the right; so the action space
(A) has three elements. The dynamics is given by the
following (stochastic) rules: the move actions work as
intended. If the ass chooses to stay at a full plate then
that plate becomes empty (consuming), if the ass stays
at an empty plate then food may appear at that plate
according to some fixed stochastic rule and if the ass
stays at a plate (either full or empty) then the state
of the other plate can change according to some other
fixed (stochastic) rule. If the ass is in the middle then
none of the plates can become empty in the next step
(the ass is guarding the food). The dynamics can be
summarized by a random mapping t : X x A -> X
(or, equivalently, as a set of transition probabilities).
The ass is considered to be consuming a unit food if
he chooses to stay at a full plate. If Xt is the state
at time t then the reinforcement streams {Rt,St} of
Eq. (1) can be given by Rt = 1 if in state xt the ass
is at a full plate and the chosen action, at, is "stay".
Rt = 0, otherwise. Therefore, Rt = R(xt,at) for some
function R. Further, St = 1, if the food disappears
from a plate while the ass is at the other plate, oth-
erwise St = 0. That is, St = S(xt,at,xt+i), where
xt+1 = t(xt,a,t). Let us define the evaluation of a (de-
terministic, stationary) policy, n : X —► A, by

oo

vn,i(x) = min(ßcrit, E[^ ^Rt | x0 - x] J,
t=o

oo

v*,2(x) = E[J2ltSt\x0 = x]
t=0

3Here AB denotes the set of functions mapping B into

where E[-] is the expectation operator underlying
the decision process. By standard arguments, and
since mm(R, E[£ + 7?]) = min(J?, E[£] + E[rj\) =
mm(R,E[£\ + mm(R,E[rj\)) holds if R > 0 and £,r?
are nonnegative random variables, one can show that
vn can be written recursively:

vn,i(x) = min^i?crit,JR(x,7r(x)) +

min(i?crit,7 X} P(
X

>?(
X

)>V)
V

*,I(j/)))>
vex

200 Gabor, Kalmar, and Szepcsvdri

v„,2{x) = ^2 P(
X

>
n(x)>y) t5^' 7r(x)> 2/) + 7^,2(j/)} ■

vex
(2)

Here p(x,a,y) = P(y = t(x,a)). Similar recursions
hold for non-deterministic, Markovian, and even for
non-Markovian policies [Szepesväri, 1998]. Now, if one
defines Q by

(Qv)(x,a)i = mini Rent, R(x, a) + min(i?crit,

nf^2p(x,a,y)vi(y)yj,
vex

(Qv)(x,a)2 = ^2p(x,a,y){S(x,a,y)+-fV2(y)}
vex

and T* : ft -> ft by (T„v){x) = (Qv)(x, ir[x)), x €
X, then we see that v„ becomes the fixed point of
T„. Note that the definition of Q is obtained from (2)
by systematically replacing n(x) by a, and vn by v,
meaning that Q provides a concise summary of both
the state- and reinforcement-dynamics of the decision
process in an abstract form.

Policies are compared on the basis of their evaluations.
Since now vn{x) € ft = R2 is vector-valued we need
a way to compare pairs of vectors. Therefore, we will
assume that a binary relation < over ft is given which
is reflexive, transitive and trichotomous (i.e., < is an
ordering, or ft = (ft; <) is a lattice). 4 Buridan's ass
requires a "reverse-2nd" lexicographic ordering: r <r'
if 7"i < r[or if r\ = r[and r2 > r'2 (here the com-
ponents of r and r' were denoted by lower indices).
This finishes the construction of the ADP describing
the problem-structure of Buridan's ass. This "reverse-
2nd" lexicographic ordering differs from lexicographic
ordering only by the condition on the second compo-
nents: we wrote r2 > r'2 instead of r2 < r2. For conve-
nience, we will continue with considering lexicographic
ordering. Lexicographic ordering (and also "reverse-
2nd" ordering) satisfies the above properties, i.e., it is
an ordering.

In order to facilitate the connection with RL we will
define the notion of optimal value function (instead
of relying on Pareto-optimality), but first we need to
assign a meaning to the supremum of subsets of ft: for
A C ft, a = s.u.p. A is a value such that for all c> A,

4 A binary relation < over 1Z is called i) reflexive if r < r
for any r e 11; ii) transitive if r, r' and r" are such that
r < r' and r' < r" then r < r" (r,r',r" € 1Z); and Hi)
trichotomous if for any pairs (r, r') € 11 either r < r' or
r' <r (the ordering is total) and if both relations hold then
r — r'.

also c > a (a > b is defined by b < a, and a > A is
defined as a > a' for all a1 € A). The infimum of sets
is defined analogously. The maximum of a set A is
defined by

a = m.a.x. A, iff a € .A and a > b, V6 € A,
(3)

the minimum could be defined analogously. A lattice
(7?.; <) is said to be complete if for all bounded subsets
A, both the infimum and the supremum of the set
exist. Lexicographic ordering can be made complete
if the set of reals R is replaced by the set of extended
reals, R = {-00, +00} U R, which is understood with
the natural topology. Then if the return space is H =
R2, the supremum a* of a set A C R2 can be defined
in the standard way as follows: a* = sup{ai : a =
(ai,o2)

T € A] and a2 = inf{a2„ : a„ = (ai„,a2n)T £
As.t.ain -> a*}.

The ordering < of H is extended to functions assuming
values in 1Z in the usual way: for v,w € 1ZY we say
that v < w iff for all y G Y, v(y) < w(y) holds. Note
that the induced ordering, <, is only a partial ordering
over 1ZY (i.e., it is not total).

Equipped with the notion of supremum we can define
the optimal reinforcement function:

v*(x) = s.u.p. v„(x), x G X. (4)
neu

Here n denotes a fixed set of policies. We will consider
the case when n equals to the set of all stationary
policies. A policy in the class n is said to be optimal
if vn = v*.

Now, we can answer the question about the form of op-
timal stationary policies in the case of Buridan's ass.
For sure, an "optimal ass" would indefinitely repeat
"guarding steps" (staying in the middle) and "con-
sumation steps". It should also be clear then that
the exact ratio of the waiting periods would depend
on the value of fiCrit- It should also be clear that for
some values of RCr\t all stationary policies would be
suboptimal. A form of optimal policies for this class
of problems can be found in [Feinberg and Schwartz,
1995]. Note that if one extends the state space, so
that the ass has counting-actions with a limited set of
numbers (i.e. if the ass is enabled to count up to a
fixed maximum number of steps) and if the ass can
choose actions randomly then optimal policies w.r.t.
the falls set of policies can be recovered exactly. So
this case reduces to the case of randomized station-
ary policies. The following theorem restricts the set
of policies further to deterministic stationary policies,

Multi-criteria Reinforcement Learning 201

so that tractability of the learning problem will be en-
sured, but global optimality may be lost. The theorem
is proven in the appendix.

Theorem 2.1 Consider a finite
ADP, (TZ,X,A,A,Q),5 where (i) (7l;+,A-, || • \\n) is
a Banach-space and TZ is equipped with (ii) a com-
plete ordering < which satisfies the following countable
transitivity property: (Hi) if rn is weakly convergent
in TZ, and ro < r\ < r% < ... rn < rn+i < ...
then ro < linin-KxjTV Further, assume that (iv)
Q : TZX —¥ 1ZXy~A is monotone: Qv < Qw when-
ever v < w, v,w G 1ZX, continuous in the topologies
induced by pointwise convergence over7Zx andTZXxA,
(v) and that Q is a contraction w.r.t. the induced max-
norm7 || • ||OO,K. (vi) Assume that T : TZ ->• 11, defined
by

(Tv)(x) = m.a.x.(Qv)(x,a)
a€A(x)

(5)

has a unique fixed point v+, and limn^f00T
nv = v+

for all v G 1ZX s.t. |M|OO,TC < oo. Let II = Ax be the
space of stationary policies. Then (a) v+ > v„ for
all 7T (IT is a deterministic stationary policy) and v+ =
v*, so Tv* = v* (Bellman optimality equation); (b) if
T„-u+ = Tv+, i.e., if it is myopic w.r.t. v+, then vn =
v* (myopic policies are optimal); (c) if Tn>v„ > vn

then v„i > I>7T (Howard's policy improvement routine
is valid).

Operator T, as defined by (5), is called the optimal
value operator.

It is easy to check that countable transitivity holds
for sequences of Rn and the lexicographic ordering.
Note that contraction arguments cannot be used since
there is no norm over R™ with the lexicographic or-
dering for which the m.a.x. operator would be a non-
expansion. For a further discussion of this and addi-
tional peculiarities related to lexicographic orderings
see [Gabor et al., 1998].

Note that ii TZ = Rn with the lexicographic ordering
then the actions at which the maximum is reached in

5An ADP (ft, X, A, A, Q) is called finite if both X and
A are finite. The finiteness assumption could be relaxed
by some extra work.

6 A sequence rn is said to be weakly convergent in TZ if it
is convergent in the topology induced by the vector space
structure of TZ.

The induced maximum-norm ||
\\v\\oo,K =SUp2€Z|Kz)|k-

o,n is defined by

Eq. (5) can be computed by first computing the sets

Ai+1 = { a e Ai(x) | max {Qf)(x, b)t = {Qf)(x, a)i }
b€Ai(x)

(6)

recursively for i = 0,1,2,... ,n — 1, with AQ = A(x).
For convenience, we will denote the action sets as de-
fined above by Ai(Q,x) when Qf is replaced by any
function Q £ 1Z{X x A):

A0(Q,x) = A(x)

Ai+l(Q,x) = {aeAi(Q,x)\

max Q{x,b)i = Q{x,a)t},
o€.Ai(Q,x)

where i = 0,1,2,... ,n - 1. Then (Tv)(x)i+1 =
Tnaxa€Ai(Qv,x)(Qv)(x, a)i+i. Now we show that T has
a unique fixed point and Tnv converges to this fixed
point for all bounded v 6 7£* provided that Q sat-
isfies the conditions of the above theorem and if Q
acts componentwise, i.e., if (Qv)i = (Qw)i whenever
Vi = Wf.

Theorem 2.2 Assume that Q acts componentwise
and that conditions (i)-(v) of Theorem 2.1 are sat-
isfied. Then also condition (vi) is satisfied and thus
the conclusions of Theorem 2.1 hold.

Proof. Fix v and consider the first component of
Tnv. Define Ti : Rx -> Hx by Txf = (T/)i,
where / = (/,/2,.-. ,fn) with /2)... ,/„ being ar-
bitrary. T\ is well defined and is a contraction. More-
over, (Tnv)i = T£vi holds for all n G N, and there-
fore (Tnv)i converges to the unique fixed point of
T\. Similarly, if u and w are both fixed points of
T then u\ = w\. Let us denote this common value
by vf. Now, consider (Tnv)2. Since (Tn+1v)2(x) =
max.a£A1(QTnv,x)(QTnv)(x,a)2, and since Q is compo-
nentwise, Ai(QTnv,x) depends only on (T"u)i which
is known to converge. Therefore, because of the finite-
ness of A, for n large enough Ai(QTnv,x) will sta-
bilize at some set A\{v,x). Now, since the oper-
ator u(x) i-> maxaeJ4.(„]a.)(Qü)(x,a)2 is a contrac-
tion, where ü = (vf,u,u',...), also (Tnv)2 will con-
verge to some value (the operator is well defined
since Q is componentwise). Moreover, if u and w
are both fixed points of T then u\ = wx and thus
Ai(Qu,x) = Ai(Qv,x)(= A*(x)) for all x £ X, and
so U2 and w2 are both the fixed points of the con-
traction z H-> maxag^«(a;)(Qz)(a;,0)2 and are therefore
equal. Continuing in this way for the higher indices
we get the proof of the required statement. Q.u.e.d.

The above theorem shows that the dilemma of Buri-
dan's ass is indeed in the realm of Theorem 2.1, since

202 Gabor, Kalmar, and Szepesväri

the appropriate reinforcement propagator operator, Q,
acts componentwise.

Theorem 2.1 is just one example of how the existence
of optimal stationary policies can be ensured in multi-
criteria problems. There are many possible extensions
of it, but these are outside of the scope of the present
article.

3 Learning optimal policies

Since most convergence proofs for RL algorithms rely
on contraction arguments the generalization of results
like the convergence of such as the Adaptive Real-
Time Dynamic Programming [Barto et al., 1991], Q-
learning [Watkins, 1990], TD(A) [Sutton, 1988] are
easy to obtain for vector-valued MDPs provided that T
is a contraction8. Unfortunately, this will hold rarely.
Nevertheless a componentwise analysis, similar to the
one presented at the end of the previous section, will
in general yield the desired convergence result.

As a particular example consider the case of Q-
learning. Let Q* = Qv* be the optimal action-value
function. Q-learning solves the fixed point equation
Q* = QSQ; (SQ){X) = m.a.x.beA{x)Q{x,b), by re-
laxation and without ever estimating Q. In the case
of an MDP with the expected discounted total cost
Q-learning takes the form

Qt+i(xt,at) = (1 - at(xt,at))Qt(xt,at)+

ctt(xt,at){Rt{xt,at,xt+i) + 7 max Qt(xt+i,b)},
beA(xi)

with Qt+i(x,a) = Qt(x,a) for pairs (x,a) ^ (xt,at).
The relaxation factor (learning rate) 0 < at(xt, at) < 1
is gradually decreased towards zero so that the vari-
ance of the estimates are reduced and (probability one)
convergence can be achieved.

A raw generalization of Q-learning to vector-valued Q-
learning would replace the immediate-reward scalars
(Rt) in the above equation by immediate-reward vec-
tors and "max" by "m.a.x." (remember that m.a.x.
is the maximum element of A according to the cho-
sen ordering < of TZ - see Eq. (3) for the definition of
m.a.x.). For simplicity, consider a two-dimensional re-
turn space with the lexicographic ordering and a com-
ponentwise reinforcement propagation scenario when

8In fact, since the convergence of the vast majority
of RL algorithms follows from the general asynchronous
contraction-mapping theorem of [Littman and Szepesväri,
1996] (see also [Szepesväri and Littman, 1997]), it is suffi-
cient to reproduce the proof of that theorem. It turns out,
that the raw generalization of that proof will work without
any problems for contractions. However, this is out side of
the scope of this article.

the components are computed by some expected value
criteria. Proceeding componentwise, we see that the
update equation for the first component is left intact,
but the update of the second component becomes

Qt+\,2(xt,at) = (1 -at(xt,at)Qt,2(xt,at) + at(xt,at)

{Rta(xt,at,xt+i) + i max Qt,2{xt+i,b)},
&€.4i(Q, ,x,)

where Ai(Q,x) is defined by Eq. (6). Note that in the
example of Buridan's ass the first criterion is a trun-
cated evaluation criterion and thus must be treated
differently. Unfortunately, due to the lack of space
we cannot present the direct learning rules for this
criterion, but we note here that this rule can be ob-
tained almost entirely automatically if one tries to
estimate Z*(x,a) = YlyP(x->a>y)Qi(x'a) instead of
Q\ [Szepesväri and Littman, 1997]. Note that know-
ing Z* alone is insufficient to recover Q*. Therefore ei-
ther one estimates R(x, a) and then computes Q\ (x, a)
or, one may estimate Q* in a second update rule us-
ing the estimates of Z* directly, without ever estimat-
ing R(x,a). This latter rule will work only if R(x,a)
is deterministic. The convergence of these algorithms
follows by the standard proofs completed with a com-
ponentwise analysis.

The analogue of Q-learning for MDPs with the max-
imin criterion, proposed by Heger [Heger, 1994, 1996],
is the Q-hat algorithm given by

Qt+i(xt,at) = mm{Qt(xt,at),Rt(xt,at,xt+\) +

7maxQt(xt+i,b)}.
b£A

This algorithm will converge to the optimal Q-function
if Qo > Q* (the initial estimate is optimistic). The raw
generalization replaces "min" and "max" by "m.i.n."
and "m.a.x.", respectively. Unfortunately, this gener-
alization may fail to converge to Q* since the conver-
gence of Q-hat exploits Qt > Q" {t > 0) and this may
become invalid in this case.9 In order to surmount this
problem one has to update the second and larger index
components by some means other than Q-hat learning.

It is natural then to consider adaptive real-time dy-
namic programming algorithms. For maximin prob-

9This can be shown in the following way: Con-
sider again 11 = R2 with the lexicographic ordering.
Then Qt+\,2{xt,at) = mm{Qt,2{xt,a.i),Rt,i{xt,at,Xt+i) +
7max6e.41 QtAxt+\,b)}, where Ai = Ai(Qt,xt). Notice
that Q(+i,2(x,a) < Qt,2(x,a) for all (x,a) € U so if once
Q(,2(x,a) < Q'2(x,a) then Qt,2(x,a) cannot converge to
Q'2{x,a). Here, A\(Qt,xt) may be quite different from
Ai(Q',xt) which means that Q(+i,2(x(,a() may become
smaller than Q"(xt,at) even if Qt,2 = Qi, depending only
on the values of Qt.i-

Multi-criteria Reinforcement Learning 203

lems this algorithm builds an estimate of the transition
sets T(x,a) = {y € X \p(x,a,y) > 0} using

Tt+i{xt,at) =Tt(xt,at)U{xt+1}

and another estimate of the rewards R(x,a,y) by
Rt+i(xt,at,%t+i) = Rt, where xt,at are the state and
action at time t, and where Rt € R2 is the immediate
reward vector at time t. The value function estimate
vt(x) e R2 is updated by the equation

vt+i (xt) = m.a.x. m.i.n. (Rt (xt ,at,y) + ivt (y)).
a y£Tt+1(xt,at)

Since there is no "optimistic initialization" condition
here, one may show (using a componentwise analy-
sis) that this algorithm converges to optimality if some
other conditions ensuring "sufficient exploration" hold.
Further discussions related to action-selection strate-
gies ensuring "sufficient exploration" in minimax prob-
lems can be found in [Gabor et al., 1998].

4 Computer simulations

The purpose of the computer simulations was twofold:
to demonstrate that the theory works in practice, and
to provide some hints on the rate of convergence of dif-
ferent algorithms. The ARTDP algorithm were tried
out for tic-tac-toe with lexicographic ordering. The
first criterion prescribed the desire to win (or make
a draw) and the second to finish the game as soon
as possible.10 The action selection procedure was the
greedy policy in all of the cases, i.e., Qt(x,a(t)) =
m.a.x. Qt(x, a) for each t. Several opponents were tried
whose stategy was a mixture of the optimal minimax
policy (computed by a — ^-pruning with ties broken
randomly) and a totally randomized one. The de-
gree of randomness was set to 0, 0.25, 0.5, 0.75 and
1, so that the first opponent, corresponding to ran-
domness 0, is the optimal one, while the last one is
the totally randomized one. For comparison both the
multi-criteria and single criterion ARDTP algorithms
were tried (called MC-ARTDP and ARTDP, respec-
tively.) The learner started the game in each trial.
The percent of wins and draws, and the number of
steps in the cases of won or drew games are shown in

0 0.25 0.5 0.75 1

ARTDP Win or draw 0.73 0.74 0.74 0.76 0.74

Steps 3.55 4.2 4.18 4.18 4.19

MC-

ARTDP

Win or draw 0.85 1 0.96 1 1

Steps 3.59 3.28 3.29 3.28 3.28

10The first component of the reinforcement-vector was
+1 if the learner won, 0 if the game was a draw and —1 if
he lost the game. The second component was unity in each
step. We used the well known minimax representation of
alternating games [see e.g. Littman and Szepesvari, 1996].
Note that hy a simple change to the lexicographic ordering
one may consider another criterion when the learner mini-
mizes the number of steps only when starting from winning
states, otherwise trying to mark time.

Table 1: Results of exhaustive testing. Percents of
optimal moves learnt, and average number of steps to
the end of the game for cases when the learner won
are shown for both learners learning with ARTDP and
MC-ARTDP. In the first raw the degree of randomness
of the opponents are shown: a randomness of 0 means
an optimal opponent, while a randomness of 1 means a
perfectly random opponent. The results suggest that
since the learners do not explore, a complete optimal
policy cannot be learned against the perfect opponent
(just part of the game-tree is explored). The number of
steps until the end of the game are consistently smaller
for MC-ARTDP than that of for ARTDP. Also MC-
ARTDP can win a larger percent of games.

Table l.The percents are computed by employing an
exhaustive search, i.e., the percent of those leaves in
the full reachable game-tree when our learner did not
lose the game was measured. As expected, the num-
ber if steps until the end of game is lower on average
for the MC-ARTDP algorithm than that of for the
ARTDP algorithm. Note that this comparision is not
entirely satisfactory since this number is computed just
for a part of the games and this obviously distorts the
results. The effect of this can be observed in the statis-
tics of the games played against the perfect opponent:
apparently here MC-ARTDP needed more steps than
ARTDP, but since MC-ARTDP won a larger percent
of games this increase can be accounted for the games
that MC-ARTDP won (or drew) and ARTDP lost. In-
triguingly, the results also show that MC-ARTDP per-
forms better than ARTDP in all of the cases, i.e., it
could explore a larger part of the game-tree. We con-
jectured that the reason for this is that MC-ARTDP
uses more information than ARTDP. In particular,
since the second components of its evaluation function
are initialized to zero, initially unexplored actions will
look more favourable than explored ones, meaning that
dependence on the second component will facilitate ex-
ploration. To confirm the conjecture we ran another
set of experiments using the ARTDP algorithm and
when actions were chosen based on one of the following
two well-known exploration stategies: the Boltzmann-
exploration and the e-greedy strategy with decaying

204 Gabor, Kaimär, and Szepesväri

MC-ARTDP_075

ARTDP.075

MC.ARTDP_0.25

ARTDP_025

5 10 IS 20
Games played (in thousands)

ARTDP_0.75

MC-ARTDP_075

MC-ARTDP_025

5 10 15 20
Games played (in thousands)

Figure 1: Results of learning with the one-criterion
and multi-criteria ARTDP algorithms against oppo-
nents of different strengths. MC-ARTDP-0.25 and
MC-ARTDP-0.75 label the curves of MC-ARTDP for
an opponent with randomness 0.25 and 0.75 , respec-
tively.

exploration.11 In this case ARTDP yielded compara-
ble results to that of MC-ARTDP, thus confirming the
hypothesis.12

Exploration has a price, though. The more ex-
ploratory actions the player tries the larger is the num-
ber of games lost during the learning trials. In order to
get a more complete picture about the performances
of the two algorithms we have measured on-line (or
during-learning) performance. Results are shown in
Figures 1. The upper subfigure shows the percent of
plays won or drew. The larger the convergence speed
to 1 is, the smaller is the cost of exploration. The lower
subfigure depicts the number of steps until the end of
the game, for the games when our learner actually won.
Both figures show results for the opponents with ran-
domness 0.25 and 0.75 (results for the other cases can

11 The e-greedy exploration stategy chooses the best-
looking (greedy) action with probability 1 — e and chooses
an action uniformly randomly from the rest with probabil-
ity e [Thrun, 1992].

12In theory, as time goes to infinity both algorithms will
converge to optimality. So the worse than optimal results
should not be considered as cases when the algorithms got
stuck in "local minima".

be roughly obtained by intra- and extrapolations and
are not shown). Note that both the ARTDP and MC-
ARTDP learn faster against weaker opponents which
could be accounted for the small average depth of vis-
ited game tree when playing against a weak opponent.
Note that the learner trained against a weak oppo-
nent will probably fail to win over a strong one, and
the reverse may hold, too: in order to learn the op-
timal minimax strategy the opponents should not be
restricted 13. Also, in the case of both opponents MC-
ARTDP learns slightly slower (in the short-term) but
results in a better policy in the medium-term. More
experiments are needed to analyze these findings.

5 Conclusions

We have considered multi-criteria decision problems
in the framework of abstract dynamic programming.
The reinforcements were assumed to be vector-valued
and were compared by a total ordering defined over an
appropriate vector space. A result, showing the exis-
tence of optimal policies was derived and it was shown
that it applies to lexicographic ordering when the rein-
forcement propagation works "componentwise". Next,
reinforcement learning algorithms were derived for this
case and we have argued that their convergence can be
proven by componentwise analysis. Experimental re-
sults were presented to illustrate the behavior of the
algorithms. In the future we plan to extend the re-
sults and run other simulations to reinforce the utility
of multi-criteria learning.

Acknowledgements

This work was partially done while Cs.Sz. was with the
Research Group of Artificial Intelligence. This work
was partially supported by OTKA Grant No. F20132
and the Hungarian Ministry of Education Grant No.
FKFP 1354/1997.

Appendix

Here we prove Theorem 2.1, the text of which is not
repeated here because of lack of space. Firstly, we

13Since the opponents are randomized (except the op-
timal opponent) the algorithms will eventually converge
to optimality. However, the convergence rate will still de-
pend on the degree of randomness of the opponent. The
convergence rate will depend on how fast can the part of
the game-tree which is accessible for an optimal player be
fully explored. For opponents with higher randomness deep
parts can hardly be accessed, for opponents with small ran-
domness parts that follow an initial sub-optimal choice will
be hard to explore.

Multi-criteria Reinforcement Learning 205

shall prove that v+, the unique fixed point of T, ma-
jorizes the optimal value function, v*. Fix an arbi-
trary policy ■K and observe that Tvn > T^v^. Since
Tnvn = Vn, also Tvv > vn. From this, and because
of the monotonicity of T (which holds because A is
finite), we obtain T2vv > Tvn > v„. Iterating this
indefinitely, we get that Tn+V > Ty* > ... > vv

holds for all n G N. Thus, Tnvv is monoton increasing
and thus (by the countable transitivity assumption)
linin-xx, Tnvv > vn. Now, since limn-^ooT™^ = v+,
so v+ > vn. Since n was arbitrary, it follows that
v+ > v* by the definition of the s.u.p. operator.
Now, let 7T be a policy which is myopic w.r.t. v+:
Twv+ = Tv+. Since Tv+ = v+, so Tnv

+ = v+ . Now,
since v„ is the unique fixed point of Tn (Tn is a con-
traction since Q is a contraction), we get that v+ = vn.
This shows that v+ = v* and that TT is optimal. In or-
der to prove the third part consider a pair of policies
(n, 7r') s.t. Tniv„ > vn. By the first train of thoughts,
we get that T£,vn > vv is a monotone increasing se-
quence, so that iv = limn-KjoT",^ > v„ holds, too,
thus finishing the proof.

References
E. Altman and A. Schwartz. Adaptive control of con-

strained Markov chains: Criteria and policies. Annals
of Operations Research, 28:101-134, 1991.

M. Asada, E. Uchibe, S. Noda, S. Tawaratsumida, and
K. Hosoda. Coordination of multiple behaviors acquired
by a vision-based reinforcement learning. In Proc. of
IEEE/RSJ Int. Conf. on Intelligent Robot and Sytems,
volume 2, pages 917-924, 1994.

A.G. Barto, S.J. Bradtke, and S.P. Singh. Real-time learn-
ing and control using asynchronous dynamic program-
ming. Technical report 91-57, Computer Science De-
partment, University of Massachusetts, 1991.

D. P. Bertsekas. Monotone mappings with application in
dynamic programming. SIAM J. Control and Optimiza-
tion, 15(3):438-464, 1977.

T.A. Brown and R.E. Strauch. Dynamic programming on
multiplicative lattices. J. Math. Anal, and App., 12:364-
370, 1965.

E.V. Denardo. Contraction mappings in the theory un-
derlying dynamic programming. SIAM Rev., 9:165-177,
1967.

E.A. Feinberg. Controlled Markov decision process with
arbitrary numerical criteria. Theory of Probability and
Applications, 27:486-503, 1982.

E.A. Feinberg and A. Schwartz. Markov decision models
with weighted discounted rewards. Mathematics of Op-
erations Research, 19:152-168, 1994.

E.A. Feinberg and A. Schwartz. Constrained Markov de-
cision models with weighted discounted rewards. Math-
ematics of Operations Research, 20(2):302-320, 1995.

E.B. Frid. On optimal strategies in control problems with
constraints. Theory of Probability and Applications, 17:
188-192, 1972.

Z. Gabor, Zs. Kalmar, and Cs. Szepesvari. Multi-criteria
reinforcement learning. Technical report 98-115, Re-
search Group on Artificial Intelligence, JATE-MTA,
1998.

M. Heger. Consideration of risk in reinforcement learning.
Revised submission to the 11th International Machine
Learning Conference ML-94, 1994.

M. Heger. The loss from imperfect value functions in
expectation-based and minimax-based tasks. Machine
Learning, 22:197-225, 1996.

M.I. Henig. Vector-valued dynamic programming. SIAM
J. Control and Optimization, 21(3):490-499, 1983.

D. Heyman and M. Sobel. Stochastic Models in Operations
Research: Stochastic Optimization, volume 2. McGraw-
Hill, New York, 1984.

M.L. Littman and Cs. Szepesvari. A Generalized Rein-
forcement Learning Model: Convergence and applica-
tions. In Int. Conf. on Machine Learning, pages 310-
318, 1996.

L.G. Mitten. Composition principles for synthesis of op-
timum multi-stage processes. Operations Research, 12:
610-619, 1964.

S.M. Ross. Applied Probability Models with Optimization
Applications. Holden Day, San Francisco, California,
1970.

S. Singh and D. Cohn. How to dynamically merge Markov
decision processes. In Advances in Neural Informa-
tion Processing Systems 11, Cambridge, MA, 1997. MIT
Press, in press.

M.J. Sobel. Ordinal dynamic programming. Management
Science, 21:967-975, 1975.

R.S. Sutton. Learning to predict by the method of temporal
differences. Machine Learning, 3(l):9-44, 1988.

Cs. Szepesvari. Non-markovian policies in sequential deci-
sion problems. Ada Gybernetica, 1998. (accepted).

Cs. Szepesvari and M.L. Littman. A unified analysis of
value-function-based reinforcement-learning algorithms.
1997. (submitted).

S.B. Thrun. The role of exploration in learning control.
Van Nostrand Rheinhold, Florence KY, 1992.

C.J.C.H. Watkins. Learning from Delayed Rewards. PhD
thesis, King's College, Cambridge, 1990.

206

Local Cascade Generalization

Joäo Gama
LIACC, FEP - University of Porto

Rua Campo Alegre, 823
4150 Porto, Portugal

Phone: (+351) 2 6078830 Fax: (+351) 2 6003654
Email: jgama@ncc.up.pt

http://www.up.pt/liacc/ML

Abstract 1 Introduction

In a previous work we have presented Cas-
cade Generalization, a new general method
for merging classifiers. The basic idea of Cas-
cade Generalization is to sequentially run the
set of classifiers, at each step performing an
extension of the original data by the inser-
tion of new attributes. The new attributes
are derived from the probability class distri-
bution given by a base classifier. This con-
structive step extends the representational
language for the high level classifiers, relax-
ing their bias. In this paper we extend this
work by applying Cascade locally. At each
iteration of a divide and conquer algorithm,
a reconstruction of the instance space occurs
by the addition of new attributes. Each new
attribute represents the probability that an
example belongs to a class given by a base
classifier. We have implemented three Local
Generalization Algorithms. The first merges
a linear discriminant with a decision tree, the
second merges a naive Bayes with a deci-
sion tree, and the third merges a linear dis-
criminant and a naive Bayes with a decision
tree. All the algorithms show an increase of
performance, when compared with the cor-
responding single models. Cascade also out-
performs other methods for combining clas-
sifiers, like Stacked Generalization and com-
petes well against Boosting, with statistically
significant confidence levels.

Keywords: Multiple Models, Constructive Induc-
tion, Merging Classifiers.

The ability of a chosen algorithm to induce a good
generalization depends on how appropriate the class
model underlying the algorithm is for the given task.
An algorithm class model is the representation lan-
guage it uses to express a generalization of the ex-
amples. The representation language for a standard
decision tree is the DNF formalism that splits the in-
stance space by axis-parallel hyper-planes, while the
representation language for a linear discriminant func-
tion is a set of linear functions that split the instance
space by oblique hyper-planes. Since different learn-
ing algorithms employ different knowledge representa-
tions and search heuristics, different search spaces are
explored and diverse results are obtained. The prob-
lem of finding the appropriate bias for a given task
is an active research area. We can consider two main
lines: on one hand methods that try to select the most
appropriate algorithm for the given task, for instance
Schaffer's selection by Cross-Validation, and on the
other hand, methods that combine predictions of dif-
ferent algorithms, for instance Stacked Generalization
[25]. This work follows the second research line. In-
stead of looking for methods that fit the data using a
single representation language, we present a family of
algorithms, under the generic name of Cascade Gen-
eralization, whose search space contains models that
use different representation languages. Cascade gen-
eralization was first presented in [14]. It performs an
iterative composition of classifiers. At each iteration
a classifier is generated. The input space is extended
by the addition of new attributes. These are in the
form of a probability class distribution which are ob-
tained, for each example, by the generated base classi-
fier. The language of the final classifier is the language
used by the high level generalizer. This language uses
terms that are expressions from the language of low

Local Cascade Generalization 207

level classifiers. In this sense, Cascade Generalization
generates a unified theory from the base theories.

Here we extend the work presented in [14], by applying
Cascade locally. In our implementation, Local Cascade
Generalization generates a decision tree. The experi-
mental study shows that this methodology usually im-
proves both accuracy and theory size with statistical
significance levels.

The next section presents the framework of Cascade
Generalization. In section 3 we define a new family of
algorithms that apply Cascade Generalization locally.
In section 4 we review previous work in the area of
multiple models. In section 5, we perform an empirical
study using UCI data sets. The last section presents
an analysis of the results and concludes the paper.

2 Cascade Generalization

Consider a learning set D = {x"n,yn) n = 1,..., N,
where x"n = [xi,...,xm] is a multidimensional input
vector, and yn is the output variable. Since the fo-
cus of this paper is on classification problems, yn

takes values from a set of predefined values, that is
yn £ {Cli,...,Clc}, where c is the number of classes.
A classifier ö is a function that is applied to the train-
ing set D in order to construct a model $>(D). The
generated model is a mapping from the input space
X to the discrete output variable Y. When used as a
predictor, represented by Ö(x, D), it assigns a y value
to the example x. This is the traditional framework
for classification tasks. Our framework requires that
the predictor 9(x, D) outputs a vector representing
conditional probability distribution \pl,...,pc], where
Pi represents the probability that the example x be-
longs to class i, i.e. P(y = CU\x). The class that is
assigned to the example x, is the one that maximizes
this last expression. Most of the commonly used clas-
sifiers, such as naive Bayes and Discriminant, classify
each example in this way. Other classifiers, for ex-
ample C4-5, have a different strategy for classifying
an example, but it requires small changes to obtain a
probability class distribution.

We define a constructive operator $(D',$s(x,D)).
This operator has two input parameters: a data set
D' and a predictor $s(x, D). The classifier 9 generates
a theory from the training data D. For each exam-
ple x £ D', the generated theory outputs a probabil-
ity class distribution. For all the examples in D' the
operator $ concatenates the input vector x with the
output probability class distribution. The output of
$(£>', 5s(x,D)) is a new data set D". The cardinal-

ity of D" is equal to the cardinality of D' (i.e. they
have the same number of examples). Each example
in x e D" has an equivalent example in £>', but aug-
mented with c new attributes. The new attributes are
the elements of the vector of class probability distri-
bution obtained when applying classifier 9(x, D) to
the example x. Cascade generalization is a sequential
composition of classifiers, that at each generalization
level applies the $ operator. Given a training set L,
a test set T, and two classifiers 9i, and Ö2, Cascade
generalization proceeds as follows:
Using classifier $i, generates the Leveh data:

Levehtrain = $(L, öi(x, L))
Levehtest = $(T, öx (x, L))

Classifier 3*2 learns on Leveh training data and clas-
sifies the Leveh test data:

%2(x, Levehtrain) for each x G Levehtest

Those steps perform the basic sequence of a cascade
generalization of classifier 92 after classifier 3v. We
represent the basic sequence by the symbol V.

The previous composition could be shortly represented
by:

SfeVQi = ^2(^5 Levehtrain) for each x £ Levehtest

which is equivalent to:

$2V9i = %(x, $(L, 3i(a?, L))) for each
fe*(T,9i(a;7',L))

This is the simplest formulation of Cascade General-
ization. Some possible extensions include the compo-
sition of n classifiers, and the parallel composition of
classifiers.

A composition of n classifiers is represented by:

9nV3n_iV9n_2...V91

In this case, Cascade Generalization generates n-1 lev-
els of data. The high level theory, is that one given by
the Ö„ classifier.

A variant of cascade generalization, which includes
several algorithms in parallel, could be represented in
this formalism by:

9n+1V[3i,...,5„] =
Zn+1(xML,l%i(x',L),-^n(x',L)}))

for each x G $(T, [3i(s?',L),.... S„(a;7', L)])

208 Gama

The algorithms Si, ..., S„ run in parallel. The oper-
ator $(L, [Si(aT',L),...,S„(x',.L)]) returns a new data
set L' which contains the same number of examples as
L. Each example in L' contains n * c new attributes,
where c is the number of classes. Each algorithm in
the set Si, ...,Sn contributes with c new attributes.

3 Local Cascade Generalization

Most of Machine Learning algorithms for supervised
learning use a divide and conquer strategy that at-
tacks a complex problem by dividing it into simpler
problems and recursively applies the same strategy
to the subproblems. Solutions of sub-problems can
be combined to yield a solution of the complex prob-
lem. This is the basic idea behind well known decision
tree based algorithms: ID3 (Quinlan, 1984), ASSIS-
TANT (Kononenko et all, 1987), CART (Breiman et
all, 1984), C4.5 (Quinlan, 1993), etc. The power of
this approach comes from the ability to split the hyper-
space into subspaces and fit each subspace with differ-
ent functions. In our previous work [14] we have shown
that Cascade significantly improves the performance
of this type of learning algorithms. In this paper we
explore the applicability of Cascade on the problems
and subproblems that a divide and conquer algorithm
must solve. The intuition behind this hypothesis is the
same as behind any divide and conquer strategy. The
relations that can not be captured at global level can
be discovered on the simpler subproblems.

Local cascade generalization, is a composition of al-
gorithms that is performed for each task when build-
ing the classifier. At each iteration of a divide and
conquer algorithm, local cascade generalization will be
performed by applying the $ operator. The effect is
that the input space is reconstructed by the insertion
of the new attributes. These new attributes are prop-
agated down to the subtasks that the algorithm might
consider. In this paper we restrict the use of local Cas-
cade Generalization to decision tree based algorithms.
However, it would be possible to use it with any divide
and conquer algorithm. Figure 1 presents the general
algorithm of local Cascade Generalization, applied to
a decision tree.

When growing the tree, at each decision node new
attributes are computed by applying the $ operator.
The new attributes that are created there are propa-
gated down the tree. The number of new attributes is
equal to the number of classes of the examples that fall
at this node. At different levels, the algorithm consid-
ers data sets with different number of attributes and

Input: A data set D, a base classifier S
Output: A decision Tree
Function CGtree(D, S)

IF stop criteria(D) = TRUE
return a Leaf with class probability distribution

D' = 9(D,Q(S,D))
Choose the attribute that maximizes

splitting criterion on D'
For each partition of examples based on

chosen attribute values
Treet = CGtree(D{, S)

return Tree as a decision node based on
chosen attribute, storing S(L>)
and descendants Treei

End

Figure 1: Local Cascade Algorithm based on a Deci-
sion Tree

classes. Deeper nodes contain an increasing number
of attributes. This could be a disadvantage of the sys-
tem, but the number of new attributes is not constant.
As the tree grows and the classes are discriminated,
deeper nodes also contain examples from a decreasing
number of classes. This means that as the tree grows
the number of new attributes decreases.

In order to be applied as a predictor, any CGTree
must store, at each node, the model generated by the
base classifier using the examples that fall at this node.
When classifying a new example, the example tra-
verses the tree in the usual way, but at each decision
node it is extended by the insertion of the probability
class distribution provided the base classifier predictor
at this node.

In the framework of local cascade generalization,
we have developed a CGLtree, that uses the
$(D,Discrim(x,D)) operator in the constructive
step. Each internal node of a CGLtree contains a dis-
criminant function. This discriminant function is used
to build new attributes. For each example x, the value
of a new attribute Ai is computed using the probabil-
ity p(Ci\x) which is given by the linear discriminant
function. At each decision node, the number of new
attributes built by CGLtree is always equal to the
number of classes taken from the examples that fall
at this node. We use the following heuristic: we only
consider a classi if the number of examples, at this
node, belonging to classi is greater than N times the
number of attributes1. By default N is 3. This implies

'This heuristic was suggested by Breiman et al.[3]

Local Cascade Generalization 209

that at different nodes, different number of classes will
be considered and a different number of new attributes
is added.

In our empirical study we have used two other
algorithms that locally apply Cascade Generaliza-
tion. CGBtree that uses as constructive operator
$(D,naiveBayes(x,D)), and CGBLtree that uses as
constructive operator:
$(£>, [naiveBayes(x, D),Discrim(x, D)]). In all
other aspects these algorithms are similar to CGLtree.

There is one restriction to the application of the
#(£>', 9(x,Z))) operator: the Ö classifier must return
a probability class distribution for each x € D'. Any
classifier that satisfies these requisites could be ap-
plied. It is possible to imagine a CGTree, whose in-
ternal nodes are trees themselves. For example, small
modifications to C4.52, will allow the construction of a
CGTree whose internal nodes are trees generated by
C4.5.

of each hypothesis should be weighted by the poste-
rior probability of that hypothesis given the training
data. Several variants of the voting method can be
found in the machine learning literature. From uni-
form voting where the opinion of all base classifiers
contributes to the final classification with the same
strength, to weighted voting, where each base classi-
fier has a weight associated, that could change over
the time, and strengthens the classification given by
the classifier.

Ortega [20] presents the "Model Applicability Induc-
tion" approach for combining predictions from mul-
tiple models. The approach consists of learning for
each available model a referee that characterize situ-
ations in which each of the models is able to make
correct predictions. In future instances these referees
are first consulted to select the most appropriate pre-
diction model and the prediction of the selected model
is then returned.

4 Related Work

With respect to the final model, there are clear similar-
ities between CGLtree and Multivariate trees [5, 15].
Any multivariate tree is topologically equivalent to a
three-layer inference network [18]. The constructive
ability of our system is similar to the Cascade Corre-
lation Learning architecture [11]. Also the final model
of CGBtree is related with the recursive naive Bayes
presented in [17]. In a previous work [13], we have
compared system Ltree, similar to CGLtree, with Ocl
[19] and LMDT [5]. The focus of this paper is on
methodologies for combining classifiers. As such, we
review other methods that generate and combine mul-
tiple models.

4.1 Combining Classifications

We can consider two main lines of research. One group
includes methods where all base classifiers are con-
sulted in order to classify a query example. The other
includes methods that characterize the area of exper-
tise of the base classifiers and for a query point only
ask the opinion of the experts. Voting is the most com-
mon method used to combine classifiers. As pointed
out by Ali and Pazzani [1], this strategy is motivated
by the Bayesian learning theory which stipulates that
in order to maximize the predictive accuracy, instead
of using just a single learning model, one should ide-
ally use all models in the hypothesis space. The vote

Two different methods are presented in [14, 23].

4.2 Generating different models

Several methods for generating multiple models ap-
pear in the literature. Breiman [3] proposes bagging,
that produces replications of the training set by sam-
pling with replacement. Each replication of the train-
ing set has the same size as the original data, but some
examples do not appear in it, while others may appear
more than once. From each replication of the training
set a classifier is generated. All classifiers are used to
classify each example in the test set, usually using a
uniform vote scheme.

The boosting algorithm of Freund and Schapire [12]
maintains a weight for each example in the training
set that reflects its importance. Adjusting the weights
causes the learner to focus on different examples lead-
ing to different classifiers. Boosting is an iterative al-
gorithm. At each iteration the weights are adjusted in
order to reflect the performance of the corresponding
classifier. The weight of the misclassified examples is
increased. The final classifier aggregates the learned
classifiers at each iteration by weighted voting. The
weight of each classifier is a function of its accuracy.

Wolpert [25] proposed Stacked Generalization, a tech-
nique that uses learning in two levels. A learning algo-
rithm is used to determine how the outputs of the base
classifiers should be combined. The original data set
constitutes the level zero data. All the base classifiers
run at this level. The level one data are the outputs of
the base classifiers. Another learning process occurs
using as input the level one data and as output the

210 Gama

final classification. This is a more sophisticated tech-
nique of cross validation that could reduce the error
due to the bias.

Brodley [4] presents MCS, a hybrid algorithm that
combines, in a single tree, nodes that are univariate
tests, multivariate tests generated by linear machines
and instance based learners. At each node MCS uses
a set of //- Then rules to perform a hill-climbing search
for the best hypothesis space and search bias for the
given partition of the dataset. The set of rules incor-
porates knowledge of experts. MCS uses a dynamic
search control strategy to perform an automatic model
selection. MCS builds trees, which could apply a dif-
ferent model in different regions of the instance space.

Chan and Stolfo [7] presents two schemes for classi-
fier combination: arbiter and combiner. Both schemes
are based on meta learning, where a meta-classifier is
generated from a meta data, built based on the pre-
dictions of the base classifiers. An arbiter is also a
classifier and is used to arbitrate among predictions
generated by different base classifiers. The training
set for the arbiter is selected from all the available
data, using a selection rule. An example of a selec-
tion rule is "Select the examples whose classification
the base classifiers cannot predict consistently". This
arbiter, together with an arbitration rule, decides a
final classification based on the base predictions. An
example of an arbitration rule is "Use the prediction
of the arbiter when the base classifiers cannot obtain
a majority". Later [8], they have extended this frame-
work using arbiters/combiners in an hierarchical fash-
ion generating arbiter /combiner binary trees.

4.3 Discussion

Earlier results of boosting or bagging are quite impres-
sive. Using 10 iterations (i.e. generating 10 classifiers)
Quinlan [22] reports reductions of the error rate be-
tween 10% and 19%. Quinlan argues that these tech-
niques are mainly applicable for unstable classifiers.
Both techniques require that the learning system is
not stable, to obtain different classifiers when there
are small changes in the training set. Under an anal-
ysis of bias-variance decomposition of the error [16],
the reduction of the error observed with boosting or
bagging is mainly due to the reduction in the variance.
As mentioned in Ali et al. [1] "the number of training
examples needed by Boosting increases as a function of
the accuracy of the learned model. Boosting could not
be used to learn many models on the modest training
set sizes used in this paper.".

Wolpert [25] says that successful implementations of
Stacked Generalization is a "black art", for classifi-
cation tasks and the conditions under which stacking
works are still unknown. Recently, Ting and Witten
[23] have shown that successful stacked generalization
requires the use of output class distributions rather
than class predictions. In their experiments, only the
MLR. algorithm (a linear discriminant) was suitable for
level-1 generalizer. Cascade Generalization belongs to
the family of stacking algorithms. In the experiments
described in [14] we have used the Bias Variance anal-
ysis as a criterion to select algorithms. The experi-
ments suggest that at the top level an algorithm with
low bias, like a decision tree, should be used.

The main achievement of our proposed method is its
ability to merge different models. As such, we get a
single model whose components are terms of the base
model language. The bias restriction imposed by us-
ing single model is relaxed. Cascade gives a single and
structured model for the data, and this is a strong ad-
vantage over the methods that combine classifiers by
voting. Another advantage of Cascade Generalization
is related to the use of probability class distributions.
Usual learning algorithms produced by the Machine
Learning community use categories when classifying
examples. Combining classifiers by means of categor-
ical classes looses the strength of the classifier in its
prediction. The use of probability class distributions
allows us to explore that information.

5 Empirical Evaluation

5.1 The Algorithms

Ali and Pazzani [1] and Turner and Gosh [24] present
empirical and analytical results that show that "the
combined error rate depends on the error rate of in-
dividual classifiers and the correlation among them".
They suggest the use of "radically different types of
classifiers" to reduce the correlation errors. This was
our criterion when selecting the algorithms for the ex-
perimental work. We use three classifiers that have
different behaviors under a bias-variance analysis: a
naive Bayes, a Linear Discriminant, and a Decision
Tree.

5.1.1 Naive Bayes

Bayes theorem allows to optimally predict the class
of an unseen example, given a training set. The
chosen class is the one that maximizes: p(d\E) =
p(d)p(E\Ci)/p(E). If the attributes are indepen-

Local Cascade Generalization 211

dent, p(E\Ci) can be decomposed into the product
p(vi\Ci) * ... * p(vk\Ci). Domingos and Pazzani [9]
show that this procedure has a surprisingly good per-
formance in a wide variety of domains, including many
where there are clear dependencies between attributes.
In our reimplementation of this algorithm, the required
probabilities are estimated from the training set. In
the case of nominal attributes we use counts. Continu-
ous attributes were discretized. This has been found to
produce better results than assuming a Gaussian dis-
tribution [10, 9]. The number of bins used is a function
of the number of different values observed on the train-
ing set: k = max(l;2 * log(nr. different values)).
This heuristic was used in [10] and elsewhere with good
overall results. Missing values were treated as another
possible value for the attribute. In order to classify
a query point, a naive Bay es uses all of the available
attributes. Langley [17] refers that naive Bayes re-
lies on an important assumption that the variability
of the dataset can be summarized by a single prob-
abilistic description, and that these are sufficient to
distinguish between classes. Prom an analysis of Bias-
Variance, this implies that naive Bayes uses a reduced
set of models to fit to the data. The result is low vari-
ance, but if the data cannot be adequately represented
by the set of models, we obtain large bias.

5.1.2 Linear Discriminant

A linear discriminant function is a linear composition
of the attributes where the sum of squared differences
between class means is maximal relative to the internal
class variance. It is assumed that the attribute vectors
for the examples of class Cj are independent and follow
a certain probability distribution with probability den-
sity function /j. A new point with attribute vector x
is then assigned to that class for which the probability
density function fi(x) is maximal. This means that
the points for each class are distributed in a cluster
centered at /Xj. The boundary separating two classes
is a hyper-plane and it passes through the midpoint of
the two centers. If there are only two classes, a unique
hyper-plane is needed to separate the classes. In the
general case of q classes, q — 1 hyper-planes are needed
to separate them. By applying the linear discriminant
procedure described below, we get qnode — 1 hyper-
planes. The equation of each hyper-plane is given by:

Hi = cti + Y,j ßij * xj where

on = -\nj5_1/ij an<i ßi = S"~V»

We use a Singular Value Decomposition (SVD) to com-
pute 5_1. SVD is numerically stable and is a tool for

detecting sources of collinearity. This last aspect is
used as a method for reducing the features of each
linear combination. A linear discriminant uses all, or
almost all, of the available attributes when classifying
a query point. Breiman[2] refers that from an anal-
ysis of Bias-Variance, Linear Discriminant is a stable
classifier although it can fit a small number of models.
It achieves stability by having a limited set of models
to fit the data. The result is low variance, but if the
data cannot be adequately represented by the set of
models, then we obtain large bias.

5.1.3 Decision Tree

Dtree is our version of a decision tree. It uses the
standard algorithm to build a decision tree. The split-
ting criterion is the gain ratio. The stopping criterion
is similar to C4.5. The pruning mechanism is simi-
lar to the pessimistic error of C4.5. Dtree uses a kind
of smoothing process that usually improves the perfor-
mance of tree based classifiers. When classifying a new
example, the example traverses the tree from the root
to a leaf. In Dtree, the example is classified taking
into account not only the class distribution at the leaf,
but also all class distributions of the nodes in the path.
That is, all nodes in the path contribute to the final
classification. Instead of computing class distribution
for all paths in the tree at classification time, as it is
done, for instance, in Buntine [6], Dtree computes a
class distribution for all nodes when growing the tree.
This is done recursively, taking into account class dis-
tributions at the current node and at the predecessor
of the current node, using the formula:

P{d\en,e) = P{Ci\en)!^gA

where P(e|en) is the probability that one example that
falls at Noden goes to Noden+i, and P(e\en, d) is the
probability that one example from class C, goes from
Noden to Noden+i [21]. This recursive formulation,
allows Dtree to compute efficiently the required class
distributions on the fly. The smoothed class distribu-
tions have influence on the pruning mechanism and on
the treatment of missing values. It is the most relevant
difference from C4.5.

A decision tree uses a subset of the available attributes
to classify a query point. Kohavi and Wolpert [16],
Breiman [2, 3] among other researchers, note that de-
cision trees are unstable classifiers. Small variations
on the training set can cause large changes in the re-
sulting predictors. They have high variance but they
can fit any kind of data: the bias of a decision tree is
low.

212 Gama

5.1.4 Local Cascade Generalization
Algorithms

All the implemented Local Cascade Generalization al-
gorithms are based on Dtree. That is they use exactly
the same splitting criteria, stopping criteria, pruning
mechanism, etc. Moreover they share many minor
heuristics that individually are too small to mention,
but collectively can make difference.

At each decision node, CGLtree applies the Linear
discriminant describe above, while CGBtree applies
the naive Bayes algorithm. CGBLtree applies the
Linear discriminant to the ordered attributes and the
naive Bayes to the categorical attributes. In order to
prevent overfitting the construction of new attributes
is constrained to a depth of 5. In addition, the level of
pruning is greater than the level of pruning in Dtree.

5.2 The Datasets

We have chosen 17 data sets from the UCI repository.
All of them were previously used in other comparative
studies. Evaluation was done using a 10 fold stratified
Cross Validation (CV). Datasets were permuted once
before the CV procedure. All algorithms where used
with the default settings. At each iteration of CV,
all algorithms were trained on the same training par-
tition of the data. Classifiers were also evaluated on
the same test partition of the data. Comparisons be-
tween algorithms were performed using t-paired tests
with significance level set at 95%.

Table 1 presents the data sets characteristics, the er-
ror rate, and standard deviation of each base classifier.
Relative to each algorithm, a +(-) sign on the first
column means that the error rate of this algorithm, is
significantly better (worse) than Dtree. The error rate
of C5.0 is presented for reference. These results pro-
vide an evidence, once more, that no single algorithm
is better overall.

5.3 Local Cascade Generalization

Table 2a presents the results of local Cascade Gen-
eralization. Each column corresponds to a Cascade
Generalization algorithm. Each algorithm is com-
pared against its components using t-paired tests. For
example, CGLtree is compared against Dtree and
Discrim. A +(-) sign means that the error rate of
the composite model is, with statistical significance,
higher (lower) than the respective component model.
The trend on these results shows a clear improvement
over the base classifiers. We never observe degradation

on the error rate of a composite model in relation to
all the components. In same cases there is a significant
increase of performance comparing to all the compo-
nents. For example CGBLtree improves in 2 datasets
over the 3 components, and in 5 datasets over 2 com-
ponents.

Table 2b presents the results of C5.0 boosting with
the default parameter of 10, that is aggregating over
10 trees, and Stacked Generalization as it is defined
in [23]. That is, the levels classifiers are C4.5 and
Bayes, and the leveh classifier is Discrim. The at-
tributes for the leveh data are the probability class
distributions, obtained from the levelo classifiers us-
ing a 5 stratified cross validation. Both Boosting
and Stacked are compared against CGBLtree, us-
ing t-paired tests with the significance level set to
95%. A +(-) sign means that Boosting or Stacked
performs significantly better (worst) than CGBLtree.
In this study, CGBLtree performs significantly bet-
ter than Stacked, in 5 datasets and never performs
worse. Comparing with CS.OBoosting, CGBLtree
significantly improves in 4 datasets and loses in 3
datasets. The improvement observed with Boosting
is mainly due to the reduction of the variance com-
ponent of the error rate while, in Cascade algorithms,
the improvement is mainly due to the reduction on the
bias. We intend, in a near future, to boost CGBLtree.

Another dimension for comparisons involves measur-
ing the number of leaves. This corresponds to the
number of different regions into which the instance
space is partitioned by the algorithm. In almost all
datasets3, any Cascade tree splits the instance space
into half of the regions needed by Dtree or C5.0. This
is a clear indication that Cascade models capture bet-
ter the underlying structure of the data.

6 Conclusions

This paper presents a new methodology for classifier
combination. The basic idea of Cascade Generaliza-
tion consists of a reformulation of the input space by
means of insertion of new attributes. A base classi-
fier computes the new attributes. Each new attribute
is the instantiation of P(d\x) given by the predictor
function generated by the base classifier on this ex-
ample. In this sense, the new attributes are terms,
or functions, in the representational language of the
base classifier. This constructive step acts as a way
of extending the description language of the high level

3Except on Monks-2 dataset, where both Dtree and
C5.0 produce a tree with only one leaf.

Local Cascade Generalization 213

Dataset Class Nr.Ex. Types Dtree C5.0 Bayes Discrim
Australian 2 690 8 Ord,6 Cont 14.37 ±6.18 13.63 ±4.36 15.07 ±3.76 14.05 ±5.23
Balance 3 625 4 Cont 21.91 ±4.63 21.92 ±4.93 - 30.08 ±7.01 + 13.14 ±2.46
Breast (W) 2 699 9 Ord 5.84 ±4.64 5.42 ±4.08 + 2.43 ±2.52 + 4.27 ±4.58
Diabetes 2 768 8 Cont 25.14 ±5.78 23.69 ±6.48 24.62 ±4.58 22.92 ±4.97
German 2 1000 17 Ord,7 Cont 28.70 ±4.30 29.10 ±2.81 27.60 ±5.15 + 23.50 ±5.54
Glass 6 213 9 Cont 31.85 ±7.61 32.30 ±10.19 - 46.35 ±10.93 - 36.78 ±8.07
Heart 2 270 6 Ord,7 Cont 25.16 ±9.84 22.96 ±8.69 + 15.93 ±8.56 + 15.93 ±4.29
Ionosphere 2 351 33 Cont 8.54 ±5.80 9.66 ±3.47 11.07 ±7.76 - 14.26 ±4.68
Iris 3 150 4 Cont 4.67 ±5.48 4.67 ±4.50 4.00 ±4.66 2.00 ±3.22
Monks-1 2 432 6 Ord 6.33 ±7.45 + 0.00 ±0.00 - 25.07 ±5.96 - 33.39 ±10.06
Monks-2 2 432 6 Ord 32.90 ±0.63 32.86 ±0.65 - 49.32 ±8.50 33.32 ±1.60
Monks-3 2 432 6 Ord 0.00 ±0.00 0.00 ±0.00 - 2.79 ±2.42 - 22.89 ±8.96
Satimage 6 6435 36 Cont 13.35 ±1.51 13.53 ±1.57 - 19.55 ±1.48 - 15.91 ±1.49
Segment 7 2310 18 Cont 3.64 ±1.13 3.38 ±1.34 - 10.22 ±0.74 - 8.18 ±0.83
Vehicle 4 846 18 Cont 28.11 ±4.87 27.27 ±5.48 - 37.70 ±2.18 + 22.34 ±2.87
Waveform 3 2581 21 Cont 23.38 ±3.40 - 24.88 ±2.94 + 18.52 ±2.24 + 15.15 ±1.86
Wine 3 178 13 Cont 6.66 ±6.32 7.19 ±7.44 2.22 ±3.88 + 0.56 ±1.76
Mean of ei •ror rate 16.50 16.02 20.15 17.56
Mean nr. leaves 45.6 51.3

Table 1: Data Characteristics and Results of Base Classifiers

Dataset GGLtree CGBtree CGBLtree
Australian
Balance
Breast (W)
Diabetes
German
Glass
Heart
Ionosphere
Iris
Monks-1
Monks-2
Monks-3
Satimage
Segment
Vehicle
Waveform
Wine

14.354 ±4.77
+ + 7.016 ±2.68
+ 3.280 ±2.59

23.565 ±3.12
24.700 ±4.19
33.866 ±9.26

+ 17.037 ±5.58
11.363 ±4.32
2.667 ±3.44

+ 2.976 ±4.43
33.335 ±5.81

+ 0.698 ±1.12
+ 12.385 ±1.44
+ 3.853 ±1.22

+ 21.025 ±3.08
+ 16.351 ±1.68
+ 0.556 ±1.76

14.499 ±3.76
+ + 6.704 ±3.64
+ 2.712 ±2.27

26.693 ±5.87
27.100 ±5.48

+ 27.004 ±7.51
+ 16.667 ±6.11

9.369 ±5.12
4.000 ±4.66

- + 14.372 ±8.69
+ + 13.874 ±6.97

+ 0.465 ±0.47
+ + 11.673 ±1.25

+ 4.416 ±1.47
+ 28.844 ±3.88

+ 16.004 ±2.78
3.403 ±3.94

14.058 ±4.80
+ + + 7.016 ±2.68

3.280 ±2.68
23.565 ±3.12

- 25.300 ±5.25
+ 33.866 ±9.26

+ 17.037 ±5.58
11.363 ±4.32
2.667 ±3.44

+ + 2.565 ±3.77
+ + + 11.120 ±5.36

+ + 0.465 ±1.47
+ + 12.385 ±1.44
+ + 3.853 ±1.21

+ + 21.025 ±3.08
+ 16.351 ±1.68
+ 0.556 ±1.76

Mean error rate
Mean nr.leaves

13.47
23.9

13.40
23.7

12.15
22.9

C5Boost Stacked
13.337 ±3.33

- 20.184 ±4.17
3.135 ±3.20

24.728 ±5.46
23.200 ±2.35

25.020 ±10.09
19.630 ±9.25

+ 5.947 ±3.06
- 5.333 ±4.22

0.000 ±0.00
- 36.353 ±5.87

0.000 ±0.00
+ 9.062 ±1.07
+ 1.905 ±1.05
- 24.922 ±3.71

17.980 ±1.86
2.222 ±2.87

13.766 ±4.47
- 12.309 ±3.63

2.427 ±2.52
22.657 ±5.42
24.800 ±4.24
35.753 ±6.20
16.667 ±8.24
10.758 ±7.33
4.667 ±3.22
0.682 ±2.16

- 32.865 ±0.65
- 2.072 ±2.01
- 13.303 ±1.63

3.420 ±1.35
- 27.731 ±5.06

16.429 ±1.50
2.778 ±3.93

13.70 14.30

Table 2: Results of (a)Local Cascade Generalization (b)Boosting and Stacked

classifiers. The number of new attributes is equal to
the number of classes, and for each example, they are
computed as the conditional probability of the exam-
ple belonging to classi given by the base classifier.

Cascade Generalization can be applied locally by any
learning algorithm that uses a divide-conquer strategy.
As pointed by several researchers, successful combina-
tion of classifiers requires different syntactic models.
We have chosen, for the implementation of Local Cas-
cade Generalization algorithms, three algorithms that
have very different behavior from a bias-variance anal-
ysis: as high level classifier we use a decision tree and
as low level classifier we use a naive Bayes, giving CG-
Btree and a Linear Discriminant, giving CGLtree. At
each decision node a constructive step is performed by
applying the base classifier. The new axis incorporates
new knowledge provided by the base classifiers. The

bias restriction imposed by using single model classes
is relaxed in the directions given by the base classi-
fiers. It is this kind of synergy among classifiers that
Cascade explores.

There are two main issues that differentiate Cascade
from other previous methods on multiple models. The
first one is related to its ability to be applied locally
merging different models. We get a single model whose
components are terms of the base model language, ex-
tending the high level model language. Cascade gives
a single structured model for the data, and in this
way is more adapted to capture insights about prob-
lem structure. The second point is related to the use
of probability class distributions. Using these prob-
abilities allows the system to use information about
the strength of the classifier. This is very useful in-
formation, particularly when combining predictions of

214 Gama

classifiers. We have shown that this methodology can
improve the accuracy of the base classifiers, competing
well with other methods for combining classifiers, pre-
serving the ability to provide a single albeit structured
model for the data.

Acknowledgements

Gratitude is expressed to the support given by the
FEDER and PRAXIS XXI projects and the Plurian-
ual support attributed to LIACC. Thanks to P.Brazdil,
colleagues from LIACC, and the anonymous reviewers
for the valuable comments.

References

[1] K. Ali and M. Pazzani. Error reduction through learn-
ing multiple descriptions. Machine Learning, Vol. 24,
No. 1, 1996.

[2] L. Breiman. Bias, variance, and arcing classifiers.
Technical report 460, Statistics Department, Univer-
sity of California, 1996.

[3] L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Wadsworth In-
ternational Group., 1984.

[4] C. Brodley. Recursive automatic bias selection for
classifier construction. Machine Learning, 20, 1995.

[5] C. Brodley and P. Utgoff. Multivariate trees. Machine
Learning, 19, 1995.

[6] Wray Buntine. A theory of Learning Classification
Rules. PhD thesis, University of Sydney, 1990.

[7] P. Chan and S. Stolfo. A comparative evaluation
of voting and meta-learning on partitioned data. In
A. Prieditis and S. Rüssel, editors, Machine Learning
Proc of 12th International Conference. Morgan Kauf-
mann, 1995.

[8] P. Chan and S. Stolfo. Learning arbiter and combiner
trees from partitioned data for scaling machine learn-
ing. In KDD 95, 1995.

[9] P. Domingos and M. Pazzani. Beyond independence:
Conditions for the optimality of the simple bayesian
classifier. In L. Saitta, editor, Machine Learning Proc.
of 13th International Conference. Morgan Kaufmann,
1996.

[10] J. Dougherty, R. Kohavi, and M. Sahami. Super-
vised and unsupervised discretization of continuous
features. In A. Prieditis and S. Rüssel, editors, Ma-
chine Learning Proc. of 12th International Confer-
ence. Morgan Kaufmann, 1995.

[11] Scott E. Fahlman and Christian Lebiere. The
Cascade-Correlation learning architecture. Technical
Report CMU-CS-90-100, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, February
1990.

[12] Y. Freund and R. Schapire. Experiments with a new
boosting algorithm. In L. Saitta, editor, Machine
Learning Proc of 13th International Conference. Mor-
gan Kaufmann, 1996.

[13] J. Gama. Probabilistic linear tree. In D. Fisher, edi-
tor, Machine Learning Proc. of the 14th International
Conference. Morgan Kaufmann, 1997.

[14] J. Gama. Combining classifiers by constructive in-
duction. In C. Nedellec and C. Rouveirol, editors,
Machine Learning ECML-98. Springer Verlag, 1998.

[15] G. John. Robust linear discriminant trees. In
D. Fisher, editor, Learning from Data: Artificial In-
telligence and Statistics V. Springer Verlag, 1996.

[16] R Kohavi and D. Wolpert. Bias plus variance de-
composition for zero-one loss function. In L. Saitta,
editor, Machine Learning Proc. of 13th International
Conference. Morgan Kaufmann, 1996.

[17] P. Langley. Induction of recursive bayesian classifiers.
In P.Brazdil, editor, Machine Learning: ECML-93.
LNAI 667, Springer Verlag, 1993.

[18] Pat Langley. Elements of Machine Learning. Morgan
Kaufmann, 1996.

[19] S. Murthy, S. Kasif, and S. Salzberg. A system for in-
duction of oblique decision trees. Journal of Artificial
Intelligence Research, 1994.

[20] J. Ortega. Exploiting multiple existing models and
learning algorithms. In AAAI 96 - Workshop in In-
duction of Multiple Learning Models, 1995.

[21] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kauf-
mann Publishers, Inc., 1988.

[22] R. Quinlan. Bagging, boosting and c4.5. In Procs.
13th American Association for Artificial Intelligence.
AAAI Press, 1996.

[23] K.M. Ting and I.H. Witten. Stacked generalization:
when does it work ? In Procs. International Joint
Conference on Artificial Intelligence. Morgan Kauf-
mann, 1997.

[24] K. Turner and J. Ghosh. Classifier combining: analyt-
ical results and implications. In AAAI 96 - Workshop
in Induction of Multiple Learning Models, 1995.

[25] D. Wolpert. Stacked generalization. In Pergamon
Press, editor, Neural Networks Vol.5, 1992.

215

A Learning Rate Analysis of Reinforcement Learning Algorithms in
Finite-Horizon

Frederick Garcia
INRA/BIA, Auzeville BP 27

31326 Castanet Tolosan cedex
Prance

fgarcia@toulouse.inra.fr

Seydina M. Ndiaye
INRA/BIA, Auzeville BP 27

31326 Castanet Tolosan cedex
Prance

ndiaye@toulouse.inra.fr

Abstract

Many reinforcement learning algorithms, like
Q-Learning or R-Learning, correspond to
adaptative methods for solving Markovian
decision problems in infinite-horizon when
no model is available. In this article we
consider the particular framework of non-
stationary finite-horizon Markov Decision
Processes. After establishing a relationship
between the finite-horizon total reward cri-
terion and the average-reward criterion in
finite-horizon, we define Q-H-Learning and
R-H-Learning for finite-horizon MDPs. Then
we introduce the Ordinary Differential Equa-
tion (ODE) method to conduct a learn-
ing rate analysis of Q-H-Learning and R-H-
Learning. R-H-Learning appears to be a ver-
sion of Q-H-Learning with matrix-valued step-
sizes, the corresponding gain matrix being
very close to the optimal matrix which re-
sults from the ODE analysis. Experimental
results confirm that performance hierarchy.

1 Introduction

The search for optimal policies in Markov Decision
Processes has been deeply studied according to dif-
ferent optimality criteria and has led to the definition
of the well known Bellman optimality equations, and
dynamic programming algorithms [Puterman, 1994].
Most Reinforcement Learning (RL) algorithms that
have been recently developed [Kaelbling et al., 1996,
Bertsekas and Tsitsiklis, 1996] take a stochastic opti-
mization approach to solve these optimality equations,
by directly learning the optimal policies from iterated
observations of rewards and state transitions, without

a priori knowledge about the system.

In this paper we consider the case of non stationary
Markov decision problems in a finite horizon. Despite
being an accurate modelling of many applications con-
cerning the management of industrial production sys-
tems, finite-horizon MDPs have not been yet specifi-
cally considered in reinforcement learning. This article
is a first attempt to fill this gap.

Our work relies on two parts. First we propose a refor-
mulation of the two main classical optimality criteria,
expected total reward criterion and average expected
reward criterion, given the finite-horizon assumption.
After establishing an equivalence between them, we
conclude that it is possible to use the two adapted
reinforcement learning algorithms, Q-H-Learning and
R-H-Learning, to learn optimal policies for non station-
ary finite-horizon MDPs.

Secondly, we conduct an analysis of the respec-
tive rates of convergence of Q-H-Learning and R^-
Learning. Surprisingly, R-H-Learning appears to be a
version of Q-n-Learning with matrix-valued stepsizes.
Furthermore, the ordinary differential equation (ODE)
method enables to determine a theoretical optimal
matrix-valued gain, and it appears that the gain cor-
responding to R-H-Learning is numerically and struc-
turally very close to that optimal gain. The experi-
mental study we conducted confirms these results: in
most situations we tested, R-H-Learning performs bet-
ter than Q-n-Learning, and the implementation of the
optimal matrix-valued gain defines a reinforcement al-
gorithm that surpasses R-H-Learning.

216 Garcia and Ndiaye

2 Reinforcement Learning in
Finite-Horizon

2.1 Non-Stationary MDP in Finite-Horizon

The majority of reinforcement learning algorithms
solve stationary infinite-horizon Markov Decision
Problems. Given a state-space S and an action-space
A, the dynamic of a Markov decision process is char-
acterized as follows: at each time step t £ T, the ex-
ecution of action at € A in state xt £ S leads to the
new state xt+\ € S with a probability p(xt+i | xt,at),
and to the instantaneous reward r(xt,at).

A Markov Decision Problem is defined by adding to
that process a performance criterion to maximize over
a set of decisional policies. This criterion is a measure
of the expected sum of the rewards along a trajectory,
and policies are functions that indicate the action at to
execute given informations about the past trajectory
at time t. For stationary infinite-horizon Markov deci-
sion problems, most of the perfomance criteria lead to
the existence of stationary optimal policies, i.e. func-
tions 7T that map states in S to actions in A.

In finite-horizon problems, trajectories are sequences
of exactly N transitions, with T = {1,...,N}.
The performance criterion considered in that case is
the finite total expected reward criterion V"(x) =
En[r(xi,ai) + r(x2,a2) + ... + r(xN,aN) \ xx = x]
where x 6 S and En is the expected value given the
policy 7T.

When dealing with finite-horizon MDPs, the station-
ary assumption cannot be considered anymore. A first
reason is that even for stationary finite-horizon MDP
models (time-independent spaces S and A, transition
probabilities p() and rewards r()), optimal policies are
no longer stationary, and are functions of T x S into
A: t, x A ir(t,x) [Puterman, 1994].

More practically, in most of the problems of indus-
trial production process control that lead to finite-
horizon MDPs, the main cause of non-stationarity of
optimal policies is the non-stationarity of the MDP
model itself: is is very common to have different state-
spaces, decision-spaces, transition probabilities and re-
ward values at each decision step. In order to take into
account this characteristic, we consider the following
formal model of finite-horizon MDP: 1) to each time
step i £ T = {1, 2, ..., N} is associated a finite state
space Si and a finite decision space vl,; 2) for each
step i € {1, 2, ..., JV - 1}, the execution of action

a* 6 Ai from the state xt e Si leads to the new state
Xi+i 6 Si+i with a probability Pi{xi+\ \ Xi,ai), and
with the instantaneous reward rj(x;,aj); 3) at the last
decision step, the system receives a reward rjv(£yv, ayv)
after the execution of a/v in xyv, and stops.

For this particular kind of MDP a policy ix can
be decomposed into a set {K\,-K2, ■■■,'^N} of poli-
cies 7Tj : Si -> Ai. For each decision step, a
value function associated to it is defined as V*(x) =

^7r[E<=f'rt(xt,M
xt)) I Xi = x).

We say a policy TT is optimal if it maximizes the value
function V{ on S\. For this criterion, the classical
Bellman optimality equations that characterize opti-
mal policies are

V*{x) =m&xlri(x,a)+ ^ Pi{y \ x,a)Vi'+i(y)
{ y€S, + 1

(1)
for all x £ Si, i E {l,-,N} and V£+1 = 0
[Puterman, 1994]. Then TT*(X) = argmaxQ{r;(a:,a)-l-
T,yes,+lPi(y I x,a)vi*+i(y)}- This optimality equation
has a single solution V* - {V{,..., Vfi}, that can be
easily obtained by a dynamic programming algorithm
in O(N.nA-ns) complexity (for state spaces Si and
decision spaces Ai of constant size ns and UA) when
transition probabilities and reward function are known
[Puterman, 1994]. The associated learning problem is
to adaptatively estimate the optimal value functions
V* and the corresponding policies n*, from observed
transitions and rewards when the Markov decision pro-
cess is not known.

2.2 Q^-Learning in Finite-Horizon

Q-Learning [Watkins, 1989] is based on the rewrit-
ing of the Bellman optimality equation, replacing the
V*(x) value function of a policy by a new function
Q^lx,^: for all x £ 5,-, a € At QJ(x,a) = ri(x,a) +

Ey&s,+1Pi(y\x'a)vi+i(y)-

We have V7T(x) = Qn(x,n(x)), and the optimality
equation becomes

Q*(x,a) = ri(x,a)+ Y] pi{y \ x,a)maxQ*i+l(y,b),

for all x € Sj and a G At. Then V*{x) =
maxQQ*(x,a) and 7r*(x) = argmax0C?*(a;,a).

Q-Learning is a reinforcement learning algorithm al-
lowing the iterative generation of the solution Q* and

A Learning Rate Analysis of RL Algorithms 217

the optimal policies IT* . The algorithm consists in up-
dating at each iteration n the estimation Qn of the
value function Q*, from the current observed transi-
tion and reward < xn,an,yn,rn >. Q-Learning is a
natural candidate for solving finite-horizon MDPs. It
is indeed easy to transform an N-step non-stationary
MDP into an infinite-horizon process, by adding an
artificial final absorbing state xai,s, that is reward-free
and such that all actions ajy in AN lead with proba-
bility 1 to xabs (figure 1).

Figure 1: infinite process with absorbing state

Hence the first reinforcement learning algorithm we
propose for finite horizon MDPs is:

Finite-Horizon Q^-Learning.
Observe < xn,an,yn,rn >
Update

Qn+i(x,a) = Qn(x,a) + an(x,a).en (2)

with en =

r„+max6 Qn(yn,l>)-Qn(x,a) if (x,a)=(xn,an),xn€Si,i<N

r„-Qn(x,a) if (x,a) = (xn,a„),xneSN

o otherwise

If xn g SN set xn+i = yn ;
otherwise choose randomly xn+i in S±.
If xn+\ G Sj select an+i in Aj

In this algorithm QQ(x,a) = 0 and an(x,a) are small
learning rates decaying over time. The state explo-
ration is classically determined by the dynamic of the
process (that is, xn+\ = yn), until the last decision
step is reached and we restart a new trajectory by
choosing randomly a new initial state in Si. The spe-
cific learning rule for SN is equivalent to directly set-
ting VN+1{xabs) = QN+1(xabs,ai00p) = 0. The action
selection is as usual based on an exploration function.

Let us assume that each pair (x,a) in Si x Ai
is visited an infinite number of times, and that
X]nQ:n(x,a) = oo and Y^n

an(x>a) < °°- The
convergence of Q-Learning [Watkins and Dayan, 1992,

Jaakkola et al., 1994, Tsitsiklis, 1994] in case of no-
discounting (7=1) and with the presence of reward-
free absorbing states proves that this finite-horizon
Q-H-Learning algorithm will converge in probability
1 towards the optimal value function: Vx G Sj, a G
Ai, lim Qn(x,a) = Q*(x,a) a.s. with V?{x) =

n—too
maxa6j4i Q*(x,a).

2.3 R/H-Learning and the average-reward
criterion

The average reward criterion was introduced in Re-
inforcement Learning by Schwartz through the R-
Learning algorithm [Schwartz, 1993]. It has been
studied since then by many researchers [Singh, 1994,
Ok and Tadepalli, 1996, Mahadevan, 1996b]. The
goal is to search for gain-optimal policies that max-
imize the expected payoff per step, which is a very
natural measure of optimal acting:

1 "
pn(x) = lim E„[- yVt I xi = x}.

nt=l

For the particular case of unichain MDPs (that is,
for all policy n, the Markov chain {xn}n contains a
single recurrent class of states, and a possibly empty
set of transient states), the average reward associated
to each policy is independent of the state : p7r{x) —
Pn(y) = Pn ■ For simplicity reasons, most of the results
concerning average reward criterion in Reinforcement
Learning have been established with this unichain as-
sumption [Mahadevan, 1996b].

A more selective optimality criterion can be defined.
It is based on a new value function U* of a policy n,
called bias value [Puterman, 1994]. For all state x G S
we have

n

U*{x) = lim £„[$>* - p") I Xl = x}.
t=l

A policy 7T* is said to be bias-optimal (or T-optimal in
[Schwartz, 1993]) if it is gain-optimal, and if Un* (x) >
Uv{x) for all x and all policy IT.

The existence of optimal stationary policies for gain
and bias optimality has been shown [Puterman, 1994].
For all unichain MDPs, there exists a pair (U*,p*)
solution of the Bellman equation for the average crite-
rion:

U*{x) +p* = max r(x,a) + ^p{y \ x,a)U*{y) ,

(3)

218 Garcia and Ndiaye

for all x G S, such that the average reward of the policy
7T* that maximizes the right-hand side of (3) is the op-
timal average reward p*. Furthermore, if ([/*', p*') is
also a solution of (3), then p* = p*'. The solutions U*
of (3) are not unique, since for each solution (U*,p'),
the pair (U* + k,p*) is also a solution (one can show
that this is a complete characterization of the set of so-
lutions for unichain MDP models [Puterman, 1994]).

That last remark shows that (3) is not sufficient to pro-
duce bias optimal policies. Another optimality equa-
tion, based on a third notion of value function called
bias offset, is generally required [Puterman, 1994,
Mahadevan, 1996a].

In order to adapt the average-reward criterion to finite-
horizon MDPs, we first transform the initial process
5i -> SN into a new infinite process Si -> SN Ö Si.
The natural solution we propose is to close artificially
the loop between SN and Si by adding a uniform tran-
sition: Vx € SAT, Va e AN, Vy £ Si,pN(y \x,a) = ^

(figure 2).

Figure 2: infinite process with looping on Si

For the new MDP Si ->• SN Ü Si we proved the fol-
lowing proposition [Garcia and Ndiaye, 1998]:

Proposition 1 For the cycling process Si -> SN Ö
Si, for all policy ir,

WxeSi p*(x) = ~ £ V?(xi) = p«

Va:€5i,i=i,...,jv U*{x) = V?(x) - (N - i + l)p\

£ U"(Xl) = 0.
<ti€Si

The first aspect of this result, the state independence
of p*, is not surprising since the looping SN O Si
transforms the original MDP into a unichain pro-
cess. More interesting are the next equalities; the

second one establishes an equivalence between the
bias-value function, the average reward and the value
function in finite-horizon, and the last one com-
pletely determines this bias-value function. From
that properties we proved the following theorem
[Garcia and Ndiaye, 1998]:

Theorem 1 // {U*,p*) is a solution of average-
reward Bellman equation (3) for Si —> SN Ö S\ with
the constraint J2X es U*(xi) ~ 0> and »/7r* ** an aÄ~
sociated gain-optimal policy, then the value functions
V*(x) = U?(x) + (N -i + l)p* are solutions of finite-
horizon Bellman equation (1), and TT* is a policy that
maximizes V*(x) for x € Si, i = 1,..., TV.

That result shows that there is an equivalence between
the finite-horizon and average-reward criteria, and a
solution of (3) necessary leads to a solution of (1).
The following corollary characterizes more deeply this
equivalence [Garcia and Ndiaye, 1998].

Corollary 1 // {U",p*) is solution of (3) for Sx ->
SN O SI with £x,es, U*{xx) = 0, then (U*,p*) also
defines a bias-optimal solution.

From these results, it appears natural to use R-
Learning for solving finite-horizon MDPs. The second
reinforcement learning algorithm we propose, called
R^-Learning, is an adaptation of R-Learning with an
update rule for states in SN that directly integrates the
final condition R*N(x,a) — rN(x,a) - pn for x € SN,

a € AN'

Finite-Horizon R^-Learning
Observe < xn,an,yn,rn >
Update

Rn+i(x,a) = Rn(x,a) + a„(x,a).en

Pn+l = Pn + ßn-e'n

rn— pn+niax(, R„(y„,b) — R„(x,a)

if (x,a) = (x„,a„)x„eSi,i<N

— ^ rn-p„-Rn(x,a)

if (x,a) = (xn,on) X„£SN

0 otherwise

= <

r„—pn+maxb R„(y„,6) — R„(xn,a„)

if x„eS,, i<N a„ = TTn(x„)

r„—pn—Rn(xn ,0„)

if x„ eS,v n„=ir„(x„)

0 otherwise

If xn+\ = yn £ Sj select an+\ in Aj

A Learning Rate Analysis of RL Algorithms 219

3 A learning rate analysis of
Q^-Learning and R^-Learning

The simulations we conducted from a random finite-
MDP generator (see [Garcia and Ndiaye, 1998] and
section 4) have shown experimentally that Q-H-

Learning and R-H-Learning always converge to an opti-
mal policy, and that R^-Learning is most of the time
faster than Q-^-Learning. However, it still does not
exist any definitive theoretical results about the con-
vergence of R-Learning-like algorithms, with a mixed
iteration on Rn and pn.

The aim of this section is to introduce a comparison
of the respective learning rates of convergence of Q«-
Learning and R«-Learning. The analysis we propose
below is made possible by an original equivalent trans-
formation of R^-Learning into a new reinforcement al-
gorithm, the form of which is closer to Q«-Learning.
We first present that transformation.

3.1 An equivalent formulation of
R^-Learning

Just consider the second equation of Proposition 1. It
sets a direct relation between the value functions Un

and V* of a policy n, that can be directly translated
in terms of functions Rn and Qn : Vx £ Si, Va 6
Ai RJ(x,a) = QJ(x,a) - (N -i + l)p". Prom that
observation we propose to transform the iteration on
Rn in the R«-Learning algorithm by an iteration on
Qn. With this aim, we define the new series {Qn}n-

VzG Si, VaeAi Qn{x,a) = Rn(x,a) + (N-i + l)pn

(4)
with {Rn}n and {pn}n the two series of the R«-
Learning algorithm. That transformation leads to the
following equivalent reinforcement algorithm:

Finite-Horizon R^-Learning - Q formulation .

Qn+1(x,a) = Qn(x,a)+7n(x,a).en

Pn+l = Pn + ßn-en if «n = irn{xn)

(5)

&n —

7„(a;,o) = <

r„+maxi Qn (j/„ ,b)-Q„ (xn ,a„)

if x„€Si,i<N

rn-Q-n(xn,an) if xneSN

an(x,a)+(N-i+l)ßn

if (x,a)={xn,an),Xn£Si,an=irn(xn)

an(x,a)

if (x,a)=(xn,an),an^irn(xn)

(N-i+l)0n

if (x,a)^(xn,an),x£Si, a„=7r„(x„)

o otherwise

As we can see, the two series {Qn}n and {Pn}n
are now decoupled. Furthermore, since irn(x) =
argmax0i?n(a;,a) = argmaxa(Qn(x,a) — (N - i +
l)pn) = argmaxa Qn(x,a), the {pn}n iteration is even
not necessary to determine the current policy 7rn.

Hence the two algorithms Q-^-Learning and R«-
Learning in finite-horizon can be considered as two
different updating rules of the same value function
Q. More precisely, the main difference between Q^-
Learning and R-^-Learning can now be clearly associ-
ated to the number of components Qn(x, a) which are
modified at each iteration of the algorithm. In Q%-
Learning, we only update the component Qn(xn,o,n)-
In R^-Learning, if (x,a) ^ (xn,an), Q(x,a) can still
be updated if the action an corresponds to a greedy
action for the state xn in the policy 7rn.

3.2 Reinforcement Learning and the ODE
method

Now that we have seen that R«-Learning is a par-
allel version of Q^-Learning, we intend to compare
their respective rates of convergence. The theoret-
ical tool we have chosen is the Ordinary Differen-
tial Equation (ODE) method recently introduced in
reinforcement learning [Bertsekas and Tsitsiklis, 1996,
Kushner and Yin, 1997]. The ODE method results
from the combination of dynamical systems and
stochastic approximation techniques. The classical
theory of stochastic approximation introduced by Rob-
bins and Monro [Robbins and Monro, 1951] concerns
the analysis of adaptive stochastic algorithms

®n+l — @n + 7nH(9n, Xn+i) (6)

where 9n is the parameter vector, and Xn the in-
put random vector bringing some information on 9n

at time n. The application of this theory to the
domain of Reinforcement Learning has led to gen-
eral proofs of convergence for Q-Learning or TD{\)
[Jaakkola et al., 1994, Tsitsiklis, 1994]. The ODE
method was initially proposed by Ljung [Ljung, 1977],
and then has been the source of many works, as in
[Kushner and Clark, 1978, Benai'm, 1996]. It consists
in the introduction of the averaged differential equa-

tion — = H(fl) where H{6) = lim E[H(8,Xn)], the
at n-»oo

behaviour of which can be compared to the asymptotic
behaviour of (6).

The use of the ODE method for analysing learning
algorithms like neural nets has originally been intro-
duced by BenaTm [Benai'm, 1995]. An application to

220 Garcia and Ndiaye

the analysis of reinforcement learning algorithms has
already
been considered in [Bertsekas and Tsitsiklis, 1996,
Kushner and Yin, 1997], where convergence analysis
of Q-Learning are presented. The point we want to
emphasize in this article is that the ODE method can
also be applied to study the learning rates of rein-
forcement learning algorithms like Q^-Learning and
R-H-Learning.

The representation we adopt for this study is the fol-
lowing: the parameter vector 6 to estimate is the opti-
mal value function Q*, Xn represents the observation
at time n, and is defined as Xn = (xn_i,an_i,xn),
H() is the update rule of Q^-Learning in finite-
horizon. Here H(Q, (x,a,y)) is set to the vector:

(x,a)

\

r(x,a)+maxt Q(y,b)—Q(x,a)

r(x,a) — Q(x,a)

0

if xeS,,i<N

if xESN

)

Thus the two algorithms Q^-Learning and R-H-

Learning can be described as

Qn+l=Qn + -rH(Qn,Xn+l) (7)
n

where V = T^n or TRn is an adaptive gain matrix.
For ßn = 0 and an(x,a) = £, T*** = Tfl« = / which
corresponds to the simplest version of Q-n-Learning.
Therefore, within the ODE method, Qw-Learning and
R-H-Learning can be considered as two discrete approx-
imations with adaptive matrix-valued gains TQn and
TRn of the same differential equation:

* = ««>
(8)

with h(Q) = lim EQ[H(Q,Xn)]. h(Q) can be cal-
n-+oo

culated from the stationary distribution pfi of the
Markov chain {Xn}n given a constant parameter Q:

h(Q) = '£H(Q,X)ffi(X).
x

To calculate the stationary distribution nQ we have to
take into account the fact that for reinforcement learn-
ing algorithms, the input sequence {Xn}n is a Markov
process controlled by the parameter vector Qn itself
[Benveniste et al., 1990]. For Markovian exploration

functions, where an depends probabilistically of xn

and Qn, ffi is given by:

VX = (x,a,x'), ßQ(X).= iiQE{x)Pgp{a | x)P(x' \ x,a)

where fi® is the stationary distribution of the Markov
chain {xn}n defined by P(x' | x) = £aej4.P;(x' I
x,a)PQp(a | x) for x 6 Si, and P^xp{an | xn) is the se-
lection probability of the exploration function. Since
we added a uniform return form S^ to Si, we have
Vx £ Si, HE{X) = jf^—. Iteratively, ßg can be com-

puted on each state-space Si as: Vx G Si+\, ß%{x) =

Ez6s, p(x I *)/*!(«)■

We easily check that Q* is a stable attractive point of
(8). First we can see that h(Q") = 0. Moreover, we
can calculate the jacobian matrix of h on that point:

(zV)

(9)

(x,a)

\

-fi"(x,a) if (x,a) = (x',a')

Pi(z'|x,a)/i*(x,a) ifi6S,,t<Ar,

x'£Si + i, a' = 7r*(;r')

0 otherwise
/

with 7r*(x) = argmaxa Q'(x,a) and fi*(x,a) =
f/^ (x)pQ'p(a | x). The eigenvalues of HQ{Q*) are
equal to -/x*(x,o). They are strictly negative with
the simple assumptions that the Markov chain {xn}„
is recurrent at Q = Q*, and that Vx, a P^'p(a | x) > 0.

Based on that material, we can now focus on the
problem of the learning rate analysis, and its appli-
cation to the comparison between Q^-Learning and
R-^-Learning in finite-horizon MDPs.

3.3 Optimal matrix-valued learning rates

The use of a matrix-valued gain to guide and acceler-
ate the convergence of a stochastic adaptive algorithm
is a classic result of stochastic approximation theory
[Benveniste et al., 1990, Kushner and Yin, 1997].

For the algorithm (7) the gain matrices T that main-
tain Q* as a stable equilibrium of the new ODE

dQ
dt

= Th(Q),

are characterized by VA eigenvalue of |/ +
r./ig(Q*), Tle(X) < 0. Among all these matri-
ces, it is possible to prove [Benveniste et al., 1990,

A Learning Rate Analysis of RL Algorithms 221

Kushner and Yin, 1997] that the one that minimizes
the asymptotic variance lim \\Qn - Q*\\2 is defined

n—foo
by

r = -hQ-\Q*) (10)

As we can see the knowledge of the target parameter
Q* is generally required and an adaptive matrix-valued
gain T„ that converges toward T* is often used. In
our case, T* can be calculated by inverting (9). We
obtain the following upper triangular optimal matrix
[Garcia and Ndiaye, 1998]:

(x'.a1)

T* =
(x,a)

V

/j,'(x,a)
PQ (x'\x,a)

ß*(x' ,a')

if (x,a)=(x' ,a')

if x€Si,x'eSj,

i<j, a'=7r*(x')

otherwise
/

where PQ(x' \ x,a) is the probability of going from
x G Si to x' 6 Sj, 1 < i < j < N, in j — i steps, by
first executing the action a, and then by following the
current policy ir^(x) = argmaxa Q(x,a) for the last
j — i — 1 steps.

3.4 Comparison between TQn, Tfi" and T*

For the two algorithms Q^-Learning (2) and R/^-
Learning (5) that we consider in this paper, the gains
TQn and TRn are adaptive gains that depend on n,
but also on Xn and Qn.

In order to be able to compare these matrix-valued
gains with the optimal gain T*, it is necessary to con-
sider their asymptotic behaviour. If we assume classi-
cally that an(x, a) = N?£a\ where N(x,a) is the total
number of times the pair (x, a) was visited at time n,
and ßn = ^, we show in [Garcia and Ndiaye, 1998]
that T^* and TRn converge respectively toward:

ß*(x,a)

Vo ■••/

(x,a)

rR-H —
x oo

:(x',a')

+ (N-i+l)ß0

if (x,a)=(x',a'), x€Si , a=7r*(x)

if (x,a)=(x',a'),o^ir*(x)

(N-i+l)ßo if (x,a)Tt(x',a'),xeSi,a'=iT*(x')

0 if (t,a)54(V,a/),a,
?!ir'(i')

ß'(x,a)

ß*(x,a)

A first remark about these matrix-valued gains is that
the stability condition on Q* implies that ao > \. This
explains some empirical results concerning R-Learning
which reveal that higher initial values of ao are to be
preferred to lower values [Mahadevan, 1996b].

It is now interesting to compare rJJ", Y^1 and T*. For
ao = 1 and a small /3o, the three matrices have more or
less the same diagonal values, which is a confirmation
of the good choice an(x,a) = N,1x i, asymptotically

equivalent to nß.\Xta).

Another important similarity between T**™ and T* is
about the structure of the matrices : both of them
have exactly the same null columns.

4 Simulations

In order to experimentally compare Q-H-Learning, R«-
Learning and the T*Q-Learning corresponding to (7)
with T = T*, we have developed a random finite-MDP
generator. At each step i, a set Si of ns states and a
set Ai of riA actions are defined. Each transition from
Si to Si+i is characterized by a set of TIA transition
matrices pi(. \ ., a) and UA reward vectors ri(.,a). The
problem parameters are N, ns and UA- The reward
values r*i(s, a) and the probabilities pi(s' \ s,a) are
drawn in [0,1] from a random number generator, with
the constraints J28' Pi(s' I s>a) = !•

For a given random MDP, we first calculate the exact
finite-horizon optimal policy n* with the classical N-
step backward dynamic programming algorithm, using
the pi and Vi values. Then we calculate \i*', P® , and
finally the T* optimal gain.

We evaluated the performance of the 3 algorithms Q-^-
Learning, R^-Learning and r*Q-Learning on different
random MDPs [Garcia and Ndiaye, 1998].

The learning parameters a„ et ßn were defined by

an(x,a)
ao

N(x,a)
and ßn = ßo

n/N'

where N(x, a) is the number of times the action a has
been chosen in the state x. We used ao = 1 and ßo =
0.4 for all simulations, with a semi-uniform exploration
function (r = 90%). These choices of learning rates
were made to optimize the behaviour of Q«-Learning
and Rft-Learning on the set of problems we considered.

We chose />„„ = j±^ Ex€Sj v\" (x) as a performance
measure of the current policy 7rn at iteration n, and

222 Garcia and Ndiaye

the variability of this policy 7rn for different learn-
ing trajectories was taken into account by calculat-
ing the mean of the value p„n on M different runs
(we took M = 5). More precisely we considered
for each algorithm the two criteria C\ : p^/p* for
n = 500N, and C2 : pnn Ip* for n = 5000 N, where
p* = —^- J2xes Vi(x) 1S ^e optimal average gain of
7T*.

The first surprising fact we noticed was that most of
the time the r* Q-Learning did not converge. An ex-
planation we found is that for large sized problems, the
initial gains .,*a\ n

0I" r* Q-Learning are too large,

and make the series {Qn}n leaves its convergence do-
main. To fix that problem we decided to replace T*
by an adapative matrix T* asymptotically equivalent
to T*, where is used instead of The re- N(x,a) 10 "oou i"ou<-«u v,i ß.(x<a)

suits we finally obtained showed that r* Q-Learning is
a bit better than ft« -Learning, and that both of them
are always faster than Q-H-Learning, as illustrated in
table 3 and figure 4.

f«r, If' % C'l (n = 500/V) c2 (n = 5000A')
N,ns,nA Qw R-H T;Q Qn R-H T;Q

5,25,10 79.54 89.71 92.55 97.90 99.39 99.42
5,50,10 71.79 84.57 89.93 96.50 98.15 99.12
5,50,50 65.26 78.56 80.32 94.53 95.87 95.95
5,100,10 62.87 78.82 87.19 91.79 95.85 97.91
5,300,10 56.42 64.32 82.24 77.88 89.24 93.27
10,25,10 74.35 90.57 95.90 94.62 99.28 99.83
10,50,50 61.72 77.72 88.06 92.72 95.81 97.61
10,100,10 61.21 79.01 91.41 87.21 95.80 97.94
50,50,10 63.43 85.24 86.94 72.38 98.32 97.39
50,50,50 58.53 79.65 84.52 74.54 95.67 96.87

Figure 3: Relative evaluation of Q-H-Learning,
Learning and r* Q-Learning.

RH-

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
\ \\ n/N
\ \ Q-H -Learning
\ * R-j^-Learning

vr* Q-Learning

Figure 4: 7M=10, n5=300, N=5 (5 runs).

5 Conclusion

The underlying goal of this article was to tackle the
problem of using reinforcement learning algorithms in
the framework of finite-horizon Markov Decision Pro-
cesses. Two main results have been obtained.

First we proved the equivalence between the total re-
ward criterion and the average-reward criterion in fi-
nite horizon. An interesting conclusion is that classical
Q-Learning and R-Learning algorithms can be adapted
to define Q^-Learning and R^-Learning algorithms in
finite horizon. Both of these algorithms converge ex-
perimentally toward the optimal V* value functions,
with a convergence proof for Q^-Learning.

The other important result is about the comparison
between the learning rates of Q-w-Learning and R^-
Learning. It appears that R-^-Learning can be seen
as a version of Q^-Learning using matrix-valued step-
sizes, where several components of the Q function are
updated simultaneously. Furthermore, we showed that
this stepsize matrix is structurally and numerically
very close to the optimal gain matrix proposed by the
ODE method, and that R^-Learning performs very
similarly to the learning algorithm corresponding to
this optimal gain matrix. Consequently we argue in
favor of using R-^-Learning when solving finite-horizon
MDPs.

Different open questions still deserve to be considered.
First we would like to know whether it is possible to
derive from T* Q-Learning an equivalent reinforcement
learning algorithm where only one component is up-
dated at each state transition, like it is the case for
R^-Learning in its initial formulation. For the mo-
ment, independently of the fact that it requires to
know P® and p*, T* Q-Learning cannot be used in
practice since it is too much slow.

Another question we are currently considering is to ex-
ploit the equivalent Q formulation of R-^-Learning for
proving its convergence. Some recent theoretical re-
sults concerning the ODE method could be sufficient,
like in [Benai'm et al., 1998].

Finally, we are trying to generalize our results concern-
ing the convergence of Q^-Learning and R-^-Learning
to Q-Learning and R-Learning within the classical
framework of stationary infinite MDPs.

Acknowledgements

We thank Michel Benai'm for fruitful discussions about
the ODE method.

A Learning Rate Analysis of RL Algorithms 223

References

[Benai'm, 1995] Benai'm, M. (1995). Convergence The-
orem for Hybrid Learning Rules. Neural Computa-
tion, 7(l):19-25.

[Bena'fm, 1996] Benai'm, M. (1996). A Dynamical Sys-
tem Approach to Stochastic Approximations. SIAM
Control and Optimisation, 34(2):437-472.

[Benai'm et al., 1998] Benai'm, M., Fort, J. C, and
Pages, G. (1998). Almost sure convergence of the
one-dimensional kohonen algorithm. Advances in
Applied Probability. To appear.

[Benveniste et al., 1990] Benveniste, A., Metivier, M.,
and Priouret, P. (1990). Adaptive Algorithms
and Stochastic Approximation. Springer-Verlag,
Berlin,New York.

[Bertsekas and Tsitsiklis, 1996] Bertsekas, D. P. and
Tsitsiklis, J. N. (1996). Neuro-Dynamic Program-
ming. Athena Scientific, Belmont (MA).

[Garcia and Ndiaye, 1998] Garcia, F. and Ndiaye, S.
(1998). Reinforcement Learning in finite-horizon:
Optimality criteria and algorithms. Technical re-
port, Department of Biometry and Artificial Intelli-
gence, INRA, Toulouse, France.

[Jaakkola et al., 1994] Jaakkola, T., Jordan, M., and
Singh, S. (1994). On the Convergence of Stochastic
Iterative Dynamic Programming Algorithms. Neu-
ral Computation, 6:1185-1201.

[Kaelbling et al., 1996] Kaelbling, L., Littman, M.,
and Moore, A. W. (1996). Reinforcement Learning:
A Survey. Journal of Artificial Intelligence Research
(JAIR), 4:237-285.

[Kushner and Clark, 1978] Kushner, H. and Clark, D.
(1978). Stochastic Approximation Methods for Con-
strained and Unconstrained Systems. Springer-
Verlag, Berlin,Heildelberg,New York.

[Kushner and Yin, 1997] Kushner, H. and Yin, G.
(1997). Stochastic Approximation Algorithms and
Applications. Springer.

[Ljung, 1977] Ljung, L. (1977). Analysis of recursive
stochastic algorithms. IEEE Transactions on Auto-
matic Control, 22:551-575.

[Mahadevan, 1996a] Mahadevan, S. (1996a). An
Average-Reward Reinforcement Learning Algo-
rithm for Computing Bias-Optimal Policies. In
AAAI National Conference, volume 13.

[Mahadevan, 1996b] Mahadevan, S. (1996b). Average
Reward Reinforcement Learning: Foundations, Al-
gorithms and Empirical Results. Machine Learning,
22:159-196.

[Ok and Tadepalli, 1996] Ok, D. and Tadepalli, P.
(1996). Auto-exploratory average reward reinforce-
ment learning. In AAAI National Conference, vol-
ume 13.

[Puterman, 1994] Puterman, M. (1994). Markov De-
cision Processes. John Wiley and Sons, New York.

[Robbins and Monro, 1951] Robbins, H. and Monro,
S. (1951). A stochastic approximation method. An-
nals of Mathematical Statistics, 22:400-407.

[Schwartz, 1993] Schwartz, A. (1993). A Reinforce-
ment Learning Method for Maximizing Undis-
counted Rewards. In International Conference on
Machine Learning, volume 10.

[Singh, 1994] Singh, S. (1994). Reinforcement Learn-
ing Algorithms for Average-Payoff Markovian Deci-
sion Processes. In AAAI International Conference,
volume 12.

[Tsitsiklis, 1994]
Tsitsiklis, J. N. (1994). Asynchronous Stochastic
Approximation and Q-Learning. Machine Learning,
16:185-202.

[Watkins, 1989] Watkins, C. (1989). Learning from
Delayed Rewards. PhD thesis, Cambridge Univer-
sity, Cambridge, England.

[Watkins and Dayan, 1992] Watkins, C. and Dayan,
P. (1992). Q-Learning. Technical Note. Machine
Learning, 8(3):279-292.

224

Well-Behaved Borgs, Bolos, and Berserkers

Diana F. Gordon
Naval Research Laboratory, Code 5510

4555 Overlook Avenue, S.W.
Washington, DC 20375
gordon@aic.nrl.navy.mil

Abstract

How can we guarantee that our software and
robotic agents will behave as we require, even
after learning? Formal verification should
play a key role but can be computationally
expensive, particularly if re-verification fol-
lows each instance of learning. This is espe-
cially a problem if the agents need to make
rapid decisions and learn quickly while on-
line. Therefore, this paper presents novel
methods for reducing the time complexity of
re-verification subsequent to learning. The
goal is agents that are predictable and can
respond quickly to new situations.

1 INTRODUCTION

Software and robotic agents are becoming increasingly
prevalent. Agent designers can furnish such agents
with plans to perform desired tasks. Nevertheless,
a designer cannot possibly foresee all circumstances
that will be encountered by the agent. Therefore, in
addition to supplying an agent with plans, it is es-
sential to also enable the agent to learn and mod-
ify its plans to adapt to unforeseen circumstances.
The introduction of learning, on the other hand, of-
ten makes the agent's behavior significantly harder to
predict. Our objective is to develop methods that pro-
vide verifiable guarantees that the behavior of learning
agents always remains within the bounds of specified
constraints (called "properties"), even after learning.
An example of a property is Asimov's First Law of
Robotics (Asimov, 1942). This law, which has recently
been studied by Weld and Etzioni (1994), states that
a robot may not harm a human or allow a human to
come to harm. Weld and Etzioni advocate a " 'call

to arms:' before we release autonomous agents into
real-world environments, we need some credible and
computationally tractable means of making them obey
Asimov's First Law...how do we stop our artifacts from
causing us harm in the process of obeying our orders?"
Asimov's law can be operationalized into specific prop-
erties testable on a system, e.g., "Never delete another
user's file." This paper addresses Weld and Etzioni's
"call to arms" in the context of adaptive agents. It is
a very important topic for real-world agents and is a
dominant theme in science fiction, which is sometimes
prescient. Examples include the Borgs (Star Trek, The
New Generation), Bolos (Laumer, 1976), and Berserk-
ers (Saberhagen, 1967) - fictional agents that demon-
strate the dangerous behavior that can result from in-
sufficient constraints.

We assume that an agent's plan has been initially veri-
fied offline. Then, the agent is fielded and has to adapt
online. After adaptation via learning, the agent must
rapidly re-verify its new plan to ensure this plan still
satisfies required properties.1 Re-verification must be
as computationally efficient as possible because it is
performed online, perhaps in a highly time-critical sit-
uation. There are numerous applications of this sce-
nario, including software agents that can safely ac-
cess information in confidential or proprietary environ-
ments while responding to rapidly changing access re-
quirements, planetary rovers that quickly adapt to un-
foreseen planetary conditions but behave within criti-
cal mission constraints, and JAVA applets that can get
smarter but not become destructive to our computing
environments.

Typically, properties desired by a user are orthogo-
nal to both the agent's planning goals and its learning

Current output is success/failure. Future work will
consider using re-verification counterexamples to choose a
better learning method when re-verification fails.

Well-Behaved Borgs, Bolos, and Berserkers 225

goals. For example, the agent may generate a plan
with the objective of maximizing the agent's profit.
Learning might have the goal of achieving the agent's
plan more efficiently or modifying the plan to adapt
to unforeseen events. The designer may have an addi-
tional constraint that the agent does not cheat in its
dealings with other agents. Why doesn't the planner
incorporate all properties into the plan? There are a
number of possible reasons, e.g., not all properties may
be known at the time the plan is developed, or security
reasons.

Re-verification can be (from least to most time re-
quired): none, incremental, or complete. It is pos-
sible to avoid re-verification entirely if we restrict the
agent to using only those learning methods determined
a priori to be "safe" with respect to certain classes of
properties in which we are interested. In other words,
if a plan satisfies a property prior to learning, we want
an a priori guarantee that the property will still be
satisfied subsequent to learning. Note that this incurs
no run-time cost. It is called "moving a tester into the
generator" or "compiling constraints."

Unfortunately, the safety of some learning methods
may be very difficult or maybe impossible to deter-
mine a priori. When a priori determination is too dif-
ficult, it is helpful to use incremental re-verification.
Incremental methods save computational costs over
re-verification from scratch by localizing re-verification
and/or by reusing knowledge from the original verifica-
tion. Furthermore, incremental methods may identify
positive results that cannot be determined a priori.
When an agent needs to learn, we suggest that the
agent should consult the a priori results first. If no
positive results exist, then incremental re-verification
proceeds. The least desirable of the three alternatives
is to do complete re-verification from scratch.

Gordon (1997a) begins to explore the extent to which
we can prove a priori results that certain machine
learning operators are, or are not, safe for certain
classes of properties. The paper has positive a priori
results for plan efficiency improvements via deletion
of plan elements, as well as for plan refinement meth-
ods. Unfortunately, we have not yet obtained positive
a priori results for popular machine learning operators
such as abstraction (unless one is willing to accept an
abstracted property) or generalization. Abstraction
is a more global operator than generalization. Ab-
straction alters the language of a plan (e.g., by feature
selection), whereas generalization alters the condition
for a state-to-state transition within a plan. Both are
extremely common operators in concept learning, but

are also very appropriate for plan modification.

This paper has two contributions beyond (Gordon,
1997a). First, the previous paper models agent plans
using automata on infinite strings. This paper reaches
a wider audience by using the more familiar automata
on finite strings. Second, this paper addresses two,
new questions: Are there situations in which an ab-
stracted property is acceptable? If yes, we have pos-
itive a priori results for abstraction. Also, can we
get positive results by using incremental re-verification
rather than a priori? Initial, positive answers to these
questions are presented here.

The remainder of this paper is organized as follows.
Section 2 presents an illustrative example that is used
throughout the paper. 2 Section 3 contains back-
ground material and definitions on automaton plans,
temporal logic properties, and "safe" learning. The
formal definitions provide a precise foundation for un-
derstanding the incremental re-verification methods
presented later. Section 4 lists situations in which
property abstraction is acceptable. Sections 4 and 5
present novel (and as far as we are aware, the only)
methods for incremental re-verification of abstraction
and generalization, respectively, on automata. Finally,
time complexity comparisons between incremental and
complete re-verification are provided.

2 ILLUSTRATIVE EXAMPLE

This section provides an example to illustrate some
of the main ideas of the paper. Although the plan
in this example is very small, it is important to point
out that existing automata-based verification methods
currently handle huge, industrial-sized problems (e.g.,
see Kurshan, 1994). Our goal is to improve the time
complexity of verification over current methods when
learning occurs.

In our example, hundreds of tiny, micro air vehicles
(MAVs) are required to perform a task within a region.
The MAVs are divided into two groups called "swarm
A" and "swarm B." One constraint, or property, is that
only one MAV may enter the region at a time - because
multiple MAVs entering simultaneously would increase
the risk of detection. Each swarm has a separate FIFO
queue of MAVs. MAVs enter the queue when they
return from their last task. A second constraint is that
some (at least one) MAVs from each swarm eventually

2 Examples in this paper have been implemented us-
ing Kurshan's COSPAN verification system. COSPAN is
an AT&T verification tool, which is described in Kurshan
(1994).

226 Gordon

(A:no-MAVs) +
Q ((A:MAVs-wait) * -. (C:go-A))

/ WAIT \

(A:no-MAVs) +
((A:MAVs-go) *
-(C:go-A))

c
(A:MAVs-wait) *
(C:go-A)

GO 3
Q (A:MAVs-go) * (C:go-A)

Figure 1: Plan A

'C

X

(C:go-A) *
(J-n(B:MAVs-wait)

GO-A

(C:go-B) *
(A:MAVs-wait)

J
(C:go-A) *
(B:MAVs-wait)

GOB J
Q (C:go-B) * -n(A:MAVs-wait)

Figure 2: Plan C

enter the region. One distinguished MAV, C, acts as a
task coordinator. C selects which swarm, A or B, may
send in an MAV next.3

Plans for swarm A and task controller C are shown in
Figures 1 and 2. The plan for swarm B is not shown
in the figure, but it is identical to the plan for A ex-
cept all instances of "A" are replaced by "B." Each
of these plans is a finite-state automaton, i.e., a graph
with states (the vertices) and allowable state-to-state
transitions (the directed edges between vertices). The
transition conditions (i.e., the logical expressions label-
ing the edges) describe the set of actions that enable a
state transition to occur. The possible actions A can
take from a state are (A:no-MAVs), (A:MAVs-wait),
or (A:MAVs-go). The first action means the queue is
empty, the second that the queue is not empty but
the MAVs in the queue must wait, and the third that
the first MAV in the queue enters the region. Likewise
for B. The possible actions C can take from a state
are (C:go-A) or (C:go-B). The first action means con-
troller C allows swarm A to send one MAV into the
region, the second means C allows B to send one MAV
into the region.

Swarms A and B are single agents, i.e., although indi-
vidual MAVs may each have their own plan, such as
queuing within a swarm, for simplicity we ignore that
level of detail. We can form a multiagent plan by tak-
ing a "product" (see Section 3.1) of the plans for A, B,
and C. This product synchronizes the behavior of A,
B, and C in a coordinated fashion. At every discrete
time step, every agent (A, B, C) is at one state in its
plan, and it selects its next action. The action of one
agent (e.g., A) becomes an input to the other agents'
plans (e.g., B and C). If the joint actions chosen by all
three agents satisfy the transition conditions of a plan
from the current state to some next state, then that

3This example is a variant of the traffic controller in
Kurshan (1994).

transition may be made. For example, if the agents
jointly take the actions (A:MAVs-wait) and (B:MAVs-
wait) and (C:go-A), then the multiagent plan can tran-
sition from the global, joint state (WAIT, WAIT, GO-
A) to the joint state (GO, WAIT, GO-B) represented
by triples of states in the automata for agents A, B,
and C.

Given the full, multiagent plan, verification now con-
sists of asking the question: Does this plan satisfy the
two required properties, i.e., some MAVs from each
swarm enter the region, but only one MAV enters the
region at a time? Assuming our initial plan in Figures
1 and 2 satisfies these properties, we next ask whether
the properties are still satisfied subsequent to learning.
The latter question is the topic of this paper.

An example of learning is the following. Suppose co-
ordinator C discovers that the B swarm has left the
region. One way agent C can adapt to incorporate
this new knowledge is by deleting the action (C:go-B)
from its action repertoire. This is a form of abstrac-
tion. There are alternative modifications agent C can
do, but the selection between these alternatives is a
learning issue, which we do not address here. What
we do address here are the implications of this choice,
in particular, which learning methods are safe, i.e.,
preserve the properties.

3 PLANS, PROPERTIES, AND
"SAFE" LEARNING

3.1 AUTOMATON PLANS

This subsection, which is based on Kurshan (1994),
briefly summarizes the basics of the automata used
to model plans. Figures 1 and 2 illustrate the defini-
tions. Essentially, an automaton is a graph with ver-
tices corresponding to states and directed edges corre-
sponding to state-to-state transitions. The terms "vcr-

Well-Behaved Borgs, Bolos, and Berserkers 227

tex" and "state" are used interchangeably throughout
the paper. For an automaton representing an agent's
plan, vertices represent the internal state of the agent
and/or the state of its external environment. State-to-
state transitions have associated transition conditions,
which are the conditions under which the transition
may be made. An agent action that satisfies a transi-
tion condition enables that transition to be made. We
assume finite-state automata, i.e., the set of states is
finite, and that the transition conditions are elements
of a Boolean algebra. Therefore, we briefly diverge to
summarize the basics of Boolean algebras.

A Boolean algebra K is a set with distinguished ele-
ments 0 and 1, closed under the Boolean operations *
(logical "and"), + (logical "or"), and -i (logical nega-
tion), and satisfying the standard properties (Kurshan,
1994).

The Boolean algebras are assumed to be finite. There
is a partial order among the elements, <, which is
defined as x < y if and only if x * y = x. The elements
0 and 1 are defined as Vz 6 K, 0 < x and Va: G K-, x ^
1. The atoms of K, T(/C), are the nonzero elements
of K, minimal with respect to <. For two different
atoms x and y within the same Boolean algebra, x * y
= 0. For Figures 1 and 2, agents A, B, and C each
have their own Boolean algebra with its atoms. The
atoms of A's Boolean algebra are the actions (A:no-
MAVs), (A:MAVs-wait), and (A:MAVs-go); the atoms
of B's algebra are (B:no-MAVs), (B:MAVs-wait), and
(B:MAVs-go); the atoms of C's algebra are (C:go-A)
and (C:go-B).

A Boolean algebra K' is a subalgebra of K if K' is a
non-empty subset of K, that is closed under the op-
erations *, +, and -i, and also has the distinguished
elements 0, 1. Let K, = \[ICi, i.e., K is the product
algebra of the Id. In this case the /Q are subalgebras
of K,. An atom of the product algebra is the product of
the atoms of the subalgebras. For example, if c^,..., an

are atoms of subalgebras K,\, ...,£„, respectively, then
a\ * ... * an is an atom of tC.

In Figure 1, the Boolean algebra A used by agent A
is the smallest one containing the atoms of A's alge-
bra. It contains all Boolean elements formed from A's
atoms using the Boolean operators *, +, and ->, includ-
ing 0 and 1. These same definitions hold for B and C's
algebras B and C. One atom of the product algebra
ABC is (A:no-MAVs) * (B:no-MAVs) * (C:go-A). This
is the form of actions taken by the three agents in the
multiagent plan. Algebras A, B, and C are subalge-
bras of the product algebra ABC. Finally, ABC is the

Boolean algebra for the transition conditions in the
multiagent plan.

Let us return now to automata. This paper focuses on
automata that model agents with finite lifetimes (rep-
resented as a finite string, or sequence of actions). An
example is an agent that is created specially to exe-
cute a plan and is destroyed immediately afterwards.
In particular, we focus on processes. Processes are
automata, but they are the dual of our usual notion of
an automaton, which accepts any string beginning in
an initial state and ending in a final state (Hopcroft &
Ullman, 1979). Instead, processes accept any string
beginning in an initial state and ending in a non-
final state.4 A string is a sequence of actions (atoms).
Therefore, by specifying the set of final states, we can
infer the set of action sequences not permitted by the
plan. It consists of those strings ending in a final state.
All other action sequences that begin in an initial state
are permitted by the plan. Processes are used here to
be consistent with the automata theoretic verification
literature.

Formally, a process is a three-tuple S =
(MK(S),I(S),F(S)) where K is the Boolean algebra
corresponding to S. MK{S) : V(S) x V(S) -»• K, is the
matrix of transition conditions, which are elements of
£, V{S) is the set of vertices of S, 7(5) C V(S) are
the initial states, and F(S) C V(S) are the final states.
Also, E(S) = {e e V(S) x V(S) \ MK{e) ^ 0} is the
set of directed edges connecting pairs of vertices of S,
and M/c(e) is the transition condition of M/c(S) corre-
sponding to edge e. Note that we omit edges labeled
"0." By our definition, an edge whose transition con-
dition is 0 does not exist. We can alternatively denote
M/c(e) as MK.{V%, Vi+i) for the transition condition cor-
responding to the edge going from vertex «,- to vertex
v,-+i. For example, in Figure 1, MK (WAIT, GO) is
(A: MAVs-wait) * (C: go-A).

Figures 1 and 2 illustrate the process definitions.
There are process plans for two agents: swarm A and
task coordinator C. Recall that agent B is identical
to A but with "A" replaced by "B." An incoming ar-
row to a state, not from any other state, signifies that
this is an initial state. Recall that the output actions
of process A are its atoms, and likewise for processes
B and C. The transition conditions are the labels on
the edges. We assume for process X = A, B, or C,
F(X) = 0, i.e., there are no final states. Therefore
every finite string of actions that starts in an initial

4 For the case of deterministic and complete transition
conditions, reversing the acceptance condition will comple-
ment the language.

228 Gordon

state and satisfies the transition conditions is accept-
able behavior for the plan.

A multiagent plan is formed from single agent plans by
taking the tensor product of the processes correspond-
ing to the individual plans. Essentially, this is done
by taking the Cartesian product of the vertices and
the intersection of the transition conditions. For de-
tails see Kurshan (1994). The product process models
a set of synchronous processes. The Boolean algebra
corresponding to the product process is the product
algebra. For Figures 1 and 2, to formulate the process
S modeling the entire multiagent plan, we take the ten-
sor product S = A ® B ® C of the three processes. For
this tensor product, 7(S) = { (WAIT, WAIT, GO-A),
(WAIT, WAIT, GO-B) }, and F(S) = 0. The tensor
product process is not shown in a figure because it's
quite large.

Formally, a string x is a finite-dimensional vector,
(xo,...,x„) £ T(/C) , i.e., a string is a sequence of
one or more actions. A run v of string x is a se-
quence (DO, ..., vn+i) of vertices such that Vi, 0 < i < n,
xt * MK(vi,vi+i) ^ 0, i.e., Xi < MK(vi,vi+1) because
the a;,- are atoms.

The language of S is C(S) = {x € T(£) | x has a
run in MK(S) from I(S) to V(S) \ F(S)}. Such a run
is accepting. The language of a plan is the set of all
action sequences (i.e, strings) allowed by the plan.

An example string in the language of process S,
the multiagent process that is the product of A,
B, and C, is (((A:MAVs-wait) * (B:MAVs-wait) *
(C:go-A)), ((A:MAVs-go) * (B:MAVs-wait) * (C:go-
B)), ((A:MAVs-wait) * (B:MAVs-go) * (C:go-B)),
((A:MAVs-wait) * (B:MAVs-go) * (C:go-A))). This is
a sequence of atoms of S. An accepting run of this
string is ((WAIT, WAIT, GO-A), (GO, WAIT, GO-
B), (WAIT, GO, GO-B), (WAIT, GO, GO-A), (GO,
WAIT, GO-A)). Because F(S) = 0, all runs beginning
in an initial state are accepting runs and they form the
elements of the language of S.

3.2 TEMPORAL LOGIC PROPERTIES

We assume properties are expressed in temporal logic.
For formal versions of the definitions here, see Manna
and Pnueli (1991). Linear time is assumed here. In
other words, time proceeds linearly and we do not
consider simultaneous possible futures. The type of
verification used in this paper is "model checking." In
other words, verification tests whether S (= P for plan
S and property P, i.e., whether plan S "models," or
satisfies, property P.

For consistency with the temporal logic literature, we
define a computational state (estate) as the action
chosen from each process state. Then a computation is
a finite sequence of temporally ordered computational
states, i.e., a string. To distinguish the two types of
states, we will refer to a process state as a pstate.

P is a property true (false) for a process S, i.e., 5 (= P
(S \fc P), if and only if it is true for every string in the
language £(S) (false for some string in C(S)). The
notation x \= P (x |£ P) means string x satisfies (does
not satisfy) property P, i.e., the property holds (does
not hold) for x. Before defining what it means for
properties to be true (i.e., hold) for a string, we first
define what it means for a formula that is Boolean
expression to be true at a c-state. A estate formula
p is true (false) at c-state £,-, i.e., z,- (= p (xi ^ p)
if and only if x,- ■< p (x,- ■£ p), i.e., #,- * p / 0 (= 0)
because p is a Boolean expression with no variables on
the same Boolean algebra used by process S, and a:,-
is an atom of that algebra. For example, (A:MAVs-
wait) |= ((A:MAVs-wait) + (A:no-MAVs)) for c-state
(A:MAVs-wait) and c-state formula ((A:MAVs-wait)
+ (A:no-MAVs)).

A c-state formula p is true/false in particular c-stat.es
of a string. Property P is defined in terms of p, and
is true/false of an entire string, i.e., x f= P or x \k P
for string x. We now define two property classes that
are among those most frequently encountered in the
verification literature for finite strings. Assume x =
(xo, ...,in) is a string of process S. For c-state formula
p and plan S, define Sometimes property P = O p
("Sometimes p") as a property that is true for string x
if only if p is true in at least one c-state x, of x, where
0 < i < n. An Invariance property P = ty ("Invariant
p") is a property true for string x if and only if p is
true in every c-state x, of x.

Continuing with the MAVs example, a desirable In-
variance property Pj states that "only one MAV enters
the region at a time." This can be expressed in tempo-
ral logic as Pi = a(-i ((A:MAVs-go) * (B:MAVs-go))).
A desirable Sometimes property P$ states that "Some-
times MAVs from swarm A enter the region." In logic
this property is expressed as P$ — O (A:MAVs-go).
Pj, but not Ps, holds for the multiagent plan S.

3.3 "SAFE" LEARNING

This paper is concerned with "safe" machine learning
methods (SMLs), i.e., machine learning operators that
preserve properties, also called "correctness preserv-
ing mappings." For plan S and property P, suppose

Well-Behaved Borgs, Bolos, and Berserkers 229

verification has succeeded prior to learning, i.e., Vx,
x 6 C(S) implies x |= P (i.e., S \= P). Then according
to Gordon (1997a), a machine learning operator ml(S)
is an SML if and only if verification succeeds after
learning, i.e., Vx, x € C(ml(S)) implies x |= ml{P).
Note that a machine learning operator may also affect
the property P, which could be undesirable. There-
fore, being an SML is not always sufficient. Additional
requirements on learning - in particular, abstraction,
are discussed next.

4 BOOLEAN ALGEBRA
ABSTRACTION

Kurshan (1994) presents methods for improving the
efficiency of automata-based verification, but does not
consider the possibility of automata, such as agents,
that can learn. By applying some of the results of
Kurshan (1994) in a novel way, Gordon (1997a; 1997b)
shows that when agents learn using certain abstrac-
tions, the abstractions are a priori guaranteed to be
SMLs for all property classes - but only if abstraction
is performed to both the plan and property. 5 There-
fore, this section identifies situations in which it is ac-
ceptable to apply an SML abstraction to a property.

The SML abstractions include very useful ones, such as
partitioning the Boolean algebra atoms e.g., using con-
structive induction, and projection, which is a form of
feature selection (or, more properly, action deletion).
Although the methods described in this section apply
to any of these abstractions, for illustration we focus
only on projection, which is a mapping from a Boolean
algebra to a subalgebra. For a formal definition of pro-
jection, see Kurshan (1994). Here, we continue with
the MAVs example.

Suppose all the MAVs in the B swarm leave the re-
gion. To incorporate this knowledge, Boolean algebra
projection, a type of abstraction, projects the product
algebra ABC onto subalgebra AC. Projection projAC :
ABC —>■ AC is defined as projAC(a * b * c) = a * c
for atoms a £ T(A), b e T(B) and c G T(C), and
is extended linearly to the full algebra. For example,
projAC ((A: MAVs-wait) * (B: MAVs-wait) * (C: go-
A)) = (A: MAVs-wait) * (C: go-A). In addition to re-
moving entire subalgebras, it is also possible to remove
atoms from within a subalgebra.

Projection projAC removes all references to swarm B
from the multiagent plan S. This projection reduces

5This result applies to agents with finite or infinite
lifetimes.

B's plan to the trivial plan which allows B to do any-
thing. We assume that when the agent applies a pro-
jection to the plan, it has justification to do so - be-
cause the purpose of abstraction is to modify the plan.
Modification of the property, on the other hand, may
be a side effect required for an a priori guarantee that
the abstraction is an SML. Applying projAC to the
Invariance property Pj, which states that "only one
MAV may enter the region at a time," results in a
property which accepts any multiagent plan of agents
A, B, and C. When applied to both plan and property,
projAC is an SML. Nevertheless, if the B swarm re-
turns to the region and is restored into the multiagent
plan, then this new property which allows the agents
to do anything could have disastrous, unintended (by
the user) consequences.

This example illustrates our dilemma: If we abstract
the property along with the plan, the abstraction will
be guaranteed a priori to be an SML. However, by ab-
stracting the property, we risk violating the user's orig-
inal intentions. When is it ok to abstract a property?
There are at least three cases when it is permissible:

(1) When the abstraction is property invariant.

Applying the projection projAC to the Sometimes
property Ps, which states that "Sometimes MAVs
from swarm A enter the region," leaves Ps invariant,
i.e., projAC(Ps) = Ps- Therefore the abstraction is
property invariant. The intuition is that the behavior
of agent B is irrelevant when testing this property.

In general, to determine whether property invariance
holds, an agent must apply abstraction to each prop-
erty P and then check whether P remains unaltered by
abstraction. This simple syntactic check is a form of
incremental re-verification because it is localized to a
test on the property alone. The check has a worst case
time complexity of 0(|P|) for any property P. This
is lower than the worst case time complexity of com-
plete re-verification from scratch (following abstrac-
tion), which is 0(|r(/C)|*|P|) for Invariance and Some-
times properties, where |r(£)| is the number of atoms
in the plan (Lichtenstein & Pnueli, 1984). Further-
more, if the agent will only accept property invariant
abstractions, then the cost of plan abstraction can be
avoided when this incremental check fails.

(2) When the abstraction is property irrelevant.

An example is when the agents discover, or are told
about, a permanent change that henceforth renders
one or more items (e.g., an agent or action) irrelevant.
The term "permanent" in this context means a change

230 Gordon

whose effects are sustained at least until the last agent
has terminated. Because the change is permanent, we
can be assured that no problems are caused by apply-
ing an SML abstraction to the properties.

Consider an example in which a swarm agent be-
comes irrelevant. Suppose the lives of all MAVs in
the B swarm have terminated, e.g., they become per-
manently inoperative, but we wish to continue with
the multiagent plan because the other agents survived.
Then the application of projM to the property Pj has
no significant effect - because Pi is no longer needed.

(3) When the abstraction is property reversible.

Suppose the agents determine that one or more items
are not relevant to the objectives of their multiagent
plan, but this is a temporary change in condition, i.e.,
the items may become relevant again. For example,
agents may disappear to attend to different tasks then
possibly return, and actions may become temporar-
ily disabled due to mechanical failures. Items irrel-
evant to the multiagent objectives could be removed
from the multiagent plan and also from the properties.
Under these circumstances, we want the abstraction
to be property reversible. An abstraction is property
reversible if the pre-abstraction property can be re-
stored, e.g., by saving it. This way we can retest the
original property after undoing the effects of abstrac-
tion.

We only want our agents to perform property irrel-
evant and property reversible abstractions when ab-
straction is restricted to removing irrelevant items. If
agents are not told relevance, they may need to per-
form relevance determination, perhaps using methods
such as those of Subramanian (1988). Other research
related to the ideas in this section includes feature se-
lection (see http://ai.iit.nrc.ca/bibliographies/feature-
selection.html), and plan abstraction (Knoblock,
1990).

5 GENERALIZATION

Although we have been unable to obtain positive a
priori results for generalization, this section presents
a novel method for incremental re-verification after
generalization. Efficiency is gained by tailoring in-
cremental re-verification methods to specific prop-
erty classes. Because there are only about a dozen
property classes commonly used in practice (Kurshan,
1994), this seems reasonable to do. The re-verification
method presented in this section is specific to Invari-
ance properties. A method for Sometimes properties

may be found in Gordon (1997b). Methods for other
property classes are currently being investigated.

Generalization differs from abstraction in that you are
not changing the entire Boolean algebra (e.g., taking
a subalgebra) but instead you are increasing the gen-
erality of a transition condition labeling one or more
edges (for simplicity, here we consider one). Gener-
alization is done when the agent discovers that the
transition can/should be taken under a larger set of
circumstances. It is only done to the plan. In the
context of a process, generalization raises the level of
a particular p-state-to-p-state transition condition in
the partial order ^, whereas specialization lowers it,
e.g., as in Mitchell's Version Spaces (Mitchell, 1978).

Formally, we define generalization of the condition
along edge (v,w) as follows. Generalization operator
mlgen : S —*■ S', where both S and S' use Boolean alge-
bra K, is defined as mlgen : MJC(S) —► M/c(S'), where
mlgen(Mic(v,w)) = Mfc(v, w) + z, for some z G IC.6

An example of generalization is the following. The
transition condition associated with the edge ((WAIT,
WAIT, GO-A), (GO, WAIT, GO-B)) in the multi-
agent plan S is (A:MAVs-wait) * (B:MAVs-wait) *
(C:go-A). This could be generalized to ((A:MAVs-
wait) * (B:MAVs-wait) * (C:go-A)) + ((A:MAVs-wait)
* -i(B:MAVs-wait) * (C:go-A)), i.e., (A:MAVs-wait) *
(C:go-A) for new plan S'.

To illustrate our incremental approach, recall S satis-
fies the Invariance property Pj which states that "only
one MAV enters the region at a time," i.e., Q (->
((A:MAVs-go) * (B:MAVs-go))). We could check this
property against the entire, new plan S', but a prefer-
able alternative is to simply check it against the new
addition to the transition condition, namely, is Pj sat-
isfied by (A:MAVs-wait) * -> (B: MAVs-wait) * (C:go-
A)? In fact it is, because (A:MAVs-go) is not true, and
that is all we need to know to be sure that the mlgen

just applied is an SML. We can now formalize this.

Let us consider the Invariance property P = Q p for
c-state formula p. Let y be the existing transition con-
dition for edge (v,w) in plan S, i.e., M/c(v,w) = y. We
previously defined what it means for a c-state formula
p to be true at a c-state, but it is also useful to de-
fine what it means for a c-state formula to be true of
a transition condition. Let T(/C) = {a | a G T(AC)
and a < y}. A c-state formula p is defined to be true
of a transition condition y, i.e., y \= p, if and only if
Vaer(AC)y,a^p.

55' differs from S only by the results of mlgc„-

Well-Behaved Borgs, Bolos, and Berserkers 231

Assume every string x in C{S) satisfies Invariance
property P, so for each x, p is true of every atom
in x. This implies y \= p.7 Now we generalize the
edge (v,w) to form S' via mlgen (MJC(V,W)) = y+ z.
This operator mlgen is an SML with respect to Invari-
ance property P if and only if S' \= P, which is true
if and only if z |= p. The reason for this is that we
know S satisfies P from our original verification, and
therefore p is true for all atoms in all strings in C(S).
The only new atoms in C(S') but not in C(S) are in
r(/C)z. Therefore, if z \=p, then p is true for all atoms
in C(S'), which implies every string in JC(S') satisfies
P, i.e., S' \= P. Therefore, re-verification need only
test whether z \= p, i.e., Va £ T(/C)^, a ■< p. (We as-
sume transition conditions are represented extension-
ally, i.e., as the unique sum of atoms equivalent to the
Boolean expression.) If z ^ p, S' |£ P.8 This test
is incremental because it is localized to just checking
whether the property holds of the newly added atoms
in z, rather than all atoms in C(S').

For example, suppose a, b, c, d, and e are atoms, and
the transition condition y between v and w equals a.
Let (a, b, b, d) be an accepting string of S that in-
cludes v and w as the first two vertices in its accepting
run. The property is P = Q-i e. Assume the fact that
this string satisfies -> e was proved in the original ver-
ification. Suppose mlgen generalizes M)c(v,w) from a
to (a + c), which adds the string (c, b, b, d) to C(S').
Then rather than test whether the elements of { a, b,
c, d } are < -i e, all we really need to test is whether
c^-ie- because c is the only newly added atom.

By storing and reusing knowledge from previous veri-
fication^), we can increase the efficiency of this test.
Suppose some atoms a such that a < z were tested
for a < p during previous verification(s), and the out-
comes of these tests were stored. Then lookup will
suffice, and the only atoms in T(IC)Z that need to be
tested against p during the current re-verification are
those not previously tested.

What cost benefit(s) does incremental re-verification
have over complete re-verification from scratch? Ver-
ification, or complete re-verification from scratch, in
the worst case has time complexity 0(|r(/C)| * \p\) for
Invariance properties, where |r(£)| is the total number
of atoms, and \p\ is the length of the c-state formula
p (Lichtenstein & Pnueli, 1984). This is because the

7This statement is based on our assumption that (v, w)
is part of an accepting run for at least one x € £■{$)■ This
assumption motivates re-verification.

8That is, unless (v, w) is not part of any accepting run
- but then the test is unnecessary.

c-state formula may have to be tested in every unique
c-state, which is an atom. \T(K,)\ is exponential in
the number of single agent plans forming a multiagent
plan. In the worst case, incremental re-verification
has the same time complexity, but this would be a
very bizarre situation indeed. It would require that no
atoms were tested against the property in the original
verification (which could occur if C(S) were empty),
and all atoms are added to the transition condition
during generalization, i.e., Va £ T(/C), a -< z.

Let us consider a more realistic comparison. The worst
case time complexity for complete re-verification as-
sumes all c-states are reachable from some initial p-
state. This may not be true, e.g., the number of ini-
tial p-states might be very small. Re-verification is
required to determine Vx £ C(S') whether x |= P. At
the very least, complete re-verification of an Invariance
property P = H p must test whether a:,- |= p Va:,- in x,
Vx £ C(S'). The complexity of this test is C'complete =
0(|r(/C)£(S;J * |p|), where |r(/C)£/s,J is the number
of unique atoms in all strings x £ JC(S').

A more realistic cost estimate for incremental re-
verification is Cincrem = 0(\T(IC)s^\ + (\T(IC)n3^*
\p\)), where T()C)s,z-< (r(/C)ns/^) contains atoms whose
results are (are not) previously stored. The first ad-
dend is the cost of lookup of results from previous ver-
ification^), and the second addend is the cost added
by testing the atoms that were not previously tested.
Whenever generalization is reasonably conservative,
i.e., |T(JC)J << |r(£)£(s'll' incremental can provide
considerable savings over complete re-verification!

6 DISCUSSION

Here we have addressed the question of how agents can
adapt (learn) safely, i.e., by preserving critical prop-
erties, and how they can do this in a time-efficient
manner. We extended the work of Gordon (1997a) to
obtain positive results for two popular machine learn-
ing methods: abstraction and generalization. For ab-
straction to be a priori safe (property-preserving), the
property must also be abstracted. This paper enu-
merates situations in which it is permissible to ab-
stract the property. Furthermore, novel incremental
re-verification methods are presented for abstraction
and generalization. These methods have the potential
to provide large computational savings over complete
re-verification from scratch. With our methods (in-
cluding a priori), agents can use abstraction and gen-
eralization to adapt to novel situations, and can do so
with quick checks that ensure the reliability of their

232 Gordon

behavior.

There is a small amount of prior research on incre-
mental re-verification. Reps and Teitelbaum (1989)
developed a verifier for users to check their code while
writing in traditional programming languages, such as
PL/I. Their verifier can incrementally re-check soft-
ware after edits using Hoare-style proofs. However,
unlike our re-verification methods, these proofs require
some interaction with the user. Sokolsky and Smolka
(1994) have an incremental method for verifying added
or deleted state transitions in an automaton-like repre-
sentation. However they do not address generalization
or abstraction. Finally, Weld and Etzioni (1994) have
a method to incrementally test an agent's plan to de-
cide whether to add new actions to the plan. There
are certain similarities between our work and that of
Weld and Etzioni. They add actions to a plan only
when their effects do not violate dont-disiurb proper-
ties, which are a type of Invariance property. Our gen-
eralization also adds actions to a plan. Furthermore,
both approaches localize verification. The main differ-
ences are that unlike Weld and Etzioni, we: (1) use
a formal foundation based on the verification litera-
ture, in particular, model-checking and automata, (2)
assume the existence of prior verification knowledge
and use this knowledge to streamline re-verification,
(3) use reactive rather than necessarily goal-oriented
plans, and (4) address abstraction.

One aspect of Weld and Etzioni (1994) that was pur-
posely not addressed here is that of how to select
which method to use in repairing a plan. This is a
rich issue for future research, and could draw on cost-
effective methods such as those of Joslin and Pollack
(1994). Rather than repair, this paper focuses on re-
verification. We are unaware of any methods besides
ours for incrementally re-verifying abstraction or gen-
eralization in automata. Much more work remains
to be done on the important topic of incremental re-
verification - especially for adaptive agents.

Acknowledgments

Thanks to Bill Spears and Sampath Kannan for useful
inputs on this paper. Bill suggested the alliterative
title. This research was sponsored by the Office of
Naval Research N001498WX20296.

References

Asimov, I. (1942). Runaround. In Astounding Science
Fiction.

NCARAI Technical Report 97-016. Also submitted
to Machine Learning.

Gordon, D. (1997b). Machine learning and finite-
lifetime agents: Some preliminary results. NCARAI
Technical Report 97-017.

Hopcroft, J. k Ullman J. (1979). Introduction to Au-
tomata Theory, Languages, and Computation. Menlo
Park: Addison-Wesley.

Joslin, D. k Pollack, M. (1994). Least-cost flaw repair:
A plan refinement strategy for partial-order planning.
Proceedings ofAAAI94 (pp. 1004-1009). AAAI Press.

Knoblock, C. (1990). A theory of abstraction for hier-
archical planning. In D. P. Benjamin (Ed.), Change of
Representation and Inductive Bias. Norwell: Kluwer
Academic Publishers.

Kurshan, R. (1994). Computer Aided Verification of
Coordinating Processes. Princeton, N.J.: Princeton
University Press.

Laumer, K. (1976). Bolo, The Annals of the
Dinochrome Brigade. New York, N.Y.: Berkeley Pub-
lishing Corp.

Lichtenstein, O. k Pnueli, A. (1984). Checking that
finite state concurrent programs satisfy their linear
specifications. Proceedings of the Twelfth ACM Sym-
posium on Principles of Programming Languages (pp.
271-276).

Manna, Z. k Pnueli, A. (1991). Completing the tem-
poral picture. Theoretical Computer Science, 83(1),
97-130.

Mitchell, T. (1978). Version Spaces: An Approach to
Concept Learning. Ph.D. thesis, Stanford University.

Reps, T. k Teitelbaum, T. (1989). The Synthesizer
Generator. New York: Springer-Verlag.

Saberhagen, F. (1967). Berserkers. New York: The
Berkley Publishing Group.

Sokolsky, O. k Smolka, S. (1994). Incremental model
checking in the modal mu-calculus. Proceedings of
Computer-Aided Verification.

Subramanian, D. (1988). A Theory of Justified Refor-
mulations. Ph.D. thesis. Stanford University.

Weld, D., k Etzioni, O. (1994). The First Law of
Robotics. Proceedings of AAAI9J, (pp. 1042-1047).
AAAI Press.

Gordon, D. (1997a). Asimovian adaptive agents.

233

Solving a huge number of similar tasks: a combination of multi-task
learning and a hierarchical Bayesian approach

Tom Heskes
Foundation for Neural Networks

Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
tom@mbfys.kun .nl

Abstract

In this paper, we propose a machine-learning
solution to problems consisting of many sim-
ilar prediction tasks. Each of the individual
tasks has a high risk of overfitting. We com-
bine two types of knowledge transfer between
tasks to reduce this risk: multi-task learning
and hierarchical Bayesian modeling. Multi-
task learning is based on the assumption that
there exist features typical to the task at
hand. To find these features, we train a huge
two-layered neural network. Each task has
its own output, but shares the weights from
the input to the hidden units with all other
tasks. In this way a relatively large set of
possible explanatory variables (the network
inputs) is reduced to a smaller and easier
to handle set of features (the hidden units).
Given this set of features and after an appro-
priate scale transformation, we assume that
the tasks are exchangeable. This assumption
allows for a hierarchical Bayesian analysis in
which the hyperparameters can be estimated
from the data. Effectively, these hyperpa-
rameters act as regularizers and prevent over-
fitting. We describe how to make the system
robust against nonstationarities in the time
series and give directions for further improve-
ment. We illustrate our ideas on a database
regarding the prediction of newspaper sales.

1 INTRODUCTION

1.1 PROBLEM DESCRIPTION

In this paper, we focus on problems such as

• efficient distribution of newspapers and maga-
zines;

• predicting gas consumption of different compa-
nies;

• analyzing sales figures of many company
branches;

• optimizing stock selection and portfolio manage-
ment.

The main characteristic of each of these problems is
that they are in fact composed of many similar predic-
tion tasks. These individual tasks usually have a low
signal-to-noise ratio: in some cases one would be happy
if one could explain 10 percent of the variance in the
data. Because of the large amount of different tasks,
any performance improvement is almost immediately
significant, both financially and statistically. Further-
more, in most cases one can easily come up with quite
a few (possibly) explanatory variables. For example,
in predicting sales figures, one may want to include
some of the recent sales figures, sales figures from the
same period last year, sales figures from other com-
panies, different kinds of weather information, and so
on. Overfitting then becomes a major concern. The
question addressed in this paper is therefore: how can
we exploit the benefit of not having a single predic-
tion task but a whole set of seemingly similar tasks,
such that we can reduce the risk of overfitting in a
computationally feasible way?

We propose to combine two approaches: multi-
task learning, suggested in the neural-network
and machine-learning community, and hierarchical
Bayesian modeling, developed in the statistics com-
munity. Multi-task learning is treated in Section 2.
The idea is that tasks can learn from each other by
sharing the same features. The underlying assump-
tion is that such features, typical to the task at hand,
indeed exist. Hierarchical Bayesian modeling applies

234 Heskes

when one can rely on the assumption that a priori,
i.e., before taking into account the data itself, there is
no information to distinguish the model parameters of
any one task from those of any of the other tasks. We
will describe hierarchical modeling in Section 3.

We will illustrate our ideas on a database concern-
ing the prediction of newspaper sales. This database
consists of several years of weekly sales figures for a
set of 343 different points of sale. Each points of sale
represents a different time-series prediction task. In
Section 1.2 we first discuss how to make the tasks
"sufficiently similar", i.e., such that we can apply the
approach proposed in Section 2 and 3. Although our
examples include collections of time-series tasks, our
analysis in these sections in completely static. In Sec-
tion 4.1 we therefore describe a first crude attempt to
handle nonstationarities in the data. Section 4 further
links the different components together, recapitulates
the assumptions and discusses directions for further
improvements.

c
.2 1

'>
0) n

CO n c
«0

10"

10 10 10
average sales

Figure 1: Average newspaper sales 0,- versus the cor-
responding standard deviation for 343 different points
of sale. The dashed line is the least squares fit of the
logarithm of the standard deviation as a function of
the logarithm of the average sales.

1.2 MAKING TASKS SIMILAR

The underlying assumption of both the multi-task
learning approach and the hierarchical Bayesian ap-
proach is that the different tasks can be considered
similar. This is not always immediately obvious. As
can be seen for example from Figure 1, where we plot-
ted the averages sales of 343 newspaper points of sale
versus their standard deviation, the typical number of
single copies sold at each outlet ranges from just a
few to a few hundred. Still we want to assume that
the tasks are, in some sense, exchangeable. In Sec-
tion 2 this implies that sales figures, when used as
explanatory variables, should have more or less the
same meaning: 20 newspapers may be quite a lot for a
small outlet, but are well below average for a large out-
let. Similar reasoning applies to the scaling of model
parameters in our choice of prior distributions in Sec-
tion 3. In the newspaper example, our working hy-
pothesis will be that the points of sale are exchange-
able, after correcting for their typical scale.

Such a correction can be accomplished by normalizing
the sales figures for each outlet separately. The strong
correlation between the average sales and the noise
level in Figure 1 (i?2 = 0.90 on the logarithmic scale)
suggests that we can represent the typical scale of each
individual outlet through just one parameter 0,, denot-
ing the average sales of outlet i. We can correct for
this typical scale by normalizing all sales figures using
this average and the fitted standard deviation as given
by the dashed line in Figure 1.

2 MULTI-TASK LEARNING

2.1 ARGUMENTATION

We want to build and train a model relating a set of
explanatory variables x to an output z. First we have
to choose which explanatory variables to include in
such a model. Typically, it is easy to come up with on
the order of njnpUts « 20 input variables (see for ex-
ample Table 1 where we describe the explanatory vari-
ables incorporated in our newspaper example). With
on the order of a hundred training patterns per task
and a low signal-to-noise ratio, any attempt to fit a
direct model between the input variables and the tar-
gets corresponding to a single task, is doomed to lead
to overfitting and thus lousy prediction performance.

We need some preprocessing stage transforming the
"inputs input variables x into a small set of say
"features « 3 features y, typical to the task at hand. In
practice, one often tries to find these features through
an iterative process of thinking and testing (see also
Figure 4). For example, one tries several ways of com-
bining the most recent sales figures into a single num-
ber, tests each of them, and takes the best. Here we
propose to learn this transformation. We combine all
tasks into one big network (see Figure 2). The in-
put units are connected to the hidden (feature) units
through a weight matrix B. The weight vector con-
necting the hidden units to the output unit corre-
sponding to task i is denoted A,. In other words, all

Solving a huge number of similar tasks 235

outputs

the targets D,- = {tf} are independently and iden-
tically distributed (iid) given the inputs /,- = {zf},
model parameters Ai and <r,- and feature matrix B, we
can compute the probability of observing these targets
through

P(Di\Ii, At,(Ti,B) oc exp[-E(Ai,<r,-,B\Duh)\ , (2)

where we have defined the error

E{Ai,*i,B\Di,Ii) = -'%2 (t 2
J -log<r,

explanatory variables

Figure 2: Typical network structure: a reasonably
large number of input units, a small number of hid-
den units, and huge number of output units.

tasks share the weight matrix B, but have independent
weight vectors Ai.

In this paper, we will consider the case of linear hid-
den units. Given an input vector x, the features and
outputs are then computed through

(3)
with the output z? computed as in (1). For notational
convenience we will from now on leave out the explicit
dependency on the inputs U. The iid assumption may
be too strong for time-series prediction tasks. We will
come back to that in Section 4.1.

We propose to find an appropriate feature matrix B
through a maximum likelihood procedure: we mini-
mize the error (3), averaged over all «tasks tasks and
obtain the maximum likelihood solutions BML, A^L

and TML

Vi YjBjkXk and zi = Ai0 + Y^Aiiyi, (1) 2.2 SIMILAR IDEAS

where Z{ refers to the output corresponding to task
i. We will use Ai to denote the set of all hidden-
to-output weights specific to each task, i.e., Ai =
{AJO, • • .,j4,-,nfeatures}- We refer to Ai and <T,- as the
set of model parameters of task i.

The inputs x can be divided into two categories: those
with equal input values across all tasks and those with
input values specific to a particular task. Nonspecific
inputs in the newspaper example (see Table 1) are e.g.
seasonal variables and weather figures (we considered
the "average" weather across The Netherlands instead
of more local weather figures). The specific inputs
should have more or less the same meaning across all
tasks. This is accomplished by the transformation of
the sales figures described and discussed in Section 1.2.
We will use Xj to denote the set of inputs correspond-
ing to task i.

Hidden units do not have bias units: it is easy to see
that these can be scaled away into the bias of the out-
put units. We further assume a Gaussian noise model
with standard deviation &{, which is different for each
task, but independent of the inputs a;,-. Assuming that

There has been quite a lot of interesting research in
the area of inductive transfer, yielding both empirical
and theoretical evidence that multi-task learning im-
proves performance (see [10] for collections of papers
on multi-task learning). In [1] the advantage of com-
bining several tasks is investigated theoretically, under
the assumption that a feature matrix B common to all
tasks indeed exists.

In most approaches to multi-task learning (see e.g. [2]
and references therein), all tasks receive the same in-
put information, i.e., all inputs are nonspecific. As
in our case, the different tasks are forced to share
the same hidden unit representation. Often, but not
always, this leads to a better generalization perfor-
mance [2]. The problems considered in the litera-
ture are mostly artificial and combine on the order
of 10 or less tasks. An exception is [7], where different
tasks concerning stock selection and portfolio manage-
ment are combined in various ways. This experimental
study is probably closest in spirit to our multi-tasking
approach, but its number of tasks (36) is still much
smaller than the 343 real-world tasks that we use in
our simulation.

236 Heskes

Group # Type Bi B2 B3

last year sales 3 specific 0.8 54.1 2.9

last year sellouts 3 specific 0.6 1.0 3.6

recent sales 5 specific 93.5 15.4 0.4

recent sellouts 5 specific 1.9 2.9 10.6

weather figures 5 nonspec. 1.2 15.8 15.0

season variables 2 nonspec. 1.9 10.7 67.6

Table 1: List of input variables (see text for further
explanation) on the lefthand side. Numbers on the
righthand side give the percentage of variance of the
features explained by a particular group of input vari-
ables.

2.3 FEATURES FOR THE PREDICTION
OF NEWSPAPER SALES

The explanatory variables that we took into account
are summarized in Table 1. We normalized all non-
specific variables. Sales figures were rescaled for each
outlet separately as described in Section 1.2. Sellout
figures were not rescaled: a sellout is represented by 1,
a non-sellout by 0. Recent figures start from 4 weeks
ago (the time it takes to collect and administrate all
sales figures) and end at 8 weeks ago. Figures from
last year are from exactly the same week and the week
just before and after that. Weather information in-
cludes temperature (relative to the average tempera-
ture at the time of year), wind velocity, percentage
sunshine, and precipitation (both amount and dura-
tion). We slightly changed the definition of the prob-
ability model (2) and error (3) to incorporate sellouts
(number of sold copies equal to the number of deliv-
ered copies) and to take into account that newspaper
sales is always integer.

We trained networks with «features = 1 to 8 hidden
units. The percentages in Table 1 indicate what part
of the variance in each of the features is explained by
a particular group of input variables for natures = 3.
The features are ordered from most to least relevant.
The first feature strongly focuses on the recent sales,
the second mostly on the sales from last year, the third
mostly on the seasonal variables. Sellouts and weather
figures seem to play a minor role, although especially
the weather figures explain some of the variance of the
second and third feature.

We can also compute the variance in the outputs ex-
plained by each group of input variables. The cir-
cles in Figure 3 show these percentages for different

numbers of hidden units. With any number of hidden
units, the recent sales figures come out to be most rele-
vant. There are, however, interesting differences: a re-
markable increase in the relevance of seasonal variables
when going from one to two hidden units, a similar in-
crease in the relevance of the recent sellouts when go-
ing from two to three hidden units, and somewhat less
dramatic increases in last year's figures and weather
information.

3 HIERARCHICAL BAYES

3.1 BAYESIAN MODELING

In this section, we replace the maximum likelihood ap-
proach of the previous section by a Bayesian approach.
We will focus on a Bayesian inference of the model pa-
rameters Aij and standard deviations <x,, given the
feature matrix BML obtained in the previous section.
The underlying assumption is that, if there indeed ex-
ist features typical to the task of predicting newspaper
sales, it should not matter too much whether we find
these through an, in this context computationally un-
feasible, Bayesian approach or through a much simpler
maximum likelihood procedure. Furthermore, we are
making lots of other assumptions: our choice of possi-
ble explanatory variables, the number of hidden units,
the linear transfer function and thus restriction to find
linear relationships, and so on. Each set of assump-
tions corresponds to a different model or hypothesis
%. We can simply include BMh in our definition of
%. In the following, all probability distributions are
conditioned on this %. We will omit this explicit de-
pendency from our notation.

Equation (2) gives the probability distribution of the
data for a single task given its model parameters. The
probability distribution of all data follows from

P(V\A) = HP(Di\A>),
i

where A{ now stands for all model parameters of
task i (including the standard deviation <T;), A =
Mi ^tukl}, and V = {A,..., A,lMk.}. In a
Bayesian analysis, we infer the probability of the model
parameters given the data using Bayes' rule:

P(A\V) =
P(V\A)P(A)

P(V)
(4)

where P(V) is a normalization factor independent of
the model parameters and P(A) is a prior distribution
of the model parameters.

Solving a huge number of similar tasks 237

6
T3
<D
C
'a 5
Q. x
IB
0)4
O)
(0
4-*
c
CD o
ß3
<B
Q.

1 1 1 1 1 1 1 1 i i i i i i i i na<i?i i i i i— 1 1 1 1 1 1 1" 1 —1 1 1 1 1 1 1 1— i i i i i I'll

- (4 - /

7 -

pOeO f
0°o

l

fVW

;
 II -**»SUULJL

oo

I I i i i i i I *
12345678 12345678 12345678 12345678 12345678 12345678

last year's sales recent sales weather figures
last year's sellouts recent sellouts seasonal variables

Figure 3: Percentage of variance explained by each group of input variables for various numbers of hidden units:
maximum likelihood solution (circles, dashed lines) and most probable solutions (crosses, solid lines).

We take a Gaussian prior on the model parameters
Ai = {>W--,^.\nfelture3+l}, with Ai,nfeatures+1 =
logo-;:

P(Ai\A) oc exp -(A, -m)TX(Ai -m)

where A = {A, m} is called a set of hyperparameters
with A an [(natures + 2) x («features + 2)]-dimensional
symmetric matrix and m an («features + 2)-dimensional
vector. The model parameters of each task are as-
sumed to be exchangeable, i.e.,

P(A\A) = Y[P{Ai\A)-
i

This exchangeability assumption can be compared
with the iid assumption in (2). It implies that, prior
to the arrival of data, the probability distribution of
the model parameters is invariant under renumbering
of the tasks. This is not directly obvious, but may be
a reasonable assumption if the outputs for each of the
tasks are appropriately rescaled, as discussed in Sec-
tion 1.2. Another interpretation is that the parameters
of the different tasks are penalized by the same set of
hyperparameters.

In an exact Bayesian procedure, one should always
integrate out the hyperparameters. In a hierarchical

Bayesian procedure, we approximate (4) through

P{A\V) = fdAP{A\A,V)P{A\V)nP(A\AUP,V),

with AMP = argmaxF(A|X>).
A

The procedure is called hierarchical to indicate that
the hyperparameters are inferred at a higher level than
the model parameters. The idea behind this approx-
imation is that the distribution P(A|Z>) is sharply
peaked around its most probable value AMP. In our
case, where we can use the data for all ntasks tasks
to infer the most probable AMP, this approximation is
extremely accurate and useful. We will simply take an
(improper) flat prior for A, i.e., P(A) oc 1, such that
the most probable AMP is in fact equivalent to the set
of maximum likelihood hyperparameters AML.

3.2 RELEVANT LITERATURE

A nice overview of hierarchical (also called empirical)
Bayesian modeling, with both a discussion of its under-
lying assumptions and lots of references to its applica-
tions in statistics, can be found in [6]. Our approach is
quite similar in spirit to the use of empirical Bayesian
techniques in law school validity studies, described and

238 Heskes

discussed in [9]. James-Stein estimation can be viewed
as the frequentists' equivalent of hierarchical Bayesian
modeling. A nice link is provided in [4],

In the neural-network community, hierarchical Bayes
is often referred to as the evidence framework [8]. The
focus is on learning a single task, where the prior dis-
tribution of the weights (usually a diagonal matrix A
and m equal to zero) is chosen to reflect the belief
that weights should be small. This yields the Bayesian
justification for weight decay or ridge regression. Al-
though from a technical point of view our analysis is
at some points quite similar, the meaning of the prior
distribution is different: our choice of priors has noth-
ing to do with an a priori assumption of small weights,
only with exchangeability under a Gaussian probabil-
ity model.

3.3 INFERENCE OF THE
HYPERPARAMETERS

To find the most probable set of hyperparameters
AMP, we have to maximize the posterior distribution
P(A\T>). One way of doing this is through an EM al-
gorithm (see e.g. [6]). The multi-task situation allows
for quite a lot of simplifications, which in the end lead
to update equations for A(n). Here we only state the
result:

m(n + 1) = V] Ai(n)
fttasks .

t

"tasks
i

—J— J2 [Ä-W - m(n + 1)] [Mn) - m(n + 1)]T
n

tasks

where Ai(n) and E?(n) are the mean and variance
of the distribution P(A\D{, A(n)), respectively. The
second term on the righthand side measures the vari-
ance between the most probable solutions [given A(n)]
for the different tasks, the first term the variance of
P(A\Di, A(n)) around these most probable solutions,
averaged over all tasks. We can use Laplace's method
(see [6]), based on a quadratic Taylor expansion of
logP(j4|jD;, A(n)) around its mode, to find approxi-
mations for Ai(n) and T,f(n):

Äi(n) ss argmax \ogP(A\Di, A(n))
A

and EftrOwJff.-M + An]-1,

where the Hessian matrix H{(n) of the error E(A\Di)
has to be evaluated at Ai(n):

«,,„). *!£""D'>
0AdAT

A = A,(n)

Laplace's method becomes more and more accurate for
large sample sizes p per task.

The EM algorithm is intuitive and computationally
feasible with the approximation suggested by Laplace's
method. A disadvantage of the EM algorithm is that
its convergence can be rather slow. A more direct
method can be obtained if we make a stronger assump-
tion, namely that the error E(A\Di) is approximately
quadratic in the model parameters A, i.e.,

1
E(A\Di) * E{ATl'\Di > + ^- A^T Hi(A-A^),

with ylfL the maximum likelihood solution minimiz-
ing E(A\Di) and Hi the Hessian evaluated at A™1'.
This is the approximation frequently applied in the
evidence framework for neural networks (see e.g. [8]).
Now all integrations needed to compute

P(A|2>) oc Y[jdAP{Di\A)P(A\\),

are over Gaussian probability distributions, yielding

logP(A|P) = -l^A^-mfZiWiA^-m)

+ i^log[detZ,(A)], (6)

with Z{(\) = (H~l + A-1) and where we neglected
irrelevant additive constants. The most probable AMP

maximizes (6) and can be found using e.g. a standard
BFGS quasi-Newton algorithm.

3.4 SIMULATIONS

In our newspaper example, the approximation (5) ap-
peared to be extremely accurate. AMP was therefore
obtained through direct optimization of (6). Given
this AMP, we computed the most probable model pa-
rameters AMP exactly, i.e., without making the ap-
proximation (5). The difference between the calcu-
lation of the maximum likelihood solutions and the
most probable solutions is that the latter are regular-
ized through the hyperparameters AMP.

In the previous section we noted dramatic changes
in the relevance of groups of input variables with in-
creasing number of hidden units. The relevances for

Solving a huge number of similar tasks 239

the most probable solutions, shown by the circles in
Figure 3, are surprisingly constant across the differ-
ent networks with «features > 1: given the correct
prior parameters AMP, the most probable solutions are
roughly the same. Especially the influence of the sell-
outs, which seemed to be highly relevant according to
the maximum likelihood solutions, almost completely
vanishes.

4 DISCUSSION AND
CONCLUSION

4.1 DEALING WITH
NONSTATIONARITY

Until now, our analysis has been completely static.
However, the typical examples given in Section 1 are
mostly time-series prediction problems, for which the
iid assumption (2) can be too strong. Suppose that
we want to predict the output z at "time" fx given
inputs x1* (we leave out the index i for notational con-
venience). As in the previous sections, we fit the pa-
rameter set A = {6, A, a} on a training set containing
the most recent p patterns. This is a kind of "sliding
window approach": with the addition of every new
pattern, the oldest pattern is deleted from the train-
ing set. With a delay of «delay patterns between the
most recently available pattern and the output to be
predicted, the training set ends at (X — «delay The
naive sliding window approach now computes the out-
put from the input xß and the scale and model parame-
ters A'l-"delay, which in a way assumes stationarity of
the scale and model parameters, i.e., A*1 « A'4-nde,ay.
This naive approach may work fine for many predic-
tion tasks, but leads to lousy predictions on some of
them.

To take nonstationarity into account, we add a correc-
tion term to the uncorrected prediction:

^+"delay _ '*+"delay , A ^
corrected uncorrected "■* '

The parameter set A used to compute the uncorrected
zuncorrected *s determined as before and we still make
the assumption that this parameter set is roughly sta-
tionary on a time scale of a few patterns. Any nonsta-
tionarity should be corrected through A*1. A simple,
but efficient procedure for updating AM is through an
exponential smoothing procedure:

*" = «<ncorrected + (l-«)ÄM_1 = ^corrected + Ä^1,

with ^corrected = ^ and eü„

corrected

uncorrected IMIU "^corrected
the difference between the target and

the uncorrected and corrected prediction, respectively,
a is a so-called smoothing parameter and 1/a corre-
sponds to a typical time scale. It seems reasonable
to choose the same a for all tasks. Furthermore, it is
well-known (see e.g. [3]) that the precise setting of the
smoothing parameter in exponential smoothing hardly
affects the prediction performance (see also Figure 4).
Perfectly stationary tasks hardly suffer from the extra
correction, since their errors e(|ncorrec(.ed and e£orrected

tend to average out anyways.

4.2 TEST PERFORMANCE

Some results are displayed in Figure 4. All ideas pre-
sented in this paper have been implemented and tested
on the prediction of newspaper sales for 343 points of
sale. The test set consists of 85 weeks after the training
set that has been used for computation of the feature
matrix, hyperparameters and most probable model pa-
rameters. The model parameters are updated weekly
using the sliding windows approach described above.
The hyperparameters and feature matrix have been
kept constant. The test error is minus the loglikeli-
hood, averaged over both patterns and points of sale.

The network with two hidden units appears to be the
best. The regularization through the Bayesian ap-
proach cannot completely avoid the risk of overfitting.
On the other hand, the best solution without regular-
ization (not shown) is the one with one hidden unit,
with a test error of about 2.7, increasing rapidly for
more hidden units. The star shows the test perfor-
mance for a fixed choice of the feature matrix B, made
before the start of this project after quite a lot of it-
erations of thinking, trying and testing. The solution
obtained through the multi-tasking approach is signif-
icantly better. The righthand side shows the sensitiv-
ity to the choice of the smoothing parameter. Taking
a = 0 is suboptimal: at least for some points of sale,
the time series are clearly nonstationary. Any choice
of a typical smoothing time between half a year and a
year leads to about the same performance.

4.3 STATIONARITY AND SPECIFICITY

A summary of the most important parameters in the
complete system is given in Table 2. At the highest
level, we have global parameters as the number of fea-
tures «features and the smoothing parameter a. The
choice of these scalar parameters is not extremely crit-
ical (see Figure 4) and can be based either on experi-
ence with similar databases or by testing a few differ-
ent alternatives. This is much less the case for the next

240 Heskes

2.685 2.685

2.665
12 3 4 5 6 7 8
number of hidden units

2.665
20 40 60 80

1 / smoothing parameter

Figure 4: Test error (minus loglikelihood) averaged over 85 weeks and 343 points of sale. Error bars indicate the
significance of the difference with the best solution. Lefthand side: as a function of the number of hidden units
for smoothing parameter a = 0.05. The star corresponds to the performance with a choice of three features
obtained after extensive trial and error. Righthand side: as a function of the typical smoothing time (number of
weeks) for the network with two hidden units.

level of parameters: the input-to-hidden weights and
the hyperparameters of the prior distribution. These
parameters are typical to the task at hand. For exam-
ple, in predicting newspaper sales, they may be quite
different for different days of the week. They can be
optimized on a representative set of tasks and kept
fixed afterwards. The model and scale parameters as
well as the correction terms are obviously specific to
each task. We assume that the model parameters are
roughly stationary over the length of the training set
and can thus be determined through a sliding window
approach. The correction terms can be interpreted
as corrections to the scale parameters. These may be
much less stationary and should be updated with the
addition of every single pattern.

4.4 IMPROVEMENTS AND FURTHER
DIRECTIONS

Let us recapitulate our approach and underlying as-
sumptions. We started with the observation that we
needed some transformation from the possibly quite
high-dimensional input space to a much lower dimen-
sional feature space. We proposed to learn this trans-
formation through a maximum likelihood procedure
on the weights of a huge network containing all tasks.
In this we did not incorporate any prior information,
nor did we worry about nonstationarity of the time
series involved. Keeping the weights from input to
hidden units fixed, we then performed a hierarchical
Bayesian analysis to compute hyperparameters, which,
roughly speaking, gave us the proper regularization of
the model parameters specific to each task. Again,

we disregarded any of the nonstationarity in the data.
Finally, keeping both the hyperparameters and input-
to-hidden weights fixed, we proposed an exponential
smoothing procedure to correct for nonstationarities.

We might try and think of ways to integrate the parts
of our approach, instead of applying them sequentially.
For example, it may be possible to treat the input to
hidden weights as hyperparameters, i.e., at the same
level as the hyperparameters A for the mean and vari-
ance of our prior distribution. The problem here is
that it is much more difficult to compute how a change
in the hyperparameters of the prior distribution af-
fects the input-to-hidden weights than vice versa. Our
treatment follows from the assumption that this ef-
fect is negligible for practical purposes. It is not easy
to see how to go beyond this simplification, without
having to rely on procedures that are computationally
unfeasible for any reasonable number of tasks.

About integrating nonstationarity and the Bayesian
hierarchical analysis, we may be somewhat more pos-
itive. There has been some recent work, which can
be viewed as a first attempt to combine Kaiman fil-
tering and the Bayesian evidence framework [5]. In
this approach the hyperparameters are recomputed
every time step. Similar ideas may be applicable to
our multi-task situation, although also here we have
to worry about the computational feasibility.

Another improvement could be to work with a more
complicated prior for the model parameters of the dif-
ferent tasks than the Gaussian considered in this pa-
per. One suggestion is to take another functional form,

Solving a huge number of similar tasks 241

Symbol Description Time Tasks Procedure

"features

a

number of hidden units

smoothing parameter

constant

constant

same

same

experience/test performance

experience/test performance

B

A

input-to-hidden weights

hyperparameters

constant

constant

same

same

multi-task learning

Bayesian inference

0

A

scale parameters

model parameters

sliding window

sliding window

specific

specific

maximum likelihood

MAP estimation

A correction terms single pattern specific exponential smoothing

Table 2: Characteristics of the most important parameters.

for example, a cluster of Gaussians or a prior which
forces each task to focus on a subset of the available
features. An even more appealing approach would be
to make the prior distribution dependent on (known)
characteristics of the particular task. In our newspa-
per case, the width and mean of the distribution could
be functions of the distance from the point of sale to
the beach, the population density in the vicinity of the
point of sale, and so on. The hyperparameters to be
inferred from the data would be the parameters in this
functional dependency.

Acknowledgement

This research was supported by the Technology Foun-
dation STW, applied science division of NWO and the
technology programme of the Ministry of Economic
Affairs.

References

[1] J. Baxter. A Bayesian/information theoretic
model of learning to learn via multiple task sam-
pling. Machine Learning, 28:7-39, 1997.

[2] R. Caruana. Multitask learning. Machine Learn-
ing, 28:41-75, 1997.

[3] C. Chatfield. The Analysis of Time Series: an
Introduction. Chapman & Hall, London, fourth
edition, 1989.

[4] B. Efron and C. Morris. Data analysis using
Stein's estimator and its generalizations. Journal
of the American Statistical Association, 70:311-
319, 1975.

[5] J. de Freitas, M. Niranjan, and A. Gee. Regular-
isation in sequential learning algorithms. In Ad-
vances in Neural Information Processing Systems
10, Cambridge, 1998. MIT Press.

[6] A. Gelman, J. Carlin, H. Stern, and D. Rubin.
Bayesian data analysis. Chapman & Hall, Lon-
don, 1995.

[7] J. Ghosn and Y. Bengio. Multi-task learning for
stock selection. In M. Mozer, M. Jordan, and
T. Petsche, editors, Advances in Neural Informa-
tion Processing Systems 9, pages 946-952, Cam-
bridge, 1997. MIT Press.

[8] D. MacKay. Bayesian interpolation. Neural Com-
putation, 4:415-447, 1992.

[9] D. Rubin. Using empirical Bayesian techniques in
the law school validity studies (with discussion).
Journal of the American Statistical Association,
75:801-827, 1980.

[10] S. Thrun and L. Pratt, editors. Machine Learn-
ing. Second Special Issue on Inductive Transfer,
Dordrecht, 1997. Kluwer Academic.

242

Multiagent Reinforcement Learning: Theoretical Framework and an
Algorithm

Junling Hu and Michael P. Wellman
Artificial Intelligence Laboratory

University of Michigan
Ann Arbor, MI 48109-2110, USA

{junling, wellman}@umich.edu
http://ai.eecs.umich.edu/people/{junling,wellman}

Abstract

In this paper, we adopt general-sum stochas-
tic games as a framework for multiagent re-
inforcement learning. Our work extends pre-
vious work by Littman on zero-sum stochas-
tic games to a broader framework. We de-
sign a multiagent Q-learning method under
this framework, and prove that it converges
to a Nash equilibrium under specified condi-
tions. This algorithm is useful for finding the
optimal strategy when there exists a unique
Nash equilibrium in the game. When there
exist multiple Nash equilibria in the game,
this algorithm should be combined with other
learning techniques to find optimal strategies.

1 Introduction

Reinforcement learning has gained attention and ex-
tensive study in recent years [8, 15]. As a learning
method that does not need a model of its environment
and can be used online, reinforcement learning is well-
suited for multiagent systems, where agents know lit-
tle about other agents, and the environment changes
during learning. Applications of reinforcement learn-
ing in multiagent systems include soccer [1], pursuit
games [17, 4] and coordination games [2]. In most
of these systems, single-agent reinforcement learning
methods are applied without much modification. Such
approach treats other agents in the system as a part
of the environment, ignoring the difference between re-
sponsive agents and passive environment. In this pa-
per, we propose that a multiagent reinforcement learn-
ing method should explicitly take other agents into
account. We also propose that a new framework is
needed for multiagent reinforcement learning.

The framework we adopt is stochastic games (also
called Markov games) [5, 18], which are the general-
ization of the Markov decision processes to the case of
two or more controllers. Stochastic games are defined
as non-cooperative games, where agents pursue their
self-interests and choose their actions independently.

Littman [9] has introduced 2-player zero-sum stochas-
tic games for multiagent reinforcement learning. In
zero-sum games, one agent's gain is always the other
agent's loss, thus agents have strictly opposite in-
terests. In this paper, we adopt the framework of
general-sum stochastic games, in which agents need
no longer have opposite interests. General-sum games
include zero-sum games as special cases. In general-
sum games, the notions of "optimality" loses its mean-
ing since each agent's payoff depends on other agents'
choices. The solution concept Nash equilibrium [11] is
adopted. In a Nash equilibrium, each agent's choice is
the best response to the other agents' choices. Thus,
no agent can gain by unilateral deviation.

we are interested in the Nash equilibrium solution be-
cause we want to design learning agent for noncoopera-
tive multiagent systems. In such systems, every agent
pursues its own goal and there is no communication
among agents. A Nash equilibrium is more plausible
and self-enforcing than any other solution concept in
such systems.

If the payoff structure and state transition probabil-
ities are known to all the agents, we can solve for
an Nash equilibrium strategy using a nonlinear pro-
gramming method proposed by Filar and Vrieze [5].
In this paper, we are interested in situations where
agents have incomplete information of other agents'
payoff functions and the state transition probabilities.
We show that an multiagent Q-learning algorithm can
be designed, and it converges to the Nash equilibrium
Q values under certain restrictions of the game. Our

Multiagent Reinforcement Learning 243

algorithm is designed for 2-player general-sum stochas-
tic games, but can be extended to n-player general-sum
games.

Our learning algorithm guarantees that an agent can
learn a Nash equilibrium. But it does not say whether
the other agent will learn the same Nash equilibrium.
When there exist only one Nash equilibrium in the
game, our learning algorithm works effectively. How-
ever, a game can have multiple Nash equilibria. In that
case, our learning algorithm needs to be combined with
empirical estimation of the action choices of the other
agent.

2 Some preliminaries

We state some basic game theory concepts in this sec-
tion. All concepts here refer to single-state (static)
games. In later sections, we will see how the concepts
here are connected to multi-state stochastic games.

For zero-sum games, the payoff matrices of two players
can be described as (M, —M), since one player's payoff
is always the negative of the other. It is sufficient to
simplify the game by either M or —M. Thus, 2-player
zero-sum games are also called matrix games. For 2-
player general-sum games, the agents' payoff matrices
M1 and M2 are unrelated. The solutions of the game
depend on both M1 and M2. Such games are called
bimatrix games.

Definition 1 A pair of matrices (Ml,M2) consti-
tutes a bimatrix game, where M1 and M2 are of the
same size. The payoff rk(a1, a2) to player k can be
found in the corresponding entry of the matrix Mk,
k = 1,2. The rows of Mk correspond to actions of
player 1, a1 € A1. The columns of Mk correspond to
actions of player 2, a2 £ A2. A1 and A2 are the sets
of discrete actions of players 1 and 2 respectively.

Next, we state some solution concepts for bimatrix
games. The main concept is Nash equilibrium [12].
In a Nash equilibrium, each agent's action is the best
response to other agents' choices.

Definition 2 A pure strategy Nash equilibrium for
bimatrix game G is an action profile (al,a2) such that

^{a^al) > r1 {a1,al) for all a1 G A1

r2(al,al) > r2(a\,a2) for all a2 € A2

An example of a bimatrix game can be seen in Figure
1, in which the strategy pair (a\, a2) constitutes a pure
strategy Nash equilibrium.

M1 M2

a: a, az a: a: a:
a\(\
a' 0 1

4^
1

a
a:

\(2 1
0 -3

0^
2

Figure 1: A bimatrix game example

Definition 3 A mixed strategy Nash equilibrium for
bimatrix game G is a pair of vectors (pi, p2), such that

p\Mxpl > pxMxpl for all p1 € a(A^

p\M2pl > p\M2p2 for all p2 € a(A2)

where cr(Ak) is the set of probability distributions over
action space Ak, such that for any pk £ o'(Afe),

p'M'p2 = Eai E^V^V.aVCa2) is the ex-
pected payoff of agent 1 under the situation that
playerl and player 2 adopt their mixed strategies p1

and p2 respectively.

The reason we are interested in mixed strategies is
that an arbitrary bimatrix game may not have a pure
strategy Nash equilibrium, but it always has a mixed
strategy Nash equilibrium.

Theorem 1 (Nash, 1951) There exists a mixed strat-
egy Nash equilibrium for any finite bimatrix game.

A mixed strategy Nash equilibrium for any bimatrix
game can be found by Mangasarian-Stone algorithm
[10], which is a quadratic programming algorithm.

3 Markov Decision Process and
reinforcement learning

For comparison purpose, we state the framework of
Markov decision process here. Later we can see how
the stochastic game framework is related to Markov
decision process.

Definition 4 A Markov Decision Process is a tuple
< S,A,r,p >, where S is the discrete state space, A
is the discrete action space, r : S x A -> R is the
reward function of the agent, and p : S x A -> A is the
transition function, where A is the set of probability
distributions over state space S.

1We abuse the notation a little here. p\Mlp2, should be
(pi)1'M1pl, where pi is transposed before being multiplied
to the matrix M1.

244 Hu and Wellman

In a Markov decision process, the objective of the
agent is to find a strategy (policy) ?r so as to maxi-
mize the expected sum of discounted rewards,

u(s,7r) = ^/3'£(rt|7r,s0 = s) (1)
t=o

where So is the initial state, rt is the reward at time t,
and ß € [0,1) is the discount factor. We can rewrite
Equation (1) as

v(s,7r) = r(s,a„) + ß^2p(s'\s,an)v{s' ,n) (2)

where an is action determined by policy ir. It has been
proved that there exists an optimal policy n* such that
for any s G S, the following Bellman equation holds:

v(s,n*) = max lr(s, a) + ß)p(s'\s,a)v(s',Tr*)\,

(3)
where v(s,n*) is called the optimal value for state s.

If the agent knows the reward function and the state
transition function, it can solve for 7r* by some iter-
ative searching methods [13]. The learning problem
arises when the agent does not know the reward func-
tion or the state transition probabilities. Now the
agent needs to interact with the environment to find
out its optimal policy. The agent can learn about
the reward function and the state transition function,
and then solve for its optimal policy using Equation
(3). Such approach is called model-based reinforce-
ment learning. The agent can also directly learn about
its optimal policy without knowing the reward func-
tion or the state transition function. Such approach
is called model-free reinforcement learning. One of
the model-free reinforcement learning methods is Q-
learning [19].

The basic idea of Q-learning is that we can define the
right-hand side of Equation (3) as

Q*(s,a)=r(s,a)+ßJ2p(s'\s,a)v(s',7:*) (4)

By this definition, Q*(s,a) is the total discounted re-
ward attained by taking action a in state s and then
following the optimal policy thereafter. Then by Equa-
tion (3),

u(s,7T*) = maxQ*(s,a). (5)
a

If we know Q*(s,a), then the optimal policy 7r* can
be found, which is alway taking an action so as to
maximize Q*(s,a) under any state s.

In Q-learning, the agent starts with arbitrary initial
values of Q(s,a) for all s £ S, a € A. At each time
t, the agent choose an action and observes its reward
rt. The agent then updates its Q-values based on the
following Equation:

Qw(s,a) = (1 - at)Qt(s,a) + at[rt + ßm&xQt(s' ,b)].
b

(6)
where at € [0,1) is the learning rate. The learning rate
at needs to decay over time in order for the learning
algorithm to converge. Watkins and Dayan [19] proved
that sequence (6) converges to the optimal Q*(s,a).

4 The stochastic game framework

Markov decision process (MDP) is a single agent de-
cision problem. A natural extension of MDP to mul-
tiagent systems is stochastic games, which essentially
are n-agent Markov decision processes. In this paper,
we focus on 2-player stochastic games since they have
been well studied.

4.1 Definition of stochastic games

Definition 5 A 2-player stochastic game T is a 6-
tuple < S,Al,A2,rl ,r2,p >, where S is the discrete
state space, Ak is the discrete action space of player
k for k = 1,2, rk : S x A1 x A2 -► R is the payoff
function for player k, p : S x A1 x A2 -* A is the tran-
sition probability map, where A is the set of probability
distributions over state space S.

To have a closer look at a stochastic game, consider
a process that is observable at discrete time points
t = 0,1,2, At each time point t, the state of
the process is denoted by st- Assume St takes on
values from the set S. The process is controlled
by 2 decision makers, referred to as player 1 and
player 2, respectively. In state s, each player inde-
pendently chooses actions a1 £ A1, a2 € A2 and re-
ceives rewards r1^,«!1,^) and r2(s,al,a2), respec-
tively. When rl(s,al,a2) ■{■ r2{s,o},a2) = 0 for all
s,al,a2, the game is called zero sum. When the sum
is not restricted to 0 or any constant, the game is called
a general-sum game.

It is assumed that for every s,s' € S, the transition
from s to s' given that the players take actions a1 € A1

and a2 € A2, is independent of time. That is, there
exist stationary transition probabilities p(s'|s,a1,a2)

Multiagent Reinforcement Learning 245

for all t = 0,1,2,... , satisfying the constraint

m
y£p(s'\s,a1,a2) = l, (7)

t=0

»'=i

The objective of each player is to maximize a dis-
counted sum of rewards. Let ß e [0,1) be the discount
factor, let n1 and IT

2
 be the strategies of players 1 and 2

respectively. For a given initial state s, the two players
receive the following values from the game:

v1(syy) = ^ßtE(r1
t\n

iy,So = s) (8)
t=o
oo

v2(Syy) = Y,PE(r2\n\7r2,s0 = s) (9)
t=o

A strategy 7r = (7r0,... ,7rt,...) is defined over the
whole course of the game. nt is called the decision rule
at time t. A strategy n is called a stationary strategy
if 7Tt = 7f for all t, where the decision rule is fixed over
time. 7T is called a behavior strategy if 7rf = f(ht),
where ht is the history up to time t,

ht = (s0,ao,ao,Si,ai,af,...,aJ_1,at_1,st). (10)

A stationary strategy is a special case of behavior
strategy when ht = 0.

A decision rule assigns mixed strategies to different
states. A decision rule of a stationary strategy has the
following form: n = (n(s1),..., f (sm)), where m is the
maximal number of states. 7f(s) is a mixed strategy
under state s.

A Nash equilibrium for stochastic games is denned as
following, assuming that the players have complete in-
formation about the payoff functions of both players.

Definition 6 In stochastic game V, a Nash equilib-
rium point is a pair of strategies (nl,n2) such that for
all s G S

vHs,KlO>vl(sy,*l) v^en1

and

v2(S,7rl,7r2)>v2(s,nlTr2) VTT
2
 € II2

The definition of Nash equilibrium requires that each
agent's strategy is a best response to the other's strat-
egy. Such definition of Nash equilibrium is similar as
in other games. The strategies that constitute a Nash
equilibrium can be behavior strategies, Markov strate-
gies, or stationary strategies. In this paper, we are

f1 (s) r2(s)

t=1

r1(Si) |g(sQ

r1 (S2 r2(s2)

f1(Sm) r2(Sm)

Figure 2: Stochastic games and bimatrix games

interested in stationary strategies, which are the most
simple strategies. The following theorem shows that
there always exist a Nash equilibrium in stationary
strategies for any stochastic game.

Theorem 2 (Filar and Vrieze [5], Theorem 4-6-4)
Every general-sum discounted stochastic game pos-
sesses at least one equilibrium point in stationary
strategies.

4.2 Stochastic games and bimatrix games

We can view each stage of a stochastic game as a bi-
matrix game, as in Figure 2.

At each time period of a stochastic game, under state
s, agent 1 and 2 choose their actions independently and
receive their payoffs according to the bimatrix game
(r1(s),r2(s)). Repeated games can be seen as a de-
generate case of stochastic games when there is only
one state. For example, let s be the index of the only
state, a repeated game will always have the bimatrix
game (r1^),!-2^)) at each time period.

5 Multiagent reinforcement learning

We want to extend traditional reinforcement learning
method based on Markov decision process to stochas-
tic games. We assume that our games have incomplete

246 Hu and Wellman

but perfect information, meaning agents do not know
other agents' payoff functions but they can observe
other agents' immediate payoffs and actions taken pre-
viously.

5.1 Issues in designing a multiagent
Q-learning algorithm

The target of our Q-learning is the optimal Q-values,
which we define as the following:

Ql(s,a\a2) =
N

rl(s,a\a2) + ßJ2p(s'\s,a\a*)vl(s'yy)(U)

Qi(s,a\az) =

s' = l

N

r2(Sla\a2)+ßY/P(s'\s,a1,a2)v2(s',n\n2) (12)
s' = \

The optimal Q-value of state s and action pair (a1, a2)
is the total discounted reward received by an agent
when both agents execute actions (a1, a2) in state s
and follow their Nash equilibrium strategies (TT

1
^

2
)

thereafter.

To learn about these Q-values, an agent needs to main-
tain m Q-tables for its own Q-values, where m is the
total number of states. For each agent k, k = 1,2, a
Q-table Qk{s) has its rows corresponding to o1 € A1,
columns corresponding to o2 € A2, and each entry
as Qk(s,a1,a2), k = 1,2. The total number of en-
tries agent k needs to learn is m x \Ar\ x \A2\, where
l-A1! and \A2\ are the sizes of action spaces A1 and
A2. Assuming I-41! = \A2\ = \A\, then space require-
ment is m x \A\2. For n agents, the space requirement
is m x \A\n, which is exponential in the number of
agents. Thus for large number of agents, we need to
find some compact representation of action space.

As in single-agent Q-learning, the learning agent in
multiagent systems updates its Q tables for a given
state after it observes the state, actions taken by both
agents, and the rewards received by agents. The dif-
ference is in the updating rule. In single-agent Q-
learning, the Q-values are updated as following,

Qt+i(s,a) (1 -at)Qt{s,a) + at[rt + ßma,xQt(s',b)].
b

In multiagent Q-learning, we cannot just maximize our
own Q-values since the Q-values depend on the action
of the other agent.

If it is a zero-sum game, we can minimize over the other
agent's actions, and then choose our own maximal af-
ter that. This is the minimax-Q learning algorithm in

update
C!(.V«,'.«,2)

.v,„ ß'(.v«>') a].
■*/+!

t+! time

Figure 3: Time line of actions

Littman [9]. For general-sum games, we cannot use
mini-max algorithm because the two agent's payoffs
are not the opposite of each other. We propose that
an agent adopt a Nash strategy to update its Q-values,
and this is the best an agent can do in a general-sum
game.

5.2 A multiagent Q-learning algorithm

Our Q-learning agent, say agent 1, updates its Q-
values according to the following rule:

Q]+i(s,al,a2) =
(1 - at)Ql(s, a1,a2) + a,[r? + ßn1 (s')Ql(s')ir2(s')ll3)

where (7r1(s'),7r2(s')) is a mixed strategy Nash equi-
librium for the bimatrix game (Q}{s'),Q2{s')). In or-
der to find out 7T2(s')> agent 1 needs to learn about
Q2(s') in the game. The learning is as following:

Q2
+1(s,a\a2) =

(1 - at)Q
2(s,a\a2) + a([r

2 + /37rV)Q?(«>V)I14)

Therefore, a learning agent maintains two Q-tables
for each state, one for its own Q-values and one for
the other agent's. This is possible since we assume an
agent can observe the other agent's immediate rewards
and previous actions during learning.

The detail of our Q-learning algorithm is stated in Ta-
ble 1.

When the game is zero-sum, Q1(s,a1,a2) =
-Q2(s,a1 ,a2) = Q(s,a1,a2). Thus agent 1 needs to
learn only one Q-table for every state. Our Q-learning
algorithm becomes,

Qt+\{s,al ,a2) =

(l-at)Qt(s,a1,a2) + at[rt+ß max
ni(s')€<r(A1)

min 7rV)Qt(*V(a')]
n*{s')e<r(A2)

This is different from Littman's minimax-Q learning
algorithm where Q-value is updated as

Qt+i{s,a},a2) =

(1 -at)Qt{s,a},a2) + at[rt + ß max
vl(»')£o(A*)

mm ^{s')Qt(s\a2)}
O1€LA'1

Multiagent Reinforcement Learning 247

Table 1: Multiagent Q-learning algorithm for Agent 1

Initialize:
Let t = 0,
For all s in S, a1 in A1, and a2 in A2,

let Ql(S>a\a2) = l,Q2(s,a\a2) = 1
initialize so

Loop
Choose action a\ based on 7r1(st), which is a

mixed strategy Nash equilibrium solution of the
bimatrix game (Q1(st))Q

2(st)).
Observe rj,r2,a2, and st+i
Update Q1, and Q2 such that
(2J+I(s,a\a2) = (l-at)Ql{s,a1,a2) + at[r

1
t +

ß^(st+i)QKst+iW(st+1)]
Q2

t+1{s,a\a2) = (1 - at)Q
2(s,a1,a2) + at[rl +

^(«t+OQtte+O^fo+i)]
where (7r1(st+i),7r2(st+i)) are mixed strategy

Nash solutions of the bimatrix game (Q1(st+x),
Q2(st+i))

Let t := t + 1

In Littman's Q-learning algorithm, it is assumed that
the other agent will always choose a pure Nash equi-
librium strategy instead of a mixed strategy.

Another thing to note is that in our Q-learning algo-
rithm, how an agent chooses its action at each time t
is not important for the convergence of the learning.
But the action choices are important for short-term
performance. In this paper, we have not studied the
issue of action choice, but will explore it in our future
work.

5.3 Convergence of our algorithm

In this section, we prove the convergence of our Q-
learning algorithm under certain assumptions. The
first two assumptions are standard ones in Q-learning:

Assumption 1 Every state and action have been vis-
ited infinitely often.

Assumption 2 the learning rate at satisfies the fol-
lowing conditions:

1. 0 <at < l,Et^oa* = °°>andY,tloat < °°>

2. at(s,o},a2) =0 if(s,o},o?) ^ (sua\,a2
t).

We make further assumptions regarding the structure
of the game:

Assumption 3 A Nash equilibrium (ir1(s),ir2(s)) for
any bimatrix game {Q1(s),Q2(s)) satisfies one of the
following properties:

1. The Nash equilibrium is global optimal.

n1(s)Qk(s)n2(s) > 7T1(s)Qfc(s)f2(s) VTT^S) £
a(A1),ir2(s)&a{A2), and k = 1,2.

2. If the Nash equilibrium is not a global optimal,
then an agent receives a higher payoff when the
other agent deviates from the Nash equilibrium
strategy.
w1{s)Q1(s)Tr2(s) < n1(s)Q1(s)ir2(s) VTT

2
(S) €

a (A2), and
7r1(s)Q2(s)7r2(s) < 7T1(s)Q2(s)7r2(s) VTTHS) €
a(A').

Our convergence proof is based on the following two
Lemmas proved by Szepesvari and Littman [16].

Lemma 1 (Conditional Average Lemma) Under As-
sumptions 1-2, the process Qt+i = (1 - at)Qt + <xtwt
converges to E(wt\ht,at), where ht is the history at
time t.

Lemma 2 Under Assumptions 1-2, If the process de-
fined by Ut+1(x) = (1 - at(x))Ut(x) + at(x)[Ptv*](x)
converges to v* and Pt satisfies || PtV — Ptv* ||< 7
|| V - v* || +\t for all V, where 0 < 7 < 1 and Xt > 0
converges to 0, then the iteration defined by

Vt+1(x) = (1 - at(x))Vt(x) + at(x)[PtVt](x)

converges to v*.

In order to prove that the convergence point of our
Q-learning algorithm is actually the Nash equilibrium
point, we need the following theorem proved by Filar
and Vrieze [5].

Theorem 3 (Filar and Vrieze [5]) The following as-
sertions are equivalent:

1. For each s 6 S, the pair (n1(s),ir2(s)) con-
stitutes an equilibrium point in the static bima-

trix game (Q1{s),Q2(s)) with equilibrium pay-

offs (v1(s,n1,'K2),v2(s,iv1,Tr2)\, and for k=1,2

the entry (a1, a2) in Qh(s) equals

Qk(s,a\a2)
N

rk(s,a\a2) + /^(S'ISX^VO^STT
2
).

»'=1

248 Hu and Wellman

2. (n1,^2) is an equilibrium point in the dis-
counted stochastic game T with equilibrium pay-

off (w1(7r1,7r2),i;2(7r1)7r2))f where vfc(7r1,7r2) =

(vk(8\w\n2),---,vk(s'ny,ir*)),k = l,2.

The above theorem showed that the Nash solution of
the bimatrix game (Q1(s),Q2(s)) defined in Theorem
3 will also be part of the Nash solution for the whole
game. If the sequence in our Q-learning algorithm con-
verges to the Q-values defined in Theorem 3, then a
pair of stationary Nash equilibrium strategies (f1, 7f2)
can be derived, where #* = (7f*(s1),---,7r*(sm)) for
k = 1,2. For each state s, nk(s) is part of a Nash equi-
librium solution of the bimatrix game (Q1(s),Q2(s)).

Lemma 3 Let Pt
kQk{s) = rk + ßir1 {s)Qk (s)n2 {s),

k = 1,2, where (■K1
(S),TT

2
(S)) is a pair of mixed

Nash equilibrium strategies for the bimatrix game
(Q1(s),Q2(s)). Then Pt = (Pt,P?) »* a contraction
mapping.

Proof. Case 1: Pt
kQk(s) > Pt

kQk{s) VJfc = 1,2.

We have

0 < Pt
kQ1(s)-PkQ1(s)

= ß (n1(s)Q1(s)n2(S) - *\s)Ql(s)n2(,))

< ß{jT1(S)Q1(s)n2(S)-7rl(s)Ql(s)e(s)) (15)

< ß(j:1(s)Q\s)7t2(s)-Tr1(S)Q1(s)n2(s)) (16)

= ^EEAsy^WXQW,«2)-
a* a"

QW.O) (17)
^ 0£5>1(*,a1)*1W) IIQXW - G'OO II

= ß\\QHs)-Q1(s)l

where || Qk(s) - Qk(s) \\= imxai^\Qk(s,a\a2) -
Qk(s,a1,a2)\. Inequality (15) derives from definition
of Nash equilibrium. Inequality (16) is from property
2 of Assumption 2. For cases satisfying property 1 of
Assumption 2, the proof is simpler, and we omit it
here.

k = 2, similar proof as above. Under property 1 of
Assumption 2, we have

0 < PkQ2{s)-PkQ2{s)

< /SEE^aV^a2) II QHs) - Q2(s) ||
a1 a2

= ß\\Q2(s)-Q2(s)\\.

Under property 2 of Assumption 2, we have

0 < PkQ2{s)-PkQ2(s)

< /^E^V^W) II Q2(s) ~ Q2(s) ||
a» a*

= ß\\Q2(s)-Q2(s)\\.

Case 2: Pt
kQk(s) < Pt

kQk(s). Similar proof as in Case
1. For A; = 1, under property 2 of Assumption 2, we
have

0 < Pt
kQ1(s)-PkQ1{s)

a1 a3

= ß\\Q1(s)-Q1(s)\\.

Therefore we have \Pt
kQk(s)-Pt

kQk(s)\ < ß \\ Qk(s)-
Qk{s) ||. Since this holds for every state s, we have
|| PkQk - PkQk ||< ß || Qk - Qk ||. G

Now we proceed to prove our main theorem, which
states that the multiagent Q-learning methods con-
verges to the "optimal" (Nash equilibrium) Q values.

Theorem 4 In stochastic game T, under Assump-
tions 1-3, the coupled sequences {Q\,Q2}, updated by

<3*+i(s,a1,o2) =

(1 - oct)Q
k

t{s,a\a2) + at[r
k + /^TT

1
 («')<#(*>V)I18)

where k = 1,2, converge to the Nash equilibrium Q
values {Q\,Q2), with Qk defined as

Qk(s,a\a2) =

where (it1(s'),ir2(s')) is a pair of mixed Nash equilib-
rium strategies for the bimatrix game (Ql(s'),Q2(s')),
function vk is defined as in (8) and (9), and (7rJ,7r2)
is a Nash equilibrium solution for stochastic game F.

Proof. By Lemma 3, || PkQk - PkQk \\< ß \\ Qk -

Qk.l
From Lemma 1, the sequence

Qk
+1(s,a1,a2) =

(1 - at)Q
k(s,a\a2) + at[r

k + ßirl(s')Qk(s')n2(s'))

converges to

£7(r* +/?7r1QV)0 = $>(«>, a\ a2)

(rk (s, a1, o?) + ßn1 (s')Qk (s >2 («')) •

Multiagent Reinforcement Learning 249

Define Tk as

(TkQh)(s,a1,a2) =

£,, P(s'\s, a1, a2) (r*(a,a1,a2) + /fcrV)Q V)*V))

Prom above, the sequence {Qk} converges to TkQk.
It is easy to show that Tk is a contraction map-
ping. To see this is true, rewrite Tk as TkQk(s) =
Y,siP(s'\s,a1,a2)PtQ

k(s). Since Pt is a contraction
mapping of Qk and P(s'\s,o},a2) > 0, Tk is also a
contraction mapping of Qk. We proceed to show that
Qk defined in (19) is the fixed point of Tk. From the
definition of Tk, we have

{TkQk){s,a\a2)

= J2s,P(s'\s,a\a2)(rk(sy,a2) + ßnl(s')Qk(s')n2(s'))

= rh(8,a\aa) + Zt,P{S\s,a1
ta

a)ßxW)QW)**.W)

By Theorem 3, 7r}(s')Q*(«>*(«') = «VX,»*),
thus Qk =TkQk. Therefore the sequence

Qk
+1{s,a1,a2) =

(1 - at)Q
k(s,a\a2) + at[r\ + ß7rlQk(s')n2) (20)

converges to TkQk = Qk. By Lemma 2, the sequence
(18) converges to Qk. O

5.4 Discussions

First we want to point out the convergence result does
not depend on the sequence of actions taken by either
agent. The convergence result only requires that every
action has been tried and every state has been visited.
It does not require that agent 1 and agent 2 agree on
the Nash equilibrium of each bimatrix Q-game during
the learning. In fact, agent 1 can learn its optimal
Q-value without any behavior assumption of agent 2,
as long as agent 1 can observe agent 2's immediate
rewards.

Second, the convergence depends on certain restric-
tions on the bimatrix games during learning. This is
required because Nash equilibrium operator is usually
not a contraction operator. However, we can probably
relax the restriction by proving that a Nash equilib-
rium operator is a non-expansion operator. Then by
the theorem in Szepesväri and Littman [16], the con-
vergence is guaranteed.

6 Future work

There are several issues we have not addressed in this
paper. The first is the equilibrium selection problem.

When there exist multiple Nash equilibria, learning
one Nash equilibrium strategy does not guarantee the
other agent will choose the same Nash equilibrium.
Our future work is to combine empirical estimation of
the other agent's strategy with reinforcement learning
of the Nash equilibrium strategy.

Another issue is related to the action choice during
the learning. Even though the multiagent reinforce-
ment learning method converges, it requires infinite
trials. During the learning, an agent can choose a
myopic action or other kinds of actions. If the agent
chooses the action to maximize its current Q-value, its
approach is called greedy approach. The drawback of
this greedy approach is that the agent may be trapped
in a local optimal. To avoid this problem, the agent
should explore other possible actions. However, there
is cost associated with exploration. By conducting ex-
ploration, an agent gives up a better current reward.
In our future work, we intend to design an algorithm
that can handle exploration and exploitation tradeoff
in stochastic games.

References

[1] Tucker Balch. Learning roles: Behavioral diver-
sity in robot teams. In Sen [14].

[2] Caroline Claus and Craig Boutilier. The dynamics
of reinforcement learning in cooperative multia-
gent systems. In Sen [14]. To appear in AAAI-98.

[3] Eric van Damme. Stability and Perfection of Nash
Equilibria. Springer-Verlag, 1991.

[4] Edwin De Jong. Non-random exploration bonuses
for online reinforcement learning. In Sen [14].

[5] Jerzy Filar and Koos Vrieze. Competitive Markov
Decision Process. Springer-Verlag, 1997.

[6] Drew Fudenberg and David K. Levine. The The-
ory of Learning in Games. The MIT Press, 1998.

[7] Junling Hu and Michael P. Wellman. Online
learning about other agents in a dynamic multia-
gent system. To appear in the Proceedings of the
Second International Conference on Autonomous
Agents, 1998.

[8] Leslie Kaelbling, Michael L. Littman, and An-
drew W. Moore. Reinforcement learning: A sur-
vey. Journal of Artificial Intelligence Research,
4:237-285, May 1996.

250 Hu and Wellman

[9] Michael L. Littman. Markov games as a frame-
work for multi-agent reinforcement learning. In
Proceedings of the Eleventh International Confer-
ence on Machine Learning, pages 157-163. New
Brunswick, 1994.

[10] 0. L. Mangasarian and H. Stone. Two-person
nonzero-sum games and quadratic programming.
Journal of Mathematical Analysis and Applica-
tions, 9:348-355, 1964.

[11] John F. Nash. Non-cooperative games. Annals of
Mathematics, 54:286-295, 1951.

[12] Martin J. Osborne and Ariel Rubinstein. A
Course in Game Theory. MIT Press, 1994.

[13] Martin L. Puterman. Markov Decision Processes :
Discrete Stochastic Dynamic Programming. New
York : John Wiley & Sons, 1994.

[14] Sandip Sen, editor. Collected papers from the
AAAI-97 workshop on multiagent learning. AAAI
Press, 1997.

[15] Richard S. Sutton and Andrew G. Barto. Re-
inforcement Learning: An Introduction. MIT
Press/Bradford Books, March 1998.

[16] Csaba Szepesväri and Michael L. Littman. A uni-
fied analysis of value-function-based
reinforcement-learning algorithms, submitted for
review, December 1997.

[17] Ming Tan. Multi-agent reinforcement learning:
Independent vs. cooperative agents. In Proceed-
ings of the Tenth International Conference on
Machine Learning, pages 330-337, Amherst, MA,
June 1993. Morgan Kaufmann.

[18] Frank Thusijsman. Optimality and Equilibria in
Stochastic Games. Amsterdam, the Netherlands
: Centrum voor Wiskunde en Informatica, 1992.

[19] Christopher J.C.H. Watkins and Peter Dayan. Q-
learning. Machine Learning, 3:279-292, 1992.

251

Coevolutionary Learning: a Case Study

Hugues Juille
Computer Science Department

Brandeis University
Waltham, Massachusetts 02254-9110

hugues@cs.brandeis.edu

Jordan B. Pollack
Computer Science Department

Brandeis University
Waltham, Massachusetts 02254-9110

pollack@cs.brandeis.edu

Abstract

Coevolutionary learning, which involves the
embedding of adaptive learning agents in
a fitness environment that dynamically re-
sponds to their progress, is a potential so-
lution for many technological chicken and
egg problems. However, several impediments
have to be overcome in order for coevolution-
ary learning to achieve continuous progress
in the long term. This paper presents some
of those problems and proposes a framework
to address them. This presentation is illus-
trated with a case study: the evolution of
CA rules. Our application of coevolution-
ary learning resulted in a very significant im-
provement for that problem compared to the
best known results.

1 Introduction

A recurrent issue in the field of machine learning is that
the performance of a learning system relies heavily on
the amount of knowledge that has been introduced by
the designer. This knowledge can be expressed in the
form of an appropriate representation, specific search
operators, a training set which provides a good gradi-
ent or a special utility function. The success of most
learning systems actually results from all this engineer-
ing effort.

However, the goal of machine learning is a system that
can improve itself by continuously capturing and ex-
ploiting new knowledge. The framework which is pre-
sented in this paper to achieve such a goal is based
on a coevolutionary approach. An important factor in
the performance of learning systems is the design of a

training environment. Usually, this training environ-
ment is fixed and constructed by the human designer.
However, when little knowledge is available about the
problem or if this knowledge is difficult to introduce
in the training environment, learning can become in-
tractable. The approach proposed in this paper to get
round that problem consists of coevolving the train-
ing environment with a population of learners. Start-
ing with simple problems, the training environment
gets more challenging as learners are improving them-
selves. Hopefully, such a setup leads to continuous
progress. For the rest of the paper, we define coevo-
lutionary learning as a search procedure involving a
population of learners coevolving with a population of
problems such that continuous progress results from
this interaction.

In practice, the picture is not that simple. We will dis-
cuss the different issues that are involved to achieve co-
evolutionary learning by considering a particular prob-
lem: the discovery of cellular automata rules to im-
plement a classification task. This problem presents
some interesting properties that provide us with a sim-
ple framework to monitor the dynamics of the search
resulting from different setups. Section 2 describes
this problem. In section 3, an experimental analysis
presents the different impediments to coevolutionary
learning and a solution to address them is proposed in
section 4. Experimental results for the classification
problem are presented in section 5.

2 Description of the Problem

2.1 One-Dimensional Cellular Automata

A one-dimensional cellular automaton (CA) is a linear
wrap-around array composed of N cells in which each
cell can take one out of k possible states. A rule is

252 Juille and Pollack

BO BO 10O 120 1«0

Figure 1: Three space-time diagrams describing the evolution of CA states: in the first two, the CA relaxes to
the correct uniform pattern while in the third one it doesn't converge at all to a fixed point.

Table 1: Performance of different published CA rules and a new best rule for the pc = 1/2 task.

N 149 599 999
Coevolution 0.863 +/- 0.001 0.822 +/- 0.001 0.804 +/- 0.001

Deis rule 0.823 +/- 0.001 0.778 +/- 0.001 0.764 +/- 0.001
ABK rule 0.824 +/- 0.001 0.764 +/- 0.001 0.730 +/- 0.001
GKL rule 0.815 +/- 0.001 0.773 +/- 0.001 0.759 +/- 0.001

defined for each cell in order to update its state. This
rule determines the next state of a cell given its cur-
rent state and the state of cells in a predefined neigh-
borhood. For the model discussed in this paper, this
neighborhood is composed of cells whose distance is at
most r from the central cell. This operation is per-
formed synchronously for all the cells in the CA. From
now on, we will consider that the state of cells is bi-
nary (k = 2), N = 149 and r = 3. This means that
the size of the rule space is 22 " =2 128

Cellular automata have been studied widely as they
represent one of the simplest systems in which complex
emergent behaviors can be observed. This model is
very attractive as a means to study complex systems
in nature. Indeed, the evolution of such systems is
ruled by simple, locally-interacting components which
result in the emergence of global, coordinated activity.

2.2 The Majority Function

This is a density classification task, for which one
wants the state of the cells of the CA to relax to all
0's or all l's depending on the density of the initial
configuration (IC) (whether it has more 0's or more
l's), within a maximum of M time steps. Following

[Mitchell et al., 1994], pc denotes the threshold for the
classification task (here, pc = 1/2), p denotes the den-
sity of l's in a configuration and p0 denotes the density
of l's in the initial configuration. Figure 1 presents
three examples of the space-time evolution of a CA.
One with p0 < pc on the left and another with po > Pc
in the middle for which the CA relaxes to the cor-
rect configuration. The third one shows an instance
for which the CA doesn't relax to any the two desired
convergence patterns. For each diagram, the initial
configuration is at the top and the evolution in time
of the state of the CA is represented downward.

The task pc = 1/2 is known to be difficult. In par-
ticular, it has been proven that no rule exists that
results in the CA relaxing to the correct state for all
possible ICs [Land k Belew, 1995]. Indeed, the den-
sity is a global property of the initial configuration
while individual cells of the CA have access to local
information only. Discovering a rule that will dis-
play the appropriate computation by the CA with the
highest accuracy is a challenge, and the upper limit
for this accuracy is still unknown. Table 1 describes
the performance for that task for different published
rules and different values of N, along with the perfor-
mance of the new best rule that resulted from the work

Revolutionary Learning 253

presented in this paper. The Gacs-Kurdyumov-Levin
(GKL) rule was designed in 1978 for a different goal
than solving the pc = 1/2 task [Mitchell et al., 1994].
However, for a while it provided the best known per-
formance. [Mitchell et al., 1994] and [Das et al., 1994]
used Genetic Algorithms (GAs) to explore the space
of rules. The main purpose of this work was to
develop a particle-based methodology for the anal-
ysis of the complex behaviors exhibited by CAs.
The GKL and Das rules are human-written while
the Andre-Bennett-Koza (ABK) rule has been dis-
covered using the Genetic Programming paradigm
[Andre et al., 1996]. More recently, [Paredis, 1997] de-
scribes a coevolutionary approach to search the space
of rules and shows the difficulty of coevolving consis-
tently two populations towards continuous improve-
ment. [Capcarrere et al, 1996] also reports that by
changing the specification of the convergence pattern,
a two-state, r = 1 CA exists that can perfectly solve
the density problem in \N/2] time steps.

For the pc = 1/2 task, it is believed that the best
rules are in the domain of the rule space with density
close to 0.5. An intuitive argument to support this
hypothesis is presented in [Mitchell et al., 1993]. It is
also believed that the most difficult ICs are those with
density close to 0.5.

3 Models for Coevolutionary Search

The idea of using coevolution in search was introduced
by [Hillis, 1992]. In coevolution, individuals are eval-
uated with respect to other individuals instead of a
fixed environment (or landscape). As a result, agents
adapt in response to other agents' behavior. The par-
ticular model of coevolution considered in this paper
is based on two populations for which the fitness of
individuals in each population is defined with respect
to the members of the other population. Two cases
can be considered in such a framework, depending on
whether the two populations benefit from each other
or whether they have different interests. Those two
modes of interaction are called cooperative and com-
petitive respectively. In the following sections, those
modes of interaction are described experimentally us-
ing the pc = 1/2 task in order to stress the different
issues related to coevolutionary learning.

For the experiments presented in this section, we used
an implementation of Genetic Algorithms similar to
the one described in [Mitchell et al., 1994]. Each rule
is coded on a binary string of length 22*r+1 = 128.
One-point crossover is used with a 2% bit mutation

probability. The population size is UR = 200 for rules
and nie = 200 for ICs. The population of ICs is com-
posed of binary strings of length N = 149. The pop-
ulation of rules and ICs are initialized according to
a uniform distribution over [0.0,1.0] for the density.
For all the experiments in this paper, the value of M
(the maximum number of time steps) is set to 320
and is kept unchanged. At each generation, the top
95% of each population reproduces to the next gener-
ation and the remaining 5% is the result of crossover
between parents from the top 95% selected using a
fitness proportionate rule. This small generation gap
(the percentage of new individuals) has been used be-
cause of the dynamic fitness landscape. Indeed, a large
generation gap can result in a dramatic change in the
composition of the population. As a consequence, be-
cause of the relative definition of the fitness, a lot of
variation in individuals' fitness can occur from one gen-
eration to the other, making the identification of the
most promising individuals very unreliable.

3.1 Cooperation between Populations

In this mode of interaction, improvement on one side
results in positive feedback on the other side. As
a result, there is a reinforcement of the relationship
between the two populations. From a search point
of view, this can be seen as an exploitative strategy.
Agents are not encouraged to explore new areas of the
search space but only to perform local search in order
to further improve the strength of the relationship. In
the cooperative model, a natural definition for the fit-
ness of rules (resp. ICs) is the number of ICs (resp.
rules) for which the CA relaxes to the correct state:

nie

f(Ri) =J2C0Vered(Ri'ICj)
i=i

■n-R

f(ICj) = Ylcovered(Ri>ICi)
t=i

where covered{Ri,ICj) returns 1 if a CA using rule
Ri and starting from initial configuration ICj relaxes
to the correct state. Otherwise, it returns 0.

Figure 2 presents the evolution of the density of rules
and ICs for one run using this cooperative model.
Without any surprise, the population of rules and ICs
quickly converge to a domain of the search space where
ICs are easy for rules and rules consistently solve ICs.
As a result, there is little exploration of the search
space. The convergence configuration depends on the
initial populations, some other runs ended up with low

254 Juille and Pollack

Figure 2: Coevolution of CA rules (left) and ICs (right) in a cooperative relationship.

density rules and ICs. This experiment confirms that
ICs with low or high density are the easiest to classify
since a larger number of rules classify them correctly.

3.2 Competition between Populations

In this mode of interaction, the two populations are in
conflict. Improvement on one side results in negative
feedback for the other population. The fitness of rules
and ICs defined in the cooperative case can be modified
as follows to implement the competitive model:

/(J?i) = Y^covered(Rx,IC3)

f(ICj) = J^coverediRiJC-j)

where covered(Ri,ICj) returns the inverse of the orig-
inal function. Here, the goal of rules is to defeat (i.e.
cover) ICs, while the goal of ICs is to defeat rules by
discovering initial configurations that are difficult to
classify. Figure 3 describes a run using this definition
of the fitness. Two kind of behaviors can be observed
in this experiment. In a first stage, the two popula-
tions exhibit a cyclic behavior. It is a consequence
of the Red Queen effect [Cliff & Miller, 1995]: fitness
landscapes are changing as a result of agents of each
population adapting in response to the evolution of
members of the other population. The evaluation of
individuals' performance in this changing environment
makes continuous progress difficult. A typical conse-
quence is that agents have to learn again what they
already knew in the past. In the context of evolu-
tionary search, this means that domains of the state

space that have already been explored in the past are
searched again. Then, a stable state is reached: in
this case, the population of rules adapts faster than
the population of ICs, resulting in a population focus-
ing only on rules with high density and eliminating
all instances of low density rules (a finite population
is considered). Then, low density ICs exploit those
rules and overcome the entire population. A similar
experiment is described in [Paredis, 1997],

3.3 Resource Sharing and Mediocre Stable
States

Several techniques have been designed to improve
evolutionary search. Usually they maintain diver-
sity in the population in order to avoid premature
convergence. [Mahfoud, 1995] presents different nich-
ing techniques that achieve this goal. Resource
sharing, first introduced in [Rosin & Belew, 1995], is
a technique that we successfully used in the past
[Juille & Pollack, 199C]. Resource sharing implements
a coverage-based heuristic by giving a higher payoff
to problems that few individuals can solve. Resource
sharing can be introduced in the competitive model of
coevolution as follows:

UK)
nie

vcightJCj x covrrrd(R{, ICj)

i/here:

iccightJCj
E'^covcrcdiR.JCj)

Revolutionary Learning 255

Figure 3: Coevolution of CA rules (left) and ICs (right) in a competitive relationship.

and

f(ICj) = yj weight-Ri x covered(Ri,ICj)

where:

weight-Ri =
Y,k=iCooered(Ri,ICk)

In this definition, the weight of an IC corresponds to
the payoff it returns if a rule covers it. If few rules cover
an IC, this weight will be much larger than if a lot of
rules cover that same IC. The definition for the weight
of rules has the same purpose. This framework allows
the presence of multiple niches (or species) in popula-
tions. Figure 4 describes one run for this definition of
the fitness. The cyclic behavior which was observed in
the previous section doesn't occur anymore. Instead,
two species coexist in the population of rules: a species
for low density rules and another one for high density
rules. Those two species drive the evolution of ICs
towards the domain of initial configurations that are
most difficult to classify (i.e., po = 1/2). However, the
two populations have entered a mediocre stable state.
This means that multiple average performance niches
coexist in both populations in a stable manner. Put in
another way, this can be seen as an equilibrium config-
uration in which a number of suboptimal species have
found a way to collude by sharing the total credit be-
tween themselves. Usually, this is a consequence of
some singularities inherent in the problem definition
and/or the search procedure. In our example, ICs are
concentrated around the p0 = 1/2 threshold and they
can be divided into two groups: those with density
po < 1/2 and those with density po > 1/2. This dis-
tribution means that ICs can be exploited consistently

by rules with low and high density that both occur in
the second population (because a CA implementing
a low (resp. high) density rule usually relaxes to all
O's (resp. all l's) for most ICs). However, this is a
mediocre stable state in the sense that evolved rules
have poor performance with respect to the pc = 1/2
task and there is no pressure towards improvement.
The concept of mediocre stable states is also discussed
in [Pollacket al, 1996].

3.4 Discussion

We have described different models for the coevolu-
tion of two populations. Some of the fundamental im-
pediments to coevolutionary learning have been iden-
tified along with some of the reasons why continuous
progress is difficult to achieve. It is now clear that none
of these approaches can address successfully the prob-
lem of coevolutionary learning alone. All the rules dis-
covered in those experiments perform poorly since they
never approach the 50% density. The following section
proposes a framework to get around those problems.

Each of the canonical models discussed so far imple-
ments a single specific strategy. In the literature, there
has been some successful applications for both the co-
operative and the competitive approaches. However,
those works usually introduce some mechanisms to ad-
dress the problems specific to each model. For in-
stance, a noisy evaluation of the fitness can force ex-
ploration in a cooperative model, and an evaluation
of individuals with respect to a set of opponents ex-
tracted from previous generations can limit the cyclic
behavior observed in competitive models (e.g., see
the life-time fitness evaluation technique described in

256 Juille and Pollack

Figure 4: Coevolution of CA rules (left) and ICs (right) in a competitive relationship with resource sharing.

[Paredis, 1996] or the "hall of fame" method presented
in [Rosin, 1997]). However, those mechanisms usu-
ally fail to address entirely the fundamental issues dis-
cussed previously.

4 Coevolving the "Ideal" Trainer

4.1 Presentation of our Approach

From the analysis of the experiments presented in sec-
tion 3 at least two reasons seem to prevent continu-
ous progress in coevolutionary search. The first one is
that the training environment provided by the popu-
lation of ICs returns little information to the popula-
tion of evolving rules because a stable configuration is
reached in which the credit is distributed according to
a fixed pattern (e.g., all the ICs are covered by rules).
The second reason is that the dynamics of the search
performed by the two coevolving populations doesn't
drive individuals to the domain of the state space that
contains most promising solutions because there is no
"high-level" strategy to play that role. This is a con-
sequence of the Red Queen effect.

Our approach proposes a coevolutionary framework in
which those two issues are addressed as follows:

• the training environment provides at any time a
gradient for search by proposing a variety of prob-
lems covering a range of difficulty. Indeed, if prob-
lems are too difficult, nobody can solve them. On
the contrary, if they are too easy, everybody can
solve them. In both cases, those problems are use-
less for learning since they provide little feedback.

by preventing the negative effects associated with
the Red Queen.

The central idea of this coevolutionary learning ap-
proach consists in exposing learners to problems that
are just beyond those they know how to solve. By
maintaining this constant pressure towards slightly
more difficult problems, a arms race among learners is
induced such that learners that adapt better have an
evolutionary advantage. The underlying heuristic im-
plemented by this arms race is that adaptability is the
driving force for improvement. The difficulty resides in
the accurate implementation of the concepts presented
above in a search algorithm. So far, our methodology
to implement such a system consists in the construc-
tion of an explicit topology over the space of problems
by defining a partial order with respect to the relative
difficulty of problems among each other. In our cur-
rent work, the concept of "relative difficulty" has been
defined by exploiting some a priori knowledge about
the task. The definition of this topology over the space
of problems makes possible the implementation of the
two goals required in our coevolutionary learning ap-
proach. Indeed, since learners are evaluated against a
known range of difficulty for problems, it is possible to
monitor their progress and to expose them to problems
that are just "a little more difficult"'. In our work, this
last concept has been formalized by defining empiri-
cally a distance measure. In this framework, learners
are always exposed to a gradient for search and it is
possible to control the evolution of the training envi-
ronment towards more difficult problems in order to
ensure continuous progress.

a "high-level" strategy allows continuous progress In the future, our goal is to eliminate some of those ex-

Coevolutionary Learning 257

plicit components by introducing some heuristics that
automatically identify problems that are appropriate
for the current set of learners. The work of Rosin
[Rosin, 1997] already describes some methods to ad-
dress this issue.

4.2 Discussion

As stated previously, the coevolutionary learning
framework introduces a pressure towards adaptabil-
ity. The central assumption is that individuals that
adapt faster than others in order to solve the new chal-
lenges they are exposed to are also more likely to solve
even more difficult problems. The main difficulty is
to setup a coevolutionary framework that implements
this heuristic accurately and efficiently.

The new contribution of this work is the idea of main-
taining a gradient for search as one of the underlying
heuristics. In the literature, different approaches have
been proposed to address the issues associated with the
Red Queen effect [Paredis, 1996, Rosin, 1997]. How-
ever, to our knowledge, explicit methods to force
progress and to prevent mediocre stable states in the
context of evolutionary search have never been tried.

The idea of introducing a pressure towards adapt-
ability as the central heuristic for search is not new.
Schmidhuber [Schmidhuber, 1995] proposed the Incre-
mental Self-Improvement system in which adaptabil-
ity is the measure that is optimized. The concept
of an ideal trainer is also discussed in [Epstein, 1994]
in the context of game learning. However, this work
addresses the issue of designing the "ideal" training
procedure which would result in high quality players
rather than coevolving the training environment in re-
sponse to the progress of learners.

5 Application to the Discovery of CA
Rules

5.1 Experimental Setup

The approach described in the previous section is ap-
plied to the pc = 1/2 task. It is believed that ICs
become more and more difficult to classify correctly as
their density gets closer to the pc threshold. Therefore,
our idea is to construct a framework that adapts the
distribution of the density for the population of ICs
as CA-rules are getting better to solve the task. The
following definition for the fitness of rules and ICs has

been used to achieve this goal.

f(Ri) = 2_, weightJCj x covered(Ri,ICj)
3 = 1

where:
1

weight JCj = 3 v-ins J2k=i covered(Rk,ICj

and

f(ICj) = Y^weightJi'ixE(Ri,p(ICj))
t=i

covered(Ri, ICj)

where:

weiaht-R': = =======
Efcici E(Ri, p{ICk)) x covered(Ri, ICk)

This definition implements the competitive relation-
ship with resource sharing. However, a new compo-
nent, namely E(Ri,p(ICj)), has been added in the
definition of the ICs' fitness. The purpose of this new
component is to penalize ICs with density p{ICj) if
little information is collected with respect to the rule
Ri. Indeed, we consider that if a rule R{ has a 50%
classification accuracy over ICs with density p{ICj)
then this is equivalent to random guessing and no pay-
off should be returned to ICj. On the contrary, if
the performance of Ri is significantly better or worse
than the 50% threshold for a given density of ICs this
means that Ri captured some relevant properties to
deal with those ICs. Once again, the idea is that the
training environment should be composed of ICs that
provide useful information to identify good rules from
poor ones. In order to allow continuous progress, our
implementation exploits an intrinsic property of the
pc = 1/2 task. Indeed, it seems that CA-rules that
cover ICs with density p0 < 1/2 (resp. p0 > 1/2) with
high performance will also be very successful over ICs
with density p'0 < p0 (resp. p'0 > po). Therefore, as
ICs become more difficult, their density is approach-
ing p0 = 1/2 but rules don't have to be tested against
easier ICs. Following this idea, we defined E() as the
complement of the entropy of the outcome between a
rule and ICs with a given density:

E(Ri,p(ICj))=log(2)+plog(p)+q\og(q)

where: p is the probability that an IC with density
p(ICj) defeats the rule Ri and q = 1 - p. E() imple-
ments the distance measure discussed in section 4.1.
Its purpose is to maintain the balance between the
search for more difficult ICs and ICs that can be solved
by rules. In practice, the entropy is evaluated by per-
forming some statistics over the population of ICs.

258 Jiiillc mid Pollack

Table 2: Description of the current host rule and published rules for the [>,. = 1/2 task.

Cocvolution 00010100
00010100

01011111
01011111

01000000
00000011

oooonooo
00001111

00010111
00010111

11111100
11111111

00000010
11111111

00010111
110101 II

Das rule 00000111
00001111

00000000
00000000

00000111
00000111

11111111
11111111

00001111
00001111

00000000
00110001

00001 1 1 1
0000111 I

inn 111
inn i n

ABK rule 00000101 00000000 01010101 00000101 00000101 00000000 01010101 00000101
01010101 11111111 01010101 11111111 01010101 11111111 01010101 llllllll

GKL rule 00000000
00000000

0101
0101

mi
1111

00000000
llllllll

01011111
01011111

00000000
00000000

0101 1111
01011111

00000000
llllllll

0101 111 I
0101 I I 11

5.2 Experimental Results

Experiments were performed with different sizes for
the population of rules and ICs. The best rule whose
performance is reported in table 1 resulted from the
experiments that used the largest population size. In
those experiments, 6 runs were performed for 5, 000
generations, using a size of 1,000 for the two pop-
ulations. Each rule is coded on a binary string of
length 22*r+1 = 128. One-point crossover is used with
a 2% bit mutation probability. The population of rules
is initialized according to a uniform distribution over
[0.0,1.0] for the density. Each individual in the popu-
lation of ICs represents a density p0 G [0.0.1.0]. This
population is also initialized according to a uniform
distribution over p0 e [0.0,1.0]. At each generation.
each member generates a new instance for an initial
configuration with respect to the density it represents.
All rules are evaluated against this new set of ICs. The
generation gap is 5% for the population of ICs (i.e.. the
top 95% ICs reproduce to the next generation). There
is no crossover nor mutation. The new 5% ICs are
the result of a random sampling over p() € [0.0.1.0]
according to a uniform probability distribution. The
generation gap is 80% for the population of rules. New
rules are created by crossover and mutation. Parents
are randomly selected from the top 20%. All runs
consistently evolved some rules that score above 82%.
Table 2 describes lookup tables for the current best
CA rule and other rules discussed in the literature.
The leftmost bit corresponds to the result of the rule
on input 0000000, the second bit corresponds to in-
put 0000001, ... and the rightmost bit corresponds to
input 1111111.

Figure 5 describes the evolution of the density of rules
and ICs for one run. As rules improve, their density
gets closer to 1/2 and the density of ICs is distributed
on two peaks on each side of pc = 1/2. In that par-
ticular run, it is only after 1,300 generations that a
significant improvement is observed for rules and that,
in response, the population of ICs adapts dramatically

in order to propose more challenging initial configura-
tions. This shows that our strategy to eoovolve the
training environment and tin» learners has been suc-
cessfully implemented in the definition of the fitness
functions.

6 Conclusion

This paper presents a new framework based on the
concept of cocvohitionary learniny. This approach coc-
volves the training environment with respect to a pop-
ulation of learners such that learners are always ex-
posed to a gradient for search, and evolution of prob-
lems towards increasing difficulty is maintained. The
work presented in this paper addresses those issues
by defining a topology over the space of problems.
Then, a procedure is implemented such that the train-
ing environment automatically adapts in response to
the progress of learners by proposing more challenging
problems. We applied this framework to the prob-
lem of evolving CA rules for a classification task. Our
experiments resulted in a new rule whose performance
improves very significantly over previously known rules
for that particular task.

Acknowledgment.

I would like to thank Melanit1 Mitchell for her help and
useful discussions.

References

[Andre et al.. 1996] Andre, D.. Bennett III, F. II., k.
Koza. .]. R. (1990). Evolution of intricate long-
distance communication signals in cellular automata
using genetic programming. In Procccd'nujs of the
Fifth Artificial Life Coufi rcnee, pp. IG 18.

[Capcarrere et ab. 199G] Capearroro. M. S., Sippor,
M.. cV Tomassini. M. (1990). Two-state, l-l cellular
automaton that classifies density. Physical Review
Letters. 77(21):4909 4971.

Revolutionary Learning 259

Figure 5: Coevolutionary learning between CA rules (left) and ICs (right).

[Cliff & Miller, 1995] Cliff, D. k Miller, G. F. (1995).
Tracking the red queen: Measurements of adaptive
progress in co-evolutionary simulations. In Third
European Conference on Artificial Life, LNCS 929,
pp. 200-218. Springer-Verlag.

[Das et al., 1994] Das, R., Mitchell, M., k Crutch-
field, J. P. (1994). A genetic algorithm discovers
particle-based computation in cellular automata. In
Parallel Problem Solving from Nature III, LNCS
866, pp. 344-353. Springer-Verlag.

[Epstein, 1994] Epstein, S. L. (1994). Toward an ideal
trainer. Machine Learning, 15:251-277.

[Hillis, 1992] Hillis, W. D. (1992). Co-evolving para-
sites improve simulated evolution as an optimization
procedure. In Langton, C. et al. (Eds.), Artificial
Life II, pp. 313-324. Addison Wesley.

[Juille k Pollack, 1996] Juille, H. k Pollack, J. B.
(1996). Co-evolving intertwined spirals. In Proceed-
ings of the Fifth Annual Conference on Evolutionary
Programming, pp. 461-468. MIT Press.

[Land k Belew, 1995] Land, M. k Belew, R. K.
(1995). No perfect two-state cellular automata for
density classification exists. Physical Review Letters,
74(25):1548-1550.

[Mahfoud, 1995] Mahfoud, S. W. (1995). Niching
Methods for Genetic Algorithms. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign. IlliGAL
Report No. 95001.

[Mitchell et al., 1994] Mitchell, M., Crutchfield, J. P.,
k Hraber, P. T. (1994). Evolving cellular automata
to perform computations: Mechanisms and impedi-
ments. Physica D, 75:361-391.

[Mitchell et al, 1993] Mitchell, M., Hraber, P. T., k
Crutchfield, J. P. (1993). Revisiting the edge of
chaos: Evolving cellular automata to perform com-
putations. Complex Systems, 7:89-130.

[Paredis, 1996] Paredis, J. (1996).
computation. Artificial Life, 2(4).

Coevolutionary

[Paredis, 1997] Paredis, J. (1997). Coevolving cellular
automata: Be aware of the red queen! In Back, T.
(Ed.), Proceedings of the Seventh International Con-
ference on Genetic Algorithms, pp. 393-400. Mor-
gan Kaufmann.

[Pollack et al., 1996] Pollack, J. B., Blair, A., k Land,
M. (1996). Coevolution of a backgammon player. In
Langton, C. (Ed.), Proceedings of Artificial Life V.
MIT Press.

[Rosin, 1997] Rosin, C. D. (1997). Coevolutionary
Search Among Adversaries. PhD thesis, University
of California, San Diego.

[Rosin k Belew, 1995] Rosin, C. D. k Belew, R. K.
(1995). Methods for competitive co-evolution: Find-
ing opponents worth beating. In Eshelman, L. J.
(Ed.), Proceedings of the Sixth International Con-
ference on Genetic Algorithms, San Mateo, Califor-
nia. Morgan Kauffmann.

[Schmidhuber, 1995] Schmidhuber, J. (1995). Discov-
ering solutions with low kolmogorov complexity and
high generalization capability. In Prieditis, A. k
Russell, S. (Eds.), Machine Learning: Proceedings of
the twelfth International Conference, pp. 188-196.
Morgan Kaufmann.

260

Near-Optimal Reinforcement Learning in Polynomial Time

Michael Kearns
AT&T Labs

180 Park Avenue Room A2.3Ö
Florham Park. New Jersey 07932

in kearns ■".research, at t. coin

Satinder Singh
Department of Computer Science

University of Colorado
Boulder. Colorado 80309
baveja "cs.Colorado.edu

Abstract

We present new algorithms for reinforce-
ment learning, and prove that they have
polynomial bounds on the resources required
to achieve near-optimal return in general
Markov decision processes. After observing
that the number of actions required to ap-
proach the optimal return is lower bounded
by the mixing time T of the optimal policy
(in the undiscounted rase) or by the horizon
time T (in the discounted rase), we then give
algorithms requiring a number of actions and
total computation time that are only poly-
nomial in T and the number of states, for
both the undiscounted and discounted cases.
An interesting aspect of our algorithms is
their explicit handling of the Exploration-
Exploitation trade-off.

1 Introduction

In reinforcement learning, an agent interacts with an
unknown environment, and attempts to choose actions
that maximize its cumulative payoff (Sutton c.V Barto.
1998; Barto et al., 1990, Bertsekas fc Tsitsiklis. 199G).
The environment is typically modeled as a Markov de-
cision process (MDP), and it is assumed that the agent
does not know the parameters of this process, but has
to learn how to act directly from experience. Thus,
the reinforcement learning agent faces a fundamental
trade-off between exploitation and exploration (Thrun.
1992; Sutton & Barto, 1998): should the agent exploit
its cumulative experience so far, by executing the ac-
tion that currently seems best, or should it execute a
different action, with the hope1 of gaining information
or experience that could lead to higher future payoffs?

Too little exploration can prevent the agent from ever
converging to the optimal behavior, while too much
exploration can prevent the agent from gaining near-
optimal payoff in a timely fashion.

There is a large literature on reinforcement learning,
which has been growing rapidly in the last decade. To
the best of our knowledge, all previous results on rein-
forcement learning in genera! MDP's are asymptotic in
nature, providing no explicit guarantees on either the
number of actions or the computation time the agent
requires to achieve near-optimal performance (Sutton.
1988; Watkins ,v- Dayan. 1992; Jaakkola et al.. 1991;
Tsitsiklis. 1991: Cullapalli ^ Barto. 1991). On the
other hand, finite-time results become available if one
considers restricted classes of MDP's. if the model of
learning is modified from the standard one, or if one
changes the criteria for success (Saul >v- Singh. 1990:
Fiechter. 1991: Fiechter. 1997: Schapire \- Warmuth.
1991: Singh cV- Dayan. in press). Fiechter (1991.1997),
whose results are closest in spirit to ours, considers
only the discounted case, and makes the learning pro-
tocol easier by assuming the availability of a "reset"
button that allows tin- agent to return to a fixed set of
start states at any time.

Thus, despite the many interesting previous results in
reinforcement learning, the literature has lacked algo-
rithms for learning optimal behavior in general MDP's
with provably finite bounds on the resources (actions
and computation time) required, under the standard
model of learning in which the agent wanders contin-
uously in the unknown environment. The results pre-
sented in this paper fill this void in what is essentially
the strongest possible sense.

We present new algorithms for reinforcement learn-
ing, and prove that they have poli/nomial bounds on
the resources required to achieve near-optimal payoff
in general MDP's. The bounds are polynomial in the

Near-Optimal Reinforcement Learning in Polynomial Time 261

number of states, and also in the mixing time of the op-
timal policy (undiscounted case), or the horizon time
1/(1 — 7) (discounted case). One of the contributions
of this work is in simply identifying the fact that finite-
time convergence results must depend on these param-
eters of the underlying MDP. An interesting aspect of
our algorithms is their rather explicit handling of the
exploration-exploitation trade-off.

For lack of space, here we present only our re-
sults for the more difficult undiscounted case. The
analogous results for the discounted case are cov-
ered in a forthcoming longer paper; interested read-
ers can retrieve the latest version from the web page
http://www.research.att.com/~mkearns.

2 Preliminaries and Definitions

We begin with the basic definitions for MDP's.

Definition 1 A Markov decision process (MDP)
M on states 1,...,N and with actions a,i,...,a,k,
consists of:
Transition probabilities P^iij) > 0, which for any
action a, and any states i and j, specify the probability
of reaching state j after executing action a from state
i in M. Thus, V ■P^(ij) = 1 for any state i and ac-
tion a.
Payoff distributions, for each state i, with mean
R\f(i) (where Rmax > -RM(*) > 0), and variance
VarM(i) < Varmax. These distributions determine the
random payoff received when state i is visited.

For simplicity, we will assume that the number of ac-
tions A; is a constant; it will be easily verified that if k is
a parameter, the resources required by our algorithms
scale polynomially with k.

Several comments regarding some benign technical as-
sumptions that we will make on payoffs are in order
here. First, it is common to assume that payoffs are
actually associated with state-action pairs, rather than
with states alone. Our choice of the latter is entirely
for technical simplicity, and all of the results of this
paper hold for the standard state-action payoffs model
as well. Second, we have assumed fixed upper bounds
Rmax and Varmax on the means and variances of the
payoff distributions; such a restriction is necessary for
finite-time convergence results. Third, we have as-
sumed that expected payoffs are always non-negative
for convenience, but this is easily removed by adding
the minimum expected payoff to every payoff.

If M is an MDP over states l,...,iV and with ac-
tions ai,...,a,k, a policy in M is a mapping ir :
{1,...,N} ->■ {ai,...,~fc}. An MDP M, combined
with a policy n, yields a standard Markov process on
the states, and we will say that 7r is ergodic if the
Markov process resulting from -K is ergodic (that is,
has a well-defined stationary distribution). For the
development and exposition, it will be easiest to con-
sider MDP's for which every policy is ergodic, the so-
called unichain MDP's (Puterman, 1994). Consider-
ing the unichain case simply allows us to discuss the
stationary distribution of any policy without cumber-
some technical details, and as it turns out, the result
for unichains already forces the main technical ideas
upon us. Also, note that the unichain assumption does
not imply that every policy will eventually visit every
state, or even that there exists a single policy that
will do so quickly; thus, the exploration-exploitation
dilemma remains with us strongly. We discuss the ex-
tension to the multichain case in the longer version of
this paper.

If M is an MDP, then a T-path in M is a se-
quence p of T + 1 states (that is, T transitions) of
M: p = «i,«2j • ■ • ,iT,ir+i- The probability that p is
traversed in M upon starting in state i\ and executing
policy 7T is Pr^[p] = UT=1P^ik\ikik+1). The (ex-
pected) undiscounted return along p in M is UM(P) —
(\/T){Ri1 + ■ ■ ■ + RiT) and the T-step undiscounted
return from state i is U^(i,T) = Z)PP~M[P]£/M(P),
where the sum is over all T-paths p in M that start
at i. We define U%[(i) = limT-voo ^M(*>

T
)-

Since

we are in the unichain case, U^ii) is independent
of i, and we will simply write Ufa. Furthermore,
we define the optimal T-step undiscounted return
from i in M by U*M{i,T) = max,{U]^(i,T)}. Also,
Uli(i) = limr^oo U^f(i,T). Finally, we observe that
the maximum possible T-step return is Rmax-

3 Mixing Times for Policies

It is easy to see that if we are seeking results about the
undiscounted return of a learning algorithm after a fi-
nite number of steps, we need to take into account
some notion of the mixing times of policies in the
MDP. To put it simply, for finite-time results, there
may no longer be an unambiguous notion of "the"
optimal policy. There may be some policies which
will eventually yield high return (for instance, by fi-
nally reaching some remote, high-payoff state), but
take many steps to approach this high return, and
other policies which yield lower asymptotic return but

262 Kearns and Singh

1- A

Figure 1: A simple Markov process demonstrating that
finite-time convergence results must account for mix-
ing times.

higher short-term return. Such policies are simply in-
comparable, and the best we could hope for is an al-
gorithm that "competes" favorably with any policy, in
an amount of time that is comparable to the mixing
time of that policy.

Definition 2 Let M be an MDP, and let TT be an er-
godic policy in M. Then the e-return mixing time
of IT is the smallest T such that for all T' > T,
\Vh(i,T') ~ Uh\ < e for alii1.

Suppose we are simply told that there is a policy ix
whose asymptotic return £/Af exceeds R in an un-
known MDP M, and that the e-return mixing time
of 7T is T. In principle, a sufficiently clever learning
algorithm (for instance, one that managed to discover
7T "quickly") could achieve return close to U^4 - e in
not much more than T steps. Conversely, without fur-
ther assumptions on M or IT, it is not reasonable to
expect any learning algorithm to approach return U%f

in many fewer than T steps. This is simply because
it may take the assumed policy IT itself on the order
of T steps to approach its asymptotic return. For ex-
ample, suppose that M has just two states and only
one action (see Figure 1): state 0 with payoff 0, self-
loop probability 1 - A, and probability A of going to
state 1; and absorbing state 1 with payoff R » 0.
Then for small e and A, the e-return mixing time is on
the order of 1/A; but starting from state 0, it really
will require on the order of 1/A steps to reach the ab-
sorbing state 1 and start approaching the asymptotic
return R. (A more formal lower bound along the lines
of this argument will be given in the long version.)

'in the long version, we relate the notion of e-return
mixing time to the standard notion of mixing time to sta-
tionary distributions (Puterman, 1994). The important
point here is that the e-return mixing time is polynomially
bounded by the standard mixing time, but may in some
cases be substantially smaller.

Thus, we would like a learning algorithm such that for
any T, in a number of actions that is polynomial in
T, the return of the learning algorithm is close to that
achieved by the best policy among those that, mix in
time T. This motivates the following definition.

Definition 3 Let M be a Markov decision process.
We define IIA/ to be the class of all ergodic policies

■K in M whose e-return mixing time is at most T. We
let opt(U^j() denote the optimal expected asymptotic

undiscounted return among all policies in IIAj .

Our goal in the undiscounted case will be to compete
with the policies in Il^f in time that is polynomial
in T, 1/e and N. We will eventually give an algo-
rithm that meets this goal for every T and e simulta-
neously. An interesting special case is when T — T*,
where T* is the e-mixing time of the asymptotically
optimal policy, whose asymptotic return is U*. Then
in time polynomial in T*, 1/e and N, our algorithm
will achieve return exceeding U* - e with high proba-
bility. It should be clear that, modulo the degree of the
polynomial running time, such a result is the best that
one could hope for in general MDP's. We briefly note
that in the case of discounted reward, we can still hope
to compete with the asymptotically optimal policy in
time polynomial in the horizon time; this is discussed
and achieved in the long version.

4 Main Theorem

We are now ready to describe our learning algorithm,
and to state and prove our main theorem: namely, that
the new algorithm will, for a general MDP, achieve
near-optimal undiscounted performance in polynomial
time. For ease of exposition only, we will first state
the theorem under the assumption that the learning al-
gorithm is given as input a "targeted" mixing time T,
and the value opt(U^'/) of the optimal return achieved
by any policy mixing within T steps. These assump-
tions are entirely removed in Section 4.6.

Theorem 1 (Main Theorem) Let M be a Markov de-
cision process over N states. Recall that. IIA/ is the
class of all ergodic policies whose e-return rnixing time
is bounded by T, and that opt(U^f) is the optimal
asymptotic expected undiscounted return achievable in
Yl\f. There exists an algorithm A, taking inputs
e,S,N,T and opt(U^'r

c), such that if the total number
of actions and computation time taken by A exceeds
a pohjnomial in l/e,l/5,N, T, and 7?mnT, then with
probability at least 1—6, the. total undiscounted return
of A will exceed opt^Tl^) — e.

Near-Optimal Reinforcement Learning in Polynomial Time 263

In the long version, we give a similar theorem for the
discounted case (via a similar algorithm), with the
horizon time playing the role of T. The criterion for
success needs to be altered, however, since in the dis-
counted case it is not possible to insist that the actual
return achieved by the learning algorithm approach
the optimal. This is due to the exponentially damped
contribution of successive payoffs. Intuitively, in the
discounted case it is not possible for a learning algo-
rithm to recover from its "youthful mistakes" as it can
in the undiscounted case, so we must settle for an al-
gorithm that simply finds a near-optimal policy from
its current state after a short learning period.

The remainder of this section is divided into several
subsections, each describing a different and central as-
pect of the algorithm and proof. The full proof of the
theorem is rather technical, but the underlying ideas
are quite intuitive, and we sketch them first as an out-
line.

4.1 Overview of the Proof and Algorithm

Our algorithm will be what is commonly referred to
as indirect or model-based: namely, rather than only
maintaining a current policy or value function, the al-
gorithm will actually maintain a model for the tran-
sition probabilities and the expected payoffs for some
subset of the states of the unknown MDP M. It is
important to emphasize that although the algorithm
maintains a partial model of M, it may choose to never
build a complete model of M, if doing so is not neces-
sary to achieve high return.

It is easiest to imagine the algorithm as starting off
by doing what we will call balanced wandering. By
this we mean that the algorithm, upon arriving in a
state it has never visited before, takes an arbitrary
action from that state; but upon reaching a state it
has visited before, it takes the action it has tried the
fewest times from that state (breaking ties between ac-
tions randomly). At each state it visits, the algorithm
maintains the obvious statistics: the average payoff
received at that state so far, and for each action, the
empirical distribution of next states reached (that is,
the estimated transition probabilities).

A crucial notion for both the algorithm and the anal-
ysis is that of a known state. Intuitively, this is a
state that the algorithm has visited "so many" times
(and therefore, due to the balanced wandering, has
tried each action from that state many times) that the
transition probability and expected payoff estimates
for that state are "very close" to their true values in

M. An important aspect of this definition is that it is
weak enough that "so many" times is still polynomially
bounded, yet strong enough to meet the simulation re-
quirements we will outline shortly.

States are thus divided into three categories: known
states, states that have been visited before, but are still
unknown (due to an insufficient number of visits and
therefore unreliable statistics), and states that have
not even been visited once. An important observation
is that we cannot do balanced wandering indefinitely
before at least one state becomes known: by the Pi-
geonhole Principle, we will soon start to accumulate
accurate statistics at some state.

Perhaps our most important definition is that of the
known-state MDP. If S is the set of currently known
states, the current known-state MDP is simply an
MDP Ms that is naturally induced on 5 by the full
MDP M; briefly, all transitions in M between states
in S are preserved in Ms, while all other transitions
in M are "redirected" in Ms to lead to a single ad-
ditional, absorbing state that intuitively represents all
of the unknown and unvisited states.

Although the learning algorithm will not have direct
access to Ms, by virtue of the definitionof the known
states, it will have an approximation Ms- The first
of two central technical lemmas that we prove (Sec-
tion 4.2) shows that, under the appropriate definition
of known state, Ms will have good simulation accu-
racy: that is, the expected T-step return of any policy
in Ms is close to its expected T-step return in Ms-
(Here T is the mixing time.) Thus, at any time, Ms
is a partial model of M, for that part of M that the
algorithm "knows" very well.

The second central technical lemma (Section 4.3) is
perhaps the most enlightening part of the analysis,
and is named the "Explore or Exploit" Lemma. It
formalizes a rather appealing intuition: either the opti-
mal (T-step) policy achieves its high return by staying,
with high probability, in the set S of currently known
states — which, most importantly, the algorithm can
detect and replicate by finding ajiigh-return exploita-
tion policy in the partial model Ms — or the optimal
policy has significant probability of leaving S within
T steps — which again the algorithm can detect and
replicate by finding an exploration policy that quickly
reaches the additional absorbing state of the partial
model Ms-

Thus, by performing two off-line, polynomial-time
computations on Ms (Section 4.4), the algorithm is
guaranteed to either find a way to get near-optimal

264 Kearns and Singh

return in M quickly, or to find a way to improve the
statistics at an unknown or unvisited state. Again by
the Pigeonhole Principle, the latter case cannot occur
too many times before a new state becomes known,
and thus the algorithm is always making progress. In
the worst case, the algorithm will build a model of the
entire MDP M, but if that does happen, the analysis
guarantees that it will happen in polynomial time.

The following subsections flesh out the intuitions
sketched above, providing a detailed sketch of the
proof of Theorem 1; the full proofs are provided in
the long version. In Section 4.6, we discuss how to
remove the assumed knowledge of the optimal return
and the targeted mixing time.

4.2 The Simulation Lemma

In this section, we prove the first of two key techni-
cal lemmas mentioned in Jbe sketch of Section 4.1:
namely, that if one MDP M is a sufficiently accurate
approximation of another MDP M, then we can actu-
ally approximate the T-step return of anyjsolicy in M
quite accurately by its T-step return in M. The im-
portant technical point is that the goodness of approx-
imation required depends only polynomially on 1/T,
and thus the definition of known state will require only
a polynomial number of visits to the state. Eventually,
we will appeal to this lemma to show that we can ac-
curately assess the return of policies in the induced
known-state MDP Ms by computing their return in
the algorithm's approximation Ms (that is, we will
appeal to Lemma 2 below using the settings M = Ms
and M = Ms).

We begin with the definition of approximation we re-
quire.

Definition 4 Let M and M be Markov decision pro-
cesses over the same state space. Then we say that.
M is an a-approximation of M if for any state i,
-RM(0 — Q < R^j{i) < Rm{i) + ct, and for any states
i and j, and any action a, P^f(ij) - a < P~(ij) <

Pa
M{iJ) + <*-

Ar

any policy TT and for any state i,

UUhT) - e < U*~(i,T) < Uh(i,T) + e. (1)

Proof:(Sketch) Let M be an a-approximation of M,
and let us fix a policy ■n and a start state i. Let us
say that a transition from a state i' to a state j' un-
der action a is /3-small in M if Pjlf(i'j') < ß. It
is possible to bound the difference between U%t(i,T)
and U~(i,T) contributed by those T-paths that cross

at least one /J-small transition by (a + 2ß)NTRmax

(details omitted). For the value of a stated in the
theorem, our analysis chooses a value of ß that yields
(a + 2ß)NTRmax < e/4.

Thus, for now we restrict our attention to the walks of
length T that do not cross any /3-small transtion of M.
It can be shown that for any T-path p that, under n,
does not cross any /?-small transitions of M, we have

(1 - A)TPrlf\p] < Pr^lp] < (1 + A)TPr'M]p] (2)

where A = a/ß. The approximation error in the pay-
offs yields

UM(P) -a< Ur-Jp) < UM{p) + a. (3)

We now state and prove the Simulation Lemma, which
says that provided M is sufficiently close to M in the
sense just defined, the T-step return of policies in M
and M will be similar.

Lemma 2 (Simulation Lemma) Let M be any

Markov decision process over N states. Let M be
an 0((e/(NTRmax))

2)-approximation of M. Then for Ti1^1 is well approximated by its T-step return in M.

Since these inequalities hold for any fixed T-path that
does not traverse any /3-small transitions in M under
7T, they also hold when we take expectations over the
distributions on such T-paths in M and M induced by
IT. Thus,

(l-A)T[c/^(i,T)-a]-e/4 < Uf^T)

<(l + A)TK,(i,T) + a] + e/4

where the additive e/4 terms account for the contribu-
tions of the T-paths that traverse /?-small transitions
under 7r, as bounded above. The desired constraint
that the outermost quantities in this chain of inequal-
ities be separated by an additive factor of at most 2e
determines choices for A and a that yield the theorem
(details omitted). D

What role does T play in the Simulation Lemma? As
we make T larger, M must be a better approximation
of M in order to satisfy the conditions of the Sim-
ulation Lemma — but Üien we are guaranteed of the
simulation accuracy of M for a larger number of steps.
If we wish to "compete" with the policies in n^f , then
by appealing to the Simulation Lemma using T, we en-
sure that the asymptotic return in M of any policy in

Near-Optimal Reinforcement Learning in Polynomial Time 265

Thus, the Simulation Lemma essentially determines
what the definition of known state should be: one that
has been visited enough times to ensure (with high
probability) that the estimated transition probabilities
and the estimated payoffs for the state are all within
0{(e/(NTRmax))

2) of their true values. A straight-
forward application of Chernoff bounds shows that the
desired approximation will be achieved for those states
from which every action has been executed at least

mknown = 0(((NTRmax)/e)4 Varmax log(l/<5)) (4)

times, where Varmax = max(l, max* [VarM (01) is tne

maximum of 1 and the maximum variance of the ran-
dom payoffs over all states.

4.3 The "Explore or Exploit" Lemma

The Simulation Lemma indicates the degree of ap-
proximation required for sufficient simulation accu-
racy, and led to the definition of a known state. If we
let S denote the set of known states, we now specify
the straightforward way in which these known states
define an induced MDP. This induced MDP has an ad-
ditional "new" state, which intuitively represents all of
the unknown states and transitions.

Definition 5 Let M be a Markov decision process,
and let S be any subset of the states of M. The in-
duced Markov decision process on S, denoted
Ms, has states 5U {so}> o,nd transitions and payoffs
defined as follows:

• For any state i 6 S, #MS(0 = #M(*)>' oil payoffs
in Ms are deterministic (zero variance) even if
the payoffs in M are stochastic.

• RMS(SO) = 0.

• For any action a, PMS(
S

OSQ) = 1- Thus, s0 is an
absorbing state.

• For any states i,j G S, and any action a,
p°^ (ij) = P°^{ij). Thus, transitions in M be-
tween states in S are preserved in Ms-

• For any state i G S and any action a, P£fs(«so) =
S -as ^M (*.?')• Thus, all transitions in M that are
not between states in S are redirected to so in Ms ■

Definition 5 describes an MDP directly induced on S
by the true unknown MDP M, and as such preserves
the true transition probabilities between states in S.
Of course, our algorithm will only have approximations

to these transition probabilities, leading to the follow-
ing obvious approximation to Ms: if we simply let M
denote the empirical approximation to M — that is,
the states of M are simply all^the states visited so far,
the transition probabilities of M are the observed tran-
sition frequencies, and the rewards are the observed re-
wards — then Ms is the natural approximation to Ms-
Now if we let S be the set of known states, as defined
by Equation (4), then the simulation accuracy of Ms
with respect to Ms in the sense of Equation 1 follows
immediately from the Simulation Lemma. Let us also
observe that any return achievable in Ms (and thus
approximately achievable in Ms) is also achievable in
the "real world" M — that is, for any policy 7r in M,
any state i G S, and any T, Ufos(i,T) < U^(i,T).

We are now at the heart of the analysis: we have iden-
tified a "part" of the unknown MDP M that the algo-
rithm "knows" very well, in the form of the approxima-
tion Ms to Ms- The key lemma follows, in which we
demonstrate the fact that Ms (and thus, by the Simu-
lation Lemma, Ms) must always provide the algorithm
with either a policy that will yield near-optimal return
in the true MDP M, or a policy that will allow rapid
exploration of an unknown state in M (or both).

Lemma 3 (Explore or Exploit Lemma) Let M be any
Markov decision process, let S be any subset of the
states of M, and let Ms be the induced Markov deci-
sion process on M. For any i G S and any T, and any
1 > a > 0, either there exists a policy it in Ms such
that U%ts(i,T) > Ujlf(i,T) - a, or there exists a pol-
icy n in Ms such that the probability that a walk of T
steps following ir will terminate in so exceeds a/Rmax.

Proof:Let 7r be a policy in M satisfying U^(i,T) =
U*M{i,T), and suppose that Un

Ms{i,T) < U*M{i,T) -
a (otherwise, ir already witnesses the claim of the
lemma). We may write

UM*,?) = Y,
FT

M\PPM(P)
P

= EPr^M^M(9) + EPrMH^M(r)
q T

where the sums are over, respectively, all T-paths
p in M, all T-paths q in M in which every state
in q is in S, and all T-paths r in M in which at
least one state is not in 5. Keeping this interpreta-
tion of the variables p, q and r fixed, we may write
EqP^M[q]UM(q) = Zq-PrnMs[q}UMs(q) < UfcfrT).
The equality follows from the fact that for any path
q in which every state is in S, Pr^fa] = PIMS[<?]

266 Kearns and Singh

and UM(Q) — UMs(q), and the inequality from the
fact that Ufa (i,T) takes the sum over all T-paths in
Ms, not just those that avoid the absorbing state SQ-

Thus E, Prl,[q\UM{q) < Ufa(i,T) - a which implies
that ZrPrl,[r]UM(r) > a. But £rP

rA/M^/(r) <

Rmax Er
PrA/[rl and s0 Er

PrM W > a I Rmax as de-
sired, o

4.4 Off-line Optimal Policy Computations

Let us take a moment to review and synthesize. The
combination of the simulation accuracy of Ms and the
Explore or Exploit Lemma establishes our basic line
of argument:

4.5 Putting it All Together

All of the technical pieces we need are now in place,
and we now give a more detailed description of the
algorithm, and sketch the remainder of the analysis.
(Again, full details are provided in the long version.)
We emphasize that for now we assume the algorithm
is given as input a targeted mixing time T and the
optimal return opt(HAf) achievable in 11^. In Sec-
tion 4.6, we remove these assumptions.

We call the algorithm Explicit Explore or Exploit, or
E3, because whenever the algorithm is not engaged
in balanced wandering, it performs an explicit off-line
computation on the partial model in order to find a
T-step policy guaranteed to either explore or exploit.

• At any time, if 5 is the set of current known states,
the T-step return of any policy ix in Ms (approx-
imately) lower bounds the T-step return of (any
extension of) IT in M.

• At any time, there must either be a policy in Ä/5
whose T-step return in M js^ nearly optimal, or
there must be a policy in Ms that will quickly
reach the absorbing state — in which case, this
same policy, executed in M, will quickly reach a
state that is not currently in the known set S.

At certain points in the execution of the algorithm,
we will perform T-step value iteration (which takes

0(N2T) computation) off-line twice: once on A/5, and

a second time on what we will denote M's. The MDP

M's has the same transition probabilities as Ms, but

different payoffs: in M's, the absorbing state SQ has
payoff Rmax and all other states have payoff 0. Thus
we reward exploration (as represented by visits to SQ)

rather than exploitation. If 9 is the policy returned
by value iteration on Mg and 7?' is the policy returned
by value iteration on M's, then Lemma 3 guarantees
that either the T-step return of 7? from our current
known state approaches the optimal achievable in M
(which for now we are assuming we know, and can
thus detect), or the probability that 7?' reaches s0,
and thus that the execution of 7?' in M reaches an
unknown or unvisited state in T steps with significant
probability (which we can also detect). Finally, note
that even though T-step value iteration produces a
non-stationary policy, it is the expected payoff that
is important, not whether we follow a stationary or
non-stationary policy.

Explicit Explore or Exploit (E3) Algorithm:

• (Initialization) Initially, the set S of known states is
empty.

• (Balanced Wandering) Any time the current state is
not in S, the algorithm performs balanced wandering.

• (Discovery of New Known States) Any time a state i
has been visited mj;n„„,n times during balanced wan-
dering, it enters the known set S, and no longer par-
ticipates in balanced wandering.

• Observation: Clearly, after N(m^nn,„„ — 1) + 1 steps
of balanced wandering, by the Pigeonhole Principle
some state becomes known. More generally, if the
total number of steps of balanced wandering the al-
gorithm has performed ever exceeds Arrr(^„„„,n, then
every state of M is known (even if these steps of bal-
anced wandering are not consecutive).

• (Off-line Optimizations) Upon reaching a known state
i € S during balanced wandering, the algorithm per-
forms the two off-line optimal policy computations on
Ms and M's described in Section 4.4:

— (Attempted Exploitation) If the resulting ex-

ploitation policy 7? achieves return from i in Mi-
that is at least opt(TlTh]') - f/2, the algorithm
executes 7? for the next T steps.

- (Attempted Exploration) Otherwise, the algo-
rithm executes the resulting exploration policy
7?' (derived from the off-line computation on M's)
for T steps in 71/, which by Lemma 3 is guaran-
teed to have probability at least e/(2R,nnr) of
leaving the set S.

• (Balanced Wandering) Any time an attempted ex-
ploitation or attempted exploration visits a state not
in 5, the algorithm immediately resumes balanced
wandering.

Near-Optimal Reinforcement Learning in Polynomial Time 267

This concludes the description of the algorithm; we can
now wrap up the analysis. One of the main remain-
ing issues is our handling of the confidence parameter
8 in the statement of the main theorem: Theorem 1
ensures that a certain performance guarantee is met
with probability at least 1 - <5. There are essentially
three different sources of failure for the algorithm:

• At some known state, the algorithm actually has
a poor approximation to the next-state distribu-
tion for some action, and thus Ms does not have
sufficiently strong simulation accuracy for Ms-

• Repeated attempted explorations fail to yield
enough steps of balanced wandering to result in a
new known state.

• Repeated attempted exploitations fail to result in
actual return that is near opt{U.^).

Our handling of the failure probability 8 is to simply
allocate 8/3 to each of these sources of failure. The fact
that we can make the probability of the first source of
failure (a "bad" known state) small is handled by a
standard Chernoff bound analysis applied to the defi-
nition of known states.

For the second source of failure (failed attempted ex-
plorations), a standard Chernoff bound analysis again
suffices: by Lemma 3, each attempted exploration
can be viewed as an independent Bernoulli trial with
probability at least e/(2Rmax) of "success" (at least
one step of balanced wandering). In the worst case,
we must make every state known before we can ex-
ploit, requiring Nrriknown steps of balanced wander-
ing. The probability of having fewer than Nrriknown
steps of balanced wandering will be smaller than 6/3
if the number of (T-step) attempted explorations is
O ({Rmax/e)N\0g(l/6)m known)-

Finally, we do not want to simply halt upon finding
a policy whose expected return is near opt (11^), but
want to achieve actual return approaching opt(Iij^),
which is where the third source of failure (failed at-
tempted exploitations) enters. We have already ar-
gued that the total number of T-step attempted ex-
plorations the algorithm can perform before S con-
tains all states of M is polynomially bounded. All
other actions of the algorithm must be accounted for
by T-step attempted exploitations. Each of these T-
step attempted exploitations has expected return at
least opt(nfye) - e/2. The probability that the ac-
tual return, restricted to just these attempted exploita-
tions, is less than opi(II^£) - 3e/4, can be made

smaller than 6/3 if the number of blocks exceeds
0((l/e)2log(l/<5)); this is again by a standard Cher-
noff bound analysis. However, we also need to make
sure that the return restricted to these exploitation
blocks is sufficient to dominate the potentially low re-
turn of the attempted explorations. It is not difficult
to show that provided the number of attempted ex-
ploitations exceeds 0(l/e) times the number of at-
tempted explorations, both conditions are satisfied,
for a total number of actions bounded by 0(T/e)
times the number of attempted explorations, which
is 0(NT(Rmax/e2)\og(l/6)mknown). The total com-
putation time is thus 0(N2T/e) times the number of
attempted explorations, and thus bounded by

0(N3T(Rmax/e2)\og(l/6)mknown). (5)

This concludes the proof of the main theorem. We re-
mark that no serious attempt to minimize these worst-
case bounds has been made; our immediate goal was to
simply prove polynomial bounds in the most straight-
forward manner possible. It is likely that a practical
implementation based on the algorithmic ideas given
here would enjoy performance on natural problems
that is considerably better than the current bounds
indicate. (See Moore and Atkeson, 1993, for a related
heuristic algorithm.)

4.6 Eliminating Knowledge of T and op^II^)

In order to simplify our presentation of the main the-
orem and the E3 algorithm, we made the assumption
that the learning algorithm knew the targeted mixing
time T and the target optimal return opti^i.^) achiev-
able in this mixing time. In this section, we briefly out-
line the straightforward way in which these assump-
tions can be removed without changing the qualitative
nature of the results. Details are in the long version
of this paper.

In the absence of knowledge of opt(U^f), the Explore
or Exploit Lemma (Lemma 3) ensures us that it is safe
to have a bias towards exploration. More precisely,
any time we arrive in a known state i, we will first
determine the exploration policy 5r' and compute the
probability that 9' will reach the absorbing state s0 of
M's in T steps. We can then compare this probability
to the lower bound e/(2Rmax) of Lemma 3. As long as
this lower bound is exceeded, we may execute 9' in an
attempt to visit a state not in S. If this lower bound
is not exceeded, Lemma 3 guarantees that the off-line
computation on Ms in the Attempted Exploitation
step must result in an exploitation policy 9 that is
close to optimal. We execute 9 in M and continue.

268 Kearns and Singh

Note that- this exploration-biased solution to remov-
ing knowledge of opt(IlAf) or V*(i) results in the al-
gorithm always exploring all states of M that can be
reached in a reasonable amount of time, before doing
any exploitation. This is a simple way of removing the
knowledge while keeping a polynomial-time algorithm:
but we explore more practical variants of this strategy
in the longer paper.

To remove the assumed knowledge of T, we observe
that we already have an algorithm A(T) that, given T
as input, runs for P(T) steps for some fixed polynomial
P(-) and meets the desired criterion. We now propose
a new algorithm A', which does not need T as input,
and simply runs A sequentially for T = 1,2,3, For
any T, the amount of time A' must be run before A'

has executed A(T) is £f=] P{t) < TP(T) = P'(T),
which is still polynomial in T. We just need to run A'
for sufficiently many steps after the first P'(T) steps
to dominate any low-return periods that took place
in those P'{T) steps, similar to the analysis done for
the undiscounted case towards the end of Section 4.5.
We again note that this solution, while sufficient for
polynomial time, is not the one we would implement
in practice.

5 Conclusion

In this paper, we presented the E3 algorithm, and
showed that it achieves near-optimal undiscounted re-
turn in general MDP's in polynomial time. In the long
version, we show that a slight modification of E3 gives
similar results for the discounted case, that the algo-
rithms can deal with MDP's with terminating states in
a natural way, and that they also work in multichain
MDP's.

There are a number of interesting lines for further re-
search. We are developing the basic ideas underlying
E3 into a practical algorithm, and hope to report on
an implementation and experiments soon. Finding an
efficient model-free version of our algorithm, and tech-
niques for dealing with large state spaces, remain for
future work.

Acknowledgements

We give warm thanks to Tom Dean, Tom Dietterich,
Tommi Jaakkola, Leslie Kaelbling, Michael Littman.
Lawrence Saul, Terry Sejnowski, and Rich Sutton for
valuable comments. Satinder Singh was supported by
NSF grant IIS-9711753.

References

Barto, A. G., Sutton, R. S., Watkins, C. (1990). Sequential
decision problems and neural networks. In NIPS 2, pages
686-693, Morgan Kaufmann.

Bertsekas, D. P., Tsitsiklis, J. N. (1996). Neuro-Dynamic.
Programming. Belmont, MA: Athena Scientific.

Fiechter, C. (1994). Efficient reinforcement learning. In
COLT94, pages 88-97. ACM Press.

Fiechter, C. (1997). Expected mistake bound model for on-
line reinforcement learning. In Machine Learning: Proceed-
ings of the Fourteenth International Conference (ICML97),
pages 116-124. Morgan Kaufmann.

Gullapalli, V., Barto, A. G. (1994). Convergence of indi-
rect adaptive asynchronous value iteration algorithms. In
NIPS 6, pages 695-702. Morgan Kauffman.

Jaakkola, T., Jordan, M. I., Singh, S. (1994). On the con-
vergence of stochastic iterative dynamic programming al-
gorithms. Neural Computation, 6(6), 1185-1201.

Moore, A. W., Atkeson, C. G. (1993). Prioritized sweeping:
Reinforcement learning with less data and less real time.
Machine Learning, 13(1).

Puterman, M. L. (1994). Markov decision processes : dis-
crete stochastic dynamic programming. New York: John
Wiley k. Sons.

Saul, L., Singh, S. (1996). Learning curve bounds for
Markov decision processes with undiscounted rewards. In
COLT96.

Schapire, R. E. , Warmuth, M. K. (1994). On the worst-
case analysis of temporal-difference learning algorithms. In
Machine Learning: Proceedings of the Eleventh Interna-
tional Conference, pages 266-274. Morgan Kaufmann.

Singh, S., Dayan, P. (in press). Analytical mean squared
error curves for temporal difference learning. Machine.
Learning.

Sutton, R. S. (1988). Learning to predict by the methods
of temporal differences. Machine Learning, 3, 9-44.

Sutton, R. S. , Barto, A. G. (1998). Reinforcement, Learn-
ing: An Introduction. Cambridge, MA: MIT Press.

Thrun, S. B. (1992). The role of exploration in learning
control. In White, D. A. , Sofge, D. A. (Eds.), Hand-
book of Intelligent Control: Neural, Fuzzy and Adaptive
Approaches. Florence, Kentucky 41022: Van Nostrand
Reinhold.

Tsitsiklis, J. (1994). Asynchronous stochastic approxima-
tion and Q-learning. Machine Learning, 16(3), 185-202.

Watkins, C. J. C. H., Dayan, P. (1992). Q-learning. Ma-
chine Learning, 8(3/4), 279-292.

269

A Fast, Bottom-Up Decision Tree Pruning Algorithm
with Near-Optimal Generalization

Michael Kearns
AT&T Labs

180 Park Avenue, Room A235
Florham Park, New Jersey 07932

mkearns@research.att.com

Yishay Mansour
Tel Aviv University

Department of Computer Science
Tel Aviv, Israel

mansour@math.tau.ac.il

Abstract

In this work, we present a new bottom-up al-
gorithm for decision tree pruning that is very
efficient (requiring only a single pass through
the given tree), and prove a strong performance
guarantee for the generalization error of the re-
sulting pruned tree. We work in the typical set-
ting in which the given tree T may have been
derived from the given training sample S, and
thus may badly overfit S. In this setting, we
give bounds on the amount of additional gener-
alization error that our pruning suffers compared
to the optimal pruning of T. More generally, our
results show that if there is a pruning of T with
small error, and whose size is small compared to
\S\, then our algorithm will find a pruning whose
error is not much larger. This style of result
has been called an index of resolvability result
by Barron and Cover in the context of density
estimation.
Our algorithm is local — the decision to prune
a subtree is based entirely on properties of that
subtree and the sample reaching it. To analyze
our algorithm, we develop tools of local uniform
convergence, a generalization of the standard no-
tion that may prove useful in other settings.

1 Introduction

We consider the common problem of finding a good
pruning of a given decision tree T on the basis of sam-
ple data S. We work in a setting in which we do not
assume the independence of T and S. In particular, we
allow for the possibility that T was in fact constructed
from S, perhaps by a standard greedy, top-down pro-
cess as employed in the growth phases of the C4.5 and
CART algorithms [8, 3]. Our interest here is in how
one should best use the data S a second time to find a
good subtree of T. Note that T itself may badly overfit
the data.

Our main result is a new and rather efficient pruning
algorithm, and the proof of a strong performance guar-
antee for this algorithm (Theorems 5 and 6). Our algo-
rithm uses the sample S to compute a subtree (prun-
ing) of T whose generalization error can be related to
that of the best pruning of T. More generally, the gen-
eralization error of our pruning is bounded by the min-
imum, over all prunings T', of the generalization error
e(T") plus a "complexity penalty" that depends only
on the size of T". Thus, if there is a relatively small
subtree of T with small error, our algorithm enjoys a
strong performance guarantee. This type of guarantee
is fairly common in the model selection literature, and
is sometimes referred to as an index of resolvability
guarantee [1]. (It is also similar to the types of results
stated in the literature on combining "experts" [4], al-
though the interest there is not in generalization error,
but in on-line prediction. This is discussed further be-
low.) Our algorithm is a simple, bottom-up algorithm
that performs a single pass over the tree T; hence its
running time is linear in size(T). The only informa-
tion our algorithm needs for this bottom-up pass is,
for each node in T, the depth of the node in T, the
size of the subtree rooted at the node, and the number
of positive and negative examples reaching the node.
This information is typically available from the con-
struction of the tree, or can be computed explicitly in
time 0(\S\depth{T)).

An important aspect of our algorithm is its locality.
Roughly speaking, this means that the decision to
prune or not prune a particular subtree during the ex-
ecution is based entirely on properties of that subtree
and the sample that reaches it. A number of common
pruning methods behave locally in this sense. The
analysis of our algorithm requires us to develop the
notion of local uniform convergence, a generalization
of the standard notion of uniform convergence, and a
tool that we believe may prove useful in other settings.

270 Kearns and Mansour

2 Related Work

There are a number of previous efforts related to our
results, which we only have space to discuss briefly
here; more detailed comparisons will be given in the
full paper. First of all, our pruning algorithm is closely
related to one proposed by Mansour [7], who gave pri-
marily experimental results, and did not give bounds
on the generalization error of the resulting pruned tree.

Helmbold and Schapire [4] gave an efficient algorithm
for predicting nearly as well as the best pruning of a
given tree. However, this algorithm differs from ours
in a number of important ways. First of all, it can-
not be directly applied to the same data set that was
used to derive the given tree in order to obtain a good
pruning — the predictive power is only on a "fresh" or
held-out data set. (A standard transformation of their
algorithm can be used on the original data set, but
results in a considerably less efficient algorithm, as it
requires many executions of the algorithm.) Second, it
does not actually find a good pruning of the given tree,
but a weighted combination of prunings. However, in
the on-line prediction model of learning, their result is
quite strong. Here we study the typical batch model
in which we may not assume independence of our tree
and data set.

The use of dynamic programming for pruning was al-
ready suggested in the original book on CART [3] in
order to minimize a weighted sum of the observed error
and the size of the pruning. Bohanec and Bratko [2]
showed that it is possible to compute in quadratic time
the subtree of a given tree that minimizes the training
error while obeying a specified size bound. By com-
bining this observation with the ideas of structural risk
minimization [10], it is possible to derive a polynomial-
time algorithm for our setting with error guarantees
quite similar to those we will give for our algorithm.
However, this algorithm would be considerably less ef-
ficient than the one we shall present.

Finally, our ideas are certainly influenced by the many
single-pass, bottom-up pruning heuristics in wide use
in experimental machine learning, including that used
by C4.5 [8]. While we do not know how to prove
strong error guarantees for these heuristics, our cur-
rent results provide some justification for them, and
suggest specific modifications that yield fast, practi-
cal and principled methods for pruning with proven
error guarantees. Combined with earlier results prov-
ing non-trivial performance guarantees for the com-
mon greedy, top-down growth heuristics in the model
of boosting [5], it is fair to say that there is now a solid

theoretical basis for both the top-down and bottom-up
passes of many standard decision tree learning algo-
rithms.

3 Framework and Preliminaries

We consider decision trees over an input domain A".
Each such tree has binary tests at each internal node,
where each test is chosen from a class T of predicates
over X. We use TREES(T, d) to denote the class of all
binary trees with tests from T and at most d internal
nodes, and leaves labeled with 0 or 1.

We will also need notation to identify paths in a
decision tree. Thus, we use PATHS(T, 1) to denote
the class of all conjunctions of at most t predicates
from T. Clearly, if v is a node in a decision tree
T £ TREES(T, d), then we may associate with v a pred-
icate reachv £ PATHS(T, d), which is simply the con-
junction of the predicates along the path from the root
to v in T. Thus, for any input x € X, rcachv(x) = 1 if
and only if the path defined by x in T passes through
v.

Given a node v in T, we let Tv denote the subtree of T
that is rooted at v, and for any probability distribution
P over X, we let Pv denote the distribution induced
by P on just those x satisfying reach,,(.T) = 1.

In our framework, there is an unknown distribution
P over X and an unknown target function f over X.
We are given a sample S of m pairs (x;, /(x;)), where
each Xi is drawn independently according to P. We
are also given a tree T = T(S) that may have been
built from the sample S. Now for / and T fixed, for
any distribution P, we define the generalization error
e(T) = ep(T) = Prp[T(x) ^ /(x)], and also the train-
ing error e(T) = es(T) = (l/m)Z"U Wi*) * /(*)]-
where I is the indicator function. In this notation, for
any node v in T, we can define the local generaliza-
tion error ev = ep (Tv) and the local training error

Zv = (V\Sv\)ZT(:sJlT(X) * /Ml' whCTC 5" !S the

set of all x £ S satisfying reach„(x) = 1. We will also
need to refer to the local errors incurred by deleting
the subtree T„ and replacing it by a leaf with the ma-
jority label of the examples reaching v. Thus, we use
et,(0) to denote min{PrPv[/(x) = 0],Prn[/(x) = 1]};
this is exactly the error, with respect to Pv, of the op-
timal constant function (leaf) 0 or 1. Similarly, we will
use et,(0) to denote the quantity

(l/|S,|)min{|{x£S„ :/(x) = 0}|,

|{xGS„:/(x) = l}|} (1)

which is the observed local error incurred by replacing

Near-Optimal Pruning 271

Tv by the best leaf.

As we have mentioned in the introduction, we make
no assumptions on /, and our goal is not to "learn" /
in the standard sense of, say, fitting a decision tree to
the data and hoping that it generalizes well. Here we
limit our attention to the problem of pruning a given
decision tree. Thus, we assume that we are given as
input the sample S and a particular, fixed tree T, with
the goal of finding a pruning of T with near-optimal
generalization.

It is important to specify what we mean by a prun-
ing of T, since allowing different pruning operations
clearly can result in different classes of trees that can
be obtained from T. We let PRUNINGS(T) denote
the class of all subtrees of T, that is, the class of
all trees that can be obtained from T by specifying
nodes vi,...,Vk in T and then deleting from T the
subtrees TVl,...,TVk rooted at those nodes. The al-
lowed operation is that of deleting any subtree from
the current tree; PRUNINGS(T) is exactly the class of
trees that can be obtained from T by any sequence
of such operations. Thus, any non-empty tree in
PRUNINGS(T) shares the same root as T, and can be
"superimposed" on T. In particular, we are not al-
lowing operations such as the replacement of an inter-
nal node by its left or right subtree [8]. Nevertheless,
the class PRUNINGS(T) contains an exponential num-
ber of subtrees of T, and our goal will be find a tree in
PRUNiNGS(T)'with close to the smallest generalization
error.

Let us again emphasize that we do not assume any "in-
dependence" between the given tree T and the sample
S — indeed, the likely scenario is that T was built us-
ing S. Formally, we are given a pair (S, T) in which
we allow T = T(S). We are imagining the common
scenario in which the sample S is to be used twice —
once for top-down growth of T using a heuristic such
as those used by C4.5 or CART, and now again to find
a good subtree of T. If one assumes that 5 is a "fresh"
or held-out sample (that is, drawn separately from the
sample used to construct T), the problem becomes eas-
ier in some ways, since one can then use the observed
error on S as an approximate proxy for the general-
ization error of any tree in PRUNINGS(T). There is a
trade-off that renders the two scenarios incomparable
in general [6]: by using a hold-out set for the pruning
phase, we gain the independence of the sample from
the given tree T, but at the price of having "wasted"
some potentially valuable data for the training (con-
struction) of T; whereas in our setting, we waste no
data, but cannot exploit independence of T and S.

In the hold-out setting, a good algorithm is one that
chooses the tree in PRUNINGS(T) that minimizes the
error on S (which can be computed in polynomial
time via a dynamic programming approach [2]), and
fairly general performance guarantees can be shown [6]
that necessarily weaken as the hold-out set becomes a
smaller fraction of the original data sample.

4 Description of the Algorithm

We begin with a detailed description of the pruning
algorithm, which is given the random sample S and a
tree T = T(S) as input. The high-level structure of
the algorithm is quite straightforward: the algorithm
makes a single "bottom-up" pass through T, and de-
cides for every node v whether to leave the subtree
currently rooted at v in place (at least for the mo-
ment), or whether to delete this subtree. More pre-
cisely, imagine that we place a marker at each leaf of
T, and for any node v in T, let MARKERS(u) denote the
set of markers in the subtree Tv rooted at v. When all
of the markers in MARKERS(u) have arrived at v, our
algorithm will then (and only then) consider whether
or not to delete the subtree then rooted at v; the al-
gorithm then passes all of these markers to its parent.
Thus, the algorithm only considers pruning at a node
v once it has first considered pruning at all nodes be-
low v; this simply formalizes the standard notion of
"bottom-up" processing. Also, note that the size of
the subtree rooted at v is easily computed by counting
the number of markers arriving there.

Two observations are in order here. First, the algo-
rithm considers a pruning operation only once at each
node v of T, at the moment when all of MARKERS(ü)
resides at v. Second, the subtree rooted at v when all
of MARKERS(u) reside at v may be different than Tv

(the original subtree of T rooted at v), because parts
of Tv may have been deleted as markers were being
passed up towards v. We thus introduce the notation
T* to denote the subtree that is rooted at v when all of
MARKERS(u) resides at v. It is T* that our algorithm
must decide whether to prune, and T* is defined by
the operation of the algorithm itself. We will use T*
to denote the final pruning of T output by our algo-
rithm.

It remains only to describe how our algorithm decides
whether or not to prune T*. For this we need some
additional notation. We define mv = \SV\, and we let
sv denote the number of nodes in T*, and tv be the
depth of the node v in T. Recall that ev{T*) is the
fraction of errors T* makes on the local sample Sv,

272 Kearns and Mansour

and e„(0) is the fraction of errors the best leaf makes
on Sv. Then our algorithm will replace T* by this best
leaf if and only if

ev(T:)+a(mv:sv,ev,6)>ev(IH) (2)

where S G [0,1] is a confidence parameter. The exact
choice of a(mv,sv,Ev,S) will depend on the setting,
but in all cases can be thought of as a penalty for the
complexity of the subtree T*. Let us first consider
the case in which the class T of testing functions is fi-
nite, in which case the class of possible path predicates
PATHS(T, iv) leading to v and the class of possible sub-
trees TREES(T,sv) rooted at v are also finite. In this
case, we would choose

a(mv,sv>lv,6) = c\
llog(A) + log(B) + log(m/<J)

m„

(3)
for some constant specific c > 1 determined by the
analysis, where

and

A = |PATHS(T,^)|

B = |TREES(T,S„)|.

(4)

(5)

Perhaps the most natural and common special case of
this finite-cardinality setting is that in which the input
space X is the boolean hypercube {0,1}", and the
test class T contains just the n single-variable tests x,.
These are the kinds of tests allowed in the vanilla C4.5
and CART packages, and since |PATHS(T,£)| < nl and
|TREES(T, S)\ < (an)s for some constant a, Equation
(3) specializes to

, , x\ ' /(4 + st,)log(n) + log(m/(5)
a{mv,sv,lv,d) = c \

y m„
(6)

for some specific constant c' > 1 determined by the
analysis. To simplify the exposition and to make it
more concrete, we will work with this particular choice
of T in most of our proofs, but specifically point out
how the analysis changes for the case of infinite T,
where the pruning rule is given by choosing

a(mv,sv,lv,S) = d
„ /(d*„+d,„)log(2m) + log(m/(J)

m,,

(7)
for some specific constant c" > 1 determined by the
analysis, where div and dSv are the VC dimensions
of the classes PATHS(T, (V) and TREES(T, SV), respec-
tively.

Let us first provide some brief intuition behind our al-
gorithm, which will serve as motivation for the ensuing
analysis as well. At each node v, our algorithm con-
siders whether to leave the current subtree T* or to
delete it. The basis for this comparison must clearly
make use of the sample S provided. Beyond this obser-
vation, a number of ways of comparing T* to the best
leaf are possible. For instance, we could simply prefer
whichever of T* and the best leaf makes the smaller
number of mistakes on Sv. This is clearly a poor idea,
since T* cannot do worse than the best leaf (assum-
ing majority labels on the leaves of T*), and may do
considerably better — but generalize poorly compared
to the best leaf due to overfitting. Thus, it seems we
should penalize T* for its complexity, which is exactly
the role of the additive term a(mv,sv,£v,S) above.

One important and natural aspect of our algorithm
(and many commonly used pruning methods) is the
fact that the comparison between T* and the best leaf
is being made entirely on the basis of the local reduc-
tion to the observed error. That is, the comparison
depends on Sv and T* only, and not on all of S and T.
A reasonable alternative "global" comparison might
compare the observed error of the current entire tree,
e(T*), plus a penalty term that depends on sizc(T*),
with the observed error of the entire tree but with T*
pruned, t{T* - T*) (where T* - T„* is the tree after
we prune at v), plus a penalty term that depends on
size(T* — T*). The important difference between this
global algorithm and ours is that in the global algo-
rithm, even when there is a large absolute, difference in
complexity between T* and a leaf, this difference may
be swamped by the fact that both are embedded in the
much larger supertree T* — that is, the difference is
small relative to the complexity of T*. This may cause
a suboptimal insensitivity, leading to a propensity to
leave large subtrees unpruned. Indeed, it is possible to
construct examples in which the global approach leads
to primings strictly worse than those produced by our
algorithm, and demonstrating that results as strong as
we will give are not possible for the global method.

Our analysis proceeds as follows. We first need to ar-
gue that any time our algorithm chooses not to prune
T*, then (with high probability) this was in fact the
"right" decision, in the sense that the current tree T*
would be degraded by deleting T*. This allows us to
establish that our final pruning will be a subtree of
the optimal pruning, so our only source of additional
error results from those subtrees of this optimal prun-
ing that we deleted. A careful amortized analysis al-
lows us to bound this additional error by a quantity

Near-Optimal Pruning 273

related to the size of the optimal pruning. This line
of argument establishes a relationship between the er-
ror of our pruning and that of the optimal pruning;
a slight modification of the algorithm and a more in-
volved analysis let us make a similar comparison to
any pruning. This extension is important for cases
in which there may be a pruning whose error is only
slightly worse than that of the optimal pruning, but
whose size is much smaller. In such a case our bounds
are much better.

5 Local Uniform Convergence

In standard uniform convergence results, we have a
class of events (predicates), and we prove that the ob-
served frequency of any event in the class does not
differ much from its true probability. We would like
to apply such results to events of the form "subtree
T* makes an error on x", but do not wish to take
what is perhaps most obvious approach towards doing
so. The reason is that we want to examine this event
conditioned on the event that x reaches v, and obvi-
ously this conditioning event differs for every v. One
approach would be to redefine the class of events of
interest to include the conditioning events, that is, to
look at events of the form "x satisfies reachv(x) and
T* makes an error on a;" for all possible reachv (x) and
T*. It turns out that this approach would result in
final bounds on our performance that are significantly
worse than what we will obtain. What we really want
is the rather natural notion of local uniform conver-
gence: for any conditioning event c in a class C, and
any event e in a class E, we would like to relate the
observed frequency of e restricted to the subsample sat-
isfying c to the true probability of e on the distribution
conditioned on c; and clearly the accuracy of this ob-
served frequency will depend not on the overall sam-
ple size, but on the number of examples satisfying the
conditioning event c. Such a relationship is given by
the next two theorems, which treat the cases of finite
classes and infinite classes separately.

Lemma 1 Let C and H be finite classes of boolean
functions over X, let f be a target boolean function
over x, and let P be a probability distribution over X.
For any c £ C and h € H, let ec(h) = Prp[h(x) ^
f(x)\c(x) = 1], and for any labeled sample S of f(x),
let ec(h) denote the fraction of points in Sc on which
h errs, where Sc = {x £ S : c(x) = 1}. Then the
probability that there exists a c 6 C and an h € H

such that

lec{h)-Uh)\ > W) + log(l*l) + log(l/*) (8)

is at most 5, where mc — \SC\-

Proof:Let us fix c € C and h € H. For these fixed
choices, we have for any value A

PrP[\ec(h)-ec(h)\>X} =

Eme[Prse[|ccW-ec(Ä)|>A]]. (9)

Here the expectation is over the distribution on val-
ues of mc induced by P, and the distribution on Sc

is over samples of size mc (which is fixed inside the
expectation) drawn according to Pc (the distribution
P conditioned on c being 1). Since mc is fixed, by
standard Chernoff bounds we have

PrSe[|cc(A) - ic(h)\ > X] < e~x^ (10)

giving the bound

PrP[|ec(/i) -ec(h)\ > X] < E^e"^]. (11)

If we choose

A = (log(|C|) + log(|H|) + log(l/*) (12)

then e~x ™c = <S/(|C||.fir|), which is a constant in-
dependent of mc and thus can be moved outside
the expectation. By appealing to the union bound
(Pr[A V B] < Pr[A] + Pr[B]), the probability that
there is some c and h such that \ec(h) — ic(h)\ > X is
at most |C||jff|(«/(|C7||ff|)) = S, as desired. D

Our use of Lemma 1 will be straightforward. Suppose
we are considering some node v in a decision tree T at
depth £v, and with a subtree T* of size sv rooted at v.
Then we will appeal to the lemma choosing the condi-
tioning class C to be the class PATHS{T,£V), choosing
H to be TREES(T, s„), and choosing S to be 6'/m2,
where 5' is the overall confidence we desire. In this
case, the local complexity penalty a(£v,sv,mv,6) in
Equation (3) and the deviation A in Equation (12) co-
incide, and thus we can assert that with probability
1 - S'/m2 there is no leaf of depth lv and subtree of
size sv such that the local observed error of the sub-
tree deviates by more than a(mv,sv,£v,S) from the
local true error. By summing over all m2 choices for
lv and s„, we obtain an overall bound of 5' on the
failure probability.

274 Kearns and Mansour

In other words, if wc limit our attention to the lo-
cal errors e^ (generalization) and ev (observed), then
with high probability we can assert that they will be
within an amount (namely, a(mv,sv,£v,S)) that de-
pends only on local quantities: the local sample size
mv, the length lv of the path leading to v, and the size
of the subtree rooted at v.

A more complicated argument is needed to prove local
uniform convergence for the case of infinite classes.

Lemma 2 Let C and H be classes of boolean func-
tions over X, let f be a target boolean function over x,
and let P be a probability distribution over X. For any
ceC andheH, let ec(h) = PrP[h(x) ^ f{x)\c(x) =
1], and for any labeled sample S of f(x), let ec(h) de-
note the fraction of points in Sc on which h errs, where
Sc = {x (E S : c(x) = 1}- Then the probability that
there exists a c G C and an h G H such that

\ec(h) - ec(h)\ >
l(dc + dH)\og{2m)+\og(l/S)

(13)
is at most S, where mc — \SC\, and dc and dn are the
VC dimensions of C and H, respectively.

Proof:(Sketch) The proof closely follows the "two-
sample trick" proof for the classical VC theorem [9],
with an important variation. Intuitively, we introduce
a "nested two-sample trick", since we need to apply
the idea twice — once for C, and again for H.

As in the classical proof, we define two events, but
now they are "local" events. Event A(S) is that in a
random sample S of m examples, there exists a c G C
and an h G H such that \ec(h) - ec(h)\ > A. Event
B(S,S') is that in a random sample S U S' of 2m ex-
amples, there exists a c G C and an h G H such that
\ec(h) - e'c(h)\ > A/2, where ec(h) and e'c(h) denote the
observed local error of h on S and 5', respectively.

We use the fact that

Prs[A(S)}

= Prs,S/[>l(5)] (14)

= Prs,s, [A(S) A B(S, S')]/Prs,s> [B(S, S')\A(S)]

(15)

Clearly, Prs,s>[A(S) A B(S,S')} < Prs,s.[B(5,5')] ■
We also have the inequality Prs,s<[B(S,S')|^(S)] >
1/2. Therefore, Prs,S'[^(5)] < 2Prs,s<[B(S,S')], and
we can concentrate on bounding the probability of
event B.

Let us first consider a fixed set of 2m inputs x,\,... i2m •
The number of possible subsets of this set induced by

taking intersections with sets in C is at most $r(2m),
where $c is the dichotomy counting functions of clas-
sical VC analysis. Let us fix a c G C, and consider the
subset Sc of xi,... ,x-2m that fall in r; let mc = \SC\.
Now consider all possible labelings of Sc by the concept
class H\ there are at most $//(mc) < <bn{2m) such la-
belings. Let us now also fix one of these labelings, by
fixing some h G H.

Now both c G C and h G H are fixed. Consider split-
ting Sc randomly into two subsets Si and 5^. For
event B to hold, we need the difference between the
observed errors of h on 5C

! and S% to be at least A/2.
It can be shown that this will occur with probability
at most e~A mc/i2^ wncre the probability is taken only
over the random partitioning of Sc. Now if we choose

A =
f(dc + d//)log(2m) + log(l/<5)

(16)

then e-*
2"Wi2 = (\l(2m)dc){\/{2m)d")5, which is

independent of mc. We can then bound the probabil-
ity that this event occurs for some c and h by summing
this bound over all possible subsets Sc, and all possi-
ble labelings of Sc by functions in H', giving a bound
of ^c(2m)^H(2m){l/mdc)(l/md")S. Using the fact
that $c(m) < rndc and $//(m) < md" yields an over-
all bound of 6, as desired. □

6 Analysis of the Pruning Algorithm

In this section, we apply the tools of local uniform
convergence to analyze the pruning algorithm given in
Section 4. As mentioned earlier, for simplicity in expo-
sition, we will limit our attention to the common case
in which A" is the boolean hypercube {0, l}n and the
class T of allowed node tests is just the input variables
Xi, in which case the pruning rule used by our bottom-
up algorithm is that given by Equation (6). However,
it should be clear how the analysis easily generalizes
to the more general algorithms given by Equations (3)
and (7).

We shall first give an analysis that compares the gen-
eralization error of the pruning T* produced by our
algorithm from S and T to the generalization error of
Topt, the pruning of T that minimizes the generaliza-
tion error. Recall that we use T* to denote the subtree
that is rooted at node v of T at the time our algorithm
decides whether or not to prune at v, which may be a
subtree of T„ due to primings that have already taken
place below v.

We will show that e(T*) is larger than eopi = f(Topt)

Near-Optimal Pruning 275

by an amount that can be bounded by a function of
the size sopt and depth lopt of Topt. Thus, if there is
a reasonably small subtree of T with small generaliza-
tion error, our algorithm will produce a pruning with
small generalization error as well. In Section 7, we
will improve our analysis to compare the error of T*
to that of any pruning, and provide a discussion of sit-
uations in which this result may be considerably more
powerful than our initial comparison to Topt alone.

For the analysis, it will be convenient to introduce the
notation

rv = (4 + s„) log(n) + log(m/6) (17)

for any node v, where lv is the depth of v in T, and
sv is the size of T*. In this notation, the penalty
a(mv,sv,lv,6) given by Equation (6) is simply a con-
stant (that we ignore in the analysis for ease of exposi-
tion) times yjrv/mv. (We assume that \Jrvjmv < 1,
since a penalty which is larger than 1 can be modified
to a penalty of 1 without changing the results.)

Lemma 3 With probability at least 1 — 6 over the draw
of the input sample S, T* is a subtree ofTopt-

Proof:Consider any node v that is a leaf in Topt. It
suffices to argue that our algorithm would choose to
prune T*, the subtree that remains at v when our al-
gorithm reaches v. By Equation (6), our algorithm
would fail to prune T* only if e„(0) exceeded ev(T*)
by at least the amount a(mv,sv,£v,S), in which case
Lemma 1 ensures that ev(T*) < £„(0) with high prob-
ability. In other words, if our algorithm fails to prune
T*, then Topt would have smaller generalization error
by including T* rather than making v a leaf. This
contradicts the optimality of Topt- □

Lemma 3 means that the only source of additional er-
ror of T* compared to Topt is through overpruning, not
underpruning. Thus, for the purposes of our analysis,
we can imagine that our algorithm is actually run on
Topt rather than the original input tree T (that is, the
algorithm is initialized starting at the leaves of Topt,
since we know that the algorithm will prune everything
below this frontier).

Let V = {vi,... ,vt] be the sequence of nodes in Topt

at which the algorithm chooses to prune the subtree
T*. rather than to leave it in place; note that t < sopt-
Then we may express the additional generalization er-
ror e(T*) - topt as

t

e(T*) - eopt = 5>„s(0) - eVi(T;{))pVi (18)
t=i

where pVi is the probability under the input distribu-
tion P of reaching node Vi, that is, the probability of
satisfying the path predicate reachVi. Each term in the
summation of Equation (18) simply gives the change
to the global error incurred by pruning T*, expressed
in terms of the local errors. Clearly the additional
error of T* is the sum of all such changes.

Now we may write

e(T*) - eopt

t

< £ (MW -e~*.Wl + M0) - ^(K)\

+ \^vi(T:i)-eVi(T:i)\)pVi (19)

* E /(*„4 + l)log(n)+log(m/a)

i=l
m„

+a(mVi,sVi,£Vi,6)

+ J(4,+^log(n)+log(m/a)\ (2o)

TO,,.

< 4SG/5K (21)

The first inequality comes from the triangle inequal-
ity. The second inequality uses two invocations of
Lemma 1, and the fact that our algorithm directly
compares £^(0) and eVi(T*.), and prunes only when
they differ by less than a(mVi,sVi,tVi,5).

Thus, we would like to bound the sum A =
X)j=i (\A«i /mvi)Pvi ■ The leverage we will eventually
use is the fact that X)i=i rvi can be bounded by quan-
tities involving only the tree Topt, since all of the T*
are disjoint subtrees olTopt. First it will be convenient
to break this sum into two sums — one involving just
those terms for which pVi is "small", and the other in-
volving just those terms for which pVi is "large". The
advantage is that for the large pVi, we can relate pVi to
its empirical estimate pVi = mVi/m, as evidenced by
the following lemma.

Lemma 4 The probability, over the sample S, that
there exists a node Vi G V such that pVi >
12\og(t/5)/m but pVi > 2pVi, is at most 8.

Proof:We will use the relative Chernoff bound

Pr[Pv;<(l-7)fc]<e-mp72/3 (22)

which holds for any fixed V{. By taking 7 = 1/2 and
applying the union bound, we obtain

Prpvj &V:pv> 2pv] < te_^ro/12. (23)

276 Kearns and Mansour

Now we can use the assumed lower bound on pVi to
bound the probability of the event by 6. □

Let V be the subset of V for which the lower bound
pv. > 12\og(t/5)/m holds. We divide the sum that
describes A into two parts:

A = Yl (VrvJmv^pVl + J2 {Vrv,/rnVijpVi

Vi€V-V v,€V
(24)

The first sum is bounded by l2\og(sopt/S)sopt/m,

since \/rVi /mVi is at most 1, and t < sopt-

For the second sum, we perform a maximization. By
Lemma 4, with high probability we have that for ev-
ery Vi e V, pVi < 2pVi = 2mVi/m. Thus, with high
probability we have

E ;/^. < E \f^(2—)
ViGV ViEV

m iL-/„ viev

2_
m1 < ^/(E^.xE™,)

(25)

(26)

(27)

To bound this last expression, we first bound
Ylvev rvf Recall that

rVi = (tv. + 8vi) log(n) + log(m/<S). (28)

Since for any V{ G V, we have tVi < lopt, we have that
Evi6V tVi < s0pttopt, since \V'\ < t < sopt. Since the
subtrees T*. that we prune are disjoint and subsets of
the optimal subtree Topt, we have ^Zr.-ev' s"i — s°pf-
Thus

J2 ri ^ ^ptd1 + toPt)log(n) + log(m/6)). (29)
Vi€V

To bound Ylviev mi>i m Equation (27), we observe
that since the sets of examples that reach different
nodes at the same depth in the tree are disjoint, we
have J2vi€V m". - m^opt- Thus, with probability 1 -
S, we obtain an overall bound

A <12\og(sopt/6)S-^

2 /
+ — yJsopt((l + lopt)tog(n) + log{m/6)){mtopt)

(30)

= o((\og(sopt/S) + eopt^log{n) + log(m/<J)J x

/¥) <ai»

This gives the first of our main results.

Theorem 5 Let S be a random sample of size m
drawn according an unknown target function and in-
put distribution. Let T = T(S) be any decision tree,
and let T* denote the subtree ofT output by our prim-
ing algorithm on inputs S and T. Let eopt denote the
smallest generalization error among all subtrees of T,
and let sopt and i0pi denote the size and depth of the,
subtree achieving eopt. Then with probability 1—6 over
S,

e{T') -eopt

= 0 ((\og(sopt/6) + lopt \/\og{n) + log(m/<5) J x

\fsopt/m) (32)

7 An Index of Resolvability Result

Roughly speaking, Theorem 5 ensures that the true er-
ror of the pruning found by our algorithm will be larger
than that of the best possible pruning by an amount
that is not much worse than \Jsoptlm (ignoring log-
arithmic and depth factors for simplicity). How good
is this? Since we assume that T itself (and therefore,
all subtrees of T) may have been constructed from the
sample 5, standard model selection analyses [10] indi-
cate that eop(may be larger than the error of the best
decision tree approximation to the target function by
an amount growing like y/sopt/m. (Recall that enpt
is only the error of the optimal subtree of T — there
may be other trees which are not subtrees of T with
error less than eopt, especially if T was constructed by
a greedy top-down heuristic.) Thus, if we only com-
pare our error to that of Topt, we are effectively only
paying an additional penalty of the same order that
T0pt pays- If sopt is small compared to m — that is,
the optimal subtree of T is small — then this is quite
good indeed.

But a stronger result is possible and desirable. Sup-
pose that Topt is not particularly small, but that there
is a much smaller subtree T' whose error is not much
worse than eopt- In such a case, we would rather claim
that our error is close to that of T\ with a penalty
that goes only like y/s'/m. This was the index of re-
solvability criterion for model selection first examined
for density estimation by Barron and Cover [1], and
we now generalize our main result to this setting.

Theorem 6 Let S be a random sample of size m
drawn according an unknown target function and input

Near-Optimal Pruning Til

distribution. Let T = T(S) be any decision tree, and
let T* denote the subtree of T output by our pruning
algorithm on inputs S and T. Then with probability

1 — 5 over S, ■

e(T*)

< minje(T') + o((\og(seff(T')/ö)+

leff(T')y/\og(n)+log(m/S)^ ^seff(T')/m^ } .

(33)

Here the min is taken over all subtrees T1 of T, and

we define the "effective" size

Seff(T') = s' + 2m(e(T') - eopt) + 6s' log(s'/S) (34)

and the "effective" depth £eg{T') = mm{(.opt,s'},
where s' and £' are the size and depth of T', eopt de-
notes the smallest generalization error among all sub-
trees of T, and £opt denotes the depth of the subtree

achieving eopt-

The proof is omitted due to space considerations, but
the main difference from the proof of Theorem 5 is that
our pruning is no longer a subtree of the pruning T"
to which it is being compared. This requires a slight
modification of the pruning penalty a(mv,sv,£v,S),
and the analysis bounding the sum of the sizes of the
pruned subtrees becomes more involved.

Again ignoring logarithmic and depth factors for sim-
plicity, Theorem 6 compares the error of our pruning
simultaneously to all prunings T'. Our additional er-
ror goes roughly like y^seff(T')/m. In Equation (34),
if s' is small compared to m and e(T') is not much
larger than eopt, then the bound shows that our error
will compare well to eopt — even though the tree T'
achieving the min may not be Topt. This is the power
of the guarantee provided by index of resolvability re-

sults.

[2] Marco Bohanec and Ivan Bratko. Trading Accuracy
for simplicity in Decision Trees. Machine Learning,
Vol. 15, pages 223 - 250, 1994.

. [3] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone.
Classification and Regression Trees. Wadsworth In-
ternational Group, 1984.

[4] David P. Helmbold and Robert E. Schapire. Predict-
ing Nearly as Well as the Best Pruning of a Decision
Tree. Proceedings of the Eighth Annual Conference on
Computational Learning Theory, ACM Press, pages
61 - 68, 1995.

[5] Michael Kearns and Yishay Mansour. On the Boost-
ing Ability of Top-Down Decision Tree Learning Algo-
rithms. Proceedings of the 28th Annual ACM Sympo-
sium on the Theory of Computing, ACM Press, pages
459-468, 1996.

[6] M. Kearns, Y. Mansour, A. Ng, D. Ron. An Exper-
imental and Theoretical Comparison of Model Selec-
tion Methods. Machine Learning, 27(l):7-50, 1997.

[7] Yishay Mansour. Pessimistic Decision Tree Pruning
Based on Tree Size.
Proceedings of the Fourteenth International Confer-
ence on Machine Learning, Morgan Kaufmann, pages
195 - 201, 1997.

[8] J. Ross Quinlan. C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann, 1993.

[9] V.N. Vapnik and A. Ya. Chervonenkis. On the Uni-
form Convergence of Relative Frequencies of Events
to their Probabilities. Theory of Probability and its
Applications, XVI(2):264-280,1971.

[10] V.N. Vapnik. Estimation of Dependences Based on
Empirical Data. Springer-Verlag, 1982.

Acknowledgements

Thanks to Rob Schapire for discussions of on-line
methods for predicting nearly as well as the best prun-
ing. Y. Mansour was supported in part by a grant from
the Israel Science Foundation.

References

[1] Andrew R. Barron and Thomas M. Cover. Minimum
Complexity Density Estimation. IEEE Transactions
on Information Theory, Vol. 37, No. 4, pages 1034 -
1054, 1991.

278

An Analysis of Actor/Critic Algorithms using Eligibility Traces:
Reinforcement Learning with Imperfect Value Functions

Hajime Kimura*
Tokyo Institute of Technology

gen@fe.dis.titech.ac.jp

Shigenobu Kobayashi
Tokyo Institute of Technology

kobayasi@dis.titech.ac.jp

Abstract

We present an analysis of actor/critic algo-
rithms, in which the actor updates its policy
using eligibility traces of the policy parame-
ters. Most of the theoretical results for eligi-
bility traces have been for only critic's value
iteration algorithms. This paper investigates
what the actor's eligibility trace does. The
results show that the algorithm is an exten-
sion of Williams' REINFORCE algorithms
for infinite horizon reinforcement tasks, and
then the critic provides an appropriate re-
inforcement baseline for the actor. Thanks
to the actor's eligibility trace, the actor im-
proves its policy by using a gradient of ac-
tual return, not by using a gradient of the
estimated return in the critic. It enables the
agent to learn a fairly good policy under the
condition that the approximated value func-
tion in the critic is hopelessly inaccurate for
conventional actor/critic algorithms. Also, if
an accurate value function is estimated by the
critic, the actor's learning is dramatically ac-
celerated in our test cases. The behavior of
the algorithm is demonstrated through simu-
lations of a linear quadratic control problem
and a pole balancing problem.

1 Introduction

Actor/critic architecture is an adaptive version of pol-
icy iteration [Kaelbling et al.96]. In general, policy
iteration alternates two phases: a policy evaluation
phase and a policy improvement phase. The actor im-
plements a stochastic policy that maps from a repre-
sentation of a state to a probability distribution over

* Interdisciplinary Graduate School of Science and En-
gineering, Tokyo Institute of Technology, 4259 Nagatsuta
Midori-ku Yokohama 226-8502 JAPAN.

actions. The critic attempts to estimate the evaluation
function for the current policy. The actor improves its
control policy using critic's temporal difference (TD)
as an effective reinforcement. In many cases, the policy
improvement is executed concurrently with the policy
evaluation, because it is not feasible to wait for the
policy evaluation to converge.

The actor/critic algorithms have been success-
fully applied to a variety of delayed reinforcement
tasks; ASE/ACE architecture for a pole balancing
[Barto et al. 83} [Gullapalli 92], RFALCON for a pole
balancing and for control of a ball-beam system
[Lin et al. 96], a cart-pole swing-up task [Doya96].
Although convergence proofs for the actor/critic algo-
rithms (e.g. [Williams et al. 90] and [Gullapalli 92])
are less than value-iteration based algorithms such
as Q-learning [Watkins et.al 92], the actor/critic algo-
rithms have the following practical advantages.

• It is easy to implement multidimensional contin-
uous action, that is often mixed with discrete ac-
tion [Gullapalli 92]. Because the actor selects ac-
tion by its stochastic policy, therefore problems of
action selection like as Q-learning does not exist.
The Q-learning needs to estimate returns for all
state-action pairs, but the critic would estimate
only the return of each state.

• Memory-less stochastic policies can be con-
siderably better than memory-less determinis-
tic policies in the case of partially observable
Markov decision processes (POMDPs) [Singh 94]
[Jaakkola 94] or multi-player games [Littman 94].

• It is easy to incorporate an expert's knowledge
into the learning system by applying conven-
tional supervised learning techniques to the actor
[Clouse et al. 92].

Eligibility traces are a fundamental mechanism
that has been widely used to handle delayed
reward [Singh 96]. Also the traces are often
used to overcome non-Markovian effects [Sutton 95],

Actor/Critic Algorithms using Eligibility Traces 279

[Pendrith et al. 96]. In Barto, Sutton and Anderson's
ASE/ACE architecture, both the critic and the actor
make use of the eligibility trace. Theoretical results of
eligibility traces in the context of TD(A) [Sutton 88]
have been obtained. But, in actor/critic algorithms,
the effect of the actor's trace has not been investigated.
This paper presents an analysis of an actor/critic al-
gorithm, in which the actor improves its policy using
eligibility traces of the policy parameters. This may
be the first analysis of the actor's eligibility traces.

2 Discounted Reward Criteria

At each discrete time t, the agent observes x% contain-
ing information about its current state, select action
at, and then receives an instantaneous reward rt re-
sulting from state transition in the environment. In
general, the reward and the next state may be ran-
dom, but their probability distributions are assumed
to depend only on xt and at in Markov decision pro-
cesses (MDPs), in which many reinforcement learning
algorithms are studied. The objective of reinforcement
learning is to construct a policy that maximizes the
agent's performance. A natural performance measure
for infinite horizon tasks is the cumulative discounted
reward:

Vt

k=0
7* rt+k (1)

where the discount factor, 0 < 7 < 1 specifies the
importance of future rewards. Vj is called the actual
return, that specifies how good the reward sequence
after time t is. By this notation, the goal of the learn-
ing is to maximize the expected return. In MDPs, the
expected return can be defined for all states as:

VW(X) = ET ^2ykrk\x0 = x
U=o

(2)

where Ev denotes the expectation assuming the agent
always uses stationary policy TT. V^a;) is called the
value function, that specifies how good the given state
x is. In MDPs, the goal of the learning is to find an
optimal policy that maximizes the value of each state
x defined by Equation 2. Although similar value func-
tions can be given in POMDPs, difficulties to define
the optimum have pointed out in [Singh 94].

3 Actor/Critic Algorithms

Figure 1 and 2 give an overview of actor/critic algo-
rithms [Sutton 90] [Crites et al. 94]. There are many
ways to implement the policy and its updating scheme
in the actor. The algorithms for the critic are mostly
TD methods. We should notice the following two
points; one is the actor implements stochastic policy,

the other is the actor improves its policy using TD-
error. This paper especially investigates an algorithm
for the actor.

Agent

xt Actor

stochastic policy x

at

T reinforcement fo r at

TD-error rt + lV(xHi) - V(xt)

Critic V(x)
rt

Observation Reward Action

Environment

Figure 1: A generic actor/critic framework.

1. The agent observes xt in the environment, and the
actor executes action at according to the current
stochastic policy v.

2. The critic receives the immediate reward rt, and then
observes the resulting next state xt+i. The critic pro-
vides TD error as an useful reinforcement feedback to
the actor, according to

(TD-error) = [r, + 7 V(xt+1)] - V{xt) ,

where 0 < 7 < 1 is the discount factor, V(x) is an
estimated value function by the critic.

3. The actor updates the stochastic policy using the TD-
error. If (TD-error) > 0, action at performed rela-
tively good and its probability should be increased. If
(TD-error) < 0, action at performed relatively poorly
and its probability should be decreased.

4. The critic updates estimated value function V(x) ac-
cording to TD methods, e.g., TD(0) algorithm adjusts
V(xt) <— V(xt)+a (TD-error), where a is the learning
rate.

5. Go to step 1.

Figure 2:
rithm.

Main loop of the generic actor/critic algo-

280 Kimura and Kobayashi

Adding Eligibility Trace to the
Actor

4.1 Function Approximation for Stochastic
Policies

In this paper, 7r(a, W, x) denotes probability of select-
ing action a under the policy IT in the observation x.
The ir(a,W, X) is taken to be a probability density
function when the set of possible action is continu-
ous. The policy is represented by a parametric func-
tion approximator using the internal variable vector
W. The agent can improve the policy 7r by modifying
W. For example, W corresponds to synaptic weights
where the action selecting probability is represented by
neural networks, or W means weight of rules in clas-
sifier systems. The advantage of using the notation
of the parametric function 7r() is that computational
restriction and mechanisms of the agent can be spec-
ified simply by a form of the function, and then we
can provide a sound theory of learning algorithms for
arbitrary types of the actor.

4.2 Details of the Algorithm

Figure 3 specifies the actor/critic algorithm that uses
the eligibility trace in the actor. The ASE/ACE sys-
tem configured for pole-balancing [Barto et al. 83] is
just an instance of this algorithm. The actor's eligibil-
ity in step 3 is the same variable defined in Williams'
REINFORCE algorithms [Williams 92]. The eligibil-
ity ei(t) specifies a correlation between the associated
policy parameter Wi and the executed action at. The
eligibility trace Di(t) is a discounted running average
of eligibility. It accumulates the agent's history. When
a positive reinforcement is given, the actor updates W
so that the probability of actions recorded in the his-
tory is increased. It means the TD-error at the time
t affects not only the action a< but also a<_i, a,t-2, ■ ■ ■.
At first glance, this idea is senseless for improving the
policy, but it has very interesting features given in de-
tail later. Note that the algorithm shown in Figure 3 is
identical to a stochastic gradient ascent for discounted
reward [Kimura et al. 97] when the actor's discount

factor ß = 7 and the V(x) in the critic equals a con-
stant 6 for all observations.

The actor requires a memory to implement W for the
policy and to implement Di for the eligibility trace.
The amount of the memory for Di is equal to W's.

4.3 An Analysis of the Algorithm

Assume that the actor's discount factor ß equals 7,
and for all t < 0, Di(t) = 0, then the algorithm shown

1. The agent observes it, and the actor executes action
at with probability 7r(at, W, xt).

2. The critic receives the immediate reward r(, and then
observes the resulting next state xt+i. The critic pro-
vides TD error to the actor according to

(TD-error) = [r, + 7 V(xt+1)] - V(x,) , (3)

where 0 < 7 < 1 is the discount factor, V(x) is an
estimated value function by the critic.

3. The actor updates the stochastic policy using the TD-
error according to:

Eligibility: e,(<) =
d
dw

-lnU(a,,W,xt)j

Eligibility Trace: £>,-(<) = e,(t) + ßD,(t - 1) ,

Awi(t) = (TD-error) D,(t)

W «- W + apAW(t) ,

where tu, denotes the i'h component of W, e, and
Di are the associated eligibility and eligibility trace
respectively, /?(0</?<l)isa discount factor for the
eligibility trace, ap is the learning rate for the actor.

4. The critic updates estimated value function V(x) ac-
cording toTD methods, e.g., TD(0) algorithm adjusts
V'(i) «— V(x) + a (TD-error), where a is the learning
rate.

5. Go to step 1.

t = 0

Figure 3: The actor/critic algorithm adding the eligi-
bility trace to the actor.

in Figure 3 updates the policy parameters as:

$>u,,-(o
00

00 / t \

= ^(r<+7^+i)-^)) £7(-Te,(0
(=0 \T=0 /
00/00 \

= Ee'W X>T"' (»V +7^ + 1) - V{*rj)
1=0 \r=t /

= f>w((f>T-v)-n*o) (4)
00

= X>W (v« - V(*0) (5)
t = 0

Equation 5 is given by Equation 1 and 4. Here we as-
sume that the statistics of the random variable Vt de-
pends only on the current policy parameter. It means
E{Vt} is a deterministic function of W, where E de-

Actor/Critic Algorithms using Eligibility Traces 281

notes the expectation operator. This assumption may
be right if the policy is converged to an equilibrium
point. The critic's estimation V(xt) is obviously inde-
pendent of the action at the time t. From the theory
of Williams' REINFORCE algorithm [Williams 92],
the value Vt and V(xt) in Equation 5 can be seen
as a reinforcement signal and a reinforcement base-
line respectively, then we have E{e{(t) (Vt — V(xt))} =
(d/dwi)E{Vt}. It says that the algorithm updates pol-
icy parameters statistically in a direction for increasing
the actual return Vt, not in a direction of a gradient
of estimated value function in the critic. Also It can
be seen as an extension of reinforcement comparison
methods [Sutton et al. 98], then V(xt) corresponds to
the reference reward.

From the above analysis and Figure 3, we can ex-
plain what the actor's eligibility trace does. At the
time t, the algorithm reinforces at using TD error
rt + V(xt+\) — V(xt) as a temporary expedient, there-
after the actor's eligibility trace replaces V(xt+i) with
the actual return (rt+1 + jrt+2 + 72rt+3 • • •) in order.

The critic does not affect the direction of the average
update vector, because the critic works as a reinforce-
ment baseline. Therefore, the actor can improve its
policy, whether the critic is able to learn the value
function or not. If the critic approximates the value
function well, the actor's learning would be acceler-
ated.

The above results are under the special condition ß =
7. If ß = 0, the actor updates W in the direction
of the gradient of the approximated value function in
the critic. The ß (0 < ß < 7) interpolates between
the above two limiting cases. The characteristics of
the ß are similar to the A in TD(A) [Sutton 88] and
Q(A)-learning [Peng et al. 94].

5 Preliminary Experiments

This section demonstrates the performance of the al-
gorithm applying to a simple linear control problem.

5.1 A Linear Quadratic Regulator (LQR)

The following linear control problem can serve as a
benchmark of delayed reinforcement tasks [Baird 94].
At a given discrete-time t, the state of the environ-
ment is the real value xt. The agent chooses a control
action at that is also real value. The dynamics of the
environment is:

«t+i = xt + at + noise , (6)

where the noise is the normal distribution that follows
the standard deviation <rnoise = 0.5. The immediate

reward is given by

(7)
The goal is to maximize the total discounted reward,
defined by Equation 1 or 2 for all x. Because the task is
a linear quadratic regulator (LQR) problem, it is pos-
sible to calculate the optimal control rule. From the
discrete-time Riccati equation, the optimum regulator
is given by

a* = — ki x* .where fci = 1 ,
1 + 2T + v/47

2 + 1
(8)

The optimum value function is given by V*(xt) =
—&2«t, where &2 is a some positive constant. In this
experiment, the set of possible states is constrained to
lie in the range [—4,4]. When the state transition given
by Equation 6 does not result in the range [—4,4], the
xt is truncated.When the agent chooses an action that
is not lie in the range [—4,4], the action executed in
the environment is also truncated.

5.2 Implementation for the LQR Problem

5.2.1 The Actor

Remember the policy ir(a, W, X) is a probability den-
sity function when the set of possible action is con-
tinuous. The normal distribution is a simple multipa-
rameter distribution for a continuous random variable.
It has two parameters, the mean fj, and the standard
deviation <r. When the policy function ir is given by
the equation 9, the eligibility of fi and a are

»(a, p. (7) = -4=expC(a
o:/

)2) (9)
0-V27r 2<r2

at

ea =
(at - y)2 - cr2

(10)

(11)

One useful feature of such a Gaussian unit
[Williams 92] is that the agent has a potential to con-
trol its degree of exploratory behavior. We must draw
attention to the fact that the eligibility is to divergent
when <T goes close to 0, because the parameter a is
occupying the denominators of Equation 10 and 11.
The divergence of the eligibility has a bad influence on
the algorithm. One way to overcome this problem is
to control the step size of the update parameter vec-
tor using cr. It is obtained by setting the learning rate
parameter proportional to <r2, then the eligibility can
be seen as

e„=at-n
(at - fi)2 - <r2

(12)

The actor would first compute p and <r deterministi-
cally and then draw its output from the normal dis-
tribution that follows mean equal to \i and standard

282 Kimura and Kobayashi

deviation equal to a. The actor has two internal vari-
ables, wi and w2, and computes the values of \i and a
according to

/j, = W\ xt a —
1

1 + exp(-u>2)'
(13)

Then, tuj can be seen as a feedback gain. The reason
for this calculation of a is to guarantee the <r to keep
positive. The ei and e2 are the characteristic eligibil-
ities of wi and w2 respectively. From Equation 12, ej
and e2 are given by

ei = e^-r—fi = {at-fi)xt

e2 =

1W\

d
e<>-z—o-

ow2

(14)

jr- a = ((a, - tf - <r2)(l - a) .(15)

The Wi is initialized to 0.35 ± 0.15, and w2 = 0, i.e.,
a = 0.5. The learning rate ap is fixed to 0.001.

5.2.2 The Critic

The critic quantizes the continuous state-space (—4 <
x < 4) into an array of boxes. We have tried two types
of the quantizing: one is discretizing x evenly into 3
boxes, the other is 10 boxes. And the critic attempts to
store in each box a prediction of the value V by using
TD(0) [Sutton 88]. The learning rate a for TD(0) is
fixed to 0.2.

using the trace was not influenced by the critic's abil-
ity in terms of the quality of the mean of the policy.
We can also see this property in Figure 8, but its de-
viation is considerably large. Figure 9 shows the value
function that is defined by Equation 1 and 7 over the
parameter space /z and a. The value of performance is
fairly flat around the optimal solution. This is the rea-
son that the deviation of the policy is large in Figure
8. This example makes it clear that the critic controls
step-size of the actor's backups so that the step-size is
taken to be smaller around the local maximum.

The algorithm in Figure 7 achieved best results in
terms of both the mean and the deviation of the pol-
icy. The reason for this may be owing to the critic's
perfect value estimation.

In this preliminary experiment, we can see that the
algorithm using the actor's eligibility trace performed
better than the algorithm without using the trace in
the same computational resources.

Here we presented the results of the actor-critic that
use only TD(0) in the critic, but we have also experi-
mented on TD(A) where 0 < A < 1. Roughly speaking,
we have poor performance when the A approaches close
to 1. It follows from this that the eligibility trace in
the critic cannot make up for the critic's poor ability
of function approximation. The details of the experi-
ments using TD(A) will appear in other papers.

5.3 Simulation Results

Figure 4, 5, 6, 7 and 8 show the performance of 100
trials in the LQR problem with the discount rate 7 =
0.9.

Figure 4 shows the performance of the algorithm, in
which the critic uses 3 boxes, the actor does not use
eligibility traces, i.e, ß = 0. Figure 6 shows the perfor-
mance where the critic uses 10 boxes, the actor does
not use the traces. The algorithm in Figure 6 con-
verged close to the optimum feedback gain. In con-
trast, Figure 4 didn't. The reason for this is that the
ability of the function approximation (3 boxes) is in-
sufficient for learning policy without the trace.

Figure 5 shows the performance where the critic uses
3 boxes, the actor uses the trace, ß = 7 = 0.9. It
achieved much better results in terms of both the
learning efficiency and the quality of the mean value of
the converged policy than the algorithm in Figure 4 or
5. Obviously, the actor's eligibility trace relates these
two advantages. The reason for the learning efficiency
in this case may be that the actor's trace accelerates
propagating information. The better quality of the
policy is clearly owing to the property that the actor
improves its policy by using a gradient of actual re-
turn, shown in Section 4.3. Therefore, the algorithm

0.2

-0.4

-0.6

-0.8

gamma = 0.9
Critic's Grid = 3

beta B 0.0

iffiiirrffifflfirHffififflffi

optimum

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Learning steps

Figure 4: The average performance of 100 trials with-
out the actor's eligibility trace (ß = 0). The critic uses
3 boxes.

Actor/Critic Algorithms using Eligibility Traces 283

0.6

0.4

0.2

-0.8

_, , , 1 1 1 1 r

gamma =0.9
Critic's Grid = 3

beta =0.9

ffiSiiininniinmnnifflinn!;
optimum

| 1 I I I I I L

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Learning steps

Figure 5: The average performance of 100 trials using
the actor's trace ß = 0.9. The critic uses 3 boxes.

0.6

0.4

0.2

.E 0
as TO
.*
Ü
« -0.2
.Q
T3
CD
<D

"--0.4

-0.6

-0.8

\
optimum

-i 1 1 1 1 r

gamma =0.9
Critic's Grid = 10

beta =0.9

BHHlIIIinilHIIHIHHIIIHIIIH

l I I l I I 1 l_

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Learning steps

Figure 7: The average performance of 100 trials using
the actor's trace ß = 0.9. The critic uses 10 boxes.

0.6

0.4

S 0
as TO
J£
Ü
as -0.2
.Q
13
CD
<D
"--0.4

-0.6

-i- 1 1 r

gamma =0.9
Critic's Grid = 10

beta =0.0

""roWinillllHIIIIIIIIliUli

\
optimum

_1 1 L.
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Learning steps

Figure 6: The average performance of 100 trials with-
out the actor's trace (ß = 0). The critic uses 10 boxes.

-T- 1 r -| 1 r-

beta =0.9

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Learning steps

Figure 8: The average performance of 100 trials, ß —
0.9. The agent learns without the critic, i.e., the critic
provides V(x) = 0 for all a;.

284 Kimura and Kobayashi

Optimum point

0.5

Deviation

Feedback gain

Figure 9: Value function over the parameter space in
the LQR problem, where 7 = 0.9. It is fairly fiat
around the optimum: fi = —0.5884, a = 0.

6 Applying to a Cart-Pole Problem

The behavior of this algorithm is demonstrated
through a computer simulation of a cart-pole con-
trol task, that is a multi-dimensional nonlinear non-
quadratic problem. We modified the cart-pole prob-
lem described in [Barto et al. 83] so that the action is
taken to be continuous.

6.1 Problem Formulation

The dynamics of the cart-pole system is modeled by

gsinfl + COS0 (-F-mlS'ünt+ßc'g
M+m) ml

p (4 m cosa $ \
* \3 M+m)

F + ml id2 sin 0 - 0 cos o\ - ncsgn(x)
x = ^ L

M + m

where M = 1.0 (kg) denotes mass of the cart, m = 0.1
(kg) is mass of the pole, 2£ = 1 (m) is a length of
the pole, g = 9.8 (m/sec2) is the acceleration of grav-
ity, F (N) denotes the force applied to cart's center of
mass, p,c = 0.0005 is a coefficient of friction of cart,
fip = 0.000002 is a coefficient of friction of pole. In
this simulation, we use discrete-time system to approx-
imate these equations, where At = 0.02 sec. At each
discrete time step, the agent observes (x,x,0,0), and
controls the force F. The agent can execute action in

^^^

x = 0

Figure 10: The cart-pole problem.

arbitrary range, but the possible action in the cart-pole
system is constrained to lie in the range [-20,20](N).
When the agent chooses an action which is not lie in
that range, the action executed in the system is trun-
cated. The system begins with (x,i,6,0) = (0,0,0,0).
The system fails and receives a reward (penalty) signal
of —1 when the pole falls over ±12 degrees or the cart
runs over the bounds of its track (-2.4 < x < 2.4),
then the cart-pole system is reset to the initial state.

6.2 Details of the Agent

In this experiment, the actor adopts similar im-
plementation shown in Equation 9 and 12. The
state space is constrained in the range (x,x,6,6) =
(±2.4 m, ±2 m/sec, ±TT X 12/180 rad, ±1.5 rad/sec).
The actor has five internal variables wi---ws, and
computes the /i and a according to

'(
^U + W2Y + ^Uw/m + U>4

1.5

= 0.1 +
1

l+exp(-u>5)'
(16)

Similarly to Equation 14 and 15, the eligibilities
t\ ■ ■ -es are given by

ci = K - n) xt , e2 = (at - fi) x\

G3 = (at - A4) 0t , e4 = (at - p) 0t

e5 = ((at - tf - <r2)(l + 0.1 - cr) .

The critic discretizes the normalized state space evenly
into 3x3x3x3 = 81 boxes, and attempts to store in
each box V by using TD(0) algorithm [Sutton 88]. The
parameters are set to 7 = 0.95, a = 0.5, ap

6.3 Simulation Results

0.001.

Figure 11 shows the performance of three learning
algorithms in which the policy representation is the

Actor/Critic Algorithms using Eligibility Traces 285

same. The actor/critic algorithm using the actor's
trace achieved best results. In contrast, the algorithm
without using the trace couldn't learn the control pol-
icy because of the poor ability of function approxima-
tion in the critic.

Actor/Critic
using actor's

eligibility trace

200 250 300 350 400 450 500
Trials

Figure 11: The average performance of three algo-
rithms on 100 trials. The critic uses 3x3x3x3
boxes. A trial means an attempt from initial state to
a failure.

7 Discussion

Representation of Policies: First of all, ac-
tor/critic algorithms should have sufficient ability to
approximate policies. If it is satisfied, use of the ac-
tor's eligibility trace (/? = 7) enables to learn an ac-
ceptable policy with less cost rather than increasing
the critic's ability of function approximation in our
test cases. The reason is that the policy function rep-
resentation would require less memory than the rep-
resentation of the state-action value function in many
cases.

Controlling Step-Size of Backups: It is
analytically shown in Section 4.3 that the critic pro-
vides an appropriate reinforcement baseline to the ac-
tor. The adaptive baseline controls step-size of the
actor's backups so that the step-size is taken to be
smaller around the local maximum. This property
would contribute the better learning efficiency and
the suppression of harmful drift of the policy that are
shown in the experiments.

To Overcome non-Markovian: There
are many ways to implement the critic's learning
scheme. [Peng et al. 94] and [Sutton 95] pointed out
that increasing A makes TD(A) less sensitive to non-
Markovian effect. The actor's eligibility traces are
also useful in getting over non-Markovian problems
[Kimura et al. 97]. Therefore, the combination of
TD(A) and the actor's eligibility trace will be robuster
in non-Markovian problems.

Combining with Effiicient DP-based
Methods: If the hidden state is relatively small
in the state space, the agent may perform good in
which efficient DP-based algorithms are adopted for
the critic. The DP-based algorithms accelerate the ac-
tor's learning in completely observable states, and the
actor's stochastic policy and its trace (/? = 7) would
make up for the non-Markovian effects owing to the
hidden state or function approximation.

8 Conclusions

This paper presented an analysis of actor/critic algo-
rithms in which the actor updates its policy using the
eligibility trace of the policy parameters. The results
show that when the discount rate of the value function
equals the discount factor of the actor's trace, the actor
improves its policy by using a gradient of actual return,
not by using a gradient of the estimated return in the
critic. Then, the critic provides an adaptive reinforce-
ment baseline to the actor controlling the step-size of
the actor's backups. It enables the agent to learn a
fairly good policy under the condition that the approx-
imated value function in the critic is hopelessly imper-
fect. The behavior is demonstrated through simula-
tions showing that the trace contributes the learning
efficiency and the suppression of undesirable drifts of
the policy. Analysis of the algorithm in non-Markovian
environments is a future work.

Acknowledgements

We would like to thank Andrew Barto, Jing Peng,
Jeff Schneider, Satinder Singh, Richard Sutton, and
reviewers for many helpful comments and suggestions.

References

[Baird 94] Baird, L. C: Reinforcement Learning in Con-
tinuous Time: Advantage Updating, Proceedings of
IEEE International Conference on Neural Networks,
Vol. IV, pp. 2448-2453 (1994).

[Barto et al. 83] Barto, A. G., Sutton, R. S. and Anderson,
C. W.: Neuronlike Adaptive Elements That Can Solve
Difficult Learning Control Problems, IEEE Transac-
tions on Systems, Man, and Cybernetics, vol. SMC-13,
no.5, September/October 1983, pp. 834-846. ■-

286 Kimura and Kobayashi

[Clouse et al. 92] Clouse, J. A. k Utogoff, P. E.: A Teach-
ing Method for Reinforcement Learning, Proc. of the
9th International Conference on Machine Learning
pp. 93-101 (1992).

[Crites et al. 94] Crites, R. H. and Barto, A. G.: An Ac-
tor/Critic Algorithm that is Equivalent to Q-Learning,
Advances in Neural Information Processing Systems 7,
pp. 401-408 (1994).

[Doya 96] Doya, K. : Efficient Nonlinear Control with
Actor-Tutor Architecture, Advances in Neural Infor-
mation Processing Systems 9, pp. 1012-1018 (1996).

[Gullapalli 92] Gullapalli, V.: Reinforcement Learning
and Its Application to Control, PhD Thesis, University
of Massachusetts, Amherst, COINS Technical Report
92-10 (1992).

[Jaakkola 94] Jaakkola, T., Singh, S. P., k Jordan, M.
I.: Reinforcement Learning Algorithm for Partially
Observable Markov Decision Problems, Advances in
Neural Information Processing Systems 7, pp.345-352
(1994).

[Kaelbling et al.96] Kaelbling, L. P., k Littman, M. L,
k Moore, A. W.: Reinforcement Learning: A Survey,
Journal of Artificial Intelligence Research, Vol. 4, pp.
237-277 (1996).

[Kimura et al. 95] Kimura, H., Yamamura, M., k
Kobayashi, S.: Reinforcement Learning by Stochastic
Hill Climbing on Discounted Reward, Proceedings of
the 12th International Conference on Machine Learn-
ing, pp.295-303 (1995).

[Kimura et al. 97] Kimura,
H., Miyazaki, K. and Kobayashi, S.: Reinforcement
Learning in POMDPs with Function Approximation,
Proceedings of the 14th International Conference on
Machine Learning, pp. 152-160 (1997).

[Lin et al. 96] Lin, C. J. and Lin, C. T.: Reinforcement
Learning for An ART-Based Fuzzy Adaptive Learning
Control Network, IEEE Transactions on Neural Net-
works, Vol.7, No. 3, pp. 709-731 (1996).

[Littman 94] Littman, M. L.: Markov games as a frame-
work for multi-agent reinforcement learning, Proc. of
11th International Conference on Machine Learning,
pp. 157-163 (1994).

[Pendrith et al. 96] Pendrith, M. D. k Ryan, M. R. K.:
Actual return reinforcement learning versus Temporal
Differences: Some theoretical and experimental results,
Proceedings of the 13th International Conference on
Machine Learning, pp. 373-381 (1996).

[Peng et al. 94] Peng, J. and Williams, R. J.: Incremental
Multi-Step Q-Learning, Proceedings of the 11th Inter-
national Conference on Machine Learning, pp. 226-232
(1994).

[Singh 94] Singh, S. P., Jaakkola, T., k Jordan, M. I.:
Learning Without State-Estimation in Partially Ob-
servable Markovian Decision Processes, Proceedings of
the 11th International Conference on Machine Learn-
ing, pp. 284-292 (1994).

[Singh 96] Singh, S. P., k Sutton, R.S.: Reinforcement
Learning with Replacing Eligibility Traces, Machine
Learning 22, pp. 123-158 (1996).

[Sutton 88] Sutton, R. S.: Learning to Predict by the
Methods of Temporal Differences, Machine Learning
3, pp. 9-44 (1988).

[Sutton 90] Sutton, R. S.: Reinforcement Learning Archi-
tectures for Animats, Proceedings of the 1st Interna-
tional Conference on Simulation of Adaptive Behavior,
pp. 288-295 (1990).

[Sutton 95] Sutton, R. S.: TD Models: Modeling the world
at a Mixture of Time Scales, Proceedings of the 12th In-
ternational Conference on Machine Learning, pp. 531-
539 (1995).

[Sutton et al. 98] Sutton, R. S. k Barto, A.: Reinforce-
ment Learning: An Introduction, A Bradford Book,
The MIT Press (1998).

[Watkins et.al 92] Watkins, C. J. C. H., k Dayan, P.:
Technical Note: Q-Learning, Machine Learning 8, pp.
55-68 (1992).

[Williams et al. 90] Williams, R. J. k Baird, L. C: A
Mathematical Analysis of Actor-Critic Architectures
for Learning Optimal Controls through Incremental
Dynamic Programming, Proceedings of the Sixth Yale
Workshop on Adaptive and Learning Systems, pp. 96-
101. Center for Systems Science, Dunham Laboratory,
Yale University, New Haven (1990).

[Williams 92] Williams, R. J.: Simple Statistical Gradient
Following Algorithms for Connectionist Reinforcement
Learning, Machine Learning 8, pp. 229-256 (1992).

287

Using learning for approximation in stochastic processes

Daphne Koller
Computer Science Dept.

Stanford University
Stanford, CA 94305-9010

koller@cs.stanford.edu

Raya Fratkina
Computer Science Dept.

Stanford University
Stanford, CA 94305-9010

raya@cs.stanford.edu

Abstract

To monitor or control a stochastic dynamic system,
we need to reason about its current state. Exact
inference for this task requires that we maintain a
complete joint probability distribution over the pos-
sible states, an impossible requirement for most pro-
cesses. Stochastic simulation algorithms provide an
alternative solution by approximating the distribu-
tion at time t via a (relatively small) set of samples.
The time t samples are used as the basis for generat-
ing the samples at time t + 1. However, since only
existing samples are used as the basis for the next
sampling phase, new parts of the space are never ex-
plored. We propose an approach whereby we try to
generalize from the time t samples to unsampled re-
gions of the state space. Thus, these samples are
used as data for learning a distribution over the states
at time t, which is then used to generate the time t+l
samples. We examine different representations for a
distribution, including density trees, Bayesian net-
works, and tree-structured Bayesian networks, and
evaluate their appropriateness to the task. The ma-
chine learning perspective allows us to examine is-
sues such as the tradeoffs of using more complex
models, and to utilize important techniques such as
regularization and priors. We validate the perfor-
mance of our algorithm on both artificial and real
domains, and show significant improvement in ac-
curacy over the existing approach.

1 Introduction
In many real-world domains, we are interested in moni-
toring the evolution of a complex situation over time. For
example, we may be monitoring a patient's vital signs in
an ICU, analyzing a complex freeway traffic scene with the
goal of controlling a moving vehicle, or even tracking mo-
tion of objects in a visual scene. Such systems have com-
plex and unpredictable dynamics; thus, they are often mod-
eled as stochastic dynamic systems. Even when a model of

the system is known, reasoning about the system is a com-
putationally difficult task. Our main concern in this paper
is in using machine learning techniques as part of a reason-
ing task; specifically, the task of monitoring the state of the
system as it evolves and as new observations are obtained.

Theoretically, the monitoring task is straightforward.
We simply maintain a probability distribution over the pos-
sible states at the current time. As time evolves, we update
this distribution using the transition model; as new observa-
tions are obtained, we use Bayesian conditioning to update
it. Such a distribution is called a belief state; in a Marko-
vian process, it provides a concise summary of all of our
past observations, and suffices both for predicting the fu-
ture trajectory of the system as well as for making optimal
decisions about our actions [Ast65].

Unfortunately, even systems whose evolution model is
compactly represented rarely admit a compact representa-
tion of the belief state and an effective update process. Con-
sider, for example, a stochastic system represented as a dy-
namic Bayesian network (DBN) [DK89]. A DBN partitions
the evolution of the process into time slices, each of which
represents a snapshot of the state of the system at one point
in time. Like a Bayesian network (BN), the DBN utilizes
a decomposed representation of the state via state variables
and a graphical notation to repesent the direct dependencies
between the variables in the model. The evolution model of
the system—the distribution over states at time t + l given
the state at time t—is represented in a network fragment
such as the one in Figure 1(a) (appropriately annotated with
probabilities). DBNs have been used for a variety of appli-
cations, including freeway surveillance [FHKR95], moni-
toring complex factories [JKOP89], and more.

Exact inference algorithms for BNs have analogues for
inference in DBNs [Kja92]. Unfortunately, in most cases-,
these algorithms also end up maintaining a belief state—a
distribution over most or all of the variables in a time slice.
Furthermore, it can be shown [BK98] that the belief state
rarely has any structure that may support a compact repre-
sentation. Thus, exact inference algorithms are forced to
maintain a fully explicit joint distribution over an exponen-

288 Koller and Fratkina

0—f=^
(Eciin-lndirflT) ("iion-lndicffl) (Emn-lnilk-oT)

-»-fiTconomvi:

f#Prii£rammcrs(l+l))

(a)

[#Prngrammcrs(T)) [»Programmer^ i] [#ProgrammcrsO)]

(b)

Figure 1: (a) The simple CAPITAL 2TBN for tracking the growth of a hi-tech company; (b) The same 2TBN unrolled for 3 time slices-
(c) The WATER 2TBN.

tially large state space, making them impractical for most
complex systems.

A similar problem arises when we attempt to monitor a
process with complex continuous dynamics. Here also, an
explicit representation of the belief state is infeasible.

This limitation has led to work on approximate infer-
ence algorithms for complex stochastic processes [GJ96,
BK98, KKR95, IB96]. Of the approaches proposed,
stochastic simulation algorithms are conceptually sim-
plest and make the fewest assumptions about the struc-
ture of the process. The survival of the fittest (SOF) al-
gorithm [KKR95] has been applied with success to large
discrete DBNs [FHKR95]. The same algorithm (indepen-
dently discovered by [IB96]) has been applied to the con-
tinuous problem of tracking object motion in cluttered vi-
sual scenes.

The algorithm, which builds on stochastic simulation
algorithms for standard BNs [SP89], is as follows: For
each time slice, we maintain a (small) set of weighted sam-
ples; a sample is one possible state of the system at that
time, while its weight is some measure of how likely it is.
This set of weighted samples is, in effect, a very sparse
estimate of the belief state at time t. A sample at time
t is propagated to time t + 1 by a random process based
on the dynamics of the system. In a naive generalization
of [SP89], each time t sample is propagated forward to time
t + 1. However, as shown by [KKR95], this approach re-
sults in extremely poor performance, with the error of the
approximation diverging rapidly as t grows. They propose
an approach where samples are propagated preferentially:
those whose weight is higher are more likely to be propa-
gated, while the lower weight ones tend to be "killed off."
Technically, samples from time t are selected for propa-
gation using a random process that chooses each sample
proportionately to its weight. The resulting trajectories are
weighted based on how well they fit the new evidence at
time t + 1, and the process continues. Despite its simplicity
and low computational cost, the SOF algorithm performs
very well; as shown in [KKR95], its error seems to remain
bounded indefinitely over time. As shown in [IB96], this
algorithm can also deal with complex continuous processes

much more successfully than standard techniques.
In this paper, we use machine learning techniques to im-

prove the behavior of the SOF algorithm, with the goal of
applying it to real-world complex domains. The SOF algo-
rithm shifts its effort from less likely to more likely trajec-
tories, thereby focusing on the more relevant parts of the
space. However, at time t + 1, it only samples parts of the
space that arise from samples that it had at time t. Thus,
it does not allow for correcting earlier mistakes: if its sam-
ples at time t were unrepresentative in some way, then its
samples at time t + 1 are also likely to be so. We can rein-
terpret this behavior from a somewhat different perspective.
The set of time t samples arc an approximation to the belief
state at time t. When SOF chooses which samples to prop-
agate it is simply sampling from this approximate belief
state. Thus, the SOF algorithm is using a set of weighted
samples as an approximation to a belief state, and a random
sampling process to propagate an approximate belief state
at time t to one at time t+1.

This perspective is a natural starting point for our ap-
proach. Clearly, a small number of weighted points is a
suboptimal way of representing a complex distribution over
a large space: As the number of samples is much smaller
than the total size of the space, the representation is very
sparse, and therefore necessarily unrepresentative. Our key
insight is that our information about the relative likelihood
of even a small number of points in the space can tell us
a lot about the relative likelihood of others. Thus, we can
treat our samples as data cases and use them to leant the
shape of the distribution. In other words, we can use our
own randomly generated samples as input to a density esti-
mation algorithm, and use them to learn the distribution.

This insight leads us to explore a number of improve-
ments to the SOF algorithm. We first note, in Section 3,
that the number of samples needed to adequately estimate
the distribution can vary widely: in situations where the
evidence is unlikely, more samples will be needed in order
to "find" relevant regions of the space. Luckily, as we are
generating our own data, we can generate as many samples
as we need; that is, we can perform a simple type of active
learning [CAL94].

Using learning for approximation in stochastic processes 289

We then introduce a Dirichlet prior over the parameters
of our distribution in order to deal with the problem of nu-
merical overfitting, a particularly serious problem when we
have a sparse sample for a very large space. We show that
even these two simple improvements serve to significantly
increase the accuracy of our algorithm.

We then proceed to investigate the issue of generalizing
from the samples to other parts of the space. Of course, in
order to generalize, we need a representation whose bias is
higher. The requirements of our task impose several con-
straints both on the representation of the distribution and
on the algorithm used to estimate it. First, as our state
space is exponentially large, we must restrict attention to
compact representations of distributions. Second, we must
allow samples to be generated randomly from the distribu-
tion in a very efficient way. Thus, for example, a neural
network whose input is a possible state of the process and
whose output is the probability of that state would not be
appropriate. Finally, as we are primarily interested in fast
monitoring in time-critical applications, we prefer density
estimation algorithms that are less compute-intensive.

Based on these constraints, we explore three main ap-
proaches, appropriate to processes represented as DBNs:
Bayesian networks with a fixed structure, tree-structured
Bayesian networks with a variable structure, and density
trees, which resemble decision trees or discrete regression
trees. We compare the performance of these algorithms to
that of the SOF algorithm, and show that all three track the
process with higher accuracy. We show that the density
tree approach seems particularly promising, and suggest a
possible explanation as to why it behaves better than the
other approaches. We conclude with some discussion and
possible extensions of our approach to other domains.

2 Preliminaries

A discrete time stochastic process is viewed as evolving
randomly from one state to another at discrete time points.
Formally, there is a set of states £ such that at any point in
time t, the situation can be described using some state x €
S. We typically assume that the process is Markovian so
that the probability of being in state x' at time t+1 depends
only on the state of the world at time t. Formally, letting
X^ denote the random variable (or set of random vari-
ables) representing the state at time t, we have that X^t+1'
is independent of X^°\..., X{t~l) given Xw. Thus,
p(x(°\...,xW) = p(xW)ifi=1p(xW I xV-V).
We also typically assume that the process is time invariant,
so that P{X{t) | X{t~1]) does not depend on t. Thus,
it can be specified using a single transition model which
holds for all time points.

In a DBN, the state of the process at time t is specified in
terms of a set of state variables X{ (0 , X„ . The transi-
tion model therefore has to define a probability distribution
P(x{t+1),..., X%+1) | X[t],..., XP). We specify such

a distribution using a network fragment called a 2TBN—a
two time-slice Bayesian network, as shown in Figure 1(a).
A 2TBN defines the probability distribution for any time
slice t + 1 given time slice t: for each variable X\
in the second time slice, the network fragment specifies a
set of parents Parents{x\i+1>), which can be variables ei-
ther in time slice t + 1 or in time slice t; it also specifies
a conditional probability table, which describes the proba-

bility distribution over the values of xf+1) given any pos-
sible combination of values for its parents. As a whole, the
2TBN completely specifies P(X{t+1) | X(t)). The net-
work fragment can be unrolled to define a distribution over
arbitrarily many time slices. Figure 1(b) shows the 2TBN
of Figure 1(a) unrolled over three time slices.

The state of the process is almost never fully observ-
able; thus, in any time slice, we will get to observe the
values of only some subset of the variables. In most mon-
itoring tasks, the set of observable variables is the same in
the different time slices. These variables typically represent
sensor readings, e.g., the reading of some blood-pressure
monitor in the ICU or the output of a video camera on a
freeway overpass. Let O^ be the set of observable vari-
ables at time t, and let o^ be the instantiation of values for
these variables observed at time t. In the monitoring task,
we are interested in reasoning about X[',..., X„ given
all the observations seen so far; i.e., we want to maintain
P(X« | o(°\... ,<>«).

As we discussed in the introduction, the stochastic sim-
ulation algorithms for DBNs is based on the standard like-
lihood weighting (LW) algorithm. The algorithm, shown
in Figure 2, generates a sample by starting at the roots of
the network and continuing in a top-down fashion, picking
a value for every variable in turn. A value for a variable
is sampled according to the appropriate conditional distri-
bution, given the values already selected for its parents.
Variables whose values were observed as evidence are not
sampled; rather the variable is simply instantiated to its ob-
served value. However, we must compensate for the fact
that we forced this variable to take a value which may or
may not be likely. Thus, we modify the weight of the sam-
ple to reflect the likelihood of having observed this partic-
ular value for this variable. It is easy to see that, while our
algorithm only generates points x that are consistent with
our observations, the expected weight for any such x (i.e.,
the probability with which it is generated times its weight
when it is) is exactly its probability. Thus, our weighted
samples are an unbiased estimator of the (unnormalized)
distribution over the states and the observations. Note that
the weight of the sample represents how well it explains
our observations. Thus, a sample of very low weight is a
very bad explanation for the observations, and contributes
very little to our understanding of the situation.

The straightforward application of LW to DBNs is sim-
ply by treating the DBN as one very long BN. Roughly

290 Koller and Fratkina

LikelihoodWeighting(x((),o(t+1))
w := 1
for i := 1 ton

Let u be the assignment to Parents(x\l+^) in x((), x(f+1)

IfXjt+1)isnotinO<t+1>
Sample ^(+1) from P{x\t+l) | Pwmts{X\t+l)) = ti)

Else
Set x; to be Xi 's observed value in o(,+1^
Set w := w • P(xlt+1) = x\t+1) \ Parents{X\t+l)) = «)

Return(x(t+1),w)

Figure 2: A temporal version of the likelihood weighting algo-
rithm; it generates an instantiation x('+1) for the time t + 1 vari-
ables given an instantiation x(() for the time t variables.

speaking, the algorithm would maintain a set of samples
xW[l],...,a;W[iV] for every time slice t, representing
possible states of the process at that time. At each time
slice t, each of the samples is propagated to the next time
slice using the LW algorithm, and its weight is adjusted
according to how well it reflects the new observations. Un-
fortunately, as observed by [KKR95], this approach works
very poorly for most DBNs. Intuitively, the process by
which samples are randomly generated is oblivious to the
evidence, which only affects the weight assigned to the
samples. Therefore, the samples represent random trajec-
tories through the system, most of which are completely
irrelevant. As a consequence, as shown in [KKR95], the
accuracy of LW diverges extremely quickly over time.

The survival of the fittest algorithm of [KKR95] ad-
dresses this problem by preferentially selecting which sam-
ples to propagate according to how likely they are, i.e., their
weight relative to other samples. Technically, each sam-
ple a;^[j] is associated with a weight w/''[j]. In order to
propagate to the next time slice, the algorithm first renor-
malizes all of the weights u/'' [j] to sum to 1. Then, it
generates N new samples for time t + 1 as follows: For
each new sample j, it selects x^ randomly from among
ajOfl],..., x® [N], according to their weight. It then calls
LW with x^ as a starting point, and gets back a time t + 1
sample a:'t+1) and a weight w. It sets a^'"1"1^'] := cc'<+1'
and u;('+1)[j] := w. Note that the weight of the sam-
ple VJW [j] manifests in the relative proportion with which
x^\j] will be propagated, so that we do not need to re-
count it when defining w^t+1^[j]. Kanazawa et al. show
empirically that, unlike LW, the error of SOF seems to re-
mains bounded indefinitely over time.

3 Belief state estimation

We can interpret the SOF algorithm as estimating a proba-
bility distribution over the states at time t. Having gener-
ated some number of samples x^[l],.. .,x^[N], itrenor-
malizes their weights to sum to 1. The result is a simple

count distribution asc' over the states at time t, one which
gives some positive probability to states that correspond to
one or more samples, and zero probability to all the rest.
The SOF algorithm then generates N new samples from
aSc, and propagates each of them to time t + 1 using the
LW algorithm. The result samples arc again renormalizcd,
and the process repeats.

The distribution asc is a compact approximation to
the belief state er*'' at time t—the correct distribution

o'''). Assuming we know the initial P{X™ | o(°\

state at time 0, al"' is precisely the belief state at time 0.
The properties of LW imply that our weighted samples at

,(°)

time 1 are an unbiased estimator for P(X(',o(1' | o(0)).

Thus, after renormalization, asc is an estimator (albeit a
biased one) for P(X^ \ of0\o^). By similar reason-

ing, we have that ale is a (biased) estimator for P{X^ |
o('). However, each asc is only a very sparse o<°>,

approximation to a^\ and thus one which is less than rep-
resentative. It is also highly variable, with a strong depen-
dence on which samples we happened to pick at the mul-
tiple previous random sampling stages. Both the sparsity
and variability of our estimate propagate to the next time
slice, increasing the variance of our approximation.

Our first attempt to control this variance relates to the
amount of data on which our estimation is based. Naively,
it seems that, at each phase, we arc basing our estimation
procedure on the same number N of samples. However,
when we are renormalizing our distribution, we arc not di-
viding by N, but rather by the total weight of the samples.
Intuitively, if the evidence observed at a given time point is
unlikely, each sample generated will explain it less well, so
that its weight will be low. Thus, if the total weight of our
N samples is low, then we have not really sampled a signif-
icant portion of the probability mass. Indeed, as argued by
Dagum and Luby [DL97], the actual number of effective
samples is their total weight. Thus, we modify the algo-
rithm to guarantee that our estimation is based on a fixed
weight rather than a fixed number of samples.

Our results for this improvement, applied to the simple
CAPITAL network, are shown in Figure 3. The data were
generated over 25 runs. In each run, the observations were
generated randomly, from the correct distribution; thus they
correspond to typical runs of the algorithm over a typical
evidence sequence. Figure 3(a) shows the number of sam-
ples used over different time slices; we sec that the number
of samples varies significantly over time, illustrating that
the algorithm is taking advantage of the additional flexi-
bility. The average number of samples per time slice used
over the run is 65. Figure 3(b) compares the accuracy of
this algorithm to that of a fixed-samples algorithm using 65
samples in each time slice. We see that while the average
number of samples used is the same, the variable-samples
approach obtains consistently higher accuracy; in order to
obtain comparable accuracy from the fixed-samples algo-

Using learning for approximation in stochastic processes 291

fcounting with variable number of samples -
aim ile counting with fixed number of samples -

(a)

iblpiiikf

Simple counting with variable number of samples -
Simple counting with fixed number of samples -

0 20 40 60 80 100 120 140 160 160

(b)

Figure 3: Comparison of variable-samples and fixed-samples algorithms for the CAPITAL network, averaged over 25 sequences: (a)
number of samples used; (b) £i error.

rithm, around 70 samples are needed. We note that while
both the error and the number of samples varies widely,
they remain bounded indefinitely over time. This bound-
edness property continues to hold even in long runs with
thousands of time slices. We also note that the number of
states in the explicit belief state representation is 256, as
compared to 55-80 samples used; thus our sampling ap-
proach allows considerable savings.

We have experimented with the number of samples re-
quired for different evidence sequences. Our results show
that unlikely evidence sequences require many more sam-
ples than likely evidence, thereby justifying our intuition
about the reason for the variability in the number of sam-
ples needed. Furthermore, the accuracy maintained by the
variable-samples algorithm for likely and unlikely runs is
essentially the same; thus, in a way, the algorithm gener-
ates as many samples as it needs to maintain a certain level
of performance. We can view this ability as a type of ac-
tive learning [CAL94], where the learning algorithm has
the ability to ask for more data cases when necessary. In
our context, the active learning paradigm is particularly ap-
propriate, as the algorithm is generating its own data cases.

Our next improvement relates to another problem with
the SOF algorithm. Our time t samples are necessarily very
sparse, so that many entries in the probability distribution
ai^ will have zero probability, even though their true prob-
ability is positive. This type of behavior can cause signif-
icant problems, as samples at time t + 1 are only gener-
ated based on our existing samples at time t. If the pro-
cess is not very stochastic, i.e., if there are parts of the
state space that only transition to other parts with very low
probability, parts of the space that are not represented in
o$ will not be explored. Unfortunately, the parts of the
space that are not represented may be quite likely; our sam-
pling process may simply have missed them earlier, or they
may be the results of trajectories that appeared unlikely in

earlier time slices because of misleading evidence. This
problem is reflected clearly if we measure the distance be-
tween our approximation and the exact distribution using
relative entropy [CT91], for many reasons the most ap-
propriate distance measure for this type of situation. For
an exact distribution <j) and an approximate one ip over
the same space H, the relative entropy D(</>\\ip) is defined
as 5Zw€fj^(a;)log(0(u;)/^(w)). In cases» such as ours>
where the approximate distribution ascribes probability 0
to entries that are not impossible, the relative entropy dis-
tance is infinite.

The machine learning perspective offers us a simple and
theoretically well-founded solution to the problem of un-
warranted zeros in our estimated distribution. We view the
problem from the perspective of Bayesian learning, where
we have a prior distribution over the parameters we are try-
ing to estimate: the probabilities 9W of the different states
x in our belief state. An appropriate prior for multinomial
distributions such as this is the Dirichlet distribution. We
omit the formal definition of the Dirichlet prior, referring
the reader to [Deg86]. Intuitively, it is defined using a set of
hyperparameters aXi, each representing "imaginary" sam-
ples observed for the state a:*. In our case, as we have no
beliefs in favor of one state x over another, we chose aXi

to be uniformly a/r, where r is the total number of states
consistent with our evidence.

Computing with this seemingly complex two-level dis-
tribution is actually quite simple, as most computations are
equivalent to working with a single distribution cr)c'+, ob-
tained from taking the expectation of the parameters {6X}
relative to their prior distribution. In our case, for each
x consistent with our evidence, we have that cr)c'+ (x) =
(w^ix) + a/r)/Z where w^(x) is the total weight of
samples x^[j] whose value is x, and Z is a normaliz-
ing factor. We see that each instantiation x in our distri-
bution a^J+ (if consistent with our evidence) will have at

292 Koller and Fratkhm

least some very small probability mass. Wc note that, even
though a(

sc'+(x) > 0 for every x, we need only represent
explicitly those states which have materialized in our sam-
pling algorithm. Thus, the cost of maintaining such a dis-
tribution is no higher than that of maintaining our original
sparse set of samples.

The introduction of a prior serves to "spread out" some
of the probability mass over unobserved states, increasing
the amount of exploration done for unfamiliar regions of
the space. We investigated the tradeoff between sampling
in regions that are known to be likely and in new regions.
As Q grows, the performance of our algorithm first im-
proves, then gradually decreases, as we would expect.

4 Alternative belief states representations

While this approach allows us to generate samples from
unexplored parts of the space, it does so blindly: all un-
sampled states are treated in exactly the same way. How-
ever, our state space is not a completely arbitrary set of
points. Two states x and x' which give the same values
to almost all of the variables in our domain may be quite
similar, and it may make sense to assume that their proba-
bilities are much closer than that of other pairs. That is, we
want to use our results for the states that we sampled to in-
duce the probabilities of other states. This task is precisely
a density estimation task (a type of unsuperviscd learning),
where the set of sampled states are the training data.1

As in any learning task, wc must first define the hypoth-
esis space. Essentially, our representations above fall into
the category of nonparametric density estimators [Sco92].
(Roughly speaking, they arc a discrete form of Parzen win-
dow.) As applied in our setting, these density estimators
have no bias (and high variance); thus, they are incapable
of generalizing from the training data to the rest of the
space. In this section, we explore alternative representa-
tions of discrete densities that have higher bias and a corre-
spondingly higher generalization power. As we discussed
in the introduction, not every representation is suitable for
our needs. Our representation must be significantly more
compact than the full joint over the state variables; it must
support an effective sampling process; and it must be eas-
ily learned. Two appropriate representations are Bayesian
networks and density trees.

Bayesian networks. Given our overall problem, a
Bayesian network representation for our distribution seems
particularly appropriate. After all, our process is repre-
sented as a DBN, and is therefore highly structured. While
it is known that conditional independences are not main-
tained in the belief states [BK98], it is reasonable to as-
sume that some of the random variables in a time slice are

only weakly correlated with each other, and perhaps even
weaker when conditioned on a third variable.

There has been a substantial amount of recent work on
learning Bayesian networks from data (sec [Hcc95] for a
survey). The simplest option is to fix the structure of the
Bayesian network and to use our data to fill in the pa-
rameters for it. This process can be accomplished very
efficiently, by a simple traversal over our data. Specif-
ically, if our Bayesian network contains a node X with
parents V, then we need to estimate each of the param-
eters P(X — x | Y = y). The maximum likelihood

estimate for these parameters would be "" T'v. How-
' c.it(V)

ever, maximum likelihood estimates result in precisely the
type of numerical ovcrfitting (and particularly zero prob-
ability estimates) that wc strove to avoid in the previous
section. It turns out that, if wc instead estimate the param-
eter as g,f+ Tv' 7 . we get the effect of introducing
a Dirichlct prior over each of our BN parameters. For a
given Bayesian network structure B, the resulting distri-
bution abn(B) is the one that minimizes D(asc+\\ai>n^))
among all distributions reprcsentablc by B.

One potential problem with this approach is that the
BN structure B must be determined in advance, based on
some prior knowledge of the user or on a manual analy-
sis of the DBN structure. Furthermore the BN structure is
fixed over the entire length of the run, whereas the true be-
lief state er''' can change drastically as the process evolves.
It seems quite likely that the most appropriate BN struc-
ture for approximating (jO also varies. This observation
suggests that wc select a different BN structure for each
time slice. Unfortunately, learning of BN structure is a
hard problem. Theoretically, even the problem of learn-
ing the optimal structure where each node is restricted to
have at most k parents is NP-hard for any k > 1 [CHG95].
Pragmatically, the algorithms for this learning task arc ex-
pensive, performing a greedy search, with multiple restarts,
over the combinatorial (and supcrexponential) space of BN
structures.

One option is to restrict our search to tree-structured
BNs—ones where each node has at most one parent. Chow
and Liu [CL68] present a simple (quadratic time) algo-
rithm for finding the tree-structured BN whose distribu-
tion is closest—in terms of relative entropy—to the one
in our data. The intuition is that, in a tree-structured BN,
the edges should correspond to the strongest correlations.
Thus, the algorithm introduces a direct connection between
the variables whose mutual information [CT91] is largest.
Formally, for each pair of variables Xi,Xj, wc define an
edge-weight

W(Xi,Xj) = ^2 crsc+{xi,Xj)\og
0~sc+(Xi)asc+(Xj)

1U we view SOF as doing a process akin to bootstrapping by
sampling from its own samples, our extension is akin to smoothed
bootstrapping [Sil86].

which is precisely the mutual information between X{ and
Xj in asc+. We then choose a maximum-weight spanning

Using learning for approximation in stochastic processes 293

tree over these nodes, where the weight of the tree is the
sum of the weights of the edges it spans. We then select an
arbitrary root for the tree, and fill in the conditional proba-
bility tables for the nodes in the network using asc+ (as in
the case of a fixed BN). Here, again, choosing the parame-
ters using asc+ is equivalent to introducing a Dirichlet prior
over the network parameters. Chow and Liu show that the
distribution ast represented by the resulting spanning tree
minimizes jD(<7sc+||<7st).

Density trees. A discrete density tree is similar in overall
structure to a classification decision tree. However, rather
than representing a conditional distribution over some dis-
tinguished class variable given the features, the density tree
represents a probability distribution an over some set of
variables X. Each interior node in the tree is labelled with
a variable X, and the branches at that node with values x
for that variable. A path on the tree to a node n thus corre-
sponds to an assignment yn to some subset of the variables
in the domain Yn.

The tree is a recursive representation of a multivariate
distribution. At a high level, the tree structure partitions
the space into bins, corresponding to the leaves in the tree.
The distribution at each leaf n is uniform over the variables
X - Yn\ the different leaf distributions are combined in
a weighted average, where the weight of a leaf is simply
the product of the edge-weights along the path to it. More
technically, letting Zn represent X - Y„, we have that if
n is a leaf, then Odt(Zn \ n) is uniform over the values of
Zn; if n is an interior node labelled with X, then oat (Zn |
n) = Ex adt{X = x | n) • adt{Zn - {X} \ nx), where
nx is the child of n corresponding to the value x of X and
Cdt{X = x | n) is the weight along the edge to it.

Our error function for the density tree learning algo-
rithm is the relative entropy between our empirical distri-
bution asc+ and Odt- We use a greedy algorithm which is
very similar to the one for classification trees. We start out
with the tree containing only the root node. We then iter-
atively split nodes on the variable that most decreases this
error function. At each point, we estimate the parameters
using asc+, as we did for BNs. We use a greedy algorithm
to determine the splits. The contribution that n makes to
the overall relative entropy, if it remains a leaf, is propor-
tional to D{asc+(Zn | yn)\\uZn), where uZn is the uni-
form distribution over the assignments z to Zn. If we split
n on a variable X, each of its children nx (assuming they
remain leaves) would make a contribution proportional to
asc+(x | yn)D(asc+{Zn - {X} \yn,x)\\uZn_{x}). It
is easy to show that the decrease in the relative entropy is
precisely D(asc+(X \ yn)\\ux)- We split n on that vari-
able X which maximizes this decrease. Intuitively, this
rule makes perfect sense: if we are representing the dis-
tributions at the leaves as uniform, then we should first ex-
tract these variables whose marginal distribution at n is the
farthest from being uniform.

In order to avoid overfitting, we prevent the density-tree

Relative error #samples/slice runtime/slice
(minutes)

counting 2.275 ±1.07 X 10-4 1024 ± 1066 0.722

Chow-Liu tree 2.106 ±0.75 X 10"" 962 ± 977 0.044

BN 1 (29 params) 2.102 ±0.96 X 10~4 981 ± 970 0.064

BN 2 (340 params) 2.104 ±0.79 X 10"4 962 ± 1045 0.07

BN 3 (1401 params) 2.112 ±0.73 X 10"4 990 ± 1045 0.07

density tree 1.816 ±0.89 X 10-4 985 ± 1063 0.068

Figure 4: Means and standard deviations for different belief state
representations

from growing to fit all of the samples. We utilize the stan-
dard idea of early stopping; our stopping rule prevents a
node from splitting when the improvement to the relative
entropy score is lower than some minimal amount. Specif-
ically, we only allow a split of n on X when <7sc+(yn) •
D(asc+(X | yn)\\ux) is higher than some threshold.

We note that our notion of a density tree draws upon
the literature of semiparametric density estimation tech-
niques for continuous densities [Sco92]. The uniform dis-
tribution over samples at each leaf is similar to multi-
dimensional histogram techniques; however, the tree struc-
ture allows variable-sized bins, and therefore greater flex-
ibility in matching the number of parameters to the com-
plexity of the distribution.

5 Experimental results

To provide a more realistic comparison, we tested the dif-
ferent variants of our algorithm on the practical WATER
DBN [JKOP89], used for monitoring the biological pro-
cesses of a water purification plant. (Comparable results
were obtained for the CAPITAL network.) The WATER DBN
had a substantially larger state space, with 27,648 possible
values taken by the (non-evidence) variables. The structure
of the WATER network is shown in Figure 1(c).

We experimented with several belief state representa-
tions: simple counting (SOF extended with priors); three
different Bayesian networks of fixed structure, with 29,
340, and 1401 parameters respectively; Chow-Liu span-
ning trees; and density trees. We tested each representa-
tion on 10 runs, each of length 100, and where we used a
variable-samples approach with a target weight of 5. For
each run, we tested the average relative entropy error over
the run.2 (We also tested A error, with comparable re-
sults.) We then computed the mean and standard deviation
of these run-average errors for the different representations.
We did the same for the number of samples utilized per
time slice. The results are shown in Figure 4.

Not surprisingly, the worst performer in terms of ac-

2We note that the momentary errors within a run—for belief
states at individual time slices—can also vary widely, as can be
seen from Figure 3. We tested the standard deviation of the mo-
mentary errors within a run, and it was approximately the same
among all representations—around 50-55% of the overall aver-
age for the run. We omit the detailed results.

294 Koller and Fratkina

curacy is the simple counting approach. The performance
of the Chow-Liu trees and the fixed Bayesian networks is
about comparable, although the Bayesian network with a
large number of parameters performs slightly worse than
the rest. The density tree approach performs best, with
a fairly significant margin. The number of samples used
by the different approaches are not significantly different.
What is significant is the fact that the number of samples
generated is a factor of 15-25 smaller than the number
of states in the state space. Indeed, the running times for
the different approaches are all significantly lower than the
1.89 minutes per time slice required by exact inference. We
note that the running times were all estimated on simple
prototype code. We expect the running times for optimized
code to be significantly lower. However, the relative effi-
ciencies of the different algorithms should remain the same.

0.00022

v

I i 1 1 1 T- I

simple counting
Chow-Liu spanning tree

average complexly Bayesian network —
Density tree ■■ .

0.0002 ■ -

0.0001B
\ -

0.00016 • N. ..^^>.

0.00014 :'"xT^^^
0.00012

' '

Figure 5: Average error for the WATER network for different tar-
get weights. The average is over 10 runs of 100 time slices each.

Figure 5 gives more evidence in favor of the density tree
approach, demonstrating that it makes somewhat better use
of data. The graph is a type of learning curve for the dif-
ferent approaches: the average error as a function of the
target weight. We see that, for any given target weight,
the density tree achieves higher accuracy. Furthermore, as
we increase the target weight for our sampling algorithm,
the error in the density tree approach descreases slightlu
faster. We note that this improvement does not come at the
expense of increasing the overall number of samples: our
experiments show that the average number of samples used
is essentially identical for the different algorithms, and es-
sentially linear in the target weight.

We believe that two factors contribute to making den-
sity trees a suitable representation for this task. The first is
its inductive bias. A BN representation reflects an assump-
tion that some of the random variables in the domain in-
fluence each other only weakly or indirectly via other vari-
ables. A density tree representation reflects an assumption
that the distribution is substantially different when condi-

tioned on different values of the same variable. Our re-
sults indicate that the variability across different values of
a variable is a more significant factor than any (weak) in-
dependences found in the distribution. Wc believe that the
evidence serves to sharply skew the distribution in a certain
direction, making it much more important for the approx-
imate probability distribution to appropriately model that
part of the space. Indeed, an examination of the trees pro-
duced by the density tree algorithm for different time slices
shows that the parts of the tree corresponding to more likely
parts of the space are usually represented using a much
finer granularity—with subtrees that arc two or more levels
deeper—than the less likely ones.

A secondary factor that we believe also contributes to
these performance results is the more flexible choice of the
structure of the representation. This flexibility, which is
shared by Chow-Liu trees and density trees, allows the rep-
resentation of the approximate belief state to adapt to the
current state of the process. An examination of the actual
models learned by these algorithms at different points in
time, shows that the structure does, in fact, vary signifi-
cantly. This property is particularly helpful in the density
tree case, as the most likely part of the state space changes
in virtually every time slice.

6 Extensions and Conclusions

This paper deals with sampling-based approximate mon-
itoring algorithms for a stochastic dynamic process. We
have proposed the use of machine learning techniques in or-
der to allow the algorithm to generalize from samples it has
generated to samples it has not. We have shown that this
idea can significantly improve the quality of our tracking
for a given allocation of computational resources. Wc note
that a related idea [BD97] has been proposed in the domain
of combinatorial optimization algorithms, and has proved
very effective. There, rather than maintaining a popula-
tion of candidate solutions (as in genetic algorithms), the
"good" candidate solutions generated by the algorithm arc
used to learn a distribution, from which samples arc then
generated for the next optimization phase.

We have investigated the use of several representations
for our probability distributions. We saw that wc get signif-
icant benefits from allowing the structure of the distribution
to vary according to context—both for different parts of the
space within the same distribution, and for different distri-
butions over time. In our density tree representation, this
flexibility was part of the definition. It would be interest-
ing to see whether we could get even better performance
by allowing the other representations to be more flexible.
One possibility is to combine Bayesian networks and den-
sity trees; there are several ways of doing so, which we arc
currently investigating. We are also considering the use of
other (computationally more expensive) representations of
a density, e.g., as a mixture model where the mixture com-
ponents have independent features [CS95].

Using learning for approximation in stochastic processes 295

It is interesting to also compare our approach to other
types of algorithms for inference in stochastic processes.
As we have shown, the number of samples generated
by our algorithm is significantly lower than the num-
ber of states in the explicit representation of the belief
state. Thus, our algorithm allows us to deal with do-
mains in which exact inference is intractable. Another op-
tion is to use non-stochastic approximate inference algo-
rithms [GJ96, BK98]. The approach of [GJ96] is not re-
ally intended for real-time monitoring, and is probably too
computationally expensive to be used in that role. It also
applies only to a fairly narrow class of stochastic models.
The algorithm of [BK98] is more comparable to ours; es-
sentially, it avoids the sampling step, directly propagating a
time t approximate belief state to a time t + 1 approximate
belief state. For certain types of processes, this approach
probably dominates ours, as it avoids the additional vari-
ance introduced by the sampling phase. However, it is not
obvious how it can be implemented effectively for all be-
lief state representations (e.g., for density trees). Further-
more, it does not apply to processes where the represen-
tation of the process itself does not admit exact inference
(e.g., highly-connected DBN models or models involving
continuous variables).

By contrast, we note that our ideas are not specific to
DBNs. The only use we made of the DBN model is as a
representation from which we can generate random sam-
ples. We believe that our ideas apply to a much wider
range of processes. Indeed, Isard and Blake [IB96] have
obtained impressive results by using a stochastic sampling
algorithm identical to simple SOF for the task of monitor-
ing object motion in cluttered scenes. Here, the process is
described using fairly complex continuous dynamics, that
do not permit any exact inference algorithm. We believe
that our ideas can also be used to provide improved algo-
rithms for complex processes such as these, as well as for
processes involving both continuous and discrete variables.

Acknowledgements
We would like to thank Eric Bauer and Xavier Boyen for
allowing us to build on their code in our experiments. We
would also like to thank Wray Buntine and Nir Friedman
for useful comments and references. This research was
supported by ARO under the MURI program "Integrated
Approach to Intelligent Systems", grant number DAAH04-
96-1-0341, by ONR grant N00014-96-1-0718, and through
the generosity of the Powell Foundation and the Sloan
Foundation.

References

[Ast65] K. J. Aström. Optimal control of Markov de-
cision processes with incomplete state estimation.
J. Math. Anal. Applic, 10:174-205, 1965.

[BD97] S. Baluja and S. Davies. Using optimal dependency-
trees for combinatorial optimization: Learning the
structure of the search space. In Proc. ICML, 1997.

[BK98] X. Boyen and D. Koller. Tractable inference for com-
plex stochastic processes. In Proc. UAI, 1998. To
appear.

[CAL94] D. Cohn, L. Atlas, and R. Ladner. Improving gen-
eralization with active learning. Machine Learning,
15(2):201-221, 1994.

[CHG95] D.M. Chickering, D. Heckerman, and D. Geiger.
Learning Bayesian networks: Search methods and
experimental results. In Proc. AI & Stats, pages 112-
128, 1995.

[CL68] C.K. Chow and C.N. Liu. Approximating discrete
probability distributions with dependence trees. IEEE
Transaction on Information Theory, IT-14:462-467,
1968.

[CS95] P. Cheeseman and J. Stutz. Bayesian classification
(AutoClass): Theory and results. In U. Fayyad et al.,
editor, Advances in Knowledge Discovery and Data
Mining. AAAI Press, 1995.

[CT91] T. Cover and J. Thomas. Elements of Information
Theory. Wiley, 1991.

[Deg86] M.H. Degroot. Probability and statistics. Addison-
Wesley, 1986.

[DK89] T. Dean and K. Kanazawa. A model for reasoning
about persistence and causation. Comp. Int., 5(3),
1989.

[DL97] P. Dagum and M. Luby. An optimal approximation
algorithm for Baysian inference. Artificial Intelli-
gence, 93(1-2): 1-27, 1997.

[FHKR95] J. Forbes, T. Huang, K. Kanazawa, and S.J. Russell.
The BATmobile: Towards a Bayesian automated taxi.
In Proc. IJCAI, pages 1878-1885,1995.

[GJ96]

[Hec95]

[IB96]

[JKOP89]

[Kja92]

[KKR95]

[Sco92]

[Sil86]

[SP89] :

Z. Ghahramani and M.I. Jordan.
Markov models. In NIPS 8,1996.

Factorial hidden

D. Heckerman. A tutorial on learning with Bayesian
networks. Technical Report MSR-TR-95-06, Mi-
crosoft Research, 1995.

M. Isard and A. Blake. Contour tracking by stochastic
propagation of conditional density. In Proc. ECCV,
volume 1, pages 343-356, 1996.

F.V. Jensen, U. Kjaerulff, K.G. Olesen, and J. Ped-
ersen. An expert system for control of waste water
treatment— a pilot project. Technical report, Judex
Datasystemer A/S, Aalborg, Denmark, 1989.

U. Kjaerulff. A computational scheme for reason-
ing in dynamic probabilistic networks. In Proc. UAI,
pages 121-129, 1992.

K. Kanazawa, D. Koller, and S.J. Russell. Stochastic
simulation algorithms for dynamic probabilistic net-
works. In Proc. UAI, pages 346-351,1995.

D.W. Scott. Multivariate Density Estimation: The-
ory, Practice, and Visualization. Wiley, 1992.

B.W. Silverman. Density estimation for statistics and
data analysis. Chapman & Hall, 1986.

R. D. Shachter and M. A. Peot. Simulation ap-
proaches to general probabilistic inference on belief
networks. In Proc. UAI, 1989.

296

An Information-Theoretic Definition of Similarity

Dekang Lin
Department of Computer Science

University of Manitoba
Winnipeg, Manitoba, Canada R3T 2N2

Abstract

Similarity is an important and widely used con-
cept. Previous definitions of similarity are tied
to a particular application or a form of knowl-
edge representation. We present an information-
theoretic definition of similarity that is applica-
ble as long as there is a probabilistic model. We
demonstrate how our definition can be used to
measure the similarity in a number of different
domains.

1 Introduction

Similarity is a fundamental and widely used concept.
Many similarity measures have been proposed, such as
information content [Resnik, 1995b], mutual information
[Hindle, 1990], Dice coefficient [Frakes and Baeza-Yates,
1992], cosine coefficient [Frakes and Baeza-Yates, 1992],
distance-based measurements [Lee et al., 1989; Rada et al.,
1989], and feature contrast model [Tversky, 1977]. McGill
etc. surveyed and compared 67 similarity measures used in
information retrieval [McGill et al., 1979].

A problem with previous similarity measures is that each
of them is tied to a particular application or assumes a
particular domain model. For example, distance-based
measures of concept similarity (e.g., [Lee et al., 1989;
Rada et al., 1989]) assume that the domain is represented in
a network. If a collection of documents is not represented
as a network, the distance-based measures do not apply.
The Dice and cosine coefficients are applicable only when
the objects are represented as numerical feature vectors.

Another problem with the previous similarity measures is
that their underlying assumptions are often not explicitly
stated. Without knowing those assumptions, it is impossi-
ble to make theoretical arguments for or against any par-

ticular measure. Almost all of the comparisons and evalu-
ations of previous similarity measures have been based on
empirical results.

This paper presents a definition of similarity that achieves
two goals:

Universality: We define similarity in information-
theoretic terms. It is applicable as long as the domain
has a probabilistic model. Since probability theory
can be integrated with many kinds of knowledge
representations, such as first order logic [Bacchus,
1988] and semantic networks [Pearl, 1988], our def-
inition of similarity can be applied to many different
domains where very different similarity measures had
previously been proposed. Moreover, the universality
of the definition also allows the measure to be used in
domains where no similarity measure has previously
been proposed, such as the similarity between ordinal
values.

Theoreticaljustification: The similarity measure is not
defined directly by a formula. Rather, it is derived
from a set of assumptions about similarity. In other
words, if the assumptions are deemed reasonable, the
similarity measure necessarily follows.

The remainder of this paper is organized as follows. The
next section presents the derivation of a similarity mea-
sure from a set of assumptions about similarity. Sections 3
through 6 demonstrate the universality of our proposal by
applying it to different domains. The properties of different
similarity measures are compared in Section 7.

2 Definition of Similarity

Since our goal is to provide a formal definition of the in-
tuitive concept of similarity, we first clarify our intuitions
about similarity.

An Information-Theoretic Definition of Similarity 297

Intuition 1: The similarity between A and B is related
to their commonality. The more commonality they
share, the more similar they are.

Intuition 2: The similarity between A and B is related to
the differences between them. The more differences
they have, the less similar they are.

Intuition 3: The maximum similarity between A and B is
reached when A and B are identical, no matter how
much commonality they share.

Our goal is to arrive at a definition of similarity that cap-
tures the above intuitions. However, there are many alter-
native ways to define similarity that would be consistent
with the intuitions. In this section, we first make a set of
additional assumptions about similarity that we believe to
be reasonable. A similarity measure can then be derived
from those assumptions.

In order to capture the intuition that the similarity of two
objects are related to their commonality, we need a measure
of commonality. Our first assumption is:

Assumption 1: The commonality between A and B is mea-
sured by

7(common(A, B))
where common(A, B) is a proposition that states the com-
monalities between A and B; I(s) is the amount of infor-
mation contained in a proposition s.

For example, if A is an orange and B is an apple. The
proposition that states the commonality between A and B
is "fruit(A) and fruit(B)". In information theory [Cover and
Thomas, 1991], the information contained in a statement
is measured by the negative logarithm of the probability of
the statement. Therefore,

7(common(A, B)) = - log P(fruit(A) and fruit(-B))

We also need a measure of the differences between two ob-
jects. Since knowing both the commonalities and the dif-
ferences between A and B means knowing what A and B
are, we assume:

Assumption 2: The differences between A and B is mea-
sured by

/(description^, B)) — J(common(A, B))
where description(A, B) is a proposition that describes
what A and B are.

Intuition 1 and 2 state that the similarity between two ob-
jects are related to their commonalities and differences. We
assume that commonalities and differences are the only fac-
tors.

Assumption 3: The similarity between A and B,
sim(A, B), is a function of their commonalities and dif-

ferences. That is,
sim(A,ß) = /(/(common(A,B)),/(description^, B)))
The domain of fv&{{x,y)\x > 0,y > 0,y > x}.

Intuition 3 states that the similarity measure reaches a con-
stant maximum when the two objects are identical. We as-
sume the constant is 1.

Assumption 4: The similarity between a pair of identical
objects is 1.

When A and B are identical, knowing their commonalities
means knowing what they are, i.e., I(common(A,B)) =
/(description^, £?)). Therefore, the function / must have
the property: Vx > 0, f{x, x) = 1.

When there is no commonality between A and B, we as-
sume their similarity is 0, no matter how different they are.
For example, the similarity between "depth-first search"
and "leather sofa" is neither higher nor lower than the sim-
ilarity between "rectangle" and "interest rate".

Assumption 5: Vy > 0, /(0, y) = 0.

Suppose two objects A and B can be viewed from two in-
dependent perspectives. Their similarity can be computed
separately from each perspective. For example, the simi-
larity between two documents can be calculated by com-
paring the sets of words in the documents or by compar-
ing their stylistic parameter values, such as average word
length, average sentence length, average number of verbs
per sentence, etc. We assume that the overall similarity of
the two documents is a weighted average of their similari-
ties computed from different perspectives. The weights are
the amounts of information in the descriptions. In other
words, we make the following assumption:

Assumption 6:
Vzi < 2/i,x2 < 2/2 : f(x! + x2,yi + 2/2) =

5fe/(*i,Vi) + i3k/(*2,!fe)

From the above assumptions, we can proved the following
theorem:
Similarity Theorem: The similarity between A and B is
measured by the ratio between the amount of information
needed to state the commonality of A and B and the infor-
mation needed to fully describe what A and B are:

sim(A,B) =
log P(common(.A, B))

log P(description(A, B))

Proof:
f(x,y)

= f(x + 0,x + (y-x))
= I x f(x, x) + i^z*x /(0, y-x) (Assumption 6)

- (Assumption 4 and 5)
Q.E.D.

= fxl + ^XO:

298 Lin

Since similarity is the ratio between the amount of infor-
mation in the commonality and the amount of information
in the description of the two objects, if we know the com-
monality of the two objects, their similarity tells us how
much more information is needed to determine what these
two objects are.

In the next 4 sections, we demonstrate how the above defi-
nition can be applied in different domains.

3 Similarity between Ordinal Values

Many features have ordinal values. For example, the "qual-
ity" attribute can take one of the following values "excel-
lent", "good", "average", "bad", or "awful". None of the
previous definitions of similarity provides a measure for
the similarity between two ordinal values. We now show
how our definition can be applied here.

If "the quality of X is excellent" and "the quality of Y is
average", the maximally specific statement that can be said
of both X and Y is that "the quality of X and Y are between
"average" and "excellent". Therefore, the commonality be-
tween two ordinal values is the interval delimited by them.

Suppose the distribution of the "quality" attribute is known
(Figure 1). The following are four examples of similarity
calculations:

simfexcellent aood) = 2xlogP(exce»entvg0od) simyexceueni, gooa) - log p(eiceHent)+iog p(g00d)
_ 2xlog(0.05-H).10) _ n 79

sim(good, average)
log 0.05+log 0.10

2xlog P(goodVaverage)
log P(average)+log P(good)
2xlog(0.10+0.50) _ f> q4
log 0.10+log 0.50 ~~ uo^

clo "'
sim{excellent, average) = , P<Xceiient)+\lz peerage)

_ 2xlog(0.05+0.10+0.50) _ r> 90
— log 0.05+log 0.50 ~~ U °

sMgoodMd)='-asaby
_ 2xlog(0.10+0.50+.20) „nil
— Iog0.10+log0.20 — V'lX

The results show that, given the probability distribution in
Figure 1, the similarity between "excellent" and "good" is
much higher than the similarity between "good" and "av-
erage"; the similarity between "excellent" and "average" is
much higher than the similarity between "good" and "bad".

4 Feature Vectors

Feature vectors are one of the simplest and most commonly
used forms of knowledge representation, especially in case-
based reasoning [Aha et al., 1991; Stanfill and Waltz, 1986]
and machine learning. Weights are often assigned to fea-
tures to account for the fact that the dissimilarity caused
by more important features is greater than the dissimilarity

50%

10%

20%

15%

excellent good average bad awful Quality

Figure 1: Example Distribution of Ordinal Values

caused by less important features. The assignment of the
weight parameters is generally heuristic in nature in pre-
vious approaches. Our definition of similarity provides a
more principled approach, as demonstrated in the follow-
ing case study.

4.1 String Similarity—A case study

Consider the task of retrieving from a word list the words
that are derived from the same root as a given word. For
example, given the word "eloquently", our objective is to
retrieve the other related words such as "ineloquent", "in-
eloquently", "eloquent", and "eloquence". To do so, as-
suming that a morphological analyzer is not available, one
can define a similarity measure between two strings and
rank the words in the word list in descending order of their
similarity to the given word. The similarity measure should
be such that words derived from the same root as the given
word should appear early in the ranking.

We experimented with three similarity measures. The first
one is defined as follows:

i

simeditfoy)
1 + editDist(a;, y)

where editDist(rc, y) is the minimum number of character
insertion and deletion operations needed to transform one
string to the other.

The second similarity measure is based on the number of
different trigrams in the two strings:

sim,n(a;,y)
1 + |tri(x)| + |tri(j/)| - 2 x |tri(x) n tri(y)|

where tri(x) is the set of trigrams in x. For example,
tri(eloquent) = {elo, loq, oqu, que, ent}.

An Information-Theoretic Definition of Similarity 299

Table 1: Top -10 Most Similar Words to "grandiloquent'

Rank Simedit sim,n sim
1 grandiloquently 1/3 grandiloquently 1/2 grandiloquently 0.92
2 grandiloquence 1/4 grandiloquence 1/4 grandiloquence 0.89
3 magniloquent 1/6 eloquent 1/8 eloquent 0.61
4 gradient 1/6 grand 1/9 magniloquent 0.59
5 grandaunt 1/7 grande 1/10 ineloquent 0.55
6 gradients 1/7 rand 1/10 eloquently 0.55
7 grandiose 1/7 magniloquent 1/10 ineloquently 0.50
8 diluent 1/7 ineloquent 1/10 magniloquence 0.50
9 ineloquent 1/8 grands 1/10 eloquence 0.50

10 grandson 1/8 eloquently 1/10 ventriloquy 0.42

Table 2: Evaluation of String Similarity Measures

Root Meaning \WToot\

11-point average precisions
Simedit sim^i sim

agog leader, leading, bring 23 37% 40% 70%
cardi heart 56 18% 21% 47%
circum around, surrounding 58 24% 19% 68%
gress to step, to walk, to go 84 22% 31% 52%
loqu to speak 39 19% 20% 57%

The third similarity measure is based on our proposed defi-
nition of similarity under the assumption that the probabil-
ity of a trigram occurring in a word is independent of other
trigrams in the word:

simfz v) ~ 2X^tri(s)nm(y)'°g^) 2xEfetri(3)ntri(y)logp(*)

Etetri(x) l°gp(t) + Etetrifr) *>gP(t)

Table 1 shows the top 10 most similar words to "grandilo-
quent" according to the above three similarity measures.

To determine which similarity measure ranks higher the
words that are derived from the same root as the given
word, we adopted the evaluation metrics used in the Text
Retrieval Conference [Harman, 1993]. We used a 109,582-
word list from the AI Repository.1 The probabilities of
trigrams are estimated by their frequencies in the words.
Let W denote the set of words in the word list and Wroot

denote the subset of W that are derived from root. Let
(wi,...,wn) denote the ordering of W — {w} in de-
scending similarity to w according to a similarity measure.
The precision of (wi,.. .,wn) at recall level N% is de-
fined as the maximum value of ltv-°°'n{%" Wk^ such that

k G {1,... ,n} and lW-f4Zl:rWh}l * N%. The qual-
ity of the sequence (tui,..., wn) can be measured by the

'http://www.cs.cmu.edu/afs/cs/project/ai-repository

11-point average of its precisions at recall levels 0%, 10%,
20%,..., and 100%. The average precision values are then
averaged over all the words in Wroot. The results on 5
roots are shown in Table 2. It can be seen that much better
results were achieved with sim than with the other similar-
ity measures. The reason for this is that simedit and srnitri
treat all characters or trigrams equally, whereas sim is able
to automatically take into account the varied importance in
different trigrams.

5 Word Similarity

In this section, we show how to measure similarities be-
tween words according to their distribution in a text corpus
[Pereiraetal., 1993]. Similar to [Alshawi and Carter, 1994;
Grishman and Sterling, 1994; Ruge, 1992], we use a parser
to extract dependency triples from the text corpus. A de-
pendency triple consists of a head, a dependency type and
a modifier. For example, the dependency triples in "I have
a brown dog" consist of:

(1) (have subj I), (have obj dog), (dog adj-mod brown),
(dogdeta)

where "subj" is the relationship between a verb and its sub-
ject; "obj" is the relationship between a verb and its object;

300 Lin

"adj-mod'1 is the relationship between a noun and its adjec-
tive modifier and "det" is the relationship between a noun
and its determiner.

We can view dependency triples extracted from a corpus
as features of the heads and modifiers in the triples. Sup-
pose (avert obj duty) is a dependency triple, we say that
"duty" has the feature obj-of(avert) and "avert" has the fea-
ture obj(duty). Other words that also possess the feature
obj-of(avert) include "default", "crisis", "eye", "panic",
"strike", "war", etc., which are also used as objects of
"avert" in the corpus.

Table 3 shows a subset of the features of "duty" and "sanc-
tion". Each row corresponds to a feature. A V in the
"duty" or "sanction" column means that the word possesses
that feature.

Table 3: Features of "duty" and "sanction"
Feature duty sanction Hfi)
/i: subj-of(include) X X 3.15
/2i obj-of(assume) X 5.43
fc. obj-of (avert) X X 5.88
fi; obj-of(ease) X 4.99
fa: obj-of(impose) X X 4.97
/e: adj-mod(fiduciary) X 7.76
fa: adj-mod(punitive) X X 7.10
/8: adj-mod(economic) X 3.70

Let F(w) be the set of features possessed by w. F(w) can
be viewed as a description of the word w. The commonali-
ties between two words wi and tU2 is then F(wi) nf(w2).

The similarity between two words is defined as follows:

(Ti sim(w, w->) - 2xHF(v,i)nFlv,3))

where 7(5) is the amount of information contained in a set
of features S. Assuming that features are independent of
one another, I(S) = - T,f€s loS p(f)>where p(f)is the

probability of feature /. When two words have identical
sets of features, their similarity reaches the maximum value
of 1. The minimum similarity 0 is reached when two words
do not have any common feature.

The probability P(f) can be estimated by the percentage
of words that have feature / among the set of words that
have the same part of speech. For example, there are 32868
unique nouns in a corpus, 1405 of which were used as sub-
jects of "include". The probability of subj-of(include) is
^|j. The probability of the feature adj-mod(fiduciary) is
g^g because only 14 (unique) nouns were modified by
"fiduciary". The amount of information in the feature adj-
mod(fiduciary), 7.76, is greater than the amount of infor-

mation in subj-of(include), 3.15. This agrees with our intu-
ition that saying that a word can be modified by "fiduciary"
is more informative than saying that the word can be the
subject of "include".

The fourth column in Table 3 shows the amount of infor-
mation contained in each feature. If the features in Table 3
were all the features of "duty" and "sanction", the similar-
ity between "duty" and "sanction" would be:

 2x/({/1,/3,/5,/7})

/({/l, /2,/3,/5,/6,/7}) + /({/!, h,h,h,fl,fS})
which is equal to 0.66.

We parsed a 22-million-word corpus consisting of Wall
Street Journal and San Jose Mercury with a principle-based
broad-coverage parser, called PRINCIPAR [Lin, 1993;
Lin, 1994]. Parsing took about 72 hours on a Pentium
200 with 80MB memory. From these parse trees we ex-
tracted about 14 million dependency triples. The frequency
counts of the dependency triples are stored and indexed in
a 62MB dependency database, which constitutes the set of
feature descriptions of all the words in the corpus. Using
this dependency database, we computed pairwise similarity
between 5230 nouns that occurred at least 50 times in the
corpus.

The words with similarity to "duty" greater than 0.04 are
listed in (3) in descending order of their similarity.

(3) responsibility, position, sanction, tariff, obligation,
fee, post, job, role, tax, penalty, condition, function,
assignment, power, expense, task, deadline, training,
work, standard, ban, restriction, authority,
commitment, award, liability, requirement, staff,
membership, limit, pledge, right, chore, mission,
care, title, capability, patrol, fine, faith, seat, levy,
violation, load, salary, attitude, bonus, schedule,
instruction, rank, purpose, personnel, worth,
jurisdiction, presidency, exercise.

The following is the entry for "duty" in the Random House
Thesaurus [Stein and Flexner, 1984].

(4) duty n. 1. obligation , responsibility ; onus;

business, province; 2. function , task , assignment,

charge. 3. tax , tariff, customs, excise, levy .

The shadowed words in (4) also appear in (3). It can be
seen that our program captured all three senses of "duty" in
[Stein and Flexner, 1984].

Two words are a pair of respective nearest neighbors
(RNNs) if each is the other's most similar word. Our pro-
gram found 622 pairs of RNNs among the 5230 nouns that

An Information-Theoretic Definition of Similarity 301

Table 4: Respective Nearest Neighbors
Rank RNN Sim

earnings profit 0.50
11 revenue sale 0.39
21 acquisition merger 0.34
31 attorney lawyer 0.32
41 data information 0.30
51 amount number 0.27
61 downturn slump 0.26
71 there way 0.24
81 fear worry 0.23
91 jacket shirt 0.22

101 film movie 0.21
111 felony misdemeanor 0.21
121 importance significance 0.20
131 reaction response 0.19
141 heroin marijuana 0.19
151 championship tournament 0.18
161 consequence implication 0.18
171 rape robbery 0.17
181 dinner lunch 0.17
191 turmoil upheaval 0.17
201 biggest largest 0.17
211 blaze fire 0.16
221 captive westerner 0.16
231 imprisonment probation 0.16
241 apparel clothing 0.15
251 comment elaboration 0.15
261 disadvantage drawback 0.15
271 infringement negligence 0.15
281 angler fishermen 0.14
291 emission pollution 0.14
301 granite marble 0.14
311 gourmet vegetarian 0.14
321 publicist stockbroker 0.14
331 maternity outpatient 0.13
341 artillery warplanes 0.13
351 psychiatrist psychologist 0.13
361 blunder fiasco 0.13
371 door window 0.13
381 counseling therapy 0.12
391 austerity stimulus 0.12
401 ours yours 0.12
411 procurement zoning 0.12
421 neither none 0.12
431 briefcase wallet 0.11
441 audition rite 0.11
451 nylon silk 0.11
461 columnist commentator 0.11
471 avalanche raft 0.11
481 herb olive 0.11
491 distance length 0.10
501 interruption pause 0.10
511 ocean sea 0.10
521 flying watching 0.10
531 ladder spectrum 0.09
541 lotto poker 0.09
551 camping skiing 0.09
561 lip mouth 0.09
571 mounting reducing 0.09
581 pill tablet 0.08
591 choir troupe 0.08
601 conservatism nationalism 0.08
611 bone flesh 0.07
621 powder spray 0.06

occurred at least 50 times in the parsed corpus. Table 4
shows every 10th RNN.

Some of the pairs may look peculiar. Detailed examination
actually reveals that they are quite reasonable. For exam-
ple, the 221 ranked pair is "captive" and "westerner". It is
very unlikely that any manually created thesaurus will list
them as near-synonyms. We manually examined all 274 oc-
currences of "westerner" in the corpus and found that 55%
of them refer to westerners in captivity. Some of the bad
RNNs, such as (avalanche, raft), (audition, rite), were due
to their relative low frequencies,2 which make them sus-
ceptible to accidental commonalities, such as:

(5) The {avalanche, raft} {drifted, hit}
To {hold, attend} the {audition, rite}.
An uninhibited {audition, rite}.

6 Semantic Similarity in a Taxonomy

Semantic similarity [Resnik, 1995b] refers to similarity be-
tween two concepts in a taxonomy such as the WordNet
[Miller, 1990] or CYC upper ontology. The semantic simi-
larity between two classes C and C is not about the classes
themselves. When we say "rivers and ditches are simi-
lar", we are not comparing the set of rivers with the set
of ditches. Instead, we are comparing a generic river and
a generic ditch. Therefore, we define sim(C, C) to be the
similarity between x and x' if all we know about x and x'
is that x e C and x' G C

The two statements "x € C" and "x' e C" are indepen-
dent (instead of being assumed to be independent) because
the selection of a generic C is not related to the selection
of a generic C. The amount of information contained in
"a; <E C and x' e C" is

- log P(C)- log P{C)

where P(C) and P(C) are probabilities that a randomly
selected object belongs to C and C, respectively.

Assuming that the taxonomy is a tree, if x\ € C and xi e
C2, the commonality between x\ and xi is xi £ C0AW2 £
Co, where Co is the most specific class that subsumes both
C\ and C-i. Therefore,

sim(a;i,a;2) =
2xlogP(C0)

logP(Ci) +log P(C2)

For example, Figure 2 is a fragment of the WordNet. The
number attached to each node C is P(C). The similarity

They all occurred 50-60 times in the parsed corpus.

302 Lin

entity 0.395

inanimate-object 0.167

natural-object 0.0163

geological-formation 0.00176

0.000113 natural-elevation shore 0.0000836

0.0000189 hill coast 0.0000216

Figure 2: A Fragment of WordNet

between the concepts of Hill and Coast is:

sim(Hill, Coast) =
2 x logP(Geological-Formation)

logP(Hill)+logP(Coast)

which is equal to 0.59.

There have been many proposals to use the distance be-
tween two concepts in a taxonomy as the basis for their
similarity [Lee et al., 1989; Rada et al., 1989]. Resnik
[Resnik, 1995b] showed that the distance-based similar-
ity measures do not correlate to human judgments as
well as his measure. Resnik's similarity measure is
quite close to the one proposed here: simResnjic(yl, B) —
|/(common(A, B)). For example, in Figure 2,
simResnik (Hill, Coast) = — logP(Geological-Formation).

Wu and Palmer [Wu and Palmer, 1994] proposed a measure
for semantic similarity that could be regarded as a special
case of sim(A, B):

simwu&Palmer(j4,-B) =
2xJV3

Ni + N2 + 2 x N3

where Ni and JV2 are the number of IS-A links from A and
B to their most specific common superclass C; A3 is the
number of IS-A links from C to the root of the taxonomy.
For example, the most specific common superclass of Hill
and Coast is Geological-Formation. Thus, A7! = 2, A2 =
2, A3 = 3 and simWu&Paimcr(Hill, Coast) = 0.6.

Interestingly, if P(C\C) is the same for all pairs of con-
cepts such that there is an IS-A link from C to C" in the
taxonomy, simwu&Paimer(A B) coincides with sim(yl, B).

Resnik [Resnik, 1995a] evaluated three different similar-
ity measures by correlating their similarity scores on 28
pairs of concepts in the WordNet with assessments made
by human subjects [Miller and Charles, 1991]. We adopted

Table 5: Results of Comparison between Semantic Simi-
larity Measures

Word Pair Miller&
Charles

Resnik Wu&
Palmer

sim

car, automobile 3.92 11.630 1.00 1.00
gem, jewel 3.84 15.634 1.00 1.00
journey, voyage 3.84 11.806 .91 .89
boy, lad 3.76 7.003 .90 .85
coast, shore 3.70 9.375 .90 .93
asylum, madhouse 3.61 13.517 .93 .97
magician, wizard 3.50 8.744 1.00 1.00
midday, noon 3.42 11.773 1.00 1.00
furnace, stove 3.11 2.246 .41 .18
food, fruit 3.08 1.703 .33 .24
bird, cock 3.05 8.202 .91 .83
bird, crane 2.97 8.202 .78 .67
tool, implement 2.95 6.136 .90 .80
brother, monk 2.82 1.722 .50 .16
crane, implement 1.68 3.263 .63 .39
lad, brother 1.66 1.722 .55 .20
journey, car 1.16 0 0 0
monk, oracle 1.10 1.722 .41 .14
food, rooster 0.89 .538 .7 .04
coast, hill 0.87 6.329 .63 .58
forest, graveyard 0.84 0 0 0
monk, slave 0.55 1.722 .55 .18
coast, forest 0.42 1.703 .33 .16
lad,wizard 0.42 1.722 .55 .20
chord, smile 0.13 2.947 .41 .20
glass, magician 0.11 .538 .11 .06
noon, string 0.08 0 0 0
rooster, voyage 0.08 0 0 0
Correlation with 1.00 0.795 0.803 0.834
Miller & Charles

the same data set and evaluation methodology to compare
simResnik- simwu&Paimcr and sim. Table 5 shows the simi-
larities between 28 pairs of concepts, using three different
similarity measures. Column Miller&Charles lists the av-
erage similarity scores (on a scale of 0 to 4) assigned by
human subjects in Miller&Charles's experiments [Miller
and Charles, 1991]. Our definition of similarity yielded
slightly higher correlation with human judgments than the
other two measures.

7 Comparison between Different Similarity
Measures

One of the most commonly used similarity measure is
call Dice coefficient. Suppose two objects can be de-
scribed with two numerical vectors (ai,a2,...,an) and

An Information-Theoretic Definition of Similarity 303

Table 6: Comparison between Similarity Measures

Property

Similarity Measures:
WP: Simwu&Palmer
R: SimResnik

Dice: simaice
sim WP R Dice simdist

increase with
commonality

yes yes yes yes no

decrease with
difference

yes yes no yes yes

triangle
inequality

no no no no yes

Assumption 6 yes yes no yes no
max value=l yes yes no yes yes
semantic
similarity

yes yes yes no yes

word
similarity

yes no no yes yes

ordinal
values

yes no no no no

their shades, B and C are similar in their shape, but A and
C are not similar.

(&i, &2i • • • j &n). their Dice coefficient is defined as

sim^ce(A,B) =
Z^i=l,n ai + l^i=l,n "

,2-

Another class of similarity measures is based a distance
metric. Suppose dist(A, B) is a distance metric between
two objects, simdist can be defined as follows:

S™*«iA>B)=l + dist(A,B)

Table 6 summarizes the comparison among 5 similarity
measures.

Commonality and Difference: While most similarity
measures increase with commonality and decrease with
difference, simdist only decreases with difference and
simResnik only takes commonality into account.

Triangle Inequality: A distance metrics must satisfy the
triangle inequality:

dist(A, C) < dist(A, B) + dist(B, C).
Consequently, sim^st has the property that simdiSt(>l, C)
cannot be arbitrarily close to 0 if none of simdist(-4, B) and
simdist (B,C) is 0. This can be counter-intuitive in some
situations. For example, in Figure 3, A and B are similar in

ABC

Figure 3: Counter-example of Triangle Inequality

Assumption 6: The strongest assumption that we made in
Section 2 is Assumption 6. However, this assumption is
not unique to our proposal. Both simwu&Palmer and shridice
also satisfy Assumption 6. Suppose two objects A and B
are represented by two feature vectors (ai, 02, -. -, an) and
(61,62, • • •, bn), respectively. Without loss of generality,
suppose the first k features and the rest n — k features rep-
resent two independent perspectives of the objects.

2xY\ a;6;
sim^ce(A,B) = v— ~£ftp Z2 =

V o?+V 6? 2xV 0(6;

y a?+r 6?y—^T—*?+

y a?+T i? y ä^+y 6?

which is a weighted average of the similarity between A
and B in each of the two perspectives.

Maximum Similarity Values: With most similarity mea-
sures, the maximum similarity is 1, except simResnik, which
have no upper bound for similarity values.

Application Domains: The similarity measure proposed in
this paper can be applied in all the domains listed in Table
6, including the similarity of ordinal values, where none of
the other similarity measures is applicable.

8 Conclusion

Similarity is an important and fundamental concept in AI
and many other fields. Previous proposals for similarity
measures are heuristic in nature and tied to a particular do-
main or form of knowledge representation. In this paper,
we present a universal definition of similarity in terms of
information theory. The similarity measure is not directly
stated as in earlier definitions, rather, it is derived from a
set of assumptions. In other words, if one accepts the as-
sumptions, the similarity measure necessarily follows. The
universality of the definition is demonstrated by its applica-
tions in different domains where different similarity mea-
sures have been employed before.

304 Lin

Acknowledgment

The author wishes to thank the anonymous reviewers for
their valuable comments. This research has been partially
supported by NSERC Research Grant OGP121338.

References

[Aha et al., 1991] Aha, D., Kibler, D., and Albert, M.
(1991). Instance-Based Learning Algorithms. Machine
Learning, 6(l):37-66.

[Alshawi and Carter, 1994] Alshawi, H. and Carter, D.
(1994). Training and scaling preference functions for
disambiguation. Computational Linguistics, 20(4):635-
648.

[Bacchus, 1988] Bacchus, F. (1988). Representing and
Reasoning with Probabilistic Knowledge. PhD thesis,
University of Alberta, Edmonton, Alberta, Canada.

[Cover and Thomas, 1991] Cover, T M. and Thomas, J. A.
(1991). Elements of information theory. Wiley series in
telecommunications. Wiley, New York.

[Frakes and Baeza-Yates, 1992] Frakes, W B. and Baeza-
Yates, R., editors (1992). Information Retrieval, Data
Structure and Algorithms. Prentice Hall.

[Grishman and Sterling, 1994] Grishman, R. and Sterling,
J. (1994). Generalizing automatically generated selec-
tional patterns. In Proceedings of COL1NG-94, pages
742-747, Kyoto, Japan.

[Harman, 1993] Harman, D. (1993). Overview of the first
text retrieval conference. In Proceedings of SIGIR'93,
pages 191-202.

[Hindle, 1990] Hindle, D. (1990). Noun classification
from predicate-argument structures. In Proceedings of
ACL-90, pages 268-275, Pittsburg, Pennsylvania.

[Lee et al., 1989] Lee, J. H., Kim, M. H., and Lee, Y. J.
(1989). Information retrieval based on conceptual dis-
tance in is-a hierarchies. Journal of Documentation,
49(2): 188-207.

[Lin, 1993] Lin, D. (1993). Principle-based parsing with-
out overgeneration. In Proceedings of ACL-93, pages
112-120, Columbus, Ohio.

[Lin, 1994] Lin, D. (1994). Principar—an efficient, broad-
coverage, principle-based parser. In Proceedings of
COLING-94, pages 482-488. Kyoto, Japan.

[McGill et al., 1979] McGill et al., M. (1979). An evalua-
tion of factors affecting document ranking by informa-
tion retrieval systems. Project report, Syracuse Univer-
sity School of Information Studies.

[Miller, 1990] Miller, G. A. (1990). WordNet: An on-line
lexical database. Internationaljournal of Lexicography,
3(4):235-312.

[Miller and Charles, 1991] Miller, G. A. and Charles,
W. G. (1991). Contextual correlates of semantic simi-
larity. Language and Cognitive Processes, 6(1):1—28.

[Pearl, 1988] Pearl, J. (1988). Probabilistic Reasoning in
Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, Inc., San Mateo, Cali-
fornia.

[Pereiraetal., 1993] Pereira, F, Tishby, N., and Lee, L.
(1993). Distributional Clustering of English Words.
In Proceedings of ACL-93, pages 183-190, Ohio State
University, Columbus, Ohio.

[Radaetal., 1989] Rada, R., Mili, H., Bicknell, E., and
Blettner, M. (1989). Development and application ofa
metric on semantic nets. IEEE Transaction on Systems,
Man, and Cybernetics, 19(1): 17-30.

[Resnik, 1995a] Resnik, P. (1995a). Disambiguating noun
groupings with respect to wordnet senses. In Third
Workshop on Very Large Corpora. Association for Com-
putational Linguistics.

[Resnik, 1995b] Resnik, P. (1995b). Using information
content to evaluate semantic similarity in a taxonomy.
In Proceedings ofIJCAI-95, pages 448-453, Montreal,
Canada.

[Ruge, 1992] Rüge, G. (1992). Experiments on linguisti-
cally based term associations. Information Processing
& Management, 28(3):317-332.

[Stanfill and Waltz, 1986] Stanfill, C. and Waltz, D.
(1986). Toward Memory-based Reasoning. Commu-
nications of ACM, 29:1213-1228.

[Stein and Flexner, 1984] Stein, J. and Flexner, S. B., ed-
itors (1984). Random House College Thesaurus. Ran-
dom House, New York.

[Tversky, 1977] Tversky, A. (1977). Features of similarity.
Psychological Review, 84:327-352.

[Wu and Palmer, 1994] Wu, Z. and Palmer, M. (1994).
Verb semantics and lexical selection. In Proceedings of
the 32nd Annual Meeting of the Associations for Com-
putational Linguistics, pages 133-138, Las Cruces, New
Mexico.

305

Structural machine learning with Galois lattice and Graphs

Michel Liquiere

Lirmm,

161 rue ADA

34392 Montpellier cedex 5

France

Liquiere@lirmm.fr

Jean Sallantin

Lirmm,

161 rue ADA

34392 Montpellier cedex 5

France

Sallantin@lirmm.fr

Abstract

This paper defines a formal approach to learning
from examples described by labelled graphs. We
propose a formal model based upon lattice theory
and in particular with the use of Galois lattice.
We enlarge the domain of formal concept
analysis, by the use of the Galois lattice model
with structural description of examples and
concepts. Our implementation, called "Graal" (for
GRAph And Learning) constructs a Galois lattice
for any description language provided that the
two operations of comparison and generalization
are determined for that language. We prove that
these operations exist in the case of labelled
graphs.

1. INTRODUCTION

The Galois lattice is the foundation of a set of conceptual
classification methods. This approach defined by Barbut
and Monjardet (Barbut, 1970), was popularized by
(Wille, 1982), (Wille, 1992), who used this structure as
the kernel of formal concept analysis.

Wille proposed considering each node of a Galois lattice
as a formal concept. Each node has two parts: the
extension (a subset of the examples) and the intension (the
description). In addition, the lattice gives the relations
(generalisation/specialization) between concepts. An
advantages of this formalization is a good description of
the concept space. Additionallly, there are many methods
for the construction of such lattice (depth first search
(Bordat, 1986), incremental construction (Ganter, 1988),
(Missikoff, 1989)).

In the context of machine learning, the automatic
construction of such a hierarchy can be viewed as an
unsupervised conceptual classification method as seen in
(Michalski, 1982) because we give a general method and
look for all the concepts that can be extracted from the
examples.

In this way, research space is not limited by the use of
parameters although this method cannot be used in all
practical applications. Its advantage is that we can study
precisely the impact of biais and heuristic.

An important limitation of the method using the Galois
lattice is the classical propositional description of the
examples (Wille, 1982), (Ganascia, 1993), (Mephu
Nguifo, 1994), (Carpineto, 1994). There is a great deal of
research on the extension of the description language:
valued attributes (Wille, 1989), (Carpineto, 1994), term
(Daniel-Vatonne, 1993), graph (Liquiere, 1989), (Godin,
1995).

In the case of structural description, the actual methods
use a two step mechanism.

1) the goal of the first step is to find structures
repeated in the set of descriptions of the examples.

2) the second step uses the structures found and
changes the description of the example. Each structural
description is converted in a list of binary attributes (one
attribute by structure). An attribute is true if the associated
structure appears in the example.

• in our work (Liquiere, 1989), (Liquiere, 1994),
we used labelled graphs, and the goal of our first step was
to find repeated paths and trees in the description of the
examples.

• in the work of (Daniel-Vatonne, 1993), the
description language is based upon rooted tree (term) and
the first step research path.

1995) uses a similar • Godin, Mineau (Godin,
method with conceptual graphs.

The first step research repeated triplet graphs (graph like
<Object>-relation-<Object>). This limits the complexity
of the research. The second step finds sets of triplet graphs
viewed in the same set of examples, but the link between
the nodes are overlooked. So the structural descriptions of
the examples are not exploited.

In this paper we give a general one step mechanism,
without changing the description of the examples. This
mechanism uses a generalization operation and we specify
this operation for different classes of description languages.

306 Licjuiere and Sallantin

This paper is organized as follows.

A generalized method of learning from examples is
presented in section 2.

In section 3, we specify this model for description with
labelled graphs.

Then, we study the complexity of the operation in the
case of descriptions with labelled graphs, in section 4

Finally, in section 5 we give an example of the results
found.

2. THE GALOIS LATTICE AS A
CORRESPONDANCE BETWEEN TWO
LATTICES

Using lattice theory, the formal framework is based on the
use of two lattices as in (Ganascia, 1993). This model,
uses lattice results given in (Birkoff, 1967) and (Barbut,
1970). This approach was used in machine learning
(Ganascia, 1993), but only in propositional description.

Ganascia writes: "this framework is adequate to represent
classical top-down induction systems .. but it is too
restricted to formalize first order logic languages ..."

In fact, this approach can be used for structured
description as well. Thus there is an unifying method for
many types of description language.

2.1 Two isomorph lattices

This formalization is based on the use of two lattices: the
description lattice D and the instance lattice I.

• The instance lattice I, corresponds to the set of
parts of the training set E, and is ordered by the inclusion
relationship which is noted 3 where A z> B means that A
is included in B. Given two elements a and b, the least
upper bound - and the greatest lower bound- corresponds
to the classical union -i.e u - and intersection -i.e n -.

• The description lattice D contains all the
possible descriptions ordered by a > relation. This
relation > corresponds to the generalization relationship.

> : D x D —> {true, false} for two descriptions
d i, d2£ D, d i > d2 means that d] is more general than

d2- Let us just consider that it structures the description

space with a partial ordering.

From this relation we can define the equivalence
relation. =:DxD-> {true, false), dj = d2 iff (dj > d2)

and (d2 S dj)

Because D is a lattice, two elements of D have a
least upper bound. We note CT/AC^ this bound. This is

the least general generalisation of dj and d2-

We have A: D x D -> D, if d>dj and d>d2 then d>

djAd2-

This is a generalization operator (Plotkin, 1971), as
defined in (Muggleton, 1994). For a set of description
S,"A minimal generalization G of S is a generalisation of

S such that S is not a generalisation of G, and there is no
generalization G' of G such that G is a generalization de
G' ".

2.2 Galois lattice.

Let us begin by building two correspondances between the
lattice I and D.

First there is a mapping d between set ^ and the description
space D: d: ^—>D, for e; e £, d(ej)e D is the description of

the example ej.

For example:

• with a propositional description, d(ej) is a list of

attributes.

• in case of structural description, d(e;) can be a graph.

Now, from this simple description mapping, we can build
two correspondences between I and D.

The correspondance a: D -> I associates each
description d of D the set of all instances of the training set
^ which are covered by d.

a(d)={eie^|d>d(ei)}

Properties 1

l)d>d'<=>a(d)3a(d')

2) a(d i Ad2) = a(d i) u a(d2)

Proof in appendix

The correspondance ß: I -> D is equivalent to
making the least general generalization for the description
of all the elements ofHc^. This means that:

ß(H)=AceHd(e)

Theorem 1 The correspondance a et ß defines a Galois
connection between I and D.

Proof in appendix, see also (Ganascia, 1993).

Now we have a generalization of the classical definition of
concept.

For a set of example 2;, for a description space D, for an
instance space I, a concept C is a pair [Ext x Int] with:

• Int eD | Int=ß(Ext)= AeeExtd(e)

•Extel | Ext=a(Int)={e,ei;| Int > d(ej)}.

All the concepts are ordered by the superconcept-
subconcept (generalisation-specialisation) relation >c.

[Ej, I,] >c [E2, I2]ifTEI2E2andI1 > h

With >c, the set of all concepts has the mathematical

structure of a complete lattice and is called the Galois
Lattice of the context (!; , d. D).

Structural machine learning with Galois lattice and Graphs 307

3. DEFINITION OF THE ORDER (>) AND
GENERALIZATION OPERATION (A)

FOR LABELLED GRAPHS

In section 2, we proposed a formal model. In this model
we defined two basic operations > and A. If these
operations verify different properties (order, generalization
operator), then the concept space is a Galois lattice.

Our goal is to use this model for structural description,
more precisely for graphs descriptions.

In order to demonstrate this we must first define the
operations > , A and prove that the description space D is
a lattice.

3.1 > Definition for labelled graphs

In this paragraph, we define an pre-order between graphs
using the homomorphism relation. We will show (3.2)
that for a class of graphs (core graphs), this pre-order is an
order.

Notations

We note a graph G:(V,E,L) .

The vertex set of G is denoted by V(G).

The edge set of G is denoted by E(G). Each edge is a
ordered pair (v i ,V2), v \ ,v2e V(G).

The Label set of G is denoted by L(G). For a vertex v we
note L(v) the label of this vertex.

In the following paragraphs, we give properties for
directed graphs, these properties are true as well for
undirected graphs.

Definition labelled graph homomorphism

A homomorphism /:Gi->G2 is a mapping

/:V(Gi) -> V(G2) for which (f(V1), fl>2)) e E(G2)
whenever (vi,v2) e E(Gj) and L(vj)=L(v2)

Operation = : D x D -> {True, False}

Two labelled graphs Gi and G2 are homomorphically
equivalent, denoted by GisG2, if both Gi>G2 anQ"
G2>Gl.

Gl G2

Figure 1: Homomorphism example Gl -> G2

This is not the classical subgraph isomorphism relation.

Operation >:DxD-> {True, False}

For two labelled graphs Gi:(Vi,Ei,Li) and
G2:(V2>E2,L2), we note Gi>G2 iff there is a
homomorphism from G\ into G2.

© ©
 > ©

Gl G2

Figure 2: Gi=G2

Operation *.D x D -» {True, False}: dj*d2 iff not (dj

■d2)

3.2 D for labelled graphs

The homomorphism relation is only a pre-order because
the antisymmetry property is not fulfilled (Chein, 1992).
An order relation between element of D is necessary in
order to use results of section 2.

The same problem occurs in Inductive Logic
Programming (Muggleton, 1994)

"Because two clauses equivalent under 6-subsumption are
also logically equivalent (implication), ILP systems
should generate at most one clause of each equivalence
class. To get around this problem, Plotkin defined
equivalence classes of clauses, and showed that there is a
unique representative of each clause, which he named 'the
reduced clause'".

In the case of labelled graphs, we can use the same
strategy. For this purpose, we use the class of core
labelled graphs (Zhou, 1991).

Definition retract

A strict subgraph G' of G is a retract of G ((Zhou, 1991),
if there is a homomorphism called a retraction r: G -> G'
such that r(v)=v for each ve V(G').

Definition core

A graph is called a core (or minimal graph (Fellner,
1982), or irredundant graph (Cogis, 1995)) if it has no
proper retracts.

Property 2

For the equivalence relation defined above (=). An
equivalence class of labelled graphs contains one and only
one core labelled graph, which is the (unique) graph with
the smallest vertex number (Mugnier, 1994).

Notation R:

We can construct a core graph from a graph as proved by
Mugnier (Mugnier, 1994). This operation is called
reduction (notation R).

Let g be a labelled graph, R(g) is a core labelled graph
such that g=R(g).

308 Liquiere and Sallantin

G R(G)

Figure 3: Example G and R(G)

We need an order relation in order to use labelled graph.
For core labelled graph, we have this order. So, we define
D as a set of core labelled graphs. All labelled graph
description of the example can be converted to an
equivalent core labelled graph, using the R operation.

Theorem 2 The restriction of > to the set of core labelled
graphs is a lattice (Zhou, 1991), (Poole, 1993), (Chein,
1994)

For this lattice, the v operation is the disjoint sum of the
graph, gjvg2= gj+g2 (Chein, 1994) (g] with g2 form a

new graph).

The A operation is more complex and is defined in the
following paragraph.

3.3 A Definition for labelled graphs

The A operation for graph is based on a following
classical Kronecker product operation x (Weichsel,
1962).

Gl xG2

Figure 4: Labelled graphs product

Lemma 1

if G],G2,G are labelled graphs then

a) Gi x G2 > Gi and G) x G2 > G2

b) if G > G) and G > G2, then G > G] x G2

c)G) >Gi xG2ifandonlyifGi >G2-

Proof: from the definitions and (Zhou, 1991)

Remark: The product operation can be easely improved
when the label set is a hierarchy or a lattice.

Definition X operation for graphs Definition operation A: D x D —>D

For two graphs, the product G) x G2 has the vertex set for Gj G2 two core labelled graphs, GJAG2= R(GjX G2)

V(Gi) x V(G2) and the edges ((v],v2), (v'i,v'2)), where
(vi.v'i) eE(Gi) and (v2,v'2) e E(G2).

This product operation can be determined for labelled
graphs.

Definition x operation for labelled graphs

For two labelled graphs GI:(VJ,EI,LJ) and

G2:(V2,E2,L2)

The product G(V,E,L) = Q\ x G2 is defined by:

• L = Li n L2

•V cV| XV2 ={ v I v=[vj v2] with L(vj) =

L(v2)andL(v)=L(v,)}

•U= {(v^vi^l.v-tv'^v^])! (vl>v'l)eVl and

(v2,v'2)e V2)(edge oriented)

R(G1 xG2)

Figure 5: GIAG2 with Gj and G2 defined in Figure 4

3.4 Galois lattice for graphs

Now, We have all the operations for the construction of a
Galois lattice when example are described by graphs.

Each node of this Galois lattice is a pair [Ext x Int] with

Ext is a subset of £, and Int is a core graph. This core
graph is the generalization of the description of the
examples in Ext.

Structural machine learning with Galois lattice and Graphs 309

Theorem 3

With:

t, a set of examples,

D a lattice description for core labelled graphs,

d a description mapping, d: ^->D,

I the instance lattice, n© set power of \,

> and order relation DxD—»{True,false},

A the generalization operation DxD—»D for graphs.

We can define a,ß.

forg6D)a(g)={eis^|g>d(ei)}

forH6l,ß(H)=AeeHd(e)

The correspondence a et ß defines a Galois connection
between I and D.

Proof: see lemma 1 and proof for the Theorem 1.

Using this Galois connection, we can define a Galois
lattice (see 2.2). We name this lattice T.

We have defined a formal model for labelled
graphs. This model uses , >, and A operations in the case
of labelled graphs. In the next section, we study the
complexity of these operations.

THE COMPLEXITY OF
LATTICE CONSTRUCTION

GALOIS

The complexity in the construction of a Galois lattice in
our model, is a function of:
1) the number of nodes in the lattice,
2) the time and space complexity of the operations (A,R),
3) the algorithm used for Galois lattice construction (see
5.1)

4.1 the size of the Galois lattice

Property 3: The number of nodes for T can be 2|£|.

proof. It is well known that, Galois lattice can be
isomorphic to the power set of % (I) which is the maximal
complexity for the size of T.
A similar situation occurs in our model. The proof comes
from the fact that each binary attribute description can be
converted to a structural description.
For example the list [Big] [Blue] [Expensive] can be

structurally described as:

Object XA
Big Blue Expensive

Figure 6: graph representation for an list of attributes.

Using this description, the A operation for the tree
representation is equivalent to n for the attribute
representation.

4.2 Complexity of the A operation

In (Muggleton, 1994) S. Muggleton and L. de Raedt
wrote:
"... ILP systems can get around the problem of equivalent
clauses when working with reduced clauses only".
This affirmation is true but the problem of the complexity
of the R operator has not been taken into account.

• for two labelled graphs, GI=(VJ,EI,LJ) and

G2=(V2'^2'L2)'tne complexity of the product is: 0(nix
x\2) where nj=|Vj| et ri2=|V2l.

For a set of graph P,

G=AGiepGi=R(xGisPGi).
the size of XQiepGj can be exponential.

Property 4

the operation R is co-Np-complete (Mugnier, 1994). So,
in general application, this operation cannot be used.

However we do have an interesting result:

Property 5 (Mugnier, 1994)
If, for a class of labelled graphs, the homomorphism is
polynomial, then the reduction operation is polynomial.

The homomorphism for the following class of labelled
graphs is polynomial.

• trees (Mugnier, 1994),

• locally injective graph (Liquiere, 1994) (see definition
below)

• 1/2 locally injective graph (see definition below) (see
langage theory, automata (Aho, 1986))

Property 6

For a set of path or tree P, G=AQJS pGj is polynomial
(time and size) (Horvath, 1995)

4.3 Study for a class of Graphs.

We study the complexity of the operation (A,R) for the

class of locally injective graphs (LIG) (Liquiere, 1994).

Notation

We note N+(v)= {v' | (v,v')gV) and N"(v)= {v'|
(v',v)eV}.

310 Liquiere and Sallantin

Definition LIG graph

For a labelled graph G=(V,E,L), G is locally injective if

for each vertex veV, V vj,V2eN+(v), V^MJ => L(v[)*

L(v2) and V v j ,V2€ N"(v), v] *V2 => L(v |)* L(v2).

Gl G2

Figure 7. LIG Property

In figure 7, G\ is an LIG graph. G2 is not an LIG graph

because, for the C node, there is two edges C -> b. G2 is a

1/2 locally injective graph (see the next definition).

Table 1: Complexity for different class of language

Language ^,-> R Size for n graphs

Path
(Horvath,1995)

P Polynomial

Tree
(Horvath,1995)

P Polynomial

LIG
(Liquiere, 1994)

P ?

1/2LIG
(Aho,1986)

P Exponential

Graph
(Garey,1987)

NPC Exponential

With P: polynomial, NPC: NP complete.

Definition 1/2 locally injective graph

A 1/2 locally injective graph is a oriented graph where

V Vj,v2eN+(v) (resp. N"(c)), V[*v2 => L(vj)* L(v2).

Property 7: > is polynomial for locally injective graph
(Liquiere, 1994) and for 1/2 locally injective graph (Aho,
1986).

Property 8: For G\ G2 two LIG, G= G\X G2 is a LIG.

Partial proof: come from the definition of x .

Property 9: A connected LIG is an irredundant graph
(Cogis, 1995)

Property 10: For G a LIG, we note CC(G) the set of
maximal connected subgraph of G. Then R(G)=
{cje CC(G)| Vj j j^j there is no projection from c; to c; }

Proof: property 9 => Property 10

These properties are interesting because for LIG we can
construct the R, >, x and A operations, for two graphs,
with a polynomial complexity.

Property 11: For a set of 1/2 locally injective graphs P,

G=A(-;jepGj is size exponential so time exponential

(results for deterministic automata (Aho, 1986)).

5. GRAAL IMPLEMENTATION

Traditionally machine learning offers mechanisms for a
class of language. The idea is, if an algorithm is good for
a general class of language, it would also work well for a
less general class included in the first one. It is true, but
in many cases, the general mechanism does not use all the
interesting properties of the restricted language. So the
complexity of the operation is not optimal for this
language.

A second drawback of this approach, comes from the need
for a translation process. Each description in the restricted
language has to be converted into a more general one. For
example a list of attributes is converted into a graph
(Liquiere, 1994).

In our new method. Graal (for GRAph And Learning), we
have implemented a general mechanism where description
language and operations A,> are parameters. Our tool is
generic but it cannot yet be used in practical cases when
important sets of examples are described by large graphs.
It in fact, an algorithm for formal analysis.

5.1 A utilization of a classical Algorithm for
Galois Lattice construction.

We give an algorithm which can be used on any
description language with operations < and A.

This algorithm is based on a classical method (Chein,
1969). Another algorithm can be used (Bordat, 1986)
which gives the set of nodes of the Galois lattice and also
the set of edges.

We note [ej x dj] the concept numbered i of Tk.

Structural machine learning with Galois lattice and Graphs 311

T<-0 /* concept set empty */
/* description of the examples */

T^tfWxiKeiMJandiell.fcl]

k<-l

While |Tk| > 1 do

For each i<j and ije [1, |Tk|] (so we have: [ej x dj] [e;

x d;]) /* we create a new concept from two concepts

already found in the previous step*/

djj<- djAdj /* description for the new concept */
if dy* 0 then

/* test if there is a concept with the same description */

ifdy-e Tk+1 then

else

ejj <- ejjuej

Tk+1<_ Tk+1 u [e[(Je. x d„j

/* test if the description is a generalisation */
if dj, = dj then

Tk <- Tk - [ej x dj]

ifdü d; then

Tk <- Tk - [ej x dj]

End-if
end-for

T<- TuTk

k<-k+l
end-while
T<- TuTk

Graal is written in Java language and uses object
programming properties. We have defined an abstract
class (interface) so a user can add his own description
language if he implements the interface.

The complexity of Galois Lattice construction with the

Bordat's algorithm (Bordat, 1986) is less than 0(n3*p)
where n is the number of objects and p the size of T.

5.2 An experimental example.

We present an example where each object is described by
a locally injective labelled graph.

We use a classical example based on arch definition.

D o
EO El

rectangle

rectangle circle
"'"bright-*'

n.
TJ

E2

square
T

rectangle
i^-on

square

o
E4

Figure 8: set of examples

The lattice is:

[0,1] [1, 4] / |[2, 41

[0,1,21 [0,1,3]

[0,1,2,3] [0,1,2,4] [0,1,3,4]

71 / t°- '< 41

2,4] [0,1,

[0,1,2,3,4]

Figure 9: the structure of the Galois lattice for our set of
examples.

For each node of the lattice there is a pair consisting of a
graph and a set of examples. Additionally, if nodei..
nodefc are linked to nodep then nodep is the least
common superconcept (generalisation) of nodei... nodefc.

In figure 9 we observe the subset of examples (extension).
In out tool, by double diking on a node we obtain the
following descriptions.

312 Liquiere and Salkntin

rectangle

on riSht

rectangle circle

rectangle

I
.on

circle -►right

x[0,l] x[l,4]

rectangle -►on ►square

x[2,4]

rectangle

on rectangle

x [0,1,2] x [0,1,3]

rectangle

on

circle

right

x [0,1,4]

on
i

rectangle

rectangle rectangle

on
circle

x [0,1,2,3] x [0,1,2,4] x [0,1,3,4]

rectangle

on

x [0,1,2,3,4]

Figure 10: the graph and subset for each node.

This lattice gives all the classification for the examples
without duplication. All concepts are differents
(description and extension), two differents descriptions
necessarily have distinct extensions.

Remark: For this example, the unconnected nodes like on
can be interpreted as: there is something on something.

6. CONCLUSION

Our work enlarges and expands the domain of formal
concept analysis by demonstrating that the Galois lattice
can be used for structural description.

Coming from graph theory, our work provides operations
and shows that they can be used to build a generalization
operator for labelled graphs.

In addition, the LIG graphs we use are an excellent
compromise between complexity and expressiveness.

Our method, written in Java, offers a general tools for
formal structural concept analysis.

We are now working on the following improvements:

• To prove that LIG is PAC learnable or not,

• a survey of classical Galois lattice results in
case of structural concept description,

• an implementation of heuristic in Graal, to
make Graal a tool for practical application,

• an improvement of the approaches with
categorical operations.

References

F.Aho,R.Sethi,J.UlIman, "Compilers, Principles,
techniques and tools",Addison wesley 1986.

M.Barbut, B.Monjardet, 1970, " Ordre et classification:
algebre et combinatoire". Hachette,paris 70.

Birkhoof, 1967, "Lattice theory", Third edition, American
Mathematical Society, Providence , RI 1967.

Bordat, JP 1986. "Calcul pratique du treillis de Galois
d'une correspondance." Math. Sei. humaines, 24°annee,
96:31-7.

C.Carpineto,G.Romano,"A Lattice Conceptual Clustering
System and its Application to Browsing Retrieval",
Machine Learning 24,95-122 (1996).

M.Chein,"Algorithme de recherche de sous-matrice
premiere d'une matrice", bull.math.R.S.Roumanie,13,
1969.

M.Chein, M.L Mugnier, "Conceptual Graphs:
fundamental notions", RFA Volume 6- n°4, 1992,p 365-
40

M.Chein, M.L.Mugnier "Conceptual Graphs are also
Graphs", Research report.

M.C Daniel-Vatonne, C de la Higuera "Les termes: un
modele algebrique de representation et dee structuration
des donnees ", Mathematique, informatique et sciences
humaines, 122, 1993, p41-63.

T.Dietterich "unsupervised concept learning and
discovery". In Readings in machine learning, pages 263-
266. Morgan Kaufmann 1990.

W.D. Fellner, "On minimal Graphs", Theoret. Comp.
sei. 17(1982) 103-110.

J.G Ganascia, "TDIS: an Algebraic Formalization",
ppl008-1013, IJCAI 1993.

B. Ganter, "Composition and Decomposition in Formal
Concept Analysis", Classification and related Methods of
Data analysis, p 561-566, North-Holland, Springer, NY.

R.Godin,G.Mineau.R.Missaoui,H.Mili, "Methode de
classification conceptuelle basees sur les treillis de Galois
et application ", RIA,Vol 9 n°2, 1995.

M.R. Garey, D.S. Johnson, "Computers and
Intractability: a guide to the Theory of NP-
Completeness", W.H Freeman, San Francisco (USA).

P.Hell, "Retract in graphs.", Springer Verlag Lecture
notes in mathematics 406 (1974) 291 -301.

Structural machine learning with Galois lattice and Graphs 313

O.Cogis,O.Guilnaldo,"A linear descriptor for conceptual
graphs and a class for polynomial isomorphism test " pp
263-277, LNAI 954, Third confon Concept.Struc, ICCS
1995.

T.Horvath, G.Turan, "Learning logic programs with
structured background knowledge", Inductive Logic
Programming conference, p53-76, Leuven, 1995.

M.Liquiere,"INNE:(Induction in Network", EWSL,
Montpellier, 1989.

M.Liquiere, "Graphs and structural similarities", in
New approaches in classification and data analysis.
Springer Verlag. Studies in classification, data analysis.
1994.

M.Liquiere, O.Brissac, "A class of conceptual graphs
with polynomial iso-projection", In proceedings of the
international Conference on Conceptual Structures, ICCS,
1994.

E. Mephu Nguifo, "Galois lattice: A framework for
concept learning - design, evaluation and refinement", pp
461-467, 6° Tool with AI, New Orleans TAI 1994.

Michalski,R.S, Stepp.R " Learning from observation:
conceptual clustering ." In machine Learning: An artificial
Approach (vol 1). Tioga publishing.

M.Missikoff, "An algorithm for insertion into a Lattice;
Application to Type Classification", Proc of th 3rd Int.
Conf FODO, Paris, Juin 1989, Springer Verlag, LNCS
367.

S.Muggleton, L de Raedt, "Inductive Logic
Programming: Theory and Methods", J.Logic
Programming 1994:19, 20:629-679.

M.L Mugnier, "On Generalisation / Specialisation for
Conceptual Graphs". J.expt.theor.Artif.intell, 6, 1994.

G.D. Plotkin, " a further note on inductive
generalization", in: B.Meltzer and D.Michie (eds),
Machine intelligence, vol 6, Edinburgh University press,
Edinburgh, 1971, 101-124.

J.Poole,J.A.Campbell," A novel algorithm for matching
conceptual and related graphs", ICCS 93, pp 293-307.

J.F.Sowa,"Conceptual structures: Information processing
in mind and machine", Addison-wesley Pub., Reading,
460p, 1984.

P.M. Weichsel, "The kronecker product of graphs."
Proc.Am.Math.Soc. 13(1962)47-52.

R.Wille " Restructuring Lattice Theory: an Approach
Based on Hierarchies of concepts", in Ordered sets,
I.Rival (ed), Reidel, p 445-470, 1982.

R.Wille."Knowledge acquisition by methods of formal
concept analysis", in E.Diday, editor, Data analysis,
Learning Symbolic and numeric knowledge, pages 365-
380.1989.

R.Wille "Concept lattices and conceptual knowledge
systems." In Computers Math.application, volume
23,pages 493-515.1992.

H.Zhou, "Multiplicativity. Part I Variations,
Multiplicative Graphs and Digraphs." Journal of graph
Theory, Vol 15,N°5,469-488(1991).

Appendix

Properties 1 proof
Proofl)
g>g' <=> CC(g) 2 oc(g')

=> property of the order relation >
<= a definition

a(giAg2) = a(g1)ua(g2)

Proofl)
a(g)={ee^g>d(e)}
We have giAg2^gi and g]Ag2^g2 so a(g]Ag2)
3a(g1)ua(g2)
We know that gjAg2 , Vg ,g>gi and g>g2 then g>
g!Ag2.so a(g) 2 cx(giAg2) 2 a(g\) u a(g2)
if a(g1Ag2) =>a(g!) u a(g2) then for g7 a(g')=a(gi)
u a(g2) we have

gjAg2>g' and g'Sgj then g'Sg2 so we don't have
the property of giAg2_

then a(g1Ag2) = a(g1)ua(g2)

Theorem 1 proof
a and ß is a Galois connection iff:
a) V l{ and I2 e I, I^ => ß(Ii) < ß(I2)
b) V g1;g2eD, g!>g2 => a^) 2 a(g2)
and for h= a o ß and h-ß o a
c) V H € I, H c h(H)
d) V g e D, g Sh'(g) (remark classicaly we note
generalisation < so we have a more classical definition.

Proof a) We have gjAg2 ^ gi then

ß0l)=AeeE1d(e)= g and IlSI2 ß(l2>= (ßfll»
A(ß(I2-I1)soß(I2)>ß(Ii)

Proof b) We have gj > g2 and g2 S g3 => g\ S g3
because > is an order relation cc(g2)={ee ^/ g2^d(e)}
we have gj>g2 then g|> d(e) with eea(g2> so oc(gi)

2 a(g2)

Proof c) We have gj > g =* gjA g2 ^ g

ß(H)=AeE H d(e), a(ß(H))={ee^/ ß(H)>d(e)}

But VeeH, we have ß(H)>d(e) because ß({e}u K)>d(e)
property of A.

Proof d) We have, g>gj and g^g2=> g^gl^g2 so
V g e D, h'(g)= ß(a(g)), a(g)={e6^/ g>d(e)},

g sAee a(a)d(e) because g>d(e) with ee a(g).

314

Learning a Language-Independent Representation for Terms
From a Partially Aligned Corpus

Michael L. Littman
Dept. of Computer Science

Duke University
Durham, N. C. 27708-0129

mlittman@cs.duke.edu

Fan Jiang
Dept. of Computer Science

Duke University
Durham, N. C. 27708-0129

fan@cs.duke.edu

Greg A. Keim
Dept. of Computer Science

Duke University
Durham, N. C. 27708-0129

keim@cs.duke.edu

Abstract

Cross-language latent semantic indexing is
a method that learns useful language-
independent vector representations of terms
through a statistical analysis of a document-
aligned text. This is accomplished by tak-
ing a collection of, say, English paragraphs
and their translations in Spanish and pro-
cessing them by singular value decomposition
to yield a high-dimensional vector represen-
tation for each term in the collection. These
term vectors have the property that seman-
tically similar terms have vectors with high
cosine measure, regardless of their source
language. In the present work, we extend
this approach to the case in which English-
Spanish translations are not available, but
instead, translations for documents in both
languages are available in a third "bridge"
language, say, French. Thus, although no
aligned English-Spanish documents are used,
our method creates a representation in which
English and Spanish terms can be compared.
The resulting vector representation of terms
can be useful in natural language applications
such as cross-language information retrieval
and machine translation.

1 INTRODUCTION

Vector representations of word "meaning" are useful
for creating computer systems that manipulate tex-
tual information. Such representations are routinely
used in information retrieval (Salton and McGill, 1983;
Deerwester et al., 1990) and filtering, and may find
application in word sense disambiguation, natural lan-

guage generation, text comprehension and summariza-
tion, and speech recognition. This vector lexicon rep-
resentation, in which words are "defined" by numerical
vectors, has even served as a model for the acquisition
of human knowledge (Landauer and Dumais, 1997).

A natural extension of the vector-lexicon represen-
tation for terms in a single language is a language-
independent representation. This is a promising tech-
nique used in cross-language text retrieval (Landauer
and Littman, 1990; Oard, 1997; Carbonell et al.,
1997), in which natural-language queries in one lan-
guage are matched against documents in another lan-
guage. It may also be important to automating the
creation of machine-translation systems. The key
property of a good multi-lingual vector lexicon is that
terms with similar meanings, regardless of their lan-
guages, are assigned vectors with high cosine measure.

A major appeal of the vector-lexicon representation is
that it can be learned automatically from text. In la-
tent semantic indexing (LSI) (Deerwester et al., 1990),
this is accomplished by taking a collection of text that
contains m documents (paragraphs, articles, abstracts,
etc.) and TIE distinct English terms, and forming
an TIE x tn term-document matrix £. The entry £y
records a value related to the number of times term
i appears in document j; in our work, we use "log
entropy" weighting: £y = In(1.0 + tf*j) x gi, where

9i = l-(gfilog2(gfi)-^(tffjlog2(tfii))/(gfilog2(m))),
3

(1)
tfy is the number of times term i appears in document
j, and gfj = X^tfy. This weighting scheme gives
higher weights to distinctive terms.

For any given dimensionality fc,1 we can find a k-
dimension vector lexicon by performing a singular

Reasonable choices for k range from 50 to 1000, de-

Learning From a Partially Aligned Corpus 315

value decomposition (SVD) and reestimating £ »
EHVT, where E is an TIE x k matrix, V is an m x k
matrix, both E and V are orthonormal (ETE = I,
VTV = I), and £ is a k x fc diagonal matrix of the
largest singular values of £. In many experiments, it
has been demonstrated that the matrix E of the left
singular vectors of £ is a useful vector lexicon of the
terms. This can be justified as follows. A basic result
from linear algebra (Golub and Van Loan, 1989) is
that, of all rank k matrices, ETiVT gives the best ap-
proximation of £. Similarly, document-document cor-
relations £T£ are approximated by (£VT)T(EVT) w
(£TE)(£TE)T. As £TE is precisely the result of rep-
resenting corpus £ via vector lexicon E, this choice of
vector lexicon best captures the document-document
correlations in the training corpus.

LSI has been extended to produce vector lexicons
for groups of languages simultaneously by analyzing
aligned document collections. Here, in addition to an
TIE x m term-document matrix £ of English, we also
have a ns x m term-document matrix S of Spanish.
These matrices represent an aligned corpus in that the
jth documents in the collections are on the same topic,
or even translations of each other. Cross-language
LSI (CL-LSI) (Landauer and Littman, 1990; Littman
et al., 1998) works by computing a fc-dimension singu-
lar value decomposition of the (TIE + ns) x m matrix

£
S

E
S

TV1

Here, the matrix
E
S

is orthonormal (E and 5 are

not), and E and S can serve as vector lexicons for the
English and Spanish terms, respectively.

CL-LSI has been successfully applied to many different
pairs of languages, such as English-French (Littman
et al., 1998), English-Japanese (Landauer et al., 1992),
English-Spanish (Carboneil et al., 1997), and English-
Greek (Berry and Young, 1995). It has also been
applied to language triples such as English-French-
Spanish and English-French-German (Rehder et al.,
1997) when three-way document-aligned corpora are
available.

Ultimately, our goal is to solve the corpus hypergraph
problem, illustrated in Figure 1. In a corpus hyper-
graph, nodes are different languages and hyperedges
represent aligned corpora. A hyperedge connects the
set of languages appearing in the corresponding cor-
pus. The corpus hypergraph problem is, given a set

pending on the application; in general, we must have
k < min(m,n.E). We use k = 500 in this work.

(German J

Figure 1: A corpus hypergraph shows how various lan-
guages are connected by available corpus resources.
The darkened subgraph is the corpus hypergraph used
in our experiments.

of languages related by corpora given in a hypergraph,
support the comparison of documents expressed in any
two languages connected by a path in the hypergraph.
If this could be accomplished for the corpus hyper-
graph in Figure 1, it would become possible to compare
text passages in Russian to text passages in Greek,
even though no corpus was provided that related those
two languages directly.

As yet, no general solution to the corpus hypergraph
problem has been proposed. In this paper, we con-
sider an important and difficult special case in which
all available pairwise document-aligned corpora have a
single core language in common. In our experiments,
this lingua franca is French, although we expect En-
glish to play this role in many applications.

In particular, we consider the problem of finding a
vector lexicon for English, Spanish, and French terms
given a document-aligned English-French corpus and a
document-aligned Spanish-French corpus. This would
be represented by a corpus hypergraph with three
nodes for the three languages, an edge between En-
glish and French, and another edge between Spanish
and French; this is the darkened subgraph in Figure 1.
We call such a corpus partially aligned because each
document is available in only French and English or
French and Spanish, but not all three languages.

Section 2 describes the way we evaluate our proposed
methods. In Section 3, we show that the application

316 Littman, Jiang, and Keim

of CL-LSI to partially aligned corpora does not cre-
ate adequate vector lexicons. In this method, we at-
tempt to capture the relationships between all three
languages using a single singular value decomposition.
In Section 4, we show how a technique called Pro-
crustes analysis can be applied to combine separate
SVD analyses to create a unified representation. This
technique shows great promise in our initial evalua-
tions. We conclude with simple baseline comparisons
and thoughts about the applicability of our approach.

2 EXPERIMENTAL EVALUATION

We will explore techniques for attacking the following
problem. The input is a set of four term-document ma-
trices: a document-aligned pair of English and French
matrices, and a document-aligned pair of Spanish and
French matrices. Each matrix contains 500 documents
drawn from a corpus of United Nations reports (de-
scribed in more detail below). The output is a 500-
dimension vector lexicon denning each English, Span-
ish, and French term.

These vectors are then evaluated by the mate-retrieval
test (Littman et al., 1998). In this test, we take an
independent 2500-document aligned English-Spanish
corpus and represent each document in the corpus by
the sum of the vectors representing the terms it con-
tains (with term vector i weighted by </* from Equa-
tion 1). Then, for each English document vector, we
compute its cosine to all 2500 of the Spanish docu-
ment vectors and sort the resulting list from largest
to smallest. We note the rank of the Spanish doc-
ument that is the English document's translation or
mate in the document-aligned collection. We repeat
this for all 2500 English test documents and compute
mean and median ranks, as well as the percentage of
English documents with mates at rank 1 and ranks in
the top 10.

To the extent that the vector lexicon generated is good,
similar documents will get similar representations and
the mate-retrieval test will reveal this by a low median
rank. Although the mate-retrieval test is a poor sub-
stitute for traditional information-retrieval evaluation
methods, it is sufficient for distinguishing between the
techniques explored in this paper.

2.1 EXPERIMENTAL MATERIALS

Our experimental text collection was drawn from the
United Nations Parallel Text Corpus (version 1.0),
available through the Linguistic Data Consortium.

This collection contains approximately 1.5 gigabytes of
text in English, French and Spanish. The majority of
the documents were professionally translated from En-
glish, although some of the documents were originally
written in Arabic, French, Spanish, Russian, or Chi-
nese. We started with the 1990, section 00 documents
in all three languages (826 files). We then removed
SGML tags and extracted paragraphs with a leading
number to help ensure that paragraphs were aligned
between the three languages. We selected paragraphs
that had at least 10 words and that varied in length
no more than 75% among the three languages, yielding
6151 triplets of paragraphs, which in English ranged
from 10 to 448 words (mean 68.4, s.d. 48.5).

From this collection of paragraphs, we randomly se-
lected two disjoint sets of 500 three-way aligned para-
graphs to serve as training texts. We formed 6488 x 500
English term-document matrices £ and £', 7812 x 500
French term-document matrices T and T', and 8313 x
500 Spanish term-document matrices <S and <S' (£, T,
and S are aligned, and £', P', and <S' are aligned).
Note that we tagged all terms with their source lan-
guage, so our results are not due to the incidental
overlap of, e.g., numerals and proper names across
languages. Table 1 gives an example of the type of
documents we used.

From the same collection, we extracted 2500 aligned
English and Spanish test documents, £ and <S, for use
in the mate-retrieval experiments. All matrices are
weighted using Equation 1.

3 CROSS-LANGUAGE LSI

As a first test, we applied CL-LSI to the problem of
learning a vector lexicon from the partially aligned
English-French-Spanish corpus.

3.1 FULLY ALIGNED CORPUS

As a baseline, we began with an experiment using the
fully aligned English-French-Spanish documents. We
used CL-LSI to find a 500-dimension vector lexicon for
the terms in all three languages by computing an SVD
of the matrix

\ £ £'] r E i
T r K, F
S S' S

iT E'V

yielding representations in the form of matrices E,
F, and S. Evaluating these representations using the
mate-retrieval test gave the performance listed Row 9

Learning From a Partially Aligned Corpus 317

Table 1: An example of aligned English, Spanish, and
French documents

Despite the difficult situation, there has been a strong political

desire to incorporate child-related activities into the national

political agenda. However, more efforts are needed to coor-

dinate the activities of the public and private sectors. The

experience gained during this period demonstrated that stud-

ies were an important contribution to the social mobilization

process, and that UNICEF cooperation should further rein-

force the adoption of low-cost measures for child survival and

development (CSD), with greater community participation.

Pese a la diffcil situaciön existente, se ha expresado un notable

interes polftico por incorporar las actividades relacionadas con

el nino en el programa polftico del pafs. Sin embargo, hay que

desplegar mayores esfuerzos para coordinar las actividades de

los sectores publico y privado. La experiencia adquirida du-

rante este perfodo demoströ que los estudios constitufan una

importante contribuciön al proceso de movilizaciön social y

que la cooperation del UNICEF debfa reforzar aun mäs la

adopciön de medidas de bajo costo destinadas a la superviven-

cia y el desarrollo del nino en que se diera mayor participation

a la comunidad.

On a pu constater qu'il existait, malgre les difficult« une

forte volont6 d'intägrer des activity en faveur des enfants

dans le programme politique national. Mais l'action du

secteur public et celle du secteur prive' ne sont pas en-

core suffisamment coordonn^es. On a aussi constate ä

I'evidence durant cette peViode qu'il est tres utile de pou-

voir s'appuyer sur des Etudes lorsqu'on cherche ä mobiliser les

collectivites et que dans faction menee pour assurer la survie

et le developpement des enfants I'UNICEF devrait encour-

ager encore davantage ä prendre des mesures peu coüteuses

et qui fassent davantage intervenir les communaut£s.

of Table 2. This performance is quite strong—the av-
erage rank of an English document compared to its
Spanish mate is 2.0, and 99.6% of the time, the mate
is ranked in the top 10. This is consistent with results
obtained with CL-LSI in other text collections.

To help understand mathematically why CL-LSI is
able to handle fully aligned corpora so well, con-
sider the following idealized experiment. Imagine that
[£ £'] = [T T'] = [S S'], as would be
the case if language translation were a simple matter of
word substitution (as one might get in, say, Pig Latin).
In this pure case, the vector lexicon for the terms in
all three languages E, F, and S can be shown to be
equal to y/1/3 times the matrix of left singular vectors

r s 0 1
T r
0 S'

of [T T']. The important thing here is that the
method correctly assigns identical vectors to the words
in the "different" languages.

3.2 PARTIALLY ALIGNED CORPUS

In the partially aligned case, the matrices £' and <S
are not available, and we still seek to find a vector
lexicon for English and Spanish so that similar terms
are assigned vectors with high cosines.

We attacked this problem using CL-LSI by computing
an SVD of the matrix

V =

Extracting the left singular vectors from this decompo-
sition, we obtained a 500-dimension vector lexicon for
English, French, and Spanish. The hope was that the
method would be able to identify English-Spanish term
relationships transitively through the common French
terms. The evaluation of the derived vector lexicon
using mate retrieval appears in Row 2 of Table 2.

Although this is perhaps the most elegant approach to
the problem, it has the unfortunate property of giv-
ing dismal performance. In fact, the mean and me-
dian ranks are much worse than the 1250 expected by
pure chance (Row 1). The reason for this poor per-
formance is obvious in retrospect. The zeros in the
definition of V are meant to denote missing informa-
tion (e.g., that we have no Spanish documents related
to £ and T). However, SVD treats these as real zeros
and detects the fact that English and Spanish terms
never co-occur; it assigns representations that capture
this, making English and Spanish terms appear quite
different.

A similar analysis of the idealized case from the previ-
ous section is quite instructive here. Imagine that £ =
T = T' = S'. Let F be the matrix of left singular vec-
tors of T\ this is the vector lexicon learned by LSI from
an analysis of T. Applying CL-LSI to V yields a vector
lexicon for English of E = [-y/T/6 F -y/Tß F]
and for Spanish of S = [- y/T/6 F J\jl F] . This
is interesting because the matrix of English-Spanish
term correlations EST = -1/3 FFT, or sign-reversed
from the French-French term correlations. Essentially,
terms that should have the highest similarity, like
translations, are actually assigned the most dissimi-
lar vectors by this method. While this simple analysis
does not precisely capture the complexity of a realis-
tic experiment, it does strongly suggest that CL-LSI is

318 Littman, Jiang, and Keim

Table 2: Mate-retrieval results for English to Spanish for several approaches

METHOD MEAN % IN TOP 1 % IN TOP 10 MEDIAN
1 partially aligned 2177.8 0.3% 0.7% 2455
2 random order 1250.0 0.0% 0.4% 1250
3 partially aligned (reversed) 323.2 7.9% 28.9% 46
4 Procrustes on terms (to FF) 235.2 11.6% 37.8% 26
5 Procrustes on terms 216.5 11.8% 38.6% 22
6 Word matching 45.4 20.0% 47.6% 14
7 Dictionary translation 17.2 79.9% 93.8% 1
8 Procrustes on documents 14.0 57.5% 87.4% 1
9 fully aligned 2.0 92.2% 99.6% 1

not well suited to analyzing partially aligned corpora,
even under idealized circumstances.

Row 3 of Table 2 gives the results of applying CL-
LSI to the partially aligned corpus, then performing
the mate-retrieval experiment, computing document
similarities using negative cosine. The results here are
actually quite good considering the vector lexicon is
being used backwards!

In the next section, we show how to improve perfor-
mance, with the added benefit that we no longer need
to use the negative cosine similarity for cross-language
comparisons.

4 PROCRUSTES APPROACHES

The results of the previous section show that it does
not make sense to use a single SVD to create a vector
lexicon from a partially aligned corpus. However, it is
also clear that, within fully aligned corpora, we can use
CL-LSI to find vector lexicons that produce acceptable
performance.

Since a partially aligned corpus contains smaller, fully
aligned corpora within it, this suggests a different
strategy. Specifically, we can take the fully aligned
corpus formed by £ and T and use it to build a vector
lexicons for English and French, E and F, derived by

CL-LSI from a singular value decomposition of T

Once this is done, each English and French term can
be thought of as a point in a high-dimensional vec-
tor space—the rows of the E and F matrices are the
coordinates of the points.

The English-French vector space can also be thought
to contain points for the documents in various docu-
ment collections, since a document can be represented
as the weighted sum of the representations of the terms

English-French Spanish-French

Figure 2: After performing separate CL-LSI analy-
ses, English terms E, French terms F, English test
documents E, and French training documents F oc-
cupy the English-French vector space while Spanish
terms 5', French terms F', Spanish test documents S,
and French training documents F' occupy the Spanish-
French vector space.

it contains. The French documents are the points cor-
responding to the rows of F = TTF and the English
test documents are the points corresponding to the
rows of E = £TE. Within the English-French vec-
tor space, English terms, French terms, English docu-
ments, and French documents can be compared using
the cosine metric.

Separately, we can also construct a Spanish-French
vector space using CL-LSI applied to the fully aligned
<S' and T1 collections. This situation is depicted in
Figure 2. Let F' and S' be the vector lexicons derived
by CL-LSI; the rows of these matrices are the points
corresponding to the terms in the Spanish-French vec-
tor space. The rows of F' = T'TF' and S = STS'
are the points corresponding to the French training
documents and Spanish test documents, respectively.

Learning From a Partially Aligned Corpus 319

English-French Spanish-French

Figure 3: English term and document vectors can be
transformed from the English-French vector space into
the Spanish-French vector space using a Procrustes
analysis derived from shared French terms.

4.1 PROCRUSTES ON TERMS

Although the two vector spaces in Figure 2 are sep-
arate, they do have something in common. Specifi-
cally, both have points corresponding to French terms.
Thus, the rows of F and F' can be seen as a set of
"bridge" vectors that can be used to find a way of
transforming points in the English-French vector space
into the Spanish-French vector space.

Mathematically, we need to derive a transformation
matrix TF->F< that rotates the English-French vec-
tor space so that the rows of F become as simi-
lar as possible to the rows of F'. Thus, TF-+F'

should be a rotation matrix (TF->F' TF^F
1
 = I =

Tp^F' TF->F'
T

) that minimizes the Frobenius norm
||F' - F Tj?_*.j?/||; an algorithm for computing such a
transformation (Golub and Van Loan, 1989) is given
in Appendix A and is known as Procrustes analysis.2

Given the transformation matrix TF-*F' , we create a
new vector lexicon E = E Tp->F' ■ The vector lexicon
E has the property that English-English term simi-
larities are unchanged from the CL-LSI-derived vector
lexicon E, since

EE = E TF-*F'\E Tp-yF1)
 7? rn rrt T TnT T? TpT.
= Hi lp-iF' J-F-tF' & = ■C'-C' i

however, these English term vectors now occupy the
Spanish-French vector space, so comparisons between
English and Spanish terms can be made. Figure 3
illustrates this procedure.

To evaluate this idea, we carried out the following ex-
periment. First, we listed all the French terms that

appear in both T and F (for the purposes of this
experiment, we excluded terms with digits in them).
This results in a set of 3311 French terms, from which
we picked 500 terms uniformly at random without re-
placement to form a set of bridge vectors.3 We used
these terms to find a transformation from English-
French vector space tö Spanish-French vector space,
applied this transformation to the English test docu-
ments E TF-+F> , and performed the mate-retrieval test
against the Spanish test documents S. The result of
this test is given in the Row 5 of Table 2.

The median rank of mates for this method is 22, mak-
ing it better than the performance of "reversed" CL-
LSI applied to this partially aligned corpus (median
rank of mate of 46), but still far from the performance
of CL-LSI on the fully aligned corpus (median rank of
mate of 1). Note that transforming the Spanish terms
into the English-French vector space via an appropri-
ately defined TF>-+F gives precisely the same mate-
retrieval performance because of the symmetric nature
of the transformation matrix.

To understand why Procrustes on terms did not per-
form quite up to expectations, we tested a fundamen-
tal hypothesis behind this approach. In particular,
we were assuming that the French vector lexicon de-
rived from the English-French corpus was essentially
the same as that derived from the Spanish-French cor-
pus. In particular, we were assuming that the French
term-term correlations in the two vector spaces were
roughly the same. To test whether this was true, we
measured the stability of the term-term similarities in
the two vector spaces by the correlation between FFT

and F'F'T; it is 0.52, suggesting a positive correlation,
but perhaps not one strong enough to form an ideal
bridge between English and Spanish.

4.2 PROCRUSTES ON DOCUMENTS

We felt we could establish a stronger bridge using a
more stable French vector lexicon. We considered the
corpus formed by taking the union of the documents
in T and T'. Let FFF be the vector lexicon derived
by LSI on the matrix [T T']. This vector lexi-
con defines a French-French vector space that contains
French terms FFF as well as both sets of French train-
ing documents FFF = J^FFF and FFF' = F FFF-

As we had hoped, this procedure strengthened some-
what the stability of the French vector lexicons. In

2Procrustes is the robber of Greek legend who forced
people of varying sizes to fit perfectly in a fixed sized bed
by stretching or cutting them as appropriate.

3 Of course, there are many other ways one might select
a set of terms to create bridge vectors. Our choice was
motivated by a combination of simplicity and practicality.

320 Littman, Jiang, and Keim

particular, for the set of French bridge terms, the
correlation between FFT and FFFFFF

T is 0.74 and
the correlation between F'F'T and FFFFFF

T is 0.72.
Hence, we'd expect the bridge between the English-
French vector space and the French-French vector
space to be stronger than the one between the English-
French vector space and the Spanish-French vector
space from the previous experiment, where the cor-
relation was 0.52.

To evaluate the revised method, we constructed
TF-*FFF and TF>->FFF by Procrustes analysis and
transformed the English and Spanish test documents
from their respective vector spaces into the French-
French vector space.

Performing a mate-retrieval test on these collections
gave the results appearing in Row 4 of Table 2, which
are just slightly worse than those of the previous exper-
iment (e.g., median rank of mate of 26 instead of 22),
in spite of the apparently higher correlations for the
bridge vectors. We explain this by noting that in the
previous experiment, English terms were transformed
into the Spanish-French vector space via a transforma-
tion with a correlation of 0.52. Here, before English
and Spanish terms or documents can be compared, two
transformations take place. Under an independence
assumption, we estimate the cumulative correlation of
the two transformations as .74 x .72 « 0.53, which is
about the same as in the previous experiment.

We then repeated the experiment with the difference
that we based our transformations on document vec-
tors instead of term vectors. Our intuition is that doc-
uments are more stable predictors of meaning than are
individual terms.

Figure 4 illustrates our technique of merging vec-
tor spaces by a Procrustes analysis of shared docu-
ments. The basic idea is that we first create separate
English-French, Spanish-French, and French-French
vector spaces from the various combinations of pieces
of the partially aligned corpus. We then create vec-
tor representations for the French training documents
T in both the English-French F and French-French
FFF spaces. This allows us to create a transformation
matrix TF_>FFF fr°m English-French to French-French
via Procrustes analysis. English test documents € can
now be located in the French-French space via

E TF->FFF •

A similar analysis results in transforming the Spanish
test documents into the French-French vector space.

The resulting vectors for the test documents can then

English-French Spanish-French

French-French

Figure 4: English term and document vectors can be
transformed from the English-French vector space into
the French-French vector space using a rotation de-
rived from shared French documents. Spanish term
and document vectors can be transformed analogously.

be evaluated using the mate-retrieval test. The perfor-
mance, given in Row 8 of Table 2, is quite encouraging.
We find that, more than half the time English test doc-
uments are closest to their Spanish mates and 87.4%
of the time, the mate is ranked in the top 10 out of
2500 Spanish test documents. This is not quite as good
as the results of training directly on aligned English-
Spanish documents, but, considering the small amount
of training data, the performance is quite respectable.

It is instructive to look once more at the correlations
of the bridge vectors used to map between the vari-
ous vector spaces. The correlation between the French
T document-document correlations in the English-
French vector space FFT and the French-French vec-
tor space FFFFFF

T
 is 0.98. Similarly, the correlation

between the French T' document-document correla-
tions in the Spanish-French vector space F'F' and
the French-French vector space FFF'FFF' is 0.98.
The product of these correlations is 0.97, providing
strong evidence that the transformations that bring
the English and Spanish test documents together in
the French-French space are robust and accurate.

Learning From a Partially Aligned Corpus 321

5 BASELINE COMPARISONS

To help evaluate our results, we carried out two
simple comparative experiments. First, we repeated
the mate-retrieval evaluation using English to retrieve
Spanish using only direct word matching. That is, only
words appearing in both languages (proper names,
numbers, acronyms, and some cognates like "idea")
were used to measure the similarity between docu-
ments. This type of information is routinely used to
align texts and it is reasonable to ask how this method
compares to Procrustes by documents.

The result of mate-retrieval via word matching appears
in Row 6 of Table 2. This method scores between
the term-based Procrustes methods and Procrustes by
documents. Thus, Procrustes by documents is extract-
ing useful information beyond simply pairing up cross-
language homographs.

A second comparison used an available 21,000-word
English-Spanish bilingual dictionary to compare En-
glish and Spanish documents. Although this approach
does not construct a vector lexicon, it does help estab-
lish the baseline difficulty of the mate-retrieval task
when additional linguistic resources are available.

We created a simple word-for-word translation system
from English to Spanish. For each English word found
in the dictionary, we substituted all Spanish entries.
English words not found were left untranslated (al-
lowing proper names and acronyms to pass through).
We performed no stemming or morphological analysis
in either language. The translation procedure substi-
tuted about 23.6% of types and 69% of tokens in the
original English.

The translated English documents were then matched
against the Spanish test documents and mate-retrieval
statistics collected; they are given in Row 7 of Table 2.
In terms of mean rank of mate, Procrustes on docu-
ments, which used no direct English-Spanish informa-
tion, performed better than the human constructed
dictionary (14.0 vs. 17.2). However, dictionary trans-
lation scored better in percentage in top 1 and top 10.

The results in Table 2 suggest that, when a parallel
corpus is available (Row 9), it is the most effective
method for constructing a vector lexicon. In the ab-
sence of a parallel corpus, a bilingual dictionary can
be used to match documents with one another and
this works relatively well (Row 7), at least for "query
by example" type of tasks. Procrustes on documents
(Row 8) performs a bit less well by some measures,
but does not require any direct resources relating the

languages in question.

That a parallel corpus technique outperforms dic-
tionary translation is consistent with earlier studies
measuring average precision for information-retrieval
tasks (Carboneil et al., 1997). We are in the process
of evaluating Procrustes by documents on this task.

6 CONCLUSIONS

In this paper, we introduce the problem of learning
multi-lingual vector lexicons for partially aligned cor-
pora. We couch the general problem in terms of tak-
ing a corpus hypergraph and finding vector represen-
tations for all the terms so that semantically similar
terms have representations with high cosine, indepen-
dent of language.

Although we do not propose a solution to the gen-
eral corpus hypergraph problem, we attack the specific
case in which two languages are related only indirectly
through a third language. Specifically, we have an
English-French aligned corpus and a Spanish-French
aligned corpus and we want to make comparisons tran-
sitively between English and Spanish terms. We evalu-
ate several algorithms for deriving vector lexicons from
this type of corpus.

Of the approaches we considered, the most successful
was Procrustes on documents, in which English and
Spanish terms are transformed into a French-only vec-
tor space on the basis of the representation of a core set
of French documents. A vector lexicon derived by this
method was able to perfectly identify Spanish transla-
tions of English documents from a field of 2500 choices
57.5% of the time. While this is not nearly as ac-
curate as a vector lexicon trained directly on aligned
English and Spanish documents (92.2%), it is encour-
aging given that all English-Spanish term-term rela-
tionships were derived indirectly and completely auto-
matically through connections with French terms.

Our technique is applicable for finding relationships
among arbitrarily large sets of languages as long as all
these languages are related through aligned corpora
with some core language (be it French, English, Rus-
sian, etc.). In future work, we hope to extend this
approach to use information in a web of aligned cor-
pora to establish a robust representation for terms in
any of the world's languages.

322 Littman,]iang, and Keim

Acknowledgment s

We thank Tom Landauer for suggesting the idea of
using Procrustes analysis, Sue Dumais and Mike Berry
for pointing us to the definition, Steve Majercik and
Xiaobai Sun for helping us understand its derivation,
and Dian Martin for early encouraging results.

A PROCRUSTES DERIVATION

We seek a transformation TA-*B that rotates the vec-
tors in the rows of A and makes them as similar as
possible to the vectors of the rows of B. Specifically,
we want TA-+B to be the k x k orthonormal matrix Q
such that Frobenius norm \\B — AQ\\ is minimized over
all matrices Q with QTQ = I = QQT.

First, using the definition that trace(X) is the sum of
the diagonal entries of X and ||X|| is the sum of the
squares of all the entries of X,

min IIB-AQH
QTQ=I

= min trace((5 - AQ)(B - AQ)T)

= min (trace(ßßT) - trace(BQTAT)
QTQ=r

-tr&ce(AQBT) + trace(J4AT))

= max trace(vlQßT).
QTQ=I

Now, note that trace(Xy) = trace(FX) and let
ATB = UT,VT be the singular value decomposition
of ATB. This gives us

max trace(AQB) =
QTQ=I

max trace(BTAQ)
QTQ=I

max trace(^Ef/TQ)
QTQ=I

max trace(SC/TQn.
QTQ=I

Since V, Q, and U are all orthonormal, they cannot
increase the length of any of the rows of E. This means
that the maximum of the sum of the diagonal entries
of trace(E[/TQV) occurs when UTQV = I, or when
Q = UVT. Thus, TA->B = UVT is the transformation
that maximizes the alignment between A and B.

References

Berry, M. W. and Young, P. G. (1995). Using La-
tent Semantic Indexing for multilanguage infor-
mation retrieval. Computers and the Humanities,
29(6):413-429.

Carbonell, J., Yang, Y., Frederking, R., Brown, R. D.,
Geng, Y., and Lee, D. (1997). Translingual infor-
mation retrieval: A comparative evaluation. In
Proceedings of Fifteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-97).

Deerwester, S., Dumais, S. T., Furnas, G. W., Lan-
dauer, T. K., and Harshman, R. A. (1990). In-
dexing by latent semantic analysis. Journal of
the American Society for Information Science,
41(6):391-407.

Golub, G. H. and Van Loan, C. F. (1989). Matrix
Computations. The Johns Hopkins University
Press, 2 edition.

Landauer, T. K. and Dumais, S. T. (1997). A so-
lution to Plato's problem: The latent semantic
analysis theory of acquisition, induction and rep-
resentation of knowledge. Psychological Review,
104(2):211-240.

Landauer, T. K. and Littman, M. L. (1990). Fully
automatic cross-language document retrieval us-
ing latent semantic indexing. In Proceedings of
the Sixth Annual Conference of the UW Centre
for the New Oxford English Dictionary and Text
Research, pages 31-38. Waterloo Ontario.

Landauer, T. K., Littman, M. L., and Stornetta, W. S.
(1992). A statistical method for cross-language
information retrieval. Unpublished manuscript.

Littman, M. L., Dumais, S. T., and Landauer, T. K.
(1998). Automatic cross-language information re-
trieval using latent semantic indexing. In Grefen-
stette, G., editor, Cross Language Information
Retrieval. Kluwer.

Oard, D. W. (1997). Alternative approaches for cross-
language text retrieval. In Hull, D. and Oard,
D., editors, Cross-Language Text and Speech Re-
trieval: Papers from the 1997 AAAI Spring Sym-
posium. The AAAI Press.

Rehder, B., Littman, M. L., Dumais, S., and Lan-
dauer, T. K. (1997). Automatic 3-language cross-
language information retrieval with latent seman-
tic indexing. In The Sixth Text Retrieval Confer-
ence Notebook Papers (TREC6), pages 103-110.
National Institute of Standards and Technology
Special Publication.

Salton, G. and McGill, M. J. (1983). Introduction to
Modern Information Retrieval. McGraw-Hill.

323

Using Eligibility Traces to Find the Best Memoryless Policy in
Partially Observable Markov Decision Processes

John Loch
Department of Computer Science

University of Colorado
Boulder, CO 80309-0430

loch@cs.colorado.edu

Satinder Singh
Department of Computer Science

University of Colorado
Boulder, CO 80309-0430
baveja@cs.colorado.edu

Abstract 1 Introduction

Recent research on hidden-state reinforce-
ment learning (RL) problems has concen-
trated on overcoming partial observability by
using memory to estimate state. However,
such methods are computationally extremely
expensive and thus have very limited appli-
cability. This emphasis on state estimation
has come about because it has been widely
observed that the presence of hidden state
or partial observability renders popular RL
methods such as Q-learning and Sarsa use-
less. However, this observation is misleading
in two ways: first, the theoretical results sup-
porting it only apply to RL algorithms that
do not use eligibility traces, and second these
results are worst-case results, which leaves
open the possibility that there may be large
classes of hidden-state problems in which RL
algorithms work well without any state esti-
mation.

In this paper we show empirically that
Sarsa(A), a well known family of RL algo-
rithms that use eligibility traces, can work
very well on hidden state problems that have
good memoryless policies, i.e., on RL prob-
lems in which there may well be very poor
observability but there also exists a mapping
from immediate observations to actions that
yields near-optimal return. We apply conven-
tional Sarsa(A) to four test problems taken
from the recent work of Littman, Littman
Cassandra and Kaelbling, Parr and Russell,
and Chrisman, and in each case we show that
it is able to find the best, or a very good,
memoryless policy without any of the com-
putational expense of state estimation.

Sequential decision problems in which an agent's sen-
sory observations provide it with the complete state
of its environment can be formulated as Markov deci-
sion processes, or MDPs, for which a number of very
succesful planning (Sutton & Barto, 1998) and rein-
forcement learning (Barto et al., 1983; Sutton, 1988;
Watkins, 1989) methods have been developed. How-
ever, in many domains, e.g., in mobile robotics, and
in multi-agent or distributed control environments,
the agent's sensors at best give it partial informa-
tion about the state of the environment. Such agent-
environment interactions suffer from hidden-state (Lin
& Mitchell, 1992) or perceptual aliasing (Whitehead
k. Ballard, 1990; Chrisman, 1992) and can be formu-
lated as partially observable Markov decision processes,
or POMDPs (e.g., Sondik, 1978). Therefore, finding
efficient reinforcement learning methods for solving in-
teresting sub-classes of POMDPs is of great practical
interest to AI and engineering.

Recent research on POMDPs has concentrated on
overcoming partial observability by using memory to
estimate state (Chrisman, 1992; McCallum, 1993; Lin
& Mitchell, 1992) and on developing special purpose
planning and learning methods that work with the
agent's state of knowledge, or belief state (Littman
et al., 1995). In part, this emphasis on state esti-
mation has come about because it has been widely
observed and noted that the presence of hidden state
renders popular and succesful reinforcement learning
(RL) methods for MDPs, such as Q-learning (Watkins,
1989) and Sarsa (Rummery k. Niranjan, 1994), use-
less on POMDPs (e.g., Whitehead, 1992; Littman,
1994; Singh et al., 1994). However, this observation
is misleading in two ways: first, the theoretical re-
sults (Singh et al., 1994; Littman, 1994) supporting it
only apply to RL algorithms that do not use eligibility

324 Loch and Singh

traces, and second, these results are worst-case results
which leaves open the possibility that there may be
large classes of POMDPs in which existing RL algo-
rithms work well without any state estimation.

The main contribution of this paper is to show empir-
ically that Sarsa(A), a well known family of reinforce-
ment learning algorithms that use eligibility traces,
can work very well on POMDPs that have good mem-
oryless policies, i.e., on problems in which there may
well be very poor observability but there also exists a
mapping from the agent's immediate observations to
actions that yields near-optimal return. We also show
how this can be extended to low-order-memory-based
policies. This contribution is significant, because it
may be that most real-world engineering problems that
are well designed have good memoryless or good low-
order-memory-based policies. We apply conventional
Sarsa(A) on four test problems taken from recent pub-
lished work on POMDPs and in each case show that
it is able to find the best, or a very good, memory-
less policy without any of the computational expense
of state estimation. However, these results have to
be interpreted with caution for the problem of finding
optimal memoryless policies in POMDPs is known to
be computationally challenging (Littman, 1994); they
are evidence that Sarsa(A) is at least competitive to
and at best better than other existing algorithms for
solving POMDPs when good low-order-memory-based
policies exist.

2 POMDP Framework

In this section we briefly describe the POMDP frame-
work. An environment is defined by a finite set of
states S, the agent has recourse to a finite set of ac-
tions A, and the agent's sensors provide it observa-
tions from a finite set X. On executing action a € A
in state s € S the agent receives expected reward r°
and the environment transits to a random state s' € S
with probability P°s,. The probability of the agent ob-
serving x e X given that the environment's state is s
is 0(x\s). In the reinforcement learning (RL) problem
the agent does not know the transition and observation
probabilities P and O and its goal is to learn an ac-
tion selection strategy that maximizes the return, i.e.
the expected discounted sum of rewards received over
an infinite horizon, -EiX^o^M- where 0 < 7 < 1
is the discount factor that makes immediate reward
more valuable than reward more distant in time, and
Tt is the reward at time step t.

In fully observable RL problems or MDPs it is known

that there exists an optimal policy that is memory-
less, i.e., is a mapping from states to actions, S —* A.
RL algorithms such as Q-learning and Sarsa are able
to provably find such memoryless optimal policies in
MDPs. It is known that in POMDPs the best memo-
ryless policy can be arbitrarily suboptimal in the worst
case (Singh et al., 1994). We ask below if these same
RL algorithms can find the best memoryless policy
in POMDPs (Jaakkola et al., 1995; Littman, 1994),
regardless of how good or how bad it is; for if they
are able to find it, then they can at least be useful
in POMDPs with good memoryless policies. We note
that the success of RL algorithms when using com-
pact function approximation in fully observable prob-
lems (Barto et al., 1983; Tesauro, 1995) provides some
evidence that this is possible because the use of com-
pact function approximation introduces hidden state
into otherwise completely observable MDPs.

3 Eligibility Traces and Sarsa(A)

In MDPs reinforcement learning algorithms such as
Sarsa(A) use experience to learn estimates of optimal
Q-value functions that map state-action pairs, s, a, to
the optimal return on taking action a in state s. The
transition at time step t, < st,at,rt,St+i >, is used to
update the Q-value estimate of all state-action pairs
in proportion to their eligibility. The idea behind the
eligibilities is very simple. Each time a state-action
pair is visited it initiates a short-term memory or trace
that then decays over time (exponentially with param-
eter 0 < A < 1). The magnitude of the trace deter-
mines how eligible a state-action pair is for learning.
So state-action pairs visited more recently are more
eligible.

In POMDPs the transition information available to the
agent at time step f is < xt,at,rtlxt+i >■ A straight-
forward way to extend RL algorithms to POMDPs
is to learn Q-value functions of observation-action
pairs, i.e., to simply treat the agent's observations
as states. Below we describe standard Sarsa(A) ap-
plied to POMDPs in this manner. At step t the Q-
value function is denoted Qt and the eligibility trace
function is denoted r]t. On experiencing transition
< xt,at,rt,xt+i > the following updates are per-
formed in order:

■>li(xt,at) = 1

V (x jLxt or a ^ a,); r),{x,a) = ^\qt-i(x,a)

Vx and a;

Qt+1(x,a) = Q,{x,a) + a * 8t * r]t(x,a) (1)

Best Memoryless Policy in POMDPs 325

where 5t = rt + jQt(xt+i,at+i) - Qt(xt,at), and a
is the step-size. The eligibility traces are initialized
to zero, and in episodic tasks they are reinitialized
to zero after every episode. The greedy policy at
time step t assigns to each observation x the action
a = argmaXbQt{x,b). Note that the greedy policy is
memoryless.

3.1 Using Sarsa(A) with Observation
Histories

The Sarsa(A) algorithm can also be easily used to de-
velop memory-based policies by simply learning a Q-
value function over estimated-states and actions, and
by keeping eligibility traces for estimated-state and ac-
tion pairs. So for example, we could augment the im-
mediate observation with the past K observations to
form the estimated-state and derive a memory-based
policy that maps K + 1 observations to actions. The
only change to the equations in (1) would be that the
immediate observations (x's) would be replaced by the
estimated states.

4 Empirical Results

The Sarsa(A) algorithm was applied in an identical
manner to four POMDP problems taken from the re-
cent literature and described below. Here we describe
the aspects of the empirical results common to all four
problems. At each step, the agent picked a random ac-
tion with a probability equal to the exploration rate,
and a greedy action otherwise. Except where explic-
itly noted, we used an initial exploration rate of 20%
decreasing linearly with each action (step) until the
200000"1 action from where onwards the exploration
rate was 0%. Q-values were initialized to 0. The agent
starts each episode in a problem specific start state
or a randomly selected start state as specified by the
originators of the problems. Both the step-size (a) and
the A values are held constant in each experiment. We
did a coarse search over a and A for each problem but
present results only for A = 0.9 and a = 0.01 which
gave about the best performance across all problems.
In all cases, a value of A between 0.8 and 0.975 worked
the best. This is qualitatively similar to the results
obtained for MDPs, and a bit surprising given that
Sarsa(l) (or Monte-Carlo) has been recommended as
the way to deal with hidden state (Singh et al., 1994).

The data for the learning curves is generated as fol-
lows: after every 1000 steps (actions) the greedy pol-
icy is evaluated offline to generate a problem specific
performance metric. All the learning-curves below are

plotted after smoothing this data by doing a running
average over 30 data points.

For each POMDP we first present its structure by
defining the states, actions, rewards, and observations
and then we present our results.

4.1 Sutton's Grid World

Sutton's grid world problem (see Figure 1A) is from
Littman (1994) who took a navigation gridworld from
Sutton (1990) and made it a POMDP by not allowing
its exact position to be known to the agent.

States: This POMDP is a 9 by 6 grid with several
obstacles and a goal in the upper right corner (see Fig-
ure 1A). The state of the environment is determined by
the grid square the agent occupies. State transitions
are deterministic.

Actions: The agent can choose one of 4 actions: move
north, move south, move east, and move west.

Observations: The agent can observe its 8 neigh-
boring grid squares yielding 256 possible observations.
Only 30 (of the 256 possible) unique observations oc-
cur in the gridworld. Observations are deterministic.
Figure 1A shows the gridworld with observations indi-
cated by the number in the lower right corner of each
square.

Rewards: The agent receives a reward of —1 for each
action that does not transition to the goal state. A
reward of 0 is received for any action leading to the
goal state.

When the agent reaches the goal state it transitions to
a uniformly random start state.

4.1.1 Sarsa(A) Results

After every 1000 steps of experience in the world, the
greedy policy is evaluated to determine the total num-
ber of steps required to reach the goal from every possi-
ble non-goal start state (46 start states). The agent is
limited to a maximum of 1000 steps to reach the goal.
Thus a policy which cannot reach the goal from any
start state would have a total steps to goal of 46,000.

Sarsa(A) converged to the 416 total step policy shown
with arrows in Figure 1A; the learning-curve is shown
in Figure IB. The total steps to the goal for the opti-
mal policy in the underlying MDP is 404, and so in this
case a very good memoryless policy was found. This
416 step policy matches exactly with the 416 step pol-
icy Littman (1994) found using an expensive branch

326 Loch and Singh

B

50000.0

75
°> 30000.0

Sutton's Gridworld
lambda = 0.9 alpha = 0.01

10000.0

i 0.0 150000.0 300000.0

- \
480.0

460.0

\
- 440.0

420.0

400.0

100000.0 200000.0 300000.0
Number of Actions

Figure 1: Sutton's Grid World (from Littman, 1994).
A) The grid world environment. The numbers on the
lower right are the observations. The arrows show the
optimal memoryless policy found by Sarsa. B) The
total steps to goal of the greedy policy as a function
of the amount of learning steps. The inset plot shows
the same data at a different scale.

and bound method that searches directly in memory-
less policy space and is guaranteed to find the optimal
memoryless policy. Note that the number of possi-
ble memoryless policies is (4 actions, 30 observations)
430 = 1.2 x 1018 policies.

Observe that in Figure 1A the agent learns to go left
in the state just to the left of the goal. This is because
it has to go up in the state immediately below (obser-
vation 18) because of its aliasing with the state 4 steps
below the goal (both states have 3 walls to the right).

4.2 Littman, Cassandra, and Kaelbling's 89
State Office World

States: The gridworld for Littman et al.'s (1995) 89
state office problem is shown in Figure 2A. The state of
the environment is the combination of the grid square
that the agent is occupying and the direction that the
agent is facing (N, S, E, W). The are 22 possible agent
locations times 4 directions for 88 states plus the goal
state for 89 total states. State transitions are stochas-
tic.

Actions: The agent can choose one of 5 actions: stay
in place, move forward, turn right, turn left, and turn
around. Both the state transitions and the observa-
tions are noisy with the agent getting the correct ob-
servation only 70% of the time.

Observations: The agent can observe the relative
position of obstacles in 4 directions: front, back, left
and right. There are 16 possible observations plus the
goal observation.

Rewards: The agent receives a reward of +1 for any
action leading to the goal observation with all other
rewards equal to 0.

After reaching the goal observation the agent transi-
tions to a uniformly random start state.

4.2.1 Sarsa(A) Results

After every 1000 steps of experience the greedy policy
is evaluated. As in Littman et al., for each evalua-
tion 251 trials are run using the greedy policy with a
maximum step cutoff at 251 steps. Two performance
metrics are used: the median number of steps to the
goal for the 251 trials, and the percent of the 251 trials
which reach the goal state within 251 steps.

The best memoryless policy found by Sarsa(0.9) was
able to reach the goal on average 77% of the 251 tri-
als (see Figure 2B) with a median number of steps
to goal of 73 steps (see Figure 2C). The best policy

Best Memoryless Policy in POMDPs 327

B Littman's 89 state office problem
lambda = 0.9 alpha = 0.01

500000.0 1000000.0 15O0OO0.0 2000000.0
Number of Actions

Littman's 89 state office problem
lambda = 0.9, alpha = 0.01

0.0 500000.0 1000000.0 1500000.0
Number of actions

Figure 2: Littman et al.'s 89 state office world. A)
The office world environment where the goal state is
denoted with a star. The state of the environment is
the combination of the grid square that the agent is
occupying and the direction that the agent is facing (N,
S, E, W). B) The percentage of trials with the greedy-
policy that succeed in getting to the goal in less than
251 steps. C) Median number of steps to goal of the
greedy policy as a function of the number of learning
steps.

found by Sarsa(0.9) outperformed all of the memory-
based policies found by Littman et al. in their Table
3. Their best policy was able to reach the goal in only
44.6% of the 251 trials with a median steps to goal of
> 251 steps and was found using truncated value it-
eration algorithm on belief states. Littman et al. also
presented a hybrid method that finds a policy that
reached the goal in 58.6% of the trials (still below the
percentage for the best memoryless policy found by
Sarsa(0.9) with median steps to goal of 51 steps (this
is better than Sarsa(0.9)'s 73 steps).

There are 516 = 1.53 x 1011 possible memoryless poli-
cies for this problem. Therefore it is not practical to
enumerate the performance of every possible policy to
verify if the policy found by Sarsa(0.9) is indeed the
optimal memoryless policy, but its performance vis-a-
vis the state-estimation based methods of Littman et
al. was encouraging.

4.3 Parr and Russell's Grid World

States: Parr and Russell's (1995) gridworld consists
of 11 states in a 4 by 3 grid with a single obstacle
(see Figure 3A). The state of the environment is de-
termined by the grid square occupied by the agent.

Actions: The agent can choose one of 4 actions: move
north, move south, move east, and move west. State
transitions are stochastic with the agent moving in the
desired direction 80% of the time and slipping to either
side 10% of the time.

Observations: The agent can only observe if there
is a wall to its immediate left or right. There are 4
possible observations corresponding to the combina-
tions of left and right obstacles plus two observations
for the goal and penalty states yielding a total of 6
observations. Observations are deterministic.

Rewards: There is a goal state in the upper right cor-
ner with a penalty state directly below the goal state.
The agent receives a reward of -0.04 for every action
which does not lead to the goal or penalty state. The
agent receives a reward of +1 for any action leading
to the goal state and a reward of —1 for any action
leading to the penalty state.

4.3.1 Sarsa(A) Results

Every 1000 steps the greedy policy was evaluated and
the learning curve is presented in Figure 3B. The av-
erage reward per step was computed for 101 trials of
up to 101 steps per trial. There are 46 = 4096 pos-
sible memoryless policies for this problem. We veri-

328 Loch and Singh

B

0.04

-0.10
0.0

Parr and Russell's maze

Parr and Russell's 4x3 maze
lambda = 0.9 alpha = 0.01

100000.0 200000.0
Number of Actions

300000.0

A Parr and Russell's 4x3 maze: 2 observations
lambda = 0.9, alpha = 0.001

0.20

-0.05
0.0 200000.0 400000.0

Number of actions
600000.0

B Parr and Russell's 4x3 maze: 3 observations
lambda = 0.9, alpha = 0.001

0.20

0.15

0.10 -

0.05

0.00

-0.05
0.0 200000.0 400000.0

Number of actions
600000.0

Figure 3: Parr & Russell's Grid World. A) The grid-
world environment. The numbers in the lower right
are the observations. The arrows show the optimal
memoryless policy found by Sarsa. B) The average re-
ward per action of the memoryless greedy policy as a
function of the number of learning steps.

Figure 4:. Parr & Russell's Grid World. A) We add
one past observation to the immediate observation.
The performance of the greedy policy. B) We add two
past observations to the immediate observation. The
performance of the greedy policy. Note the different
scales.

Best Memoryless Policy in POMDPs 329

fied that Sarsa(0.9) found the optimal memoryless pol-
icy by evaluating the performance of all 4096 possible
policies. In this problem, the best memoryless policy
is rather poor compared to policies which use mem-
ory. The best memoryless policy yields an average re-
ward per step of 0.024 compared to the memory-based
policy found by the Witness algorithm (Littman et
al., 1995) which yields an average reward per step of
0.1108.

Parr k Russell's SPOVA-RL (Smooth Partially Ob-
servable Value Approximation Reinforcement Learn-
ing) algorithm learns a value function over belief states
and did even better yielding an average reward per
step of 0.12 with a memory-based policy1.

The poor relative performance of the optimal memory-
less policy is due to the non-optimal actions the agent
must take in the aliased states. For example observa-
tion 0 (see Figure 3A) is observed for 3 states in the
grid. The state to the left of the penalty state is ob-
served as observation 0 and causes the optimal action
in observation 0 to be move north instead of move east.
This causes the agent to continuously bump into the
upper left corner wall until the transition noise causes
a transition to the state to the east.

We investigated the performance improvement ob-
tained by Sarsa(A) when the immediate observation
is augmented with 1 and with 2 previous observations.
The performance of the policy using 1 previous obser-
vation yielded an average reward per step of 0.1124
(see Figure 4A) which is better than the policy found
by the Witness algorithm and almost as good as the
policy found by SPOVA-RL. Sarsa(A) required fewer
than 60 CPU seconds to find its policy compared to
the 42 CPU minutes for SPOVA-RL and the 12 CPU
hours required by the Witness algorithm (Parr & Rus-
sell, 1995). The 3-observation performance is shown
in Figure 4B and is the same as the 2-observation per-
formance.

We were able to verify that the policy found by
Sarsa(A) using 1 previous observation was indeed the
optimal policy in that space. Only ten 2-observation
sequences are encountered in the gridworld leading to
410 = 1,048,576 possible 2 observation policies. We
evaluated the performance of all possible 2-observation
policies and again verified that the policy found by
Sarsa(A) was the same as the best 2-observation pol-

1Parr and Russell state that their implementation of the
Witness algorithm did not converge on this problem, which
probably accounts for the better performance of SPOVA-
RL relative to the exact Witness algorithm.

icy.

4.4 Chrisman's Shuttle Problem

States: Chrisman's (1992) shuttle problem involves
an agent operating in an environment with 8 states,
3 actions, and 5 observations. The scenario consists
of two space stations with loading docks. The task is
to transport supplies between the two docks. There is
noise in both the state transitions and observations.

Actions: The agent can execute one of 3 actions: go
forward, backup, and turn around.

Observations: The 5 observations are: can see the
least recently visited (LRV) station; can see the most
recently visited (MRV) station; can see that we are
docked in most recently visited (MRV) station; can
see that we are docked in least recently visited (LRV)
station; and can see nothing. There is sensor noise
causing the agent to make faulty observations.

Rewards: The agent receives a reward of +10 when it
docks with the least recently visited station. The agent
must back into the dock to dock with the station. If
the agent collides with the station by moving forward
it receives a reward of —3. All other action rewards
are 0.

4.4.1 Sarsa(A) Results

Every 1000 steps (actions) the performance of the
greedy policy is evaluated. The performance metric
is the average reward per step for 101 trials of up
to 101 steps (actions) each. There are (3 actions, 5
observations) 35 = 243 possible memoryless policies.
Sarsa(0.9) finds a memoryless policy which yields an
average reward per step of 1.02 (see Figure 5A for
the learning curve). We verified that the policy found
by Sarsa(0.9) was indeed the optimal memoryless pol-
icy by evaluating the performance of the 243 possible
memoryless policies.

The two best memory-based policies for Chrisman's
shuttle problem found by Littman et al. (1995) were
found through truncated exact value iteration and
their Qmdp method. Truncated exact value iteration
found a policy with an average reward per step of 1.805
while Qmdp yielded 1.809. The performance of the
optimal memoryless policy is rather poor compared to
the performance of policies using memory. This is due
to the conservative nature of the optimal memoryless
policy which avoids any forward actions so as to avoid
receiving the —3 penalty for hitting the station while
moving forward.

330 Loch and Singh

Chrisman's Shuttle Problem: Memoryless
lambda = 0.9, alpha = O.Ot

150000.0
Number ol Actons

We also investigated the performance improvement ob-
tained by augmenting the current observation with 1
and 2 previous observations. By including the previ-
ous observation the performance improved by 37% to
an average reward per step of 1.37 (see Figure 5B). By
including the 2 previous observations the performance
improved by 80% to an average reward per step of
1.804 (see Figure 5C). The performance of the best
policy found by Sarsa with 2 previous observations is
as good as the truncated exact value iteration method
and the Qmdp method, again at a much lower compu-
tational cost.

4.5 Discussion

B Chrisman's Shuttle Problem: 2 observations
lambda = 0.9, alpha = 0.01

0.0 200000.0 400000.0
Number of Actions

Chrisman's Shuttle Problem: 3 observations
lambda = 0.9, alpha = 0.01

200000.0 400000.0
Number of Actions

Figure 5: Chrisman's shuttle problem. A) The aver-
age reward per action of the memoryless greedy policy
as a function of the number of learning steps. B) We
add one past observation to the immediate observa-
tion. The performance of the greedy policy. C) We
add two past observations to the immediate observa-
tion. The performance of the greedy policy.

In all the empirical results presented above either
we were able to confirm by enumeration that Sarsa
found the best policy representable as a mapping from
estimated-states (immediate, or immediate and past 1
or past 2 observations) to actions, or in cases where it
was not possible to enumerate we observed that Sarsa
did as well as the algorithms presented by the, origina-
tors of the specific POMDPs. Speculating from these
empirical results, we conjecture that Sarsa(A) may be
hard to beat in problems where there exists a good
policy that maps the observation space to actions.

4.5.1 Why do Eligibility Traces Work?

Consider the set of states that map onto the same ob-
servation x. The neighbours of this set of states for
some action a may map to several different observa-
tions. This can lead to conflicting pulls for the Q-
value of x, a depending on which state is providing the
experience; some may suggest a is good, some may
suggest that a is bad. However these different pulls
could get resolved if we considered what happens af-
ter n steps. Indeed if we wait until we get to the goal
(Monte-Carlo or Sarsa(l)) there would be no confu-
sion due to the hidden state at all. Eligibility traces
allow an observation-action pair to access what hap-
pens many time steps later, bridging the gap to un-
ambiguous information about the quality of an action.
This reasoning indicates that there may be a minimum
problem-specific A that would be needed to bridge the
smallest such "gap" in each problem. Our observa-
tions during the current work support this; however a
careful analysis remains as future work.

5 Conclusion

Partial observability is inevitable in many sequential
decision problems of interest to both AI and engineer-

Best Memoryless Policy in POMDPs 331

ing. Given the worst-case computational intractabil-
ity of POMDPs, it is useful to identify sub-classes of
POMDPs and algorithms that work well in them. We
believe that eligibility trace based RL methods such as
Sarsa(A) can be be useful in POMDPs that have good
memoryless or good low-order-memory-based policies.
We demonstrated this empirically on four POMDP
problems from the recent literature. A more power-
ful result that remains future work would be to prove
this theoretically.

Acknowledgements

Satinder Singh was supported by NSF grant IIS-
9711753. We thank Michael Littman and the anony-
mous reviewers for many valuable comments.

References

Barto, A. G., Sutton, R. S., k Anderson, C. W. (1983).
Neuronlike elements that can solve difficult learn-
ing control problems. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 13, 835-846.

Chrisman, L. (1992). Reinforcement learning with per-
ceptual aliasing: The perceptual distinctions ap-
proach. In AAAI-92.

Jaakkola, T., Singh, S., k Jordan, M. I. (1995). Rein-
forcement learning algorithm for partially observ-
able Markov decision problems. In Advances in
Neural Information Processing Systems 7, pages
345-352. Morgan Kaufmann.

Lin, L. J. k Mitchell, T. M. (1992). Reinforcement
learning with hidden states. In In Proceedings
of the Second International Conference on Sim-
ulation of Adaptive Behavior: From Animals to
Animats.

Littman, M., Cassandra, A., & Kaelbling., L. (1995).
Learning policies for partially observable environ-
ments: Scaling up. In Proceedings of the Twelfth
International Conference on Machine Learning,
pages 362-370, San Francisco, CA. Morgan Kauf-
mann.

Littman, M. L. (1994). Memoryless policies: theo-
retical limitations and practical results. In From
Animals to Animats 3: Proceedings of the Third

. International Conference on Simulation of Adap-
tive Behavior.

McCallum, R. A. (1993). Overcoming incomplete per-
ception with utile distinction memory. In Utgoff,

P. (Ed.), Machine Learning: Proceedings of the
Tenth International Conference, pages 190-196.
Morgan Kaufmann.

Parr, R. k Russell, S. (1995). Approximating opti-
mal policies for partially observable stochastic do-
mains. In Proceedings of the International Joint
Conference on Artificial Intelligence.

Rummery, G. A. k Niranjan, M. (1994). On-line Q-
learning using connectionist systems. Technical
Report CUED/F-INFENG/TR 166, Cambridge
University Engineering Dept.

Singh, S., Jaakkola, T., k Jordan, M. I. (1994). Learn-
ing without state-estimation in partially observ-
able Markovian decision processes. In Cohen,
W. W. k Hirsh, H. (Eds.), Machine Learning:
Proceedings of the Eleventh International Confer-
ence, pages 284-292. Morgan Kaufmann.

Sondik, E. J. (1978). The optimal control of partially
observable Markov processes over the infinite hori-
zon: discounted case. Operations Research, 26,
282-304.

Sutton, R. S. (1988). Learning to predict by the meth-
ods of temporal differences. Machine Learning, 3,
9-44.

Sutton, R. S. (1990). Integrating architectures for
learning, planning, and reacting based on ap-
proximating dynamic programming. In Proc. of
the Seventh International Conference on Machine
Learning, pages 216-224, San Mateo, CA. Morgan
Kaufmann.

Sutton, R. S. k Barto, A. G. (1998). Reinforcement
Learning: An Introduction. Cambridge, MA: MIT
Press.

Tesauro, G. J. (1995). Temporal difference learning
and td-gammon. Communications of the ACM,
55(3), 58-68.

Watkins, C. J. C. H. (1989). Learning from Delayed
Rewards. PhD thesis, Cambridge Univ., Cam-
bridge, England.

Whitehead, S. D. k Ballard, D. H. (1990). Active
perception and reinforcement learning. In Proc. of
the Seventh International Conference on Machine
Learning, Austin, TX. M.

332

Learning To Locate An Object in 3D Space From A Sequence Of Camera
Images

Dimitris Margaritis
Dept. of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
dmarg+@cs.emu.edu

Sebastian Thrun
Dept. of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
thrun+@cs.emu.edu

Abstract

This paper addresses the problem of determin-
ing an object's 3D location from a sequence of
camera images recorded by a mobile robot. The
approach presented here allows people to "train"
robots to recognize specific objects, by present-
ing it examples of the object to be recognized. A
decision tree method is used to learn significant
features of the target object from individual cam-
era images. Individual estimates are integrated
over time using Bayes rule, into a probabilistic
3D model of the robot's environment. Experi-
mental results illustrate that the method enables
a mobile robot to robustly estimate the 3D loca-
tion of objects from multiple camera images.

1 INTRODUCTION

In recent years, there has been significant progress in the
field of mobile robotics. Applications such as robots that
guide blind or mentally handicapped people, robots that
clean large office buildings and department stores, robots
that assist people in recreational activities, etc., are slowly
getting in reach. Many of these robots must integrate
mobility with manipulation. They must be able to move
around, and they must also be capable of manipulating their
environment. For such robots, their practical success will
partially depend on their ability to identify and localize ob-
jects.

This paper addresses the problem building robots that can
be trained to recognize and locate user-specified objects.
More specifically, it proposes an algorithm that enables
people to train robots by simply showing a few poses of the
object. Once trained, the robot can recognize these objects
and determine their location in 3D space. In contrast to

existing approaches to mobile manipulation, which usually
assumes that objects are located in floor or table-height,
our approach does not make restrictive assumptions as to
where the object is located. This poses new challenges on
the ability to localize objects, as a single camera image is
insufficient to determine the location of an object in 3D
space.

The approach proposed here uses probabilistic representa-
tions to estimate the identity and location of the target ob-
ject from multiple views. It maps camera images into 2D
probabilistic maps, which describe, for each pixel in the
camera image, the likelihood that this pixel is part of the
target object. This mapping is established by a decision tree
applied to local image features, which is constructed during
the training phase from labeled images. The 2D probabilis-
tic map is then projected into the 3D work space, based on
straightforward geometric considerations. Since a single
camera image is insufficient to determine the location of
an object in 3D, our approach integrates information from
multiple images, taken from multiple viewpoints. It em-
ploys Bayes rule to generate a consistent probabilistic 3D
model of the workspace. Our approach also takes into ac-
count the uncertainty introduced by robot motion, by using
a probabilistic model of robot motion. As the robot moves
in the environment taking images, it gradually improves the
estimation of the identity and location of an object, until it
finally knows what and where the object is. Experimental
results using a RWI B21 robot equipped with a color cam-
era show that multi-part objects can be located robustly and
with high accuracy.

The remainder of this paper is organized as follows. In sec-
tion 2, we briefly describe decision trees along with the way
our approach uses them for characterizing images. In sec-
tion 3, we show how image information is integrated into
a 3D model, and provide a method for accommodating the
uncertainty that is introduced by robot motion. In section 4,
we present experimental results, obtained with a RWI B21

Learning To Locate An Object in 3D From Image Sequences 333

t^Hue 0.01-0.02 [bucket 1]?}

(iHue 0.52-0.53 [bucket 133] r>

<^Hue 0.37-0.38 [bucket 94) f) (Hw 0.14-0.15 [bucket 37) r>

<2|ue 0.55-0.56 [bucket 142]>> (JUie 0.31-0.32 [bucket soff) <fiue 0.52-0.53 [bucket 133]jT) ^Hue 0.38-0.39 [bucket 96] ?}

<0.4\>*0.4 /<0.1 \>=0.1 /<0.7\>=0-7

Figure 1: The top few nodes of an example decision tree. A
leaf represents the probability conditioned on the values of
the attributes. Internal nodes test on the fraction of positive
pixels of a tile that fall in the corresponding hue range.

robot, followed by a survey of related research (section 5).
Finally, in section 6, we comment on the assumptions and
limitations of the approach and suggest directions for fu-
ture research.

2 DECISION TREE LEARNING

A decision tree is a succinct and explicit way of repre-
senting a multidimensional discrete-valued function / :
1Zn x Xm ->■ y, where X and y are finite sets of discrete
elements and 11 is the set of real numbers. The (n + m)
inputs to this function frequently correspond to discrete
and/or continuous-valued attributes of an object and the
output represents an object's property that we want to pre-
dict. Each node of the tree is associated with a partition
of the input space. An internal node further partitions its
space into two subspaces based on the value of a single in-
put variable, associating each of the resultant subspaces to
each of the two children. The set of decision trees is com-
plete in the space of discrete-valued functions i.e. any such
function can be represented by at least one decision tree.
An example of a decision tree, obtained in the context of
image analysis in a fashion similar to the one used in this
paper (see below), is illustrated in Fig. 1.

Our approach uses decision trees to approximate condi-
tional probability density functions. Decision trees are usu-
ally used to answer YES/NO queries regarding the output
value of / given an input tuple of values. If, for example, /
is a boolean-output function, querying is typically done by
comparing the number of positive and the number of nega-
tive training examples that were assigned during training to
the leaf node that is associated with the partition that the in-
put tuple lies in. The algorithm would then return the value
(YES/NO) that is in majority in that leaf. In our use of a de-
cision tree we differ in that we instead output the fraction

of positive or negative examples found in the leaf. As such,
we use the decision tree to represent an approximation of
the probability density function on the output space condi-
tioned on the values of attributes in the input space of /.
If appropriately pruned (during a post-pruning phase that
is intended to increase compactness and, more importantly,
generalization over future data), these probabilities are usu-
ally not zero or one because of training set noise in either
the values of the inputs or the output or non-determinism
due to use of a set of input variables that is insufficient to
deterministically model /.

2.1 A PDF FOR CHARACTERIZING AN IMAGE

Our approach uses a decision tree to map (filter) camera im-
ages into 2D probabilistic maps, which describe the prob-
ability of the presence of a target object at the various lo-
cations in the image. More specifically, the inputs to the
tree are image features in a local region (called: tile) in
the image, and the output is a probability value that mea-
sures the likelihood of the presence of a target object in the
respective tile. In principle, our approach can be applied
to arbitrary image features (e.g., pixels, edges, brightness,
color, texture, etc.). In our implementation, local color his-
tograms are used as input to the decision tree.

The tree is learned using labeled training examples. More
specifically, construction of the training, test and pruning
sets is done using the following procedure:

1. An input picture is obtained.
2. A rectangle R is drawn around the object by the user.

This might include parts of the background.
3. The image is divided in a matrix of non-overlapping

rectangular tiles, completely covering its surface. The
size of each tile is small relative to the projection of
the object on the image. 8 x 8 is used in this paper.

4. Each tile is used to construct a single positive or nega-
tive example. The features that occur in the tile, which
can be continuous or discrete, are extracted and used
as input values for the example associated with that
tile.

5. Depending on whether each tile is fully contained
within R or not, the example is assigned to be posi-
tive or negative, respectively.

This set of examples is equally divided into training, test
and pruning sets, and these are used in growing a decision
tree for that combination of object and environment that it
was seen in. The resulting tree, when applied to new im-
ages within that environment, provides probability densi-
ties for the presence of a target object.

Figure 2 illustrates our method. Shown there, in the top

334 Margaritis and Thrun

Figure 2: Detection of a bottle from previous examples.
The top row contains images where the outlined part con-
tains the tiles used as positive examples. The rest of the
image's tiles are negative examples. Probabilities above 0.8
are marked in the previously unseen picture in the bottom
row. Not shown is another set of 18 "background" pictures
consisting of negative examples only.

row, is a series of three training images. The target object
is labeled by hand. The bottom row shows a test image,
along with the probability field generated by the tree. As
can be seen there, the algorithm assigned high likelihood to
the correct location, but also misclassified a small number
of regions in the image background. From this single cam-
era image, it is impossible to determine the location of the
target object in 3D coordinates. The remainder of this pa-
per describes our approach to integrating these probabilistic
estimates in 3D space.

3 INTEGRATING MULTIPLE CAMERA
IMAGES IN 3D

Our approach integrates the probabilistic information, ex-
tracted from individual images, into a spatial 3D model of
the world. Information about the location of the object is
represented as a 3D occupancy grid. Each grid cell is as-
sociated with an approximation of the probability that part
of the object occupies that particular cell. Each such prob-
ability is initialized with a number that corresponds to a
prior belief that the object occupies a cell given no infor-
mation about the world. This number can be learned from
data, typically though counting according to the frequen-
tists' approach to probability. The exact value of the prior
is not significant in the long term, since the value will con-
verge towards the actual probability after a sufficient num-
ber of observations. However, if there is evidence that the
object in question occurs more frequently in certain areas

(for example, a shoe may be expected to lie on the floor
most of the time), this information can be used to appro-
priately initialize prior probabilities and assign higher val-
ues to these locations. During detection, each information-
gathering step is followed by an updating of the probability
of each cell according to Bayes law, as described below.
Robot motion also affects the grid due to uncertainty of the
robot's translational and rotational velocities.

3.1 INFORMATION INTEGRATION

The key idea for mapping 2D image information into a 3D
spatial representation is to map image tiles into pyramids
in space. Each image obtained from the environment pro-
vides us with information about the location of parts of the
object. Since we assume a single camera input, we have no
information about the depth of features contained in one of
the tiles of the image. We therefore make no assumption on
the distance of the part from the eyepoint. However, we do
obtain information about the Euler angles (azimuth 6 and
altitude <f>) of the feature with respect to the robot's current
location. In particular we know that it is contained within
the pyramid emanating from the eyepoint whose four con-
verging sides intersect the four corners of the tile on the im-
age plane that is perpendicular to the direction the camera
is facing. Grid cells intersecting this pyramid are therefore
updated using Bayes law.

An example of the updating is shown in Fig. 3. Here two
different pyramids are shown (projected into the x-y plane),
which have been generated from camera images taken at
different locations. Bayes rule is applied to integrate these
pyramids, in order to generate a single, consistent belief.

The integration works as follows. The probability that a
part of the object occupying a cell at grid location (x, y, z)
at time t is denoted by Pr[£(x, y, z,t)]. Coordinates x, y
and z are with respect to a fixed, world-centered coordi-
nate system (they are not local robot-centered coordinates).
£(x, y, z, t) is a boolean random variable denoting the exis-
tence of a part of the object at a location somewhere inside
the corresponding grid cell. In the following we will use £
instead of £(x, y, z,t) for the sake of brevity. If i(t) denotes
the image obtained at time / and D(t — 1) the set of pre-
vious images/motion commands in all previous steps, the
probability value p(£) at grid cell location £ is computed as
follows:

p(0 = Pi[£\i(t),D{t-l)]

= Pr[i{t)\t,D(t-l)]
Pr[»(0|ö(/-1)]'

Learning To Locate An Object in 3D From Image Sequences 335

Figure 3: On the top, the robot used in our experiments
is shown. It is equipped with a parallel two-fingered grip-
per for object manipulation. On the bottom, an illustration
is presented of how information from images taken from
two different viewpoint is integrated in the occupancy grid.
Shown to the left are two single projections applied to an
"empty" grid. The picture on the right shows how they are
combined together. The images depict the average values
of grid cell probabilities when viewed from above (i.e. av-
eraging probability values along the z-axis).

Pr[£ | D(t — 1)] is the prior probability accumulated in the
cell from previous iterations of the procedure, which takes
into account all previous data. Pr[i(i) | £, D(t — 1)] =
Pr[i(t) | £] by making a Markov conditional independence
assumption that implies that, given the fact of the existence
or not of part of the object in the cell, the image obtained
does not depend on previous images. Under this assump-
tion, by using

PrK | iß] PtfWl Pr[i(«) | £]
PrK]

we obtain

Pit)
PrK I i(t)] Pr[i(*)] PrK I D(t - 1)]

and

P(0

PrK] Pr[t(i) | D(t - 1)]

(1 - Pr[^ | i(t)]) Pr[i(t)] 1 - PrK 1 D(t - 1)]
1-Prfc] Pr[i(t) | D(t - 1)]

where £ is the complement of event £. Pr[£ I i(t)] is the
probability estimate returned by the decision tree for the

tile corresponding to the cell at (x, y, z) by only taking the
current image into account. In estimation problems of this
type, it is common practice to compute the odds-ratio, for
which Pr[«(<)] and Pi[i(t) | D(t - 1)] cancel out:

odds-ratio(£,) =
p(0

PrK *(*)] PrK I D(t - 1)]

P(0 =

1 - PrK | »(*)]
1-Pr[fl

PrK]
odds-ratio^)

1 + odds-ratio(^)

1 - PrK | D(t - 1)]

Similar formulas for belief integration can be found in
[Pea88, Thr98b].

3.2 ROBOT MOTION

Each robot motion introduces uncertainty into the robot's
estimate of the object's location because of imperfect actu-
ators and measuring devices. We model the translational as
well as rotational magnitude of the velocity of the robot as a
Gaussian random variable with mean equal to the nominal
velocity given to the robotic motion controller—we make
the assumption that there are no systematic errors. The
standard deviations used are pessimistic estimates of the
deviation around the nominal corresponding velocity mag-
nitude. The accurate determination of the standard devia-
tions does not significantly influence our location estimates
given frequent enough observations. Under this assump-
tion, their actual value is not critical and can be overesti-
mated.

If the magnitude of the velocity is normally distributed with
mean v0 and standard deviation <r„, v ~ N(vo,(r%) (as-
sume one-dimensional for the purpose of this example), the
location of a object with that velocity after time t is a ran-
dom variable x ~ N(vot, <r%t2), also normally distributed,
with mean v0t and standard deviation avt. This suggests
that uncertainty of an objects location increases with time
as time goes by, as shown in Fig. 4.

4 EXPERIMENTAL RESULTS

We conducted our experiments on a B21 mobile robot
equipped with a single Sony XC-999 color camera with a
6mm focal length lens, mounted on a pan-tilt unit. Images
of size 240 x 256 are acquired through a Matrox Meteor

336 Margaritis and Thrun

Evolution of the location pdf with time

Figure 4: Probabilistic model of robot motion. Top im-
age: Belief of the location of the object deteriorates in time
under uncertainty of the magnitude of the velocity. Here
v ~ N(10, l2). Bottom image: This graph illustrates the
outcome of specific motion commands projected along the
z axis (a translation and a rotation).

framegrabber connected to the camera and are used to train
a decision tree in the manner described in section 2.1.

We chose a simple histogram representation of down-
sampled versions of the training images as the input fea-
tures to our decision tree algorithm. In particular, we use
color histograms for each tile, at resolution of 256 color
bins. Therefore each tile represents an example of 256 in-
put features, namely the pixel percentages at each color
bin, and one binary-valued output, corresponding to the
event that the tile is part of the object being trained on.
Even though this choice of input features does not take
into account all information present in the picture, this is
simply an artifact of the current implementation and by
no means imposes any restriction on the choice of input
features of the approach in general. More complex fea-
tures may be employed in future implementations. How-
ever, as we demonstrate below, this simple representation
performs adequately well in certain frequently occurring
situations where the object is sufficiently distinct from the
background, containing enough information for recovering
the approximate location of simple objects in 3D. The "dis-
tinctiveness" is determined by the resolution of our color
histogram, coupled with the amount of hue variation that
changes in light intensity on the object result in.

Figure 5: Probability map that is the output of the decision
tree trained to recognize the red chair. The brightest tiles in
the probability map (second column) correspond to prob-
ability greater than 0.9. Projection of the map in 3D are
shown in the last three columns, as averages along the x, y
and z (rightmost column) axis respectively.

An example application of a decision tree trained on three
examples with an object (in this case, a bottle) and 18
background images (containing negative examples only) is
shown in Fig. 2. The top few nodes of the tree are shown in
Fig. 1. In a similar fashion we constructed a decision tree
to recognize a larger simple object, a red chair, by using
the same all-negative example images and three additional
images containing the chair in different poses. We then
manually maneuvered the mobile robot around the chair
taking 7 new pictures from different angles. These pictures
are shown in Fig. 5. The second column in that figure de-
picts the probability map that is output from the decision
tree for each image. At certain locations we acquired im-
ages and projected the probability map in 3D, with each
probability map element corresponding to a pyramid, as de-
scribed in 3.1. Every cell covered by a pyramid is affected

Learning To Locate An Object in 3D From Image Sequences 337

by the corresponding probability in the probability map.
The results of projection when viewed along the x, y and
z axes are shown in the three rightmost columns in Fig. 5.
Each pixel in these projections has intensity proportional to
the average probability along the axis of projection passing
from that pixel. The z-axis projections make the locations
around the chair that the pictures were taken particularly
easy to see.

In reality, the robot does not keep a 3D grid for each im-
age but rather incorporates information incrementally in the
single grid it maintains, which is justified under the Markov
assumption. This is done by applying Bayes law for each
cell individually. There is no normalization done over the
whole grid, which corresponds to the semantics we assign
to the probability stored at each cell: it represent the prob-
ability that a part of the object occupies that cell. As such,
we make no assumptions about the size of the object with
respect to the cell size.

Between images, the robot is maneuvered manually to the
spot where the next image will be taken. These motions
increase our uncertainty in the manner described in sec-
tion 3.2. The robot used in the experiments is a semi-
holonomic one, its motion consisting of rotations and for-
ward or backward motions in the direction it is facing. As
such we model rotational and translational uncertainty in
the magnitude of the velocity.

The updating of the grid using the above procedure is
shown in Fig. 6 for one run. This sequence of beliefs cor-
responds to a situation where a robot faces a chair. The
grid size used is 100 x 100 x 100 and each unit along any
direction corresponds to 4cm in the real world. All beliefs
shown in Fig. 6 are projected horizontally.

As can be seen in Fig. 6, the initial location of the target
object(s) is unknown. After taking a first image, the robot's
belief is a conjunction of pyramids, corresponding to the
output of the decision tree. As the robot moves, it loses
information. As it takes the second snapshot from a dif-
ferent perspective, the belief is refined. After taking seven
images, the location and the shape of the target object are
reconstructed with high accuracy. As these results demon-
strate, our approach can accurately determine the location
of the target object. It is also robust to errors in the robot's
odometry. This robustness is a result of incorporating our
probabilistic model of robot motion.

5 RELATED WORK

Decision trees [Qui86, Qui93, Mit97] are one of the most
popular inductive machine learning method to date. The
early algorithms were only applicable to problems with

discrete input and output spaces. Decision tree learning
algorithms in AI for real-valued input spaces were pro-
posed by [BFOS84], as a reinvention of earlier work. Tree-
based regression methods for real-valued input and output
spaces can also be found in [Fri91, Moo90]. The work pre-
sented in this paper provides an example where a decision
tree is used to learn a conditional probability density func-
tion. Like the approaches presented in [FI93, MKS94], it
partitions a real-valued high-dimensional input space into
hypercubes. The output nodes, however, represent con-
ditional densities, which are estimated using a frequen-
tist approach [CB90]. This is related to results reported
in [TLS89, Mac92, Mit97], which show that under appro-
priate assumptions, artificial neural networks approximate
conditional probability density functions.

The mathematical approach for integrating information is
adopted from the statistical literature [CB90, Pea88]. The
approach presented in this paper also bears close resem-
blance to occupancy grids [Mor88, Elf89]. Occupancy grid
approaches are popular techniques for learning models of
mobile robot environments from sensor data. Just like the
approach proposed here, they represent the environment us-
ing fine-grained, evenly spaced grids. Each grid point is an-
notated by a probability, which describes the evidence that
a location contains an object/obstacle. The vast majority
of existing approaches differs from the one proposed here
in three aspects. First, they model occupancy, not the lo-
cation of a specific target object. Second they are usually
constructed from range measurements (e.g., sonar, laser),
not from camera images. Third, they are usually two-
dimensional. There are, however, notable exceptions. The
approaches described in [MM94, TBB+98] construct oc-
cupancy grids from sequences of camera images. Moravec
and Martin's approach [MM94] has probably been the first
to construct 3D grids, instead of the commonly used 2D
representations. Both approaches, however, used stereo
vision to estimate the location of obstacles. Stereo vi-
sion generates distance estimates, which greatly facilitates
the construction of the maps. The approach reported here
estimates distance indirectly, through integrating multiple
camera images recorded at different locations. Unfortu-
nately, the approach in [MM94] is incapable of dealing
with error in the robot's odometry.

Object-centered 3D object reconstruction has also been in-
vestigated in the context of computer vision. Two ap-
proaches have emerged. One models objects as 3D sur-
faces, typically represented as a polygonal meshes. For ex-
ample, [FL95] uses stereo and intensity matching to con-
struct and fit the mesh. The second approach uses a grid
representation essentially similar to the one used in this pa-
per (e.g. [Col96]), and employs a technique sometimes re-

338 Margaritis and Thrun

Figure 6: Cumulative effects on motion and probability map projection on grid as viewed along the x-axis (that is running
perpendicular from the door facing the interior of the room in the pictures in Fig. 5). The two distinct parts of the chair
(back and seat) are discernible.

Learning To Locate An Object in 3D From Image Sequences 339

ferred to as "3D voting" to update cell "occupancies." This
differs from our approach in two ways: first, cells are up-
dated by counting votes in a straightforward if ad hoc man-
ner which employs techniques such as voting for cells in a
radius of the intersecting with the line through the eyepoint
and the line segment. This is necessitated partly from the
inability to model inaccuracies in the viewpoint location,
although in many such applications—for example, military
aerial photography—the camera location is estimated rel-
atively accurately. Second, these techniques do not learn
a probabilistic model of the set of features that are em-
ployed from examples. As such, all features are equally
weighted, necessitating the use of a threshold—in order to
produce a recognizable picture—the selection of which can
be difficult (although see [Col96] for a statistical approach
to threshold estimation).

Our approach is similar to Markov localization [BFHS96,
NPB95, SK95, Thr98a], a method for probabilistically es-
timating the pose of a mobile robot in a (known) environ-
ment. Markov localization relies on the same statistical
principles for integrating multiple sensor readings into a
single belief. In fact, the approach in [BFHS96] uses the
same basic representations as our approach: evenly spaced
grids. Markov localization, however, rests on the assump-
tion that there is exactly one object (i.e., the robot) whose
location is to be estimated. Our approach can handle situ-
ations that contain a variable (unknown) number of target
objects.

Finally, the problem of finding and manipulating objects
has received considerable attention within the AI commu-
nity (see [Hor94] and various papers in [Sim95, KBM98]).
For example, Buhmann et al. [BBC+95] described an ap-
proach where a robot could be trained to recognize specific
objects. Most existing approaches in the mobile robot com-
munity, however, make the assumption that the object is lo-
cated in floor-height, in which case camera coordinates can
directly be converted to real-world coordinates. Our ap-
proach is specifically designed to find objects at arbitrary
locations in space. This is important in many real-world
applications, as objects may frequently be found in tables,
chairs, etc.

6 DISCUSSION AND FUTURE
RESEARCH

This paper presented a novel approach to estimating the
3D location of an object with a mobile robot. Individ-
ual camera images are interpreted using a decision tree
method, which maps image regions (tiles) into probabilis-
tic estimates for the presence of target objects. Based on
a straightforward geometric consideration, these probabil-

ities are mapped into 3D pyramids in global world co-
ordinates. Multiple pyramids, obtained from camera im-
ages recorded from different viewpoints, are integrated us-
ing Bayes rule into a single probabilistic model of the ob-
ject location. Noise in robot motion is accounted for by a
probabilistic model of robot motion. Experimental results
demonstrate that the method can robustly localize objects
in 3D space.

A key advantage of the current approach is its generality.
No assumption is made concerning the typical location of
objects (e.g., they are not assumed to lie on the floor). The
approach can also be trained easily to recognize new, user-
specified objects. While our current implementation uses
color as the primary cue for object recognition, the method
can equally be applied to a much richer range of image
features, making it fit for a large class of target objects (i.e.,
objects that can be recognized from local image features).

Our approach rests on several limiting assumptions. First
of all, it assumes that object does not move. To accommo-
date moving objects, our approach would have to be ex-
tended by a probabilistic model of object motion. Such a
model might characterize the typical motion speed of the
target object. It is unclear, however, if such an approach
would be able to gather sufficient information to estimate
the location of a moving object with the necessary accu-
racy.

Our approach also assumes that the training images ac-
curately represent the situation during testing. In our ex-
periments, we usually enriched the training set by a small
number of pictures recorded at random locations in our
lab. These pictures were used as negative training exam-
ples when growing the tree. We found that these addi-
tional images increased the robustness of the image analy-
sis, thereby improving the overall estimation results. How-
ever, the method might fail if the robot encounters an object
which similar to the target object, but which has not been
part of its training set.

The spatial resolution in the experiments described in this
paper is low, due the enormous complexity involved in up-
dating 3D grids. By choosing a 4cm resolution, the compu-
tational overhead was manageable. Denser and larger grids
are desirable, but unfortunately the computational cost of
of updating the grid is cubic in the number of grid cells.
An interesting extension of the current approach would be
to use variable-resolution representations, such as oct-trees
[Sam89b, Sam89a, Moo90], for representing object loca-
tion. Such representations could balance the computational
and memory resources, by modeling regions coarsely that
are unlikely to contain a target object. If the density of tar-
get objects is low (which is usually the case), such an ex-

340 Margaritis and Thrun

tension could improve the computational efficiency of the
approach substantially.

Another promising extension of the current approach
would be to devise methods that actively control the robot
so as to maximize information gain. In the experiments
presented here, a human manually positioned the robot. In
our previous work [Thr98b], however, we already devel-
oped successful methods for active information gathering,
which were applied in the context of learning 2D occu-
pancy grid maps. In the context of object localization, such
methods could lead to a behavior where a robot investigates
the object from multiple viewpoints, in order to estimate its
location accurately. The development of such methods is
subject to future research.

References
[BBC+95] J. Buhmann, W. Burgard, A. B. Cremers, D. Fox,

T. Hofmann, F. Schneider, J. Strikos, and S. Thrun.
The mobile robot Rhino. AI Magazine, 16(1), 1995.

[BFHS96] W. Burgard, D. Fox, D. Hennig, and T. Schmidt.
Estimating the absolute position of a mobile robot
using position probability grids. In Proceedings of
the Thirteenth National Conference on Artificial In-
telligence, Menlo Park, August 1996. AAAI. AAAI
Press/MIT Press.

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees. Bel-
mont: Wadsworth, 1984.

[CB90] G.C. Casella and R.L. Berger. Statistical Inference.
Wadsworth & Brooks, Pacific Grove, CA, 1990.

[Col96] R. T. Collins. A space-sweep approach to true multi-
image matching. IEEE Computer Vision and Pattern
Recognition, pages 358-363, 1996.

[Elf89] A. Elfes. Occupancy Grids: A Probabilistic Frame-
work for Robot Perception and Navigation. PhD
thesis, Department of Electrical and Computer En-
gineering, Carnegie Mellon University, 1989.

[FI93] U.M. Fayyad and K.B. Irani. Multi-interval dis-
cretization of continuous-valued attributes for clas-
sification learning. In Proceedings of IJCAI-93,
Chamberry, France, July 1993. IJCAI, Inc.

[FL95] P. Fua and Y. Leclerc. Object-centered surface re-
construction: Combining multi-image stereo and
shading. IJCV, 16(l):35-56, 1995.

[Fri91] J. H. Friedman. Multivariate adaptive regression
splines. Annals of Statistics, 19(1): 1—141. March
1991.

[Hor94] I. Horswill. Specialization of perceptual processes.
Technical Report AI TR-1511, MIT, AI Lab, Cam-
bridge, MA, September 1994.

[KBM98] D. Kortenkamp, R.P. Bonassi. and R. Murphy, edi-
tors. AI-based Mobile Robots: Case studies of suc-
cessful robot systems, Cambridge, MA, 1998. MIT
Press, to appear.

[Mac92] D. J. C. MacKay. Bayesian Methods for Adaptive
Models. PhD thesis, California Institute of Technol-
ogy, Pasadena, California, 1992.

Machine Learning. McGraw-Hill, [Mit97] T.M. Mitchell.
1997.

[MKS94] S.K. Murthy, S. Kasif, and S. Salzberg. A system
for induction of oblique decision trees. Journal of
Artificial Intelligence Research,2A-33, 1994.

[MM94] H.P. Moravec and M.C. Martin. Robot navigation
by 3D spatial evidence grids. Mobile Robot Labora-
tory, Robotics Institute, Carnegie Mellon University,
1994.

[Moo90] A.W.Moore. Efficient Memory-based Learning for
Robot Control. PhD thesis, Trinity Hall, University
of Cambridge, England, 1990.

[Mor88] H. P. Moravec. Sensor fusion in certainty grids for
mobile robots. AI Magazine, pages 61-74, Summer
1988.

[NPB95] I. Nourbakhsh, R. Powers, and S. Birchfield.
DERVISH an office-navigating robot. AI Magazine,
16(2):53-60, Summer 1995.

[Pea88] J. Pearl. Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. Morgan
Kaufmann Publishers, San Matco, CA, 1988.

[Qui86] J. R. Quinlan. Induction of decision trees. Machine
Learning. 1:81-106, 1986.

[Qui93] J. R. Quinlan. C4.5: Programs for Machine learn-
ing. Morgan Kaufmann. San Matco, CA, 1993.

[Sam89a] H. Samet. Applications of Spatial Data Structures.
Addison-Wesley Publishing Inc., 1989.

[Sam89b] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley Publishing Inc., 1989.

[Sim95] R. Simmons. The 1994 AAAI robot competition and
exhibition. Al Magazine, 16(1), Spring 1995.

[SK95] R. Simmons and S. Kocnig. Probabilistic robot nav-
igation in partially observable environments. In Pro-
ceedings ofIJCAI-95, pages 1080-1087, Montreal,
Canada. August 1995. IJCAI, Inc.

[TBB+98] S. Thrun, A. Bücken, W. Burgard, D. Fox,
T. Fröhlinghaus, D. Hennig, T. Hofmann, M. Krell,
and T Schimdt. Map learning and high-speed navi-
gation in RHINO. In D. Kortenkamp, R.P. Bonasso,
and R. Murphy, editors, AI-based Mobile Robots:
Case studies of successful robot systems. MIT Press,
Cambridge, MA, 1998. to appear.

[Thr98a] S. Thrun. Bayesian landmark learning for mobile
robot localization. Machine Learning, 1998. to ap-
pear.

[Thr98b] S. Thrun. Learning maps for indoor mobile robot
navigation. Artificial Intelligence, 1998. to appear.

[TLS89] N. Thishby, E. Levin, and S. A. Solla. Consistent in-
ference of probabilities in layered networks: predic-
tions and generalizations. In Procecdingsofthe First
International Joint Conference on Neural Networks,
Washington, DC, San Diego, 1989. IEEE TAB Neu-
ral Network Committee.

341

Multiple-Instance Learning for Natural Scene Classification

Oded Maron
Artificial Intelligence Lab

NE43-755, M.I.T.
Cambridge, MA 02139

odedOai.mit.edu

Aparna Lakshmi Ratan
Artificial Intelligence Lab

NE43-739, M.I.T.
Cambridge, MA 02139
aparnaOai.mit.edu

Abstract

Multiple-Instance learning is a way of mod-
eling ambiguity in supervised learning exam-
ples. Each example is a bag of instances, but
only the bag is labeled - not the individual
instances. A bag is labeled negative if all the
instances are negative, and positive if at least
one of the instances in positive. We apply
the Multiple-Instance learning framework to
the problem of learning how to classify nat-
ural images. Images are inherently ambigu-
ous since they can represent many different
things. A user labels an image as positive
if the image somehow contains the concept.
Each image is a bag, and the instances are
various sub-regions in the image. From a
small collection of positive and negative ex-
amples, we can learn the concept and then
use it to retrieve images that contain the con-
cept from a large database. We show that
the Diverse Density algorithm performs well
in this task, that simple hypothesis classes
are sufficient to classify natural images, and
that user interaction helps to improve perfor-
mance.

1 INTRODUCTION

Scene classification is an open problem in machine vi-
sion and has applications in image and video database
indexing. We investigate a method for learning visual
concepts that encode the properties of a scene class
from a small set of positive and negative examples.
Extracted concepts are simple templates that capture
some color and spatial properties of the class. Work
by Lipson [Lipson et al., 1997] illustrates that sim-

ple, hand-crafted templates that describe the relative
color and spatial properties in an image can be used
successfully to classify natural scenes like fields, snowy
mountains and waterfalls. In this paper we show that
these templates can be learned. We describe a frame-
work for learning scene-class concepts that can be used
effectively for the task of content-based image retrieval
from large databases. The learning framework we use
in this paper is called Multiple-Instance learning [Di-
etterich et al, 1997],[Maron and Lozano-Perez, 1998].
In this framework, examples are not labeled examples,
but are labeled bags. Each bag is a collection of in-
stances (Figure 1). A bag is labeled negative if all the
instances in it are negative, and positive if at least one
of the instances in it is positive. We use this framework
to model the ambiguity in mapping an image to many
possible templates which describe the image. Specifi-
cally, every image is a bag, and each possible template
for describing the image is one instance in the bag.
We discuss a method called Diverse Density [Maron
and Lozano-Perez, 1998] for learning concepts from
Multiple-Instance examples.

We test our approach on images from the COREL
photo library. We show that the system is succesful
even when the hypothesis class involves very simple
templates, and even when the images are sampled very
coarsely. In addition, we show that user interaction
(refining the hypothesis through the addition of more
examples) is helpful in improving the performance of
the learning system. In Section 2, we discuss previous
and related work in image classification. We then de-
scribe the Multiple-Instance learning framework and
the Diverse Density algorithm. In section 4 we de-
tail our experimental setup and show results on var-
ious concept classes, hypothesis classes, and training
regimes.

The third contribution of this paper (in addition to

342 Maron and Ratan

a novel application of Multiple-Instance learning and
the discovery that surprisingly simple concepts do well
on this task) is the development of a general architec-
ture to combine ideas from the vision and machine
learning communities. A key part of our system is the
bag generator: a mechanism which takes an image and
generates a set of instances, where each instance is a
possible description of what the image is about. If an
idealized object recognizer existed, then the bag gen-
erator would simply output a list of the objects in the
image. The learning algorithm would be straightfor-
ward: find an intersection between the positive lists
that didn't include elements from the negative lists.
On the other extreme, if we had a learning algorithm
that could handle billions of instances per bag, then
we would not need an object recognizer. Instead, the
bag generator would simply output every subcombi-
nation of pixels in the image. In this paper, we use
a slightly more sophisticated bag generator (one that
generates subregions), which limits the number of in-
stances per bag and therefore allows us to use an algo-
rithm such as Diverse Density. The key observation is
that a better bag generator (progress in the vision com-
munity) leads to a simpler learning algorithm, while
at the same time a better Multiple-Instance learning
algorithm (progress in the machine learning commu-
nity) allows us to use simpler segmentation algorithms.
This is in contrast with the architecture of [Keeler et
al., 1991], for example, where the learning mechanism
is woven into the position-invariant representation of
subimages.

2 IMAGE CLASSIFICATION
SYSTEMS

In the past few years, the growing number of digital
image and video libraries has led to the need for flexi-
ble, automated content-based image retrieval systems
which can efficiently retrieve images from a database
that are similar to a user's query. Because what a user
wants can vary greatly, we also want to provide a way
for the user to explore and refine the query by letting
the system bring up examples.

One of the most popular global techniques for index-
ing is color-histogramming which measures the over-
all distribution of colors in the image. While his-
tograms are useful because they are relatively insensi-
tive to position and orientation changes, they do not
capture the spatial relationships of color regions and
thus have limited discriminating power. Many of the
existing image-querying systems work on entire im-

ages or in user-specified regions by using distribution
of color, texture and structural properties. The QBIC
system [Flickner et al, 1995] is an example of such a
system. Some recent systems that try to incorporate
some spatial information into their color feature sets
include [Smith and Chang, 1996, Huang et al., 1997,
Belongie et al, 1998]. Promising work by Rubner
[Rubner et al, 1998] on the earth mover's distance
provides a metric that overcomes the binning problems
of existing definitions of distribution distances for in-
dexing. Most of these techniques require the user to
specify the salient regions in the query image. One of
the goals of our system is to learn the relevant color
and spatial properties that best describe a particular
class of natural scenes.

More recently, work by Lipson and Sinha ([Lipson et
al, 1997]) in scene classification illustrates that pre-
defined flexible templates that describe the relative
color and spatial properties in the image can be used
effectively for this task. The flexible templates con-
structed by Lipson [Lipson et al, 1997] encode the
scene classes as a set of image patches and qualita-
tive relationships between those patches. Each im-
age patch has properties in the color and luminance
channels. These templates describe the color relation-
ship (relative changes in the R,G,B channels), lumi-
nance relationship (relative changes in the luminance
channel) and spatial relationship between two image
patches. Lipson hand-crafted these flexible templates
for a variety of scene classes and showed that they
could be used to classify natural scenes of fields, wa-
terfalls and snowy mountains efficiently and reliably.
For example, the following concept might be learned
for the snowy-mountain class: "if the image contains a
blue blob which is above a white blob which is above a
brown blob, then it is a mountain". In this paper, we
would like to learn such concepts for natural images
given a small set of positive and negative examples.

All of the systems described above require users to
specify precisely what they want. Minka and Pi-
card [Minka and Picard, 1996] introduced a learn-
ing component in their system by using positive and
negative examples which let the system choose image
groupings within and across images based on color and
texture cues; however, their system requires the user
to label various parts of the scene, where as our system
only gets a label for the entire image and automatically
extracts the relevant parts of the scene. In this paper,
we focus on learning natural scene concepts by extract-
ing color and spatial relations between image patches
using a small set of positive and negative examples.

Multiple-Instance Learning for Natural Scene Classification 343

Our system uses a small set of user-selected positive
and negative examples to learn a scene concept which
is used to retrieve similar images from the database.
The system also lets the user add more positive and
negative examples after each iteration in order to re-
fine the concept.

3 MULTIPLE-INSTANCE
LEARNING

In traditional supervised learning, a learning algorithm
receives a training set which consists of individually la-
beled examples. There are situations where this model
fails, specifically, when the teacher cannot label indi-
vidual instances, but only a collection of instances. For
example, given a picture containing a waterfall, what
is it about the image that causes it to be labeled as
a waterfall? Is it the butterfly hovering in the corner,
the blooming flowers, or the white stream of water?
It is impossible to tell by looking at only one image.
The best we can say is that at least one of the ob-
jects in the image is a waterfall. Given a number of
images (each labeled as waterfall or non-waterfall), we
can attempt to find commonalities within the waterfall
images that do not appear in the non-waterfall images.
Multiple-Instance learning is a way of formalizing this
problem, and Diverse Density is a method for finding
the commonality.

In Multiple-Instance learning, we receive a set of bags,
each of which is labeled positive or negative. Each
bag contains many instances, where each instance is a
point in feature space. A bag is labeled negative if all
the instances in it are negative. On the other hand, a
bag is labeled positive if there is at least one instance
in it which is positive. From a collection of labeled
bags, the learner tries to induce a concept that will
label unseen bags correctly. This problem is harder
than even noisy supervised learning because the ratio
of negative to positive instances in a positively-labeled
bag (the noise ratio) can be arbitrarily high.

The multiple-instance learning model was only re-
cently formalized by [Dietterich et at, 1997], where
they develop algorithms for the drug activity predic-
tion problem. This work was followed by [Long and
Tan, 1996, Auer et al., 1996, Blum and Kalai, 1998],
who showed that it is difficult to PAC-learn in the
Multiple-Instance model unless very restrictive inde-
pendence assumptions are made about the way in
which examples are generated. [Auer, 1997] shows
that despite these assumptions, the MULTINST al-
gorithm performs competitively on the drug activity

prediction problem. [Maron and Lozano-Perez, 1998]
develop an algorithm called Diverse Density, and show
that it performs well on a variety of problems such as
drug activity prediction, stock selection, and learning
a description of a person from a series of images that
contain that person.

3.1 MULTIPLE-INSTANCE LEARNING
FOR SCENE CLASSIFICATION

In this paper, each training image is a bag. The in-
stances in a particular bag are various subimages. If
the bag is labeled as a waterfall (for example), we know
that at least one of the subimages (instances) is a wa-
terfall. If the bag is labeled as a non-waterfall, we
know that none of the subimages contains a waterfall.
Each of the instances, or subimages, is described as a
point in some feature space. As discussed in section 4,
we experimented with several ways of describing an
instance. We will discuss one of them (single blob
with neighbors) in detail: a subimage is a 2x2 set
of pixels (referred to as a blob) and its four neighbor-
ing blobs (up, down, left, and right). The subimage is
described as a vector [x\,i2, • • ■,#15], where x\,X2,x%
are the mean RGB values of the central blob, X4, X5,XQ

are the differences in mean RGB values between the
central blob and the blob above it, etc. One bag is
therefore a collection of instances, each of which is a
point in a 15-dimensional feature space. We assume
that at least one of these instances is the template
that contains the waterfall.

We would now like to find a description which will
correctly classify new images as waterfalls or non-
waterfalls. This can be done by finding what is in
common between the waterfall images given during
training and the differences between those and the
non-waterfall images. The main idea behind the Di-
verse Density (DD) algorithm is to find areas in feature
space that are close to at least one instance from ev-
ery positive bag and far from every negative instance.
The algorithm searches the feature space for points
with high Diverse Density. Once the point (or points)
with maximum DD is found, a new image is classified
positive if one of its subimages is close to the maximum
DD point. As seen in Section 4, the entire database
can be sorted by the distance to the learned concept.
Figure 1 is a schematic of how the system works.

In the following subsection, we will describe a deriva-
tion of Diverse Density and how we find the maximum
in a large feature space. We will also show that the
appropriate scaling of the feature space can be found
by maximizing DD not just with respect to location in

344 Maron and Ratan

INSTANCE

EXAMPLE

p ojjJb_r__

,:
- ««^aeasa^asas
Bpwaf'psa

LEARNED
CONCEPT

EXAMPLES OF OTHER HYPOTHESIS CLASSES
NEW IMAGE

ROW BLOB NO-NEIGHBS BLOB WITH NEIGHBS 2 BLOB NO-NEIGHBS 2 BLOB WITH NEIGHBS

Figure 1: System Diagram

feature space, but also with respect to a weighting of
each of the features.

3.2 DIVERSE DENSITY

In this section, we derive a probabilistic measure of
Diverse Density. More details are given in [Maron,
1998]. We denote positive bags as Z?t

+, and the jth

instance in that bag as B^. Likewise, B~, repre-
sents an instance from a negative bag. For simplic-
ity, let us assume that the true concept is a single
point t in feature space. We can find t by maximizing
Pr(i | By , • • •, £+, Bf, • • •, B~) over all points in fea-
ture space. Using Bayes' rule and a uniform prior over
the concept location, we see that this is equivalent to
maximizing the likelihood:

it. In this paper, we use the noisy-or model as follows:

arg max Pr(Bj ,ß+,ßf,...,ß-|0. (i)

By making the additional assumption that the bags are
conditionally independent given the target concept t:

this decomposes into

argmaxJIPr^ I <)I[Pr(ßr I 0 (2)

which is equivalent (by similar arguments as above) to
maximizing

argmaxJJPr(t | B+) JJPr(f. | £r) (3)

This is a general definition of Diverse Density, but we
need to define the terms in the products to instantiate

Pi(t\B+) = l-H(l-Pr(t\B+)). (4)

The noisy-or model makes two assumptions: one is
that for f to be the target concept it is caused by
(hence close to) one of the instances in the bag. It
also assumes that the probability of instance j not be-
ing the target is independent of any other instance not
being the target.

Finally, we estimate the distribution Pr(f | B*) with
a Gaussian-like distribution of exp(- || Bf^ — t ||2).
A negative bag's contribution is likewise computed as
Pr(r. | B~) = n,-(l - Pr(< I £"■))• A supervised learn-
ing algorithm such as nearest-neighbor or kernel re-
gression would average the contribution of each bag,
computing a density of instances. This algorithm com-
putes a product of the contribution of each bag, hence
the name Diverse Density. Note that Diverse Density
at an intersection of n bags is exponentially higher
than it is at an intersection of n - 1 bags, yet all it
takes is one well placed negative instance to drive the
Diverse Density down.

The initial feature space is probably not the most
suitable one for finding commonalities among images.
Some features might be irrelevant or redundant, while
small differences along other features might be crucial
for discriminating between positive and negative ex-
amples. The Diverse Density framework allows us to
find the best weighting on the initial feature set in the
same way that it allows us to find an appropriate lo-

Multiple-Instance Learning for Natural Scene Classification 345

cation in feature space. If a feature is irrelevant, then
removing it can only increase the DD since it will bring
positive instances closer together. On the other hand,
if a relevant feature is removed then negative instances
will come closer to the best DD location and lower it.
Therefore, a feature's weight should be changed in or-
der to increase DD. Formally, the distance between
two points in feature space (Bij and t) is

B+j - * \\2=Y,Wk(Biik ~ tk? (5)

where B^ is the value of the kth feature in the jth

point in the ith bag, and u>k is a non-negative scaling
factor. If Wk is zero, then the kth feature is irrelevant.
If Wk is large, then the kth feature is very important.
We would like to find both t and w such that Diverse
Density is maximized. We have doubled the number
of dimensions in our search space, but we now have
a powerful method of changing our representation to
accomodate the task.

We can use also use this technique to learn more com-
plicated concepts than a single point. To learn a 2-
disjunct concept iVs, we maximize Diverse Density as
follows:

arg max f[(l ~ U1 ~ Pr^ V s \ B+)))
t,s

nnpr(*v'iB5) (6)

where Pr(t V s | B^) is estimated as max{Pr(£ |
B^),Pi(s | Bfj)}. Other approximations (such as
noisy-or) are also possible.

Finding the maximum Diverse Density in a high-
dimensional space is a difficult problem. In general,
we are searching an arbitrary landscape and the num-
ber of local maxima and size of the search space could
prohibit any efficient exploration. In this paper, we
use gradient ascent (since DD is a differentiable func-
tion) with multiple starting points. This has worked
successfully because we know what starting points to
use. The maximum DD point is made of contributions
from some set of positive points. If we start an ascent
from every positive point, one of them is likely to be
closest to the maximum, contribute the most to it and
have a climb directly to it. Therefore, if we start an
ascent from every positive instance, we are very likely
to find the maximum DD point. When we need to find
both the location and the scaling of the concept, we
perform gradient ascent for both sets of parameters at
the same time (starting with all scale weightings at

1). The number of dimensions in our search space has
doubled, though. When we need to find a 2-disjunct
concept, we can again perform gradient ascent for all
parameters at once. This carries a high computational
burden because the number of dimensions has doubled,
and we perform a gradient ascent starting at every pair
of positive instances.

Our goal in the next section is to show that: (1)
Multiple-Instance learning by maximizing diverse den-
sity can be used in the domain of natural scene classi-
fication, (2) simple concepts in low resolution images
are sufficient to learn some of these concepts (3) adding
false positives and false negatives over mutiple itera-
tions (user interaction) can be used to improve the
classifier performance.

4 EXPERIMENTS

In this section, we show four different types of results
from running the system: one is that Multiple-Instance
learning is applicable to this domain. A second result
is that one does not need very complicated hypoth-
esis classes to learn concepts from the natural image
domain. We also compare the performance of various
hypotheses, including the global histogram method.
Finally, we show how user interaction would work to
improve the classifier.

4.1 EXPERIMENTAL SETUP

We tried to learn three different concepts: waterfall,
mountain, and field. For training and testing we used
natural images from the COREL library, and the la-
bels given by COREL. These included 100 images from
each of the following classes: waterfalls, fields, moun-
tains, sunsets and lakes. We also used a larger test set
of 2600 natural images from various classes.

We created a potential training set that consisted of 20
randomly chosen images from each of the five classes
mentioned above. This left us with a small test set
consisting of the remaining 80 images from each of
the five classes. We seperated the potential training
set from the testing set to insure that results of using
various training schemes and hypothesis classes can be
compared fairly. Finally the large test set contained
2600 natural images from a large variety of classes.

For a given concept, we create an initial training set
by picking five positive examples of the concept and
five negative examples, all from the potential training
set. After the concept is learned from these exam-
ples (by finding the point in and scaling of feature

346 Maron and Ratan

space with maximum DD), the unused 90 images in
the potential training set are sorted by distance from
the learned concept1. This sorted list can be used to
simulate what a user would select as further refining
examples. Specifically, the most egregious false posi-
tives (the non-concept images at the beginning of the
sorted list) and the most egregious false negatives (the
concept images at the end of the sorted list) would
likely be picked by the user as additional negative and
positive examples.

We attempted four different training schemes:
initial is simply using the initial five positives and
five negative examples. +5f p adds the five most egre-
gious false positives. +10fp repeats the +5fp scheme
twice. +3f p+2f n adds 3 false positives and 2 false neg-
atives.

All images were smoothed using a gaussian filter and
subsampled to 8 x 8. We used the RGB color space
in these experiments. For every class and for every
training scheme, we tried to learn the concept using
one of seven hypothesis classes (Figure 1 shows some
examples):
1. row: an instance is the row's mean color and the
color difference in the rows above and below it.
2. single blob with neighbors: an instance is the
mean color of a 2 x 2 blob and the color difference with
its 4 neighboring blobs.
3. single blob with no neighbors: an instance is
the color of each of the pixels in a 2 x 2 blob.
4. disjunctive blob with neighbors: an instance
is the same as the single blob with neighbors but the
concept learned is a disjunction of two single blob con-
cepts.
5. disjunctive blob with no neighbors: an in-
stance is the same as the single blob with no neighbors
but the concept learned is a disjunction of two single
blob concepts.
6. two blob with neighbors: an instance is the
mean color of two descriptions of two single blob
with neighbors and their relative spatial relation-
ship (whether the second blob is above or below, and
whether it is to the left or right, of the first blob).
7. two blob with no neighbors: an instance is the
mean color of two descriptions of two single blob
with no neighbors and their relative spatial rela-
tionship.

Learning a concept took anywhere from a few sec-

xAn image/bag's distance from the concept is the min-
imum distance of any of the image's subregions/instances
from the concept.

Figure 2: Comparison of learned concept (solid curves)
with hand-crafted templates (dashed curves) for the
mountain concept on 240 images from the small test
set. The top and bottom dashed precision-recall curves
indicate the best-case and worst-case curves for the
first 32 images retrieved by the hand-crafted template
which all have the same score.

onds for the simple hypotheses to a few days for the
2-blob and disjunctive hypotheses. The more compli-
cated hypotheses take longer to learn because of the
higher number of features and because the number of
instances per bag is large (and to find the maximum
DD point, we perform a gradient ascent from every
positive instance). Because this is a prototype, we
have not tried to optimize the running time; however,
a more intelligent method of generating instances (for
example, a rough segmentation using connected com-
ponents) will reduce both the number of instances and
the running time by orders of magnitude.

4.2 RESULTS

In this section we show results of testing the vari-
ous hypothesis classes, training schemes, and concept
classes against the small test set and the larger one.
The small test set does not intersect the potential
training set, and therefore more accurately represents
the generalization of the learned concepts. The large
test set is meant to show how the system scales to
larger image databases.

Multiple-Instance Learning for Natural Scene Classification 347

The graphs shown are precision-recall and recall
curves. Precision is the ratio of the number of correct
images to the number of images seen so far. Recall is
the ratio of the number of correct images to the total
number of correct images in the test set. For example,
in Figure 3, the waterfall precision-recall curve has re-
call 0.5 with precision of about 0.7, which means in
order to retrieve 40 of the 80 waterfalls, 30% of the
images retrieved are not waterfalls. We show both
curves for because (1) the beginning of the precision-
recall is of interest to applications where only the top
few objects are of importance, and (2) the middle of
the recall curve is of interest to applications where cor-
rect classification of a large percentage of the database
is important.

Figure 2 shows that the performance of the learned
mountain concept is competitive with a hand-crafted
mountain template (from [Lipson et al., 1997]2). The
test set consists of 80 mountains, 80 fields, and 80
waterfalls. It is disjoint from the training set. The
hand-crafted model's precision-recall curve is flat at
84% because the first 32 images all receive the same
score, and 27 of them are mountains. We also show
the curves if we were to retrieve the 27 mountains first
(best-case) or after the first five false positives (worst-
case).

In Figure 3, we show the performance of the best hy-
pothesis and training method on each concept class.
The dashed lines show the poor performance of the
global histogram method. The solid lines in the
precision-recall graph show the performance of single
blob with neighbors with +10f p for waterfalls, row
with +10fp for fields, and disjunctive blob with
no neighbors with +10fp for mountains. The solid
lines in the recall curve show the performance of the
single blob with neighbors with +10f p for water-
falls, single blob with neighbors with +3fp+2fn
for fields, and row with +3f p+2f n for mountains. This
behavior continues for the larger test set.

In Figure 4, we show the precision-recall curves for
each of the four training schemes. We average over
all concepts and all hypothesis classes. We see that
performance improves with user interaction. This be-
havior continues for the larger test set as well.

In Figure 5, we show the precision-recall and recall
curves for each of the seven hypotheses averaged over
all concepts and all training schemes. Note that these
curves are for the larger 2600 image database. We

^ Mountain
«•»•* Fields
^ Waterfalls

^ Mountain
.#**" Fields
y Waterfall;

100 200 . 300
Number retrieved

2Lipson's classifier was modified to give a ranking of
each image, rather than its class.

Figure 3: The best curves for each concept using
a small test set. Dashed curves are the global his-
togram's performance.

see that the single blob with neighbors hypothesis has
good precision. We also see that the more compli-
cated hypothesis classes (i.e. the disjunctive concepts
and the two-blob concepts) tend to have better recall
curves.

In Figure 6, we show a snapshot of the system in
action. The system is trained using training scheme
+10f p for the waterfall concept. It has learned a water-
fall concept using the single blob with neighbors
hypothesis. The learned waterfall concept is that
somewhere in the image there is a blob whose left
neighbor is less blue, whose own blue value is 0.5
(where RGB values are in the [0,1] cube), whose neigh-
bor below has the same blue value, whose neighbor
above has the same red value, whose green value is
0.55, whose neighbor above has the same blue value
and whose red value is 0.47. These properties are
weighted in the order given, and any other features
were found to be irrelevant. A new image has the rat-
ing of the minimum distance of one of its instances to
the learned concept, where the distance metric uses
the learned scaling to account for the importance of
the relevant features. As we can see in the figure, this
simple learned concept is able to retrieve a wide variety

348 Maron and Ratan

Precision

Figure 4: Different training schemes, averaged over
concept and hypothesis class, using a small test set.

of waterfall scenes.

The top 20 images in the figure are the training set.
The first 10 images are the initial positive and negative
examples used in training. The next 10 images are the
false positives added. The last 30 images are the top
30 returned from the large dataset.

5 CONCLUSIONS

In this paper, we have shown that Multiple-Instance
learning by maximizing diverse density can be used
to classify images of natural scenes. Our results are
competitive with hand-crafted models, and much bet-
ter than a global histogram approach. We have also
demonstrated that simple learned concepts that cap-
ture color relations in low resolution images can be
used effectively in the domain of natural scene classi-
fication. Our experiments indicate that complicated
concepts (e.g. disjunctive concepts) tend to have bet-
ter recall curves and that user interaction (adding false
positives and false negatives) over multiple iterations
can improve the performance of the classifier. Our ar-
chitecture, by seperating the bag generator from the
learning mechanism, allows progress in the field of
computer vision to benefit the field of machine learning
and vice versa.

Acknowledgements

We thank Tomas Lozano-Perez, Eric Grimson, and
Pam Lipson for their advice and AFOSR ASSERT pro-
gram Parent Grant#:F49620-93-l-0263, and ARPA
under ONR contract N00014-95-1-0600 for their sup-
port of this research.

References
[Auer et al, 1996] Peter Auer, Phil M. Long, and A. Srini-

vasan. Approximating hyper-rectangles: learning and
pseudorandom sets. In Proceedings of the 1996 Confer-
ence on Computational Learning Theory, 1990.

[Auer, 1997] Peter Auer. On Learning from multi-instance
examples: Empirical evalutaion of a theoretical ap-
proach. In Proceedings of the 14th Internation Confer-
ence on Machine Learning, 1997.

[Belongie et al., 1998] S. Belongie, C. Car-
son, H. Greenspan, and J. Malik. Color- and Texture
based image segmentation using EM and its application
to content-based image retrieval. In International Con-
ference on Computer Vision, 1998.

[Blum and Kalai, 1998] A. Blum and A. Kalai. A Note on
Learning from Multiple-Instance Examples. To appear
in Machine Learning, 1998.

[Dietterich et al, 1997] T. G. Dietterieh, R. H. Lathrop,
and T. Lozano-Perez. Solving the Multiple-Instance
Problem with Axis-Parallel Rectangles. Artificial Intel-
ligence Journal, 89, 1997.

[Flickner et al, 1995.
image and video content: The QBIC System"
Computer, 28:23-32, 199"

M. Flickner, , and et al. Query by
"■ ""'" " IEEE

[Huang et al, 1997] J. Huang, S. Ravikumar, M. Mitra,
W. Zhu, and R. Zabih. Image indexing using color cor-
relograms. In Computer Vision and Pattern Recognition,
1997.

[Keeler et al., 1991] James D. Keeler, David E. Rumel-
hart. and Wee-Kheng Leow. Integrated Segmentation
and Recognition of Hand-Printed Numerals. In Advances
in Neural Information Processing Systems 3. Morgan
Kauffman, 1991.

[Lipson et al, 1997] P. Lipson, E. Grimson, and P. Sinha.
Context, and Configuration Based Scene Classification.
In Computer Vision and Pattern Recognition, 1997.

[Long and Tan, 1996] P. M. Long and L. Tan. PAC-
learning axis alligned rectangles with respect to prod-
uct distributions from multiple-instance examples. In
Proceedings of the 1996 Conference on Computational
Learning 'Theory, 1996.

[Maron and Lozano-Perez, 1998] O. Maron and
T. Lozano-Perez. A framework for Multiple-Instance
learning. In Advances in Neural Information Process-
ing Systems 10. MIT Press, 1998.

[Maron, 1998] O. Maron. Learning from Ambiguity. Doc-
toral Thesis, Dept. of Electrical Engineering and Com-
puter Science, M.I.T., June 1998.

[Minka and Picard, 1996] T. Minka and R. Picard. Inter-
active Learning using a society of models. In Computer
Vision and Pattern Recognition, 1996.

[Rubner et al, 1998] Y. Rubner, C. Tomasi, and
L. Guibas. A Metric for Distributions with Applications
to Image Databases. In Proceedings of IEEE Int. Conf.
on Computer Vision, 1998.

[Smith and Chang, 1996] J. Smith and S. Chang. Visu-
alSEEK: a fully automated content-based image query
system. In Proc. ACM Interational Conference on Mul-
timedia. Morgan Kaufmann, 1996.

Multiple-Instance Learning for Natural Scene Classification 349

row
w-neighb
no-neighb
dis]-w-n
disi-n-n
2-blob-w-n
2-blob-n-n

row
w-neighb
no-neighb
dis]-w-n
disj-n-n
2-blob-w-n
2-blob-n-n

0.4 0.6
Recall

500 1000 1500 , 2000 2500
Images retrieved

Figure 5: Different hypothesis classes averaged over concept and training scheme, using a large test set with
2600 images.

Figure 6: Results for the waterfall concept using the single blob with neighbors concept with +10fp. Top
row: Initial training set-5 positive and 5 negative examples. Second Row: Additional false positives. Last three
rows: Top 30 matches retrieved from the large test set. The red squares indicate where the closest instance to
the learned concept is located.

350

Employing EM and Pool-Based Active Learning
for Text Classification

Andrew Kachites McCallum^
mccallum@justresearch.com

*Just Research
4616 Henry Street

Pittsburgh, PA 15213

Kamal Nigam*
knigam@cs.cmu.edu

* School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

This paper shows how a text classifier's need
for labeled training documents can be re-
duced by taking advantage of a large pool
of unlabeled documents. We modify the
Query-by-Committee (QBC) method of ac-
tive learning to use the unlabeled pool for
explicitly estimating document density when
selecting examples for labeling. Then ac-
tive learning is combined with Expectation-
Maximization in order to "fill in" the class
labels of those documents that remain unla-
beled. Experimental results show that the
improvements to active learning require less
than two-thirds as many labeled training ex-
amples as previous QBC approaches, and
that the combination of EM and active learn-
ing requires only slightly more than half as
many labeled training examples to achieve
the same accuracy as either the improved ac-
tive learning or EM alone.

1 Introduction

Obtaining labeled training examples for text classifica-
tion is often expensive, while gathering large quantities
of unlabeled examples is usually very cheap. For ex-
ample, consider the task of learning which web pages
a user finds interesting. The user may not have the
patience to hand-label a thousand training pages as
interesting or not, yet multitudes of unlabeled pages
are readily available on the Internet.

This paper presents techniques for using a large pool
of unlabeled documents to improve text classification
when labeled training data is sparse. We enhance the

QBC active learning algorithm to select labeling re-
quests from the entire pool of unlabeled documents,
and explicitly use the pool to estimate regional doc-
ument density. We also combine active learning with
Expectation-Maximization (EM) in order to take ad-
vantage of the word co-occurrence information con-
tained in the many documents that remain in the un-
labeled pool.

In previous work [Nigam et al. 1998] we show that
combining the evidence of labeled and unlabeled doc-
uments via EM can reduce text classification error by
one-third. We treat the absent labels as "hidden vari-
ables" and use EM to fill them in. EM improves the
classifier by alternately using the current classifier to
guess the hidden variables, and then using the cur-
rent guesses to advance classifier training. EM con-
sequently finds the classifier parameters that locally
maximize the probability of both the labeled and un-
labeled data.

Active learning approaches this same problem in a dif-
ferent way. Unlike our EM setting, the active learner
can request the true class label for certain unlabeled
documents it selects. However, each request is consid-
ered an expensive operation and the point is to per-
form well with as few queries as possible. Active learn-
ing aims to select the most informative examples -in
many settings defined as those that, if their class la-
bel were known, would maximally reduce classifica-
tion error and variance over the distribution of exam-
ples [Cohn, Ghahramani, & Jordan 1996]. When cal-
culating this in closed-form is prohibitively complex,
the Query-by-Committee (QBC) algorithm [Freund et
al. 1997] can be used to select documents that have
high classification variance themselves. QBC measures
the variance indirectly, by examining the disagreement
among class labels assigned by a set of classifier vari-
ants, sampled from the probability distribution of clas-

EM and Active Learning for Text 351

sifiers that results from the labeled training examples.

This paper shows that a pool of unlabeled examples
can be used to benefit both active learning and EM.
Rather than having active learning choose queries by
synthetically generating them (which is awkward with
text), or by selecting examples from a stream (which
inefficiently models the data distribution), we advo-
cate selecting the best examples from the entire pool
of unlabeled documents (and using the pool to explic-
itly model density); we call this last scheme pool-based
sampling. In experimental results on a real-world text
data set, this technique is shown to reduce the need
for labeled documents by 42% over previous QBC ap-
proaches. Furthermore, we show that the combination
of QBC and EM learns with fewer labeled examples
than either individually—requiring only 58% as many
labeled examples as EM alone, and only 26% as many
as QBC alone. We also discuss our initial approach to
a richer combination we call pool-leveraged sampling
that interleaves active learning and EM such that EM's
modeling of the unlabeled data informs the selection
of active learning queries.

ponent generate a document according to its own pa-
rameters, with distribution P(di|e,;0). We can char-
acterize the likelihood of a document as a sum of total
probability over all generative components:

|C|

P(di\6) = Y/ncj\0Wi\cf,8). (1)
J=l

Document di is considered to be an ordered list of word
events. We write Wdih for the word in position k of doc-
ument di, where the subscript of w indicates an index
into the vocabulary V = (wi,W2, ■ ■ ■,w\v\)- We make
the standard naive Bayes assumption: that the words
of a document are generated independently of context,
that is, independently of the other words in the same
document given the class. We further assume that the
probability of a word is independent of its position
within the document. Thus, we can express the class-
conditional probability of a document by taking the
product of the probabilities of the independent word
events:

2 Probabilistic Framework for Text
Classification

This section presents a Bayesian probabilistic frame-
work for text classification. The next two sections add
EM and active learning by building on this frame-
work. We approach the task of text classification
from a Bayesian learning perspective: we assume that
the documents are generated by a particular paramet-
ric model, and use training data to calculate Bayes-
optimal estimates of the model parameters. Then, we
use these estimates to classify new test documents by
turning the generative model around with Bayes' rule,
calculating the probability that each class would have
generated the test document in question, and selecting
the most probable class.

Our parametric model is naive Bayes, which is
based on commonly used assumptions [Friedman 1997;
Joachims 1997]. First we assume that text documents
are generated by a mixture model (parameterized by
9), and that there is a one-to-one correspondence be-
tween the (observed) class labels and the mixture com-
ponents. We use the notation Cj G C = {ci,...,C|c|} to

indicate both the jth component and jth class. Each
component Cj is parameterized by a disjoint subset
of 9. These assumptions specify that a document is
created by (1) selecting a class according to the prior
probabilities, P(e,|0), then (2) having that class com-

1*1
p(di\cj;e) = p(|4|) n P(^*JC,;0), (2)

*=i

where we assume the length of the document, \d(\,
is distributed independently of class. Each individ-
ual class component is parameterized by the collection
of word probabilities, such that 9Wt\Cj = P(wt\cjm,9),
where t € {1,...,|V|} and Etp(wt|cj;0) = 1- The
other parameters of the model are the class prior prob-
abilities 6C. = P(CJ|0), which indicate the probabilities
of selecting each mixture component.

Given these underlying assumptions of how the data
are produced, the task of learning a text classifier con-
sists of forming an estimate of 9, written 9, based on a
set of training data. With labeled training documents,
V = {di,...,d|x>|}, we can calculate estimates for the
parameters of the model that generated these docu-
ments. To calculate the probability of a word given
a class, 9Wt\Cj, simply count the fraction of times the
word occurs in the data for that class, augmented with
a Laplacean prior. This smoothing prevents probabil-
ities of zero for infrequently occurring words. These
word probability estimates 9Wt\Cj are:

"wt\cj
l + ZtJNjwudiWcjldi)

(3)

352 McCallum and Nigam

where N(wt,di) is the count of the number of times
word wt occurs in document dj, and where P(e,|d;) G
{0,1}, given by the class label. The class prior proba-
bilities, 9Cj, are estimated in the same fashion of count-
ing, but without smoothing:

A _EgjP(cj|di)
C' " |2>|

(4)

Given estimates of these parameters calculated from
the training documents, it is possible to turn the gener-
ative model around and calculate the probability that
a particular class component generated a given docu-
ment. We formulate this by an application of Bayes'
rule, and then substitutions using Equations 1 and 2:

P(cj\di;6) = PfotönLt'iPO^M)
£ri1P(cr|0)m=liPK<.J<v;0) <M (5)

If the task is to classify a test document d* into a single
class, simply select the class with the highest posterior
probability: argmaxj P(cj|dj;0).

Note that our assumptions about the generation of
text documents are all violated in practice, and yet
empirically, naive Bayes does a good job of clas-
sifying text documents [Lewis & Ringuette 1994;
Craven et al. 1998; Joachims 1997]. This para-
dox is explained by the fact that classification es-
timation is only a function of the sign (in binary
cases) of the function estimation [Friedman 1997;
Domingos & Pazzani 1997]. Also note that our for-
mulation of naive Bayes assumes a multinomial event
model for documents; this generally produces better
text classification accuracy than another formulation
that assumes a multi-variate Bernoulli [McCallum &
Nigam 1998].

3 EM and Unlabeled Data

When naive Bayes is given just a small set of labeled
training data, classification accuracy will suffer be-
cause variance in the parameter estimates of the gen-
erative model will be high. However, by augmenting
this small set with a large set of unlabeled data and
combining the two pools with EM, we can improve the
parameter estimates. This section describes how to
use EM to combine these pools within the probabilistic
framework of the previous section.

EM is a class of iterative algorithms for maximum like-
lihood estimation in problems with incomplete data

[Dempster, Laird, & Rubin 1977]. Given a model of
data generation, and data with some missing values,
EM alternately uses the current model to estimate the
missing values, and then uses the missing value esti-
mates to improve the model. Using all the available
data, EM will locally maximize the likelihood of the
generative parameters, giving estimates for the miss-
ing values.

In our text classification setting, we treat the class la-
bels of the unlabeled documents as missing values, and
then apply EM. The resulting naive Bayes parameter
estimates often give significantly improved classifica-
tion accuracy on the test set when the pool of labeled
examples is small [Nigam et al. 1998].* This use of
EM is a special case of a more general missing values
formulation [Ghahramani & Jordan 1994].

In implementation, EM is an iterative two-step pro-
cess. The E-step calculates probabilistically-weighted
class labels, P(cj\di;0), for every unlabeled document
using a current estimate of 6 and Equation 5. The M-
step calculates a new maximum likelihood estimate for
8 using all the labeled data, both original and proba-
bilistically labeled, by Equations 3 and 4. We initialize
the process with parameter estimates using just the la-
beled training data, and iterate until 6 reaches a fixed
point. See [Nigam et al. 1998] for more details.

4 Active Learning with EM

Rather than estimating class labels for unlabeled doc-
uments, as EM does, active learning instead requests
the true class labels for unlabeled documents it selects.
In many settings, an optimal active learner should se-
lect those documents that, when labeled and incorpo-
rated into training, will minimize classification error
over the distribution of future documents. Equiva-
lent^ in probabilistic frameworks without bias, active
learning aims to minimize the expected classification
variance over the document distribution. Note that
Naive Bayes' independence assumption and Laplacean
priors do introduce bias. However, variance tends to
dominate bias in classification error [Friedman 1997],
and thus we focus on reducing variance.

The Query-by-Committee (QBC) method of active
learning measures this variance indirectly [Freund et
al. 1997]. It samples several times from the classifier
parameter distribution that results from the training

1When the classes do not correspond to the natural clus-
ters of the data, EM can hurt accuracy instead of helping.
Our previous work also describes a method for avoiding
these detrimental effects.

EM and Active Learning for Text 353

data, in order to create a "committee" of classifier vari-
ants. This committee approximates the entire classi-
fier distribution. QBC then classifies unlabeled docu-
ments with each committee member, and measures the
disagreement between their classifications—thus ap-
proximating the classification variance. Finally, docu-
ments on which the committee disagrees strongly are
selected for labeling requests. The newly labeled doc-
uments are included in the training data, and a new
committee is sampled for making the next set of re-
quests. This section presents each of these steps in
detail, and then explains its integration with EM. Our
implementation of this algorithm is summarized in Ta-
ble 1.

Our committee members are created by sampling clas-
sifiers according to the distribution of classifier param-
eters specified by the training data. Since the prob-
ability of the naive Bayes parameters for each class
are described by a Dirichlet distribution, we sample
the parameters 6Wt\Cj from the posterior Dirichlet dis-
tribution based on training data word counts, N(-, •).
This is performed by drawing weights, vtj, for each
word wt and class Cj from the Gamma distribution:
vtj = Gamma(at + N(wt,Cj)), where at is always
1, as specified by our Laplacean prior. Then we set
the parameters 0Wt\c. to the normalized weights by
6Wt\c- = '"tjl YJS

v*j- We sample to create a classifier k
times, resulting in k committee members. Individual
committee members are denoted by m.

We consider two metrics for measuring committee dis-
agreement. The previously employed vote entropy [Da-
gan & Engelson 1995] is the entropy of the class la-
bel distribution resulting from having each commit-
tee member "vote" with probability mass 1/A; for its
winning class. One disadvantage of vote entropy is
that it does not consider the confidence of the com-
mittee members' classifications, as indicated by the
class probabilities Pm(cJ|di;ö) from each member.

To capture this information, we propose to mea-
sure committee disagreement for each document us-
ing Kullback-Leibler divergence to the mean [Pereira,
Tishby, & Lee 1993]. Unlike vote entropy, which com-
pares only the committee members' top ranked class,
KL divergence measures the strength of the certainty
of disagreement by calculating differences in the com-
mittee members' class distributions, Pm(C\di).2 Each

2While naive Bayes is not an accurate probability esti-
mator [Domingos & Pazzani 1997], naive Bayes classifica-
tion scores are somewhat correlated to confidence; the fact
that naive Bayes scores can be successfully used to make
accuracy/coverage trade-offs is testament to this.

• Calculate the density for each document. (Eq. 9)
• Loop while adding documents:

- Build an initial estimate of 9 from the labeled docu-
ments only. (Eqs. 3 and 4)

- Loop k times, once for each committee member:

+ Create a committee member by sampling for
each class from the appropriate Dirichlet distri-
bution.

+ Starting with the sampled classifier apply EM
with the unlabeled data. Loop while parameters
change:

■ Use the current classifier to probabilistically
label the unlabeled documents. (Eq. 5)

■ Recalculate the classifier parameters given
the probabilistically-weighted labels. (Eqs. 3
and 4)

+ Use the current classifier to probabilistically la-
bel all unlabeled documents. (Eq. 5)

- Calculate the disagreement for each unlabeled docu-
ment (Eq. 7), multiply by its density, and request the
class label for the one with the highest score.

• Build a classifier with the labeled data. (Eqs. 3 and 4).
• Starting with this classifier, apply EM as above.

Table 1: Our active learning algorithm. Traditional Query-
by-Committee omits the EM steps, indicated by italics,
does not use the density, and works in a stream-based set-
ting.

committee member m produces a posterior class distri-
bution, Pm(C|dj), where C is a random variable over
classes. KL divergence to the mean is an average of
the KL divergence between each distribution and the
mean of all the distributions:

i£z>(Pm(cwi|P.«,(cw), (6)
m=l

where Vavg{C\di) is the class distribution mean
over all committee members, m: Pavg(C\di) =

(EmPm(C7|*))/*.

KL divergence, D(-||-)> is an information-theoretic
measure of the difference between two distributions,
capturing the number of extra "bits of information"
required to send messages sampled from the first dis-
tribution using a code that is optimal for the second.
The KL divergence between distributions Pi(C) and
Pa(C) is:

IHPtfOIIPatC)) = gPiteJlog (|ig|) (7)

354 McCallum and Nigam

After disagreement has been calculated, a document
is selected for a class label request. (Selecting more
than one document at a time can be a computational
convenience.) We consider three ways of selecting
documents: stream-based, pool-based, and density-
weighted pool-based. Some previous applications of
QBC [Dagan & Engelson 1995; Liere k Tadepalli 1997]
use a simulated stream of unlabeled documents. When
a document is produced by the stream, this approach
measures the classification disagreement among the
committee members, and decides, based on the dis-
agreement, whether to select that document for la-
beling. Dagan and Engelson do this heuristically by
dividing the vote entropy by the maximum entropy to
create a probability of selecting the document. Dis-
advantages of using stream-based sampling are that it
only sparsely samples the full distribution of possible
document labeling requests, and that the decision to
label is made on each document individually, irrespec-
tive of the alternatives.

An alternative that aims to address these problems
is pool-based sampling. It selects from among all
the unlabeled documents in a pool the one with the
largest disagreement. However, this loses one bene-
fit of stream-based sampling—the implicit modeling
of the data distribution—and it may select documents
that have high disagreement, but are in unimportant,
sparsely populated regions.

We can retain this distributional information by se-
lecting documents using both the classification dis-
agreement and the "density" of the region around
a document. This density-weighted pool-based sam-
pling method prefers documents with high classifica-
tion variance that are also similar to many other doc-
uments. The stream approach approximates this im-
plicitly; we accomplish this more accurately, (espe-
cially when labeling a small number of documents),
by modeling the density explicitly.

We approximate the density in a region around a par-
ticular document by measuring the average distance
from that document to all other documents. Distance,
Y, between individual documents is measured by using
exponentiated KL divergence:

Y(dhdh) = e-ßD(P(W\dh) || (AP(W|di)+(l-A)P(W))))

(8)

where If is a random variable over words in the
vocabulary; P(W|dj) is the maximum likelihood es-
timate of words sampled from document di, (i.e.,

P(wt\di) = N(wt,di)/\di\); P(W) is the marginal dis-
tribution over words; A is a parameter that determines
how much smoothing to use on the encoding distribu-
tion (we must ensure no zeroes here to prevent infinite
distances); and ß is a parameter that determines the
sharpness of the distance metric.

In essence, the average KL divergence between a docu-
ment, di, and all other documents measures the degree
of overlap between di and all other documents; expo-
nentiation converts this information-theoretic number
of "bits of information" into a scalar distance.

When calculating the average distance from di to all
other documents it is much more computationally ef-
ficient to calculate the geometric mean than the arith-
metic mean, because the distance to all documents
that share no words words with dj can be calculated
in advance, and we only need make corrections for the
words that appear in di. Using a geometric mean, we
define density, Z of document di to be

Z(di) = e^ ^
, ln(y(<fc,<!,,))

(9)

We combine this density metric with disagreement by
selecting the document that has the largest product of
density (Equation 9) and disagreement (Equation 6).
This density-weighted pool-based sampling selects the
document that is representative of many other docu-
ments, and about which there is confident committee
disagreement.

Combining Active Learning and EM

Active learning can be combined with EM by run-
ning EM to convergence after actively selecting all the
training data that will be labeled. This can be under-
stood as using active learning to select a better start-
ing point for EM hill climbing, instead of randomly
selecting documents to label for the starting point. A
more interesting approach, that we term pool-leveraged
sampling, is to interleave EM with active learning, so
that EM not only builds on the results of active learn-
ing, but EM also informs active learning. To do this
we run EM to convergence on each committee mem-
ber before performing the disagreement calculations.
The intended effect is (1) to avoid requesting labels
for examples whose label can be reliably filled in by
EM, and (2) to encourage the selection of examples
that will help EM find a local maximum with higher
classification accuracy. With more accurate commit-
tee members, QBC should pick more informative doc-
uments to label. The complete active learning algo-

EM and Active Learning for Text 355

rithm, both with and without EM, is summarized in
Table 1.

Unlike settings in which queries must be generated
[Cohn 1994], and previous work in which the unlabeled
data is available as a stream [Dagan k Engelson 1995;
Liere k Tadepalli 1997; Freund et al. 1997], our as-
sumption about the availability of a pool of unlabeled
data makes the improvements to active learning pos-
sible. This pool is present for many real-world tasks
in which efficient use of labels is important, especially
in text learning.

5 Related Work

A similar approach to active learning, but without EM,
is that of Dagan and Engelson [1995]. They use QBC
stream-based sampling and vote entropy. In contrast,
we advocate density-weighted pool-based sampling
and the KL metric. Additionally, we select committee
members using the Dirichlet distribution over classi-
fier parameters, instead of approximating this with a
Normal distribution. Several other studies have inves-
tigated active learning for text categorization. Lewis
and Gale examine uncertainty sampling and relevance
sampling in a pool-based setting [Lewis k Gale 1994;
Lewis 1995]. These techniques select queries based on
only a single classifier instead of a committee, and thus
cannot approximate classification variance. Liere and
Tadepalli [1997] use committees of Winnow learners
for active text learning. They select documents for
which two randomly selected committee members dis-
agree on the class label.

In previous work, we show that EM with unlabeled
data reduces text classification error by one-third
[Nigam et al. 1998]. Two other studies have used
EM to combine labeled and unlabeled data without
active learning for classification, but on non-text tasks
[Miller k Uyar 1997; Shahshahani k Landgrebe 1994].
Ghahramani and Jordan [1994] use EM with mixture
models to fill in missing feature values.

6 Experimental Results

This section provides evidence that using a combina-
tion of active learning and EM performs better than
using either individually. The results are based on data
sets from UseNet and Reuters.3

3These data sets are both available on the In-
ternet. See http://www.cs.cmu.edu/~textlearning and
http://www.research.att.com/~lewis.

The Newsgroups data set, collected by Ken Lang, con-
tains about 20,000 articles evenly divided among 20
UseNet discussion groups [Joachims 1997]. We use
the five comp. * classes as our data set. When tokeniz-
ing this data, we skip the UseNet headers (thereby
discarding the subject line); tokens are formed from
contiguous alphabetic characters, removing words on
a stoplist of common words. Best performance was
obtained with no feature selection, no stemming, and
by normalizing word counts by document length. The
resulting vocabulary, after removing words that occur
only once, has 22958 words. On each trial, 20% of the
documents are randomly selected for placement in the
test set.

The 'ModApte' train/test split of the Reuters 21578
Distribution 1.0 data set consists of 12902 Reuters
newswire articles in 135 overlapping topic categories.
Following several other studies [Joachims 1998; Liere
k Tadepalli 1997] we build binary classifiers for each
of the 10 most populous classes. We ignore words on
a stoplist, but do not use stemming. The resulting vo-
cabulary has 19371 words. Results are reported on the
complete test set as precision-recall breakeven points,
a standard information retrieval measure for binary
classification [Joachims 1998].

In our experiments, an initial classifier was trained
with one randomly-selected labeled document per
class. Active learning proceeds as described in Table 1.
Newsgroups experiments were run for 200 active learn-
ing iterations, each round selecting one document for
labeling. Reuters experiments were run for 100 itera-
tions, each round selecting five documents for labeling.
Smoothing parameter A is 0.5; sharpness parameter ß
is 3. We made little effort to tune ß and none to tune
A. For QBC we use a committee size of three (fc=3);
initial experiments show that committee size has lit-
tle effect. All EM runs perform seven EM iterations;
we never found classification accuracy to improve be-
yond the seventh iteration. All results presented are
averages of ten runs per condition.

The top graph in Figure 1 shows a comparison of dif-
ferent disagreement metrics and selection strategies
for QBC without EM. The best combination, density-
weighted pool-based sampling with a KL divergence to
the mean disagreement metric achieves 51% accuracy
after acquiring only 30 labeled documents. To reach
the same accuracy, unweighted pool-based sampling
with KL disagreement needs 40 labeled documents.
If we switch to stream-based, sampling, KL disagree-
ment needs 51 labelings for 51% accuracy. Our ran-
dom selection baseline requires 59 labeled documents.

356 McCallum and Nigam

80%

70%

70%

65%

60%

65%

60%

45%

♦0%

35%

30%

pool-based density-weighted KL divergence
pool-based KL divergence

stream-based KL divergence
Random —

stream-based vote entropy

60 80 100 120 140 160 180 200
Number of Training Documents

OBC-then-EM ■
(Interleaved) QBC-wtth-EM -

Random-then-EM
QBC -

Random -

80 100 120 140 160 180 200
Number ol Training Documents

Figure 1: On the top, a comparison of disagreement met-
rics and selection strategies for QBC shows that density-
weighted pool-based KL sampling does better than other
metrics. On the bottom, combinations of QBC and EM
outperform stand-alone QBC or EM. In these cases, QBC
uses density-weighted pool-based KL sampling. Note that
the order of the legend matches the order of the curves and
that, for resolution, the vertical axes do not range from 0
to 100.

Surprisingly, stream-based vote entropy does slightly
worse than random, needing 61 documents for the 51%
threshold. Density-weighted pool-based sampling with
a KL metric is statistically significantly better than
each of the other methods (p < 0.005 for each pairing).
It is interesting to note that the first several documents
selected by this approach are usually FAQs for the var-
ious newsgroups. Thus, using a pool of unlabeled data
can notably improve active learning.

In contrast to earlier work on part-of-speech tagging
[Dagan & Engelson 1995], vote entropy does not per-
form well on document classification. In our experi-
ence, vote entropy tends to select outliers—documents
that are short or unusual. We conjecture that this oc-
curs because short documents and documents consist-
ing of infrequently occurring words are the documents
that most easily have their classifications changed by
perturbations in the classifier parameters. In these
situations, classification variance is high, but the dif-

ference in magnitude between the classification score
of the winner and the losers is small. For vote en-
tropy, these are prime selection candidates, but KL
divergence accounts for the magnitude of the differ-
ences, and thus helps measure the confidence in the
disagreement. Furthermore, incorporating density-
weighting biases selection towards longer documents,
since these documents have word distributions that are
more representative of the corpus, and thus are consid-
ered "more dense." It is generally better to label long
rather than short documents because, for the same la-
beling effort, a long document provides information
about more words. Dagan and Engelson's domain,
part-of-speech tagging, does not have varying length
examples; document classification does.

Now consider the addition of EM to the learning
scheme. Our EM baseline post-processes random se-
lection with runs of EM (Random-then-EM). The most
straightforward method of combining EM and ac-
tive learning is to run EM after active learning com-
pletes (QBC-then-EM). We also interleave EM and
active learning, by running EM on each committee
member (QBC-with-EM). This also includes a post-
processing run of EM. In QBC, documents are selected
by density-weighted pool-based KL, as the previous ex-
periment indicated was best. Random selection (Ran-
dom) and QBC without EM (QBC) are repeated from
the previous experiment for comparison.

The bottom graph of Figure 1 shows the results of
combining EM and active learning. Starting with the
30 labeling mark again, QBC-then-EM is impressive,
reaching 64% accuracy. Interleaved QBC-with-EM lags
only slightly, requiring 32 labeled documents for 64%
accuracy. Random-then-EM is the next best performer,
needing 51 labeled documents. QBC, without EM,
takes 118 labeled documents, and our baseline, Ran-
dom, takes 179 labeled documents to reach 64% accu-
racy. QBC-then-EM and QBC-with-EM are not statis-
tically significantly different (p = 0.71 N.S.); these two
are each statistically significantly better than each of
the other methods at this threshold (p < 0.05).

These results indicate that the combination of EM
and active learning provides a large benefit. However,
QBC interleaved with EM does not perform better
than QBC followed by EM—not what we were expect-
ing. We hypothesize that while the interleaved method
tends to label documents that EM cannot reliably la-
bel on its own, these documents do not provide the
most beneficial starting point for EM's hill-climbing.
In ongoing work we are examining this more closely
and investigating improvements.

EM and Active Learning for Text 357

80%

70%

70%

65%

60%

55%

50%

45%

40%

35%

30%

initial labels, QBC-with-EM —
Initial labels, QBC-with-EM —

No initial labels, QBC
Random Initial labels, QBC —

60 80 100 120 140 160 180 200
Number of Training Documents

Figure 2: A comparison of random initial labeling and no
initial labeling when documents are selected with density-
weighted pool-based sampling. Note that no initial labeling
tends to dominate the random initial labeling cases.

Another application of the unlabeled pool to guiding
active learning is the selection of the initial labeled ex-
amples. Several previous implementations [Dagan k
Engelson 1995; Lewis k Gale 1994; Lewis 1995] sup-
pose that the learner is provided with a collection of
labeled examples at the beginning of active learning.
However, obtaining labels for these initial examples
(and making sure we have examples from each class)
can itself be an expensive proposition. Alternatively,
our method can begin without any labeled documents,
sampling from the Dirichlet distribution and select-
ing with density-weighted metrics as usual. Figure 2
shows results from experiments that begin with zero
labeled documents, and use the structure of the un-
labeled data pool to select initial labeling requests.
Interestingly, this approach is not only more conve-
nient for many real-world tasks, but also performs
better because, even without any labeled documents,
it can still select documents in dense regions. With
70 labeled documents, QBC initialized with one (ran-
domly selected) document per class attains an average
of 59% accuracy, while QBC initialized with none (re-
lying on density-weighted KL divergence to select all
70) attains an average of 63%. Performance also in-
creased with EM; QBC-with-EM rises from 69% to 72%
when active learning begins with zero labeled docu-
ments. Each of these differences is statistically signif-
icant (p < 0.005). Both with and without EM, this
method successfully finds labeling requests to cover all
classes. As before, the first requests tend to be FAQs
or similar, long, informative documents.

In comparison to previous active learning studies
in text classification domains [Lewis k Gale 1994;
Liere k Tadepalli 1997], the magnitude of our clas-
sification accuracy increase is relatively modest. Both

200 300 400
Numbar of Training Documenta

100%

90%

80%

5 70%

5 60%
m

| 50%
oc
6 40%

S 30%
0.

20%

10%

0%

100%

80% •

80%

I 70%

S 60%
m

| 50%
a;
J 40%

I 30%

20%

10%

0%
200 300 400

Number of Training Documents

Figure 3: Active learning results on three categories of
the Reuters data, corn, trade, and acq, respectively from
the top and in increasing order of frequency. Note that
active learning with committees outperforms random se-
lection and that the magnitude of improvement is larger
for more infrequent classes.

of these previous studies consider binary classifiers
with skewed distributions in which the positive class
has a very small prior probability. With a very in-
frequent positive class, random selection should per-
form extremely poorly because nearly all documents
selected for labeling will be from the negative class.
In tasks where the class priors are more even, random
selection should perform much better—making the im-
provement of active learning less dramatic. With an
eye towards testing this hypothesis, we perform a sub-
set of our previous experiments on the Reuters data
set, which has these skewed priors. We compare Ran-
dom against unweighted pool-based sampling (QBC)
with the KL disagreement metric.

358 McCallum and Nigam

Figure 3 shows results for three of the ten binary clas-
sification tasks. The frequencies of the positive classes
are 0.018, 0.038 and 0.184 for the corn (top), trade
(middle) and acq (bottom) graphs, respectively. The
class frequency and active learning results are repre-
sentative of the spectrum of the ten classes. In all
cases, active learning classification is more accurate
than Random. After 252 labelings, improvements of
accuracy over random are from 27% to 53% for corn,
48% to 68% for trade, and 85% to 90% for acq. The
distinct trend across all ten categories is that the less
frequently occurring positive classes show larger im-
provements with active learning. Thus, we conclude
that our earlier accuracy improvements are good, given
that with unskewed class priors, Random selection pro-
vides a relatively strong performance baseline.

7 Conclusions

This paper demonstrates that by leveraging a large
pool of unlabeled documents in two ways—using EM
and density-weighted pool-based sampling—we can
strongly reduce the need for labeled examples. In fu-
ture work, we will explore the use of a more direct ap-
proximation of the expected reduction in classification
variance across the distribution. We will consider the
effect of the poor probability estimates given by naive
Bayes by exploring other classifiers that give more re-
alistic probability estimates. We will also further in-
vestigate ways of interleaving active learning and EM
to achieve a more than additive benefit.

Acknowledgments

We are grateful to Larry Wasserman for help on the-
oretical aspects of this work. We thank Doug Baker
for help formatting the Reuters data set. Two anony-
mous reviewers provided very helpful comments. This
research was supported in part by the Darpa HPKB
program under contract F30602-97-1-0215.

References

Cohn, D.; Ghahramani, Z.; and Jordan, M. 1996. Ac-
tive learning with statistical models. Journal of Artificial
Intelligence Research 4:129-145.

Cohn, D. 1994. Neural network exploration using optimal
experiment design. In NIPS 6.

Craven, M.; DiPasquo, D.; Freitag, D.; McCallum, A.;
Mitchell, T.; Nigam, K.; and Slattery, S. 1998. Learning
to extract symbolic knowledge from the World Wide Web.
In AAAI-98.

Dagan, I., and Engelson, S. 1995. Committee-based sam-
pling for training probabilistic classifiers. In ICML-95.

Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977.
Maximum likelihood from incomplete data via the EM.
algorithm. Journal of the Royal Statistical Society, Series
B 39.1-38.

Domingos, P., and Pazzani, M. 1997. On the optimal-
ity of the simple Bayesian classifier under zero-one loss.
Machine Learning 29:103-130.

Freund, Y.; Seung, H.; Shamir, E.; and Tishby, N. 1997.
Selective sampling using the query by committee algo-
rithm. Machine Learning 28:133-168.

Friedman, J. H. 1997. On bias, variance, 0/1 - loss, and
the curse-of-dimensionality. Data Mining and Knowledge
Discovery 1:55-77.

Ghahramani, Z., and Jordan, M. 1994. Supervised learn-
ing from incomplete data via an EM approach. In NIPS
6.

Joachims, T. 1997. A probabilistic analysis of the Rocchio
algorithm with TFIDF for text categorization. In ICML-
97.

Joachims, T. 1998. Text categorization with Support
Vector Machines: Learning with many relevant features.
In ECML-98.

Lewis, D., and Gale, W. 1994. A sequential algorithm for
training text classifiers. In Proceedings of ACM SIGIR.

Lewis, D., and Ringuette, M. 1994. A comparison of two
learning algorithms for text categorization. In Third An-
nual Symposium on Document Analysis and Information
Retrieval, 81-93.

Lewis, D. D. 1995. A sequential algorithm for training
text classifiers: Corrigendum and additional data. SIGIR
Forum 29(2):13-19.

Liere, R., and Tadepalli, P. 1997. Active learning with
committees for text categorization. In AAAI-97.

McCallum, A., and Nigam, K. 1998. A comparison
of event models for naive Bayes text classification. In
AAAI-98 Workshop on Learning for Text Categorization.
http://www.cs.cmu.edu/~mccallum.

Miller, D. J., and Uyar, H. S. 1997. A mixture of ex-
perts classifier with learning based on both labelled and
unlabelled data. In NIPS 9.

Nigam, K.; McCallum, A.; Thrun, S.; and Mitchell, T.
1998. Learning to classify text from labeled and unlabeled
documents. In AAAI-98.

Pereira, F.; Tishby, N.; and Lee, L. 1993. Distributional
clustering of English words. In Proceedings of the 31st
ACL.

Shahshahani, B., and Landgrebe, D. 1994. The effect
of unlabeled samples in reducing the small sample size
problem and mitigating the Hughes phenomenon. IEEE
Trans, on Geoscience and Remote Sensing 32(5):1087-
1095.

359

Improving Text Classification by Shrinkage in a Hierarchy of Classes

Andrew McCallum**
mccallum@justresearch. com

"Just Research
4616 Henry Street

Pittsburgh, PA 15213

Ronald Rosenfeld^
roni@cs. emu. edu

Tom Mitchell
mitchell-h @cs. emu. edu

Andrew Y. Ng*
ayn@ai.mit.edu

t School of Computer Science
Carnegie Mellon University-

Pittsburgh, PA 15213

tMITAILab
545 Technology Square
Cambridge, MA 02139

Abstract

When documents are organized in a large
number of topic categories, the categories
are often arranged in a hierarchy. The U.S.
patent database and Yahoo are two examples.

This paper shows that the accuracy of a naive
Bayes text classifier can be significantly im-
proved by taking advantage of a hierarchy of
classes. We adopt an established statistical
technique called shrinkage that smoothes pa-
rameter estimates of a data-sparse child with
its parent in order to obtain more robust pa-
rameter estimates. The approach is also em-
ployed in deleted interpolation, a technique
for smoothing n-grams in language modeling
for speech recognition.

Our method scales well to large data sets,
with numerous categories in large hierarchies.
Experimental results on three real-world data
sets from UseNet, Yahoo, and corporate web
pages show improved performance, with a re-
duction in error up to 29% over the tradi-
tional flat classifier.

1 Introduction

As the dramatic expansion of the World Wide Web
continues, and the amount of on-line text grows,
the development of methods for automatically cate-
gorizing this text becomes more important. A va-
riety of recent work has demonstrated the success
of statistical approaches for learning to classify text
documents [Joachims 1997; Koller k Sahami 1997;
Yang & Pederson 1997; Nigam et al. 1998]. These
approaches, such as TFIDF [Salton 1991] and naive
Bayes [Lewis & Ringuette 1994; McCallum k Nigam

1998], typically represent documents as vectors of
words, and learn by gathering statistics from the ob-
served frequencies of these words within documents
belonging to the different classes. Because they rely
on these learned word statistics, these approaches are
data-intensive: they often require large numbers of
hand-labeled training documents per class to achieve
high classification accuracy.

This paper considers the question of how to scale up
these statistical learning algorithms to tasks with a
large number of classes and sparse training data per
class. When humans organize extensive data sets into
fine-grained categories, topic hierarchies are often em-
ployed to make the large collection of categories more
manageable. Yahoo, the U.S. patent database, MED-

LINE and the Dewey Decimal System are all examples
of such hierarchies.

We present a technique that leverages these
commonly-available topic hierarchies in order to sig-
nificantly improve classification accuracy, especially
when the hierarchy is large and the training data for
each class is sparse. We also present a method for ex-
ponentially reducing the amount of computation nec-
essary for classification, while sacrificing only a small
amount of accuracy.

Our approach applies a well-understood technique
from Statistics called shrinkage that provides improved
estimates of parameters that would otherwise be un-
certain due to limited amounts of training data [Stein
1955; James & Stein 1961]. The technique exploits a
hierarchy by "shrinking" parameter estimates in data-
sparse children toward the estimates of the data-rich
ancestors in ways that are provably optimal under the
appropriate conditions. We employ a simple form of
shrinkage that creates new parameter estimates in a
child by a linear interpolation of all hierarchy nodes
from the child to the root. The interpolation weights

360 McCallum, Rosenfeld, Mitchell, and Ng

are learned by a form of Expectation Maximization
[Dempster, Laird, k Rubin 1977]. This form of shrink-
age is also applied in deleted interpolation, a tech-
nique for smoothing n-grams in language modeling for
speech recognition [Jelinek k Mercer 1980].

Note that our approach to text classification in a hi-
erarchy is quite different than work by Koller and Sa-
hami [Koller k Sahami 1997]. Their Pachinko Ma-
chine employs the hierarchy by learning separate clas-
sifiers at each internal node of the tree, and then la-
beling a document by using these classifiers to greed-
ily select sub-branches until it reaches a leaf. Their
approach is shown to be helpful when documents are
represented using a small subset (< 100 words) of
the available vocabulary, and a different subset of
the vocabulary is selected at each node of the hi-
erarchy. However, their approach did not show im-
provement with larger vocabularies, and in many do-
mains (including the domains studied in this paper)
it has been established that large vocabulary sizes of-
ten perform best [Joachims 1997; Nigam et al. 1998;
McCallum k Nigam 1998].

Somewhat surprisingly, it can be shown that a prob-
abilistic form of Pachinko Machine, when trained us-
ing maximum likelihood estimates and a constant vo-
cabulary, is equivalent to the simple non-hierarchical
classifier [Mitchell 1998]. At each node in the hier-
archy this non-deterministic version of the Pachinko
Machine assigns each document probabilistically to all
of its descendants, whereas the deterministic Pachinko
Machine proposed by Koller and Sahami assigns each
document to its single most probable descendant.

The remainder of this paper is structured as follows:
we explain our probabilistic approach to text classifi-
cation, and present the use of shrinkage in this context.
Then we show experimental results on three real-world
data sets, present related work, and close with a dis-
cussion of future work.

2 Probabilistic Framework

We approach the task of text classification in a
Bayesian learning framework. We assume that the
text data was generated by a parametric model, and
use training data to calculate estimates of the model
parameters. Then, equipped with these estimates, we
classify new test documents by using Bayes rule to
turn the generative model around and calculate the
posterior probability that a class would have generated
the test document in question. Classification then be-
comes a simple matter of selecting the most probable

class given the document's words.

We assume that the data is generated by a mixture
model, (parameterized by 6), with a one-to-one cor-
respondence between mixture model components and
(the observed) classes, Cj 6 {C}. This specifies that
a document, d;, is created by (1) selecting a class, Cj,
according to the class priors, P(c_,|0), then (2) hav-
ing the corresponding mixture component generate a
document according to its own parameters, with dis-
tribution P(di\cj-,0). The marginal probability of gen-
erating document d; is thus a sum of total probability
over all mixture components:

\c\
P(di\9) = '£P(cj\0)P(di\cj;e). (1)

i=i

A document is comprised of an ordered sequence of
word events, drawn from a vocabulary V. We make the
naive Bayes assumption: that the probability of each
word event in a document is independent of the word's
context given the class, and furthermore independent
of its position in the document. Thus, each document
di is drawn from a multinomial distribution with as
many independent trials as the number of words in
di. We also assume that document lengths, |d;|, are
independent of class. We write w<iik for the word in
position k of document d;, where the subscript of w (in
this case d;*) indicates an index into the vocabulary.
Then the probability of a document given its class is:

P(di\cJ;e) = P(\di\)l[P(wdJcj;0). (2)
*=i

Given the assumption about one-to-one correspon-
dence between mixture model components and classes,
the naive Bayes assumption, and the position indepen-
dence assumption, the mixture model is composed of
disjoint sets of parameters, 9j, for each class Cj. This
parameter set for each class, 9j, is composed of prob-
abilities for each word, wt, such that 0jt = P(wt\cj;9)

and 5^1=1 Ojt — 1- The on'y other parameters in
the model are the class prior probabilities, written
e0j = P(Cj\6).

Given a set of labeled training documents, V, we can
calculate estimates for the parameters of the model
that generated the documents. These estimates con-
sist of straightforward counting of events, supple-
mented by standard Laplace 'smoothing' that primes
each estimate with a count of one to avoid probabili-
ties of zero. We define N(wt, d,) to be the count of the
number of times word wt occurs in document d,, and

Text Classification in a Hierarchy of Classes 361

define P(cj|di) <E {0,1}, as given by the document's
class label. Then, the estimate of the probability of
word Wt in class Cj is

P ("believe") =
UNIFORM IVI

ejt = p(wt\Cj;e)

(3)

The class prior parameters are set by the maximum
likelihood estimate:

PI
0oj=P(c#) = £Pfe|di)/|£>|. (4)

i=l

Given estimates of these parameters calculated from
the training documents, classification can be per-
formed on test documents by calculating the posterior
probability of each class given the words observed in
the test document, and selecting the class with the
highest probability. We formulate this by first apply-
ing Bayes rule, and then substituting for V(di\cj\6)
and P(di\6) using Equations 1 and 2.

P(cj|d<;0) =
nci\6)P(di\cj;e)

P{di\0)

p(c#) nitlPKii je;;*)

(5)

1*1 Elt'iPtCrWnlt'lP^JCr;*)

Sports
P ("believe" I Sports)

Religion
P ("believe" I Religion)

alt.atheism
P ("believe" I altatheism)

P ("believe" I alt.atheism) = Vaheism p ("believe" I alt.atheism) +
SHRINKAGE MLE

Vaheism p ("believe" I Religion) +
MLE

4..aUKism
P("belieVe"IR00t> +

MLE

C«hdsmp ("believe")
UNIFORM

Figure 1: The new, shrinkage-based estimate of the proba-
bility of a word (e.g. "believe") given a UseNet class (e.g.
alt.atheism) is a weighted sum of the maximum-likelihood
estimates from the leaf to the root, and beyond the root to
the uniform distribution over words.

Despite the fact that the mixture model and word
independence assumptions are strongly violated with
real-world data, naive Bayes performs text classifica-
tion very well. Friedman and Domingos and Pazzani
discuss why the violation of the word independence
assumption sometimes does little damage to classifi-
cation accuracy [Friedman 1997; Domingos k Pazzani
1997].

3 Hierarchical Classification

This section presents a method of improving our es-
timates of the model parameters by taking advantage
of the hierarchy. We first briefly describe shrinkage
in a general sense, then discuss its application to text
classification in a hierarchy, and the mechanics of our
algorithm.

Background on Shrinkage

We wish to estimate parameters 0\,.. . ,0|c|, (i.e. each
class's probability distribution over words). The es-
timates §j of 9j can often be improved by shrinking

each of them towards some common value. See Carlin
and Louis [1996] for a recent summary of shrinkage.
There are two justifications for shrinkage. First, if the
quantities 6\,... ,0\c\ are thought to be similar, then
they can regarded as draws from a common distribu-
tion. In this case, the shrinkage estimator is just the
Bayes estimate. More surprisingly, even if the quan-
tities are completely unrelated, and even if the data
upon which each estimator is based are independent
of each other, shrinkage estimators still reduce the risk
of the estimators. This is a deep and counterintuitive
fact discovered by Stein [1955] and James and Stein
[1961].

Shrinkage for Text Classification

We use shrinkage to better estimate the probability Ojt
of word wt given class Cj. For each node in our tree we
construct a maximum likelihood (ML) estimate based
on the data associated with that node (Equation 3
without the Laplace smoothing). An improved esti-
mate for each leaf node is then derived by "shrinking"
its ML estimate towards the ML estimates of all its an-

362 McCallum! Rosenfeld, Mitchell, and Ng

cestors, namely those estimates found along the path
from that leaf to the root. Figure 1 illustrates this pro-
cess. In statistical language modeling terms, we build
a unigram model for each node in the tree, and smooth
each leaf model by linearly interpolating it with all the
models found along the path to the root.

The estimates along a path from the leaf to the root
represent a tradeoff between specificity and reliability.
The estimate at the leaf is the most specific (most
pertinent, least biased), since it is based on data from
that topic alone. However it is also the least reliable,
since it is based on the smallest sample of data. The
estimator at the root is the most reliable, but the least
specific.

Since even the root contains a finite amount of data,
it may estimate some rare words unreliably. We there-
fore extend the tree by adding, beyond the root, the
uniform estimate. Thanks to the latter, we no longer
need to smooth the individual ML estimates with the
Laplacean prior.

To ensure that the ML estimates along a given path
are independent, we subtract each child's data from
its parent's before calculating the parent's ML esti-
mate. Thus the latter estimate is based on data that
belongs to all the siblings of said child, but not to the
child itself. Note that in this way, for any path from
leaf to root, every datum in the tree is used in exactly
one of the ML estimates, providing both independence
among the estimates and efficient use of the training
data.

Determining Mixture Weights

Given a set of ML estimates along the path from a
leaf to the root (and beyond it, to the uniform esti-
mate), how do we decide on the weights for interpo-
lating (mixing) them? Let {#j,0|, ■• -,#*} be k such

estimates, where 6j = Oj is the estimate at the leaf,

and 0j is the uniform estimate (6jt = 1/\V\ for all
words wt), and A; —2 is the depth of class Cj in the tree.
The interpolation weights among the ancestors of class
Cj are written {Aj, A|,..., A*}, where Y,*i=i <*} = 1-

We write 6j for the new estimate of the class-
conditioned word probabilities based on shrinkage.
The new estimate for the probability of word wt given
class Cj is

9jt = PK|ci;6j) = \)e)t + x)e% + ... + \)ekjt. (6)

We derive empirically optimal weights, AJ, between
the ancestors of Cj, by finding the weights that maxi-

mize the likelihood of some hitherto unseen "held-out"
data. We use the fact that the likelihood of data ac-
cording to the mixture model is a convex function of
the weights (this falls out of Jensen's inequality), and
thus attains a single, global maximum. We find that
maximum for each leaf class, Cj, using the following
iterative procedure:

Initialize: Set the A/s to some initial values, say Aj =
j- (any normalized non-zero initial values will do).

Iterate:

(1) Calculate the degree to which each estimate pre-
dicts the words wt in the held-out set, 7ij, from class

ßj = 2_] P(^j was used to generate wt)

£ W.
E\mäm

m j jt
(7)

(2) Derive new (and guaranteed improved) weights by
normalizing the /?'s:

j Em ßf
(8)

Terminate: Upon convergence of the likelihood func-
tion (usually achieved within a dozen or so iterations).

This algorithm can be viewed as a particularly simple
form of EM [Dempster, Laird, & Rubin 1977], where
each datum is assumed to have been generated by first
choosing one of the tree nodes in the path to the root,
say 6j (with probability A}), then using that estimate
to generate that datum. EM then maximizes the total
likelihood when the choices of estimates made for the
various data are unknown. The first step in the iter-
ative part is thus the "E" step, and the second one is
the "M" step.

While conceptually simple, this method makes ineffi-
cient use of the available training data by carving off
some of it to be used as a held-out set. To overcome
this problem, we modify the algorithm as follows: all
the available data is used both to construct the ML es-
timates and to optimize the weights. However, as each
document is used in the above algorithm, the ML esti-
mates are modified to exclude its data, so as to make

Text Classification in a Hierarchy of Classes 363

training
documents Class child

Mixture Weights
parent g'parent uniform

235

root/politics/talk.politics.guns 0.368 0.092 0.017 0.522
root/politics/talk.politics.mideast 0.256 0.132 0.001 0.611
root/politics/talEpölitics.misc 0.197 0.213 0.026 0.564
root/religion/ alt. atheism 0.235 0.158 0.022 0.585
root/religion/soc.religion.Christian 0.181 0.189 0.052 0.578
root/religion/talk.religion.misc 0.104 0.255 0.028 0.613

7497

root/politics/talk.politics.guns 0.801 0.089 0.048 0.061
root/politics/talk.politics.mideast 0.859 0.061 0.010 0.071
root /politics/talk, politics, misc 0.762 0.126 0.043 0.068
root/religion/alt. atheism 0.766 0.174 0.043 0.018
root/religion/soc.religion.christian 0.837 0.098 0.041 0.024
root/religion/talk.religion.misc 0.663 0.226 0.049 0.062

Table 1: Mixture weights learned by EM for some nodes in the UseNet class hierarchy described in section 4. Notice that
when training data is sparse (top half of table), classes mix more strongly with their parents than when data is plentiful.
Notice also that more 'generic' classes mix more strongly with their parents, e.g. talk.politics.misc's weight on its parent
is higher than is talk.politics.guns's).

them independent of it. This method is very similar to
the "leave-one-out" cross-validation commonly used in
statistical estimation.

This technique of finding the optimal weights is rou-
tinely used in statistical language modeling to inter-
polate together different models (such as trigram, Di-
gram, unigram and uniform), where it is known as
"deleted interpolation" [Jelinek & Mercer 1980]. It
was similarly used to interpolate estimates from nodes
along a tree path in [Bahl et al. 1989]. This cross-
validation approach to setting the mixture weights is
not exactly the same style of shrinkage as Stein [1955]
and James and Stein [1961], but is similar in spirit.
In future work we will compare the different styles of
shrinkage.

Table 1 shows a subset of the mixture weights learned
by EM for a hierarchy based on UseNet articles.

4 Experimental Results

This section provides empirical evidence that shrink-
age reduces text classification error by up to 29%. We
also show that shrinkage helps most when training
data is sparse and the number of classes is large. Fi-
nally, we demonstrate that dynamically pruning the
tree can exponentially reduce computation time, at
minimal loss of accuracy. Experiments are based on
three different real-world data sets, one consisting of
UseNet articles, and two of web pages.1 All the results
are averages of ten cross-validation trials.

■"■All three data sets are available on-line.
http://www.cs.cmu.edu/~textlearning.

See

The Industry Sector hierarchy, made available by Mar-
ket Guide Inc. (www.marketguide.com), consists of
company web pages classified in a hierarchy of indus-
try sectors. Using all classes at depth two results in
6440 web pages partitioned into 71 classes. In tokeniz-
ing the data we skip all MIME headers and HTML
tags, use a stoplist, but do not stem. After removing
tokens that occur only once, the corpus contains 1.2
million words, with a vocabulary of size 29964.

The Newsgroups data set, collected by Ken Lang, con-
tains about 20,000 articles evenly divided among 20
UseNet discussion groups [Joachims 1997]. Several of
the topic classes are quite confusable: five of them
are about computers; three discuss religion. From this
data set, we build a two-level hierarchy from the 15
classes that fit into the following top level categories:
vehicles, computers, politics, religion and sports. We
tokenize the data in the same way as above. The re-
sulting data set, after removing words that occur only
once, contains 1.7 million words, and a vocabulary size
of 52309.

We gathered the entirety of the Yahoo 'Science' hierar-
chy in July 1997. The web pages pointed to by Yahoo
are divided into 264 disjoint classes containing 14831
pages as result of descending to deeper nodes of Ya-
hoo's hierarchy until each class contains less than 200
documents, and then removing classes with fewer than
20 documents. After tokenizing as above and removing
stopwords and words that occur only once, the corpus
contains 3.0 million words, with a vocabulary size of
76624.

Feature selection, when used, is performed by select-

364 McCallum, Rosenfeld, Mitchell, and Ng

&
E
3 u <

80 ■

60 ■

40

20

10

Hierarchical Naive Bayes with Hierarchical Feature Selection
Flat Naive Bayes with Hierarchical Feature Selection

Flat Naive Bayes

Sy' .*'

v^>-

^^
,-'*''

„■•*'

■ ■"'

100 1000 10000
Vocabulary (Feature Set) Size

Hierarchical Naive Bayes
Flat Naive Bayes

- X ■""

/X
V I" -

//
r

100 1000
Number of training documents

10000

Figure 2: Classification accuracy on the Industry Sector
data set with varying vocabulary size in the horizontal axis.
The tiny vertical bars at each data point indicate standard
error. Performance is best with the full vocabulary, where
shrinkage reduces error by almost one-third.

ing the words that have highest mutual information
with the class variable. A previous study found this
method to be the best for text among several com-
mon methods [Yang & Pederson 1997]. In addition to
selecting features by the traditional, flat use of mu-
tual information, we also use the hierarchy for feature
selection. Hierarchical feature selection selects equal
numbers of top words by mutual information at each
internal node of the tree, using the node's immedi-
ate children as the classes. This corresponds to Koller
and Sahami's hierarchical feature selection with zero
dependencies [Koller & Sahami 1997], except that we
define the total vocabulary to be the union of all the
vocabularies chosen by the internal nodes. The union
is necessary so that the models we will mix share the
same event space.

Hierarchical classification improves accuracy

Figure 2 shows classification accuracy on the Indus-
try Sector data set with 50-50 train-test splits while
varying vocabulary size. No partial credit is given for
classification into neighbors of the true class.

First, note that larger vocabulary sizes generally per-
form better; this is consistent with previous results of
naive Bayes on several other data sets [Joachims 1997;
Nigam et al. 1998; McCallum k Nigam 1998]. Sec-
ond, note that Hierarchical Feature Selection some-
what improves the performance of flat naive Bayes
in the mid-range of feature selection—at about 5000
words, traditional, flat feature selection obtains 59%
accuracy, while hierarchical feature selection reaches

Figure 3: Classification accuracy on the Newsgroups data
set with varying amounts of training data. The vertical
axis is zoomed for magnification of the error bars. Over-
all, hierarchical modeling provides less improvement than
it does in the Industry Sector data set because the hierar-
chy is much smaller. Notice, however, that, as expected,
shrinkage helps more when there is less training data.

64%. Third, and most importantly, observe that
shrinkage improves classification accuracy across the
board, making the largest improvement at the full,
unpruned vocabulary size, where it achieves 76% accu-
racy. In comparison, the flat classifier reaches its best
performance of 66% at about 10000 words. This differ-
ence represents a 29% reduction in classification error.
We maintain that low-frequency words contribute sig-
nificantly to correct classifications, and that shrinkage
helps reduce variance of the estimates in the larger pa-
rameter space that results from the larger vocabulary.2

Shrinkage helps more when training data is
sparse.

Figure 3 shows accuracy on the Newsgroups data set
with the full vocabulary, while varying amount of
training data. Our experiments indicate that accuracy
in this domain is highest with no feature selection, (i.e.
using the full vocabulary), for both flat and hierar-
chical classifiers, even with small amounts of training
data.

It is interesting to see that hierarchical modeling pro-
vides less improvement on this data set than it does
in the Industry Sector corpus. We expect that this is

2Large vocabularies need not be a computational con-
cern. In our experiments, with the largest vocabulary,
it takes only 216 seconds to classify 3220 Industry Sector
documents and write the results to disk. In comparison,
the smallest vocabulary takes 208 seconds—a difference of
0.002 seconds per document on average.

Text Classification in a Hierarchy of Classes 365

due to the significantly reduced branch-out factor in
this smaller hierarchy. Unlike the Industry Sector hi-
erarchy, in which the mean number of siblings is six,
here the mean number of siblings is three. Thus each
child has fewer siblings and less data from which to
"borrow strength."

The second expected result, exhibited in Figure 3, is
that shrinkage provides more improvement when the
amount of training data is small, and that shrinkage
reduces variance in the classifications; (notice larger
error bars on the 'flat classification' curve). If each
class had an infinite amount of training data, accurate
parameter estimates could be obtained for each class
independently; however, when training data is sparse,
estimates are improved by using shrinkage to smooth
a class's parameters with its ancestors.

The two findings that (1) shrinkage allows the use of
helpful large vocabulary sizes, and (2) shrinkage im-
proves performance more when training data is sparse,
are both confirmed by our experiments with the Ya-
hoo data set. Figure 4 shows classification accuracy
on the Science hierarchy as a function of vocabulary
size, again, with no partial credit for near misses. Flat
naive Bayes reaches its highest accuracy of 36.4% at
a relatively small vocabulary size of 1449. Hierarchi-
cal classification always performs better than flat, but
attains its best accuracy of 39.5% at a larger vocab-
ulary size of 13311. The improvement in accuracy is
not as dramatic here as with the Industry Sector data
set, perhaps because the Yahoo set is more noisy (be-
ing gathered automatically rather than by hand, and
containing many documents that are simply timeout
messages or pointers to moved pages), and because
Yahoo has many classes with overlapping or closely
neighboring definitions.3 However, it is interesting to
note that among those classes with small quantities of
training data, shrinkage improves performance more
strongly. Among those 151 classes with 50 documents
or less, shrinkage improves accuracy by 8%, from 29%
to 37%. Among those 50 classes containing more than
100 documents, shrinkage does not improve accuracy,
both obtaining about 45%.

This result indicates that shrinkage would be all the
more important if we attempted to classify documents
into Yahoo's deepest leaf categories instead of into the
somewhat coalesced and pruned version that is used

3Using more complex Bayesian classifiers that capture
more dependancies than naive Bayes may help this last
problem. The larger number of paramters in these models
will make training data even more sparse, and this suggests
that the use of shrinkage would be all the more important.

100

80

60

40

20

Hierarchical Naive Bayes with Hier Vocab
Flat Naive Bayes with Hier Vocab

1000 10000
Vocabulary (Feature Set) Size

100000

Figure 4: Classification accuracy on the Yahoo Science data
set with varying vocabulary sizes. Tiny vertical bars at
each data point indicate standard error. The large number
of classes and noisy data make this task difficult.

here and is defined at the beginning of this section.
However, this would result in thousands of classes—
quite a computational burden. Next we describe how
the hierarchy itself can be used to ease this burden.

Pruning the tree for increased computational
efficiency

In addition to improving accuracy, the class hierarchy
can also be leveraged to improve computational effi-
ciency. The classifier can avoid calculating P(cj|dj)
for a majority of the classes (leaves of the tree) by
pruning the tree dynamically during the classification
of each document. Like the Pachinko Machine [Koller
& Sahami 1997] we can classify the document at in-
ternal nodes of the tree, and choose only to calculate
probabilities for classes underneath the branches se-
lected by these higher-level, coarse-grained classifiers.
Note, however, that when we do this, each "pruning
classification" at the interior of the tree is an opportu-
nity for error, and the deeper the hierarchy the more
the opportunities for error will compound.

As expected, our experimental results show that per-
forming this pruning does indeed reduce classification
accuracy. However, one may be willing to accept this
reduction in exchange for the exponential reduction in
the amount of computation necessary for classification.
On the Industry Sector data set, averaged over ten runs,
pruning that removes from consideration all but a sin-
gle branch at each interior node reaches 70.0% accu-
racy, more than 5% points lower than without pruning.
However, unlike the Pachinko Machine, our paradigm
allows for the comparison of classification scores from

366 McCallum, Rosenfeld, Mitchell, and Ng

leaves that do not share the same parent. Thus we
can also prune less aggressively. Pruning that keeps
two branches attains 74.3%. And pruning to three
branches achieves 75.2%. This last result is only half a
percent less than the 75.8% obtained by the full evalu-
ation of the tree without pruning. The same approach
could also be used for Yahoo.

5 Related Work

Shrinkage estimation is now considered standard
methodology in Statistics. It is used routinely in a vast
array of problems and its theoretical properties have
been studied from both the Bayesian and frequentist
points of view. A good discussion with ample refer-
ences and examples is contained in [Carlin & Louis
1996]. Although MacKay and Peto [1994] do not use
the term "shrinkage" in their paper, they apply this
Bayesian style of shrinkage in their hierarchical Dirich-
let model for n-grams.

Shrinkage in the cross-validation style was first used
to derive a language model in [Jelinek & Mercer 1980],
where it is known as deleted interpolation. Interpola-
tion of language models along the path of a tree is de-
scribed in [Bahl et al. 1989]. More recently, Seymore
and Rosenfeld [1997] classified a speech recognizer's
output into multiple topics, then used an automati-
cally derived "topic tree" to interpolate the models
associated with appropriate nodes up that tree.

A variety of work in the Information Retrieval and
Machine Learning communities has demonstrated the
success of statistical approaches for learning to classify
text documents. Naive Bayes has been used for text
classification, and due to its probabilistic foundations,
been applied in several extensions [Lewis & Ringuette
1994; Joachims 1997; Nigam et al. 1998].

An earlier approach to hierarchical document classi-
fication, the Pachinko Machine, has been proposed
by Koller and Sahami [1997]. Their method differs
significantly from shrinkage. The Pachinko Machine
classifies documents at internal nodes of the tree, and
greedily selects sub-branches until it reaches a leaf.
Since classification errors at internal nodes compound,
the accuracy at all the internal nodes must be very
high in order for overall accuracy to be higher than
a flat classifier (especially for deeper hierarchies). We
experimented with schemes that allow a lower node
to "reject" a document and send it back up the tree
for re-classification, but did not find these to work
well. Koller and Sahami present results with small
vocabularies (less than 100 words); however, other

results in the literature indicate that large vocabu-
lary sizes often have higher accuracy [Joachims 1997;
Nigam et al. 1998]. A possible explanation for the
discrepancy is that Koller and Sahami use a multi-
variate Bernoulli model while we use a multinomial
model [Sahami, Personal Communication]. In our ex-
periments we have found multinomials to outperform
Bernoullis [McCallum & Nigam 1998]. Our use of
shrinkage has allowed us to more robustly keep large
vocabulary sizes, which we believe are necessary for
classifying large data sets with large numbers of di-
verse classes.

Another learning method that uses EM to set mixture
weights among ancestors in a hierarchy is Adaptive
Mixtures of Probabilistic Transducers [Singer 1997].
Each node in a hierarchy that represents a history-
window is linearly mixed with its parent, which in
turn, is mixed with its parent. The model is applied
with success to noun phrase recognition.

Hofmann and Puzicha's [1998] Hierarchical Asymet-
ric Clustering Model (HACM) performs unsupervised
clustering with a mixture model in which EM is also
used to set weights among the ancestors in a hierarchy.

6 Conclusions

This paper has examined the use of class hierarchies for
improving text classification. As the amount of on-line
text increases and the number of topic categories into
which it is organized grows, hierarchies are becoming
an increasingly prevalent way to make a collection of
categories manageable. Thus, the need for good text
classification algorithms that take advantage of these
hierarchies becomes more important.

In this paper we demonstrate that shrinkage with a
class hierarchy improves parameter estimation, and
can reduce text classification error by up to 29%. Be-
cause shrinkage helps especially when there is sparse
training data, shrinkage should be all the more benefi-
cial as we scale up to larger, higher-resolution, deeper
hierarchies with more classes that require larger vo-
cabularies.

We also show that a class hierarchy can be used to
exponentially reduce the amount of computation re-
quired to classify documents, and that we can do so
without sacrificing significant classification accuracy.

In future work, we will investigate the use of shrinkage
to learn more complex Bayesian models with less re-
strictive assumptions than naive Bayes. The improve-
ments due to shrinkage should be increasingly strong

Text Classification in a Hierarchy of Classes 367

as we move to models that have more parameters, and
thus sparser training data. We will also explore alter-
native methods of shrinkage, including the Bayesian
methods in the style of James and Stein. We plan to
work with a related approach that uses EM to clus-
ter the data in a parent, and then allows the child to
mix with the different clusters independently. In other
ongoing work we are studying the advantages of using
EM not only to set the mixture weights, but also re-
distribute individual words of training data among the
nodes on the path from the leaf to the root.

Lastly, we plan to explore ways to learn the class
hierarchy—investigating methods that specifically aim
to increase classification accuracy. In early experi-
ments, it appears that when the learner is not explic-
itly given a hierarchy, then even using the "trivial"
hierarchy (each class being a leaf off the root) does
better than the flat classifier, though not as well as
when we are given a "non-trivial" hierarchy. Further-
more, using a "bad" or scrambled hierarchy also does
better than the flat classifier—the mixture weights are
set by EM to mimic the trivial hierarchy.

Acknowledgments

Larry Wasserman contributed many valuable discus-
sions, pointers to the statistics literature, and com-
ments for this paper. Kamal Nigam provided numer-
ous helpful suggestions on earlier drafts. We thank
Market Guide, Inc. for permission to use their Indus-
try Sector hierarchy, and Mark Craven for gathering its
data from the web. We thank Yahoo! for permission
to use their data. This research was supported in part
by the Darpa HPKB program under contract F30602-
97-1-0215. A. Y. Ng is supported by the NSF under
contract number ASC-92-17041.

References

Bahl, L.; Brown, P.; deSouza, P.; and Mercer, R. 1989.
A tree-based statistical language model for natural lan-
guage speech recognition. IEEE Transactions on Acous-
tics, Speech and Signal Processing 37:1001-1008.

Carlin, B., and Louis, T. 1996. Bayes and Empirical
Bayes Methods for Data Analysis. Chapman and Hall.

Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977.
Maximum likelihood from incomplete data via the EM.
algorithm. Journal of the Royal Statistical Society, Series
B 39:1-38.

Domingos, P., and Pazzani, M. 1997. On the optimal-
ly of the simple Bayesian classifier under zero-one loss.
Machine Learning 29:103-130.

Friedman, J. H. 1997. On bias, variance, 0/1 - loss, and
the curse-of-dimensionality. Data Mining and Knowledge
Discovery 1:55-77.

Hofmann, T., and Puzicha, J. 1998. Statistical models
for co-occurrence data. Technical report, Artificial Intel-
ligence Laboratory and Center for Biological and Com-
putational Learning, MIT. AI Memo 1625, CBCL Memo
159.

James, W., and Stein, C. 1961. Estimation with quadratic
loss. In Proceedings of the Fourth Berkeley Symposium on
Mathematical Statistics and Probability 1, 361-379. Uni-
versity of California Press.

Jelinek, F., and Mercer, R. 1980. Interpolated estima-
tion of Markov source parameters from sparse data. In
Gelsema, S., and Kanal, L. N., eds., Pattern Recognition
in Practice, 381-402.

Joachims, T. 1997. A probabilistic analysis of the Roc-
chio algorithm with TFIDF for text categorization. In
International Conference on Machine Learning (ICML).

Koller, D., and Sahami, M. 1997. Hierarchically classify-
ing documents using very few words. In ICML-97: Pro-
ceedings of the Fourteenth International Conference on
Machine Learning, 170-178. Morgan Kaufmann.

Lewis, D., and Ringuette, M. 1994. A comparison of two
learning algorithms for text categorization. In Third An-
nual Symposium on Document Analysis and Information
Retrieval, 81-93.

MacKay, D., and Peto, L. B. 1994. A hierarchical dirichlet
language model. Natural Language Engineering 1(1).

McCallum, A., and Nigam, K. 1998. A comparison
of event models for naive Bayes text classification. In
AAAI-98 Workshop on Learning for Text Categorization.
http://www.cs.cmu.edu/~mccallum.

Mitchell, T. M. 1998. Conditions for the equiv-
alence of hierarchical and flat Bayesian classifiers.
http://www.cs.cmu.edu/~tom/hierproof.ps.

Nigam, K.; McCallum, A.; Thrun, S.; and Mitchell, T.
1998. Learning to classify text from labeled and unla-
beled documents. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, AAAI-98.

Salton, G. 1991. Developments in automatic text re-
trieval. Science 253:974-979.

Seymore, K., and Rosenfeld, R. 1997. Using story topics
for language model adaptation. In Eurospeech.

Singer, Y. 1997. Adaptive mixtures of probabilistic trans-
ducers. Neural Computation 9(8).

Stein, C. 1955. Inadmissibility of the usual estimator
for the mean of a multivariate normal distribution. In
Proceedings of the Third Berkeley Symposium on Mathe-
matical Statistics and Probability 1, 197-206. University
of California Press.

Yang, Y., and Pederson, J. 1997. Feature selection in
statistical learning of text categorization. In ICML-97,
412-420.

368

A Case Study in the Use of Theory Revision in Requirements
Validation

T.L. McCluskey
School of Computing and Mathematics,

The University of Huddersfield,
HD1 3DH, UK

lee@zeus.hud.ac.uk.

M.M. West
School of Computing and Mathematics,

The University of Huddersfield,
HD1 3DH, UK

m.m.west@zeus.hud.ac.uk.

Abstract

Research emanating from Artificial Intelli-
gence has throughout its history contributed
to techniques and ideas in Software Engineer-
ing. We describe in this paper a case study
showing the use of theory revision to the re-
finement of a formally specified requirements
model. In a previous project we were con-
tracted to create a precise model of the com-
plex criteria governing the separation of air-
craft profiles in Atlantic Airspace. During
that work it became clear that the (auto-
mated) validation of the model was of the ut-
most importance, and in our current project
we have used machine learning tools to pro-
vide extra support in bug identification, bug
removal and maintenance of such a require-
ments model. In this paper we give an
overview of the domain, identify a relevant
learning bias which makes search for revi-
sions tractable, and describe a systematic ap-
proach for the application of theory revision
to such a model. We illustrate the approach
with results of experiments where theory re-
vision techniques have identified and removed
errors, and induced a new part of the model.

Keywords Theory Revision, Machine Learning and
Software Engineering, Requirements Model, Auto-
mated Validation.

1 INTRODUCTION

Promoting and maintaining the quality of require-
ments specifications has a vital role in the engineer-
ing of software. Some software projects, such as those

involving safety-critical elements, necessitate that pre-
cise, mathematical specifications of their requirements
domains be constructed. Such 'requirements models'
must be validated to satisfy certain major quality ob-
jectives such as accuracy, completeness, usability, and
understandability, and during the model's lifetime it
is likely to be incrementally updated, and will require
re-validation. Validation and maintenance of realistic
domain models is a very time consuming, expensive
process where the role of support tools in vital. The
process is best carried out using diverse techniques,
and one of the most useful techniques is to test an an-
imated form of the model. Even when an animated
version is available, however, it is not easy to pinpoint
the causes of bugs and subsequently provide the cor-
rect revision that eliminates them.

In this work we view a precise requirements model
as an imperfect theory of the requirements domain
that needs to undergo refinement to remove bugs or
to reflect changes in the domain, and we formulate
the problem as one of theory revision. The case study
uses an air traffic control requirements model devel-
oped in a previous project called FAROAS (McCluskey
et al. 1995). The model represents aircraft sepa-
ration criteria and conflict prediction procedures re-
lating to airspace over the North East Atlantic, and
is recorded in the 'Formal Methods Europe Applica-
tions Database'1. The model's 'conventional' support
environment had been used for verification and vali-
dation of models written as a set of axioms in many
sorted first order logic. (Meinke and Tucker 1993) -
here abbreviated to msl. During the current IMPRESS
project we extended the environment to include ma-
chine learning tools which perform blame assignment,
explanation-based generalisation and theory revision
(TR). We show in this paper how we overcame the in-

'web site http://www.cs.tcd.ie/FME

Theory Revision in Requirements Validation 369

tractability problems in fielding TR by firstly focusing
on likely faulty axioms sets using a blame assignment
algorithm, then targeting for revision the ordering re-
lations between values of ordinal sorts. We describe a
method and a class of revision operator that has been
successfully used to (a) find and remove bugs from the
requirements model, and (b) to construct a new part of
the model to cope with the changing of criteria for ver-
tical separation between subsonic aircraft. Thus TR
can be seen as a useful embedded component within a
requirements validation regime for high integrity sys-
tems.

2 THE ATC DOMAIN

2.1 DOMAIN DESCRIPTION AND
ACQUISITION

'Shanwick' is a large area of airspace in the eastern
half of the North Atlantic, managed by air traffic con-
trol centres in Shannon, Ireland and Prestwick, Scot-
land. Controllers must organise this airspace daily,
taking into account such factors as weather and the de-
sired flight paths of aircraft companies. They plan the
four dimensional flight profiles of aircraft crossing this
airspace in good time before the aircraft reaches the
boundary, and for this task require a precise definition
of aircraft separation criteria, and an algorithm for
predicting conflicts. The controllers are supported in
their safety-critical work by a computer system which
performs predication and resolution of conflicts be-
tween pairs of flight profiles, and our involvement came
about as part of the research and development con-
cerning the requirements specification of a replacement
for their current flight data processing system.

In the FARO AS project, we created a precise require-
ments model (called the GPS) of the conflict predic-
tion of aircraft flight profiles through the Shanwick
airspace, together with a software support environ-
ment. Knowledge sources used were manuals of air
traffic control, existing computer systems documenta-
tion, and air traffic control officers themselves. The
current CPS contains a kernel of 300 - 400 axioms
in msl representing aircraft profile separation criteria
and a conflict prediction method; the total number of
axioms in an instance of the model, which includes
airspace and short term flight information for a day's
set of profiles, exceeds two thousand. The model is
structured into 23 sorts, and is enriched with real and
natural numbers. An example of an axiom in the CPS
is provided in Figure 1. This represents the condition
for a vertical separation of 2,000 feet, where segments

(Segment1 and Segment2
are_subject_to_oceanic_cpr) =>
[(the_min_vertical_sep_Val_in_feet_required_for
Flight.levell of Segmentl
and Flight_level2 of Segments) = 2000 <=>
[[(both Segmentl and Segment2
are_flown_at_subsonic_speed)
& (one_or_both_of Flight_levell and

Flight_level2 are.above FL 290)] or
[(one_or_both_of Segmentl and Segment2

are_flown_at_supersonic_speed) ft
(one_or_both_of Flight.levell and

Flight_level2 are_at_or_below FL 430)]]]

Figure 1: Condition for a Minimum Vertical Separa-
tion of 2000 feet

are roughly 'straight' components of an aircrafts pro-
file. Either the two aircraft are both subsonic and are
flying above FL 290 (29,000 feet) or one or both are
supersonic and are flying at or below FL 430.

2.2 A CONVENTIONAL SUPPORT
ENVIRONMENT

The CPS is highly structured, with axioms containing
very complex conditions, but the support of an in-
tegrated tools environment alleviates its analysis and
manipulation. In the FAROAS project diverse valida-
tion was carried out using tight syntactic checking, se-
mantic internal consistency checks, expert inspection,
simulation and batch testing. The most complex tool
in the environment is a translator program which in-
puts the CPS (or more generally a set of wffs in msl),
together with a syntactic definition of the tailored msl
language expressed in grammar rules. It parses the
wffs and outputs an animation of them by translating
them into what we call 'EF' (execution form). This
is similar to general clausal form, except clauses may
contain nested negation and disjunction in their bod-
ies. EF obeys the syntax rules of Prolog and is ex-
ecutable by a Prolog interpreter. This parsing and
translation process takes less than 5 minutes for all of
the CPS, and its translated form we term CPSEF

2-

Flight profiles are input to the software environment
as msl axioms and are translated into EF. Although
in theory any part of the CPS can be tested, virtually
all of the instances we obtained were for the 'top level'

2all software tools reported in this paper are imple-
mented in Sicstus Prolog and were tested using a SUN
SPARC station 4 processor with 32MB memory

370 McCluskey and West

conflict axiom defining the mixfix conflict predicate:

SegmentX of Profilel and SegmentY of Profile2
areJn_oceanic_conflict

A day's worth (500 - 800) of cleared aircraft profiles,
where each profile is cleared with (say) the last 20
cleared aircraft in chronological order, results in ap-
proximately 10,000 instances classified as false for the
conflict axiom, where the SegmentX and SegmentY
are existentially quantified variables representing seg-
ments of an aircrafts profile.

In the rest of this paper we use the following nota-
tion: a classified instance that is labelled true and
which CPSEF classifies as true is called truly positive
('TP'), and denoted eTP, whereas one that executes
to false is called falsely negative('FN') and denoted
eFN. A classified instance labelled false which executes
to false using CPSEF is called truly negative ('TN'),
whereas one that executes to true is called falsely pos-
itive ('FP'); these are denoted eTN and eFP respec-
tively. Early phases of validation during the FARO AS
project involving syntax checking and painstaking ex-
pert inspection increased the accuracy and complete-
ness of the CPS so that dynamic testing of the con-
flict axiom resulted in a large number of TN, with a
smaller (about 5 per cent) but significant number of
FP. Although investigation of the set FP helped to find
bugs, it became clear that more powerful tools for bug
identification and removal were needed when building
up and maintaining such a complex, precise domain
model.

3 APPLICATION OF THEORY
REVISION

3.1 RATIONALE

The principle objectives of the current project, IM-
PRESS, were to test the use of ML to help improve
the quality (in terms of accuracy and completeness) of
a formalised requirement specification written in msl
and to increase the quality of the CPS itself. The focus
was not only on bug removal but also on maintenance,
to support the inevitable changes in the requirements
model. Since we started with an existing symbolic do-
main model, the principle ML paradigm we decided
to use was theory revision (Wrobel 1996). Our initial
formulation was as follows:

Revisable theory: a subset of CPSEF clauses.
We can keep some parts of the CPSEF immune or
'shielded' from the revision process, as they were ad-

equately validated using other processes. For exam-
ple, it may be assumed that the 'top level' axioms,
i.e. those defining the basics of separation in terms of
vertical and horizontal dimensions, are correct. The
target concept is the conflict predicate shown above.

Training Instances: The main source is a day's
worth of cleared flight profiles supplied directly by the
UK National Air Traffic Services. The conflict predi-
cate can be executed, and when instantiated with pairs
of cleared flight profiles should return false. The na-
ture of the application skews the training somewhat as
it is driven by FPs only. However, experiments have
also been conducted with other, lower-level predicates
as target concepts, such as those involved in vertical
conflict. Instances associated with these conflicts are
classified into FNs and TPs as well as TNs and FPs.

Learning Biases: the language used for the CPSEF

is strongly typed, which provides a useful constraint in
the generalising or specialising of predicates. Also we
assume a minimal revision bias: we know from other
forms of validation that its structure mirrors the re-
quirements domain, and so we assume only minimal
revisions are necessary.

Given the general problem outlined above, we imple-
mented a standard, simple TR algorithm with opera-
tors such as 'add antecedent' and 'delete clause'. How-
ever we only confirmed that a 'mainstream' approach
to TR would be impracticable. Even given the biases,
the potential space of revisions is enormous, and 'hill-
climbing' with traditional TR operators appears out
of the question. The CPSEF executes the conflict ax-
iom at an average rate of about one test per minute
and results in a batch of tests taking perhaps days to
execute!

We also investigated using TR tools, available via ftp,
but came to the conclusion that we would need to build
our own environment (West et al. 1996). This was
based on the need for a flexible tool base given we
were embarking on a research project, and the need
for tool integration, particularly with our existing val-
idation tools from the earlier FARO AS project. More-
over, the existing tools we examined were not powerful
enough for our use. For example, FORTE (Richards
and Mooney 1995), though well tested, could not cope
with negation or functors. Both the latter arc impor-
tant features of the CPS. Also, while tools presented in
the literature had been tested on theories of the order
of 10's of predicates calls within a similar number of
non-atomic clauses, the CPSEF contains c.2,000 pred-
icate calls within more than 300 non-atomic clauses.

Theory Revision in Requirements Validation 371

3.2 ORDINAL SORTS

The key to our approach lay in the introduction of a
further bias. Although the sorts comprising universes
of objects are distinct, each sort can be characterised
as either ordered or not (Birkhoff 1967). The sorts
which are ordered are termed ordinal in this paper,
and those which are not are termed nominal. Associ-
ated with each ordinal sort X is an arbitrary binary,
transitive, ordering relationship we call '>;'. Exam-
ples of ordinal sorts are Flight Level, Time and Lati-
tude, where primitive order relations are for example
'is above', 'is later than', 'is west of. Examples of
nominal sorts are Aircraft, Airspace, Segment, Profile.
Technical specifications such as the CPS include many
references to ordinal sorts, and our experience in the
validation phase had shown that very often clauses in-
volving comparisons and limits were to blame. For
example, of the 17 primitive order relations defined in
the CPS's grammar, there are 204 occurrences of them
within the current version of the CPS.

Each axiom in the CPS has as its variable domain:

I1x...xI„xDiX...x Dm, n,m>0.

where each Xi is an ordinal sort and each Dj is a
nominal sort. We will focus on axioms containing
'y': examples are x y a,xx y x2, where x,xi,X2 are
ordinal variables and a a constant, limiting value of
some appropriate sort. The axiom involving ordering
might be an equation defining a function, T which
returns different values for different subsets of its do-
main Xi x ... x Xn x Di x ... x Dm, or a predicate,
V. The statements involved in the definition of V re-
turn 'true' or 'false' for different subsets of its domain
I1x...xl„xflix...x Dm- If we factor out the Xi
from the Dj components, for each main predicate and
function, for each tuple (d±,...,dm) oi values, there is
defined an n dimensional region %(di,..., dm) - the
domain of applicability of the predicate or function.
For the remainder of the paper, we shall shorten this
toll.

When the CPS is translated to executable form, each
axiom becomes a Prolog clause. The regions described
above, for the main axioms, now become regions for
Prolog clauses, where tuples of variables now become
tuples of Prolog variables. In the case where a wff is
an equation, its domain is extended by the returned
term.

3.3 SIMPLE REVISIONS

Given a concept (for example the conflict predicate)
and a set of positive instances of the concept, trans-
lated to EF, then the set of proof trees of the in-
stances involve a set of clauses. Consider a clause C
from this set, where its (Prolog) variables are the tu-
pleXl, ... ,Xn, Dl, ... ,Dn, where the X's and D's
are ordinal and nominal respectively (where n > 0).
Each instance of C is associated with an n-tuple of
ordinal variables (xi,...,xn) = x. We should expect
positive instances to have x£Ä. The region K is
defined by logical expressions £(x) involving ordinal
variables x and is not necessarily connected. In a sim-
ilar manner a clause C which does not succeed and
which is involved in a failed proof tree (or trace) of
a negative instance will have x $ 11. In order for in-
stances to fail where they previously succeeded, and
vice-versa, then region It is revised to become region
VJ, for clause C. We classify revision operators that
may change a clause containing an ordinal literal into
two: simple and composite. Simple operators involve
deletion and addition of antecedents from a clause, as
in conventional TR, although the antecedents are re-
stricted to occurrences of order relations This kind of
operator is mainly for finding and possibly correcting
bugs in the model. For example, the condition x y y
may be either removed or replaced by y y x. This
latter is akin (in 2-D geometrical terms) to examining
reflections of the region about a straight line.

3.4 COMPOSITE REVISIONS

The second kind of revision is designed to clarify
requirements involving complex conditions involving
limiting values, which might not have been captured
initially from the expert sources, and also to cope with
changing requirements. We first deal with specialisa-
tion. Suppose C to be a candidate for revision, or
revision point, where C contains antecedents of the
form x y a, a a constant. Further, suppose C suc-
ceeds with instances 0jC in proofs of some training
instances eFP e FP, with tuple xs the ordinal vari-
ables of 6,C. Suppose also that C is successful with
instances faC in proof tree of training instances ejp\
the tuples yj are the ordinal variables of <j>jC Failure
of C would ensure the removal of some instances efp

and in order that C should fail, we need to revise 11
to TV.

Vxi : Xi i TV.

However, in order that C should safely succeed for
correctly classified instances, then tuples x associated

372 McCluskey and West

with eTP should not be removed from H. Thus

Vyj: yj € TV.

We calculate the two sets of tuples:

gFP _ ^x. | Xj ordinal variables of öjC},

STP — {yj | yj ordinal variables of <£jC}. (1)

This allows for the fact that the mis-classification of
some/all of the instances eFP may have arisen from
another clause. Recalling that the variables of C are
x = xi... xn, we denote the minimum and maximum
values of variable component Xi of the SFP variables
by minFP, maxFP respectively. In a similar manner
the minimum and maximum values of components of
the STP variables are respectively min?p ,max?p.

We induce the following, that for instances 6{ C to fail,
the new specialised region is V, less an n dimensional
interval TZFP bounded by minFP, maxFP. We have

T^FP = {(a?i... a;n) | minFP y x\ y maxFP A

... A minFP y x„ y maxFP} (2)

However for instances </>jC to succeed, TV must in-
clude an n dimensional interval TZTP bounded by

• TP TP mmf r, max-1 r:

TZTP = {(xi... xn) | minyP y X\ y maxjrp A

A min^p y xn y max^p) (3)

We have

TZ' = (TZ\ TZFP) UTLTP (4)

(TZTP = TZFP is the limiting case, where all of the mis-
classified instances have arisen from another clause.)
In order to accomplish the revision, we specialise the
clause C as follows: every occurrence in the unrevised
body of C of the logical expression E(x\ ...xn), should
be replaced in the revised body of C by £'(xi... xn),
which is defined:

(£(x\... Xn) A -i (minFP y xi y max[p A

... A minFP y xn y maxFP))

V (min^p y xi y max^p

... A min^p y xn y max^p) (5)

Generalisation can be explained in a similar manner:
in order for instances eFN to succeed, their x compo-
nents are added to the region. However instances eTN

must still fail. We calculate sets SFN, STN and re-
gions TIFN,T^TN in an analogous manner to SFP, STP

in (1) and TZFP,TITP in (2).

We induce the following, that for some FN instances
to succeed and all the TN instances to fail, then the
new generalised region is

TI' = (TIUTIFN)\TITN (6)

In order to accomplish this, we generalise the clause
C, so that every occurrence in the unrevised body of
C of the logical expression £(x\... xn), should be re-
placed by £'(xi... xn), in an analogous manner to (5).
In the next section we explain how these simple and
composite revisions were applied to CPSEF ■

4 EXPERIMENTS WITH TR
TOOLS

We report experiments involving two kinds of data set:

1. The first data-set consists of training instances
from a day's cleared flight profiles recorded in
January 1995. This data was used with the ob-
ject of testing our current techniques using 'sim-
ple' ordinal operators. When tested, the errors in
the CPS as measured by this training set were 33
in 5070, having been previously reduced by other
techniques. Use of TR with simple operators fur-
ther reduced the errors to 1 in 5070.

2. 'Reduced separation for vertical minima' (RVSM)
criteria have recently been introduced for certain
types of aircraft in North Atlantic airspace. A
days cleared flight profiles were provided (from
April 1997), where clearance is subject to the new
revised criteria (of flight levels) for vertical sepa-
rations for pairs of aircraft.The new criteria in-
volved flight level intervals for both aircraft and
was not captured by our current theory. 'Simple'
ordinal operators were not suitable for revisions
of the type investigated, so this data-set was used
for independently testing 'composite' ordinal op-
erators. After the CPS was revised using simple
operators, it was then re-revised using training in-
stances from post-RVSM data and composite op-
erators. All 121 errors resulting from the data
cleared by the changed separation standard were
eliminated by the method.

4.1 THE METHOD AND RESULTS

The method shown here is a general one for revision
of a theory, T, containing significant ordinal variables,

Theory Revision in Requirements Validation 373

although it is based on experiments with the CPS. We
have implemented TR in a manner based on the 'geo-
metrical' discussion above, and integrated it into our
legacy software environment (McCluskey et al. 1995).
This architecture has had to be both flexible and ex-
perimental in response to the inherent complexity of
formal specifications of the size and expressiveness of
the CPS. For example, we have had to develop a form
of blame assignment that can cope with proof trees
from general clausal form logic programmes. This in-
volves first unfolding and then transforming negative
literals using De Morgan's laws and is detailed in (West
et al. 1997).

4.1.1 An Error Removal Experiment

The algorithm for simple ordinal revisions is based on
conventional theory revision techniques and used hill-
climbing based on the accuracy of the theory T. It is
shown in Figure 2. The potential of a clause C is the
number of instances in which it succeeds in a proof
tree, and the negative potential is the number of in-
stances in which it fails in a proof trace; this notion was
used in the description of the FORTE tool (Richards
and Mooney 1995).

1. Collect training set of instances of a concept, L,
known to contain misclassified instances.

2. Classify training instances into TNs, FPs, FN's,
TPs and calculate accuracy.

3. Run blame assignment on instances in FN giving
set of potential-pairs, PI.
PI = {(C,N) | C revisable clause in T and
TV is the potential of C }
Find subset OP1 of PI:
OP1 = {(C,N) | (C,N) S PI A C contains an
ordinal relation }.

4. Repeat step 3 for instances in FP giving set of
potential-pairs, P2, and subset OP2.
Let OP = OP1 U OP2.

5. Revision points = {C \ (C,N) e} OP.
Apply each simple TR operator to each revision
point, in order of C with largest potential. Im-
plement the best revision.

6. Repeat from step 2, unless a maximum accuracy
has been reached.

Using a day's worth of training instances (cleared flight
profiles) we obtained 33 FPs and 5037 TNs out of 5070
runs of the conflict axiom. Because of the complex-
ity of the criteria the revision was accomplished by
focusing the revision space to the longitudinal separa-
tion criteria (i.e. concept L in Figure 2) rather than
from the initial training instances. L was selected by
studying the output of blame assignment for all the
FPs, and the generalised explanation output for indi-
vidual FPs. Longitudinal separation values in minutes
can be 5,6,7,8,9,10,15,20 or 30, and the CPS contains
formalised criteria for all of these. 75 new training
instances were generated from proof trees and proof
traces in which a longitudinal separation value of 10
minutes was assigned to two aircraft at least one of
which is flying at subsonic speed. The training in-
stances included 25 FN and 50 TP, the concept being:

the_basic_mm_longitudinal_sep_Val_in_mins_
required_for(Segmentl,Segment2) = 10.

The TP's were generated by re-running the day's
worth of instances, and identifying those in vertical
conflict that gave a longitudinal separation of 10 min-
utes, but were not in overall conflict according to both
air traffic control officers and the CPSEF (thus lower-
ing the possibility of noisy data). The FN's of con-
cept L are derived directly from the 33 false positives
from the conflict predicate. The algorithm using sim-
ple reverse and dropping conditions operators returned
a new theory with two clauses altered by both the op-
erators; after revision, 74 of the training instances were
covered, and only 1 (FN) uncovered. Significantly, one
of the clauses that was revised, defining the predicate:

are-after _a_common_pt_from_which_profile_tracks
_are_same_or_diverging_thereafter_and_at_which
_both_aircraft-have-already _reported_by

has been subsequently identified as an incorrect read-
ing of an ATC Manual.

4.1.2 A Requirements Change Experiment

The method for implementing composite ordinal oper-
ators is shown in Figure 3. Steps 1 and 2 are similar
to those of the simple operator. If after step 2, FN
is larger than FP, then generalisation of a clause C
occurs in steps 4b .. 8b in a similar manner. Note
that the driver for the algorithm is the stability of the
clauses in OP, rather than the increase in accuracy of
r.

Figure 2: Algorithm for Simple Ordinal Operators

374 McCluskey and West

1. Collect training set of instances of a concept, known
to contain misclassified instances. Initialise: D =
Deleted clauses = { } , A — added clauses = { }■

2. Classify training instances into TNs, FPs, FN's,
TPs and calculate accuracy.

3a. Specialise T in a manner indicated by steps 3a ..
8a. Run blame assignment on instances in FP
giving set of potential-pairs, P.
P = {(C,N) \ C revisable clause in T and
JV is the potential of C }.
Find subset OP of P:
OP = {(C,N) | (C,N) e P A C contains an
ordinal relation }.

4a. Select pair {C,N) where N is maximum of
{N\{C,N)£} OP.

5a. Calculate the n dimensional regions TZFN,T^TN

defined by (1), (2) and (3).

6a. If 11 FNJTITN are not equal
set head of C" := head of C;
set body of C" := body of C with £ replaced by
£' from (5)
else
delete C from OP and repeat from step 4a.

7a. Replace C with C" and calculate accuracy.

8a. D' = DöC;A' = AuC.

9. Repeat from step 1 until OP is stable or accuracy
is 100 %.

Figure 3: Algorithm for Composite Ordinal Operators.

Because of the safety-critical nature of the application,
and the fact that some data values may occur only
rarely, it is necessary to check that a clause C € A orig-
inally arising from a function, remains defined over its
intended domain. If this is the case, a post-processing
phase is necessary.

204 training instances (classified according to post-
RVSM criteria) of the conflict axiom were used to re-
vise the CPS using the algorithm in Figure 3. How-
ever, revisions were confined to ordinals of the form
'is_above'. When tested, there were found to be 121
FP instances, and 83 FN instances. The 'blame as-
signment pinpointed the clause
'the_min_vertical_sep_Val_in_feet_required_for(
A, B, C, D, 2000)'

as a revision point and the results are shown below.
(The 'limitvar' predicate is a device for marking vari-
able occurrences.) As can be seen, for supersonic air-
craft, the criteria is unaltered. The criteria for a verti-
cal separation of 2000 feet are specialised; they exclude
the region where both flight levels are between FL 330
and FL 370 as shown in the following result:

lengths of FN, FP, TN, TP

0 121 83 0

*/.'/. set P.
[potential(l,121),potential(2,121), ..,
potential(23,l),potential(26,121), ..]

'/,'/, list of revision points

[26]

New_accuracy = 100.0, 01d_accuracy = 40.686

'/.'/.revised code for 2000
the_min_vertical_sep_Val_in_feet_required_for(

A, B, C, D, 2000) :-
(both_are_flown_at_subsonic_speed(B, D),

(A is.above fl(290), limitvar(l),

((not__(A is_at_or_above f1(330))
not__(A is_at_or_below fl(370)))

not__(C is_at_or_above f1(330))

not__(C is_at_or.below fl(370)))

; C is_above f1(290), limitvar(2),

((not (A is_at_or_above f1(330))

; not__(A is_at_or„below f1(370))

)
; not (C is_at_or_above fl(330))

; not__(C is_at_or_below fl(370))))

one_or_both_of_are_flown_at_supersonic_speed(
B, D),

(A is_at_or_below f1(430), limitvar(3),
; C is_at_or_below f1(430), limitvar(4))),!.

5 RELATED WORK

Some recent work has pointed to the similarities
between the validation of requirements models and
knowledge based systems development (McCluskey
et al. 1996; Shaw and Gaines 1996), and hence the area
of Knowledge Base Refinement (KBR) is related to
our work. A detailed comparison of validation in soft-
ware engineering and KBS is given in reference (Ver-
mesan and Bench-Capon 1995), and the state of the
art in automated KBS validation is surveyed in refer-

Theory Revision in Requirements Validation 375

ence (Zlatareva and Preece 1994).

As far as we are aware our work is the first to apply ma-
chine learning techniques to formal specifications of re-
quirements, although, as mentioned above, work most
related to our own occurs in the field of KBR. Both
areas have to adopt strategies to overcome the com-
plexity pitfalls surrounding the use of TR (where the-
oretical results suggest that no polynomial algorithm
exists to perform global optimisation in hill climbing
algorithms (Greiner 1995)). In KRUST (Palmer and
Craw 1996), for example, test cases are used one at
a time to refine the KBS, in contrast to our focusing
procedure, which uses multiple examples and a form
of statistical blame assignment. In MOBAL, an envi-
ronment for knowledge acquisition that has been used
with a large security rule base, TR is also used but in
restrained fashion and with limited success (see (Som-
mer et al. 1994) page 453). Experience with MOBAL
is consistent with our experience that ML tools work
well in the context of a diverse tools environment.

Imperfect theory refinement techniques have been well
researched in the machine learning literature, includ-
ing reviews (Wrobel 1996), and a text relating ML to
Software Engineering (Bergadano and Gunetti 1996).
The case where theories represent planning domains is
described in reference (Tae and Cook 1996) and the
case where theories are posed as Horn Clause mod-
els is described in reference (Richards and Mooney
1995). Machine learning in domains containing sig-
nificant numerical components has previously been ac-
complished by using neural networks (Opitz and Shav-
lik 1997). Constraint Inductive Logic Programming
(Anthony and Frisch 1997; Sebag and Rouveirol 1996)
has been utilised for generalisation and specialisation
of numerical predicates. Theory Patching (Argamon-
Engelson and Koppel 1998) is described as a type of
TR in which revisions are made to individual compo-
nents of the theory. (The concern of the latter paper
is to determine which classes of logical domain theo-
ries the theory patching problem is tractable.) Theory
patching compares with our work on focusing on ordi-
nal revisions and on shielding clauses which are not to
be revised.

6 CONCLUSIONS AND FURTHER
WORK

In this paper we have reported the application of the-
ory revision techniques to the validation and main-
tenance of a substantial 'theory', the formal require-
ments model of an air traffic control application. The

model is encoded in msl, is customised by a genera-
tive grammar, animated by a Prolog generator, and
can be analysed using an integrated environment sup-
porting a diverse range of validation techniques (Mc-
Cluskey 1997). After overcoming problems to do with
blame assignment in general clause form programs
(West et al. 1997), we developed the method whereby
batches of tests were used by blame assignment, and
single tests were used by explanation-based tools, to
identify axioms sets in which bugs were likely to reside.
After acquiring classified instances for these faulty
components, we used theory revision operators, tar-
geting comparison operators acting on ordinal sorts,
to identify and remove the bugs. Here we have shown
two different experiments where bugs were identified
and removed, and a new part of the model was in-
duced. The project started with an error rate for the
conflict predicate of several hundred errors per 10,000
tests. The application of ML techniques in general has
lead us to establish the cause of all the errors shown
up in our initial tests, and the error rates using code
generated from the current version of our model have
been cut by 2 orders of magnitude. Having said this,
our success in fielding TR seems to depend on correctly
predicting how fundamental the revisions are, and hav-
ing the machinery available to bring about such a level
of revision.

Many problems for future work remain, however. Most
outstanding is the generalisation of our environment so
that other customised msl model's can be created and
analysed using ML tools. Secondly, the TR algorithms
for simple and composite revisions need to be further
refined and perhaps merged. Also, the implications of
using blame assignment which takes into account neg-
ative literals in proof trees needs to be fully evaluated.

Acknowledgements

The IMPRESS project is supported by an EPSRC
grant, number GR/K73152. We would like to acknowl-
edge the help of Chris Bryant, who implemented some
of the theory revision tools, Julie Porteous, for help
in the initial stages of IMPRESS, and Julia Sonander
of NATS, for supplying aircraft profile data. Further,
we would like to thank the referees for helpful sugges-
tions, and additional references, which have improved
this paper.

References
Anthony, S. and A. Frisch (1997). Generating Numerical

Literals during Refinement. In N. Lavrac and S. Dze-
roski (Eds.), Inductive Logic Programming: Proceed-
ings of the 7th International Workshop, ILP-97 ,
Volume 1297 of Lecture Notes in Artificial Intelli-

376 McCluskey and West

gence, pp. 61 - 76. Springer-Verlag.

Argamon-Engelson, S. and M. Koppel (1998). Tractabil-
ity of theory patching. Journal of Artificial Intelli-
gence Research 8, 39-65.

Bergadano, F. and D. Gunetti (1996). Inductive Logic
Programming, From Machine Learning to Software
Engineering. Cambridge, Massachusetts, US: MIT
Press.

Birkhoff, G. (1967). Lattice Theory. (Third ed.). Amer-
ican Mathematical Society.

Greiner, R. (1995). The complexity of theory revision. In
Proceedings of the l^th International Joint Confer-
ence on Artificial Intelligence. Morgan Kaufmann.

McCluskey, T. L. (1997). An integrated environment
for the conflict prediction specification. Technical
Report impress/2/03/1, School of Computing and
Mathematics, University of Huddersfield, UK.

McCluskey, T. L., J. M. Porteous, Y. Naik, C. Taylor,
and S. Jones (1995). A requirements capture method
and its use in an air traffic control application. Soft-
ware - Practice and Experience 25(1), 47-71.

McCluskey, T. L., J. M. Porteous, M. M. West, and
C. H. Bryant (1996, September). The validation of
formal specifications of requirements. In Proceedings
of the BCS-FACS Northern Formal Methods Work-
shop, Ilkley, UK. Electronic Workshops in Comput-
ing Series, Springer.

Many Sorted Logic Meinke, K. and J. Tucker (1993).
and Its Applications. Wiley.

Opitz, D. W. and J. W. Shavlik (1997). Connectionist
theory refinement: Genetically searching the space of
network topologies. Journal of Artificial Intelligence
Research 6, 177-209.

Palmer, G. J. and S. Craw (1996). The role of test cases
in automated knowledge refinement. In ES96: The
Sixteenth Annual Technical Conference of the British
Computer Society Specialist Group on Expert Sys-
tems, Cambridge, England, pp. 75-90.

Richards, B. L. and R. J. Mooney (1995, May). Auto-
mated refinement of first-order horn-clause domain
theories. Machine Learning 19(2), 95-131.

Sebag, M. and C. Rouveirol (1996). Constraint inductive
logic programming. In L. De Raedt (Ed.), Proceed-
ings of the 5th International Workshop on Inductive
Logic Programming, pp. 277 - 294. IOS Press.

Shaw, L. and B. Gaines (1996). Requirements acquisi-
tion. Software Engineering Journal 11, 149-165.

Sommer, E., K. Morik, J. M. Andre, and M. Uszyn-
ski (1994). What online machine learning can do for
knowledge acquisition - a case-study. Knowledge Ac-
quisition 6(A), 435-460.

Tae, K. and D. Cook (1996). Experimental knowl-
edge acquisition for planning. In Proceedings of the
13th International Conference on Machine Learning:
ML'96, pp. 480-488.

Vermesan, A. and T. Bench-Capon (1995). Techniques
for the verification and validation of knowledge-
based systems: a survey based onthe sym-
bol/knowledge level distinction. Software Testing,
Verification and Reliability 5, 233-271.

West, M. M., C. H. Bryant, and T. L. McCluskey (1997).
Transforming general program proofs: A meta inter-
preter which expands negative literals. In Proceed-
ings: LOPSTR '97, Leuven, Belgium.

West, M. M., C. H. Bryant, T. L. McCluskey, and
J. M. Porteus (1996). The use of machine learning
in the validation of a formal requirements specifica-
tion: the work of IMPRESS. Technical Report im-
press/1/01/1, School of Computing and Mathemat-
ics, University of Huddersfield, UK.

Wrobel, S. (1996). First order theory revision. In
L. De Raedt (Ed.), Proceedings of the 5th Interna-
tional Workshop on Inductive Logic Programming,
pp. 14-33. IOS Press.

Zlatareva, N. and A. Precce (1994). State-of-the-art in
automated validation of knowledge-based systems.
Expert Systems with Applications 7(2), 151-167.

377

Stochastic Resonance with Adaptive Fuzzy Systems

Sanya Mitaim and Bart Kosko
Signal and Image Processing Institute

Department of Electrical Engineering—Systems
University of Southern California

Los Angeles, California 90089-2564

Abstract 1 STOCHASTIC RESONANCE

Adaptive systems can learn to add an optimal
amount of noise to some nonlinear feedback
systems. Noise can improve the signal-to-
noise ratio of many nonlinear dynamical sys-
tems. This "stochastic resonance" effect oc-
curs in a wide range of physical and biological
systems. The SR effect may also occur in en-
gineering systems in signal processing, com-
munications, and control. The noise energy
can enhance the faint periodic signals or faint
broadband signals that force the dynamical
systems. Most SR studies assume full knowl-
edge of a system's dynamics and its noise and
signal structure. Fuzzy and other adaptive
systems can learn to induce SR based only
on samples from the process. These samples
can tune a fuzzy system's if-then rules so that
the fuzzy system approximates the dynami-
cal system and its noise response. The pa-
per derives the SR optimality conditions that
any stochastic learning system should try to
achieve. The adaptive system learns the SR
effect as the system performs a stochastic
gradient ascent on the signal-to-noise ratio.
The stochastic learning scheme does not de-
pend on a fuzzy system or any other adap-
tive system. The learning process is slow and
noisy and can require heavy computation.
Robust noise suppressors can improve the
learning process when we can estimate the
impulsiveness of the noise or of other learn-
ing terms. Simulations test this SR learning
scheme on the popular quartic-bistable dy-
namical system and on other dynamical sys-
tems for many types of noise. Simulations
suggest that fuzzy techniques and perhaps
other "intelligent" techniques can induce SR
in many cases when users cannot state the
exact form of the dynamical systems.

Noise can sometimes enhance a signal as well as cor-
rupt it. This fact may seem at odds with almost a
century of effort in signal processing to filter noise or
to mask or cancel it. But noise is itself a signal and
a free source of energy. Noise can amplify a faint sig-
nal in some feedback nonlinear systems even though
too much noise can swamp the signal. This implies
that a system's optimal noise level need not be zero
noise. It also suggests that nonlinear signal systems
with nonzero-noise optima may be the rule rather than
the exception.

Stochastic resonance (SR) [2, 3T 16] occurs when noise
enhances an external forcing signal in a nonlinear dy-
namical system. SR occurs im a signal system if and
only if the system has a nonzero noise optimum. The
classic SR signature is a signal-to-noise ratio (SNR)
that is not monotone. Figure 1 shows the SR effect for
the popular quartic bistable dynamical system [2, 3].
The SNR rises to a maximum and then falls as the
variance of the additive white noise grows. More com-
plex systems may have multimodal SNRs.

SR holds promise for the design of engineering systems
in a wide range of applications. Engineers may want to
shape the noise background of a fixed signal pattern to
exploit the SR effect. Or they may want to adapt their
signals to exploit a fixed noise background. Engineers
now add noise to some systems to improve how humans
perceive signals [12, 14]. Some control schemes add a
noise-like dither to improve system performance [18].

The study of SR has emerged largely from physics and
biology. The awkward term "stochastic resonance"
stems from a 1981 article in which physicists observed
"the cooperative effect between internal mechanism
and the external periodic forcing" in some nonlinear
dynamical systems [2]. Scientists soon explored SR in
climate models [17] to explain how noise could induce
periodic ice ages [1]. They conjectured that global or
other noise sources could amplify small periodic vari-

378 Mitaim and Kosko

n
z.
0)

0.4 0.6 0.8 1 1.2 1.4 1.6

Standard deviation of additive white Gaussian noise

Figure 1: The non-monotonic signature of stochas-
tic resonance. The graph shows the smoothed output
signal-to-noise ratio of the noisy signal-forced quartic
bistable system x = f(x) + s(t) + n(t) — x-x3 + s(t) +
n(t). The vertical dashed lines show the absolute devi-
ation between the smallest and largest outliers in each
sample average of 20 outcomes. The system has a
nonzero noise optimum and thus shows the SR effect.
The Gaussian noise n(t) adds to the external forcing
narrowband signal s(t) = esinujot. Other systems can
use multiplicative noise or use non-Gaussian noise [4].

ations in the Earth's orbit. This might explain the
observed 100,000 year primary cycle of the Earth's ice
ages. Physicists have since found stronger evidence of
SR in various systems [11, 16, 19].

Below we explore how to learn the SR effect with adap-
tive systems in general and with adaptive fuzzy func-
tion approximators [9] in particular. Neural-like learn-
ing laws tune and move the fuzzy rule patches as they
tune the shape of the fuzzy sets that make up the
rule patches. The learning laws use input-output data
from the sampled noisy dynamical system. The rule
patches move quickly to cover optimal or near-optimal
regions of the function (such as its extrema). Fuzzy
systems achieve their patch-covering approximation at
the high cost of rule explosion [9]. The number of rules
grows exponentially with the state-space dimension of
the fuzzy system. We stress that our SR learning laws
can also tune non-fuzzy adaptive systems. Our first
goal was to show that adaptive systems can learn to
shape the input noise and perhaps shape other terms
to achieve SR in the main closed-form dynamical sys-
tems that scientists have shown produce the SR effect.
Our second goal was to suggest through these sim-
ulation experiments that adaptive fuzzy systems or
other model-free approximators might achieve SR in
the more complex dynamical systems that defy easy

math modeling or measurement.

This paper presents three main results. The first and
central result is that a system can learn the SR effect if
it performs a stochastic gradient ascent on the signal-
to-noise ratio SNR = S/N. Then the random noise
gradient e|^R can tune the parameters in any adap-
tive system through a slow type of stochastic approxi-
mation. The second result is that the SNR first-order
condition for an extremum has the ratio form j$ = jp

for S' = |f. The term ^ can produce impulsive or
even Cauchy noise that can destabilize the stochastic
gradient ascent. Time lags in the training process can
compound this impulsiveness. The third result is that
a Cauchy-based noise suppressor from the theory of
robust statistics can often reduce the impulsiveness of
the noise gradient 8S^R and thus improve the learning
process.

2 ADDITIVE FUZZY SYSTEMS &
FUNCTION APPROXIMATION

A fuzzy system F : Rn -> Rp stores m rules of the
word form "If X = Aj Then Y = Bj" or the patch
form Aj x Bj C X xY = Rn x Rf. The if-part fuzzy
sets Aj C Rn and then-part fuzzy sets Bj C Rp have
set functions aj : Rn -> [0,1] and bj : Rp -> [0,1].
Generalized fuzzy sets map to intervals other than
[0,1]. The scalar sine set functions in Figure 6 map
real inputs to "membership degrees" in the bipolar
range [-0.217,1]. The system design must take care
when these negative set values enter the SAM ratio in
(2). The system can use the joint set function aj or
some factored form such as aj(x) = a](xi) • • -o"(a;„)
or aj(x) = min(aj(:Ei),... ,a?(xn)) or any other con-
junctive form for input vector x = (ii,... ,xn) £ Rn

[9]. An additive fuzzy system [9] sums the "fired" then-
part sets Bj :

m m

B[x) = Y,wiB'i = $>jOj (*)*,■• (!)
3=1 3 = 1

Figure 2a shows the parallel fire-and-sum structure of
the standard additive model (SAM). These nonlinear
systems can uniformly approximate any continuous (or
bounded measurable) function / on a compact domain
[9]. Engineers often apply fuzzy systems to problems
of control but fuzzy systems can also apply to problems
of communication and signal processing [9] and other
fields.

Figure 2b shows how three rule patches can cover
part of the graph of a scalar function / : R —► R.
The patch-cover structure implies that fuzzy systems
F : Rn -» Rp suffer from rule explosion in high dimen-
sions. A fuzzy system F needs on the order of kn+p~1

rules to cover the graph and thus to approximate a

Stochastic Resonance with Adaptive Fuzzy Systems 379

-F(x)

(b)

Figure 2: Feedforward fuzzy function approximator. (a) The parallel associative structure of the additive fuzzy
system F : Rn -> R? with m rules. Each input xo € Rn enters the system F as a numerical vector. At the
set level XQ acts as a delta pulse S(x — XQ) that combs the if-part fuzzy sets Aj and gives the m set values
a,j(xo) = JR„ S(x — xo)aj(x)dx. The set values "fire" or scale the then-part fuzzy sets Bj to give B'j. A standard
additive model (SAM) scales each Bj with dj(x). Then the system sums the B' sets to give the output "set"
B. The system output F(a;o) is the centroid of B. (b) Fuzzy rules define Cartesian rule patches Aj x Bj in the
input-output space and cover the graph of the approximand /.

vector function / : Rn -> RP. Optimal rules can help
deal with the exponential rule explosion. Lone or local
mean-squared optimal rule patches cover the extrema
of the approximand / [9]. They "patch the bumps."
Better learning schemes move rule patches to or near
extrema and then fill in between extrema with extra
rule patches if the rule budget allows.

The scaling choice B'j = a,j(x)Bj gives a standard ad-
ditive model or SAM. Taking the centroid of B(x) in
(1) gives the following SAM ratio [9]

F(x) =
T^=iWjaj{x)VjCj

= SPjOOc,-. (2)

system dynamics. It can also tune the parameters in
other adaptive systems. We first define a practical
SNR measure in terms of discrete Fourier transforms.
Other SR measures can give other learning laws.

3.1 THE SNR IN NONLINEAR SYSTEMS

Suppose a nonlinear dynamical system has a sinewave
forcing function s(t) of known frequency /o Hz. We
search the sinusoidal part r(t) of the output y(t) for
the known frequency /o but unknown amplitude and
phase in the system output response y(t). The "noisy
signal" y(i) has the form of "signal" plus noise

3=1

The if-part fuzzy sets Aj C Rn has set functions aj :
Rn -+ [0,1]. The then-part sets Bj C RP has finite
positive volume or area Vj and centroid or its center of
mass Cj. The convex weights p\ (x),..., pm {x) have the

form Pj(x) = v*™ . /'u/ • The convex coefficients

yt n + nt. (3)

The signal-to-noise ratio (SNR) at the output is the
spectral ratio of the energy of {rt} to the energy of
{nt}. We assume that the signal s(t) is always present.
This ignores the important problem of signal detection
but lets us focus on learning the SR effect.

Here S = 2|F[fc0]|2, P = £fc=o \Y[k]\2, and Y[k] is
the L-point discrete Fourier transform (DFT) of yn:

Pi (x) change with each input vector x. We can ignore ,,, , a i.u OMD iu i • u -r J. ^ n We define the SNR measure as the rule weights Wj if we put wi = ... = wm > 0.

SNR = I = p^s- 3 SR LEARNING AND ^ F b

EQUILIBRIUM

The scalar standard additive model (SAM) [9] fuzzy
system F : Rn -> R can learn the SR pattern of op-
timum noise of an unknown dynamical system if it
uses enough rules and if it samples enough data from
a dynamical system that stochastically resonates. Be-
low we derive a gradient-based learning law that tunes
the SAM parameters to achieve SR from samples of

(4)

L-l

Y[k] = ^yte- (5)
t=o

We assume that the discrete frequency fco = foLTs > 0
is an integer for sampling rate 1/TS and wo = 27r/o- We
also assume that there is no aliasing due to sampling.

380 Mitaim and Kosko

Then we can show that for large L the SNR measure in
(4) tends to the standard definition of SNR as a ratio
of variances:

Theorem: SNR = . , 2^k°^
E^oMfc]l2-2|r[fc0]|

2

v ol _ A2/2 _ i Ef=o r?

Here a:
rT

2 _

n2 n2 1 V^-l „2'

Var(n) = E[n2] < oo and ar =

i / (A sinujotfdt = A212.
T Jo

3.2 SR LEARNING AND OPTIMALITY

An adaptive system can learn a SR noise pattern that
maximizes a dynamical system's SNR. The learning
law updates a parameter rrij of a SAM fuzzy system
(or of any other adaptive system) at time step n with
the deterministic law

m,j(n + 1) = mj(n) + ßn
d£[SNR]

drrij
(6)

for learning coefficients {ßn}- This is gradient ascent
learning. We assume that the first-order moment of
the SNR exists and is finite. We seldom know the
probability structure or the expectation of the SNR.
So we estimate this expectation with its random real-
ization at each time step: £[SNR] ss SNR. This gives
the stochastic gradient learning law

rrij{n + 1) = mj(n) + iin
dSNR
drrij

(7)

or simple random hill climbing. We assume the chain
rule holds (at least approximately) to give

dSNR
drrij

ÖSNR da ÖSNR dF

da drrij da drrij
(8)

Here a is the noise level or standard deviation of the
forcing noise term n(t). We want the SAM or other
adaptive system F to approximate the optimal noise
level aopt for any input signal or initial condition of
the dynamical system: F « aopt. We then use o and
F interchangeably in (8). The term ^- shows how
any adaptive system F depends on its jth parameter
rrij. We again assume that the chain rule holds to get

d SNR
da

5 SNR dS
dS da +

ÖSNRÖiV
dN da'

Then SNR = 10 log S/N implies that

ÖSNR
dS

d SNR
dN

dSm°gN
9 mi S

dNm°gN

= (lOloge)-

= -(lOloge)
N

(9)

(10)

(11)

for base-10 logarithm. We next put (10)-(11) into (9)
to get the log term that drives SR learning:

d SNR fldS
-da~ = (101Oge)b^ -—) (12)

Nda)- {U)

The right side of (12) leads to the first-order condition
for an SNR extremum:

Ids
Sda N da

= 0 or
N N ^ = 777 (13)

when the partial derivatives of S and N with respect
to a are not zero at a — aopt- Equation (13) gives a
necessary condition for the SR maximum. The result
(13) says that at SR the ratio of the rate of changes of S
and iV must equal the ratio of 5 and N. But (13) holds
only in a stochastic sense for sufficiently well-behaved
random processes. The second-order condition for an
SR maximum is

0 >
a2 SNR

da2

d_
da

.,„, s\ldS 1 dN
(m0genSd;-N-da-

/,«, % r !d2S 1 fdS\2
= (10loge) I -^r-— I —I

= (10 log e)

Sda2 S2\da)
1 d2N

N da2

i d2s l d2N

Sda2

J_(9N_\2]

} N da2

(14)

(15)

(16)

or s^ < Hi
or S ^ AT '

The last equality follows from the first-

order condition 5§f-^|^=0or^- = ^- since then

Ig! = 1^1. A like result holds for SNR = S/N.
These first- and second-order conditions show how the
signal power S and noise power N relate to each other
and to their derivatives at the SR maximum.

We now derive the SR learning laws in terms of DFTs.
We can approximate ^- and ^- with a ratio of time
differences at each iteration n:

dSn ^ A5n _ 5n — 5n_i
dan Aan an - an-\
dNn _ AN„ = Nn - Nn-i

dan Aan an - cr„-i

(17)

(18)

Then put (17) and (18) into (9) to get the stochastic
gradient learning law:

m n+l „ aSNRn

asNRn dF
i n dan drrij

(19)

(20)

1 dSn 1 dNn\ dF = mn + ^^^-^^j^-. (21)

Below we derive the last partial derivative ■$£- in the

chain-rule expansion (8) for all SAM fuzzy parameters.

Stochastic Resonance with Adaptive Fuzzy Systems 381

) 500 1000 1500
Iteration n

2000 2500 30C

1

' '

3 200 400 600 800 1000 1200
Iteration n

uoo 1600 1600 20

tv kA ■Wh *ww iW^ *TBPW"(W||P fW ijto W\ uiUUMufe

1000 1500 2000
 Iteration n

Mr/^^i-

] 200 400 600 BOO 1000 1200
Iteration n

1400 1600 1800 20C

>V""
-■■•\#Wi(

i i i < «
1500

Iteration n

(a) (b)

Figure 3: Learning paths of <r„ for the quartic bistable system (30)-(31). The input sinusoid signal function
is s(t) = 0.1sin27r(0.01)£. The optimum noise intensity lies near a = 0.5 from the SNR-noise profile in Figure
1. (a) Impulsive effects on learning paths of noise level an with different initial values. The paths of an do
not converge to the optimum noise. This stems from the impulsiveness of the derivative term dS^n in the SR

learning law. (b) Learning paths of an with the Cauchy noise suppressor 0. The term ^>(8|^") replaces dS™n

in the SR learning law as in (36). The paths of an wander in a Brownian-like motion around the optimum noise.
The suppressor function (f> makes the learning algorithm more robust against impulsive shocks.

This is again the step where users can insert other
adaptive function approximators F and derive learning
laws for their parameters rrij by expanding -g£-. The
chain rule gives the partial derivatives

dF _ Wj a,j (ar) Vj
dcj

8F wjaj(x)[cj-F(x)]

TiiLiWiai(x)Vi

= PAX)

Pj(x)
Vi

[Cj

dF _ dF daj

drrij düj drrij
where

A 9F and wr dF daj
daj ddj

dF
F(x)] PAX)

aj{x)'

(22)

F(x)](23)

(24)

(25)

We used the sine set functions [9, 13] in our simu-
lation. The sine set function has the form a,j(x) =

sin (x~™') / (x~Jn') • So the partial derivatives are

i2L = l (*i(*) - cos (^)) ^7 for x * m* (26)
drrij 1 0 for x = rrij

daj
ddi

0

= (aj(x) cos
(X — TTlj\\ 1

\ dj JJTj'
(27)

We used small but constant learning rates in most sim-
ulations.

4 SIMULATION RESULTS

This section shows how the stochastic SR learning laws
in Section 3 tend to find the optimal noise levels. The

learning process updates the noise parameter an at
each sample time n. The learning process is noisy
and may not be stable due to the impulsiveness of
the random gradient a|^R". We used a Cauchy noise
suppressor from the theory of robust statistics [8] to
stabilize the learning process. Then sample paths of
<jn converged and wander about the optimal values if
the initial values were close to the optimum.

The response of a system depends on its dynamics and
on the nature of its input signals. We applied the SNR
measure to the quartic bistable system with sinusoidal
inputs. Future research may extend SR learning to
wideband input signals. Figure 7a shows how the op-
timum noise level varies for each input sinewave in the
quartic bistable system. The learning process sam-
ples the system's input-output response as it learns
the optimum noise. It does not make direct use of the
equation that underlies the system. It needs access
only to the system's input-output responses. Then an
adaptive fuzzy system encodes this pattern of opti-
mum noise in its if-then rules when gradient learning
tunes its parameters. The fuzzy system learns this
optimum noise level as it varies the output of a ran-
dom noise generator. More complex fuzzy systems can
themselves act as adaptive random number generators
[9].

4.1 SR IN THE QUARTIC BISTABLE
SYSTEM

We tested the quartic bistable system x = ax - bx3 +
s(t) + n(t) because of its wide use in the SR literature

382 Mitaim and Kosko

a*fflfy*fo*fi^^
200 400 600 8O0 1000 1200 1400 1600 1B00 2000

^____ Iteration n

0n»B .^^^ °

200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration n

^^fWvr\v^
200 400 600 600 1000 1200 1400 1600 1800 2000

Iteration n

°n° * -^^N^VV-^

(a)
02 04 0.6 OB 1 1.2 1.4 1.6

Standard deviation of additive white Laplace nolso

Figure 4: Learning paths of an with the suppressor cf> for other noise densities in the quartic bistable system
(30)-(31) with input signal s(t) = 0.1sin27r(0.01)£. The noise n has densities (a) Laplace noise and (b) uniform
noise. The SNR-noise profiles show that optimal noise levels lie near a = 0.5 for both cases.

as a benchmark SR dynamical system. The constants
o = 6=l and the binary output give the system [16]

x = x - x3 + s(t) + n(t) (28)

y(t) = sgn(x(t)) (29)

where s = s sin u)0t is a sinewave input forcing term
and n is a zero-mean additive white noise with variance
D = a\. The simulation uses the discrete version:

xt+i = xt+ T(xt -x
3

t+e sin 27r/0Tt) + Vfnt (30)
yt = sgn(zt) (31)

with initial condition x0 and time step T. The zero-
mean white noise sequence {nt} has variance Dt =
a^(t). The term y/T scales nt so that it conforms
with the Wiener increment [6]. The simulations use
Gaussian noise, Laplace noise, and uniform noise.

We look at the equilibrium term or the random opti-
mality "error" process

dS/da
N dN/da

(32)

near the optimum noise a = aopt. The probability
density of £ depends on the statistics of the input

noise, the differential equation that defines the dynam-
ical system, and how we define the signal and noise
terms S and N. The empirical test of £n found that
£n had infinite variance in our simulations. The log-
tail test of parameter a in the family of alpha-stable
probability densities leads to the estimate a fa 1.0. So
the £n density is approximately Cauchy. Recall also
that Z = X/Y is a Cauchy random variable if X and
Y are Gaussian or if they obey certain more general
statistical conditions [10]. This suggests that much of
the impulsive nature of £„ and hence of the learning
process may stem from the ratio of derivatives in (32).

We sample S„ and Nn after a long period of time in
(17) and (18). This approximation lets us choose the
time length between step n and step n + 1. Longer
time lengths can better show how the noise intensity
an affects 5n, Nn, and the SNRn. We chose the time
length Tn+i —Tn = 2000 seconds for the simulations.
The learning process's sampling interval Ts differs from
the time step T of the dynamical system's simulator
in (30)-(31). The time step is T - 0.0195. The sam-
pling period is Ts = 0.976 seconds. This yields 2048
samples per iteration. This long period of time allows

Stochastic Resonance with Adaptive Fuzzy Systems 383

200 400 600 1000 1200 1400 1600 1800 2000
Iteration n __^_

200 400 600 800 1000 1200 1400 1600 tBOO 2000
Iteration n _____

200 400 600) 1000 1200 1400 1600 1600 2000
Iteration n

^■^/^^^^

200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration n ___

200 400 I 1000 1200 1400 1600 1800 2000
Iteration n

Standard deviation oofAWGN

-16
 1 1 1 1 r ! ! :

-18

m

o5 ~20 / . I-V; : -
o
II -22

GC
Z
CO

-24 I :■ ^V-—y j

-26

; ; ; ; i i i i
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Standard deviation o of AWGN

Figure 5: SR learning paths of a„ for other dynamical systems, (a) The forced bistable neuron model x =
-x + 2tanha; + esin(w0*) +n(t) with binary output y(t) = sgn(a;(i)). The parameters of the input sinewave are
wo = 2nf0 with /0 = 0.01 Hz and e = 0.3. (b) The FitzHugh-Nagumo neuron model ex = -x(x2 - \) - w + A 4-
s(t) + n(t) and w = x - w with output y(t) = x(t). The parameters are e = 0.005 and A = -(5/12\/3 + 0.07).
The sinewave input signal is s(t) =ssin2irfot where e = 0.01 and /o = 0.5 Hz.

for low frequency signals such as /o = 0.001 Hz. We
ignored all aliasing effects. We also replace the differ-
ence crn — <7n_i with sgn(<7„ — CT„_I) to avoid numerical
instability. The gradient becomes

-öMrK{-sv-i^r)s&n{crn-(7n-i) (33)

for ASn = 5„ - Sn-i and ANn = Nn - iVn_x. This
approximation gives the SR learning law when F = an:

, (ASn AAT„> Ljsgn(ffn-CTn_i). (34)

Figures 3a shows sample learning paths of an for the
quartic bistable system. The an learning paths con-
verge to the optimum noise values only in some cases.
The simulations confirm that the random gradient
a|^Rn in (33) is often impulsive and can destabilize
the learning process (34). The impulsiveness of a|^"
suggests that it may have an alpha-stable probability
density function with parameter a < 2. A log-tail test
found that ami. This means that 9™fn has an
approximate Cauchy distribution.

The theory of robust statistics [8] suggests one way to
reduce the impulsiveness of 8|^n. We can replace e<7„
the noisy random sample zn with a Cauchy-like noise
suppressor <j>{zn) [8]:

4>(Zn) =
2*n (35)

So <f>(I;; ") replaces the approximation of the noise
gradient df^n in (33). This gives the robust SR
learning law

<3SNRn>
a»+l = °n+ßn<t>{-ö—-) (36)

Figure 3b shows the results of the SR learning law
(36) with the gradient in (33). The an learning paths
converge to the optimum noise level if the initial value
lies close enough to it and then an wanders in a small
Brownian-like motion about the optimum noise level.

Like results hold for other noise densities with finite
variance such as Laplace and uniform noise. Figure 4

384 Mitaim and Kosko

shows an learning paths for the quartic bistable system
(30)-(31) with Laplace noise and uniform noise.

4.2 SR IN OTHER DYNAMICAL
SYSTEMS

We tested the bistable potential neuron model with
Gaussian white noise [4]

x = -x + 2t&nhx + s(t)+n(t) (37)

y(t) = sgn(x(t)). (38)
Figure 5a shows the SR learning paths of an. The
sinewave input is s(t) = esin27r/0£ where f0 = 0.01
Hz and e = 0.1 and the e = 0.3. The time step in
the discrete simulation is T = 0.0195. The sampling
interval is Ts = 0.975 or 50 times the time step T.

We next tested the forced FitzHugh-Nagumo neuron
model [5, 7, 15]

1,
ex = -x{x<--\ w + A + s(t) + n{t) (39)

w = x - w (40)

y(t) = x(t). (4i)
The constants are e = 0.005, a = 0.5, and A =
-(5/12\/3 + 0.07). The sinewave input is s(t) =
esm2nfot with e = 0.01, f0 = 0.1, and 0.5 Hz. The
sampling interval is Ts = 0.01 with T = 0.001. Figure
5b shows the learning paths of the standard deviation
<rn of the Gaussian white noise n.

4.3 FUZZY SR LEARNING: THE
QUARTIC BISTABLE SYSTEM

We used a fuzzy function approximator F : Rn ->
R to learn and store the entire surface of optimal
noise values for the quartic bistable system with in-
put sinewaves. The fuzzy system had as its input the
2-D vector of sinewave amplitude e and frequency /o-
We tested the system with the fixed input initial value
x(0) — — 1. The fuzzy system itself defined a vector
function F : R2 ->■ R and used 200 rules. The Cauchy
noise suppressor gives the learning law (21) as

, ,. . . vöSNRnN dF
m,(n + l) =roj(„) + ^B^-g_)_. (42)

Figure 6 shows how we formed a first set of rules on
the product space of the two variables e and /o. It
also shows how the learning laws move and shape the
width of the if-part sine set. Figure 7 shows the results
of SAM learning of the optimal noise pattern for the
quartic bistable system. The sine SAM used 200 rules.
Fewer rules gave a coarser approximation.

5 CONCLUSIONS

Stochastic gradient ascent can learn to find the SR
mode of at least some simple dynamical systems. This

(b) o: I l\ ■ /\ /\ /\ /\ '■ /\ ' f\ /\ /\ \

Amplitude c

(C) 05-

0 0.001 0.002 0.003 0.OO4 0.005 0 006 0.007 0.006 0.0O8 0.01
Frequency (Hz)

Figure 6: If-part sine fuzzy sets, (a) Scalar sine set
function ay(x) = sinrr/z. Sine sets are generalized
fuzzy sets with "membership values" in [-.217,1]. Ele-
ment x belongs to set Aj to degree a,j(x): Degree(a; G
Aj) = a,j(x). (b)-(c) Initial subsets for sinewave am-
plitudes and frequencies. There are 10 fuzzy sets
for amplitude e and 20 fuzzy sets for frequency /0.
The product of two 1-D sets gives the 2-D joint sets:
dj(x) = aj(e,fo) = a1

j(e)a'j(fo)- So the product space
gives 10 x 20 = 200 if-part sets in the if-then rules.

learning scheme may fail to scale up for more com-
plex nonlinear dynamical systems of higher dimension
or may get stuck in the local maxima of multimodal
SNR profiles. Simulations showed that the key learn-
ing term itself can give rise to strong impulsive shocks
in the learning process. These shocks often approached
Cauchy noise in intensity. A Cauchy noise suppressor
gave a working SR learning scheme for the DFT-based
SNR measure. Other SNR measures or other process
statistics may favor other types of robust noise sup-
pressors or may favor still other techniques to lessen
the impulsiveness.

Gradient-ascent learning can find the SR mode of the
main known dynamical models that show the SR ef-
fect and can do so in the presence of a wide range of
noise types. This suggests that SR may occur in many
multivariable dynamical systems in science and engi-
neering and that simple learning schemes can some-
times measure or approximate this behavior. We lack
formal results that describe when and how such SR
learning algorithms will converge for which types of
SR systems. This reflects the general lack of a formal

Stochastic Resonance with Adaptive Fuzzy Systems 385

Frequency (Hz)

(a)

Amplitude
Frequency (Hz)

Amplitude

(b)

Figure 7: Optimal noise levels in terms of the signal-to-noise ratio for the quartic bistable system (30)-(31).
(a) The optimum noise pattern when inputs are sinewaves with distinct amplitudes and frequencies, (b) SAM
fuzzy approximation of the optimum noise after 30 epochs. The sine SAM used 200 rules. One epoch used 20
iterations that trained on 200 input amplitudes and frequencies. The initialized SAM gave the output value 0.2
as its first estimate of the optimal noise level.

taxonomy in this promising new field: Which noisy dy-
namical systems show what SR effects for which forc-
ing signals?

References

[1] R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani,
"Stochastic Resonance in Climatic Change," Tellus,
vol. 34, pp. 10-16, 1982.

[2] R. Benzi, A. Sutera, and A. Vulpiani, "The Mech-
anism of Stochastic Resonance," Journal of Physics
A: Mathematical and General, vol. 14, pp. L453-L457,
1981.

[3] A. R. Bulsara and L. Gammaitoni, "Tuning in to
Noise," Physics Today, pp. 39-45, March 1996.

[4] A. R. Bulsara, E. W. Jacobs, T. Zhou, F. Moss, and
L. Kiss, "Stochastic Resonance in a Single Neuron
Model: Theory and Analog Simulation ," Journal of
Theoretical Biology, vol. 152, pp. 531-555, 1991.

[5] J. J. Collins, C. C. Chow, and T. T. Imhoff, "Stochas-
tic resonance without tuning," Nature, vol. 376, pp.
236-238, July 1995.

[6] J. L. Doob, Stochastic Processes, John Wiley & Sons,
1953.

[7] C. Heneghan, C. C. Chow, J. J. Collins, T. T. Imhoff,
S. B. Lowen, and M. C. Teich, "Information Measures
Quantifying Aperiodic Stochastic Resonance," Phys-
ical Review E, vol. 54, no. 3, pp. R2228-R2231, 1996.

[8] P. J. Huber, Robust Statistics, John Wiley &; Sons,
1981.

[9] B. Kosko, Fuzzy Engineering, Prentice Hall, 1996.

[10] R. G. Laha, "On a Class of Distribution Func-
tions Where the Quotients Follows the Cauchy Law,"
Transactions of the American Mathematical Society,
vol. 93, pp. 205-215, November 1959.

[11] J. E. Levin and J. P. Miller, "Broadband Neural
Encoding in the Cricket Cereal Sensory System En-
hanced by Stochastic Resonance," Nature, vol. 380,
pp. 165-168, March 1996.

[12] S. P. Lipshitz, R. A. Wannamaker, and J. Vanderkooy,
"Quantization and Dither: A Theoretical Survey,"
Journal of Audio Engineering Society, vol. 40, no. 5,
pp. 355-374, May 1992.

[13] S. Mitaim and B. Kosko, "What is the Best Shape
for a Fuzzy Set in Function Approximation?," in Pro-
ceedings of the 5th IEEE International Conference on
Fuzzy Systems, September 1996, vol. 2, pp. 1237-1243.

[14] R. P. Morse and E. F. Evans, "Enhancement of Vowel
Coding for Cochlear Implants by Addition of Noise,"
Nature Medicine, vol. 2, pp. 928-932, August 1996.

[15] F. Moss, J. K. Douglass, L. Wilkens, D. Pierson, and
E. Pantazelou, "Stochastic Resonance in an Elec-
tronic FitzHugh-Nagumo Model," in Annals of the
New York Academy of Sciences Volume 706: Stochas-
tic Processes in Astrophysics, J. R. Buchler and H. E.
Kandrup, Eds., 1993, pp. 26-41.

[16] F. Moss, D. Pierson, and D. O'Gorman, "Stochas-
tic Resonance: Tutorial and Update," International
Journal of Bifurcation and Chaos, vol. 4, no. 6, pp.
1383-1397, 1994.

[17] C. Nicolis and G. Nicolis, "Stochastic Aspects of Cli-
mate Transitions-Additive Fluctuations," Tellus, vol.
33, pp. 225-234, 1981.

[18] K. Ogata, Modern Control Engineering, Prentice-
Hall, third edition, 1997.

[19] K. Wiesenfeld and F. Moss, "Stochastic Resonance
and the Benefits of Noise: From Ice Ages to Crayfish
and SQUIDs," Nature, vol. 373, pp. 33-36, January
1995.

386

Q2: Memory-based active learning for
optimizing noisy continuous functions

Andrew W. Moore12, Jeff G. Schneider12, Justin A. Boyan1, and Mary S. Lee2

CMU Computer Science k Robotics1 Schenley Park Research Inc.2

Pittsburgh, PA 15213 6413 Howe Street
http://www.cs.cmu.edu/~AUTON Pittsburgh, PA 15206

{awm,schneidejab,mslee}@cs.cmu.edu

Abstract

This paper introduces a new algorithm, Q2,
for optimizing the expected output of a multi-
input noisy continuous function. Q2 is de-
signed to need only a few experiments, it
avoids strong assumptions on the form of the
function, and it is autonomous in that it re-
quires little problem-specific tweaking.

These capabilities are directly applicable to
industrial processes, and may become in-
creasingly valuable elsewhere as the machine
learning field expands beyond prediction and
function identification, and into embedded
active learning subsystems in robots, vehicles
and consumer products.
Four existing approaches to this problem (re-
sponse surface methods, numerical optimiza-
tion, supervised learning, and evolutionary
methods) all have inadequacies when the re-
quirement of "black box" behavior is com-
bined with the need for few experiments. Q2
uses instance-based determination of a con-
vex region of interest for performing exper-
iments. In conventional instance-based ap-
proaches to learning, a neighborhood was de-
fined by proximity to a query point. In con-
trast, Q2 defines the neighborhood by a new
geometric procedure that captures the size
and shape of the zone of possible optimum
locations. Q2 also optimizes weighted com-
binations of outputs, and finds inputs to pro-
duce target outputs.
We compare Q2 with other optimizers of
noisy functions on several problems, includ-
ing a simulated noisy process with both
non-linear continuous dynamics and discrete-
event queueing components. Results are en-
couraging in terms of both speed and auton-
omy.

1 ACTIVE LEARNING FOR
OPTIMIZATION

The apparently humble task of parameter tweaking for
noisy systems is of great importance whether the pa-
rameters being tweaked are for an algorithm, a real
manufacturing process, a simulation, or a scientific ex-
periment. The purpose of this paper is two-fold. First,
we wish to highlight the potential importance of ma-
chine learning as an as-yet underexploited tool in this
domain. Second, we will introduce Q2, a new algo-
rithm designed for this domain.

We consider a generalized noisy optimization task in
which a vector x of real-valued inputs produces a scalar
output y that is a noisy function of x:

y = g(x) + noise (1)

Given a constrained space of legal inputs, the task is
to find the input vector xopt that maximizes g, using
only a small number of experiments.

In both industrial settings and in algorithm-tuning,
this task often demands considerable human interven-
tion and insight. A factory manager who wants to
optimize a process can:

• Buy a computer, statistics software, and hire a
professional statistician to solve the problem using
insight and experiment design.

• Save money and try to "wing it" by manually tun-
ing the parameters.

For highly expensive or safety-critical processes, the
first option is always preferable, leaving only the ques-
tion of which are the best analysis and experiment
design tools for the statistician to use. This area is
heavily investigated by the academic statistics com-
munity.

But there are also many situations in which it is im-
practical to enlist human-aided analysis during opti-
mization, for example if a vehicle engine self-tunes

Q2: Memory-based active learning 387

during driving. And there are many other situations
in which the potential benefit from optimization is too
small to justify paying for expert professional analysis.
In such cases, it is tempting to ask: Can "black box"
automated methods optimize noisy systems? If practi-
cal black box methods are found, they could be widely
used. Somewhat fancifully, this could lead to the even-
tual inclusion of Black Box Optimizer chips within a
huge range of consumer products, from vehicle engines
and industrial equipment down to refrigerators, toast-
ers, and toys.

In the next section we discuss variants of the Black
Box Noisy Optimization task. Then in Section 3 we
discuss existing approaches. After that we present and
evaluate Q2, a new algorithm.

VARIANTS OF NOISY
OPTIMIZATION

• Are we doing local or global optimization?
Unless we have strong prior knowledge, global op-
timization of a function of more than a couple
of inputs requires a very large number of exper-
iments. Q2 is only designed to find a local opti-
mum, though empirically it appears to be good at
discovering the global optimum.

• Can we re-use old data? Many algorithms
have a "current location" or "current set of k re-
cent evaluations" but otherwise disregard earlier
evaluations. Q2, however, can exploit any exist-
ing data, including previous evaluations obtained
by other experimental methods.

In this paper we also assume that there are no long
term dynamics, i.e. the output of the ra'th experiment
depends only on the n'th chosen x, not on previous x
values or the time. Unlike [2, 6] we only try to find
the optimum, not to model the g function.

The generalized noisy optimization task summarized
by Equation 1 has many variants. For instance, in
some domains each experiment is a lengthy procedure,
and so there is ample computation time between ex-
periments. In other domains, experiments are very
quick, leaving an optimizer little time to make its rec-
ommendations. The specifics of the domain determine
which methods are appropriate. The following factors
need to be considered:

• Minimize regret or the number of experi-
ments? Do we pay a constant cost per exper-
iment, or do experiments with poor results cost
us more? In scenarios such as tuning the parame-
ters for an algorithm, or optimizing a test plant in
which all products will be discarded, the cost per
experiment may be constant. But in a task such
as minimizing the fuel consumption of a running
engine, some experiments cost more than others.
Here, we focus on simply minimizing the number
of experiments. Note that this presumes that we
are not risk-averse: there is no penalty for per-
forming highly unpredictable experiments.

• How much computer time is available to
choose experiments? If experiments are very
cheap and very quick, then an algorithm that
needs extensive CPU time to select the ideal next
experiment could still be inferior to one that re-
quires only a fraction of a second to suggest a
reasonable-but-less-than-ideal experiment. Here,
we assume that experiments are costly enough (in
time or money) that it pays to choose them care-
fully. But the Q2 algorithm can be adjusted to
satisfy any desired tradeoff between the speed and
the quality of proposed experiments.

3 POSSIBLE APPROACHES

Many disciplines have methods that are relevant to
noisy optimization. Space permits only a brief survey.

Numerical analysis: Numerical methods such as
Newton-Raphson or Levenberg-Marquardt [11] have
fast convergence properties, but they must be applied
carefully to prevent oscillations or divergence to infin-
ity, which violates our desire for black box autonomy.
Furthermore, current numerical methods cannot sur-
vive noise.

Stochastic approximation: The algorithm of [12]
finds roots without the use of derivative estimates.
Keifer-Wolfowitz (KW) [5] is a related algorithm for
noisy optimization. It estimates the gradient by per-
forming experiments in both directions along each di-
mension of the input space. Based on the estimate,
it moves its experiment center and repeats. It uses
decreasing step sizes to ensure convergence. KW's
strengths are its aggressive exploration, its simplicity,
and that it comes with convergence guarantees. How-
ever, it can attempt wild experiments if there is noise,
and discards the data it collects after each gradient
estimate is made. Amoeba (see below) is a similar
approach, but in our experience is superior to KW.

Amoeba search: Amoeba [11] searches k-d space
using a simplex (i.e. a fc-dimensional tetrahedron).
The function is evaluated at each vertex. The worst-
performing vertex is reflected through the hyperplane
defined by the remaining vertices to produce a new
simplex that has moved up the estimated gradient. In-
genious simplex transformations let the simplex shrink
near the optimum, grow in large linear zones, and ooze
along ridges.

388 Moore, Schneider, Boyan, and Lee

Experiment design & response surface meth-
ods: Current RSM practice is described in the clas-
sic reference [1]. It proceeds by cautious steepest as-
cent hill-climbing. A region of interest (ROI) is estab-
lished at a starting point and experiments are made
at positions that can best be used to identify local
function properties with low-order polynomial regres-
sion. Much of the RSM literature concerns experi-
mental design—deciding where to take data in order
to acquire the lowest variance estimate of the poly-
nomial coefficients in a fixed number of experiments.
When the gradient is estimated confidently, the ROI
is moved accordingly. Quadratic regression locates op-
tima within the ROI, and diagnoses ridge systems and
saddle points. The strength of RSM is that it avoids
changing operating conditions based on inadequate ev-
idence, but moves once the data justifies it. A weak-
ness of RSM is that human judgment is needed: it is
not an algorithm, but a manufacturing methodology.

Evolutionary computation and learning au-
tomata: Methods such as genetic algorithms begin by
sampling uniformly, but then bias later samples in fa-
vor of the experiments that had good outcomes. There
is a vast literature of refinements of such methods.
These approaches need thousands, sometimes millions,
of evaluations, because they attack a different problem:
Global Optimization, usually for noise-free, cheap-to-
evaluate criteria.

PMAX: PMAX is a simple, effective algorithm.
Based on the data from the experiments so far, it uses
a non-linear function approximator to estimate the un-
derlying function </(x). The next experiment is taken
at the point that maximizes the estimate of g. This ap-
proach has been used with a decision-tree approxima-
tor [13], with neural nets (in many commercial prod-
ucts), and with locally weighted regression [9]. Vari-
ations of PMAX include taking the next experiment
not at the predicted optimum, but instead where the
confidence intervals are widest [6], or where the top
of the confidence interval is maximized [9], or in ac-
cordance with the Interval Estimation heuristic [4] or
similar criteria [13].

Empirically, we have found that PMAX using locally
weighted regression as the function approximator is
often faster than more sophisticated alternatives [9].
However it has some serious drawbacks:

• In conventional function approximation one must
solve the bias-variance tradeoff. This is often de-
termined automatically using cross-validation [8],
but this proves difficult with a set of very few,
weirdly distributed datapoints obtained during
optimization. Empirically we have observed dis-
mal performance when attempting this. In addi-
tion, conventional approaches search for the best
model over the whole data range, whereas we only

need our model to be accurate in the vicinity of
the optimum.

• PMAX is very expensive. It needs to train a
function approximator each time an experiment is
made, and then the approximate function must be
numerically optimized to produce the suggested
experiment.

• PMAX can get stuck in hallucinated optima since
it is not choosing experiments to give the most
information (in the way that RSM docs).

4 THE Q2 ALGORITHM

The Q2 algorithm is an attempt to combine the
strengths of Newton's method (superlinear conver-
gence), RSM (using estimates of significance in the face
of noise), and PMAX (exploiting all available data).
Let us first outline the structure of the Q2 algorithm,
before discussing its details:

1. Input a set of previous experimental results

(xi->yi),(x2->y2),--.,(x„->y„) (2)

and HR: a hyper-rectangular portion of input
space over which the optimization is constrained
to take place.

2. Select a convex Region Of Interest (ROI) within
HR such that:

• The constrained optimum within HR is ex-
pected to lie within ROI.

• There is no evidence to contradict the
assumption that the function is well-
approximated by a quadratic within ROI.

3. Select a useful experiment to take within ROI.

4. Return the experiment, the estimated location of
the optimum, and (optionally) other information
such as the ROI and a regression analysis of the
local quadratic.

In typical operation, the suggested experiment will
be performed, we will add the new datapoint to the
dataset, and return to Step 2.

Step 2: Selecting the ROI

Step 2 begins by generating a sequence of candidate
Regions Of Interest, ROh, ROh,..., ROIj,... from
which the final ROI will be selected. The generated
sequence has the properties that

ROh:=HR and ROIj D ROIj+i (3)

where ROIj+i is determined by cutting away an un-
promising subregion of ROIj. How is the cut deter-
mined? Let us consider an example.

Q2: Memory-based active learning 389

Figure 1 shows a Gaussian function of two inputs. Sup-
pose HR is set to be the full square region depicted
in the figure, and suppose we have available the thirty
noisy datapoints that are also shown. Call this dataset
DSi. We can fit a quadratic to DSi. Write

yk = c + bTxfc + ix^Axfc (4)

where A is symmetric, or, equivalently,

yk = c+bixk\ + b2Xk2+ %auxl1 + ai2XkiXk2 + %a22Xk2
.(5)

The regression is a matter of simple matrix manipu-
lation. Write z/j = the vector of polynomial terms for
the feth input point, x*.

zfc = (1, Xki, xk2, x2
kl,xkixk2, x\2) (6)

Write Z = a matrix whose fcth row is zk, and write
Y = a vector whose Arth element is yk. Finally define

ß = (c,6i,62,iaii,ai2, £a22)
T

as the regressed coefficients. Then using Bayesian re-
gression with non-informative priors on ß and <r2 (the
estimated Gaussian noise), we have the MAP of ß (also
the maximum likelihood value in this case) as

We have described how ROh is constructed from
ROI\. In general, ROIj+\ is constructed from ROIj
using a similar recipe: set DSj+i = DSj — (xk(j),yk(j)),
do a regression using dataset DSj+i (which will be
less biased than using DSj), and cut using the point
that the new regression predicts will be worst. Fig-
ure 3 shows the approximation that results after the
first cut has been made (giving a less biased fit than
Figure 2), and also shows the second cut. Figure 4
shows what remains after the twelfth cut: the fit is
now good, because it is only based on datapoints near
the quadratic-shaped optimum. Figures 5-7 use a big-
ger dataset and an extreme ridge system.

At this point Q2 has generated a series of candidate
regions, ROh, ROh To decide which to select, we
perform regression analysis on the quadratics in each
of the ROh. As j increases, ROIj shrinks and is based
on fewer datapoints. So, as j increases, ROIj's bias de-

(7) creases and its variance increases. We select the ROIj

/3 = (ZTZ)-1ZTY (8)

In practice, if the information is known, we can put
Gaussian priors on the coefficients and an inverse-
Gamma prior on the noise. For our dataset the re-
sulting quadratic approximation is shown in Figure 2.
Note that because the underlying function is so far
from quadratic, this is a poor fit.

Q2 evaluates each of the datapoints in DSi using the
quadratic, producing the values of Equation 5. Let
(xfc(i),y*(i)) be the datapoint that is predicted to be
the worst, i.e. k(l) = argminfcyfc. It will be used to
define a cut of ROh. We look at the direction of the
steepest gradient, Vy, of the quadratic at x.k^), and we
cut using the half-plane perpendicular to this direction
so that

ROh = ROh n {x I (x - xfc(i)).di > 0} (9)

where di = Vy evaluated at xk(i).

In Figure 2, the worst point according to the quadratic
is at the top left, and with some effort the resulting
cut-plane can be seen.

Why do we use the above approach? We want to use
our unreliable (probably biased) quadratic to tell us
how to reduce the ROI. We assume that even if the
quadratic is a poor model for y, it will be adequate
to predict an unpromising location for the optimum.
Why pick the point with the predicted worst value in-
stead of the actual worst value? Because the actual
values are noisy, meaning that an unlucky datapoint
could be misleadingly removed.

with the best tradeoff using the criterion: Choose the
smallest ROI for which Bayesian regression analysis
is confident about the location of the optimum, and for
which the optimum is, with high probability, inside the
ROI.1

The results of this criterion are shown in Figures 8-
13. With fewer or noisier datapoints, larger ROIs are
chosen. The shape of the chosen ROIs nicely reflects
the shape of the local ridge system (Figure 7). If ir-
relevant inputs are included, the ROI chosen by Q2
tends to stretch to ignore irrelevant dimensions (pic-
tures omitted because of space constraints).

Step 3: Choosing the experiment

Once the ROI is determined, the estimated optimum
is easily obtained as

xopt = -A^b (10)

(assuming the quadratic fit has revealed a maximum,
meaning A is negative-definite). xopt is not necessar-
ily the best place to experiment in order to gain useful
new information. Instead, we investigated these op-
tions:

1. Put experiment at xopt.

2. Choose a random point within ROI.

3. Choose the point in ROI that is predicted to most
reduce the uncertainty about the location of the

'This is achieved by taking the joint posterior distri-
bution (normal-gamma) on the noise and the coefficients
of the quadratic form, and then (via Monte Carlo sam-
pling) seeing whether at least T = 98% of the samples lie
in the ROI and whether the expected regret of committing
to the optimum is below a threshold (2% of the range of
output values). Empirically these threshold choices are not
performance-critical.

390 Moore, Schneider, Boyan, and Lee

/ / / ...i,y.. \

//y'/-:-'\J
III ffr' ""xN

-0.2 0 0.2 0.4 0.4 0.1 -0.2 0 0.2 0.4 0.4 0.1

Figure 1: A function of two inputs. The optimum is at (0.75,0.25). Figure 2: The best-fitting global quadratic regression approximation

It is a Gaussian bump, and hence very flat more than about 0.4 units obtained by least squares regression on the 30 datapoints. The worst-

of distance from the optimum. Also shown are 30 noisy datapoints. scoring datapoint is in the top left.
These were generated with uniformly random (x,y) coordinates, with

z (height) set to f(x,y) plus Gaussian noise with standard deviation

0.1.

optimum.

4. Choose the point in ROI that keeps the regres-
sion as orthogonal [1] as possible, mimicking es-
tablished RSM practice.

5. Choose the point in ROI as far away from any
previous datapoints (in or out of ROI) as possible.

Option 5 is best empirically. This is because options
3 and 4, despite their elegance, usually choose exper-
iments at the edge of the ROI, reducing the opportu-
nity for future cuts to shrink future ROIs. Option 1
quickly becomes stuck, and option 2 frequently wastes
experiments.

Details

In this short paper, many details have been omitted.
Some regressions predict a minimum or a saddlepoint,
instead of a maximum. We have special-purpose tech-
niques to deal with this. The Bayesian analysis is
largely standard, and also omitted: see [3] for more de-
tails. Some confidence measures require Monte Carlo
integration. These details will be discussed in a forth-
coming technical report [10].

5 RESULTS

We begin by comparing Q2 with four versions of
Amoeba and three versions of PMAX on the func-
tion /i from Figure 1 with noise of 0.3 added to each
evaluation2. Amoeba is the classic search algorithm

2 These tasks are
http://www.cs.cmu.edu/~AUTON

available from

from [11]. Amoeba2 is the same except it is made re-
sistant to noise by doing two evaluations and taking
their average at each simplex vertex. Amoeba4 and
Amoeba8 similarly average four and eight evaluations
at each vertex. All the Amoebas begin with a medium-
sized simplex started randomly in input space.

The results are in Figure 14. In this (and all subse-
quent experiments) we performed 25 independent runs
of each optimizer, with each run consisting of 60 ex-
periments. As well as selecting the datapoints for the
experiments, at every stage the optimizers also gave
their estimate of the location of the optimum. To as-
sess the various optimizers, we wish to compare how
good they are at estimating the optimum, and so we
look at the true value of the underlying function at
these estimates of the optimum. For the fth run of a
particular optimizer, let s, denote the mean of the true
values at the estimates of the optimum. The figures in
the left hand column are the mean s,- value of the opti-
mizer over all 25 runs (i.e. (£,■s,)/25). These values
are also drawn graphically in the same column: the
further to the right the dot lies, the better the mean
score. The horizontal lines depict the 95% confidence
intervals on the mean. The right hand column shows
the mean performance of the optimizer on the final 15
of the 60 experiments. Unsurprisingly, all methods do
better in later experiments, so the right hand means
are higher.

Figure 14 shows that Q2 outperforms all the other
methods on this problem. Amoeba4 is the best of the
Amoebas; it is less affected by noise than Amoeba and
Amoeba2, but it makes better progress than Amoeba8,
which wastes 8 evaluations on every vertex.

Q2: Memory-based active learning 391

V >r
0.2 0.4 0.6 0.8 0.2 0.4 O.E 0.8

Figure 3: After the worst-scoring point is removed from the regression, Figure 4: After 12 cuts the remaining datapoints (those inside the
we have the following fit to the remaining 29 datapoints. The worst convex region defined by the cuts) are relatively close to the optimum,
predicted point among these is halfway up along the left edge. Note and the resulting local quadratic regression is an excellent local ap-

the cut that it causes. proximation.

Figure 5: Another function of two inputs. Figure 6: After the first 150 cuts, the region Figure 7: After the first 180 cuts, the region
The optimum is on the banana-shaped ridge of interest nicely surrounds the ridge. of interest is smaller still, yet continues to sur-

at (0.75,0.2). 200 datapoints are shown (their round the true optimum,

heights omitted).

Table 1 (shown later) gives results for the 2d-functions
of Figures 5, 15, and 16 for noise levels of 0 and 0.3.
With no noise, the one-evaluation-per-step version is
always the best Amoeba. With noise, the best Amoeba
is problem specific. The best PMAX is also problem
specific. Q2 adapts well to noise and to differing levels
of function complexity. Q2 is beaten by the Global and
mediumly local PMAX for the noisy pure quadratic
/3(zi,Z2)- In all other cases Q2 wins, but its main
strength is autonomy: unlike Amoeba and PMAX no
problem specific parameter needs to be chosen to make
Q2 perform well.

Figure 17 shows a simulated, sanitized version of a real
industrial process. Liquids enter a tank at a certain
rate (a parameter) and a certain mix-ratio (a parame-
ter) unless the tank is above a certain level (a parame-
ter). They react causing a color dependent on the tank
mix-ratio and the time spent in the tank. Thickener is

added at a certain rate (a parameter), and the output
passes through a cooling tunnel to wait on a holding
belt. While waiting, color may change. When the belt
fills beyond a certain level (a parameter), production
halts. Customer demand randomly consumes material
on the holding belt. The yield is the amount of ma-
terial that reaches the customer with color lying in an
acceptable tolerance range. This is a very noisy task.
The yield is a highly non-quadratic function; one in-
put is almost irrelevant, the others are all important,
and two of the inputs must run to their maximum le-
gal value for best performance. The results are given
in Figure 18, and show a significant win for Q2. Q2
and the PMAX's also have far more repeatable results
than the Amoebas.

We also applied conventional RSM to this task, using
a star design prescribed by [1]. The star occupied the
hyperrectangle defined by the legal ranges of values for

392 Moore, Schneider, Boyan, and Lee

Figure 8: The region of interest selected for Figure 9: The region of interest when given Figure 10: The region of interest when given

the function of Figure 1 given a dataset of only 30 datapoints. 50 datapoints.

10 points.

Figure 11: The region of interest selected for Figure 12: The region of interest when noise Figure 13: The region of interest, when a

the function of Figure 1 given a dataset of 30 with std. dev. a = 0.5 is added to the obser- 2.0.

points, with no noise. vations.

each input. It needed 76 evaluations, but the chosen
optimum had a yield below 10 units: worse than all
the other methods, indicating that the assumption of
a global quadratic is inadequate in this domain.

Next, we examine a domain where experiments are
time-consuming. Figure 19 shows a generalization of
the multi-buffer machine task described in [7] (this
makes 10 products instead of 5). There are two in-
puts defining a simple parameterized policy for when
to service the machine. Services are costly, but un-
scheduled breakdown is much worse. This task is eval-
uated by a computationally expensive simulation; for
each setting of the two inputs, we perform 10000 simu-
lation steps to evaluate the performance. Evaluations
are very stochastic (with highly non-Gaussian noise).
The results are shown for runs of only 24 experiments.
Q2 learns a good policy in these 24 experiments, i.e.
a total of only 24 x 10000 simulation steps. This com-
pares favorably with the tens of millions of simulation
steps needed for reinforcement learning in [7], but Q2
is unlikely to find as good a policy as their semi-MDP
formulation.

The final results show Q2 being used for root-finding

instead of optimization. The hand position in Fig-
ure 21 is a noisy function of 0i and 02. The task re-
quires us to achieve the goal hand position. Although
space permits no details, the version of Q2 for root (or
target) finding uses linear instead of quadratic regres-
sion in its ROIs. The results are shown in Figure 22.
Figure 23 shows the results when, on each experi-
ment, the target position is varied randomly within the
workspace. Amoeba, a pure optimization method for
a fixed goal, is no longer applicable here, but PMAX
and Q2 can still be used because their decision making
simply requires a dataset of previous experiences. Q2's
ability to tune its regions of interest decisively beats
all PMAXs.

Mean over all 100 trials Mean over last 25 trials

PmaxGlobal -0.417 _»- -0.368 -»-

PmaxLocal -0.402 -♦_ -0.342 —»-

PmaxVLocal -0.475-»- -0.418 -f-

Q2 (Linear) -0.042 . -0.021 .

Figure 23: Performance on kinematics when the target

varies during each experiment.

Q2: Memory-based active learning 393

Mean over all 60 trials Mean over last 15 trials

Amoeba 1.040 »

Amoeba2 1.130 —i—

Amoeba4 1.181 —«—

Amoeba8 0.950—t— 1.209 —i—

PmaxGlobal 1.667 ♦ 1.812 ♦

PmaxLocal 1.681 . 1.846 .

PmaxVLocal 1.517 ♦ 1.691 ♦

Q2 1.716 . 1.894 .

Figure 14: Performance on /i(xi,*2) from Figure 1.

Noise
0.0

f2(xi,X2)

Figure 15: f3{xi,X2): a simple (pure
quadratic) two-input function with an

optimum at (0.5,0.5).

Mean over all 60 trial! Kaan over last 15 trials

Amoeba 2.16! •+ ^2.509 (

Amoeba2 1.879 ->- 2.250 -»-
Amoeba4 1.S76 -»- 1.993 ->-
AmoebaS 1.202-f- 1.8« —♦—

PmaxGlobal 1.735 -*- 1.859 -•-
PmaxLocal 1.866 * 2.116 -f-

PmaxVLocal 1.938 ♦ 2.268 ♦

02 1.968 ♦ 2.176 •

Noise
0.3

Kean over all 60 trials Mean over last 15 trials

Amoeba 1.633 —e— 1.728 —♦—

Amoeba2 1.656 -»- 1.819 —4—

Amoeba4 1.479 -»- 1.849 —1—

AmoebaB 1.182-4- 1.802 -4-

PmaxGlobal 1.769 -4- 1.909 ->-
PmaxLocal 1.861 + 2.092 -4-

PmaxVLocal 1.835 ♦ 2.117 ♦
02 1.859 . 2.388 4

h(x\,X2)
Kean over all 60 trials Mean over last 15 trials

Amoeba 1.985 * 2.000 (

kmoeba2 1.970 -4- 2.000 1

Amoeba4 1.940 —4— 1.996 •

Amoebae 1.982 -4-

PmaxGlobal 1.953 •*■ 1.998 •

PmaxLocal 1.953 ■4- 1.998 t

PmaxVLocal 1.938 ♦ 1.994 •

02 1.959 •«- 2.000 (

Mean over all 60 trials Mean over last 15 trials

Amoeba

Aaoeba2 1.871 -4- 1.890 —4—

Amoeba4 1.904 -4- 1.954 -4~

Amoeba8 1.865 -♦- 1.936 -4-

PmaxGlobal 1.910 •4- 1.979 <

PmaxLocal 1.911 + 1.984 <

PmaxVLocal 1.787 ♦ 1.868 -4-

02 1.892 -4- 1.944 -t-

Figure 16: /4(zi,X2): a function in
which the only relevant direction is x+

y. The optima lie along a diagonal

ridge.

fi{xi,.X2)

Mean over all 60 trials Mean over last 15 trials

Amoeba 1.816 • 2.000 t

Amoeba2 1.631 ♦ 1.999 I

Amoeba4 1.275 -4- 1.944 <

AmoebaS 0.700-e- 1.158 —»—

PmaxGlobal 1.618 + 1.803 .

PmaxLocal 1.691 . 1.870 <

PmaxVLocal 1.661 • 1.908 <

02 1.730 • 1.999 ■

Mean over all 60 trials Mean over last 15 trials

Amoeba 0.B0B—»— 0.861 ■

Amoaba2 0.075 —I— 1.009 1

Amoeba4 0.962 —♦— 1.38B 1

Amoebae 0.637-4- 0.956 —«—

PmaxGlobal 1.549 + 1.738 +

PmaxLocal 1.619 ♦ 1.843 «

PmaxVLocal 1.489 « 1.756 «

02 1.675 (1.947 t

Table 1: Optimization results for seven optimizers on three problems at two noise levels.

6 CONCLUSION

This paper has highlighted the importance of Black
Box Noisy Optimization, surveyed possible ap-
proaches, and then introduced a new algorithm: Q2.

Algorithms like Newton's method, golden ratio search
and conjugate gradient [11] maintain a region expected
to contain an optimum and in which future experi-
ments will occur. Q2 tries to do the same thing with
two innovations. First, it can derive a ROI from a
previous dataset irrespective of how that dataset was
collected. Second, Q2 can survive noise. Q2 is also
related to RSM and traditional instance-based learn-
ing. Future Q2 work will include trials on real pro-
cesses, batching experiments, semi-quadratic regres-
sion for high dimensions, and survival of slowly time-
varying systems.

Future work: This algorithm only finds local optima:
what can be done to encourage further exploration for
alternative optima? We also hope to produce a for-
mal characterization of when this approach will best
work. The main limitation is that the computational
cost grows rapidly with the number of inputs, and the

current Q2 is unlikely to be useful above 10 inputs.
We have begun investigation into versions applicable
to hundreds of inputs.

Acknowledgements

This work was supported by an NSF Career Award
to Andrew Moore, and Justin Boyan's NASA GSRP
Fellowship.

References

[1] G. E. P. Box and N. R. Draper. Empirical Model-
Building and Response Surfaces. Wiley, 1987.

[2] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Ac-
tive learning with statistical models. In G. Tesauro,
D. Touretzky, and T. Leen, editors, Advances in Neu-
ral Information Processing Systems 7. MIT Press,
1995.

[3] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin.
Bayesian Data Analysis. Chapman and Hall, 1995.

[4] L. P. Kaelbling. Learning in Embedded Systems. PhD.
Thesis; Technical Report No. TR-90-04, Stanford Uni-
versity, Department of Computer Science, June 1990.

394 Moore, Schneider, Boyan, and Lee

■J.-ffftr tote Haft
■J: Wakr/Dft mit

»l; Tut
tkmmffktl i

'/^V\

I
**Ma*tff knt

Inkkcaer ̂

,ÄV^ QQ.QOQOOy

Figure 17: A simulated production process described in the text.
Finite capacity buffers Unpredictable

Demand

Raw

materials Unreliable
Multipurpose
Machine

,0000
,000000

■AAA

Product A

Product B

J Product C

Product D

Product E

J

XX XXX X X

,TTT

Product t-

J Product C-

ProductH-
Productl •

Mean over all 60 trials Hean over last 15 trials

Amoeba 25 297 i

Amoeba2 27 112 t

Amoeba 4 22.302 —•—

Amoeba8 19.858—♦— 21.411 —♦_

PmaxGlobal 28.006 « 37.237 +

PmaxLocal 27.634 ♦ 37.952 +

PmaxVLocal 23.012 . 27.105 ■*■

02 36.334 ♦ 45.589 +■

Figure 18: Performance on the simulated production process.

Mean over all 24 trials Mean over last 6 trials

Amoeba 1 553 « 1.897 '
Amoeba2 1.711 -^- 2.859 _«—

Amoeba4 0.940 _♦_ 2.179 —t-

PmaxGlobal -1.489» -1.380»

PmaxLocal -1.521» -1.454»

PmaxVLocal -1.565» -1.518.

02 0.535 -«- 3.352 -*-

Figure 19

in [7].
Goal Hand Position

.MMMMMMMMMN i P™IUC.J -*-

A multi-buffer servicing task similar to those described Figure 20: Performance at the multi-buffer task.

Noise (+/-)

Mean over all 40 trials Mean over last 10 trials

Amoeba

Amoeba 2 -0.092 1 -0.087 »

Amoeba4 -0.096 . -0.096 »

AmoebaS -0.071 *
PmaxGlobal -0.051 + -0.046 +

PmaxLocal -0.050 ♦ -0.042 ♦
PmaxVLocal -0.057 ♦ -0.054 ♦

Q2 (Linear) -0.062 -♦- -0.023 -*-

Figure 21: A 2-input, 2-output kinematics task. Figure 22: Performance on the kinematics task.

[5] H. Kushner and D. Clark. Stochastic Approximation
Methods for Constrained and Unconstrained Systems.
Springer-Verlag, 1978.

[6] D. J. C. MacKay. Bayesian Model Comparison and
Backprop Nets. In J. E. Moody, S. J. Hanson, and
R. P. Lippman, editors, Advances in Neural Informa-
tion Processing Systems 4- Morgan Kaufmann, April
1992.

[7] S. Mahadevan, N. Marchalleck, T. Das, and A. Gosavi.
Self-Improving Factory Simulation using Continuous-
Time Average-Reward Reinforcement Learning. In
Proceedings of the 14th International Conference on
Machine Learning (ICML '97), Nashville, TN. Mor-
gan Kaufmann, July 1997.

[8] A. W. Moore, D. J. Hill, and M. P. Johnson. An Em-
pirical Investigation of Brute Force to choose Features,
Smoothers and Function Approximators. In S. Han-
son, S. Judd, and T. Petsche, editors, Computational
Learning Theory and Natural Learning Systems, Vol-
ume S. MIT Press, 1992.

[9] A. W. Moore and J. Schneider. Memory-based
Stochastic Optimization. In D. Touretzky, M. Mozer,

and M. Hasselmo, editors, Neural Information Pro-
cessing Systems 8, 1996.

[10] A. W. Moore, J. Schneider, J. Boyan, and M. S. Lee.
Q2: A memory-based active learning algorithm for
Blackbox Noisy Optimization. In preparation, 1998.

[11] W. Press, S. Teukolsky, W. Vetterling, and B. Flan-
nery. Numerical Recipes in C. Cambridge University
Press, 1992.

[12] H. Robbins and S. Monro. A stochastic approximation
method. Annals of Mathematical Statistics, 22:400-
407, 1951.

[13] M. Salganicoff and L. H. Ungar. Active Exploration
and Learning in Real-Valued Spaces using Multi-
Armed Bandit Allocation Indices. In Proceedings of
the 12th International Conference on Machine Learn-
ing. Morgan Kaufmann, 1995.

395

Collaborative Filtering using Weighted Majority Prediction
Algorithms

Atsuyoshi Nakamura and Naoki Abe
NEC C& C Media Research Laboratories

4-1-1 Miyazaki, Miyamae-ku, Kawasaki 216-8555 JAPAN
{atsu,abe}@ccm.cl.nec.co.jp

Abstract

We apply various generalizations of weighted
majority prediction algorithms for on-line
prediction of binary relations to the problem
of predicting personal preferences over infor-
mation contents, which is a key issue in col-
laborative filtering. Note that the collabora-
tive filtering problem can be casted as learn-
ing a binary relation between the users (as
the rows) and the contents (as the columns).
The original prediction algorithm of Gold-
man and Warmuth [GW95] makes its pre-
diction by majority voting by the rows with
observed data in the same column, weighted
by the believed similarity between the rows.
In the present paper, we propose a general-
ization 'G-Learn-Relation' of their algorithm
to the multi-valued setting, and empirically
demonstrate that it performs better than ex-
isting filtering methods based on correlation
coefficients, both on simulated and real data.
The performance comparison was done in
terms of the total number of prediction mis-
takes and the measures of precision and re-
call. Additionally, we propose a version of
G-Learn-Relation that makes use of indirect
evidence available as believed similarity be-
tween other rows, and another version in
which both row similarity and column sim-
ilarity are used for prediction. In both cases,
significant improvement was observed in ex-
periments involving simulated data. Finally,
we give a theoretical performance guarantee
for G-Learn-Relation in terms of an upper
bound on the worst case number of mistakes,
which together with a lower bound on the
number of mistakes made by a correlation-
based method establishes that its worst case
performance is better than the correlation-
based methods.

1 Introduction

We apply various generalizations of weighted majority
prediction algorithms, proposed in the context of on-
line prediction of binary relations, to the problem of
predicting user's preferences on information contents.
This is a key issue in personalized information filter-
ing, an area that is gaining increasing attention in in-
ternet related technology. Information filtering tech-
niques known in the literature can, for the most part,
be classified into two types. One is the contents-based
approach to filtering, which is based on the features
of the actual contents such as word counts, and the
other is the so-called collaborative (or social) filter-
ing approach, which makes use of similarities between
the users observed in the past scoring data represent-
ing their preferences. Methods combining the two ap-
proaches have also been proposed. In this paper, we
are concerned with the latter approach, namely filter-
ing methods that are based solely on the scores given
by the users on the contents.

Existing methods of collaborative filtering [RISBR94,
SM95] make use of correlation coefficients. In this ap-
proach, the preference of a user on a particular con-
tent is predicted by taking a weighted average of all
scores given to that content by various users in the
past, weighted by the correlation coefficients between
their scores and those of the user in question, calcu-
lated using scores given to common contents.1 These
methods are based on a reasonable intuition that corre-
lation coefficients can quantify the similarity between
the users' preferences but one shortcoming of this ap-
proach is that the estimation confidence of the corre-
lation coefficients is not taken into account.

As a way to address this issue, we resort to on-line pre-
diction algorithms for binary relations proposed and
studied in the areas of computational learning theory

'It has been reported that a variant of this method that
uses a threshold and a fixed average do the best among var-
ious methods based on the correlation coefficients [SM95].

396 Nakamura and Abe

and machine learning [GR.S93, GW95, NA95]. Note
that, information filtering can in principle be viewed
as a learning problem for a binary relation, in which
a user is related to a content just in case he or she
prefers it. Such a binary relation can be represented
by a 0,1-valued matrix, in which the rows represent
users and the columns represents contents. In par-
ticular, we make use of the weighted majority pre-
diction algorithm proposed and analyzed by Goldman
and Warmuth and its generalizations [ALN95]. These
methods learn weights that roughly represent the be-
lieved similarities between the rows (and columns) and
make predictions by weighted majority voting. Here
we further extend these algorithms so as to handle the
cases in which the scores are not necessarily binary but
many-valued.

First, we generalized the original weighted majority
prediction algorithm 'Learn-Relation' [GW95] into the
many-valued setting. (We call the generalized algo-
rithm 'G-Learn-R.elat.ion.') We evaluated the perfor-
mance of this method using both simulated and real
data. In our evaluation, we considered that a predic-
tion whose round-off integral value is at most one off
the correct value to be correct and all others to be
mistakes. The experimental results indicate that G-
Learn-Relation out-performs the best known method
based on correlation coefficients in experiments using
both simulated and real data, in terms of the total
number of mistakes. With respect to more widely used
measures of precision and recall, G-Learn-Relation had
a better overall performance as well. Furthermore,
it was found that G-Learn-Relation is less sensitive
to the choice of its parameters, as compared to the
correlation-based methods.

Next, we evaluated the effect of using the similarities
between the columns as well as the rows in making
predictions. It has been verified, using several two-
dimensional extensions of Learn-Relation, that such
an approach can improve the predictive performance
in another application domain [ALN95]. In our exper-
iments using simulated data, the effect of using both
rows and columns was observed for both correlation-
based methods and for G-Learn-Relation, the two-
dimensional extension of G-Learn-Relation being the
most favored. With respect to real data, however, the
effect was minimal. This may be attributable to the
fact that the real data used in our experiments had
very uneven number of rows and columns (48 rows
and 277 columns).

As an attempt to further improve the performance of
G-Learn-Relation, we enhanced its prediction by us-
ing indirect evidence. In particular, we incorporate
an idea suggested by Lang and Baum [LR97] into
the weighted majority prediction algorithm. Their
method, which they call 'triple row,' is based on the

idea that 'a friend's friends is a friend, too' (and a
friend's enemy is an enemy, too.) That is, in deter-
mining the similarity between two rows, we take into
account the (dis)similarity between the two rows and
a third row. Our experimental results indicate that
this enhancement results in a significant performance
improvement on simulated data, but on real data the
effect was inconclusive.

Finally, we give a theoretical performance guarantee
for G-Learn-Relation in terms of an upper bound on
the worst case number of mistakes it makes. We
also show a lower bound on the worst case number
of mistakes made by the correlation-based method
and establish that the worst case performance of the
weighted majority type algorithms is better than that
of the correlation-based methods.

2 The problem formulation

Collaborative filtering using methods that are based
solely on the scores given by the users on the con-
tents can be viewed as an on-line prediction problem
for binary relations (and multi-valued functions). The
target binary relation (or function) can be represented
by a matrix M, whose «,j-entry represents the score
given by user i on contents j. On-line learning pro-
ceeds as follows. At any given time /, the learning al-
gorithm is given an arbitrary pair i,j and predicts its
value as A/;J, based on an observation matrix O'. Here
an observation matrix O in general satisfies Ol; = Mjj
whenever the i,j entry has been observed, and Ojj = *
otherwise. The learner is then given the actual value of
Mjj, and Ox is updated (to Ot+1) accordingly. Start-
ing initially with O0 whose elements are all *, the
above process is repeated until the matrix is fully ob-
served, namely until Ol = M. In our experiments,
we assume that the scores arc integers between 1 and
5 (5 being the highest score) and prediction is done
with a real number. A prediction is considered correct,
if its round-off value2 is at most 1 different from the
correct value. The performance of an on-line learn-
ing algorithm is measured in terms of the total num-
ber of mistakes in the entire trial sequence, often as
a function of various parameters quantifying the size
of the problem. These include the numbers of rows
and columns as well as the numbers of row types and
column types, where two rows /,/' are said to belong
to the same type, if they agree in all columns, namely
if Mjj = M,,j holds for all j. (The column types are
similarly defined.)

3 Algorithms Employed

In this section, we describe the generalized weighted
majority algorithms we propose in this paper.

For example, the round-off values of 3.4 and 3.5 are 3
and 4. respectively.

Collaborative Filtering using Weighted Majority Prediction Algorithms 397

The original weighted majority prediction algorithm
(Learn-Relation) makes its prediction My by weighted
majority voting by all rows ■/' such that the entry Mi>j
in the same column has been observed, each weighted
by the weight ww representing the believed degree of
similarity between the rows i and /'. The weights are
updated by multiplying those contributing to the cor-
rect value by (2-7) and those contributing to a wrong
value by 7, for some 7 < 1. Note that this update is
equivalent to defining the weight ww at each trial as
(2 — ■))C""2W"1, where Cw is the number of times i'
has voted for a correct value in row / and Ww the
number of times it voted for a wrong value.

G-Learn-Relation generalizes Learn-Relation for
multi-valued functions by letting each row i' vote for
all values (in V(a)) within a permitted tolerance from
its predicted value a = MJJJ. Its weights are updated
in the same manner as in Learn-Relation.

G-Learn-Relation(0 < 7 < 1)
With each row pair (?',«') is associated a weight, ivw ■
We let A denote the range of entries of M, and for any
a G A, V(a) denotes the set of prediction values that
are considered correct when the true value is a.
Initialization: iuw := 1
Prediction:

Prediction:

Mij =

arg max N ivw if {1 : O,;/,- ^ *} ^
a£A *■—'

i':0,,,eV(o)
CQ(a constant) otherwise

Weight update: For al i'(^ i) such that 0,;<j ^ *

._ / (2 - y)wu
ywu'

if Oi>j G V(Mij)
if Or, $ V(Mij)

Note in the above (and else-where) that Co is the
default value which is used to predict when no rele-
vant observations have been made. In all the filter-
ing methods we describe here and in all of our experi-
ments, we set Co = 3. Also in our experiments we set
V(a) = {x G A : a - 1 < x < a + 1}.

We also consider an extension of G-Learn-Relation,
which we call Cross-G-Learn-Relation, which makes
use of observed values in the same row and differ-
ent columns, in addition to those in the same column
and different rows. (This is a generalization of the
two-dimensional weighted majority algorithm called
WMP2 proposed in [ALN95].)'

Cross-G-Learn-Relation(0 < 7 < 1)
With each row pair (i, i') is associated a weight, -ww,
and with each column pair (j,f) is associated a weight,

Mij = {

'»'+ J2 wh') arg max >
«':0,./7-eV(a) j':0,7,eV(a)

ifii'^Oi.jt^UiJ'-.'Oij.j:*}^®
C0(a. constant) otherwise

Weight update: Update ww as in G-Learn-Relation
and additionally for all j'(/ j) such that 0,:;/ ^ *,

33

(2-7)u£, ifOy. eV(Mij)
jw]jt if Oij.^ViMij)

Next the version of G-Learn-Relation in which we
incorporate indirect evidence, referred to as Learn-
Relation-IE, enhances the weights used in G-Learn-
Relation by taking into account indirect evidence. If
we let da' — Cw — Ww with C,;,;/ and Ww as defined
above, then roughly speaking dw > 0 is evidence for
row i being similar to row i', and dw < 0 for the con-
verse. If, for some third row i", we have both <:/,;,:<< > 0
and dmji > 0, then this can be used as indirect evi-
dence for i and i' being similar. Conversely, if we have
du" -c/,:'j» < 0, then this is indirect evidence for i and i1

being dissimilar. Thus, we redefine the weights of G-
Learn-Relation by adding 6-mrn{\dw> |, K',:» |} to Cw if
du» > 0 and d,y,;» > 0, and adding fi-min{|dü»|, |cA'?:"|}
to Ww if dw1 ■ di'i" < 0, where 6 is a small constant
controlling the degree of contribution of indirect evi-
dence. The rest of the algorithm (prediction and direct
weight update) is the same as G-Learn-Relation.

Learn-Relation-IE(0 < 7 < 1, 0 < S)
With each row pair (i, i') is associated counters
Cw, Ww■
Initialization: Cw — Ww '■= 0
Prediction: Predict as in G-Learn-Relation, except the
weights ww are calculated as follows.

dw — Cw — Ww

Cw + & X/ m'n{ 1^"" I' 1^'«" 1}
rfi,//>0,(iJ/i;;>0

Wu> + 6 ^2 min{|djj»|,|rfj/s-//|}

(2-7)e"'7/"'

C i i' —

Jii'

Wit'

Update: For all i'(£ i),

Ww ~ Ww + 1
ifOvj €V{Mtj)
if Oilj^V{Mij)

Initialization: ww 33
:= 1

We compare the performance of these generalized
weighted majority algorithms against standard meth-
ods based on correlation coefficients. Here we infor-
mally describe these methods and refer the interested
reader to [SM95] for detailed definitions. Like G-
Leam-Relation, the correlation-based methods make
predictions by weighted voting by different rows for

398 Nakamiira and Abe

which the entries in the same column have been ob-
served, except the weights between the rows are com-
puted using "correlation coefficients." The correlation
coefficient between any pair of rows is calculated using
(.he observed values in those rows in common columns.
Following [SM95], we also consider three variants of
the basic correlation-based method (also known as
Pearson r method): The I hresholded method (Pear-
son r L = 0) which lets only rows with a corre-
lation coefficient higher than threshold 0 vote: the
constrained method (constrained Pearson r) which
fixes the average in calculating the correlation coeffi-
cients at a constant rather than calculating it from the
data (in our experiments it was fixed at 3). and the
combination of the two: the thresholded constrained
method (constrained Pearson r /, = 0).

4 Experiments
4.1 The data

In our experiments, we made use of artificially con-
structed (simulated) data, as well as real data obtained
through actual experiments on collaborative filtering
in a. patent clipping service [AI97]. The simulation
data we used were for a target matrix of size 100 by 100
with 5 row types and 5 column types, with noise added.
We first generated a 5 by 5 matrix Mi, by randomly
assinging one of four groups {1,2}. {2. 3}, {3,4}, {4,5}
to each of its entries. Then, based on Mb, we gener-
ate a 100 by 100 matrix M by randomly assigning one
of the five rows of A//, to each row of M. and one of
the five columns of Mi, to each column of M. Finally,
we introduce noise by probabilistically assigning one
of five scores (1 through 5) to each group according to
the following probability table. For example, if row /'
of Mi, is assigned to row / of M. column / of Mi, is as-
signed to column j of M. and the group assigned to the
•/',/-entry of Mi, is {2,3}, then, the scores 1,2.3.4 and
5 are assigned to the /,j-entry of M with probability

Tj-, \ — %, \ — -y, $ — '\ and ~-, respectively.

entry vnluo

of Mh

probability of assigning each score
1 2 3 4 5

{1,2} I I _ ü a 0 a" ft' n"
•) •> •) ') •>

{2,3} a I n
') '2 2

{3,4} 2 't v

{4,5}
ill 2L ill

'> •> •> £L _ 111 1 _ £. 1
•) ') •> •> 9

In our experiments, we set n = 0.1, which translates
to noise rate of 0.07.r).

The real data we used in our experiments are scores
given by various people on patents according to their
interests. Scores were given by 77 people on 2558
patents, with about, 5.4 per cent of the entries filled.
Since on those entries for which few related entries are

known, none of the filtering methods considered hero
would do well, wo extracted a portion of this data by
restricting the people to those who scored at least- 50
patents, and the patents to those that were rated by
at least 10 people. This resulted in reducing the ma-
trix to 48 people by 277 patents, and 29 per cent of
this smaller matrix was filled. The scores, which arc
integers between 1 and 5. are distributed as follows.

1 2 3 4 5 Total
1541 (559 590 (500 425 38 15

Note that the higher the score of a patent is the more
interesting it is perceived by the user who scored it.

In our experiments involving simulated data, the per-
formance of each method was averaged over 4 random-
ized runs on 4 randomly generated target matrices, 1(5
runs in total. For the experiments with real data, we
took average over 4 randomized runs for each method.

4.2 Comparison with Correlation-based
methods

First, we compared the predictive performance of (i-
Learn-Relation against those of the four variants of
correlation-based methods described in Section 3, For
the threshold value in a thresholded method, and for
the value of 7 in (i-Learn-Rolation(-)■), we tried all mul-
tiples of 0.1 between 0 and 1. The results are shown
in Figure 1. Among the correlation-based methods,
it is verified that the thresholded constrained Pear-
son r method did the best, as reported in [SM95]. It is
clear that Ci-Learn-Rolation out-performed all of these
methods on real data, and it was essentially tied with
the best of all the correlation-based methods on sim-
ulated data. On real data, this tendency is more ev-
ident for column(patent)-based methods, but as the
column-based methods perform better than the row-
based methods, Ci-Learn-Rolation is clearly the best
performing method overall.

We also evaluated these methods using measures that
are more often used in practical applioat ions, preci-
sion and recall. Figure 2 compares precision and re-
call (in the last 200 trials at each trial) for the two
thresholded correlation-based methods and (i-Learn-
Relation. Figure 3 plots a combination of those two
measusres called 'F-moasure' (more precisely I']n=\ in

[Lewis94]), namely f,, }v where P stands for precision
and R for recall.

These graphs were obtained using real data using simi-
larity between patents. We considered the entries that
were given the score of 5 as desirable and predicted
valued of at least 3.5 to be selected* We can see that
(i-Loarn-Rolation achieves the highest recall rate and

''The precision is calculated as -—^. where ;V, is the num-
ber of selected entries and A7, is the number of com fill/

Collaborative Filtering using Weighted Majority Prediction Algorithms 399

800

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Known Entries

1400

1200

g1000
CO

| 800

"5
fe 600 .a
E
I 400

200

—1 1 1 1 1 1 1

,y.
- Real Data (Person) /Ai;

yy^ -
r^<S'

~ Je^'S
,&%•''''s* - y^' y

j"''~ *

J-y
jyFs' #/ _

Jrs

> i i i i i i -
0 500 1000 1500 2000 2500 3000 3500 4000

Number of Known Entries

1600

1400

„1200

S1000
to

•5 800
0
"§ 600

Z 400

200

0

- 1 1 1 1 1 i 1

Real Data (Patent) ^^

_ yS^ ^- _

y*' ** ...-•
_

j/y''***" .■■'"

- s^S ,y"" ^•'""'"' "

- /y'''. ■"" ^"'"^

. J/y'-•''' •"'"
jt'-''' .-*■'

j%-'' _,.-** _ J?-"''*

I I I 1 1 I 1

—I 1 1—
Pearson r

Pearson r L=0.3
Constrained Pearson r

Constrained Pearson r L=0.5
G-Learn-Relation(0.2)

1000 2000 3000 4000 5000
Number of Known Entries

0.45 ->

0.4

_, , , ! p

Pearson r -
Pearson r L=0 -

Constrained Pearson r -
Constrained Pearson r L=0 -

G-Learn-Relation(0.6) -

LAM Ä k

*v vx<

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Known Entries

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Known Entries

0.5

0.45

0.4

0)
to 0.35
tr
o
£ 0-3

0.25

0.2

0.15

\'-'1' -. '.KZ I

—i 1— i ■ ■ i i

Pearson r
Pearson r L=0

. Constrained Pearson r —
/^-Constrained Pearson r L=0

A\ G-lrearn-Relation(0.4) — -

i

_ i
\ ' \ \ / \ •

/ \ A"\\ i-'\ ,'"\ \
V vJ \\ A A / \ \

- \/
V • ' v •■' ,* V'**"

v *~~~-J \ \ *> .._
1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Known Entries

Figure 1: Correlation-based methods vs. G-Learn-Relation: Left graph: cumulative number of mistakes; Right
graph: error rate in the last 200 trials. Top: simulated data; Middle: Real data (similarity between people);
Bottom: Real data (similarity between patents).

the precision is comparable to others. Note that the
thresholded constrained Pearson method which enjoys

selected entries of those. The recall is jjf-, where Nj is the

number of desirable entries.

the highest precision suffers from having a very low
recall rate.

Another desirable aspect of G-Learn-Relation is its rel-
ative insensitivity towards the exact choice of its pa-

400 Nakamura and Abe

0.7

0.6

0.5

0 0.4

1 0.3

0.2

0.1

0

~1 1 1

Real Data (Patent)'

~\ r r T

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Known Entries

I I I I I I
Pearson r L=0

1

0.6 - Constrained Pearson r L=0
G-I_earn-Relation(0.4)

' -
i -\

0.5 - hi \ -
o

0.4 •■'III* ' i V i '■
■'V V ' V'! ' ' > ,.

,-v A V- «V ' '' '' ■>' ^
i

■ ■/ i >- » ;'' . i ' ■■ \ a. 0.3 "- i ' >• ' ',; > /

,'\ .--, \S , ' / ; / '•

i \ -

0.2 I \ j \1i ../ \ .■"■. : V \
/ " : ■

0.1

n

\ • f\ t
\ 1 : w

1 1 1 1 1 1 '
0 500 1000 1500 2000 2500 3000 3500 4000

Number of Known Entries

Figure 2: Procision(left) and recall(right) in the last 200 trials.

t
IXI

G-Learn-Relation(O.I) —
(0.2) -
(0.3) -
(0-4)
(0.5) -
(0.6) -■
(0.7) --
(0.8) -
(0.9) -

1000 2000 3000 4000 5000 6000 7000 8000 900010000
Number of Known Entries

Real Data (Patent)

G-Learn-Relation(O.I)
(0.2)
(0.3)
(0.4)
(0.5)
(0.6)
(0.7)

.(0.8)

500 1000 1500 2000 2500 3000 3500 4000
Number of Known Entries

1000 2000 3000 4000 5000 6000 7000 8000 900010000
Number of Known Entries

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

I i i i 1 1 1

A-V-.'.'V

"™ X^'i ~
_

A-V'\ ■'.-";. ■•"•. "
- V '/°\'*'-'i£t. -'*--V'\ '■•-.''-' -
_ V ..:/>*" \&Q...'' "" _

Constrained Pearson Oft. =0.1 — ^">-
* L=0.2

L=0.3 ----
L=0.4
L=0.5 —■
L=0.6 -•-•
L=0.7 •• -

i i i i

L=0.8
L=0.9 ••,-•- ,

500 1000 1500 2000 2500 3000 3500 4000
Number of Known Entries

Figure 4:
(similarity

Performance dependence on the choice of parameters: Top: simulated data: Bottom: Peal data
between patents). Left: (i-Loarn-Rolation: Right: Thresholded constrained correlation method.

rameter (7.) Figure 4 shows how the predictive perfor-
mance of G-Learn-Rolation and the thresholded con-
strained correlation method vary, as we change their
parameters. From the data we can see that the perfor-

mance of the thresholded correlation-based method is
extremely sensitive to small changes in the threshold
value in a certain range. In contrast., small changes in 7
of (i-Learn-Relat ion do not significantly affect its pro-

Collaborative Filtering using Weighted Majority Prediction Algorithms 401

+

£
Q.
CM

0.6

0.5

0.4

0.3

0.2 -,

0.1 -

 r - i i i i
Pearson r L=0 -

Constrained Pearson r L=0 -
G-Learn-Relation(0.4) -

"""I 1

■'? '<

, Ji\t\\i\,

/ 1 1 1 1 1 . 1 1

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Known Entries

Figure 3: F-measure (75^) in the last 200 trials.

dictive performance. This phenomenon is especially
noticeable on the simulated data, although the same
tendency is observed in the real data. In a practi-
cal application, a wrong choice of threshold could be
costly for correlation-based methods.

4.3 Using both rows and columns

We evaluated the performance improvement brought
about by the 'cross-methods,' namely methods that
make use of both row similarity and column sim-
ilarity, on G-Learn-Relation and the best perform-
ing correlation-based method - the thresholded con-
strained Pearson r method.

The results of this experimentation are shown in Fig-
ure 5. On the simulated data, it is observed that G-
Learn-Relation is more radically by the cross method,
and as a result its cross version clearly out-performs
that of the Thresholded Constrained Pearson r. On
the real data, however, the performance of the cross
method (for both G-Learn-Relation and Constrained
Pearson r) was comparable to that of the column-based
method, although it was significantly better than the
row-based method. This may be partly attributable
to the asymmetry of the real data we used: there were
only 48 rows whereas there were 277 columns. In prac-
tical applications with more even numbers of rows and
columns, the effect may be more visible.

4.4 Using indirect evidence

We compared the performance of Learn-Relation-IE
and that of G-Learn-Relation, as well as their respec-
tive 'cross' versions. Of the two parameters y,S in
Learn-Relation-IE(7,6), the same choice of 7 was used
as G-Learn-Relation, and the best choice (out of a
few) was used for 6. The results are shown in Fig-
ure 6. On the simulated data, it is observed that
the performance is improved significantly for both G-
Learn-Relation and Cross-G-Learn-Relation, for a cer-

tain range of trial numbers; trials around 1,000th to
3,000th out of 10,000. On real data, unfortunately, no
significant improvement was observed, except a little
for the row(people)-based method. It may be that,
with this particular data set, the range of trial num-
bers on which significant improvement is achieved is
yet to come.

5 Theoretical analysis

In this section, we theoretically analyze the perfor-
mance of G-Learn-Relation and that of correlation-
based methods. In particular, we prove an upper
bound on the worst case number of mistakes made
by G-Learn-Relation. We also show a lower bound
on the worst case number of mistakes made by the
correlation-based method, which shows that, as a
learning method, the correlation-based method does
not necessarily converge, and can make a huge num-
ber of mistakes in the worst case.

5.1 Mistake bound for G-Learn-Relation

It can be shown that the upper bound obtained by
Goldman and Warmuth for Learn-Relation can be gen-
eralized for G-Learn-Relation, when the target func-
tion is real-valued and V(a) is defined as V(a) =

Vd(a) = {x:a-d<x<a+-d}.

We need a few definitions to state our result. Let p be
a partition over the set of rows R, kp the size of the
partition, and p = {S1, ...,Sk*}. Them Let *»■,- = |5*|
and S] = {Mrj; : r 6 S% Let ßfa$S].) he the number
of r E S'; such that Mrj E Vk ([<*'), and define

6{j = Hi — maxj\fa(Sj).

Let the set of columns be {1,..., ra}. Let 6j. — Y2j=i %

and define the noise ap of partition p as ap = J2iLi h-
Then, the following theorem holds.

Theorem 1 For all 7 6 [0,1), Algorithm G-Learn-
Relation(y) makes at most

mm < kpm. + min
2jloge + ap(n- kvm)M

log! 2
+ß

\

3ra?i2 log kp + 2ap(mn — ap) log A

lo§w
mistakes. Here, ß — ^—, and the first minimization
is with respect to all possible partitions p satisfying the
following condition:

(1) Si < nj,m/'2 for all i = 1,..., kp.

The proof is similar to the proof of the analogous the-
orem for Learn-Relation in [GW95], and omitted due

402 Nakamura and Abe

600

500

= 200

100

Constrained Pearson rl_=0.5
Cross Constrained Pearson r l_=0.5

G-Learn-Relation(0.2)
Cross-G-Learn-Relation(0.2)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Known Entries

1400

1200

„1000

o 600
E
3
Z 400

200

 1 1 1 1
Constrained Pearson r L=0 (rowl

Constrained Pearson rL=0 (column)
Cross Constrained Pearson r L=0

G-Learn-Relation(0.4) (row)
G-Learn-Relation(0.4) (column)

Cross-G-Learn-Relation(0.4)

Real Data

1500 2000 2500 3000
Number of Known Entries

3500 4000

Figure 5: Effect of ('ross methods: Loft: simulated data; Right: real data

600

500

a 4oo

300 -

E
| 200

100 -

G-Learn-Relation(0.2) (row)
Learn-Relation-IE(0.2,0.07) (row) ---

Cross-G-Learn-Relation(0.2)
Cross-learn-Relation-IE(0.2,0.07)

Figure 6:

) 1000 1

Perfor

500 2000 2500 3000 3500 4000 4500 5000
Number ot Known Entries

1000

n 600 -

200

1500 2000 2500 3000 3500
Number of Known Entries

4000

of C-Learn-Rclation and Learn-Rolation-IE: Left: simulated data: Right: real dat,;

to lack of space. The condition (1) states that more
than half the elements in each partition assumes a rep-
resentative value. This is reasonable, and note in par-
ticular, that it, always holds when the target function
is binary. Now, by plugging in -, = 0,or = 0 in the
above theorem, we obtain the following as corollary.

Corollary 1 For any noise-le ss parlilion p (willi
ap — 0), Algorithm (i-iearn-R< lation(O) makes at
most

kpiv + min <\ — log r. yj'.htn)- log /-,,

mistakes.

5.2 A mistake* lower hound for the
eorre.lation-hased methods

We show that, in the absence of noise, the correlation-
based method can make a lot more mistakes in the
worst case than G-Learn-Relation(O) with V(a) = {a}.

For this analysis, we assume that a prediction is correct
only when the round-off value equals the correct value.

Theorem 2 In the worst case, any of the four
correlation-based methods can make as many as nnt/C
mistakes, where u is the number of rows and in is the
number of columns, and C is a positive constant.

Proof
We first prove the statement for the basic correlation-
based method with no threshold and no constraint.
Suppose that the target matrix consists of many repe-
titions (in both row and column directions) of the fol-
lowing block consisting of two types of rows and four
types of columns, where / ranges over 0 to ;JI/8 — 1.

Column
No.

8/
+ 1

8/
+2

8/
+3

8/
+4

8?
+5

8/ 8/
+7

8/
+8

Type 1 5 1 5 1 5 1 5 1
'type 2 1 5 5 1 !) 1 5 1

Collaborative Filtering using Weighted Majority Prediction Algorithms 403

Thus if the target matrix were'?», by in, it would consist
of n/2 rows of type 1 arid nj'2 rows of type 2, and
each type of row would consist of 7Ji/8 repetitions of S
columns. Suppose that the trials proceed from left to
right and top down by blocks. Within each block, the
trials proceed by column, except the first, two columns
(8i + 1-st and Si + 2-nd columns) are predicted in the
row-first ordering. That is, after predicting the 8/ + 1-
st column in the type 1 row, the 8» + 2-nd column in
the same row is predicted before the two columns in
the other (type 2) row are predicted. Note, with this
ordering, that when predicting an 8i + 1-st column of
any block, the average of the past values for any rows
is 3. It can be shown that, when the correlation-based
method is predicting an entry in the 8i+ 1-st column,
the predicted value will not exceed 3 + 2/3 for a row of
type 1, and it will be at least 3 - 2/3 for a type 2 row.
This is because the number of known entries in a row
of the same type does not exceed the number of known
entries in a different type of row. Thus, the correlation-
based method makes a mistake on every entry in the
8i + 1-th column. Hence, if n is the number of rows
and 77i is the number of columns, it will make at least
nm/8 mistakes.

Note that the above argument applies on the con-
strained correlation-based method, since the average
is fixed at 3. A thresholded correlation-based method
can beat the above example by setting the threshold to
be higher than 1/2, but for any fixed value of thresh-
old, an analogous example can be constructed by mak-
ing the block longer, repeating the last two columns an
appropriate number of times. This would yield a sim-
ilar bound, except a different constant replaces 8. D

In contrast, we know from Corollary 1 that G-Learn-
Relation(O) makes at most 2m+n\/3m mistakes. Note
that as m and n become large, the final error rate of
G-Learn-Relation(O) will approach zero (the learning
converges), but the error rate of the correlation-based
method (in this worst case) will not be lower than 1/C.

6 Concluding remarks

We have applied weighted majority type prediction
algorithms on the problem of collaborative filtering,
and empirically demonstrated that they perform bet-
ter than the correlation-based filtering methods. In so
doing, we proposed a generalization G-Learn-Relation
of the weighted majority prediction algorithm of Gold-
man and Warmuth [GW95] to the multi-valued set-
ting, and gave a theoretical performance guarantee on
the performance of this algorithm. Additionally, we
proposed a version of G-Learn-Relation that makes
use of indirect evidence, as well as a version in which
both row similarity and column similarity are used for
prediction. In both cases, significant performance im-
provement was observed in experiments involving sim-

ulated data. It is left as future research to verify the
same on real data, which we believe will require larger-
scale experiments.

Acknowledgement

We thank Dr. S. Goto and Dr. S. Doi of C k C Media
Research Laboratories, NEC for their support and en-
couragement. We also thank Dr. Y. Ariyoshi and Mr.
T. Ichiyama of Human Media Research Laboratories,
NEC for providing the patent clipping data-

References

[AI97] Y. Ariyoshi and T. Ichiyama, An infor-
mation filtering method combined con-
tent based filtering and social informa-
tion filtering, IEICE 8th Workshop on
data engineering, pp.49-54. 1997.

[ALN95] N. Abe, H. Li and A. Nakamura. On-line
Learning of Binary Lexical Relations Us-
ing Two-dimensional Weighted Majority
Algorithms. Proc. of 12th Int. Conf. on
Machine Learning, 1995,. pp.3-11.

[GRS93] S. Goldman and R. Rivest and R.
Schapire. "Learning Binary Relations
and Total Orders." SI AM J. of Corn-put
22(5), 1993, pp.1006-1034.

[GW95] S. Goldman and M. Warmuth. "Learning
Binary Relation Using Weighted Major-
ity Voting." Machine Learning 20, 1995,
pp.245-271.

[LB97] K. Lang and E. Baum. Better average-
case predictions for k-binary relations.
Unpublished manuscript, 1997.

[Lewis94] D. D. Lewis and W. A. Gale. A Sequen-
tial Algorithm for Training Text Classi-
fiers. Proc. of 17th Annual International
ACM-SIGIR Conf. of Res. and Dev. in
Information Retrieval, 1994, pp. 3-12.

[NA95] A. Nakamura and N. Abe. On-line
Learning of Binary and n-ary Relations
over Multi-dimensional Clusters. Proc. of
COLT '95, 1995, pp.214-221.

[RISBR94] P. Resnick, N. Iacovou, M. Suchak, P.
Bergstom and J. Riedl. GroupLens: An
Open Architecture for Collaborative Fil-
tering of Netnews. Proc. ofCSCW, 1994,
pp. 175-186.

[SM95] U. Shardanand and P. Maes. Social In-
formation Filtering: Algorithms and Au-
tomating "Word of Mouth". Proc. of
CHI95, 1995, pp.210-217.

404

On Feature Selection: Learning with
Exponentially many Irrelevant Features as Training Examples

Andrew Y. Ng
Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

ayn@ai.mit.edu

Abstract 1 Introduction

We consider feature selection in the "wrap-
per" model of feature selection. This typi-
cally involves an NP-hard optimization prob-
lem that is approximated by heuristic search
for a "good" feature subset. First consider-
ing the idealization where this optimization is
performed exactly, we give a rigorous bound
for generalization error under feature selec-
tion. The search heuristics typically used are
then immediately seen as trying to achieve
the error given in our bounds, and succeed-
ing to the extent that they succeed in solv-
ing the optimization. The bound suggests
that, in the presence of many "irrelevant"
features, the main source of error in wrap-
per model feature selection is from "overfit-
ting" hold-out or cross-validation data. This
motivates a new algorithm that, again under
the idealization of performing search exactly,
has sample complexity (and error) that grows
logarithmically in the number of "irrelevant"
features - which means it can tolerate hav-
ing a number of "irrelevant" features expo-
nential in the number of training examples
- and search heuristics are again seen to be
directly trying to reach this bound. Experi-
mental results on a problem using simulated
data show the new algorithm having much
higher tolerance to irrelevant features than
the standard wrapper model. Lastly, we also
discuss ramifications that sample complexity
logarithmic in the number of irrelevant fea-
tures might have for feature design in actual
applications of learning.

In recent years, Feature Selection for classification
and regression has been enjoying increasing interest
in the Machine Learning community. Impressive per-
formance gains have been reported by numerous au-
thors, and numerous feature subset search heuristics
have been proposed. (The literature is too wide to sur-
vey here, but see [Langley, 1994] and [Miller, 1990] for
overviews.) In view of these significant empirical suc-
cesses, one central question is: What theoretical jus-
tification is there for feature selection? For example,
in parametric function approximation schemes such as
linear regression, it is often the case that excluding a
feature is mathematically identical to setting the co-
efficient's) associated with that feature to 0. As fea-
ture selection typically runs a risk of misidentifying the
"irrelevant" features, why then is it apparently often
superior to try to estimate which features are "irrele-
vant" and set their coefficients to 0, rather than leave
them and use the estimated coefficients for these fea-
tures (which will typically be near 0 anyway)? The
theoretical results in this paper will address this ques-
tion.

Since feature selection attempts to eliminate "irrele-
vant" features, another central question is: How does
the performance of feature selection scale with the
number of irrelevant features? The Winnow algorithm
of Littlestone for learning Boolean monomials, or more
generally also A--DNF formulae and r-of-A: threshold
functions (over boolean inputs), from noiseless data
enjoys worst-case loss logarithmic in the number of
irrelevant features [Littlestone, 1988]. Likewise, the
EG algorithm for linear regression with quadratic error
also has such loss (and indeed sample complexity) that
grows logarithmically in the number of irrelevant fea-
tures [Kivinen and Warmuth, 1994]. For learning from
noiseless data, of a representation of a boolean concept

On Feature Selection 405

(over boolean inputs), Almuallim and Dietterich have
also shown that an algorithm that finds the smallest
set of features consistent with the training data (such
as by exhaustive enumeration) also enjoys loss loga-
rithmic in the number of irrelevant features [Almual-
lim and Dietterich, 1994]. If it were true in general
that feature selection makes sample complexity loga-
rithmic in the number of irrelevant features (though
possibly depending more heavily on the number of rel-
evant features), then this would imply, for example,
that squaring the number of features we have means
needing only twice as much training data. This could
have huge ramifications on the way features are de-
signed for real-world applications. In this paper, we
will show that, modulo computational and approxi-
mation issues, this ideal of logarithmic sample com-
plexity in the number of irrelevant features - which of
course means being able to handle exponentially many
irrelevant features as training examples - can indeed
be achieved with a new feature selection algorithm we
propose.

Next, the notion of "relevance" is closely related to fea-
ture selection. Intuitively, one goal of feature selection
is to eliminate all but a small set of "relevant" fea-
tures, which are then given to an induction algorithm.
However, there have been difficulties with a number
of definitions of "relevance" [Kohavi and John, 1997],
and we take the alternative view, which is quite simi-
lar in flavor to those in [Littlestone, 1988] and [Kivinen
and Warmuth, 1994], of the goal of feature selection
as this: If there exists a hypothesis that, using only a
"small" number of features, gives good generalization
error, then we want our classifier to achieve close to
this level of performance with high probability. This
will be made rigorous in subsequent sections, but note
in particular that we make no claims towards exclud-
ing "irrelevant" features or including all the "relevant"
features, so long as the particular set of selected fea-
tures allows us to have performance close to that of
using the "optimal" set of features. 1 In the remain-
der of this paper, we will use the terms "relevant" and
"irrelevant" only when we expect them to be consis-
tent with any reasonable definition of relevance.

Using the terminology introduced by [John et al.,
1994], feature selection algorithms broadly fall into
the "filter" and the "wrapper" models. The filter
model relies on general characteristics of the training

1 Aside from good generalization error, other goals of
feature selection might be user-interpretability and parsi-
mony of hypotheses for fast prediction. We will not address
these goals in this paper.

data to select some feature subset, doing so without
reference to the learning algorithm. In the wrapper
model, one generates sets of candidate features, runs
them through the learning algorithm, and uses the per-
formance of the resulting hypothesis to evaluate the
feature set. While the wrapper model tends to be
more computationally expensive, it also unsurprisingly
tends to find feature sets better suited to the inductive
biases of our learning algorithm, and tends to give su-
perior performance [Langley, 1994]. In this paper, we
study only the wrapper model of feature selection, and
largely in the context of classification.

Our analysis is largely inspired by [Kearns, 1996], with
our theoretical results heavily based on the techniques
given there and those outlined in [Kearns et al., 1997].
We also rely heavily on tools from [Vapnik, 1982], that
give a very general framework for bounding the devi-
ation of training error from generalization error.

2 Preliminaries.

2.1 Feature Selection

Let X be the fixed /-dimensional input space, where /
is the number of features in the inputs we are provided.
For simplicity, we also assume a fixed binary concept
c : X i—► {0,1}. We are provided m training exam-
ples S = {ar'jj/^Jlj, with each of the /-dimensional
input vectors xi — [x[x\ ... x%

f]
T drawn i.i.d. from

some fixed distribution Dx over X, and correspond-
ing labels yi = 0(0;*) e {0,1}. In this development,
we will also briefly consider the case where the labels
are independently corrupted by noise with a noise rate
77 € [0,0.5), so that yi = c(xl) with probability 1 - n,
and y* = 1 - c(xV) with probability 77. Note that c
may use all / features, but we hope that it can be ap-
proximated well (in the generalization-error sense, to
be defined shortly) by a function that depends only on
a small subset of the / features.

We will use uppercase F to denote sets of features,
and use Fi to identify the i-th feature. For exam-
ple, the feature set including the 1st, 4th and 10th
features may be written F = {Fi,F4,Fi0}. For any
input vector x, let x\p be x with all the features not
in F eliminated; sometimes, we will call this "x re-
stricted to F." Analogously, let X\F denote the in-
put space X with all the dimensions/features not in
F eliminated, and S\p be the data set S with each
xi replaced by xx\p- In a slight abuse of notation, if
we have a hypothesis h : X\p 1—► {0,1} defined only
the subspace of features X\F, we extend it to X in

406 Ng

the natural way (with h ignoring features not in F).
Thus, for any hypothesis h, we can write the gener-
alization error (with respect to unoorrupted data) as
e{h) = PrxtzDx[h{x) / c(x)] (where the dependence
of e{h) on D\ has been suppressed for notational
brevity,) and the empirical error on a set of data S
asis(h) = ^\{(x,y)eS\h(x)jty}\.

2.2 The wrapper model

In the wrapper model of feature selection suggested
by [John et al., 1994], we are given a learning algo-
rithm L that, for any set of features F, takes a training
set S\F, and outputs a hypothesis h : X\F '—► {0,1}.
Given a training set S, an application of feature se-
lection under this model might randomly split S into
a training set S' of size (1 - 7)771 and a hold-out set
S" of size jm, and perform a search for a set of fea-
tures F so that when the learning algorithm is ap-
plied to S" restricted to F, the resulting hypothesis
h = L(S'\F) has low empirical error is"(h) on the
hold-out data S". Here, 7 € [0,1], the fraction of
S assigned to the hold-out set, is called the hold-out
fraction. A more sophisticated application of feature
selection may use n-fold or leave-one-out cross valida-
tion rather than hold-out. But as they asymptotically
yield at best small-constant improvements over using
hold-out and as leave-one-out is at worst little better
than training error in estimating generalization error,
while rendering the algorithm's performance much less
tractable to analysis [Kearns and Ron, 1997], we will
not explicitly consider them here, though we believe
our results will be suggestive of the performance of
these schemes as well.

For any given learning algorithm L, the optimal way
to perform feature selection is intimately related to
the inductive biases of L. For example, if L is "suffi-
ciently clever" about doing its own feature selection,
then one would simply give it S unrestricted to any fea-
ture subset, and allow it to select its own features. For
this analysis, therefore, we make the (rather strong)
assumption that given a particular data set S\F, L
chooses the hypothesis h from some class of hypotheses
(shortly to be formalized) so as to minimize training
error. This closely ties in with the learning framework
studied by [Vapnik, 1982], and is also used in [Kearns,
1996] and [Kearns et al., 1997] in proving bounds on
generalization error. We believe it to be a very natural
model, and that it is a rich enough class of learning al-
gorithms to merit detailed study. (But also see [Kearns
et al., 1997] for comments regarding relations to learn-
ing algorithms that do not exactly do this; for example,

it is not difficult to derive rigorous generalizations of
all of our results if L manages to only approximately
minimize training error.)

More formally, for any feature set F, we assume that
we have a hypothesis class HF, of hypotheses each with
domain X\F- But, with many induction algorithms,
each feature is treated in a "similar" manner - for ex-
ample, when X = fcf, then for two feature sets F and
F' of the same size, it makes intuitive sense to iden-
tify X\F and X\p> and therefore Hp and HF>, as they
are both sets of functions mapping from 7£,FI to {0,1}.
For simplicity, let us further make the assumption that
the hypothesis class Hp depends on F only through
|F|, and let Hr be our set of functions with domain X
restricted to any set of r features. (This assumption is
not really necessary, but it greatly eases our notational
burden, and leaving out the assumption does not gain
much in terms of theoretical results.) It will always be
clear from context which particular set F of features
h € #|F| takes as input. Note also that we have as-
sumed that there is some "uniform" way of handling all
features, whether they are discrete/continuous, have
different ranges, etc.. For simplicity, one may wish
to think of the particular case where all features are
real numbers for the remainder of this paper. In this
notation then, our previous assumption of error min-
imization is that when L is given S\F, it outputs the
hypothesis h e HF (where HF is identified with H\F\)
that minimizes training error on S\p- For the remain-
der of this paper, we will implicitly assume L meets
these two assumptions - that it treats features "uni-
formly," and that it minimizes training error over H\F\.

One more definition we need is to let rye be the
Vapnik-Chervonenkis dimension [Vapnik and Chervo-
nenkis, 1971, Vapnik, 1982] of the hypothesis class Hr.
Normally, we expect 0yC < 1 vc < 2VC < ■ ■ •, though
this is not an assumption we use. For example, if Hr

is the class of linear discriminant functions over TV,
then rye = r + 1. We chose this notation so that,
to specialize our ensuing bounds on generalization er-
ror to linear discriminant functions, which we later use
in our experiments, rye may everywhere be replaced
with r (or at least when r > 0).

Finally, to obtain the performance bounds, we wish
to make statements of the form that "we will, with
high probability, find a hypothesis with generalization
error no worse than z more than the best hypothesis
that uses r features." To formalize this, define the ap-
proximation rate function eg(r) to be the least gener-
alization error achievable by any hypothesis h £ Hr

using any set of r features. In general, we expect

On Feature Selection 407

£s(l) > £3(2) > • ■ •, though this is also not an assump-
tion we require (except briefly when we summarize our
results in terms of sample complexity).

Thus, in the common instantiation of wrapper model
feature selection, we search for a feature set F such
that when L is applied to S'\F, the resulting hypothe-
sis has low empirical error on the hold-out set. (That
is, is" {L(S'\F)) is minimized.) Leaving aside details
of the actual search, we will call this idealization the
STANDARD-WRAP algorithm. Note that in performing
the search, enumeration over all the 2? possible fea-
ture sets is usually intractable, and there is no known
algorithm for otherwise performing this optimization
tractably. Indeed, the Feature Selection problem in
general is NP-hard [Garey and Johnson, 1979], but
much work over recent years has developed a large
number of heuristics for performing this search effi-
ciently. (Again, the literature is too wide to survey
here, but examples include [Moore and Lee, 1994,
Caruana and Frietag, 1994, Yang and Hoavar, 1997],
and [Langley, 1994, Miller, 1990] include overviews.)
In this development, we will, in the style of [Reams,
1996], give bounds for generalization error when this
optimization is performed exactly. Of course, the ex-
tent to which our bounds predict actual performance
will in part depend on the extent to which the opti-
mization algorithms succeed in performing this search
on "real life" distributions of data. Alternatively,
one can also view these bounds as what the heuris-
tic search/approximation algorithms are (in a rigorous
sense, to be discussed later) aspiring to do, with the
bounds giving insight into how we might expect the
algorithms to perform.

3 Main Results

The ensuing bounds are all given to hold "with high
probability." We defer their more detailed versions to
the full paper, but note that when we say "with high
probability," we mean that the bound holds with at
least probability 1 - 8 for any 8 > 0, with constants
that depend on 8 (through an omitted log | term) hid-
den by the O(-) notation.

Bound for performance without feature selec-
tion

The Universal Estimate Rate bound of Vapnik and
Chervonenkis [Vapnik and Chervonenkis, 1971, Vap-
nik, 1982] gives a bound on generalization error when
learning using all / features without feature selection.

Theorem 1 (Vapnik and Chervonenkis, 1971)
With high probability, the generalization error of the
hypothesis h = L(S), given by L applied to S (unre-
stricted to any feature subset), is bounded by:

e(h)<eg(f) + 0
m \ /vc

(1)

Note this is a bound for learning from noiseless data;
when the training data labels have independently been
corrupted at some noise rate 77, the second term in the

bound becomes O (^§^_(log^ + 1)).

Bound for performance of wrapper model

Applying the proof technique given in [Kearns, 1996]
(used to bound the error of hold-out) to feature selec-
tion, we obtain the following theorem:

Theorem 2 Given L, S, 7, the hypothesis h output by
STANDARD-WRAP, given by h = L(S'\F) where F =
argminF SS"(L(S'\F)), will, with high probability, have
generalization error bounded by

e(h)<

omta Ug(r) + 0 rvc
(1 — 7)771 V *Vc)

+0 (2)

Proof (Sketch): The first square-root term is sim-
ply the universal estimation rate bound as before,
that says that with high probability, the hypothe-
sis obtained by applying L to S'\p for any fixed
F with |F| = r will give additional error no more

than 0(v/TI^(log^ + l)). Following this, using

a holdout-test set of size 7771 to test 2? hypotheses
will, by a standard Chernoff-bound argument, result
with high probability in picking a hypothesis with gen-
eralization error no more than 0(^/log(2-f)/7?n) =
Oiy/f/im) higher. D

Again, this bound holds only when learning from
noiseless data. Similar to Theorem 1, a generalization
to learning from noisy data can be obtained by replac-
ing all occurrences of m in any denominator term in
the bound by (1 — 2r/)2m, where 77 is the noise rate.

408 Ng

One important remark here is that the O(yffp)rn)
term is a worst-case bound for evaluating 2? hypothe-
ses on the independent hold-out set 5" of size 7m.
Its increase with / reflects the fact that we are test-
ing a set of hypotheses of size exponential in /, and
that there is potential for "overfitting" the jm hold-
out samples. (In the context of feature selection, the
issue of overfitting of hold-out data was also raised
by [Kohavi and Sommerfield, 1995]; see also [Ng. 1997]
for a detailed discussion of overfitting of hold-out data
in hypothesis selection.) But since this is a worst-
case bound, it holds in particular for the "bad case"
where all 2? hypotheses are "very different" from each
other. This is unlikely as they were trained on the
same dataset S' and using only / distinct features.
For at least some pathological hypothesis classes (that
may, for example, include a set of hash-like basis func-
tion so that changing one feature's range dramatically
changes the output hypotheses,) this is certainly pos-
sible; but for more "sensible" hypothesis classes, we
might expect it to be possible to significantly tighten
this bound. We have not managed to formalize this
yet, but conjecture, based on the behavior of power-
law decay learning curves, that the asymptotic be-
havior for "many" learning algorithms will be better
modeled by replacing this last term in the bound by
y/fa/lrn f°r some a £ (0,1]. (A preliminary analy-
sis suggests that under a (perhaps surprisingly large)
range of formal modeling assumptions regarding how
much hypotheses change when F is changed, the num-
ber of "significantly different" hypotheses does grow
as 2°M\ which would suggest a■ — 1 behavior. On the
other hand, there are certainly also some reasonable
assumptions that would lead to a < 1; and we defer a
detailed discussion of this to the full paper.)

Bound for performance of new algorithm

For STANDARD-WRAP, the dependence on / of our
bound on the error is y/f/jm (or possibly \/ftt/jm),
and it comes from testing 2? hypothesis on holdout-
data. If / 3> rvc where r is the number of features
needed to approximate the target concept well, this
\fjjym will be the dominant term. Consider instead
the following algorithm, which we call ORDERED-FS:

1. For each 0 < r < /, find the hypothesis hr that, of
all the hypotheses using exactly r features, mini-
mizes error on the training set S'. (This involves
a search over all sets of r features.)

2. Evaluate all / + 1 hypotheses {/ir}f=0 on the hold-
out set 5", and pick the one with the smallest

hold-out error.

Note that we are now testing only 0(f) hypotheses on
the hold-out data, so the previous y/f/jm term now
becomes y/(logf)/')m.

Theorem 3 Given L. S, 7, the hypothesis h output, by
ORDERED-FS will, with high probability, have general-
ization error bounded by

e(h) <

min { ea(r) + O
0<r<f

(3)

Proof (Sketch): The first square-root term is simply
the uni^rsal estimation rate bound as before, used
to bounct the additional error when training on any
fixed feature set. For this to hold with probability
1 — S, there is also an additive (1/m) log(l/<5) within
the square-root. Now, for any fixed r, we want to
uniformly bound the deviation of training error from
generalization error for all (f) hypotheses that use
exactly r features. Taking a standard union bound
(see [Vapnik, 1982]), we replace (l/m) hg(l/S) with
(l/m)log((£)/<5), which (noting log ((■) < rlogf)
gives the second term. Lastly, the third term comes,
using a standard Chernoff-bound argument as before,
from testing O(f) hypotheses on the hold-out set of
size 7m. □

Notice that, similar to STANDARD-WRAP, we have
not explicitly addressed the NP-hard search problem
for the optimal (here in the minimum training error
sense) set of r features, and actual implementations
of ORDERED-FS will generally have to rely on heuristic
search. But for now, let us beg this computational
issue and treat it similarly to how we had treated
STANDARD-WRAP, appealing to the same approxima-
tions/idealizations as before, and also mentioning that,
in a rigorous sense to be discussed later, the extent to
which an approximation algorithm can solve the opti-
mization is exactly the extent to which its error bound
will reach the bound we give here, which means that
our bound can as before be interpreted, in a formal
sense, as being exactly what a heuristic search imple-
mentation is trying to attain. (In considering heuris-
tic search implementations, it is also worth mention-
ing that searching to minimize training error is prob-

On Feature Selection 409

ably often somewhat easier than searching to mini-
mize hold-out error, which STANDARD-WRAP requires;
for example, in linear regression, we have fast algo-
rithms for simultaneously evaluating training error for
all single-feature changes to a feature subset.) This
bound is also easily generalized to learning from noisy
examples (again by replacing all occurrences of m in
any denominator term with (1 — 2rj)2m).

In any case, the key point of this bound is then the
following: The dependence of our bound on / is only
logarithmic in /. It is also easy to see from the bound
that the sample complexity m is also logarithmic in /.
As discussed in the Introduction, this means that, from
an information-theoretic point of view, one may square
the number of features (for example by adding all
cross-terms between all features), and expect to need
only twice as much training data. We believe that this,
if even only approximately realizable by search algo-
rithms, may have tremendous consequences for feature
design - that modulo computational expense, overly
careful human design of features would oflfen be un-
necessary, so long as additional training data can be
obtained reasonably cheaply.

To close this section, we informally restate our the-
oretical results in terms of upper bounds on sample
complexity, if the target concept is well represented by
some small number r* of features. That is, we want
the number m* of examples required so that general-
ization error will be close to that of the optimal hy-
pothesis that uses r* features. (Slightly more formally,
we want, for any fixed e > 0, that e(h) < eg(r*) + e
with high probability, and where dependence of m* on
e will again be hidden by the O(-) notation.) Prom
the earlier theorems, it is not difficult to derive the
following (upper bounds on) sample complexity:

algorithm m*
No feature selection O(fvc)
STANDARD-WRAP 0{r*vc + fa),a<l
ORDERED-FS 0(r*vc+r* log/)

Particularly if rvc grows superlinearly in r, we easily
see STANDARD-WRAP has a significantly smaller sam-
ple complexity than not performing feature selection
if r* <C /. This appears to us to be rather strong the-
oretical justification for performing feature selection,
thereby answering the question of "why feature selec-
tion" raised in the Introduction. Also, when r* <C /,
ORDERED-FS, which has sample complexity logarith-
mic in /, is likely to learn with many fewer training
examples than STANDARD-WRAP.

4 Experimental Results

Our theoretical results predicted ORDERED-FS to be
much more tolerant to having a large number of ir-
relevant features than STANDARD-WRAP. To test this
hypothesis, we ran both algorithms on a small, artifi-
cial feature selection problem.

The learning algorithm used was logistic regres-
sion [McCullagh and Neider, 1989], used to fit a linear
discriminant function, and which, while not minimiz-
ing training error, approximates that reasonably. The
input space was X = TV', and the first target concept
c we used had only one relevant feature:

c(. *>-{S if xi + 0.2 > 0
0 otherwise

Training examples were corrupted at a noise rate
r\ = 0.3, and all input features were i.i.d. zero-mean
unit variance normally distributed random variables.
The search heuristic was beam search/forward search
(starting out with the empty set of features, and in-
crementally adding features until we have the full set
of features). Forward search is a popular choice that
appears to usually do well [Miller, 1990], and beam
search, with a beam width of 50 in our case, should
be a strict improvement. (Notice also that, while
ORDERED-FS was originally formulated as consisting
of / + 1 separate searches, it is probably most nat-
urally implemented as carrying out all the searches
"together"; our beam search implementation, which
starts from zero features and incrementally considers
higher numbers of features, is one example of such.)
Unlike many "real life" problems, all of our input fea-
tures are independent, and so there were, for example,
no complicated interactions between them that could
complify the search procedure. For STANDARD-WRAP,
we are searching for a feature set F so that training
on S'\F would give low hold-out error. For ORDERED-
FS, we are searching, for each r, for a feature set F of
size r so that training on S'\F gives low training error.
In the rest of this section, we will not distinguish be-
tween the "idealized" versions of these two algorithms
and the approximate versions of the algorithms. All
experimental results reported here are averages of 200
independent trials.

For both algorithms, the hold-out fraction 7 is a
parameter that had to be chosen. The analysis
of [Kearns, 1996] suggests that, for a wide range of
hold-out testing applications, 7 « 0.3 is a good choice
(though it is unclear STANDARD-WRAP would fall into
his framework). Using this as an initial choice for 7,

410 Ng

we obtain Figure 1, as we vary the total number of
features. We see from the graph that ORDERED-FS is
performing significantly better on this domain. For
reference, the performance of learning without feature
selection, using all the features and not saving any
data for hold-out testing, has also been plotted; for
this problem, this is not really a competitive algorithm
(and it is only very slightly competitive on the other
target concept we test), and we omit it from the rest
of our graphs.

Earlier, our bound had predicted that as / increases,
the dominating factor for the error of STANDARD-
WRAP comes from testing 2? hypotheses on 7m hold-
out samples, thereby possibly "overfitting" the hold-
out data. For STANDARD-WRAP, it is therefore natural
to see if increasing the hold-out fraction 7 might alle-
viate this effect. Doing so, we obtain Figure 2, which
shows results for STANDARD-WRAP using 7 = 0.3, 0.5,
and 0.7. While still inferior to ORDERED-FS, the choice
of 7 — 0.5 does appear to give better performance for
large /, and for the remainder of our experimental re-
sults, we report results using STANDARD-WRAP with
7 = 0.3 and 0.5.

■>.30*4f*»« 10O*i

+

+ A
A- -{"

A"'
_—4— I

f jT

ToWl Numb»' o(feati

Figure 1: performance of no feature selection
training on all the data (dot), of STANDARD-
WRAP (dash) with 7 = 0.3 and ORDERED-FS
(solid) with 7 = 0.3. Vertical dashes are lse.

Total numb«« ol tenli

Figure 2: performance of STANDARD-WRAP us-
ing 7 = 0.3 (dash), 7 = 0.5 (dot-dash) and
7 = 0.7 (dot). Vertical dashes are lse.

Next, as we vary m, keeping the total number of fea-
tures at 20, Figure 3 shows ORDERED-FS still consis-
tently beating STANDARD-WRAP. Lastly, performing
similar experiments with a new target function, this
time with 3 relevant features

(x) = (1 if;
~ { 0 otl

Xi + X,2 + X3 > 0
otherwise

we obtain Figures 4 and 5, which both show ORDERED-
FS performing significantly better.

Figure 3: performance of STANDARD-WRAP with
7 = 0.3 (dash) and 7 = 0.5 (dot-dash), and
ORDERED-FS with 7 = 0.3 (solid).

0 34

0 3?

SrelevnMfeatifr«! 30". nnl« 200 inmplai

03 .-"J
0 2fl

-"t"''''j
■

0 26 .-+--' .-r>^
0 24 /4< -'---■\-"'Ar
0??

1 r 1—-
02

0 in1

Figure 4: performance of STANDARD-WRAP and
ORDERED-FS. Target has 3 relevant features.
(Same legend as Figure 3.)

S«mp<« >ifs (m)

Figure 5: performance of STANDARD-WRAP and
ORDERED-FS. Target has 3 relevant features.

On Feature Selection 411

5 Discussion and Conclusions

Our experimental results showed our heuristic-search
version of ORDERED-FS generally beating that of
STANDARD-WRAP. Of course, we do not claim that this
will always be the case; indeed, a more detailed analy-
sis than we had given suggests STANDARD-WRAP might
do slightly better than ORDERED-FS when the number
of relevant features is large, for example if r « 0.5/.
(But then, this is often also the case when feature se-
lection is less useful, compared to learning on the entire
set of features.)

Throughout the paper, we skirted the issue of compu-
tational expense in (approximately) finding the best
(in the training or hold-out error sense) set of fea-
tures. Indeed, we believe that much work remains to
be done on this field, perhaps particularly in design-
ing algorithms for finding feature subsets that mini-
mize training error such as ORDERED-FS requires; for
example, we have very efficient algorithms for per-
forming forward and backward search for linear regres-
sion [Miller, 1990], but few generalizations or fast ap-
proximations thereof to other algorithms. Moreover,
for our bounds to predict actual performance well on
real problems, we have to rely on these heuristics to
perform well, though rigorous bounds for performance
using search heuristics can also be given if we can
bound how well the heuristic performs the required
search/optimization. In particular, if heuristic approx-
imation to STANDARD-WRAP finds only a feature sub-
set that comes within only e+ of minimizing hold-out
error, then a rigorous bound for its generalization er-
ror is the same as for STANDARD-WRAP with an ad-
ditional s+ term. For ORDERED-FS, if for each value
of r, we succeed in finding only a feature subset that
comes within £+(r) of minimizing training error over
all feature subsets of size r, then a rigorous bound for
generalization error is the same as for ORDERED-FS but
with an additional e+(r) term in the {} curly brack-
ets. (We defer proofs and a more detailed discussion
of implications to the full paper.) Nevertheless, search
heuristics are then immediately seen to be trying to
drive e+ or e+(r) to zero, and can therefore be argued
to be trying to reach the performance suggested by
our bounds. (However, one other surprising effect not
modeled by our bounds and which deserves mention is
that when STANDARD-WRAP is "badly" overfitting the
hold-out data, then our earlier work suggests that even
randomly throwing some subset of the 2^ hypotheses
away may improve performance [Ng, 1997]. This sug-
gests that in such somewhat-degenerate cases, using a
weaker search heuristic may actually be helpful. In our

experiments, we did manage to find parameter ranges
that seemed to exhibit this effect; but, we do not know
how prevalent this effect is in practice, and would of
course recommend using a good optimization criteria,
like ORDERED-FS's, rather than using a less-sound cri-
teria and then to trying to do a poor job in optimizing
it.)

Finally, using techniques similar to those used in this
paper, it is possible to derive other algorithms or mod-
ified versions of our algorithm that, like ORDERED-FS,
have strong theoretical properties regarding tolerance
to the presence of many irrelevant features, and which
may have slightly different strengths and weaknesses
than ORDERED-FS; and we discuss a number of them
in detail in the full paper. But for now, a significant
result of this work is that with appropriate feature se-
lection, sample complexity becomes logarithmic in the
number of irrelevant features, so that we can handle
exponentially many irrelevant features as training ex-
amples. Of course, we still have rely on search heuris-
tics to help us reach these bounds, and while much em-
pirical work remains to be done evaluating ORDERED-
FS and comparing it to STANDARD-WRAP and possible
interpolations between the two algorithms, we also be-
lieve that being able to give these bounds is very en-
couraging, because it means that if they are even only
approximately realizable by search algorithms, they
may have tremendous consequences for feature design
- that modulo computational expense, overly careful
human design of features may often be unnecessary,
so long as additional training data can be obtained
reasonably cheaply.

Acknowledgments

I give warm thanks to Michael Jordan and Dana Ron
for interesting and helpful conversations. Also, this
work would not have been possible if not for numerous
greatly edifying early conversations I had with Michael
Kearns about VC theory in general and related work.
The author was supported by the National Science
Foundation under Contract No. ASC-92-17041.

References

[Almuallim and Dietterich, 1994] Almuallim, H. and
Dietterich, T. (1994). Learning boolean concepts in
the presence of many irrelevant features. Artificial
Intelligence, 69(l-2):279-305.

[Caruana and Frietag, 1994] Caruana, R. and Frietag,
D. (1994). Greedy attribute selection. In Proceed-

412 Ng

ings of the Eleventh International Conference on
Machine Learning. Morgan Kaufmann.

[Garey and Johnson, 1979] Garey, M. R. and John-
son, D. S. (1979). Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman.

[John et al., 1994] John, G., Kohavi, R., and Pfleger,
K. (1994). Irrelevant features and the subset selec-
tion problem. In Proceedings of the Eleventh Inter-
national Conference on Machine Learning. Morgan
Kaufmann.

[Kearns, 1996] Kearns, M. J. (1996). A bound on
the error of Cross Validation using the approxima-
tion and estimation rates, with consequences for the
training-test split. In Advances in Neural Informa-
tion Processing Systems 8, pages 183-189. Morgan
Kaufmann.

[Kearns et al., 1997] Kearns, M. J., Mansour, Y., Ng,
A. Y., and Ron, D. (1997). An experimental and
theoretical comparison of model selection methods.
Machine Learning Journal, 27(l):7-50.

[Kearns and Ron, 1997] Kearns, M. J. and Ron, D.
(1997). Algorithmic stability and sanity-check
bounds for leave-one-out cross-validation. In Pro-
ceedings of the Tenth Annual Conference on Com-
putational Learning Theory. Morgan Kaufmann.

[Kivinen and Warmuth, 1994] Kivinen, J. and War-
muth, M. K. (1994). Exponentiated gradient ver-
sus gradient descent for linear predictors. Technical
Report UCSC-CRL-94-16, Univ. of California Santa
Cruz, Computer Research Laboratory.

[Kohavi and John, 1997] Kohavi, R. and John, G. H.
(1997). Wrappers for feature subset selection. Arti-
ficial. Intelligence, 97:273-324.

[Kohavi and Sommerfield, 1995] Kohavi, R. and Som-
merfield, D. (1995). Feature subset selection using
the wrapper model: Overfitting and dynamic search
space topology. In Proceedings of the First Inter-
national Conference on Knowledge Discovery and
Data Mining.

[Langley, 1994] Langley, R (1994). Selection of rele-
vant features in machine learning. In Proceedings
of the AAAI Fall Symposium on Relevance. AAAI
Press.

[Littlestone, 1988] Littlestone, N. (1988). Learn-
ing quickly when irrelevant attributes abound: A
new linear-threshold algorithm. Machine Learning.
2:285-318.

[McCullagh and Neider, 1989] McCullagh, P.
and Neider, J. A. (1989). Generalized Linear Models
(second edition). Chapman and Hall.

[Miller, 1990] Miller, A. J. (1990). Subset Selection in
Regression. Chapman and Hall.

[Moore and Lee, 1994] Moore, A. W. and Lee, M. S.
(1994). Efficient algorithms for minimizing cross
validation error. In Proceedings of the 11th Inter-
national Conference on Machine Learning.

[Ng, 1997] Ng, A. Y. (1997). Preventing "overfitting"
of Cross-Validation data. In Proceedings of the Four-
teenth International Conference on Machine. Learn-
ing. Morgan Kaufmann.

[Vapnik, 1982] Vapnik, V. N. (1982). Estimation of
dependencies based on empirical data. Springer Ver-
lag.

[Vapnik and Chervonenkis, 1971] Vapnik, V. N. and
Chervonenkis, A. Y. (1971). On the uniform conver-
gence of relative frequencies of events to their prob-
abilities. Theory of Probability and its Applications,
16(2):264-280.

[Yang and Hoavar, 1997] Yang, J. and Hoavar, V.
(1997). Feature subset selection using a genetic al-
gorithm. In IEEE Expert (Special Issue on Feature
Transformation and Subset Selection). In press.

413

On the power of Decision Lists

Richard Nock
LIRMM

161, rue Ada
34392 Montpellier, Prance

nock@lirmm.fr

Pascal Jappy
LIRMM

161, rue Ada
34392 Montpellier, France

j appy @lirmm .fr

Abstract

This paper adresses the problem of using de-
cision lists for building machine learning al-
gorithms. In this work, we first highlight the
expressive power of decision lists, which were
already known to generalize decision trees.
We also present ICDL, a new algorithm for
learning simple Decision Lists. This problem
-learning low size and high accuracy lists- is,
as we prove formally, theoretically hard and
calls for the use of heuristics such as CN2,
BruteDL or ICDL. Our method is based on
an original technique midway between learn-
ing rule based procedures and decision trees.
ICDL operates in two stages : it first greed-
ily builds a large decision list then prunes it
to obtain a smaller yet accurate one, thereby
avoiding the drawbacks associated with the
first phase alone. Experimental results show
the efficiency of our approach by compar-
ing them to the two well-known algorithms
CN2 and C4.5. ICDL's time complexity is
low. It produces decision lists whose size is
far smaller compared to both CN2 and C4.5,
and whose accuracy also compares favourably
with theirs.

1 Introduction

A Decision List (DL) is an ordered list of conjunc-
tive rules [Riv87]. It classifies examples by assigning
to each the class associated with the first rule the ex-
ample triggers. Decision lists were first introduced by
[Riv87], and shown to be very expressive. A moti-
vation for the study of decision lists was their rela-
tionships with decision trees, which are widely used

as concept representations in state-of-the-art machine
learning algorithms such as CART [BFOS84] or C4.5
[Qui93]. More precisely, [Riv87] proved that decision
lists generalize decision trees, which proves their ex-
pressive power. In this paper we first give further in-
sight on this property. We show that while it strictly
generalizes decision trees, the decision list formalism
can be used to capture the expressive power of deci-
sion committees [NG95], a class generalizing multilin-
ear polynomials [Noc98]. Moreover, decision lists, un-
like decision trees, represent classification procedures
based on rules [CN89], and not on some ordering of
variables. These two properties make decision lists de-
sirable for mining sets of examples or databases, an-
alyze their information, and improve prediction accu-
racy. These goals are important as many organizations
tend to have massive amounts of data, which they need
to understand, interpret and extrapolate [KSD96].

The work of [SE94, KSD96, Koh95, CN89, CB91]
shows that any machine learning algorithm should
meet four essential requirements to be of practical use:

1. Accurate classification. The induced decision list
should be able to classify new examples accu-
rately.

2. Noise handling. The algorithm should work even
in domains where there might be noise.

3. Simple decision lists. For the sake of interpretabil-
ity, the induced decision list should be as simple
as possible. This constraint conflicts with the ac-
curacy constraint. Generally, satifying both im-
plies finding a good tradeoff between simplicity
and goodness-of-fit [NG95]. In practice this im-
plies releasing the goal of finding a decision list
consistent with the dataset used to build it.

414 Nock and Jappy

4. Efficient rule generation. In order to handle large
datasets, the algorithm must be fast. [CN89] ar-
gue that the time taken to generate one rule in
the decision list should be linear in the size of the
dataset used to build the decision list.

There are very few available theoretical results allow-
ing to conclude positively to the possibility or impossi-
bility of meeting the four quality requirements stated
above. It is not even known whether finding simple
and accurate decision lists is feasible within a reason-
able time [dCGG94]. Yet a positive result would prove
the existence of efficient algorithms for this task, and
a negative result would formally prescribe the use of
heuristics to meet these criteria. Our second contribu-
tion in this paper is to show that meeting the four re-
quirements above for decision lists is hard. As has pre-
viously been done for decision trees [HR76], we prove
that finding the smallest decision list consistent with
a set of examples is ./VP-Hard, for various notions of
sizes. Keeping in mind the four requirements men-
tioned above, this justifies the heuristic character of
algorithms such as CN2 [CN89], BruteDL [SE94], SDL
[dCGG94], or ICDL, the algorithm we propose below.

There are at least three categories of algorithms that
learn decision lists, each following a different construc-
tion method. The first are greedy, iterative algorithms
such as CN2 [CN89] which add rules one-at-a-time in
the decision list according to a quality criterion. When
a rule is built, the examples it covers are removed from
the training set. The process is repeated until a stop
criterion is satisfied (e.g. the dataset is exhausted).
The second are based on a search of the rule space
to find a set of good rules, before putting them into
a decision list, in the same way as BruteDL [SE94].
The search is based on a branch-and-bound algorithm
and proceeds by specializing iteratively a set of rules
initialized to the empty set. The aim is to find all
the most general homogeneous rules, that is, those
rules whose accuracy does not change when special-
ized. The third are based on a stochastic search of the
decision list space, as SDL does with simulated anneal-
ing [dCGG94].

However, practical shortcomings have been observed
in all these families. As pointed out by [SE94], al-
gorithms such as CN2 suffer from the rule overlap
problem. When large decision lists are greedily con-
structed, the last rules in the decision list are built
using very few examples, a situation which has two
consequences: these rules are difficult to comprehend

and they may exhibit low accuracy w.r.t. new exam-
ples. The problem with algorithms such as BruteDL
is that the search of the rule space that can take too
long: this requires the use of thresholds to limit the
search [SE94], and eventually leads to the construc-
tion of very large decision lists. Finally, algorithms
such as SDL suffer the problem of stochastic search
convergence, making it necessary to run the algorithm
for long periods, a situation which makes them poten-
tially time consuming.

Our third contribution in this paper is a new algo-
rithm for the induction of short decision lists. ICDL,
which stands for "Induction of CART-based Decision
Lists", is a two-stage heuristic. First, it proceeds by
building rules iteratively and greedily using a proce-
dure inspired from decision tree induction. ICDL then
prunes the decision list using a CART-like criterion to
obtain a shorter decision list used for testing. ICDL
takes advantage of the adaptation to decision lists for-
malism of previous successful approaches for building
decision trees.

The rest of this paper is organized as follows. First we
give results completing those of [Riv87] on the expres-
sive power of decision lists. Then we give formal proof
of the hardness of building small and accurate deci-
sion lists. In the following section we present ICDL,
adducing experimental results which prove the valid-
ity of our approach w.r.t. the four introductory re-
quirements. We then compare our results with those
obtained using CN2 and C4.5.

2 Expressive power of Decision Lists

Following [SE94], we let E denote the universe of ex-
amples, each of which is described using n variables.
In this section, we consider for simplicity that each
variable is Boolean. Given a set of n Boolean vari-
ables, we let {x,i,xi,X2,X2, ■■■,xn,xn} denote the set
of corresponding literals. We suppose that examples
are classified according to a set of goal classes de-
noted G. We note a rule: t —> g, where g E G,
and t is a non-empty monomial, that is, a conjunc-
tion of literals. We note a decision list with k rules:
(<i -> 3i),(<2 -> 92),-,{tk -> 9k),9k+\ where the
class p/t+i is called the default class. The class as-
sociated to any example e E E is the goal class cor-
responding to the first monomial satisfied by the ex-
ample. If none is passed, the example is assigned the
default class. VO < k < n, we let A>DL denote the

On the power of Decision Lists 415

set of decision lists whose monomials have at most k
literals. Let DT stand for the class of binary decision
trees, as described e.g. in [Riv87]. Let fc-DT be the
set of decision trees having depth at most k, which is
the size of the longest path from the root to a leaf of
the tree. In his seminal article on DL, [Riv87] proved
how decision lists generalize decision trees, by study-
ing the inclusion relationships between classes k-DL
and Jfc-DT. More formally, we have

Theorem 1 [Riv87] VO < k < n, k-DT C k-DL.

[NG95] have presented a new class of Boolean formal-
ism allowing to precise the real power of decision lists
: the decision committees. A decision committee con-
tains two parts: a set of unordered couples (or rules)
{(U,Vi)}, where each U is a monomial over {0,1, *}n

and each vi is a vector in Mc (in the two-classes case,
it is sufficient to add a single number rather than a 2-
component vector). It also contains a Default Vector
D in [0, l]c. Again, in the two-classes case, the reader
shall remark that D can be replaced by a default class

€{+,-}.
The classification of any example e £ E is made by
summing in a vector Ve the vectors of each rule e sat-
isfies. If the maximal component of Ve is unique then
its index gives the class assigned to e. Otherwise, we
take the index of the maximal component of D corre-
sponding to the maximal components of Ve. Let DC
stand for the whole class of decision committees. De-
fine Mk < n, fc-DC to be the subclass of DC where each
element has monomials of length < k. The following
theorem shows that decision committees are at least
as expressive as decision lists:

Theorem 2 [NG95] VO < k < n constant, k-DL C
k-DC.

Although theorem 1 still holds for non-constant value
of k, we have (n - 1)-DL = (n - 1)-DC [Noc98]. This
states that there exist a value k! such that Vfc > k!,
classes k-DL and fc-DC coincide, although k-DL still
strictly contains fc-DT. Apart from the fact that de-
cision lists are rule-based procedures unlike decision
trees, this result is another reason to advocate for use
of decision lists instead of decision trees in machine
learning algorithms.

3 Learning small accurate DLs

In the introduction, we have presented four require-
ments which should try to meet any efficient learning
algorithm. Previous studies on decision trees [HR76]

and decision committees [NG95] have established that
they are hard to satisfy for machine learning algo-
rithms using these respective classes. These results
justify a part of the heuristic nature of algorithms such
as CART [BFOS84], C4.5 [Qui93], or IDC [NG95]. We
now prove that this aim is also intractable for DL
and thereby offer a positive answer to a conjecture
of [dCGG94]. We define the size of a DL as the to-
tal number of literal occurences in the decision list (if
a literal appears k times, it is counted k times). This
definition is very close to the one used in [Ris78] which
is the smallest number of bits needed to write down a
procedure, given an optimal encoding.

Theorem 3 It is NP-Hard to find the smallest deci-
sion list consistent with a set of examples LS.

Proof: We use a reduction from the iVP-Hard "Min-
imum Cover" problem [GJ79]:

• Name : "Minimum Cover".

• Instance : A collection C of subsets of a finite
set S. A positive integer K, K < Card(C), where
Card(.) denotes the cardinality.

• Question: Does C contain a cover of size at most
K, that is, a subset C" C C with Card(C') < K,
such that any element of S belongs to at least one
member of C" ?

The reduction is constructed as follows : from a "Min-
imum Cover" instance we build a learning sample LS
such that if there exists a cover of size Card(C') < K
of S, then there exists a decision list with Card(C')
literals consistent with LS, and, reciprocally, if there
exists a decision list with k literals consistent with LS,
then there exists a cover of size k of S. Hence, finding
the smallest decision list consistent with LS is equiva-
lent to finding the smallest K for which there exists a
solution to "Minimum Cover", and this is intractable
if P £ NP.
Let Cj denote the jth element of C, and Sj the jth

element of S. We define a set of Card(C) Boolean
variables {vi,v2, ■■■,Ucard(c)}) in one to one correspon-
dence with the elements of C, which we use to de-
scribe the examples of LS. The corresponding set of
literals is denoted {xi,xi,x2,X2, ...,3:card(c)>^card(C)}-
Our reduction uses two classes, one positive and one
negative respectively denoted by "1" and "0". The
sample LS contains two disjoint subsets : the set of
positive examples LS+, and the set of negative ones
LS~. LS+ contains Card(S) examples, denoted by

416 Nock and Jappy

{e1 ,e~2 , •••>ecard(s)}- We construct each positive ex-
ample so that it encodes the membership of the cor-
responding element of S in the subsets of S present
in C. More precisely, VI < i < Card(S), e+ =

[hy.'iecj xi) A \l\i:sitcj*i)- LS~ contains a single

negative example, defined by: e~ = Aj=i Xj.
• Suppose there exists a cover C of S satisfying
Card(C') < K. We create a single rule decision list:
(t -> 0),1. t equals /\ ..c.€C,Xj. Since any element
of S belongs to an element of C", no positive example
passes the monomial t. Thus all positive examples are
correctly classified, as well as the negative example,
which satisfies t. This decision list contains Card(C')
literals, and is consistent with LS.
• Suppose there exists a DL h with k literals consis-
tent with LS. Name it {t\ —> g\), (£2 —> 92), ■■■, (tv ~*
<?*:')> <7fc'+ii with k' < k. The three properties below
hold because /;, is consistent.
[PI] Since there exists only one negative example, we
can suppose without loss of generality that only one
goal class is negative. This is either the default class if
the negative example satisfies no monomial inside the
decision list, or a goal class from a rule whose mono-
mial is satisfied by the negative example. Any other
goal class is positive. Let gi denote the goal class (or
the default class) which is negative, where / is an in-
teger from the set {1,2,..., k1 + 1}.
[P2] Any rule preceeding gi in h contains a literal in-
volving an equality comparison to "1". Otherwise,
the negative example would satisfy the corresponding
monomial, thereby being incorrectly classified.
[P3] If gi is not the default class, monomial ti is not
empty and contains only negative literals. Otherwise,
the negative example would not pass the monomial.

We now create two subsets of C, namely C[and C2,
whose union C = C[U C2 is a cover of S with at most
k subsets.

«H 0 if / = 1
{d : 31 <j < l,r,i € tj} if I > 1

If gi is not, the first goal class, C[contains all indices of
positive literals appearing in rules tj —» Cj with j < I.

C'2 = [{< eu}
if
if

l = k' + l
I < k' + 1

C2 contains all indices of literals variables appearing
in ti, if gi is not the default class.
At least one of the two subsets is not empty. Oth-
erwise, that would mean / = 1 = k' + 1, leading to

k' = 0 : the decision list would consist in one default
class for all negative and positive examples, which is
impossible.
Because the DL is consistent, any positive example
either satisfies a monomial tm before tt, or does not
satisfy monomial tt. In the first case, property [P2]
implies that the example has some positive literal in
common with tm ; therefore, one element in C[con-
tains the element of S from which the positive example
was created. In the second case, if the positive ex-
ample does not satisfy monomial fy, then by property
[P3], there is in ti at least one negative literal it does
not satisfy. To this negative literal in t[corresponds
a positive one in the example, and therefore there ex-
ists an element of C2 containing the element of S from
which the positive example was created. The union
Cj U CJ = C" contains at most k elements, and is a
cover of 5. This achieves the proof. D

The limitation of the whole number of literals of a
decision list is one of the finest size notion, since it
comes close to the one of [Ris78]. However, the prob-
lem of constructing decision lists with limited complex-
ity is also hard for a relaxed notion of size presented
in [KLPV87] : the whole number of rules.

Theorem 4 [Noc98] It is NP-Hard to find the small-
est decision list consistent, with a set of examples LS, if
the notion of size is the number of rules of the decision
list.

4 ICDL

We now present our two-stage, decision list learning
algorithm, ICDL. The first stage consists of the greedy
construction of a large decision list, dl,TUlx, and the
second one prunes dlmait, to obtain dl,,lu1, the decision
list used for testing.

4.1 Building dlmax

Table 1 presents a pseudo-code description of the al-
gorithm used to build dlmnx, as well as two procedure
it uses, MakeRuleQ and BestLQ. Function GiniQ
returns the value of the Gini criterion [BFOS84] of
a decision list in the following way. Let (t\ —>
5i).(*2 -> 32), ■■■,(t-k -» 9k),9k+i denote the decision
list CurrentDL. VI < i < k + 1,V1 < j < Card(G),
let LSij C LS stand for the subset of examples from
class j that are classified by goal class g, (which is the
default class if i = k + 1) ; VI < i < k + 1, define

On the power of Decision Lists 417

BuildLmaxO
DecisionList := MakeEmptyDLO;

StopDLConstruction := FALSE;
WHILE StopDLConstruction = FALSE DO

CurrentRule := MakeRule(DecisionList);

IF NotEmpty(CurrentRule) THEN

AddLast(CurrentRule, DecisionList);

ELSE StopDLConstruction := TRUE;

END

END

MakeRule(CurrentDL)
newRule := MakeEmptyRule0;

StopRuleConstruction := FALSE;

WHILE StopRuleConstruction = FALSE DO

LTest := BestL(CurrentDL, newRule);

IF NotEmpty(LTest) THEN

AddLiteral(LTest, newRule);
ELSE StopRuleConstruction := TRUE;

END
Return(newRule);

END

BestL(CurrentDL, Rule)

newDL := CurrentDL;

newRule := Rule;
GiniOpt := Gini(CurrentDL);
optimalL := MakeEmptyLiteraK) ;
FOR LTest := FirstLTest to LastLTest DO

AddLiteral(LTest, newRule);

AddLast(newRule, newDL);
IF Gini(newDL) < GiniOpt THEN

optimalL := LTest;

GiniOpt := Gini(newDL);

newDL := CurrentDL;

newRule := Rule;

END
Return(optimalL);

END

PruneDL(DecisionList)

DLSequence := MakeEmptySequenceO;

CurrentDL := DecisionList;

WHILE NotEmpty(CurrentDL) DO
DLSequence := DLSequence + CurrentDL;

CurrentLit := LitToPrune(CurrentDL);

Prune(CurrentDL, CurrentLit);

END
ReturnBestDL(DLSequence);

END

Table 2: Pseudocode for pruning dlmaxto obtain dlend.

LSi = uj-^^LSij. VI < i < k + 1, define

r- ■C\— V^ Ca.rd(LSjj) Caxd(LSjtk)
GimW- 2^ Card(LSi) X Card(LS4)

The Gini criterion measured for CurrentDL equals

Gini(CurrentDL)
k+i ,

»=iv

fCaxd(LSi)
Card(LS)

x Gini(
«)

BuildLmaxO adds rules at the end of a decision list
initialized to the empty decision list, using the pro-
cedure AddLast(). Each rule is constructed using
MakeRule(). This construction consists in building
a rule by adding literals one-at-a-time using the pro-
cedure BestL(). The best literal returned by BestLO
is the one, if it exists, that satisfies the two following
conditions:

• it diminishes the most the Gini criterion of the
whole decision list, for any addition of literal in
the current rule constructed, and

• it dimishes the value of the Gini criterion com-
pared to the value of the decision list before ad-
dition of the literal.

BuildLmaxO stops when any one-literal rule added at
the end of the decision list fails to lower the value of
Gini criterion.

Table 1: Pseudocode for the building of dln 4.2 Pruning of dlmaxto obtain dlend

Table 2 presents a pseudo-code description of the al-
gorithm used to prune dlmax, to obtain dlend. In
our experiments, the examples set used to prune is
different from the one used to construct dlmax. At
each step, the literal to be pruned is returned by the

418 Nock and Jappy

procedure LitToPruneQ, and is the literal J, among
all those of CurrentDL, which minimizes the function
PruneValue(CurrentDL, 1):

PruneValue(CurrentDL, 1) =
 Delta(CurrentDL, J)

N(CurrentDL, i) x(NDT(CurrentDL, i)-i)

Delta(CurrentDL, i) returns the number of examples
well classified by CurrentDL, and that are no longer
well classified when we remove literal 1. N(CurrentDL,
i) returns the number of examples that do not
pass any literal preceeding I in the decision list.
NDT(CurrentDL, 1) returns the product of sizes of all
rules following the one in which 1 is present. This cri-
terion is analoguous to the pruning criterion used in
CART [BFOS84], measured over a decision tree built
from the decision list such that each node in the deci-
sion tree is one literal corresponding to an literal in the
decision list. We refer the reader to [BFOS84] for addi-
tional details on this criterion. dlcnd, is the DL which,
among all DLs pruned from dlmax, has the highest ac-
curacy over the examples used to prune dl,nax.

5 Experimental results

ICDL was run on several benchmark problems. Its re-
sults are compared to those of CN2 [CN89] and C4.5
[Qui93]. Table 3 presents the datasets which were
used for comparisons (c is a shorthand for Card(G)).
Dataset references are [CB91] for VO, PC, GL, HH,
HC, EC, HP, [TBB+91] for Ml, M2, M3 and [BFOS84]
for WO. All datasets, except WO (artificial problem
generated following [BFOS84]), can be found in the
UCI repository of Machine Learning database.

A learning sample LS is split in two subsets, the

Table 3: Characteristics of Data Sets.

Table 4: ICDL vs CN2.

Card(LS) c Test set Comments

VO 435 2 0 Congress votes
wo 10x300 3 5000 Waveform recognition
Ml 124 2 432 MONKS #1
M2 169 2 432 MONKS #2
M3 122 2 432 MONKS #3
PC 1044 2 0 Pole and Cart
GL 214 6 0 Glass recognition
HH 294 2 0 Heart Hungary
HC 303 2 0 Heart Cleveland
EC 131 2 0 Echocardio
HP 157 2 0 Hepatitis

ICDL ace CN2 are ICDL size CN2 size
VO 95.9±1.0 94.8±1.7 3.1 ±1.6 41.6±8.2
WO 66.5±4.6 65.6±4.3 21.8±6.8 28.6±5.1
Ml 83.3 100 6 13
M2 65.1 69 14 145
M3 100 89.1 4 38
PC 70.7±1.5 70.6±3.1 14.8±9.8 133.6±6.3
GL 58.9±6.4 58.5±5.0 12.6±3.9 32.8±3.0
HH 79.4±3.4 75.4±3.6 13.4±6.9 35.1±2.5
HC 79.0±4.2 75.0±3.8 15.5±7.5 40.9±4.0
EC 70.7±4.7 62.3±5.1 4.7±2.4 26.4±4.0
HP 79.6±3.5 77.6±5.9 4.2±2.8 24.0±5.5
Avg. 77.19 76.17 10.37 50.81

first used for building dlmax(2/3 of the examples), and
the second one for pruning to obtain dlcnd(l/3 of the

Results for CN2 are those of [CB91] (V0, PC, GL, HH, HC,
EC, HP), [TBB+91] (Ml, M2, M3) and [dCGG94] (W0).

examples). When only one dataset exists for learn-
ing and testing (which is the case for all datasets ex-
cept W0, Ml, M2, M3), we proceed by averaging over
10 iterations the result of the following split-and-build
experiment: randomly split the whole sample into a
learning sample (2/3 of the examples) and a test sam-
ple (1/3 of the examples); use the learning sample to
construct a decision list with ICDL, and test it on the
test set (ratios follows [CB91]). Therefore, in that case,
4/9 of the examples are used for building dl,„„x, 2/9
are used for building dlcnri, and 1/3 arc used for eval-
uating the accuracy of dleiKl. Table 4 presents ICDL's
results compared to CN2's ("ace" means accuracy ;
"size" stands for the whole number of literals in the
formula ; "Avg." gives average results) ; when there
are more than one learning sample (W0), or when
split-and-build is used, results arc given in the form
"Mean±Standard deviation".
On all but two problems, ICDL achieves better accura-
cies than CN2. Results are even more favourable if we
take into account the sizes obtained. In all datasets,
the DLs found by ICDL are much smaller than those
of CN2. If we exclude W0, sizes obtained for ICDL
are up to fourteen times smaller than CN2's.
Comparisons with the state-of-the-art decision tree
learning algorithm C4.5 are presented in table 5. De-
cision tree size is the number of nodes including leaves
[CB91]. To make correct comparisons, a DL size given
is now total number of literals plus total number of
classes in the DL. With the exception of PC and GL,
ICDL outperforms C4.5 on all datasets. Again, the
size comparison points out important differences, that
are on average in favor of ICDL. However, the gap is
less important than for CN2 and on three problems,

On the power of Decision Lists 419

Table 5: ICDL vs C4.5.

ICDL ace C4.5 ace ICDL size C4.5 size

vo 95.9±1.0 95.6Ü.1 6.9 ±2.7 7.7±3.4
Ml 83.3 80.6 10
M2 65.1 64.8 23
M3 100 97.2 8
PC 70.7±1.5 74.3±3.1 22.6±13.2 90.2±10.2
GL 58.9±6.4 64.2±5.1 18.9±5.2 30.9±5.8
HH 79.4±3.4 78.0±5.5 21.7±10.0 7.2±3.7
HC 79.0±4.2 76.4±4.5 24.0±9.9 22.7±4.6
EC 70.7±4.7 63.6±5.3 9.1±3.7 9.2±4.7
HP 79.6±3.5 79.3±5.8 7.5±3.7 6.4±2.6

Avg. 78.26 77.4 15.81* 24.9*

Results for C4.5 are those of [CB91] (VO, PC, GL, HH,
HC, EC, HP) and [Koh95] (Ml, M2, M3).
(*) Average sizes do not take into account Ml, M2, M3
(we did not have C4.5's).

the formulae sizes found by C4.5 are actually smaller
than for ICDL.

6 Discussion

While the results above illustrate ICDL's good per-
formances, we now discuss how close this algorithm
comes to the four widely accepted requirements pre-
sented in the introduction : high accuracy, noise tol-
erancy, small sizes, and low time complexity. As
pointed out by [CN89], time complexity needs only
to be evaluated on the crucial steps of the algo-
rithm. During the construction of dlmax, ICDL's
crucial step is the same as CN2: namely the ad-
dition of a single literal to the current rule. So
this complexity is that of the BestLiteralO sub-
routine. It represents 0(Card(LS) x Card(Atests))
in ICDL, where "Atests" denotes the set of possi-
ble literals. This complexity is smaller than that of
CN2 [CN89]. The time complexity of the crucial step
of the pruning phase corresponds to the complexity
of the LiteralToPruneO subroutine, which deter-
mines which literal is to be removed from the cur-
rent formula. Its time complexity is 0(Card(LS) x
Card(AtestsFormula)), where "AtestsFormula" de-
notes the multiset of literals of the current formula. In
fact, ICDL's whole complexity is not high w.r.t. clas-
sical induction algorithms.

M2 and VO are relevant to the discussion of sizes. In
VO, empirical studies (see the ML repository) show
that there exists a single literal DL that performs
around 95 % accuracy. We noticed that the DL found

by ICDL always included this formula, which leads to
excellent tradeoffs between size and accuracy. On the
artificial domain M2, the function to learn is an XOR
function [TBB+91], which is very difficult to encode
with small DL (compare with the result obtained by
CN2). Again, in this case, ICDL found a tiny formula
which is highly accurate considering its size and the
difficulty of the domain.
ICDL obtained very good results w.r.t. the complex-
ity vs accuracy tradeoff. As a means of evaluating
this for each possible dataset, we have calculated the
accuracy/size ratio, which constitutes a rough "infor-
mative measure" of each literal with respect to the
overall accuracy. Provided accuracies are sufficiently
high (which was the case for CN2, C4.5 and ICDL), the
higher this ratio, the better and the more interesting
the accuracy/size compromise the algorithm obtains.
The calculation shows that, for each dataset, this ratio
is higher for ICDL than for CN2. Furthermore, with
the exception of Ml and WO, ICDL's lowest ratio is
higher than CN2's highest. Finally, if we exclude the
HH and HC problems, ICDL also outperforms C4.5
on all domains for which we possess accuracy and size
measures for C4.5. Tables 4, 5 and [CB91] show that
for datasets VO, PC, GL, EC, HP, ICDL outperforms
C4.5, which in turn outperforms CN2. ICDL's accu-
racy is on average slightly better than C4.5's, yet its
average output size is smaller. Thus, ICDL appears
to be able to compact the knowledge of the decision
trees in small DLs. This result concords with [Riv87],
section 3.2, who shows that decision lists generalize
decision trees.

Finally, ICDL's handling of noise can be experimen-
tally evaluated using problems WO and M3, which are
artificial noisy problems. On both problems, ICDL's
results are good. In M3, there is a little noise, and very
few learning algorithms in [TBB+91] achieve 100% ac-
curacy. ICDL achieves the perfect classification, and
surpasses all inductive learning algorithms tested in
[TBB+91] : ID3, ID5R, AQR, CN2 and CLASSWEB.
Again, the size of the formula found by ICDL is smaller
than that of these algorithms.
[SE94] point out a limiting aspect of decision list con-
struction using greedy algorithms such as CN2 : rules
cannot be considered in isolation, and, after each rule
building stage, fewer examples are available to the
learning algorithm. ICDL reduces the adverse effects
of both problems by building small decision lists using
efficient pruning. Indeed, the pruning step uses new
examples, which are not used for building dlmax. Fur-
thermore, it uses a criterion reducing the effect of the

420 Nock and Jappy

limited number of examples available to the rules at
the end of the decision list.

7 Conclusion

In this paper, we introduce ICDL, a new algorithm
for learning simple decision lists. Its originality stems
from the adaptation to decision lists of the combina-
tion of two techniques which have proved very effi-
cient in CART and C4.5. It combines the building
of a decision list in a greedy way using a Gini cri-
terion calculated on the whole decision list. It then
prunes the decision list using a CART-like criterion.
However, its result formulae are rule-based procedures
which provide an alternative to decision trees for build-
ing knowledge-based systems.
We prove formally that inducing short and accurate
DLs is intractable, which prescribes the use of heuris-
tics such as CN2, ICDL, or BruteDL [SE94]. We
then give experimental results which compare very
favourably to those of CN2 and C4.5, and which show
experimentally that ICDL meets the accepted criteria
of low-time complexity, noise handling, small output
size and high accuracy. We believe this efficiency is
clue to ICDL's successful application of a combination
of decision tree learning techniques to the more expres-
sive DL representation.

Acknowledgements

Many thanks to Ronald Rivest for having encouraged
us.

References

[BFOS84] L. Breiman, J. H. Freidman, R. A. Olshen,
and C. J. Stone. Classification and Regres-
sion Trees. Wadsworth, 1984.

[CB91] P. Clark and R. Boswell. Rule induction
with CN2: some recent improvements. In
ECML'91, pages 151-161, 1991.

[CN89] P. Clark and T. Niblett. The CN2 induc-
tion algorithm. Machine. Learning, 3:261-
283, 1989.

[dCGG94] F. A. de Carvalho Gomes and 0. Gascuel.
SDL, a stochastic algorithm for learning de-
cision lists with limited complexity. A. of
Math, k AI, pages 281-302, 1994.

[GJ79] M.R. Garey and D.S. Johnson. Computers
and Intractability, a guide to the theory of

NP-Complr.tencss. Bell Telephone. Labora-
tories, 1979.

[HR76] L. Hyafil and R. Rivest. Constructing opti-
mal decision trees is NP-complete. Inform.
Process. Letters, pages 15-17, 1976.

[KLPV87] M..I. Kearns, M. Li, L. Pitt, and L. Valiant.
On the learnability of boolean formulae.
STOC'87, pages 285-295, 1987.

[Koh95] R. Kohavi. The power of Decision Tables.
In ECML'95, pages 174-189, 1995.

[KSD96] R. Kohavi, D. Som-
merfield, and J. Dougherty. Data Mining
using MLC++. In Int. Conf. on Tools with
AI, pages 234-245, 1996.

[NG95] R. Nock and O. Gascuel. On learning deci-
sion committees. In Proc. of the 12 th In-
ternational Conference on Machine Learn-
ing, pages 413-420, 1995.

[Noc98] R. Nock. Learning logical formulae having
limited size : theoretical aspects, methods
and results. PhD thesis, Universite Mont-
pellier II, 1998.

[Qui93] J. R. Quinlan. C4-5 : Programs for Ma-
chine Learning. Morgan Kaufmann, 1993.

[Ris78] J. Rissanen. Modeling by shortest data de-
scription. Automatica, 14:465, 1978.

[Riv87] R.L. Rivest. Learning decision lists. Ma-
chine Learning, pages 229-246, 1987.

[SE94] R. Segal and 0. Etzioni. Learning Decision
Lists using homogeneous rules. In Proc. of
AAAI-94, pages 619-625, 1994.

[TBB+91] S. B. Thrun, J. Bala, E. Bloedorn,
I. Bratko, B. Cestnik, J. Cheng, K. De
Jong, S. Dzeroski, S. E. Fahlman,
D. Fisher, R. Hamann, K. Kaufman,
S. Keller, I. Kononenko, J. Kreuziger,
R. S. Michalski, T. Mitchell, P. Pachow-
icz, Y. Reich, H. Vafaie, W. Van de Weide,
W. Wenzel, J. Wnek, and J. Zhang.
The MONK's problems: a performance
comparison of different lear ning algo-
rithms. Technical Report CMU-CS-91-197,
Carnegie Mellon University, 1991.

421

An Analysis of Direct Reinforcement Learning in non-Markovian Domains

Mark D. Pendrith*
Department of Artificial Intelligence

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052 Australia
pendrith@cse.unsw.edu.au

Michael J. McGarity
Department of Systems and Control

School of Electrical Engineering
The University of New South Wales

Sydney 2052 Australia
mikem@cse.unsw.edu.au

Abstract

It is well known that for Markov decision pro-
cesses, the policies stable under policy iteration
and the standard reinforcement learning methods
are exactly the optimal policies. In this paper,
we investigate the conditions for policy stability
in the more general situation when the Markov
property cannot be assumed. We show that for a
general class of non-Markov decision processes,
if actual return (Monte Carlo) credit assignment
is used with undiscounted returns, we are still
guaranteed the optimal observation-based poli-
cies will be equilibrium points in the policy space
when using the standard "direct" reinforcement
learning approaches. However, if either dis-
counted rewards, or a temporal differences style
of credit assignment method is used, this is not
the case.

1 Introduction

be cast into the form of finding an optimal policy for a
Markov decision process (MDP), and methods like 1-step
Q-learning can be shown to be a form of incremental, asyn-
chronous dynamic programming (Watkins, 1989; Barto,
Bradtke, & Singh, 1995).

In practice, however, RL techniques are routinely applied
to many problem domains for which the Markov property
does not hold. This might be because the environment is
non-stationary, or is only partially observable; often the
side-effects of state-space representation can lead to the do-
main appearing as non-Markov to a reinforcement learning
agent.

In this paper, we examine various issues arising from ap-
plying standard RL algorithms to non-Markov decision
processes (NMDPs). In particular, we are interested in
the implications of using a "direct" or observation-based
method of RL for a non-Markov problem, i.e. where the
problem is known to be non-Markov but partial or noisy
state observations are presented directly to the RL algo-
rithm without any attempt to identify a "true" Markov state
(Singh, Jaakkola, & Jordan, 1994).

The techniques of reinforcement learning (RL) have been
developed to effect autonomous learning in agents interact-
ing with an initially unknown and possibly changing envi-
ronment. In its simplest formulation, the problem of RL is
cast into a table lookup representation, where the agent can
be in one of a finite number of states at any time, and has
the choice of finite number of actions to take from within
each state. For this representation, powerful convergence
and optimality results have been proven for a number of al-
gorithms designed with the simplifying assumption that the
environment is Markov, e.g. 1-step Q-learning (Watkins,
1989). With this assumption, the problem of learning can

* Current address: Daimler-Benz Research and Technol-
ogy Center, 1510 Page Mill Rd, Palo Alto, CA 94304, USA. e-
mail: pendrith@rtna.daimlerbenz.com

2 Policy stability in Dynamic Programming

In this section, we review the important idea of a stable pol-
icy in terms of classical dynamic programming (DP) meth-
ods.

It is well known (e.g. Puterman (1994)) that for any MDP,
all suboptimal policies are unstable under policy iteration
i.e. one step of the policy iteration process will result in a
different policy. Moreover, the new policy will be a better
policy; and so the process of policy iteration can be viewed
as a hill-climbing process through the policy space of sta-
tionary policies, i.e. the result of each step in policy itera-
tion results in a monotonic improvement in policy until an
optimal policy is reached.

422 Pendrith and McGarity

Any optimal policy will have the property of being stable
under a single step of policy iteration. The special prop-
erties of a Markov domain ensure the policy space to be
well-suited to a hill-climbing strategy; there are no "local
maxima" or suboptimal equilibrium points to contend with,
and all the global maxima form a single connected "max-
ima plateau" that can be reached by starting a hill-climbing
process from any point in the space.

It is also the case that a "partial" policy iteration, where
only a subset of the states that would have policy changes
under a full policy iteration step have their policy actions
changed, will also monotonically improve the policy, and
therefore result in effective hill-climbing. This is the key
property that makes MDPs susceptible to RL techniques; it
has become the convention to characterise RL in Markov
domains as an incremental, asynchronous form of dynamic
programming (Watkins, 1989;Bartoetal., 1995). IftheRL
method is a 1-step temporal differences (TD) method, like
Watkins' 1-step Q-learning, the method resembles an in-
cremental, asynchronous form of value-iteration. If the RL
method is an actual return or Monte Carlo based method,
like C-Trace (Pendrith & Ryan, 1996) the method more
closely resembles an incremental, asynchronous form of
policy iteration.

So, for an MDP, the optimal policies correspond to the pol-
icy iteration equilibrium points in the policy space. By way
of contrast, forNMDPs it is straightforward to demonstrate
that suboptimal policy iteration equilibria are possible, and
subsequently that policy iteration methods can fail by get-
ting "stuck" in local maxima. Consider the NMDP in Fig-
ure 1.

Figure 1 shows an NMDP with two actions available from
starting observation A, and two actions available from the
successor observation B.1 Both action 0 and action 1 from
observation A immediately lead to observation B with no
immediate reward. Action 0 and action 1 from observa-
tion B both immediately lead to termination and a reward;
the decision process is non-Markovian because the reward
depends on what action was previously selected from ob-
servation A, according to the schedule in Table 1.

In the policy space for this NMDP, the deterministic pol-
icy 7C3 is clearly optimal, with a total reward of 2. Fur-
ther, it represents an equilibrium under policy iteration: if
states A or B independently change policy, the total reward
becomes -2 and 0 respectively. Notice that policy 7io, al-
though clearly suboptimal with a total reward of 1, is also

Figure 1: An NMDP demonstrating an suboptimal equilibrium.

A action B action reward
rtO 0 0 1
rtl 0 1 -2
7T.2 1 0 0

^3 1 1 2

'in general, we will be referring to the "observations" rather
than "states" of an NMDP, as we will be moving on later to discuss
a specific class of NMDPs that are defined in a POMDP frame-
work, where this terminological distinction becomes important.

Table 1: Reward schedule for NMDP in Figure 1.

an equilibrium: if states A or B independently change pol-
icy, the total reward becomes 0 and -2 respectively.

Although we have only explicitly considered determinis-
tic policies in the above discussion, we note that the result
generalises straightforwardly to stochastic policies.

In the case of the example above the optimal policy was
also a deterministic policy. However, it is known that in
general forNMDPs there may be be no deterministic policy
among the optimal policies, as will always be the case for
MDPs (Singh et al., 1994).

Further, we will show in this paper that if a TD method of
credit assignment is used, or the rewards arc discounted, the
optimal policies may not represent equilibrium points in the
policy space, even if an optimal deterministic policy exists.
This means that even if the problems of local maxima are
overcome, the optimal policies may not be attractive under
some standard RL techniques.

It turns out the key property of optimal policies being stable
under RL is only preserved if the additional restrictions of
using undiscounted rewards and using actual return credit
assignment methods are imposed.

3 Learning Equilibria

For the analysis of standard RL algorithms for NMDPs, it
is useful for us to introduce the notion of a learning equi-
librium, an equilibrium in policy resulting from a particular
learning method. So just as we can talk about a policy that
is stable under policy iteration, we might talk about a policy
that is stable under 1-step Q-learning, for example.

Definition 1 A learning equilibrium has the property that
if you replace the current state (or {state,action)) value es-
timates with the expected value of the those estimates given

An Analysis of Direct Reinforcement Learning in non-Markovian Domains 423

the current policy and the learning method being used, then
the policy remains unchanged.

A learning equilibrium can be considered to be a stochas-
tic fixed point in the policy space with respect to a given
learning method.

We consider that, in general, an RL system will in the
course of learning perform a series of updates to a set of
real-valued utility estimators. These estimators will typi-
cally estimate state value or (state,action) value, or some-
times both. Further, we are assuming the current policy of
an RL system will be a function of these estimator values,
which we might write as /:£->• I~I, where E represents
the space of possible estimator values, and n is the policy
space.

We can also consider a mapping in the reverse direction
g : n -y E, where the point g(n) in the estimator space
corresponds to the expected values of the estimators with
respect to the learning rules and a policy n. For example,
if the system is a Q-learning system, g : Tl -> E would be
denned by the Q function, where QK(s,a) is the expected
value of the (s,a) estimator under policy K.

If we consider h : n -» n to be the composition of func-
tions / and g such that h{n) = f(g{rt)), then if a policy
7t' meets the fixed point condition n' = h(n'), then 7t' is a
learning equilibrium. In this way a learning equilibrium
can be considered a generalisation of the notion of a pol-
icy that is stable under policy iteration. However, given
the stochastic nature of the g mapping, such a fixed point
represents stability in terms of expection only.

For any MDP with a total discounted reward optimality cri-
terion, the only equilibrium policies for any of the RL or
DP methods discussed so far will be optimal policies. A
policy that is stable under policy iteration is also stable un-
der value iteration, or under 1-step Q-learning.

On the other hand, in a non-Markov setting there may be
suboptimal equilibria for RL systems. The example in Fig-
ure 1 provides an example of this possibility.

Clearly, having a global maximum in policy space which
is also a learning equilibrium is a necessary condition for
convergence to an optimal policy under a given learning
method. This basic idea provides the motivation for the
form of analysis that follows.

4 hPOMDPs

The essence of an NMDP is that the history of states and
actions leading to the present state may in some way in-
fluence the expected outcome of taking an action within

that state. When applying a standard RL method like 1-
step Q-learning to an NMDP, the history is not used even if
available — this is what Singh et al. (1994) call direct RL
for NMDPs. Therefore, one potentially useful approach
to modelling a general class of NMDPs is by considering a
process that becomes Markov when the full history of states
and actions leading to the present state is known, but may
be only partially observable if this history is not available
or only partially available, i.e. the full history is guaranteed
to provide any missing state information.

Another way of expressing this is to say that nothing apart
from the currently observed state information along with
the history is required to provide a sufficient statistic. This
property defines a class of partially observable Markov de-
cision process (POMDP) we will call hPOMDPs (with h
for history).

We should emphasise that in the hPOMDP model the full
history is always sufficient, but not always necessary, to
disambiguate the true state. hPOMPDs include processes
where only some or even none of the history is required.
For example, a fully Markov process, which requires no
history at all to disambiguate the state, is included in the
hPOMDP class. Another example would be a process
that only requires the current observation plus the start-
ing observation for full state disambiguation. Using a
POMDP formulation, we can formalise the properties of an
hPOMDP stated above by requiring the existence of a func-
tion §(s,h) that maps the current observation s and history
h into a unique state in the underlying MDP.

The original motivation behind the formalisation of
hPOMDPs was to provide a model for the sort of non-
Markovianness that is encountered when state aggregation
due to state-space representation or other forms of state-
aliasing occur; usually, in cases like these, history can make
the observation less ambiguous to some extent, and the
more history you have the more precisely you can deter-
mine the true state.2 However, hPOMDPs may also be used
to model the more discrete kinds of perceptual-aliasing
more frequently encountered in the RL literature, a proto-

2We note that for some control processes, even the entire his-
tory is not able to completely disambiguate the state. For exam-
ple, the original noise- and disturbance-free formulation of the
pole-and-cart problem using a "boxed" state-space representation
(Michie & Chambers, 1968; Barto, Sutton, & Anderson, 1983;
Pendrith & Ryan, 1996) is well-modelled using hPOMDPs when
the initial state of the system is known (e.g. zero for all state vari-
ables), but if the initial state variables are randomised or otherwise
uncertain, then access even to the full history may not make the
true current state unambiguous. However, even in this situation,
we note the history will make the true state less ambiguous; and so
the hPOMDP model might be considered to be a useful "limiting
case" approximation for domains like these.

424 Pendrith and McGarity

typical example being Kaclbling et al.'s "robot in the corri-
dors" scenario (Kaelbling, Littman, & Cassandra, 1995).3

5 A Discounted Reward Framework for
NMDPs

Because wc are interested in what happens when applying
standard discounted reward RL methods like Q-learning
to NMDPs, we restrict our attention to the class of fi-
nite hPOMDPs (i.e., a hPOMDP such that the observa-
tion/action space 5 x A is finite).4 This effectively mod-
els the RL table-lookup representation for which all the
strong convergence results have been proven in the context
ofMDPs.

5.1 Summing Over Histories

We consider a total path or trace through a finite hPOMDP
which can be written as a sequence of observation/action
pairs

((so,aQ),(si,ai),...,(si,ai),...)

where (i,-,a,) is the pair associated with the i'h time-step
of this path through the system. For any finite or infinite
horizon total path co there is an associated total discounted
reward

r=0
(1)

where ye [0,1] is the discount factor, r, is the immediate
reward associated with taking action a, from observation
st, and n is the horizon.

In measure theoretic terms, we can express the probability
Pf of a particular observation s ever being visited under
policy 71 as

P? = Pn(Ts) (2)

where the set Ts is the set of possible traces that includes
s, and PK is a suitably defined probability measure over the
space of all possible traces T with respect to policy 7t. We
can also write

' 5 (\-P?)=P"(n)

where P* is the complementary probability of observation
s not being visited, Tj being the set of traces that do not
include s. These "visit probabilities" assume there is a
distribution of starting observations V|/ associated with an

3We note however that for such systems to be accurately mod-
elled by hPOMDPs some additional restrictions on the problem
may need to be applied, e.g. the initial state must be known to the
RL agent.

4Note that this does not imply there are only a finite number
of states in the underlying MDP. (cf. Singh et al., 1994).

hPOMDP, where \ys is the a priori probability of observa-
tion .9 being the initial observation of the process.

We note that in general, e.g. if the process is non-absorbing,
a trace may be of infinite length, and therefore the associ-
ated probability of it occurring may be infinitesimal, and
the set Ts uncountable; these considerations motivate intro-
ducing the techniques of measure theory.5

We also note that executing a trace that involves one or
more visits to 5 is logically equivalent to executing a trace
that involves a first visit to s, and therefore

/* = 5>(M)
h£H,

(3)

where Hs is the set of finite \cngihfirst-visit histories, which
are the possible chains of observation/action pairs leading
to a first visit to observation s, and p(h,n) is the associated
probability of a first visit occurring by that history under
policy TC. Because h e Hs are of finite length, p(h,n) is
finite and Hs is countable, and therefore we can express the
value as a sum rather than an integral.

The technical issue of defining an appropriate probability
measure Pn consistent with the value of this sum to enable
working with Lebesgue integrals is dealt with in detail in
(Pendrith & McGarity, 1997), where the equivalence of (2)
and (3) is used as a starting point. However, it is not nec-
essary to immediately consider these details to follow the
development of this paper.

5.2 Defining Analogs of Q-value and State Value for
hPOMDPs

A stochastic policy takes the form of a set of action se-
lection distributions, with one distribution for each obser-
vation. Thus a deterministic policy can be considered to
be a special case of a stochastic policy. So for generality,
we define the following hPOMDP values with respect to
stochastic policies.

We consider the expected future discounted reward (i.e.
utility) of taking an action randomly selected with respect
to a distribution d from an observation s, with first-visit his-
tory h and following policy 7C thereafter. We denote this as
UK(s,d,h). For notational convenience, we will also write
UK(s,a,h) to represent the utility of taking a particular ac-
tion a from observation s with history h and following pol-
icy TC thereafter. (This can be considered shorthand where
a stands in for the distribution that would deterministically
select a.)

5For a review of the essential measure theory concepts used in
this paper sec e.g. (Billingsley, 1986).

An Analysis of Direct Reinforcement Learning in non-Markovian Domains 425

Q\s,d) =

Q%{s,a) _ J Ifte«s

5.3 Policy Values for hPOMDPs

We can write the policy value, or total expectation, of an
hPOMDP in terms of a Lebesgue integral

J(n)= f R((o)dPK((£>) (4)

integrating over total paths.

We can further decompose the total expectation into a con-
ditional expectation component that involves observation s
and another that is independent of change to the policy for
observation s in the following expression:

7(K)= f R((u)dPK{(0)+[R((d)dP*(<o) (5)
J<ä€Ts J(ä€Tj

Note that for a general discounted reward structure we can
write

Ett&U*(s,a,h) if/f>0 / R{<o)dF*(<a)=Zp{h,n)[R(h)+Tl>U*{s,ns,h)]

We note that the values Un(s,d,h) and UK(s,a,h) are both
well-defined by the definition of an hPOMDP. U%(s,a,h)
can be considered the "Q-value" of the underlying (possi-
bly infinite state) MDP where the action a is taken from
"true" state ty(s,h). UK(s,d,h) would therefore be a
weighted average of these Q-values for that state.

A value that is of interest if we are considering what can
be learned by applying standard RL methods directly to
hPOMDPs is the following weighted average of the above
defined utilities

lheH,B$1UK{s,d,h) ifi?>0
0 undefined if P*

Extending our shorthand notation introduced above, we
will also write

undefined if P* = 0

QK(s,a) is what might be called the "observation first-visit
Q-value"; we observe it is the value a first-visit Monte
Carlo method will associate with taking action a from ob-
servation s in the hPOMDP.6 Similarly, QK(s,d) is the ex-
pected value a first-visit Monte Carlo method will come to
associate with selecting an action using distribution d from
observation s.

Using the definitions above, we define the value of an ob-
servation for a policy to be Vn(s) = Qn(s,ns) where ns is
the action selection distribution associated with observation
s under stochastic policy 7t; if n represents a deterministic
policy, then ns denotes the policy action for observation s.

We note that the values of Q*{s,d), Q*(s,a) and hence
V*(s) are undefined for s if Pf = 0 (i.e., s is unreachable
under 7t). This is because, unlike the case for MDPs, it is
difficult to assign a sensible meaning to the notion of the
value of taking an action from an unreachable observation.
In short, the notion of an "observation first-visit Q-value"
is fairly empty if a first visit simply isn't possible.

h&Hs
(6)

where 0 < y < 1 is the discount factor, //, is the length of
history h, and R(h) is the value of the truncated discounted
return associated with history h (cf. Equation (1)). Thus,
the LHS and RHS of this identity are different expressions
for the conditional expectation assuming a visit to observa-
tion s.

Finally, we define an optimal observation-based policy n*
simply by

ji* e arg max J(n) (7)
7C

These definitions provide a framework for analysing
hPOMDPs using a total future discounted reward criterion
which applies equally well to both ergodic and non-ergodic
systems.

6 Analysis of Observation-Based Policy
Learning Methods for hPOMDPs

The first result we present is a lemma useful in the proof of
Theorem 1. The proof of the lemma is omitted for space
reasons; for the proof see (Pendrith & McGarity, 1997).

6Recall that Hs is a set of first-visit histories. We consider
first-visit rather than multiple-visit Monte Carlo methods because
there are some basic conceptual problems with using the latter in a
non-Markovian context (in the general case, it doesn't make sense
to apply multiple-visit Monte Carlo when histories may matter,
i.e. the Markov assumption doesn't hold.) For an introduction to
concepts of first-visit versus multiple-visit Monte Carlo methods
as applied to RL, see (Singh & Sutton, 1996).

Lemma 1 If two observation-based policies Jt and n for
an undiscounted hPOMDP differ only in one observation
s, then the difference in values between the policies n and

TC can be expressed as

J(K)-J(K) = P?[V«(S)-V«(S)] (8)

426 Pendrith and McGarity

We note Lemma 1 has a strong intuitive basis, suggesting
its applicability to a very general class of decision pro-
cesses including but not limited to hPOMDPs. Equation (8)
corresponds to the straightforward observation that for an
undiscounted reward process, by changing policy in exactly
one reachable state under policy n, the change in value of
the expected total reward for the new policy is equal to the
change in first-visit expected value for the changed state
multiplied by the a priori probability that state will have a
first-visit under policy n.

Theorem 1 If a first-visit Monte Carlo method of credit as-
signment is used for an hPOMDP where y = 1, then the
optimal observation-based policies will be learning equi-
libria.

Proof Suppose an optimal observation-based policy it is
not a learning equilibrium under a first-visit Monte Carlo
credit assignment method; then there must exist an obser-

•' ?
vation s such that VK(s) > Vn(s) for some policy k that
differs from n only in observation s. By Lemma 1, the dif-
ference in policy values is

J(n)-J(n) = P?[Vh(s)-VK(s)]

Since V"(j) > Vn(s) and P? > 0 (i.e. observation s is

reachable under 7i),7 then J(h) > J(n). But this is not pos-
sible since n is an optimal policy; hence an optimal policy
is a learning equilibrium. □

Theorem 1 is a positive result: it shows that, at least under
certain restricted conditions, an optimal observation-based
policy is also guaranteed to represent a policy equilibrium
for a direct RL style learner.

The next question is whether we can generalise the result.
Does the result hold for general y? Does the result hold for
TD returns instead of Monte Carlo style "roll-outs"?

The next result addresses the issue of using discounted re-
turns for general y.

Theorem 2 Theorem I does not generalise to JE [0,1).

Proof We prove this by providing a counter-example. We
consider the hPOMDP in Figure 2.

Figure 2 shows an hPOMDP with one action available from
the two equiprobable starting observations A and B; one

Figure 2: The hPOMDP discussed in the proof of Theorem 2.

action available from intermediate observation C; and two
actions available from the penultimate observation D. An
action from observation A leads to observation C without
reward; actions from observations B and C lead to observa-
tion D without reward. Both action 0 and action 1 from ob-
servation D immediately lead to termination and a reward;
the decision process is non-Markovian because the reward
depends not only on the action taken from observation D,
but also on the starting observation.

We assume that y < 1 for this discounted reward decision
process; suppose the reward schedule is as follows:

Start observation action D reward
A 0 r\
A 1 n
B 0 n
B 1 n

7Note that observation s must be reachable under both K and
s s

K otherwise both VK(s) and Vn(s) would be undefined, which is
s

incompatible with the hypothesis VK(s) > Vn(s).

Let no and n\ be the policies that correspond to 0 and 1
being the policy action from D. We set r\... r$ such that
QK(D,0) > Qn{D, 1) for arbitrary JU (i.e. (n +r3)/2 > (r2 +
rj,)/2), but also so that 7(;to) < 7(7Ci) (i.e. (yn + ri)jl <
{in + n)/2). For example, let r2 = 0, rj = 1, n, = 2, and
select r\ such that yn < 1 < r\.

In such a case, D will see action 0 as preferable, which
appears locally optimal even though the choice results in
suboptimal policy Ko. Thus the sole optimal policy n\ docs
not represent a learning equilibrium for this hPOMDP. □

Next, we examine the case where TD style returns are used:

Theorem 3 If a TD(X) credit-assignment method is used
for direct RL of a NMDP, then for X< 1 it is not guaranteed
there exists an optimal observation-based policy represent-
ing a learning equilibrium.

Proof Consider the hPOMDP in Figure 3. Observations A
and B are the equiprobable starting observations. We note
all the transitions are deterministic, and that in observation
A there are two actions to select from while observations

An Analysis of Direct Reinforcement Learning in non-Markovian Domains 427

Figure 3: The hPOMDP discussed in the proof ofTheorem 3.

B and C have only one. Action 0 from observation C leads
directly to termination with an immediate reward; if the
starting observation is A, the immediate reward is 1, but if
the starting observation is B, the immediate reward will be
zero. Action 0 from observation A also has a termination
and a non-zero immediate reward associated with it, the
exact value of which we will discuss in a moment. All
other transitions have a zero immediate reward associated
with them.

The expected value of (C,0) for an observation based pol-
icy 71 depends upon the relative frequency of the transitions
A-+C and B -» C; this in turn depends upon how often ac-
tion 1 is selected from observation A for the sake of active
exploration. We make no special assumptions regarding
an active exploration strategy: we only assume the relative
frequencies of action 0 and action 1 selections from obser-
vation A are both non-zero; hence QK{C,Q) € (0,0.5).

From the rules of TD updates we can derive that Qn(A, 1) =
y(X.\ + (1 - X)ß,t(C,0)), assuming y € [0,1]. This inter-
ests us, because QK(A,\) would equal y under a Monte
Carlo method of credit assignment, but for TD(A,) returns
ö7t(A,l)<YforallX<l.

Therefore, if the value of the immediate reward for (A,0)
is such that Qn(A, 1) < Q*(A,0) < y, then observation A
would see action 0 as preferable to action 1, even though
the optimal policy corresponds to selecting action 1. In
such a case, the optimal observation-based policy for this
hPOMDP does not represent a learning equilibrium if
TD(X) returns are used with A, < 1. □

Firstly, we should point out that proof of Theorem 3 has
been constructed so that it applies equally to both on-policy
methods, such as SARSA (e.g. Singh & Sutton, 1996), and
to off-policy methods, such as Q-learning.

Further, if we consider the special case of X = 0, we can
use this proof to additionally arrive at the following result:

Corollary I If a 1-step Q-learning (or 1-step SARSA)
method of credit assignment is used for direct RL of a
NMDP, then it is not guaranteed that there exists an opti-
mal observation-based policy representing a learning equi-
librium.

We note we can also use the proof of Theorem 3 to settle a
conjecture in (Singh et al., 1994) regarding the optimality
of Q-learning for observation-based policies of POMDPs.
The authors of that paper conjectured that Q-learning in
general might not be able to find the best deterministic
memoryless (i.e. observation-based) policy for POMDPs.
If we consider X = 0 case (i.e., the case corresponding to 1-
step Q-learning), this result follows directly from the proof,
since the optimal policy for the hPOMDP used in the proof
of Theorem 3 is in fact also deterministic.

We also note that in (Pendrith & McGarity, 1997) is a proof
that extends these results from 1-step to multi-step cor-
rected truncated returns (CTRs). We omit the proof here
for space reasons.

Taken together, these results show that the key property of
optimal observation-based policies being stable for direct
RL methods does not generalise from Markovian to non-
Markovian domains. The stability of optimal observation-
based policies under standard RL methods can be guaran-
teed for hPOMDPs, a general class of NMDPs, only if the
additional restrictions of using undiscounted rewards and
using actual return credit assignment methods are imposed.
These results apply for stochastic as well as for determin-
istic optimal observation-based policies.

7 Related work

The POMDP theoretical framework was originally formu-
lated in the context of a set of operations research (OR)
problems; the wider RL literature reflects an important line
of research that is bringing OR methods to bear on the gen-
eral problem of discovering effective policies in partially
observable stochastic domains (Kaelbling et al., 1995). In
contrast to "direct" methods of RL for POMDPs, however,
these methods generally rely on state-estimation techniques
that attempt to disambiguate observations into true Markov
states.

Although an analysis of direct RL for POMDPs as pre-
sented in this paper might prima facie seem to have lit-
tle bearing on such approaches, this is not necessarily the
case. We consider that even if we are using active state-
estimation techniques in a POMDP setting, the problem
will remain non-Markov to some degree or another while
the state-estimation is imperfect; and, in general, the prob-
lem of state-disambiguation has been shown to be difficult

428 Pendrith and McGarihj

(Littman, 1996).

In (Littman, 1994) is a complexity analysis of the general
problem of finding the optimal deterministic memoryless
(i.e., observation-based) policy for an NMDP. In the gen-
eral case, this turns out to be NP-complete. More opti-
mistically, in the same paper there is evidence presented
that heuristic methods for searching the policy space might
be expected to find very good or even optimal policies in
the average case.

In (Singh et al., 1994) is proposed a framework for the anal-
ysis of direct RL for NMDPs; it is built around a class of
POMDPs conceptually similar to hPOMDPs in several im-
portant respects.

The authors analyse what two different 1 -step TD RL meth-
ods (TD(0) and 1-step Q-learning) will learn as value func-
tions for the class of POMDPs under consideration. While
they do not continue to a full analysis of TD(A) for general
A. < 1, they do point out that a Monte Carlo method like
TD(1) will result in accurate value estimates for an exam-
ple POMDP they analyse.

As noted earlier, they conjecture that, in general, 1-step Q-
learning is not guaranteed to learn even the best determinis-
tic observation-based policy for a POMDP. However, their
analyses are concentrated on the issue of the accuracy of
observation-based value estimation, rather than on the sta-
bility of optimal policies, which has been our primary fo-
cus. Also, as a consequence of the multiple-visit definition
of V(s) in their framework, their analysis was necessarily
restricted to the asymptotic behaviour of ergodic systems, a
limitation which does not apply to the framework presented
here.

The analyses of cooperative learning automata in Markov
settings by Witten (1977) and Wheeler & Narendra (1986)
provided the game theoretic perspective facilitating the
original intuitions and reasoning leading to the results pre-
sented in this paper.

8 Conclusions and Future Work

An analysis of hPOMDPs has proven to be an aid to un-
derstanding the theoretical implications of applying stan-
dard discounted reward RL methods to non-Markov en-
vironments. Extending earlier work, the framework we
present applies to non-ergodic as well as discounted reward
NMDPs, facilitating a more direct understanding of the is-
sues involved.

Our analysis starts with the simple observation that having
a global maximum in policy space which is also a learn-
ing equilibrium is a necessary condition for convergence

to an optimal policy under a given learning method. We
discover that for an important general class of non-Markov
domains, undiscounted, actual return RL methods have sig-
nificant theoretical advantages over discounted returns and
TD methods of credit-assignment.

A move from discounted to undiscounted rewards natu-
rally suggests a closer look at average reward RL methods
for equilibrium properties in non-Markov environments.
Some steps in this direction have already been made in
(Singh et al., 1994) and (Jaakkola, Singh, & Jordan, 1995).
Theorem 2 may point to subtle problems translating "tran-
sient reward" sensitive metrics such as Blackwell optimal-
ity (Mahadevan, 1996) from MDPs to NMDPs. Investiga-
tions are continuing in this direction.

Acknowledgments

The authors wish to thank Pawel Cichosz and Tobias Schcf-
fer for their helpful comments on early versions of this pa-
per.

References

Barto, A., Bradtke, S., & Singh, S. (1995). Learning to
act using real-time dynamic programming. Artificial
Intelligence, 72, 81-138.

Barto, A., Sutton, R., & Anderson, C. (1983). Neuron-
like adaptive elements that can solve difficult learn-
ing control problems. IEEE Transactions on Sys-
tems, Man, and Cybernetics, SMC-13{5), 834-846.

Billingsley, P. (1986). Probability and measure. John Wiley
& Sons.

Jaakkola, T, Singh, S., & Jordan, M. (1995). Rein-
forcement learning algorithm for partially observable
Markov decision problems. In Advances in Neu-
ral Information Processing Systems 7. Morgan Kauf-
mann.

Kaelbling, L., Littman, M., & Cassandra, A. (1995). Plan-
ning and acting in partially observable stochastic do-
mains. Submitted to Artificial Intelligence.

Littman, M. (1994). Memoryless policies: theoretical lim-
itations and practical results. In D.Cliff, P.Husbands,
J-A.Meyer, & S.W.Wilson (Eds.), Proc. of the Third
Int. Conf. on the Simulation of Adaptive Behavior.
MIT Press.

Littman, M. (1996). Algorithms for sequential decision
making. Ph.D. thesis, Technical report CS-96-09,
Dept. of Computer Science, Brown University.

An Analysis of Direct Reinforcement Learning in non-Markovian Domains 429

Mahadevan, S. (1996). Sensitive discount optimality: Uni-
fying discounted and average reward reinforcement
learning. In L.Saitta (Ed.), Machine Learning: Proc.
of the Thirteenth Int. Conf. Morgan Kaufmann.

Michie, D., & Chambers, R. (1968). BOXES: An exper-
iment in adaptive control.. In E.Dale, & D.Michie
(Eds.), Machine Intelligence 2, pp. 137-152. Edin-
burgh: Edinburgh Univ. Press.

Pendrith, M, & McGarity, M. (1997). An analysis of non-
Markov automata games: Implications for reinforce-
ment learning. Tech. rep., UNSW-CSE-TR-9702,
School of Computer Science and Engineering, Uni-
versity of NSW, Australia.

Pendrith, M., & Ryan, M. (1996). Actual return reinforce-
ment learning versus Temporal Differences: Some
theoretical and experimental results. In L.Saitta
(Ed.), Machine Learning: Proc. of the Thirteenth Int.
Conf. Morgan Kaufmann.

Puterman, M. (1994). Markov decision processes : Dis-
crete stochastic dynamic programming. New York:
John Wiley & Sons.

Singh, S., Jaakkola, T, & Jordan, M. (1994). Learn-
ing without state-estimation in partially observable
Markovian decision processes. In W.Cohen, &
H.Hirsh (Eds.), Machine Learning: Proc. of the
Eleventh Int. Conf. New Brunswick, New Jersey:
Morgan Kaufmann.

Singh, S., & Sutton, R. (1996). Reinforcement learning
with replacing eligibility traces. Machine Learning,
22(1-3), 123-158.

Watkins, C. (1989). Learning from Delayed Rewards.
Ph.D. Thesis, King's College, Cambridge.

Wheeler, Jr., R. M., & Narendra, K. S. (1986). Decentral-
ized learning in finite Markov chains. IEEE Trans,
on Automatic Control, AC-31(6), 519-526.

Witten, I. (1977). An adaptive optimal controller for
discrete-time Markov environments. Information
and Control, 34,286-295.

430

A Randomized ANOVA Procedure
for Comparing Performance Curves

Justus H. Piater
piater@cs.umass.edu

Paul R. Cohen
cohen @cs.umass.edu

Xiaoqin Zhang
xqzhang@cs.umass.edu

Michael Atighetchi
adi@cs.umass.edu

Computer Science Department
University of Massachusetts

Amherst, MA 01003

Abstract

Three factors are related in analyses of per-
formance curves such as learning curves: the
amount of training, the learning algorithm, and
performance. Often we want to know whether
the algorithm affects performance and whether
the effect of training on performance depends on
the algorithm. Analysis of variance would be an
ideal technique but for carryover effects, which
violate the assumptions of parametric analysis
of variance and can produce dramatic increases
in Type I errors. We propose a novel, random-
ized version of the two-way analysis of variance
which avoids this problem. In experiments we
analyze Type I errors and the power of our tech-
nique, using common machine learning datasets.

1 INTRODUCTION

A common task in machine learning is comparative assess-
ment of learning methods. Most research on this issue fo-
cuses on performance measures such as classification accu-
racy after training, or percentage of games won by a game-
playing program (e.g. Mitchell 1997 ch. 5, Dietterich (in
press), Rasmussen et al. 1996). However, it is sometimes
interesting to compare time series of performance, such as
learning curves. For example, two algorithms might have
comparable asymptotic performance, but we would like to
test the hypothesis that one achieves this level of perfor-
mance more quickly than the other.

Which statistical procedures are appropriate to identify dif-
ferences between the performance of algorithms over time,
and particularly during training? One obvious approach
might be to apply the aforementioned methods repeatedly

at different times, comparing the performance of algo-
rithms at each of several levels of training. Unfortunately,
multiple comparisons can lead to overestimates of the sig-
nificance of results (see Section 2) and are inappropriate for
comparing performance curves.

A better approach is to describe differences between algo-
rithms during training in terms of two effects:

Algorithm Effect: Does one algorithm generally achieve
higher performance than another?

Interaction Effect: Does the influence of training on per-
formance depend on the algorithm?

Figures la and lb illustrate prototypical cases for each ef-
fect. In practice, however, some combination of effects
will occur. In Figure lc, for instance, both curves start out
with similar slopes, but one of them converges to a lower
asymptote. Figure Id shows a case where both curves start
at the same point and achieve similar asymptotic perfor-
mances, but one algorithms learns faster (with respect to
the amount of training) than the other. In this latter case, we
find that both algorithm and interaction effects concentrate
in the early stages of training, and both effects essentially
disappear with increasing amount of training.

This paper presents a method for detecting Algorithm and
Interaction effects in learning curves. Actually, the method
is not restricted to learning curves, it applies to any kind of
performance curves. The method tests two hypotheses:

• The mean performances of two or more algorithms are
the same (no Algorithm effect).

• The relationship between training and performance
does not depend on Algorithm (no Interaction effect).

Such effects are typically tested with analysis of variance
(ANOVA). However, the conventional parametric ANOVA is

A Randomized ANOVA Procedure for Comparing Performance Curves 431

o
(b)

Algorithm
Interaction

Algorithm,
Interaction

Algorithm,
Interaction

Training

Figure 1: Some kinds of differences between learning curves. The statistical effects on performance (Algorithm and/or
Interaction effects) are listed for each situation. In case c, the Interaction effect disappears at the later stages of training; in
case d, both effects disappear.

based on several assumptions, of which one, homogene-
ity of covariance, is strongly violated by most time se-
ries data. In particular, conventional ANOVAs on learning
curves can dramatically overestimate the significance of al-
gorithm effects and underestimate the significance of in-
teraction effects. Following some statistical preliminaries
in Section 2, we demonstrate how ANOVA gives incorrect
results for learning curves (Section 3) and then introduce
our novel procedure, a randomized version of ANOVA (Sec-
tion 4). The remainder of the paper presents experimental
results with conventional and randomized ANOVA, compar-
ing the power and Type I errors of the methods.

2 STATISTICAL HYPOTHESIS TESTING

This section defines terms and may safely be skipped by
readers familiar with statistical hypothesis testing.

Hypothesis testing involves these steps: Assert a null hy-
pothesis Ho- Decide on a statistic (j>. Collect a sample s
of size n and calculate (fi(s) for the sample. Derive the
probability distribution S of all possible values of (j>(i) for
samples i of size n under Ho- These restrictions are im-
portant: <S isn't the distribution of <f> for any sample, but
for samples of size n that would arise if the null hypoth-
esis were true. S is called the sampling distribution of (j>.
One may then ask, "What is the probability of obtaining a
statistic value of (f>(s) or more by chance if HQ were true?"
The answer, called a p value, is the area of S above (j>(s).
Suppose p = .01. Should you reject the null hypothesis?
There isn't a correct answer to this question, but you can be
assured that if you do reject HQ, the probability that you do
so in error is no greater than p. Rejecting Ho when it is true
is called a Type I error. Failing to reject Ho when it is false
is a Type II error, and the power of a test—the probability
that you will reject Ho when it is false—is one minus the
probability of a Type II error.

One may also ask, "What value of </>(s) must I exceed to
be assured that my p value is less than some threshold a?"
This is called the critical value of(j) and, obviously, it varies
with a.

One should not compare performance curves by repeatedly
comparing points on the curves (e.g., comparing perfor-
mance after z, 2i, Si... training instances). Each compari-
son will with some probability a assert a difference in per-
formance when in reality there is none — a Type I error.
If the comparison procedure is applied m times, to m pairs
of points on learning curves, then the total probability of
Type I error is roughly 1 — (1 — a)m. (The probability is
exactly 1 — (1 — a)m if the comparisons are independent,
but they are not, and their non-independence necessitates
the technique developed in this paper.) One can control the
total probability of a Type I error, but only by reducing a
— which increases the critical values for individual com-
parisons — making it less likely that comparisons will find
differences that actually exist. Said differently, the power
of the tests is reduced (see Cohen 1995 for a discussion of
related issues). Multiple comparisons are not the right tool
for comparing performance curves.

3 ANOVA FOR COMPARING
PERFORMANCE CURVES

Suppose we have two learning algorithms A\ and A2, each
of which trains I times on a set of k instances, e.g., in an
Z-fold cross validation procedure. Then we have / estimates
of the performance of each algorithm at each level of train-

..L^for ing. Put another way, we have I "lines" Li',.
-(2) (2) Ai and another I lines L\ ',..., L\ ', where each line is

a list of k numbers that represent die performance of the
algorithm at level h (1 < h < k) of training, on that par-
ticular fold of the cross validation. A schematic data table
is shown in Figure 2, where the axes of the table represent

432 Piater, Cohen, Zhang, and Atighetchi

the factors Training and Algorithm. Lines may of course
be generated by methods other than cross-validation; for
example, they might represent training on several differ-
ent datasets. The important thing is that the data points on
a line are not independent. In statistical parlance, they are
repeated measures and they create carryover effects, mean-
ing that the performance represented by earlier points on a
line influences, or carries over to, later performance.

*i h
Training

tk

Ai

i A2 ■3
•c o

< ;

Figure 2: Data table setup for randomized ANOVA. This
example shows I = 4 learning curves per algorithm.

Were it not for these carryover effects, analysis of variance
would be an ideal tool to analyze learning curves. Analysis
of variance tests for main effects of factors and interaction
effects between factors. Each kind of effect is represented
by an F statistic, which has an expected value of 1.0 under
the null hypothesis of no effect. Formulae for calculating
F are straightforward and widely available (e.g., see Cohen
1995) and will not be repeated here. The patterns of data in
Figure 1 can be discriminated by F statistics for main and
interaction effects.

Carryover effects make it difficult to specify the sampling
distributions of F statistics. Classical F distributions are
derived under some assumptions, and while F tests are ro-
bust against departures from most of these, learning curves
violate an important one: homogeneity of covariance. To
see what this means, note that we could calculate a correla-
tion between the four data points in the A\, t\ cell of Figure
2 and the four in the Ai, t<i cell. Under homogeneity of co-
variance, this correlation would be constant for any pair of
cells Ak,ti and Ak,tj. However, the correlation between

performance after t and t+1 training instances is apt to be
higher than the correlation between performance after t and
t + 100 instances, so homogeneity of covariance is apt to
be violated. The consequence is that the Type I error prob-
abilities no longer correspond to the given a level (Cohen
1995 (p. 306), Keppel 1973, O'Brien and Kaiser 1985).

So F statistics can represent the effects in Figure 1, nicely,
but carryover effects bias the p values of the statistics. Can
we salvage ANOVA and F tests? One common tactic is to
correct statistics to compensate for biases. The following
experiment (and those in Sec. 5) shows that this tactic will
not work. We generated learning curves from three dif-
ferent datasets (Chess, RL, and Tic-Tac-Toe; see the Ap-
pendix). The results (Figure 3) demonstrate a dramatic in-
crease in Type I error in the case of Algorithm effects, and
a decrease for Interaction effects. The histograms demon-
strate that the frequencies of these errors depend on the
dataset, which implies that one cannot correct the F statis-
tics with a simple adjustment. In particular, the Chess and
Tic-Tac-Toe learning curves were generated according the
same procedure, their degrees of freedom are identical, and
yet their mean rejection rates differ dramatically.

Another way to salvage ANOVA is to somehow find the ap-
propriate sampling distributions for F statistics when ho-
mogeneity of covariance is violated. This would allow us
to control Type I errors precisely. Our method, discussed
in Section 4, yields these sampling distributions, and ac-
curate p values, whether or not homogeneity of covariance
is violated. The procedure is based on randomization (see,
e.g., Cohen 1995, ch. 5). Consider first the null hypothe-
sis that Algorithm has no effect on performance. If it were
true, then the lines associated with algorithm A\ in Figure 2
might equally well be associated with A2, or with any other
algorithm. Thus, if we randomly redistribute lines among
algorithms, and then calculate Faig in the usual way, we
will derive one value of Faig under the null hypothesis that
Algorithm is independent of performance. For clarity, de-
note this statistic Fal to remind us that it was derived by
randomization, that is, shuffling lines, and to distinguish
it from the sample statistic Faig that was calculated from
the original (unshuffled) data table. If we shuffle the lines
again, we will get another, somewhat different value of
FjJl , and if we shuffle 1000 times we can get a distribu-
tion of 1000 values of this statistic.

By shuffling lines instead of, say, individual data points
among algorithms, we preserve the dependencies among
the data points on each line. Said differently, we treat a line
as a unit for the purpose of estimating the distribution of
Fa, , so the degree of dependence among the data on a line
is irrelevant. As mentioned above, when homogeneity of
covariance is violated, comparing Fa|g to a conventional F

A Randomized ANOVA Procedure for Comparing Performance Curves 433

Initialize c = 0. Then do 1000 times:
1. Generate a set L of learning curves using C4.5.

2. Partition L randomly into L\ and L2 representing two different imaginary algorithms,
with |Li| = |La| = J§1.

3. Perform conventional ANOVA on these data, obtaining the probability p that it is incor-
rect to reject the null hypothesis that there is no effect of Algorithm on performance.

4. If p < 0.05 then increment c.

•c o

Chess RL Tic-Tac-Toe

300 350 400 450 50 100 150 100 150 200

60

•2 40

a 20

C40| ■ ■

10 20 30 20 40 60

Figure 3: Illustration of the increase in Type I error resulting from carryover effects. For each dataset, the procedure
given above was executed 100 times and the resulting c values averaged. Without carryover effects, one would expect
c = 1000a = 50. The histograms of c values show that Ho was rejected much more frequently, which demonstrates the
inappropriateness of the conventional ANOVA for comparison of learning curves. See the Appendix for details about the
datasets used.

distribution will underestimate p, that is, it will make Faig

look significant at a given level of a when it is not. The
distribution of F*lg protects against this error, as illustrated
by Figure 4.

F*lg is not technically a sampling distribution but it serves
the same purpose, namely, to estimate a p value for a sam-
ple result, or to find a critical value that Faig must exceed
to reject Ho with some level a of confidence (Cohen 1995,
p. 175).

4 THE PROCEDURE IN DETAIL

ing.' Note that k and the th, (1 < h < k) are the same for all
algorithms, but I, the number of learning curves generated
by an algorithm, need not be the same for all algorithms.

We will test two null hypotheses: There is no effect of
Algorithm on performance, and there is no effect of Al-
gorithm on the relationship between Training and perfor-
mance. These correspond to F tests of a main effect and
the interaction effect in a two-way analysis of variance, so
we will compute the appropriate statistics, F^g and Fint,
but we will compare them to the randomized sampling dis-
tributions of F^lg and F;*,..

The complete procedure can be summarized as follows:
Consider a set A of m learning algorithms A\,..., Am

For each algorithm At we have a set L& 0f I learning 1. For each algorithm i, collect I learning curves
-(0 r(i)

curves L\',..., L\'. Each learning curve L)' constitutes (0 r(i) 'W

-(*) r(0 (0
L\',..., L\'. If there are m algorithms, this will pro-

a fc-tuple (Lj [,..., Lj'f.) of real numbers, where each Ljh

gives the performance score of the learning algorithm Ai on
the jth run after Ai has performed an amount th of train-

'The "amount of training" is an abstract notion here which
could be given by the number of training instances processed, the
number of trials run, or even by the training time.

434 Pinter, Colien, Zhang, and Atighetchi

Chess

< 5

20 40 60 80

RL Tic-Tac-Toc

100

Figure 4: Histograms generated by the sam: procedure as Figure 3, but p-values were compared against randomized F
distributions (500 shuffles) instead of the parametric distributions. In fact, the mean rejection rates of around 50 correspond
to the target significance level of a — 0.05. This is also true for the corresponding histograms for the Interaction effect
(not shown).

duce a data table like the one in Figure 2. 5 EXPERIMENTAL RESULTS

2. Run a conventional two-way analysis of variance on
this data table to obtain sample statistics Fa|g and F\nt.

3. Generate the sampling distributions Fa] and F*nt:

Throw the m x I learning curves into a "pool" V.

Do i = l...z times (where z is large, e.g.,
1000):

(a) Shuffle V and reassign each of the ml learn-
ing curves to the m algorithm categories
(rows in the data table) such that each row
contains I curves. Shuffling V enforces the
null hypothesis of no association between
performance and algorithm.

(b) Run a conventional two-way analysis of vari-
ance on the resulting data table and record

^lg,iandFint,r

4. Find the critical values in the distributions F*x and
F*nt. If a = .05 and z = 1000 then the critical value
in each sorted distribution is the 950th, because 5% of
the distribution lies above this value. In general, the
critical value is the alOOth quantile.

5. If Faig exceeds the critical value for the Falg distri-
bution, reject the null hypothesis that Algorithm does
not affect performance. Similarly if Fjnt exceeds the
critical value for the F^t distribution, reject the null
hypothesis of no interaction effect.

6. The p value for each hypothesis is derived from the
rank of the closest value in the sorted sampling dis-
tribution. For example, if Faig = 10.3 and the closest
value in Fal is 10.2, and if the rank of this value is 972
out of 1000, then p < (1000 - 972)/1000 = .028.

In Section 3 we illustrated the increase in Type I error
caused by comparing F statistics to standard F distribu-
tions. This section provides a more detailed account of this
phenomenon. Both Algorithm and Interaction effects arc
analyzed on the Chess dataset (see Appendix). The fol-
lowing section discusses the probability of Type I error,
and Section 5.2 compares the power of the conventional
and randomized ANOVAs. In all cases we use m = 2 sets
of learning curves. Note that our method applies to any
m> 2.

5.1 TYPE I ERROR MEASUREMENTS

As shown in Section 3, the standard F distributions tend to
overestimate the significance of Algorithm effects, but un-
derestimate the Interaction effects. We expected the overes-
timations based on previously published results (e.g., Kep-
pel 1973, p. 464) but the underestimations were a surprise
and we do not have a satisfactory explanation for this phe-
nomenon. In one sense, we do not care why the standard
F distributions detect Interaction effects less often than ex-
pected, because we have a method to construct correct F
distributions. Yet we were curious. To shed some light on
this issue, we examined the frequency of Type I errors for
Interaction and Algorithm effects, for conventional ANOVA
and our method, in a variety of conditions.

Recall that Type I error rates are the frequencies with which
the null hypothesis is rejected when it is true, i.e., when
there is no effect. In Section 3 we enforced the null hy-
pothesis by splitting a set of learning curves generated by
one algorithm into two groups, calling one group "algo-
rithm A," the other "algorithm B," then testing for an Al-
gorithm effect and an Interaction effect. Because the two
groups were generated by one algorithm, we expected nei-
ther effect; that is, we expected Type I error rates of a. In

A Randomized ANOVA Procedure for Comparing Performance Curves 435

the following experiments we enforce the null hypothesis
in a slightly different way. First we generated a set L of
learning curves with C4.5, then to each curve we applied
a transformation, yielding another set V. The transforma-
tion induced an Algorithm effect or an Interaction effect or
both. In other words, the mean curves for L and L' corre-
spond to the pairs of curves in Figure 1. Then, to enforce
the null hypothesis, we shuffled the curves in L and V'.
Whereas the earlier procedure enforced the null hypothesis
by randomly dividing a set of statistically-identical learn-
ing curves, this procedure is more natural in starting with
two sets of curves {L and V) that are different, then shuf-
fling them. Moreover, we have tight control over the degree
of difference between L and V because we transform the
former to get the latter.

We now describe this procedure in detail. The following
steps compute the number c of rejections of Ho during
1000 analyses of variance, starting from a set L of learn-
ing curves:

Initialize cCOnv = c^md = 0. Then do 1000 times:

1. Construct V by modifying each curve from L accord-
ing to one of the cases given in Figure 1. The degree
of modification is controlled by a factor /. We will
denote this operation by V = Ma(L, f) for case a in
Figure 1, and likewise for cases b, c, d.

2. Partition LL)L' randomly into L\ and L2, with |Li | =
|L2| = 20.

3. Perform conventional ANOVA on these data to obtain
the F statistic for the tested effect.

4. Compare F to the appropriate conventional F distri-
bution and read off the probability pconv that it is in-
correct to reject Ho-

5. Generate a randomized sampling distribution F* us-
ing 400 shuffles as described in Section 4 item 3, and
read Off Prand-

6. If Pconv < a then increment Cconv
If Prand < " then increment Crand-

This procedure was performed with respect to Algorithm
and Interaction effects, and for 10 different values of /.
For each of these cases, the c values resulting from 10 such
runs were averaged to yield a data point shown in Figure 5.
The effect of the modification factor / on the shape of a
curve is also illustrated in the figure. Details on the four
modification procedures are given in the Appendix.

As expected, the randomized ANOVA always achieves
Type I error probabilities near the target significance level

of a = 0.05. The conventional method, however, tends to
assert an Algorithm effect too often (increase in Type I er-
ror probability). In contrast, Interaction effects are mostly
detected less often than the expected 5%.

Modification Mj is a dramatic case: This modification did
not introduce an Algorithm effect, and yet such an effect
was often detected by the conventional ANOVA at a fre-
quency inversely proportional to the modification factor
/. The modification introduced an Interaction effect which
was then shuffled away, enforcing the null hypothesis of no
interaction, yet the frequency with which conventional AN-
OVA detected Interaction effects increases with /. We do
not know why, and these experiments fail to explain why
Type I errors for interaction effects are lower than expected,
although the dependence on / is intriguing.

The magnitude of these misjudgments can be quite dra-
matic (up to a factor often in these examples), but depends
on the type of the effect and the modification factor /. Be-
cause of these dependencies, we think it is not possible to
correct the standard F statistics to control Type I errors pre-
cisely. No matter: Our randomized ANOVA produces the
expected Type I errors.

5.2 POWER MEASUREMENTS

Whereas Type I errors involve detecting effects that don't
exist, Type II errors involve failing to detect errors that do
exist. The power of a test is one minus the Type II error
rate, that is, the probability of detecting a true effect. To
measure the power of both conventional and randomized
versions of ANOVA, we employed the same modification
strategy as in the previous section. Here, however, L and
V are not shuffled. In other words, L and V give us con-
trolled Algorithm and Interaction effects. The following
procedure measures the power of both ANOVAs to detect
these effects:

1. Construct L2 = Mx(Li,f), where x is one of
a,...,d.

2. Generate a randomized sampling distribution F*, as
described in Section 4 item 3, using 500 shuffles of
2 x 10 learning curves each.

*• Cconv = Crand = t).

4. Do 100 times:

(a) Randomly draw a set L[of 10 unique curves
from L\.
Randomly draw a set L'2 of 10 unique curves
fromZ/2-

(b) Perform conventional ANOVA and obtain F.

436 Piatcr, Cohen, Zhang, and Atighctchi

Curve Illustrations Algorithm Effect Interaction Effect
700

§600

£ 500
o

^ 400

300

- 1=0
- f = 2

f = 8

600

03

o 400
tr
o w
8 200

10 20 30
Amount of Training (xlO3)

s - y

„ _ -

- conv
— rand

.

80

£ 60
g
<D 40
03
V) ro
* 20

.

\
- conv
— rand

0 5 10
Modification factor f

0 5 10
Modification factor f

Figure 5: Effects asserted by the conventional and randomized ANOVA methods. Each row shows one of the modification
cases a-d from Figure 1. The left column illustrates the effect of the modification for different values of/ (/ = 0 means no
modification). The center and right columns plot the number of times (of 1000) the conventional and randomized analyses
asserted an Algorithm or Interaction effect at a = 0.05.

A Randomized ANOVA Procedure for Comparing Performance Curves 437

(c) Compare F to the parametric F distribution and
obtain pconv
Compare F to the randomized F* distribution

and obtain prand-

Cd) If pconv < a then increment cconv
If Prand < a then increment crand.

Divide cconv and crand by 100 to obtain the power
measurements.

This procedure was performed to introduce Algorithm and
Interaction effects for 10 different values of /. For each of
these cases, the c values resulting from 8 such runs were
averaged to yield a data point shown in Figure 6.

As in earlier experiments, the conventional ANOVA usually
overestimates the presence of an Algorithm effect, thus it
appears more powerful than our randomized ANOVA. But
this "power" is illusory, like a watchdog that barks all night
whether or not a prowler is on the premises. Sure, the dog
will bark when there is a prowler — the probability of de-
tecting a prowler is 1.0—but it is a useless animal. In mod-
ifications a, c and d, where Algorithm effects are present,
our method detects them handily and at a Type I error rate
of approximately 5%. In case b, where there is no algorithm
effect, our method does not report one, but the conventional
method does. Similarly, for interaction effects, our method
does not detect one in case a, because none exists, and it is
quite powerful in the other cases, where interaction effects
are present.

6 CONCLUSION

We have presented a statistical method for comparing sets
of performance curves, such as learning curves, when
points on the curves are not independent, that is, when there
are carryover effects and homogeneity of covariance is vi-
olated. We demonstrated that in these conditions conven-
tional analysis of variance produces a sometimes dramatic
surplus of Type I errors for main (algorithm) effects and a
shortfall of Type I errors for interaction effects. Because
the magnitude of these surpluses and shortfalls depends on
the original dataset, among other things, we do not think
they can be corrected by adjusting conventional F statis-
tics. Instead we show how to construct sampling distribu-
tions for the F statistics that correct for violations of ho-
mogeneity of covariance. With this method, one can con-
trol error rates precisely. We recommend the method for
its simplicity and hope it will be a helpful addition to the
statistical toolbox of the machine learning community.

Algorithm Effect Interaction Effect

a a
| 0.5
0.

/
/ J

/ /
- conv
— rand

1

I 0.5
Q_

0 2 4
Modification factor f

0 2 4
Modification factor f

Figure 6: Power measurements of the conventional and
randomized ANOVA methods. Each row shows one of the
modification cases a-d from Figure 1. The horizontal axes
indicate the degree / to which one of one underlying two
sets of curves was modified with respect to the other (see
Figure 5).

438 Piater, Cohen, Zhang, and Atighetchi

Appendix: Sources of Learning Curves

Chess: Chess Endgame Database (king-rook-vs-king,
Bain 1994) provided by the UCI Machine Learning
Repository (Merz and Murphy 1996). Twenty Learn-
ing curves were generated by running the decision tree
algorithm C4.5 (Quinlan 1993) in a 20-fold cross val-
idation procedure.

We now describe the modification functions Mx (L,f)
used in Section 5. In the following, r refers to the dif-
ference between the performance values of the last and
first points of a given learning curve, i.e. r = Lk-L\.
For each learning curve L, each performance value L*
is altered according to a given modification case (cf.
Figure 1):

RL:

(a) Li = Li + /&

(b) L

(c) Li = L{ + f±\Q0

ion'2 * + 1)

100 *■" 2)

if* < I
if i > I

1)

These data were generated by an AI program that em-
ployed TD(0) Reinforcement Learning (Sutton 1988)
to learn to play Tic-Tac-Toe against a random oppo-
nent. The performance score was the cumulative score
of one hundred test games against a random player,
where losses, draws and wins scored -1,0, and 1 re-
spectively. Ten learning curves were generated by one
training session each.

Tic-Tac-Toe: Tic-Tac-Toe Endgame Database (Aha 1991)
provided by the UCI Machine Learning Repository.
Learning curves were generated as with the Chess
dataset.

References

Aha, D. W. (1991). Incremental constructive induction:
An instance-based approach. In Proc. 8th Int. Work-
shop on Machine Learning, Evanston, IL, pp. 117-
121. Morgan Kaufmann.

Bain, M. (1994). Learning Logical Exceptions in Chess.
Ph. D. thesis, University of Strathclyde.

Cohen, P. R. (1995). Empirical Methods for Artificial
Intelligence. Cambridge, Massachusetts: MIT Press.

Dietterich, T. G. (in press). Approximate statistical tests
for comparing supervised classification learning al-
gorithms. Neural Computation.

Keppel, G. (1973). Design and Analysis: A Researcher's
Handbook. Englewood Cliffs: Prentice-Hall.

Merz, C. and P. Murphy (1996). UCI Repository of
machine learning databases, http://www.ics.uci.edu/
~mlearn/MLRepository.html.

Mitchell, T M. (1997). Machine Learning. McGraw-
Hill.

O'Brien, R. G. and M. K. Kaiser (1985). MANOVA
method for analyzing repeated measures designs:
An extensive primer. Psychological Bulletin 97(2),
316-333.

Quinlan, J. R. (1993). Programs for machine learning.
Morgan Kaufmann.

Rasmussen, C. E., R. M. Neal, G. Hinton, D. van
Camp, M. Revow, Z. Ghahramani, R. Kustra, and
R. Tibshirani (1996). The DELVE Manual. Univer-
sity of Toronto, Dept. of Computer Science, http://
www.cs.utoronto.ca/~delve.

Sutton, R. S. (1988). Learning to predict by the methods
of temporal differences. Machine Learning 3,9-44.

439

Classification Using ^-Machines and Constructive Function Approximation

Doina Precup
Department of Computer Science

University of Massachusetts
Amherst, MA 01003-4610

dprecup@cs.umass.edu

Paul E. Utgoff
Department of Computer Science

University of Massachusetts
Amherst, MA 01003-4610

utgoff@cs.umass.edu

Abstract

The classification algorithm CLEF combines a
version of a linear machine known as a $-
machine with a non-linear function approxima-
tor that constructs its own features. The al-
gorithm finds non-linear decision boundaries by
constructing features that are needed to learn the
necessary discriminant functions. The CLEF al-
gorithm is proven to separate all consistently la-
belled training instances, even when they are not
linearly separable in the input variables. The al-
gorithm is illustrated on a variety of tasks, show-
ing an improvement over C4.5, a state-of-art de-
cision tree learning algorithm.

1 Introduction

The task of classification is to find an approximate defini-
tion for an unknown function / : X -» {ci, ..CR}, R > 2
based on a set of training examples of the form (XJ, /(XJ)).

The components of an instance vector Xj can take values
from discrete or continuous domains. It is also possible
that the values of one or more components are missing or
imprecisely recorded for certain training instances, or that
an instance is mislabeled.

This paper presents a different approach to classification,
centered around the idea of constructing a machine that is
linear in its parameters, but non-linear in the input vari-
ables. Therefore, the algorithm constructs a non-linear fit
of the data. Unlike decision tree induction, the method does
not partition the data into subproblems. The whole training
set is used at all the stages of the classifier's construction.
The algorithm does not need multiple runs to achieve good
results, and finds a perfect separation of the training in-
stances into classes, if one exists. The features it extracts

from the data have a logical form, and thus are easy to in-
terpret.

2 Linear Machines

One approach that constructs a classifier using all the train-
ing data is to use linear machines (Nilsson, 1965; Duda &
Hart, 1973). A linear machine is a set of R linear discrim-
inant functions gt used collectively to assign an instance to
one of R classes. Let x = (1, x\, ..£„) be an instance de-
scription. Each discriminant function gj(x) has the form
w?x, where w is an (n -I- l)-dimensional vector of coeffi-
cients (weights). An instance is assigned class i if and only
if 3i(x) > £j(x) Vj ^ i. If a tie occurs, the instance is
attributed randomly to one of the classes.

The training algorithm of a linear machine adjusts its
weights based on a set of training instances. The machine
starts with arbitrary initial weights, and sweeps through the
set of training instances repeatedly. If an instance having
class i is erroneously placed into class j, the weight vec-
tors corresponding to the two classes are adjusted as fol-
lows: Wj <- Wj + ex and Wj <- Wj - ex. The amount
of correction c can be computed using the fractional error
correction rule:

c = aK-w^x+e)

2xxx

where a e (0,1) is the step size, controlling the magnitude
of the correction, and e > 0 controls the "safety margin"
between the two classes. If the training instances are lin-
early separable, this update rule guarantees that the linear
machine will converge to a boundary that classifies them
correctly.

For many tasks, linear combinations of the input values
are not enough to discriminate the groups of instances be-
longing to each class. When a non-linear discriminant is
needed, one possible solution is to use a ^-machine (Nils-

440 Precup and Utgoff

son, 1965), which is much like a linear machine, except
that it uses discriminant functions of the form gi(x) =
wjFi(x), where Fi = (/i,..., JM) is a vector of linearly
independent, real, single-valued functions fj■. : X -> 3?, in-
dependent of the weights. This means that fj are not vary-
ing with the weight adjustments. Multilayered neural net-
works, for instance, do not satisfy this requirement, since
their hidden units change with the weight adjustements.

^-machines preserve the theoretical advantages of linear
machines, while allowing for non-linear combinations of
the inputs. Therefore, ^-machines can represent partitions
of the input space that cannot be represented by linear ma-
chines. The training procedures used for linear machines
can be applied to adjust the weights of ^-machines. All
the convergence theorems for linear machines apply to $-
machines as well.

Due to the great variety of classification tasks, one cannot
know a priori what mappings fj would be useful as compo-
nents of discriminants. It would be useful to construct such
functions fj automatically, based on the training instances.

3 Constructing a $-machine for
classification

Any method for automatically constructing ^-machines
needs to generate functions fj that are linearly indepen-
dent and do not vary when the parameters Wj of the ma-
chine are adjusted. Constructive methods that adjust the
function while correcting the output weights (by adjusting
input weights, for instance) are not suitable candidates, be-
cause they generate functions fj that are not independent
of the machine parameters Wj.

In the case of Boolean input variables, one alternative
would be to choose fj from a set of basis functions, such
as Rademacher-Walsh or Bahadur-Lazarsfeld polynomials
(Duda and Hart, 1973). However, if the fj are orthogonal
(i.e. fi ■ fj = 0, Vi ^ j and fi ■ fi ^ 0), the information that
can be gathered during training can only say whether more
terms are needed, but not what those terms should be. The
search for a good set of discriminant functions is therefore
quite difficult.

An automatic method for constructing a ^-machine ade-
quate for the task at hand is needed. To this end, we use the
ELF function approximation algorithm, (Utgoff & Precup,
1998) which constructs new features as needed, by iden-
tifying subsets of instances that share intrinsic properties.
One could substitute ELF with any other algorithm that can
automatically construct linearly independent features.

ELF assumes that the instances are represented using

Boolean input variables. Its goal is to find set covers over
the instance space, grouping those instances into subsets
that share an intrinsic property, i.e. that can be associated
with a common value. Let X be the space of all describable
input instances. An ELF feature is a membership function
for a subset of instances Xj C X:

/;(*)
f 1 if
\ 0 ot

xeXj
otherwise

When a feature fj is multiplied by its single corresponding
weight, each term Wjfj has value Wj for the instances that
Xj covers, and 0 elsewhere, thus associating a particular
value with a particular set of instances.

The subset Xj is represented by a pattern vector with as
many components as the dimensionality of an instance vec-
tor x. Each component of a pattern has either the value '#'
or the value '0'. A '#' matches either of the possible values
of the corresponding input vector, while a '0' in the pattern
matches only a '0' value. For example, the pattern '#0'
covers the instances '10' and '00' and does not cover either
'01' or *H'. The pattern of all '#' covers every domain
element because the pattern matches any domain element
at every component. One pattern is more general than an-
other if and only if it covers all the instances covered by the
other, and some additional instances as well.

Initially, each discriminant function consists of one feature,
which covers the whole instance space, and has a weight
of 0. To evaluate an instance using a discriminant func-
tion, one computes the linear combination of the feature
values and feature weights. To update the approximation,
the training procedure revisits the training instances and ad-
justs the weights of the discriminant functions using the
fractional error correction rule (Nilsson, 1965). Only fea-
tures that matched the instance have their weights adjusted,
because features that did not match have value 0.

For each feature, the algorithm keeps track of the errors as-
sociated with each input bit, in order to determine which
feature is having the greatest difficulty in fitting. When an
adjustment of the weights has ceased to be productive, the
algorithm adds a new feature, which is a specialization of
the feature that has been producing the largest errors. Spe-
cialization is performed by copying the feature and chang-
ing a '#' in its pattern to a '0'. The choice of the bit to
specialize is based on the variance of the input errors for
each feature. The bit whose errors are most different from
the mean bit error of the feature is specialized. The new
feature will cover half of the set covered by its "parent".

The features that are created by this procedure are linearly
independent. The proof of this statement can be done by in-
duction on the number n of bits that are present in an input

Classification Using ^-Machines and Constructive Function Approximation 441

instance. Consider the base case, in which n = 1. The in-
stance space contains two instances: '0' and '1'. There are
two features that can be defined over this instance space:
the most specialized feature, which is associated with the
pattern '0' and only covers the first instance, and the most
general feature, which corresponds to the pattern '#' and
covers both instances. The values of the features for each
instance can be tabulated in the following determinant:

o #
0 1 1
1 0 1

which can be reduced to a unit determinant, by subtracting
the last line from the first one.

Now comes the induction step. Consider the space of the
instances that can be generated by n input bits. These in-
stances can be viewed as being generated from the (n — 1)-
bit instances, by adding a '0' or a '1' on the first position of
the vector. Similarly, the features that can be defined over
these instances are generated from (n - l)-bit features by
adding a '0' or a '#' on the first position of the feature. Let
dn_i define the determinant of the (n - l)-bit space in-
put features. The determinant dn on the n-bit space can be
written as:

O-Fn-l #-Fn-l

1-Xn-l
dn-1

0
dn-l
dn-1

The induction hypothesis is that dn-\ can be reduced to
a unit determinant. This can be done by adding and sub-
tracting lines from each other, as we did in the base case.
If there is a sequence of transformations that achieves this
goal, we can apply it in the upper and lower part of dn. The
resulting determinant will have the form:

1 0 .
0 1 .

. 0

. 0
1
0

0 .
1 .

. 0

. 0

0 0 . . 1 0 0 . . 1

0 0 .
0 0 .

. 0

. 0
1
0

0 .
1 .

. 0

. 0

0 0 . . 0 0 0 . . 1

By subtracting the bottom half of the determinant from the
upper half, dn can also be reduced to a unit determinant.
Thus, the set of all possible features is linearly indepen-
dent. This means that any subset of features will be linearly
independent as well. ■

The process of training CLEF's classifier can be viewed
as constructing a sequence of ^-machines. The previous
proof ensures that at any point between two feature addi-
tions, the classifier that is built is a ^-machine. A machine
will converge to a set of weights that separates the train-
ing instances, if a separation is possible given the current
set of features. If no linear separation can be found given
the current feature set, by gradually reducing the size of
the corrections, the weights will still settle into a particular
range (Frean, 1990).

In this case, a new feature will be added, and training will
resume with a new machine. In the worst case, the pro-
cess will continue until all the 2n features that are possible
have been generated. If the instances are separable when
mapped through a subset of the features, they will also be
separable when the whole set is used. Thus, if a linear sep-
aration of the training instances is possible, the algorithm
is guaranteed to find one. In practice, CLEF also proved to
be quite efficient with respect to the number of features it
generates for a particular instance space.

4 Input representation

The non-linear machine described so far requires boolean
input values. Such an encoding can be generated auto-
matically for classification tasks. Symbolic variables are
mapped into a 1-of-m encoding, where m is the number of
possible values for each variable. A variable v with possi-
ble values vi,.. .vm is represented in m bits. Bit j will have
the value 1 in an instance representation if and only if the
test v(x) = Vj is true.

Since ELF only deals with Boolean inputs, some form of
discretization is needed for continuous variables. We have
experimented with two methods for discretizing the contin-
uous variables. The first method was suggested by Fayyad
and Irani (1993). The basic mechanism is to sort the in-
stance class labels based on the value of the countinuous
variable. The points at which the class label changes are
potential cutpoints for the variable. At each step, the al-
gorithm looks at the list of possible cutpoints and deter-
mines the information gain for each partition generated by
the cutpoint. A cutpoint is accepted if its information gain
is above a certain threshold, and in this case the algorithm
proceeds recursively to partition the sub-intervals left and
right of the cutpoint. We found this method to be quite con-
servative in the number of intervals used in the discretiza-
tion, which led to poor performance when used for our clas-
sification algorithm.

The second method was originally proposed by Fulton,
Kasif and Salzberg (1995) and then extended by Elomaa
and Rousou (1996). In this case, the algorithm searches

442 Precup and Utgoff

for the best split with a given maximum number of inter-
vals. The quality of a partition is evaluated by an impurity
measure, and the efficiency of the search is ensured by a
dynamic programming algorithm. The impurity measure
used for the experiments reported in this paper is informa-
tion gain. Based on the intervals determined in this way, the
continuous values for all the instances are transformed into
a 1-of-m encoding, with one bit for each of the m intervals.

The number of bits representing each input variable varies
widely. If the input variables were coded in the same
number of bits, the probability of any input bit having the
value 1 is equal, assuming that all the input instances are
equiprobable. For variables coded with different numbers
of bits, the probability of a bit corresponding to a low ar-
ity variable being on is higher than the probability of a bit
being on for a high arity variable. A simple adjustment is
used to remove this bias: the error attributed to each bit is
normalized with respect to the number of bits used to en-
code the variable to which the bit belongs.

To handle missing values, if the value of a variable is miss-
ing in the input then all the bits corresponding to that vari-
able are set to 0. This prevents the missing value from hav-
ing any role in the classification process, since it will not
interfere with the matching (all features will match at that
input variable).

5 Illustration

The Boolean encoding of the features allows an interpre-
tation of the units that form a non-linear classification ma-
chine. Feature interpretation can be generated automati-
cally, by printing the negation of each test for which there
is a '0' in the feature's pattern.

Table 1 illustrates the features that have been constructed
for one of the units (discriminant functions) in the hepatitis
task from the UCI data repository (Murphy and Aha, 1994).
This is a two-class problem, thus the corresponding linear
machine will have two discriminant functions, one for each
class. However, due to the training procedure, these dis-
criminant functions are always trained with equal amounts
of error having opposite signs. In this two class case, the
functions end up having the same features, with weights of
opposite sign.

This table is analogous to a "health test", which tells
how to compute a score for an instance. For each line
in the table, one would check if the instance satisfies
the test in the right column. If so, the corresponding
weight would be added to the total score. If the total
score is positive, the instance would be considered as
belonging to the "die" class. For example, a patient with

Table 1: Unit corresponding to the "die" class in the hep-
atitis task

Hepatitis
Weight Feature

-0.019 age ft 37.50
0.013 ascites ^ no

-0.012 age ft 37.50, liver-firm ^ yes, spiders ^
varices ^ no

no,

0.008 intercept term
0.008 age ft 37.50, protime ft 44.50
0.008 age ft 37.50, varices ^ no
0.007- age ft 37.50, spiders ^ no, varices ^ no

-0.006 sgot ft 80.50, protime ft 87.50
-0.005 steroid ^ yes
-0.004 bilirubin ft 1.35
-0.004 protime ft 87.50
-0.004 sex 7^ female
0.003 sex ^ female, anorexia / yes

-0.002 sex / female, liver-firm ^ no
0.001 spiders ^ no, histology / yes

-0.000 spiders / no

the following characteristics: age=30, ascites=yes,
spiders=no, sex=female, steroid=no, sgot=79.6,
steroid=no, bilirubin=2, protime=80 will be evalu-
ated to a score of 0.013 + 0.008 - 0.005 - 0.004 = 0.0012,
and will therefore be classifed as belonging to the "die"
class.

6 Analysis

How does CLEF perform compared with other classifica-
tion algorithms? Will it find a separating ^-machine in
a reasonable amount of time? Will it construct a large
number of features, perhaps producing an incomprehensi-
ble classifier?

In order to answer these questions empirically, CLEF and
C4.5 were run on several classification tasks, mostly from
the UCI data repository (Murphy and Aha, 1994). This
allows for a comparison in terms of classification accuracy,
and provides some insight on the efficiency of CLEF and
the form of the function it provides.

The salient difference between CLEF and decision tree in-
ducers is that CLEF uses all the training set to construct
its classifier. It should be advantageous to CLEF that it
solves one classification problem using all the data, instead
of many subproblems, each using only some of the data.

CLEF was trained by repeatedly sampling at random N =
100|X| times from the training set (where |X| is the size
of the training set), for a fixed number of epochs. Training
can stop early, if the instances in the training set arc per-
fectly separated. For C4.5, the default settings were used

Classification Using ^-Machines and Constructive Function Approximation 443

Table 2: Accuracy results

Task C4.5 C4.5p CLEF
audio-no-id 75.7 ± 9.6 77.8 ± 6.6 79.1 ± 9.1

balance-scale 78.3 ± 4.1 77.5 ± 3.2 92.5 ± 4.0
breast-cancer 66.2 ± 6.9 75.5 ± 3.9 70.3 ± 7.1

bupa 64.6 ± 5.3 64.6 ± 5.6 68.7 ± 5.0
Cleveland 46.8 ± 4.1 46.8 ± 5.4 48.7 ± 8.4
hepatitis 76.9 ± 4.9 77.5 ± 5.7 81.9 ± 5.2

iris 94.4 ± 7.6 94.4 ± 7.6 94.4 ± 7.1
led24 61.0 ± 9.0 62.4 ± 9.4 61.9 ±11.1

lymphography 77.3 ± 12.4 78.0 ±11.9 80.7 ± 6.3
monks-2 44.5 ± 9.3 65.9 ± 0.0 92.3 ± 4.8
mplex-6 57.1 ±20.2 57.1 ± 19.2 91.4 ±14.6

promoter 80.9 ± 14.3 77.3 ± 14.2 87.3 ± 6.0
soybean 90.3 ± 2.8 92.2 ± 2.4 91.9 ± 3.1

Switzerland 32.3 ± 9.6 33.1 ± 7.7 35.4 ± 14.7
tictactoe 66.3 ± 2.0 68.1 ± 2.3 78.4 ± 2.8

va 28.1 ± 12.7 26.7 ± 10.0 32.9 ± 7.2
votes 95.7 ± 3.7 96.6 ± 3.3 94.3 ± 3.1

waveform 69.7 ± 10.4 70.0 ± 10.7 73.9 ± 9.1
wine 93.3 ± 6.0 93.3 ± 6.0 94.2 ± 8.3

zoo 92.7 ± 6.8 91.8 ± 6.4 96.4 ± 4.5
69.6 71.4 77.3

Table 4: Characteristics of the classifier produced

Task CPU CLEF Size CLEF Match
audio-no-id 218.2 ± 42.2 88.0 ± 2.8 77.3 ±0.8

balance-scale 59.9 ± 37.8 39.0 ± 2.3 66.6 ±1.9
breast-cancer 191.2± 8.7 47.1± 1.8 47.7 ±1.6

bupa 245.4 ± 35.8 49.2 ± 2.4 64.9 ±4.6
Cleveland 496.0 ± 46.2 117.4± 6.1 72.1 ±2.6
hepatitis 58.8 ± 18.2 17.4± 1.0 50.4 ±4.9

iris 15.4± 12.8 19.0± 8.2 74.2 ±6.9
led24 36.9 ± 9.4 76.8 ± 4.9 54.2±1.3

lymphography 39.7 ± 15.3 28.6 ± 2.8 66.8 ±2.3
monks-2 926.2±515.1 59.3 ± 8.3 27.6 ±2.2
mplex-6 0.8 ± 0.8 11.5=1= 1.8 37.6 ±2.2

promoter 26.9 ± 6.2 7.8 ± 0.4 64.8±1.6
soybean 1684.0 ± 30.5 96.9 ± 2.5 71.5±0.8

Switzerland 182.8 ± 16.9 72.2 ± 4.5 85.9 ±4.1
tictactoe 5792.5 ±236.0 241.6 ±14.0 29.6±1.1

va 351.2± 28.8 123.0 ± 7.0 70.5 ±1.9
votes 22.3 ± 1.3 14.3 ± 1.4 46.3 ±3.4

waveform 346.6 ±105.3 43.6 ± 4.9 79.5 ±1.9
wine 14.2± 4.6 16.5 ± 3.6 81.3±4.0
zoo 3.1 ± 0.7 19.0± 1.2 75.8 ±3.0

Table 3: Duncan Multiple Range Test

C4.5 C4.5p CLEF
69.6 71.4 77.3

(Quinlan, 1993), both with and without pruning. The rea-
son for including the results without pruning as well is that
CLEF does not currently use any mechanism for avoiding
overfitting. Therefore, using C4.5 without pruning offers
some insight into the comparative quality of the learning
algorithm itself, though we would like to devise a pruning
mechanism for CLEF.

Table 2 shows the accuracy results of the two algorithms,
in terms of the mean and standard deviation for each task.
All values are computed from a ten-fold stratified cross-
validation, with CLEF and C4.5 using the same partitions
for each task. As shown in the table, CLEF constructs more
accurate classifiers than C4.5 without pruning on 19 of the
20 tasks considered. The classifiers are also more accurate
that those constructed by C4.5 with pruning on 15 out of
the 20 datatsets considered. By doing one-way ANOVA,
the difference between CLEF and C4.5 with no pruning
is significant at the 0.05 level. The difference with C4.5
with pruning is not statistically significant. These results
are confirmed also by the Duncan Multiple Range Test (as
shown in Table 3). There is a statistical difference between
CLEF and C4.5 without pruning, but there is no statistical
difference between CLEF and C4.5 with pruning.

CPU and memory costs are indicated in Table 4. Compu-
tationally, the CLEF algorithm is more costly than C4.5.
Memory costs are not large. The table presents the mem-
ory requirements of the resulting classifier in terms of the
total number of features present in the machine. CLEF typ-
ically constructs a small set of features, each of which con-
sists of a simple bit pattern and a single weight. In order
to measure the degree of overlap of the features that form
a classifier, the average percentage of features matching an
instance was evaluated. The "match train" column shows
this measure for the instances in the training set. The values
show that there is a high degree of overlap in the features
that are constructed.

7 Related work

A variety of constructive methods have been devised for
classification problems. A large class of algorithms con-
struct networks of thresholded logic units, by adding
boundaries that correct for misclassified examples (Parekh
et. al, 1997). These algorithms also separate consistently
labelled examples. The experimental results that have been
published regarding these algorithms are limited, so they
do not provide a good basis for comparison with CLEF.

Several algorithms that automatically construct a neural
network configuration have also been used in classifica-
tion tasks. Fahlman and Lebiere's (1990) cascade corre-
lation method constructs a new hidden unit (feature) in or-
der to minimize the residual error and freezes its defining

444 Precup and Utgoff

weights. The original input variables and the newly con-
structed unit become the input variables for the next layer.
The algorithm has produced good results when applied to
classification tasks. Wynne-Jones (1992) presents an ap-
proach called node splitting that detects when the hyper-
plane of a hidden unit is oscillating, indicating that the unit
is being pushed in conflicting directions in feature space.
Such a unit is split into two units, and the weights are set
so that the units are moved apart from each other along an
advantageous axis. A meiosis network (Hanson, 1990) is a
feed-forward network in which the variance of each weight
is maintained. For a hidden unit (feature) that has one or
more weights of high variance, the unit is split into two.
The input weights that define the feature, and the output
weight for the linear combination are altered so that the
two units are moved away from their means in opposite di-
rections.

Support Vector Machines (Vapnik, 1995) can also be
viewed as constructing features automatically, but the form
of the features that are constructed needs to be defined a
priori. More work would be needed to explore the relation-
ship between CLEF and support vector machines.

8 Summary

CLEF is a classification algorithm that constructs a $-
machine to fit the multiclass data. By using the ELF func-
tion approximator, non-linear features are constructed as
needed. The sequence of feature sets produced by ELF has
the effect that CLEF produces a sequence of ^-machine
classifiers. This sequence will ultimately produce a $-
machine that separates the instances, whether or not they
are linearly separable in the input variables. By contrast to
decision trees, which recursively partition the training in-
stances, CLEF constructs a classifier using the whole train-
ing set. This approach provides an advantage in terms of
the accuracy of the resulting classifiers.

Acknowledgements

The authors thank Margie Connell and three anonymous
reviewers for helpful comments on the previous drafts of
this paper. This work was supported by NSF grant IRI-
9711239. Doina Precup also acknowledges the support of
the Fulbright foundation.

References

Duda, R. O. & Hart, P. E. (1973). Pattern classification and
scene analysis. Wiley & Sons, New York.

splits for numerical attributes in decision tree learning.
Technical Report NC-TR-96-041, NeuroCOLT.

Fahlman, S. E. & Lebiere, C. (1990). The cascade correla-
tion architecture. In Advances in Neural Information
Processing Systems, Volume 2 (pp. 524-532).

Fayyad, U. & Irani, K. (1993). Multi-interval discretiza-
tion of continuous-valued attributes for classification
learning. In Proceedings of the Thirteen International
Joint Conference on Artificial Intelligence (pp. 1022-
1027). Morgan Kaufman, San Mateo, CA.

Frean, M. (1990). Small nets and short paths: Optimising
neural computation. PhD thesis, Center for Cognitive
Science, University of Edinburgh.

Fulton, T, Kasif, S. & Salzberg, S. (1995). Efficient algo-
rithms for finding multi-way splits for decision trees.
In Proceedings of the Twelfth International Confer-
ence on Machine Learning (pp. 244-251). Morgan
Kaufman.

Hanson, S. J. (1990). Meiosis networks. In Advances
in Neural Information Processing Systems, Volume 2
(pp. 533-541).

Murphy, P. M. & Aha, D. W. (1994). UCI repository of
machine learning databases. University of California,
Irvine, CA: Department of Information and Computer
Science.

Nilsson, N. J. (1965). Learning machines. McGraw-Hill,
New York.

Parekh, R., Yang, J. & Honavar, V (1997). Constructive
neural network learning algorithms for multi-category
real-valued pattern classification. Technical report,
Iowa State University, Computer Science Department.

Quinlan, J. R. (1993). C4.5: Programs for machine learn-
ing. Morgan Kaufman, San Mateo, CA.

Utgoff, P. E. & Precup, D. (1998). Constructive function
approximation. In H. Motoda & H. Liu (Eds.), Feature
extraction, construction, and selection: A data-mining
perspective. Kluwer.

Vapnik, V (1995). The Nature of Statistical Learning The-
ory. Springer Verlag, New York.

Wynne-Jones, M. (1992). Node splitting: A constructive
algorithm for feed-forward neural networks. In Ad-
vances in Neural Information Processing Systems (pp.
1072-1079).

Elomaaa, T. & Rousu, J. (1996). Finding optimal multi-

445

The Case Against Accuracy Estimation
for Comparing Induction Algorithms

Foster Provost
Bell Atlantic Science and Tech

400 Westchester Avenue
White Plains, NY 10604

fosterQbasit.com

Tom Fawcett
Bell Atlantic Science and Tech

400 Westchester Avenue
White Plains, NY 10604

fawcettfflbasit.com

Ron Kohavi
Silicon Graphics Inc. M/S 8U-876

2011 N. Shoreline Blvd.
Mountain View, CA 94043

ronnykQsgi.com

Abstract

We analyze critically the use of classifica-
tion accuracy to compare classifiers on natu-
ral data sets, providing a thorough investiga-
tion using ROC analysis, standard machine
learning algorithms, and standard bench-
mark data sets. The results raise serious con-
cerns about the use of accuracy for comparing
classifiers and draw into question the conclu-
sions that can be drawn from such studies.
In the course of the presentation, we describe
and demonstrate what we believe to be the
proper use of ROC analysis for comparative
studies in machine learning research. We ar-
gue that this methodology is preferable both
for making practical choices and for drawing
scientific conclusions.

1 INTRODUCTION

Substantial research has been devoted to the devel-
opment and analysis of algorithms for building clas-
sifiers, and a necessary part of this research involves
comparing induction algorithms. A common method-
ology for such evaluations is to perform statistical
comparisons of the accuracies of learned classifiers
on suites of benchmark data sets. Our purpose is
not to question the statistical tests (Dietterich, 1998;
Salzberg, 1997), but to question the use of accuracy
estimation itself. We believe that since this is one of
the primary scientific methodologies of our field, it is
important that we (as a scientific community) cast a
critical eye upon it.

The two most reasonable justifications for comparing
accuracies on natural data sets require empirical ver-
ification. We argue that a particular form of ROC

analysis is the proper methodology to provide such
verification. We then provide a thorough analysis of
classifier performance using standard machine learning
algorithms and standard benchmark data sets. The re-
sults raise serious concerns about the use of accuracy,
both for practical comparisons and for drawing scien-
tific conclusions, even when predictive performance is
the only concern.

The contribution of this paper is two-fold. We analyze
critically a common assumption of machine learning
research, provide insights into its applicability, and dis-
cuss the implications. In the process, we describe what
we believe to be a superior methodology for the eval-
uation of induction algorithms on natural data sets.
Although ROC analysis certainly is not new, for ma-
chine learning research it should be applied in a princi-
pled manner geared to the specific conclusions machine
learning researchers would like to draw. We hope that
this work makes significant progress toward that goal.

2 JUSTIFYING ACCURACY
COMPARISONS

We consider induction problems for which the intent in
applying machine learning algorithms is to build from
the existing data a model (a classifier) that will be
used to classify previously unseen examples. We limit
ourselves to predictive performance—which is clearly
the intent of most accuracy-based machine learning
studies—and do not consider issues such as compre-
hensibility and computational performance.

We assume that the true distribution of examples to
which the classifier will be applied is not known in
advance. To make an informed choice, performance
must be estimated using the data available. The
different methodologies for arriving at these estima-
tions have been described elsewhere (Kohavi, 1995;

446 Provost, Fawcett, and Kohavi

Dietterich, 1998). By far, the most commonly used
performance metric is classification accuracy.

Why should we care about comparisons of accuracies
on benchmark data sets? Theoretically, over the uni-
verse of induction algorithms no algorithm will be su-
perior on all possible induction problems (Wolpert,
1994; SchafTer, 1994). The tacit reason for comparing
classifiers on natural data sets is that these data sets
represent problems that systems might face in the real
world, and that superior performance on these bench-
marks may translate to superior performance on other
real-world tasks. To this end, the field has amassed
an admirable collection of data sets from a wide vari-
ety of classifier applications (Merz and Murphy, 1998).
Countless research results have been published based
on comparisons of classifier accuracy over these bench-
mark data sets. We argue that comparing accuracies
on our benchmark data sets says little, if anything,
about classifier performance on real-world tasks.

Accuracy maximization is not an appropriate goal for
many of the real-world tasks from which our natural
data sets were taken. Classification accuracy assumes
equal misclassification costs (for false positive and false
negative errors). This assumption is problematic, be-
cause for most real-world problems one type of clas-
sification error is much more expensive than another.
This fact is well documented, primarily in other fields
(statistics, medical diagnosis, pattern recognition and
decision theory). As an example, consider machine
learning for fraud detection, where the cost of missing
a case of fraud is quite different from the cost of a false
alarm (Fawcett and Provost, 1997).

Accuracy maximization also assumes that the class
distribution (class priors) is known for the target envi-
ronment. Unfortunately, for our benchmark data sets,
we often do not know whether the existing distribu-
tion is the natural distribution, or whether it has been
stratified. The iris data set has exactly 50 instances of
each class. The splice junction data set (DNA) has
50% donor sites, 25% acceptor sites and 25% non-
boundary sites, even though the natural class distri-
bution is very skewed: no more than 6% of DNA ac-
tually codes for human genes (Saitta and Neri, 1998).
Without knowledge of the target class distribution we
cannot even claim that we are indeed maximizing ac-
curacy for the problem from which the data set was
drawn.

If accuracy maximization is not appropriate, why
would we use accuracy estimates to compare induc-
tion algorithms on these data sets? Here are what we

believe to be the two best candidate justifications.

1. The classifier with the highest accuracy may very
well be the classifier that minimizes cost, particu-
larly when the classifier's tradeoff between true
positive predictions and false positives can be
tuned. Consider a learned model that produces
probability estimates; these can be combined with
prior probabilities and cost estimates for decision-
analytic classifications. If the model has high clas-
sification accuracy because it produces very good
probability estimates, it will also have low cost for
any target scenario.

2. The induction algorithm that produces the
highest accuracy classifiers may also produce
minimum-cost classifiers by training it differently.
For example, Breiman et al. (1984) suggest that
altering the class distribution will be effective
for building cost-sensitive decision trees (see also
other work on cost-sensitive classification (Tur-
ney, 1996)).

To criticize the practice of comparing machine learn-
ing algorithms based on accuracy, it is not sufficient
merely to point out that accuracy is not the metric by
which real-world performance will be measured. In-
stead, it is necessary to analyze whether these candi-
date justifications are well founded.

3 ARE THESE JUSTIFICATIONS
REASONABLE?

We first discuss a commonly cited special case of the
second justification, arguing that it makes too many
untenable assumptions. We then present the results
of an empirical study that leads us to conclude that
these justifications are questionable at best.

3.1 CAN WE DEFINE AWAY THE
PROBLEM?

In principle, for a two-class problem one can repropor-
tion ("stratify") the classes based on the target costs
and class distribution. Once this has been done, max-
imizing accuracy on the transformed data corresponds
to minimizing costs on the target data (Breiman et al,
1984). Unfortunately, this strategy is impracticable for
conducting empirical research based on our benchmark
data sets. First, the transformation is valid only for
two-class problems. Whether it can be approximated
effectively for multiclass problems is an open question.

The Case Against Accuracy 447

Second, we do not know appropriate costs for these
data sets and, as noted by many applied researchers
(Bradley, 1997; Catlett, 1995; Provost and Fawcett,
1997), assigning these costs precisely is virtually im-
possible. Third, as described above, generally we do
not know whether the class distribution in a natural
data set is the "true" target class distribution.

Because of these uncertainties we cannot claim to be
able to transform these cost-minimization problems
into accuracy-maximization problems. Moreover, in
many cases specifying target conditions is not just
virtually impossible, it is actually impossible. Of-
ten in real-world domains there are no "true" tar-
get costs and class distribution. These change from
time to time, place to place, and situation to situation
(Fawcett and Provost, 1997).

Therefore the ability to transform cost minimization
into accuracy maximization does not, by itself, justify
limiting our comparisons to classification accuracy on
the given class distribution. However, it may be that
comparisons based on classification accuracy are use-
ful because they are indicative of a broader notion of
"better" performance.

3.2 ROC ANALYSIS AND DOMINATING
MODELS

We now investigate whether an algorithm that gen-
erates high-accuracy classifiers is generally better be-
cause it also produces low-cost classifiers for the target
cost scenario. Without target cost and class distribu-
tion information, in order to conclude that the clas-
sifier with higher accuracy is the better classifier, one
must show that it performs better for any reasonable
assumptions. We limit our investigation to two-class
problems because the analysis is straightforward.

The evaluation framework we choose is Receiver Op-
erating Characteristic (ROC) analysis (Egan, 1975;
Swets and Pickett, 1982; Swets, 1988), a classic
methodology from signal detection theory that is now
common in medical diagnosis (Beck and Schultz, 1986)
and has recently begun to be used more generally in
AI (Bradley, 1997; Provost and Fawcett, 1997).

We briefly review some of the basics of ROC analy-
sis. ROC space denotes the coordinate system used
for visualizing classifier performance. In ROC space,
typically the true positive rate, TP, is plotted on the Y
axis and the false positive rate, FP, is plotted on the X
axis. Each classifier is represented by the point in ROC
space corresponding to its (FP,TP) pair. For models
that produce a continuous output (e.g., an estimate of

the posterior probability of an instance's class mem-
bership), these statistics vary together as a threshold
on the output is varied between its extremes, with
each threshold value defining a classifier. The result-
ing curve, called the ROC curve, illustrates the error
tradeoffs available with a given model. ROC curves
describe the predictive behavior of a classifier inde-
pendent of class distributions or error costs, so they
decouple classification performance from these factors.

For our purposes, a crucial notion is whether one
model dominates in ROC space, meaning that all other
ROC curves are beneath it or equal to it. A dominat-
ing model (e.g., model NB in Figure la) is at least as
good as all other models for all possible cost and class
distributions. Therefore, if a dominating model exists,
it can be considered to be the "best" model in terms
of predictive performance. If a dominating model does
not exist (as in Figure lb), then none of the models
represented is best under all target scenarios; in such
cases, there exist scenarios for which the model that
maximizes accuracy (or any other single-number met-
ric) does not have minimum cost.

Figure 1 shows test-set ROC curves on two of the UCI
domains from the study described below. Note the
"bumpiness" of the ROC curves in Figure lb (these
were two of the largest domains with the least bumpy
ROC curves). This bumpiness is typical of induction
studies using ROC curves generated from a hold-out
test set. As with accuracy estimates based on a sin-
gle hold-out set, these ROC curves may be misleading
because we cannot tell how much of the observed vari-
ation is due to the particular training/test partition.
Thus it is difficult to draw strong conclusions about the
expected behavior of the learned models. We would
like to conduct ROC analysis using cross-validation.

Bradley (1997) produced ROC curves from 10-fold
cross validation, but they are similarly bumpy.
Bradley generated the curves using a technique known
as pooling. In pooling, the ith points making up each
raw ROC curve are averaged. Unfortunately, as dis-
cussed by Swets and Pickett (1982), pooling assumes
that the ith points from all the curves are actually esti-
mating the same point in ROC space, which is doubtful
given Bradley's method of generating curves.1 For our
study it is important to have a good approximation of
the expected ROC curve.

We generate results from 10-fold cross-validation using
a different methodology, called averaging. Rather than

1Bradley acknowledges this fact, and it is not germane
to his study. However, it is problematic for us.

448 Provost, Fazvcett, and Kohavi

0.8

j—

it Jj~-~-~~
Z--'-"~""

S 0.6

s a. >i
«
5 0.4

n NB
 MC4
 Bagged-MC4
 IB1

0.2 IB3
 IB5

0.4 0.6
False positives

04 0.6
False positives

(a) Adult (b) Satimage

Figure 1: Raw (un-averaged) ROC curves from two UCI database domains

using the averaging procedure recommended by Swets
and Pickett, which assumes normal-fitted ROC curves
in a binormal ROC space, we average the ROC curves
in the following manner. For fc-fold cross-validation,
the ROC curve from each of the k folds is treated
as a function, Ru such that TP = Ri(FP). This
is done with linear interpolations between points in
ROC space2 (if there are multiple points with the
same FP, the one with the maximum TP is chosen).
The averaged ROC curve is the function R(FP) =
mean(Ri(FP)y To plot averaged ROC curves we
sample from R at 100 points regularly spaced along
the FP-axis. We compute confidence intervals of the
mean of TP using the common assumption of a bino-
mial distribution.

3.3 DO STANDARD METHODS
PRODUCE DOMINATING MODELS?

We can now state precisely a basic hypothesis to be in-
vestigated: Our standard learning algorithms produce
dominating models for our standard benchmark data
sets. If this hypothesis is true (generally), we might
conclude that the algorithm with higher accuracy is
generally better, regardless of target costs or priors.3

2Note that classification performance anywhere along a
line segment connecting two ROC points can be achieved
by randomly selecting classifications (weighted by the in-
terpolation proportion) from the classifiers defining the
endpoints.

3However, even this conclusion has problems. Accuracy
comparisons may select a non-dominating classifier because
it is indistinguishable at the point of comparison—yet it

If the hypothesis is not true, then such a conclusion
will have to rely on a different justification. We now
provide an experimental study of this hypothesis, de-
signed as follows.

From the UCI repository we chose ten datasets that
contained at least 250 instances, but for which the ac-
curacy for decision trees was less than 95% (because
the ROC curves are difficult to read at very high ac-
curacies). For each domain, we induced classifiers for
the minority class (for Road we chose the class Grass).
We selected several inducers from MCC++ (Kohavi et
al, 1997): a decision tree learner (MC4), Naive Bayes
with discretization (NB), fc-nearest neighbor for sev-
eral k values (IBfc), and Bagged-MC4 (Breiman, 1996).
MC4 is similar to C4.5 (Quinlan, 1993); probabilistic
predictions are made by using a Laplace correction at
the leaves. NB discretizes the data based on entropy
minimization (Dougherty et al, 1995) and then builds
the Naive-Bayes model (Domingos and Pazzani, 1997).
IBA: votes the closest k neighbors; each neighbor votes
with a weight equal to one over its distance from the
test instance.

The averaged ROC curves are shown in Figures 2
and 3. For only one (Vehicle) of these ten domains
was there an absolute dominator. In general, very few
of the 100 runs we performed (10 data sets, 10 cross-
validation folds each) had dominating classifiers. Some
cases are very close, for example Adult and Waveform-
21. In other cases a curve that dominates in one area
of ROC space is dominated in another. Therefore, we

may be much worse elsewhere.

The Case Against Accuracy 449

-■*-

i i *- *■■■■■ »

(a) Vehicle (b) Waveform-21

fr „4- „_-*— --#-- §■- »— __*._. ■--■■

\ ■

i

i
MC4 ■

NB
IB1
IB3 -■■■•
IBS — -

Bag-MC4 -—

.■&>

>

■*^r
'..■.:::x^-"

 *-■■"

„-«-~'
^"

■

///
■

7/
11

i

HC4 ■
NB
IB1
IB3 — -
IBS -■•••

Bag-MC4

0.6 0.S

(c) DNA (d) Adult

Figure 2: Smoothed ROC curves from UCI database domains

can refute the hypothesis that our algorithms produce
(statistically significantly) dominating classifiers.

This draws into question claims of "algorithm A is bet-
ter than algorithm B" based on accuracy comparison.
In order to draw such a conclusion in the absence of
target costs and class distributions, the ROC curve for
algorithm A would have to be a significant dominator
of algorithm B. This has obvious implications for ma-
chine learning research.

In practical situations, often a weaker claim is suffi-
cient: Algorithm A is a good choice because it is at
least as good as Algorithm B (i.e., their accuracies
are not significantly different). It is clear that this
type of conclusion also is not justified. In many do-
mains, curves that are statistically indistinguishable

from dominators in one area of the space are signifi-
cantly dominated in another. Moreover, in practical
situations typically comparisons are not made with
the wealth of classifiers we are considering. More of-
ten only a few classifiers are compared. Considering
general pairwise comparisons of algorithms, there are
many cases where each model in a pair is clearly much
better than the other in different regions of ROC space.
This clearly draws into question the use of single num-
ber metrics for practical algorithm comparison, unless
these metrics are based on precise target cost and class
distribution information.

450 Provost, Fawcett, and Kohavi

(a) Breast cancer (b) CRX

? ,Ar~±ZP>?r
■■" '■■'f '^—T""-^* '*'

• A '/^X^' ,,-•''
$A ,A"'

'
-■5'z A'

//. ''
/// s''
/W) ■

fi 1 /
//■

'/
■'■/

MCH -
l / NB
/// IBI ---
«/; iB3
,// IBS
'/ Bag MC4 —•

3 0.2 04 06 OB 1
Fait« Ponttiv«

--J-"" ---tu-s*?-" --*-
■—"T -#

"p^" .^'"

.. -4- -f-
,-+-

I /./J '■'" ,

1 •
// /' / /'/ / i'

fi

/ '

lh '
11/ MC4 •

NB
IB1 - —
!B3
IB5

Bag MC4 —

FalM Positiv«

(c) German (d) Pima

;;:::: :r"-*3>7^

I
1 /

;;:
,._.

,..

■"

■-;..-> //

rr.. -■-

■//-

^ ■■"'"

■

¥ '"
Hi

MC4 ■
NB
IBI ---
IB3
IB5

Bag MC* —

r
1.

' i / -A- -A- -i ♦'
..*■"

"■■■"■»»»-

MC4 ■
NB
IBI ---
IBJ
tB5

BagMC4 -

Falsa Poaftfca

(e) RoadGrass (f) Satimage

Figure 3: Smoothed ROC curves from UCI database domains, cont'd

The Case Against Accuracy 451

3.4 CAN STANDARD METHODS BE
COERCED TO YIELD DOMINATING
ROC CURVES?

The second justification for using accuracy to compare
algorithms is subtly different from the first. Specifi-
cally, it allows for the possibility of coercing algorithms
to produce different behaviors under different scenar-
ios (such as in cost-sensitive learning). If this can be
done well, accuracy comparisons are justified by argu-
ing that for a given domain, the algorithm with higher
accuracy will also be the algorithm with lower cost for
all reasonable costs and class distributions.

Confirming or refuting this justification completely is
beyond the scope of this paper, because how best to co-
erce algorithms for different environmental conditions
is an open question. Even the straightforward method
of stratifying samples has not been evaluated satisfac-
torily. We propose that the ROC framework outlined
so far, with a minor modification, can be used to eval-
uate this question as well.

For algorithms that may produce different models un-
der different cost and class distributions, the ROC
methodology as stated above is not quite adequate.
We must be able to evaluate the performance of the
algorithm, not an individual model. However, one can
characterize an algorithm's performance for ROC anal-
ysis by producing a composite curve for a set of gen-
erated models. This can be done using pooling, or by
using the convex hull of the ROC curves produced by
the set of models, as described in detail by Provost
and Fawcett (1997; 1998).

We can now form a hypothesis for our second potential
justification: Our standard learning algorithms pro-
duce dominating ROC curves for our standard bench-
mark data sets. Confirming this hypothesis would be
an important step in justifying the common practice of
ignoring target costs and class distributions in classfier
comparisons on natural data. Unfortunately, we know
of no confirming evidence.

On the other hand, there is disconfirming evidence.
First, consider the results presented above. Naive
Bayes is robust with respect to changes in costs—it
will produce the same ROC curve regardless of the
target costs and class distribution. Furthermore, it
has been shown that decision trees are surprisingly ro-
bust if the probability estimates are generated with
the Laplace estimate (Bradford et al, 1998). If this
result holds generally, the results in the previous sec-
tion would disconfirm the present hypothesis as well.

Second, Bradley's (1997) results provide disconfirming
evidence. Specifically, he studied six real-world med-
ical data sets (four from the UCI repository and two
from other sources). Bradley plotted the ROC curves
of six classifier learning algorithms, consisting of two
neural nets, two decision trees and two statistical tech-
niques. Bradley uses composite ROC curves formed
by training models differently for different cost distri-
butions. We have previously criticized the design of
his study for the purpose of answering our question.
However, if the results can be replicated under the
current methodology, they would make a strong state-
ment. Not one of the six data sets had a dominating
classifier. This implies that for each domain there exist
disjoint sets of conditions for which different induction
algorithms are preferable.

4 RECOMMENDATIONS AND
LIMITATIONS

When designing comparative studies, researchers
should be clear about the conclusions they want to
be able to draw from the results. We have argued
that comparisons of algorithms based on accuracy are
unsatisfactory when there is no dominating classifier.
However, presenting the case against the use of accu-
racy is only one of our goals. We also want to show
how precise comparisons still can be made, even when
the target cost and class distributions are not known.

If there is no dominator, conclusions must be quali-
fied. No single number metric can be used to make
very strong conclusions without domain-specific infor-
mation. However, it is possible to look at ranges of
costs and class distributions for which each classifier
dominates. The problems of cost-sensitive classifica-
tion and learning with skewed class distributions can
be analyzed precisely.

Even without knowledge of target conditions, a pre-
cise, concise, robust specification of classifier perfor-
mance can be made. As described in detail by Provost
and Fawcett (1997), the slopes of the lines tangent to
the ROC convex hull determine the ranges of costs
and class distributions for which particular classifiers
minimize cost. For specific target conditions, the cor-
responding slope is the cost ratio times the reciprocal
of the class ratio. For our ten domains, the optimal
classifiers for different target conditions are given in
Table 1. For example, in the Road domain (see Fig-
ure 3 and Table 1), Naive Bayes is the best classifier
for any target conditions corresponding to a slope less
than 0.38, and Bagged-MC4 is best for slopes greater

452 Provost, Fawcett, and Kohavi

Table 1: Locally dominating classifiers for ten UCI domains
Domain Slope range Dominator Domain Slope range Dominator

Adult 0, 7.72]
7.72, 21.6]
21.6, oo)

NB
Bagged-MC4
NB

Pima 0, 0.06]
0.06, 0.11]
0.11, 0.30]
0.30, 0.82]
0.82, 1.13]
1.13, 4.79]
4.79, oo)

NB
Bagged-MC4
NB
Bagged-MC4
NB
Bagged-MC4
NB

Breast
cancer

Ö, 0.37]
0.37, 0.5]
0.5, 1.34]
1.34, 2.38]
2.38, oo)

NB
IB3
IB5
IB3
Bagged-MC4 Satimage 0, 0.05] NB

Bagged-MC4
IB5
IB3
IB5
IB3
Bagged-MC4

CRX 0, 0.03]
0.03, 0.06]
0.06, 2.06]
2.06, oo)

Bagged-MC4
NB
Bagged-MC4
NB

0.05, 0.22
0.22, 2.60
2.60, 3.11
3.11, 7.54

German 0, 0.21]
0.21, 0.47]
0.47, 3.08]
3.08, oo)

NB
Bagged-MC4
NB
IB5

7.54, 31.14]
31.14, oo)

Waveform
21

0, 0.25]
0.25, 4.51
4.51, 6.12
6.12, oo)

NB
Bagged-MC4
IB5
Bagged-MC4

Road
(Grass)

0, 0.38]
0.38, oo)

NB
Bagged-MC4

DNA [0, 1.06]
1.06, oo)

NB
Bagged-MC4

Vehicle 0, oo) Bagged-MC4

than 0.38. They perform equally well at 0.38. We
admit that this is not as elegant as a single-number
comparison, but we believe it to be much more useful,
both for research and in practice.

In summary, if a dominating classifier does not exist
and cost and class distribution information is unavail-
able, no strong statement about classifier superiority
can be made. However, one might be able to make
precise statements of superiority for specific regions of
ROC space. For example, if all you know is that few
false positive errors can be tolerated, you may be able
to find a particular algorithm that is superior at the
"far left" edge of ROC space.

We limited our investigation to two classes. This does
not affect our conclusions since our results are nega-
tive. However, since we are also recommending an an-
alytical framework, we note that extending our work
to multiple dimensions is an interesting open problem.

Finally, we are not completely satisfied with our
method of generating confidence intervals. The
present intervals are appropriate for the Neyman-
Pearson observer (Egan, 1975), which wants to max-
imize TP for a given FP. However, their appropriate-
ness is questionable for evaluating minimum expected
cost, for which a given set of costs contours ROC space
with lines of a particular slope. Although this is an
area of future work, it is not a fundamental drawback
to the methodology.

5 CONCLUSIONS

We have offered for debate the justification for the use
of accuracy estimation as the primary metric for com-
paring algorithms on our benchmark data sets. We
have elucidated what we believe to be the top can-
didates for such a justification, and have shown that
either they are not realistic because we cannot specify
cost and class distributions precisely, or they are not
supported by experimental evidence.

We draw two conclusions from this work. First, the
justifications for using accuracy to compare classifiers
are questionable at best. Second, we have described
what we believe to be the proper use of ROC analysis
as applied to comparative studies in machine learning
research. ROC analysis is not as simple as compar-
ing with a single-number metric. However, we believe
that the additional power it delivers is well worth the
effort. In certain situations, ROC analysis allows very
strong, general conclusions to be made—both positive
and negative. In situations where strong, general con-
clusions cannot be made, ROC analysis allows very
precise analysis to be conducted.

Although ROC analysis is not new, in machine learn-
ing research it has not been applied in a principled
manner, geared to the specific conclusions machine
learning researchers would like to draw. We hope that
this work makes significant progress toward that goal.

The Case Against Accuracy 453

Acknowledgements

We thank the many with whom we have discussed
the justifications for accuracy-based comparisons and
ROC analysis as applied to classifier learning. Rob
Holte provided very helpful comments on a draft of
this paper.

References

J. R. Beck and E. K. Schultz. (1986) The use of ROC
curves in test performance evaluation. Arch Pathol Lab
Med, 110:13-20.

J. Bradford, C. Kunz, R. Kohavi, C. Brunk, and
C. Brodley. (1998) Pruning decision trees with mis-
classification costs. In Proceedings of ECML-98, pages
131-136.

A. P. Bradley. (1997) The use of the area under the
ROC curve in the evaluation of machine learning al-
gorithms. Pattern Recognition, 30(7):1145-1159.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. (1984) Classification and Regression Trees.
Wadsworth International Group.

L. Breiman. (1996) Bagging predictors. Machine
Learning, 24:123-140.

J. Catlett. (1995) Tailoring rulesets to misclassifica-
tioin costs. In Proceedings of the 1995 Conference on
AI and Statistics, pages 88-94.

T. G. Dietterich. (1998) Approximate statistical tests
for comparing supervised classification learning algo-
rithms. Neural Computation. To appear.

P. Domingos and M. Pazzani. (1997) Beyond inde-
pendence: Conditions for the optimality of the simple
Bayesian classifier. Machine Learning, 29:103-130.

J. Dougherty, R. Kohavi, and M. Sahami. (1995) Su-
pervised and unsupervised discretization of continuous
features. In A. Prieditis and S. Russell, (eds.), Proceed-
ings of ICML-95, pages 194-202. Morgan Kaufmann.

J. P. Egan. (1975) Signal Detection Theory and ROC
Analysis. Series in Cognitition and Perception. Aca-
demic Press, New York.

T. Fawcett and F. Trovost. (1997) Adaptive fraud
detection. Data Mining and Knowledge Discovery,
1(3). Available: http://www.croftj.net/~fawcett/
DMKD-97.ps.gz.

R. Kohavi, D. Sommerfield, and J. Dougherty. (1997)
Data mining using MCC++: A machine learning li-
brary in C++. International Journal on Artificial
Intelligence Tools, 6(4):537-566. Available: http:
//www.sgi.com/Technology/mlc.

R. Kohavi. (1995) A study of cross-validation and
bootstrap for accuracy estimation and model selec-
tion. In C. S. Mellish, (ed.), Proceedings of IJCAI-
95, pages 1137-1143. Morgan Kaufmann. Available:
http://robotics.stanford.edu/~ronnyk.

C. Merz and P. Murphy. (1998) UCI repository of
machine learning databases. Available: http://www.
ics. uci. edu/~mleam/MLRepository .html.

F. Provost and T. Fawcett. (1997) Analysis and visu-
alization of classifier performance: Comparison under
imprecise class and cost distributions. In Proceedings
of KDD-97, pages 43-48. AAAI Press.

F. Provost and T. Fawcett. (1998) Robust clas-
sification systems for imprecise environments. In
Proceedings of AAAI-98. AAAI Press. To ap-
pear. Available: http://www. croft j .net/ "fawcett/
papers/aaai98-dist.ps.gz.

J. R. Quinlan. (1993) C4.5: Programs for Machine
Learning. Morgan Kaufmann, San Mateo, California.

L. Saitta and F. Neri. (1998) Learning in the "Real
World". Machine Learning, 30:133-163.

S. L. Salzberg. (1997) On comparing classifiers: Pit-
falls to avoid and a recommended approach. Data Min-
ing and Knowledge Discovery, 1:317-328.

C. Schaffer. (1994) A conservation law for generaliza-
tion performance. In ICML-94, pages 259-265. Mor-
gan Kaufmann.

J. A. Swets and R. M. Pickett. (1982) Evaluation of
Diagnostic Systems: Methods from Signal Detection
Theory. New York: Academic Press.

J. Swets. (1988) Measuring the accuracy of diagnostic
systems. Science, 240:1285-1293.

P. Turney. (1996) Cost sensitive learning bib-
liography. Available: http: //ai. iit. nr c. ca/
bibliographies/cost-sensitive.html.

D. H. Wolpert. (1994) The relationship between PAC,
the statistical physics framework, the Bayesian frame-
work, and the VC framework. In D. H. Wolpert, (ed.),
The Mathematics of Generalization. Addison Wesley.

454

Theory Refinement for Bayesian Networks with Hidden Variables

Sowmya Ramachandran,
Stottler Henke and Associates, Inc.,
1660, So. Amphlett Blvd. Ste. 350,

San Mateo, CA, 94402
sowmya@shai.com

Raymond J. Mooney
Department of Computer Sciences,

University of Texas at Austin,
Austin, TX, 78712

mooney@cs.utexas.edu

Abstract

While there has been a growing interest in the problem of
learning Bayesian networks from data, no technique exists
for learning or revising Bayesian networks with hidden vari-
ables (i.e. variables not represented in the data), that has
been shown to be efficient, effective, and scalable through
evaluation on real data. The few techniques that exist for
revising such networks perform a blind search through a
large space of revisions, and are therefore computationally
expensive. This paper presents BANNER, a technique for
using data to revise a given Bayesian network with noisy-or
and noisy-and nodes, to improve its classification accuracy.
The initial network can be derived directly from a logical
theory expressed as propositional rules. BANNER can revise
networks with hidden variables, and add hidden variables
when necessary. Unlike previous approaches, BANNER em-
ploys mechanisms similar to logical theory refinement tech-
niques for using the data to focus the search for effective
modifications. Experiments on real-world problems in the
domain of molecular biology demonstrate that BANNER can
effectively revise fairly large networks to significantly im-
prove their accuracies.

1 Introduction

Bayesian networks have become the most popular ap-
proach to uncertain reasoning due to their precise
probabilistic semantics as well their success in practi-
cal applications. In an attempt to automate their con-
struction, induction of Bayes nets has become a topic
of increasing interest. A number of learning methods
have been developed for the case where all relevant
variables are observable (Heckerman, 1995). Param-
eter learning methods for networks with hidden vari-
ables (variables not represented in the data) have also
been developed (Russell, Binder, Koller, & Kanazawa,
1995; Thiesson, 1995). However, learning both the
structure and the parameters of a Bayesian network
with hidden variables remains a problem. Many of
the existing methods can be adapted to discover hid-
den variables, but only by conducting extensive search

that is impractical for most problems. A recent devel-
opment is MS-EM (Friedman, 1997), which learns the
structure of a network with hidden variables; however,
it requires specifying the number of hidden variables
and has not been tested on real data.

As demonstrated by theory refinement research on
rule-bases, using empirical data to revise an initial im-
perfect knowledge base can significantly improve per-
formance over induction from scratch (Opitz & Shav-
lik, 1993; Ourston & Mooney, 1994; Towell & Shav-
lik, 1994; Mahoney & Mooney, 1994; Brunk & Paz-
zani, 1995). A few techniques have been developed
for revising Bayesian networks (Lam & Bacchus, 1994;
Buntine, 1991); however, they do not handle hidden
variables. Many existing Bayes-net induction meth-
ods could be adapted to revision, but only by examin-
ing all possible individual modifications. By contrast,
rule-revision systems use classification errors on the
training data to propose specific modifications rather
than blindly examining all possible options. The result
is an efficient, directed revision process.

We have developed a technique, BANNER, for refin-
ing Bayesian networks with hidden variables that, like
rule-refinement algorithms, uses the data to focus the
search for effective modifications. BANNER'S goal is to
improve the accuracy of an initial network for a spe-
cific inference task by modifying both its parameters
and structure, including adding new hidden variables.
Although Bayesian networks can simultaneously sup-
port many types of inference, training directly for
the desired classification task results in better perfor-
mance (Friedman & Goldszmidt, 1996). Since gen-
eral Bayesian networks are impractical for many large
problems because the number of parameters grows ex-
ponentially in the fan-in of a node, we focus on net-
works with noisy-or and noisy-and nodes, specialized
models that require only a linear number of param-

Theory Refinement of Bayesian Networks with Hidden Variables 455

eters (Pearl, 1988; Pradhan, Provan, Middleton, &
Henrion, 1994). Since these models are close to logical
functions, they also allow a rule-base to be used as an
initial theory by mapping the rules to a network in the
obvious way. Existing results show that the accuracy
of rule bases can be dramatically improved by mapping
them to a representation that provides numerical sum-
ming of evidence (Towell & Shavlik, 1994; Mahoney
& Mooney, 1994). However, the neural networks or
certainty-factor rules employed in these results do not
provide an interpretable knowledge base with parame-
ters that have a precise semantics. An important goal
of theory refinement is to provide interpretable knowl-
edge, and we believe Bayes nets are preferable in this
regard.

Experimental evaluation of Bayes net learning has
largely been conducted on artificial data and not ade-
quately compared to other methods on real problems
(exceptions include Provan and Singh (1994), Fried-
man and Goldszmidt (1996)), and we know of no
Bayes-net results on revising real knowledge bases to
fit actual data. We have evaluated BANNER on several
realistic problems used to test other theory refinement
systems, obtaining performance competitive with the
current best results while maintaining the advantages
of a Bayes-net representation. The remainder of the
paper presents an overview of BANNER'S learning al-
gorithm and the promising results of this evaluation.

2 Refinement Algorithm

As in general in theory refinement, the goal is to min-
imally modify the initial theory to make it consistent
with the available training data. Taking the standard
approach, BANNER employs one procedure to revise
the parameters of a network and another to revise the
structure. First, the parameters are revised to im-
prove classification accuracy. If the resulting network
does not adequately fit the training data, the struc-
ture of the network is modified and the parameters
are retrained. This process repeats until it is deter-
mined that additional training results in over-fitting.1

In this paper, we focus on structure revision. Our cur-
rent implementation includes two parameter revision
algorithms, BANNER-PR (Ramachandran & Mooney,
1996) and C-APN (based on (Russell et al., 1995)),
which use different forms of gradient descent. Ra-
machandran (1998) presents further details.

1The parameter revision component uses 10-fold inter-
nal cross-validation on the training set to determine when
to stop (Mitchell, 1997).

Structure revision exploits the idea that networks with
noisy-or/and nodes are similar to logical theories and
therefore techniques used to revise rule bases are use-
ful. These methods attribute classification errors on
particular examples to specific portions of the theory
and directly construct revisions to handle the mis-
classified cases. Most logical refinement systems use
abduction to diagnose faults (Mooney, 1997). Since
Bayesian networks place no restrictions on the direc-
tion of inference, abduction can be performed using the
standard inference algorithms. In addition, leak nodes
(Pradhan et al., 1994) provide a way to model the in-
completeness and incorrectness of a Bayesian network
with noisy-or/and nodes. A leak node is a source in
the graph added as an extra input to a node in order
to represent a possible unknown cause. BANNER diag-
noses faults in a network by temporarily instrumenting
each node with leak nodes that indicate potential re-
vision points. It then uses training data to select a
small set of revision points and construct appropriate
refinements.

2.1 Selecting Revision Points

The procedure for instrumenting a network with leak
nodes is best illustrated with an example, such as that
shown in Figure 1 (A-G are the original nodes). Each
noisy-or/and has an added parent called a node-leak
node. In order to avoid significantly altering the se-
mantics of the net, the prior of the leak node and its
link parameter are initially set very low. However,
when the algorithm detects misclassifications, it re-
estimates the prior probabilities by training a copy of
the network augmented with leak node-leak nodes us-
ing the parameter revision module. All of the orig-
inal noisy-or (noisy-and) nodes also have their par-
ents routed through an intervening noisy-and (noisy-
or) node. The intervening nodes themselves have at-
tached leak nodes called link-leak nodes. To avoid al-
tering the semantics, the weights on the links are set
to simulate logical functions and the prior probability
of the link-leak node is set to the weight on the origi-
nal link. The leak nodes effectively represent possible
faults in the theory, with node-leak nodes representing
the need for new inputs to a node, and link-leak nodes
representing the need for new intervening hidden vari-
ables between two nodes.

Once the network is properly instrumented, BANNER
performs abduction on each misclassified example to
generate a set of repairs that could correct the ex-
ample. This involves instantiating both the evidence
and the target variables in the augmented network to

456 Ramachandran and Mooncy

vs.
F ! nn't\y-and

< N
fa-leak) w>ity-<jiirf£<j_g)

! G J nnity-nr

M intervening node

^^ node-leak node

iink-leak node

Figure 1: Augmenting a network with leak nodes

their observed values and inferring the beliefs asso-
ciated with the leak nodes using standard Bayesian
inference. For each misclassified example, it collects a
set of leak nodes, whose beliefs deviate from their prior
probability by more than 10%. Such leak nodes are
said to cover the example, and indicate potential revi-
sion points in the theory. When the belief in the truth
of a leak node decreases from its prior, it is called an
inhibitor for that example; if it increases, it is called
an enabler. Each leak node covering an example is
associated with the degree to which its belief devi-
ated from its prior, indicating the extent to which it is
blamed for the misclassification. Once leak nodes are
collected for all misclassified examples, BANNER uses
a greedy set covering algorithm (where the contribu-
tion of each leak node is weighted by its degree) to
generate a small set of leak nodes that cover all of the
misclassified examples. While BANNER uses only mis-
classified examples to generate a set of revision points,
it performs abduction on all the examples, generating
leak nodes that are enablers or inhibitors for each ex-
ample. This information is used during the generation
of appropriate revisions.

2.2 Revision Operators

For each revision point in the covering set, BANNER

implements one of the following modifications to help
correct the misclassified examples covered by the cor-
responding leak node: 1) Add a new parent, 2) Add a
new hidden node, 3) Delete a link. The first operator

is invoked when a revision point is a node-leak node,
in which case it adds a new parent to the appropriate
node in the original network. In the example, if G-
leak is a selected revision point, then a new parent is
added to G. The heuristic for selecting the new parent
is discussed below.

If a revision point is a link-leak node, BANNER modi-
fies the corresponding link. One option is to introduce
a new hidden variable with an additional parent and
the same type as the corresponding intervening node.
In the example, if E-A-leak is the revision point, a new
noisy-or node is added between E and A (see Figure 2).
The rationale for such a revision is that the previous
step of abduction with the augmented network indi-
cated that such a structure would better explain the
misclassified data.

However, in some cases, the problematic link is simply
deleted. For example, if E-A-leak is an enabler for sev-
eral examples but never an inhibitor, the link may be
deleted to correct the misclassified examples without
affecting other examples since the link is effectively an
always-true input to a noisy-and which therefore has
no effect. A dual argument can be made for noisy-or
nodes. A link is also deleted if, when a hidden node
is added, the chosen parent has the same effect as link
deletion. For example, if the negation of A is chosen
as the new parent of E-A, the link between E and A
is deleted.

New parents are selected based on the examples for

Theory Refinement of Bayesian Networks with Hidden Variables 457

Given: An initial network, and a set of training data. Output: A revised network.
1. Initialize the parameters of the network either randomly or based on some prior knowledge.
2. Repeat steps a-e until there is no improvement in training accuracy over a pre-specified number of

consecutive cycles.
(a) set train-net = initial network.

set leak-net = train-net augmented with node-leak nodes.
Train network train-net to revise parameters.
If the previous step indicates overfitting, or all examples are correctly classified, return tram-net.
else

i. Train network leak-net to estimate prior probabilities of the node-leak nodes.
ii. Set augmented-net = train-net augmented with node-leak and link-leak nodes,

iii. Copy priors of leak nodes from leak-net to augmented-net.
iv. For each example,

A. Instantiate input and target nodes of augmented-net with values from the example.
B. Infer beliefs of all the nodes in augmented-net.
C. Collect all enabled and inhibited node-leak and link-leak nodes,

v. Set revision-points = small set of node-leak and link-leak nodes that cover all the misclassified
examples (computed using greedy set covering)

vi. For each revision point in revision-points, revise train-net at the revision point using one of the
revision operators.

Figure 3: Outline of the Refinement Algorithm

noisy-or

Figure 2: Revision operator: Adding a bidden node

which the chosen leak-node is an enabler or inhibitor.
The new parent needs to be true for the examples
it must enable and false for the ones it must in-
hibit. BANNER uses a standard information gain met-
ric (Quinlan, 1990) to choose a parent that best dis-
criminates between these two sets of examples. This
metric, commonly used in inductive learning algo-
rithms (Mahoney & Mooney, 1994; Quinlan, 1990,
1986), estimates the information gained about a target
function value from knowing the value of an attribute.
Two versions of this metric that are commonly used.
The version used by "Quinlan (1990) to learn preposi-
tional Horn-clause theories, is designed to pick a fea-
ture that best discriminates between sets of examples,
with the additional constraint that the feature have

specific values (e.g. true or false) for each set of exam-
ples. This version is most appropriate for our theory
refinement algorithm because we need to select a new
parent that discriminates between the examples that
need an enabling influence, and the examples that need
an inhibitory influence, with the additional constraint
that the new parent be true for the former set of ex-
amples and false for the latter set of examples.

Suppose that we are given a set of examples, S, of
size N, of which N+ a re positive examples of a given
class C, and N~ are negative examples of C. Also as-
sume that all the features in the examples are boolean-
valued. For any given feature F, let Nf be the number
of examples for which F is true; of these let, N~£ be
the number of examples which are positive examples
of C, and JV7 be the number of examples which are
negative examples of C. Then, the reduction due to
F in the total number of bits required to encode the
positive members of C is given by

Gain(C, F) = N+* (I(S) - I{Nf)),

where I(S) = -log2 (N^+N+) *s tne numDer of bits
required to encode a positive member of class C, and

I(Nf) = - log2 1 N-1N+) is tne number of bits re-

quired to encode the positive members of class C, given
that F is true. The higher the value of this func-
tion, the greater the correlation between the examples
for which F is true and the positive examples of G.
Note that this computation can be easily generalized
to hidden variables and variables with missing values.

458 Ramachandran and Mooney

Information gain for such nodes can be obtained by
weighting the frequency measures Nt and NT by the
degree of belief associated with these nodes for each
example.

So far, we have described this metric with a view to
selecting an enabling parent. The same metric is used
to select an inhibitory parent by defining Nf to be the
number of examples for which F is false. Every other
term in the computation of the metric is defined as
before. In general, all nodes in the network and their
negations are potential candidates; however, to avoid
redundancy and the introduction of loops, the existing
parents and descendents of the recipient of the new
parent are excluded. Figure 3 shows a summary of the
overall algorithm.

3 Experimental Evaluation

We conducted experiments on realistic problems and
data to demonstrate that BANNER is effective at re-
vising networks to improve their classification accu-
racy. We also compared its performance to naive Bayes
which learns a simple Bayes net that includes all fea-
tures and assumes conditional independence,2 with
KBANN (Towell & Shavlik, 1994) a neural-network
refinement method, RAPTURE (Mahoney & Mooney,
1994) a certainty-factor refinement method, and with
two standard inductive algorithms: C4.5 (Quinlan,
1993) for decision trees and BACKPROP (McClelland
& Rumelhart, 1988) for neural networks. In order
to study the contribution of BANNER'S components,
we also performed ablation studies, where we disabled
parts of the algorithm and compared performance to
the full system. BANNER-IND, is an inductive version
which does not utilize an initial theory but starts with
a default network with input and output variables but
no links, and BANNER-PR (parameter revision), which
uses an initial theory but does not perform structure
revision. Finally, we specifically evaluated structure
revision by attempting to fix an artificially corrupted
initial theory.

We present results on two molecular biology problems
employed in previous refinement experiments: recog-
nizing promoters and splice-junctions in DNA strands
(Towell & Shavlik, 1994). These problems include im-
perfect, expert-provided theories represented as propo-
sitional rules. These theories contain fan-ins of up
to 17 inputs, which would require more than 130,000

2Our version includes smoothing with Laplace estimates
which significantly improves performance (Kohavi, Becker,
& Sommerfield, 1997)

parameters for general nodes, demonstrating the im-
portance of using noisy-or/ands. Here we present the
splice-junction results and results on a corrupted ver-
sion of the promoter theory. BANNER also performs
well on revising the original promoter theory, but since
its structure is already adequate, this problem does
not test structure revision. The system also performed
well on revising a knowledge base on C++ program-
ming to model students for an intelligent tutoring sys-
tem (Baffes k Mooney, 1996). Ramachandran (1998)
presents complete results.

In order to compare to previous results, we generated
learning curves in which the data was randomly split
into independent training and test sets, systems were
trained on the training data, and then tested on classi-
fying the test examples. Results were averaged over 20
random training/test splits. This was done for training
sets with increasing number of examples. A two-tailed
paired t-test is used to evaluate the statistical signif-
icance of differences in performance given a specific
number of training examples.

3.1 DNA Splice-Junction

This problem addresses the task of detecting splice-
junctions, the boundaries between the utilized and un-
utilized sequences in DNA. The data set consists of
3190 examples consisting of strings of 60 nucleotides
with the values A, C, G, or T, and assigned to three
different categories. The initial theory consists of 47
prepositional rules.

Figures 4 shows the primary results and Figure 5 shows
the ablation results. The experiment provides evi-
dence that BANNER is successful at improving the ac-
curacy of the initial theory significantly with just a
small number of examples. The accuracy of the initial
theory has risen from 55%, before revision, to 73.6%
when trained on just 20 examples, and to about 91.2%
when trained on 400 examples. The performance of
the three refinement algorithms RAPTURE, BANNER,

and KBANN are similar, although RAPTURE performs
slightly better. The differences between RAPTURE and
BANNER are small but statistically significant for all
points on the learning curve at the 0.01 level. The in-
ductive algorithms all perform significantly worse for
smaller training sets, although NAIVE BAYES catches
up with RAPTURE at 200 examples. The differences
between the BANNER and NAIVE BAYES are signifi-
cant at at least the 0.01 level for 20, 50, and 100 exam-
ples, where the former performs considerably better,
at the 0.001 level for 400 examples where it performs
slightly worse.

Theory Refinement of Bayesian Networks with Hidden Variables 459

100

0 50 100 150 200 250 300 350 400

Number of training examples

BANNER
BANNER-PR
BANNER-IND

50 100 150 200 250 300
Number of training examples

350

Figure 4: Splice-Junction: Performance of Various
Systems

Figure 5 demonstrates that structure revision con-
tributes significantly to BANNER'S performance on
smaller training sets. Structure revision has con-
tributed to an improvement in accuracy of about 13%
over BANNER-PR for 20 examples (significant at 0.001
level), and an improvement of about 2.8% for 50 ex-
amples (significant at the 0.05 level). The revisions
that contributed the most to this improvement were
deletions of the links between nodes IE and PR, and
nodes El and P5G. The differences between BANNER
and BANNER-PR are not statistically significant at the
rest of the points on the learning curve. As expected,
starting out with an initial theory gives BANNER a
significant edge over BANNER-IND. The difference in
performance between these systems is statistically sig-
nificant for all points on the learning curves, except at
100 example, at levels of at least 0.02.

3.2 Evaluation of Structure Revision on
DNA Promoter

In order to more directly study structure revision, an
existing theory with adequate structure was corrupted
and BANNER'S ability to recover the lost structure was
examined. The DNA promoter recognition problem
involves identifying DNA sequences that indicate the
start of a new gene. Figure 6 shows a portion of the
Bayesian network derived from the initial theory for

Figure 5: Splice-Junction: Banner Ablations

this problem, The data set contains 468 examples, con-
sisting of strings of 57 nucleotides classified as pro-
moters or non-promoters. Although in refinement ex-
periments theories are sometimes corrupted randomly
(Pazzani & Brunk, 1993), we found that the redun-
dancy in this theory makes it very robust to small
corruptions. Therefore, we generated a corrupt the-
ory by deleting a portion of the theory we knew to
be critical, namely the intermediate concept minus.35
(deleted portion shown in bold in Figure 6).

Figure 7 shows BANNER-PR and BANNER'S perfor-
mance with this damaged theory compared to BAN-

Figure 6: DNA Promoter Recognition - Initial
Bayesian Network

460 Ramachandran and Mooncy

100

60

50

BANNER Original
BANNER

BANNER-PR

50 100 150 200 250 300 350 400

Number of training examples

Figure 7: Effect of structure revision on corrupted pro-
moter theory

NER's performance with the original theory. The graph
shows that removing minus -35 degrades the theory to
the extent that, for most points in the learning curve,
parameter revision alone cannot recover the accuracy
attained with the original theory. The results shows
that, for larger training sets, structure revision is ef-
fective at recovering a fair bit of the accuracy lost
due to the corruption, although the difference between
BANNER-PR and BANNER is only significant (at the
0.05 level) at 400 examples.

The fact that BANNER and BANNER-PR result in com-
parable accuracies for smaller training sets can be ex-
plained by the fact that none of the trials with 10 and
20 training examples, and less than half the trials with
50 examples required structure revision. Notice that
the corrupted theory results in better networks than
the original when trained on 10 examples. With 20
and 50 examples, the corrupted theory is still usually
able to fit the training examples without structure re-
vision, but results in poorer generalization. This leads
to the hypothesis that, for smaller training sets, there
are several theories that are as good as the original the-
ory in fitting the training set, but are worse in terms
of generalization, which would partially explain the
observation that structure revision leads to improved
training accuracies without any improvements in gen-
eralization, when trained on 50 and 100 examples.

Figure 8: Example of a revised promoter network

Figure 8 illustrates a revised network. The nodes and
links added by BANNER are indicated by shaded el-
lipses and bolder arrows and the numbers beside the
links represent parameter values. Note that some
nodes have been replicated in the figure for clarity
only. BANNER added several features to the network:
P-35=T, P-36=T, P-34=G, P-33=A and P-3=A and
added new links from features already present in the
network: P-ll-A, and P-10=A. In addition, it has
added three hidden variables, 1-1 through 1-3. A com-
parison with the original theory indicates that the
added unit 1-1 roughly corresponds to the deleted
minus-35 concept. However, in the original the-
ory, mtnus-35 combines conjunctively with minus A0,
whereas, here it combines disjunctively. That could
explain why BANNER also added some of these fea-
tures to the sub-network above minus A0A. However,
realize that the initial theory is not known to have
the correct structure, it is simply one proposed in the
biological literature that is also consistent with the
available data. Also, note that the modifications to
the network are not confined to any particular level
(as they are in Mahoney and Mooney (1994)).

In summary, our experiments demonstrate that BAN-

NER is effective in revising an Bayesian networks with
hidden variables to significantly improve their accu-
racy. They also demonstrate that the structure revi-
sion algorithm contributes significantly to the overall
algorithm and makes semantically interpretable revi-
sions. The effectiveness of the structure revision al-
gorithm is also illustrated by the fact that BANNER-

IND learns highly accurate classifiers. Experiments
have also been performed that show that BANNER-

IND learns more accurate classifiers that Naive Bayes
on the problem of classifying chess end-games (Quin-
lan, 1983). Ramachandran (1998) provides details on

Theory Refinement of Bayesian Networks with Hidden Variables 461

these results.

4 Related Work

While recent techniques have begun to address the
problem of learning the structure of a Bayesian net-
work from incomplete data (Ramoni & Sebastiani,
1997; Friedman, 1997), only a few address the prob-
lem of learning or revising networks with hidden vari-
ables. MS-EM (Friedman, 1997) extends EM to learn
the structure as well as the parameters of a network
from incomplete data. While it works when the ini-
tial theory contains hidden variables, it cannot con-
struct new hidden variables. Kwoh and Gillies (1996)
present a procedure for adding hidden variables by
first learning a Bayesian network from data without
hidden variables, and then using statistical analysis to
find correlations between variables with the same cause
and clustering such variables with a new hidden node.
These techniques have been demonstrated on learning
small networks, but have not been evaluated on larger,
real-world problems. Moreover, it has no mechanism
for selecting a candidate set of nodes that need to be
revised, instead relying on blind search through the
space of all possible revisions.

5 Future Research

Experiments on other realistic problems, particularly
ones in which the initial theory is specified as a
Bayesian network (rather than translated from rules),
is one area for future research. The current results for
BANNER involve problems of causal inference, tests on
tasks involving abductive inference are also needed.
More detailed comparisons of different Bayes-net in-
duction and revision algorithms and competing meth-
ods on realistic problems measuring both training time
and predictive accuracy are clearly needed. The cur-
rent literature on Bayes-net learning is particularly
lacking in this regard relative to other areas of ma-
chine learning (Friedman, Goldszmidt, Heckerman, &
Russell, 1997).

Extending BANNER'S general approach to handle
nodes other than noisy-or/and ones is an important
area for future study. Another is theory refinement
for unsupervised learning where there is not a specific
targeted inference task. The algorithm can also be ex-
tended to use Bayesian metrics to select new nodes to
be added to the parent set of a node. A number of
interesting ideas for learning and revising Bayes nets
have been proposed, but integrating them into an ef-

ficient and effective system with clearly demonstrated
advantages over other machine-learning methods on
realistic problems is still a challenge.

6 Conclusion

We have introduced a novel technique for revising
Bayesian networks that can handle existing hidden
variables as well as create new ones. We have demon-
strated, through experiments on realistic problems,
that this approach can efficiently revise large networks
and produce highly accurate classifiers. The results
are also competitive with those of the best theory re-
finement systems while maintaining the precise proba-
bilistic semantics of Bayesian networks that we believe
make the resulting theories significantly more com-
prehensible. Whereas existing techniques for revising
Bayesian networks must search through the space of
all possible revisions, we have presented novel mech-
anisms for using the information in the data to guide
the search for useful revisions, thus focusing the search
and making it tractable for larger, more realistic prob-
lems.

7 Acknowledgements

We are grateful to Bobby Blumofe, Lorenzo Alvisi,
Mike Dahlin, Calvin Lin and other folks at the UT
LESS lab for letting us use their computing facilities
for this research. The multiprocessor computing facil-
ities in this lab were made available through a gener-
ous equipment donation from Sun Microsystems. This
research was partially supported by the National Sci-
ence Foundation through grants IRI-9310819 and IRI-
9704943.

References

Baffes, P. T., & Mooney, R. J. (1996). A novel application
of theory refinement to student modeling. In Pro-
ceedings of the Thirteenth National Conference on
Artificial Intelligence, pp. 403-408 Portland, OR.

Brunk, C, & Pazzani, M. (1995). A lexically based se-
mantic bias for theory revision. In Proceedings of the
Twelfth International Conference on Machine Learn-
ing, pp. 81-89 San Francisco, CA. Morgan Kaufman.

Buntine, W. (1991). Theory refinement on Bayesian net-
works. In Proceedings of the Conference on Uncer-
tainty in Artificial Intelligence, pp. 52-60.

Friedman, N., Goldszmidt, M., Heckerman, D., & Russell,
S. (1997). Challenge: What is the impact of Bayesian
networks on learning?., pp. 10-15 Nagoya, Japan.

462 Ramachandran and Mooney

Friedman, N. (1997). Learning belief networks in the pres-
ence of missing values and hidden variables. In Pro-
ceedings of the Fourteenth International Conference
on Machine Learning, pp. 125-133 Nashville, Ten-
nessee. Morgan Kaufmann Publishers.

Friedman, N., & Goldszmidt, M. (1996). Building classi-
fiers using Bayesian networks. In Proceedings of the
Thirteenth National Conference on Artificial Intelli-
gence, pp. 1277-1284.

Heckerman, D. (1995). A tutorial on learning Bayesian
networks. Tech. rep. MSR-TR-95-06, Microsoft Re-
search, Redmond, WA.

Kohavi, R., Becker, B., & Sommerfield, D. (1997). Improv-
ing simple Bayes. In Proceedings of the European
Conference on Machine Learning.

Kwoh, C.-K., & Gillies, D. (1996). Using hidden nodes in
Bayesian networks. Artificial Intelligence, 88(1-2),
1-38.

Lam, W., & Bacchus, F. (1994). Using new data to re-
fine a Bayesian network. In Proceedings of the Con-
ference on Uncertainty in Artificial Intelligence, pp.
383-390.

Mahoney, J. J., & Mooney, R. J. (1994). Comparing meth-
ods for refining certainty-factor rule bases. In Pro-
ceedings of the Eleventh International Conference on
Machine Learning, pp. 173-180 New Brunswick, NJ.

McClelland, J. L., & Rumelhart, D. E. (1988). Explorations
in Parallel Distributed Processing: A Handbook of
Models, Programs, and Exercises. The MIT Press,
Cambridge, MA.

Mitchell, T. (1997). Machine Learning. McGraw-Hill, New
York, NY.

Mooney, R. J. (1997). Integrating abduction and induction
in machine learning. In Working Notes of the IJCAI-
97 Workshop on Abduction and Induction in AI, pp.
37-42 Nagoya, Japan.

Opitz, D. W., & Shavlik, J. W. (1993). Heuristically ex-
panding knowledge-based neural networks. In Pro-
ceedings of the Thirteenth International Joint Con-
ference on Artificial Intelligence, pp. 512-517 Cham-
berry, France.

Ourston, D., & Mooney, R. J. (1994). Theory refinement
combining analytical and empirical methods. Artifi-
cial Intelligence, 66, 311-344.

Pazzani, M., & Brunk, C. (1993). Finding accurate fron-
tiers: A knowledge-intensive approach to relational
learning. In Proceedings of the Eleventh National
Conference on Artificial Intelligence, pp. 328-334
Washington, D.C.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann, Inc., San Mateo,CA.

Pradhan, M., Provan, G., Middleton, B., & Henrion, M.
(1994). Knowledge engineering for large belief net-
works. In Proceedings of the Conference on Uncer-
tainty in Artificial Intelligence, pp. 484-490 Seattle,
WA.

Provan, G. M., & Singh, M. (1994). Learning Bayesian
networks using feature selection. In Proceedings of
the Workshop on Artificial Intelligence and Statis-
tics, pp. 291-300 New York. Springer-Verlag.

Quinlan, J. R. (1983). Learning efficient classification pro-
cedures and their application to chess end games. In
Michalski, R. S., Carbonell, J. G., & Mitchell, T. M.
(Eds.), Machine Learning: An Artificial Intelligence
Approach. Morgan Kaufmann, Los Altos, CA.

Quinlan, J. R. (1986). Induction of decision trees. Machine
Learning, 1(1), 81-106.

Quinlan, J. R. (1993). C4-5: Programs for Machine Learn-
ing. Morgan Kaufmann, San Mateo,CA.

Quinlan, J. (1990). Learning logical definitions from rela-
tions. Machine Learning, 5(3), 239-266.

Ramachandran, S. (1998). Theory Refinement of Bayesian
Networks with Hidden Variables. Ph.D. thesis, Uni-
versity of Texas, Austin, TX. Also appears as Ar-
tificial Intelligence Laboratory Technical Report AI
98-265 (see http://www.cs.utexas.edu/users/ai-lab).

Ramachandran, S., & Mooney, R. J. (1996). Revising
Bayesian networks parameters using backpropaga-
tion. In International Conference on Neural Net-
works: Plenary, Panel and Special Sessions, pp. 82-
87 Washington D.C, USA.

Ramoni, M., & Sebastiani, P. (1997). Learning Bayesian
networks from incomplete databases. In Geiger, D.,
& Shenoy, P. (Eds.), Proceedings of the Thirteenth
Conference on Uncertainty in Artificial Intelligence.
Morgan Kaufmann Publishers, Inc.

Russell, S., Binder, J., Koller, D., & Kanazawa, K. (1995).
Local learning in probabilistic networks with hidden
variables. In Proceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence, pp.
1146-1152 Montreal, Canada.

Thiesson, B. (1995). Accelerated quantification of Bayesian
networks with incomplete data. In Fayyad, U. M., &
Uthurusamy, R. (Eds.), Proceedings of the First In-
ternational Conference on Knowledge Discovery and
Data Mining, pp. 306-11. A A AI Press.

Towell, G. G., & Shavlik, J. W. (1994). Knowledge-based
artificial neural networks. Artificial Intelligence, 70,
119-165.

463

Learning to Drive a Bicycle using Reinforcement Learning and Shaping

Jette Randl0v
CATS, Niels Bohr Institute,
University of Copenhagen,

Blegdamsvej 17,
DK-2100 Copenhagen 0, Denmark

randlov@nbi.dk

Preben Alstr0m,
alstrom@cats.nbi.dk

Abstract

We present and solve a real-world problem of
learning to drive a bicycle. We solve the prob-
lem by online reinforcement learning using the
Sarsa(A)-algorifhm. Then we solve the compos-
ite problem of learning to balance a bicycle and
then drive to a goal. In our approach the rein-
forcement function is independent of the task the
agent tries to learn to solve.

1 Introduction

Here we consider the problem of learning to balance on a
bicycle. Having done this we want to drive the bicycle to
a goal. The second problem is not as straightforward as it
may seem. The learning agent has to solve two problems
at the same time: Balancing on the bicycle and driving to
a specific place. Recently, ideas from behavioural psychol-
ogy have been adapted by reinforcement learning to solve
this type of problem. We will return to this in section 3.

In reinforcement learning an agent interacts with an envi-
ronment or a system. At each time step the agent receives
information on the state of the system and chooses an ac-
tion to perform. Once in a while, the agent receives a re-
inforcement signal r. Receiving a signal could be a rare
event or it could happen at every time step. No evalua-
tive feedback from the system other than the failure sig-
nal is available. The goal of the agent is to learn a map-
ping from states to actions that maximizes the agent's dis-
counted reward over time [Bertsekas and Tsitsiklis, 1996,
Sutton and Barto, 1998]. The discounted reward is the sum
SSo Jlrt+i> where 7"is the discount parameter.

A lot of techniques have been developed to find near opti-
mal mappings on a trial-and-error basis. In this paper we
use the Sarsa(A)-algorithm, developed by Rummery and

1. Initialize all eligibility traces eo = 0.
2. Set t - 0.
3. Choose action at.
4. If t> 0 then learn

wt = wt-i + a [rt-i + jQt - Qt-i] et-i-
5. Calculate VwQt with respect to the chosen action.
6. Update accumulating traces as

e* = 7-W-i + Vw<?t.
Update replacing traces as

VwQt ifV„,Qt^0,
7Aet_i(s) otherwise.

7. Perform action, receive reinforcement-signal.
8. If the system has entered a terminal state, then

t <- t + 1 and jump to point 3.
9. Otherwise perform the learning (point 4) with

Qt=0-

et(s)

11/ L\SlJ

-{

Figure 1: The Sarsa(A)-algorithm.

Niranjan [Rummery and Niranjan, 1994, Rummery, 1995,
Singh and Sutton, 1996, Sutton and Barto, 1998], because
empirical studies seem to suggest that this algo-
rithm is the best so far [Rummery and Niranjan, 1994,
Rummery, 1995, Sutton and Barto, 1998]. Figure 1 shows
the Sarsa(A)-algorithm. We have modified the algorithm
slightly by cutting of eligibility traces that fall below 10-7

in order to save calculation time. For replacing traces we
allowed the trace for each state-action pair to continue un-
til that pair occurred again, contrary to Singh and Sutton
[Singh and Sutton, 1996].

2 Learning to balance on a bicycle

Our first task is to learn to balance. At each time step the
agent receives information about the state of the bicycle,

464 Randlav and Alstmn

the angle and angular velocity of the handle bars, the an-
gle, angular velocity and acceleration of the angle from the
bicycle to vertical. For details of the bicycle system we
refer to appendix A.

The agent chooses two basic actions. What torque should
be applied to the handle bars, T G {-2N,0N,+2N},
and how much the centre of mass should be displaced
from the bicycle's plan, d G {-2cm, Ocm,+2cm} —a
total of 9 possible actions. Noise is laid on the choice
of displacement, to simulate an imperfect balance, d =
^agents choice+sp. where p is a random number within [-1; 1]
and s is the noise level measured in centimeters. We use
s = 2 cm.

Our agent consists of 3456 input neurons and 9 output neu-
rons, with full connectivity and no hidden layers. The
learning rate is a = 0.5. The continuous state data is
discretised by non-overlapping intervals in the state-space,
such that there is exactly one active neuron in the input
layer. This neuron represent state information for all the
different state variables. The discrete intervals (boxes) are
based on the following quantization thresholds:

The angle the handle bars are displaced from normal, 6: 0,
±0.2, ±1, ±f radians.

The angular velocity of the angle, 6: 0, ±2, ±oo radi-
ans/second.

The angle from vertical to bicycle, w. 0, ± 0.06, ± 0.15,
±j^7T radians.

The angular velocity, w: 0, ± 0.25, ± 0.5, ±oo radi-
ans/second.

The angular acceleration, w: 0, ±2, ±co radians/second2.

1000 2000 3000 4000 5000 6000 7000 8000
Trial

Figure 2: Number of seconds the agent can balance on the
bicycle, as a function of the number of trials. Average of 40
agents. (After the agent has learned the task, 1000 seconds
are used in calculation of the average.)

Figure 2 shows the number of seconds the agent can bal-
ance on the bicycle as a function of the number of trials.
When the agent can balance for 1000 seconds, the task is
considered learned. Here A = 0.95 and 7 = 0.99. Sev-
eral CMAC-systcms (also know as generalized grid cod-
ing) [Watkins, 1989, Santamarfa et al., 1996, Sutton, 1996,
Sutton and Barto, 1998], were also tried, but none of them
gave the agent a learning time below 5000 trials.

Figures 3 and 4 show the move-
ments of the bicycle at the be-
ginning of a learning process
seen from above. Each time the
bicycle falls over it is restarted
at the starting point. At each
time step a line is drawn be-
tween the points where the
tyres touch the ground.

Both accumulating and replac-
ing eligibility traces were tried.
The results are shown in fig-
ure 5. The results found sup-
port the general conclusions
drawn by Singh and Sutton
[Singh and Sutton, 1996]: Re-
placing traces make the agent
perform much better than con-
ventional, accumulating traces.
Long traces help the agent best.

Figure 3: The first 151
trials seen from above.
The longest path is 7
meters.

3 Shaping

The idea of shaping, which is borrowed from behavioural
psychology, is to give the learning agent a scries of rela-
tively easy problems building up to the harder problem of
ultimate interest [Sutton and Barto, 1998]. The term origi-
nates from the psychologist Skinner [Skinner, 1938], who
studied the effect on animals, especially pigeons and rats.

To train an animal to produce a certain behavior, the
trainer must find out what subtasks constitute an approx-
imation of the desired behavior, and how these should
be reinforced [Staddon, 1983]. By rewarding successive
approximations to the desired behavior, pigeons can be
brought to pecking a selected spot [Skinner, 1953, p. 93],
horses to do clever tricks in a circus like seemingly recog-
nize flags of nations or numbers and to do calculation
[J0rgensen, 1962, pp. 137-139], and pigs to perform com-
plex acts as eating breakfast at a table and vacuuming
the floor [Atkinson et al., 1996, p. 242]. Staddon notes
that human education as well is built up as a process of
shaping if behavior is taken to include "understanding"
[Staddon, 1983, p. 458].

Learning to Drive a Bicycle using RL and Shaping 465

Figure 4: The same route as figure 3 a little later. Now the
agent can balance the bicycle for 30-40 meters. The agent
starts each trial in a equilibrium position (6,9, w, w, w) =
(0,0,0,0,0). During the first trials it learns to avoid dis-
turbing this unnecessarily, i.e. it learns to keep driving
straight forward. Now the most difficult part of the learning
remains: To learn to come safe though a dangerous situa-
tion. A weak (random) preference for turning right (instead
of left) is strengthened during the learning as the agent gets
better at handling problematic situations and therefor re-
ceives less discounted punishment than expected.

Shaping can be used to speed up the learning process for
a problem or in general to help the reinforcement learning
technique scale to large and more complex problems. But
there is a price to be paid for faster learning: We must give
up the tabula rasa attitude that is one of the attractive as-
pects of basic reinforcement learning. To use shaping in
practice one must know more about the problem than just
under which conditions an absolute good or bad state has
been reached. This introduces the risk that the agent learns
a solution to a problem that is only locally optimal.

There are at least three ways to implement shaping in rein-
forcement learning: By lumping basic actions together as
macro-actions, by designing a reinforcement function that
rewards the agent for making approximations to the desired
behavior, and by structurally developing a multi-level ar-
chitecture that is trained part by part.

Selfridge, Sutton and Barto showed that transferring
knowledge from solving an easy version of a problem such
as the classical pole mounted on a cart can ease learning a
more difficult version [Selfridge et al., 1985].

McGovern, Sutton and Fagg have tested macro-actions in a
gridworld and found that in some cases they accelerate the
learning process [McGovern et al., 1997].

Dorigo, Colombetti and Borghi have worked with
shaping for real robots [Dorigo and Colombetti, 1993,
Colombetti et al., 1996, Dorigo and Colombetti, 1997].
They use reinforcement learning as a mean to translate
suggestions from an external trainer. The trainer is a
programme in itself with a high-level representation of
the desired behavior that provided immediate reinforce-
ment. For instance in the "The Hamster Experiment"
[Colombetti et al., 1996] the robot's task is to collect
pieces of food (colored cans) and bring them to its nest.
The trainer provides the agent with a reinforcement signal
for approaching the food. This signal is proportional to the
decrease in the distance between the robot and the pieces
of food. The training of the agent boils down to translating
the high-level trainer to a low-level control programme.
This method of shaping by a trainer has a number of
advantages as well as disadvantages. The agent does not
have to solve the delayed reinforcement problem. But on
the other hand, the programmer of the trainer must know
in advance what high-level behavior is desired, and to such
a degree that the trainer can judge how well a single move
fits into the desired behavior.

Mataric has studied the possibility of putting implicit do-
main knowledge into the agent by construction a more
complex reinforcement function than commonly used
[Mataric, 1994]. Again the theory was tested on a real robot
moving cans to a nest. Here the constructed function did

466 Randlev and Alstmn

10000

8000

.1 6000

E
g 4000

2000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 8 0 9 10
Lambda Lambda

Figure 5: Learning time for different values of A for accumulating eligibility traces (left) and replacing traces (right). Each
point is an average of 30 simulations.

not eliminate the need for solving the delayed reinforce-
ment problem.

Gullapalli has studied two implementations of shaping
[Gullapalli, 1992]. In the first the complexity of the con-
trol task is gradually increased during learning, and the re-
inforcement function used is changed accordingly. In this
way most of a training run is used in learning the approx-
imation to the current target behavior. This system was
used to make a simulated robot hand perform a series of
key strokes on a calculator. The actual task consisted of six
subtasks. Secondly Gullapalli considered structural shap-
ing: An incremental development of the learning system
where a multi-level architecture is trained in parts.

Gerald Tesauro's Backgammon playing agent achieved
master level play through self-play [Tesauro, 1992,
Tesauro, 1994, Tesauro, 1995]. This can be considered as
a very succesfull example of the use of shaping. Self-play
is a sort of shaping, since at first the agent plays against a
nearly random opponent and thereby solves an easy task.
The complexity of the task then grows as the agent gets
better at playing.

In Gullapalli's experiments [Gullapalli, 1992] and
Selfridge, Sutton and Barto's [Selfridgeetal., 1985],
as well as in Dorigo, Colombctti and Borghi's
[Colombetti et al., 1996, Dorigo and Colombetti ,1997],
the agent received a different reinforcement signal over
time for the same behavior. This is not in agreement with
the original inspiration of the reinforcement signal as being
a hardwired signal inside the brain of a animal. To solve
this problem, we need the reinforcement function to be
independent of what task the agent tries to learn to solve.
Our approach in general is to let the most basic tasks result
in the lowest reinforcement signals and more advanced
tasks correspond to larger signals.

Signal for running

~" Signal for walking

Signal for crawling

Signal for rolling

Signal for not moving

Figure 6: Reinforcement signals
for the movements of a child-
robot.

Say, we want a robot
to learn to move
forward like a child
(see figure 6). As a
child grows stronger
it discovers more
complex and faster
ways of moving.
Performing each
way of moving can
be seen as a task
that is more difficult
than the former.
The robot starts
by learning to roll.
Having done so, it
might discover how to crawl. The reinforcement signal for
crawling is greater than rolling, and greater than what the
agent expects to receive, and therefore it acts as a reward.
Later after having learned to walk, failing to walk and
falling back on crawling makes the robot receive a smaller
reinforcement signal than it expected, and the internal
reinforcement signal becomes negative—that is the signal
acts as a punishment.

Can these basic ideas of shaping be applied to reinforce-
ment learning, and make it possible to solve a complex
problem with more than one goal? We will now turn to
a practical study of these theoretical issues.

4 Learning to drive to a goal using shaping

We want to study shaping on the composite problem of
learning to balance a bicycle and then drive to a goal. In
contrast to other experiments with shaping, we want the
agent to be totally in charge of when to switch task. When

Learning to Drive a Bicycle using RL and Shaping 467

Figure 7: The weight, from the u>-oriented input neurons (left) and the weights from the angle oriented input neurons
(right). Note the difference of the scale.

one drives a bicycle in the morning to the institute and hits
a hole in the road, one instantaneously forgets about where
to go and focus attention on the balance. We want the agent
to be able to switch task equally swiftly when it find the sit-
uation appropriate.

The bicycle starts out at the origin heading west. The goal
is a circular spot (10 meter radius) positioned 1000 meters
to the north of the starting point.

We enlarge our basic network by 20 more input neurons,
with full connectivity to the 9 output neurons. The angle
between the driving direction and the direction to goal is
discretised by 18° intervals, one for each neuron. Now
there are exactly two active neurons in the agents input
layer—one for the state of the bicycle and one for the driv-
ing direction relative to the goal. The learning rate for
the weights from the angle-input neurons is chosen to be
0.01—much smaller than the rate for the other weights,
in order to reflect the different time scales in the learning
tasks: We do not want the weights in the angle oriented part
to grow large while the agent learns to balance the bicycle.
The odds are against these weights ending up containing
anything useful.

The reinforcement function is independent of the task the
agent tries to learn to solve. If the bicycle falls over, the
agent always receives -1, if the agent reaches the goal
it is rewarded by r = 0.01, and otherwise the agent re-
ceives r = (4 - ip*) • 0.00004, where tpg is the angle be-
tween the driving direction and the direction to goal mea-
sured in radians. The agent is punished when driving away
from the goal and rewarded when driving towards it. This
reinforcement function is inspired by the signal used by
Colombetti, Dorigo and Borghi [Colombetti et al., 1996]
mentioned earlier. Note that the agent still have to solve
the delayed reinforcement problem. As one can see, the

numerical value of this signal is quite small. We tried
larger values, which made the agent learn to drive in the
correct orientation without being able to balance. After a
few hundred trials the agent at the starting point immedi-
ately threw the bicycle to the right. The positive reinforce-
ment it received due to the correct orientation in several
time steps was large enough to make up for the punishment
from falling.

25

20

K 15

10

-j 1 |T

L; ,a
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Trial

Figure 8: Number of times an agent drives the bicycle to
the goal for twelve agents.

Figure 8 shows the number of times twelve agents reach
the goal. In a typical learning process it takes the agent
1700 trials to learn to balance (i.e. drive more than 1000 s
without falling), and after about 4200 trials it gets to the
goal for the first time. After a total of approximately 5700
trials it drives to the goal more or less every time.

Figure 7 shows the values of some of the important weights

468 Randtev and Alstmm

after learning. The w-weights shown arc an average of
weight values around 6 = 0, 6 = 0, w - 0 and w = 0.
If the agent drives along in balance, the weights with val-
ues in the relatively flat upper area are active for the bal-
ance oriented input neurons, and the values of the an-
gle oriented neurons matter for the choice of action. The
weights belonging to the balance oriented input neurons
makes the agent prefer action 3,4 and 5 (which corresponds
to T = 0), but the weights belonging to the angle oriented
neurons decide which one. But if the state of the bicycle
enters an area of unbalance, the balance oriented input neu-
rons have far greater differences in values of the weights,
and as a result the angle oriented input neurons do not make
any difference for the choice of action. In other words: The
agent swiftly shifts attention from the task of finding the
goal to the task of balancing the bicycle if required.

Figure 9: A typical route when the agent reaches the goal
for the first time.

Figure 9 and 10 shows routes from the starting point to the
goal (the grey circle on the y-axis). The first drives to the
goal can be as long as 200 km, but the agent soon learns to
drive to the goal driving "only" 7 km. A driving distance
as short as 1680 m has been observed.

Figure 10: Already after 10 drives to the goal the agent
navigates a little better.

The goal is not reached just by coincidence. The probabil-
ity for hitting the goal at random is quite small. An estimate
for the time required to reached the goal by doing a corre-
lated random walk is 1010 time steps. (The bee line from
the starting point to the goal is 3.6104 time steps.) In other
words: If the agent had to solve the problem of learning to
drive to the goal without access to the shaping reinforce-
ment signal, i.e. the tabular rasa approach, it would take
enormous amounts of time before it hits the goal for the
first time and experiences the reward for getting there.

We agree with Mataric [Mataric, 1994] that these hetero-
geneous reinforcement functions have to be designed with
great care. In our first experiments we rewarded the agent
for driving towards the goal but did not punish it for driv-
ing away from it. Consequently the agent drove in circles
with a radius of 20-50 meters around the starting point.
Such behavior was actually rewarded by the reinforcement
function, furthermore circles with a certain radius are phys-
ically very stable when driving a bicycle because of the
cross terms in eqs. (2) and (3) in the appendix.

Learning to Drive a Bicycle using RL and Shaping 469

5 Conclusion

Our results demonstrate the utility of reinforcement learn-
ing on a difficult, dynamical real world problem. It is pos-
sible to learn to balance a bicycle by pure reinforcement
learning with only one (rare) reinforcement signal. Further-
more it is possible to learn a solution to the double problem
of balancing on the bicycle and driving to a goal by com-
bining reinforcement learning with shaping. The applica-
tion of shaping accelerated the learning process immensely.
Without shaping, it would not have been practical to wait
for the agent to discover the goal and the reward for getting

there.

Acknowledgements

We would very much like to thank Andrew G. Barto for
several good discussions and stimulating ideas.

References

[Atkinson et al., 1996] Atkinson, R. L., Atkinson, R. C, Smith,
E. E., Bern, D. J., and Nolen-Hoeksema, S. (1996). Hilgard's
Introduction to Psychology. Harcourt Brace College Publish-
ers, 12'th edition.

[Bertsekas and Tsitsiklis, 1996] Bertsekas, D. P. and Tsitsiklis,
J. N. (1996). Neuro-Dynamic Programming. Athena Scien-
tific.

[Colombetti et al., 1996] Colombetti, M, Dorigo, M., and
Borghi, G. (1996). Robot shaping: The hamster experi-
ment. Technical Report TR/IRIDIA/1996-6, Universite Libre
de Bruxelles.

[Dorigo and Colombetti, 1993] Dorigo, M. and Colombetti, M.
(1993). Robot shaping: Developing autonomous agents though
learning. Technical Report TR-92-040, International Com-
puter Science Institute, Berkeley. Labeled: To appear in Ar-
tificial Intelligence Journal.

[Dorigo and Colombetti, 1997] Dorigo, M. and Colombetti, M.
(1997). Precis of "Robot Shaping: An Experiment in Behavior
Engineering". Adaptive Behavior, 5(3-4). Precis of the book
from MIT Press, Oct. 1997.

[Gullapalli, 1992] Gullapalli, V. (1992). Reinforcement Learn-
ing and Its Application to Control. PhD thesis, University of
Massachusetts. COINS Technical Report 92-10.

[J0rgensen, 1962] J0rgensen, J. (1962). Psykologi - paa biolo-
gisk Grundlag. Scandinavian University Books. Munksgaard,
K0benhavn.

[Mataric, 1994] Mataric, M. J. (1994). Reward functions for ac-
celerated learning. In Cohen, W. W. and Hirsh, H., editors,
Machine Learning: Proceedings of the Eleventh International
Conference. Morgan Kaufmann, CA.

[McGovern et al., 1997] McGovern, A., Sutton, R. S., and Fagg,
A. H. (1997). Roles of macro-actions in accelerating reinforce-
ment learning. In 7997 Grace Hopper Celebration of Women
in Computing.

[Rummery, 1995] Rummery, G. A. (1995). Problem Solving with
Reinforcement Learning. PhD thesis, Cambridge University
Engineering Department.

[Rummery and Niranjan, 1994] Rummery, G. A. and Niranjan,
M. (1994). On-line Q-learning using connectionist systems.
Technical Report CUED/F-INFENG/TR166, Engineering De-
partment, Cambridge University.

[Santamarfa et al., 1996] Santamaria, J. C, Sutton, R. S., and
Ram, A. (1996). Experiments with reinforcement learning in
problems with continuous states and action spaces. Technical
Report 96-088, COINS.

[Selfridge et al., 1985] Selfridge, O. G, Sutton, R. S., and Barto,
A. G. (1985). Training and tracking in robotics. In Proceed-
ings of the Ninth International Joint Conference in Artificial
Intelligence, pages 670-672. Morgan Kaufmann, CA.

[Singh and Sutton, 1996] Singh, S. P. and Sutton, R. S. (1996).
Reinforcement learning with replacing eligibility traces. Ma-
chine Learning, 22:123-158.

[Skinner, 1938] Skinner, B. F. (1938). The Behavior of Organ-
isms: An Experimental Analysis. Prentice Hall, Englewood
Cliffs, New Jersey.

[Skinner, 1953] Skinner, B. F. (1953). Science and Human Be-
havior. Collier-Macmillian, New York.

[Staddon, 1983] Staddon, J. E. R. (1983). Adaptive Behavior and
Learning. Cambridge University Press.

[Sutton, 1996] Sutton, R. S. (1996). Generalization in reinforce-
ment learning: Successful examples using sparse coarse cod-
ing. In Touretzky, D. S., Mozer, M. C, and Hasselmo, M. E.,
editors, Advances in Neural Information Processing Systems,
volume 8, pages 1038-1044. The MIT Press, Cambridge.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998).
Introduction to Reinforcement Learning. MIT Press/Bradford
Books.

[Tesauro, 1992] Tesauro, G. (1992). Practical issues in temporal
difference learning. Machine Learning, 8:257-277.

[Tesauro, 1994] Tesauro, G. (1994). TD-Gammon, a self-
teaching backgammon program, achieves master-level play.
Technical report, IBM, Thomas J. Watson Research Center,
Yorktown Heights, NY 10598.

[Tesauro, 1995] Tesauro, G. (1995). Temporal difference learn-
ing and TD-Gammon. Communications of the ACM, 38.

[Watkins, 1989] Watkins, C. J. (1989). Learning from Delayed
Rewards. PhD thesis, Cambridge University.

A Details of the Bicycle Simulation

The bicycle must be held upright within ±12° measured
from vertical position. If the angle from the vertical to the
bicycle falls outside this interval, the bicycle has fallen, and

470 Randlav and Alstmn

the agent receives punishment -1. The Bicycle is mod-
eled by the following non-linear differential equations. One
simplification was made to ease the derivation of the equa-
tions: The front fork was assumed to be vertical, which is
unusual but not impossible. This, however, made the task a
bit more difficult for the agent.

There are two important angles in this problem: The angle
9 of the direction of the bicycle from straightforward, and
the angle w the bicycle is tiled from vertical. The conser-
vations of angular momentum of the tyres results in some
important cross terms.

The equations do not model a bicycle exactly, as some sec-
ond order cross effects were ignored during the derivation.
However we believe that the largest problem of transfer-
ring to a real bicycle would be to build hardware that could
withstand falling over a thousand times—not just without
crashing but also without changing and thereby make the
system unstationary.

Figure 11: The bicycle as seen from behind. The thick
line represents the bicycle. CM is the centre of mass of the
bicycle and cyclist.

The following equations describe the mechanics of the sys-
tem. (See figure 11.) The angle tp is the total angle of tilt
of the centre of mass, and is defined as:

def
<p = w + arctan

The angular acceleration w can be calculated as:

1

'bicycle and cyclist
Mhg sirup

- cosip[Idc&9 + sign(9) (2)

vi(Mdr | Mdr [Mh\\\

This equation is the mechanical equation for angular mo-
mentum. The physical contents of the right hand side arc
terms for the gravitation, effects of the the conservation of
angular momentum of the tyres and the fictional centrifugal
force. The term Idc &9 is important for understanding why
it is relative easier to ride a bicycle than to keep the balance
on a bicycle standing still. The cross effects that originate
from the conservation of angular momentum of the tyres
stabilize the bicycle, and this effect is proportional to the
angular velocity of the tyres & and thereby to the velocity
of the bicycle.

The angular acceleration 9 of the front tyre and the handle
bars is:

■A T - Idv & w

Id,
(3)

These equations are not an exact analytical description, as
some second (and higher) order terms have been ignored.
The values of u>, w, ii), 9, 9 are send to the agent at each
time step. The agent returns the value of d and the torque
T.

(1)

Figure 12: Seen from above. The thick line represents the
front tyre.

The front and back tyres follow different paths in a curve
with different radii (see figure 12). The front tyre follows

Learning to Drive a Bicycle using RL and Shaping 471

the longest path. The radius for the front tyre is:

I I
17 =

cos(§-0)| |sin0|

And for the back tyre:

n = I tan (— - 8) \ = 7-—-r?
\2 /I |tan0|

(4)

(5)

For the CM the radius can be calculated as:

rcM = ((1 - c)2 + j^)

The equations of the position of the tyres for the front tyre:

(6)

(Xf)
Xf\ /=*/

yf)(t+D \yfJ(t)

(- sin(</> + 6 + sign(V> + 6) arcsin(f^))
+ vdty cos(^ + 9 + sign(</> + 6) arcsin(f^))

And for the back tyre:

(*+i) (*)
sm{ip + sign(V>) arcsin(|f))

+ VM[cos(^ + sign(V)arcsin(|f))

We estimated the values of the moments of inertia to:

13
bicycle and cyclist = yMc/l

2 + Mp (/l + ^CM)
2

 (7)

The various moments of inertia for a tyre was estimated to
(see figure 13):

Ida = Mdr
2 (8)

hv = 2Mdr"2 (9)

hi = \Mdr
2 (10)

Table 1 shows the values of the parameters used for the
bicycle system.

Figure 13: Axis for moments of inertia for a tyre.

Notation

CM

dcM

Mc

Md

Mv

a
T

Horizontal distance between the
point, where the front wheel
touches the ground and the CM.
The Centre of Mass of the
bicycle and cyclist as a total
The agent's choice of the
displacement of the CM
perpendicular to the plan of the
bicycle
The vertical distance between
the CM for the bicycle and for
the cyclist.
Height of the CM over the
ground
Distance between the front tyre
and the back tyre at the point
where they touch the ground
Mass of the bicycle
Mass of a tyre
Mass of the cyclist
Radius of a tyre
The angular velocity of a tyre
The torque the agent applies on
the handlebars
The velocity of the bicycle

Value
66 cm

30 cm

94 cm

111cm

15 kg
1.7 kg
60 kg
34 cm
0 = 1

10 km/h

Table 1: Notation and values for the bicycle system.

472

Learning First-Order Acyclic Horn Programs from Entailment'

Chandra Reddy Prasad Tadepalli
Dearborn 303

Department of Computer Science
Oregon State University,

Corvallis, OR 97331-3202.
{reddyc,tadepalli}<3cs.orst.edu

Abstract

In this paper, we consider learning first-order
Horn programs from entailment. In particu-
lar, we show that any subclass of first-order
acyclic Horn programs with constant arity is
exactly learnable from equivalence and en-
tailment membership queries provided it al-
lows a polynomial-time subsumption proce-
dure and satisfies some closure conditions.
One consequence of this is that first-order
acyclic determinate Horn programs with con-
stant arity are exactly learnable from equiv-
alence and entailment membership queries.

1 Introduction

Learning first-order Horn programs—sets of first-order
Horn clauses—is an important problem in inductive
logic programming with applications ranging from
speedup learning to grammatical inference.

We are interested in speedup learning, which concerns
learning domain-specific control knowledge to allevi-
ate the computational hardness of planning. One kind
of control knowledge, which is particularly useful in
many domains, is represented as goal-decomposition
rules. Each decomposition rule specifies how a goal
can be decomposed into a sequence of subgoals, given
that a set of conditions is true in the initial problem
state. Each of the subgoals might in turn have a set
of decomposition rules, unless it is a primitive action,
in which case it can be directly executed.

Unlike in logical inference, for which Horn clauses are
ideally suited, in planning, one needs to keep track of

"This paper also appears in the proceedings of 8th In-
ternational Conference on Inductive Logic Programming,
1998 (ILP-98).

time. In spite of this difference, goal-decomposition
rules can be represented as first-order Horn clauses by
adding two situation variables to each literal to in-
dicate the time interval in which the literal is true.
Hence, the problem of learning goal-decomposition
rules for a single goal can be mapped to learning first-
order Horn definitions—a set of Horn clauses, all hav-
ing the same head or consequent literal. Learning goal-
decomposition rules for multiple goals corresponds to
learning first-order Horn programs. Henceforth, we
omit the prefix "first-order", except when there is a
possibility of ambiguity.

In learning from entailment, a positive (negative) ex-
ample is a Horn clause that is implied (not implied)
by the target. Results by Cohen (1995a, 1995b), Dze-
roski et al. (1992) and others indicate that classes of
Horn programs having a single or a constant number of
clauses are learnable from examples. Khardon shows
that "actions strategies" consisting of a variable num-
ber of constant-size first-order production rules can be
learned from examples (Khardon, 1996). However, Co-
hen (1995a) proves that even predicting very restricted
classes of Horn programs (viz. function-free 0-depth
determinate constant arity) with variable number of
clauses of variable size from examples alone is crypto-
graphically hard.

Prazier and Pitt (1993) first used the entailment set-
ting for learning arbitrary propositional Horn pro-
grams. In addition to examples, they also used entail-
ment membership queries ("entailment queries" from
now on) which ask if a Horn clause is entailed by the
target. Moving to first order representations, Frazier
and Pitt (1993) showed that CLASSIC sentences are
exactly learnable in polynomial time from examples
and entailment queries. A Horn clause is simple if
the terms and the variables in the body of the clause
are restricted to the terms that appear in the head.
Page (1993) considered non-recursive Horn programs
restricted to simple clauses and predicates of constant

Learning First-Order Acyclic Horn Programs from Entailment 473

arity, and showed that they are learnable from exam-
ples and entailment queries. Arimura (1997) general-
ized Page's result to acyclic (possibly, recursive) simple
Horn programs with constant-arity predicates. Reddy
and Tadepalli (1997b) showed that function-free non-
recursive Horn definitions are learnable from examples
and entailment queries. The result we present here ap-
plies to non-generative Horn programs, where the vari-
ables and the terms in the head are restricted to those
in the body. We show that acyclic non-generative Horn
programs with constant arity that have polynomial-
time subsumption procedure are learnable from exam-
ples and entailment queries when certain closure con-
ditions are satisfied. In particular, the result applies
to acyclic Horn programs with constant arity determi-
nate clauses.

Goal-decomposition rules are hierarchical in nature,
as are Horn programs. One aspect of learning in hi-
erarchical domains is the hierarchical order of literals
(goals or concepts). In many systems, learning hierar-
chically organized knowledge assumes that the struc-
ture of hierarchy or the order of the literals is known
to the learner. Examples of such work include Mar-
vin (Sammut & Banerji, 1986) and XLearn (Reddy
& Tadepalli, 1997a), on the experimental side; learn-
ing from exercises by Natarajan (1989) and learning
acyclic Horn sentences by Arimura (1997), on the theo-
retical side. In fact, Khardon shows that learning hier-
archical strategies can be computationally hard when
the structure of the hierarchy is not known (Khardon,
1996). Our algorithm also assumes that the hierarchi-
cal order of the literals is known.

The rest of the paper is organized as follows. Section
2 provides definitions for some of the terminology we
use. Section 3 describes the learning model and the
learning algorithm, and proves the learnability result.
Section 4 concludes the paper with some discussion on
implications and limitations of the work.

2 Preliminaries

In this section, we define and describe some of the ter-
minology we use in the rest of the paper. For brevity,
we omit some of the standard terminology (as given
in books such as (Lloyd, 1987)). In the following, we
use p and its variants, and o and its variants each to
stand for a conjunction of literals; and b, q, I and their
variants each to stand for a single literal.

Definition 1 A definite Horn clause (Horn clause
or clause, for short) is a finite set of literals that con-
tains exactly one positive literal—{I, ->li, -1I2, • • •, ->ln}-
It is treated as a disjunction of the literals in the set
with universal quantification over all the variables. Al-
ternately, it is represented as h,h,■ • • ,ln -* I, where

I is called the head or consequent, and h,l2,---,ln
is called the body or antecedent and is interpreted as
h hh A...hin- A unit Horn clause is a Horn clause
with no negative literals and hence no body. A Horn
program or Horn sentence is a set of definite Horn
clauses interpreted conjunctively.

Definition 2 Let Ci and C2 be sets of literals. We
say that C\ subsumes C2 (denoted Ci t C2) iff there
exists a substitution 0 such that C\0 C C2. We also
say C\ is a generalization of C2.

Definition 3 (Plotkin, 1970) LetC, C, d andC2

be sets of literals. We say that C is the least general
generalization (Igg) of C\ and C2 iff C y C\ and
C yC2, and C t C, for any C such that C h C\
andC >C2.

Definition 4 (Plotkin, 1970) A selection of clau-
ses C\ and Ci is a pair of literals (I1J2) such that
h G Ci and Z2 G C2, and h and Z2 have the same
predicate symbol, arity, and sign.

If C\ and C2 are sets of literals, then IggiC^Ci) is
{lgg(h,h) • (h,h) is a selection of C\ and C2}. If I
is a predicate, lgg(l(si,s2,■ ■ ■ ,sn),l(ti,t2,■ ■ ■ ,tn)) is
l(lgg{si,ti),...,lgg(sn,tn)). The Igg of two terms
/(«!,...,*„) and g(ti,...,tm), if / = g and n = m,
is f(lgg(si,ti),...,lgg{sn,tn)); else, it is a variable
x, where x stands for the Igg of that pair of terms
throughout the computation of the Igg of the set of
literals.

As an example, let C\ be l(a,b),l{b,c),m(b) -»
l{a,c), and C2 be Z(1,2),Z(2,3), m(2) -> J(l,3).
(i(a,c),l(l,3)) and (-.m(6),-im(2)) are two of
the selections of Cx and C2. lgg(Ci,C2) is
l(x,y),l(y,z),l(t,u),l(v,w),m(y) -» l{x,z), where
x, y, z, t, u, v and w are variables standing for the pairs
(a, 1), (b, 2), (c, 3), (a, 2), {b, 3), (6,1) and (c, 2).

Definition 5 A derivation of a Horn clause p -»
q from a Horn program H is a finite directed acyclic
graph G such that there is a node q, there is no arc
(q, r) in G, and for each node I in G, either I G p or
if {li,l),...,(ld,l) are the only arcs of G terminating
at I, then h,... ,ld -> I = Cd for some clause C G H
and a substitution 0.

For example, let H be {parent(x,y),parent(y,z) ->
grandParent(x,z); mother(x,y) -¥ parent(x,y)}.
Figure 1 shows a derivation of mother(a,b), mot-
her(b,c) -> grandParent(a,c).

Proposition 1 In a derivation G of a clause p —► q
from a Horn program H, for any node I, either I is in
p or H\=p-*l.

474 Reddy and Tadepalli

grandParenl(a.c)

parent(a.b) parenl(b,c)
i

mother(a,b) mother(b,c)

Figure 1: A derivation of mother (a, b), mother(b,c) ->
grandParent(a, c) from H.

Let P be a set of predicate symbols, and T be a set of
terms. Let L be a set of atoms defined using P and
T. Let H be a set of Horn programs using atoms in
L only. If k is an integer, then Pk is a subset of P
containing only those predicate symbols of arity k or
less. Further, Lk is a set of atoms defined using Pk and
T, and %k is a set of Horn programs using atoms in Lk

only. In the following three definitions, we describe a
class of Horn programs AHk for which minimal models
are of polynomial size.

Definition 6 (Arimura, 1997) Let E € U. Then
a binary relation supported by (denoted, y) over
atoms in L w.r.t. E is such that (1) for allp-t I G E,
and for all h e p, I y li; (2) for all lul2 £ L and
every substitution 6, if lx y l2, then h6 y l26; and (3)
ifh y l2 and l2 y l3 then lx y l3.

Definition 7 A Horn program E is acyclic over L
if the relation y over L w.r.t. E is terminating; i.e.,
for any I £ L, there is no infinite decreasing sequence
lyhy....

In the last example, H is acyclic because grandPar-
ent(x, y) y parent(x, y) y mother(x, y) and there is
no cycle formed by the >- relation.

Following Khardon (1998), we call a definite clause a
non-generative clause if the set of terms in its conse-
quent are a subset of the set of terms and subterms in
its antecedent.

Definition 8 If k is a constant, we define a Horn pro-
gram E e 7ik to be in the class AHk, if E is acyclic
over Lk, and each clause is either non-generative or
has an empty antecedent.

Definition 9 Let a -» b be a clause in a Horn pro-
gram E, and p -> q be a clause. Then, a ->■ b is a
target clause in E of p ->qifja->by_p^q, i.e.,
for a substitution 6, a0 C p, W = q. We call p -> q a
hypothesis clause of a -> b.

Definition 10 For an antecedent p, q'
consequent of p wrt E if E (= p -» q'
there is no I G L such that q' y I, E (= p
l*P-

is a prime
q' # p, and

I and

In the last example, parent(a, b) is a prime consequent
of mother (a, b), mother (b, c), but grandParent(a, c) is
not—since parent (a, b) y grandParent(a,c).

3 Learning Horn Programs

In this section, we show that a subclass of AHk is
exactly learnable, using the exact learning model (An-
gluin, 1988), in entailment setting. Henceforth, E €
AHk denotes a target Horn program.

3.1 The Learning Model

In learning from entailment, an example is a Horn
clause. An example p -» q is a positive example of
E if E (= p -> q; negative, otherwise. An entailment
query takes as input an example (p -> q), and outputs
yes if it is a positive example of E (E |= p -> q), and no
otherwise. An equivalence query takes as input a Horn
program H and outputs yes if H and E contain (en-
tail) exactly the same Horn clauses; otherwise, returns
a counterexample that is in (entailed by) exactly one of
H and E. A derivation-order query, y, takes as input
two atoms Zj and l2 in L and outputs yes if li y l2,
and no otherwise. An algorithm exactly learns a Horn
program E in AHk in polynomial time from equiva-
lence, entailment, and derivation-order (y) queries if
and only if it runs in time polynomial in the size of
E and in the size of the largest counterexample, and
outputs a Horn program in AHk such that equivalence
query answers yes.

3.2 The Learning Algorithm

In this section, we describe the learning algorithm,
PLearn, shown in Figure 2. PLearn always maintains a
hypothesis H which is entailed by the target, so that
every instance of H is also an instance of E and all
counterexamples are positive.

Suppose that a counterexample p -» q is given to the
learner—see Figure 2. Every such counterexample has
a derivation from the target theory, E. Since this
derivation is not possible from the current hypothe-
sis H, there is some clause used in the derivation that
has not been learned with sufficient generality. The al-
gorithm tries to identify the antecedent literals of such
a clause, c*, in the target by expanding the derivation
graph from its leaves in p toward the goal using the
clauses in H. In other words, PLearn computes the
minimal model (p'j) of H implied by p ("closure" or
"saturation") by forward chaining (line 4). To iden-
tify the consequent of c*, also called the "prime conse-
quent" of p'j, PLearn calls PrimeCons in line 5. Prime-
Cons finds the prime consequent of p', by tracing the
"supported-by" chain starting from q for a literal qj
not in p'j, but is directly supported by some of the lit-

Learning First-Order Acyclic Horn Programs from Entailment 475

PLearn
Given equivalence, entailment and >- queries
outputs a Horn program H s.t. equivalent?(i7, E) is Yes.
(1) H = {} /* empty hypothesis-clauses set */
(2) while not equivalent?(if, E) do {
(3) Let p -+ q be the counterexample returned
(4) p'f = {I : H \= (p -> 0} /* forward chaining */
(5) qj = PrimeCons(p'^ -4 3)
(6) Pf-*qf = Reduce^ -> g/)
(7) if 3pi ->qi€H such that E |= p9 -> g9,
(8) where p9->qg = lgg(j)i->qi,Pf ~>qf)
(9) then replace first such pi -* qt by Reduce(p9 -* qg)
(10) else append p/ -¥ q/ to H
(11)} /* while */
(12) return H

PrimeCons(p -¥ q) /* finds prime consequents */
(13) Let L be the set of all possible literals having

only those terms that are in p
(14) 4 = q;
(15) H = {I: I € L - p and E |= p -> /}
(16) while 3Z € L' such that g' >- /
(17) 4=1;
(18) return q'

Reduce(p -)• g) /* trims irrelevant literals */

(19) p'=p
(20) repeat
(21) for each literal I in p' in sequence do
(22) if E £ (p'-{«})-►'and E(= (?'-{/})-► 9
(23) then p' =p' - {1}
(24) until there is no change to p'
(25) return p' -¥ q

Figure 2: PLearn Algorithm

erals in p'f (lines 13-18). In line 6, PLearn makes use of
Reduce to trim away "irrelevant" literals from the an-
tecedent p'f to form a new clause pf -» qf that is also a
counterexample to the hypothesis and is subsumed by
a single target clause—see Lemmas 9,2,3. PLearn com-
bines pf -» qf with an "appropriate" clause pi -> qi in
H using Igg (lines 7-9). It uses the entailment query
to find an appropriate hypothesis clause by checking
if the result of Igg is implied by the target (line 7). If
no such clause exists in H, pf -¥ qf is appended to H
as a new clause (line 10).

One problem with this approach is that the size of the
Igg is a product of the sizes of its two arguments. This
causes the size of a hypothesis clause to grow expo-
nentially in the number of examples combined with
it in the worst case. To avoid this, the antecedent
literals of the clause after Igg are again trimmed us-
ing Reduce so that the size of the resulting clause is
bounded, while it is still subsumed by the target clause
(lines 19-25). The result of Reduce then replaces the
original hypothesis clause pi -»■ qi it is derived from
(line 9). After this step, only the antecedents of the
target clause and some of their consequents remain in

the resulting hypothesis clause—see Lemma 5. This
process repeats until the hypothesis H is equivalent to
S. The algorithm works for unit clauses (which have
empty antecedents) without change.

3.3 An Example

As an example to see how PLearn works, consider
s = {ii(f{x))M*)M*) -» h(*)-Mf(x))Mx) -»•
k(x);li{x),l5(x) -> l7(x)} where / is a function sym-
bol. Suppose H = {li(f{c)),l2(c) -> /6(c)}. We
adopt the convention that the letters such as o, b, c,
etc. at the beginning of the alphabet are constants
and the letters at the end of the alphabet such as
x, y, z, etc. are variables. Let the counterexample

be h{f(d))Md),h(d) -> M«Q- In steP 4> {t does

not change. In PrimeCons, since l7(d) y h(d) and
k(d) y k(d), h(d) is not a prime consequent, but
any one of U(d) and l5(d) is. Suppose PrimeCons
returns l5(d). Reduce eliminates l3(d) from the an-
tecedent, because S |= Zi(/(d)),^(d) -» h(d), and
S £ h(f(d))Md) -> h{d). Thus, pf -> qf =
h (/(d)), h(d) -> l5(d). Combining this with the clause
in H, we obtain pg -> qg = h(f(x)),l2(x) -> h(x) is
entailed by E, new H is {h(f(x)),l2(x) ->• h(x)}.

Suppose the next counterexample is l\(/(c)),h{c),
h(c) -)• /7(c). Then, qf = U(c), and
P'f = {h(J(c))Mc)Mc)Mc)}- Pf -> Qf =
Ji(/(c)),la(c),fs(c),l5(c) -*• h{c), since Reduce can-
not remove /5(c), because it is implied by the other
literals wrt E (line 22). The modified counterexam-
ple pf -> qf cannot be combined with the clause
in H, because the resultant pg -> qg after Igg,
h{f(x)),h(x) ->, is not entailed by E. Hence, it
is appended to H to make H = {li(f(x)),l2(x) ->■
k(x);li(f(c))Mc)Mc),h(c) -4 Z4(c)}.

Suppose the next counterexample is again h(f(c)),
l2(c),l3(c) -> k(c). After line 4, p'} =
h(f(c))Mc),h{c),k(c),k(c). qs now is l7(c), be-
cause it is a prime consequent of p'j. After Reduce,
Pf = Z5(c),/4(c). pf -¥ qf cannot be combined with
the clauses in H, because the resultant Igg's are not
entailed by E. Again, pf -)• qf is added to H. This
process continues until H and E are equivalent.

To bring out the nuances in Reduce, let us revisit
the last part of the previous example. Consider the
input k(c),l2(c),h(c),h(f(c)),li(c) -> h(c) to Re-
duce. Although E |= li(f(c)),l2{c),h(c) -> l7(c),
since E |= h(f(c)),l2{c),k{c) -> h(c) and E (=
h(f(c)),l2(c) -> k(c), the literal l5{c) cannot be re-
moved. This is because /5(c) is implied by the other
literals (h(f(c)),l2(c)) wrt E. The order in which the
literals are removed in Reduce follows the derivation or-
der: if U >- lj, if at all U is removed, it is removed after

476 Rcddy and Tadepalli

lj is removed. This can be intuitively imagined in the
following way. Consider a derivation tree for a coun-
terexample, with the consequent literal on top and the
antecedent literals at the bottom. The above process
trims off the literals bottom-up in the tree up to the
appropriate level, so that the resulting clause is sub-
sumed by some clause in the target. In the above case,
if Reduce removes Z5(c) and leaves over /i(/(c)),/2(c),
the resulting clause (li(f(c)),l2(c),l3(c),U(c) -* /7(c))
is not subsumed by any clause in £.

However, this means that Reduce leaves over literals
which are implied by the remaining literals, i.e., I can-
not be removed from p' if £ (= (p' - {/}) ->■ / (line
22). Removing such literals could result in hypoth-
esis clauses which are not subsumed by any target
clause, as the following example illustrates. Let E be
{h(a) -> l2(a)\ li(x),l2(x) -+ l3(x)}. Suppose the
first counterexample is li(a),l2(a) -> l3(a). Hence p'f
= {h(a), h(a)} and qs = l3(a) in line 6. If Reduce were
to remove l2(a) from p'f because £ (= li(a) -> l3(a),
it ends up with a clause that is not subsumed by any
target clause. We would like to prevent such redun-
dant hypothesis clauses so that their number is not too
high compared to the number of target clauses. (This
argument is formalized in Lemmas 6, 7 and 8.)

3.4 Learnability of AHk

In this section, we prove that PLearn algorithm in Fig-
ure 2 exactly learns a subclass of AHk for which sub-
sumption is of polynomial-time complexity. The plan
of the proof is as follows: Through a series of lemmas,
we first establish that every hypothesis clause learned
has a target clause (Lemma 6). We then show that
every target clause has at most one hypothesis clause
(Lemma 8). Together, these two lemmas establish that
the number of hypothesis clauses is bounded by the
number of target clauses. We use this fact and the
bounds of the sizes on the hypothesis clauses (estab-
lished in Lemma 5) to show that PLearn learns success-
fully in polynomial time (Theorems 10 and 11). We
then define a specific hypothesis class that obeys the
conditions of these theorems and prove that this class
is learnable (Theorem 12).

Lemmas 2 and 3 show that PrimeCons with the input
p -> q finds a (prime) consequent q' of p such that
p ->• q' is subsumed by a clause in £.

Lemma 2 Let p ->• q be the input and q' be the out-
put of PrimeCons. Assume that q g p and E (= p -> q.
Then, (1) PrimeCons terminates; (2) q' is a prime con-
sequent ofp wrt E.

Proof. (1) Since E is acyclic, there is a terminating
sequence q y h y l2 Since the loop of lines 16-17
can only iterate as many times as the length of the

sequence, PrimeCons terminates.
(2) q' is such that E \= p ->■ q', and q' g p (by lines
15-17). Since q' is as in line 17 in the iteration im-
mediately prior to the terminating iteration of lines
16-17, there is no / such that q' y I, E f= p -> I and
/ & p. Thus, q' is a prime consequent ofp wrt E. D

Lemma 3 If q' is a prime consequent ofp wrt E, then
there is a clause C G E such that C y_p ^ q'.

Proof. Assume that q' is a prime consequent of p
wrt E. Consider a derivation G of p -t q' in E. Let
(li,q'),..., (Id, q') be the only arcs of G that terminate
at q'. This implies that q' y /,• for all /; € {h,... ,/<*}•
It must be that every /* is in p; otherwise, there
is an / (viz. lt) such that q' y I, E (= p -* /
and I g p—contradicting the assumption that </' is
a prime consequent. Thus, {/i,...,/rf} C p. But,
Zi,..., lj ->• q' = Cd for some clause C € H and a
substitution 0, following the definition of derivation.
Thus, CO C p -> q', implying that C y p -> q'. D

The following definition and Lemmas 4 and 5 help
show that Reduce, given a clause p -> q as input,
removes irrelevant literals from antecedent p, while
maintaining q as a consequent.

Definition 11 If a is a conjunction, closure of a
with respect to E, denoted by Ka, is defined as {f|£ \=

(o->/)}■

Lemma 4 If q is a prime consequent of p and p' —>•
q = Reduce(p -> q), then q is a prime consequent ofp'
also.

Proof. Because q is a prime consequent of p and p' C
p, any literal other than the ones in p - p', cannot be
prime consequents of p'. By lines 22-23, only those
literals I that are not supported by p' are removed.
In which case, no literal I in p — p', can be such that
E |= p' -> I. Hence, q is a prime consequent of p' as
well. D

Lemma 5 // the input p —> q to Reduce is s.t. q is a
prime consequent ofp wrt E, then the output p' -» q
is such that p' C nae where a —> b is a clause in E and
aO C p' and b6 = q.

Proof. Since q is a prime consequent of p, by
Lemma 4, q is a prime consequent ofp' also. Then, by
Lemma 3, there is a clause a -> b G E, and a 6 such
that a6 C p' and b6 = q. We now show that p' C nag.
Assume that there exists a literal in p' — nao- Let
I € p' - Kao be a least such literal so that there is no
literal /' in p'-/ca» such that I y V. Such a literal must
exist, because E is acyclic. There are two reasons for
/ to remain in p' - Kag: either (a) E ^ (p' -{/})-» q

Learning First-Order Acyclic Horn Programs from Entailment 477

or (b) E |= (p' - {/}) -» I. We disprove both the cases:
(a) Since aß C p', and I is not in Kae and thus not in
aß, aß C (p' - {I}). Therefore, E^(p'- {I}) -> g.
(b) The only other reason why I remains in p' is that
E |= (p' - {I}) -»• Z. That means that p' - {1} contains
literals that imply I. There must be at least one such
literal in p' that is not in Kae, or else I G Kae, contra-
dicting I G p' -Kae- But then p' - Kae contains literals
V such that I y I', which contradicts the statement
that there is no such V'. Thus, we disprove both the
possibilities. Hence, p' Cy. Ü

Lemmas 6, 7 and 8, below, show that PLearn only
maintains right clauses in H.

Lemma 6 Every clause pi
clause.

qi G H has a target

Proof. We first show that each pi -> & G H is such
that qi is a prime consequent of p*. Then, by Lemma 3,
Pi -> qi has a clause C G E such that C ^ Pi -» g*.

We show that qi is a prime consequent of pi by induc-
tion on the number of times a clause at position i in
H is updated. It is first introduced by line 10. By
Lemmas 2 and 4, g/ is a prime consequent of p/. This
proves the base case. The other way a clause becomes
a hypothesis clause is by line 9. The clause at position
i in H (pi ->■ qi) is updated by line 9. As inductive hy-
pothesis, assume that each p* -> qi in H is such that qi
is a prime consequent of pi, at the beginning of an iter-
ation of the loop of lines 2-11 when position i in H is
updated. Consider pg -»• qg = Zff#(pi ->• gi,p/ -» g/).
Suppose g9 is not a prime consequent of pg, but q'g such
that qg y q'g is. Let Of and 0* be substitutions such
that pg0f C p/, qg0f - qf, pg0i C pi; and gfl0i = g*.
Let q'f = g^0/ and g< = g£0<. Since gg y q'g, by the
definition of >- order, qf y q'f and qi y ql Since g/ is
a prime consequent of p/, gj> must be in p/. Similarly,
q\ must be in g*. Therefore, lgg(q'i,q'f) = q'g must be
in ps, contradicting the assumption that gg is a prime
consequent of pfl. Hence, qg is a prime consequent of
pg. By Lemma 4 if p, -> g* = Reduce(p9 -+ gs), then gi
is a prime consequent of p,. So by Lemma 3, pi -> g«
has a target clause. □

Lemma 7 // PLearn combines a modified counterex-
ample pf -> qf with a clause pi -> qi G if, iften
tftere is a target clause C s.t. C y Pf -> g/ and
C ypi-t qi- Further, there is no C s.t. C y Pj -> qj
and C ypf -*• g/, /or any j < i.

Proof. PLearn combines p/ -> g/ with pt -> gi only
if E |= ^0(pi ->■ gi,p/ -> g/). By Lemma 6, qg is a
prime consequent of pg where pg -> gfl = Zfffl(pi ->
gi,p/ -> g/). By Lemma 3, there is a C G E such that
C y_pg -> qg. Hence, C >; Pi -> g, and C ^ p/ ->■ g/.

Since p/ -> g/ is combined with p» -> g», for any j < i,
E ^ ^5ff(Pi ->• <lj>Pf -+ Qf)- Therefore, there is no C
s.t. C" >: Iggipj -»• gj,P/ ->■ g/)- Thus, there is no C"
s.t. C" >: pj -> qj and C" h p/ -> g/. ü

Lemma 8 Every cZause C G E has at most one hy-
pothesis clause.

Proof. First, we show that any new hypothesis clause
added to H has a target clause distinct from the target
clauses of the other hypothesis clauses in H. Next,
we show that if two hypothesis clauses do not have
common target clauses at the beginning of an iteration
of the loop of lines 2-11, then they still have distinct
target clauses at the end of the iteration.

When pf -¥ qf is added to H, by Lemma 7, for any
clause Hi in H, there is no C G E such that C y
Hi and C ± pf -► qf. Therefore, p/ -> g/, a new
clause added to H, has a target clause distinct from
the target clauses of the other hypothesis clauses then
in H. Next, at most one of Hi and Hj can change in an
iteration of the loop. If neither changes, we are done
with the proof. Suppose that Ht changes, without
loss of generality. Let C be any target clause of Hj.
Assume that Hi and Hj do not have a common target
clause at the beginning of an iteration. Hence, C is
not a target clause of Hi. That is, C >t Hi. Let e
be the counterexample for the current iteration. We
first show that lgg(Hi,e) does not have C as a target
clause. Since C £ Hu C t lgg(Hue). Therefore, C
is not a target clause of lgg(Hi,e). Let lgg(Ht,e) be
pg ->• qg, and C be a -> b. Hence, for every 6, either
aO % pg or W ^ qg. If a9 % pg, ad is not a subset
of any subset of pg. Since Reduce outputs a clause
with a subset of pg as the antecedent and qg as the
consequent, C t Reduce(lgg(Hi,e)). Therefore, Hj
and the new clause in position i, Reduce(lgg(Hi,e)),
do not have a common target clause even at the end
of the iteration. D

The following lemma shows that even after the modifi-
cations due to PrimeCons and Reduce counterexample
remains a counterexample.

Lemma 9 p/ -> g/ as in line 6 of PLearn is a positive
counterexample.

Proof. First, we show that every counterexample p ->•
g, as in line 3, is a positive counterexample. Then, we
argue that p'f -> g/ (lines 4 and 5) is also a positive
counterexample. Finally, we show that p/ ->• g/ (line
6) is a positive counterexample.

Since, by Lemma 6, for every Ht G H, there is a clause
C G E such that C t Hu E |= H. Therefore, p -> g, as
in line 3, is a positive counterexample. Since p C p'/;
E (= p'f -> g. Since p'f contains all and only those

478 Reddy and Tadepalli

literals I such that H (= p -► I, for any literal I' £ p'f,
H ¥ P'f -* I'- Since qf (by lines 5 and 15) is not
in p'f, H \fc p'f ->■ 9/. By line 15, Y, \= p'f -+ qf.
Therefore, p'f -> 9/ is also a positive counterexample.
Finally, since pf C p'f, H \k pf -> g/. By lines 6
and 22, E |= pj -» <^. Thus, p/ -4 g/ is a positive
counterexample. D

Finally, Theorem 10 shows that PLearn exactly learns
AHk when forward chaining using H is of polynomial-
time complexity. Theorem 11 identifies conditions on
E such that PLearn returns an H for which time com-
plexity of forward chaining is polynomial.

Theorem 10 PLearn exactly learns AHk with equiva-
lence, >-, and entailment queries, provided determining
H (= p -* I is polynomial in the sizes of H and p.

Proof. By Lemma 9, p/ -4 qf is a positive coun-
terexample. For each counterexample, either a new
antecedent is added (line 10) or an existing antecedent
is replaced (line 9). In the latter case, the replaced
clause pi -> qt must be subsumed by the replacing
clause p' -t qg, since both Igg and Reduce generalize
the original clause by turning constants to variables
and dropping literals. On the other hand, the replaced
clause must not subsume (and hence be different from)
the replacing clause p' -> qg = Reduce(ps ->• qg). If
not, that is if p, -> qi>zp' -)• qg, since p' -> qg > pg ->
QgtPf -» Qf, Pi-+qihPf -> qf- Since p{ -> q{ e H,
H |= pf -> qf—thus contradicting that pf -> qf was
a counterexample of H. Hence, the replacement at a
position in H changes the clause at that position. The
minimum change there can be is either a variablization
of a constant or a removal of a literal.

Let n be the number of clauses, and s be the number
of distinct predicate symbols in E. Further, let the
maximum number of terms in any clause be t, and in
any counterexample be te.

The maximum possible number of literals there can
be using t terms is at most sth. Hence, the maxi-
mum number of literals in K0, and therefore, by Lem-
mas 5 and 6, in each clause is at most stk. This in-
cludes all literals and their variablized versions. Hence,
we can consider variablization as removing a literal.
Thus, we need at most stk counterexamples for each
clause. (This includes one base counterexample to in-
troduce a clause into H.) By Lemmas 6 and 8, there
are at most n clauses in H. Hence, we need at most
nstk counterexamples or equivalence queries. A call
to PrimeCons from line 5 takes at most stk entailment
queries, because the literals we need to try as possible
consequents are all in L, and \L\ < stke. PrimeCons is
called once for each of the counterexamples.

For each of the nstk counterexamples, the condition

in line 7 is tested at most n times, which needs at
most n entailment queries. Reduce is called with the
argument p'f -> qf once for each of the counterexam-
ples, and with the arguments pg -» qg for at most
nstk counterexamples. In Reduce(p -> q), in \p\ iter-
ations of the loop of lines 21-23, at least one literal
is removed. So, this loop can be tried at most \p\
times. Each iteration of the loop of lines 21-23 takes
two entailment queries. Therefore, Reduce(p -> q)
needs at most |p|(|p| + 1) entailment queries. Hence,
Reduce(p^ -> qf) needs at most n/ = stk(stk + 1)
entailment queries. Since p; -> qt and p/ -> qf
are outputs of Reduce, the maximum possible num-
ber of literals in pg -»• qg = lgg(pt -> qt,pf -> qf)
is at most s2t2k. Hence, Reduce(pff -> qg) needs at
most ng = s2t2k(s2t2k + 1) entailment queries. Thus,
the total number of entailment queries is at most
nstk(stk + n + nf + ng).

If determining H \= (p -> I) takes V(n,l,te) time
where V is a polynomial, then line 4 takes at most
stk ■ V(n,l,te) time. In the rest, the number of en-
tailment queries dominates the time. Hence, the time
taken by PLearn is polynomial in n,s,l,v,t, and te. O

Definition 12 Let p -> q be a Horn clause, p' -> q
is called its antecedent expansion if p C p' and p'
contains only those variables in p. A class C of Horn
sentences is closed under antecedent expansion, if ev-
ery Horn sentence obtained by selecting a subset of its
Horn clauses and replacing them with their antecedent
expansions is also in C.

Definition 13 A subsumption algorithm takes a
clause a —> b, a conjunction of literals p, and a ground
substitution 9 for the variables in b, and returns true
if and only if a9 y p.

Theorem 11 PLearn exactly learns a subclass C of
AHk with equivalence, y, and entailment queries, pro-
vided that (a) C is closed under substitution and an-
tecedent expansion and (b) the clauses a -> b of the
target concepts in C have a polynomial-time subsump-
tion algorithm.

Proof. By Lemma 5, each clause p* -4 qi € H in
PLearn has a target clause a -> b and a substitution
9 such that a9 C p{ C Kag. Since the target class is
closed under substitution and antecedent expansion,
the hypothesis clauses have a polynomial-time sub-
sumption algorithm. Hence, the forward-chaining step
of computing the consequents of p in line 4 of PLearn
can be done in polynomial time by repeatedly check-
ing for a hypothesis clause a —> b whose antecedent
subsumes p after a substitution 9 of the variables in 6,
and adding bO to p. Hence, by the previous theorem,
PLearn exactly learns C. D

Learning First-Order Acyclic Horn Programs from Entailment 479

The following definition and theorem identify some
syntactic restrictions on AHk such that the resulting
subclass satisfies the conditions of the previous theo-
rem.

Definition 14 Let p be a set of literals. A Horn
clause li,...,ln -> q is i-determinate w.r.t. p
iff there exists an ordering l0l,---Jon of h,...,ln

such that for every i < j < n and every substitu-
tion 0 such that (l0i,---,l0j-i -> 0)9 is ground and
{l0l,... ,i0_i}ö C p, there is at most one substitution
a for the variables in lOj0 such that lOj0a is ground
and is in p.1 We call such an ordering of the literals
in the clause an i-determinate ordering w.r.t. p. A
Horn program is i-determinate w.r.t. p iff each of the
clauses in the program is i-determinate w.r.t. p.

Theorem 12 The class of i-determinate Horn pro-
grams in AHk, denoted as iDetAHk, is exactly learn-
able with equivalence, >-, and entailment queries.

Proof. First we show that iDetAHk is closed un-
der substitution and antecedent expansion. Consider
a target clause (h, • • •, L -> q) for a target program in
iDetAHk, whose antecedent literals are sorted in the
determinate order. Let (h,...,ln,ln+i,...,lm -> q)ß
be the target clause after antecedent expansion and
substitution. We want to show the new clause to be
i-determinate.

For every set of literals p, substitution 0, and j such
that i < j < m and (h,.. .,lj-i)ß0 C p is ground,
there is a substitution 7 which is equivalent to applying
ß and 0 one after another so that (h,.. .,lj-i)ß0 =
(^,...,Zj_i)7 and ljß0 = Ij'y for any lj. Since the
target clause satisfies i-determinacy, there must be at
most a single ground substitution a for Ijj, j < n, so
that Ij'ja e p, which means that this is true for ljß0
as well. Since the literals from ln+i through lm do not
have any variables not already in l\ through ln, there is
at most a single ground substitution for them as well.
Hence, (h,..., lm ->■ q)ß is also i-determinate.

Now we show that the clauses of the programs in
iDetAHk have a polynomial-time subsumption al-
gorithm. Given a set of literals p and a clause
li,...,ln -> q (whose literals have an unknown de-
terminate ordering), consider all possible subsets of
{h,...,ln) of size i and less. Note that there are at
most 0(nl) such subsets. For each such subset, instan-

1This definition strictly generalizes the standard defini-
tion of determinacy (Muggleton & Feng, 1990), in that a
Horn clause (program) is determinate w.r.t. a set of lit-
erals p when it is O-determinate w.r.t. p. i-determinacy
should not be confused with ij-determinacy, or constant-
depth fixed-arity determinacy, which is more restricted
than determinacy.

tiate all the ki variables in that subset in all possible
ways. If the total number of terms in p and £ is t,
this gives us tki different substitutions. For each such
substitution, there is at most one substitution for the
remaining literals in the clause. The order in which the
remaining literals have to be substituted can be deter-
mined by sequential search—apply the current substi-
tution to each literal and pick the one that only allows
one possible substitution for its remaining variables.
This can be done in 0(n2\p\) time. If the antecedent
li,...,ln subsumes p, then one of the considered sub-
sets should yield a successful match. Hence, the total
time for the algorithm is bounded by 0(ritkin2\p\),
which is polynomial in all variables except k and i
which are assumed to be constants.

Since the class iDetAHk satisfies the two conditions
required by Theorem 11 for PLearn to be successful,
the result follows. 0

4 Discussion and Conclusions

In this paper, we have shown the learnability of cer-
tain subclasses of acyclic fc-ary Horn programs. More
specifically i-determinate Horn programs in AHk, are
exactly learnable with equivalence and entailment
queries. Unlike the work of Page (1993) and Arimura
(1997), the programs we considered allow local vari-
ables in the antecedents. However, the clauses must
be non-generative in that the set of terms and vari-
ables that occur in the head of the clause must be a
subset of those that occur in the body of the clause.
This is needed to constrain the forward-chaining in-
ference step to finish in polynomial-time, which could
otherwise become unbounded. It appears that simul-
taneously removing both the non-generative and sim-
plicity restrictions could be difficult when functions are
present, due to the unbounded nature of inference in
that case.

Learning from entailment and learning from interpre-
tations are two of the standard settings for first-order
learning (De Raedt, 1997). In learning from inter-
pretations, the learner is given a positive (or neg-
ative) interpretation for which the Horn sentence is
true (or false). Interpretations can be partial in that
the truth values of some ground atoms may be left
unspecified. When membership queries are available,
learning from entailment and learning from interpre-
tations are equivalent for Horn programs. Hence we
can use PLearn to learn from (negative) interpreta-
tions as follows. Given a negative interpretation, "min-
imize" it by removing the negative literals from it
and asking membership queries. Since every nega-
tive interpretation must violate some Horn clause, this
yields an interpretation with a set of positive liter-
als h,...,ln and at most one negative literal &. We

480 Ready and Tadepnlli

can convert this into a positive counterexample for
PLearn: h A ... Aln -* qt. Similarly, if PLearn asks
an entailment membership query on some clause, say,
h A ... A ln -> qi, we can turn that into a membership
query on the interpretation lt,... ,ln, ->qi after substi-
tuting a unique skolem constant for each variable in
the clause. The answer to the entailment query is true
iff the answer to the membership query is false.

One limitation of our algorithm is that it assumes that
the supported by relation, y, is given. While this is
a reasonable assumption in some planning domains,
where it is known which goals occur as subgoals of
which, it is desirable to learn this relation. Unfortu-
nately, this seems difficult due to a number of prob-
lems. One of the main difficulties is that it is some-
times not possible to determine which, of the set of
consequents of an antecedent, is the prime consequent.
For example, consider the target £ : {l\(x) A l2(x) ->
h(x); h(%) A l3(x) -> IA(X)}. Given the counterexam-
ple li(c) A 12(c) -> /4(c), the literal /4(c) is not a cor-
rect consequent, but l3(c) is. Although Lemma 3 says
that prime consequent is a right consequent to choose,
without knowing the order it is not clear how to iden-
tify it. Learning all possible clauses while maintaining
all consequents also does not seem to work, resulting
in spurious matches between some of these redundant
clauses and counterexamples in some cases.

As shown in (Reddy & Tadepalli, 1997b), Horn pro-
grams can be used to express goal-decomposition rules
(d-rules) for planning using the situation-calculus for-
malism. We believe that the algorithm discussed here
and its extensions can be applied to learn d-rules,
which is an important problem in speedup learning,
d-rules are a special case of hierarchical task net-
works or HTNs (Erol, Hendler, & Nau, 1994)—in
that HTNs allow partial ordering over subgoals and
non-codesignation constraints over variables whereas
d-rules do not. Nevertheless, it can be shown that
HTNs can be expressed as Horn programs.

Acknowledgments

We gratefully acknowledge the support of ONR under grant
N00014-95-1-0557 and NSF under grant # IRI-9520243.
We thank Roni Khardon and the anonymous reviewers of
ICML-98 and ILP-98 for their insightful comments.

References

Angluin, D. (1988). Queries and concept learning. Machine
Learning, 2, 319-342.

Arimura, H. (1997). Learning acyclic first-order horn
sentences from entailment. In Proceedings of the
Eigth International Workshop on Algorithmic Learn-
ing Theory. Ohmsha/Springei-Verlag.

Cohen, W. (1995a). Pac-learning non-recursive prolog
clauses. Artificial Intelligence, 79(1), 1-38.

Cohen, W. (1995b). Pac-learning recursive logic programs:
efficient algorithms. Jl. of AI Research, 2, 500-539.

De Raedt, L. (1997). Logical settings for concept learning.
Artificial Intelligence, 95(1), 187-201.

Dzeroski, S., Muggleton, S., k. Russell, S. (1992). Pac-
learnability of determinate logic programs. In Pro-
ceedings of the Fifth Annual ACM Workshop on
Computational Learning Theory, pp. 128-135.

Erol, K., Hendler, J., k Nau, D. (1994). HTN plan-
ning: complexity and expressivity. In Proceedings
of the Twelfth National Conference on Artificial In-
telligence (AAAI-94). AAAI Press.

Frazier, M., k. Pitt, L. (1993). Learning from entailment:
An application to propositional Horn sentences. In
Proceedings of the Tenth International Conference
on Machine Learning, pp. 120-127.

Khardon, R. (1996). Learning to take actions. In Pro-
ceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI-96), pp. 787-792.

Khardon, R. (1998). Learning first order universal horn
expressions. In Proc. of the Eleventh Annual Conf.
on Computational Learning Theory (COLT-98).

Lloyd, J. (1987). Foundations of Logic Programming (2nd
ed.). Springer-Verlag, Berlin.

Muggleton, S., k Feng, C. (1990). Efficient induction of
logic programs. In Proceedings of the First Confer-
ence on Algorithmic Learning Theory, pp. 368-381.
Ohmsha/Springer-Verlag.

Natarajan, B. (1989). On learning from exercises. In Pro-
ceedings of the Second Workshop on Computational
Learning Theory, pp. 72-87. Morgan Kaufmann.

Page, C. D. (1993). Anti-Unification in Constraint Log-
ics: Foundations and Applications to Learnability in
First-Order Logic, to Speed-up Learning, and to De-
duction. Ph.D. thesis, Univ. of Illinois, Urbana, IL.

Plotkin, G. (1970). A note on inductive generalization. In
Meltzer, B., k Michie, D. (Eds.), Machine Intelli-
gence, Vol. 5, pp. 153-163. Elsevier North-Holland,
New York.

Reddy, C, k Tadepalli, P. (1997a). Learning goal-
decomposition rules using exercises. In Proceedings
of the Hth International Conference on Machine
Learning. Morgan Kaufmann.

Reddy, C, k Tadepalli, P. (1997b). Learning Horn def-
initions using equivalence and membership queries.
In Proceedings of the 7th International Workshop on
Inductive Logic Programming. Springer Verlag.

Sammut, C. A., k Banerji, R. (1986). Learning concepts by
asking questions. In Machine learning: An artificial
intelligence approach, Vol. 2. Morgan Kaufmann.

481

RL-TOPs: An Architecture for Modularity and Re-Use in
Reinforcement Learning

Malcolm R. K. Ryan
Department of Artificial Intelligence

School of Computer Science and Engineering
University of New South Wales

Sydney 2052 Australia
malcolmr@cse.unsw.edu.au

Abstract

This paper introduces the RL-TOPs archi-
tecture for robot learning, a hybrid system
combining teleo-reactive planning and rein-
forcement learning techniques. The aim of
this system is to speed up learning by de-
composing complex tasks into hierarchies of
simple behaviours which can be learnt more
easily. Behaviours learnt in this way can
subsequently be re-used to solve a variety of
problems, reducing the need to learn every
new task from scratch. It is even possible
to learn multiple behaviours simultaneously,
thus making more efficient use of experience.
We demonstrate these advantages in a simple
simulated environment.

1 INTRODUCTION

Programming robots is difficult (Dorigo, 1996). Of-
ten the best way for the robot to solve a problem is
unknown, or hard to express. The real world is dy-
namic, and to be truly autonomous, robots need to be
able to cope with a changing environment (Covigaru k
Lindsay, 1991). Robot programming would be greatly
simplified if robots were able to learn appropriate be-
haviours of their own accord, and could adapt those
behaviours to changes in the world around them. Re-
inforcement Learning (RL) provides an elegant theo-
retical framework to achieve these goals but often fails
in practice due to the "curse of dimensionality" oper-
ating in large state spaces and with complex problems
such as those typically found in real robot domains. As

* Current address: Daimler-Benz Research and Tech-
nology Center, 1510 Page Mill Rd, Palo Alto, CA 94304,
USA. e-mail: pendrith@rtna.daimlerbenz.com

Mark D. Pendrith*
Department of Artificial Intelligence

School of Computer Science and Engineering
University of New South Wales

Sydney 2052 Australia
pendrith@cse.unsw.edu.au

the number of states grows, the problem of determin-
ing the best action to perform in each state becomes
impossibly difficult.

This problem is not peculiar to RL, traditional robot
programmers have faced it also. It is generally not
feasible to produce a single monolithic control system
which handles all possibilities. Instead, the trend has
been towards behaviour-based programming (Mataric,
1996). A complex task is decomposed into a set of
simple modules or behaviours, each of which handle
a small part of the problem. These are more easily
programmed, and can then be combined to solve the
full problem.

One such technique, Brook's subsumption architecture
(Brooks, 1986), has been successfully transferred to
the RL domain, to simplify learning. Mahadevan and
Connell (Mahadevan k Connell, 1992) showed that
a complex learning task (robot box-pushing), which
could not be learnt by a simple reinforcement learner,
could, however, be learnt by decomposing it into a
subsumption-style hierarchy of simple behaviours, and
learning each of these behaviours as distinct reinforce-
ment learning tasks. Thus the robot effectively had
several separate learning modules, each of which works
independently to learn a sub-part of the task, but
which can all cooperate together to provide the overall
solution to the problem.

Task decomposition of this kind is well recognised as
a way to improve learning rates. As each module only
has to learn its behaviour on a small subset of possible
states, its search-space is reduced, and so it can find
the optimal policy more quickly. Other authors to have
produced algorithms based on this realisation include
Kaelbling's HDG (Kaelbling, 1993), Dayan and Hin-
ton's Feudal Reinforcement (Dayan k Hinton, 1992)
and Dietterich's MAXQ (Dietterich, 1997) algorithms.
These algorithms differ from Mahadevan and Connell's

482 Ryan and Pendrith

in that they are based on more geometrical decom-
positions of the world, rather than using specific do-
main knowledge to define the behaviours. Because of
this, they appear to be less applicable to problems in
robotics, which involve high-dimensional state infor-
mation, from a variety of sensing apparatus, without
a simple uniform geometry.

The advantages of the subsumption-architecture, how-
ever, are offset by the rigidity of the representation
used. The hierarchy has to be designed by hand by
the programmer, which can be a non-trivial task for
many problems. What is more, a new task requires a
new set of behaviours and a new hierarchy. Is it possi-
ble to design a more flexible system that can automat-
ically build behaviour hierarchies to solve particular
problems? Can behaviours learnt to solve one task be
re-used to accelerate the learning of others? These are
the questions that this paper seeks to address.

2 TELEO-REACTIVE PLANNING

achieved, n is maintained1.

Teleo-reactive plans are represented as structures
called TR-Trees. Nodes in TR-Trees represent state
descriptions, with the root node as the goal. Connec-
tions between nodes are labelled with actions, indicat-
ing that if the action shown is executed in the lower
node, then the condition of the upper node will even-
tually be achieved.

TR-trees are executed reactively. The nodes in the
tree are continually re-evaluated and the action corre-
sponding to the shallowest true node is executed. If
at any time there is no true node in the tree, then the
planner can be reactivated to grow the plan to cover
the new situation; thus TR-trees represent (near-) uni-
versal plans.

REINFORCEMENT LEARNT
BEHAVIOURS AND
TELEO-OPERATORS

This problem of selecting and ordering an appropri-
ate set of predefined behaviours to achieve a cer-
tain goal has traditionally been the domain of plan-
ning algorithms. Historically, planning systems have
been deemed unsuitable for robot control, because
they failed to model the complexity of the real world.
Plans were based on sequences of instantaneous ac-
tions, which were expected to succeed every time; but
in the real world actions take time to perform, and
are not always reliable. However modern planning al-
gorithms are now able to produce plans which closely
resemble the behaviour based architectures of Brooks
and others. Plans can now include durative actions,
which operate over a period of time. Execution of
plans is reactive (i.e. the state of the world is con-
stantly re-evaluated to determine which action to per-
form), and universal (i.e. contingencies exist for all sit-
uations) .

One such planner is Nilsson's Teleo-Reactive (TR)
planning system (Nilsson, 1994). It is based around
the notion of a teleo-operator (or TOP), which is a
means of describing a durative action in terms of its
conditions and effects. A TOP consists of an action a,
a pre-image 7r and a post-condition A. The pre-image
and post-condition are conjunctions of predicates from
the planner's state description language. The action
may be a simple primitive action, or may be a com-
plex behaviour in its own right. The TOP a : IT -> A
signifies that if a is executed while n is true, then A
will eventually become true. Until such time as A is

Like TOPs, behaviours acquired by reinforcement
learning are also durative actions with a pre-image (ap-
plication space) and a post-condition (goal). Given a
suitable language to describe these attributes, a set of
reinforcement learnt behaviours can easily be repre-
sented as a list of TOPs. A TR-planner could then be
used to combine these behaviours automatically into a
hierarchy to solve a given problem, removing the need
for the programmer to do this by hand.

Furthermore, the same TOP descriptions can also be
used at the lower level as reinforcement schema for the
learning algorithm: The post-condition, if achieved,
indicates success, which should be rewarded. Prema-
turely quitting the pre-image indicates failure, which
carries a punishment. Thus the one description has
two functions: it is used at the high level to tell the
planner how to use the behaviour, and at the low level
to tell the learner what it is trying to learn. This du-
ality is the basis of the Reinforcement Learnt TOPs
(RL-TOPs) system.

4 THE RL-TOPS ARCHITECTURE

The RL-TOPs architecture is a combination of a sim-
ple goal-regression TR-planner, and the discounted-

1A TOP may also have side-effects which are not part of
its post-condition, but these are not relevant to the current
discussion.

The RL-TOPS Architecture 483

(Goal)

Planner

(Plan) T

TOP Library

Plan
Executor

High-level
State ^~ Reinforcement

Schema
-[Reinforcement j

(Sensors) (Active TOP j-

Low-level
State

TOP
Executor

-(Action)- Learner

(Actuators)

Figure 1: The RL-TOPs architecture.

reward reinforcement learning algorithm C-Trace
(Pendrith k Ryan, 1996). An outline is shown in Fig-
ure 1.

Based on the domain and the problem to be solved,
the user provides five things:

• A Low-level State representation, based on the
robot's sensors,

• A set of primitive Actions, based on the available
actuators,

• A High-level State description language (which
includes whatever features of the state space are
likely to be relevant to the planner, including the
goal),

• A Goal description,

• A set of behaviour descriptions of the form
(Name, Pre-image, Post-condition), which form
the RL-TOP Library.

The first thing the system does is to supplement each
of these RL-TOPs with its own Q-Module. This con-

2 The actual reinforcement learning algorithm used is
not important, except insofar as it must support learning
from both successful and unsuccessful trials. This includes
most common RL algorithms such as Q-Learning (Watkins,
1989) and SARSA(A) (Singh & Sutton, 1996).

tains all the information required by the reinforcement
learning algorithm to represent the behaviour. The
primary component is the utility (or Q) function, but
there may be other components depending on the al-
gorithm. Unless previously saved behaviours are being
re-used, the Q-function is initialised to be zero every-
where.

Now, given the goal definition and the library of be-
haviours available to it, the Planner constructs a plan
in the form of a TR-Tree. The Planner only constructs
as much of the tree as is necessary at any time. Ini-
tially the tree consists of just the goal node. As the
agent encounters situations which aren't covered by
the plan, the Planner will add new nodes to the tree
to cover these states, and will add appropriate actions
to the plan to link them in to the tree.

The plan is passed to the Plan Executor, which
also reads the current high-level state description, and
chooses which TOP to execute. If the plan does not
cover the state, then the Executor re-calls the Planner.
Otherwise, the selected TOP is passed to the TOP Ex-
ecutor.

The TOP Executor takes the active RL-TOP and
the current low-level state, and decides which low-level
action to execute. Typically, this will be the policy
action provided by the TOP's Q-Module, but an occa-
sional exploratory action may also be performed. For

484 Ryan and Pendrith

Figure 2: The gridworld domain.

the experiments detailed in this paper, the e-greedy
exploration algorithm (Thrun, 1992) was used, with
e = 0.1 (i.e. at each step a random exploratory action
is chosen with probability 1 in 10.)

The result of the executed action, in terms of changes
in the high-level state description, is used by the Rein-
forcement Schema to determine the reinforcement
feedback, r, to provide to the Learner. This unit de-
termines whether, in terms of the its pre-image and
post-condition, the RL-TOP has succeeded or failed.
If the post-condition has become true, then the TOP
has succeeded, and a reward of r = +1 is returned.
Otherwise, if the pre-image is no longer true, then the
TOP has failed (by exiting its application space pre-
maturely), and a punishment of r = — 1 is returned. If
neither of these is the case, then r = 0.

Combining the low-level state and action information,
and the reinforcement signal provided by the Rein-
forcement Schema, the Learner then performs the
appropriate update on the RL-TOP's Q-Module, ac-
cording to whatever reinforcement learning algorithm
is used. Then the process repeats, with the Plan Ex-
ecutor deciding which TOP to execute for the next
time step, until the goal is achieved.

RL-TOP pre-image post-condition
go02 room(0) room(2)
go20 room(2) room(0)
gol2 room(l) room(2)
go21 room(2) room(l)
go32 room(3) room(2)
go23 room(2) room(3)
go42 room(4) room(2)
go24 room(2) room(4)

Table 1: RL-TOPs used for gridworld experiments.

world, as shown in Figure 2. At the low-level, the
agent can sense its position within the world (as an
^-coordinate) and has four actions available to it, to
move north, south, east or west. Each action is guar-
anteed to succeed unless there is a wall in the way.

The world is divided into five rooms, labelled 0 through
4, and the agent's goal is to reach a particular one,
from a randomly chosen starting position. The high-
level state and action descriptions are all in terms of
which room the agent occupies, given by the predicate
room(R).

For each of the experiments following, the agent was
allowed to run for 400 trials, each starting at a random
location in the world and finishing when the goal is
achieved. The length of each trial, in terms of the total
number of low-level actions performed, was recorded.
Twenty such runs were performed for each algorithm
presented, and the results are the average trial lengths
over these twenty runs.

The measurement we are interested in comparing is
the time taken to learn the task, that is, the number
of primitive actions performed before the agent con-
verged to an optimal (or near-optimal) policy. To this
end, the graphs compare cumulative trial lengths for
each experiment. The cumulative trial length is the
sum of the lengths all trials up to and including the
current one.

5 EXPERIMENTAL DOMAIN

Experimental work is currently under way to demon-
strate the RL-TOPs architecture on an insectoid robot
called Prometheus, aiming to get the robot to learn
how to walk towards a beacon. Results from this plat-
form are not yet available, so a simple simulated do-
main was constructed to demonstrate the system.

The simulation consists of an agent in a 30 x 21 grid-

5.1 EXPERIMENT 1: MODULAR VS.
MONOLITHIC

The first experiment demonstrates the improvement
in performance of the modular RL-TOPs architec-
ture over a simple monolithic reinforcement learner.
The agent's goal is to reach room 4. The monolithic
learner has a single Q-Module which covers the entire
state space, whereas the modular learner has been pro-
vided with eight RL-TOP descriptions, corresponding

The RL-TOPS Architecture 485

Figure 3: The TR-Tree for going to room 4. 350 400

Graph 1: Learning times for gridworld task using (la)
Monolithic learner, (lb) RL-TOPs, (2) RL-TOPs re-
using previously learnt behaviours, (3) RL-TOPs using
behaviours learnt with concurrent learning.

to movement from one room to an adjoining one, as
listed in Table 1. The TR-Tree produced by the plan-
ner is shown in Figure 3.

The C-Trace learning algorithm was used in both
cases, with the learning rate ß = 0.1 and discount
factor 7 = 0.9. The monolithic learner was rewarded
on success only, with a reinforcement value of 1. As
with the RL-TOPs algorithm, the monolithic learner
used the e-greedy exploration algorithm, with e = 0.1.

Graph 1 shows the results of the two experiments.
Both approaches converged to a nearly optimal pol-
icy within about 200 trials, but the monolithic learner
took about 40,000 more steps to reach this point. A
large part of this difference is established in the first 20
trials, which took the monolithic and modular systems,
25,372 and 11,253 steps respectively. This demon-
strates the important difference between the two. In
the early stages of learning, when the Q-function is still
mostly zero, the only actions that provide any informa-
tion are those that provide non-zero feedback. Since,
in the monolithic case, rewards are few, the agent has
nothing to direct it, and a large amount of time is
spent aimlessly exploring the world, without learning
anything.

In the modular system, however, the application
spaces for individual behaviours are smaller, so the
rewards (and penalties) are closer at hand. Thus ran-
dom exploration is more likely to result in useful in-
formation more quickly, and learning is significantly
faster.

5.2 EXPERIMENT 2: RE-USING
BEHAVIOURS

Another advantage of the modular system over the
monolithic is that the individual behaviours learnt in
the modular trials can be re-used in a way that the
monolithic policy cannot. In the next experiment,
the same RL-TOPs from the previous experiment were
used, with the Q-Modules saved from each run, in or-
der to solve a new problem.

The goal is now to reach room 3. The new plan is
shown in Figure 4. Notice that it includes two of
the behaviours learnt in the previous experiment go02
and gol2. The other two behaviours, go42 and go23,
haven't been used before and still need to be learnt.

From the graph, we can see that a significant amount
of time is saved in learning to perform this new task,
compared to the previous one, which did not have the
benefit of pre-existing behaviours. The reason for this
is obvious: the agent does not need to waste time re-
learning the go02 and gol2 behaviours.

Still, a significant amount of time was taken up with
learning the go23 behaviour which would appear to be
redundant. Although the agent has never performed
this behaviour before, it has nevertheless spent a lot
of time in room 2 in the previous experiment, albeit
while executing a different behaviour. Common sense
suggests that this prior experience should be of some
use in learning the new behaviour more quickly. Is
it possible to make use of information gathered while
executing one behaviour in order to learn another? We

486 Ryan and Pendrith

usual.

This technique should significantly speed up learning
more than one task, because it makes more effective
use of experience gained.

Figure 4: The TR-Tree for going to room 3.

address this question in the next section of this paper.

6 CONCURRENT LEARNING:
MAKING BETTER USE OF
EXPERIENCE

At this point, one under-appreciated feature of cer-
tain RL algorithms comes to our aid. Algorithms such
as Q-Learning and C-Trace (but not SARSA) are off-
policy learners, which means that they sequence of ac-
tions presented to the learner do no have to correspond
to an actual execution of the policy (Sutton & Barto,
1998). It is even possible to learn one behaviour while
executing a quite different one, so long as their appli-
cation spaces overlap.

This technique, called concurrent learning can be
added to the RL-TOPs architecture by a simple mod-
ification to the Learner module. Rather than just up-
dating the Q-Module of the currently active TOP, the
Learner examines the RL-TOP Library and selects all
the behaviours which are eligible to be updated. This
includes any behaviour the pre-image of which was
satisfied before the most recent action was performed.
Thus, to use the simulation above as an example, if the
agent executes some action in room 2, then, regardless
of the result of the action, all those behaviours which
have room(2) as their pre-image, will be eligible to be
updated.

The Learner then consults the Reinforcement Schema
for each behaviour separately, to find out the reinforce-
ment value for that particular TOP. For some, the ac-
tion just executed may comprise success, for others
failure, and for others neither of the two. The Learner
uses the reinforcement value for each TOP, to update
that TOP's Q-Module. Then execution proceeds as

6.1 EXPERIMENT 3:
LEARNING

CONCURRENT

To demonstrate the benefit of concurrent learning the
two previous experiments were repeated, but this time
with all eligible behaviours being learnt concurrently.
First the agent did 400 trials with room 4 as its goal.
Then, using the same learnt behaviours, the goal was
changed to room 3. Graph 1 shows the results of this
run. Compare these to the results of experiment 2,
which had the same goal, but did not use concurrent
learning. The concurrent system converged in very lit-
tle time at all. The behaviour go23 was almost com-
pletely optimised before it was even run. The only be-
haviour to be learnt was go42, because the agent had
had no prior experience with performing any actions
in room 4.

7 RELATED WORK

In addition to those already mentioned, other hi-
erarchical learning/planning systems of note include
Singh's Compositional Q-Learning system (Singh,
1992), which learns a Q-function for a complex prob-
lem by constructing a gating module which selects an
appropriate lower-level behaviour at each step; and the
work of Precup et al. (Precup, Sutton, k Singh, 1997),
which extends standard dynamic programming tech-
niques to be able to use macro actions (behaviours)
as well as primitive actions in their policies. Both
of these systems assume that the behaviours that are
used are already fully specified, perhaps by earlier
learning runs.

Benson has produced a system that is complementary
to that presented here. His TRAIL (Benson, 199C) ar-
chitecture takes an existing set of actions or behaviours
and, by guided experiments, learns appropriate TOP
descriptions. It may be possible to combine that work
and this, to produce a system in which learnt infor-
mation goes in both directions, refining both the be-
haviours and the model.

8 CONCLUSION

As has been demonstrated, modular decomposition is
an effective way to improve the speed of reinforce-

The RL-TOPS Architecture 487

ment learning algorithms. The Reinforcement Learnt
Teleo-operators (RL-TOPs) architecture, combining
low-level reinforcement learning with high-level sym-
bolic planning, is an elegant and effective way of ex-
pressing this decomposition. The system allows the
automatic construction of appropriate hierarchies of
learnt behaviours to solve a give problem, and pro-
vides a means of re-using behaviours learnt in one task,
for solving another. With the addition of concurrent
learning of multiple behaviours, this can greatly im-
prove learning times over a variety of problems.

A limitation of this system is that the policy learnt
is sub-optimal because the agent cannot "cut corners"
between behaviours. Work is in progress to find a way
to allow the agent to benefit from the domain informa-
tion given by the task decomposition, while still being
able to converge eventually to an optimal policy.

Another avenue for future research would be to investi-
gate the question of what to do when the programmer-
specified TOPs are insufficient to find a path to the
goal. Possibly the system could be extended so as to
postulate its own new behaviours in this state. How-
ever, this is likely to be a very difficult problem.

Acknowledgements

We would like to gratefully acknowledge the assistance
of Christina Cook in developing the ideas contained in
this paper.

References

Benson, S. (1996). Learning Action Models for Reac-
tive Autonomous Agents. Ph.D. thesis, Depart-
ment of Computer Science, Stanford University.

Brooks, R. A. (1986). A robust layered control system
for a mobile robot. IEEE Journal of Robotics
and Automation, RA-2(1), 14-23.

Covigaru, A. A., k Lindsay, R. K. (1991). Determin-
istic autonomous systems. AI Magazine, 12(3),
110-117.

Dayan, P., k Hinton, G. E. (1992). Feudal reinforce-
ment learning. Advances in Neural Information
Processing Systems, 5, 271-278.

Dietterich, T. G. (1997). Hierarchical reinforcement
learning with the MAXQ value function decom-
position. Tech. rep., Computer Science Depart-
ment, Oregon State University.

Dorigo, M. (1996). Editorial: Introduction to the spe-
cial issue of learning autonomous robots. IEEE
Transactions on Systems, Man and Cybernetics,
26'(6).

Kaelbling, L. P. (1993). Hierarchical learning in
stochastic domains: Preliminary results. In Pro-
ceedings of the 10th International Conference on
Machine Learning. Morgan Kaufmann.

Mahadevan, S., k Connell, J. (1992). Automatic pro-
gramming of behaviour-based robots using rein-
forcement learning. Artificial Intelligence, 55(2-
3).

Mataric, M. J. (1996). Behaviour based control: Ex-
amples from navigation, learning and group be-
haviour. Journal of Experimental and Theoreti-
cal Artificial Intelligence.

Nilsson, N. J. (1994). Teleo-reactive programs for
agent control. Journal of Artificial Intelligence
Research, 1, 139-158.

Pendrith, M. D., k Ryan, M. R. K. (1996). Actual re-
turn reinforcement learning versus temporal dif-
ferences: Some theoretical and experimental re-
sults. In Proceedings of the 13th International
Conference on Machine Learning. Morgan Kauf-
mann.

Precup, D., Sutton, R. S., k Singh, S. (1997). Planning
with closed-loop macro actions. In Proceedings
of the AAAI Fall Symposium on Model-directed
Autonomous Systems.

Singh, S. P. (1992). Transfer of learning by composing
solutions of elemental sequential tasks. Machine
Learning, 8(3), 323-340.

Singh, S. P., k Sutton, R. S. (1996). Reinforcement
learning with replacing eligibility traces. Ma-
chine Learning.

Sutton, R. S., k Barto, A. G. (1998). Reinforcement
Learning: An Introduction. MIT Press.

Thrun, S. B. (1992). The role of exploration in learn-
ing control. In White, D., k Sofge, D. (Eds.),
Handbook of Intelligent Control: Neural, Fuzzy
and Adaptive Approaches. Van Nostrand Rein-
hold.

Watkins, C. J. C. H. (1989). Learning from Delayed
Rewards. Ph.D. thesis, King's College, Cam-
bridge.

488

Evolving Structured Programs with
Hierarchical Instructions and Skip Nodes

Rafal Sahistowicz Jürgen Schmidhuber
IDSIA

Corso Elvezia 36
6900 Lugano
Switzerland

{rafal, juergen}@idsia.ch

Abstract

To evolve structured programs we intro-
duce H-PIPE, a hierarchical extension of
Probabilistic Incremental Program Evolution
(PIPE). Structure is induced by "hierarchi-
cal instructions" (His) limited to top-level,
structuring program parts. "Skip nodes"
(SNs) allow for switching program parts on
and off. They facilitate synthesis of certain
structured programs. In our experiments H-
PIPE outperforms PIPE: structural bias can
speed up program synthesis.

Keywords: Probabilistic Incremental Program Evo-
lution, Structured Programs, Hierarchical Programs,
Non-Coding Segments.

1 Introduction

Overview. Automatic program synthesis is of in-
terest because it addresses the problem of searching
in general algorithm space as opposed to more lim-
ited search spaces like those of, say, feedforward neu-
ral networks. Hierarchical Probabilistic Incremental
Program Evolution (H-PIPE) is a novel method for
synthesizing structured programs. It uses the PIPE
paradigm (Salustowicz and Schmidhuber, 1997) to it-
eratively generate successive populations of functional
programs from an adaptive probability distribution
over all possible programs constructible from a prede-
fined instruction set. As in PIPE the probability dis-
tribution is adapted in three ways: (1) Each iteration
the probability of the best program in the current pop-
ulation is increased; (2) occasionally the probability of
the best program found so far (elitist) is increased; (3)
sometimes probabilities are mutated to better explore

the search space. H-PIPE uses "hierarchical instruc-
tions" (His) and "skip nodes" (SNs). His can be used
to combine lower-level program parts, thus inducing
structure. SNs function as gates that allow for keep-
ing program parts dormant without losing them in the
course of evolution. In combination with His they also
enable H-PIPE to substitute program parts by supe-
rior partial solutions discovered at later evolutionary
stages.

Structure. Early genetic programming (GP) work
(Dickmanns et al., 1987) as well as Adaptive Levin
Search (Schmidhuber, 1997, Schmidhuber et al.,
1997b) allow for powerful programs with arbitrary
loops etc. Sometimes, however, it is beneficial to in-
troduce inductive bias by appropriately constraining
the search space of possible programs. Except for
programs evolved by tree-based GP (Cramer, 1985;
Koza, 1992), however, not much work has been done
on evolution of programs with significant structural
constraints. There are two such GP variants.

The first reuses program parts, usually in a way less
general than that achievable through arbitrary jumps
(Dickmanns et al., 1987). Typically subprograms are
generated and/or extracted from evolved programs;
they may then be called in a usually non-recursive
fashion from different positions in the code. Exam-
ples are: "automatically defined functions" and encap-
sulation (Koza, 1992), module acquisition (Angeline
and Pollack, 1992), adaptive representations through
learning (Rosca and Ballard, 1996), automatically de-
fined macros (Spector, 1996). Other approaches do not
generate or extract subprograms but restrict GP's re-
combination operator such that it cannot destroy cer-
tain program parts to be reused in the future (e.g.,
Langdon, 1995; Pringle, 1995; Zannoni and Reynolds,
1997).

The second variant uses grammars to induce struc-

Evolving Structured Programs 489

ture, constrain the search space, and provide initial
bias to speed up evolution. Examples are context-
free (Whigham, 1995, Gruau, 1996) or logic grammars
(Wong and Leung, 1996).

Hierarchical Instructions. H-PIPE's programs are
composed of instructions from a fixed instruction set
S = {Ii,l2,---,IZ}- Each node of the code tree con-
tains an instruction I and can have several son nodes
whose instructions are viewed as arguments of I. Pro-
grams with hierarchical instructions (His) are special
cases of programs constrained by context-free gram-
mars: We partition S into m disjoint, non-empty in-
struction sets 5°, S1,..., Sm, and ensure that all "ter-
minal instructions" - instructions with zero arguments
- are in 5°. Hierarchical order is imposed as follows:
Each argument of an instruction in Sv is in Sv or in the
"lower level" set 5"_1. At least one argument must be
in 5"_1, except when v = 0. Higher-level instructions
can be used to combine program parts made out of
lower-level instructions, thus inducing structure.

Non-Coding Program Parts. Non-coding program
parts ("introns") are those that do not affect the re-
sults the program calculates. E.g., in f(x) = x * 1, the
"*1" part is non-coding. Most previous work on non-
coding program parts focuses on genetic program syn-
thesis (Blickle and Thiele, 1994, McPhee and Miller,
1995, Nordin et al., 1996, Haynes, 1996, Wineberg and
Oppacher, 1996). Usually non-coding program parts
evolve or can be inserted to protect coding program
parts (parts that do affect results calculated by the
program) from destructive genetic recombination op-
erators (Blickle and Thiele, 1994, McPhee and Miller,
1995, Nordin et al., 1996, Haynes, 1996). Blickle and
Thiele (1994), as well as McPhee and Miller (1995),
however, point out that large blocks of non-coding seg-
ments in tree-based GP programs cause very slow con-
vergence and difficulties in escaping from local minima.
Haynes (1996), on the other hand, shows that artificial
removal of non-coding segments from those programs
leads to premature convergence. Nordin, Francone,
and Banzhaf (1996) investigate the role of non-coding
segments in a GP approach based on variable-length
strings. They note that non-coding segments may play
an important role in finding good solutions and speed-
ing up convergence. Wineberg and Oppacher (1996)
use /irced-length strings and find that non-coding seg-
ments reduce the search space and speed up evolution.

General observation. The literature above suggests:
in tree-based GP programs with little structure, the
effect of non-coding segments is twofold. On the one
hand they seem necessary to protect blocks of coding

segments, on the other hand they can hinder discovery
of acceptable solutions. In the case of structured pro-
grams, however, non-coding program parts can both
speed up convergence and aid in finding good solu-
tions. Loosely speaking, the more structured the pro-
grams (e.g., the greater the restrictions on the cod-
ing strings), the higher the potential significance of
non-coding segments. Our own experiments with skip
nodes will add more empirical evidence in this direc-
tion.

Skip Nodes (SNs). Much like certain "jump" in-
structions, skip nodes (SNs) are instructions that al-
low for skipping program parts. In the context of tree-
based functional programs, SNs are functions with n
arguments, where n denotes the maximal number of
arguments of functions in S. SNs return exactly one
of their arguments and ignore the others, which thus
represent non-coding program parts if n > 1. We will
demonstrate the benefits of SNs in structuring parts
of H-PIPE programs.

Outline. Section 2 describes the H-PIPE approach.
Section 3 compares the use of His and SNs to standard
PIPE on function regression and 6-bit parity. Section
4 concludes.

2 Hierarchical PIPE

Overview. We will describe H-PIPE, a hierarchi-
cal extension of PIPE (Salustowicz and Schmidhu-
ber, 1997). Like PIPE, H-PIPE combines probability
vector coding of program instructions (Schmidhuber
et al., 1997a, 1997b) , Population-Based Incremental
Learning (PBIL - Baluja & Caruana, 1995), and tree-
coded programs like those used in variants of GP. Un-
like PIPE, H-PBPE uses His to evolve structured pro-
grams and SNs to facilitate this process. We will first
describe His and then SNs.

2.1 Hierarchical Instructions (His)

Program Instructions. H-PIPE's programs are
composed from z instructions in the instruction set
5 = {ii,l2,• • • ,-M- Each instruction Ij (1 < j < z)
is either a function or a terminal. Functions and ter-
minals differ in that the former have one or more ar-
guments and the latter have zero. Thus S = F U T,
where F = {/i,/2,-•• ,/*} is a function set with k
functions and T = {h, t2, ■ ■ ■, U} is a terminal set with
I terminals. Since FHT = {}, z = k + l holds. Pro-
grams are encoded in trees. Each node of the code
tree contains an instruction I and can have several

490 Saiustowicz and Schmidhuber

son nodes whose instructions are viewed as arguments
of /. To allow for His we partition S into m dis-
joint, non-empty instruction sets 5°,51,...,5m, and
ensure that all "terminal instructions" - instructions
with zero arguments - are in S°. Hierarchical order
arises as follows: Each argument of an instruction in
5" is in Sv or in the "lower level" set 5U_1. At least
one argument must be in 5"_1, except when v = 0.
To allow for enforcing descents in the instruction set
hierarchy we add "level down" instructions |, to all
instruction sets Sv (0 < v < m), where 0 < i < l(v)
is the argument index of an instruction I e Sv with
l(v) arguments from S"_1. Although "level downs"
take a single argument and return it, they are treated
as terminal symbols. Thus each instruction set 5"
(0 < v < m) can be written as Fv U Tv, where
pv = ifiJSf-ifki»)} is a function set with k(v)
functions and Tv = {|0, li,- • •,!/(«)} is a terminal
set containing l(v) "level down" instructions. We also
have S° = F° U T°, where F° = {/», /°,..., /° } i is

a function set with fc(0) functions and T° = T is a
terminal set containing all terminals of 5 (1(0) — I).

To solve a one-dimensional function approximation
task one might use F = {+, -,*,%, sin, cos, exp, rlog}
and T = {x,R}, where % denotes protected di-
vision (Vy,u e M,u ^ 0: y%u = y/u and
j/%0 = 1); rlog denotes protected logarithm (Vj/ G
R,y ? 0: rlog(y)=\og(abs(y)) and rlog(0) = 0);
x is an input variable; and R is a generic ran-
dom constant in [0;1) (see below). To structure
this function approximation task as a linear combi-
nation of non-linear parts we split the instruction set
S = {+,—,*,%, sin, cos, exp, rlog, x,R} into 5° =
{*,%,sin,cos,exp,rlog,x,R} and S1 = {+,-}. We
then add a |o instruction to S1 and obtain S1 =
{+>—i lo}- Function and terminal sets for the lower
and upper level then become F° = {*, %, sin, cos, exp,
rlog },T° = {x,R} and F1 = {+,-},Tl = {|0}, re-
spectively. Figure 1 shows an example program.

Generic Random Constants. A generic random
constant (GRC) (compare also "ephemeral random
constant" (Koza, 1992)) is a zero argument function
(a terminal). When accessed during program creation,
it is either instantiated to a random value from a pre-
defined, problem-dependent set of constants or a value
previously stored together with the probability distri-
bution (see below).

Program Representation. With His the arity n(v)
of a program tree may vary depending on the hierar-
chical level v. On each level v, n(v) is the maximal
number of function arguments required by functions

Figure 1: f(x)=x*sin(x)+exp(cos(0.2))+x%0.1-(x+-
rlog(x)). Exemplary program tree for function approx-
imation constrained to a linear combination of non-
linear parts. Top-level structuring instructions from
S1 appear in boldface.

Figure 2: f(x)=0.7*x*sin(x)+0.2%(x*x*x)-x. Exem-
plary program tree for function approximation, with
different level-dependent arities. Top-level program
parts are 2-ary. Lower level program parts are 3-ary.

in Sv. For instance, in the function approximation ex-
ample above, if we add to 5° a three argument func-
tion, e.g **, where **(ai, 0,2,0,3) = o,\ * 02 * 03, then
the lower-level part of the program tree will be 3-ary
while the top-level part will remain 2-ary, as depicted
in Figure 2.

Probability Distribution. The probability dis-
tribution is stored in a "hierarchical probabilistic
prototype tree" (H-PPT). At each hierarchical level
v(0 < v < m) the H-PPT generally contains in-
finite n(v)-&ry subtrees ppTiw(~v\ where the list
dw(v) = ((dv+1,wv+i),(dv+2,wv+2),..., (dm,wm))
describes the absolute position of a subtree: it con-
tains 0 to 771 — 1 components depending on the hi-
erarchical position v of ppTdw^ (0 components, if
v = m). Each component pair (di,W{) describes the

position of a higher level node N^} in PPTdw^ to

which ppTiw^ is attached. The position of a node

Evolving Structured Programs 4SI

Nd
w^] inside a subtree PP2*0« is defined by JVf^'s

depth di > 0 (PPJ^W's root node has dt = 0) and its
horizontal position Wi when subtree nodes with equal
depth are read from left to right (0 < w» < n(i)di).
Each node Nd^' contains a variable probability vec-

tor Pd,„. In addition, each node N^jw^ contains

a random constant R^^l' ^e probability vectors

Pd™wv> ^v : Q — v — m ^ave k(v) + l(v) compo-
dw(v)/ m nents. Each component Pd ^ '(I), Vv : 0 < v <

denotes the probability of choosing instruction I £ Sv

at N*£>. We maintain Eies- ^S?W = 1-
H-PPT Initialization. Each H-PPT node Nd

w^ av,wv

requires an initial probability Pd ^ (I) for each in-
struction I € 5U. Furthermore, each bottom level
(y = 0) node N^^ requires an initial random con-

stant Rfa^l- We pick Rd^Wo uniformly random in the
interval [0;1). To initialize instruction probabilities we
use for each hierarchical level v a constant probability
FT» for selecting an instruction from Tv and (1 — PT«)

for selecting an instruction from Fv. Pd ^ is then
initialized as follows:

PTv

W ^2(0:=^, v/:ie:r and

0dw(v)
dv,wv

(/):= 1 — Pj">

k{v)
VI:IeFv

Program Generation. Program generation in H-
PIPE is analogous to program generation in PIPE (see
Salustowicz and Schmidhuber, 1997), except that in-
structions are selected from the appropriate 5", de-
pending on the hierarchical level. To generate a pro-
gram PROG from H-PPT, an instruction I 6 Sv is
selected with probability Pd ^ (I) for each accessed

node Nd^ of H-PPT. This instruction is denoted by

Id„wl- Nodes are accessed in a depth-first way, start-
ing at the root node iV0)o, and traversing H-PPT from
left to right. Figure 3 shows a H-PPT and a corre-
sponding possible program.

Tree Shaping. To reduce memory requirements and
allow for discarding elements of the probability dis-
tribution that have become irrelevant over time the
H-PPT is incrementally grown and pruned just like
PIPE's probability tree (see Salustowicz and Schmid-
huber, 1997).

Update Rules. H-PIPE's update rules are analogous
to PIPE's (see Salustowicz and Schmidhuber, 1997).

The only difference is the more sophisticated indexing
method due to H-PPTs the hierarchical structure.

2.2 Skip Nodes (SNs)

Overview. Skip nodes are functions that serve to
switch code parts on and off. We will first define SNs
for PIPE, then for H-PIPE.

SNs for PIPE. PIPE's probability distribution is
stored in a probabilistic prototype tree (PPT - see
Salustowicz and Schmidhuber (1997) for details). Let
n denote the maximal arity of the PPT (the maximal
number of arguments of functions that are not SNs).
There are at most n SNs. The i-tb. is denoted —>;. It
is a function with n arguments and returns the i-th.
Its interpretation is: evaluate the i-th argument but
ignore the others.

SNs are elements of the function set F. For instance,
if we add SNs to the instruction set of the function
approximation example from Section 2.1 we obtain:
F — {+, -,*,%,sin, cos,exp,rlog,-^o,—>i} and T =
{x, R}. Figure 4 shows an unstructured PIPE program
with SNs. The dashed parts of the program can be

Figure 4: A PIPE program with SNs for function ap-
proximation: f(x) = (0.11 + x)*(0.2 — x). The dashed
parts of the program are non-coding segments.

xi ; sin t

Figure 5: A H-PIPE program with SNs for function
approximation: f(x) = exp(cos(0.2)) + x + rlog(x).
The dashed parts of the program are non-coding seg-
ments.

492 Satustoivicz and Sclvnidhuber

p

R

"2,2 P

R
-.N 2,0 N2,0

'■1,1

2,0

Figure 3: A H-PPT (left) and a corresponding possible program (right). The structuring parts of the program
are highlighted.

viewed as non-coding segments. Note that they need
not even be created during program generation and
are therefore computationally cheap.

SNs for H-PIPE. Let h(v) denote the maximal num-
ber of arguments of non-SN functions in Sv. At level
v (0 < v < m) there are at most h(v) SNs. The i-th is
denoted —►?. It is a function with h(v) arguments and
returns the z-th. Its interpretation is: evaluate the i-th
argument but ignore the others. There are no SNs in
5°.
SNs are elements of the function set Fv. For in-
stance, if we add SNs to the instruction set of the
function approximation example from Section 2.1 we
obtain: F° = {*,%,sin,cos,exp,rlog},T° = {x,R}
and F1 = {+,-,-*l},T1 = {|0}. Figure 5 shows a
H-PIPE program with SNs.

Changes to PIPE's and H-PIPE's Update
Rules.

(1) Parts of PPT or H-PPT corresponding to non-
coding segments are not updated. (2) To mutate prob-
abilities we calculate program size |PROG(,|. With
SNs |PROG(,| denotes the number of nodes in program
PROG;, without the non-coding segments created by
SNs. See Sahistowicz and Schmidhuber (1997) for de-
tails.

3 Experiments

To evaluate the impact of His and SNs we cross-
compare: (1) PIPE, (2) H-PIPE without SNs (H-
PIPE-NO-SN), (3) PIPE with SNs (PIPE-SN), (4) and
H-PIPE (PIPE with His and SNs in the structuring
program parts). To illustrate the significance of appro-
priate initial bias we also test H-PIPE with different
structuring instructions (H-PIPE-DIFF). We consider
a nontrivial continuous function regression problem
and the 6-bit parity problem, a discrete task involving
just 65 distinct fitness values. For each combination
of learning algorithm and problem we conduct 50-200
independent runs to obtain statistically significant re-
sults.

3.1 Function Regression

The function to be approximated is plotted in Figure 6.
The training data set Dtr samples / at 101 equidistant
points in the interval [0;10]. Dtr is used to calculate
fitness values during program evolution. Thus, the
fitness value of each program PROG is FIT(PROG) =
Y.vx6Dtr \f(x) ~ PROG(x)|, where PROG(X) denotes
the result of applying PROG to data x.

Set-up. We time-constrain all runs to PE = 100,000
and use the following parameter setting empirically
found to work well: PT=PTo=PTi=0.8, e = 0.000001,
Pe<=0.01, PS=10, lr=0M, PM=0.4, mr=0.4, Tfi=0.3,
TP=0.999999, FIT, = 0 (see Salustowicz and Schmid-

Evolving Structured Programs 493

Figure 6: f(x)
cos(x) — 1)

x3 ■ e~x ■ cos(x) ■ sin(x) • (sin2(x)

huber (1997) for detailed description of parameters).
We use the following instruction sets: (1) PIPE: F =
{+,-,*, %,sin,cos,exp,rlog}, T = {x,R}; (2) H-
PIPE-NO-SN: F1 = {+,-}, T1 = {!«,}, F° = {*,
%,sin,cos, exp, rlog}, T° = {x,R}; (3) PIPE-SN:
F = {+,-,*, %,sin,cos,exp,rlog,-+o,-*i}, T =
{x,R}; (4) H-PIPE: F1 = {+,-,-»5}, T1 = {|0},
F° = {*, %, sin, cos, exp, rlog}, T° = {x,R}; (5) H-
PIPE-DIFF: F1 = {*, %,-+£}, T1 = {|0}, F° = {+,
-, sin, cos, exp, rlog}, T° = {x, R}.

Results. Figure 7 summarizes all results in form
of cumulative histograms. We plot performance u
against percentage of programs with FIT(PROG) <
u. Each point indicates the number of programs with
F/T(PROG) equal to or better than its x-axis value:
algorithms with better performance have more points
with smaller x-values.

PIPE vs. H-PIPE. H-PIPE outperforms PIPE. H-
PIPE's fitness in the median run is FITmed = 2.39,
slightly better than PIPE'S with FITmed = 2.55. In
82% of all runs H-PIPE finds programs with fitness
below 4, while only 67% of all PIPE runs accomplish
this. On the other hand, the worst 3% of all H-PIPE
runs resulted in programs worse than the best found
by all PIPE runs. The median of H-PIPE's program
size {Nodtmed = 92 nodes) is significantly smaller than
PIPE'S (Nodemed = 157).

How much of the performance improvement can be
attributed to His, how much to SNs? To study this
question we now compare PIPE and H-PIPE to PIPE
with SNs (PIPE-SN) and H-PIPE without SNs (H-
PIPE-NO-SN).

PIPE & H-PIPE vs. PIPE-SN. PIPE-SN per-
forms much like PIPE, and worse than H-PIPE. PIPE-
SN's FITmed = 2.70 is slightly higher than PIPE'S
(FITmed = 2.55). Like PIPE, in 67% of all runs PIPE-

SN found programs with fitness below 4. Its worst
programs are slightly better than the worst program
among the best of the individual PIPE runs. PIPE-
SN's programs {Nodemed = U7) tend to be smaller
than PIPE'S (Nodemed = 157), but larger than H-
PIPE's {Nodemeä = 92).

We observe that SNs in unstructured PIPE programs
are neither harmful nor beneficial.

PIPE & H-PIPE vs. H-PIPE-NO-SN. H-PIPE-
NO-SN is the best competitor, slightly better than
H-PIPE, much better than PIPE. H-PIPE-NO-SN's
FITmed - 2.38 is roughly as good as H-PIPE's
FITmed = 2.39. In 91% of all runs , however, H-PIPE-
NO-SN found programs with fitness below 4, compared
to H-PIPE's 82% and PIPE'S 67%. Furthermore, un-
like with H-PIPE and PIPE, no program found by
H-PIPE-NO-SN has fitness above 7.39. The median
size of H-PIPE-NO-SN programs, Nodemed = 96, is
roughly the same as H-PIPE's (Nodemed = 92) and
significantly smaller than PIPE'S (Nodemed = 157).

We observe that His by themselves increase PIPE'S
performance. Later (in Section 3.2) we will see that
both His and SNs are sometimes needed to solve cer-
tain tasks more efficiently. But first we will illustrate
the importance of choosing the right His.

PIPE & H-PIPE vs. H-PIPE-DIFF. H-PIPE-
DIFF performs significantly worse than H-PIPE and
PIPE. The fitness of the best program found by H-
PIPE-DIFF in 50 independent runs is only 7.52. H-
PIPE-DIFF's median fitness FITmed = 10.62. Com-
pare H-PIPE's and PIPE's, which are 2.39 and 2.55,
respectively.

This demonstrates, not unexpectedly, that appropriate
initial bias due to "good" His is crucial to H-PIPE's
success.

Conclusion. His can increase PIPE'S performance
significantly. They need to be selected carefully, how-
ever. SNs do not contribute much to solving the func-
tion regression task. In case of PIPE they reduce pro-
gram size without affecting solution quality. In case
of H-PIPE they have a slightly detrimental effect on
overall performance.

The next experiment will show that for some tasks only
the combination of His and SNs leads to significant
performance improvement.

494 Saiustowicz and Schmidhuber

PIPE

80

1 1 1 1 >+*"■!' ' 1 1

60 /
»f

-
40 / -
20

n J i i i 1 I I I '
0 2 4 6

8.

100

80

60

40

20

8 10 12 14 16 18

fitness

H-P1PE-NO-SN
I V + H-+f i i T i i i

80 - -
60 -
40 -
20

n r ' i i i i i i i

0 2 4 6 8 10 12 14 16 18

fitness

H-P1PE-D1FF
~T i i i 1 1 rpF"1 1 r

J
/

s

o i 1 1 1 i£ i i i i i
0 2 4 6 8 10 12 14 16 18

fitness

100

80

60

40

20

0

H-PIPE

fitness

PIPE-SN

till , ^ItW ' 1

f* ' *
1 1

/
f

-

■ /
-

,/,,1 1 1 1 1 1 ' '
8 10

fitness

Figure 7: Results for the regression problem.

3.2 6-Bit Parity

The 6-bit parity function has six Boolean arguments
represented by integers: 1 for true and 0 for false. It
returns 1 if the number of nonzero arguments is odd
and 0 otherwise. The fitness of a program is the num-
ber of patterns it classifies incorrectly. Best (worst)
fitness for classifying all (no) patterns correctly is 0
(64). We use all 64 patterns for training.

Set-up. We time-constrain all runs to PE = 500,000
and use the following parameter settings empirically
found to work well: PT=PTo=PTi=0.6, e = 0.000001,
Pej=0.01, PS=10, /r=0.01, PM=0.4, mr=0.4, Tfl=0.3,
7>=0.999999, FIT, = 0 (see Salustowicz and Schmid-
huber (1997) for detailed description of parameters).
Note that, except for PT, PT°, and PTi, all param-
eters are set to the same values as for the function
regression task (see Section 3.1). Most of PIPE'S
and H-PIPE's parameters seem robust with respect
to changing tasks. We use the following instruction
sets: (1) PIPE: F = {+,-,*, Vo,sin,eos,exp,rlog},

T = {x0,x1,x2,X3,x4,x5,R}; (2) H-PIPE-NO-
SN: P1 = {*,%}, T1 = {jo}, P° = {+,
-,sin,cos,exp,rlog}, T° = {x0,xi,x2,x3,X4,x5,R};
(3) PIPE-SN: P = {+,-,*, %,sin,cos,exp,rlog,->0

,->i}, T = {x0,x1,x2,x3,X4,x5,R}; (4) H-PIPE:
P1 = {*,%,-5}, P1 = {lo}, P° = {+,
-,sin,cos,exp,rlog}, T° = {x0,x1,X2,x3,X4,x5,R};
(5) H-PIPE-DIFF: P1 = {+,-,-£}, T1 = {|0

}, P° = {*, Vo,sin,cos,exp,rlog}, T° = {a;o,a;i,
x2,x3,X4,x5,R}. To fit the Boolean nature of the
problem the real-valued output of a program is
mapped to 0 if negative and to 1 otherwise.

Results. Table 1 summarizes all results. The first
column displays for each algorithm the percentage of
independent runs leading to perfect solutions within
the given time frame (PE). The next three columns
show the numbers of program evaluations necessary
to find perfect solutions in the shortest, median, and
longest run, respectively. The final three columns list
the minimal, median, and maximal program sizes em-
bodying perfect solutions.

Evolving Structured Programs 495

Table 1: Summary of 6-bit parity results. Best values are in boldface.

6-bit parity

Algorithm solved
Program Evaluations

min- med -max
Nodes

min-med-max
H-PIPE 94 % 5,700-37,460-397,000 23- 61 -96
PIPE 79 % 3,520-79,950-497,220 24- 64 -137

PBPE-SN 76 % 1,676-73,720-487,930 25- 58 -110
H-PIPE-NO-SN 66 % 3,720-166,740^68,950 21- 49 -85
H-PIPE-DIFF 28 % 38,300-216,570-457,330 24- 61 -94

Comparison. H-PIPE performs best. It solves the
task more often and significantly faster (with less pro-
gram evaluations) than PIPE, PIPE with SNs, and H-
PIPE without SNs. PIPE and PIPE-SN have roughly
the same performance. PIPE-SN finds slightly fewer
solutions, but is faster than PIPE in the median run.
The median size of its solutions is also slightly smaller
than PIPE'S. Although its solution size is smallest
in the median run, H-PIPE-NO-SN performs signifi-
cantly worse than PIPE and PIPE-SN. It finds fewer
solutions and requires more than twice as many pro-
gram evaluations (in the median run). H-PIPE-DIFF
with wrong initial bias is worst of all. It needs more
than five times as many program evaluations as H-
PIPE to find roughly three times fewer solutions.

Conclusion. With this particular task H-PIPE out-
performs PIPE. Neither SNs by themselves nor His by
themselves are able to improve PIPE'S performance.
In absence of structure SNs' effects are neither harm-
ful nor beneficial, while His by themselves decrease
PIPE's performance. The combination of both His
(embodying the proper initial bias) and SNs in H-
PIPE, however, allows for significant improvement.

4 Conclusion

H-PIPE, a novel method for synthesizing structured
programs, uses hierarchical instructions (His) to struc-
ture programs and skip nodes (SNs) to facilitate their
synthesis. His combine program parts, while SNs al-
low for non-coding segments. In our experiments, His
by themselves sometimes worked extremely well, but
not always. Then, however, combining them with
SNs helped to achieve dramatic improvement. SNs
by themselves were useless for improving performance.
Our review of previous work on non-coding segments
suggests that non-coding segments seem to require
structured code to unfold their benefits. Our own re-
sults add further empirical evidence in this vein.

Limitations and Future Work. His are chosen a
priori — currently there is no recipe for finding the
optimal ones. But it may be possible to automatize
the HI selection process itself by making it subject to
data-driven evolutionary optimization.

Acknowledgments

Thanks to Marco Wiering, Nicol Schraudolph, and
Jieyu Zhao for valuable comments and suggestions
that helped to improve a draft of this paper. This work
was supported by SNF grant 2100-49'144.96 "Long
Short-Term Memory".

References

Angeline, P. J. and Pollack, J. B. (1992). The evo-
lutionary induction of subroutines. In Proceed-
ings of the 14th Annual Conference of the Cogni-
tive Science Society, pages 236-241, Hillsdale, NJ.
Lawrence Erlbaum Associates.

Baluja, S. and Caruana, R. (1995). Removing the ge-
netics from the standard genetic algorithm. In
Prieditis, A. and Russell, S., editors, Machine
Learning: Proceedings of the Twelfth Interna-
tional Conference, pages 38-46. Morgan Kauf-
mann Publishers, San Francisco, CA.

Blickle, T. and Thiele, L. (1994). Genetic program-
ming and redundancy. In Hopf, J., editor, Genetic
Algorithms within the Framework of Evolutionary
Computation (Workshop at KI-94, Saarbrücken),
pages 33-38, Im Stadtwald, Building 44, D-66123
Saarbrücken, Germany. Max-Planck-Institut für
Informatik (MPI-I-94-241).

Cramer, N. L. (1985). A representation for the adap-
tive generation of simple sequential programs. In
Grefenstette, J., editor, Proceedings of an Inter-
national Conference on Genetic Algorithms and

496 Satiistowicz and Schmidhuber

Their Applications, pages 183-187, Hillsdale, NJ.
Lawrence Erlbaum Associates.

Dickmanns, D., Schmidhuber, J., and Winklhofer, A.
(1987). Der genetische Algorithmus: Eine Im-
plementierung in Prolog. Fortgeschrittenenprak-
tikum, Institut für Informatik, Lehrstuhl Prof.
Radig, Technische Universität München.

Gruau, F. (1996). On using syntactic constraints with
genetic programming. In Angeline, P. J. and Kin-
near, Jr., K. E., editors, Advances in Genetic
Programming 2, chapter 19, pages 377-394. MIT
Press, Cambridge, MA, USA.

Haynes, T. (1996). Duplication of coding segments in
genetic programming. In Proceedings of the Thir-
teenth National Conference on Artificial Intelli-
gence, pages 344-349, Portland, OR.

Koza, J. R. (1992). Genetic Programming - On the
Programming of Computers by Means of Natural
Selection. MIT Press.

Langdon, W. B. (1995). Directed crossover within ge-
netic programming. Research Note RN/95/71,
University College London, Gower Street, London
WC1E 6BT, UK.

McPhee, N. F. and Miller, J. D. (1995). Accurate
replication in genetic programming. In Eshelman,
L., editor, Genetic Algorithms: Proceedings of the
Sixth International Conference (ICGA95), pages
303-309, Pittsburgh, PA, USA. Morgan Kauf-
mann.

Nordin, P., Francone, F., and Banzhaf, W. (1996). Ex-
plicitly defined introns and destructive crossover
in genetic programming. In Angeline, P. J. and
Kinnear, Jr., K. E., editors, Advances in Genetic
Programming 2, chapter 6, pages 111-134. MIT
Press, Cambridge, MA, USA.

Pringle, W. R. (1995). ESP: Evolutionary structured
programming. Technical report, Penn State Uni-
versity, Great Valley Campus, PA, USA.

Rosca, J. P. and Ballard, D. H. (1996). Discovery of
subroutines in genetic programming. In Angeline,
P. and K. E. Kinnear, J., editors, Advances in Ge-
netic Programming 2, page Chapter 9. MIT Press,
Cambridge, MA.

Salustowicz, R. P. and Schmidhuber, J. (1997). Prob-
abilistic incremental program evolution. Evolu-
tionary Computation, 5(2):123-141.

Schmidhuber, J. (1997). Discovering neural nets with
low Kolmogorov complexity and high generaliza-
tion capability. Neural Networks, 10(5):857-873.

Schmidhuber, J., Zhao, J., and Schraudolph, N.
(1997a). Reinforcement learning with self-
modifying policies. In Thrun, S. and Pratt, L.,
editors, Learning to learn, pages 293-309. Kluwer.

Schmidhuber, J., Zhao, J., and Wiering, M. (1997b).
Shifting inductive bias with success-story algo-
rithm, adaptive Levin search, and incremental
self-improvement. Machine Learning, 28:105-130.

Spector, L. (1996). Simultaneous evolution of pro-
grams and their control structures. In Angeline,
P. and K. E. Kinnear, J., editors, Advances in Ge-
netic Programming 2, page Chapter 7. MIT Press,
Cambridge, MA, USA.

Whigham, P. A. (1995). Grammatically-based genetic
programming. In Rosca, J. P., editor, Proceedings
of the Workshop on Genetic Programming: From
Theory to Real-World Applications, pages 33-41,
Tahoe City, California, USA.

Wineberg, M. and Oppacher, F. (1996). The bene-
fits of computing with introns. In Koza, J. R.,
Goldberg, D. E., Fogel, D. B., and Riolo, R. L.,
editors, Genetic Programming 1996: Proceedings
of the First Annual Conference, pages 410-415,
Stanford University, CA, USA. MIT Press.

Wong, M. L. and Leung, K. S. (1996). Evolving re-
cursive functions for the even-parity problem us-
ing genetic programming. In Angeline, P. J. and
Kinnear, Jr., K. E., editors, Advances in Genetic
Programming 2, chapter 11, pages 221-240. MIT
Press, Cambridge, MA, USA.

Zannoni, E. and Reynolds, R. G. (1997). Learning
to control the program evolution process with
cultural algorithms. Evolutionary Computation,
5(2):181-211.

497

An Investigation of Transformation-Based Learning in Discourse

Ken Samuel
CIS Department

University of Delaware
Newark, Delaware 19716 USA

samuel@cis.udel.edu

Sandra Carberry
CIS Department

University of Delaware
Newark, Delaware 19716 USA

carberry@cis.udel.edu

K. Vijay-Shanker
CIS Department

University of Delaware
Newark, Delaware 19716 USA

vij ay @cis .udel .edu

Abstract

This paper presents results from the first at-
tempt to apply Transformation-Based Learn-
ing to a discourse-level Natural Language
Processing task. To address two limita-
tions of the standard algorithm, we developed
a Monte Carlo version of Transformation-
Based Learning to make the method
tractable for a wider range of problems
without degradation in accuracy, and we
devised a committee method for assigning
confidence measures to tags produced by
Transformation-Based Learning. The pa-
per describes these advances, presents ex-
perimental evidence that Transformation-
Based Learning is as effective as alterna-
tive approaches (such as Decision Trees
and N-Grams) for a discourse task called
Dialogue Act Tagging, and argues that
Transformation-Based Learning has desirable
features that make it particularly appealing
for the Dialogue Act Tagging task.

1 INTRODUCTION

Transformation-Based Learning is a relatively new
machine learning method, which has been as effec-
tive as any other approach on the Part-of-Speech
Tagging problem1 (Brill, 1995a). We are utilizing
Transformation-Based Learning for another important
language task called Dialogue Act Tagging, in which
the goal is to label each utterance in a conversational
dialogue with the proper dialogue act. A dialogue act
is a concise abstraction of a speaker's intention, such as
SUGGEST or ACCEPT. Recognizing dialogue acts is
critical for discourse-level understanding and can also

xThe goal of this Natural Language Processing task is
to label words with the proper part of speech tags, such as
Noun and Verb.

be useful for other applications, such as resolving am-
biguity in speech recognition. But computing dialogue
acts is a challenging task, because often a dialogue act
cannot be directly inferred from a literal reading of an
utterance. Figure 1 presents a hypothetical dialogue
that has been labeled with dialogue acts.

Our research efforts led us to address some limitations
of Transformation-Based Learning. We developed a
Monte Carlo version of the algorithm that overcomes
the limitation of Transformation-Based Learning's de-
pendence on manually-generated rule templates and
enables Transformation-Based Learning to be applied
effectively to a wider range of tasks. We also devised
a technique that uses a committee of learned models
to derive confidence measures associated with the dia-
logue acts assigned to utterances.

We experimentally compared our modified version of
Transformation-Based Learning with C5.0, an imple-
mentation of Decision Trees, and N-Grams, which was
previously the best reported method for Dialogue Act
Tagging (Reithinger and Kiesen, 1997). Our system
performs as well as these benchmarks, and we note
that Transformation-Based Learning has several char-
acteristics that make it particularly appealing for the
Dialogue Act Tagging task.

This paper begins with an overview of the
Transformation-Based Learning method, describing
the training phase and the application phase of the al-
gorithm and presenting some of Transformation-Based
Learning's most attractive characteristics for Dialogue
Act Tagging. The following section describes the ex-
perimental design used for the experiments presented
in the paper. Then Section 4 presents two limi-
tations of Transformation-Based Learning, a depen-
dence on rule templates and a lack of confidence mea-
sures, and describes our solutions for these problems,
a Monte Carlo strategy and a committee method.
Next we present an experimental comparison between
Transformation-Based Learning, N-Grams, and Deci-
sion Trees, and conclude with a discussion of this work.

498 Samuel, Carbcmj, and Vijay-Shanker

Speaker Utterance
1 John
2 John
3
4
5

Mary
Mary
John

6 John

Dialogue Act
Hello. GREET
I'd like to meet with you on Tuesday at 2:00. SUGGEST
That's no good for me, REJECT
but I'm free at 3:00. SUGGEST
That sounds fine to me. ACCEPT
I'll sec you then. BYE

Figure 1: A sample dialogue

2 TRANSFORMATION-BASED
LEARNING

Brill (1995a) developed a symbolic machine learn-
ing method called Transformation-Based Learning.
Given a tagged training corpus, Transformation-Based
Learning produces a sequence of rules that serves as a
model of the training data. Then, to derive the ap-
propriate tags, each rule may be applied, in order,
to each instance in an untagged corpus. For all of
the results and examples in this paper, we are using
Transformation-Based Learning on the Dialogue Act
Tagging task, so the instances are utterances and the
tags are dialogue acts. In one experiment, our system
produced a learned model with 213 rules; the first five
rules are presented in Figure 2.

Condition(s)
New

Dialogue Act
1 none SUGGEST
2 Includes "see" and "you" BYE
3 Includes "sounds" ACCEPT
4 Length < 4 words

Previous tag is none?
GREET

5 Includes "no"
Previous tag is SUGGEST

REJECT

Figure 2: Rules produced by Transformation-Based
Learning for Dialogue Act Tagging

2.1 THE TRAINING PHASE

The training phase of TBL, in which the system learns
a sequence of rules based on a tagged training corpus,
proceeds in the following manner:

1. Label each instance with a dummy tag.
2. Until no useful rules are found,

a. For each incorrect tag
i. Generate all rules that

correct the tag.
b. Score each generated rule.
c. Output the highest scoring rule.
d. Apply this rule to the corpus.

First, the system initializes the training corpus by la-
beling each instance with a dummy tag. Brill (1995a)
suggested using a more complex initialization step, but
we found that this simple strategy is more effective in
practice.3 Then the system generates all of the poten-
tial rules that would make at least one tag in the train-
ing corpus correct, under the restrictions described be-
low. For each potential rule, its improvement score is
defined to be the number of correct tags in the train-
ing corpus after applying the rule minus the number of
correct tags in the training corpus before applying the
rule. The potential rule with the highest improvement
score is output as the next rule in the final model and
applied to the entire training corpus. This process re-
peats (using the updated tags on the training corpus),
producing one rule for each pass through the training
corpus until no rule can be found with an improve-
ment score that surpasses some predefined threshold.
In practice, threshold values of 1 or 2 appear to be
effective.

Since there are potentially an infinite number of rules
that could produce the tags in the training data, it is
necessary to restrict the range of patterns that the sys-
tem may consider by providing a set of rule templates,
such as:

utterance u contains the word(s) w
the tag on the utterance preceding u is X
change u's tag to Y

This template can be instantiated to produce the last
rule in Figure 2 by setting w="no", X=SUGGEST,
and Y=REJECT.

For the first rules of the learned model, the emphasis
is on getting as many tags correct as possible with
no penalty imposed for changing an incorrect tag to
another incorrect tag. Then for the later rules, the
system must avoid changing any of the tags that are

IF
AND
THEN

2 This condition is true only for the first utterance of a
dialogue.

3This is because Transformation-Based Learning uses
an error-driven approach, only generating rules for the in-
stances that are incorrectly labeled. If every instance is
initialized with a dummy tag, then all of the labels are
incorrect, and so they all contribute to learning. Alterna-
tively, using a more involved initialization step results in a
greater number of correct tags and, effectively, less training
data.

Transformation-Based Learning in Discourse 499

already correct. Thus, this method tends to produce
a sequence of rules that progresses from general rules
to specific rules.

2.2 THE APPLICATION PHASE

To see how a rule sequence can be used to label data,
consider applying the rules in Figure 2 to the dialogue
in Figure 1. The first rule labels every utterance with
the dialogue act SUGGEST. Next, the second rule
changes an utterance's tag to BYE if it contains the
words "see" and "you", which only holds for utterance
#6. Similarly, the third rule changes utterance #5's
tag to ACCEPT. Then the fourth rule tags utterance
#1 as GREET, since its length is 1 and there is no pre-
ceding utterance in the dialogue. And finally, the last
rule relabels utterance #3 as REJECT, since utter-
ance #2 is currently tagged SUGGEST, and the word
"no" is found in utterance #3. Although the first five
rules label these six utterances correctly, the remain-
ing 208 rules in the sequence may continue to adjust
the tags on the utterances.

2.3 ATTRACTIVE CHARACTERISTICS

For the Dialogue Act Tagging task, we selected
Transformation-Based Learning for several reasons.
Brill reported that Transformation-Based Learning is
as good as or better than any other algorithm for the
Part-of-Speech Tagging problem, labeling 97.2% of the
words correctly. The part-of-speech tag of a word is .
dependent on the word's internal features and on the
surrounding words; similarly, the dialogue act of an
utterance is dependent on the utterance's internal fea-
tures and on the surrounding utterances. This parallel
suggests that Transformation-Based Learning has po-
tential for success on the Dialogue Act Tagging prob-
lem.

Since we currently lack a systematic theory of dia-
logue acts, another reason that Transformation-Based
Learning is an attractive choice is that its learned
model consists of relatively intuitive rules (Brill,
1995a), which a human can analyze to determine what
the system has learned and develop a working theory.
Also, Transformation-Based Learning is good at ig-
noring any potential rules that are irrelevant. This
is because irrelevant rules tend to have a random ef-
fect on the training data, which usually results in
low improvement scores, so these rules are unlikely
to be selected for inclusion in the final model. This
is very helpful for Dialogue Act Tagging, since we
don't know what the relevant templates are for this
problem. Ramshaw- and Marcus (1994) experimen-
tally demonstrated Transformation-Based Learning's
robustness with respect to irrelevant rules.

For these reasons, along with others that are pre-

sented at the end of the paper, we believe that
Transformation-Based Learning is worthy of investi-
gation for the Dialogue Act Tagging task.

3 EXPERIMENTAL DESIGN

All of the results presented in this paper followed the
same experimental design as the third experiment in
Reithinger and Kiesen (1997). The corpus consisted of
appointment-scheduling face-to-face dialogues in En-
glish, which was divided into a training set with 143
dialogues (2701 utterances) and a disjoint testing set
with 20 dialogues (328 utterances). Each utterance
was manually labeled with one of 18 abstract dia-
logue acts, such as SUGGEST, ACCEPT, REJECT,
GREET, and BYE. The full list of dialogue acts is
found in Reithinger and Kiesen (1997).

The Transformation-Based Learning experiments pre-
sented in this paper were run on a Sun Ultra 1 ma-
chine with 508MB of main memory. Within a set of
experiments, only the specified parameters were var-
ied, but between sets of experiments many parameters
may have been varied, so it is not possible to draw
conclusions across experiment sets.

Our rule templates consist of all possible combinations
of a preselected set of conditions. Some of these con-
ditions are presented in Figure 3. Each condition con-
sists of a feature and a distance, where the feature
specifies a characteristic of utterances that might be
relevant for the Dialogue Act Tagging task, and the
distance specifies the relative position (from the utter-
ance under analysis) of the utterance that the feature
should be applied to.

Feature Distance

length of the current utterance
tag of the preceding utterance

cue patterns of the current utterance
speaker of the current utterance
speaker of the preceding utterance

Figure 3: Some conditions used in our experiments

In discourse, it is widely acknowledged that some of
the short phrases (and specific words) found in an
utterance provide strong clues to determine the ap-
propriate dialogue act. Several researchers proposed
different cue phrases, which are phrases that appear
frequently in dialogue and convey useful discourse in-
formation, such as "but", "so", and "by the way". Un-
fortunately, there is no universal agreement on which
phrases should be considered cue phrases, and in a pre-
liminary experiment using all of the cue phrases pro-
posed in the literature,4 our system's accuracy only

4These lists of cue phrases can be found in Hirschberg

500 Samuel, Carberry, and Vijay-Shanker

improved by 1.03%.

In order to identify the phrases that will be useful for a
particular domain, we need an automatic method for
collecting a set of phrases that is tuned to that do-
main. So we are using a statistical approach to select
relevant cue patterns5 from a training corpus. Assum-
ing that a phrase is relevant if it co-occurs frequently
with a few specific dialogue acts, we analyze the dis-
tribution of dialogue acts for utterances that include a
given phrase, selecting those phrases that correspond
to dialogue act distributions with low entropy. When
using these cue patterns, our system's accuracy rose
by 17.63%. For more details on this work, see Samuel,
Carberry, and Vijay-Shanker (1998b).

4 TRANSFORMATION-BASED
LEARNING IN DISCOURSE

4.1 TWO LIMITATIONS

Transformation-Based Learning has two serious limi-
tations, which we will address in this section. First,
although Transformation-Based Learning produces a
tag for each instance, it doesn't offer any measure
of confidence in these tags. Alternatively, probabilis-
tic machine learning approaches generally label an in-
stance with a set of tags, which are assigned numbers
to represent the likelihood that they are correct. So
"probabilistic methods ... provide a continuous rank-
ing of alternative analyses rather than just a single
output, and such rankings can productively increase
the bandwidth between components of a modular sys-
tem." (Brill and Mooney, 1997)

The second limitation of Transformation-Based Learn-
ing is that it is highly dependent, on the rule templates,
which are manually developed in advance. Since the
omission of any relevant templates would handicap the
system, it is essential that these choices be made care-
fully. But in Dialogue Act Tagging, no one knows ex-
actly which conditions and combinations of conditions
are relevant, so it is preferable to err on the side of cau-
tion by constructing an overly-general set of templates
and allowing the system to learn which templates are
useful. As discussed earlier, Transformation-Based
Learning is capable of discarding irrelevant rules, so
this approach should be effective, in theory.

Unfortunately, this strategy is not tractable, because
for each pass through the training data, for each in-
stance that the system has tagged incorrectly, every
rule template must be instantiated in all possible ways.

and Litman (1993) and Knott (1996).
In practice, the concept of cue patterns tends to

be more general than cue phrases, including many more
phrases.

Suppose that we can postulate f different features that
might be relevant, and we wish to consider these fea-
tures for all instances that occur within a distance
d of a given instance. (In other words, we are us-
ing a contextual window of size 2d+l.) Then there
are (2d + l)f conditions and 2(2d+1'f possible tem-
plates, since each condition may either be included or
excluded. Also, suppose that when a feature is applied
to an instance, it produces v distinct values, on aver-
age. This results in (v + i)(2d+iK ruios pnr instance,
which can be proven by induction on the number of
conditions. Given a training corpus with i instances,
if the algorithm makes p passes through the train-
ing data, then the system must generate and evaluate
0(ip(v + l)(2d+i)f) ruies Some realistic values for
these variables are f=10, d=2 (a contextual window
of size 5), v=3, i=3000, and p=100, which generates
around 1035 rules. Based on experimental evidence,
it appears that it is necessary to drastically limit the
number of potential rules that the system generates,6

or the memory and time costs are so exorbitant that
the method becomes intractable. But this limitation
would preclude considering all of the features and fea-
ture interactions that might be relevant for Dialogue
Act Tagging.

4.2 A MONTE CARLO VERSION

We developed a Monte Carlo version of
Transformation-Based Learning, so that the sys-
tem can consider a huge number of templates while
still maintaining tractability. Rather than exhaus-
tively searching through the space of possible rules,
only R of the available template instantiations are
randomly selected for each training instance on each
pass through the training data, where R is some small
integer. With this modification, the total number
of rules generated is only O(ipR), which no longer
explodes with the number of templates. In fact,
the formula doesn't even depend on the number of
features, the contextual window size, or the value of
v. But one would still expect good results, because
Transformation-Based Learning only needs to find the
best rules, and the best rules tend to be effective for
a large number of different instances. So the system
has many opportunities to find these rules, and since
the algorithm generally makes many passes through
the training data before halting, if it should select a
suboptimal rule, it can use later rules to compensate.
Thus, although random sampling will miss some rules,
it is still highly likely to find an effective sequence of
rules.

Our experiments confirm these intuitions, as shown
in Figures 4 and 5. For these runs, eight condi-

6For the Part-of-Speech Tagging task, Brill used only
about 30 simple rule templates (Brill, 1995a).

Transformation-Based Learning in Discourse 501

Standard TBL
Monte Carlo TBL with R=16
Monte Carlo TBL with R=6
Monte Carlo TBL with R=l

2345678# Conditions

Figure 4: Number of conditions vs. training time

tions were preselected, and for different values of n,
0 <n< 8, the first n conditions were combined in all
possible ways to generate 2n templates. Using these
templates, we trained, tested, and compared the stan-
dard Transformation-Based Learning method and our
Monte Carlo version of Transformation-Based Learn-
ing.

For the standard Transformation-Based Learning
method, training time rises dramatically as the num-
ber of conditions increases, as shown in Figure 4.7

In fact, when given seven conditions, the standard
Transformation-Based Learning algorithm could not
complete the training phase, even after running for
more than 24 hours. But our Monte Carlo version
of Transformation-Based Learning keeps the efficiency
relatively stable.8 The reason for the slight increase in
training time as the number of conditions increases is

7The value of v (the average number of rules generated
per instance) varies slightly across the eight conditions,
and so the shape of the curve might vary depending on
the order in which the conditions are presented. But the
critical point is that the training time rises exponentially
with the number of conditions.

8The Monte Carlo version of Transformation-Based
Learning can be slower "than the standard method, because
the Monte Carlo version always generates R rules for each
instance, without checking for repetitions. (It would be too
inefficient to prevent the system from generating any rule
more than once.)

that, as the system gains access to a greater number
of useful conditions, it's likely to find a greater num-
ber of useful rules, meaning that the training phase
makes a greater number of passes through the train-
ing data. Thus, p increases, and so the training time,
O(ipR), also increases. But this increase is linear (or
less), while standard Transformation-Based Learning's
training time increases exponentially with the number
of conditions. Figure 4 supports this analysis.

This improvement in time efficiency would be quite un-
interesting if the performance of the algorithm deteri-
orated significantly. But, as Figure 5 shows, this is not
the case. Although setting R too low (such as R=l for
7 and 8 conditions) may result in a decrease in accu-
racy, the lowest possible setting (R=l) is as accurate
as standard Transformation-Based Learning for 6 con-
ditions (64 templates). For 7 and 8 conditions, train-
ing of the standard Transformation-Based Learning
method took too much time, so those results could not
be produced. But, as the curves for R=6 and R=16 do
not differ significantly, it is reasonable to predict that
standard Transformation-Based Learning would pro-
duce similar results as well.9 Therefore, we conclude

9 One might wonder how the Monte Carlo version of
Transformation-Based Learning can ever do better than
the standard Transformation-Based Learning method,
which occurred for the experiments that used five con-
ditions. Because Transformation-Based Learning is a
greedy algorithm, choosing the best available rule on each

502 Samuel, Carberry, and Vijay-Shanker

— Standard TBL
Monte Carlo TBL with R=16

 Monte Carlo TBL with R=6
Monte Carlo TBL with R=l

,.**'
y

J
,--/

,o7

012345678 # Conditions

Figure 5: Number of conditions vs. tagging accuracy on unseen data

that our Monte Carlo version of Transformation-Based
Learning (with R=6) works effectively for more than
250 templates (8 conditions) in only about 15 minutes
of training time.

4.3 A COMMITTEE METHOD

We wanted to extend Transformation-Based Learning
so that it could provide some idea of the likelihood
that each of its tags are correct. So we attempted to
develop a strategy for assigning confidence measures
to the rules in the learned model. Then, in the ap-
plication phase, a given instance's confidence measure
would be a function of the confidences of the rules that
applied to that instance. Unfortunately, due to the na-
ture of the Transformation-Based Learning method,
this straightforward approach has been unsuccessful,
because the rule sequence does not contain enough
information to derive confidence measures; often, the
same pattern of rules applies to instances that should
be marked with high confidence as well as instances
that should be marked with low confidence.

So, for the purpose of computing confidence measures,
we adapted two techniques that were developed for
very different tasks. The Boosting approach has been
used to improve accuracy in tagging data (Freund and
Schapire, 1996), and Committee-Based Sampling uti-
lized a very similar strategy to minimize the required

pass through the training data, sometimes the standard
Transformation-Based Learning method selects a rule that
locks it into a local maximum, while the Monte Carlo ver-
sion might fail to consider this attractive rule and end up
producing a better model.

size of a training corpus (Dagan and Engelson, 1995).
We applied these methods to compute confidence mea-
sures, by training the system a number of times to
produce a few different but reasonable learned models,
which are called committee members. Then given new
data, each committee member independently tags the
input, and a given tag's confidence is based on how
well the committee members agree on that tag. We
are currently defining the confidence of a given tag to
be the number of committee members that preferred
the tag. In the future, we will investigate confidence
formulas that are based on the entropy of the tags se-
lected by the different committee members.

We considered several ways to develop the committee
members, and we decided to apply the strategy that
Freund and Schapire (1996) used for Boosting: The
first committee member is trained in the standard way,
and then the second committee member pays special
attention to those instances in the training data that
the first committee member did not tag correctly. To
do this in Transformation-Based Learning, we adjust
the improvement score formula to weight success on
these "hard" instances more heavily. (In effect, it is
as if we were adding multiple copies of these instances
to the training corpus.) This process can be repeated
to generate more committee members by basing the
score for correctly tagging a training instance on the
number of previous committee members that tagged
that instance incorrectly. We are currently using 2C

as the score for correctly tagging a given instance that
c committee members have mistagged. This strategy
tends to produce committee members that are very
different, as they are focusing on different parts of the

Transformation-Based Learning in Discourse 503

training corpus.

Minimum
Confidence

Percentage of
Instances Tagged
45.12% ± 1.28%
69.79% ± 1.60%
92.38% ± 1.32%
99.85% ± 0.20%
100.00% ± 0.00%

Average
Precision

90.09% ± 1.51%
83.53% ± 1.27%
76.57% ± 0.79%
73.56% ± 1.10%
73.45% ± 1.06%

Figure 6: Testing the committee method on unseen
data, varying the minimum confidence considered

As a preliminary experiment we ran ten trials with five
committee members, testing on held-out data. Fig-
ure 6 presents average scores and standard deviations,
varying the minimum confidence, m. For a given in-
stance, if at least m committee members agreed on
a tag, then the most popular tag was applied, break-
ing ties in favor of the committee member that was
developed the earliest; otherwise no tag was output.
The results show that the committee approach as-
signs useful confidence measures to the tags: All five
committee members agreed on the tags for 45.12% of
the instances, and 90.09% of those tags were correct.
Also, for 69.79% of the instances, at least four of the
five committee members selected the same tag, and
this tag was correct 83.53% of the time. We foresee
that our module for tagging dialogue acts can poten-
tially be integrated into a larger system so that, when
Transformation-Based Learning cannot produce a tag
with high confidence, other modules may be invoked
to provide more evidence. In addition, like Boost-
ing, the committee method improves the overall ac-
curacy of the system. By selecting the most popular
tag among all five committee members, the average ac-
curacy in tagging unseen data was 73.45%, while using
the first committee member alone resulted in a signifi-
cantly (t = 5.42 > 2.88, a = 0.01) lower average score
of 70.79%.

4.4 ALTERNATIVE METHODS

Previously, the best success rate achieved on the Dia-
logue Act Tagging problem was reported by Reithinger
and Kiesen (1997), whose system used a probabilistic
machine learning approach based on N-Grams to cor-
rectly label 74.7% of the utterances in a test corpus.
(See Samuel, Carberry, and Vijay-Shanker (1998a) for
a more extensive analysis of previous work on this
task.) As a direct comparison, we applied our system
to exactly the same training and testing set. Over
five runs, the system achieved an average10 accuracy
of 75.12%±1.34%, including a high score11 of 77.44%.

10The variation in the scores is due to the random nature
of the Monte Carlo method.

nThe rules in Figure 2 were produced in this experiment.

In addition, we ran a direct comparison between
Transformation-Based Learning and C5.0 (Rulequest
Research, 1998), which is an implementation of the
Decision Trees method. The accuracies on held-out
data for training sets of various sizes are presented
in Figure 7. For Transformation-Based Learning, we
averaged the scores of ten trials for each training set
(to factor out the random effects of the Monte Carlo
method), and the standard deviations are represented
by error bars in the graph. These experiments did not
utilize the committee method, and we would expect
the scores to improve when this extension is used.

With C5.0, we wanted to use the same features that
were effective for Transformation-Based Learning, but
we encountered two problems: 1) Since C5.0 requires
that each feature take exactly one value for each in-
stance, it is very difficult to utilize the cue patterns
feature. We decided to provide one boolean feature
for each possible cue pattern, which was set to True
for instances that included that cue pattern and False
otherwise. 2) Our Transformation-Based Learning sys-
tem utilized the system-generated tag12 of the preced-
ing instance. C5.0 cannot use this information, as it
requires that the values of all of the features are com-
puted before training begins.

The training times of Transformation-Based Learning
and C5.0 were relatively comparable for any number
of conditions, although Boosting sometimes resulted
in a significant increase in training time. The ac-
curacy scores of Transformation-Based Learning and
C5.0, with and without Boosting, are not significantly
different, as shown in Figure 7.

5 DISCUSSION

This paper has described the first investigation of
Transformation-Based Learning applied to discourse-
level problems. We extended the algorithm to ad-
dress two limitations of Transformation-Based Learn-
ing: 1) We developed a Monte Carlo version of
Transformation-Based Learning, and our experiments
suggest that this improvement dramatically increases
the efficiency of the method without compromising ac-
curacy. This revision enables Transformation-Based
Learning to work effectively on a wider variety of tasks,
including tasks where the relevant conditions and con-
dition combinations are not known in advance as well
as tasks where there are a large number of relevant
conditions and condition combinations. This improve-
ment also decreases the labor demands on the human
developer, who no longer needs to construct a mini-

12For Transformation-Based Learning, the tags change
as the system applies the rules in the learned model. When
a rule references a tag, it uses the value of the tag at the
point when that rule is processed.

504 Samuel, Carberry, and Vijay-Shanker

8 23 38 53 68 83 98 113 128 143 # Training Dialogues

Figure 7: Training set size vs. tagging accuracy on unseen data

mal set of rule templates. It is sufficient to list all of
the conditions that might be relevant and allow the
system to consider all possible combinations of those
conditions. 2) We devised a committee strategy for
computing confidence measures to represent the reli-
ability of tags. In our experiments, this committee
method improved the overall tagging accuracy signif-
icantly. It also produced useful confidence measures;
nearly half of the tags were assigned high confidence,
and of these, 90% were correct.

For the Dialogue Act Tagging task, our modified ver-
sion of Transformation-Based Learning has achieved
an accuracy rate that is comparable to any previously
reported system. In addition, Transformation-Based
Learning has a number of features that make it par-
ticularly appealing for the Dialogue Act Tagging task:

1. Transformation-Based Learning's learned model
consists of a relatively short sequence of intuitive
rules, stressing relevant features and highlight-
ing important relationships between features and
tags (Brill, 1995a). Thus, Transformation-Based
Learning's learned model offers insights into a the-
ory to explain the training data. This is especially
useful in Dialogue Act Tagging, which currently
lacks a systematic theory.

2. With its iterative training algorithm, when devel-
oping a new rule, Transformation-Based Learning
can consider tags that have been produced by pre-
vious rules (Ramshaw and Marcus, 1994). Since
the dialogue act of an utterance is affected by the
surrounding dialogue acts, this leveraged learn-
ing approach can directly integrate the relevant

contextual information into the rules. In addi-
tion, Transformation-Based Learning can accom-
modate the focus shifts that frequently occur in
discourse by utilizing features that consider tags
of varying distances.

Our Transformation-Based Learning system is
very flexible with respect to the types of features
it can utilize. For example, it can learn set-valued
features, such as cue patterns. Additionally, be-
cause of the Monte Carlo improvement, our sys-
tem can handle a very large number of features.

For the Dialogue Act Tagging task, people still
don't know what features are relevant, so it is very
difficult to construct an appropriate set of rule
templates. Fortunately, Transformation-Based
Learning is capable of discarding irrelevant rules,
as Ramshaw and Marcus (1994) showed exper-
imentally, so it is not necessary that all of the
given rule templates be useful.

Ramshaw and Marcus's (1994) experiments sug-
gest that Transformation-Based Learning tends to
be resistant to the overfitting13 problem. This can
be explained by observing how the rule sequence
produced by Transformation-Based Learning pro-
gresses from general rules to specific rules. The
early rules in the sequence are based on many ex-
amples in the training corpus, and so they are
likely to generalize effectively to new data. Later
in the sequence, the rules don't receive as much

Other machine learning algorithms may overfit to the
training data and then have difficulty generalizing to new
data.

Transformation-Based Learning in Discourse 505

support from the training data, and their applica-
bility conditions tend to be very specific, so they
have little or no effect on new data. Thus, resis-
tance to overfitting is an emergent property of the
Transformation-Based Learning algorithm.

For the future, we intend to investigate a wider variety
of features and explore different methods for collecting
cue patterns to increase our system's accuracy scores
further. Although we compared Transformation-
Based Learning with a few very different machine
learning algorithms, we still hope to examine other
methods, such as Naive Bayes. In addition, we plan
to run our experiments with different corpora to con-
firm that the encouraging results of our extensions to
Transformation-Based Learning can be generalized to
different data, languages, domains, and tasks. We
would also like to extend our system so that it may
learn from untagged data, as there is still very little
tagged data available in discourse. Brill developed an
unsupervised version of Transformation-Based Learn-
ing for Part-of-Speech Tagging (Brill, 1995b), but this
algorithm must be initialized with instances that can
be tagged unambiguously (such as "the", which is al-
ways a determiner), and in Dialogue Act Tagging there
are very few unambiguous examples. We intend to
investigate the following weakly-supervised approach:
First, the system will be trained on a small set of
tagged data to produce a number of different com-
mittee members. Then given untagged data, it will
derive tags with confidence measures. Those tags that
receive very high confidence can be used as unam-
biguous examples to drive the unsupervised version of
Transformation-Based Learning.

Acknowledgments

We wish to thank the members of the VERBMOBIL re-
search group at DFKI in Germany, particularly Nor-
bert Reithinger, Jan Alexandersson, and Elisabeth
Maier, for providing the first author with the opportu-
nity to work with them and generously granting him
access to the VERBMOBIL corpora. This work was par-
tially supported by the NSF Grant #GER-9354869.

Dagan, Ido and Engelson, Sean P. (1995). Committee-
Based Sampling for Training Probabilistic Classifiers.
In Proceedings of the Twelfth International Conference
on Machine Learning.

Freund, Yoav and Schapire, Robert E. (1996). Ex-
periments with a New Boosting Algorithm. In Pro-
ceedings of the Thirteenth International Conference on
Machine Learning.

Hirschberg, Julia and Litman, Diane (1993). Empir-
ical Studies on the Disambiguation of Cue Phrases.
Computational Linguistics 19(3):501-530.

Knott, Alistair (1996). A Data-Driven Methodology
for Motivating a Set of Coherence Relations. Ph.D.
Thesis. The University of Edinburgh.

Ramshaw, Lance A. and Marcus, Mitchell P. (1994).
Exploring the Statistical Derivation of Transformation
Rule Sequences for Part-of-Speech Tagging. In Pro-
ceedings of the 32nd Annual Meeting of the ACL.

Reithinger, Norbert and Kiesen, Martin (1997). Dia-
logue Act Classification Using Language Models. In
Proceedings of EuroSpeech-97.

Rulequest Research. (1998). Data Mining Tools see5
and c5.0. [http://www.rulequest.com/see5-info.html].

Samuel, Ken, Carberry, Sandra, and Vijay-Shanker,
K. (1998a). Computing Dialogue Acts from Features
with Transformation-Based Learning. In Applying
Machine Learning to Discourse Processing: Papers
from the 1998 AAAI Spring Symposium.

Samuel, Ken, Carberry, Sandra, and Vijay-
Shanker, K. (1998b). Dialogue Act Tagging with
Transformation-Based Learning. In Proceedings of
COLING-ACL.

References

Brill, Eric (1995a). Transformation-Based Error-
Driven Learning and Natural Language Processing: A
Case Study in Part-of-Speech Tagging. Computational
Linguistics 21(4): 543-566.

Brill, Eric (1995b). Unsupervised Learning of Disam-
biguation Rules for Part of Speech Tagging. In Pro-
ceedings of the Very Large Corpora Workshop.

Brill, Eric and Mooney, Raymond J. (1997). An
Overview of Empirical Natural Language Processing.
AI Magazine 18(4):13-24.

506

Automatic Segmentation of Continuous Trajectories
with Invariance to Nonlinear Warpings of Time

Lawrence K. Saul
AT&T Labs — Research

180 Park Ave, E-171
Florham Park, NJ 07932

lsaulQresearch.att.com

Abstract

We study the classification problem that
arises when two variables—one continu-
ous (a;), one discrete (s)—evolve jointly in
time. We suppose that the vector x traces
out a smooth multidimensional curve, to each
point of which the variable s attaches a dis-
crete label. The trace of s thus partitions the
curve into different segments whose bound-
aries occur where s changes value. We con-
sider how to learn the mapping between x
and s from examples of segmented curves.
Our approach is to model the conditional ran-
dom process that generates segments of con-
stant s along the curve of x. We suppose
that the variable s evolves stochastically as
a function of the arc length traversed by x.
Since arc length does not depend on the rate
at which a curve is traversed, this gives rise
to a family of Markov processes whose pre-
dictions, Pr[s|x], are invariant to nonlinear
warpings (or reparameterizations) of time.
We show how to learn the parameters of these
Markov processes from labeled and/or unla-
beled examples of segmented curves. The re-
sulting models are motivated for automatic
speech recognition, where x are acoustic fea-
tures and s are phonetic transcriptions.

1 INTRODUCTION

The automatic segmentation of continuous trajecto-
ries poses a challenging problem in machine learning.
The problem arises whenever a multidimensional tra-
jectory {E(2)|2 6 [0,r]} must be described by a se-

quence of discrete labels S1S2 ■. .sn. A simple way to
map trajectories into sequences is to specify consecu-
tive time intervals such that s(t) = Sk for t G [<fc_i,tjfe].
This attaches the labels Sk to contiguous arcs along the
trajectory. The learning problem is to discover such a
mapping from labeled and/or unlabeled examples.

In this paper, we study this problem, paying special
attention to the fact that curves have intrinsic geomet-
ric properties that do not depend on the rate at which
they are traversed (do Carmo, 1976). Such properties
include, for example, the total arc length and the max-
imum distance between any two points on the curve.
Given a multidimensional trajectory {x(<)|^ £ [0,r]},
these properties are invariant to reparameterizations
t ~~* /(0> where f(t) is any monotonic function that
maps the interval [0, r] into itself. Put another way,
the intrinsic geometric properties of the curve are in-
variant to nonlinear warpings of time.

Invariance to nonlinear warpings of time is an example
of a mathematical symmetry. The importance of such
symmetries in statistical pattern recognition (Duda &
Hart, 1973) is well-known. For example, in the prob-
lem of object recognition from two dimensional images,
one often incorporates invariances to translations, ro-
tations, and changes of scale (Simard et al, 1993). In
the segmentation of continuous trajectories, one natu-
rally encounters the question of invariance to nonlinear
warpings of time. A better understanding of this in-
variance is therefore valuable in its own right. Beyond
its mathematical interest, however, the principled han-
dling of this invariance suggests new algorithms for the
automatic segmentation of continuous trajectories. In-
deed, the primary motivation for this work is its po-
tential application to automatic speech recognition—a
subject to which we return in the final section of the
paper.

The study of curves requires some simple notions from

Automatic Segmentation of Continuous Trajectories 507

differential geometry. As a matter of terminology, we
refer to particular parameterizations of curves as tra-
jectories. We regard two trajectories xi(t) and x2(t) as
equivalent to the same curve if there exists a monoton-
ically increasing function / for which xi(t) - x2 (/(<))•
(To be precise, we mean the same oriented curve: the
direction of traversal matters.) Here, as in what fol-
lows, we adopt the convention of using x(t) to denote
an entire trajectory as opposed to constantly writing
out {x(t)\t 6 [0,r]}. When necessary to refer to the
value of x(t) as a particular moment in time, we use a
different index, such as x(ti).

Let us return now to the problem of automatic segmen-
tation. Consider two variables—one continuous (x),
one discrete (s)—that evolve jointly in time. Thus the
vector x traces out a smooth multidimensional curve,
to each point of which the variable s attaches a discrete
label. Note that each trace of s yields a partition of
the curve into different components; in particular, the
boundaries of these components occur at the points
where s changes value. We refer to such partitions
as segmentations and to the regions of constant s as
segments; see figure 1.

Our goal in this paper is to learn a probabilistic map-
ping between trajectories x(t) and segmentations s(t)
from labeled and/or unlabeled examples. Consider the
conditional random process that generates segments
of constant s along the curve traced out by x. Given
a trajectory x(t), let Pi[s(t)\x(t)] denote the condi-
tional probability distribution over possible segmenta-
tions. Suppose that for any two equivalent trajectories
x(t) and x(/(i)), we have the identity:

Pt[*(t) | *(0] = Pr[«(/W) I «(/(*))]• (!)

Eq. (1) captures a fundamental invariance—namely,
that the probability that the curve is segmented in
a particular way is independent of the rate at which
it is traversed. In this paper, we study Markov pro-
cesses with this property. We call them Markov pro-
cesses on curves (MPCs) because for these processes
it is unambiguous to write Pr[s | x] without provid-
ing explicit parameterizations for the trajectories, x(t)
or s(t). The distinguishing feature of MPCs is that the
variable s evolves as a function of the arc length tra-
versed along x, a quantity that is manifestly invariant
to nonlinear warpings of time.

The main contributions of this paper are: (i) to pos-
tulate eq. (1) as a fundamental invariance of random
processes; (ii) to introduce MPCs as a family of prob-
abilistic models that capture this invariance; (iii) to
derive monotonically convergent learning procedures

s(t) = s j
s(t) = s3

Figure 1: Two variables—one continuous (x), one dis-
crete (s)—evolve jointly in time. The trace of s par-
titions the curve of x into different segments whose
boundaries occur where s changes value. Markov pro-
cesses on curves model the conditional distribution,
Pr[s|x].

for MPCs based on the principle of maximum like-
lihood estimation; and (iv) to contrast the proper-
ties of MPCs with those of hidden Markov models
(HMMs), especially as they relate to problems in au-
tomatic speech recognition (Rabiner k Juang, 1993).
In terms of previous work, our motivation most closely
resembles that of Tishby (1990), who several years ago
proposed a dynamical system approach to speech pro-
cessing.

The organization of this paper is as follows. In sec-
tion 2, we begin by reviewing some basic concepts
from differential geometry. We then introduce MPCs
as a family of continuous-time Markov processes that
parameterize the conditional probability distribution,
Pr[s | x]. The processes are derived from a set of differ-
ential equations that describe the pointwise evolution
of s along the curve traced out by x.

In section 3, we consider how to learn the parameters
of MPCs in both supervised and unsupervised settings.
These settings correspond to whether the learner has
access to labeled or unlabeled examples. Labeled ex-
amples consist of trajectories x(t), along with their
corresponding segmentations:

{START -f («i.ii) • • • (*„,*n) — END}. (2)

The ordered pairs in eq. (2) indicate that s(t) takes
the value Sk between times tk-i and <j,; the START
and END states are used to mark endpoints. Unlabeled
examples consist only of the trajectories x(t) and the
boundary values:

{(0, START) —f (r.END)}. (3)

Eq. (3) specifies only that the Markov process starts
at time t = 0 and terminates at some later time r. In
this case, the learner must infer its own target values
for s(t) in order to update its parameter estimates. We
view both types of learning as instances of maximum

508 Saul

likelihood estimation and describe an Expectation-
Maximization (EM) algorithm for the more general
case of unlabeled (or partially labeled) examples.

In section 4, we discuss the application of MPCs to au-
tomatic speech recognition (Rabiner & Juang, 1993).
Here we can identify the curves x with time-varying
spectral signatures and the segmentations s with pho-
netic transcriptions. We discuss possible advantages of
MPCs over hidden Markov models, the current lead-
ing technology for automatic speech recognition. The
most important of these are: (i) the natural han-
dling of variations in speaking rate—i.e., the rate at
which acoustic features (summarized by a;) change
with time—and (ii) the emphasis on learning a recog-
nition model Pr[s|a:], as opposed to a synthesis model
Pr[a:|s]. Finally, we conclude by outlining our plans
for future work.

2 MARKOV PROCESSES ON
CURVES

Markov processes on curves are based fundamentally
on the notion of arc length. After reviewing how to
compute arc lengths along curves, we show how they
can be used to define random processes that capture
the invariance of eq. (1).

2.1 ARC LENGTH

Let g(x) define a D x D matrix-valued function over
x 6 liP ■ If g(x) is everywhere non-negative definite,
then we can use it as a metric to compute distances
along curves. In particular, consider two nearby points
separated by the infinitesimal vector dx. We define the
squared distance between these two points as:

dt- 2 _ dx g(x) dx. (4)

Arc length along a curve is the non-decreasing function
computed by integrating these local distances. Thus,
for the trajectory x(t), the arc length between the
points aj(<i) and xfa) is given by:

= /' Jti
dt x g{x)x (5)

where x = -^[x{t)] denotes the time derivative of x.
Note that the arc length between two points is in-
variant under reparameterizations of the trajectory,
x{i) —► x(f(t)), where /(<) is any smooth monotonic
function of time that maps the interval [tfi,^] into it-
self.

In the special case where g(x) is the identity ma-
trix, eq. (5) reduces to the standard definition of arc
length in Euclidean space. More generally, however,
eq. (4) defines a non-Euclidean metric for computing
arc lengths. Thus, for example, if the metric g(x)
varies as a function of x, then eq. (5) can assign differ-
ent arc lengths to the trajectories x(t) and x(t) + x0,
where x0 is a constant displacement.

2.2 STATES AND LIFETIMES

The problem of segmentation is to map a trajectory
x(t) into a sequence of discrete labels sis2 • • -sn. If
these labels are attached to contiguous arcs along the
curve of x, then we can describe this sequence by a
piecewise constant function of time, s(t), as in figure 1.
We refer to the possible values of s as states. In what
follows, we introduce a family of conditional random
processes that evolve s as a function of the arc length
traversed along the curve traced out by x. These ran-
dom processes are based on a simple premise—namely,
that the probability of remaining in a particular state
decays exponentially with the cumulative arc length
traversed in that state. The signature of a state is
the particular way in which it computes arc length.

To formalize this idea, we associate with each state i
the following quantities: (i) a position-dependent ma-
trix gi(x) that can be used to compute arc lengths, as
in eq. (5); (ii) a decay parameter A,- that measures the
probability per unit arc length that s makes a transi-
tion from state i to some other state; and (iii) a set
of transition probabilities ai;-, where a,j represents the
probability that—having decayed out of state i—the
variable s makes a transition to state j. Thus, a,j de-
fines a stochastic transition matrix with zero elements
along the diagonal and rows that sum to one: a,-,- = 0
and J2ja>j = 1-

Together, these quantities can be used define a Markov
process along the curve traced out by a;. In particular,
let pi(t) denote the probability that s is in state i at
time t, based on its history up to that point in time.
A Markov process is defined by the set of differential
equations:

dpi
dt

= -A,pi •T
x gi

12 r
(x) x j ' +Y^ ^jPjaji xTgj(x) x

(6)
The right hand side of eq. (6) consists of two compet-
ing terms. The first term computes the probability
that s decays out of state i; the second computes the
probability that s decays into state i. Both probabil-
ities are proportional to measures of arc length, and

Automatic Segmentation of Continuous Trajectories 509

combining them gives the overall change in probability
that occurs in the time interval [t,t + dt]. The process
is Markovian because the evolution of p« depends only
on quantities available at time t; thus the future is
independent of the past given the present.

Eq. (6) has certain properties of interest. First, note
that summing both sides over i gives the identity
J2idpi/dt = 0. This shows that p; remains a nor-
malized probability distribution: i.e., Y.iP> — 1 at a11

times. Second, suppose that we start in state i and
do not allow return visits: i.e., p< = 1 and OJ* = 0 for
all j. In this case, the second term of eq. (6) vanishes,
and we obtain a simple, one-dimensional linear differ-
ential equation for pi(t). It follows that the probability
of remaining in state i decays exponentially with the
amount of arc length traversed by x, where arc length
is computing using the matrix gi(x). The decay pa-
rameter, Xi, controls the typical amount of arc length
traversed in state i; it may be viewed as an inverse
lifetime or—to be more precise—an inverse lifelength.
Finally, noting that arc length is a reparameterization-
invariant quantity, we therefore observe that these dy-
namics capture the fundamental invariance of eq. (1).

2.3 INFERENCE

Let aoi denote the probability that the variable s
makes an immediate transition from the START state—
denoted by the zero index—to state i; put another way,
this is the probability that the first segment belongs to
state i. Given a trajectory x(t), the Markov process
in eq. (6) gives rise to a conditional probability distri-
bution over possible segmentations, s(t). Consider the
segmentation in which s(t) takes the value sk between
times ijfe_i and tk, and let

= jT * [xTgSk(x)x (?)

denote the arc length traversed in state sk. From
eq. (6), we know that the probability of remaining in
a particular state decays exponentially with this arc
length. Thus, the conditional probability of this seg-
mentation is given by:

second product multiplies the probabilities for transi-
tions between states sk and sk+i- The leading factors
of XSk are included to normalize each state's duration
model.

There are many important quantities that can be com-
puted from the distribution, Pr[s|x]. Of particular in-
terest is the most probable segmentation:

Pr[s|as] = II As -As, i,.

k = \

'SfcSjt + l i (8)

where we have used s0 and sn+i to denote the START
and END states of the Markov process. The first prod-
uct in eq. (8) multiplies the probabilities that each
segment traverses exactly its observed arc length. The

= argmax jlnPr[s|x]j . (9)

Given a particular trajectory x(t), eq. (9) calls for a
maximization over all piecewise constant functions of
time, s(t). In practice, this maximization can be per-
formed by discretizing the time axis and applying a
dynamic programming procedure. The resulting seg-
mentations will be optimal at some finite temporal
resolution, At. For example, let a^t) denote the log-
likelihood of the most probable segmentation, ending
in state i, of the subtrajectory up to time t. Starting
from the initial condition a,(0) = ln[a0j], we compute

aj(t + At) = max|ai(<) - A.Af [iT3i(a;)i]2

+ HXiaij](l - «0-)} . (10)

where 5y is the discrete delta function. Also, at each
time step, let ^(t+At) record the value of i that max-
imizes the right hand side of eq. (10). Suppose that
the Markov process terminates at time r. Enforcing
the endpoint condition S*(T) = END, we find the most
likely segmentation by back-tracking:

**(i-At) = *..(«)(*)• (11)

These recursions yield a segmentation that is opti-
mal at some finite temporal resolution At. Gener-
ally speaking, by choosing At to be sufficiently small,
one can minimize the errors introduced by discretiza-
tion. In practice, one would choose At to reflect the
time scale beyond which it is not necessary to consider
changes of state.

Other types of inferences can also be made from the
distribution, eq. (8). For example, one can compute
the marginal probability that the Markov process ter-
minates at precisely the observed time. This is done
by summing the probabilities

Pr [S(T) = END | x(t)] =

£Pr[S(t)|s(t)]x{ I if S(T) = END
otherwise

(12)

510 Saul

where the zero-one weighting factor selects out only
those segmentations that terminate precisely at time r.
Similarly, one can compute the posterior probability,
Pr[s(*i) = i\x(t), s(r) = END], that at an earlier mo-
ment in time, <1(the variable s was in state i. Both
types of inferences are handled by discrctizing the time
axis and applying a dynamic programming procedure
similar to eqs. (10-11). In the interest of brevity, we do
not give the details of these constructions, noting only
that in most respects they are completely analogous
to the ones for discrete-time hidden Markov models
(Rabiner k Juang, 1993).

3 LEARNING FROM EXAMPLES

In this section, we consider how to learn Markov pro-
cesses of the form, eq. (6). By learning, we mean how
to estimate the parameters {A,-, ay, gi(x)} from exam-
ples of segmented (or non-segmented) curves. Our first
step is to assume a convenient parameterization for the
matrices, gi{x), that compute arc lengths. We then
show how to fit these matrices, along with the param-
eters A; and ay, by maximum likelihood estimation.

A variety of parameterizations can be considered for
the matrices, gi(x). In this paper, we consider the very
simple form:

9i(x) = |(x - ßif Ef1 (x - Mi.)|
2 o~\ (13)

where the parameters (ii, E; and a, are set by max-
imum likelihood estimation. Here, E, and er, are
positive-definite D x D square matrices, while \i{ is
a D-dimensional vector. We also impose the deter-
minant constraint |E,-||o-,-|i = 1; this eliminates the
degenerate solution, gt(x) = 0, in which every tra-
jectory is assigned zero arc length. Note that there
remains an artificial degree of freedom associated with
simultaneously rescaling E,- and <T,-.

The form of eq. (13) is designed to endow each state
with a characteristic signature. In particular, consider
the differential arc lengths that appear in eq. (6):

xTgi(x) x = {x-tofZT^x \h
■T -

X <J-

If x is close to \i{, then both the arc length and the
corresponding probability of decay (out of state i) are
small. Each state is therefore characterized by the
values of x that allow it to persist. Intuitively, the pa-
rameters /x,- can be viewed as target vectors associated
with each state of the Markov process. Typical de-
viations about /X; are encoded by E,- and er,-. In what
follows, we show how to learn the parameters that best
characterize each state.

3.1 LABELED EXAMPLES

Suppose we are given examples of segmented trajecto-
ries, {xa(t),sa(t)}, where the index a runs over the
example in the training set. As shorthand, let Sia(t)
denote the indicator function that selects out segments
associated with state i:

6ia(t) = ifsa(t) =
otherwise. (14)

Also, let £ia denote the total arc length traversed by
state i in the ath example:

ia = Jd dt 6ia(t) xagi(xQ)xQ (15)

In this paper we view learning as a problem in maxi-
mum likelihood estimation. Thus we seek the param-
eters that maximize the conditional log-likelihood:

J2 1" Pr[*«\xQ] = -]T XA„ + ^2 riij ln[A,ay],
a >a ij

(16)
where ny is the overall number of observed transitions
from state i to state j. The first term in eq. (16)
measures the log-likelihood of observed segments in
isolation, while the second measures the log-likelihood
of observed transitions.

Eq. (16) has a convenient form for maximum likeli-
hood estimation. In particular, there are closed-form
solutions for the values of A,- and ay that maximize
this log-likelihood; they are given by:

= riij/m
1 V

7 J ^io\ 71- *—'

(17)

(18)

where n,- =]T\ ny. In general, we cannot find closed-
form solutions for the maximum-likelihood estimates
of {/x^EijCr,}. However, we can update these param-
eters in an iterative fashion that is guaranteed to in-
crease the log-likelihood at each step. Denoting the
updated parameters by {//,-, E,-, tr;}, we consider the
iterative scheme (derived in the appendix):

Ea Idt 6i°
M,

•T -
XnG:

EJdt 6ia A,-„Afc

•T -1 • xa <rt xc

1
2

(19)

-, (20)

f.

J2a fdt 6ia

«I; Aftft«f/oE~lA*r *.*;, (21)
rv J 'T -1 • 1 2 0 n* ST. ip

Automatic Segmentation of Continuous Trajectories 511

where the constant c,- is determined by the determi-
nant constraint |S.-||erj|i = 1 and we have introduced
the shorthand notation,

Aia(t) = xa(t)- ßi, (22)

for the difference between xa(t) and its (re-estimated)
target value in state i. Note that all the variables in
eqs. (19-21) with the subscript a have an implicit time
dependence.

Some intuition for the form of these updates
can be gained by considering the points dis-
tributed along xa(t), as weighted by the measure
6ia(t)[AT<Tf1x]i. The updates for \i{ and E* sim-
ply compute the mean and covariance of this distribu-
tion. The update for <Xj has a similar interpretation,
though its derivation relies on the introduction of an
auxiliary function, <2(<r,-,<r,-), as in the Expectation-
Maximization (EM) procedure (Dempster, Laird, k
Rubin, 1977). Note that it is important to perform
the updates in the order shown, since (for example)
the S-update depends on the re-estimated value of ß.
By taking gradients of eq. (16), one can show that the
fixed points of this iterative procedure correspond to
stationary points of the log-likelihood. A proof sketch
of monotonic convergence is given in the appendix.

In the case of labeled examples, the above proce-
dures for maximum likelihood estimation can be in-
voked independently for each state i. One first iterates
eqs. (19-21) to estimate the parameters that determine
gi(x). These parameters are then used to compute
the arc lengths, tia, that appear in eq. (15). Given
these arc lengths, the decay parameters and transition
probabilities follow directly from eqs. (17-18). Thus
the problem of learning given labeled examples is rel-
atively straightforward.

3.2 UNLABELED EXAMPLES

In this section we consider the problem of unsuper-
vised learning. In this setting, the learner does not
have access to labeled examples; the only available in-
formation consists of the trajectories xa(t), as well as
the fact that each process terminates at some time ra.
The goal of unsupervised learning is to maximize the
conditional log-likelihood,

^lnPr[sa(ra) = END | x«(i)]; (23)

that for each trajectory xa(t), some probable segmen-
tation can be found that terminates at precisely the
observed time. The marginal probabilities in eq. (23)

are computed by summing Pr[s(t)|sn(<)] over allowed
segmentations, as in eq. (12).

The maximization of this log-likelihood defines a prob-
lem in hidden variable density estimation. The hidden
variables are the states of the Markov process. If these
variables were known, the problem would reduce to the
one considered in the previous section. To fill in these
missing values, we avail ourselves of the Expectation-
Maximization (EM) algorithm (Baum, 1972; Demp-
ster, Laird, & Rubin, 1976). Roughly speaking, the
EM algorithm works by converting the maximiza-
tion of eq. (23) into a weighted version of the prob-
lem where the segmentations, sa(t), are known. The
weights are determined by the posterior probabilities,
Vi[sa(t)\xa(t),sa(Ta) = END], derived from the cur-
rent parameter estimates.

In the interest of brevity, we do not give a detailed
account of the full EM algorithm for MPCs. We note,
however, that eqs. (10-11) by themselves suffice to im-
plement a very good approximation to the full proce-
dure. This approximation is to compute, based on
the current parameter estimates, the optimal segmen-
tation, s* (t), for each trajectory in the training set;
one then re-estimates the parameters of the Markov
process by treating the inferred segmentations, s*a(t),
as targets. This approximation reduces the problem
of parameter estimation to the one considered in the
previous section. It can be viewed as a winner-take-all
approximation to the full EM algorithm, analogous to
the Viterbi approximation for hidden Markov models
(Rabiner & Juang, 1993).

Essentially the same algorithm can also be applied
to the intermediate case of partially labeled examples.
Suppose, for example, that the learner has access to
labeled state sequences but not to segmented curves;
in other words, examples are provided in the form:

{START -v («i,?) • • ■ (*„,?) -> END}. (24)

The ability to handle such examples is important for
two reasons: first, because they provide significantly
more information than unlabeled examples, and sec-
ond, because they are often much cheaper to generate
than fully segmented curves. As before, we can view
the learning problem for these examples as one in hid-
den variable density estimation. In this case, the hid-
den variables are not the states of the Markov process
per se, but only the times at which they change. We
can incorporate knowledge of the state sequence into
the EM algorithm simply by restricting the sums over
paths in eqs. (10) and (12) to those that pass through
the desired sequence.

512 Saul

4 AUTOMATIC SPEECH
RECOGNITION

The Markov processes in this paper were conceived
as models for automatic speech recognition (Rabiner
k Juang, 1993). Speech recognizers take as input a
sequence of feature vectors, each of which encodes a
short window of speech. Acoustic feature vectors typi-
cally have ten or more components, so that a particular
sequence of feature vectors can be viewed as tracing
out a multidimensional curve. The goal of a speech
recognizer is to translate this curve into a sequence of
words, or more generally, a sequence of sub-syllabic
units known as phonemes. Denoting the feature vec-
tors by xt and the phonemes by st, we can view this
problem as the discrete-time equivalent of the segmen-
tation problem in MPCs.

Why consider MPCs as models of speech recognition?
Hidden Markov models (HMMs), the current leading
technology, are also based on probabilistic methods.
These models manipulate joint distributions of the
form:

Pr[s,x] = HPv[st\st^}Pr[xt\st}. (25)

Though HMMs have led to significant advances in
speech recognition, they are handicapped by certain
weaknesses. One of these is the poor manner in which
they handle variations in speaking rate. Intuitively, we
can represent these variations by nonlinear warpings of
time. For example, consider the pair of trajectories xt

and yt, where yt is created by the doubling operation:

Vt
xt/2 if i even,
Vt-\ if* odd.

(26)

Both trajectories trace out the same curve, but yt does
so at half the rate as xt. Hidden Markov models will
not assign these trajectories the same likelihood, nor
are they guaranteed to infer equivalent segmentations.
This example shows that HMMs do not even approx-
imately capture the invariances modeled by MPCs or
other arc-length based descriptions of speech (Tishby,
1990).

Admittedly, the warping in eq. (26) represents a highly
idealized picture of acoustic variability. Nevertheless,
there is a great deal of empirical evidence that HMMs
suffer from the inability to model variations in speak-
ing rate (Siegler k Stern, 1995). For example, word
error rates increase dramatically when one moves from
scripted to spontaneous speech. Also, one generally
observes that consonants are more frequently botched

than vowels. The reason is that in HMMs, the contri-
bution of particular states to the overall log-likelihood
is in direct proportion to their duration. Thus training
procedures designed to maximize the log-likelihood arc
inherently biased to model long-lived phonemes (i.e.,
vowels) more accurately than short-lived ones.

MPCs are quite different from HMMs in this respect.
In MPCs, the contribution of each state to the log-
likelihood is determined by its arc length. The weight-
ing by arc length attaches a more important role to
short-lived but non-siationary phonemes. Of course,
one can imagine heuristics in HMMs that achieve the
same effect, such as dividing each state's contribu-
tion to the log-likelihood by its observed (or inferred)
duration. Unlike such heuristics, however, the state-
dependent metric g(x) in MPCs is learned from data;
in particular, it is designed to reweight the speech sig-
nal in a way that reflects the actual statistics of acous-
tic trajectories.

So far we have emphasized the invariance to non-
linear warpings of time as the main difference be-
tween MPCs and HMMs. Another important differ-
ence, however, lies in what each tries to model. While
MPCs attempt to model the conditional distribution
Pr[s|a;], HMMs attempt to model the joint distribu-
tion, Pr[s,x]. Only the former is required for speech
recognition, yet HMMs attempt something much more
ambitious by learning a generative model of acoustic
trajectories. Maximum likelihood training in HMMs
is designed to increase the likelihood of observed tra-
jectories, Pr[x]. Unfortunately, because HMMs do not
represent the true model of speech, maximizing this
likelihood does not always translate into minimizing
error rates. These issues point to yet another differ-
ence between MPCs and HMMs. Learning in MPCs
is directed at learning a recognition model, Pr[s|a:], as
opposed to a synthesis model, Pr[x|s]. The direction of
conditioning is a crucial difference between maximum
likelihood estimation in MPCs and HMMs.

In terms of previous work, our motivation for MPCs
most closely resembles that of Tishby (1990), who
stressed the importance of invariance to nonlinear
warpings of time as a mathematical symmetry. In that
MPCs stress the continuous nature of the speech sig-
nal, they also bear some resemblance to so-called seg-
mcntal acovstic models (Ostendorf, Digalakis, k Kim-
ball, 1996) of speech. Unlike HMMs, segmental acous-
tic models enforce the constraint that acoustic feature
vectors within the same phonemic state trace out a
continuous trajectory. Despite this shared emphasis
on continuity, however, segmental models and MPCs

Automatic Segmentation of Continuous Trajectories 513

differ in fundamental respects. In particular, segmen-
tal models incorporate the constraint of continuity by
building a more complicated synthesis model Pr[x|s] of
acoustic trajectories. They retain, however, the usual
Markov assumption between states:

Pr[st|st_i,st_2,...,st-T] = Pr[si|st_i]. (27)

By contrast, MPCs build a recognition model Pr[s|x]
whose very definition is conditioned on the existence
of a continuous trajectory. Moreover, the Markov as-
sumption in MPCs—as embodied by eq. (6)—is con-
ditioned on the current position and tangent vector
of the acoustic feature trajectory. This differs from
the Markov assumption in eq. (27), which is made in-
dependent of (or unconditioned on) the acoustic fea-
tures. Finally, to the best of our knowledge, MPCs are
novel in two key respects: the formulation of a warp-
invariant probabilistic model explicitly in terms of arc
length, and the emphasis on learning a metric g(x) for
each hidden state of the Markov process. These ideas
differentiate MPCs from segmental acoustic models as
well as ordinary HMMs.

The starting point of this work was to postulate eq. (1)
as an invariance of random processes. Of course,
it would be naive to expect speech signals to ex-
hibit a strict invariance to nonlinear warpings of time.
The acoustic realization of a phoneme does depend
to some extent on the speaking rate, and certain
phonemes are more likely to be stretched or short-
ened than others. To accommodate this, one can relax
the warping invariance in MPCs. This is most easily
done by building models of the space-time1 trajecto-
ries X(t) = {x(t),t} and computing generalized arc

lengths, dL = [XTG(X)X]Ut, where X = {4,1}
and G(X) is a space-time metric. The effect of replac-
ing 4 by X is to allow each acoustic feature vector to
contribute a finite amount to the overall log-likelihood
even when |4| is zero—that is, even when it represents
a perfectly stationary frame of speech.

We are currently evaluating MPCs as engines for au-
tomatic speech recognition. Naturally, we expect that
many further elaborations will be required to surpass
the finely tuned performance of modern recognizers.
These may include more sophisticated parameteriza-
tions of the metric gi(x), the use of information from
higher order derivatives (e.g., 4 and 4), and/or tran-
sition probabilities dij(x) that vary along the length

■"The admixture of space and time coordinates in this
way is an old idea from physics, originating in the theory
of relativity (Einstein, 1924) (though in that context the
metric is negative-definite).

of the curve. Nevertheless, we hope that this paper
serves to introduce the basic principles of MPCs, as
well as to suggest an intriguing departure from tradi-
tional methods in automatic speech recognition.

A REESTIMATION FORMULAS

In this appendix we derive the reestimation formulas,
eqs. (19-21) and show that they lead to monotonic
increases in the log-likelihood, eq. (16).

We begin by examining a simpler problem. Let
{x(t)\t € [0,r]} denote a D-dimensional trajectory,
and let $(x) > 0 denote an everywhere non-negative
function of a;. Now consider the function:

l{&) = f dt [: T -1 •
X <7 X *(*(*)). (28)

where a is a D x D positive-definite matrix. The right
hand side of eq. (28) clearly depends on the trajectory
x(t) and the function $(x), but for now let us regard
both of these as fixed and consider 1(e) simply as a
function of the matrix <r.

Since a is positive-definite and $(x) > 0, we immedi-
ately observe that the function £(<r) is bounded below
by zero. Let us consider how to find the value of cr
that minimizes t{a), subject to the determinant con-
straint |er| = 1. Note that the matrix elements of cr~l

appear nonlinearly in the right hand side of eq. (28);
thus it is not possible to compute their optimal val-
ues in closed form. As an alternative, we consider the
auxiliary function:

where p is a D x D positive-definite matrix like a.
It follows directly from the definition in eq. (29) that
l(cr) = Q(<r,<r). Somewhat less trivially, we observe
that Q(p, p) < Q(p, (T) for all positive definite matrices
p and a. This inequality follows from the concavity of
the square root function, as illustrated in figure 2.

Consider the value of p which minimizes Q(p, cr), sub-
ject to the determinant constraint |/>| = 1. We denote
this value by ä = min|p|=i Q(p,a). Because the ma-
trix elements of p~x appear linearly in Q(p,cr), this
minimization essentially reduces to computing the co-
variance matrix of the tangent vector 4, as distributed
along the trajectory x(t). In particular, we have:

a oc / dt
Jo

XX

T-T _1 Mi [a; a Lx\2
(»()). (30)

514 Saul

Figure 2: The square root function is concave and up-
per bounded by y/z < \[z/y/Z + y/l} for all (_ > 0. The
bounding tangents are shown for £ = -^ and £ = 1.

where the constant of proportionality is determined by
the constraint \ä\ = 1. To minimize ((a) with respect
to a, we now consider the iterative procedure where at
each step we replace a by ä. We observe that:

() = Q(a,cr)

< Q((f, a) due to concavity

< Q(a, a) since d = min,, Q(p, a)

= %)>

with equality generally holding only when ä = er. In
other words, this iterative procedure converges mono-
tonically to a local minimum of £(cr).

Let us now relate the problem of minimizing (.(a) to
the original problem of maximizing the likelihood in
eq. (16). There we saw that for each state of the MPC,
it was necessary to optimize the parameters {n, E, a).
Here, for notational convenience, we have dropped the
subscript denoting the state index of these parameters.
Note that in terms of these parameters, maximizing
each state's contribution to the log-likelihood is equiv-
alent to minimizing the total arc length of its segments
in the training set. This problem can be viewed as a
particular instance of the one considered above, pro-
vided that we make the identification:

*(as) = {x-ß)TT,-\x- ß). (31)

Of course, now in addition to minimizing the arc length
with respect to a, we must also optimize the values of
fi and E. To this end, note that eq. (31) defines a
standard quadratic form; hence for fixed a, the values
of fi and E that minimize eq. (28) are given simply
by the mean and covariance matrix of the points x(t)

along each state's segments, as weighted by the mea-
sure [x <T-

1
X}I . Within each state, we thus obtain a

monotonically convergent learning procedure by alter-
nately optimizing fx and E for fixed <r, then optimizing
a for fixed ß and E. This leads directly to the reesti-
mation formulas in eqs. (19-21).

Acknowledgements

The author thanks F. Pereira, M. Rahim, and the
anonymous reviewers for many helpful comments
about the presentation of these ideas.

References

L. Baum (1972). An inequality and associated maxi-
mization technique in statistical estimation for prob-
abilistic functions of a markov process. In 0. Shisha,
editor, Inequalities, 3:1-8. New York: Academic Press.

A. Dempster, N. Laird, and D. Rubin (1977). Maxi-
mum likelihood from incomplete data via the em al-
gorithm. Journal of the Royal Statistical Society B,
39:1-38.

M. P. do Carmo (1976) Differential Geometry of
Curves and Surfaces. Prentice Hall.

R. 0. Duda and P. E. Hart (1973). Pattern Classifi-
cation and Scene Analysis. New York: Wiley.

A. Einstein (1924). The Principle of Relativity. Dover.

M. Ostendorf, V. Digalakis, and O. Kimball (1996).
From HMMs to segment models: a unified view of
stochastic modeling for speech recognition. IEEE
Transactions on Acoustics, Speech and Signal Process-
ing, 4:360-378.

L. Rabiner and B. Juang (1993). Fundamentals of
Speech Recognition. Englewood Cliffs, NJ: Prentice
Hall.

M. A. Siegler and R. M. Stern (1995). On the effects of
speech rate in large vocabulary speech recognition sys-
tems. In Proceedings of the 1995 IEEE International
Conference on Acoustics, Speech, and Signal Process-
ing, 612-615.

P. Simard, Y. LeCun, and J. Denker (1993). Efficient
pattern recognition using a new transformation dis-
tance. In Advances in Neural Information Processing
Systems 5:50-58. San Mateo, CA: Morgan Kauffman.

N. Tishby (1990). A dynamical system approach to
speech processing. In Proceedings of the 1990 IEEE
International Conference on Acoustics, Speech, and
Signal Processing, 365-368.

515

Ridge Regression Learning Algorithm
in Dual Variables

C. Saunders, A. Gammerman and V. Vovk
Royal Holloway, University of London

Egham, Surrey, TW20 OEX, UK
{craig,alex,vovk}@dcs.rhbnc.ac.uk

Abstract

In this paper we study a dual version of the
Ridge Regression procedure. It allows us to
perform non-linear regression by construct-
ing a linear regression function in a high di-
mensional feature space. The feature space
representation can result in a large increase
in the number of parameters used by the al-
gorithm. In order to combat this "curse of
dimensionality", the algorithm allows the use
of kernel functions, as used in Support Vector
methods. We also discuss a powerful family
of kernel functions which is constructed using
the ANOVA decomposition method from the
kernel corresponding to splines with an infi-
nite number of nodes. This paper introduces
a regression estimation algorithm which is
a combination of these two elements: the
dual version of Ridge Regression is applied
to the ANOVA enhancement of the infinite-
node splines. Experimental results are then
presented (based on the Boston Housing data
set) which indicate the performance of this
algorithm relative to other algorithms.

1 INTRODUCTION

First of all, let us formulate regression estimation prob-
lem. Suppose we have a set of vectors1 x\,..., XT, and
we also have a supervisor which gives us a real value
yt, for each of the given vectors. Our problem is to
construct a learning machine which when given a new

set of examples, minimises some measure of discrep-
ancy between its prediction yt and the value of yt- The
measure of loss which we are using, average square loss
(L), is defined by

1 »
L=j^2(yt-yt)2,

1We will use subscripts to indicate a particular vector
(e.g. xt is the tth vector), and superscripts to indicate a
particular vector element (e.g xl is the ith element of the
vector x).

where yt are the supervisor's answers, yt are the pre-
dicted values, and I is the number of vectors in the test
set.

Least Squares and Ridge Regression are classical sta-
tistical algorithms which have been known for a long
time. They have been widely used, and recently some
papers such as Drucker et al. [2] have used regres-
sion in conjunction with a high dimensional feature
space. That is the original input vectors are mapped
into some feature space, and the algorithms are then
used to construct a linear regression function in the
feature space, which represents a non-linear regression
in the original input space. There is, however, a prob-
lem encountered when using these algorithms within
a feature space. Very often we have to deal with a
very large number of parameters, and this leads to se-
rious computational difficulties that can be impossible
to overcome. In order to combat this "curse of dimen-
sionality" problem, we describe a dual version of the
Least Squares and Ridge Regression algorithms, which
allows the use of kernel functions. This approach is
closely related to Vapnik's kernel method as used in
the Support Vector Machine. Kernel functions repre-
sent dot products in a feature space, which allows the
algorithms to be used in a feature space without having
to carry out computations within that space. Kernel
functions themselves can take many forms and partic-
ular attention is paid to a family of kernel functions
which are constructed using ANOVA decomposition
(Vapnik [10]; see also Wahba [11, 12]). There are two

516 Sounders, Gammerman, and Vovk

major objectives of this paper:

1. To show how to use kernel functions to overcome
the curse of dimensionality in the above men-
tioned algorithms.

2. To demonstrate how ANOVA decomposition ker-
nels can be constructed, and evaluate their perfor-
mance compared to polynomial and spline kernels,
on a real world data set.

Results from experiments performed on the well known
Boston housing data set are then used to show that the
Least Squares and Ridge Regression algorithms per-
form well in comparison with some other algorithms.
The results also show that the ANOVA kernels, which
only consider a subset of the input parameters, can im-
prove on results obtained on the same kernel function
without the ANOVA technique applied. In the next
section we present the dual form of Least Squares and
Ridge Regression.

2 RIDGE REGRESSION IN DUAL
VARIABLES

Before presenting the algorithms in dual variables, the
original formulation of Least Squares and Ridge Re-
gression is stated here for clarity.

Suppose we have a training set (xi,yi),... ,{xr,yr),
where T is the number of examples, xt are vectors
in 1R" (n is the number of attributes) and yt € IR,
t = 1,...,T. Our comparison class consists of the
linear functions y = w • x, where w £ Hn.

The Least Squares method recommends computing
w = wo which minimizes

T

LT{w) = ^2{yt - w ■ xtf
t=i

and using WQ for labeling future examples: if a new
example has attributes x, the predicted label is wo ■ x.

The Ridge Regression procedure is a slight modifica-
tion on the least squares method and replaces the ob-
jective function LT(W) by

aWwf + 'EiVt-w-xt)2,
t=i

where o is a fixed positive constant.

We now derive a "dual version" for Ridge Regression
(RR); since we allow a = 0, this includes Least Squares

(LS) as a special case. In this derivation we partially
follow Vapnik [8]. We start with re-expressing our
problem as: minimize the expression

aw ' +
t=i

under the constraints

yt-w-xt=Zu t=l,...,T.

(1)

(2)

Introducing Lagrange multipliers at, t = 1,... ,T, we
can replace our constrained optimization problem by
the problem of finding the saddle point of the function

T T

a\H\2 + £ & + £ at (yt - w ■ xt - &). (3)
t=i t=\

In accordance with the Kuhn—Tucker theorem, there
exist values of Lagrange multipliers a = aKT for which
the minimum of (3) equals the minimum of (1), under
constraints (2). To find the optimal w and £, we will do
the following; first, minimize (3) in w and f and then
maximize it in a. Notice that for any fixed values of
a the minimum of (3) (in w and £) is less than or
equal to the value of the optimization problem (1)-
(2), and equality is attained when a = aKT. By doing
this, we will therefore find the solution to our original
constrained minimization problem (l)-(2).

Differentiating (3) in w, we obtain the condition

2aw — >J OLtxt = 0,

i.e.,

w
1 T

(4)
t=\

(Lagrange multipliers are usually interpreted as re-
flecting the importance of the corresponding con-
straints, and equation (4) shows that iu is proportional
to the linear combination of xt, each of which is taken
with a weight proportional to its importance.) Substi-
tuting this into (3), we obtain

1 T T

— £ agat(xa-xt) + Y,tf 4a «,<=! t=l

-> / T \ (T \T T

U=l t=l t=l t=l

Ridge Regression Learning Algorithm in Dual Variables 517

T T T 1
= ~4^ J2 asat{x8 •xt) + yj>2 $ +]T yt<*t ~ YJ

a<&"
s,t=l t=\ t=l t=\

Differentiating (5) in £t, we obtain

6 = ^, t = i,...,r

(5)

(6)

(i.e., the importance of the ith constraint is pro-
portional to the corresponding residual); substitution
into (5) gives

T 1 T T

-j-^2asat(x8-xt)-jYja't+Ylytat- W
4a s,t=l t=i t=i

Denoting K as the T x T matrix of dot products

and differentiating in at, we obtain the condition

which is equivalent to

a = 2a(K + o/)_1y.

Recalling (4), we obtain that the prediction y given by
the Ridge Regression procedure on the new unlabeled
example x is

w x= l^^"'*') 'x= -^a-k = y'{K + aI) xfc,

where k = (fa,..., kr)' is the vector of the dot prod-
ucts:

kt:=xt-x, t = l,...,T.

Lemma 1 RR 's prediction of the label y of a new un-
labeled example x is

y'(K + al)-xk, (8)

where K is the matrix of dot products of the vectors
XI,...,XT in the training set,

KSit = 1C(xs,xt), s = l,...,T, t = l,...,T,

k is the vector of dot products of x and the vectors in
the training set,

kt :=K(xt,x), t=l,...,T,

andK.(x,x') = x-x' is simply a function which returns
the dot product of the two vectors, x and x'.

3 LINEAR REGRESSION IN
FEATURE SPACE

When JC(xi,Xj) is simply a function which returns the
dot product of the given vectors, formula (8) corre-
sponds to performing linear regression within the input
space K" denned by the examples. If we want to con-
struct a linear regression in some feature space, we first
have to choose a mapping from the original space X
to a higher dimensional feature space F (cj>: X -> F).
In order to use Lemma 1 to construct the regression in
the feature space, the function K. must now correspond
to the dot product <j>(xi) • 4>(XJ). It is not necessary to
know 4>(x) as long as we know K,(xi,Xj) = <j>(xi)-<t>(xj).
The question of which functions K correspond to a dot
product in some feature space F is answered by Mer-
cer's theorem and addressed by Vapnik [9] in his dis-
cussion of support vector methods. As an illustration
of the idea, an example of a simple kernel function
is presented here. (See Girosi [4].) Suppose there is
a mapping function 0 which maps a two-dimensional
vector into 6 dimensions:

^:(»1,a2)^((x1)2
>(«2)a

>^a:1>V2a!
a
I^xV,l),

then dot products in F take the form

(<t>(x) ■ m)

= (xW)2+(*2)V)2+2*y
+2x2y2 + 2xV xV + 1

= ((x-y) + l)2.

One possible kernel function is therefore ((x ■ y) +1)2.
This can be generalised into a kernel function of the
form

K(x,y) = ((x-y) + l)d,

and more than 2 dimensions.

The use of kernel functions allows us to construct a
linear regression function in a high dimensional feature
space (which corresponds to a non-linear regression in
the input space) avoiding the curse of having to carry
out computations in the high dimensional space. In
particular, kernel functions are a way to combat the
curse of dimensionality problems such as those faced in
Drucker et al. [2], where a regression function was also
constructed in a feature space, but computations were
carried out in the high dimensional space, leading to
huge number of parameters for non-trivial problems.

For more information on the kernel technique, see Vap-
nik [8, 10, 9] and Wahba [11].

518 Sounders, Gammerman, and Vovk

4 MULTIPLICATIVE KERNELS

Before indicating how ANOVA decomposition can be
used to form kernels, a brief description is needed of
the family of kernels to which the ANOVA decompo-
sition can be applied, this being the family of multi-
plicative kernels. This refers to the set of kernels where
the multi-dimensional case is calculated as the prod-
uct of the one-dimensional case. That is, if the one-
dimensional case is ^(a;1,?/'), then the n-dimensional
case is

n

£n(x,y) = '[[k(xi,yi).
i=l

One such kernel (to which the ANOVA decomposition
is applied here) is the spline kernel with an infinite
number of nodes (see Vapnik [8, 10] and Kimeldorf
and Wahba [5]). A spline approximation which has an
infinite number of nodes can be defined on the interval
(0, o), 0 < a < oo, as the expansion

pa d

f(x) = / a{t)(x - t)d+dt + V aix\

where a*, i = 0,... ,d, are unknown values, and a(t)
is an unknown function which defines the expansion.
This can be considered as an inner product, and the
kernel which generates splines of dimension d with an
infinite number of nodes can be expressed as

kd(x,y)= I (x-t)d
+(y-t)d

+dt + f]xryr.

Note that when t > min(x, y) the function under the
integral sign will have value zero. It is therefore suffi-
cient only to consider the interval (0, min(a;, y)), which
makes the formula above equivalent to

r=0
2d - r + 1

x-y\

+5>v-
r=0

In particular, for the case of linear splines (d = 1) we
have :

i / \ 1. i . / v9 min(x,y)3

ki(x,y) = 1 + xy + -\y - x|min(x,y)1 + y-^--

5 ANOVA DECOMPOSITION
KERNELS

The ANOVA decomposition kernels are inspired by
their namesake in statistics, which analyses different
subsets of variables. The actual decomposition can be
adapted to form kernels (as in, e.g., Vapnik [10]) which
involve different subsets of the attributes of the exam-
ples up to a certain size. There are two main reasons
for choosing to use ANOVA decomposition. Firstly,
the different subsets which are considered may group
together like variables, which can lead to greater pre-
dictive power. Also, by only considering some subsets
of the input parameters, ANOVA decomposition re-
duces the VC dimension of the set of functions that
you are considering, which can avoid overfitting your
training data.

Given a one-dimensional kernel A;, the ANOVA kernels
are defined as follows:

>Ci(x,y)= J2 k(xk,yk),
l<k<n

>C2(x,y)= £ k{xk\y^)k{xk\yk%
l<*i<*2<n

. . . ,

>Cn(x,y) = k(xk\yk>)...k(xk»,yk").

From Vapnik [10] the following recurrent procedure
can be used when calculating the value of K.n(x,y).
Let

£'(*,») = $>(*',»'))'
t=i

and K.o(x,y) = 1; then

>Cp(x,y)= £ k{xk\yk*)...k(xk',vk>),
l<ki<k2<-<kp<n

p B = l

For the purposes of this paper, when using kernels pro-
duced by ANOVA decomposition, only the order p is
considered:

K{x,y) =K.p(x,y).

An alternative method of using ANOVA decomposi-
tion would be to consider order p and all lower orders
(as in Stitson [7]), i.e.,

v
£(x,y) = Y^£i(x,y)-

i=l

Ridge Regression Learning Algorithm in Dual Variables 519

6 EXPERIMENTAL RESULTS

Experiments were conducted on the Boston Housing
data set2. This is a well known data set for testing
non-linear regression methods; see, e.g., Breiman [1]
and Saunders [6]. The data set consists of 506 cases
in which 12 continuous variables and 1 binary vari-
able determine the median house price in a certain
area of Boston in thousands of dollars. The continuous
variables represent various values pertaining to differ-
ent locational, economic and structural features of the
house. The prices lie between $5000 and $50,000 in
units of $1000. Following the method used by Drucker
et al. [2], the data set was partitioned into a train-
ing set of 401 cases, a validation set of 80 cases and
a test set of 25 cases. This partitioning was carried
out randomly 100 times, in order to carry out 100 tri-
als on the data. For each trial the Ridge Regression
algorithm was applied using:

• a kernel which corresponds to a spline approxima-
tion with an infinite number of nodes,

• the same kernel but with the ANOVA decompo-
sition technique applied,

• and polynomial kernels.

For each kernel the set of parameters (the order of
spline/degree of polynomial and the value of coeffi-
cient a) was selected which gave the smallest error on
the validation set, and then the error on the test set
was measured. This experiment was then repeated us-
ing a support vector machine (SVM), with the same
kernels and exactly the same 100 training files (see
Stitson [7] for full details). As an illustration of the
number of parameters which were considered by the
Ridge Regression Algorithm (and the SVM), consider
the polynomial kernel which was outlined earlier, us-
ing a degree of 5. This maps the input vectors into a
high dimensional feature space which is equivalent to
evaluating 135 = 371,293 different parameters.

The results obtained from the experiments are shown
in Table 1. The measure of error used for the tests
was the average squared error. For each of the 100
test files, the algorithm was run and the square of the
difference between the predicted and actual value was
taken. This was then averaged over the 25 test cases.
This produces an average error for each of the 100 test

files, and an average of these were taken, which pro-
duces the final error which is quoted in the 3rd column
of the table. The variance measure in the table is the
average squared difference, between the squared error
measured on each sample and the average squared er-
ror.

There are two additional results which should be noted
here. One is from Breiman [1] using bagging with av-
erage squared error of 11.7, and one from Drucker et
al. [2] using Support Vector regression with polynomial
kernels with average squared error of 7.2. The result
obtained by Drucker et al. is slightly better than the
one obtained here using a similar machine; this may
be, however, due to the random selection of the train-
ing, validation and testing sets.

7 COMPARISONS

In this section we will give a comparison of the results
of this paper with the known results.

7.1 SV MACHINES

In this subsection we describe in more detail the con-
nection of the approach of this paper with the Support
Vector Machine.

Our optimization problem (minimizing (1) under con-
straints (2)) is essentially a special case of the following
general optimization problem: minimize the expres-
sion

under the constraints

Vt-wxt<e + G, t=l,...,T, (10)

wxt -yt < e + &> t = l,...,T; (11)

2 Available by anonymous FTP from:
ftp://ftp.ics.uci.com/pub/
machine-learning-databases/housing.

e > 0 and k G {1,2} are some constants. This opti-
mization problem (along with a similar problem cor-
responding to Huber's loss function) is considered in
Vapnik [10], Chapter 11 (Vapnik, however, considers
more general regression functions of the form w-x + b
rather than w • x; the difference is minor because we
can always add an extra attribute which is always 1 to
all examples).

Our problem (l)-(2) corresponds to the problem (9)-
(11) with fc = 2, e = 0 and C = 1/a. Vapnik [10] gives
a dual statement of his, and a fortiori our, problem; he
does not reach, however, the closed-form expression (8)

520 Sounders, Gammcrman, and Vovk

Table 1: Experimental Results on the Boston Housing Data

METHOD KERNEL SQUARED ERROR VARIANCE
Ridge Regression
Ridge Regression
Ridge Regression

Polynomial
Splines
ANOVA Splines

10.44
8.51
7.69

18.34
11.19
8.27

SVM [7]
SVM
SVM

Polynomial
Splines
Anova Splines

8.14
7.87
7.72

15.13
12.67
9.44

(because he was mainly interested in positive values of
e).

As we mentioned before, our derivation of formula (8)
follows [8]. The dual Ridge Regression is also known in
traditional statistics, but statisticians usually use some
clever matrix manipulations rather than the Lagrange
method. Our derivation (modelled on Vapnik's) gives
some extra insight: see, e.g., equations (4) and (6). For
an excellent survey of connections between Support
Vector Machine and the work done in statistics we
refer the reader to Wahba [11, 12] and Girosi [4].

7.2 KRIEGING

Formula (8) is well known in the theory of Krieging;
in this subsection we will explain the connection for
readers who are familiar with Krieging. Consider the
Bayesian setting where:

• the vector w of weights is distributed according to
the normal distribution with mean 0 and covari-
ance matrix ^.J;

• yt = w-xt + et,t = 1,... ,T, where et are random
variables distributed normally with mean 0 and
variance 2-

Then the optimization problem (1) under the con-
straints (2) becomes the problem of finding the pos-
terior mode (which, because of our normality assump-
tion, coincides with the posterior mean) of w; there-
fore, formula (8) gives the mean value of the random
variable w ■ x (which is the "clean version" of the label
y = w • x + e of the next example). Notice that the
random variables j/i,... ,yr,w ■ x are jointly normal
and the covariances between them are

cov(ys,yt) = cov(w-xs + es,w-xt+et)

and

1 / ^ 1

2~a^-Xt) + 2

cov(yt,w • x) = cov(iu ■ xt + et,w ■ x) = —(xt -x).
2a

In accordance with the Krieging formula the best pre-
diction for w ■ x will be

which coincides with (8).

8 CONCLUSIONS

A formula for Ridge Regression (which included Least
Squares as a special case) in dual variables was de-
rived using the method of Lagrange multipliers. This
was then used to perform linear regression in a feature
space. Therefore, we once more showed how the prob-
lem of learning in a very high dimensional space can
be solved by using kernel functions. This allowed the
algorithm to overcome the "curse of dimensionality"
and run efficiently, even though a very large number
of parameters were being considered. Experimental re-
sults show that Ridge Regression performs well. The
results also indicate that applying ANOVA decompo-
sition to a kernel can achieve better results than using
the same kernel without the technique applied. Both
Ridge Regression and the Support Vector method gave
a smaller error when using ANOVA splines compared
to the other spline kernel.

A weak part of our experimental section is that,
though the Boston housing data is a useful benchmark,
we have not applied our algorithm to a wider range of
practical problems. This is what we plan to do next.

In order to confirm that ANOVA kernels can outper-
form kernels in their orginal form, the ANOVA de-
composition technique should be applied to other mul-
tiplicative kernels. The technique of applying kernel
functions to overcome problems of high dimensional-
ity should also be investigated futher, to see if it can
be applied to any other algorithms which prove com-
putationally difficult or impossible when faced with a
large number of parameters.

Ridge Regression Learning Algorithm in Dual Variables 521

We feel that a very interesting direction of developing
the results of this paper would be to combine the dual
version of Ridge Regression with the ideas of Gam-
merman et al. [3] to obtain a measure of confidence
for predictions output by our algorithms. We expect
that in this case simple closed-form formulas can be
obtained.

Acknowledgments

We thank EPSRC for providing financial support
through grant GR/L35812 ("Support Vector and
Bayesian Learning Algorithms"). The referees'
thoughtful comments are gratefully appreciated.

References

[1] L. Breiman. Bagging predictors. Technical Re-
port 421, Department of Statistics, University of
California, Berkley, 1994. Also at:
ftp://ftp.stat.berkely.edu/
pub/tech-reports/421.ps.Z.

[2] H. Drucker, C. Burges, L. Kaufman, A. Smola,
and V. N. Vapnik. Support Vector regression ma-
chines. In Advances in Neural Information Pro-
cessing Systems 9, volume 9, page 155. The MIT
Press, 1996.

[3] A. Gammerman, V. Vapnik, and V. Vovk. Learn-
ing by transduction. In Uncertainty in Artificial
Intelligence, 1998. To appear.

[4] F. Girosi. An equivalence between sparce approx-
imations and Support Vector Machines. Technical
Report A. I. Memo No. 1606, C. B. C. L. Paper
No. 147, Massachusetts Institute of Technology
Artificial Intelligence Laboratory and Center for
Biological and Computational Learning, Depart-
ment of Brain and Cognitive Sciences, May 1997.

[5] G. Kimeldorf and G. Wahba. Some results on
Tchebycheffian spline functions. J. Math. Anal.
Appl, 33:82-95, 1971.

[6] C. Saunders, A. Gammerman, and V. Vovk.
Ridge regression in dual variables. Technical re-
port, Royal Holloway, University of London, 1998.

[7] M. 0. Stitson, A. Gammerman, V. N. Vapnik,
V. Vovk, C. Watkins, and J. Weston. Support
Vector regression with ANOVA decomposition
kernels. Technical report, Royal Holloway, Uni-
versity of London, 1997.

[8] V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer, 1995.

[9] V. N. Vapnik. Statistical learning theory. In
A. Gammerman, editor, Computational Learning
and Probabilistic Reasoning. Wiley, 1996.

[10] V. N. Vapnik. Statistical Learning Theory. Wiley,
Forthcoming.

[11] G. Wahba. Spline models for observational data,
volume 59 of CBMS-NSF Regional Conference
Series in Applied Mathematics. SIAM, 1990.

[12] G. Wahba. Support Vector machines, reproducing
kernel Hilbert spaces and the randomized GACV.
Technical Report 984, Department of Statistics,
University of Wisconsin, USA, 1997.

522

Value Function Based Production Scheduling

Jeff G. Schneider* Justin A. Boyan Andrew W. Moore*
The Robotics Institute and Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

{schneide jab,awm}@cs.cmu.edu

Abstract

Production scheduling, the problem of se-
quentially configuring a factory to meet
forecasted demands, is a critical problem
throughout the manufacturing industry. The
requirement of maintaining product inven-
tories in the face of unpredictable demand
and stochastic factory output makes stan-
dard scheduling models, such as job-shop,
inadequate. Currently applied algorithms,
such as simulated annealing and constraint
propagation, must employ ad-hoc methods
such as frequent replanning to cope with un-
certainty.

In this paper, we describe a Markov Deci-
sion Process (MDP) formulation of produc-
tion scheduling which captures stochasticity
in both production and demands. The solu-
tion to this MDP is a value function which
can be used to generate optimal scheduling
decisions online. A simple example illustrates
the theoretical superiority of this approach
over replanning-based methods. We then de-
scribe an industrial application and two rein-
forcement learning methods for generating an
approximate value function on this domain.
Our results demonstrate that in both deter-
ministic and noisy scenarios, value function
approximation is an effective technique.

1 Introduction

Production scheduling is a critical problem through-
out the manufacturing industry. In this paper, we ar-
gue that in order to deal with uncertainty in factory

" Also at Schenley Park Research, Inc.

production and demands, a Markov Decision Process
(MDP) formulation is superior to the approaches cur-
rently in use. Our paper is organized as follows:

• Section 2 describes the abstract task of production
scheduling and the sources of uncertainty which
make the task difficult for current approaches. It
also gives details of the particular scheduling in-
stance we have worked on in collaboration with a
major U.S. food manufacturer.

• Section 3 introduces the MDP model of the
scheduling task and its solution based on value
functions. A simple example illustrates that in
the presence of uncertainty, the MDP model pro-
duces the optimal solution where both open-loop
and closed-loop planners do not. We then discuss
two reinforcement learning algorithms, Memory-
based RTDP and ROUT, which are applicable for
solving large-scale MDPs by value function ap-
proximation.

• Section 4 presents experimental results with
ROUT and Memory-based RTDP on two some-
what simplified versions of the real-world man-
ufacturing task. The results compare favorably
to greedy and simulated annealing algorithms
in both noisy and (surprisingly) deterministic
scheduling scenarios.

• Finally, Section 5 discusses our results, related
work, and promising future directions.

2 Production Scheduling

2.1 Problem Specification

Production scheduling is the problem of deciding how
to configure a factory sequentially to meet demands.

Value Function Based Production Scheduling 523

predicted inventory

with no scheduled production

zero inventory

Figure 1: A demand curve for one product (see text
for explanation)

Figure 2: Factory layout (see text for explanation)

We restrict our attention here to a type of produc-
tion scheduling called "make to stock." We assume
we have a modest number of products (2-100) and
must produce enough of each to keep warehouse stocks
high enough to satisfy customer requests for bulk ship-
ments. This production model is common for most
goods found in a supermarket. Automobile produc-
tion, by contrast, is typically not scheduled under this
model since cars are assembled individually with dif-
ferent options depending on specific customer orders.

An instance of the production scheduling problem is
composed of five parts:

Machines and products. This is a list of what ma-
chines are present in the factory, and what prod-
ucts can be made on the machines. There may
be complex constraints such as "machine A can
only make product 1 when machine B is not mak-
ing product 3." A complete, legal assignment of
products onto the set of machines is called a con-
figuration. There is also a special "closed" con-
figuration which represents a decision to shut the
factory down.

Changeover times. It generally takes a certain
amount of time to switch the factory from one
configuration to another. During that time, there
is no production. The problem definition includes
a (possibly stochastic) estimate of how long it
takes to change each configuration to each other
configuration.

Production rates. Each configuration produces a
set of products at a certain rate. There may be
dependencies between the machines. For exam-
ple, machine B may produce product 2 faster if
machine A is also producing product 2. The ac-
tual production rates in the factory may be very
stochastic; for example, some machines may jam
frequently, causing irregular delays on the produc-
tion line.

Inventory demand curves. At the time a schedule
is created, a demand curve for each product is
available from a corporate marketing and fore-
casting group. As shown in Fig. 1, each curve
starts at the left with the current inventory of
that product. The inventory decreases over time
as future product shipments are made and eventu-
ally goes below zero if no new production occurs.
To avoid penalties, the scheduler should call for
more production before the demand curve falls be-
low zero. These curves may also change over time
as new information about future product demand
becomes available.

Schedule costs. Running a schedule generates a dol-
lar measure of net profit or loss. This includes the
costs of running the factory, paying the workers,
purchasing the raw materials, and carrying inven-
tory at the warehouse, which are all real dollar
costs. It also includes heuristic costs such as an
estimate of the damage done by failing to fill a
customer request when the warehouse inventory
goes to zero. Finally, it includes the revenue gen-
erated from selling product to a customer. The
final cost (or profit) of a schedule is the sum of
all these real dollar costs, heuristic penalties, and
revenue.

Given this problem description, the task of production
scheduling is to maximize expected profit by selecting
factory configurations over a period of time. In cases
where the production rates and demand curves are as-
sumed deterministic, the problem reduces to finding
the optimal open-loop schedule: that is, find a fixed
sequence of configurations that maximizes profit. In

524 Schneider, Boyan, and Moore

the general stochastic case, the optimal choice of con-
figuration at time t will depend on the outcomes of
earlier configurations, so the optimal solution has the
form of a closed-loop scheduling policy.

2.2 A Real Production Scheduling Problem

We have devoted considerable effort to optimizing the
production scheduling of a particular U.S. factory. The
physical layout of one production line in the factory is
shown in Fig. 2. Raw materials enter the factory and
are processed using a (proprietary) system that creates
up to twelve output streams of finished products si-
multaneously. Depending on how numerous machines
and links between machines are configured, the rate
of production of each of the twelve kinds of products
varies. Production costs (caused by fuel uses, person-
nel costs, and wasted material) also vary according to
the factory configuration.

Taking into account all the constraints between ma-
chines in the factory, there are about 100,000 different
possible configurations. Factories of this type typically
produce on the order of $50 million to $2 billion worth
of product annually, so the opportunities for cost sav-
ings via improved scheduling are large.

2.3 Conventional Solution Methods

Production scheduling is difficult to model within the
standard job-shop scheduling paradigm. In job-shop
scheduling, the problem is to complete a batch of
atomic jobs under ordering constraints and constraints
on which machines can handle which jobs, and at
what speeds and costs. This model cannot readily be
adapted to handle production rate interdependencies
among machines, the desire to keep inventory levels
above zero at all times (rather than just completing
jobs by their deadlines), and stochasticity of demand
forecasts and production.

Constraint propagation methods (e.g. [Zweben and
Fox, 1994]) are commonly used to solve industrial
problems. They operate by efficiently managing con-
straints on production deadlines and machine capabil-
ities. Solution methods tend to search by iteratively
fixing violated constraints, applying heuristics to guide
the fixes. Constraint propagation focuses primarily on
generating feasible schedules, and only secondarily on
cost optimality. This is appropriate when feasibility is
difficult, but not as good in "make to stock" scenarios
where feasibility is easy and cost reduction is the main
goal. Constraint propagation will not receive further
consideration here for that reason.

When cost optimality is the primary scheduling objec-
tive, global optimization techniques such as simulated
annealing (SA) are a good option. These methods
search a space of fully-instantiated schedules to find
the best ones. However, neither constraint propaga-
tion nor simulated annealing is naturally formulated
to handle stochastic problems. They can be modified
for nondeterminism in two ways:

• Optimization open-loop: Search for the fixed
schedule s which maximizes the average profit
over several independent stochastic simulations of
s. Here, all the computation is spent at the be-
ginning, and the resulting best schedule is exe-
cuted without observing actual production statis-
tics along the way. This algorithm suffers because
it cannot update the schedule to account for vari-
ances in actual production. To compensate for
this inadequacy, "replanning" methods are usu-
ally adopted.

• Replanning closed-loop: When possible, this
method starts with the open-loop stochastic eval-
uation from the previous option. For feasibility-
based methods it must start with a deterministic
version of the problem. In either case, it uses its
first schedule only to make some initial scheduling
decisions. Then, whenever the result of an action
with a stochastic outcome is observed, it replans
the remainder of the schedule in order to make
new decisions.

The closed-loop method can produce good results.
However, it is computationally quite expensive. More-
over, although it replans on every step, its policy does
not take advantage of the fact that it will be able to
replan in the future—and as we show in Section 3.2
below, this dooms it to being unable to attain the op-
timal profit, no matter how much computation time it
is allowed.

3 Production Scheduling with Value
Functions

This section describes a principled approach to gener-
ating closed-loop production scheduling policies with
reinforcement learning methods. The approach is
based on representing the problem as an MDP and rep-
resenting the solution as an approximate value func-
tion.

Value Function Based Production Scheduling 525

3.1 Production Scheduling as an MDP

Abstractly, a Markov Decision Process (MDP) is de-
fined by a state space X, action set A, immediate
reward function R(x,a), and probabilistic transition
model P{x'\x, a). The solution to the MDP is a policy
IT* : X -+ A which, if followed by the agent, will max-
imize the expected long-term sum of rewards attain-
able starting from any state x. Dynamic programming
methods tabulate this optimal cumulative reward in
the optimal value function V*{x), which is the unique
solution to the Bellman equations [Bellman, 1957]:

V*(x) = m^[R(x,a)+ V) P(x'\x,a)V*(x')) (1)
aeA \ ££x I

Once V* is computed, the optimal policy n* is imme-
diately obtained by choosing any action which instan-
tiates the max in Eq. 1.

The production scheduling problem is modeled very
naturally as a Markov Decision Process, as follows:

• The system state is defined by the current time
t € 0...T; the current inventory of each prod-
uct pi...pN\ and, if there are configuration-
dependent changeover times, the current factory
configuration.

• The action set consists of all legal factory configu-
rations. We assume a discrete-time model, so the
configuration chosen at time t will run unchanged
until time t + 1.

• The stochastic transition function applies a simu-
lation of the factory to compute the change in all
inventory levels realized by running configuration
ct for one timestep. This model handles random
variations in production rates straightforwardly;
it also handles changeover times by simply de-
creasing production in proportion to the (possibly
stochastic) downtime. The time t is incremented
on each step, and the process terminates when
t = T.

• The immediate reward function is computed from
the inventory levels, based on the demand curve
at time t. It incorporates the revenues from pro-
duction, penalties from late production, employee
costs, operating costs, raw material costs, and
changeover cost incurred during the period. On
the final time period (transition from t — T-1 to
T), a terminal "reward" assigns additional penal-
ties for any outstanding unsatisfied demands.

The MDP representation suits this problem very well,
for two main reasons. First, in contrast to other tra-
jectory optimization tasks (e.g., the Travelling Sales-
man Problem), the utility of future decisions does
not depend on the entire sequence of previous action
choices and outcomes, but only on a relatively compact
state description—the current time and inventory lev-
els. Simulated annealing and other global optimization
methods do not require this Markov property—nor can
they exploit it. Second, the model fully represents un-
certainty in production rates and changeover times.
As defined here, the model also handles noise in the
demands if that noise is time-independent, but it can-
not account for the possibility of the demand curves
being randomly updated in the middle of a schedule,
since that would make the MDP transition probabili-
ties nonstationary.

The value function for this MDP specifies a closed-
loop scheduling policy which makes optimal decisions
with full foresight of the remaining uncertainty in the
process. No method based on global optimization can
make this claim, even if replanning is allowed, as we
now illustrate.

3.2 Illustrative Example

This example illustrates how MDP solutions optimally
solve sequential decision problems that methods based
on replanning cannot. Suppose we are asked to sched-
ule the production of 12 units of a single product over
two days. On each day we can choose one of the fol-
lowing three configurations:

Configuration with gets
probability production

Cost

1 0.5 3
0.5 6

$1

2 1.0 6 $4
3 1.0 9 $8

In addition to the per-configuration costs listed in the
table, there is an additional cost of $8 for each unit
under 12 not produced at the end of two days. The
following table shows the expected cost of each of the
possible schedules. (Note that in this example, the
expected cost of a schedule [ab] is the same when the
sequence is reversed, [ba], so redundant schedules are
omitted from the table.)

526 Schneider, Boyan, and Moore

Config Config Expected Missed Total
Sequence Cost Production Cost Cost

1 1 $2 0.25*$48 + 0.5*$24 $26
1 2 $5 0.5*$24 $17
1 3 $9 $0 $9
2 2 $8 $0 $8
23 $12 $0 $12
33 $16 $0 $16

Based on these costs, a replanning-based scheduler will
choose sequence [2 2]. It will execute configuration 2
on the first day, and then have an opportunity to re-
plan for day 2 based on the results of day 1. Since
the production from configuration 2 on day 1 is de-
terministic (6 units), the scheduler will again choose
configuration 2 on day 2, thereby completing the 2-day
production run with a total cost of $8.

The replanning-based scheduler makes a suboptimal
decision on day 1 because it doesn't "know" that it
will be given the chance to replan after the first day's
production is observed. By contrast, with the ability
to exploit this knowledge, the MDP solution makes the
correct scheduling decision of action 1 on day 1. The
following table evaluates the choices for day 1 by show-
ing all the possible outcomes followed by the optimal
day 2 choice for each outcome.

day 1
config

with
prob

units
made

day 2
config

with
prob

units
made

expected
cost

1 0.5
0.5

3
6

3
2

1.0
1.0

9
6

.5*9 + .5*5
= $7

2 1.0 6 2 1.0 6 = $8
3 1.0 9 1 0.5

0.5
3
6

.5*9 + .5*9
= $9

By considering all the possible outcomes and the opti-
mal decisions that will be made for each one, the MDP
solution chooses configuration 1 on the first day and
achieves an expected cost of 7 as compared to 8 ob-
tained by replanning. This type of tradeoff exists in
real factories as well. There is often a choice of how
fast to run the production line that trades off higher
production rates against higher unit costs.

3.3 Value Function Approximation

In practical scheduling problems, tabulating V*(x)
for every possible state of the factory is completely
intractable. Instead, we use reinforcement learning
methods to represent V* compactly with a function
approximator, such as global or local polynomial re-
gression. The two methods we tested are Memory-
based RTDP and ROUT.

3.3.1 Memory-Based RTDP

Memory-based RTDP is a reinforcement learning ap-
proach that is closely related to RTDP (Real-Time
Dynamic Programming) [Barto et al, 1995] and
to Tesauro's application of TD(0) to the game of
backgammon [Sutton, 1988, Tesauro, 1992]. It is also
similar to the instance-based approach to represent-
ing value functions used in [Peng, 1993]. Trajectories
through the MDP model are generated repeatedly, us-
ing the current approximation of the value function to
guide standard Boltzmann-style exploration [Barto et
al, 1995]. At each step of each trajectory, a one-step
backup operation (Eq. 1) is performed and the func-
tion approximator is updated.

In Memory-based RTDP, the value function is repre-
sented by a nonparametric memory-based function ap-
proximator [Cleveland and Delvin, 1988, Moore et al,
1995, Atkeson et al, 1995]. Memory-based learning
simply accumulates training data points, rather than
running a training algorithm on them. Then whenever
a query is made, the approximator's output is com-
puted by a weighted average or weighted polynomial
regression over nearby points in memory.

Achieving good performance with Memory-based
RTDP requires an appropriate choice of the Boltz-
mann exploration temperature and the local regression
kernel width. These values were tuned empirically to
obtain the results presented in Section 4. Although the
training points generated by Memory-based RTDP's
early trajectories are undoubtedly inaccurate samples
of V*, we did not find it necessary to include an ex-
plicit "forgetting" mechanism in the learning; the bad
points are quickly overwhelmed by later, more accu-
rate samples.

3.3.2 ROUT

ROUT is an active learning algorithm for value func-
tion approximation that is specifically designed for the
subclass of acyclic MDPs [Boyan and Moore, 1996].
Note that the scheduling MDP is certainly acyclic,
since its state representation includes the time counter
t. Using simulations of the process, ROUT repeatedly
identifies a new state x at which (1) the function ap-
proximator is currently in error, and (2) an accurate
sample of V can be obtained from a 1-step backup.
Unlike Memory-based RTDP and most other reinforce-
ment learning methods, ROUT explicitly tries to pre-
vent the function approximator from seeing any inac-
curate samples of V*.

Details of how ROUT identifies such states automat-

Value Function Based Production Scheduling 527

ically are given in [Boyan and Moore, 1996]. One by
one, these useful states are accumulated into a train-
ing set of accurate samples of V* {x). The training set
grows backwards from the terminal states. As soon as
the start state xo is itself added to the training set,
ROUT declares victory, outputs its learned training
set and learned approximation of V*, and terminates.

If the function approximator cannot represent V* ac-
curately, then ROUT may become stuck, repeatedly
adding points near the terminal states and never pro-
gressing backwards. However, if the function approx-
imator can represent V* to within the specified tol-
erance, then ROUT can be guaranteed to eventually
find it. For ROUT to find V* efficiently, the func-
tion approximator must extrapolate well from a small
training set.

4 Experimental Results

We have experimented with two instances of the real-
world production scheduling task described in Sec-
tion 2.2. The first instance is heavily simplified so
that the exact optimal closed-loop scheduling policy
can be calculated tractably. The second instance is a
more realistic model, for which only heuristic solutions
are available.

4.1 Simplified Scheduling Instance

In the simplified instance, the task is to schedule 8
weeks of production; however, configurations may be
changed only at 2-week intervals, and only 17 config-
uration choices are available. Of these 17, nine have
deterministic production rates; the other eight each
have two stochastic outcomes, producing only 1/3 of
their usual amount with probability 0.5. With a to-
tal of 9 x 1 + 8 x 2 = 25 outcomes possible from ev-
ery state, there are 254 = 390,625 possible trajecto-
ries through the space. The optimal policy can be
computed by tabulating V*{x) at every possible in-
termediate state x of the factory, of which there are
1 + 25 + 252 + 253 = 16,276. The optimal policy re-
sults in an expected cumulative reward of -S22.8M.
By contrast, a random schedule attains a reward of
-S923M on average! A greedy policy, which at each
step selects a configuration to maximize only the one-
step reward from the current state, attains —S97.9M.

We applied ROUT to this instance, trying three
different function approximators: 1-nearest neigh-
bor, locally-weighted linear regression, and global
quadratic regression. KD-trees were used to keep the

computation efficient [Moore et al., 1997]. For the lo-
cally weighted regression, a kernel width of 2-3 of the
range of each input dimension in the training data was
used. ROUT's exploration and tolerance parameters
were tuned manually. Table 1 summarizes the results.

When nearest-neighbor was used as the function ap-
proximator, ROUT did not obtain sufficient general-
ization from its training set and failed to terminate
within a limit of several hours. However, with both
local linear and global quadratic regression models,
ROUT did run to completion and produced an approx-
imate value function which significantly outperformed
the greedy policy. Moreover, over half of the ROUT
runs did indeed terminate with the optimal closed-loop
scheduling policy. In these cases, ROUT's final self-
built training set for value function approximation con-
sisted of only about 100-150 training points—a sub-
stantial reduction over the 16,276 required for full tab-
ulation of V*. ROUT's total running time (w 1 hour
on a 200 MHz Pentium Pro) was roughly half of that
required to enumerate V* manually.

From these preliminary results, we conclude that
ROUT does indeed have the potential to approximate
V* extremely well, given a suitable function approx-
imator for the domain. However, since it runs quite
slowly on even this simplified problem, we believe
ROUT will not scale up to practical scheduling in-
stances without further refinements.

4.2 Practical Scheduling Instance

In this section we present experimental results on a
larger scheduling problem. In doing so, we lose the
ability to determine the optimal policy for compari-
son. However, it gives a better demonstration of how
the competing methods perform on industrial-scale
scheduling problems. The task is to schedule eight
weeks of production at one week intervals. There are
eight products, eight machines, and a total of 421 le-
gal configurations to consider, including the "closed"
configuration.

Our experiments consider both deterministic and noisy
versions of the problem. To build the deterministic
version of the problem, we ran long (stochastic) sim-
ulations for each of the 421 actions and cached the
mean observed production rate for each. For the noisy
versions, we could have used the noisy outcomes di-
rectly from the stochastic simulation, but instead we
simply added Gaussian noise to the cached, determin-
istic production rates. This enabled our experiments
to run significantly faster, and also allowed us to eas-

528 Schneider, Boyan, and Moore

Algorithm
Optimal
Random
Greedy
ROUT + global quadratic
ROUT + local linear

Mean Profit 95% C.I.
-22.8

-923.2
-97.9
-57.0
-45.0

±58.7
±15.1
±23.5
±16.9

optimal runs
1
0
0

10/16
10/16

Table 1: Results for 4-timestep, 17-configuration stochastic scheduling problem.

ily generate empirical results with varying amounts of
noise.

Table 2 shows experimental results. The computation
times reported are on a 200 MHz Pentium Pro. The
first section contains results for the case where the fac-
tory output is deterministic and known. The purpose
of the first two lines is to delimit the range of results we
should expect from good algorithms. The "Random"
algorithm builds a schedule by choosing 8 configura-
tions at random, and it loses an enormous amount of
money. Much of the cost is due to heuristic penalties
for failing to satisfy customer demand.

The "Planlt" algorithm, developed by Schenley Park
Research, is the proprietary algorithm currently used
to schedule the real factory's production. It has sev-
eral advantages over the other algorithms in this table.
First, it is finely tuned to schedule this factory using
a combination of simulated annealing, linear program-
ming, constraint propagation, and several heuristics.
Second, it is not restricted to choosing configurations
for pre-discretized time steps, but can choose an ar-
bitrary number of configurations and switch between
them at arbitrary times. Our experience with this
scheduler leads us to believe that the average profit
of S13.81M is very near optimal for this instance, so it
can be considered an unattainable upper bound for the
other results. In particular, Planlt achieves its results
by using an average of around 13 configurations in its
schedules while the other algorithms are restricted to
8 fixed-sized time steps. It usually incurs no heuristic
penalties in its schedules, so that figure is a profit in
real dollars.

The simulated-annealing, greedy-exploration, and
Memory-based RTDP algorithms are run as described
in the previous sections. The simulated annealing runs
made use of the successful "modified Lam" adaptive
annealing schedule [Ochotta, 1994]. Memory-based
RTDP used kernel regression with a kernel width of
2-5 of the range of each state variable, and used KD-
trees for efficiency [Moore et a/., 1997]. Boltzmann
exploration (without cooling) was used for the deter-

ministic case, but proved unnecessary in the stochastic
case because the noise alone caused sufficient explo-
ration.

The poor result from Greedy in the deterministic case
shows that generating trajectories based solely on the
one-step cost of configurations is not an effective way
to search, even when compared to a randomized search
method such as simulated annealing. The search effi-
ciency gained by computing a value function is shown
by the favorable Memory-based RTDP results. They
are obtained from only 200 trajectories through the
state space, meaning the value function at each time
step is represented with 200 training points. All of the
algorithms can do better with more computation time,
but they were cut off at 10 minutes since Planlt gets
its results in that much time.

The second and third sections of the table show results
with 10% and 20% noise added. The Planlt algorithm
cannot be run in these cases since it does not handle
stochastic outcomes; however, we still expect its re-
sult in the deterministic case to be a reasonable upper
bound for the other algorithms.

Open-loop simulated annealing means that all the
computation is spent at the beginning and the result-
ing best schedule is executed without observing ac-
tual production statistics along the way. This algo-
rithm suffers because it cannot update the schedule to
account for variances in actual production. By con-
trast, closed-loop simulated annealing replans the rest
of the schedule after each week of actual production
is observed. In order to keep the total computation
the same, the computation allotted for each week's
decision was divided by the number of weeks (8).
The results show that replanning does improve over
open loop execution. We note that all the simulated-
annealing schedulers have high variance, which can be
a disadvantage of using that algorithm.

Memory-based RTDP uses its computation at the be-
ginning to compute a value function. Each run used
400 trajectories for these results. The value function
determines a closed-loop policy valid for any state

Value Function Based Production Scheduling 529

Noise level Algorithm Mean Profit 95% C.I.

Deterministic
(as 10 min computation)

Random
Planlt
Simulated Annealing
Greedy + Exploration
Memory-based RTDP

-466.35 ±59.45
13.81 ±0.08
5.66 ±3.68

-1.93 ±3.21
7.70 ±1.57

10% Noise
(« 45 min computation)

Greedy (c.l.)
Simulated Annealing (o.l.)
Simulated Annealing (c.l.)
Memory-based RTDP

-17.69 ±1.94
6.48 ±1.21
9.03 ±1.04

10.16 ±0.84

20% Noise
(« 45 min computation)

Greedy (c.l.)
Simulated Annealing (o.l.)
Simulated Annealing (c.l.)
Memory-based RTDP

-25.92 ±1.12
2.55 ±1.91
2.40 ±3.95
7.02 ±0.67

Table 2: Results for 8-timestep, 421-configuration scheduling problem. The numbers shown represent profits in
millions of dollars. On the noisy problems, Memory-based RTDP is statistically better than the other algorithms

at the 95% significance level.

reached during actual production. As discussed ear-
lier, it not only executes closed-loop, but also makes
its decisions "knowing" that it will be executing closed-
loop. The results show both a favorable expected
profit as well as smaller variance across runs.

5 Discussion and Future Work

We expect Memory-based RTDP to outperform sim-
ulated annealing on a stochastic problem based on
the intuition from Sec. 3.2, and our experimental re-
sults show that it does. It is interesting to observe
that Memory-based RTDP does well against simu-
lated annealing even in the deterministic case where
the stochastic modeling capability of MDPs is not
needed. This provides further evidence that search
based on value functions can improve efficiency. While
simulated annealing is forced to try configurations at
random, value function based methods can explicitly
reason about which intermediate states are good and
which actions will reach those states.

To our knowledge, this work represents the first appli-
cation of reinforcement learning to production schedul-
ing with multiple products made on multiple machines.
The scheduling of machine maintenance is discussed
in [Mahadevan et al., 1997], and transfer line pro-
duction scheduling is discussed in [Mahadevan and
Theocharous, 1998].- In their task, each product or
sub-product is produced on a single machine and each
machine makes a local decision on whether to produce
one of its products or go down for maintenance. A

reinforcement learning approach to the Space Shuttle
scheduling problem is described by [Zhang and Diet-
terich, 1995]. In that framework, states are complete
schedules and actions are modification operators ap-
plied to the schedules. Their feature representation
introduces noise, but the underlying problem is deter-
ministic.

Our empirical work to date covers stochasticity only in
production. Another large source of uncertainty in real
problems is the inadequacy of demand forecasts. This
can be handled heuristically within the MDP formu-
lation described here by the addition of appropriate
noise to the demands during simulations. However,
it may also be possible to gain extra efficiencies by
incorporating demands explicitly into the MDP state
space. Further empirical work is required to answer
that question.

As the size of the scheduling problem increases, it
becomes increasingly expensive to compute the value
function accurately. However, even an inexact value
function can be useful as the basis for a quasi-greedy
search or "rollout" search performed online [Tesauro
and Galperin, 1997]. We intend to test such methods
in future work on larger scheduling problems.

Acknowledgements

The second author acknowledges the support of a
NASA GSRP fellowship. The third author acknowl-
edges the support of an NSF Career Award.

530 Schneider, Boynn, and Moore

References

[Atkeson et al, 1995] C. Atkeson, S. Schaal, and
A. Moore. Locally weighted learning. AI Review,
1995.

[Barto et al., 1995] A. G. Barto, S. J. Bradtke, and
S. P. Singh. Real-time learning and control using
asynchronous dynamic programming. Artificial In-
telligence, 1995.

[Bellman, 1957] R. Bellman. Dynamic Programming.
Princeton University Press, 1957.

[Boyan and Moore, 1996] J. A. Boyan and A. W.
Moore. Learning evaluation functions for large
acyclic domains. In L. Saitta, editor, Machine
Learning: Proceedings of the Thirteenth Interna-
tional Conference. Morgan Kaufmann, 1996.

[Cleveland and Delvin, 1988] W. Cleveland
and S. Delvin. Locally weighted regression: An ap-
proach to regression analysis by local fitting. Jour-
nal of the American Statistical Association, pages
596-610, September 1988.

[Mahadevan and Theocharous, 1998] S. Mahadevan
and G. Theocharous. Optimizing production manu-
facturing using reinforcement learning. In Eleventh
International FLAIRS Conference, 1998.

[Mahadevan et al., 1997] S. Mahadevan, N. Marchal-
leck, T. Das, and A. Gosavi. Self-Improving Fac-
tory Simulation using Continuous-Time Average-
Reward Reinforcement Learning. In Proceedings
of the Hth International Conference on Machine
Learning (IMLC '97), Nashville, TN. Morgan Kauf-
mann, July 1997.

[Moore et al., 1995] A. Moore, C. Atkeson, and
S. Schaal. Locally weighted learning for control. AI
Review, 1995.

[Moore et al., 1997] A. Moore, J. Schneider, and
K. Deng. Efficient locally weighted polynomial re-
gression predictions. In International Conference on
Machine Learning, 1997.

[Ochotta, 1994] E. Ochotta. Synthesis of High-
Performance Analog Cells in ASTRX/OBLX. PhD
thesis, Carnegie Mellon University Department of
Electrical and Computer Engineering, April 1994.

[Peng, 1993] J. Peng. Efficient Dynamic Programming
based Learning for Control. PhD. Thesis, North-
eastern University, December 1993.

[Sutton, 1988] R. S. Sutton. Learning to predict
by the methods of temporal differences. Machine
Learning, 3, 1988.

[Tesauro and Galperin, 1997] G. Tesauro and G. R.
Galperin. On-line policy improvement using Monte-
Carlo search. In M. C. Mozer, M. I. Jordan, and
T. Petsche, editors, Advances in Neural Information
Processing Systems, volume 9. MIT Press, 1997.

[Tesauro, 1992] G. Tesauro. Practical issues in tem-
poral difference learning. Machine Learning, 8(3/4),
May 1992.

[Zhang and Dietterich, 1995] W. Zhang and T. G. Di-
etterich. A reinforcement learning approach to job-
shop scheduling. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI),
pages 1114-1120, 1995.

[Zweben and Fox, 1994] M. Zweben and M. Fox. In-
telligent Scheduling. Morgan Kaufmann, 1994.

531

Heading in the Right Direction

Hagit Shatkay Leslie P. Kaelbling
Department of Computer Science

Brown University
Providence, RI02912

{hs,lpk}@cs.brown.edu

Abstract

Stochastic topological models, and hidden
Markov models in particular, are a useful tool
for robotic navigation and planning. In previ-
ous work we have shown how weak odometric
data can be used to improve learning topologi-
cal models, overcoming the common problems
of the standard Baum-Welch algorithm. Odomet-
ric data typically contain directional information,
which imposes two difficulties: First, the cyclic-
ity of the data requires the use of special circular
distributions. Second, small errors in the head-
ing of the robot result in large displacements in
the odometric readings it maintains. The cumu-
lative rotational error leads to unreliable odomet-
ric readings. In the paper we present solutions
to these problems by using a circular distribu-
tion and relative coordinate systems. We validate
their effectiveness through experimental results
from a model-learning application.

1 INTRODUCTION
Directional data is information consisting of magnitude
and direction. Such data is an integral part of important ap-
plications in various areas of computer science in general
and artificial intelligence in particular. In computer graph-
ics, automatic production of pen-and-ink drawings and the
production of animation based on magnetic trackers data
requires statistical manipulation of directional data. In cog-
nitive science, modeling routes chosen by animals [4] re-
quires a similar kind of statistical manipulation. In the area
of machine learning we often use probabilistic models for
robot movement. Most aspects of robot movement (arm
movement as well as the whole body movement) can be
described in terms of location and heading change, requir-
ing the use and manipulation of directional data.

Probabilistic models are widely used within the AI com-
munity. Such models may allow continuous probabilities,
as demonstrated in work on Bayesian networks [7], hid-
den Markov models [5, 8], probabilistic clusters [2] and
stochastic maps [19], to name a few. However, the assump-
tion underlying all the above work is that continuous dis-
tributions are linear — that is — distributions that assign
density to each point on the real line so that the area un-
der the density curve, integrated over the whole real line, is
l.1 Such models do not take into account directional data,
which is inherently cyclic. Under circular distributions the
density of any point x on the real line is the same as that of
x + kk where k is any integer and f is some real number.

The need for circular distributions has long been realized
by statisticians [6], but the practice of using them has not
found its way into the computer science community and
to the machine learning community in particular. One of
the goals of this paper is to point out the usefulness of one
specific circular distribution in the context of robotics, and
provide a short tutorial on circular distributions.

Another special aspect of directional data is its sensitiv-
ity to errors. As most navigators, pilots and skippers have
experienced, a small angular deviation from the original
course causes a big displacement at the final location. This
problem is very prominent in mobile robots, where drifts
and drags of the wheels and disalignment of both engines
and floors can cause a robot to face in the wrong heading
with respect to its own odometric readings. Odometric in-
formation is recorded by the robot along three dimensions;
it consists of the changes along the x and the y axis as well
as a change in the heading of the robot within a global co-
ordinate system. In our previous work on learning topolog-
ical models [17] we made several assumptions about the
odometric data:

• All odometric measures are normally distributed.

'Most often the distribution is Gaussian.

532 Shatkay and Kaelbling

• All corridors are perpendicular to each other.

• The robot, when collecting the data, is using the per-
pendicularity assumption, and is collecting the data
with respect to one global coordinate system.

This paper demonstrates the problematic aspects of these
assumptions and introduces our solution to the problems,
together with preliminary results that demonstrate the ef-
fectiveness of our solution. The rest of the paper is orga-
nized as follows: Section 2 describes our application and
motivates the need for circular distributions in the context
of machine learning; Section 3 presents the von Mises dis-
tribution, which is a circular version of the normal distribu-
tion; Section 4 discusses the problems faced due to heading
deviations and presents our solution to the problem; Sec-
tion 5 presents experiments and results to demonstrate the
usefulness of our approach; Section 6 concludes the paper.

2 LEARNING TOPOLOGICAL MODELS

Hidden Markov models (HMMs), as well as their gener-
alization to models for partially observable Markov deci-
sion processes (POMDP models), are a useful tool for rep-
resenting environments such as road networks and office
buildings, which are typical for robot navigation and plan-
ning[l, 14,18]. Previous work on planning with such mod-
els typically assumed that the model is manually provided.
Manual acquisition of these models can be very tedious
and hard. It is desirable to learn such models automati-
cally, both for robustness and in order to cope with new and
changing environments. Since POMDP models are a simple
extension of HMMs, they can, theoretically, be learned with
a simple extension to the Baum-Welch algorithm [15] for
learning HMMs. However, without a strong prior constraint
on the structure of the model, the Baum-Welch algorithm
does not perform very well: it is slow to converge, requires
a great deal of data, and often becomes stuck in local max-
ima. In previous work [16, 17] we demonstrated how the
simple Baum-Welch algorithm can be enhanced with weak
local odometric information to learn better models faster,
under the assumption listed above. For the sake of com-
pleteness, we briefly review the essentials of this work here.

A robot moves through the corridors in an office environ-
ment. Low-level software provides a level of abstraction
that allows the robot to move through hallways from inter-
section to intersection and turn ninety degrees to the left
or right. At each intersection, ultrasonic data interpretation
lets the robot observe, in each of the four cardinal direc-
tions, whether there is an open space, a door, a wall, or
something unknown. The robot also has encoders on its
wheels that allow it to estimate its current pose (position
and orientation) with respect to its pose at the previous in-
tersection. Of course, the action and perception routines

and the odometric measures are all subject to error. The
learning task is to deduce a model from the recorded obser-
vations and odometric information.

Our learning algorithm gets as an input an experience se-
quence E of observations and odometric readings, and pro-
duces as output an HMM2, A, of the environment, such that
the likelihood, Pr(E|A), is locally maximized. Formally,
the standard HMM is defined as a tuple A = (S, O, A, B, n),
where:

• S = {si,..., s/v } is a finite set of N states;

• O = Ilt=i O* 's a fin'te set °f observation vectors
length Z; the ith element of an observation vector is
chosen from the finite set 0*;

• A is a stochastic transition matrix, with Atj =
Pr(qt+i = Sj\qt = Sj); 1 < i,j < N; qt is the state
at time t;

• B is an array of / stochastic observation matrices, with
Bhj,o = Pr{Vt[i] = o\qt = Sj); 1 < i < I, l<j<N,
o € Oj-, Vt is the observation vector at time t;

• 7T is a stochastic initial probability vector describing
the distribution of the initial state.

Odometric information gathered by the robot is not an in-
herent part of the topological model, but is used by the
learning algorithm to better identify and distinguish states.
To facilitate the use of this information we augment the
standard model with the odometric relation matrix:

• R is a relation matrix, specifying for each pair of states,
s, and Sj, the mean and variance of the D-dimensional

metric relation between them; ßfj = ß(Rij[d]) is
the mean of the d"1 component of the relation be-

tween Si and Sj and (crfj)2 = a2(Rij[d]), the vari-
ance, where 1 < d < D. Furthermore, R is geo-
metrically consistent: for each component d, the rela-
tion Rd(a, b) = n(Ratb[d}) must satisfy the following
properties for all states a, b, and c:

o Rd(a,a) =0;
o Rd(a,b) = -Rd(b, a) (anti-symmetry); and
o Rd{a,c) = Rd(a,b) + Rd(b,c) (additivity);

The odometric information recorded by the robot at time t,
rt, consists of the change in the x and y coordinates of the
odometric readings when moving from state qt-\ to state
qt, as well as the change of the robot's heading, 9, between
these states.

An arbitrary initial model Ao is assumed. Then an expecta-
tion maximization algorithm [3] is executed as follows:

We discuss here HMMS rather than POMDP models. Extension
to POMDPs is straightforward, but notationally more cumbersome.

Heading in the Right Direction 533

a «
<%, y.e> <i,y,e+180>

Figure 1: Robot changes heading from state a to state b.

• E-step: computes the state-occupation and transi-
tion probabilities, 7t(i) = Pr(?t = Si|E,A)and
6(», J) = Mit = Si, qt+i = Sj\E, A), respectively,
at each time t in the sequence, given E and the current
model A, and

• M-step: finds a new model A that maximizes

Pr(E|A,7,0-
Introducing odometric information requires iterative up-
dates of the odometric relations between pairs of states, in
the relation matrix, R. The updates need to maintain the
properties listed above, although currently the update pro-
cedure only satisfies the first two.

The learning task is further complicated by the special na-
ture of the heading reading and the rotational errors ac-
crued. The following section goes in more detail into the
special issues of handling the heading information. The
rest of the paper deals with resolving the problems caused
by rotational errors.

3 DIRECTIONAL DATA AND
DISTRD3UTIONS

Suppose a robot is in state o, which is in location (x, y)
facing in direction 9, as shown in figure 1. By turning
backwards, it transitions to state 6, and a respective change
of heading of approximately ±180° is recorded. Thus the
new recorded configuration of the robot is (x + ci, y +e-2,
9 ± 180° + e3>, where ti is the error due to inaccuracy in
both measurement and movement. In earlier work [17],
we treated all errors — in both location (x, y) and head-
ing (0) — as if they were normally distributed. However,
the change in heading is different from changes in x and y,
since angular measurements are cyclic. That is, a change
in heading of 9° is the same as that of 9 ± 360°fc, for any
integer fc.

If we knew in advance, for every pair of states, the ap-
proximate change in heading (AO) between them, we
could have modeled it as normal with mean A0, and
small variance a2. We could have adopted a convention,
normalizing all angles to be within a cyclic range, e. g.
[-180°, 180°], (similarly we may use radians), and always
chosen to take as the angular change between two points
7mn(|A0|,36O° - |A0|), and assigned it the correct sign.
Such an approach of using a non-circular distribution is jus-
tified when the estimation of a position is based only on
readings a-priory known to be taken near this position, (see
for example work by Thrun et al [20] and Lu et al [12]).

However, we do not know in advance the angles between
states. The data is a sequence of measurements recorded at
all the states. We estimate the probabilities of the states in
which they were recorded, and take a weighted mean of the
measurements in order to estimate the angular change be-
tween every two states. Thus, we are facing the following
problem: What is the interpretation of a "mean angle"?

As an example, suppose we want to estimate the heading
change from state a to state b of Figure 1. We adopt the
convention of angles being expressed between -180° and
180°. Also, suppose that the robot recorded two measure-
ments of angular distance from state a to state b: -169° and
185°. The simple average between these measurements is
an estimate of the mean heading change of 8°. Obviously
this value does not even approximate the change of head-
ing between the two states. The same problem arises if
we use any other convention for expressing angles (e.g. 0°
to 360°). The problem lies in the fact that angles that are
about 180° away from the mean angle, indeed greatly de-
viate from this mean, while angles that deviate about 360°
are actually very close to it. To capture this idea, the con-
cept of circular distribution is required. We provide a brief
introduction to the concepts and techniques used for han-
dling directional data. In particular we concentrate on the
von Mises distribution — a circular version of the normal
distribution. Further discussion can be found in the statis-
tical literature [6,10,13]. Section 3.3 returns to show how
the theory is applied in our model and learning algorithm.

3.1 STATISTICS OF DIRECTIONAL DATA

Directional data in the 2-dimensional space can be
represented as a collection of 2-dimensional vectors,
{(xi, 2/i>, • • • (xn, yn». on the unit circle, as shown in Fig-
ure 2. The points can also be represented as the corre-
sponding angles between the radii from the center of the
unit circle and the x axis, (0i,..., 0„), respectively. The
relationship between the two representations is:

Xi = cos(Öi), yi = sin(0i), (1 < i < n).

The vector mean of the n points, (x,y), is calculated as:

S^CMM v_ELiMQi) _ (1)
n n

Using polar coordinates, we can express the mean vector in
terms of angle, 6, and length, ä, where (except for the case
x = y = 0):

9 = arctan(=), ö = (x2 + y2)» 77-/^2 , ^a (2)

The angle 6 is the mean angle, while the length a is a
measure (between 0 and 1) of how concentrated the sample
angles are around 9. The closer 5 is to 1, the more concen-
trated the sample is around the mean, which corresponds to
a smaller sample variance.

534 Shatkay and Kaelbling

\ 1

1
—-^Ä"

/ ^£**&>
/ ..-•'' Vtj-Äf»

•1 li

■1

Pin radians

Figure 2: Directional data represented as angles and as vectors
on the unit circle.

A function / is a density function of a continuous circular
distribution if and only if: f(x) > 0 and J** f(x)dx = 1.
A simple example of a circular distribution is the uniform
circular distribution, whose density function is f(9) = J-
(where 9 is measured in radians).

One way of deriving a circular version of an unlimited lin-
ear distribution is through "wrapping" it around a circum-
ference of the unit circle. If x is a random variable on the
line with probability density function f(x), the wrapped
random variable xw = [x mod 2n] is distributed according
to a wrapped distribution with the probability density func-
tion: fw{9) = Y^co W + 2?rfc)- Applying this derivation
to the normal distribution results in a circular version of
the normal distribution, but estimating its parameters from
sample data can be hard [6, 13]. An easier-to-estimate cir-
cular version of the normal distribution was derived, by von
Mises [6, 13]. We use this distribution to model the robot
heading in this work, and it is described below.

3.2 THE VON MISES DISTRIBUTION

A circular random variable, 9, 0 < 9 < 2n, is said to have
the von Mises distribution with parameters ß and it, where
0 < ß < 2-n and k > 0, if its probability density function
is: u,m = l kcos(O-ii)

2nl0(k)

where I0(k) is the modified Bessel function of the first kind
and order 0: TO

r=0 rl'

Similar to the linear normal distribution, this is a unimodal
distribution, symmetrical around ß. The mode is at 9 = fi
while the antimode is at 9 = fi + n. We observe that the ra-
tio of the density at the mode to the density at the antimode
is e2fe, which indicates that the larger k is, the more con-
centrated the density is about the mode. Figure 3 shows an

Figure 3: The von Mises distribution with mode 0 and various
k values.

"unwrapped" plot of the von Mises distribution for various
values of k where ß = 0.

We now describe how to estimate the parameters ß and k
given a set of heading samples (angles 0i,...9n) from a
von Mises distribution [13]. We are looking for maximum
likelihood estimates for ß and k. The likelihood function
for the data generated by a von Mises distribution with pa-
rameters ß and k is:

£/.,* = A//..*(*)
t=i (27r)"70(A;)"

The maximum likelihood estimate for ß, JI, is:
ß = arctan(|), where y, x are as defined in equation 1.

The maximum likelihood estimate for k is the k that solves
the equation:

h(k) _ 1 A
cos(9i - ß) . (3)

If we don't know ß and are only interested in estimating
k with respect to the estimate Ji, by using trigonometric
manipulation and the definition of ä (Equation 2), we can
substitute the right hand side of equation 3 by ö and ob-
tain that the .maximum likelihood estimate for it is k that
satisfies: ^ß = ö.

However, if we do have a given ß and want to find a max-
imum likelihood estimate for the concentration k of the
sample data around that specified ß, we need to use as a
maximum likelihood estimate for k, k that satisfies:

h{k)
Io(k) ''\

£«"<»<>)+(Esin(»'>) -(i>"<<' -««)]

Heading in the Right Direction 535

The above estimation formulae agree with the intuition that
the sample is more concentrated (fc is larger) about the sam-
ple mean QJ) than about the true distribution mean (/i).

The rest of the section explains how the von Mises param-
eters are incorporated into the Hidden Markov model, and
how the learning algorithm is adapted to learn these param-
eters.

3.3 HANDLING ANGULAR ODOMETRIC
READINGS

To model the heading difference between each pair of
states, the relation matrix R, described in Section 2, is 3-
dimensional, consisting of the components (x, y, 6). The
component Ri,j{9\ represents the heading change of mov-
ing from state Si to Sj, and is assumed to be distributed
according to the von Mises distribution. The notation

M» . ^=f n(Ritj[9]) represents the mean of the distribution

for this heading change, while k°itj = k{Ri,j[9]) represents
the concentration parameter around the mean3. The three
constraints described before for the components of R, (ide-
ally) hold for the 6 component as well.

Similarly, every observed relation item, rt, in the expe-
rience sequence E, has a heading-change component, 6,
which records the robot's estimated change in heading be-
tween the state at time t, qt, and the state qt+i-

The reestimation formula for the von Mises mean parame-
ter of the heading change between states s, and Sj is:

pf ,■ = arctan

/T-2 \

' Y^[MrtW)tt{iJ)-MrMttU,i)]
t=o
T-2

\t=0
[cos(rt[0])&(z, j) + cos(rt[0])£tü.»)]

The fraction denotes the ratio between the expected sine
and the expected cosine of the heading change from state
i to state j. Since the heading change from j to i is iden-
tical in magnitude but opposite in direction to the heading
change from i to j, the transitions from j to i are also ac-
cumulated - with reversed signs. By taking arctan of this
ratio we get an estimate for the mean heading change itself.

To reestimate the concentration parameter, we need to find

fc;, such that:

EL^fo^cosfotfl]-/^)]
YtloZtiiJ)

3In contrast, x and y are normally distributed and have their
variance rather than concentration stored in R.

Finding fzitj that satisfies this equation is done through the

use of a lookup table listing values of the quotient -^|f|.

The above reestimation formulae agree with the maximum
likelihood estimator formulae given in Section 3.1. Their
correctness can be proved along the lines of the proof pro-
vided in our previous document [16].

4 STATE-RELATIVE COORDINATE
SYSTEMS

In our previous work we assumed that there is a sin-
gle global coordinate system within which the robot op-
erates. Moreover, we assumed that the robot collects its
data within a perpendicular corridor framework and that
it takes advantage of this single perpendicular framework
while recording odometric information. This assumption
may be troublesome in practice. The rest of the paper dis-
cusses the potential problems, presents a method for re-
laxing the assumptions and addressing the problems, and
demonstrates the effectiveness of the solutions through ex-
periments and results.

4.1 MOTIVATION

We tend to think about an environment as consisting of
landmarks fixed in a global coordinate system and corri-
dors or transitions connecting these landmarks. However,
this view may be problematic when robots are involved.

Conceptually, a robot has two levels in which it operates;
the abstract level, in which it centers itself through cor-
ridors, follows walls and avoids obstacles, and the phys-
ical level in which motors turn the wheels as the robot
moves. In the physical level many inaccuracies can oc-
cur: unaligned wheels or unsynchronized motors can cause
sidewards drift, an obstacle under a wheel can cause the
robot to slightly rotate around itself, or uneven floors may
cause the robot to slip in a certain direction. In addition,
the odometric measuring instrumentation may be inaccu-
rate in and of itself. In the abstract level, corrective actions
are constantly executed to overcome the physical drift and
drag. For example, if the left wheel is disaligned and drags
the robot leftwards, a corrective action of moving to the
right is constantly taken in the higher level to keep the robot
centered in the corridor.

Such phenomena greatly effect the odometry recorded by
the robot, if it is interpreted with respect to one global
framework. For example, consider the robot depicted in
Figure 4. It drifts to the left -<j>° when moving from one
state to the next, and corrects for it by moving 4>° to the
right to maintain itself centered in the corridor, moving
along the solid arrow. Let us assume that states are lo-

536 Shatkay and Kaelbling

Figure 4: The robot moves in a corridor along the solid arrow,
correcting for drift in the direction of the dashed arrow.

Figure 5: A path in a perpendicular environment, plotted based
on odometric readings taken by the robot Ramona.

cated along the center of the corridor, which is aligned
with the y axis of the global coordinate system. The robot
steps back and forth in the corridor. Whenever it reaches
a state, its odometry reading changes by {x, y, 6) along the
(X, Y, heading) dimensions, respectively. As the robot
proceeds, the deviation with respect to the x axis becomes
more and more severe. Thus, after going through several
transitions, the odometric changes recorded between every
pair of states, with respect to a global coordinate system,
become larger and larger (especially in the X dimension).

Similar problems of inconsistent odometric changes
recorded between pairs of states can arise along any of the
odometric dimensions. It is especially severe when such
inconsistencies arise with respect to the heading, since this
can lead to confusion between the X and the Y axes, as
well as confusion between forwards and backwards move-
ment (when the deviation in the heading is around 90° or
180° respectively). An example of our robot view of a per-
fectly perpendicular office environment, based on its odo-
metric readings within a global coordinate system, is shown
in Figure 5. The data was collected by our robot Ramona,
while moving along the corridors in an area of our depart-
ment, depicted in Figure 7.

A solution to such a situation is to model the odometric re-
lations of moving from state Sj to state Sj using a changing
coordinate system which is respective to state st, as op-
posed to a global coordinate system anchored at the initial
state. We formalize this idea and provide the update rules
for the odometric information based on this approach in the
rest of this section. We have implemented our solution, and
demonstrate its effectiveness throughout Section 5.

4.2 LEARNING ODOMETRIC RELATIONS WITH
CHANGING COORDINATES

As before, our experience sequence E consists of T pairs
(Tt>Vt) of recorded odometric relations and observation
vectors. The odometric relations are still recorded with re-
spect to the robot's global coordinate system. However,
when learning the relation matrix from the odometric read-
ings, we interpret the entry Ritj in the relation matrix R, as
encoding the information with respect to a coordinate sys-

Figure 6: Robot in state Si, facing in the direction of the y axis.

tem whose origin is anchored at the state sf, the y axis is
aligned with the robot's heading in state Sj and the x axis is
perpendicular to it. This is depicted in figure 6. The robot
is in state s* facing in the direction pointed to by the y axis.
Its relationship to the state Sj is described in terms of the
coordinate system shown in the figure. Its heading in each
state is denoted by the bold arrow.

To support this interpretation of the relation matrix we need
to revisit the formulation of the geometrical-consistency
constraints stated in Section 2, as well as the update for-
mulae used when learning the model.

The consistency constraints have to reflect the coordi-
nate system with respect to which the odometry is repre-
sented. Since the heading measurement is independent of
any specific coordinate system, only the constraints over
the x and y components of the odometric relation need
to be redefined. We denote by //*'«> (a, 6) the vector
{ß(Ra,b[x])> n{Ra,b[y]))- Let us define %b to be the trans-
formation which maps an (xa,ya) pair represented with re-
spect to the coordinate system of state a, to the same pair
represented with respect to the coordinate system of state
b, (xb, yb), (note that Tab = Tb~

1).

More explicitly, as before, let /xe(a, b) be the mean change
in heading from state a to state b (recall that ne(a,b) =
-pe{b, a)). The transformation Tab is defined as follows:

xa cos{n6(a, b)) - ya sin(//(a, 6))'
xa sin(//(a, b)) + ya cos(/i9(a, b)) <u>

We can now redefine the consistency constraints for the x
and y components of the odometric relation:

Heading in the Right Direction 537

Figure 7: Model of a prescribed path through a true hallway
environment.

o /u<*.w>(o,a) = (0,0>;

o /*<*•»> (a, 6) = -Tba (/i^'^CM)) (anti-symmetry);

o /*<*•»> (a, c) = /*<*•*/>(a,6)+T6a (p(x'V\b,c)){additivity);

The reestimation formulae for all the parameters except for
the x and y components of the relation matrix R, remain as
before. However, the reestimation formulae for the x and
y parameters are changed to reflect the relative coordinate
systems used, pfj and n?tj are reestimated as follows:

T-2 r r ,1 T-2

5>(*.;)
t=0

-IWQ*!])
T-2

£&(U) + &0M))
t=0

These reestimation rules are guaranteed to satisfy the first
two geometrical constraints, but not the additivity con-
straint. Their correctness can be proved along the lines of
the correctness proofs for all other formulae [16].

5 EXPERIMENTS AND RESULTS

The goal of this work is to use odometry to improve the
learning of topological models, while using fewer iterations
and less data. We tested our algorithm in a simple robot-
navigation world. In earlier stages of this work, a strong
assumption underlay our experiments: the corridors in the
environment are all perpendicular to each other, and the
agent was using this perpendicularity to reset its position
while accumulating the odometric readings. Here we have
updated the algorithm and dropped the assumption. The ex-
periments demonstrate that the use of odometry, even with
accumulated rotational error and without using the perpen-
dicularity assumption, is still very beneficial.

5.1 EXPERIMENTAL SETTING

Our experiments use. both real robot data and simulated
data. We ran our robot Ramona, a modified RWI B21,
along a prescribed4 directed path in our department corri-
dors. Low-level routines let Ramona move forward through

4Hence, no decisions are executed by the robot, and the model
is an HMM and not a complete POMDP.

Figure 8: Learned topological model.

hallways from intersection to intersection and to turn ninety
degrees to the left or right. Ultrasonic data interpretation
let her perceive, in three directions - front, left and right
- whether there is an open space, a door, a wall, or some-
thing unknown. Doors and intersections constitute states.
When they are detected by Ramona, it stops and records its
observations, as well as its odometric change between the
previous and the current state. All recorded measures as
well as the actions are, of course, subject to error.

The path Ramona followed consists of 4 connected corri-
dors, which include 17 states, as shown in Figure 7. Black
dots represent the physical locations of states. Multiple
states (depicted as numbers in the plot) associated with a
single location correspond to different orientations of the
robot at that location. The larger black circle, at the bottom
left corner, represents the starting position. The observa-
tions associated with each state are omitted for clarity. A
projection of the odometric readings that Ramona recorded
along the x and y dimensions, is shown in figure 5.

To statistically evaluate our algorithm, we use a simulated
office environment in which the robot follows a prescribed
path. It is represented as an HMM consisting of 44 states,
and the associated transition, observation, and odometric
distributions. Figure 9 depicts this HMM. Arrows repre-
sent transitions that have probability 0.2 or higher. Solid
arrows represent the most likely transitions between the
states. We generated 5 data sequences from the model, each
of length 800, using Monte Carlo sampling. One of these
sequences is depicted in Figure 10. Again, observations are
omitted, and this is a projection of the odometry readings
onto a global 2-dimensional coordinate system. For each
sequence we ran our algorithm 10 times. We also ran the
standard Baum-Welch algorithm, not using odometric in-
formation, 10 times on each sequence. For both algorithms
we started each run from a randomly picked initial model.

5.2 RESULTS

We used our algorithm to learn a topological model of the
environment from the data gathered by Ramona. Figure 8
shows the topology of one typical learned HMM. The bold
circle represents the initial state. The arrows semantics is

538 Shatkay and Kaelbling

X
-Kr

-Mm,

Figure 9: Model of a prescribed path through the simulated
hallway environment. Figure 10: A data sequence generated by our simulator.

as stated before. It is clear that the learned topology corre-
sponds well to the topology of the true environment. The
observation distributions learned are omitted from the fig-
ure, but they too correspond well to the walls, doors and
openings encountered along the path, while incorporating
the identification error resulting from noisy sensors.

Traditionally, in simulation experiments, learned models
are quantitatively compared to the actual model that gen-
erated the data. Each of the models induces a probabil-
ity distribution on strings of observations; the asymmetric
Kullback-Leibler divergence [11] between the two distri-
butions is a measure of how far the learned model is from
the true model. We report our simulation results in terms
of a sampled version of the KL divergence, as described by
Juang and Rabiner [9]. It is based on generating sequences
of sufficient length according to the distribution induced
by the true model, and comparing their likelihoods accord-
ing to the learned model with the true model likelihoods.
We ignore the odometry information when applying the KL
measure, thus allowing comparison between purely topo-
logical models that are learned with and without odometry.

Table 1 lists the KL divergence between the true and learned
model, as well as the number of runs until convergence was
reached, for each of the 5 simulation sequences under the
two learning settings, averaged over 10 runs per sequence.

The table demonstrates that the KL divergence with respect
to the true model for models learned using odometry, is
about 4-5 times smaller than for models learned without
odometric data. To check the significance of our results

Table 1: Average results of 2 learning settings with 5 training
sequences.

Seq. # 1 2 3 4 5
With KL 1.115 1.100 1.095 1.139 1.129
Odo Iter# 69.7 81.8 84.3 52.4 112.9
No KL 5.575 4.499 4.997 4.491 5.791

Odo Iter # 120.4 107.5 116.2 113.3 120.6

Figure 11: Average KL-divergence as a function of length.

we used the simple two-sample t-test. The models learned
using odometric information have highly statistically sig-
nificantly (p » 0.9995) lower average KL divergence than
the others.

In addition, the number of iterations required for con-
vergence when learning using odometric information is
smaller than required when ignoring such information.
Again, the t-test verifies the significance (p > 0.995) of
this result.

To examine the influence of the amount of data on the qual-
ity of the learned models, we took one of the 5 sequences
(Seq. #1) and used its prefixes of length 100 to 800 (the
complete sequence), in increments of 100, as individual se-
quences. We ran the two algorithmic settings over each of
the 8 prefix sequences, 5 times repeatedly. We then used
the KL-divergence as described above to evaluate each of
the resulting models with respect to the true model. For
each prefix length we averaged the KL-divergence over the
5 runs. Table 2 summarizes the results of this experiment.
It lists the mean KL-divergence over the 5 runs for each of
the prefixes, as well as the standard deviation around this
mean. The plot in Figure 11 depicts the KL-divergence as
a function of the sequence length for each of the settings.
Both the table and the plot demonstrate that, in terms of the
KL-divergence, our algorithm, which uses odometric infor-
mation, is robust in the face of data reduction. In contrast,
learning without the use of odometry is much more sensi-

Heading in the Right Direction 539

Table 2: Average results with 8 incrementally longer sequences.

Seq. Length 800 700 600 500 400 300 200 100

With Mean KL 1.136 1.201 1.191 1.241 1.216 1.272 1.771 15.076

Odo Std. Dev. 0.091 0.083 0.131 0.082 0.036 0.085 0.510 12.884

No Mean KL 5.790 6.249 8.354 10.390 11.490 14.772 20.044 26.619

Odo Std. Dev. 0.554 0.937 0.179 0.460 0.422 1.280 0.904 0.460

tive to reduction in the amount of data. Again, we applied
the two-sample t-test, which verified the statistical signifi-
cance of these results.

6 CONCLUSIONS

Directional information which comes up in various appli-
cations of computer science in general and machine learn-
ing in particular, requires special treatment. Currently most
statistical models and applications are based on distribu-
tions that are either discrete or continuous along the real
line, rather than circular. It is important to be aware of the
need for circular distributions as well as of their existence.
Moreover, it would be useful to have widely used applica-
tions such as Autoclass [2] support such distributions.

A problematic aspect of directional data which manifests
itself when learning maps and models for robot navigation
is that of cumulative rotational errors. In the context of
our work we have demonstrated that the use of relative co-
ordinate systems rather than global ones supports learning
relationship between states. The main point shown by this
paper is that through correct treatment of directional data,
odometric information which is weak and very noisy still
provides a significant leverage when learning a purely topo-
logical map.

Acknowledgments

We thank Sebastian Thrun for his insightful comments, and Dim-
itris Michailidis for his editorial help. This work was supported by
DARPA/Rome Labs Planning Initiative grant F30602-95-1-0020,
by NSF grants IRI-9453383 and IRI-9312395, and by the Brown
University Graduate Research Fellowship.

References
[1] A. R. Cassandra, L. P. Kaelbling, J. A. Kurien. Acting un-

der uncertainty: Discrete Bayesian models for mobile-robot
navigation. In Proc. of IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems. 1996.

[2] P. Cheeseman, et al. Autoclass: A Bayesian classification
system. In J. W. Shavlik, T. G. Dietterich, eds., Readings in
Machine Learning. Morgan-Kaufmann, 1990.

[3] A. P. Dempster, N. M. Laird, D. B. Rubin. Maximum like-
lihood from incomplete data via the EM algorithm. Journal
of the Royal Statistical Society, 39(1), 1-38,1977.

[4] F. C. Dyer. Bees acquire route-based memories but not cog-
nitive maps in a familiar landscape. Animal Behaviour, 41,
239-246, 1991.

[5] Z. Ghahramani, M. I. Jordan. Factorial hidden Markov mod-
els. In 15*'' Int. Conf. on Machine Learning. 1997.

[6] E. G. Gumbel, J. A. Greenwood, D. Durand. The circular
normal distribution: Theory and tables. American Statistical
Society Journal, 48,131-152, March 1953.

[7] D. Heckerman, D. Geiger. Learning Bayesian networks: A
unification for discrete and Gaussian domains. In Proc. of
the 11th Int. Conf. on Uncertainty in AI. 1995.

[8] B. H. Juang. Maximum likelihood estimation for mix-
ture multivariate stochastic observations of Markov chains.
AT&T Technical Journal, 64(6), July-August 1985.

[9] B. H. Juang, L. R. Rabiner. A probabilistic distance measure
for hidden Markov models. AT&T Technical Journal, 64(2),
391-408, February 1985.

[10] S. Kotz, N. L. Johnson, eds. Encyclopedia of Statistical Sci-
ences, vol. 2, pp. 381-386. John Wiley and Sons, 1982.

[11] S. Kullback, R. A. Leibler. On information and sufficiency.
Annals of Mathematical Statistics, 22(1), 79-86,1951.

[12] F. Lu, E. E. Millios. Globally consistent range scan align-
ment for environment mapping. Autonomous Robots, 4,
333-349,1997.

[13] K. V. Mardia. Statistics of Directional Data. Academic
Press, 1972.

[14] I. Nourbakhsh, R. Powers, S. Birchfield. Dervish: An office-
navigating robot. AI Magazine, 16(1), 53-60,1995.

[15] L. R. Rabiner. A tutorial on hidden Markov models and se-
lected applications in speech recognition. Proc. of the IEEE,
77(2), 257-285, February 1989.

[16] H. Shatkay, L. P. Kaelbling. Learning hidden Markov mod-
els with geometric information. Tech. Rep. CS-97-04, Dept.
of Computer Science, Brown University, 1997.

[17] H. Shatkay, L. P. Kaelbling. Learning topological maps with
weak local odometric information. In Proc. of the 15th Int.
Joint Conf. on AI. 1997.

[18] R. G. Simmons, S. Koenig. Probabilistic navigation in par-
tially observable environments. In Proc. of the Int. Joint
Conf. on AI. 1995.

[19] R. Smith, M. Self, P. Cheeseman. A stochastic map for un-
certain spatial relationships. In S. S. Iyengar, A. Elfes, eds.,
Autonomous Mobile Robots. IEEE Press, 1991.

[20] S. Thrun, W. Burgard, D. Fox. A probabilistic approach
to concurrent map acquisition and localization for mobile
robots. Machine Learning, 31,29-53,1998.

540

A Neural Network Model for Prognostic Prediction

W. Nick Street
Computer Science Department

Oklahoma State University
Stillwater, OK 74078

nstreetQcs.okstate.edu

Abstract

An important and difficult prediction task
in many domains, particularly medical deci-
sion making, is that of prognosis. Progno-
sis presents a unique set of problems to a
learning system when some of the outputs
are unknown. This paper presents a new ap-
proach to prognostic prediction, using ideas
from nonparametric statistics to fully utilize
all of the available information in a neural ar-
chitecture. The technique is applied to breast
cancer prognosis, resulting in flexible, accu-
rate models that may play a role in prevent-
ing unnecessary surgeries.

1 Introduction

This paper applies artificial neural network classifica-
tion to the analysis of survival or lifetime data (Lee,
1992), in which the objective can be broadly defined
as predicting the future time of a particular event. In
this work we are concerned specifically with prognosis,
that is, predicting the course of a disease. These meth-
ods are applied to breast cancer prognosis, predict-
ing how long after surgery we can expect the disease
to recur. This problem has significant clinical impor-
tance. Decisions regarding chemotherapy its intensity
are based on the anticipated course of the cancer. For
example, patients with favorable outlooks may forego
chemotherapy entirely. Those with less favorable out-
looks may undergo varying intensities of chemother-
apy, or even bone marrow transplantation.

Prognostic prediction does not fit comfortably into ei-
ther of the classic learning paradigms of function ap-
proximation or classification. While a patient can be
classified "recur" if the disease is observed, there is

no real cutoff point at which the patient can be con-
sidered a non-recurrent case. The data are therefore
censored in that we know a time to recur for only
a subset of patients. For the others, we know only
the time of their last check-up, or disease-free survival
time (DFS). In particular, recurrence or survival data
is right censored, i.e., the right endpoint (recurrence
time) is sometimes unknown, since some patients will
inevitably move away, change doctors, or die of un-
related causes. Therefore, in many cases, the train-
ing signal for the learning method is not well-defined.
Prognosis is not viewed here as a time-series predic-
tion problem, since the predictive features are gathered
only once, at the time of diagnosis and/or surgery.

Problems involving censored data are common to sev-
eral fields. In engineering, one might be interested
in the survival characteristics of electronic compo-
nents, while sociologists might consider what factors
lead to long-lasting marriages. These problems have
traditionally been approached using statistical tech-
niques such as Cox proportional-hazards regression
(Cox, 1972). In recent years, there has been an in-
creased interest in the application of machine learn-
ing methods to prediction using censored data. Sev-
eral groups have approached prognosis as a separation
problem using different learning architectures, includ-
ing backpropagation artificial neural networks (ANNs)
(Burke, 1994; Burke et al., 1997), entropy maximiza-
tion networks (Choong et al., 1996) and decision trees
(Wolberg et al., 1992; Wolberg et al., 1994). This is
done by choosing one or more endpoints and learning
a yes/no classifier on concepts such as "patients who
recurred in less than two years." Cases with follow-
up time less than the cutoff are discarded from the
training set. Ravdin and colleagues (De Laurentiis and
Ravdin, 1994; Ravdin and Clark, 1992) use ANNs to
generate survival curves, which plot the probability of
disease-free survival against time. This work uses time

A Neural Network Model for Prognostic Prediction 541

as an input variable and interprets the trained net-
work's single output as an approximation of recurrence
probability. The resulting formulation results in biases
in the training data that must be corrected by repeat-
ing or removing some of the examples. Their com-
putational results are verified only by demonstrating
that their predicted survival rates closely approximate
those of the test cases. The problem has also been
approached in an unsupervised learning fashion, using
clustering (Bradley et al., 1997) and self-organizing
neural networks (Schenone et al., 1993). However,
these techniques did not directly address the problem
of prediction using censored data.

While this research also separates the cases into classes
based on recurrence time, it differs from the above
techniques in several respects. Censored cases are in-
corporated directly into the training set, not by us-
ing an artificial cutoff time, but rather by using the
probability that they will recur before a certain time
as the training signal. In this way we use all of the
information available in the training set. Further, in-
terpreting the outputs as probabilities lets us not only
separate the cases into "good" and "bad" prognoses,
but also to generate predicted survival curves for in-
dividual patients, making the system more useful in a
clinical setting.

2 Neural Architecture

The ANNs used in this work were standard feedfor-
ward networks with one hidden layer, trained with
backpropagation (Rumelhart et al., 1986). The hy-
perbolic tangent activation function was used for hid-
den and output nodes. The output layer consisted of
ten units; the first represented the class of examples
with recurrences at one year or less following surgery,
the second those with recurrences between one and
two years, etc., up to ten years1. This approach im-
plies the existence of an extra (in our case, eleventh)
class. These are the patients with expected disease-
free survival of time greater than the length of the
study (10 years). The activations of the output units
were trained with and interpreted as the probability
that the patient would have disease-free survival up to
that time. These probabilities were scaled to the range
of the hyperbolic tangent function, i.e., activation = 2
* probability - 1.

In order to maintain the interpretation of the out-
puts as probabilities, the relative entropy error func-

tion (Baum and Wilczek, 1988; Solla et al., 1988) was
used for all non-input units. For a given example i,
this error function is defined as

^he available prognostic studies are approximately ten
years in duration.

* = E (1 + 2?) log
1 + 2?

♦b ■I?) log

1 + 0*

1-2*

1-0?

where 2* is the target value for output unit k and 0\
is its output value. Outputs of +1 and -1 correspond
to definitely true and definitely false, respectively, with
intermediate values again being scaled into the appro-
priate range.

For recurrent cases, the network was trained with val-
ues of +1 for all outputs up to the observed recurrence
time, and -1 thereafter. For instance, a recurrence at
32 months would have a training vector T = {1, 1, -1,
-1, -1, -1, -1, -1, -1, -1}. The value of the probability
formulation is seen in the censored cases. They were
similarly trained with values of +1 up to the observed
disease-free survival time. The probabilities of DFS
for later times were computed using a variation of the
standard Kaplan-Meier maximum likelihood approxi-
mation to the true population survival rate (Kaplan
and Meier, 1958). We define the risk of recurrence at
time t > 0 as the conditional probability that a patient
will recur at time t, given that they have not recurred
up to time t - 1. As an example, consider a study
containing a total of 20 patients. If two recurrences
were observed in the first time interval, we would have
risky. =0.1. Further suppose that the study has two
censored cases in the first time interval, and two more
recurrences in the second interval. There are 16 pa-
tients at risk for recurrence during interval two, with
two recurrences, so risk2 = 0.125. The Kaplan-Meier
estimator of the disease-free survival curve, S, tracks
the cumulative probability of DFS for any time in the
study, using the risks in the following fashion:

(1 - riskt),
t = 0
t> 0.

Continuing the above example, So = 1-0, Si = 0.9,
and S2 = 0.7875. To compute appropriate training
probabilities, we simply use the DFS time of the cen-
sored case as the starting time, rather than time 0:

{ St-i(l-
0 < t < DFS{i)

rish), t>DFS(i).

For an individual output node k, this training signal
represents the example's probability of membership in

542 Street

the class being recognized by that node, i.e., the set of
cases that recur before the end of year k. Collectively,
the activation values of the output units represent an
expected survival curve for the individual case.

If we view the network as learning a survival curve, the
task becomes one of function approximation using in-
complete data. The training signal is then a modified
thermometer encoding (McCullagh and Neider, 1989),
a relatively common encoding for ordered categorical
outputs, with the added complication of the survival
probabilities for censored cases. Since the effects of
some of the input features are thought to be nonlinear
over time, it is also instructive to view the problem
as a sequence of highly related but distinct classifi-
cation problems, all learned using the same internal
representation (i.e., hidden nodes). The representa-
tion generated in learning one group (say, those cases
that are likely to recur before one year) contributes to
the learning of other groups (say, those cases recurring
between 5 and 6 years). This is a form of functional
knowledge transfer, similar to the MTL network (Bax-
ter, 1995; Caruana, 1995). The learning of multiple
classes in parallel contributes to faster learning and
more reliable predictive models.

The above architecture facilitates three different uses
of the resulting predictive model:

1. The output units can be divided into groups a
posteriori to separate good from poor prognoses.
For a particular application, any prediction of re-
currence at a time greater than five years might be
considered favorable, and indicate less aggressive
treatment. The actual outcomes of those patients
in the good group should be significantly better
than those in the poor group.

2. An individualized disease-free survival curve can
easily be generated for a particular patient by
plotting the probabilities predicted by the vari-
ous output units. In order for this curve to be
reliable, the activations should be monotonically
decreasing, or very nearly so.

3. The expected time of recurrence can be obtained
merely by noting the first output unit that pre-
dicts a probability of disease-free survival of less
than 0.5. This provides a convenient method
of rank-ordering the cases according to expected
outcome.

A significant methodological issue is that of evaluating
the learned model. As discussed earlier, this is neither

a function approximation nor a classification problem,
since in many cases we do not know the correct an-
swer. Still, there is a well-defined goal: the accurate
prediction of individual prognosis. While our training
method seeks to minimize the relative entropy error at
each output unit, the reporting of this error on testing
sets would be relatively uninformative. We therefore
evaluate the models on two criteria: the accuracy of
the predicted recurrence rates (see Section 3.4) and the
ability of the models to separate cases with favorable
and unfavorable prognoses (see Section 3.3).

3 Experimental Results

Computational experiments were performed on two
very different breast cancer data sets. The first
is known as Wisconsin Prognostic Breast Cancer
(WPBC) and is characterized by a small number of
cases, relatively high dimensionality, very precise val-
ues and almost no missing data. The second data set is
from the Surveillance, Epidemiology, and End Results
(SEER) program of the National Cancer Institute. It
contains a large number of cases, with relatively few,
coarsely-measured features, and a high percentage of
missing values. Details on these data sets are given
below.

In both cases, the prognosis data used in this study
consists of those malignant patients for which follow-
up data was available, after eliminating those cases
with distant metastasis (cancer has already spread;
prognosis is poor) and carcinoma in situ (cancer has
not yet invaded breast tissue; prognosis is good). We
therefore maximize the clinical relevance of the study
by focusing on those cases that present the most diffi-
cult prognosis.

Experiments reported in this section are test set results
using either tenfold cross-validation (WPBC data) or
a single randomized holdout test (SEER data). The
ANNs used had three hidden units, and training was
terminated after 1000 on-line epochs.

3.1 Wisconsin Prognostic Breast Cancer
Data

In previous work (Mangasarian et al., 1995; Wolberg
et al., 1994) the author contributed to the development
of an image-processing software package for breast can-
cer diagnosis, known as Xcyt, which analyzes digital
images of cells taken from breast lumps. This program
computes 10 different features of each cellular nuclei
in the image: radius, perimeter, area, compactness,

A Neural Network Model for Prognostic Prediction 543

smoothness, size and number of concavities, symmetry,
fractal dimension, and texture. The mean, standard
area, and extreme values of each feature are computed
for each image. The current application uses the 30
nuclear features computed by Xcyt together with two
traditional prognostic predictors: tumor size and num-
ber of involved lymph nodes. This data set contains
227 cases, 61 of which have recurred. An earlier ver-
sion of this data set is available at the UCI machine
learning repository (Merz and Murphy, 1996).

3.2 SEER Data

The SEER (Carter et al., 1989) data set consists of
data on cancer survival (rather than recurrence) for
over 38,000 women newly diagnosed with breast can-
cer between 1977 and 1982. Each case contains the
following information: histological grade (four discrete
values), tumor size, tumor extent (5 discrete values),
number of positive lymph nodes, and number of nodes
examined. Many of these feature values are missing.
For instance, only about 20% of the cases contain a
value for histological grade; over 1200 of the cases con-
tain no feature information at all. Each of the SEER
features was encoded as a sequence of binary variables,
with an additional binary variable representing a miss-
ing value.

3.3 Good vs. poor prognoses

To be used as a clinical tool, the predictive model
should reliably separate cases with a good prognosis
from those with a poor prognosis. Since treatment op-
tions are limited, this sort of stratification could be
most helpful to the physician and the patient in de-
termining a post-operative treatment plan. Figure 1
stratifies the WPBC test cases into those predicted
to recur in the first five years and those predicted to
recur at some time greater than five years (including
the implicit 11th class). The difference in these two
groups is statistically significant (p < 0.001, general-
ized Wilcoxon test). Of course, the output units could
be grouped differently to define the relevant prognos-
tic categories for a particular problem. Further, the
implicit final group could also be subdivided based on
the activation level of the last node.

Similarly, Figure 2 shows survival probabilities for
those cases with good and poor prognosis, in this case,
predicted survival less than or equal to ten years and
predicted survival greater than ten years. Again the
difference in the two groups is statistically significant
(p < 0.001). The difference in dividing points between

1«

0.9

0.8

\ ^ \ \
\

\
- \

~\

Good

■

^\
„0.7
co >
io.6 -
0
S0.5
s
CO
8 0.4
Ö

%.3

.
Poor

-

0.2 ■

■

0.1 ■

0
0 20 40 60 80

Time (months)
100 12

Figure 1: WPBC Data: Disease-free survival probabil-
ities for those cases predicted to recur in the first five
years (Poor, 58 cases) compared to those predicted to
recur at some time greater than five years (Good, 169
cases).

the two tests is due to the difference between the mea-
sured endpoints (recurrence in the WPBC data, death
in the SEER data). The ratios of good to bad prog-
noses were held nearly constant.

Time (months)

Figure 2: SEER Data: Survival probabilities for those
cases predicted to die from breast cancer in the first ten
years (Poor, 8,353 cases) compared to those predicted
to die at some time greater than ten years (Good,
26,192 cases).

544 Street

In traditional breast cancer staging, postoperative
treatment decisions are based largely or even entirely
on whether or not the cancer has spread to the pa-
tient's axillary lymph nodes. However, removing the
nodes for examination leaves the arm subject to infec-
tion and possible lymphedema (Aitken et al., 1989),
and does not affect overall survival (Abe et al., 1995).
In both of our test cases, the separation with this
method represents an improvement over that achieved
by the lymph node status feature. Further, statisti-
cally significant separation was achieved in both data
sets without using the lymph feature (WPBC, p =
0.02; SEER, p < 0.001). This is further confirmation
of a previous finding (using other analytic techniques)
that breast cancer prognosis can be achieved without
lymph node dissection (Wolberg et al., 1997; Wolberg
et al., 1998).

3.4 Predicted vs. actual group survival

Another criterion for the validity of the learned model
is whether the predicted recurrence rate follows that
of the actual data. Figure 3 shows the Kaplan-Meier
estimate of disease-free survival curve for the entire
WPBC training set, compared with the predicted DFS
rates accumulated from the test folds. Again, a test
case is predicted to recur at time t if the activation of
output node t is the first one indicating a DFS prob-
ability of less than 0.5. The two curves are very simi-
lar and show no significant statistical difference (p =
0.2818, generalized Wilcoxon test (Gehan, 1965)).

The predicted group survival for the SEER data did
not closely match the actual survival curve. This is
consistent with previous research (Street et al., 1996)
using a variation of the RSA prognostic technique
(Street et al., 1995) which also showed that the SEER
data was unable to replicate group survival character- -
istics. This is attributable to the coarse encoding of
the SEER variables and the large percentage of miss-
ing values.

3.5 Individual prognostic prediction

As mentioned, the activations of the output units can
be combined to form a predicted DFS curve for an in-
dividual patient. Figure 4 shows an example of this
usage, in a format appropriate for a clinical setting.
Here the probabilities of disease-free survival for a case
from the WPBC study are compared to the cumulative
values of all patients in the study. The output activa-
tions were monotonically non-increasing, as was the
case in 74% of the WPBC test examples and 87% of
the SEER examples. The others had occasional small
increases, with the maximum increase in any exam-
ple corresponding to to a probability change of 0.024
(WPBC) and 1.0 (SEER). The expected time of re-
currence can be computed by noting where the DFS
curve crosses a probability of 50%, in this case, be-
tween three and four years. In fact, this patient did
experience disease recurrence in the 44th month fol-
lowing surgery.

1 \~ ^ I 1 1 | | , , , ,

0.9 \. ^ Predicted

0.8 -■\-o-
—^*- - _ __

Actual — ** ~ -
— 0.7
(0

§0.6
w
%
£0.5
1
V) «
§0.4
b
QT

0.3 "
0.2 "

0.1 "

0 ' ' 1 1 1 A 1 | |

5
Time

Figure 3: WPBC Data: Kaplan-Meier estimate of true
disease-free survival curve compared to predicted DFS
curve.

Figure 4: Predicted DFS curve of a single case (87-112)
from the WPBC study compared to the overall group
DFS curve of the training set.

A Neural Network Model for Prognostic Prediction 545

4 Conclusions

This paper develops a novel encoding of censored data
in an artificial neural network architecture to provide
a framework for prognostic prediction. In applying
the method to breast cancer prognosis, the resulting
models are shown to be at least as accurate as current
methods, while providing significantly more precision
and flexibility. Among the future directions for this
research is a sensitivity analysis to investigate the im-
portance of the prognostic features at different follow-
up times. To evaluate the role of knowledge transfer,
predictive accuracy will be compared to classification
models that predict recurrence at a chosen cut point.
Most importantly from a clinical perspective, our work
in the breast cancer domain continues to focus on gen-
erating accurate prognostic models without knowledge
of lymph node status, in order to spare new patients
an extra and potentially debilitating surgery.

Acknowledgments

The author wishes to thank Dr. William H. Wolberg of
the University of Wisconsin Department of Surgery for
contributing both data and direction to this research.
The SEER data was made available by Dr. Don Hen-
son of the National Cancer Institute. This work was
partially supported by NSF grant IRI-9701992.

References

Abe, 0., Abe, R., Asaishi, K., Enomoto, K., Hattori,
T., and lino, Y. (1995). Effects of radiotherapy
and surgery in early breast cancer: An overview
of the randomized trials. New England Journal of
Medicine, 333:1444-1455.

Aitken, R. J., Gaze, M. N., Rodger, A., Chetty, U., and
Forrest, A. R M. (1989). Arm morbidity within
a trial of mastectomy and either nodal sample
with selective radiotherapy or axillary clearance.
British Journal of Surgery, 76:568-571.

Baum, E. B. and Wilczek, F. (1988). Supervised
learning of probability distributions by neural net-
works. In Anderson, D. Z., editor, Neural In-
formation Processing Systems, pages 52-61, New
York. American Institute of Physics.

Baxter, J. (1995). Learning internal representations.
In Proceedings vf the Eighth International Con-
ference on Computational Learning Theory.

Bradley, P. S., Mangasarian, 0. L., and Street, W. N.
(1997). Clustering via concave minimization. In

Mozer, M. C, Jordan, M. I., and Petsche, T., ed-
itors, Advances in Neural Information Processing
Systems, volume 9, pages 368-374, Cambridge,
MA. MIT Press.

Burke, H. B. (1994). Artificial neural networks for
cancer research: Outcome prediction. Seminars
in Surgical Oncology, 10:73-79.

Burke, H. B., Goodman, P. H., Rosen, D. B., Henson,
D. E., Weinstein, J. N., Harreil, F. E., Marks,
J. R., Winchester, D. P., and Bostwick, D. G.
(1997). Artificial neural networks improve the
accuracy of cancer survival prediction. Cancer,
79:857-862.

Carter, C. L., Allen, C, and Henson, D. E. (1989).
Relation of tumor size, lymph node status, and
survival in 24,740 breast cancer cases. Cancer,
63:181-187.

Caruana, R. (1995). Learning many related tasks at
the same time with backpropagation. In Advances
in Neural Information Processing Systems, vol-
ume 7, pages 657-664.

Choong, P. L., deSilva, C. J. S., Dawkins, H. J. S.,
and Sterrett, G. F. (1996). Entropy maximization
networks: An application to breast cancer prog-
nosis. IEEE Transactions on Neural Networks,
7(3)=568-577.

Cox, D. R. (1972). Regression models and life-tables.
Journal of the Royal Statistical Society, B 34:187-
202.

De Laurentiis, M. and Ravdin, P. M. (1994). A tech-
nique for using neural network analysis to perform
survival analysis of censored data. Cancer Letters,
77:127-138.

Gehan, E. A. (1965). A generalized Wilcoxon test
for comparing arbitrarily single-censored samples.
Biometrika, 52:203-223.

Kaplan, E. L. and Meier, P. (1958). Nonparametric
estimation from incomplete observations. Journal
of the American Statistical Association, 53:457-
481.

Lee, E. T. (1992). Statistical Methods for Survival
Data Analysis. John Wiley and Sons, New York.

Mangasarian, O. L., Street, W. N., and Wolberg,
W. H. (1995). Breast cancer diagnosis and prog-
nosis via linear programming. Operations Re-
search, 43(4):570-577.

546 Street

McCullagh, P. and Neider, J. A. (1989). Generalized
Linear Models, chapter 6, page 137. Chapman
and Hall, London, 2 edition.

Merz, C. J. and Murphy, P. M. (1996). UCI repos-
itory of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.ht
University of California, Irvine, Department of In-
formation and Computer Sciences.

Ravdin, P. M. and Clark, G. M. (1992). A practical
application of neural network analysis for predict-
ing outcome of individual breast cancer patients.
Breast Cancer Research and Treatment, 22:285-
293.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning internal representations by error
propagation. In Rumelhart, D. E. and McClel-
land, J. L., editors, Parallel Distributed Process-
ing, volume 1, chapter 8. MIT Press, Cambridge,
MA.

Schenone, A., Andreucci, L., Sanguinetti, V., and
Morasso, P. (1993). Neural networks for prognosis
in breast cancer. Physica Medica, IX (Supplement
1):175-178.

Solla, S. A., Levin, E., and Fleisher, M. (1988). Accel-
erated learning in layered neural networks. Com-
plex Systems, 2:625-639.

Street, W. N., Mangasarian, O. L., and Wolberg,
W. H. (1995). An inductive learning approach to
prognostic prediction. In Prieditis, A. and Rus-
sell, S., editors, Proceedings of the Twelfth Inter-
national Conference on Machine Learning, pages
522-530, San Francisco. Morgan Kaufmann.

Street, W. N., Mangasarian, 0. L., and Wol-
berg, W. H. (1996). Individual and collec-
tive prognostic prediction. Technical Report 96-
01, Computer Sciences Department, University
of Wisconsin, Madison, WI. Available from
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/.

Wolberg, W. H., Bennett, K. P., and Mangasar-
ian, 0. L. (1992). Breast cancer diagnosis
and prognostic determination from cell analysis.
Manuscript, Departments of Surgery and Human
Oncology and Computer Sciences, University of
Wisconsin.

Wolberg, W. H., Street, W. N., and Mangasarian,
0. L. (1994). Machine learning techniques to diag-
nose breast cancer from image-processed nuclear

features of fine needle aspirates. Cancer Letters,
77:163-171.

Wolberg, W. H., Street, W. N., and Mangasarian,
0. L. (1997). Computer-derived nuclear features
compared with axillary lymph node status for

ml], breast cancer prognosis. Cancer Cytopathology,
81:172-179.

Wolberg, W. H., Street, W. N., and Mangasarian,
0. L. (1998). A comparison of computer-based nu-
clear analysis versus lymph node status for stag-
ing breast cancer. Lancet, submitted.

547

Learning the Grammar of Dance

Joshua M. Stuart
Department of Computer Science

University of Colorado
Boulder CO 80309-0430 USA

Elizabeth Bradley*
Department of Computer Science

University of Colorado
Boulder CO 80309-0430 USA

Abstract

A common task required of a dancer or ath-
lete is to move from one prescribed body pos-
ture to another in a manner that is consis-
tent with a specific style. One can automate
this task, for the purpose of computer ani-
mations, using simple machine-learning and
search techniques. In particular, we find ki-
nesiologically and stylistically consistent in-
terpolation sequences between pairs of body
postures using graph-theoretic methods to
learn the "grammar" of joint movements in
a given corpus and then applying memory-
bounded A* search to the resulting transition
graphs — using an influence diagram that
captures the topology of the human body in
order to reduce the search space.

1 INTRODUCTION

A common task required of a dancer or athlete is to
move from one prescribed body posture to another
in a manner that is consistent with a specific style.
If these postures are "far apart," as measured by
some metric that takes into account both the kine-
siology of the body and the style of the movement
genre, this can be nontrivial. For the purposes of
computer-generated animation, there are a variety of
ways to generate movement sequences that accom-
plish this kind of task. One can, for instance, use
mathematical interpolation techniques like splines to
move individual body parts from one position to an-
other, but these kinds of methods do not address the
problem of kinesiological illegality (e.g., that the knee
only bends 180 degrees, or that arms cannot pass
through ribcages). Many animation packages, such as
Life Forms (http://fas.sfu.ca/lifeforms.html),
use an augmented spline approach that relies on a

* Author to whom correspondence should be sent

table of kinematic constraints to avoid illegal move-
ments, but this type of approach is somewhat ad hoc.
A more-general way is to use the physics of the body:
derive the associated differential equations — a torque
balance for each joint, say — and solve the equivalent
boundary-value problem. Approaches like this(Hod-
gins et al. 1995) are extremely interesting and highly
promising, but also very difficult; deducing the control
equations that humans use to recover their balance af-
ter a jump, for example, is a Ph.D. thesis-level prob-
lem(Wooten 1998). Stylistically faithful interpolations
would be even harder to implement; neither splines nor
F = ma can easily capture or enforce, for instance,
the requirement that classical ballet emphasizes po-
sition over motion1, and developing a mathematics-
or physics-based approach that does so would be all
but impossible. In this paper, we propose an alter-
native solution to this problem: a class of corpus-
based interpolation schemes that generate a kinesiolog-
ically and stylistically consistent movement sequence
between two specified body positions by learning and
then enforcing the dynamics of a particular movement
genre.

The primary motivation for the development of these
methods was our work on a mathematical tech-
nique(Bradley & Stuart 1997; 1998) that automat-
ically creates variations on predefined motion se-
quences — an idea that was inspired by a similar
scheme(Dabby 1996; 1997) that uses a related proce-
dure to generate musical variations. We use the math-
ematics of nonlinear dynamics to shuffle a predefined
movement sequence by "wrapping" a progression of
special symbols representing the body positions in a
dance piece, martial arts form, or other motion se-
quence around a chaotic attractor. This establishes
a symbolic dynamics that links the movement pro-

*In ballet, body parts tend to describe piecewise-linear
paths through space, emphasizing the positions at the junc-
tions of those linear segments; in modern dance, on the
other hand, the motion between the endpoints is the im-
portant feature.

548 Stuart and Bradley

gression and the attractor geometry, as shown in fig-
ure 1. By definition, trajectories from different start-
ing points2 travel along the same attractor but in a
different order. This property lets us use the mapping
depicted in figure 1(d) to create a variation: we sim-
ply follow a new trajectory around the attractor and
invert the symbolic mapping, "playing" the body po-
sition for each cell the trajectory enters. Variations
generated in this manner, whether musical or choreo-
graphic, are both aesthetically pleasing and strikingly
reminiscent of the original sequences. The stretching
and folding of the chaotic dynamics guarantee that the
ordering of the pitches or movements in the variation
is different from the original sequence; at the same
time, the fixed geometry of the attractor ensures that
a chaotic variation of Bach's Prelude in C Major or
of a short Balanchine ballet sequence are related to
the original piece in a sense reminiscent of the classic
"variation on a theme." Broadly speaking, the chaotic
variations resemble the originals with some shuffling of
coherent subsequences. This is the primary source of
the stylistic originality of the chaotic variation scheme
— in fact, this type of subsequence shuffling is a well-
established creative mechanism in modern choreogra-
phy. One problem with any choreographic technique,
automated or not, that involves subsequence reorder-
ing, however, is that the transitions at the subsequence
boundaries can be quite jarring. Figure 2, for exam-
ple, shows a short section of a chaotically generated
variation on a short ballet adagio. Note the abrupt
transition between the fifth and sixth moves of the
variation.

The interpolation algorithms that are the topic of this
paper can smooth these kinds of transitions in a man-
ner that is both kinesiologically and stylistically con-
sistent. These graph-theoretic methods "learn" the
grammar of joint movements in a given corpus and
then apply memory-bounded A* search — using an
influence diagram that models the relationships of
the joints in the human body in order to reduce the
otherwise-intractable search space — to find an ap-
propriate interpolation sequence between two given
body positions. The search is complicated by the fact
that joint positions cannot be interpolated in isolation:
the movement patterns of the ankle, for instance, are
strongly influenced by whether or not the foot is on
the ground — information that is implicit in the posi-
tions of the pelvis, knees, etc. This requires that the
expansion of nodes in the search be context dependent
in a somewhat unusual way. The resulting interpola-
tion procedures, which were developed and evaluated
in close collaboration with several expert dancers, are
quite effective at capturing and enforcing the dynamics
of a given group of movement sequences.

* 4wi* **?

(c)

' c:|
r \ \

I ,. %" /""

/ 4, Y

'~fx

(d)

Figure 1: A chaotic mapping that links a short ballet,
adagio and the chaotic Rössler attractor. A Voronoi
diagram is used to divide the region covered by the tra-
jectory shown in part (a) into cells, yielding the tiling
shown in part (b). The order in which the original tra-
jectory traverses those cells defines the temporal order
of the cell itinerary that corresponds to that trajec-
tory. Successive body positions from the predefined
movement sequence (c) are mapped to successive cells
in that itinerary, linking the structure of the movement
sequence and the attractor geometry. A small section
of the overall mapping is shown in part (d).

within the basin of attraction, of course

Learning the Grammar of Dance 549

Figure 2: Part of a variation on a short ballet sequence, generated using the chaotic shuffling procedure dia-
grammed in the previous figure. Note the abrupt transition between the fifth and sixth frames. The interpolation
schemes described in this paper can be used to smooth such transitions in a kinesiologically and stylistically con-
sistent fashion.

2 CORPUS-BASED
INTERPOLATION ALGORITHMS
FOR MOVEMENT SEQUENCES

The interpolation schemes described in this section use
corpora of human movement — a corpus composed of
ten Balanchine ballets, for instance, if one is work-
ing with dances of that particular genre3 — to select
a movement sequence that would naturally occur be-
tween a given pair of body postures. The basic algo-
rithms involved are fairly straightforward, but the ap-
plication requires some unusual tactics and variations.
We first examine the corpus, capturing typical progres-
sions of joint positions in a set of transition graphs.
Then, given a pair of body postures, we use a variant
of the A* algorithm to search these graphs for interpo-
lation subsequences. A typical interpolation sequence
might, for instance, first move the shoulder from its
position in the fifth frame of figure 2 to its position
in the sixth frame according to the rules for shoulder
movement that are implicit in the corpus, then repeat
for the elbow, and so on.

Our original approach(Bradley & Stuart 1997) was
much more coarse-grained; the atomic representational
unit was a full body position and the patterns in the
corpus were represented in a single graph that had
one vertex for each observed posture. This approach
was both impractical and unsatisfying. Firstly, it did
not scale well with corpus size because the number of
unique body positions is so large. Secondly, it could
only populate interpolation sequences with verbatim
copies of full-body positions that appeared in the cor-
pus. The methods described in this paper, on the other
hand, construct the body positions in the interpolation

3The composition of the corpus will, of course, affect
the nature of the interpolation; smoothing abrupt transi-
tions in ballet pieces using an interpolation scheme that is
mathematically rooted in a karate corpus will negate the
very aesthetic resemblance that this approach strives to
preserve. On the other hand, this might be an interesting
source of innovation, whereby one could mathematically
mix two or more styles.

sequence in a joint-wise manner and on the fly. This
scheme not only'avoids the storage problems of the
previous approach, but also allows innovation: it can
generate sequences that contain body positions that
do not appear in the corpus.

2.1 BODY POSTURE REPRESENTATION

We represent a human body posture by specifying the
position of each of the 23 main joints with a quater-
nion, a standard representation in rigid-body mechan-
ics that dates back to Hamilton(Goldstein 1980). A
quaternion q = (r, u) consists of an axis of rotation u
and a scalar r that specifies the angle of rotation of the
joint about u. Thus, a body-position symbol is quite
complicated: 23 descriptors (pelvis, right-wrist,
etc.), 92 numbers (four for each joint), and a variety
of information about the position and orientation of
the center of mass.

Joint orientations are, in reality, continuous vari-
ables, but computational complexity requires that
they be discretized in our algorithms. Specifically,
each joint A can take on a finite number MA of al-
lowed orientations4. Formally, we define Qx as the set
of allowed orientations for joint A and then replace the
actual orientation of the joint with the closest quater-
nion in Qx. We can express a body position 6 as
a discretized vector s by setting each of its compo-
nents s\ equal to the quaternion in Qx that is closest
to 6A: sx = r such that ||6A - r\\ < \\b\ - q\\ for all
q,r G Qx where ||ar - y\\ is the Euclidean distance5

between the quaternions x and y. We can find r in
log(MA) time using K-D trees(Friedman, Bentley, &
Finkel 1977) to represent the Qx sets. The procedure
described in this paragraph is analogous to "snapping"
objects to a grid in computer drawing applications.

Deriving a successful discretization of joint states

4In practice, Mx < 400.
5 One of the main advantages of quaternions is that they

can be treated as 4-vectors in the standard norm and trans-
formation operations.

550 Stuart and Bradley

was unexpectedly difficult. Simply discrctizing the
quaternion variable values — that is, classifying all
positions between, say, (right-wrist, 1, 1, 0, 1)
and (right-wrist, 1, 1, 0.2, 1) as an equiva-
lence class and representing them in the algorithms
as a single posture — produced visibly awkward ani-
mations. The human visual perception system appears
to be very sensitive to small variations in quaternion
coefficients: any change in a single coefficient seems to
violate the "motif" of the motion. The same problem
arose when we attempted a physically more-realistic
discretization by transforming quaternion data to Eu-
ler angles and then discrctizing 0, <j>, and ip instead.
The solution on which we eventually settled uses a
discretization library that was created by hand by an
expert dancer.

2.2 REPRESENTATION OF A
MOVEMENT CORPUS

2.2.1 Joint Transition Graphs

A transition graph is a weighted-directed graph that
captures the transition probabilities in a symbol se-
quence. In general, each vertex v in such a graph rep-
resents a symbol and each weighted edge (v, u) reflects
the probability that the symbol associated with vertex
u follows the symbol associated with vertex v. For the
purposes of analyzing a human movement corpus, we
build one transition graph for each joint, using the cor-
pus to identify orientations that the joint assumes and
to estimate the corresponding transition probabilities.
Vertices in this kind of graph represent particular dis-
cretized joint orientations, and edges correspond to the
movement of the joint from one orientation to another.

The transition graph construction procedure is fairly
straightforward. We first transform every body po-
sition in the corpus to a discretized position, as de-
scribed in the previous section, so that a consecu-
tive pair of body positions (a, 6), each consisting of
23 continuous-valued quaternions, becomes the dis-
cretized pair (s, t) where s, t each consist of 23 dis-
cretized quaternions. We then build a transition graph
Gx for each joint A; Gx contains Mx vertices, each of
which corresponds to exactly one quaternion in Qx.
For convenience, we will refer to vertices in Gx by
the corresponding quaternions in Qx. We record the
fact that joint A is allowed to move from a\ to 6A by
introducing an edge in Gx from vertex s\ to vertex
t\. We assign a weight to this edge that models the
"unlikeliness" with which such a transition occurs in
the corpus. This measure of unlikeliness is related to
P(q —► r), the probability that joint A moves from the
quaternion q G Qx to the quaternion r 6 Qx, per the
following expression for the weight of edge (q, r) G Gx:

9,r = -log(P(q^r)) = -log(P(r\q))

*log(C(q)) - log(C(q,r))
where C(q) is the number of times joint A assumed
an orientation approximated by q and C(q,r) is the
number of times that the ordered pair (q, r) occurred.
Larger weights correspond to transitions that are less
likely to occur6.

Figure 3 shows a transition graph for the hips that
was constructed in this fashion from a corpus of 38
short ballet sequences totaling 1720 positions. In the
interests of clarity, edge weights and isolated vertices
have been omitted from this figure. The intricate pat-
terns in these dance progressions are reflected by the
complex topology of the graph.

2.2.2 Coordinating Joint Movements

A joint transition graph represents the behavior of a
joint in isolation. This information, alone, cannot cap-
ture the physical constraints that govern the coordi-
nation of the joints in the body. For example, if the
shoulder is in its resting position with the palm facing
the thigh, the elbow can bend nearly 180 degrees, but
if the shoulder is turned 90 degrees on its long axis
(until the palm faces backwards), the elbow can only
bend about five degrees before the hand collides with
the leg. In order to construct sensible interpolation
sequences, we need a simple and efficient model of this
type of joint coordination.

The most complete and general approach to this prob-
lem would be to model the interactions between each
joint and every other joint in the body, but doing
so engenders a combinatorial explosion in the search
space. There are sensible ways to reduce the complex-
ity of the problem, however; to a first approximation,
a joint is not influenced by every other joint in the
body. The position of the wrist, for instance, strongly
affects the position of the fingers but has little effect
on the toes. We put this simplifying assumption into
effect by using an influence diagram(01iver k Smith
1990) that reflects the structure and physics of the hu-
man body to explicitly represent the relationships of
the joints to one another. As shown in figure 4(b),
the nodes (joints) in the tree only affect the position
of their immediate children. The pelvis is the root of
this tree; three branches lead from this root to nodes
corresponding to the right hip, the left hip, and the
lower spine7. Each hip joint is the parent node to a
knee, and so on. We assign a conditional probability
distribution, estimated from the corpus, to every (par-
ent,child) pair in the tree. For every combination of

Given this formulation, saying that two vertices are
disconnected is synonymous with saying that two are con-
nected by an edge with infinite weight.

The sacrum and the five lumbar vertebrae are lumped
together. This compromise sacrifices back suppleness for
lowered complexity.

Learning the Grammar of Dance 551

Figure 3: A transition graph that represents the move-
ment patterns of the hips in a small corpus of 38 short
ballet sequences. The numbers in each state identify
the discretized position of the joint. Edge weights and
isolated vertices have been omitted in the interests of
clarity.

Figure 4: An influence diagram that explicitly rep-
resents the coordination of joints of the human body.
Part (a) depicts the body and part (b) shows the inter-
joint dependencies induced by gravity and topology:
for instance, the position of the pelvis influences the
positions of both hips hr and hi and the lumbar spine
/, but the right and left ankles kr and kt do not di-
rectly influence one another. Without this simplifying
assumption, the search space for this problem is in-
tractable.

states that a parent A and its child y, can assume, the
distributions estimate the probability that joint n is in
orientation r given that joint A is in orientation q, for
every pair of discretized of quaternions qeQ ,reQ^.

2.3 A JOINT-WISE INTERPOLATION
ALGORITHM

Given a pair of discretized body postures (s, i) and
a set of 23 transition graphs (one for each joint), we
can use a memory-bounded A* search strategy(Win-
ston 1992) to find an interpolation subsequence that
moves smoothly between s and t. In general, A* finds
a path from an initial state to a goal state by progres-
sively generating successors of the current state in the
search. The algorithm places successor states on a pri-
ority queue, sorted according to a score that estimates
the cost of finding a goal state. In the next iteration,
the state with the best score is drawn from the priority
queue, its successor states are computed and added to
the queue, and the procedure is repeated until a goal
state is found or until the queue is empty.

In this application, the states in the A* search space
are body states — 23-vectors of discretized quater-
nions that represent full body positions. To generate
successors of a body state s, we first use the transi-
tion graphs to find successors for each joint state s\
independently, and then take all combinations (cross
product) across the joints to obtain the list of body-

552 Stuart and Bradley

state successors. From this list, we can filter out the
disallowed body positions using the influence diagram
and the probability distribution of parent-child pairs.
The successors of the joint-state sx are those vertices
in Gx that are connected to sx by an edge directed
away from s\.

The score assigned to a body state u has two parts:

1. the cost of the path from the initial state s to u

2. an estimate of the distance between u and the goal
state t

The cost of the path starting at s and ending at ü is
simply the sum of the costs of the transitions taken
in the path. Furthermore, since each body move-
ment is composed of a group of joint movements, we
can compute the cost of one body-state transition by
summing the weights over the edges traversed by the
joints. To make this concrete, suppose we are try-
ing to find an interpolating path between the body
states s and t. At some point in the search, we reach
the ^body-state u and must assign the path from s
to u a score. If we write the path from s to u as
s~>- u = (x1 = s,!2,..-,^-1,^ = u), we can ex-
press the cost of such a path as

g(s ~+ u)

The heuristic part of the score, h(u), estimates how
far u is from the goal state t. h(u) is calculated by
summing the weights of the shortest paths from wA

to t\, u\,t\ G Gx over all the joints. We obtain
these shortest path weights using Dijkstra's single-
source shortest path algorithm(Dijkstra 1959), imple-
mented as described in (Cormen, Leiserson, k Rivest
1990). The final score assigned to body-state ü is then
/(s ~* u) = g(s^* u) + h(u).

At the time of this writing, we have only done exten-
sive testing on a greedy search strategy that ignores
the cost of paths and scores nodes in the search based
solely on the estimated distance between them and the
goal (i.e., /(s ~f u) = h(u)). In the following section,
we describe the implications of this strategy and sug-
gest how different A* scoring functions are likely to
affect the interpolation sequences. We are also work-
ing on incorporating more information about the po-
sition, velocity, and acceleration of the center of mass,
so the momentum of the body is conserved as it passes
through the interpolated sections of the movement; ac-
complishing this will require wide-ranging adaptations
to the basic A* algorithm and perhaps even a wholly
different approach. Finally, we are also in the pro-
cess of testing how different influence diagram topolo-
gies affect the interpolation algorithm's ability to se-
lect good postures during the search. (For example, to

model and enforce the symmetry of the body, we could
combine left and right counterparts into one node.)

3 RESULTS AND EVALUATION

The "goal" of choreography is aesthetic appeal, so
it is difficult to analyze the results of this work us-
ing standard scientific methods8. However, there arc
some standard rules, procedures, and patterns in cer-
tain dance and martial arts genres that can be used
to evaluate the interpolation sequences generated by
the corpus-based techniques described in the previ-
ous sections. The evaluation described in this sec-
tion is a highly condensed transcript of a dozen onc-
to two-hour sessions, wherein expert dancers — pri-
marily Professor David Capps of the Department of
Theater and Dance at the University of Colorado, an
accomplished dancer and choreographer whose works
have appeared on stages around the world, and Na-
dia Rojasadamc, a student in that department and
the composer of the adagio used to generate the vari-
ations shown in figures 1 and 2 —- went through the
results frame by frame, answering and then discussing
the following questions:

• Does this posture transition look reasonable?

• If so, why and how?

• If not, why and how? What would you do instead?
How many poses would you assume in doing so?

In order to make this process less subjective, we arc
developing a formal evaluation protocol, consisting of
several subsequences and a series of scored questions
about the flow of the movement therein, to be ad-
ministered to groups of University of Colorado dance
students.

Figure 5 shows a movement sequence that the learn-
ing and search algorithms described in the previous
sections produced when given the task of interpolat-
ing between the fifth and sixth frames of the ballet
sequence in figure 2. The search strategy was a sim-
ple greedy approach — an A* score f(s^* u) = h(v)
that only factored in the distance to the goal — and
the corpus included 38 short ballets. The starting and
ending body postures (top left and top right in fig-
ure 5, labeled \T] and J0_, respectively) are quite dif-
ferent; note the facing of the dancer and the weight
distribution on the feet, for example. The eight-move
interpolation sequence computed by the interpolator
moves between those positions in a very natural way.
Its first move, for instance, is to lower the left leg, a

The very notion of objective, quantifiable evaluation
elicited much consternation and mirth — along with some
offense — from our expert dance consultants.

Learning the Grammar of Dance 553

5 6 EJ

10

8 9

L'.ii'v \<&

sie*

•

"ms.

--«RäSKJK,.

t<^ '<"' «;S *'i>

Figure 5: An interpolation sequence computed by the corpus-based techniques described in the previous section.
The starting and ending positions passed as input to the interpolation procedure are shown at the top left and
top right, respectively; the eight frames below them were computed by the interpolator.

natural strategy if one is going to change one's fac-
ing and end up on two feet. The following move is
a simple weight shift (frames \T\ and [b]}, in prepa-
ration for a lift of the right leg. This lift, which is
not strictly necessary to move from the fifth frame to
the tenth, is an innovation that the program inserted
because of the observed patterns in the corpus; it re-
flects the fact that ballet dancers rarely spin with both
feet flat on the ground. Perhaps the most interesting
thing about this interpolation sequence, from a bal-
letic standpoint, is the releve9 that the interpolation
procedure inserted between frames |_6j and] 10 |. Many
releves appear in the corpus, but none of them are
associated with upper body positions that resemble
the one that appears in this sequence. Our algorithm
has invented a physically and stylistically appropriate
way to move the dancer between the specified posi-
tions. The interpolation sequence in figure 5 includes
a variety of other stylistically consistent innovations
as well; consider, for example, the uplifted chest and
chin in frames \T\ and [Fj — posture elements that are
quintessential ballet style. Recall that these postures
were not simply pasted in verbatim from the corpus;
they were synthesized joint by joint using the transi-
tion graphs and influence-diagram directed A* search,
and their fit to the genre is strong evidence of the suc-
cess of the methods described in the previous section.

The original ballet sequence from which the snapshot
in figure 1 was drawn contained 68 frames, and the
chaotic shuffling scheme introduced 23 abrupt tran-
sitions into the variation (e.g., frames 5 ~* 6 of fig-
ure 2). In eleven of those 23 cases — including the
one depicted in figure 5 — our interpolation scheme
was successful in interpolating smoothly between the

9 A releve, which consists of lifting up on one's toes, is
a stylistically required component of a direction shift in
ballet.

two moves that framed the gap. The interpolation sub-
sequences so constructed, which ranged in length from
two to 60 frames, included a variety of stylistically con-
sistent and often innovative sequences; among other
things, the interpolation algorithms used releves, plies
and fifth-position rests in highly appropriate ways —
and all with no hard coding. From a subjective artistic
standpoint, the results have some room for improve-
ment; there are still five somewhat-awkward transi-
tions in the 185 total frames of the 11 interpolation
sequences. A less-subjective way to evaluate the suc-
cess of this scheme is to compare the length of these
interpolation sequences to the distance between the
corresponding postures in the original piece, which is
presumably a good metric for how long it would take
a human to move from one to the other. For the most
part, the interpolated sequences were shorter than or
the same length10 as the number of frames separating
the corresponding positions in the original piece, which
indicates that the search strategies are working well,
mpeg movies of this adagio sequence and its chaotic
variation — both with and without interpolation— are
available on the web11.

This example brings out two significant failure modes
of this approach. The algorithms cannot find interpo-
lation subsequences between body positions that oc-
cur in reversed temporal order — e.g., places where
the chaotic shuffler has forced a jump backwards in
time, inserting a move into the variation that appeared
earlier in the original piece. Secondly, the algorithms
sometimes introduce relatively long paths between po-
sitions that appear very similar; in one such instance,
where the task was a simple 90-degree rotation of the
right shoulder around the long axis of the arm, the

10Five were shorter (77% average), four were the same
length, and two were somewhat (150% and 110%) longer.

nwww. cs. Colorado. edu/~lizb/chaotic-dance .html

554 Stuart and Bradley

algorithm constructed an 65-move sequence that in-
volved much leg and trunk movement. Both of these
problems are the result of limited corpus size and
corresponding patterns in the joint transition graphs.
These graphs are far from being connected, so some
joint orientations are not reachable from others. Even
when they are connected, the search may have to wan-
der all over the graph to find a path between two given
vertices. In a large, rich corpus, the graphs would be
highly connected, giving the search algorithms more
leeway. In the existing corpora, however, the paucity
of edges constrains them to very narrow (and long)
search paths that can translate to stilted, idiosyncratic
movement sequences. This is an unavoidable problem
in this application, unfortunately; the dance world has
not yet embraced the notion of computer animation,
so the availability of animated dances is quite limited.

Long, linear vertex chains like the ones at the top
left of figure 3 are introduced into the joint transition
graph when one animation in the corpus progresses
through orientations that do not occur in other ani-
mations. The directionality in these chains makes it
impossible for the search to move "upstream," which
is the cause of the first failure mode described in the
previous paragraph. We could fix this problem, artifi-
cially, by introducing reverse edges into the graphs in
some kinesiologically and stylistically justifiable way.
For every transition s -+ t seen in the corpus, for
example, we could introduce an edge from t\ to s\
for every joint A. The implicit assumption here is
that it is always possible to reverse the motion of a
joint12. Thus, at the expense of destroying some of
the accuracy with which the original approach mod-
eled the temporal asymmetry of the genre, we could
force the graphs to be connected. We are currently in-
vestigating what probabilities to use on these reverse
edges. Artificially introduced reverse transitions would
not solve the second problem; chains — even bidi-
rectional chains — tend to lengthen interpolated se-
quences. One solution to this problem is to add more
examples to the corpus to enrich its connectivity. If
more examples are hard to come by, another (artifi-
cial) solution is to perform a coarser discretization to
minimize the number of possible states a joint can as-
sume. We are currently experimenting with different
discretization resolutions to simultaneously minimize
the number of nodes and maximize the statistical in-
formation content of the transition graphs.

The greedy A* search strategy is reflected by "in-
efficiencies" in the interpolation sequences — places
where the dancer appears to be headed towards the
goal state, but then moves away. For example, one

This makes sense for classical ballet, but not modern
dance; motion in the former tends to be "circular" in space,
whereas in the latter, one often moves a limb out and back
along the same path.

of the interpolation goals in figure 5 is to change the
facing almost 180 degrees, from left to right. By the
fourth frame, the dancer has turned to the right, but in
the fifth frame s/he has turned back to the left again,
which is part of what necessitates the rcleve sequence

between frames [Ö] and \T\. We arc in the process
of testing different search strategies and analyzing the
results; instead of choosing the state that is closest to
the goal, for instance, we arc incorporating the path
weights up to the current point in the solution as part
of the scoring function. This should allow the search
algorithm to find shorter, more-direct sequences. Fi-
nally, note that some search strategies — e.g., always
taking the highest-probability branch — can be a sig-
nificant source of cliche.

In order to explore the effects of joint coordination, we
removed the influence diagram and ran simple, unco-
ordinated A* search to find paths between positions.
The resulting sequences were extremely interesting.
To the layman's eye, they look jerky and unappeal-
ing, so we expected negative comments about them
from the experts. However, it seems that an uncoordi-
nated path through a classical ballet corpus is a very
good way to generate modern dance sequences, and
the results were inventive and appealing: "Wow! I'm
going to use that move in my next piece!" In retro-
spect, this makes some sense: the modern dance genre
actively works at violating the ballet motif.

The interpolation procedure is fairly rapid. Applying
greedy search to the 23 abrupt-transition pairs in the
68-frame variation, for instance, required13 280 sec-
onds on an HP9000/735 workstation running HP-UX
vl0.20 for a corpus containing 1720 ballet postures. A
more-complex scoring function will obviously require
longer run time. Preliminary runs of non-greedy A*,
for example, required 500 seconds to perform the same
task and yielded similar results, in terms of quality, se-
quence length, etc. The complexity also increases with
corpus size; the same (non-greedy A*) task on an aug-
mented corpus of 5000 postures — the 1720 original
frames plus 3280 non-ballet sequences — required 3620
seconds. The chaotic shuffling procedure is also fast:
for a 1000-position movement sequence, the chaotic
shuffling procedure required 18 seconds on the same
workstation, while a 9000-movc sequence required 156
seconds.

4 CONCLUSION

By applying techniques from graph theory, artificial
intelligence, and statistics to a corpus of movement
sequences from a particular genre, the interpolation
methods described in this paper automatically con-
struct interpolation sequences that move from one

This will obviously depend on the positions involved.

Learning the Grammar of Dance 555

specified body posture to another in a.physically and
stylistically coherent fashion. These tactics can be
used to smooth abrupt transitions that result from
subsequence reordering, a common creative mecha-
nism in modern choreography that can be emulated
mathematically by using chaotic dynamics to generate
variations.

Evaluating the results of this work is necessarily some-
what subjective. We have shown animations of a vari-
ety of different chaotic variations to hundreds of peo-
ple, including dozens of dancers and martial artists,
both with and without smoothing of the abrupt tran-
sitions. We have also worked in depth with several ex-
pert dancers in order to evaluate those interpolation
sequences sensibly. The consensus is that the chaotic
variations with smoothed transitions not only resemble
the original pieces, but also are in some sense pleasing
to the eye. They are both different from the origi-
nals and faithful to the dynamics of the genre; there
are no jarring transitions or out-of-character moves.
This is a non-trivial accomplishment. A previous at-
tempt to use mathematics to generate choreographic
variations — a subsequence randomization scheme in-
troduced by the now well-known choreographer Merce
Cunningham in the 1960s — met with a strongly neg-
ative reception in the dance world, primarily because
of the awkwardness at the transition points14.

Many of the techniques used here, as well as others on
which we are currently working, were inspired by solu-
tions to similar problems that arise in computational
linguistics (e.g., learning a grammar from a corpus and
then using it to construct meaningful sentences). For
example, one can view the transition graphs in sec-
tion 2.2.1 and figure 3 as first-order Markov chains,
where a single chain represents the probabilistic be-
havior of each joint in the body.

The objective of this research project was to tailor
generic strategies for a specific high-dimensional search
problem in an unusual and demanding domain. The
results could be extended to other domains where the
genre of sequence is important, such as speech recog-
nition (e.g., filling in missing parts of a signal) or text.
Finally, the implementation of these algorithms allows
for arbitrary body topologies, so we are by no means
limited to human motion sequences — though one
would, of course, have to adapt the quaternion-based
symbol set and the influence diagram to the topology
of the limbs and joints that are involved.

Acknowledgements

The authors would like to thank D. Capps, N. Ro-
jasadame, S. Schroeder, D. Jurafsky, M. Seltzer, D.
Dabby, A. Hogan, E. Schell, A. Rubin, and the
ICML-98 reviewers for helpful suggestions and com-
ments. This work was supported by NSF NYI #CCR-
9357740, ONR #N00014-96-1-0720, and a Packard
Fellowship in Science and Engineering from the David
and Lucile Packard Foundation.

References

Bradley, E., and Stuart, J. 1997. Using chaos to
generate choreographic variations. In Proceedings of
the Fourth Experimental Chaos Conference.

Bradley, E., and Stuart, J. 1998. Using chaos to
generate variations on movement sequences. Chaos.
To appear.
Capps, D. 1998. University of Colorado, Department
of Theater and Dance, personal communication.
Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L.
1990. Introduction to Algorithms. The MIT Press,
pp 527-531.
Dabby, D.S. 1996. Musical variations from a chaotic
mapping. Chaos 6:95-107.
Dabby, D. S. 1997. A chaotic mapping for musical
and image variation. In Proceedings of the Fourth
Experimental Chaos Conference.
Dijkstra, E. W. 1959. A note on two problems in con-
nexion with graphs. Numerische Mathematik 1:269-
271.
Friedman, J. H.; Bentley, J. L.; and Finkel, R. A.
1977. An algorithm for finding best matches in loga-
rithmic expected time. A CM Transactions on Math-
ematical Software 3:209-226.
Goldstein, H. 1980. Classical Mechanics. Reading
MA: Addison Wesley.
Hodgins, J. K.; Wooten, W. L.; Brogan, D. C; and
O'Brien, J. F. 1995. Animating human athletics. In
Proceedings of SIGGRAPH.
Oliver, R. M., and Smith, J. Q., eds. 1990. Influence
Diagrams, Belief Nets and Decision Analysis. Wiley.
Winston, P. H. 1992. Artificial Intelligence. Redwood
City CA: Addison Wesley. Third Edition.
Wooten, W. L. 1998. Simulation of Leaping, Tum-
bling, Landing, and Balancing. Ph.D. Dissertation,
Georgia Institute of Technology.

14Since that time, aJeatory choreography — wherein ran-
domization schemes are used to shuffle sequences — "has
by now become one of the important currencies of dance
composition approaches."(Capps 1998).

556

Intra-Option Learning about Temporally Abstract Actions

Richard S. Sutton
Department of Computer Science

University of Massachusetts
Amherst, MA 01003-4610

rich@cs.umass.edu

Doina Precup
Department of Computer Science

University of Massachusetts
Amherst, MA 01003-4610

dprecup@cs.umass.edu

Satinder Singh
Department of Computer Science

University of Colorado
Boulder, CO 80309-0430
baveja@cs.colorado.edu

Abstract

Several researchers have proposed modeling
temporally abstract actions in reinforcement
learning by the combination of a policy and a ter-
mination condition, which we refer to as an op-
tion. Value functions over options and models of
options can be learned using methods designed
for semi-Markov decision processes (SMDPs).
However, all these methods require an option to
be executed to termination. In this paper we ex-
plore methods that learn about an option from
small fragments of experience consistent with
that option, even if the option itself is not exe-
cuted. We call these methods intra-option learn-
ing methods because they learn from experience
within an option. Intra-option methods are some-
times much more efficient than SMDP meth-
ods because they can use off-policy temporal-
difference mechanisms to learn simultaneously
about all the options consistent with an expe-
rience, not just the few that were actually exe-
cuted. In this paper we present intra-option learn-
ing methods for learning value functions over op-
tions and for learning multi-time models of the
consequences of options. We present compu-
tational examples in which these new methods
learn much faster than SMDP methods and learn
effectively when SMDP methods cannot learn at
all. We also sketch a convergence proof for intra-
option value learning.

1 Introduction

Learning, planning, and representing knowledge at multi-
ple levels of temporal abstraction remain key challenges
for AI. Recently, several researchers have begun to address

these challenges within the framework of reinforcement
learning and Markov decision processes (MDPs) (e.g.,
Singh, 1992a,b; Kaelbling, 1993; Lin, 1993; Dayan & Hin-
ton, 1993; Thrun and Schwartz, 1995; Sutton, 1995; Hu-
ber and Grupen, 1997; Kalmar, Szepesväri, and Lörincz,
1997; Dietterich, 1998; Parr and Russell, 1998; Precup,
Sutton, and Singh 1997, 1998a,b). This framework is ap-
pealing because of its general goal formulation, applicabil-
ity to stochastic environments, and ability to use sample
or simulation models (e.g., see Sutton and Barto, 1998).
Extensions of MDPs to semi-Markov decision processes
(SMDPs) provide a way to model temporally abstract ac-
tions, as we summarize in Sections 3 and 4 below. Com-
mon to much of this recent work is the modeling of a tem-
porally extended action as a policy (controller) and a con-
dition for terminating, which we together refer to as an op-
tion. Options are a flexible way of representing temporally
extended courses of action such that they can be used inter-
achangeably with primitive actions in existing learning and
planning methods (Sutton, Precup, and Singh, in prepara-
tion).

In this paper we explore ways for learning about options
using a class of off-policy, temporal-difference methods
that we call intra-option learning methods. Intra-option
methods look inside options to learn about them even
when only a single action is taken that is consistent with
them. Whereas SMDP methods treat options as indivisi-
ble black boxes, intra-option methods attempt to take ad-
vantage of their internal structure to speed learning. Intra-
option methods were introduced by Sutton (1995), but only
for a pure prediction case, with a single policy.

The structure of this paper is as follows. First we introduce
the basic notation of reinforcement learning, options and
models of options. In Section 4 we briefly review SMDP
methods for learning value functions over options and thus
how to select among options. Our new results are in Sec-
tions 5-7. Section 5 introduces an intra-option method for

Intra-Option Learning about Temporally Abstract Actions 55?

learning value functions and sketches a proof of its con-
vergence. Computational experiments comparing it with
SMDP methods are presented in Section 6. Section 7 con-
cerns methods for learning models of options, as are used
in planning: we introduce an intra-option method and illus-
trate its advantages in computational experiments.

2 Reinforcement Learning (MDP)
Framework

In the reinforcement learning framework, a learning agent
interacts with an environment at some discrete, lowest-level
time scale t = 0,1,2,.... At each time step, the agent
perceives the state of the environment, st G S, and on that
basis chooses a primitive action, at € ASt ■ In response
to at, the environment produces one step later a numerical
reward, rt+i £ 3?, and a next state, st+i- We denote the
union of the action sets by A = Uses «4*- If <S and A,
are finite, then the environment's transition dynamics are
modeled by one-step state-transition probabilities, and one-
step expected rewards,

Pa
SS' = Mst+i = s' \st = s,at = a} and

r£ = E{rt+i \st = s,at = a},

for all s, s' € S and a € A (it is understood here that
p^; _ o for a <fc As)- These two sets of quantities together
constitute the one-step model of the environment.

The agent's objective is to learn a policy n, which is a
mapping from states to probabilities of taking each action,
that maximizes the expected discounted future reward from
each state s:

Vn (s) = E |rt + 71-t+i + 72n+2 + ■ • • st = s, TT} ,

where 7 G [0,1) is a discount-rate parameter. The quantity
V* (s) is called the value of state s under policy IT, and V*
is called the value function for policy n. The optimal value
of a state is denoted

V*(s) =maxr(»).

Particularly important for learning methods is a parallel
set of value functions for state-action pairs rather than for
states. The value of taking action o in state s under pol-
icy 7T, denoted Q*(s, a), is the expected discounted future
reward starting in s, taking a, and henceforth following n:

Qv(s,a) = E^n+i +m+i + st = s, at :a,7r|.

This is known as the action-value function for policy IT.

The optimal action-value function is

Q*(s,a)=maxQ*(s,a).

The action value functions satisfy the Bellman equations:

Q«(s,a) =ra
s + 7£P,V E^VKW,«') (1)

«' a'

Q*(s,a) = r°+75]p«s'
m

£
ax<9*(s''a')- (2>

«'

3 Options

We use the term options for our generalization of primitive
actions to include temporally extended courses of action. In
this paper, we focus on Markov options, which consist of
three components: a policy ?r: S x A H> [0,1], a termina-
tion condition ß : S H» [0,1], and an input set I C 5. An
option (1,7T, ß) is available in state s if and only if s € 2. If
the option is taken, then actions are selected according to n
until the option terminates stochastically according to ß. In
particular, if the option taken in state st is Markov, then the
next action at is selected according to the probability distri-
bution 7r(st, •). The environment then makes a transition to
state st+i, where the option either terminates, with proba-
bility ß(st+i), or else continues, determining at+i accord-
ing to 7r(st+i, •). possibly terminating in st+2 according to
ß(st+2), and so on. When the option terminates, then the
agent has the opportunity to select another option.

The input set and termination condition of an option to-
gether restrict its range of application in a potentially use-
ful way. In particular, they limit the range over which the
option's policy needs to be defined. For example, a hand-
crafted policy 7T for a mobile robot to dock with its battery
charger might be defined only for states 1 in which the bat-
tery charger is within sight. The termination condition ß
would be defined to be 1 outside of I and when the robot
is successfully docked. For Markov options it is natural
to assume that all states where an option might continue
are also states where the option might be taken (i.e., that
{s : ß{s) < 1} C I). In this case, n needs to be defined
only over 1 rather than over all of <S.

Given a set of options, their input sets implicitly define a
set of available options 08 for each state s € S. The sets
Os are much like the sets of available actions, As. We can
unify these two kinds of sets by noting that actions can be
considered a special case of options. Each action a corre-
sponds to an option that is available whenever a is avail-
able (I = {s : a G As}), that always lasts exactly one
step (ß(s) = 1, Vs e S), and that selects o everywhere
(7r(s, a) = 1, Vs £ I). Thus, we can consider the agent's
choice at each time to be entirely among options, some of
which persist for a single time step, others which are more
temporally extended. We refer to the former as one-step or
primitive options and the latter as multi-step options.

558 Sutton, Precup, and Singh

We now consider Markov policies over options, p : S x
O \-t [0,1], and their value functions. When initiated in
a state st, such a policy p selects an option o e 0St ac-
cording to probability distribution p(st, •). The option o
is taken in st, determining actions until it terminates in
st+k, at which point a new option is selected, according to
f*(st+k, •)> and so on. In this way a policy over options, p,
determines a policy over actions, or flat policy, n = f(p).
Henceforth we use the unqualified term policy for Markov
policies over options, which include Markov flat policies as
a special case.

Note, however, that f(p) is typically not Markov because
the action taken in a state depends on which option is being
taken at the time, not just on the state. We define the value
of a state s under a general flat policy n as the expected
return if the policy is started in s:

V"(s) d= E{rt+i + -rn+2 + • • • I £(7r,M)},

where £(n, s, t) denotes the event of n being initiated in s
at time t. The value of a state under a general policy (i.e.,
a policy over options) p can then be defined as the value

of the state under the corresponding flat policy: V(s) d=
V'<">(a).

It is natural to also generalize the action-value function to
an option-\&\ut function. We define Q"(s, o), the value of
taking option o in state sei under policy n, as

Q"{s,o)d= E{rt+1 + 7n+2 + ... £(0p,s,t)\,

where op, the composition of o and p, denotes the policy
that first follows o until it terminates and then initiates p in
the resultant state.

Options are closely related to the actions in a special kind
of decision problem known as a semi-Markov decision pro-
cess, or SMDP (e.g., see Puterman, 1994). Any fixed set
of options for a given MDP defines a new SMDP overlaid
on the MDP. The appropriate form of model for options,
analogous to the r£ and pa

ss, defined earlier for actions, is
known from existing SMDP theory. For each state in which
an option may be started, this kind of model predicts the
state in which the option will terminate and the total reward
received along the way. These quantities are discounted in
a particular way. For any option o, let £(o,s, t) denote the
event of o being taken in state s at time t. Then the reward
part of the model of o for state s is

r°s=E{rt+1+>yrt+2... + ik-1rt+k |f(o, «,<)}, (3)

where t + k is the random time at which o terminates. The

state-prediction part of the model of o for state s is

oo

P°..> = E V M* = h 8t+i = 8' | £(o, S, t)}
j=0

= E{lkSslSt+k\6(o,s,t)}, (4)

for all s' £ S, under the same conditions, where 6SS> is an
identity indicator, equal to 1 if s = s', and equal to 0 else.
Thus, p°s, is a combination of the likelhood that s' is the
state in which o terminates together with a measure of how
delayed that outcome is relative to 7. We call this kind of
model a multi-time model because it describes the outcome
of an option not at a single time but at potentially many
different times, appropriately combined.

4 SMDP Learning Methods

Using multi-time models of options we can write Bellman
equations for general policies and options. For example,
the Bellman equation for the value of option o in state sei
under a Markov policy p is

Q»(s,o)=r°a+J2P°ss- E M*V)W,o'). (5)
«' o'eo.

The optimal value functions and optimal Bellman equa-
tions can also be generalized to options and to policies over
options. Of course, the conventional optimal value func-
tions V* and Q* are not affected by the introduction of
options; one can ultimately do just as well with primitive
actions as one can with options. Nevertheless, it is inter-
esting to know how well one can do with a restricted set of
options that does not include all the actions. For example,
one might first consider only high-level options in order to
find an approximate solution quickly. Let us denote the re-
stricted set of options by O and the set of all policies that
select only from O by 11(0). Then the optimal value func-
tion given that we can select only from Ö is

VS(s) def
max V"(s)

*»en(o)

maxE{r + 1
kVS(s')\ 6(0, s)}

(6)

(7)

where 6(0, s) denotes the event of starting the execution
of option o in state s, k is the random numbner opf steps
elapsing during o, s' is the resulting next state, and r is the
cumulative discounted reward received along the way. The
optimal option values are defined as:

\def
Q*0(s,o)= max Q^fs.o) (8)

= E{r + ^^Qh(s',o')\6(o,s)} (9)

Intra-Option Learning about Temporally Abstract Actions 559

Given a set of options, O, a corresponding optimal pol-
icy, denoted ß*a, is any policy that achieves V£, i.e., for
which V°(s) = V£(s) for all states s £ S. If V£ and
models of the options are known, then optimal policies
can be formed by choosing in any proportion among the
maximizing options in (7). Or, if Q*0 is known, then opti-
mal policies can be formed by choosing in each state s in
any proportion among the options o for which Q*0{s, 6) =
max0- Q*0(s,o'). Thus, computing approximations to VQ

or Q*0 become the primary goals of planning and learning
methods with options.

The problem of finding the optimal value functions for a set
of options can be addressed by learning methods. Because
an MDP augmented by options forms an SMDP, we can ap-
ply SMDP learning methods as developed by Bradtke and
Duff (1995), Parr and Russell (1998), Parr (in preparation),
Mahadevan et al. (1997), and McGovern, Sutton and Fagg
(1997). In these methods, each option is viewed as an in-
divisible, opaque unit. After the execution of option o is
started in state s, we next jump to the state s' in which it
terminates. Based on this experience, an estimate Q{s,o)
of the optimal option-value function is updated. For exam-
ple, the SMDP version of one-step Q-learning (Bradtke and
Duff, 1995), which we call one-step SMDP Q-learning, up-
dates after each option termination by

Q(s,o) ^Q(s,o) + a r + 7* max Q(s', d) - Q(s, o)
o' GC?

where k is the number of time steps elapsing between s and
s', r is the cumulative discounted reward over this time, and
it is implicit that the step-size parameter a may depend ar-
bitrarily on the states, option, and time steps. The estimate
Q(s, o) converges to Q*0(s, 6) for all s € S and o G Ö un-
der conditions similar to those for conventional Q-learning
(Parr, in preparation).

5 Intra-Option Value Learning

One drawback to SMDP learning methods is that they need
to execute an option to termination before they can learn
about it. Because of this, they can only be applied to one
option at a time—the option that is executing at that time.
More interesting and potentially more powerful methods
are possible by taking advantage of the structure inside
each option. In particular, if the options are Markov and
we are willing to look inside them, then we can use spe-
cial temporal-difference methods to learn usefully about an
option before the option terminates. This is the main idea
behind intra-option methods.

Intra-option methods are examples of off-policy learning
methods (Sutton and Barto, 1998) in that they learn about

the consequences of one policy while actually behaving ac-
cording to another, potentially different policy. Intra-option
methods can be used to learn simultaneously about many
different options from the same experience. Moreover, they
can learn about the values of executing options without ever
executing those options.

Intra-option methods for value learning are potentially
more efficient than SMDP methods because they extract
more training examples from the same experience. For ex-
ample, suppose we are learning to approximate Q*0(s,o)
and that o is Markov. Based on an execution of o from t to
t + k, SMDP methods extract a single training example for
Q*0(s, o). But because o is Markov, it is, in a sense, also
initiated at each of the steps between t and t+k. The jumps
from each intermediate st+i to st+k are also valid experi-
ences with o, experiences that can be used to improve es-
timates of Qb(st+i, o). Or consider an option that is very
similar to o and which would have selected the same ac-
tions, but which would have terminated one step later, at
t + k + 1 rather than at t + k. Formally this is a different
option, and formally it was not executed, yet all this experi-
ence could be used for learning relevant to it. In fact, an op-
tion can often learn something from experience that is only
slightly related (occasionally selecting the same actions) to
what would be generated by executing the option. This is
the idea of off-policy training—to make full use of what-
ever experience occurs in order to learn as much possible
about all options, irrespective of their role in generating the
experience. To make the best use of experience we would
like an off-policy and intra-option version of Q-learning.

It is convenient to introduce new notation for the value of a
state-option pair given that the option is Markov and exe-
cuting upon arrival in the state:

Uh(s,o) = (l-ß(s))Qh(s,o) + ß(s)mixQ*0(s,o'),

Then we can write Bellman-like equations that relate
Qo(s, o) to expected values of 0o(«', °). wnere s> is *e

immediate successor to s after initiating Markov option
o= (I,n,ß) ins:

Qo(s.o) = S n(s,a)E{r + ^Uh(s',o)\s,a}
a€Aa

J2 *(*.<*)
a€A,

rs° + £*C'W,o)

where r is the immediate reward upon arrival in s'. Now
consider learning methods based on this Bellman equa-
tion. Suppose action at is taken in state st to produce
next state st+i and reward rt+i, and that at was selected
in a way consistent with the Markov policy w of an option

560 Sutton, Precup, and Singh

o = (1,7f, ß). That is, suppose that at was selected accord-
ing to the distribution n(st, ■). Then the Bellman equation
above suggests applying the off-policy one-step temporal-
difference update:

Q(*t,o) «- Q(8t,o)+a[{rt+i+'YU(st+uo))-Q(st,o)

where

U(s, o) = (1 - ß(s))Q(s, o) + ß(s) max Q(s, o')
o'eo

The method we call one-step intra-option Q-learning ap-
plies this update rule to every option o consistent with every
action taken at.

Theorem 1 (Convergence of intra-option Q-learning)
For any set of deterministic Markov options O, one-step
intra-option Q-learning converges w.p.l to the optimal
Q-values, Q*0, for every option, regardless of what options
are executed during learning, provided every primitive
action gets executed in every state infinitely often.

Proof: (Sketch) On experiencing (s, a, r, s'), for every op-
tion o that picks action a in state s, intra-option Q-learning
performs the following update:

Q(s, o) «- Q(s, o) + a(s, o)[r + jU(s', o) - Q(s, o)].

Let a be the action selection by deterministic Markov op-
tion o = (l,n,ß). Our result follows directly from Theo-
rem 1 of Jaakkola et al. (1994) and the observation that the
expected value of the update operator r + jU(s', o) yields
a contraction, as shown below:

\E{r + 1U(s',o)}-Q*0(s,0)\

= K + Y,Pass'u(s'>°)-Qh(s,o)\
8'

= K + £p^tV,°) - r.» - Y,Pass'Uh(s',o)\

< \Y,Pass>[(l-ß(s'MQ(s',o)-Q*0(s',o))

+ ß(s')(maxQ(s',o') - maxQ*0{s\o'))] |

< £tfs-max|<?(s>'V%(s'V')|
8 ,0

8'

< 7max|Q(S")0")-Q^'V')|

6 Illustrations of Intra-Option Value
Learning

As an illustration of intra-option value-learning, we used
the gridworld environment shown in Figure 1. The cells of

4 stochastic
primitive actions

■ right

8 multi-step options
(to each room's 2 hallways)

Figure 1: The rooms example is a gridworld environment
with stochastic cell-to-cell actions and room-to-room hall-
way options. Two of the hallway options are suggested by
the arrows labeled oi and o2. The label G indicates the
location used as a goal.

the grid correspond to the states of the environment. From
any state the agent can perform one of four actions, up,
down, left or right, which have a stochastic effect.
With probability 2/3, the actions cause the agent to move
one cell in the corresponding direction, and with probabil-
ity 1/3, the agent moves instead in one of the other three di-
rections, each with 1/9 probability. If the movement would
take the agent into a wall, then the agent remains in the
same cell. There are small negative rewards for each ac-
tion, with means uniformly distributed between 0 and -1.
The rewards are also perturbed by gaussian noise with stan-
dard deviation 0.1. The environment also has a goal state,
labeled "G". A complete trip from a random start state to
the goal state is called an episode. When the agent enters
"G", it gets a reward of 1 and the episode ends. In all the
experiments the discount parameter was 7 = 0.9 and all
the initial value estimates were 0.

In each of the four rooms we provide two built-in hallway
options designed to take the agent from anywhere within
the room to one of the two hallway cells leading out of
the room. The policies underlying the options follow the
shortest expected path to the hallway.

For the first experiment, we applied the intra-option method
in this environment without selecting the hallway options.
In each episode, the agent started at a random state in the
environment and thereafter selected primitive actions ran-
domly, with equal probability. On every transition, the up-
date (5) was applied first to the primitive action taken, then
to any of the hallway options that were consistent with it.
The hallway options were updated in clockwise order, start-
ing from any hallways that faced up from the current state.
The value of the step-size parameter was a = 0.01.

This is a case in which SMDP methods would not be able to

Intra-Option Learning about Temporally Abstract Actions 561

„YaJuerfpgUmal.BQÜSy.

6000

Upper
hallway
option

Left
hallway
option

1000 2000 3000 4000 5000 6000

Episodes

Figure 2: The learning of option values by intra-option
methods without ever selecting the options. The value of
the greedy policy goes to the optimal value (upper panel)
as the learned values approach the correct values (as shown
for one state, in the lower panel).

learn anything about the hallway options, because these op-
tions are never executed. However, the intra-option method
learned the values of these actions effectively, as shown in
Figure 2. The upper panel shows the value of the greedy
policy learned by the intra-option method, averaged over 2
and over 30 repetitions of the whole experiment. The lower
panel shows the correct and learned values for the two hall-
way options that apply in the state marked * in Figure 1.
Similar convergence to the true values was observed for all
the other states and options.

So far we have illustrated the effectiveness of intra-option
learning in a context in which SMDP methods do not ap-
ply. How do intra-option methods compare to SMDP meth-
ods when both are applicable? In order to investigate this
question, we used the "same environment, but now we al-
lowed the agent to choose among the hallway options as
well as the primitive actions, which were treated as one-
step options. In this case, SMDP methods can be ap-

Absolute error in option values
averaged over the options

SMDP Q-learning

!CUWo<<w Macro Q-learning

8000

-2

-2.2

-2.4

-2.6
Average 28

on-line
reward

-3

-3.2

-3.4

-3.6

-3.8

-4

4000 6000

Episodes
10000

SMDPQ-leaming

Macro Q-learning

Intra-option value learning

2000 4000 6000

Episodes
8000 10000

Figure 3: Comparison of SMDP, intra-option and macro Q-
learning. Intra-option methods converge faster to the cor-
rect values.

plied, since all the options are actually executed. We ex-
perimented with two SMDP methods: one-step SMDP Q-
learning (Bradtke and Duff, 1995) and a hierarchical form
of Q-learning called macro Q-learning (McGovern, Sutton
and Fagg, 1997). The difference between the two methods
is that, when taking a multi-step option, SMDP Q-learning
only updates the value of that option, whereas macro Q-
learning also updates the values of the one-step options (ac-
tions) that were taken along the way.

In this experiment, options were selected not at random, but
in an e-greedy way dependent on the current option-value
estimates. That is, given the current estimates Q(s, o), let
o* = argmaxo€o, Q(s,o) denote the best valued action
(with ties broken randomly). Then the policy used to select
options was

fi(s, 6)
ifo = o*
otherwise,

for all s £ S and o G O. The probability of a random
action, e, was set at 0.1 in all cases. For each algorithm,

562 Sutton, Precup, and Singh

we tried step-size values of a
picked the best one.

l l l
S> 4'8- and ie and then

Figure 3 shows two measures of the performance of the
learning algorithms. The upper panel shows the average
absolute error in the estimates of Q*0 for the hallway op-
tions, averaged over the input sets I, the eight hallway
options, and 30 repetitions of the whole experiment. The
intra-option method showed significantly faster learning
than any of the SMDP methods. The lower panel shows the
quality of the policy executed by each method, measured
as the average reward over the state space. The intra-option
method was also the fastest to learn by this measure.

7 Intra-Option Model Learning

In this section, we consider intra-option methods for learn-
ing multi-time models of options, r° and p°s,, given knowl-
edge of the option (i.e., of its IT, ß, and I). Such models are
used in planning methods (e.g., Precup, Sutton, and Singh,
1997, 1998a,b).

The most straightforward approach to learning the model
of an option is to execute the option to termination many
times in each state s, recording the resultant next states
s', cumulative discounted rewards r, and elapsed times k.
These outcomes can then be averaged to approximate the
expected values for r°8 and p°ss, given by (3) and (4). For
example, an incremental learning rule for this could update
its estimates f° and p°x, for all x 6 S, after each execution
of o in state s, by

P°sX

= r,

= Psx

+ a[r - f° and (10)

(11)

where the step-size parameter, a, may be constant or may
depend on the state, option, and time. For example, if a is 1
divided by the number of times that o has been experienced
in s, then these updates maintain the estimates as sample
averages of the experienced outcomes. However the aver-
aging is done, we call these SMDP model-learning meth-
ods because, like SMDP value-learning methods, they are
based on jumping from initiation to termination of each op-
tion, ignoring what might happen along the way. In the spe-
cial case in which o is a primitive action, note that SMDP
model-learning methods reduce exactly to those used to
learn conventional one-step models of actions.

Now let us consider intra-option methods for model learn-
ing. The idea is to use Bellman equations for the model,
just as we used the Bellman equations in the case of learn-
ing value functions. The correct model of a Markov option

o - (1,7T, ß) is related to itself by

r°s=Y, *(*.o)^r + 7(l-/?(Ä'))r,0,} (12)
a€As

= E *"(«>a)
a€A,

ras+J2PsAl-ß(s')K (13)

where r and s' are the reward and next state given that ac-
tion a is taken in state s, and

P«= £ tf(*.o)7ä{(l - ß(s'M,x +ß(s')6,t}
aeA

= £ «(*>a) £rf.' (1 - ßVM; + ßW,'z
aeA, B'

for all s,x £ S. How can we turn these Bellman equations
into update rules for learning the model? First consider that
action at is taken in st and that the way it was selected is
consistent with o = (l,ir,ß), that is, that at was selected
with the distribution n(st, •). Then the Bellman equations
above suggest the temporal-difference update rules

K <" f°s, + « [rt+i + 7(1 - ß(st+i)Kl+, - r°s] (14)

and

P°.,x <" K* + «[7(1 - ß(st+i))p°t+lX +
-yß(st+i)6Sl+,x -p°tX], (15)

where p°ss, and f° are the estimates of p°s, and r°, re-
spectively, and a is a positive step-size parameter. The
method we call one-step intra-option model learning ap-
plies these updates to every option consistent with every
action taken. Of course, this is just the simplest intra-option
model-learning method. Others may be possible using el-
igibility traces and standard tricks for off-policy learning
(see Sutton, 1995; Sutton and Barto, 1998).

Intra-option methods for model learning have advantages
over SMDP methods similar to those we saw earlier for
value-learning methods. As an illustration, consider the ap-
plication of SMDP and intra-option model-learning meth-
ods to the rooms example. We assume that the eight hall-
way options are given as before, but now we assume that
their models are not given and must be learned. Experience
is generated by selecting randomly in each state among the
two possible options and four possible actions, with no goal
state. In the SMDP model-learning method, equations (10)
and (11) were applied whenever an option was selected,
whereas, in the intra-option model-learning method, equa-
tions (14) and (15) were applied on every step to all options
that were consistent with the action taken on that step. In
this example, all options are deterministic, so consistency

Intra-Option Learning about Temporally Abstract Actions 563

lV Max error
Reward

prediction
error

~—-SMDP

0 20,000 40,000 60,000 80,000 100,000

Options executed

State
prediction

error

„„... SMDPI/t Intra

..SMDP'T/T-— Max
error

IntrS
SMDP Avg.

i error
"0 20,000 40,000 60,000 80,000 100,000

Options executed

Figure 4: Learning curves for model learning by SMDP
and intra-option methods.

with the action selected means simply that the option would
have selected that action.

For the SMDP method, the step-size parameter was varied
so that the model estimates were sample averages, which
should give fastest learning. The results of this method
are labeled "SMDP 1/t" on the graphs. We also looked
at results using a fixed learning rate. In this case and
for the intra-option method we tried step-size values of
a = |, |, |, and i, and picked the best value for each
method. Figure 4 shows the learning curves for all three
methods, using the best a values, when a fixed alpha was
used. The upper panel shows the average and maximum ab-
solute error in the reward predictions, and the lower panel
shows the average absolute error and the maximum abso-
lute error in the transition predictions, averaged over the
eight options and over 30 independent runs. The intra-
option method approached the correct values more rapidly
than the SMDP methods.

8 Closing

The theoretical and empirical results presented in this pa-
per suggest that intra-option methods provide an efficient
way for taking advantage of the structure inside an option.
Intra-option methods use experience with a single action
to update the value or model for all the options that are
consistent with that action. In this way they make much
more efficient use of the experience than SMDP methods,
which treat options as indivisible units. In the future, we
plan to extend these algorithms for the case of non-Markov
options, and to combine them with eligibility traces.

Acknowledgements

The authors acknowledge the help of their the colleagues
Amy McGovern, Andy Barto, Csaba Szepesväri, Andräs
Lörincz, Ron Parr, Tom Dietterich, Andrew Fagg, Leo
Zelevinsky and Manfred Huber. We also thank Andy Barto,
Paul Cohen, Robbie Moll, Mance Harmon, Sascha Engel-
brecht, and Ted Perkins for helpful reactions and construc-
tive criticism. This work was supported by NSF grant ECS-
9511805 and grant AFOSR-F49620-96-1-0254, both to
Andrew Barto and Richard Sutton. Doina Precup also ac-
knowledges the support of the Fulbright foundation. Satin-
der Singh was supported by NSF grant IIS-9711753.

References

Bradtke, S. J. & Duff, M. O. (1995). Reinforcement
learning methods for continuous-time Markov deci-
sion problems. In Advances in Neural Information
Processing Systems 7 (pp. 393^100). MIT Press.

Dayan, P. & Hinten, G. E. (1993). Feudal reinforcement
learning. In Advances in Neural Information Process-
ing Systems 5 (pp. 271-278). Morgan Kaufmann.

Dietterich, T. G. (1998). The MAXQ method for hierarchi-
cal reinforcement learning. In Proceedings of the Fif-
teenth International Conference on Machine Learn-
ing. Morgan Kaufmann.

Huber, M. & Grupen, R. A. (1997). A feedback control
structure for on-line learning tasks. Robotics and Au-
tonomous Systems, 22(3-4), 303-315.

Jaakkola, T, Jordan, M. & Singh, S. (1994). On the con-
vergence of stochastic iterative dynamic programming
algorithms. Neural Computation, 6(6), 1185-1201.

Kaelbling, L. P. (1993). Hierarchical learning in stochastic
domains: Preliminary results. In Proceedings of the

564 Sutton, Precup, and Singh

Tenth International Conference on Machine Learning
(pp. 167-173). Morgan Kaufmann.

Kalmar, Z., Szepcsväri, C. & Lörincz, A. (1997). Module
based reinforcement learning for a real robot. In Pro-
ceedings of the Sixth European Workshop on Learning
Robots (pp. 22-32).

Lin, L.-J. (1993). Reinforcement Learning for Robots Us-
ing Neural Networks. PhD thesis, Carnegie Mellon
University.

Mahadevan, S„ Marchallek, N., Das, T. K. & Gosavi,
A. (1997). Self-improving factory simulation using
continuous-time average-reward reinforcement learn-
ing. In Proceedings of the Fourteenth Interna-
tional Conference on Machine Learning (pp. 202-
210). Morgan Kaufmann.

McGovern, A., Sutton, R. S. & Fagg, A. H. (1997). Roles
of macro-actions in accelerating reinforcement learn-
ing. In Grace Hopper Celebration of Women in Com-
puting (pp. 13-17).

Parr, R. (in preparation). Hierarchical Control and learning
for Markov decision processes. PhD thesis, Berkeley
University. Chapter 3.

Parr, R. & Rüssel, S. (1998). Reinforcement learning with
hierarchies of machines. In Advances in Neural Infor-
mation Processing Systems 10. MIT Press.

Precup, D., Sutton, R. S. & Singh, S. (1997). Planning
with closed-loop macro actions. In Working Notes of
the AAAI Fall Symposium '97 on Model-directed Au-
tonomous Systems (pp. 70-76).

Precup, D., Sutton, R. S. & Singh, S. (1998a). Multi-time
models for temporally abstract planning. In Advances
in Neural Information Processing Systems 10. MIT
Press.

Precup, D., Sutton, R. S. & Singh, S. (1998b). Theoretical
results on reinforcement learning with temporally ab-
stract options. In Machine Learning: ECML98. 10th
European Conference on Machine Learning, Chem-
nitz, Germany, April 1998. Proceedings (pp. 382-
393). Springer Verlag.

Puterman, M. L. (1994). Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley.

Singh, S. P. (1992a). Reinforcement learning with a hi-
erarchy of abstract models. In Proceedings of the
Tenth National Conference on Artificial Intelligence
(pp. 202-207). MIT/AAAI Press.

Singh, S. P. (1992b). Scaling reinforcement learning by
learning variable temporal resolution models. In Pro-
ceedings of the Ninth International Conference on
Machine Learning (pp. 406-415). Morgan Kaufmann.

Sutton, R. S. (1995). TD models: Modeling the world as a
mixture of time scales. In Proceedings of the Twelfth
International Conference on Machine Learning (pp.
531-539). Morgan Kaufmann.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learn-
ing: An Introduction. MIT Press.

Sutton, R. S., Precup, D. & Singh, S. (in preparation).
Between MDPs and Semi-MDPs: learning, plan-
ning, and representing knowledge at multiple tempo-
ral scales. Journal of AI Research.

Thrun, S. & Schwartz, A. (1995). Finding structure in rein-
forcement learning. In Advances in Neural Informa-
tion Processing Systems 7 (pp. 385-392). MIT Press.

565

Teaching an Agent to Test Students

Gheorghe Tecuci
Computer Science Department

George Mason University
Fairfax, VA 22030-4444

tecuci@gmu.edu

Harry Keeling
Systems and Computer Science Department

Howard University
Washington D.C. 20059
hkeeling@scs.howard.edu

Abstract

This paper presents an innovative application of
the Disciple Learning Agent Shell to the
building of an educational agent that generates
history tests for middle school students, to assist
in the assessment of their understanding and use
of higher-order thinking skills. Disciple has been
taught by an educator to generate and answer
basic test questions and to explain the answers.
From its interaction with the educational expert,
Disciple has learned general rules that allow it to
generate a large number of new test questions fcr
students, together with hints, answers, and exp-
lanations of the answers. As a result, it can guide
the students during their practice of higher-order
thinking skills as they would be directly guided
by the educator. It can also be used by the edu-
cator to generate a different exam for each student
in the class. Disciple has been experimentally
evaluated by history experts, students and tea-
chers, with very promising results. The work on
developing this educational agent illustrates an
integration of machine learning, knowledge
acquisition, problem solving and intelligent tu-
toring systems in the context of computer-based
assessment involving multimedia documents.

1 INTRODUCTION
For several years we have been developing the Disciple
approach for building intelligent agents. The defining
feature of the Disciple approach to building agents is that
a person teaches the agent how to perform domain-specific
tasks, by giving the agent examples and explanations, as
well as supervising and correcting its behavior. The
current version of the Disciple approach is implemented m
the Disciple Learning Agent Shell, and is presented in
(Tecuci, 1998). We define a learning agent shell as
consisting of a learning engine and an inference engine
that support a representation formalism in which a
knowledge base can be encoded, as well as a methodology
for building the knowledge base.

The central goal of the Disciple approach is to facilitate
the agent building process by the use of synergism at

three different levels. First, there is synergism between
different learning methods employed by the agent
(Michalski and Tecuci, 1994). By integrating
complementary learning methods (such as inductive
learning from examples, explanation-based learning,
learning by analogy, learning by experimentation), the
Disciple agent is able to learn from the human expert in
situations in which no single strategy learning method
would be sufficient. Second, there is synergism between
expert's teaching of the agent and the agent's learning
from the expert (Tecuci and Kodratoff, 1995). For
instance, the expert may select representative examples to
teach the agent, may provide explanations, and may
answer agent's questions. The agent, on the other hand,
will learn general rules that are difficult to be defined by
the expert, and will consistently integrate them into its
knowledge base. Third, there is synergism between the
expert and the agent in solving a problem. They form a
team in which the agent solves the more routine but labor
intensive parts of the problem and the expert solves the
more creative parts. In the process, the agent learns from
the expert, gradually evolving toward an "intelligent"
agent (Mitchell et al., 1985). We claim that the Disciple
approach significantly reduces the involvement of the
knowledge engineer in the process of building an
intelligent agent, most of the work being done directly by
the domain expert. In this respect, the work on Disciple is
part of a long term vision where personal computer users
will no longer be simply consumers of ready-made
software, as they are today, but also developers of their
own software assistants.

This paper is organized as follows. The next section
presents the developed test generation agent. Then,
sections 3, 4 and 5 describe the process of building the
agent. Section 6 describes the results of the experiments
performed with the developed agent. Finally, the paper
presents the conclusions of this work.

2 A TEST GENERATION AGENT
We have developed an agent that generates history tests to
assist in the assessment of students' understanding and
use of higher-order thinking skills. Examples of specific
higher-order thinking skills are: evaluation of historical
sources for relevance, credibility, consistency, ambiguity,

566 Tecuci and Keeling

bias, and fact vs. opinion; analyzing them for content,
meaning and point of view; and synthesizing arguments in
the form of conclusions, claims and assertions (Bloom
1956; Beyer, 1987, 1988).

To motivate the middle school students, for which this
agent was developed, and to provide an element of game
playing, the agent employs a journalist metaphor, asking
the students to assume the role of a novice journalist.
Figure 1, for instance, shows a test question generated by
the agent. The student is asked to imagine that he or she
is a reporter and has been assigned the task to write an
article for Christian Recorder during the Civil War period
on plantations. The student has to analyze the historical
source "Slave Quarters" in order to determine whether it
is relevant to this task. In the situation illustrated in
Figure 1 the student answered correctly. Therefore, the
agent confirmed the answer and provided an explanation
for it, as indicated in the lower right pane of the window.
The student could have requested a hint to answer the
question and would have received the following one: "To
determine if the source is relevant to your task investigate
if it illustrates some component of a plantation, check
when it was created and when Christian Recorder was
issued." In general, there may be several reasons why a
source is relevant to a task. By pushing the More button,
the student can receive the hints and explanations
corresponding to these additional reasons.

|23lf Relevant Test Question

Another example of a test question is shown in Figure 2.
The student is given a task, a historical source and three
possible reasons why the source is relevant to the task. He
or she has to investigate the source and decide which
reason(s) account for the fact that the source is relevant to
the task. The student is instructed to check the box next
to the correct reason(s).

The agent has two modes of operation: final exam mode
and self-assessment mode. In the final exam mode, the
agent generates an exam consisting of a set of test
questions of different levels of difficulty. The student has
to answer one test question at a time and, after each
question, he or she receives the correct answer and an
explanation of the answer. In the self-assessment mode,
the student chooses the type of test question to solve, and
will receive, on request, feedback in the form of hints to
answer the question, the correct answer, and some or all
the explanations of the answer. The test questions are
generated such that all students interacting with the agent
are likely to receive different tests even if they follow
exactly the same interaction pattern. Moreover, the agent
builds and maintains a simple student model and uses it
in the process of test generation. For instance, to the
extent possible, the agent tries to generate test questions
that involve historical sources that have not been
investigated by the student, or historical sources that were
not used in previous tests for that student.

HHE3I
.File" ."Help.,,,

Applying What YouVe Learned About Relevance «««on 1
«*! '» Mrfjfrr for 'ChristianRecorder« ilurl^«ieCMIV^|»ridl(l8ß1-1865)andyDuhaw
ta^awignadtowrtteand^^ *"" ■"

Prats on tin Background button on the left to 1r«BStloatath«resoitfc«.ry«j think that the
2gJ^M«eV?*tnenpre8»(mthereLW/Wbuttoa Otherwise, press on the
HWELßWNTbutton. -il- '■?,:::■ ST- .■■■•:

Next

Exit (

Background "Slave Quarters'
:;^e^he:Sb|rca;|s..relevant The source Is

relevant to your task because M
Illustrates slave housing which was a
component of a plantation, "Slave
Quarters' was created during the pre
CMI War period (1700-1860) which was
before the CM War period (1861-1865)

iand^iri&l^ Issued
during the CMI War period (1861-1865).

HotRetevantK| -- :JJ&* :;fr Explanation! Mora |

Figure 1: A test question, answer and explanation generated by the agent'

Picture reproduced from LC-USZ62-67818, Library of Congress, Prints & Photographs Division, Civil War Photographs

Teaching an Agent to Test Students 567

Question 7
File Help

Applying What You've Learned About Relevance
you have been assigned to wrltB an article for adults on the slave trade that supports the abolitionist
perspective.

Press on the Background button on the left to Investigate the source. Place a check next to the
explanation that Is a reason why this source is relevant to your task.

Next

Exit

Background
•Slawe Auction"

This historical source was created during 1856. The wood
engraving shown here presents an English view of the
American »nsWurJon of slavery. Many period British Journals
and papers were both fascinated and horrified by American
slavery and covered tt extensively.

A. The source is relevant to jour task because It Illustrate* a
siavetrader which was a component of »ha slavetrade,
'HarpersWsaWy'v/aslssuadduringthepast Civil War period
(190O-1840) and "Save Auction" was oraatad duringthe P"
Civil War pariod (1700-1860 J which was before the post Civil
War period (1S00.1940).

B. Tha souroa is ralevar« to your task baoausa it illustrates a
slavetrader wNoh was a component ofthe slavetrade, It is
appropriatator adults and'Slave Auction'supports the

abolitionist perspective

C Tha souroa Is relevant to »our task because it Identifies
components of tha auctioning of slaves and 'Slave Auction'
was created during thepre Civil war pariod (1700-1860)and
'Harpers Weekly* was Issued during pre Ovil War period
(17OO-1BS0J.

Evaluate My Answer

Figure 2: Another test question

The next sections present the process of building this
agent: building the agent's ontology (Gruber, 1993),
teaching the agent how to generate test questions, and
building the test generation engine.

3 BUILDING THE AGENT'S ONTOLOGY

The agent's ontology contains descriptions of historical
concepts (such as "plantation"), historical sources (such
as "Slave Quarters" in Figure 1), and templates fir
reporter tasks (such as "You are a writer for PUBLICATION
during HISTORICAL-PERIOD and you have been assigned to
write and illustrate a feature article on SLAVERY-TOPIC").
Using these descriptions and templates, the agent
communicates with the students through a stylized natural
language, as illustrated in Figure 1 and Figure 2.

The ontology building process starts with choosing a
module in a history curriculum (such as Slavery in
America) for which the agent will generate test questions.
Then the educator identifies a set of historical concepts
that are appropriate and necessary to be learned by the
students. The educator also identifies a set of historical
sources that can enhance the student's understanding of
these concepts and will be used in test questions. All
these concepts and historical sources are represented by

the history educator in the knowledge base, by using the
various interfaces of Disciple. One is the Source Viewer
that displays the historical sources. Another is the
Concept Editor that is used to describe the historical
sources. The historical sources have to be defined in terms
of features that are necessary for applying the higher-order
thinking skills of relevance, credibility, etc. For instance,
a source is relevant to some topic if it identifies,
illustrates or explains the topic or some of its
components. Let us consider the historical source
'Contented Slaves and Masters', from the bottom of
Figure 3. This source is defined as being a LITHOGRAPH
that ILLUSTRATES the concepts SLAVE-DANCE, MALE-
SLAVE, FEMALE-SLAVE, and SLAVE-MASTER. Other
information has also to be represented, such as the
audience for which this source is appropriate and when it
was created. The concepts from the knowledge base are
hierarchically organized in a semantic network (Quillian,
1968; Lenat and Guha, 1990) that can be inspected with
the Concept Browser. For instance, SLAVE-DANCE was
defined as being a type of SLAVE-RECREATION which, in
turn, was a SLAVE-LIFE-ASPECT. This initial knowledge
base of the agent was assumed to be incomplete and even
possibly partially incorrect, needing to be improved
during the next stages of the agent's development.

! Picture reproduced from LC-USZ62-15398, Library of Congress, Prints & Photographs Division, Civil War Photographs

568 Tecuci and Keeling

4 TEACHING THE AGENT
A basic relevancy test question consists of judging the
relevancy of a historical source to a given reporter's task.
To teach the agent to generate and answer such questions,
the educator gives it an example consisting of a task and ä
historical source relevant to that task, as shown in Figure
3. Starting from this example, the agent has learned the
relevancy rule in Figure 4, where the condition specifies a
general reporter task and the conclusion specifies a source
relevant to that task. The condition also incorporates the
explanation of why the source is relevant to the task.
Associated with the rule are the natural language
templates corresponding to its task, explanation and con-
clusion. They are automatically created from the natural
language descriptions of the elements in the rule. One
should notice that each rule corresponds to a certain type
of task (WRITE-DURING-PERIOD, in this case). Other types
of tasks are WRITE-ON-TOPIC, WRITE-FOR-AUDIENCE, and
WRITE-FOR-OCCASION. Therefore, for each type of reporter
task there will be a family of related relevancy rules. The
rules corresponding to the other evaluation criteria, such
as credibility, accuracy, or bias, will have a similar form.

Current Example B
If you ara a wrltar FOR Southam
llluslratad Nawa DURING tha Civil War
partod (1M1 - 1»eS) and you hava baan
■aalgnad to wrtla and lllualrata a faatura
■rtkla on alava curtura, than tha
HISTORICAL SOURCE Contantad Slavaa
and Maatara* la ralavant.

Figure 3: Initial example given by the educator3

IF
?Wl IS WRITE-DURING-PERIOD, FOR ?S1, DURING ^PI ON ^2
?S1 IS PUBLICATION, ISSUED-DURING ?PI
?PI IS HISTORICAL-PERIOD
?S2 IS SLAVERY-TOPIC
?S3 IS SOURCE, ILLUSTRATES ?S4, CREATED-DURING 'P2
?S4 IS HISTORICAL-CONCEPT, COMPONENT-OF 'S2
?P2 IS HISTORICAL-PERIOD, BEFORE ?P1

THEN
RELEVANT HIST-SOURCE ?S3

Task Description: You are a writer for ?S1 during ?P1 and you have been
assigned to write and illustrate a feature article on ?S2

Explanation: ?S3 illustrates ?S4 which was a component of ?S2, ?S3 was
created during 7P2 which was before ?P1 and ?S1 was issued during ?P1.

Operation Description: ?S3 is relevant

Figure 4: A relevancy rule

4.1 RULE LEARNING

The rule learning method of Disciple is schematically
represented in Figure 5. As Explanation-based Learning
(DeJong and Mooney, 1986; Mitchell, Keller, Kedar-
Cabelli, 1986), it consists of two phases, explanation and
generalization. However, in the explanation phase the
agent is not building a proof tree, and the generalization is
not a deductive one.

User-guided
Explanation

.Expert.

i

Knowledge
Base

Analogy-based
Generalization

Plauilbl« Hypottv
Lower Exact
Bound Condition

~mf.

3 Picture reproduced from LC-USZ62-89745, Library of Congress

Figure 5: The rule learning method of Disciple

In the explanation phase, the educator helps the agent to
understand why the example in Figure 3 is correct (that
is, why the source is relevant to the given task). The
explanation of the example has a form that is similar to
the one given by a teacher to a student: the source
"Contended Slaves and Masters" is relevant to the given
task (see Figure 3) because it illustrates a slave dance
which was a component of slave culture, and it was
created during the pre Civil War period which was before
the Civil War period. Each of these phrases corresponds
to a path in the agent's ontology, as shown in Figure 6.
However, rather than giving an explanation to the agent,
the educator guides it to propose explanations and then
selects the correct ones. For instance, the educator may
point to the most relevant objects from the input example
and may specify the types of explanations to be generated
by the agent (e.g. a correlation between two objects or a
property of an object). The agent uses such guidance and
specific heuristics to propose plausible explanations to the
educator who has to select the correct ones. A particularly
useful heuristic is to propose explanations of an example
by analogy with the explanations of other examples.
Notice that the above explanation is similar to a part of
the explanation from the test question in Figure 1. This
illustrates a significant benefit to be derived from using
the Disciple approach to build educational agents. That
is, the kind of explanations that the agent gives to the
students are similar to the explanations that the agent
itself has received from the educator. Therefore, the agent
acts as an indirect communication medium between the
educator and the students.

In the generalization phase (see Figure 5), the agent
performs an analogy-based generalization of the example

Teaching an Agent to Test Students 569

ILLUSTRATE!

SLAVE-DANCE

^ COMPONENT-OF

CONTENTED-SLAVES-AND-MASTERS

CREATED-DURING^___^

PRE-CIVIL-WAR

CIVIL-WAR -* 'BEFORE

SLAVE-CULTURE

Figure 6: The explanation of the example in Figure 3

and its explanation into a plausible version space (PVS)

rule. A PVS rule is an IF-THEN rule with two conditions, a
plausible upper bound condition that is likely to be more
general than the exact condition, and a plausible lower
bound condition that is likely to be less general than the
exact condition. The generalization process is illustrated
in Figure 7. The initial example is the internal represen-
tation of the example in Figure 3. Also, the explanation is
the one from Figure 6. First, the explanation is genera-
lized to an analogy criterion by preserving the object
features (such as ILLUSTRATES and CREATED-DURING) and
by generalizing the objects to more general concepts (e.g.
generalizing SLAVE-DANCE to HISTORICAL-CONCEPT). To
determine how to generalize an object, Disciple analyzes
all the features from the example and the explanation that
are connected to that object. Each such feature is defined
in Disciple's ontology by a domain (that specifies the set
of all the objects from the application domain that may
have that feature) and a range (that specifies all the
possible values of that feature). The domains and the
ranges of these features restrict the generalizations of the
objects. For instance, in the explanation from Figure 7,
SLAVE-DANCE has the feature COMPONENT-OF and appears
as value of the feature ILLUSTRATES. Therefore, the most
general generalization of SLAVE-DANCE is the intersection
of the domain of COMPONENT-OF and the range of
ILLUSTRATES, which is HISTORICAL-CONCEPT.

The analogy criterion and the example are used to
generate the plausible upper bound condition of the rule,
while the explanation and the example are used to
generate the plausible lower bound condition of the rule.

analogy criterion
HISTORICAL-CONCEPT

■* COMPONENT-OF
ILLUSTRATES -^

SOl/RCE SLAVERY-TOPIC

CREATED-DURING«^^.

HISTORICAL-PERIOD

^.BEFOR?
HISTORICAL-CONCEPT

Plausible Upper Bound IF
»Wl IS WRITE-DURING-PERIOD. FOR »SI,

DURING ?PI,ON »S2

»SI IS MEDIA

»PI E HISTORICAL-PERIOD

IS SLAVERY-TOPIC ?S2

«S3

explanation
SLAVE-DANCE

ILLUSTRATE^ COMPONENT-OF

CONTENTED-SLAVES-AND-MASTERS SLAVE-CULTURE

•Wl.trnmimr.
PRE-CjVIL-WAR

CWL-WAR-^EFORE J

IS SOURCE.
ILLUSTRATES »S4, CREATED-DURING »P2

IS HISTORICAL-CONCEPT.

COMPONENT-OF »S2

B HISTORICAL-PERIOD, BEFORE »PI

Plausible Lower Bound IF
»wl

Initial example
the task is
WRITE-DURING-PERIOD

FOR SOUTHERN-ILLUSTRATED-NEWS

DURING CTVII-WAR
ON SLAVE-CULTURE

Then
RELEVANT

HIST-SOURCE CONTENTED-SLAVES-AND-MASTERS

IS WRITE-DURING-PERIOD. FOR tSI.

DURING »PI. ON »S2

»SI IS SOUTHERN-ILLUSTRATED-NEWS

»PI IS CIVIL-WAR

»S2 IS SLAVE-CULTURE

»S3 IS CONTENTED-SLAVES-AND-MASTERS.

ILLUSTRATES »S4, CREATED-DURING »P2

?S4 IS SLAVE-DANCE, COMPONENT-OF »S2

»P2 IS PRE-CIVIL-WAR, BEFORE »PI

THEN
RELEVANT HIST-SOURCE »S3

4.2 RULE REFINEMENT

The representation of the PVS rule in the right hand side of
Figure 5 shows the most likely relation between the
plausible lower bound, the plausible upper bound and the
hypothetical exact condition of the rule. Notice that there
are instances of the plausible upper bound that are not
instances of the hypothetical exact condition of the rule.
This means that the learned rule in Figure 7 covers also
some negative examples. Also, there are instances of the
hypothetical exact condition that are not instances of the
plausible upper bound. This means that the plausible
upper bound does not cover all the positive examples of
the rule. Both of these situations are a consequence of the
fact that the explanation of the initial example might be
incomplete, and are consistent with what one would
expect from an agent performing analogical reasoning. To
improve this rule, the agent will use the rule refinement
method represented schematically in Figure 8. The agent
will use the learned rule to generate examples similar with
the one in Figure 3. Each such example is covered by the
plausible upper bound and is not covered by the plausible
lower bound of the rule. The example is shown to the
educator who is asked to accept it as correct or to reject it,
thus characterizing it as a positive or a negative example
of the rule. A correct example is used to generalize the
plausible lower bound of the rule's condition through
empirical induction. An incorrect example is used to elicit
additional explanations from the educator and to specialize
both bounds, or only the upper bound.

Figure 9 shows an example generated by the agent, by
analogy with the initial example in Figure 3. The agent's
analogical reasoning is represented in Figure 10. The
explanation from the left hand side indicates why the
initial example is correct. The expression from its right
side is similar with this explanation because both of them
are less general than the analogy criterion from the top cf
Figure 10. Therefore, one may infer by analogy that the
similar explanation from the right hand side of Figure 10
explains an example (the generated example from the right
hand side of Figure 10 and from Figure 9) that is similar
to the initial example. Nevertheless, the generated
example is incorrect and was rejected by the educator.

Knowledge
Base

Learning by Analogy
and Experimentation

Learning from Examples

„„„,„ Fieure 8: The rule refinement method of Disciple
Figure 7: Generation of initial plausible version space rule riSure °-

570 Tecuci and Keeling

D ; Current Example

If you are a writer FOR World Wide Web
DURING the Civil War period
(1861 -1865) and you have been

assigned to write and Illustrate a feature
article on negative master slave
relationships, then the HISTORICAL

SOURCE 'Fugitive Slaves' Is relevant.

Figure 9: An example generated by the agent4

In such a case the agent needed to understand why this
example, which was generated by analogy with a correct
example, is wrong. By comparing the two examples, the
educator and the agent were able to find out that the
generated example is wrong because the WORLD-WIDE-
WEB was not issued during the CIVIL-WAR period. On the
contrary, the initial example was correct because
SOUTHERN-ILLUSTRATED-NEWS was issued during the
CIVIL-WAR period. This explanation is used to specialize
both bounds of the version space. This process will
continue until either the two bounds of the rule become
identical or until no further examples can be generated that
are not already covered by the plausible lower bound. The
final rule is the one from Figure 4. This training phase
continued until 54 relevancy rules were learned.

analogy criterion
HISTOpiCAl-CONCEFT

ILLUSTRATES^ COMPONENT-OF

SOURCE SLAVERY-TOPIC

HISTORICAL-PERIOD

SLAVE-DANCE

ILLUSTRATES^ COMPONENT-OF

CONTENTED-SLAVES-AND-MASTERS SLAVE-CULTURE
CREATED-DURING

CIVIL-WAR ■

PRE-CML-WAR
^BEFORE

Initial »xampfi s_t

ILLUSTRATE:

fUCniVE-SLAvTs

CREATED-DURING

CML-WAR ■

SLAVE-RESISTANCE
COMPONENT-OF

NEGAWE-MASTEP-SLAVE-
. RELATIONSHIP

PRE-CML-WAP

'BEFORE

Ihe tojk h
WRITE-DURING-PEROD

FOR SOUTHERN-ILLUSTRATED-NEWS
DURING CIVIL-WAR
ON SLAVE-CULTURE

Then
RELEVANT

HLST-SOURCE CONTENTED-SLAVES-AND-MASTERS.

i 'generated example
If the laik «

wRrre-DURiNG-PEROD re/ecreo
FOR WORLD-WIDE-WEB
DURING CIVIL-WAR
ON NEGATIVE-MASTER-SLAVE-PELATDHSHIP

Then
RELEVANT

. HIST-SOURCE FUGITIVE-SLAVES

Explanation: faHun »xplanahon:
SOUTHERN-ILLUSTRATED-NEWS ISSUED- DURING CIVIL-WAR net fwORLD-WIDE WEB ISSUED-OURING CM-WAP)

Figure 10: Analogical reasoning in Disciple

5 THE TEST GENERATION ENGINE
One of the agent's requirements was that it generates not
only test questions, but also feedback for right and wrong
answers, hints to help the student in solving the tests, as
well as explanations of the solutions. Moreover, agent's
messages needed to be expressed in a natural language
form. Although the rules learned by the agent contain
almost all the necessary information to achieve these
goals, some small adjustments were necessary. In the case
of the rule in Figure 4, the educator needed to define the
templates for the Hint, Right Answer and Wrong Answer,
shown in Figure 11. The Hint in Figure 11 is the part of
the Explanation in Figure 4 that refers only to the
variables used in the formulation of the test question. The
Right Answer in Figure 11 is generated from the
Operation Description and the Explanation in Figure 4,
and the Wrong Answer is a fixed text.

Hint: To determine if this source is relevant to your task investigate if it
illustrates some component of ?S2, check when was it created, and when 'SI
was issued

Right Answer: The source ?S3 is relevant to your task because it illustrates
?S4 which was a component of ?S2, ?S3 was created during ?P2 which was
before ?P1 and ?S1 was issued during ?P|.

Wrong Answer: Investigate this source further and analyze the hints and
explanations to improve your understanding of relevance You may consider
reviewing the material on relevance Then continue testing yourself

4 Picture reproduced from LC-USZ622-14828, Library of Congress

Figure 11: Additional templates for the rule in Figure 4

The learned rules can be used to generate different types of
tests. In the current version of the agent we have chosen to
develop a test generation engine that can generate the
following four classes of test questions:
•IF RELEVANT: Show the student a writing assignment
and ask whether a particular historical source is relevant
to that assignment;

•WHICH RELEVANT: Show the student a writing
assignment and three historical sources and ask the
student to identify the relevant one;

•WHICH IRRELEVANT: Show the student a writing
assignment and three historical sources and ask the
student to identify the irrelevant one; and

•WHY RELEVANT: Show the student a writing assign-
ment, a source and three possible reasons why the source
is relevant, and ask the student to select the right reason.

Similar questions could be generated for other evaluation
skill such as IF CREDIBLE or WHY CREDIBLE test questions.

To generate an IF RELEVANT test question with a relevant
source, the agent simply needs to generate an example of a
relevancy rule. This rule example will contain a task T
and a source S relevant to it, together with one hint and
one explanation that will indicate one reason why S is
relevant to T. However, if the student requires all the
possible reasons for why the source S is relevant to T,
then the agent will need to find all the examples
containing the source S and the task T of all the relevancy
rules from the family of rules corresponding to T.

Teaching an Agent to Test Students 571

To generate an IF RELEVANT test question with an
irrelevant source, the agent has first to generate a valid
task T by finding an example of a relevancy rule R. Then
it has to find a historical source S such that the task T
and the source S are not part of an example of any rule
from the family of rules corresponding to the task T.

The methods for generating WHICH RELEVANT and WHICH
IRRELEVANT test questions are based on the methods fix
generating IF RELEVANT test questions.

For an WHY RELEVANT test question an example Ei of a
relevancy rule Ri is generated. This example provides a
correct task description T, a source S relevant to T, and a
correct explanation EX, of why the source S is relevant to
T. Then the agent chooses another rule that is not from
the family of the relevancy rules corresponding to T. This
rule could be from another family of relevancy rules, or
could be a rule corresponding to another evaluation skill,
for instance credibility or accuracy. Let us suppose that
the agent chooses a credibility rule R2. It then generates
an example E2 of R2, based on E, (that is, E2 and Et share
as many parts as possible, including the source S). The
agent also generates an explanation EX2 of why S is
credible. While this explanation is correct, it has nothing
to do with why S is relevant to T. Then, the agent
repeats this process to find another explanation that is true
but explains something else, not why S is relevant to T.

It should be noticed that, when the agent has to choose an
element from a set, the choice is done at random. Thus,
its behavior is different from one execution to another.

6 EXPERIMENTAL RESULTS
The ontology of the test generation agent includes the
description of 252 historical concepts, 80 historical
sources, and 6 publications. The knowledge base also
contains 54 relevancy rules grouped in four families, each
family corresponding to one type of reporter task. These
rules have been learned from an average of 2.17
explanations (standard deviation 0.91) and 5.4 examples
(standard deviation 1.37).

There are 40,930 instances of the 54 relevancy rules in the
knowledge base. Each such instance corresponds to an IF
RELEVANT test question where the source is relevant. In

principle, for each such test question the agent can
generate several IF RELEVANT test questions where the
source is not relevant, as well as several WHY RELEVANT,
WHICH RELEVANT and WHICH IRRELEVANT test
questions. Therefore, the agent can generate more than 10
different test questions.

We have performed four types of experiments with the test
generation agent. The first experiment tested the
correctness of the knowledge base, as judged by the
domain expert who developed the agent. This was
intended to clarify how well the developed agent
represents the expertise of the teaching expert. The second
experiment tested the correctness of the knowledge base,
as judged by a domain expert who was not involved in its
development. This was intended to test the generality of
the agent, given that assessing relevance is, to a certain
extent, a subjective judgment. The third and the fourth
experiments tested the quality of the test generation agent,
as judged by students and by teachers.

The results of the first two experiments are summarized in
Table 1. To test the predictive accuracy of the knowledge
base, 406 IF RELEVANT test questions were randomly
generated by the agent and answered by the developing
expert. We have performed a similar experiment with a
domain expert who was not involved in the development
of the agent. This independent expert has answered
another 401 randomly generated IF RELEVANT test
questions. These experiments have revealed a much
higher predictive accuracy in the case of IF RELEVANT test
questions where the source was relevant. This was
96.53% in the case of the developing expert and 95.45%
in the case of the independent expert. The predictive
accuracy in the case of irrelevant sources was only 81.86%
in the case of the developing expert and 76.35% in the
case of the independent expert. To confirm these results
we have conducted an additional experiment with the
independent expert, who was shown other 1,326 IF
RELEVANT test questions where all the sources were
relevant (for a total of 1,524 such questions). In this case
the predictive accuracy of the agent was 96.19%.

We have analyzed in detail each case where both the
developing expert and the independent expert agreed that
the agent failed to recognize that a source was relevant or

Table 1: Evaluation results

Reviewer
Total number
of reviewed

questions

Number of
IF questions with
relevant sources

Number of
IF questions with
irrelevant sources

Time spent
to review all
the questions

Accuracy on
IF questions with
relevant sources

Accuracy on
IF questions with
irrelevant sources

Total
accuracy

Developing
expert

406 202 204 5 hours 96.53% 81.86% 89.16%

Independent
expert 401 198 203 10 hours

over 2 days
95.45% 76.35% 85.76%

Independent
expert 1,524 198+1,326

"

22 hours for
1,326 questions 96.19% -

572 Tecuci mid Kecli, "'£

I feel that I understand more about
'judging relevance' than I knew before

The agent provided feedback that helped
me understand slavery better

The agent's test questions
were understandable

I prefer the agent's questions over my
usual test questions

The agent was easy to use

I found the agent to be a useful tool in „
the classroom

I would like to see more software like
the agent used in my classes

mean=2.00

mean=2.71

(st.dev.=1

• » mean=2.76

-► mean =2.10

-►mean =2

(st.dev.=1.!7)

09)

(st.dev.=1

95 (st.c|ev.=1.61)

.29 (st.dqv.=1.11)

-► mean:

12 3 4
Very Strongly Strongly Agree Indifferent

Agree Agree

Figure 12: Student survey results

=p.14 (st.dev.=1

(st.Jlev.=1.37)

24)

30)

5 6 7
Disagree Strongly Very Strongly

Disagree Disagree

irrelevant to a certain task. In most cases it was concluded
that the representation of the source was incomplete. This
analysis suggested that the representation of the sources
should be guided by the following principle which, if
followed, would have avoided many of the agent's errors:
Any historical source must be completely described in
terms of the concepts from the knowledge base. This
means that if the knowledge base contains a certain
historical concept, then any historical source referring to
that concept should contain the concept in the description
of its content. Operationally, this simply means that if the
expert decides to describe a new source in terms of some
new concept C, then the expert has to review again the
descriptions of each source S from the knowledge base, ff
the experts decides that S refers to C, then she or he has
to include C in the representation of S. This does not
mean, however, that the contents of the historical sources
have to be completely described (a task that would be
very hard, especially for pictures).

There were several cases where the two experts disagreed
themselves, mainly because the independent expert had a
broader interpretation of some general terms (such as slave
culture, activities related to slavery, cruelty of slavery, and
master slave relationships) than the developer of the
knowledge base. However, the independent expert agreed
that someone else could have a more restricted
interpretation of those terms, and, in such a case, the
answers of the agent could be considered correct. There
were also 5 cases where the independent expert disagreed
with the agent and then, upon further analysis of the test
questions, agreed with the agent.

Table 1 indicates also the evaluation time because, unlike
the automatic learning systems, the interactive learning
systems require significant time from domain experts, and
this factor should be taken into consideration when
developing such systems. First of all, one could notice
that it took twice as long to the independent expert to

analyze 401 test questions than it took to the developing
expert. This is because the independent expert was not
familiar with any of the 80 historical sources used in the
questions, and he had to analyze each of them in detail in
order to answer the questions. However, once the
independent expert became familiar with the sources, he
answered the new 1,326 test questions much faster.

We have also conducted an experiment with a class of 21
students from the 8th grade at The Bridges Academy in
Washington D.C. The students were first given a lecture
on relevance and then were asked to answer 25 test
questions that were dynamically generated by the agent.
Students were also asked to investigate the hints and the
explanations. To record their impressions, they were
asked to respond to a set of 18 survey questions with one
of the following phrases: very strongly agree, strongly
agree, agree, indifferent, disagree, strongly disagree, and
very strongly disagree. Figure 12 presents the results
from 7 of the most informative survey questions.

Finally, a user group experiment was conducted with 8
teachers at The Public School 330 in the Bronx, New
York City. This group of teachers had the opportunity to
review the performance of the agent and was then asked to
complete a questionnaire. Several of the most informative
questions and a summary of the teacher's responses are
presented in Figure 13.

7 CONCLUSIONS

In this paper we have presented an innovative application
of the Disciple Shell to the building of a test generation
agent. We have provided experimental evidence that the
process of teaching the agent is natural and efficient, and
that it results in a knowledge base of good quality and in
a useful educational agent. Since the agent is taught by
the educator through examples and explanations, and then
it is able to provide similar examples and explanations to

Teaching an Agent to Test Students 573

The questions generated by the agent help
students learn about how to judge relevance

The language of the questions was under-
standable and appropriate for JH students

My students will learn about slavery from
the agent

The agent assist students in assessing their
own skill level

The test results from the agent provide
useful information for grading students

I think my students would find the agent
beneficial

I found the agent to be a useful tool in
the classroom

** .

• ► mean=2.3l (st.dev.=0. ^4)

< -

• ►mean=3.13

in=2.00 (st.jtev.=0.63)

■► mean=2

► mean=2.

mean=2.25

mean=2.38

50 (st.dev.

33 (st.dev.=

(st.dev.=0.71)

(st.dev.=0.5I)

(st.dev.=0.9f)

).76)

'.62)

1 2 3 4 5 6 7
Very Strongly Strongly Agree Indifferent Disagree Strongly Very Strongly

Agree Agree Disagree Disagree

Figure 13: Teacher survey results

the students, it could be considered as being a preliminary
example of a new type of educational agent that can be
taught by an educator to teach the students (Hamburger
and Tecuci, 1998). From the point of view of the artificial
intelligence research, this work shows an integration of
machine learning and knowledge acquisition with
problem solving and intelligent-tutoring systems. From
the point of view of the education research, it shows an
automated computer-based approach to the assessment of
higher-orderthinking skills, as well as an assessment that
involves multimedia documents. Future work involves
further development of the agent and its experimental use
in the classroom. We are also continuing the development
of the Disciple approach and are applying it to other
challenging problems, such as building a statistical ana-
lysis assessment and support agent, and an agent who has
to find the best way of working around various damages
to an infrastructure, such as a damaged bridge or tunnel.

Acknowledgments

Tomasz Dybalbr and' Kathryn. Wright contributed to the
development of the Disciple Shell.. Lyiur Fontana, Rich
Rosset, and David Webster assisted in the development of
the knowledge base. Lawrence Young, who holds an
M.S. in History Education; acted as the independent
expert. This research was done in the Learning Agents
Laboratory which is supported by the AFOSR grant No.
F49620-97-1-0188, by the DARPA contract No. N66001-
95-D-i8653, and by the NSF grant No. CDA-9616478.

References

Beyer, B. (1987). Practical Strategies for the Teaching
of Thinking. Allyn and Bacon, Inc. Boston, MA.

Beyer, B. (1988). Developing a Thinking Skills Program.
Allyn and Bacon, Inc. Boston, MA.

Bloom, B. (1956). Taxonomy of Educational Objectives.
David McKay Co., Inc. New York.

Delong, G. and Mooney, R. (1986). Explanation-Based
Learning: An Alternative View, Machine Learning, Vol.
1, pp. 145-176.

Fontana, L., Debe, C.„ White, G. and Cates, W. (1993).
Multimedia: Gateway to Higher-Order Thinking Skills in
Progress. In Proc. of the National Convention of the
Assoc. for Educational Communications and Technology.

Gruber, T.R. (1993). Toward principles for the design of
ontologies used for knowledge sharing. In Guarino, N.
and Poli, R. (eds), Formal Ontology in Conceptual Ana-
lysis and Knowledge Representation, Kluwer Academic.
Hamburger H. and Tecuci G. (1998). Toward a
Unification of Human-Computer Learning and Tutoring,
In Proc. of ITS'98, San Antonio, TX, Springer-Verlag.
Lenat, D. B. and Guha, R. V. (1990). Building Large
Knowledge-Based Systems: Representation and Inference
in the CYC Project. Addison-Wesley, Reading, MA.
Michalski, R.S. and Tecuci, G., (editors), (1994)
Machine Learning: A Multistrategy Approach, Volume 4,
Morgan Kaufmann Publishers, San Mateo, CA.
Mitchell, T.M., Keller, T., and Kedar-Cabelli, S. (1986)
Explanation-Based Generalization: A Unifying View,
Machine Learning, Vol.. 1., pp; 47-80.
Mitchell T.M.„Mahadevan S, and Steinberg L.I. (1985).
LEAP: A Learning Apprentice System for VLSI Design,
in Proceedings ofIJCAI-85.

Quillian, M. R. (1968). Semantic Memory, In Minsky,
M. (editor), Semantic Information Processing, pp. 227-
270, Cambridge, Mass: MIT Press.

Tecuci, G. and Kodratoff, Y. (editors), (1995). Machine
Learning and Knowledge Acquisition: Integrated
Approaches, Academic Press.

Tecuci G. (1998). Building Intelligent Agents: An
Apprenticeship Multistrategy Learning Theory,
Methodology, Tool and Case Studies, Academic Press.

574

The Problem with Noise and Small Disjuncts

Gary M. Weiss* and Haym Hirsh
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903

gmweiss@att.com, hirsh@cs.rutgers.edu

Abstract

Many systems that learn from examples express
the learned concept as a disjunction. Those
disjuncts that cover only a few examples are
referred to as small disjuncts. The problem with
small disjuncts is that they have a much higher
error rate than large disjuncts but are necessary to
achieve a high level of predictive accuracy. This
paper investigates the effect of noise on small
disjuncts. In particular, we show that when noise
is added to two real-world domains, a significant,
and disproportionate number of the total errors
are contributed by the small disjuncts; thus, in
the presence of noise, it is the small disjuncts that
are primarily responsible for the poor predictive
accuracy of the learned concept.

1 INTRODUCTION

Systems that learn from examples often express the
learned concept as a disjunction. The coverage, or size,
of each disjunct is defined as the number of training
examples that it correctly classifies (Hohe, Acker &
Porter, 1989). Small disjuncts are those disjuncts that
cover only a few training examples. Although small
disjuncts may individually cover only a small fraction of
the training examples, collectively they can cover a
significant percentage of the training examples. The
problem with small disjuncts is that they have a higher
error rate than large disjuncts but cannot be eliminated
without greatly reducing the predictive accuracy of the
learned concept.

Early work on small disjuncts investigated a variety of
issues, including ways of improving predictive accuracy
by eliminating some small disjuncts (Holte, et al., 1989;
Quinlan, 1991). Danyluk and Provost (1993) highlighted
the role of small disjuncts in learning from noisy data
when they speculated that in the telecommunication

*Also AT&T Labs, Middletown, NJ 07748

domain they were studying, learning from noisy data was
hard due to a difficulty distinguishing between systematic
noise and "true" exceptional cases in the training data.
True exceptions and small disjuncts, although similar
entities which are sometimes used interchangeably, differ
in one important way—true exceptions are defined
relative to the "true" (i.e., correct) concept whereas small
disjuncts are defined relative to a learned concept. Weiss
(1995) investigated the interaction of noise on true
exceptions by using artificial datasets and demonstrated
that this interaction results in error prone small disjuncts
in the learned concept. In this paper we focus on small
disjuncts rather than "true exceptions" because for the
real world domains we use, the "correct" concept
definition is not known, and hence it is not possible to
measure the true exceptions.

This paper extends previous work by examining the
effect of noise on small disjuncts using real-world
datasets and assessing the impact of this effect on the
overall learning process. In particular, we show that
when noise is added to these datasets, then the concept
learned from this data exhibits the problem with noise
and small disjuncts: that is, the small disjuncts contribute
a disproportionate, and significant, number of the total
errors (relative to the number of examples they cover) but
still cannot be eliminated without adversely affecting the
accuracy of the learned concept. Thus, we show that the
small disjuncts are primarily responsible for learning
being difficult in the presence of noise.

2 DESCRIPTION OF EXPERIMENTS

This section describes the learning program, problem
domains and experimental methodology we used to
conduct our experiments.

2.1 THE LEARNER

All of the experiments described in this paper use C4.5, a
program for inducing decision trees from preclassified
training examples (Quinlan, 1993). C4.5 was chosen
because it is a popular tool for learning disjunctive

The Problem with Noise and Small Disjuncts 575

concepts and because we were able to modify it, without
too much difficulty, to collect statistics relating to
disjunct size. For the majority of experiments, C4.5 was
run in one of the following two configurations:

— with its default parameters and pruning strategy, and

— with its default parameters but without any pruning
and with the -ml option to disable the default
stopping criterion.

The -m option stops a node from being split during the
tree-building process if the resulting node covers fewer
than the specified number of examples (1 in this case).
Thus, in the second configuration, C4.5 will build a
decision tree that correctly classifies all training examples
if the examples are consistent.

2.2 THE PROBLEM DOMAINS

This paper uses the KPa7KR chess endgame (Shapiro,
1987) and Wisconsin breast cancer (Wolberg, 1990)
datasets, which were obtained from the UCI repository of
machine learning databases (Murz & Murphy, 1998).
These datasets were selected because C4.5 was able to
attain high levels of predictive accuracy on them; we
wanted to come as close to learning the correct target
concept as possible prior to the introduction of artificial
noise. The KPa7KR dataset contains 3196 examples with
36 attributes, where each example represents a board
position and has the class value "won" or "nowin". The
Wisconsin breast cancer dataset contains 699 examples
with nine attributes, with each example having the value
"benign" or "malignant". The class distribution is
approximately equal for the chess endgame domain and is
2:1 in favor of the benign class for the breast cancer
domain. The results for the breast cancer domain closely
parallel those for the chess domain and therefore in most
cases we only display the results for the chess domain (all
results are for the chess domain unless noted otherwise).

2.3 EXPERIMENTAL METHODOLOGY

For each experiment seven independent runs were
performed and the results averaged together. For each
run, 200 examples were randomly selected and placed
into the training set while the remaining examples were
placed into the test set. Unless stated otherwise, all
measurements are based on the performance of the test
set. Varying levels of randomly generated class noise are
used in the experiments. The examples are considered
initially noise-free. A noise level of n% means that with
probability n/100 the class value is randomly selected
from the remaining alternatives. This means that when
50% class noise is applied to a domain with two classes,
there is no information-provided by the class variable.

For the experiments performed in this paper, coverage is
defined in terms of the number of test examples correctly
classified, since we felt that this would yield a more fair
measure of the true coverage of each disjunct (just as
measuring accuracy on the test set yields a more fair

measure). However, we do not believe this decision to be
critical. For each graph presented in this paper, coverage
is displayed on a logarithmic scale, so the behavior of the
small disjuncts can be easily identified.

3 THE PROBLEM WITH SMALL
DISJUNCTS

Although the focus of this paper is on the problem with
noise and small disjuncts, this section will first show that
the chess endgame and breast cancer domains exhibit the
problem with small disjuncts. Figures 1 and 2 show the
results of running C4.5 on the chess endgame and
Wisconsin breast cancer domains, respectively, without
any artificial noise applied to the datasets. For these
figures, and for all figures in this paper with coverage on
the x-axis, the value of each curve at coverage n is based
on the collective performance of all the disjuncts with
coverage less than or equal to n. Thus, the curves labeled
"Examples" and "Errors" in Figures 1 and 2 show the
percentage of total examples and errors, respectively,
covered by these disjuncts (i.e., with size < n) when the
learned concept is applied to the test set. The error rate
curve shows the error rate of the disjuncts with size < n.

100

 i—■—■ ' ■ ■ i —■—' 1.

90 y / ~
80 r r

IP
60

\^ I
<u 50 ^.....X J

PL,
40 - f^ \ yj
30 - f ^^y
20 - 1 y> ~—^_
10 :._. —. ̂ -—' ^-S ~~~

Examples

Errors

Error Rate

Coverage

Figure 1: The Effect of Disjunct Size (Chess Domain)

Examples

Errors

Error Rate

Coverage

Figure 2: The Effect of Disjunct Size (Cancer Domain)

An example will help clarify the meanings of these
curves and demonstrate that small disjuncts are "error
prone". In Figure 1, the curves for errors and error rate
intersect at coverage 40. The curves tell us that the
disjuncts with size < 40 collectively have an error rate of
50% and collectively cover 50% of the total errors, but
only cover 5% of the total examples. This clearly
demonstrates that small disjuncts are error prone (i.e.,
they cover a disproportionate number of errors). The
error rate for the learner as a whole can be found by

576 Weiss and Hirsh

looking at the error rate when 100% of the errors and
examples have been covered; we see from this that the
overall error rate for the chess endgame domain is 5%
and the overall error rate for the breast cancer domain is
6%. The error rate curve also shows that small disjuncts
have a higher error rate than large disjuncts, since the
error rate decreases (for both domains) as larger disjuncts
are included in the error rate calculations.

Figures 1 and 2 show that most examples are covered by
the larger disjuncts, but the smaller disjuncts nonetheless
cover a large percentage of the examples. This is more
evident for the breast cancer domain, but even for the
chess endgame domain disjuncts of size < 100 are much
more error prone than the larger disjuncts and cover about
20% of the total examples. These results are consistent
with those described by Holte and colleagues (1989). In
addition, since the small disjuncts cover too many
examples to be simply dropped from the learned concept
without significantly impacting the accuracy of the
concept, these results also demonstrate that these domains
exhibit the problem with small disjuncts.

4 THE PROBLEM WITH NOISE AND
SMALL DISJUNCTS

This section will show that for the chess and breast
cancer domains, noise results in small disjuncts being
mainly responsible for the errors in the learned concept.
For these experiments, no pruning is done unless
specified and class noise is applied to both the training
and test sets.

Figure 3 shows what happens to the error rate as the noise
rate is varied (recall that for coverage of n, the
"collective" error rate is based on all disjuncts with size
<n). The figure shows that the addition of 5% class noise
causes the error rate for small disjuncts to increase, but
from that point on it decreases as more noise is added.

a
o
b u
> •a
8

"3
U

 _■
i

'
i

'
i

•
i

■!
—

r

 1

x^-;,:;^:_:
...i i

IOW Noise

20» Noise

30W Noise

50* Noise

Coverage

Figure 3: Effect of Noise on Error Rate

To make it easier to see the degree to which errors are
concentrated toward the small disjuncts, we will use a
statistic called the error factor, first introduced by Weiss
(1995). The error factor is defined as:

The error factor is a function of coverage and is
essentially the "Errors" curve divided by the "Examples"
curve. For example, the error factor at coverage 40 in
Figure 1 is 10 (50%/5%), which indicates that disjuncts
with size < 40 contribute 10 times more errors than
expected if coverage had no effect on error rate.

Figure 4, which plots the error factor versus coverage,
shows the effect of noise on small disjuncts even more
clearly than Figure 3, since error factor is a relative
measure which takes into account the different overall
error rates resulting from learning with the different
levels of class noise. Figure 4 shows that as the amount
of noise increases the error factor for small disjuncts
decreases. This indicates that as the noise level increases
either the percentage of errors contributed by the small
disjuncts decreases and/or the percentage of examples
covered by the small disjuncts increases.

"1 ■ • ■ ~1 ■ — 1
No Noise

5% Noi.se

O
V a

10 -
10% Noise

20% Noise

Urn
8 - 30% Noise

£ 6 "
50% Noise

UJ
4 ~---._ ^^-^^ -
2

0

'_---■-. ~~"~~""—-.-.l" ' ■" ~\ -
 ■ 1 1 '

Coverage

Figure 4: Effect of Noise on Error Factor

Noise added to the training data will undoubtably affect
the concept that is learned and will therefore affect the
small disjuncts in the learned concept. Figure 5 addresses
this by showing how various noise levels affect the
number of examples covered by the small disjuncts.

E

U

Error Factor(cov) =
% cumulative errors(cov)

% cumulative examples(cov)

Coverage

Figure 5: Effect of Noise on Distribution of Cases

Figure 5 shows that as more noise is added to the data,
the number of examples covered by small disjuncts
increases dramatically. For example, disjuncts of
size < 100 cover 3 times as many examples when the
noise level increases from no noise to 10% noise. Figure
5 confirms what we and others had suspected—that noisy
data will cause a learner to form "erroneous" small
disjuncts.

The Problem with Noise and Small Disjuncts 577

Figure 6 shows how the distribution of errors changes as
noise is applied to the domain. It shows that when the
noise level is less than 20%, small disjuncts with size <
30 account for an even greater percentage of the total
errors than when there was no noise. Thus, we now have
an explanation of why the error factor in Figure 4
decreased as additional noise was introduced—it was
because the number of examples covered by the small
disjuncts increased at a faster rate than the number of
errors contributed by these disjuncts. Note that once the
noise level reaches 30%, then disjuncts with coverage <
30 no longer cover a disproportionate number of the
errors they cover half of the errors but also cover almost
half of the total examples. The breast cancer domain
exhibits similar trends.

in such cases a very aggressive overfitting avoidance
strategy is needed to adequately learn the correct concept.

Coverage

Figure 6: Effect of Noise on Distribution of Errors

We can summarize the results from Figures 3-6 as
follows: in the presence of noise, small disjuncts have a
higher error rate than large disjuncts and cover a
significant number of the total cases and total errors. As
a consequence, small disjuncts contribute a
disproportionate and very significant number of the
errors. All of this holds true until very high levels of
noise are applied, at which point the impact of noise on
the large disjuncts becomes important relative to the
impact of noise on small disjuncts—at which point small
disjuncts can no longer be blamed for the poor
performance of the learned concept.

Since overfitting avoidance strategies such as pruning are
more likely to eliminate small disjuncts than large
disjuncts, it is interesting to see how these strategies will
affect the error rate and how this can be related to the role
of small disjuncts. Figure 7 shows how pruning affects
the overall error rate. Since it is not possible to predict
random class noise, the optimal error rate will equal the
noise rate. This figure shows that the default pruning
strategy improves the error rate in the presence of class
noise and improves it the most when the noise rate is
between 10% and 20%. This is explained by the fact that
in this range the small disjuncts have very high error rates
(Figure 3) and contribute a very large percentage of the
total errors (Figure 6). The strategy which uses C4.5's
-m20 option to prevent nodes from being formed when
fewer than 20 examples are covered also improves the
error rate, except when there is no noise. This strategy
also outperforms the default pruning strategy when there
are very high levels of noise (e.g., 30%), indicating that

o
'S
OS
1-

i

Class Noise (%)

Figure 7: Effect of Pruning on Overall Error Rate

5 UNDERSTANDING THE EFFECT OF
NOISE ON SMALL DISJUNCTS

In the experiments described in the previous section, the
training and tests sets were generated from the same
distribution. While this is the most realistic scenario,
when one is trying to understand the effect of noise on
learning, noise is frequently only applied to either the
training or test set.

5.1 THE EFFECT ON TRAINING

Noise applied only to the training set tests the ability to
learn the "correct" concept in the presence of noise
(Quinlan, 1986). That is, by limiting the noise to the
training set, we can evaluate the sensitivity of the learner
to noise. We can accomplish this evaluation, even
without knowing the "correct" concept, by using the
noise-free test data to approximate the correct concept.

As shown earlier, noise in the training set introduces
additional "erroneous" small disjuncts into the learned
concept. Experiments identical to those described earlier
were repeated with the artificial noise restricted to the
training set. Graphs corresponding to those shown in
Figures 3-6 were generated. The results indicated that
under these circumstances small disjuncts have an even
more significant impact on learning and, in particular,
contribute a greater percentage of the errors than when
noise was applied to both the training and test sets.

5.2 THE EFFECT ON TESTING

It is also meaningful to study the effect of noise on the
test set. This situation corresponds to the scenario in
which the training data is "cleaned up", perhaps by using
more costly measurement equipment, in the hope of
achieving improved predictive accuracy. Experiments in
which the noise was limited to the test set were run and
the results showed that, relative to the case where noise

1 However, if systematic noise is applied to the test set, better predictive
accuracy may be obtained by leaving the noise in the training set.

578 Weiss and Hirsh

was applied to both the training and test sets, the small
disjuncts had much less of a negative impact on learning.

5.3 DISCUSSION

The results described in the previous two subsections can
be explained by examining how noise affects small
disjuncts. First of all, noise in the training set will
influence the concept that is learned but noise in the test
set cannot. Since small disjuncts are based on the learned
concept, we can conclude that noise in the test set cannot
cause small disjuncts to be formed. Futhermore, noise in
the test set will tend to affect all disjuncts equally (Weiss,
1995). This explains why the effect of noise on small
disjuncts is less dramatic when noise is applied to both
the training and test sets than when it is limited to the
training set—in the former case noise in the test set
reduces the relative difference in error rates between the
small and large disjuncts. When noise is applied to only
the test set, the effect is greatly diminished, and would
disappear completely if the learner were able to learn the
correct concept prior to the introduction of artificial noise.
For a more in depth description about how noise affects
small disjuncts, refer to Weiss (1995).

6 CONCLUSION

This paper investigated the effect of noise on small
disjuncts and how this effect impacts the overall learning
process. For both the KPa7KR chess end-game domain
and the Wisconsin breast cancer domain, the
experimental results in this paper show that small
disjuncts are responsible for learning being difficult.
Only at very high levels of class noise do the large
disjuncts contribute a relatively large percentage of the
total errors. This paper also showed some trends and
effects that we feel are likely to hold for learning in
general and not just for the two domains used in this
paper. In particular, we feel that 1) noise tends to
decrease the number of large disjuncts and increase the
number of small disjuncts in the learned concept, 2)
relatively low levels of noise will increase the percentage
of errors contributed by small disjuncts, but this effect
will diminish as higher levels of noise are applied, and 3)
noise in the test set has an equalizing effect which
decreases the impact of the small disjuncts on learning.

We believe these results are important because they
provide some insight into how noise affects learning and
how the effect of noise manifests itself in the learned
concept. Given the prevalence of noise in real-world
problem domains, such an understanding is critical. This
work also provides additional justification for overfitting
avoidance strategies and hopefully provides some
additional insights into why these strategies work, how
they can be improved and the limitations of such
strategies.

Acknowledgements

Thanks to Andrea Danyluk, Foster Provost and Rob
Holte for helpful comments and interesting discussions
on the role of small disjuncts in learning. The authors
would also like to thank the members of the Rutgers
Machine Learning Research Group for their many
constructive comments.

References

Danyluk, A. P. & Provost, F.J. (1993). Small disjuncts in
action: learning to diagnose errors in the local loop of the
telephone network. In Machine Learning: Proceedings
of the Tenth International Conference, 81-88, San
Francisco, CA: Morgan Kaufmann.

Holte, R. C, Acker, L. E., & Porter, B. W. (1989).
Concept learning and the problem of small disjuncts. In
Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, 813-818. San
Mateo, CA: Morgan Kaufmann.

Merz, C. J., & Murphy, P. M. (1998). The UCI
Repository of machine learning databases
[http://www.ics.uci.edu/mlearn/MLRepository.html].
Irvine, CA: University of California, Department of
Information and Computer Science.

Quinlan, J. R. (1986). The effect of noise on concept
learning. In R. S. Michalski, J. G. Carbonell & T. M.
Mitchell (eds.), Machine Learning, an Artificial
Intelligence Approach, Volume II, 149-166, Morgan
Kaufmann.

Quinlan, J. R. (1991). Technical note: improved
estimates for the accuracy of small disjuncts. Machine
Learning, 6(1), 93-98.

Quinlan, J. R. (1993). C4.5: Programs for Machine
Learning. San Mateo, CA: Morgan Kaufmann.

Shapiro, A. D. (1987). Structured Induction in Expert
Systems, Addison-Wesley.

Weiss, G. M. (1995). Learning with rare cases and small
disjuncts, In Machine Learning: Proceedings of the
Twelfth International Conference, 558-565, San
Francisco, CA: Morgan Kaufmann.

Wolberg, W. H. & Mangasarian, O.L. (1990).
Multisurface method of pattern separation for medical
diagnosis applied to breast cytology. In Proceedings of
the National Academy of Sciences, U.S.A. (Vol 87)
9193-9196.

Index

Abe, Naoki, 1, 395
Aler, Ricardo, 10
Alstr0m, Preben, 463
Anglano, Cosimo, 19
Atighetchi, Michael, 430

Baxter, Jonathan, 28
Bay, Stephen D., 37
Bello, Giuseppe Lo, 19
Billsus, Daniel, 46
Blockeel, Hendrick, 55,136
Bollacker, Kurt D., 64
Bonet, Blai, 73
Borrajo, Daniel, 10
Boyan, Justin A., 386, 522
Bradley, Elizabeth, 547
Bradley, Paul S., 82, 91

CampbeU, Colin, 188
Carberry, Sandra, 497
Cesa-Bianchi, Nicolö, 100
Cohen, Paul R., 430
Cristianini, NeUo, 109,188

De Raedt, Luc, 55,136
Dietterich, Thomas G., 118
Domingos, Pedro, 127
Dzeroski, Saso, 136

Fawcett, Tom, 445
Fayyad, Usama M, 91
Fischer, Paul, 100
Frank, Eibe, 144,152
Fratkina, Raya, 287
Freitag, Dayne, 161
Freund, Yoav, 170
Frieß, Thilo-Thomas, 188
Friedman, Nir, 179

Gabor, Zoltän, 197
Gama, Joäo, 206
Gammerman, A., 515
Garcia, Frederick, 215

Geffher, Hector, 73
Ghosh, Joydeep, 64
Giordana, Attilio, 19
Goldszmidt, Moises, 179
Gordon, Diana F., 224

Heskes, Tom, 233
Hirsh, Haym, 574
Hu, Junling, 242

Isasi, Pedro, 10
Iyer, Raj, 170

Jappy, Pascal, 413
Jiang, Fan, 314
Juille, Hugues, 251

Kaelbling, Leslie P., 531
Kalmar, Zsolt, 197
Kearns, Michael, 260, 269
Keeling, Harry, 565
Keim, Greg A., 314
Kimura, Hajime, 278
Kobayashi, Shigenobu, 278
Kohavi, Ron, 445
Koller, Daphne, 287
Kosko, Bart, 377

Lee, Mary S., 386
Lee, Thomas J., 179
Lin, Dekang, 296
Liquiere, Michael, 305
Littman, Michael L., 314
Loch, John, 323

Mamitsuka, Hiroshi, 1
Mangasarian, Olvi L., 82
Mansour, Yishay, 269
Margaritis, Dimitris, 332
Maron, Oded, 341
McCallum, Andrew K., 350, 359
McCluskey, T L., 368
McGarity, Michael J., 421

Mitaim, Sanya, 377
Mitchell, Tom, 359
Mooney, Raymond J., 454
Moore, Andrew W., 386, 522

Nakamura, Atsuyoshi, 395
Ndiaye, Seydina M., 215
Ng, Andrew Y., 359,404
Nigam, Kamal, 350
Nock, Richard, 413

Pazzani, Michael J., 46
Pendrith, Mark D., 421, 481
Piater, Justus H, 430
Pollack, Jordan B., 251
Precup, Doina, 439,556
Provost, Foster, 445

Ramachandran, Sowmya, 454
Ramon, Jan, 55
RandLav, Jette, 463
Ratan, Aparna Lakshmi, 341
Reddy, Chandra, 472
Rosenfeld, Ronald, 359
Ryan, Malcolm R. K, 481

Saitta, Lorenza, 19
Sallantin, Jean, 305
Salustowicz, Rafal, 488
Samuel, Ken, 497
Saul, Lawrence K, 506
Saunders, C, 515
Schapire, Robert E., 170
Schmidhuber, Jürgen, 488
Schneider, Jeff G., 386, 522
Shatkay, Hagit, 531
Shawe-Taylor, John, 109
Singer, Yoram, 170
Singh, Satinder, 260, 323, 556
Street, W. Nick, 540
Stuart, Joshua M., 547
Sutton, Richard S., 556
Sykacek, Peter, 109
Szepesväri, Csaba, 197

580 Author Index

Tadepalli, Prasad, 472
Tecuci, Gheorghe, 565
Thrun, Sebastian, 332
Tridgell, Andrew, 28

Utgoff, Paul E., 439

Vijay-Shanker, K., 497
Vovk, V., 515

Weaver, Lex, 28
Weiss, Gary M., 574
Wellman, Michael P., 242

West, M. M., 368
Witten, Ian H., 144,152

Zhang, Xiaoqin, 430

Other Titles of Interest from
Morgan Kaufmann Publishers

ICML 1987-1997: Proceedings of the Fourth
through the Fourteenth International Conference
on Machine Learning

Readings in Machine Learning edited by
Jude Shavlik & Thomas Dietterich

Elements of Machine Learning by Pat Langley

Readings in Agents edited by Michael N. Huhns &
Munindar P. Singh

Artificial Intelligence: A New Synthesis
by Nils J. Nilsson

Fundamentals of the Theory of Computation
by Raymond Greenlaw & James H. Hoover

Introduction to Knowledge Systems by Mark Stefik

Journal of Artificial Intelligence Research, Vols. 1-7

IJCAI1969-1997: Proceedings of the First through
Fifteenth International Joint Conference on
Artificial Intelligence

Machine Learning Methods for Planning
edited by Steven Minton

Machine Learning: A Multistrategy Approach,
Volume IV edited by Ryszard Michalski &
Gheorghe Tecuci

C4.5: Programs for Machine Learning
by J. Ross Quinlan

Computer Systems that Learn: Classification &
Prediction Methods from Statistics, Neural Nets,
Machine Learning & Expert Systems
by Sholom M. Weiss & Casimir A. Kulikowski

Machine Learning: A Theoretical Approach
by Balas K. Natarajan

Genetic Programming: An Introduction
by Wolfgang Banzhaf, Peter Nordin, Robert E. Keller
& Frank D. Francone

Foundations of Genetic Algorithms, Volumes 1-4;
(Volume 5 forthcoming)

Forthcoming...
Genetic Programming III: Automatic Programming &
Automatic Circuit Synthesis
by John R. Koza, David Andre, Forrest II. Bennett III,
& Martin A. Keane

MORGAN KAUFMANN PUBLISHERS

340 PINE STREET, SIXTH FLOOR
SAN FRANCISCO, CA 94104
HTTP://WWW.MKP.COM

ISBN 1-55860-556-8

90000>

9 781558"605565

