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Preface 

This volume contains the 66 technical papers presented at the Fifteenth International Conference on Machine 
Learning (ICML '98), held July 24r-27,1998, in Madison, Wisconsin U.S.A. These articles were selected based 
on the rigorous review and discussion of 215 submissions. All papers were presented orally as well as at an 
evening poster session. 

ICML '98 was one of ten AI-related conferences held in Madison during mid-summer 1998, in an ambitious, 
first-time experiment to see what kind of synergies would result from all this collocation. In particular, ICML 
'98 was held in the same building as, and concurrently with, the Computational Learning Theory (COLT) 
and Uncertainty in Artificial Intelligence (UAI) conferences. It also overlapped one day with the Inductive 
Logic Programming (ILP) conference. 

Registrants were allowed to attend, without additional costs, the technical sessions of the other conferences. 
COLT, ICML, and UAI each invited one of the plenary speakers and jointly invited the banquet speaker, plus 
there was a joint poster session and wrapup panel. The poster session contained about 150 papers, allowing 
conference attendees a chance to see or further discuss research presented during the four to five parallel 
tracks and fostering interaction among the various communities. 

I especially wish to thank: 

• the authors of all the papers for their technical contributions toward the advancement of machine learn- 
ing. 

• Richard Sutton, who was the IMCL representative among the three joint invited speakers and spoke on 
"Reinforcement Learning: How Far Can It Go?"; Ron Kohavi, who was the second ICML invited speaker, 
discussing "Crossing the Chasm: From Academic Machine Learning to Commercial Data Mining"; and 
David Spiegelhalter, who was the jointly invited banquet speaker, describing "2.5 Millennia of Directed 
Graphs." 

• the advisory committee for their suggestions regarding the program committee and the invited speakers. 

• the program committee for their efforts initially reviewing about a dozen submissions each and then par- 
ticipating in in-depth discussions regarding which should be accepted. 

• the organizers of the COLT, UAI, and ILP conferences for all their efforts spent coordinating our collocated 
meetings, and all the invited speakers and technical-paper presenters that these communities provided. 

• Carol Hamilton of the American Association of Artificial Intelligence (AAAI) for her invaluable help coor- 
dinating AAAI '98 with ICML '98, and to AAAI in general for publicizing ICML '98, for processing ICML's 
advance registrations, for the organization of several ML-related workshops and tutorials, and for the use 
of the Madison convention center for some of the ICML '98 events. 

• those sponsors (listed below) who provided financial support, allowing for reduced registrations fees and 
providing partial travel support to some needy graduate students and the invited speakers. 

• the organizers of the joint AAAI/ICML workshops (listed below) and to the presenters of ML-related 
AAAI tutorials. 
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• Jacque Girard and Patricia Danek of the University of Wisconsin Business School, where the bulk of the 
conference's events were held, and to Maureen Sundell of the Wisconsin Office of Conference Services for 
their excellent help with local arrangements. 

• Bradley Schwarzhoff for ably serving as a conference assistant, Laura Cuccia for secretarial help, and 
Sheila Beattie, Virginia Werner, Marie Johnson, Margaret Roth, and Benjamin Griffiths for processing much 
paperwork related to financial and legal matters. 

• all the student volunteers who served before and during the conference, especially Tina Eliassi-Rad, Daniel 
Shiovitz, Chongmeng Chow, and Carolyn Allex. 

• Morgan Kaufmann Publishers for distributing the volume; to Professional Book Center for producing it, 
and offering ICML contributors an experimental option to deliver their finished papers as PostScript files 
via the Internet (more than half of them did so); and to Steve Reiter of the United States Geological Service 
for his extraordinary help in locating and obtaining the cover image. 

]ude Shavlik 
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Query Learning Strategies using Boosting and Bagging 

Naoki Abe       Hiroshi Mamitsuka 
Theory NEC Laboratory, RWCP* 

c/o NEC C& C Media Research Laboratories 
4-1-1 Miyazaki, Miyamae-ku, Kawasaki 216-8555 JAPAN 

{abe, mami}@ccm.cl.nec.co.jp 

Abstract 1    Introduction 

We propose new query learning strategies by 
combining the idea of query by committee 
and that of boosting [Sch90, FS95] and bag- 
ging [Bre94]. Query by committee is a query 
learning strategy which makes use of a ran- 
domized component learning algorithm and 
works by querying the function value of a 
point at which the predictions made by many 
copies of the component algorithm are max- 
imally spread. The requirement of query by 
committee on the component algorithm that 
it be an ideal randomized algorithm makes 
it hard to apply in practice when we have 
only a moderately performing deterministic 
algorithm.    To address this issue, we bor- 
row the ideas of boosting and bagging, which 
are both techniques to enhance the perfor- 
mance of an existing learning algorithm by 
running it many times on a set of re-sampled 
data and combining the output hypotheses 
to make a prediction by (weighted) majority 
voting. We propose two query learning meth- 
ods, query by bagging and query by boosting, 
which select the next query point by picking 
a point on which the (weighted) majority vot- 
ing by the obtained hypotheses has the least 
margin. We empirically evaluate the perfor- 
mance of these methods on a wide range of 
real world data. Our experiments show that, 
when using C4.5 as the component learning 
algorithm and run on data sets in UCI Ma- 
chine Learning repository, both query learn- 
ing methods significantly improve data effi- 
ciency as compared to both C4.5 itself and 
boosting applied on C4.5. A typical increase 
in data efficiency achieved was 2 to 4-fold. 

*Real World Computing Partnership 

Query learning is a sub-area of machine learning at- 
tracting increasing attention both in theory and in 
practice with the expectation that it may bring down 
both computational and sample complexities that 
plague passive learners, (c.f. [LC94, CS94, LG94]) 
For example, there is a rich body of work on the algo- 
rithmic approach to query learning as initiated by An- 
gluin's query learning model [Ang87]. Another promis- 
ing approach is the Bayesian or information theoretic 
approach to query learning [PK95, SOS92], in which a 
query learner tries to maximize the information gain 
on each query. Of the latter approach, 'query by com- 
mittee' [SOS92] is an especially attractive and general 
query learning strategy with theoretical performance 
guarantee. In the present paper, we propose new vari- 
ants of query by committee, which we call 'query by 
boosting' and 'query by bagging,' by combining query 
by committee with the techniques of boosting and bag- 
ging- 

'Query by committee' [SOS92] is a query learning 
strategy which makes use of many copies of an ideal 
randomized learning algorithm. More concretely, it 
uses a number of copies of Gibbs algorithm (a random- 
ized algorithm that picks a hypothesis from a given hy- 
pothesis class according to the posterior distribution 
and predicts according to it) and queries the func- 
tion value of a point at which their predictions are 
maximally spread. The idea is that, by choosing a 
query point with maximum uncertainty of estimation 
of its function value, the information gain can be max- 
imized. Indeed, there is a theoretical guarantee of the 
near-optimality of the data efficiency of this method, 
but it. is based on the assumption that the component 
learning algorithm is Gibbs algorithm. This assump- 
tion poses two problems when one tries to apply this 
technique in practice: One is the problem of computa- 
tional complexity, because Gibbs algorithms for inter- 
esting hypothesis classes tend to be computationally 
intractable. The other is that it cannot be applied on 
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a deterministic component learning algorithm. The 
two methods we propose in the present paper, 'query 
by boosting' and 'query by bagging,' are motivated to 
address these two issues. 

'Boosting' and 'bagging' are both techniques to en- 
hance the performance of an existing learning algo- 
rithm by running it many times on a set of re-sampled 
data and combining the output hypotheses to make a 
prediction. Bagging, due to Brieman [Bre94], is the 
simpler of the two, and it works by re-sampling from 
the input data with the same (uniform) distribution 
and its final hypothesis is obtained by taking major- 
ity vote over the predictions of the output hypotheses. 
Boosting1 [Sch90, FS95] is a more complicated method 
that can be used to boost the performance of a rela- 
tively weak learning algorithm by use of sophisticated 
re-sampling on the training data. It does so by repeat- 
edly re-sampling on the input training data, with the 
sampling distribution varied each time so as to focus 
more and more on the part of the training data on 
which the previously obtained hypotheses did poorly 
on. The final prediction of boosting is made by taking 
a weighted majority (or average) of the predictions of 
all the hypotheses thus obtained. 

As noted earlier, one of the weakness of query by com- 
mittee is that it cannot be applied on a deterministic 
component algorithm. If the component learning al- 
gorithm we have available is deterministic, the idea of 
bagging offers a natural alternative; namely apply bag- 
ging to obtain a set of hypotheses, let these hypothe- 
ses predict on a set of candidate points, and pick the 
point on which the predictions have the largest vari- 
ance. When making a prediction, predict by majority 
vote over all the hypotheses. Since query by bagging 
introduces randomness in the form of re-sampling from 
the input data, it can be used on a component algo- 
rithm that is deterministic. 

When the learning problem of interest is sufficiently 
complex, efficient implementation of Gibbs algorithm 
is not possible. If such is the case and the best known 
learning algorithm does not have a very good perfor- 
mance, then it makes sense to use boosting to enhance 
its performance. Recall that the most notable charac- 
teristic of boosting is its tolerance on the performance 
of the component learning algorithm. Thus, appro- 
priately combining the idea of boosting and query by 
committee, we may obtain a query learning method 
that is tolerant on the performance of the component 
learning algorithm. 

Recent experimentation using boosting has shown a re- 
markable fact (e.g. [DSS92]) that even after boosting 

boosting was first discovered by Schapire [Sch90] in 
the context of proving the equivalence of 'weak learnability' 
with the strong PAC learnability. It was subsequently im- 
proved by Freund [Fre90], and Freund and Schapire [FS95]. 

has achieved perfect prediction on the training data, 
it keeps boosting its predictive performance on unseen 
data. This seemingly contradicts known facts about 
over-learning, but recently Schapire et al [SFBL97] 
have given an account of this fact. That is, even after 
realizing perfect predictive performance on the train- 
ing data, boosting keeps increasing its confidence of 
prediction, or more specifically the difference between 
the total weight assigned to the correct prediction and 
that assigned to a wrong prediction. (This is called 
the 'margin' of the prediction.) In their paper, they 
prove that a hypothesis having a larger margin on 
the training data performs better on unseen data as 
well. Based on this observation, the method we pro- 
pose here, query by boosting, selects as the next query 
a point on which the margin obtained by the boosting 
algorithm is minimum, and attempts to maximize the 
uncertainty of prediction and hence the information 
gain on each query. 

We conducted experiments using real world data to 
evaluate the performance of the proposed query learn- 
ing methods. In particular, we tested them on a large 
part of the UCI Machine Learning data repository, us- 
ing Quintan's C4.5 as the component algorithm. Here 
we note that testing query learning algorithms on these 
databases is not possible in a strict sense, since not 
all the query points can be answered. We therefore 
used our query strategies as methods of selective sam- 
pling to pick more informative queries from a fixed 
set of training data. (c.f. [LG94]) On almost all the 
data sets we tested these learning methods, both query 
by boosting and query by bagging achieved significant 
increase in data efficiency as compared to both C4.5 
and boosting applied on C4.5. The increase in data 
efficiency measured by the data size required by the 
query learning methods to reach the same accuracy 
achieved by C4.5 (near the end of the data set) was 
anywhere from 2 to 5-fold. As compared to boosting 
applied on C4.5, the increase in data efficiency of the 
query methods was 2 to 4-fold on most data sets. 

On one of the eight data sets above, tic-tac-toe, we 
ran analogous experiments using a different compo- 
nent learning algorithm - a randomized version of a 
weighted majority prediction algorithm for learning n- 
ary relations proposed in [ALN95] called WMP1. In 
addition to the two query methods, we also tested the 
original query by committee method, as the compo- 
nent algorithm is now randomized. It was found that, 
with randomized WMP1 as the component algorithm, 
both query by boosting and query by bagging per- 
formed better than query by committee. 
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Algorithm: Query-by-Committee(QBC) 
Notation: In general, we use St- to denote the 
unlabeled sample corresponding to S. 

Input: Number of trials: N 
Randomized component learning algorithm: A 
Number of times A is called: T 
Number of query candidates: R 
A set of query points: Q 

Initialization: Si = (xi,f(x1)} for random xi 
For i=l, ...,7V 

1. Run A on S,- T times to obtain hi, ...,/iT. 
2. Randomly generate a set of R points C C Q \ S'{ 

with respect to uniform distribution over Q\S'{. 
3. Pick a point x* e C split most evenly: x* = arg 
min^c \\{t < T\ht{x) = 1}| - \{t < T\ht(x) = 0}|| 
4. Query the function value at x* and obtain f(x*). 
5. Update the past data as follows 
Sj+i = append(Sit (x*,f(x*))) 

End For 
Output: Output as the final hypothesis: 

hfi„(x) = argmaxyey \{t < T\ht(x) = y}\ 
where ht are hypotheses of the final (JV-th) stage 

Figure 1: Query by Committee (QBC) 

Algorithm: Query-by-Bagging(QBag) 
Input: Number of trials: N 
Component learning algorithm: A 
Number of times re-sampling is done: T 
Number of query candidates: R 
A set of query points: Q 

Initialization: Si = (a;i,/(:ci)) for random xi 
Fori- 1,...,N 

1. By resampling according to uniform distribution 
on Si, obtain sub-samples S[, ..,S'T each of size m. 

2. Run A on each sub-sample and obtain hi,..., hT. 
3. Randomly generate a set of R points C CQ\S'{. 
with respect to uniform distribution over Q \ St'. 

4. Pick a point x* £ C split most evenly: x* = arg 
min^c ||{* < T\ht{x) = 1}| - \{t < T\ht(x) = 0}|| 
5. Query the function value at x* and obtain f(x*). 
6. Update the past data as follows 
S,-+i = append(Si, (x*,f(x*))) 

End For 
Output: Output as the final hypothesis: 

hfin(x) = argmaxyey \{t < T\ht(x) = y}\ 
where ht are hypotheses of the final (AT-th) stage 

Figure 2: Query by Bagging (QBag) 

2    Query Learning Methods 

2.1 Query by Committee 

We briefly describe the original query by committee 
method, generalized to use an arbitrary randomized 
component algorithm. At any point in time, query by 
committee runs the component algorithm on the past 
data a number of times to obtain many hypotheses. 
It picks the next query point by choosing from among 
a set of randomly generated candidate points a point 
such that the predictions by the hypotheses are split 
most evenly. The details are given in Figure 1. Here, 
if Q is a pre-determined set of points on which the 
function values can be obtained, then the algorithm 
as described is a method of selective sampling. If, on 
the other hand, Q is set to the entire domain, then it 
is a genuine query learning algorithm, which is free to 
choose any point in the domain as a query point. 

2.2 Query by Bagging 

'Bagging'[Bre94] re-samples from the input sample 
with a fixed distribution, and the final hypothesis is 
obtained by averaging the outputs of the hypotheses 
thus obtained. This method is based on the idea that 
prediction error consists of the 'bias,' which is the es- 
timation error necessitated by the input data size, and 
the 'variance' which is due to the statistical variation 
existing in the specific data. The claim is that bag- 
ging can isolate the two factors and can minimize the 

variance component of the error. Query by bagging is 
like query by committee, except it applies bagging on 
the input sample and picks as the next query point a 
point at which the predictions of the hypotheses are 
most evenly split. The details of query by bagging are 
also given in Figure 2. 

2.3     Query by Boosting 

We will now describe the query by boosting method 
in detail. In query by boosting, we pick as the next 
query point a point at which the weighted voting of 
the final hypothesis obtained by boosting the compo- 
nent learning algorithm has the least 'margin.' When 
the target function is 0,1-valued, this means that the 
query point is one for which the difference between the 
total weight for the value 1 and that for 0 is minimum 
among all candidate points. We give the details of this 
procedure in Figure 3, where we also supply the details 
of AdaBoost [FS95] for completeness. 

Note that the original query by committee, query by 
bagging, and query by boosting form a natural pro- 
gression. In query by committee, all the samples are 
identical, and the variance of the component algo- 
rithm's predictions is taken with respect to the ran- 
domness that exists within the component algorithm. 
In query by bagging, subsamples are obtained from 
the input sample using an identical distribution, and 
the variance of the component algorithm's predictions 
is with respect to the randomness in re-sampling.  In 
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Algorithm: Query-by-Boosting(QBoost) 
Input: Number of trials: N 
Component learning algorithm: A 
Number of times re-sampling is done: T 
Number of query candidates: R 
A set of query points: Q 

Initialization: Si = (xi,f{xi)) for random xx 

For i= 1,...,N 
1. Run AdaBoost on input (S,-, A, T) and get: 

hjin(x) = argmaxyey T,h,(*)=y loß jl 
2. Randomly generate a set of R points C C Q \ S[. 
with respect to uniform distribution over Q\S[. 

3. Pick a point I'EC with the minimum margin: 

x* = argminx6c|£h,(r)=ologj^-£Mr).= iloS/7l 
4. Query the function value at x* and obtain* f{x*). 
5. Update the past data as follows 
Si+i = append{Si,(x*,f(x*))) 

End For 
Output: Output hfin in the last stage as the output. 

Subroutine:  AdaBoost [FS95] 
Input: Sample: S = ((xi, yi),.., (xit */,),.., (xm, ym)) 
(Here, assume Vj/* € Y = {0,1}.) 
Component learning algorithm: A 
Number of times re-sampling is done: T 

Initialization: Vi < m,Di(x,) = ^ 
For* = l,..,r 

1. Run J4 on a sample of size m generated w.r.t. £>,. 
2. Let its output hypothesis be ht. 
3. Compute its error rate e< by: 

4. Calculate /?, by /?* = ^ 
5. Update the re-sampling distribution Dt + \\ 

Dt+1{Xi) = ^%^   if ht{Xi) = »,- 
A+iC1») = Dt(xi)   otherwise 

(Here Z is a normalization constant satisfying 
Ei=1,..,mA+1(x,) = l.) 

Output: Output as the final hypothesis: 

■*h,(x)=y J hjin(x) = arg maxygy Eh,(r)=y loS ft 

Figure 3: Query by boosting (QBoost) 

# attributes missing 
name #ex. disc. cont. values 
liver-disorders 345 - 6 - 
ionosphere 351 - 34 - 
house-votes-84 435 16 - 0 

wdbc 569 - 32 - 
crx 690 9 6 0 

breast-cancer-Wisconsin 699 9 - 0 

pima-indians-diabetes 768 - 8 - 
tic-tac-toe 958 9 - - 

Table 1: The eight data sets used in our experiments. 

query by boosting, the re-sampling distribution itself 
is changed depending on the properties of the obtained 
hypotheses, and the variance of the component algo- 
rithm's predictions is measured with respect to the 
uncertainty involved in weighted voting by the various 
hypotheses. 

3    Experimental procedures 

We evaluate the proposed query learning methods on 
the learning problem for concepts (or 0,1-valued func- 
tions) over a number of attributes, which arc either 
binary, discrete or numerical. A special case of this 
is when all the attributes are discrete, and the target 
function can be regarded as an n-ary relation over n 
finite sets. In our experiments, we use existing data 
sets for training and test data, without an explicitly 
defined target function. Since it is not possible to use 
query learning algorithms genuinely as query learners 
in this setting, we use them as methods for selective 
sampling, that is, ways to select a smaller set of more 
effective data from a large data set. 

The data sets we used in our experiments were bor- 
rowed from the machine learning data repository of 
University of California at Irvine.2 Of the large num- 
ber of data sets available from the repository, wc se- 
lected 8 (not all) data sets satisfying the following con- 
ditions: (1) The target function is 0,1-valucd; (2) The 
data size is moderate (more than 300 and less than 
1,000); Table 1 summarizes the data sets wc selected 
and their basic characteristics. 

On these data sets, we compared the performance of 
C4.5, boosting applied on C4.5, query by boosting ap- 
plied on C4.5, and query by bagging applied on C4.5. 
For each data set, we performed 10-fold cross valida- 
tion, with one-tenth of the available data (selected ran- 
domly) reserved as the test data and the rest used as 
the training data, or query data.   For each of the 10 

ltory 

2This  data  set,   abbreviated   as   the   1CI   ML   rcpos- 
n   what   follows,   is   available   at   URL   address: 

http://www.ics. uci.edu/~mlearn/MLReposit.ory.html" 
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pairs of training and test data sets, we averaged the 
results over two randomized runs, a total of 20 runs 
for each data set.3 

The query learning algorithms are used to pick the 
next query point from the training (query) data with- 
out replacement and are tested using the (separate) 
test data. When the specified number of candidates 
exceeded what is left of the training data, we went 
on with as many candidates as there were left. On 
one occasion, we also examined their predictive perfor- 
mance on the query data, from which query learners 
have selected a subset to learn from, instead of using 
the separate test data. 

Finally, the parameters T and R in all the query learn- 
ing methods were set at T = 20 and R = 100 in all of 
our experiments. 

4    Experimental Results 

We now discuss the results of our experiments on the 
UCI Machine Learning Repository. Figure 5 plots the 
learning curves obtained for the four learning methods 
on each of the eight data sets. Each graph plots the 
predictive accuracy (in percentage) of the four learning 
methods measured using the separate test data at ev- 
ery 50 trials. It is clearly seen from these graphs that 
in all eight data sets, the two proposed query learn- 
ing methods achieve significant improvement in data 
efficiency as compared to C4.5. One can see that at 
very early stage in learning, say around 50 to 150 tri- 
als depending on the data set, the prediction accuracy 
of the query learning methods reaches a level that is 
achieved by C4.5 only towards the end of the data set. 
Table 2 gives concrete figures that quantify this ob- 
servation. Here, 'the target error rate' was calculated 
using the error rate of C4.5 in the last 100 trials.4 

Then, we checked to see how many trials it took for 
all four methods to reach that error rate. In parenthe- 
ses, we also exhibit the ratio of the number of trials 
required by each of the methods to that of C4.5. One 
can see that typically the data efficiency is improved 
by a factor of 2 to 4. 

The speed-up achieved by the two query learning 
methods compared against boosting applied on C4.5 
is less dramatic but still significant. From the 
graphs, one can see that on five of the eight data 
sets, namely breast-cancer-wisconsin, tic-tac-toe, iono- 
sphere, house-votes-84 and wdbc, the advantage of the 
query methods over boosting is clear, while on the 

3The results involving WMPl were obtained by averag- 
ing over 10 runs, not 20 runs. 

4For this calculation, we fed a randomly chosen test 
example after each trial, and the prediction error of the 
current trial was calculated by the average prediction error 
over the last 50 test trials. 

other three it is less obvious. These three data sets, 
crx, liver-disorders, and pima-indians-diabetes appear 
to have a common feature: That a certain level of ac- 
curacy is achieved with relatively few examples, but 
from then on the accuracy is hardly improved as the 
data size increases. It may be that the target function 
of these data sets is sufficiently noisy that no learning 
method can break this barrier. The increase in data 
efficiency achieved by the query learning methods in 
comparison to boosting is summaried in Table 3, sim- 
ilarly as before. 

All the evaluation discussed thus far has been based 
on the prediction accuracy measured using test data, 
which are disjoint from the training data or the query 
data from which the query learning methods selected 
query points. As we remarked earlier, this is selec- 
tive sampling and not genuine query learning. If we 
measure the prediction accuracy of query learning al- 
gorithms with respect to the query data, then this 
would translate to a genuine query learning scenario, 
except the function being learned is solely defined by 
the query data, only on those points that are in the 
data. We took this view point and examined the learn- 
ing curves for the four methods with respect to this 
measure. Figure 6 plots these learning curves for the 
eight data sets as before. One can more clearly see the 
effect of query learning here - with respect to all but 
one data set (pima-indians-diabetes), the accuracy of 
the two query learning methods rise much faster than 
either C4.5 or boosting on C4.5., typically achieving 
an increase in data efficiency of fator 3 to 6. 

On one of the eight data sets, tic-tac-toe, we ran the 
analogous experiments as above using a randomized 
version of WMPl as the component learning algo- 
rithm. Figure 4 plots the prediction accuracy achieved 
by each of the five methods at the end of every 50 tri- 
als. Note that query by committee can now be applied 
because we use a randomized component algorithm. 
Here much of the tendency observed using C4.5 car- 
ries over. Notice, however, that here the two proposed 
methods, query by boosting and query by bagging, 
out-perform query by committee. Also, in this case 
query by boosting seems to do better than query by 
bagging, at least for a wide range of data sizes. The 
relative performance of the competing query learning 
methods appear to depend on the component learn- 
ing algorithm (and the learning problem). Note fur- 
ther that boosting and the query methods applied on 
WMPl achieve much higher accuracy than those ap- 
plied on C4.5 on this particular problem. Interestingly, 
WMPl itself does not have a higher accuracy than 
C4.5, but both boosting and query by boosting applied 
on WMPl are significantly more effective than those 
applied on C4.5.. This observation suggests that on 
component algorithms and problems on which boost- 
ing is effective, query by boosting may do better than 
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target 

query by query by total error rate 

name bagging boosting boosting C4.5 size (C4.5) 

liver-disorders 86(0.30) 96(0.34) 108(0.38) 286(1.0) 310 0.3685 

ionosphere 91(0.39) 97(0.41) 143(0.61) 236(1.0) 315 0.0935 

house-votes-84 65(0.21) 72(0.24) 145(0.48) 303(1.0) 391 0.0465 

wdbc 82(0.26) 88(0.28) 208(0.66) 314(1.0) 512 0.054 

crx 64(0.50) 100(0.79) 119(0.94) 127(1.0) 621 0.171 

breast-cancer-Wisconsin 86(0.40) 83(0.39) 209(0.98) 213(1.0) 629 0.072 

pima-indians-diabetes 67(0.44) 63(0.41) 81(0.53) 152(1.0) 691 0.2895 

tic-tac-toe 236(0.39) 243(0.40) 308(0.51) 609(1.0) 862 0.1445 

Table 2: Data efficiency increase achieved with respect to C4.5 

target 

query by query by total error rate 

name bagging boosting boosting C4.5 size (boosting) 

liver-disorders 111(0.86) 126(0.98) 129(1.0) - 310 0.3305 

ionosphere 121(0.50) 119(0.49) 243(1.0) - 315 0.073 

house-votes-84 71(0.34) 136(0.65) 210(1.0) 366(1.74) 391 0.04 

wdbc 97(0.32) 130(0.43) 300(1.0) 506(1.69) 512 0.0455 

crx 86(0.60) 140(0.97) 144(1.0) - 621 0.146 

breast-cancer-Wisconsin 103(0.34) 92(0.31) 301(1.0) 391(1.30) 629 0.0495 

pima-indians-diabetes 99(0.56) 191(1.09) 176(1.0) - 691 0.2475 

tic-tac-toe 438(0.52) 517(0.62) 836(1.0) - 862 0.053 

Table 3: Data efficiency increase achieved with respect to boosting 

0   50 100150200250300350400450500 
# training data 

Figure 4:   Prediction accuracy on test data on tic-tac-toe. 
Right: Using C4.5 as the component algorithm. 

Q by boosting   
Q by bagging   

boosting   
C4.5   

0     100  200  300  400   500  600  700 
# training data 

Left:   Using WMP1 as the component algorithm, 
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the other query learning methods as well. 

The time complexity of all three query learning meth- 
ods we considered is of the order 0(NTR ■ F(N)), 
where F(N) is the time complexity of the component 
algorithm when run on an input sample of size N. 
This is a tractable but significant increase in compu- 
tation cost as compared to the component algorithm. 
The judgement of whether the data efficiency brought 
about by these methods justifies the additional com- 
putational burden would depend on the exact applica- 
tion under consideration. Also note that both query 
by committee and query by bagging are parallelizable 
with respect to T and R, but query by boosting is par- 
allelizable only with respect to R, and not T. Thus, 
only when query by boosting buys significantly more 
data efficiency, would it be the method of choice. 

5     Concluding Remarks 

We proposed two variants of query by committee that 
can be applied on an arbitrary component algorithm, 
be it deterministic or randomized, by incorporating 
the ideas of boosting and bagging. Experiments on 
data sets from the UCI Machine Learning repository 
demonstrated that, when using them with C4.5 as 
the component algorithm, the proposed query learn- 
ing methods achieve significant increase in data effi- 
ciency as compared to both C4.5 and boosting applied 
on C4.5. On one of the data sets which can be cast 
as an n-ary learning problem, we tested these methods 
using a randomized weighted majority prediction algo- 
rithm for n-ary relations as the component algorithm, 
and found that the proposed methods performed bet- 
ter than query by committee. In the near future, we 
plan to carry out more systematic evaluation to verify 
the robustness of the proposed query methods on the 
choice of the component algorithm and the learning 
problem. 
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Figure 5: Learning curves for four learning methods on the UCI ML Repository. 
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Abstract 

Genetic Programming (GP) is a machine 
learning technique that was not conceived 
to use domain knowledge for generating new 
candidate solutions. It has been shown that 
GP can benefit from domain knowledge ob- 
tained by other machine learning methods 
with more powerful heuristics. However, it 
is not obvious that a combination of GP 
and a knowledge intensive machine learning 
method can work better than the knowledge 
intensive method alone. In this paper we 
present a multi-strategy approach where an 
analytical and inductive approach (HAMLET) 

and an evolutionary technique based on GP 
(EvoCK) are combined for the task of learn- 
ing control rules for problem solving in plan- 
ning. Results show that both methods com- 
plement each other, supplying to the other 
method what the other method lacks and ob- 
taining better results than using each method 
alone. 

1    INTRODUCTION 

Genetic Programming (GP) is a machine learning 
technique based on a search over a huge state 
space [Koza and Rice, 1991]. Therefore, as any search 
method, it can be defined in terms of three elements: 
an initial state, a set of operators, and a heuristic func- 
tion (called fitness function). GP expands the ideas 
of Genetic Algorithms by using structured representa- 
tions (trees). The use of this type of representation 
is more appropriate for solving symbolic tasks than 
Genetic Algorithms. 

One of such tasks consists on learning control knowl- 
edge for problem solving. Problem solving can also be 
described in terms of a search in another state space 
than the one of GP. Traditional approaches use domain 
independent planners for generating plans [Blum and 
Fürst, 1995, Penberthy and Weld, 1992]. PRODIGY, 
an architecture for planning and learning that uses a 
means-ends analysis nonlinear planner, is one of such 
systems [Veloso et al, 1995]. However, planning be- 
comes impractical for large problems. In order to gain 
efficiency, PRODIGY must be supplied with domain- 
dependent search control knowledge which can be ap- 
plied at decision points in the planning reasoning cycle. 
This control knowledge has the form of control rules, 
as further explained later on. 

In this type of tasks, the use of all available domain 
knowledge is essential for an efficient learning process. 
Classically, GP systems have only used domain knowl- 
edge for the fitness function. We propose the use of 
background knowledge coming from the use of a pre- 
vious learning technique also in another two search 
elements [Aler et al, 1998a]: first, the initial state will 
not be created randomly, but using control knowledge 
learned by another method, HAMLET in this case [Bor- 
rajo and Veloso, 1997]. Second, genetic operators will 
use knowledge in the form of examples, obtained as a 
sub-product of HAMLET learning process. 

In [Aler et al, 1998a] we have shown that GP ob- 
tains much better results in planning by using such 
background knowledge. The purpose of this paper is 
to show that a multi-strategy approach using GP and 
HAMLET works better than using each method alone. 
This multi-strategy approach can be seen as a com- 
bination of learning bias from different methods: GP 
and HAMLET. In this paper, we have used PRODIGY, 
but in the future other planners such as UCPOP or 
GRAPHPLAN might be used. 
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Section 2 explains the role of learning in planning. Sec- 
tion 3 describes our multi-strategy approach for learn- 
ing in planning. Section 4 describes our experimental 
setup and the results obtained. Section 5 discusses 
these results, and presents the conclusions. Finally, 
Section 6 surveys related work. 

2    THE LEARNING TASK 

The learning task can be stated as: given a set of traces 
belonging to problems solved by PRODIGY in a particu- 
lar planning domain, induce a set of control rules that 
perform well in that planning domain. Control rules 
help PRODIGY to make decisions at several points in 
its search process. If there are no applicable control 
rules in a decision point, PRODIGY will make a default 
decision. It has five kinds of decision points:1 

• Select, prefer or reject a goal from the set of pend- 
ing goals. 

• Select, prefer or reject an operator to achieve a 
goal. 

• Select, prefer or reject a binding for the chosen 
operator. 

• Choose whether to apply an instantiated applica- 
ble operator or to subgoal on an unachieved goal. 

• Select, prefer or reject an instantiated operator 
from the set of applicable instantiated operators. 

Figure 1 shows an example of a control rule 
for the blocksworld domain. current-goal, and 
true-in-state are meta-predicates. The control rule 
says that if PRODIGY is working on trying to hold an 
object, <objectl>, and this object is on top of an- 
other, <object2>, in the current state, then PRODIGY 
should select the operator UNSTACK and reject the rest 
of operators that could achieve the same goal. 

(control-rule select-operators-unstack 

(if (and (current-goal (holding <objectl>)) 

(true-in-state (on <objectl> <object2>)))) 
(then select operator unstack)) 

Figure 1:  Example of a control rule for making the 
decision of what operator to use. 

'HAMLET only generates selection control rules. In this 
article, GP will look just for that kind of control rules, so 
that it can be properly compared with HAMLET. 

At every decision point, PRODIGY is in a particular 
search meta-state. Let ME be the set of all possi- 
ble meta-states. Now, helping PRODIGY to take de- 
cisions can be stated as: for each possible decision 
(for example: select goal (on x y)) find a parti- 
tion of ME into ME+ (where the decision should be 
taken) and ME- (where the decision should not be 
taken). That is, control rules are actually classifica- 
tion rules: they partition the space of meta-states into 
those meta-states that belong to a possible decision 
and those that do not. And this looks like traditional 
machine learning concept induction, where classifica- 
tion rules have to be induced from a set of examples. 
In this case, it has the following characteristics: 

• Several target concepts have to be learnt from the 
same data (set of traces). Not only there are dif- 
ferent kinds of target concepts associated to each 
kind of decision (select operator, select goal, etc) 
but each kind of decision has several associated 
target concepts. For instance, there will be one 
target concept of the type select operator for each 
possible (operator, goal) pair of a particular do- 
main. 

• Target concepts will generally be disjunctive (that 
means that several control rules will be needed to 
represent a target concept). 

• The representation of concepts is relational, so we 
are dealing with an ILP problem. 

Therefore, when using GP, each individual will be a set 
of control rules, represented as a structure that will be 
explained in Section 3.2. A GP population is made of 
several such individuals. 

3    A MULTI-STRATEGY 
APPROACH FOR LEARNING 
CONTROL KNOWLEDGE 

In this section we will describe the architecture of the 
learning system, and define the learning behavior in 
terms of its three learning biases. 

3.1    ARCHITECTURE OF THE 
LEARNING SYSTEM 

The general architecture of our system consists of five 
blocks (as also shown in Figure 2). The main blocks 
are EvoCK ("Evolution of Control Knowledge") and 
HAMLET. 
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Figure 2: General Architecture of the multi-strategy 
approach. 

EvoCK is the module that implements the GP 
paradigm adapted for evolving planning control rules. 
EvoCK is supplied with fitness cases generated by a 
problem generator. These fitness cases are planning 
problems generated at random by the problem gener- 
ator. In order to evaluate individuals from the popula- 
tion with the fitness cases set, EvoCK tells PRODIGY 
to load the individual and try to solve each one of 
the fitness cases. Performance of this individual with 
these fitness cases is returned to EvoCK. HAMLET has 
a similar relation with PRODIGY and the problem gen- 
erator but in this case the information returned by 
PRODIGY is the search tree that HAMLET will use to 
generalize and refine its control-rules. 

EvoCK and HAMLET are weakly coupled in the fol- 
lowing way. First, HAMLET is run to learn from a set 
of randomly generated problems. Then, two of its out- 
puts are used as background knowledge for EvoCK: 
the set of rules learned by HAMLET ("HAMLET indi- 
vidual") are used to seed the EvoCK initial popu- 
lation. Also, the HAMLET supplies a set of positive 
examples ("Background Knowledge Population") that 
will be taken as input by one of the genetic operators 
(knowledge based crossover [Aler et al, 1998a]). This 
will be explained in subsection 3.3. 

When EvoCK gets to the maximum number of evalu- 
ations allowed for learning, it returns its best individ- 
ual obtained so far. Although not shown in Figure 2, 
best individuals are tested with a different set of plan- 
ning problems (also obtained from the problem gener- 
ator) to check how well they have generalized from the 
training data. 

In the next three sections, we describe the system by 
explaining its learning biases. These biases are classi- 
fied following Utgoff [Utgoff, 1986] in language biases, 
exploration biases and evaluation biases. 

3.2    THE LANGUAGE BIAS 

Usually, in GP there are no constrains in the struc- 
ture that is to evolve: any combination of functions 
and terminals will be valid and crossover points can 
be taken at any place in the individual. But, in 
our case, PRODIGY restricts what are valid structures 
and what are not. For instance, a meta-predicate 
like TRUE-IN-STATE2 can only be passed as argument 
a goal like (on <x> <y>) but not an operator like 
PUT-DOWN. Other general constrains are imposed by the 
structure of the rule language itself (if < condition > 
then <action>, etc). In many cases this problem can 
be solved by achieving operational closure, that is, 
by allowing each function to accept any type of re- 
sult [Koza and Rice, 1991]. However, this is not pos- 
sible in this case, since PRODIGY fixes the structure of 
the language for representing control rules and feeding 
it with non-valid control rules would make it fail. 

Therefore, we have chosen to constrain structures to 
PRODlGY-valid ones (in the literature, such structures 
are called "constrained structures" [Koza and Rice, 
1991] or "strongly typed structures" [Montana, 1995]). 
In order to achieve it, the following three steps must 
be followed: create only valid structures, crossover 
points must be of the same type and mutation op- 
erators must take into account the type of the mu- 
tation point. The first step is achieved by using an 
special-purpose production grammar. An example of 
an individual generated by the grammar might be the 
one that appears in Figure 3. This individual consists 
of two control rules for the blocksworld domain. The 
first one checks whether there is a block with no other 
blocks on it and if the planner is trying to solve ei- 
ther putting that object on another object or having 
the robot arm hold a third different object. If both 
conditions succeed, then the planner will work next 
in the (on <object-l> <object-2>) goal. The other 
control rule says that if there is an object on the table 
and the system is trying to bind the pick-up operator, 
then it should be bound to that object. 

3.3    THE EXPLORATION BIAS 

The exploration bias includes everything related to the 
search policy: search operators, background knowl- 
edge to constrain the search, etc.   The system uses 

2Meta-predicates are functions that have access to 
PRODIGY meta-state. Therefore they can check whether 
a condition is true or not in the meta-state. For instance 
TRUE-IN-STATE tests if a particular condition is true in the 
current planning state 
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(list (rule (and (true-in-state (clear <object-l>)) 

(some-candidate-goals 

(goals-list (on <object-l> <object-2>)) 

(holding <object-3>))) 

(select-goal (on <object-l> <object-2>))) 
(rule (true-in-state (on-table <object-l>)) 

(select-bindings (pick-up-b <object-l> )))) 

Figure 3: Example of EvoCK individual. 

the traditional GP operators (crossover and mutation) 
and some others specially tailored for the learning task. 
The whole operator set is: 

• Copy: reproduction without modification. 

• Xover: traditional crossover. It takes two con- 
strained structures and produces one constrained 
structure 

• Changingjnutation: it chooses a mutation 
point, and changes the whole subtree by another 
randomly generated subtree. This mutation is 
equivalent to Xover with a randomly generated 
individual (as the second parent). 

• Xover_add: some points in the evolving struc- 
ture allow for lists of elements of the same kind 
(as, for instance, lists of goals). In those cases, 
crossover adds elements to the lists from the other 
parent, instead of replacing the whole list. 

• Chopping_off_mutation: in those points where 
lists of elements of the same kind are allowed, it 
removes one of the elements. 

• Growing_mutation: it adds a random subtree 
at those points where lists of elements of the same 
type are allowed. It is equivalent to Xover_add 
with a randomly generated individual (as the sec- 
ond parent). 

All these operators are simple variations of genetic op- 
erators traditionally used in GP. The next two opera- 
tors are specially tailored for this learning task. 

• Join: it selects one variable in the control rule 
(like <object-l>) and substitutes it by any other 
variable in the control rule. The rationale behind 
this operator is that sometimes there are condi- 
tions in a rule that are not related with other 
conditions by common variables. Sometimes that 
is undesirable. For instance, if we have a control 
rule to pick-up an object <obj 1> when some con- 
ditions are true, our experience says that many 

of those conditions should refer to <objl>. The 
join operator is a simple way of creating these 
references. 

• Up_the_hierarchy: objects (the elements to 
which the planning operators are applied) in 
PRODIGY are organized in a tree-shaped type hi- 
erarchy. For instance, in logistics transportation 
planning domain, there are trucks and planes, 
which are both denned as carriers. This genetic 
operator would take a truck-typed variable in the 
left hand side of the rule and would substitute all 
its instances by a carrier-typed variable. Thus, 
the control rule would become more general. 

The related specialization operators (i.e. disjoin and 
down_the_hierarchy) are not included in the operator 
pool; we are imposing a strong bias towards general- 
ization. However, the system can still specialize by 
means of the other generic operators (mutation, etc). 

Background knowledge can be introduced to the sys- 
tem in order to restrict the search. So far, we have 
used two kinds of background knowledge: 

• Seeding the initial population with an individual 
coming from HAMLET. 

• The early phase of HAMLET returns a set of posi- 
tive and negative examples as a sub-product. Pos- 
itive examples are those where PRODIGY made the 
right decision in the planning process. These pos- 
itive examples can be easily transformed into con- 
trol rules and then into GP individuals. Then, the 
crossover operator will be able to draw individ- 
uals from the background knowledge population 
instead of the evolving population (this is what 
we have called "knowledge-based crossover opera- 
tor" [Aler et al, 1998a]). In that way, background 
knowledge can be injected into the evolving pop- 
ulation. 

Finally, we use a steady state GP with a generational 
gap of 1. 2-tournaments are held for both selection and 
replacement. This has been shown experimentally to 
behave well. 

3.4    THE EVALUATION BIAS 

The evaluation bias concerns the preference criteria 
used by GP for selecting an individual over another, 
which is coded as a fitness function. In our case, we 
devised a hierarchical fitness function that contains the 
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following components [Aler et al, 1998b, Aler et al, 
1998a]: 

1. Performance in fitness cases: to maximize. 
How well the individual performs when PRODIGY 
tries to solve the training planning problems when 
guided by the individual (acting as a set of control 
rules). It will explained later in more detail. 

2. Number of different variables: to minimize. 
This fitness component is related to the same bias 
than the join operator. We want to have as many 
meta-predicates in the left hand side of the control 
rules inter-related by common variables as possi- 
ble. 

3. Number of different true-in-state meta- 
predicates: to minimize. The fewer true-in-state 
meta-predicates, the more general and faster will 
run the set of control rules. 

4. Number of different goals in some- 
candidate-goals meta-predicates: to maxi- 
mize. This meta-predicate returns true if at least 
one of its arguments is a candidate goal to be 
solved by the planner. So, the more goals has 
some-candidate-goals, in more cases it will be ap- 
plicable and the more general it will be (although 
less compact). 

5. Number of different some-candidate-goals: 
to maximize. Another way of making a rule 
more general is to get rid of unnecessary some- 
candidate-goals checking. This also makes it 
faster. 

6. Number of control rules: To minimize. The 
fewer control rules, the faster will the individual 
solve the problems. 

7. Individual size (in nodes): To minimize. 

All individuals in the tournament set that have the 
same score in the first comparison will pass to the sec- 
ond one and so on. The rest will be dropped off the 
tournament. If more than one individual happen to 
pass the last comparison, the tournament winner is 
chosen randomly. 

The first criteria, performance in fitness cases, was 
formerly computed by measuring how many steps of 
the solution of a given planning problem the individ- 
ual managed to follow (solutions to all the planning 
problems were known by EvoCK in advance by let- 
ting PRODIGY solve those problems and storing the 

search trees). However, although we obtained good re- 
sults, we realized that an individual managing to follow 
many steps in the solution didn't guarantee that the 
individual would actually solve the problem. There- 
fore, we have decided to change it for a set of three 
new criteria: 

• Number of problems solved by PRODIGY be- 
ing guided by the individual with a maximum 
node limit. To maximize. This node limit is four 
times the amount of nodes that would be needed 
to solve the problem if PRODIGY could go straight- 
forward to the solution. 

• Number of problems solved by the individ- 
ual more efficiently than PRODIGY alone. To 
maximize. Efficiency in this case means fewer 
nodes expanded. 

• Total number of nodes expanded by the in- 
dividual. To minimize. 

In order to test an individual with these new criteria, it 
has to be loaded into PRODIGY. Then, PRODIGY will be 
run for each of the planning problems for learning (or 
fitness cases, in GP terminology). However, complex 
problems need to be given a high node limit if they 
are to be solved. As many such evaluations must be 
performed for each generation, only simple problems 
can be used for learning (otherwise the fitness function 
would take too long). This is another bias to take 
into account.3 However, [Borrajo and Veloso, 1997] 
shows empirically that training with simple problems 
is enough for learning control knowledge useful to solve 
more complex problems. 

4    EXPERIMENTAL RESULTS 

In order to test our multi-strategy approach, the fol- 
lowing steps were carried out: 

1. Hamlet was trained with 400 learning planning 
problems. Two domains were used: blocksworld 
and logistics. A set of control rules and a set of 
positive examples were obtained for each domain. 
They were used as background knowledge in the 
next step. 

2. EvoCK was trained in the blocksworld and logis- 
tics with 192 and 188 learning planning problems 

3 [Aler et al, 1998b, Aler et al, 1998a] was not con- 
strained by this bias. 
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respectively. A population size of 2 was used. Cer- 
tainly, a population size of 2 is not common in GP. 
Previous work [Aler et al, 1998a] shows that using 
a bigger population seems to be good but results 
are not conclusive: the interaction between popu- 
lation size and seeding the initial population is not 
properly understood yet. In our case, the seeding 
individual (coming from HAMLET) is much better 
than the other initial individuals (randomly gen- 
erated) therefore two things might happen: first, 
during the earlier generations the seeding individ- 
ual would not be selected very often, so some time 
would be spent evaluating individuals that con- 
tain no knowledge. Second, if the seeded individ- 
ual is much better than the randomly generated 
individuals, in the long term all members might 
contain similar genetic information to the seeded 
individual [Eraser and Rush, 1994]. In this paper 
a population of 2 has been chosen because in that 
way, we make sure that genetic operators will al- 
ways act on individuals which contain knowledge 
and therefore, the impact of knowledge will be 
better controlled. In any case, we plan to carry 
out several experiments that will study the pop- 
ulation size-population seeding interaction in de- 
tail. Performing crossover in such a small popu- 
lation is not meaningful, so standard crossover is 
not used in this paper. However, EvoCK can 
use it in general. Background knowledge from 
the previous step was used in the two ways de- 
scribed in subsection 3.3. As GP is a stochastic 
method, several experiments were carried out for 
each domain: 47 for the blocks world and 54 for 
logistics. Each experiment ran for 100.000 eval- 
uations. From each experiment, a set of control 
rules was obtained. 

3. HAMLET was trained in a similar manner than 
EvoCK. HAMLET started with the sets of control 
rules obtained in step 1 and refined them with 
the rest of the learning problems used to train 
EvoCK. Two sets of control rules were obtained 
(one for each domain). 

4. Finally the sets of control rules obtained by 
EvoCK and HAMLET were tested with a new 
set of problems (416 for the blocksworld and 347 
for logistics) in the same conditions. Results are 
shown in Table 1. As EvoCK obtained one set 
of rules from each experiment, two quantities are 
shown: the number of problems solved by the best 
of all sets of control rules (along with the number 
of control rules for that individual) and the aver- 

age number of problems solved over all sets. 

Table 1: Results for PRODIGY, HAMLET and EvoCK 
in both the blocksworld and logistics domains. 

% Prob. 
Solved 

Number 
of Rules 

Average 
% P. Solv. 

Blocksworld 
PRODIGY ALONE 21% 

HAMLET SEED 58% 12 
HAMLET 18% 13 

EvoCK (best indiv.) 87% 4 80% 
Logistics 

PRODIGY ALONE 43% 
HAMLET SEED 52% 56 

HAMLET 46% 64 
EvoCK (best indiv.) 95% 19 65% 

Table 1 shows that when HAMLET tries to refine and 
improve a set of control rules previously learned (HAM- 

LET seed in Table 1), the percentage of test problems 
actually solved drops: in the blocksworld it goes from 
58% to 18%, in logistics it gets from 52% to 46%. On 
the other hand, EvoCK improves the set of control 
rules given as seed for the initial population: 58% to 
87% in the blocksworld and 52% to 95% in logistics. 
Next section comments on these results. It is also no- 
ticeable that EvoCK produces individuals with fewer 
control rules than the seeding individual (12 to 4 con- 
trol rules in the blocksworld and 56 to 19 in logistics) 
hence returning more efficient individuals. In order 
to show that the control rules learned are general and 
useful for more complex problems, a breakdown of the 
results are displayed in Tables 2 and 3. 

Table 2: Breakdown of the number of testing problems 
solved in the blocksworld by HAMLET and EvoCK ac- 
cording to the number of goals and of objects). 

# Goals # Objects PRODIGY HAMLET 
seed 

HAMLET EvoCK 

50 50 0% 0% 0% 56% 
20 50 6% 31% 4% 81% 
20 20 6% 27% 4% 69% 
10 50 21% 67% 19% 96% 
10 20 15% 56% 15% 83% 
10 15 31% 48% 15% 85% 
5 50 15% 70% 2% 92% 
5 20 15% 82% 18% 95% 
5 15 40% 82% 35% 98% 
5 10 50% 85% 60% 95% 

Tables 2 and 3 show a breakdown of the number 
of problems solved by the different methods in the 
blocksworld according to problem complexity.   This 
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Table 3: Breakdown of the number of testing problems 
solved in logistics by HAMLET and EvoCK according 
to the number of goals and of objects). 

# Goals # Objects PRODIGY HAMLET 
seed 

HAMLET EvoCK 

50 50 0% 0% 0% 75% 

20 50 3% 0% 0% 100% 

20 20 7% 28% 0% 83% 

10 50 13% 0% 0% 100% 

10 20 20% 53% 33% 100% 

10 15 20% 67% 47% 100% 

10 10 7% 67% 40% 100% 

5 50 42% 0% 0% 100% 

5 20 58% 83% 67% 100% 

5 15 42% 42% 67% 100% 

5 10 25% 58% 67% 100% 

5 5 33% 83% 92% 100% 

2 50 90% 60% 20% 100% 

2 20 90% 100% 100% 100% 

2 15 90% 90% 100% 100% 

2 10 90% 80% 90% 100% 

2 5 100% 100% 100% 100% 

2 2 100% 100% 100% 100% 

50 100% 100% 80% 100% 

20 90% 100% 100% 100% 

15 90% 100% 100% 100% 

10 90% 100% 100% 100% 

5 100% 100% 100% 100% 

2 100% 100% 100% 100% 

complexity is measured by the number of goals and 
objects in the planning problem. It is easy to see that 
EvoCK improves drastically with respect to the ini- 
tial seed (HAMLET seed) by solving very hard prob- 
lems. The percentage of testing problems solved for 
PRODIGY working alone, the initial HAMLET seed and 
the final HAMLET result are also shown. 

5    DISCUSSION AND 
CONCLUSIONS 

After having experimented both systems (EvoCK and 
HAMLET) we can draw the following conclusions and 
comparisons. 

• HAMLET does not have a trade-off between cor- 
rect knowledge and utility of that knowledge. 
HAMLET manages to learn quite correct knowl- 
edge [Borrajo and Veloso, 1997] but sometimes 
having a lot of correct control rules is not an ad- 
vantage, because it takes a long time to use it 
(this is called the utility problem [Minton, 1988]). 
This explains in part HAMLET bad behavior. On 
the other hand, our results in [Aler et al., 1998a] 
show that it is more difficult for GP alone to ob- 
tain correct knowledge. However, it is very easy to 
take into account the utility problem in the fitness 
function (several of its components press to that 

end). Thus, we see that our multi-strategy ap- 
proach works better than the two methods alone 
by combining both methods biases. 

» Another problem that HAMLET has is that as it 
is a lazy incremental system, in order to refine an 
incorrect control rule it assumes that eventually it 
will find an appropriate set of negative examples. 
Given that the potential problem space is infinite 
(huge from a computational point of view), the 
likelihood of finding that appropriate set might be 
very small. In any case, previous work has shown 
that in the long run HAMLET tends to converge to 
the correct knowledge [Borrajo and Veloso, 1997]. 
Since GP a non-incremental system, it is able to 
detect negative examples at once by evaluating 
the whole set of training problems. On the other 
hand, non-incremental methods are less efficient 
when learning in complex domains. Again, the 
complementary aspects of both systems allow to 
overcome both systems deficiencies. 

• Another difference between using GP in this 
way and more traditional learning techniques 
is that even using background knowledge, its 
generalization and specialization operators do 
not have knowledge about how planning acts. 
On the contrary, learning techniques such 
as PRODIGY/EBL [Minton, 1988], or HAMLET 

"know"4 how to generalize or specialize in plan- 
ning domains. GP has no such knowledge, so 
many of the genetic modifications will not work. 
Besides, genetic operators are not so constrained 
by powerful heuristics, so they might get different 
and new results than those of more traditional 
methods. Another way to see this is that HAM- 
LET (and many other learning methods) take ad- 
vantage of the specific-to-general ordering of the 
control rule space: HAMLET trajectory through 
the control rule space consists of generalization 
or specialization steps, in reaction to new exam- 
ples [Shapiro, 1983]. GP does not take much 
advantage of this specific-to-general ordering. A 
mixture of generalizations and specializations are 
performed at each step in the search. Besides, 
generalization operators that take advantage of 
the ordering heuristic are easily added to the op- 
erator pool, as our system shows. 

• Given that genetic operators do not handle much 
knowledge, they are faster than classical learning 
search operators. 

4Or at least, they have powerful heuristics. 
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• HAMLET is deterministic: from the same set of 
training cases, it will always obtain the same set 
of control rules. On the other hand, GP is stochas- 
tic: it can be run several times and obtain differ- 
ent knowledge every time. 

• There is a trade-off between understandability 
and efficiency. HAMLET tends to produce control 
knowledge which is easier to understand whereas 
EvoCK control knowledge is more difficult to un- 
derstand (but more efficient). 

• Finally, an important advantage of GP over the 
rest of learning techniques applied to problem 
solving is its flexibility. Very different learning bi- 
ases can be tested without changing the method 
itself. Following Utgoff's classification [Utgoff, 
1986], GP biases are: 

- The language bias can be changed easily. 
That is not the case with many other learn- 
ing techniques applied to problem solving, 
because their search operators depend heav- 
ily on the representation language used. For 
instance, HAMLET only uses a subset of the 
control rule language allowed by PRODIGY, 
while GP could use the whole set easily. 

- The exploration bias. GP uses just two task 
independent operators (crossover and muta- 
tion). However, as this paper shows, many 
possible variations of these operators can be 
added, as, for instance, task dependent oper- 
ators (like generalization and specialization). 

- The evaluation bias. In GP, different evalu- 
ation biases can be easily combined in the 
same evaluation function. Also, it is very 
easy to change from a fitness function to 
another. In fact, in this paper we have 
presented a new fitness function that im- 
proves previous results obtained using our 
scheme [Aler et al., 1998a, Aler et al, 1998b]. 

6    RELATED WORK 

There have been different approaches to acquire con- 
trol knowledge for non-trivial (non-linear) problem 
solving. Some of them use analogy [Kambhampati, 
1989, Veloso and Carbonell, 1993], others pure de- 
duction [Katukam and Kambhampati, 1994, Minton 
and Zweben, 1993], p'ure induction [Leckie and Zuker- 
man, 1991], and some combine deduction and induc- 
tion [Borrajo and Veloso, 1997, Estlin and Mooney, 
1996]. The main difference with our approach is that 

they did not combine incremental knowledge intensive 
and non-incremental methods (GP). 

Some innovative approaches to problem solving use ge- 
netic programming [Koza, 1992]. This approach was 
started by Koza [Koza, 1989, Koza, 1992], who evolved 
a planner that solved a very specific set of problems 
in the blocks world domain. Handley [Handley, 1994] 
used GP to evolve plans for specific problems in the 
blocksworld domain. Muslea [Muslea, 1997] general- 
ized, extended, and formalized this idea, and showed 
how any planning problem could be translated to an 
equivalent GP problem. He tested it successfully in 
several domains. Spector [Spector, 1994] proposed and 
analyzed several ways in which GP could be used for 
planning. The main difference with our approach is 
that they used GP to search in the plans space. 
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Abstract 

In this paper an extensive experimental eval- 
uation of an evolutionary approach to con- 
cept learning is presented. The experimen- 
tation, performed with the system G-NET, 
investigates the effectiveness of the approach 
along the following dimensions: Robustness 
with respect to parameter setting, effective- 
ness of the MDL criterion coupled with a 
stochastic search bias, impact of coevolution 
on the quality of the solution and on the com- 
putational effort required, and ability to face 
problems requiring structured representation 
languages. A discussion of the obtained re- 
sults and a suggestion on when this type of 
approach might be useful is also provided. 

1    INTRODUCTION 

Supervised concept learning has been tackled, so far, 
with several approaches, including symbolic, connec- 
tionist and evolutive ones. Different approaches are 
better suited to different classes of problems, depend- 
ing, for instance, on the nature of data or the avail- 
ability of domain-specific knowledge. 

In the hope of making a little step ahead in the di- 
rection of matching learning algorithms to problems, 
in this paper we present an experimental exploration 
of an evolutionary approach to the task of learning 
concept descriptions. Our exploration is articulated 
along three dimensions: The capability of dealing with 
complex representation languages, such as subsets of 
predicate logics; the exploitation of distributed archi- 
tectures, allowing coevolution to be efficiently imple- 
mented; the interaction between the stochastic search 
bias and the Minimum Description Length (MDL) 

principle (Rissanen, 1978), used as evaluation crite- 
rion of the concept description. 

The experimentation has been conducted with a new 
version of G-NET (Version 2.0), a descendant of the 
system REGAL (Giordana and Neri, 1996). G-NET's 
architecture relies on a computational model charac- 
terized by the absence of global memory, which ex- 
tends the diffusion model (Manderik and Spiessens, 
1989) previously developed for genetic algorithms. 
With respect to a previous implementation (Anglano 
et al., 1997), the version described here includes an ex- 
plicit coevolutionary strategy based on (Potter et al., 
1995), a new objective function based on the MDL 
principle, and an improved set of genetic operators. 

A first point emerged from the experimentation, using 
both G-NET and REGAL, is that evolutionary search 
techniques can indeed be fruitfully exploited in concept 
acquisition. On standard benchmarks they showed 
performances at least comparable with the best ones 
presented in the literature (Neri and Saitta, 1996). 

A second point is that good performance does not 
come for free: Using a simple genetic algorithm, easy 
to understand and quick to implement, may not be a 
solution. The evolutionary inference engine has to be 
integrated into a possibly complex architecture, allow- 
ing sophisticated description languages, flexible heuris- 
tic learning strategies, and distributed computation to 
be accommodated. 

A third point is that evolutionary search proved to be 
quite robust, because it did not require any parame- 
ter tuning over a range of different problems. Finally, 
stochastic search bias proved to be well suited to differ- 
ent evaluation criteria (Anglano et al., 1997), includ- 
ing the MDL (Rissanen, 1978). G-NET is based, as 
REGAL was, on the theory of niches and species for- 
mation, which already proved to be effective in learn- 
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ing disjunctive concept definitions (Giordana and Neri. 
1996). As niches and species formation is a way of ad- 
dressing mult.imodal search problems, disjunctive con- 
cept induction naturally fits in this framework. How- 
ever, methods based on species formation may require 
large populations when weak species must survive in 
the presence of much stronger ones (Giordana and 

Neri, 1996). 

In order to cope with this problem. G-NET 2.0 uses 
a new learning method, which combines the Universal 
Suffrage selection scheme (Giordana and Neri, 1996) 
with an explicit (revolutionary strategy, similar to the 
one proposed in (Potter et al., 1995). Finally, G-NET 
2.0 uses a new set of genetic operators, which explic- 

itly aims at preserving the diversity in the population, 
reducing thus premature convergence and increasing 

the effectiveness of the genetic search. 

2    EVOLUTIONARY ALGORITHM 

As its ancestor REGAL, G-NET learns concept de- 
scriptions in a language similar to VL21 (Michalski, 
1983). More specifically, a concept is described by a 
set $ = {tpi,tp2,- • -iVn} of Horn clauses, in which the 
construct of internal disjunction is also allowed. In 
Logic Programming, an internal disjunction is a spe- 
cial term describing a set of constants. By setting a 
limit on the maximum complexity, Horn clauses can 
be encoded as fixed length bitstrings. A detailed de- 
scription of the language used by G-NET can be found 
in (Giordana and Neri, 1996; Giordana et al., 1997). 

G-NET's inductive engine exploits a stochastic algo- 
rithm organized in two levels. The lower level, named 
Genetic layer (G-layer), searches for Horn clauses 
representing partial definitions f of the concept to 
learn. The architecture of the G-layer derives from 
the diffusion model (Manderik and Spiessens, 1989). 
and integrates different ideas originated inside the 
field of evolutionary computation and tabu search 
(Rayward-Smithet al., 1989). The upper level, namely 
the Supervisor, builds up a global disjunctive defini- 
tion $, out of the partial definitions y>,-'s generated 
inside the G-layer, using a greedy set covering algo- 
rithm. Moreover, the Supervisor interacts with the G- 
layer according to a coevolutionary strategy (Potter 
et al., 1995), which aims at increasing the probability 
of evolving clauses useful to improve the quality of the 
disjunctive concept description currently in progress. 

From a computational point of view, the G-layer con- 
sists of a set of elementary searching nodes called G- 
nodes.  Every G-node, G,-, is associated with a single 

concept instance f+ and executes a local evolutionary 
search aimed at constructing an inductive hypothesis 
covering f+, and having a fitness value as high as pos- 
sible. The same instance e+ can be assigned to more 

than one G-node. 

The association between G-nodes and concept in- 
stances is dynamically established by the Supervisor, 
which decides what regions of the hypothesis space to 

search, and how much. 

Every G-node is provided with a small local memory, 
where it stores the set of current hypotheses it is work- 
ing on (local population). Basically, the search algo- 
rithm executed by a G-node resembles a simple Ge- 

netic Algorithm: 

G-node Search Algorithm 

repeat 

1. Select two clauses <pi and ip2 from the local mem- 
ory with probabilities proportional to their fitness; 

2. Create two new clauses tp[ and ip'2, both different 

from tpi and if2; 

3. Evaluate ip\ and <p2 on the learning set; 

4. Broadcast the new clauses to every G-node asso- 
ciated with some instance e+ they correctly cover; 

until a halt condition is reached 

The outcome of the evaluation step is a fitness value 
JLW) corresponding to the quality of the clause <p (see 
below). By generalizing a formula covering the associ- 
ated instance e+, a G-node can implicitly generate for- 
mulas also covering other instances which are assigned 
to different G-nocles. The aim of the broadcasting step 
is to propagate these formulas to the G-nodes, which 
potentially can benefit from them. When a clause is 
broadcast to another G-node, it competes for entering 
the local memory by playing a kind of stochastic tour- 
nament (Harik, 1995), based on the fitness value /;,. 
As the policy we adopt, enforces diversify in the local 
memories, a clause is allowed to play the tournament 
only if no copy of it is already there. At the beginning, 
the population of a G-node is initialized with only one 
individual and can grow up to a maximum predeter- 
mined size. The tournament step is performed only 

after the maximum size has been reached. 

This way of propagating inductive hypotheses among 
G-nodes promotes the formation of families of hy- 
potheses,   which  cluster  the  concept  instances   into 
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groups, roughly corresponding to different modalities 
of the target concept. From the point of view of evo- 
lutionary computation this process can be seen as a 
process of niches and species formation (Goldberg and 
Richardson, 1987). 

The emergence of species (i.e. concept modalities) is 
the baseline for the coevolutionary strategy adopted 
by the Supervisor. Periodically, the Supervisor (a) 
collects the best representatives of each species, and 
works out a global concept description, (b) reassigns 
the concept instances to the G-nodes in order to in- 
crease the search efforts where emerging species still 
correspond to low quality inductive hypotheses, and 
(c) supplies a corrective term to be added to the fitness 
of the inductive hypotheses in the G-layer, helping the 
species that better contribute to the global solution to 
develop further. 

3    THE FITNESS EVALUATION 

In G-NET, two different fitness functions, fa and /t, 
are used in order to evaluate global (disjunctive) and 
local (conjunctive) concept descriptions, respectively. 
Both measures are based on the Minimum Descrip- 
tion Length Principle (Rissanen, 1978). The function 
/G($) is the sum of three terms: 

/G(«) = MDIMAA-Mßi(e+ ($)+e- ($))-MDL($) 

(1) 
being MDLMAX the MDL of the whole learning set, 
IM(f+($) + r($)) the MDL of the set e+ of posi- 
tive concept instances not covered by $ and of the set 
of negative instances e~ covered by $, and MDL{<f>) 
the minimum description length of the syntactic form 
of $. In turn, MDL{§) is computed as the sum 
MDL{<S>) = J2iMDL{<pi) of the MDL of the sin- 
gle clauses belonging to $. In all cases, the expres- 
sions for the MDL of the different terms have been ob- 
tained using Stirling's approximation, as in (Oliveira 
and Sangiovanni-Vincentelli, 1996). The definition of 
/G has been chosen in order to have a function which 
increases when the MDL decreases, because it is eas- 
ier to transform it into a probability, used to guide the 
stochastic search. 

The local fitness /L for evaluating a single clause ip in 
a G-node takes the form: 

h{<p)    =   MDLMAX -MDL{<p) + 

-MDL(c-(<p)) + (/G($0 - /G(*))(2) 

being $ the current global description constructed by 
the Supervisor, and $' the formula obtained by adding 

ip to $ and eliminating all redundant disjuncts but p. 
In other words, the second and third term evaluate 
how simple and consistent <p is. The fourth term is 
the bias for enforcing the coevolutionary strategy and 
evaluates how well <p combines with the other existing 
partial descriptions in order to form a global solution, 
covering the instance e+ associated to the G-node and 
as much as possible of the other instances. 

4    THE COEVOLUTION STRATEGY 

The Supervisor enforces coevolution by means of two 
algorithms, which are executed periodically at the end 
of a macro-cycle. A macro-cycle is measured by count- 
ing the number of iterations of the Search Algorithm 
(/^-cycles) globally performed, in the G-layer, by the 
G-nodes. The first algorithm computes a global con- 
cept description $ out of the best representatives of 
the species emerged in the G-layer, and is based on 
a hill climbing optimization strategy. At first, from 
every G-node the locally best hypothesis is collected 
and is then merged into a redundant disjunctive de- 
scription $'. Then, $' is optimized by eliminating the 
disjuncts, which are not necessary. This is done by 
repeating the following cycle until $' reaches a final 
form $, which cannot be optimized further: 

1. Search the clause <p such that /G($' — <p) shows 
the greatest improvement. 

2. Set $' = $' ■<P 

The second algorithm computes the assignment of the 
(positive) concept instances to the G-nodes. The ba- 
sic strategy consists in focusing the search on the con- 
cept instances which are covered by poor inductive hy- 
potheses, without omitting to continue the refinement 
of the other hypotheses. This is done by balancing the 
computation among the different emerging species, in 
such a way that species covering smaller niches will 
get the same computational power as the ones cover- 
ing larger niches. 

The Supervisor keeps track of the solution state of ev- 
ery positive instance e+ £ E+ (the set of all positive 
instances), i.e., the best solution found for it. More- 
over, it also records the number c,- of //-cycles, related 
to e,- + , occurred during the past computation. The 
kernel of the coevolutionary control strategy is the 
method used for accounting the //-cycles related to ev- 
ery e, + . As soon as clauses covering many examples 
will begin to develop, we will find spontaneously born 
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clusters of G-nodes that elect the same clause as cur- 
rent best hypothesis in their population. This can be 
interpreted as a form of implicit cooperation, which 
leads to the generation of a clause, representative of 
the work of all of them. Therefore, the Supervisor at- 
tributes to an instance e,+ all the //-cycles executed 
by the G-nodes whose local memory contains a copy 

of the best clause attributed to e, + . 

At the end of a macro-cycle, the concept instances are 
reassigned to G-nodes with the goal of balancing the 
work spent for every f, + , on the basis of the num- 
ber c.i of /«-cycles. Let C the maximum value for c, 
(1 < i < \E+\). The Supervisor computes for every 

e,+_the amount 9i = C - c, of /(-cycles necessary to 
balance the computational cost for it. Afterwards, the 

instances are stochastically assigned to G-nodes with 
probability proportional to gt. When a G-node G is 
assigned to a new instance e+, it is restarted. If the 
global description $ contains a clause <pe, covering e+, 
ipe is inserted in the population of G. Otherwise, it 
will be initialized by means of the seeding operator 

described below. 

5    THE GENETIC OPERATORS 

In the same way as REGAL, G-NET represents Horn 
clauses as fixed length bitstrings ((Giordana et al., 
1997)); then, search operators can be implemented as 
in standard Genetic Algorithms (Goldberg, 1989). As 
a matter of fact, G-NET uses three basic operators: 
seeding, crossover and mutation. The seeding operator 
(Giordana and Neri, 1996) is used for initializing the 
local memory in the G-nodes when it is empty. When 
called in a G-node G,-, it stochastically generates a 
clause tpi, which is guaranteed to cover the instance 
c+ currently associated with (/,. 

Crossover and mutation operators can be applied m 
different modalities, depending upon the clauses they 
are applied to, and are guaranteed to produce new hy- 
potheses different from the parents (original clauses). 

The crossover is a combination of the two point 
crossover with a variant of the uniform crossover 

(Syswerda, 1989), modified in order to perform ei- 
ther generalization or specialization of the hypotheses. 
More specifically, the crossover operator can be acti- 
vated in three different modalities: exchanging, spe- 
cializing and generalizing, which are stochastically se- 
lected depending on the consistency and completeness 
of the selected clauses. Given a pair of clauses y?i, y?2, 
the modality to use is stochastically decided in two 
steps. In the first step it is decided whether to apply 

the exchanging modality, with probability pcc (by de- 
fault ptc - 0.1), or to proceed to the second step, with 
probability l-ptc- Afterwards, if the second step is en- 
tered, the system decides whether to apply generaliza- 
tion or specialization to each one of the parent clauses. 
Let ft be one of the parents; the probability />ac(</>i)> 

of using generalization, and psc{<Pi) = 1 - Pgc(<Pi), of 
using specialization, are computed according to the 

rule: 

Pgc(v.) = (^(^)/('"+(^) + e"(^)))        (3) 

being m+ the number of positive instance correctly 

classified by tpt and e~ the number of negative in- 
stances, as previously defined. Afterwards, if the 
same modality has been chosen for both operands, the 
crossover will be applied with this modality. Other- 
wise, if the modalities are discordant, the exchanging 

modality will be used. 

In this way, the generalizing modality tends to be used 
when the parents are both consistent, the specializing 
modality when the parents are both inconsistent, and 
the exchanging modality when one is consistent and 
the other is inconsistent. The first decision step guar- 
antees that an assigned percentage of pure information 

exchange takes place in any case. 

In order to guarantee the actual exchange of infor- 
mation, the crossover algorithm first constructs an in- 
dex / = {t'i, ?2, • • •, in] of pointers to the positions in 
the bitstring where the corresponding bits in the two 
parents have different values. Afterwards, if general- 
ization/specialization has been chosen, two temporary 
clauses i/'i and V'-J. identical to ipi and ^ respectively, 

are created. 

Then, for every element /,- € / the following procedure 

is repeated: 

• if generalizing modality has been chosen thon 
with probability?),, replace in V'i and V'2 the value 
of the bit 6(?';) with the logical or of the corre- 

sponding bits in the operands <f\ alu' V?2- 

• if specializing modality has been chosen then 
with probability pu replace in Vi and i>2 the value 
of the bit b(ij) with the logical and of the corre- 

sponding bits in ^i and <fi. 

If, after applying this stochastic procedure, no bit has 
been changed, one bit chosen at random in / is gener- 

alized/specialized. 
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When the exchanging modality is chosen, the classical 
two-point crossover is applied, with the difference that, 
in order to guarantee an information exchange, the 
two crossover points are chosen on the index vector / 
instead of on the whole bitstring. 

The mutation operator adopts a strategy similar to the 
one described so far for crossover, and tries to general- 
ize or to specialize an individual, depending on its con- 
sistency or inconsistency. Also the mutation operator 
can have three modalities, namely seeding, generaliz- 
ing or specializing, which are selected with probability 
Pseed (by default pseed = 0.1), pgm and psm, respec- 
tively. The probabilities pgm for generalizing mutation 
and psm for specializing mutation are computed with 
the rule: 

Psm    =    (1 -Pseed)(e~/{e~ + m+)), 

Pgm      =      I -Pseed-Psm, (4) 

where the argument of e~ and ra+ has been omitted 
for brevity. If the specializing mutation is chosen, the 
mutation is applied as follows: let nx be the number 
of bits set to "1" in the bitstring; then, the mutation 
operator turns to "0" a fraction 7 of them, which is ob- 
tained by randomly selecting a real number in the in- 
terval [0, ni/10]. The bits to be set to "1" are selected 
in an analogous way, when the generalizing mutation 
is chosen. 

It is easy to recognize that generalizing and specializ- 
ing mutations are nothing else than the dropping con- 
dition and adding condition operators denned in (Jong 
et al., 1993). 

In the cycle executed by each G-node, two clauses are 
selected at each iteration with probability proportional 
to. their fitness fL. If the population is empty, a new 
individual will be created using the seeding operator. 
Otherwise, if the two selected clauses tpi and <p2 are 
different, crossover is applied. On the contrary, if the 
same clause is selected two times, two new clauses are 
created using mutation. 

The nice aspect of this strategy is that it automatically 
adapts to the composition of the population. When 
the population in a node is dominated by a clause that 
has a fitness much higher than the others (and, then, 
it is frequently selected for reproduction with itself), 
the search turns into a stochastic hill climbing. 

6    EXPERIMENTAL EVALUATION 

In the following we present an extensive evaluation 
of G-NET made on a variety of datasets, selected 

with the aim of testing the system with respect to 
the dimensions mentioned in Section 1: language bias, 
robustness to evaluation criteria, and overall perfor- 
mance. The parameters to tune are actually very few 
(the genetic operators constants are not user tunable) 
and correspond to the local population size P„, the 
macro-cycle size Mc and the number of G-nodes Ng. 
In all the previous experimentation done, they did not 
appeared to be critical at all and the following setting 
has been chosen as a default: Ps = 10, Mc = 300, Ng = 
100. The results reported in the following have been 
obtained using the default setting. 

Table 1 reports a first group of results on datasets used 
to test the system Smog (Oliveira and Sangiovanni- 
Vincentelli, 1996), which exploits the MDL as hy- 

. pothesis evaluation criterion. Results by C4.5 are 
used as a baseline. The performance for Smog and 
C4.5 are those reported in (Oliveira and Sangiovanni- 
Vincentelli, 1996); Smog used many other datasets, 
but only some of them are available at the U.C. Irvine 
repository (Merz et al., 1991). 

G-NET has always been run with a set of 100 G-nodes 
and has been stopped after creating 40000 hypotheses. 
The specific goal of the test was twofold: to investi- 
gate how G-NET is affected by changing its evalua- 
tion criterion, all the rest being the same, and whether 
the MDL could still be effective when coupled with a 
stochastic search bias, such as the one provided by G- 
NET, very different from the ones used in Smog and 
in C4.5. The answer has been positive in both cases. 

By considering the results on the Monk-2 dataset, the 
effectiveness of G-NET's species formation mechanism 
is evident: the system always found 26 disjuncts, some- 
times the correct ones and sometimes little different; 
this explains the small error of the acquired knowledge 
base. The species formation stability is also confirmed 
by the fact that in all cases G-NET found the same 
number of disjuncts, differing for small variations. 

Table 2 reports results of an experiment aimed at veri- 
fying the utility of increasing the computational power 
of the search when approaching a more large and diffi- 
cult problem. The dataset used is the Splice Junctions 
dataset (Towell and Shavlik, 1994). The task is that 
of identifying boundaries between coding (exons) and 
non-coding (introns) regions of genes occurring in eu- 
karyote DNA. 

The Splice Junctions dataset has been previously used 
to test the system REGAL, which presented the best 
results so far among the many reported in the liter- 
ature (Neri and Saitta, 1996).   While increasing the 
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Table 1: Comparison Between G-NET, Smog And C4.5 With Respect To The Average Error Rate Of The So- 

lution, Evaluated With The 10-fold Crossvalidation 

A verage Error % Average N. 

Problem Dataset. size of Disjunrts 

G-NET Smog C4.5 G-NET 

monkl 432 10-fold 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 3.0 

monk2 432 10-fold 2.80 ±3.80 0.00 ±0.00 32.83 ±10.66 26.0 

monk3 432 10-fold 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 3.0 

tictactoe 958 10-fold 0.97 ±0.62 2.82 ±1.97 7.07 ±1.82 10.5 

credit 690 10-fold 15.8 ±4.40 19.57 ±5.08 14.03 ±3.28 14.0 

breast 699 10-fold 5.29 ±2.89 6.72 ± 2.44 5.85 ±3.32 2.6 

vote 435 10-fold 5.10 ±3.20 5.29 ±2.64 4.63 ±3.05 2.0 

Table 2: Comparison Between G-NET And REGAL With Respect To The Average Error Rate And The Com- 

plexity Of The Solution 

Problem Dataset size Average Error % N. of Disjuncts 
G-NET REGAL G-NET     REGAL 

splice-j. (El) 2000+1190 3.40 4.40 7               19 

splice-j. (IE) 2000+ 1190 2.90 4.20 10              26 

splice-j. (Neither) 2000 + 1190 3.30 5.20 11              21 

mushrooms 4000 + 4124 0.00 0.00 3               6 

system parallelism and decreasing the complexity, G- 
NET achieved even lower average error rate (error rate 
is an average over 3 runs). The second best results 
were achieved by KBANN (Towell and Shavlik, 1994): 
7.56% for El, 8.47% for IE, and 4.62% for Neither. 
This comparison suggests that genetic search could be 

better suited to complex problems. 

Finally, Table 3 reports the results of experiments 
aimed at confirming that C-NET (as its predecessor 
REGAL) is able to effectively deal with more complex 
languages, such as predicate logic based ones. 

The first row in Table 3 refers to the rmttagencsis 
dataset, a challenging problem widely used in the ILP 
community for testing induction algorithms in First 
Order Logic (King et al., 1995). The problem consists 
in learning rules for discriminating substances having 
cancerogenetic properties on the basis of their chemical 
structure. The difficulty lies mainly in the complexity 
of matching formulas in First Order Logic, which limits 
the exploration capabilities of any induction system. 
To our knowledge, the best results with this database 
have been obtained by STILL (Sebag, 1997) a stochas- 
tic induction algorithm that easily reaches error rates 
below 10%, and, with a careful setting of the control 

parameters, made the best hit at 6.4%. Many other 
systems, going from Linear Regression to PROGOL 
and FOIL, reported error rates ranging between 11% 
and 14%. G-NET, using only the predicates used in 
(Sebag, 1997), obtained an error rate of 8.8%. 

The second case study is a classification problem (Es- 
posito et al., 1992) of documents acquired through a 
scanner, and processed by an image processing pro- 
gram that produces a structured description of the lay- 
out. The dataset contains structured data described 
with 5 symbolic and 3 numeric attributes, and has 
been used to test learners with the capability of deal- 
ing with numerical features in FOL (Esposito et al., 
1992; Botta and Giordana, 1993). G-NET does not 
have, at the moment, any specific strategy for deal- 
ing with numerical features, and so we transformed 
the problem into a symbolic one by discrctizing the 
numeric features. Each numeric feature has been dis- 
cretized by subdividing the range into 16 equal length 
intervals. G-NET easily reached an error rate below 
the 1%, approximately the same as SMART+ which 
has specific strategies for dealing with numerical fea- 

tures. 

Finally, the last case study (Train Checkout-3) is a 
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Table 3: Experiments With First Order Problems. Error Rate For The Tram Check-out 
Runs 

' Is An Average Of 3 

Problem Dataset size Average Erroi % N. of Disjuncts 
G-NET        STILL SMART + 

FONNs 
G-NET 

mutagenesis 
office-doc 
train check-out 3 

230 10-fold 
210+160 

500 + 6000 

8.80 ±7.90    6.4 ±4.5 
0.89 ±0.72        n.a. 
11.3± 0.47        n.a. 

n.a. 
0.80 
16.8 

3 
11 
2 

difficult artificial dataset generated for testing FONNs 
(Botta et al., 1997), a kind of neural network recently 
proposed for refining numerical terms in Horn Clauses. 
The dataset contains the description of a set of trains, 
similar to the one proposed by Michalski, where each 
coach is described by means of a set of 5 symbolic and 
4 numerical attributes. In (Botta et al., 1997) three 
different learning problems of increasing difficulty are 
presented, related to this dataset. The problems con- 
sist in learning sets of rules for assessing when a train 
meets the safety conditions required for travelling on 
a given line. The one we considered here is the most 
difficult among them and the challenge is to discover 
the rule used for classifying the concept instances: 

a train cannot go if it contains two near 
cars, both without brakes and heavier 
than a threshold we3 or if it contains 
two near cars carrying an unstable load 
(special material) and heavier than a 
threshold we^ < we^. 

FONNs could easily reach an error rate below 2% on a 
test set of 6000 instances starting from a handcrafted 
knowledge base, which correctly described the struc- 
ture of the rule hidden in the data, but only reached 
an error rate of about 17% starting from a set of rules 
learned by SMART+ from 500 learning instances. Re- 
shaping the problem in propositional calculus, C4.5 
and CART could not go below an error rate of 27%, 
and neural networks such as multi-layer perceptron 
and cascade correlation where performing even more 
poorly (Botta et al., 1997). 

G-NET has been run by discretizing every numeric 
attribute into a range of 30 intervals. As it appears 
from the last row in Table 3, it was able to find two 
clauses which show an error rate around 11%. 

7    DISCUSSION 

As it appears from the results reported above, G-NET 
is a very flexible system, able to deal with many dif- 
ferent problems, producing good results. Moreover, as 
already stated, the results have been obtained with- 
out performing any specific tuning, so that the system 
proved to be quite robust and easy to use. This looks 
surprising considering that a major complain against 
GAs is the difficulty of tuning parameters. 

We point out that, in spite of its architecture strongly 
resembling a Genetic Algorithm, G-NET cannot be 
considered a classical GA, because the principles which 
control the evolution are substantially different. In our 
opinion, two aspects determine the success of G-NET: 
the enforcement of diversity in the local populations 
and the coevolution. 

In their basic formulation GAs use genetic pressure, 
i.e. the capability of the most fit individuals to re- 
produce more quickly, so that the weakest ones are 
eliminated from the population. This mechanism has 
the positive effect of focusing the search on the most 
fit individuals, so that, in the best case, the algorithm 
will climb up a maximum of the fitness function. Un- 
fortunately, the mechanism is unstable and a too quick 
convergence prevents reaching optimal solutions. An- 
other drawback is that, in this way, many identical 
individuals will be present in the population, so that 
the search can become ineffective because the major 
search operator (crossover) reproduces again and again 
the same individuals. 

A trend in the GA literature, which at least par- 
tially relieves this problem, is related to the theory 
of species and niches formation. Species formation 
can be promoted in many ways by limiting the ge- 
netic pressure between species (Goldberg and Richard- 
son, 1987). Species formation offers some benefits, 
such as the possibility of restricting crossover to the 
individuals of the same species (crossover among dif- 
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ferent species is essentially deceptive), increasing the 
search effectiveness and allowing the discovery of mul- 
tiple modalities. For instance, in G-NET, as well as 
in REGAL, this has been exploited for learning dis- 
junctive concept descriptions. However, even in this 
framework, genetic pressure continues to be used in- 
side a same species as a mechanism of focus of atten- 
tion. Requiring that a population (the local memory 
of G-nodes) contains individuals (clauses) all different, 
is a definite departure from this mechanism, and dras- 
tically limits any form of genetic pressure. Therefore, 
the algorithm becomes much more stable and less sen- 
sitive of crossover type, and of crossover and mutation 
rates. Furthermore, in the place of genetic pressure 

other strategies, tailored to the specific task, can be 
used for guiding the search. In our case, the «revolu- 
tion is now the major strategy that focuses the search 
where it is necessary instead of letting it follow the 
stream enforced by the genetic pressure. A second 
component is represented by the local search opera- 
tors, which are context sensitive and make the best 
effort in order to increase the exploration capability of 

the algorithm. 

Both the idea of maintaining the population diversity 
and the one of coevolution originated before G-NET, 
whose originality consists in the adaptation to the spe- 
cific task and to the integration of these ideas into a 
unique framework. On the one hand, diversity in GAs 
has been already proposed by several authors (Augier 
et al., 1995), although no one speculates on the rea- 
sons why a GA should benefit from it. On the other 
hand, diversity could be related to tabu search. The lo- 
cal memory of a G-nodes works as an elementary tabu 
list which prevents the algorithm from reprocessing al- 
ready generated instances without an explicit will to 

do so. 

Coevolution appeared inside the GA community sev- 
eral years ago (Husbands and Mill. 1991), and has been 
considered by few others in the following. The coevo- 
lution model, described here, conforms to the one pro- 
posed by (Potter et al., 1995), properly re-interpreted 
in the framework of concept learning, which naturally 

conforms to it. 

Finally, the reassignment of the examples to be cov- 
ered to G-nodes, performed by the Supervisor, can be 
considered a kind of boosting (Shapire, 1990): in sub- 
sequent runs, the search efforts shall be concentrated 
on those parts of the hypothesis space not yet ade- 
quately covered. Currently, the series of found hy- 
potheses are combined into a unique formula, which 
differentiate this approach from a genuine boosting. 

However, nothing hinders the Supervisor from keeping 
apart the hypotheses and using them according to a 
majority voting classification strategy, instead of com- 
bining them. This possibility has not been explored 

yet. 

8    CONCLUSIONS 

In this paper we presented a new induction system 
based on an evolutionary approach, which is the out- 
come of several years of investigation in this direction. 

Given the good results obtained across a variety of 
datasets, languages, and evaluation criteria, it should 

be evident that a system like G-NET can be profitably 
used to explore the structure of new learning problems, 
when little a priori information, clearly pointing to 
another approach, is available. 

Moreover, thanks to its computational model, G-NET 
is able to effectively exploit parallel computing sys- 
tems, allowing to deal with large and complex datasets. 
As a matter of fact, in addition to the possibility of 
distributing the search among many G-nodes, G-NET 
offers also the possibility of distributing the hypotheses 
evaluation on several processors. Although this aspect 
has not been described here, because it is outside the 
scope of the paper, the current implementation of G- 
NET runs on a cluster of workstations (Anglano et al., 
1997). This facility has been extensively exploited for 
the experiments on Mutagcnesis and Splirc Junctions 
datasets, so that the results for every run have been 
obtained in a few hours. 

The conclusion is that G-NET seems to be very well- 
suited to learning structured concepts, such as the ones 
typically learned by ILP methods, and. in addition, to 
face learning problems on large databases. 
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Abstract 

In this paper we present TDLeaf(A), a varia- 
tion on the TD(A) algorithm that enables it to 
be used in conjunction with game-tree search. 
We present some experiments in which our 
chess program "KnightCap" used TDLeaf(A) 
to learn its evaluation function while play- 
ing on the Free Internet Chess Server (FICS, 
f ics . onenet. net). The main success we re- 
port is that KnightCap improved from a 1650 rat- 
ing to a 2150 rating in just 308 games and 3 days 
of play. As a reference, a rating of 1650 corre- 
sponds to about level B human play (on a scale 
from E (1000) to A (1800)), while 2150 is human 
master level. We discuss some of the reasons for 
this success, principle among them being the use 
of on-line, rather than self-play. 

1   Introduction 

Temporal Difference learning, first introduced by Samuel 
[5] and later extended and formalized by Sutton [7] in his 
TD(A) algorithm, is an elegant technique for approximat- 
ing the expected long term future cost (or cost-to-go) of a 
stochastic dynamical system as a function of the current 
state. The mapping from states to future cost is imple- 
mented by a parameterized function approximator such as 
a neural network. The parameters are updated online af- 
ter each state transition, or possibly in batch updates after 
several state transitions. The goal of the algorithm is to im- 
prove the cost estimates as the number of observed state 
transitions and associated costs increases. 

Perhaps the most remarkable success of TD(A) is Tesauro's 
TD-Gammon, a neural network backgammon player that 
was trained from scratch using TD(A) and simulated self- 
play.   TD-Gammon is competitive with the best human 

backgammon players [9]. In TD-Gammon the neural net- 
work played a dual role, both as a predictor of the expected 
cost-to-go of the position and as a means to select moves. 
In any position the next move was chosen greedily by eval- 
uating all positions reachable from the current state, and 
then selecting the move leading to the position with small- 
est expected cost. The parameters of the neural network 
were updated according to the TD(A) algorithm after each 
game. 

Although the results with backgammon are quite striking, 
there is lingering disappointment that despite several at- 
tempts, they have not been repeated for other board games 
such as othello, Go and the "drosophila of AI" — chess 
[10,12,6]. 

Many authors have discussed the peculiarities of backgam- 
mon that make it particularly suitable for Temporal Dif- 
ference learning with self-play [8, 6, 4]. Principle among 
these are speed of play: TD-Gammon learnt from sev- 
eral hundred thousand games of self-play, representation 
smoothness: the evaluation of a backgammon position 
is a reasonably smooth function of the position (viewed, 
say, as a vector of piece counts), making it easier to find 
a good neural network approximation, and stochasticity: 
backgammon is a random game which forces at least a min- 
imal amount of exploration of search space. 

As TD-Gammon in its original form only searched one- 
ply ahead, we feel this list should be appended with: shal- 
low search is good enough against humans. There are two 
possible reasons for this; either one does not gain a lot 
by searching deeper in backgammon (questionable given 
that recent versions of TD-Gammon search to three-ply 
and this significantly improves their performance), or hu- 
mans are simply incapable of searching deeply and so TD- 
Gammon is only competing in a pool of shallow searchers. 
Although we know of no psychological studies investigat- 
ing the depth to which humans search in backgammon, it 
is plausible that the combination of high branching fac- 
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tor and random move generation makes it quite difficult to 
search more than one or two-ply ahead. In particular, ran- 
dom move generation effectively prevents selective search 
or "forward pruning" because it enforces a lower bound on 
the branching factor at each move. 

In contrast, finding a representation for chess, Othello or 
Go which allows a small neural network to order moves at 
one-ply with near human performance is a far more diffi- 
cult task. It seems that for these games, reliable tactical 
evaluation is difficult to achieve without deep lookahead. 
As deep lookahead invariably involves some kind of mini- 
max search, which in turn requires an exponential increase 
in the number of positions evaluated as the search depth 
increases, the computational cost of the evaluation func- 
tion has to be low, ruling out the use of expensive evalua- 
tion functions such as neural networks. Consequently most 
chess and othello programs use linear evaluation functions 
(the branching factor in Go makes minimax search to any 
significant depth nearly infeasible). 

In this paper we introduce TDLeaf(A), a variation on the 
TD(A) algorithm that can be used to learn an evaluation 
function for use in deep minimax search. TDLeaf(A) is 
identical to TD(A) except that instead of operating on the 
positions that occur during the game, it operates on the leaf 
nodes of the principal variation of a minimax search from 
each position (also known as the principal leaves). 

To test the effectiveness of TDLeaf(A), we incorporated it 
into our own chess program—KnightCap. KnightCap has 
a particularly rich board representation enabling relatively 
fast computation of sophisticated positional features, al- 
though this is achieved at some cost in speed (KnightCap is 
about 10 times slower than Crafty—the best public-domain 
chess program—and 6,000 times slower than Deep Blue). 
We trained KnightCap's linear evaluation function using 
TDLeaf(A) by playing it on the Free Internet Chess Server 
(FICS, fics.onenet.net) and on the Internet Chess 
Club (ICC, chessclub.com). Internet play was used 
to avoid the premature convergence difficulties associated 
self-play'.The main success story we report is that starting 
from an evaluation function in which all coefficients were 
set to zero except the values of the pieces, KnightCap went 
from a 1650-rated player to a 2150-rated player in just three 
days and 308 games. KnightCap is an ongoing project with 
new features being added to its evaluation function all the 
time. We use TDLeaf(A) and Internet play to tune the co- 
efficients of these features. 

The remainder of this paper is organized as follows. In 
section 2 we describe the TD(A) algorithm as it applies to 
games. The TDLeaf(A) algorithm is described in section 3. 
Experimental results for internet-play with KnightCap are 
given in section 4. Section 5 contains some discussion and 
concluding remarks. 

2   The TD(A) algorithm applied to games 

In this section we describe the TD(A) algorithm as it applies 
to playing board games. We discuss the algorithm from the 
point of view of an agent playing the game. 

Let S denote the set of all possible board positions in the 
game. Play proceeds in a series of moves at discrete time 
steps t = 1,2, — At time t the agent finds itself in 
some position xt € 5, and has available a set of moves, 
or actions AXt (the legal moves in position xt). The agent 
chooses an action a € AXt and makes a transition to state 
xt+i with probability p(xt, xt+i, a). Here xt+i is the po- 
sition of the board after the agent's move and the oppo- 
nent's response. When the game is over, the agent receives 
a scalar reward, typically "1" for a win, "0" for a draw and 
"-1" for a loss. 

For ease of notation we will assume all games have a fixed 
length of N (this is not essential). Let T(XN) denote the re- 
ward received at the end of the game. If we assume that the 
agent chooses its actions according to some function a(x) 
of the current state x (so that a(x) € Ax), the expected 
reward from each state x £ S is given by 

J*(x) := EXN{xr(xN), (1) 

'Randomizing move choice is another way of avoiding prob- 
lems associated with self-play (this approach has been tried in Go 
[6]), but the advantage of the Internet is that more information is 
provided by the opponents play. 

where the expectation is with respect to the transition prob- 
abilities p(xt,xt+i,a(xt)) and possibly also with respect 
to the actions a(xt) if the agent chooses its actions stochas- 
tically. 

For vary large state spaces S it is not possible store the 
value of J* (x) for every x € 5, so instead we might try 
to approximate J* using a parameterized function class 
J: S xRk ->■ K, for example linear function, splines, neu- 
ral networks, etc. J(-, w) is assumed to be a differentiable 
function of its parameters w — (tui,..., Wk). The aim is to 
find a parameter vector w £Rk that minimizes some mea- 
sure of error between the approximation J(-, w) and ./*(•)• 
The TD(A) algorithm, which we describe now, is designed 
to do exactly that. 

Suppose xi,..., JEJV-1 , XN is a sequence of states in one 
game. For a given parameter vector w, define the temporal 
difference associated with the transition xt '-¥ xt+i by 

dt := J(xt+i,w) - J(xt,w). (2) 
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Note that dt measures the difference between the reward 
predicted by J(-, w) at time t + 1, and the reward predicted 
by J{-,w) at time t. The true evaluation function 3* has 
the property 

Ex,+i\x, [J*(Xt+l) r(xt)] = o, 

so if J(-,w) is a good approximation to J*, EXt+1\Xtdt 

should be close to zero. For ease of notation we will assume 
that J(XN,W) = r(xjv) always, so that the final temporal 
difference satisfies 

dN-t = J(xN,w)- J(xN-!,w) = r(xN)-J(xN-i,w). 

That is, djv-i is the difference between the true outcome 
of the game and the prediction at the penultimate move. 

At the end of the game, the TD(A) algorithm updates the 
parameter vector w according to the formula 

N-l 

W := w + a 2_. VJ(xt,w) 
t=i 

N-l 

i=t 
(3) 

where V J(-, w) is the vector of partial derivatives of J with 
respect to its parameters. The positive parameter a con- 
trols the learning rate and would typically be "annealed" 
towards zero during the course of a long series of games. 
The parameter A € [0,1] controls the extent to which tem- 
poral differences propagate backwards in time. To see this, 
compare equation (3) for A = 0: 

w 
N-l 

:=w + a 2~] VJ{xt,w)dt 

N-l 

=w + a ^2 VJ(xt,w) I J(xt+\,w) - J(xt,w)\ 

and A = 1: 

t=i 

7V-1 

(4) 

w :—w + a^2 VJ(xt,w) \r(xpf) - J(a;t,tu)   .    (5) 

Consider each term contributing to the sums in equations 
(4) and (5). For A = 0 the parameter vector is being ad- 
justed in such a way as to move J(xt, w)—the predicted 
reward at time t—closer to J{xt+\, w)—the predicted re- 
ward at time t +1. In contrast, TD(1) adjusts the parameter 
vector in such away as to move the predicted reward at time 
step t closer to the final reward at time step N. Values of 
A between zero and one interpolate between these two be- 
haviors. Note that (5) is equivalent to gradient descent on 

the error function E(w) := J^t^i1  r(xN) - J(xt,w) 

Successive parameter updates according to the TD(A) al- 
gorithm should, over time, lead to improved predictions of 
the expected reward J(-,w). Provided the actions a(xt) 
are independent of the parameter vectors, it can be shown 
that for linear J{-,w), the TD(A) algorithm converges to a 
near-optimal parameter vector [11]. Unfortunately, there is 
no such guarantee if J(-, w) is non-linear [11], or if a(xt) 
depends on w [2]. 

3   Minimax Search and TD(A) 

For argument's sake, assume any action a taken in state x 
leads to predetermined state which we will denote by x'a. 
Once an approximation J(-,w) to J* has been found, we 
can use it to choose actions in state x by picking the action 
a € Ax whose successor state x'a minimizes the opponent's 
expected reward2: 

a*(x) :=argminQ6j4iJ(x^,w). (6) 

This was the strategy used in TD-Gammon. Unfortunately, 
for games like othello and chess it is very difficult to ac- 
curately evaluate a position by looking only one move or 
ply ahead. Most programs for these games employ some 
form of minimax search. In minimax search, one builds 
a tree from position x by examining all possible moves 
for the computer in that position, then all possible moves 
for the opponent, and then all possible moves for the com- 
puter and so on to some predetermined depth d. The leaf 
nodes of the tree are then evaluated using a heuristic eval- 
uation function (such as J(-,w)), and the resulting scores 
are propagated back up the tree by choosing at each stage 
the move which leads to the best position for the player on 
the move. See figure 1 for an example game tree and its 
minimax evaluation. With reference to the figure, note that 
the evaluation assigned to the root node is the evaluation 
of the leaf node of the principal variation; the sequence of 
moves taken from the root to the leaf if each side chooses 
the best available move. 

In practice many engineering tricks are used to improve the 
performance of the minimax algorithm, a — ß search being 
the most famous. 

Let Jd(x, w) denote the evaluation obtained for state x by 
applying J(-,w) to the leaf nodes of a depth d minimax 
search from x. Our aim is to find a parameter vector w 
such that Jd(-, w) is a good approximation to the expected 
reward J*. One way to achieve this is to apply the TD(A) 
algorithm to Jd(x,w). That is, for each sequence of posi- 

2If successor states are only determined stochastically by the 
choice of a, we would choose the action minimizing the expected 
reward over the choice of successor states. 
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Figure 1: Full breadth, 3-ply search tree illustrating the 
minimax rule for propagating values. Each of the leaf 
nodes (H-O) is given a score by the evaluation function, 
J(-, w). These scores are then propagated back up the tree 
by assigning to each opponent's internal node the minimum 
of its children's values, and to each of our internal nodes the 
maximum of its children's values. The principle variation 
is then the sequence of best moves for either side starting 
from the root node, and this is illustrated by a dashed line 
in the figure. Note that the score at the root node A is the 
evaluation of the leaf node (L) of the principal variation. As 
there are no ties between any siblings, the derivative of As 
score with respect to the parameters w is just V J(L, w). 

tions xi,..., XN in a game we define the temporal differ- 
ences 

dt := Jd(xt+i,w) - Jd(xt,w) (7) 

as per equation (2), and then the TD(A) algorithm (3) for 
updating the parameter vector w becomes 

JV-1 

w ■■w + a^jT VJd(xt,w) 
t=i 

JV-l 

£ *-'* 
3=t 

(8) 

One problem with equation (8) is that for d > 1, Jd(x, w) 
is not a necessarily a differentiable function of w for all 
values of w, even if J(-,w) is everywhere differentiable. 
This is because for some values of w there will be "ties" in 
the minimax search, i.e. there will be more than one best 
move available in some of the positions along the principal 
variation, which means that the principal variation will not 
be unique (see figure 2). Thus, the evaluation assigned to 
the root node, Jd(x, w), will be the evaluation of any one 
of a number of leaf nodes. 

Fortunately, under some mild technical assumptions on the 
behavior of J(x, w), it can be shown that for each state x, 
the set of w e 1* for which Jd(x, w) is not differentiable 
has Lebesgue measure zero. Thus for all states x and for 
"almost all" w 6 Rk, Jd{x, w) is a differentiable function 

Figure 2: A search tree with a non-unique principal varia- 
tion (PV). In this case the derivative of the root node A with 
respect to the parameters of the leaf-node evaluation func- 
tion is multi-valued, either VJ(H,w) or VJ(L,w). Ex- 
cept for transpositions (in which case H and L are identical 
and the derivative is single-valued anyway), such "colli- 
sions" are likely to be extremely rare, so in TDLeaf(A) we 
ignore them by choosing a leaf node arbitrarily from the 
available candidates. 

of w. Note that Jd(x, w) is also a continuous function of 
w whenever J(x, w) is a continuous function of w. This 
implies that even for the "bad" pairs (x,w), VJd(x,w) is 
only undefined because it is multi-valued. Thus we can 
still arbitrarily choose a particular value for VJd(x,w) if 
w happens to land on one of the bad points; 

Based on these observations we modified the TD(A) al- 
gorithm to take account of minimax search in an almost 
trivial way: instead of working with the root positions 
#i,..., XN, the TD(A) algorithm is applied to the leaf po- 
sitions found by minimax search from the root positions. 
We call this algorithm TDLeaf(A). Full details are given in 
figure 3. 

4   TDLeaf(A) and Chess 

In this section we describe the outcome of several ex- 
periments in which the TDLeaf(A) algorithm was used 
to train the weights of a linear evaluation function in 
our chess program "KnightCap". KnightCap is a reason- 
ably sophisticated computer chess program for Unix sys- 
tems. It has all the standard algorithmic features that 
modern chess programs tend to have as well as a num- 
ber of features that are much less common. For more 
details on KnightCap, including the source code, see 
wwwsyseng.anu.edu.au/lsg. 
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Let J(-, w) be a class of evaluation functions parameterized by w € E*. Let xu. ..,xN be N positions that occurred 
during the course of a game, with T(XN) the outcome of the game. For notational convenience set J{XN,W) := T(XN)- 

1. For each state xu compute Jd(xi,w) by performing minimax search to depth d from x* and using J(-, w) to score the 
leaf nodes. Note that d may vary from position to position. 

2. Let x[ denote the leaf node of the principle variation starting at n. If there is more than one principal variation, choose 
a leaf node from the available candidates at random. Note that 

Jd{xi,w) = J(x\,w). 

3. For t = 1,..., N - 1, compute the temporal differences: 

dt := J{x[+1,w) - J{x[,w). 

(9) 

(10) 

4. Update w according to the TDLeaf(A) formula: 

N-l 

w := w + a ^2 VJ(x{,u>) 
t=i 

N-l 

i=t 
do 

Figure 3: The TDLeaf(A) algorithm 

4.1    Experiments with KnightCap 

In our main experiment we took KnightCap's evaluation 
function and set all but the material parameters to zero. 
The material parameters were initialized to the standard 
"computer" values: 1 for a pawn, 4 for a knight, 4 for a 
bishop, 6 for a rook and 12 for a queen. With these pa- 
rameter settings KnightCap (under the pseudonym "Wimp- 
Knight") was started on the Free Internet Chess server 
(FICS, fics.onenet.net) against both human and 
computer opponents. We played KnightCap for 25 games 
without modifying its evaluation function so as to get a rea- 
sonable idea of its rating. After 25 games it had a blitz (fast 
time control) rating of 1650 ± 503, which put it at about 
B-grade human performance (on a scale from E (1000) to 
A (1800)), although of course the kind of game KnightCap 
plays with just material parameters set is very different to 
human play of the same level (KnightCap makes no short- 
term tactical errors but is positionally completely ignorant). 
We then turned on the TDLeaf(A) learning algorithm, with 
A = 0.7 and the learning rate a = 1.0. The value of A was 
chosen heuristically, based on the typical delay in moves 
before an error takes effect, while a was set high enough 
to ensure rapid modification of the parameters. A couple of 
minor modifications to the algorithm were made: 

The raw (linear) leaf node evaluations J(x\,w) were 
converted to a score between -1 and 1 by computing 

v\ —t&nhlßJix'i,™)] 

This ensured small fluctuations in the relative values 
of leaf nodes did not produce large temporal differ- 
ences (the values v\ were used in place of J(x\,w) 
in the TDLeaf(A) calculations). The outcome of the 
game r(xpf) was set to 1 for a win, -1 for a loss 
and 0 for a draw, ß was set to ensure that a value 

of tanh [/3J(x'j, tw) 1 = 0.25 was equivalent to a ma- 

terial superiority of 1 pawn (initially). 

The temporal differences, dt = vl
t+1 - v[, were mod- 

ified in the following way. Negative values of dt 

were left unchanged as any decrease in the evalua- 
tion from one position to the next can be viewed as 
mistake. However, positive values of dt can occur 
simply because the opponent has made a blunder. To 
avoid KnightCap trying to learn to predict its oppo- 
nent's blunders, we set all positive temporal differ- 
ences to zero unless KnightCap predicted the oppo- 
nent's move4 

3the standard deviation for all ratings reported in this section 
is about 50 

4In a later experiment we only set positive temporal differ- 
ences to zero if KnightCap did not predict the opponent's move 
and the opponent was rated less than KnightCap. After all, pre- 
dicting a stronger opponent's blunders is a useful skill, although 
whether this made any difference is not clear. 



KnightCap: A learning chess program        33 

• The value of a pawn was kept fixed at its initial value 
so as to allow easy interpretation of weight values 
as multiples of the pawn value (we actually experi- 
mented with not fixing the pawn value and found it 
made little difference: after 1764 games with an ad- 
justable pawn its value had fallen by less than 7 per- 
cent). 

Within 300 games KnightCap's rating had risen to 2150, an 
increase of 500 points in three days, and to a level compa- 
rable with human masters. At this point KnightCap's per- 
formance began to plateau, primarily because it does not 
have an opening book and so will repeatedly play into weak 
lines. We have since implemented an opening book learn- 
ing algorithm and with this KnightCap now plays at a rating 
of 2400-2500 (peak 2575) on the other major internet chess 
server: ICC, chessclub.com5 It often beats Interna- 
tional Masters at blitz. Also, because KnightCap automati- 
cally learns its parameters we have been able to add a large 
number of new features to its evaluation function: Knight- 
Cap currently operates with 5872 features (1468 features 
in four stages: opening, middle, ending and mating6. With 
this extra evaluation power KnightCap easily beats ver- 
sions of Crafty restricted to search only as deep as itself. 
However, a big caveat to all this optimistic assessment is 
that KnightCap routinely gets crushed by faster programs 
searching more deeply. It is quite unlikely this can be eas- 
ily fixed simply by modifying the evaluation function, since 
for this to work one has to be able to predict tactics stat- 
ically, something that seems very difficult to do. If one 
could find an effective algorithm for "learning to search se- 
lectively" there would be potential for far greater improve- 
ment. 

Note that we have twice repeated the learning experiment 
and found a similar rate of improvement and final perfor- 
mance level. The rating as a function of the number of a 
games from one of these repeat runs is shown in figure 4 
(we did not record this information in the first experiment). 
Note that in this case KnightCap took mearly twice as long 
to reach the 2150 mark, but this was partly because it was 
operating with limited memory (8Mb) until game 500 at 
which point the memory was increased to 40Mb (Knight- 
Cap's search algorithm—MTD(f) [3]—is a memory inten- 
sive variant of a-ß and when learning KnightCap must 

'There appears to be a systematic difference of around 200- 
250 points between the two servers, so a peak rating of 2575 on 
ICC roughly corresponds to a peak of 2350 on FICS. We trans- 
ferred KnightCap to ICC because there are more strong players 
playing there. 

6In reality there are not 1468 independent "concepts" per stage 
in KnightCap's evaluation function as many of the features come 
in groups of 64, one for each square on the board (like the value 
of placing a rook on a particular square, for example) 
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Figure 4: KnightCap's rating as a function of games played 
(second experiment). Learning was turned on at game 0. 

store the whole position in the hash table so small mem- 
ory really hurts the performance). Another reason may also • 
have been that for a portion of the run we were performing 
paramater updates after every four games rather than every 
game. 

Plots of various parameters as a function of the number of 
games played are shown in Figure 5 (these plots are from 
the same experiment in figure 4). Each plot contains three 
graphs corresponding to the three different stages of the 
evaluation function: opening, middle and ending7. 

Finally, we compared the performance of KnightCap with 
its learnt weight to KnightCap's performance with a set of 
hand-coded weights, again by playing the two versions on 
ICC. The hand-coded weights were close in performance 
to the learnt weights (perhaps 50-100 rating points worse). 
We also tested the result of allowing KnightCap to learn 
starting from the hand-coded weights, and in this case it 
seems that KnightCap performs better than when start- 
ing from just material values (peak performance was 2632 
compared to 2575, but these figures are very noisy). We are 
conducting more tests to verify these results. However, it 
should not be too surprising that learning from a good qual- 
ity set of hand-crafted parameters is better than just learn- 
ing from material parameters. In particular, some of the 
handcrafted parameters have very high values (the value of 
an "unstoppable pawn", for example) which can take a very 
long time to learn under normal playing conditions, partic- 
ularly if they are rarely active in the principal leaves. It is 

KnightCap actually has a fourth and final stage "mating" 
which kicks in when all the pieces are off, but this stage only uses 
a few of the coefficients (opponent's king mobiliity and proximity 
of our king to the opponent's king). 
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Figure 5: Evolution of two paramaters (bonus for castling 
and penalty for a doubled pawn) as a function of the num- 
ber of games played. Note that each parameter appears 
three times: once for each of the three stages in the evalua- 
tion function. 

not yet clear whether given a sufficient number of games 
this dependence on the initial conditions can be made to 
vanish. 

4.2   Discussion 

There appear to be a number of reasons for the remarkable 
rate at which KnightCap improved. 

1. As all the non-material weights were initially zero, 
even small changes in these weights could cause very 
large changes in the relative ordering of materially 
equal positions. Hence even after a few games Knight- 
Cap was playing a substantially better game of chess. 

2. It seems to be important that KnightCap started out 
life with intelligent material parameters. This put it 

close in parameter space to many far superior param- 
eter settings. 

3. Most players on FICS prefer to play opponents of sim- 
ilar strength, and so KnightCap's opponents improved 
as it did. This may have had the effect of guiding 
KnightCap along a path in weight space that led to 
a strong set of weights. 

4. KnightCap was learning on-line, not by self-play. The 
advantage of on-line play is that there is a great deal 
of information provided by the opponent's moves. In 
particular, against a stronger opponent KnightCap was 
being shown positions that 1) could be forced (against 
KnightCap's weak play) and 2) were mis-evaluated by 
its evaluation function. Of course, in self-play Knight- 
Cap can also discover positions which are misevalu- 
ated, but it will not find the kinds of positions that 
are relevant to strong play against other opponents. In 
this setting, one can view the information provided by 
the opponent's moves as partially solving the "explo- 
ration" part of the exploration/exploitation tradeoff. 

To further investigate the importance of some of these 
reasons, we conducted several more experiments. 

Good initial conditions. 
A second experiment was run in which KnightCap's co- 
efficients were all initialised to the value of a pawn. The 
value of a pawn needs to be positive in KnightCap be- 
cause it is used in many other places in the code: for 
example we deem the MTD search to have converged if 
a < ß + 0.07*PAWN. Thus, to set all parameters equal to 
the same value, that value had to be a pawn. 

Playing with the initial weight settings KnightCap had a 
blitz rating of around 1250. After more than 1000 games 
on FICS KnightCap's rating has improved to about 1550, 
a 300 point gain. This is a much slower improvement 
than the original experiment. We do not know whether 
the coefficients would have eventually converged to good 
values, but it is clear from this experiment that starting 
near to a good set of weights is important for fast con- 
vergence. An interesting avenue for further exploration 
here is the effect of A on the learning rate. Because the 
initial evaluation function is completely wrong, there 
would be some justification in setting A = 1 early on so 
that KnightCap only tries to predict the outcome of the 
game and not the evaluations of later moves (which are 
extremely unreliable). 

Self-Play 
Learning by self-play was extremely effective for TD- 
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Gammon, but a significant reason for this is the randomness 
of backgammon which ensures that with high probabil- 
ity different games have substantially different sequences 
of moves, and also the speed of play of TD-Gammon 
which ensured that learning could take place over several 
hundred-thousand games. Unfortunately, chess programs 
are slow, and chess is a deterministic game, so self-play by 
a deterministic algorithm tends to result in a large number 
of substantially similar games. This is not a problem if the 
games seen in self-play are "representative" of the games 
played in practice, however KnightCap's self-play games 
with only non-zero material weights are very different to 
the kind of games humans of the same level would play. 

To demonstrate that learning by self-play for KnightCap is 
not as effective as learning against real opponents, we ran 
another experiment in which all but the material parame- 
ters were initialised to zero again, but this time KnightCap 
learnt by playing against itself. After 600 games (twice as 
many as in the original FICS experiment), we played the re- 
sulting version against the good version that learnt on FICS 
for a further 100 games with the weight values fixed. The 
self-play version scored only 11% against the good FICS 
version. 

Simultaneously with the work presented here, Beal 
and Smith [1] reported positive results using essentially 
TDLeaf(A) and self-play (with some random move choice) 
when learning the parameters of an evaluation function that 
only computed material balance. However, they were not 
comparing performance against on-line players, but were 
primarily investigating whether the weights would con- 
verge to "sensible" values at least as good as the naive (1,3, 
3,5,9) values for (pawn, knight, bishop, rook, queen) (they 
did, within 2000 games, and using a value of A = 0.95 
which supports the discussion in "good initial conditions" 
above). 

5   Conclusion 

We have introduced TDLeaf(A), a variant of TD(A) suitable 
for training an evaluation function used in minimax search. 
The only extra requirement of the algorithm is that the leaf- 
nodes of the principal variations be stored throughout the 
game. 

We presented some experiments in which a chess evalua- 
tion function was trained from B-grade to master level us- 
ing TDLeaf(A) by on-line play against a mixture of human 
and computer opponents. The experiments show both the 
importance of "on-line" sampling (as opposed to self-play) 
for a deterministic game such as chess, and the need to 
start near a good solution for fast convergence, although 
just how near is still not clear. 

On the theoretical side, it has recently been shown that 
TD(A) converges for linear evaluation functionsfll] (al- 
though only in the sense of prediction, not control). An 
interesting avenue for further investigation would be to de- 
termine whether TDLeaf(A) has similar convergence prop- 
erties. 
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Abstract 

Combining multiple classifiers is an effective 
technique for improving accuracy. There are 
many general combining algorithms, such as 
Bagging or Error Correcting Output Coding, 
that significantly improve classifiers like deci- 
sion trees, rule learners, or neural networks. 
Unfortunately, many combining methods do 
not improve the nearest neighbor classifier. 
In this paper, we present MFS, a combining 
algorithm designed to improve the accuracy 
of the nearest neighbor (NN) classifier. MFS 
combines multiple NN classifiers each using 
only a random subset of features. The ex- 
perimental results are encouraging: On 25 
datasets from the UCI Repository, MFS sig- 
nificantly improved upon the NN, k near- 
est neighbor (kNN), and NN classifiers with 
forward and backward selection of features. 
MFS was also robust to corruption by irrele- 
vant features compared to the kNN classifier. 
Finally, we show that MFS is able to reduce 
both bias and variance components of error. 

1    INTRODUCTION 

The nearest neighbor (NN) classifier is one of the old- 
est and simplest methods for performing general, non- 
parametric classification. It can be represented by the 
following rule: to classify an unknown pattern, choose 
the class of the nearest example in the training set as 
measured by a distance metric. A common extension 

* Research performed while at the University of Water- 
loo, Department of Systems Design Engineering, Waterloo, 
Ont., N2L 3G1, Canada. 

is to choose the most common class in the k nearest 
neighbors (kNN). 

Despite its simplicity, the NN classifier has many ad- 
vantages over other methods. For example, it can learn 
from a small set of examples, can incrementally add 
new information at runtime, and often gives competi- 
tive performance with more modern methods such as 
decision trees or neural networks. 

Since its inception by Fix and Hodge (1951), re- 
searchers have investigated many methods for improv- 
ing the NN classifier, but most work has concen- 
trated on changing the distance metric or manipulat- 
ing the patterns in the training set (Dasarathy, 1991). 
Recently, researchers have begun experimenting with 
general algorithms for improving classification accu- 
racy by combining multiple versions of a single classi- 
fier, also known as a multiple model or ensemble ap- 
proach. The outputs of several classifiers are combined 
in the hope that the accuracy of the whole is greater 
than the parts. Unfortunately, many combining meth- 
ods do not improve the NN classifier at all. 

For example, in Breiman's (1996) experiments with 
Bagging, he found no difference in accuracy between 
the bagged NN classifier and the single model ap- 
proach. His results suggest that other combining 
methods that involve any significant degree of resam- 
pling or replication of patterns will not work with the 
NN classifier. Kong and Dietterich (1996) also con- 
cluded that Error Correcting Output Coding (ECOC), 
a method of combining classifiers by decomposing 
multi-class problems into multiple two-class problems, 
will not improve classifiers that use local information 
because of high error correlation. For example, with 
the NN classifier we predict the class of the closest pat- 
tern. This pattern is the same in all of the two-class 
problems, and hence if it gives an incorrect prediction, 
all the predictions in the ECOC ensemble will be in- 
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correct   . 

In this paper, we present a new method of combining 
nearest neighbor classifiers with the goal of improv- 
ing classification accuracy. Our approach manipulates 
the features that the individual classifiers use. In con- 
trast, other combining algorithms may manipulate the 
training patterns (Bagging, Boosting) or the class la- 
bels (ECOC). 

In the next section, we describe the MFS algorithm 
for combining multiple NN classifiers. In Section 3, 
we evaluate the algorithm on datasets from the UCI 
Repository for accuracy, computational complexity, 
and robustness to irrelevant features. In Section 4, we 
analyze the algorithm's bias and variance components 
of error. In Section 5, we discuss related work, and 
follow it by conclusions and future work in Section 6. 

2    CLASSIFICATION FROM 
MULTIPLE FEATURE SUBSETS 

We start by describing the MFS algorithm and then 
we discuss the motivation behind it and the dangers in 
using it. We then explain how we set the algorithm's 
parameters. 

2.1    THE MFS ALGORITHM 

The algorithm for nearest neighbor classification from 
multiple feature subsets (MFS) is simple and can be 
stated as: 

Using simple voting, combine the out- 
puts from multiple NN classifiers, each 
having access only to a random subset 
of features. 

We select the random subset of features by sampling 
from the original set. We use two different sampling 
functions: sampling with replacement, and sampling 
without replacement. In sampling with replacement, a 
feature can be selected more than once which is equiv- 
alent to increasing its weight. 

Each of the NN classifiers uses the same number of 
features. This is a parameter of the algorithm which 
we set by cross-validation performance estimates on a 
tuning dataset (see Section 2.2). Each time a pattern 

Recently Ricci and Aha (1998) have developed a 
method for combining NN classifiers and ECOC which 
solves the correlation problem. We discuss this in section 5. 

is presented for classification, we select a new random 
subset of features for each classifier. 

As an example of MFS classification, consider Fisher's 
iris plant classification problem (Fisher, 1936; Duda 
and Hart, 1973). In this domain, we try to classify 
iris plants into their specific species: iris-setosa, iris- 
virginica, and iris-versicolor, based on the following 
four features: petal length, petal width, sepal length, 
and sepal width. With MFS we might use three NN 
classifiers each using a random subset of features. The 
first NN classifier might use {petal length, sepal width, 
sepal length}, the second might use {petal width, petal 
length, sepal width}, and the third might use {petal 
width, sepal width, sepal width} which we would treat 
as {petal width, 2 x sepal width}. 

The idea of using only a random subset of features 
may seem counter intuitive, as we are throwing away 
potentially valuable information. The accuracy of the 
NN classifiers is likely to decrease compared to a clas- 
sifier that has access to all the features. Should we 
not use all the information and make each classifier as 
accurate as possible? Why should we create a set of 
classifiers each less accurate than a single one trained 
on all the information? 

The answer to these questions lies in the dynamics 
of simple voting among a set of classifiers. The in- 
dividual models do not need to be very accurate for 
the system as a whole to achieve high accuracy, if the 
models make different errors. In particular, Hansen 
and Salamon (1990) showed that under simple voting 
if the models make independent errors, then the over- 
all error will decrease monotonically with increasing 
numbers of classifiers. Ali and Pazzani (1996) verified 
empirically that combining models with uncorrelated 
errors could significantly reduce the overall error. Se- 
lecting different features is an attempt to force the NN 
classifiers to make different and uncorrelated errors. 
We are trading off accuracy for error diversity. 

There is no guarantee that using different feature sets 
for the NN classifiers will decorrelate error. However, 
Turner and Ghosh (1996) found that with neural net- 
works, selectively removing features could decorrelate 
errors. Unfortunately, the error rates in the individual 
classifiers increased, and as a result there was little or 
no improvement in the ensemble. Cherkauer (1996) 
was more successful, and was able to combine neural 
networks that used different hand selected features to 
achieve human expert level performance in identifying 
volcanoes from images. 
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One method of generating a diverse ensemble of clas- 
sifiers is to perturb some aspect of the training inputs 
for which the classifier is unstable. For example, Bag- 
ging (Breiman, 1996) perturbs the training patterns 
available to each classifier in the ensemble. Since deci- 
sion trees are unstable to the patterns, Bagging gener- 
ates a diverse and effective ensemble. Nearest neigh- 
bor classifiers are stable to the patterns, so Bagging 
generates poor NN ensembles. Nearest Neighbor clas- 
sifiers, however, are extremely sensitive to the features 
used. For example, Langley and Iba (1993) found that 
adding just a few irrelevant features could drastically 
change the NN classifier's outputs (and reduce accu- 
racy). MFS attempts to use this instability to generate 
a diverse set of NN classifiers with uncorrelated errors. 

The above discussion hopefully provides motivation for 
why we expect that MFS will improve the accuracy 
of the nearest neighbor classifier. However, there are 
three major dangers that we should be aware of when 
using MFS: 

1. Simple voting can only improve accuracy if the 
classifiers select the correct class more often than 
any other class. Breiman refers to this as order 
correctness. If the classifiers are not order correct, 
then simple voting will increase the expected er- 
ror. For two class problems, we require slightly 
more than 50% accuracy in the voting classifiers 
to improve accuracy. With multiple classes, the 
required accuracy may drop as low as ^ where C 
is the number of classes. 

2. The Bayes error rate can only increase by using a 
subset of features. This may make it difficult for 
the NN classifiers used by MFS to meet the re- 
quirements in point 1. For example, in the parity 
problem, a domain with highly interacting fea- 
tures, the Bayes error rate in any proper subset 
of features is 50% (as opposed to 0% for the full 
feature space). There is no guarantee that ran- 
dom subsets will have the necessary information 
for accurate classification. 

3. By using the nearest neighbor classifier in the 
MFS scheme we lose its asymptotic optimality 
properties. Specifically, as the number of train- 
ing examples approaches infinity the NN classifier 
is bounded by twice the Bayes error rate (Cover, 
1967). The kNN classifier is Bayes optimal in the 
limit with proper choice of k (Fix and Hodges, 
1951). We can make no such claims about MFS. 

2.2    PARAMETER SELECTION 

The MFS algorithm has two parameter values that 
need to be set: the size of the feature subsets, and the 
number of classifiers to combine. 

We set MFS's subset size parameter based on cross- 
validation accuracy estimates on the training set for 
the entire ensemble. We evaluated ten evenly spaced 
intervals over the size of the original feature set. For 
example, if a domain had 34 features then the subset 
sizes at 3,7,10,... ,34 were evaluated. In the case of 
ties, the smaller value was chosen. 

We set the number of classifiers by evaluating the per- 
formance of MFS on seven development datasets vary- 
ing the number of classifiers from 10 to 1000. Based on 
the results, we set the number of classifiers to 100 as 
a reasonable trade-off between computational expense 
and accuracy. 

3    EXPERIMENTS 

3.1    METHODS 

We evaluated the performance of MFS using two dif- 
ferent sampling functions: sampling with replacement 
(MFS1) and sampling without replacement (MFS2). 
We compared these to four other algorithms: near- 
est neighbor (NN), k nearest neighbor (kNN), nearest 
neighbor with forward (FSS) and backward (BSS) se- 
quential selection of features (Aha and Bankert, 1994). 

The use of FSS and BSS should provide an interesting 
contrast with MFS. FSS and BSS try to find a sin- 
gle good subset of features, while MFS uses multiple 
random subsets without regard to their performance. 

All classifiers used unweighted Euclidean distance for 
continuous features and Hamming distance for sym- 
bolic features. Missing values were treated as infor- 
mative and considered to be a specific symbolic value. 
In the case of continuous features (normalized to [0,1]), 
a missing value is considered to have a distance of 1 
to all non missing values. For the kNN classifier, the 
value of k was set using cross-validation performance 
estimates on the training set. For feature selection, 
we used cross-validation accuracy on the training set 
for our objective function (also known as a wrapper 
approach (Kohavi and John, 1996)). 

We evaluated the algorithms on twenty-five datasets 
from the UCI Repository of Machine Learning 
Databases (Merz and Murphy, 1998). We first normal- 
ized the datasets so that continuous features ranged 
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from [0,1], and then we ran thirty trials where the 
training set contained 2/3 of the patterns (randomly 
selected) and the test set contained the remaining 1/3. 

There were a few exceptions to this procedure. For 
Waveform, we used 300 training cases and 4700 test 
cases to maintain consistency with reported results 
(Quinlan, 1996). For Satimage, we used the origi- 
nal division into a training and test set, so the results 
represent one run of each algorithm. For the Musk 
dataset, which has 166 features, FSS and BSS took 
too long to run (over 24 hours for a single trial) and 
no results were obtained. 

3.2    ACCURACY 

The accuracy and parameter selection results (average 
k or number of features selected) are shown in Table 1. 
The first seven datasets were used in the development 
of the MFS algorithm. The default accuracy is the 
frequency of the most common class. 

The results show that MFS is promising: MFS1 and 
MFS2 were about 2% more accurate over all domains 
than it's nearest competitor kNN. MFS1 was best on 
16 domains out of 25 (not including MFS2). MFS2 was 
best on 14 domains and tied in 3 (not including MFS1). 
For a formal comparison, we used the Wilcoxon signed 
rank test and found that MFS1 and MFS2 were signif- 
icantly better than all others with a confidence level 
greater than 99%. 

MFS only performed poorly on two datasets: Iris and 
Tic-Tac-Toe. For Iris, both MFS1 and MFS2 gave the 
lowest accuracy out of all the classifiers. This can pos- 
sibly be explained by the small number of features in 
the Iris dataset. With only four features, many of the 
feature subsets would be identical. This would lead 
to identical errors and high error correlation. For Tic- 
Tac-Toe, MFS1 performed extremely poorly, having 
an error rate almost five times that of the NN and 
kNN classifiers. MFS1 probably performed poorly be- 
cause in the Tic-Tac-Toe domain the features have a 
high amount of interaction. We need to examine all 
the features to determine which side has won. Taking 
a random subset of features does not make sense and 
would probably lead to a greatly increased Bayes error 
rate for the individual classifiers. MFS2 did not experi- 
ence the same degradation as MFS1 because sampling 
without replacement degenerated into selecting all the 
features and hence performing identically to NN. 

Comparing MFS1 to MFS2, it is not clear which clas- 
sifier performed better. MFS1 was better than MFS2 
on 15 domains, worse on 7, and tied in 3.  However, 

MFS2 had a slightly better average accuracy as it did 
not have a catastrophic failure on Tic-Tac-Toe. The 
Wilcoxon test did not detect a significant difference 
between them. 

3.3    COMPUTATIONAL COMPLEXITY 

The nearest neighbor classifier is often criticized for 
slow runtime performance, so we will briefly comment 
on the complexity of MFS and then present actual 
running times from the experiments. 

The NN classifier computes the distance between the 
test pattern and every pattern in the training set. This 
requires 0(ef) time, where e is the number of ex- 
amples, and / is the number of features. For MFS, 
we use n NN classifiers, so its complexity is 0(nef). 
For training, we use cross-validation and MFS requires 
0(ne2fv) time, where v is the number of folds (Bay, 
1997). 

This analysis shows how the computational require- 
ments of MFS change as a function of the number of 
examples and features. However, it does not give any 
indication of actual running times on real datasets. 
Therefore in Table 2 we list the actual running times 
on an Intel Pentium Pro processor for NN and MFS 
on the three slowest datasets. 

Table 2: Time Requirements for NN and MFS1 

Domain 
Classification            Training 

NN              MFS1          MFS1 
Satimage 
Segment 
Annealing 

0.080s/pat    0.415s/pat       4.6h 
0.015s/pat    0.075s/pat      19.9m 
0.018s/pat    0.073s/pat       5.5m 

Note that even though we are combining 100 classifiers 
in MFS, it was only about five times as slow as the NN 
classifier. We attribute this speed up to caching the 
difference in feature values between the test pattern 
and all patterns in the training set (i.e. in d(x,y) = 

(£/(*/ - y/)2)=>we cache (xf - yj)2)- 

3.4    ROBUSTNESS TO IRRELEVANT 
FEATURES 

A major drawback of the NN classifier is its sensitivity 
to irrelevant features. This concerns us because the 
MFS algorithm uses multiple NN classifiers and hence 
raises the question: how will the ensemble behave? If 
the accuracy of the individual NN classifiers drops too 
low, simple voting can increase the error rate.  Since 
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Table 1: Accuracy and Parameter Selection Results (average k or number of features selected) 

Accuracy Average Parameter Settings 
Domain Pat/F Def. NN kNN FSS BSS MFS1 MFS2 kNN   FSS BSS   MFS1 MFS2 
Glass 214/9 35.5 67.9 66.8 72.3 72.5 75.8 76.1 1.7     4.8 5.5      4.4 3.6 
Hepatitis 155/19 79.4 79.2 80.4 80.3 77.2 82.7 82.6 6.7     2.4 12.8     8.1 7.0 
Ionosphere 351/34 64.1 86.5 85.5 88.2 87.9 93.5 92.7 1.8     4.6 21.9     6.9 6.5 
Iris 150/4 33.3 94.3 95.1 93.7 93.5 92.5 92.7 6.1     1.4 2.3      2.8 2.8 
Liver-Disorders 345/7 58.0 60.4 61.3 56.8 60.0 65.4 64.4 9.7     1.9 4.2      4.1 3.2 
Pima Diabetes 768/8 65.1 69.7 73.6 67.7 68.5 72.5 72.3 11.5    2.0 6.5      4.8 4.2 
Sonar 208/60 53.4 85.0 85.1 76.0 84.3 87.3 87.0 1.1     6.3 38.2     15.4 13.2 
Annealing 898/38 76.2 98.0 98.0 98.8 98.8 98.6 98.6 1.0     8.2 9.0     31.6 21.3 
Automobile 205/25 32.7 70.9 70.9 74.2 72.8 72.5 73.3 1.0     3.3 10.3     8.7 6.3 
Breast Cancer 286/9 70.3 65.9 74.3 71.0 70.0 74.0 74.0 8.0     1.9 5.0      6.7 4.6 
Credit 690/15 55.5 81.6 85.5 85.7 81.6 86.3 85.8 12.4    3.2 10.5     8.8 6.3 
German 1000/20 70.0 70.5 73.1 70.6 68.8 74.4 74.2 10.8    3.0 15.7    15.4 11.2 
Horse Colic 368/22 63.0 76.8 79.8 83.9 76.5 80.2 79.8 15.1    2.4 14.8     9.8 7.8 
Labor 57/16 64.9 92.1 90.4 78.6 89.5 94.2 94.6 2.3     2.8 7.5      6.7 5.1 
Lymphography 148/18 54.7 74.6 77.0 74.8 76.7 81.9 80.4 8.7     3.7 12.1     11.6 8.3 
Musk 476/166 56.5 84.3 83.9 na na 88.9 88.6 1.4     na na      18.1 19.1 
Primary-Tumor 339/17 24.5 37.0 43.5 37.8 38.9 44.5 45.0 13.8    6.3 11.2     10.6 8.1 
Satimage 6435/36 22.8 89.5 90.4 88.0 89.4 91.5 91.0 3       10 33       14 11 
Segment 2310/19 14.3 93.5 93.0 96.5 96.6 96.8 96.6 4.6     4.8 9.9     10.3 7.9 
Soybean-Large 683/35 13.0 90.7 90.5 93.2 90.7 93.4 93.2 1.5    11.9 20.2    21.9 14.9 
Tic-Tac-Toe 958/9 65.3 98.1 98.1 87.8 98.1 91.1 98.1 1.0     6.6 9.0      9.0 9.0 
Vehicle 946/18 25.8 68.1 67.7 66.6 70.4 71.4 71.4 5.7     5.4 12.5     9.7 6.8 
Vote 435/16 54.8 92.9 93.1 95.8 94.6 94.9 94.5 4.3     2.8 9.2     11.8 8.4 
Waveform 5000/21 33.9 74.9 81.4 70.3 74.4 81.0 80.9 13.7    7.4 16.8    10.0 8.1 
Wine 178/13 39.9 95.2 96.7 92.8 94.8 97.6 97.9 9.8     4.1 7.8      3.8 3.5 
average 49.1 79.9 81.4 79.2 80.3 83.3 83.4 6.3     4.6 12.8    10.6 8.3 

we are unsure of how the ensemble will behave, we 
experimentally investigated the robustness of MFS to 
irrelevant features. 

We used the same basic procedure in Section 3.1. We 
added 10, 20, and 30 boolean irrelevant features to 
each of the datasets and then measured the accuracy of 
kNN and MFS1. We chose boolean irrelevant features 
because they are more difficult for nearest neighbor 
methods to handle than continuous irrelevant features. 
This is because while they both have the same range 
and mean, boolean variables have greater variance. 

Table 3 shows the results for several domains. The 
remaining results (Bay, 1997) are not shown here for 
space reasons, but they follow a similar pattern. 

As expected, irrelevant features always hurt both kNN 
and MFS to some degree. However, the results are 
surprising because they reveal that on some domains 
kNN is critically sensitive while MFS is stable. For ex- 
ample, on Vehicle and Wine with 10 added irrelevant 
features, kNN drops in accuracy by over 20% while 
MFS drops by less than 2%. In general, MFS had only 
minor degradations in accuracy and was occasionally 
very robust.  For example, MFS's accuracy on Iono- 

sphere degrades by so little (from 93.5% to 90.1%), it 
is still better on the dataset corrupted by 30 irrelevant 
features, than all of the other classifiers on the original 
dataset. 

One possible explanation for MFS's performance lies 
in how random voters affect the margins of victory 
in simple voting. For simplicity, let us divide all vot- 
ers into two types: informed (using relevant features) 
and uninformed (random) voters. The informed vot- 
ers cast their ballots, and the winner will have a given 
margin of votes compared to the next closest competi- 
tor. The uninformed, random voters then cast their 
ballots. The random voters vote with equal proba- 
bility and equal expectation for all competitors (ac- 
cording to a multinomial distribution). In order for 
random voting to change the outcome, the number 
of random votes for class X must meet the follow- 
ing inequality: randvotes(X) — randvotes(trueclass) > 
margin(trueclass, X). Unless the margins from the in- 
formed voters are small, this is unlikely to occur since 
the E(randvotes(X)) = E(randvotes(trueclass)). 

As a numerical example, consider a two class problem 
with fifty informed voters and fifty random voters. The 
fifty informed voters cast their ballots and the outcome 
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is 30 votes for class A and 20 votes for class B. The 
fifty uninformed voters then cast their ballots. In order 
for the uninformed voters to change the outcome of 
the vote (class A wins) at least 30 must vote for class 
B. The probability that the decision will change is 
approximately 8%. 

This situation is analogous to what occurs when MFS 
is applied to domains with irrelevant features. The NN 
classifiers are the voters, and can become uninformed 
and random when both of the following conditions are 
met: (1) the randomly selected features are irrelevant, 
and (2) the occurrence of the classes in the training 
set are roughly equal (this is true in many of the UCI 
datasets). Note that if only the first condition is met, 
the NN classifier will be random but will choose classes 
roughly in proportion to their frequencies in the train- 
ing set. 

4    BIAS-VARIANCE ANALYSIS OF 
ERROR 

The expected error of an algorithm can be divided into 
two components: bias which is the consistent error 
that the algorithm makes over many different runs, 
and variance which is error that fluctuates from run 
to run. This decomposition is a useful method for ex- 
plaining how changes to an algorithm affect the final 
error rates. It allows us to decompose the error into 
meaningful components and to see how the error com- 
ponents change with variations in the algorithm. 

Several researchers have used the bias-variance analy- 
sis of error to show how multiple model approaches 
work. For example, both Breiman (1996b) and 
Schapire et al. (1997) showed that Bagging improves 
performance by reducing the variance component of 
error. Kong and Dietterich (1996) showed that ECOC 
could reduce both bias and variance. 

The bias variance decomposition of error originated 
in squared error for regression. For classification, 0-1 
loss (misclassification rate) is commonly used, but this 
does not have a straightforward or unique decomposi- 
tion. Recently, many authors have proposed similar 
decompositions (Kong and Dietterich, 1996; Breiman, 
1996b; James and Hastie, 1997; Tibshirani, 1996; Ko- 
havi and Wolpert, 1996). 

We used Kong and Dietterich's (1996) definitions. 
They define bias to be "the error of the ideal voted hy- 
pothesis," which is the result we would get from com- 
bining an infinite number of classifiers, each trained 
on an independent set of examples.   Variance is the 

"difference between the expected error rate and the 
ideal voted hypothesis error rate." Formally, where A 
is the algorithm, m is the training set size, x is the 
unknown test point, f(x) is the class of x, f*(x) is the 
ideal voted hypothesis of the algorithm A at x, and 
Error(A, m, x) is the expected error of algorithm A at 
x using training sets of size m, then bias and variance 
are: 

Bias(A, m,x) {! 
if/•(*) =/(a:) 
if/•(*)*/(*) (1) 

Variance(A, m, x) = Error{A, m, x) - Bias {A, m, x) 
(2) 

Note that the Bayes error is incorporated into the bias 
error. Also, the variance can be negative. This oc- 
curs when the algorithm is usually wrong, but makes 
a lucky guess and predicts the correct class. 

We investigated the bias-variance components of error 
on three datasets originally used by Breiman (1996b) 
and later by Schapire et. al (1997) to evaluate mul- 
tiple model approaches. The datasets are two class 
problems, with the individual classes composed of 20- 
dimensional gaussians. 

We compared four classifiers: NN, kNN, MFS1 with 
1 classifier (1-MFS1), and MFS1 with 100 classifiers. 
The NN classifier is the control, to which we can com- 
pare the kNN and MFS algorithms. 1-MFS1 should 
allow us to determine the changes to the error compo- 
nents that are caused by random feature selection and 
the changes that are caused by voting among multiple 
classifiers. 

We used a test set of 3000 instances and 100 inde- 
pendent training sets of size 300 to estimate the bias, 
variance, and error of the four classifiers. We approx- 
imated /* (x) by voting over the classifiers trained on 
the 100 independent training sets. The results are 
shown in Table 4. 

In Twonorm and Threenorm, selecting a single ran- 
dom subset of features (1-MFS1) destabilizes the NN 
classifier and causes the variance error to significantly 
increase. During voting (MFS1) the variance error is 
reduced to a much smaller value than the variance of 
the original NN classifier, thus reducing the overall er- 
ror significantly. 

For Ringnorm, the feature selection process does a dra- 
matic trade of bias for variance. The bias error drops 
from 47.1% to only 4.6%, while the variance increases 
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Table 3: Accuracy of kNN and MFS Under Corruption by Irrelevant Features 

kNN MFS1 
Domain 0 10 20 30 0 10 20 30 
Breast Cancer 74.3 71.0 70.3 69.8 74.0 71.5 71.3 70.5 
German 73.1 72.0 70.9 70.5 74.4 72.6 71.3 70.7 
Ionosphere 85.5 73.7 71.7 69.5 93.5 91.3 91.4 90.1 
Soybean-Large 90.5 80.6 75.2 71.1 93.4 87.7 81.2 76.9 
Vehicle 67.7 37.8 35.5 34.1 71.4 69.7 66.0 64.2 
Vote 93.1 91.8 91.1 90.9 94.9 93.0 92.0 91.3 
Wine 96.7 72.5 62.2 61.2 97.6 96.9 93.7 91.8 

Table 4: Bias Variance Decomposition of Error 

Domain Opt. NN 1-MFS1 MFS1 kNN 
Twonorm 

bias 2.3 2.4 2.6 2.4 2.4 
variance - 4.9 17.8 1.3 1.0 
error 2.3 7.3 20.4 3.7 3.4 

Threenorm 
bias 10.5 10.5 11.6 10.42 11.2 
variance - 13.6 22.5 6.3 4.4 
error 10.5 24.1 34.1 16.8 15.6 

Ringnorm 
bias 1.3 47.1 4.6 3.7 47.1 
variance - -7.9 25.8 2.0 -7.9 
error 1.3 39.2 30.4 5.7 39.2 

from -7.9% to 25.8%. Voting then drops the variance 
to only 2% greatly improving accuracy. 

From these datasets, we see that MFS has two modes 
of operation: (1) decreasing variance through voting, 
and (2) trading bias for variance through random fea- 
ture selection. Taken together, MFS is able to reduce 
both bias and variance components of error. 

In comparison to MFS, the kNN classifier reduced only 
variance. On Twonorm and Threenorm the error of 
NN was dominated by variance (the bias error was 
nearly optimal) and like MFS, kNN was able decrease 
error by reducing the variance. In fact, kNN did a 
better job than MFS at variance reduction. On Ring- 
norm, the error of the NN classifier was dominated by 
bias and kNN was not able to improve performance. 

The value for bias should always be greater than or 
equal to the Bayes error rate (10.5%), however, because 
of estimation error from finite sample sizes, it is possible 
to obtain bias estimates which are lower than the optimal 
bound. 

5    RELATED WORK 

Although there is a large body of research on multi- 
ple model methods for classification, very little specif- 
ically deals with combining NN classifiers. We are 
only aware of Skalak's (1996) work on combining NN 
classifiers with small prototype sets, Alpaydin's (1997) 
work with condensed nearest neighbor (CNN) classi- 
fiers (Hart, 1968), and Ricci and Aha's (1998) work on 
combining NN, feature selection, and ECOC. 

Skalak and Alpaydin approach the problem of combin- 
ing NN classifiers similarly. They drastically reduce 
the size of each classifier's prototype set to destabilize 
the NN classifier. Skalak investigates several differ- 
ent strategies for finding a reduced prototype set and 
even pursues an approach called "radical destabiliza- 
tion" where the NN classifier has just a single proto- 
type per class. He was able to improve accuracy over 
the baseline NN classifier in 10 of 13 UCI domains. 
Interestingly, MFS did well on Glass and Lymphog- 
raphy (average increase of over 7% compared to the 
NN classifier); these are two domains where Skalak re- 
ported that no combining algorithm improved perfor- 
mance. Alpaydin uses dataset partitioning (bootstrap 
or disjoint) in combination with the CNN classifier to 
edit and reduce the prototypes. He also reported im- 
provements over the NN classifier if the training sets 
were sufficiently small and thus able to generate di- 
verse classifiers. 

Ricci and Aha (1998) applied ECOC to the NN clas- 
sifier (NN-ECOC). Normally, applying ECOC to NN 
would not work as the errors in the two-class problems 
would be highly correlated; however, they found that 
applying feature selection to the two-class problems 
decorrelated errors if different features were selected. 
With this method they were able to improve perfor- 
mance in many of the domains tested, and they noted 
that ECOC accuracy gains tended to increase with in- 
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creased diversity among the features selected for the 
two-class problems. 

NN-ECOC is similar to MFS as they both use NN 
classifiers with different features. They differ in that 
NN-ECOC uses active selection of features (and out- 
put coding) while MFS uses random selection. A head 
to head comparison would be useful to determine if 
NN-ECOC and MFS achieve their accuracy gains in 
the same areas of the feature space. Ricci and Aha 
also analyzed NN-ECOC for bias and variance and 
concluded that NN-ECOC reduces bias but slightly 
increases variance. Unfortunately, because we used 
different a definition of bias and variance our results 
are not directly comparable. 

Regardless of which method has better accuracy, MFS 
appears to have two main advantages over NN-ECOC: 
(1) MFS is the simpler algorithm, and (2) MFS is not 
constrained by ECOC to multiclass problems. 

6    CONCLUSIONS AND FUTURE 
WORK 

We introduced MFS, a new algorithm for combining 
multiple NN classifiers. In MFS, each NN classifier has 
access to all the patterns in the original training set 
but only to a random subset of the features. 

Our experiments showed that MFS was effective in 
improving accuracy. But beyond accuracy improve- 
ments, MFS is a significant advance because it allows 
us to incorporate many desirable properties of the NN 
classifier in a multiple model framework. For example, 
one of the primary advantages of the NN classifier is 
its ability to incrementally add new data (or remove 
old data) without requiring retraining. MFS maintains 
this property and new data can be added (old data re- 
moved) at runtime. Another useful property of the 
NN classifier is its ability to predict directly from the 
training data without using intermediate structures. 
As a result, no matter how many classifiers we com- 
bine in MFS, we require only the same memory as a 
single NN classifier. (The combined NN classifiers can 
share a common dataset, and the features are selected 
randomly at runtime.) 

MFS has disadvantages and it should not be used in- 
discriminantly. In particular, MFS loses the asymp- 
totic optimality properties of the NN and kNN classi- 
fiers. Additionally, on domains with highly interacting 
features, such as Tic-Tac-Toe, the error rate can in- 
crease too much in the feature subsets resulting in poor 
ensemble performance. As with all multiple model ap- 

proaches, we lose comprehensibility compared to a sin- 
gle model. The individual must judge if the potential 
accuracy increases is worth these disadvantages. 

MFS is our first attempt at using random feature selec- 
tion to generate effective NN ensembles, and although 
successful at improving accuracy, there are still many 
unanswered questions and open areas for future work: 

1. Why does MFS work? We made an initial at- 
tempt at answering this question with our anal- 
ysis of irrelevant features and the bias-variance 
decomposition of error. But clearly more work 
needs to be done as we cannot even characterize 
the domains MFS will do well on. 

2. Application to other classifiers. We showed that 
random feature selection is useful for generating 
ensembles of NN classifiers. Can we apply this 
technique to other learning algorithms? 

3. Implications for feature selection and feature 
weighting. The experimental results showed that 
combining multiple random feature subsets can 
significantly improve performance over the single 
best subset of features found by FSS or BSS. This 
implies that instead of searching for the single best 
set of features, we should be searching for multiple 
feature sets that work well together. 

4. Other Improvements. In this paper, we kept the 
design of MFS as simple as possible; however, 
there are a number of obvious improvements that 
may help accuracy and speed. In particular, we 
would like to investigate: (1) different weighting 
schemes, (2) varying the number of features each 
classifier uses, (3) postpruning the ensemble, (4) 
combining more sophisticated versions of the NN 
classifier, and (5) editing the prototypes. 
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Abstract 

Predicting items a user would like on the basis of 
other users' ratings for these items has become a 
well-established strategy adopted by many rec- 
ommendation services on the Internet. Although 
this can be seen as a classification problem, algo- 
rithms proposed thus far do not draw on results 
from the machine learning literature. We propose 
a representation for collaborative filtering tasks 
that allows the application of virtually any ma- 
chine learning algorithm. We identify the short- 
comings of current collaborative filtering tech- 
niques and propose the use of learning algo- 
rithms paired with feature extraction techniques 
that specifically address the limitations of previ- 
ous approaches. Our best-performing algorithm 
is based on the singular value decomposition of 
an initial matrix of user ratings, exploiting latent 
structure that essentially eliminates the need for 
users to rate common items in order to become 
predictors for one another's preferences. We 
evaluate the proposed algorithm on a large data- 
base of user ratings for motion pictures and find 
that our approach significantly outperforms cur- 
rent collaborative filtering algorithms. 

1    INTRODUCTION 

Research on intelligent information agents in general, and 
recommendation systems in particular, has recently at- 
tracted much attention. The reasons for this are twofold. 
First, the amount of information available to individuals is 
growing steadily. Information overload has become a 
popular buzzword of our times and people feel over- 
whelmed when navigating through today's information 
and media landscape. This leads to a clear demand for 
automated methods, commonly referred to as intelligent 
information agents, that locate and retrieve information 

with respect to users' individual preferences. Second, the 
number of users accessing the Internet is also growing. 
Not only does this lead to an incredible variety of subjects 
that can be learned about online, it opens up new possi- 
bilities to organize and recommend information. The cen- 
tral idea here is to base personalized recommendations for 
users on information obtained from other, ideally like- 
minded, users. This is commonly known as collaborative 
filtering or social filtering. 

The underlying techniques used in today's recommenda- 
tion systems fall into two distinct categories: content- 
based and collaborative methods. Content-based methods 
require textual descriptions of the items to be recom- 
mended and draw on results from both information re- 
trieval and machine learning research (e.g., Pazzani and 
Billsus, 1997). In general, a content-based system ana- 
lyzes a set of documents rated by an individual user and 
uses the content of these documents, as well as the pro- 
vided ratings, to infer a profile that can be used to rec- 
ommend additional items of interest. In contrast, collabo- 
rative methods recommend items based on aggregated 
user ratings of those items, i.e. these techniques do not 
depend on the availability of textual descriptions. Both 
approaches share the common goal of assisting in the 
user's search for items of interest, and thus attempt to 
address one of the key research problems of the informa- 
tion age: locating needles in a haystack that is growing 
exponentially. 

In this paper we focus on collaborative filtering tech- 
niques. A variety of algorithms have previously been re- 
ported in the literature and their promising performance 
has been evaluated empirically (Shardanand and Maes, 
1995; Hill et al. 1995; Resnick et al. 1994). These results, 
and the continuous increase of people connected to the 
Internet, led to the development and employment of nu- 
merous collaborative filtering systems. Virtually all topics 
that could be of potential interest to users arc covered by 
special-purpose recommendation systems: web pages, 
news stories, movies, music videos, books, CDs, restau- 
rants, and many more. Some of the best-known represen- 
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tatives of these systems, such as FireFly 
(www.firefly.com) or WiseWire (www.wisewire.com) 
have turned into commercial enterprises. Furthermore, 
collaborative filtering techniques are becoming increas- 
ingly popular as part of online shopping sites. These sites 
incorporate recommendation systems that suggest prod- 
ucts to users based on products that like-minded users 
have ordered before, or indicated as interesting. For ex- 
ample, users can find out which CD they should order 
from an online CD store if they provide information about 
their favorite artists, and several online bookstores (e.g. 
amazon.com) can associate their available titles with other 
titles that were ordered by like-minded people. 

Although there seems to be an increasingly strong de- 
mand for collaborative filtering techniques, only a few 
different algorithms have been proposed in the literature 
thus far. Furthermore, the reported algorithms are based 
on rather simple predictive techniques. Although collabo- 
rative filtering can be seen as a classification task, the 
problem has not received much attention in the machine 
learning community. It seems likely that predictive per- 
formance can be increased through the development of 
special-purpose algorithms that draw on results from the 
machine learning literature. 

This paper can be outlined as follows. We briefly present 
the central ideas of previously reported collaborative fil- 
tering algorithms. We identify the main shortcomings of 
these approaches and motivate the need for techniques 
that do not suffer from these limitations. We then explain 
how the task of computing collaborative recommenda- 
tions can be represented as a classification task. Within 
this framework we present a learning algorithm that ad- 
dresses the limitations of previous approaches. The pro- 
posed method is based on dimensionality reduction 
through the singular value decomposition (SVD) of an 
initial matrix of user ratings, exploiting latent structure 
that essentially eliminates the need for users to rate com- 
mon items in order to become predictors for one another's 
preferences. An artificial neural network is used to com- 
pute final recommendations. We evaluate our algorithm 
on a large database of user ratings for motion pictures and 
show that it significantly outperforms previously pro- 
posed algorithms. 

2     COLLABORATIVE FILTERING 
ALGORITHMS 

In this section we briefly outline the main ideas of col- 
laborative filtering algorithms reported in the literature. 
Shardanand and Maes, 1995, discuss a variety of social 
filtering algorithms and evaluate them in the context of 
their music recommendation system Ringo (predecessor 
to FireFly). These algorithms are based on a simple intui- 
tion: predictions for a user should be based on the simi- 

larity between the interest profile of that user and those of 
other users. Therefore, the first step of these algorithms is 
to compute similarities between user profiles. Suppose we 
have a database of user ratings for items, where users in- 
dicate their interest in an item on a numeric scale. It is 
now possible to define similarity measures between two 
user profiles, U and J, where a user profile simply con- 
sists of a vector of numeric ratings. A measure proposed 
by Shardanand and Maes is the Pearson correlation coef- 
ficient, rm. Once the similarity between profiles has been 
quantified, it can be used to compute personalized 
recommendations for users. All users whose similarity is 
greater than a certain threshold t are identified and 
predictions for an item are computed as the weighted 
average of the ratings of those similar users for the item, 
where the weight is the computed similarity. Note that 
this prediction scheme leads to cases where predictions 
cannot be computed for all items in the database. If the 
threshold t is set to a high value, only a few very similar 
users are considered and it becomes increasingly likely 
that ratings for some specific item are not available. In 
order to avoid this problem, (Resnick et al, 1994) 
compute predictions according to the following formula, 
where Ux is a rating to be predicted for User U on item x 
and rV} is the correlation between users U and /. 

JJ     TT  i   JeRatersofx 

JeRaters of x 

where 

r„, = 
^(U-U)(J-J) 

If no ratings for item x are available, the prediction is 
equivalent to the mean of all ratings from user U. Similar 
algorithms were reported and evaluated in (Hill et al. 
1995). 

While these correlation-based prediction schemes were 
shown to perform well, they suffer from several limita- 
tions. Here, we identify three specific problems: First, 
correlation between two user profiles can only be com- 
puted based on items that both users have rated, i.e. the 
summations and averages in the correlation formula are 
only computed over those items that both users have 
rated. If users can choose among thousands of items to 
rate, it is likely that overlap of rated items between two 
users will be small in many cases. Therefore, many of the 
computed correlation coefficients are based on just a few 
observations, and thus the computed correlation cannot be 
regarded as a reliable measure of similarity. For example, 
a correlation coefficient based on three observations has 
as much influence on the final prediction as a coefficient 
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based on 30 observations. Second, the correlation ap- 
proach induces one global model of similarities between 
users, rather than separate models for classes of ratings 
(e.g. positive rating vs. negative rating). Current ap- 
proaches measure whether two user profiles are positively 
correlated, not correlated at all or negatively correlated. 
However, ratings given by one user can still be good pre- 
dictors for ratings of another user, even if the two user 
profiles are not correlated. Consider the case where user 
A's positive ratings are a perfect predictor for a negative 
rating from user B. However, user A's negative ratings do 
not imply a positive rating from user B, i.e. the correlation 
between the two profiles could be close to zero, and thus 
potentially useful information is lost. Third, and maybe 
most importantly, two users can only be similar if there is 
overlap among the rated items, i.e. if users did not rate 
any common items, their user profiles cannot be corre- 
lated. Due to the enormous number of items available to 
rate in many domains, this seems to be a serious stum- 
bling block for many filtering services, especially during 
the startup phase. However, just knowing that users did 
not rate the same items does not necessarily mean that 
they are not like-minded. Consider the following exam- 
ple: Users A and B are highly correlated, as are users B 
and C. This relationship provides information about the 
similarity between users A and C as well. However, in 
case users A and C did not rate any common items, a cor- 
relation-based similarity measure could not detect any 
relation between the two users. We believe that poten- 
tially useful information is lost if this kind of transitive 
similarity relation cannot be detected. 

3     COLLABORATIVE FILTERING AS A 
CLASSIFICATION PROBLEM 

In this section we present collaborative filtering in a ma- 
chine learning framework and suggest the use of an algo- 
rithm that specifically addresses the aforementioned 
limitations of correlation-based approaches. 

Collaborative filtering can be seen as a classification task. 
Based on a set of ratings from users for items, we are 
trying to induce a model for each user that allows us to 
classify unseen items into two or more classes, for exam- 
ple like and dislike. Alternatively, if our goal is to predict 
user ratings on a continuous scale, we have to solve a 
regression problem. 

Our initial data exists in the form of a sparse matrix, 
where rows correspond to users, columns correspond to 
items and the matrix entries are ratings. Note that sparse 
in this context means that most elements of the matrix are 
empty, because every user typically rates only a very 
small subset of all possible items. The prediction task can 
now be seen as filling in the missing matrix values. Since 
we are interested in learning personalized models for each 

user, we associate one classifier (or regression model) 
with every user. This model can be used to predict the 
missing values for one row in our matrix. 

Table 1: Exemplary User Ratings 

I, h h 14 h 
u, 4 3 
u2 1 2 
u, 3 4 2 4 

u4 4 2 1 ? 

With respect to Table 1, consider that we would like to 
predict user 4's rating for item 5. We can train a learning 
algorithm with the information that we have about user 
4's previous ratings. In this example user 4 has provided 3 
ratings, which leads to 3 training examples: //, I2, and I3. 
These training examples can be directly represented as 
feature vectors, where users correspond to features ([/;, 
U2, Us) and the matrix entries correspond to feature val- 
ues. User 4's ratings for /;, I2 and I3 are the class labels of 
the training examples. However, in this representation we 
would have to address the problem of many missing fea- 
ture values. If the learning algorithm to be used cannot 
handle missing feature values, we can apply a simple 
transformation. Note that we cannot introduce an addi- 
tional numeric value that indicates a missing feature, be- 
cause this would conflate the new value and the observed 
ratings. However, every user can be represented by up to 
n Boolean features, where n is the number of points on the 
scale that is used for ratings. For example, if the full n- 
point scale of ratings is used to represent ratings from m 
users, the resulting Boolean features are of the form "User 
m's rating was i", where 0 < i < n. We can now assign 
Boolean feature values to all of these new features. If this 
representation leads to an excessive number of features 
that only appear rarely throughout the data, the rating 
scale can be further discretized, e.g. into the two classes 
like and dislike. The resulting representation is simple and 
intuitive: a training example E corresponds to an item that 
the user has rated, the class label C is the user's discre- 
tized rating for that item, and items are represented as 
vectors of Boolean features F,. 

Table 2: Exemplary Feature Vectors 

E, E2 E, 

U,like 1 0 1 
Uidislike 0 0 0 
U2like 0 0 0 
U2dislike 0 1 0 
UJike 1 1 0 
Uidislike 0 0 1 

Class like dislike dislike 
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Table 2 shows the resulting Boolean feature vectors (true 
= 1 mi false = 0) for user 4, where a rating of either 1 or 
2 corresponds to the class dislike, and a rating of either 3 
or 4 corresponds to the class like. 

After converting a data set of user ratings for items into 
this format, we can draw on the machine learning litera- 
ture and apply virtually any supervised learning algorithm 
that, through analysis of a labeled training sample T = {Eß 

Cj}, can induce a function/.- E—> C. 

However, if we look back at the correlation-based ap- 
proaches described earlier and express them in our learn- 
ing framework, we notice that these algorithms solve a 
classification problem in a somewhat unconventional 
way. If features and classes are represented as ordinal 
values (no discretization), these algorithms measure the 
degree of correlation between features and class labels. 
Predictions for unseen examples are then computed as a 
weighted average of feature values. While this approach 
seems to work reasonably well for the domain at hand, it 
is not supported by a sound theory that we could use to 
motivate the algorithms' use for either a classification or 
regression task. It comes as no surprise that researchers in 
machine learning have thus far not attempted to solve any 
task with this algorithm. It seems likely that theoretically 
well-founded algorithms that have the discrimination 
between classes as their specific goal, can outperform 
correlation-based approaches. 

3.1   REDUCING DIMENSIONALITY 

Our goal is to construct or apply algorithms that address 
the previously identified limitations of correlation-based 
approaches. As mentioned earlier, the computation of 
correlation coefficients can be based on too little infor- 
mation, leading to inaccurate similarity estimates. When 
applying a learning algorithm, we would like to avoid this 
problem. In particular, we would like to discard informa- 
tion that we do not consider informative for our classifi- 
cation task. Likewise, we would like to be able to take 
possible interaction and dependencies among features into 
account, as we regard this as an essential prerequisite for 
users to become predictors for one another's preferences 
even without rating common items. Both of these issues 
can be addressed through the application of appropriate 
feature extraction techniques. Furthermore, the need for 
dimensionality reduction is of particular importance if we 
represent our data in the proposed learning framework. 
For large databases containing many users we will end up 
with thousands of features while our amount of training 
data is very limited. Learning under these conditions is 
not practical, because the amount of data points needed to 
approximate a concept in d dimensions grows exponen- 
tially with d, a phenomenon commonly referred to as the 
curse of dimensionality (Bellman, 1961). This is, of 
course, not a problem unique to collaborative filtering. 

Other domains with very similar requirements include the 
classification of natural language text or, in general, any 
information retrieval task. In these domains the similarity 
among text documents needs to be measured. Ideally, two 
text documents should be similar if they discuss the same 
subject or contain related information. However, it is of- 
ten not sufficient to base similarity on the overlap of 
words. Two documents can very well discuss similar 
subjects, but use a somewhat different vocabulary. A low 
number of common words should not imply that the 
documents are not related. This is very similar to the 
problem we are facing in collaborative filtering: the fact 
that two users rated different items should not imply that 
they are not like-minded. Researchers in information re- 
trieval have proposed different solutions to the text ver- 
sion of this problem. One of these approaches, Latent 
Semantic Indexing (LSI) (Deerwester et al., 1990) is 
based on dimensionality reduction of the initial data 
through singular value decomposition (SVD). We will 
now show how the SVD can be used as a dimensionality 
reduction technique for our collaborative filtering task. A 
more detailed description of underlying algebraic princi- 
ples can be found in (Berry et al., 1994). 

3.2   COLLABORATIVE FILTERING AND THE 
SVD 

We start our analysis based on a rectangular matrix con- 
taining Boolean values that indicate user ratings for items 
(see Table 2). This matrix is typically very sparse, where 
sparse means that most elements are zero, because each 
item is only rated by a small subset of all users. Further- 
more, many features appear infrequently or do not appear 
at all throughout this matrix. However, features will only 
affect the SVD if they appear at least twice. Therefore, we 
apply a first preprocessing step and remove all features 
that appear less than twice in our training data. The result 
of this preprocessing step is a matrix A containing zeros 
and ones, with at least two ones in every row. Using the 
SVD, the initial matrix A with r rows, c columns and rank 
m can be decomposed into the product of three matrices: 

A = U1VT 

where the columns of U and V are orthonormal vectors 
that define the left and right singular vectors of A, and .Tis 
a diagonal matrix containing corresponding singular 
values. Since the derived vectors are orthonormal, no 
vector can be reconstructed as a linear combination of the 
others, f/isanmxc matrix and the singular vectors cor- 
respond to columns of the original matrix. V is an r x m 
matrix and the singular vectors correspond to rows of the 
original matrix. The singular values quantify the amount 
of variance in the original data captured by the singular 
vectors. This representation provides an ideal framework 
for dimensionality reduction, because one can now quan- 
tify the amount of information that is lost if singular val- 
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ues and their corresponding singular vector elements are 
discarded. The smallest singular values are set to zero, 
reducing the dimensionality of the new data representa- 
tion. The underlying intuition is that the n largest singular 
values together with their corresponding singular vector 
elements capture the important "latent" structure of the 
initial matrix, whereas random fluctuations are elimi- 
nated. The usefulness of the SVD for our task can be fur- 
ther explained by its geometric interpretation. If we 
choose to retain the k largest singular values, we can in- 
terpret the singular vectors, scaled by the singular values, 
as coordinates of points representing the rows and col- 
umns of the original matrix in k dimensions. In our con- 
text, the goal of this transformation is to find a spatial 
configuration such that items and user ratings are repre- 
sented by points in /c-dimensional space, where every item 
is placed at the centroid of every user rating that it re- 
ceived and every user rating is placed at the centroid of all 
the items that it was assigned to. While the position of 
vectors in this ^-dimensional space is determined through 
the assignment of ratings to items, items can still be close 
in this space even without containing any common rat- 
ings. Likewise, user ratings can be close to each other, 
although they were never assigned to a common set of 
items. Many different strategies for classification of items 
are theoretically possible using this ^-dimensional repre- 
sentation. We will now describe the complete algorithm 
for item classification that we used in our experiments. 

3.3   USING SINGULAR VECTORS AS TRAINING 
EXAMPLES 

Our training data is a set of rated items, represented as 
Boolean feature vectors (see Table 2). We compute the 
SVD of the training data and discard the n smallest sin- 
gular values, reducing the dimensionality to k. Currently, 
we set k to 0.9 ■ m, where m is the rank of the initial ma- 
trix. This value was chosen because it resulted in the best 
classification performance (evaluated using a tuning set, 
see Section 4). The singular vectors of matrix U scaled by 
the remaining singular values represent rated items in k 
dimensions. These vectors become our new training ex- 
amples. Since we compute the SVD of the training data, 
resulting in real-valued feature vectors of size k, we need 
to specify how we transform examples to be classified 
into this format. Based on the geometric interpretation of 
the SVD, the solution to this problem is straightforward. 
We compute a ^-dimensional vector for an item, so that 
with appropriate rescaling of the axes by the singular val- 
ues, it is placed at the centroid of all the user ratings that it 
contains. Mathematically, we can compute this vector as: 

vt=vrt/tz;' 

where v is a Boolean feature vector containing user rat- 
ings, Uk is a matrix of singular vectors with k elements in 

each vector, and 2i is a diagonal matrix containing the k 
largest singular values. 

At this point we need to pick a suitable learning algorithm 
that takes real-valued feature vectors as its input and 
learns a function that either predicts class membership or 
computes a score a user would assign to an item. Ideally, 
we would like to use a learning paradigm that allows for 
maximum flexibility in evaluating this task as either a 
regression or classification problem. Therefore, we se- 
lected artificial neural networks as the method of choice 
for our purposes (Rumelhart and McLelland, 1986). It can 
be shown that neural networks with linear output units 
and a single hidden layer can approximate any continuous 
function/by increasing the size of the hidden layer (Ri- 
pley, 1996). This allows us to solve a regression problem. 
Alternatively, if we replace the linear output units by lo- 
gistic units, we can use the same framework to perform 
logistic regression, or learn to discriminate between 
classes. We ran various experiments on a tuning set of the 
data available to us, to determine a network topology and 
learning paradigm that resulted in good performance (see 
Section 4 for details on the experimental evaluation). The 
winning approach was a feed-forward neural network 
with k input units, 2 hidden units and 1 output unit. The 
hidden units use sigmoid functions, while the output unit 
is linear. Weights are learned with backpropagation. Al- 
though the task at hand might suggest using a user's rat- 
ing as the function value to predict, we found that a 
slightly different approach resulted in better performance. 
We determined the average rating for an item1 and trained 
the network on the difference between a user's rating and 
the average rating. This function appeared to be easier to 
learn, presumably because the function values take on 
extreme values less frequently and in these cases express 
a user's individual taste. In order to predict scores for 
items, the output of the network needs to be added to the 
mean of the item. We then used a threshold t (depending 
on the rating scale of the domain, see next section) to 
convert the predicted rating to a binary class label. In 
summary, our algorithm for collaborative filter induction 
proceeds in the following steps: 

Training: 

• Convert the training data, a sparse matrix of user 
ratings, to Boolean feature vectors, resulting in a ma- 
trix filled with zeros (false) and ones (true). 

• Compute the SVD of the training data. 

• Select k, the number of dimensions to retain, and 
reduce the extracted singular vectors accordingly. 

• Train a neural network with singular vectors scaled 
by singular values. 

1 The average is computed using ratings from all users who rated 
the item, except the user whose rating is to be predicted. 
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Predicting: 

• Convert the item's user ratings to a Boolean feature 
vector. 

• Scale the feature vector into the k-dimensional space. 

• Feed the resulting real-valued vector to the trained 
neural network to compute a prediction. 

4    EXPERIMENTAL EVALUATION 

In this section we report results of the experimental 
evaluation of our proposed algorithm. We describe the 
data set used, the experimental methodology, as well as 
performance measures we consider appropriate for this 
task. 

4.1 THE EACHMOVIE DATABASE 

We ran experiments using data from the EachMovie col- 
laborative filtering service. The EachMovie service was 
part of a research project at the Systems Research Center 
of Digital Equipment Corporation. The service was avail- 
able for a period of 18 months and was shut down in 
September 1997. During that time the database grew to a 
fairly large size, containing ratings from 72,916 users on 
1,628 movies. User ratings were recorded on a numeric 
six-point scale (0.0, 0.2, 0.4, 0.6, 0.8, 1.0). The data set is 
publicly available and can be obtained from Digital 
Equipment Corporation (McJones, 1997). 

Although data from 72,916 users is available, we restrict 
our analysis to the first 2,000 users in the database. These 
2,000 users provided ratings for 1,410 different movies. 
We restricted the number of users considered, because we 
are interested in the performance of the algorithm under 
conditions where the ratio of users to items is low. This is 
a situation that every collaborative filtering service has to 
go through in its startup-phase, and in many domains we 
cannot expect to have significantly more users than items. 
We also believe that the deficiencies of correlation-based 
approaches will be more noticeable under these condi- 
tions, because it is less likely to find users with consider- 
able overlap of rated items. 

4.2 PERFORMANCE MEASURES 

We are most interested in a system that can accurately 
distinguish between movies a user would like and all 
other movies rather than a method that accurately predicts 
the numeric rating of every movie. Of course, a method 
that predicts the actual ratings most exactly could also be 
the best classifier for this classification task. To analyze 
this, we defined two classes, hot and cold, that were used 
to label movies. When transforming movies to training 
examples for a particular user, we label movies as hot if 

the rating for the movie was 0.8 or 1.0, or cold otherwise. 
We decided to use this threshold since we are interested in 
identifying movies the user would like and feel strongly 
about. Since the correlation-based approaches as well as 
the neural network predict numeric ratings, we base the 
classification of movies on this numeric prediction, and 
classify them as hot if the predicted rating exceeds the 
threshold 0.7 (midpoint between the two possible user 
ratings 0.6 and 0.8). At the same time, we can still use the 
predicted score to rank-order classified movies. Not only 
does assigning class labels allow us to measure classifica- 
tion accuracy, we can also apply additional performance 
measures, such as precision and recall, commonly used 
for information retrieval tasks. In our domain, precision is 
the percentage of movies classified as hot that are hot, and 
recall is the percentage of hot movies that were classified 
as hot. We believe that these measures are appropriate for 
our study, because we would like to quantify performance 
for a task that has the identification of relevant items as its 
goal. 

It is important to evaluate precision and recall in con- 
junction, because it is easy to optimize either one sepa- 
rately. However, for a classifier to be useful for our pur- 
poses we demand that it be precise as well as have high 
recall. In order to quantify this with a single measure, 
(Lewis and Gale, 1994) proposed the F-measure, a 
weighted combination of precision and recall that pro- 
duces scores ranging from 0 to 1. Here we assign equal 
importance to precision and recall: 

F = 
2 ■ precision ■ recall 

precision + recall 

In summary, we measure the overall performance of the 
algorithms using classification accuracy and the 
F-measure. Since we see the F-measure as a useful con- 
struct to compare classifiers, but think that it is not an 
intuitive measure to indicate a user's perception of the 
usefulness of an actual system, we use an additional 
measure: precision at the top n ranked items (here, we 
report scores for n = 3 and n = 10). 

4.3   EXPERIMENTAL METHODOLOGY 

Since we are interested in the performance of the algo- 
rithms with respect to the number of ratings provided by 
users, we report learning curves where we vary the num- 
ber of rated items from 10 to 50. For each user we ran a 
total of 30 paired trials for each algorithm. For an indi- 
vidual trial of an experiment, we randomly selected 50 
rated items to use as a training set, and 30 as a test set. We 
then started training with 10 examples out of the set of 50 
and increased the training set incrementally in steps of 10, 
measuring the algorithms' performance on the test set for 
each training set size. Final results for one user are then 
averaged over all trials. We repeated this for 20 users and 
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Figure 1: Learning Curves 

the final curves reported here are averaged over those 20 
users. 

The actual size of the feature vectors used to train the 
neural network depends on the number of rated items in 
the current training set, as well as the particular rated 
items. Initially, every training example consists of 4000 
Boolean values (2000 users * 2 features per user). Delet- 
ing all features that appear less than twice reduces the 
number of features approximately by a factor of 4 (see 
section 3.2), i.e. if we start to train our algorithm with 10 
examples, we have an initial 10 x 1000 matrix of training 
data. After decomposing this matrix using the SVD, the 
matrix U that represents rated items in a space of lower 
dimensions is a 10 x 10 matrix (because the initial matrix 
has 10 columns and this is also the rank of the matrix). 
Since we keep only 90% of the singular values, the re- 
sulting feature vectors consist of 9 real values. Likewise, 
if we have 50 examples in the training set, the resulting 
size of every training example after dimensionality re- 
duction is 45. 

We determined parameters for our algorithms using a 
tuning set of 20 randomly selected users. The results re- 
ported here are averaged over 20 different users. The 
training data for these users is based on ratings from the 
first 2000 users of the database, as described earlier. We 

selected users randomly, but with the following con- 
straints. First, only users whose prior probability of liking 
a movie is below 0.75 are considered. Otherwise, scores 
that indicate high precision of our algorithms might be 
biased by the fact that there are some users in the database 
who either like everything or just gave ratings for movies 
they liked. Second, only users that rated at least 80 mov- 
ies were selected, so that we could use the same number 
of training and test examples for all users. 

4.4   SUMMARY OF RESULTS 

Figure 1 summarizes the performance of three different 
algorithms. The algorithm labeled Correlation is the cor- 
relation-based approach that performed best on this data 
out of the strategies described in Section 2. This approach 
uses the prediction formula as described in (Resnick et al 
1994) and summarized in Section 2. We consider all cor- 
relations, i.e. we do not require correlations to be above a 
certain threshold. The algorithm labeled SVD/ANN is our 
dimensionality reduction approach coupled with a neural 
network as described in Section 3.3. Since this algorithm 
is a combination of a feature extraction technique (SVD) 
and a learning algorithm (ANN), the observed perform- 
ance does not allow us to infer anything about the relative 
importance of each technique individually. Therefore, we 
report the performance of a third algorithm, labeled Info- 
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Gain/ANN, in order to quantify the importance of our 
proposed feature extraction technique. InfoGain/ANN uses 
the same neural network setup as SVD/ANN, but applies a 
different feature selection algorithm. Here, we compute 
the expected information gain (Quinlan, 1986) of all the 
initial features and then select the n most informative 
features, where n is equivalent to the number of features 
used by SVD/ANN for each training set size. Since ex- 
pected information gain cannot detect interaction and de- 
pendencies among features, the difference between 
SVD/ANN and InfoGain/ANN allows us to quantify the 
utility of the SVD for this task. 

The results show that both SVD/ANN, as well as Info- 
Gain/ANN, performed better than the correlation ap- 
proach. In addition, SVD/ANN is more accurate and sub- 
stantially more precise than InfoGain/ANN. At 50 training 
examples Correlation reaches a classification accuracy of 
64.4%, vs. 67.9% for SVD/ANN. While predictive accu- 
racy below 70% might initially seem disappointing, we 
need to keep in mind that our goal is not the perfect clas- 
sification of all movies. We would like to have a system 
that identifies many interesting items and does this with 
high precision. This ability is measured by the F-measure 
and we can see that SVD/ANN has a significant advantage 
over the correlation approach (at 50 examples 54.2% for 
Correlation vs. 68.8% for SVD/ANN). Finally, if we re- 
strict our analysis to the top 3 or top 10 suggestions of 
each algorithm, we can see that SVD/ANN is much more 
precise than the other two algorithms. At 50 training ex- 
amples Correlation reaches a precision of 72.6% at the 
top 3 suggestions, InfoGain/ANN's precision is 78.3% and 
SVD/ANN reaches 83.9%. These results are encouraging 
and provide empirical evidence that the use of theoreti- 
cally well-founded learning algorithms can lead to im- 
proved predictive performance on collaborative filtering 
tasks. Furthermore, we have shown that an additional 
performance increase can be obtained through the use of 
appropriate dimensionality reduction techniques, such as 
the SVD. 

5    DISCUSSION AND FUTURE WORK 

Our experiments illustrate the potential of dimensionality 
reduction techniques that exploit the underlying "latent 
structure" of user ratings. The key to success of this 
method is that it can utilize information from users whose 
ratings are not correlated, or who have not even rated 
anything in common. However, since we are computing 
the SVD of the training data, i.e. a matrix consisting only 
of feature vectors for all items a user has rated, we might 
not be exploiting the full potential of the method. Includ- 
ing feature vectors of items that the user has not rated in 
the matrix to decompose will affect the position of the 
singular vectors corresponding to labeled training exam- 
ples in k-dimensional space. Future experiments will re- 

veal if further performance improvements can be 
achieved through the addition of unlabeled training data. 

We believe that additional knowledge about the similarity 
of users and items can be gained through the analysis of 
textual descriptions of items. Our long-term goal of this 
work is to combine collaborative and content-based fil- 
tering techniques. Similarity between users could then be 
influenced by similarity between descriptions of rated 
items. This is a very desirable characteristic, as it would 
further reduce the need for ratings of common items. We 
believe that content-based techniques will fit nicely into 
the learning framework presented in this paper. Since 
items correspond to feature vectors, one could extend 
these feature vectors to contain content-based features. 
We started to run initial experiments using textual de- 
scriptions of movies, extending feature vectors with Boo- 
lean features indicating the presence or absence of words. 
These experiments have not yet led to significant per- 
formance improvements. However, we assume that the 
reason for this is the form of textual movie descriptions 
available to us for these first experiments, rather than the 
viability of the method itself. 

While the proposed SVD/ANN approach leads to per- 
formance gains, it is significantly more computationally 
expensive than the other approaches discussed here. The 
SVD implementation used in our experiments is a single- 
vector Lanczos method which is part of the publicly 
available software package SVDPACKC (Berry, 1992). Its 
computational complexity is 0(3Dz), where z is the num- 
ber of non-zero elements in the matrix and D is the num- 
ber of dimensions to be computed. In our experiments we 
observed training times (SVD + network training) ranging 
from 0.4 seconds for 10 training examples to 2.3 seconds 
for 50 training examples2. While these times would allow 
for the application of the algorithm as part of an intelli- 
gent information agent operating under real-time condi- 
tions, we need to keep in mind that we restricted our ex- 
periments to 2000 users. Including more users leads to 
larger matrices to be decomposed and the algorithm will 
slow down. Therefore, it remains to be seen if similar 
techniques could be applied to collaborative-filtering 
services that have accumulated large amounts of data and 
need to compute predictions under real-time conditions. 
However, note that the SVD would not have to be recom- 
puted for each user. The SVD of large portions of the 
available data could be precomputed, and new items that 
were not part of this analysis could be scaled into the k- 
dimensional space as described in Section 3.3. The 
viability, performance and complexity of this approach 
will be the subject of future research. 

' Measured on a 200Mhz Pentium Pro system. 
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6    SUMMARY AND CONCLUSIONS 

In this paper we have identified the shortcomings of cor- 
relation-based collaborative filtering techniques and 
shown how these problems can be addressed through the 
application of classification algorithms. We believe that 
the contributions of this paper are twofold. First, we have 
presented a representation for collaborative filtering tasks 
that allows the use of virtually any machine learning algo- 
rithm. We hope that this will pave the way for further 
analysis of the suitability of learning algorithms for this 
task. Second, we have shown that exploiting latent struc- 
ture in matrices of user ratings can lead to improved pre- 
dictive performance. In a set of experiments with a data- 
base of ratings for motion pictures, we used the singular 
value decomposition to project user ratings and rated 
items into a lower dimensional space. This allows users to 
become predictors for one another's preferences even 
without any overlap of rated items. Since our society is 
already being characterized as an information society that 
suffers from steadily increasing information overload, we 
regard the automated induction of personalized informa- 
tion filters as an important research problem. The Internet 
opens up new possibilities to collect enormous amounts of 
information about users' likes and dislikes. We hope this 
paper will help develop new ideas for more effective use 
of this information. 
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Abstract 

An approach to clustering is presented that 
adapts the basic top-down induction of de- 
cision trees method towards clustering. To 
this aim, it employs the principles of instance 
based learning. The resulting methodology 
is implemented in the TIC (Top down In- 
duction of Clustering trees) system for first 
order clustering. The TIC system employs 
the first order logical decision tree representa- 
tion of the inductive logic programming sys- 
tem TILDE. Various experiments with TIC 
are presented, in both propositional and re- 
lational domains. 

1    INTRODUCTION 

Decision trees are usually regarded as representing the- 
ories for classification. The leaves of the tree contain 
the classes and the branches from the root to a leaf 
contain sufficient conditions for classification. 

A different viewpoint is taken in Elements of Machine 
Learning [Langley, 1996]. According to Langley, each 
node of a tree corresponds to a concept or a cluster, 
and the tree as a whole thus represents a kind of taxon- 
omy or a hierarchy. Such taxonomies are not only out- 
put by decision tree algorithms but typically also by 
clustering algorithms such as e.g. COBWEB [Fisher, 
1987]. Therefore, Langley views both clustering and 
concept-learning as instantiations of the same general 
technique, the induction of concept hierarchies. The 
similarity between classification trees and clustering 
trees has also been noted by Fisher, who points to 
the possibility of using TDIDT (or TDIDT heuristics) 

* The authors axe listed in alphabetical order. 

in the clustering context [Fisher, 1993] and mentions 
a few clustering systems that work in a TDIDT-like 
fashion [Fisher and Langley, 1985]. 

Following these views we study top-down induction of 
clustering trees. A clustering tree is a decision tree 
where the leaves do not contain classes and where 
each node as well as each leaf corresponds to a cluster. 
To induce clustering trees, we employ principles from 
instance based learning and decision tree induction. 
More specifically, we assume that a distance measure 
is given that computes the distance between two exam- 
ples. Furthermore, in order to compute the distance 
between two clusters (i.e. sets of examples), we employ 
a function that computes a prototype of a set exam- 
ples. A prototype is then regarded as an example, 
which allows to define the distance between two clus- 
ters as the distance between their prototypes. Given 
a distance measure for clusters and the view that each 
node of a tree corresponds to a cluster, the decision 
tree algorithm is then adapted to select in each node 
the test that will maximize the distance between the 
resulting clusters in its subnodes. 

Depending on the examples and the distance measure 
employed one can distinguish two modes. In super- 
vised learning (as in the classical top-down induction 
of decision trees paradigm), the distance measure only 
takes into account the class information of each exam- 
ple (see e.g. C4.5 [Quinlan, 1993], CART [Breiman et 
al, 1984]). Also, regression trees (SRT [Kramer, 1996], 
CART) should be considered supervised learning. In 
unsupervised learning, the examples may not be clas- 
sified and the distance measure does not take into ac- 
count any class information. Rather, all attributes or 
features of the examples are taken into account in the 
distance measure. 

The Top-down Induction of Clustering trees approach 
is implemented in the TIC system. TIC is a first order 
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clustering system as it does not employ the classical 
attribute value representation but that of first order 
logical decision trees as in SRT [Kramer, 1996] and 
TILDE [Blocked and De Raedt, 1998]. So, the clusters 
corresponding to the tree will have first order defini- 
tions. On the other hand, in the current implemen- 
tation of TIC we only employ prepositional distance 
measures. 

Using TIC we report on a number of experiments. 
These experiments demonstrate the power of top-down 
induction of clustering trees. More specifically, we 
show that TIC can be used for clustering, for regres- 
sion, and for learning classifiers. 

This paper significantly expands on an earlier ex- 
tended abstract [De Raedt and Blocked, 1997] in that 
TIC now contains a pruning method and also that this 
paper provides new experimental evidence. 

This paper is structured as follows. In Section 2 we 
discuss the representation of the data and the induced 
theories. Section 3 identifies possible applications of 
clustering. The TIC system is presented in Section 
4. In Section 5 we empirically evaluate TIC for the 
proposed applications. Section 6 presents conclusions 
and related work. 

2    THE LEARNING PROBLEM 

2.1    REPRESENTING EXAMPLES 

We employ the learning from interpretations setting 
for inductive logic programming. For the purposes of 
this paper, it is sufficient to regard each example as a 
small relational database, i.e. as a set of facts. Within 
learning from interpretations, one may also specify 
background knowledge in the form of a Prolog pro- 
gram which can be used to derive additional features 
of the examples.1 See [De Raedt and Dzeroski, 1994; 
De Raedt, 1996; De Raedt et al., 1998] for more details 
on learning from interpretations. 

For instance, examples for the well-known mutage- 
nesis problem [Srinivasan et al., 1996] can be de- 
scribed by interpretations. Here, an interpreta- 
tion is simply an enumeration of all the facts we 
know about one single molecule: its class, lumo 
and logp values, the atoms and bonds occurring 
in it, certain high-level structures.. .We can rep- 
resent it e.g. as follows: {logmutag(-0.7), neg, 
lumo(-3.025),    logp(2.29),    atom(dl89_l,c,22,-0.11), 

atom(X,Y,14,Z)? 

^he interpretation corresponding to each example e is 
then the minimal Herbrand model of B A e. 

Figure 1: A clustering tree 

atom(dl89^,c,22,-0.11),bond(dl89-l,dl89_2,7), 
bond(dl89-2,dl89J3,7), ...} 

2.2 FIRST ORDER LOGICAL DECISION 
TREES 

First order logical decision trees are similar to stan- 
dard decision trees, except that the test in each node 
is a conjunction of literals instead of an test on an at- 
tribute. They are always binary, as the test can only 
succeed or fail. A detailed discussion of these trees is 
beyond the scope of this paper but can be found in 
[Blockeel and De Raedt, 1998]. We will use these trees 
to represent clustering trees. 

An example of a clustering tree, in the mutagenesis 
context, is shown in Figure 1. Note that in a classical 
logical decision tree leaves would contain classes. Here, 
leaves simply contain sets of examples that belong to- 
gether. Also note that variables occurring in tests are 
existentially quantified. The root test, for instance, 
tests whether there occurs an atom of type 14 in the 
molecule. The whole set of examples is thus divided 
into two clusters: a cluster of molecules containing an 
atom 14 and a cluster of molecules not containing any. 

This view is in correspondence with Langley's view- 
point that a test in a node is not just a decision crite- 
rion, but also a description of the subclusters formed 
in this node. In [Blockeel and De Raedt, 1998] we 
show how a logical decision tree can be transformed 
into an equivalent logic program, which could alterna- 
tively be used to sort examples into clusters. The logic 
program contains invented predicates that correspond 
to the clusters. 

2.3 INSTANCE BASED LEARNING AND 
DISTANCES 

The purpose of conceptual clustering is to obtain clus- 
ters such that intra-cluster distance (i.e. the distance 
between examples belonging to the same cluster) is 
as small as possible and the inter-cluster distance (i.e. 
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the distance between examples belonging to different 
clusters) is as large as possible. 

In this paper, we assume that a distance measure d 
that computes the distance d(ei,e2) between exam- 
ples ei and e2 is given. Furthermore, there is also a 
need for measuring the distance between different clus- 
ters (i.e. between sets of examples). Therefore we will 
assume as well the existence of a prototype function p 
that computes the prototype p(E) of a set of examples 
E. The distance between two clusters C\ and C2 is 
then defined as the distance d(p(Ci),p(C2)) between 
the prototypes of the clusters. This shows that the 
prototypes should be considered as (possibly) partial 
example descriptions. The prototypes should be suf- 
ficiently detailed as to allow the computation of the 
distances. 

For instance, the distance could be the Euclidean dis- 
tance di between the values of one or more numerical 
attributes, or it could be the distance d2 as measured 
by a first order distance measure such as used in RIBL 
[Emde and Wettschereck, 1996] or KBG [Bisson, 1992] 
or [Hutchinson, 1997]. 

Given the distance at the level of the examples, the 
principles of instance based learning can be used to 
compute the prototypes. E.g. d\ would result in a 
prototype function pi that would simply compute the 
mean for the cluster, whereas d2 could result in func- 
tion p2 that would compute the (possibly reduced) 
least general generalisation2 of the examples in the 
cluster. 

Throughout this paper we employ only propositional 
distance measures and the prototype functions that 
correspond to the instance averaging methods along 
the lines of [Langley, 1996]. However, we stress that - 
in principle - we could use any distance measure. No- 
tice that although we employ only propositional dis- 
tance measures, we obtain first order descriptions of 
the clusters through the representation of first order 
logical decision trees. 

2.4    PROBLEM-SPECIFICATION 

By now we are able to formally specify the clustering 
problem: 

Given 

2 Using Plotkin's [1970] notion of 0-subsumption or 
the variants corresponding to structural matching [Bisson, 
1992; De Raedt et a/., 1997]. 

• a set of examples E (each example is a set of tuples 
in a relational database or equivalently, a set of 
facts in Prolog), 

• a background theory B in the form of a Prolog 
program, 

• a distance measure d that computes the distance 
between two examples or prototypes, 

• a prototype function p that computes the proto- 
type of a set of examples, 

Find: a first order clustering tree. 

Before discussing how this problem can be solved we 
take a look at possible applications of clustering trees. 

3    APPLICATIONS OF 
CLUSTERING TREES 

Following Langley's viewpoint, a system such as C4.5 
can be considered a supervised clustering system 
where the "distance" metric is the class entropy within 
the clusters : lower class entropy within a cluster 
means that the examples in that cluster are more sim- 
ilar with respect to their classes. Since C4.5 employs 
class information, it is a supervised learner. 

Clustering can also be done in an unsupervised manner 
however. When making use of a distance metric to 
form clusters, this distance metric may or may not use 
information about the classes of the examples. Even 
if it does not use class information, clusters may be 
coherent with respect to the class of the examples in 
them. 

This principle leads to a classification technique that 
is very robust with respect to missing class informa- 
tion. Indeed, even if only a small percentage of the 
examples is labelled with a class, one could perform 
unsupervised clustering, and assign to each leaf in the 
concept hierarchy the majority class in that leaf. If 
the leaves are coherent with respect to classes, this 
method would yield relatively high classification accu- 
racy with a minimum of class information available. 
This is quite similar in spirit to Emde's method for 
learning from few classified examples, implemented in 
the COLA system [Emde, 1994]. 

A similar reasoning can be followed for regression, 
leading to "unsupervised regression"; again this may 
be useful in the case of partially missing information. 
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We conclude that clustering can extend classification 
and regression towards unsupervised learning. An- 
other extension in the predictive context is that clus- 
ters can be used to predict many or all attributes of 
an example at once. 

Depending on the application one has in mind, mea- 
suring the quality of a clustering tree is done in differ- 
ent ways. For classification purposes predictive accu- 
racy on unseen cases is typically used. For regression 
an often used criterion is the relative error, which is 
the mean squared error of predictions divided by the 
mean squared error of a default hypothesis always pre- 
dicting the mean. This can be extended towards the 
clustering context if a distance measure and prototype 
function are available: 

RE = E^fo.p)2 

with t{ the examples, e,- the predictions and p the pro- 
totype. (A prediction is, just like a prototype, a par- 
tial example description that is sufficiently detailed to 
allow the computation of a distance). 

If clustering is considered as unsupervised learning of 
classification or regression trees, the relative error of 
only the predicted variable or the accuracy with which 
the class variable can be predicted is a suitable quality 
criterion. In this case classes should be available for 
the evaluation of the clustering tree, though not during 
(unsupervised) learning. Such an evaluation is often 
done for clusters, see e.g. [Fisher, 1987]. 

4    TIC: TOP-DOWN INDUCTION 
OF CLUSTERING TREES 

A system for top-down induction of clustering trees 
called TIC has been implemented as a subsystem of 
the ILP system TILDE[Blockeel and De Raedt, 1998]. 
TIC employs the basic TDIDT framework as it is also 
incorporated in the TILDE system. The main point 
where TIC and TILDE differ from the propositional 
TDIDT algorithm is in the computation of the (first 
order) tests to be placed in a node, see [Blockeel and 
De Raedt, 1998] for details. Furthermore, TIC differs 
from TILDE in that it uses other heuristics for split- 
ting nodes, an alternative stopping criterion and alter- 
native tree post-pruning methods. We discuss these 
topics below. 

4.1    SPLITTING 

The splitting criterion used in TIC works as follows. 
Given a cluster C and a test T that will result in two 
disjoint subclusters Ci and C2 of C, TIC computes 
the distance d(p(d),p(C2)), where p is the prototype 
function. The best test T is then the one that, maxi- 
mizes this distance. This reflects the principle that the 
inter-cluster distance should be as large as possible. 

If the prototype is simply the mean, then maximiz- 
ing inter-cluster distances corresponds to minimizing 
intra-cluster distances, and splitting heuristics such 
as information gain [Quinlan, 1993] or Gini index 
[Breiman et a/., 1984] can be seen as special cases 
of the above principle, as they minimize intra-cluster 
class diversity. In the regression context, minimizing 
intra-cluster variance (e.g. [Kramer, 1996]) is another 
instance of this principle. 

Note that our distance-based approach has the advan- 
tage of being applicable to both numeric and symbolic 
data, and thus generalises over regression and classifi- 
cation. 

4.2    STOPPING CRITERIA 

Stopping criteria are often based on significance tests. 
In the classification context a x2-test is often used to 
check whether the class distributions in the subtrees 
differ significantly [Clark and Niblett, 1989; De Raedt 
and Van Laer, 1995]. Since regression and clustering 
use variance as a heuristic for choosing the best split, 
a reasonable heuristic for the stopping criterion seems 
to be the F-test. If a set of examples is split into two 
subsets, the variance should decrease significantly, i.e. 

F = 
SS/(n - 1) 

(SSL + SSR)/(n - 2) 

should be significantly large (SS is the sum of squared 
differences from the mean inside the set of examples, 
SSL and SSR is the same for the two created subsets 
of the examples, n is the total number of examples) ,3 

4.3    PRUNING USING A VALIDATION 
SET 

The principle of using a validation set to prune trees 
is very simple. After using the training set to build a 

3The F-test is only theoretically correct for normally 
distributed populations. Since this assumption may not 
hold, it should here be considered a heuristic for deciding 
when to stop growing a branch, not a real statistical test. 
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tree, the quality of the tree is computed on the valida- 
tion set (predictive accuracy for classification trees, in- 
verse of relative error for regression or clustering trees). 
For each node of the tree the quality of the tree if it 
were pruned at that node Q' is compared with the 
quality Q of the unpruned tree. If Q' > Q then the 
tree is pruned. 

Such a strategy has been successfully followed in the 
context of classification and regression (e.g. CART 
[Breiman et al, 1984]) as well as clustering (e.g. 
[Fisher, 1996]). Fisher's method is more complex than 
ours in that for each individual variable a different 
subset of the original tree will be used for prediction. 

In the current implementation of TILDE validation set 
based pruning is available for all settings. For clus- 
tering and regression it is the only pruning criterion 
that is implemented. It is only reliable for reasonably 
large data sets though. When learning from small data 
sets performance decreases because the training set be- 
comes even smaller and with a small validation set a 
lot of pruning is due to random influences. 

5    EXPERIMENTS 

5.1    DATA SETS 

We used the following data sets for our experiments: 

• Soybeans: this database [Michalski and Chi- 
lausky, 1980] contains descriptions of diseased soy- 
bean plants. Every plant is described by 35 at- 
tributes. A small data set (46 examples, 4 classes) 
and a large one (307 examples, 19 classes) are 
available at the UCI repository [Merz and Mur- 
phy, 1996]. 

• Iris: a simple database of descriptions of iris 
plants, available at the UCI repository. It con- 
tains 3 classes of 50 examples each. There are 4 
numerical attributes. 

• Mutagenesis: this database [Srinivasan et al, 
1996] contains descriptions of molecules for which 
the mutagenic activity has to be predicted. Orig- 
inally mutagenicity was measured by a real num- 
ber, but in most experiments with ILP systems 
this has been discretized into two values (positive 
and negative). The database is available at the 
ILP repository [Kazakov et al, 1996]. 

Srinivasan et al [1995] introduce four levels of 
background knowledge; the first 2 contain only 
structural information (atoms and bonds in the 

molecules), the other 2 contain higher level infor- 
mation (attributes describing the molecule as a 
whole and higher level submolecular structures). 
For our experiments the tests allowed in the 
trees can make use of structural information only 
(Background 2), though for the heuristics numer- 
ical information from background 3 can be used. 

• Biodegradability: a set of 62 molecules of which 
structural descriptions and molecular weights are 
given. The biodegradability of the molecules is to 
be predicted. This is a real number, but has been 
discretized into four values (fast, moderate, slow, 
resistant) in most past experiments. The dataset 
was provided to us by S. Dzeroski but is not yet 
in the public domain. 

The data sets were deliberately chosen to include both 
propositional and relational data sets. For each indi- 
vidual experiment the most suitable data sets were 
chosen (w.r.t. size, suitability for a specific task, and 
relevant results published in the literature). 

Distances were always computed from all numerical 
attributes, except when stated otherwise. For the Soy- 
beans data sets all nominal attributes were converted 
into numbers first. 

5.2    EXPERIMENT 1: PRUNING 

In this first experiment we want to evaluate the effect 
of pruning in TIC on both predictive accuracy and tree 
complexity. We have applied TIC to two databases: 
Soybeans (large version) and Mutagenesis. We chose 
these two because they are relatively large (as noted 
before, the pruning strategy is prone to random influ- 
ences when used with small datasets). 

For both data sets tenfold crossvalidations were per- 
formed. In each run the algorithm divides the learning 
set in a training set and a validation set. Clustering 
trees are built and pruned in an unsupervised manner. 
The clustering hierarchy before and after pruning is 
evaluated by predicting the class of each test example. 

In Figure 2, the average accuracy of the clustering hi- 
erarchies before and after pruning is plotted against 
the size of the validation set (this size is a parameter 
of TIC), and the same is done for the tree complex- 
ity. The same results for the Mutagenesis database are 
summarised in Figure 3. 

From the Soybeans experiment it can be concluded 
that TIC's pruning method results in a slight decrease 
in accuracy but a large decrease in the number of 
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Figure 2: Soybeans: a) Accuracy before and after 
pruning; b) number of nodes before and after prun- 

ing 

nodes. The pruning strategy seems relatively stable 
w.r.t. the size of the validation set. The Mutage- 
nesis experiment confirms these findings (though the 
decrease in accuracy is less clear here). 

5.3    EXPERIMENT 2: COMPARISON 
WITH OTHER LEARNERS 

In this experiment we compare TIC with propositional 
clustering systems and with classification and regres- 
sion systems. A comparison with propositional cluster- 
ing systems is hard to make because few quantitative 
Tesults are available in the literature, therefore we also 
compare with supervised learners. 

We applied TIC to the Soybean (small) and Iris 
databases, performing tenfold crossvalidations. Learn- 
ing is unsupervised, but classes are assumed to be 
known at evaluation time (the class of a test exam- 
ple is compared with the majority class of the leaf 
the example is sorted into). Table 1 compares the re- 
sults with those obtained with the supervised learner 
TILDE. 

We see that TIC obtains high accuracies for these 
problems. The only clustering result we know of is 
for COBWEB, which obtained 100% on the Soybean 
data set. This difference is not significant. TILDE'S ac- 
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Figure 3: Mutagenesis: Accuracy and size of the clus- 
tering trees 

Database 
Soybean 
Iris 

TIC 
ace. 
97% 
92% 

tree size 
3.9 nodes 
15 nodes 

TILDE 

ace. 
100% 
94% 

tree size 
3 nodes 
4 nodes 

Table 1: Comparison of TIC with a supervised learner 
(averages over 10-fold crossvalidation). 

curacies don't differ much from those of TIC which in- 
duced the hierarchy without knowledge of the classes. 
Tree sizes are smaller though. 

We have also performed an experiment on the 
Biodegradability data set, predicting numbers. For 
this dataset the F-test stopping criterion was used (sig- 
nificance level 0.01), but no validation set was used 
given the small size of the data set. The distance used 
is the difference between class values. Table 2 com- 
pares TIC's performance with TILDE'S (classification, 
leave-one-out) and SRT's (regression, sixfold). 

Our conclusions are that a) for unsupervised learning 
TIC performs almost as well as other unsupervised or 
supervised learners, if classification accuracy is mea- 
sured; and b) while there is clearly room for improve- 
ment with respect to using TIC for regression, post- 
discretization of the regression predictions shows that 
this approach is competitive with classical approaches 
to classification. 
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l.o.o. TILDE 

l.o.o. TIC 
l.o.o. TIC 

classification 
regression 
classif. via regression 

ace. = 0.532 
RE = 0.740 
ace. = 0.565 

6-fold SRT 
6-fold TIC 

regression 
regression 

RE = 0.34 
RE = 1.13 

Table 2:  Comparison of regression and classification 
on the biodegradability data (l.o.o.=leave-one-out). 

5.4    EXPERIMENT 3: PREDICTING 
MULTIPLE ATTRIBUTES 

Clustering allows to predict multiple attributes. Since 
examples in a leaf must resemble each other as much 
as possible, attributes must also agree as much as pos- 
sible. 

By sorting unseen examples down a cluster tree and 
comparing all attributes of the example with the pro- 
totype attributes, we get an idea of how good the tree 
is. This is an extension of the classical evaluation, as 
each attribute in turn is a class now. 

We did a tenfold crossvalidation for the following ex- 
periment: using the training set a clustering tree is 
induced. Then, all examples of the test set are sorted 
in this hierarchy, and the prediction for all of their 
attributes is evaluated. For each attribute, the value 
that occurs most frequently in a leaf is predicted for 
all test examples sorted in that leaf. 

We used the large soybean database, with pruning. 
Table 3 summarizes the accuracies obtained for each 
attribute and compares with the accuracy of major- 
ity prediction. The high accuracies show that most 
attributes can be predicted very well, which means 
the clusters are very coherent. The mean accuracy of 
81.6% does not differ significantly from the 83 ± 2% 
reported in [Fisher, 1996]. 

5.5    EXPERIMENT 4: HANDLING 
MISSING INFORMATION 

It can be expected that clustering, making use of more 
attributes than just class attributes, is more robust 
with respect to missing values. We showed in Experi- 
ment 2 that unsupervised learners (where the heuris- 
tics do not use any class information at all) can yield 
trees with predictive accuracies close to those of su- 
pervised learners, but all class information was still 
available for assigning classes to leaves after the tree 
was built. 

In this experiment, we measure the predictive accu- 

name range default ace. 
date 0-6 21.2% 46.3% 
plant_stand 0-1 52.1% 85.0% 
precip 0-2 68.4% 79.2% 
temp 0-2 58.3% 75.6% 
hail 0-1 68.7% 71.3% 
cropJiist 0-3 32.2% 45.0% 
area.damaged 0-3 32.9% 54.4% 
severity 0-2 49.2% 63.2% 
seed.tmt 0-2 45.6% 51.1% 
germination 0-2 32.2% 45.0% 
plant-growth 0-1 65.8% 96.4% 
leaves 0-1 89.3% 96.4% 
leafspotsJialo 0-2 49.5% 85.3% 
leafspots.marg 0-2 52.2% 86.6% 
leafspots_size 0-2 47.8% 87.0% 
leaf_shread 0-1 75.9% 81.4% 
leafjnalf 0-1 87.3% 88.3% 
leafjnild 0-2 83.7% 88.9% 
stem 0-1 54.1% 98.4% 
lodging 0-1 80.7% 80.0% 
stem_cankers 0-3 58.3% 90.6% 
canker Jesion 0-3 49.1% 88.9% 
fruiting-bodies 0-1 73.6% 84.3% 
external-decay 0-2 75.6% 91.5% 
mycelium 0-1 95.8% 96.1% 
int-discolor 0-2 86.6% 95.4% 
sclerotia 0-1 93.2% 96.1% 
fruit_pods 0-3 62.7% 91.2% 
fruit_spots 0-4 53.4% 87.0% 
seed 0-1 73.9% 85.7% 
mold-growth 0-1 80.5% 86.6% 
seed_discolor 0-1 79.5% 84.0% 
seed_size 0-1 81.8% 88.6% 
shriveling 0-1 83.4% 87.9% 
roots 0-2 84.7% 95.8% 
mean 81.6% 

Table 3:  Prediction of all attributes together in the 
Soybean data set 

racy of trees when class information as well as other 
information may be missing, not only for learning, but 
also for assigning classes to leaves afterwards, and this 
for several levels of missing information. Our aim is to 
investigate how predictive accuracy deteriorates with 
missing information, and to compare clustering sys- 
tems that use only class information with systems that 
use more information. 

We have used the Mutagenesis data set for this exper- 
iment (for each example, there was a fixed probabil- 
ity that the value of a certain attribute was removed 
from the data; this probability was increased for con- 
secutive experiments), comparing the use of only class 
information (logmutag) with the use of three numer- 
ical variables (among which the class) for computing 
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available numerical data logmutag all three 

100% 0.80 0.81 
50% 0.78 0.79 
25% 0.72 0.77 
10% 0.67 0.74 

Table 4: Classification accuracies obtained for Muta- 
genesis with several distance functions, and on several 
levels of missing information. 

distances. This experiment is similar in spirits to the 
ones performed with COLA [Emde, 1994]. Table 4 
shows the results. As expected, performance degrades 
less quickly when more information is available, which 
supports the claim that the use of more than just class 
information can improve performance in the presence 
of missing information. 

6    CONCLUSIONS AND RELATED 
WORK 

We have presented a novel first order clustering sys- 
tem TIC within the TDIDT class of algorithms. TIC 
integrates ideas from concept-learning (TDIDT), from 
instance based learning (the distances and the pro- 
totypes), and from inductive logic programming (the 
representations) to obtain a clustering system. Several 
experiments were performed that illustrate the type of 
tasks TIC is useful for. 

As far as related work is concerned, our work is re- 
lated to KBG [Bisson, 1992], which also performs first 
order clustering. In contrast to the current version of 
TIC, KBG does use a first order similarity measure, 
which could also be used within TIC. Furthermore, 
KBG is an agglomerative (bottom-up) clustering algo- 
rithm and TIC a divisive one (top-down). The divi- 
sive nature of TIC makes TIC as efficient as classical 
TDIDT algorithms. A final difference with KBG is 
that TIC directly obtains logical descriptions of the 
clusters through the use of the logical decision tree 
format. For KBG, these descriptions have to be de- 
rived in a separate step because the clustering process 
only produces the clusters (i.e. sets of examples) and 
not their description. 

The instance-based learner RIBL 
[Emde and Wettschereck, 1996] uses an advanced first 
order distance metric that might be a good candidate 
for incorporation in TIC. 

While [Fisher, 1993] first made the link between 
TDIDT and clustering, our work is inspired mainly 

■by [Langley, 1996]. From this point of view, our work 

is closely related to SRT [Kramer, 1996], who builds 
regression trees in a supervised manner. TIC can be 
considered a generalization of SRT in that TIC can 
also build trees in an unsupervised manner, and can 
predict multiple values. Finally, we should also refer to 
a number of other approaches to first order clustering, 
which include Kluster [Kietz and Morik, 1994], [Yoo 
and Fisher, 1991], [Thompson and Langley, 1991] and 
[Ketterlin et al, 1995]. 

Future work on TIC includes extending the system so 
that it can employ first order distance measures, and 
investigating the limitations of this approach (which 
will require further experiments). 
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Abstract classifier when faced with very few 
training examples. 

When faced with inadequate infor- 
mation, humans often use knowl- 
edge gained from previous experi- 
ence to help them in making de- 
cisions. Even when this knowl- 
edge is spread thinly among many 
previous experiences, humans are 
able to effectively accumulate and 
apply it to a current classifica- 
tion task of interest. Inspired by 
human knowledge reuse, we have 
previously introduced a general 
framework for the use of knowl- 
edge embodied in existing classi- 
fiers to aid in a new classification 
task. In this framework, a supra- 
ciassifier is built to make deci- 
sions based on the outputs of large 
numbers of previously trained clas- 
sifiers designed for different, but 
possibly relevant tasks. In this 
article, we discuss the Hamming 
Nearest Neighbor (HNN) supra- 
classifier architecture and mathe- 
matically show its usefulness. Ex- 
periments on public domain data 
sets demonstrate the practicality 
of the framework and HNN supra- 

Keywords: Knowledge Transfer, 
Nearest Neighbor, Curse of Di- 
mensionality 

1    INTRODUCTION 

In this paper we mathematically analyze the 
Hamming Nearest Neighbor (HNN) supra- 
classifier architecture for integrating multi- 
ple knowledge sources, based on a recently 
introduced framework for knowledge reuse 
(Bollacker & Ghosh, 1997). We demon- 
strate the ability of the HNN supra-classifier 
to theoretically approach optimal perfor- 
mance even with minimal training samples, 
if enough relevant knowledge is available. In 
particular, we show that in the limit of hav- 
ing only one training sample of each tar- 
get class but with an infinite number of in- 
dependent, (at least weakly) relevant pre- 
viously trained classifiers available, a per- 
fect supra-classifier is approached. We first 
review the motivation for and existing re- 
search related to knowledge reuse and sum- 
marize our supra-classifier based knowledge 
reuse framework. 
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1.1    MOTIVATION 

A person is able to quickly and robustly 
recognize patterns from very few samples. 
This is due, at least in part, to the use of 
the vast reservoir of experiential knowledge 
from which he/she may draw. He/she may 
use relevant learned knowledge to better un- 
derstand the problem domain, thus help- 
ing to constrain the interpretation of cur- 
rent data. One of the most impressive traits 
of human knowledge reuse is the ability to 
draw simultaneously from a large number 
of previous experiences quickly and easily. 
Each bit of learned knowledge may not help 
much, but as a whole, the knowledge gained 
from the whole of many experiences can 
paint a very clear picture of the problem 
domain. 

Unlike humans, artificial classification sys- 
tems often depend greatly on the set of 
training samples to make classification de- 
cisions. If the training set insufficiently rep- 
resents the "essence" of a classification task, 
then creation of a well generalizing classifier 
for that task may not be possible. It is natu- 
ral then, to suggest that in the construction 
of artificial classifiers, the inclusion of pre- 
viously learned knowledge embodied in pre- 
viously existing classifiers is a potential ap- 
proach to the problem of inadequate train- 
ing data. 

Also unlike humans, artificial systems have 
often failed in their ability to use a large 
number of weakly relevant information 
sources. For example, the "curse of dimen- 
sionality" (e.g. see (Friedman, 1994)) is 
given this name (at least partially) because 
of the difficulties it represents for the cre- 
ators of well performing artificial classifiers 
when faced with a high dimensional input. 
An ideal architecture for classifier knowl- 
edge reuse would be scalable in the sense 
that it can effectively handle the high di- 

mensional input resulting from use of large 
numbers of previously trained classifiers, 
even if most of them are only marginally 
relevant. 

1.2    PREVIOUS RESEARCH 

The most common approaches to knowledge 
reuse are ones that are often not considered 
to be "knowledge reuse" per se, but instead 
cast previously gained relevant knowledge 
as a "domain" which is crafted (often in 
an ad hoc manner) to represent the under- 
lying semantic or physical structure of the 
problem. For example, Bayesian approaches 
(e.g. (Mackay, 1995)) reuse knowledge in 
the form of prior class probabilities and 
prior distributions assumed for the model 
parameters, while many classifier architec- 
tures use the structure and value of model 
parameters to represent domain knowledge 
(e.g. the discriminant function in statisti- 
cal classifiers (Fukunaga, 1990), size and or- 
der of features in decision trees (Mitchell, 
1997), and the type and number of hidden 
units, amount and form of regularization 
in feed-forward neural networks (Ghosh &; 
Turner, 1994)). Such approaches can work 
very well if the inductive bias matches the 
problem very closely. However, in practice 
it may be quite difficult to select and tune a 
proper model. Also, standard assumptions 
used (independence among variables, Gaus- 
sian distributions, etc.) to make the prob- 
lem tractable often result in a loss of accu- 
racy (Heckerman, 1997; Mackay, 1995). 

There has been much work on knowledge in- 
tensive learning focusing on symbolic rules 
extracted from and used in the creation of 
neural classifiers (e.g. (Towell & Shavlik, 
1994; Mahoney & Mooney, 1993)). If knowl- 
edge can be represented as rules, then it may 
be used to build a better classifier. However, 
most of the approaches cannot reuse knowl- 
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edge from general classifiers and have not 
demonstrated scalability to a large number 
of simultaneous weak information sources. 

Some recent work in knowledge reuse has 
focused on the automated extraction and 
reuse of knowledge from the data sets of 
other relevant classifiers, including reuse of 
the trained classifiers themselves. Under 
the belief that related classification tasks 
may benefit from common internal features, 
Caruana (Caruana, 1995) has created a mul- 
tilayer perceptron (MLP) based multiple 
classifier system that is trained simultane- 
ously to perform several related classifica- 
tion tasks. Baxter (Baxter, 1994) has de- 
veloped a rigorous analysis of a similar type 
of architecture, showing that as the number 
of simultaneously trained tasks increases, 
the number of examples needed per task 
for good generalization decreases. Pratt 
(Pratt, 1994) has explored a similar knowl- 
edge reuse method in which some of the 
trained weights from one MLP network are 
used to initialize weights in an MLP to be 
trained for a later, related task. A differ- 
ent approach is taken by Thrun (Thrun & 
O'Sullivan, 1996), who proposed a method 
to estimate classifier relevance by measuring 
how much better a classifier performs with 
a reused scaling vector for Nearest Neighbor 
classifiers. Tasks with mutually helpful scal- 
ing vectors can be "clustered" into related 
groups. 

Recently, popular approaches such as stack- 
ing, committees, ensembles, and mixture of 
experts also use multiple classifiers. How- 
ever, since most these classifiers try to solve 
the same task (though they may specialize 
in different input regions) and do not use 
previously created classifiers, they are sim- 
ply good methods of decomposing a classi- 
fication task into simpler tasks and do not 
generally reuse previous knowledge. 

2    KNOWLEDGE REUSE 
FRAMEWORK 

In our framework for knowledge reuse (Bol- 
lacker & Ghosh, 1997), classifiers previ- 
ously trained to perform (potentially rele- 
vant) classification tasks are termed support 
classifiers as indicated in Figure 1. Support 

CT*J Ijfcrl c,(l> 

Figure 1: A Supra-Classifier Reuse Archi- 
tecture. 

classifiers are generally (but not always) de- 
signed for tasks other than the current tar- 
get classification task of interest. Our reuse 
strategy is to apply the input values of each 
of the training samples available for the tar- 
get task to all available classifiers sharing 
the input domain with the target classi- 
fier. The output class labels of the tar- 
get and support classifiers are observed by 
a second stage supra-classifier which makes 
the ultimate classification (cT(-) in the fig- 
ure). Since no internal information is being 
used, the support classifiers can be of any 
type. All classifiers feeding into the supra- 
classifier must share an ultimately common 
input domain. This domain may be broad, 
such as the domain of all images. 

2.1    A FEW DEFINITIONS 

Let the target classification task be r, and 
let  T  have discrete range ST  and  d di- 
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mensional input domain space Ud.     Let 
{X,V}T E  Ud,y E ST be the set of 
training examples for task r. We assume 
that {x,y}T is a sample set from the true 
distribution for task r with associated ran- 
dom variable (XT,YT) e (Kd,ST). Our 
goal is to find the most likely value of the 
conditional marginal YT\(XT — x) and de- 
fine this maximum likelihood function to 
be t(x) = argmaxj/P(yr = y\XT = x). 
Thus, £(•) : £(•) € ST is the target func- 
tion that we would like to approximate us- 
ing the information in {x,y}T. Let B be 
a set of support classification tasks which 
have the same input domain space 5Rd as 
task r. Let {cf,(-)} : b € B be the corre- 
sponding set of classifiers where each Cb(-) 
maps 5Rd >-> <S6 : b e B.1 Let XT be the 
random variable associated with the input 
values of training sample set {x,y}T. Let 
Tr :TT = tT(XT) be defined as the random 
variable associated with the target function 
of XT. Similarly, let Cb : Cb = Cb(XT) be 
the random variables resulting from the ap- 
plication of XT to the support classifiers. 

An Ideal Supra-Classifier c*(x) will always 
choose the most likely class of the y £ ST 

given the class labels {cb(x)} : b e B. More 
specifically, For any given {z& : Zb € Sb} '■ 
b e B we can define the maximum proba- 
bility function m(-) as m({zb} : b € B) = 
argmaxy P(TT = y\{Cb = zb} : B G B). We 
can then define an ideal classifier based on 
this maximum probability function as 

c*T(x)=m({cb(x)}:beB). (1) 

where c*(-) has associated random variable 
C* : C* = c*{XT). In practice if the number 
of support classifiers is quite large, Equation 
1 is not directly scalable due to the curse 

1 Although some of the support classifiers 
may have been trained for task r directly, in 
general b ^ T and ST ^ Sb, as the tasks are 
different. 

of dimensionality (Friedman, 1994). There- 
fore, approximating approaches to Equation 
1 are required. An empirical comparison of 
several such approaches was made in (Bol- 
lacker & Ghosh, 1997). Somewhat surpris- 
ingly, for the case of few training examples, 
the simple Hamming Nearest Neighbor was 
seen to provide the best knowledge reuse 
performance. In this paper we provide a 
mathematical analysis of the HNN architec- 
ture to better understand its excellent per- 
formance and scalable properties. 

3    HAMMING NEAREST 
NEIGHBOR (HNN) 
SUPRA-CLASSIFIER 

The HNN classifier is similar to a tradi- 
tional nearest neighbor which operates in 
a Euclidean space. The HNN operates in 
a "Hamming space" where the distance be- 
tween two discrete values is 0 if they are the 
same and 1 if different. If /(•) is the in- 
dicator function, then the (Hamming) dis- 
tance measure between two samples xtmin 
and xtest can be calculated as 

ti \Xtrain i %test) = 

22 I(Cb(xtrain) ^ Cb(xtest))- 
b:b=l...\{B}\ 

For each test sample, the Hamming Nearest 
Neighbor (HNN) supra-classifier will choose 
the class label of the training sample with 
the smallest Hamming distance from it. We 
now proceed to analyze the HNN classifier 
to show that under certain assumptions, as 
more support classifiers are included, the 
supra-classifier can approach perfect perfor- 
mance, even if the supporting classifiers are 
not very relevant to the current task. Proofs 
of the following lemmas are given in (Bol- 
lacker & Ghosh, 1998b). 

Definitions and Assumptions 
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Let K C Kd be a region of space in which 
a distribution of samples {x} of non-zero 
density lie. Let t(x) € ST = {1,...,N} 
be the true classifier label of some sample 
x € Tl where {l,...,iV} is the finite set 
of discrete target class labels. Let cb(x) € 
Sb = {1,..., M} be a support classifier la- 
beling. Define pi : Pj = P(t(x) = j), and 
P/ : P? = P(t(x) = j\cb{x) = i) where x 
is a sample chosen randomly from Tl. PJ 

can be interpreted to mean the probability 
of choosing a sample of target class j when 
picking randomly from Tl. P\ is the proba- 
bility of choosing a sample of target class j 
when picking randomly from the subset of 
samples in Tl which are of support class i. It 
can be seen that if we have two samples xa 

and x1, randomly and independently drawn 
from Tl, then the probability of them having 
the same target class label j is (PJ)2. 

Lemma 1: 
If the target classes j : j = 1... N have 
equal prior probabilities PJ, then 

N 

w.£tf>a*F 

This result is used to show that knowing 
that two samples have the same support 
class label improves their chance of being 
of the same target class. 

Lemma 2: 
If xa and x1 are drawn randomly and in- 
dependently from Tl, and the target classes 
j : j = 1...N have equal prior probabilities 
P', then 

P(t{xa) = t(xy)\cb(xQ) = cb(x7)) > 

P{t{xa) = t{xy)). 

The proof consists of noticing that the 
chance of two random samples being the 
same target class is minimized when all of 
the PJ are equal (Lemma 1) and that for 

any partitioning of the set of samples in 71 
induced by the labels {i} : cb{-) = i,i = 
1...M, the probability of two samples be- 
ing the same target class cannot be reduced 
further. 

Now we can use Lemma 2 to show that two 
samples randomly and independently cho- 
sen from V, have as good or better chance 
of being of the same support class if they 
are of the same target class than if they are 
of different target classes. 

Lemma 3: 
If xQ, xp, and x7 are drawn randomly and 
independently from Tl, then 

P{cb(xa) = cb{x7)\t(xa) = t(xy)) 

> P(cb(x0) = c(xj\t(xß) # i(x7)). 

The case of equality occurs only when cb{-) 
is independent of <(■). 

This Lemma is interesting in the context of 
a Nearest Neighbor classifier. Let xa and 
Xß be two training samples and x7 be a test 
sample. 

Now let us consider the use of n support 
classifiers to build an HNN supra-classifier. 
Taking the complements of the events in 
Lemma 3, P(cb(xß) ^ cb(xn)\t{xß) ^ 
t(x-,)) > P(cb(xa) ^ cb(xy)\t{xa) = t(x7)), 
and summing over all b : b = 1... n, we can 
write 

n 

Y,P(cb(xß) ? CbfaMxp) ? t(xj) > 
6=1 

n 

Y^P(Cb(Xa)    ^   Cb(Xy)\t(Xa)    =   t(Xy)). 
6=1 

If we let Sb > 0 be the difference between 
each pair of terms in the sums, and let 6n = 
52"_i ^S then we can write 

n 

Y,PMxß) 1 Cb(xy)\t(Xß) JA t(xy)) - 
6=1 
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Y^P(Cb(Xa) ^ Cb{x^)\t{xa) = t(x7)) 
6=1 

nSn.   (2) 

Note that Sb = 0 only if ct(-) is indepen- 
dent of £(•), and thus is of no use for the 
target task. We will assume, as the number 
of support classifiers grows, the fraction of 
useful ones does not approach zero, (i.e. Let 
<J°° = lirrin^ö" > 0). 

Returning to the definition of the HNN clas- 
sifier, we write the Hamming distances 

n 

^I{cb(xa) ^ cb{xy)\t(xa) = f(z7))     (3) 
6=1 

Dn(xp,x7) = 
n 

J21(cb(x0) ± cb(xj\t(xß) ^ t(xj)     (4) 
6=1 

Theorem 1: 
If the support classifiers cb(-) are indepen- 
dent of each other conditionally on the tar- 
get class £(•), t(xa) = t(xy) ^ t(xp), and the 
priors (PJ) for each target class are equal, 
then 

lim P(Dn((xß,x7) > Dn(xa,x~,)) = 1. 
n—*oo 

Proof: We 
will apply the weak law of large numbers 
as given in (Billingsley, 1979), which states 

limn^TOP(|^='yi-fiig[yi]l > e) = 0 
for independent trials Yi and all e > 
0. Noticing that P(cb(xi) ^ Cbfa)) - 
E[I(cb(xi) y£ cb(x2)} where /(•) is the indi- 
cator function and substituting from Equa- 
tions 2, 3, and 4, we can write 

lim P(\ 
D„(xß,x~,) - Dn(xa,x7) -n6n 

n 
> e) = 0, 

which leads to 

= Um p(\Dn(xß>x-r) ~ Dn(xa,xy) - nön 

n—yoo n ' 

<e) = l. 

_v   jjm p/DnKXßfXn/) — Dn(xa,x7) 

n-¥oo n 

>Sn-e) = l, 

Since we assume 6°° > 0, we can choose a 
sufficiently small e : e < S°° and write 

~ ^P(J2Dn^X0'X^ > £>n(xa,X7)) 

= 1.   D 

6=1 

Theorem 1 states that in the limit of an in- 
finite number of conditionally independent 
and (at least barely useful) support clas- 
sifiers being available, the probability that 
the HNN classifier will predict the true tar- 
get class approaches 1. It should also be 
noted that Theorem 1 holds even if there 
is only one training sample of each target 
class. This results leads to the observa- 
tion that under certain conditions, a wealth 
of features can compensate for a dearth of 
samples. This is counter to the conven- 
tional wisdom that more feature usually re- 
quires more training samples. The trick 
is that we are not working in a Euclidian 
feature space, and so do not fall victim so 
easily to the typical curse of dimensional- 
ity problems. Despite this compelling anal- 
ysis of the HNN classifier, a careful sep- 
aration of theory from practice should be 
made. While a perfect classifier is theoreti- 
cally possible, in general it would be impos- 
sible to gather an infinite number of inde- 
pendent, relevant support classifiers. Also, 
since the HNN supra-classifier is computa- 
tionally linear in the number support clas- 
sifiers, an infinite number could generally 
never be used. However, the results lead us 
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to believe that as more independent support 
classifiers or training samples are included, 
the better HNN will perform. This is sup- 
ported by empirical evidence (Bollacker & 
Ghosh, 1998a). The question of how fast 
the HNN classifier approaches perfect per- 
formance is only answerable for a specific 
set of training samples and included support 
classifiers. An analysis of large deviations 
as in (Billingsley, 1979) suggests that HNN 
would approach its limit exponentially fast 
as a function of the relevance of the support 
classifiers. 

4    EXPERIMENTS 

Previously, we have explored the empiri- 
cal performance of the HNN supra-classifier 
(Bollacker k Ghosh, 1997), with some of the 
results discussed here. We used three public 
domain data sets from the U.C Irvine Ma- 
chine Learning database and partitioned the 
samples from each data set into two disjoint 
and unequal sized subsets based on their 
class labels. The larger subset was used to 
create several two-class (non-target) prob- 
lems using all combinations of two classes 
not to be used as target classes.   First, a 
20000 sample capital English letter data set 
(LR) was divided into the target data set 
consisting of the five classes "H", "L", "O", 
"R", and "S", and 210 other classifier data 
sets consisting of two-class combinations of 
the other 21 classes. Second, a spoken vowel 
data set (VOW) consisted of 990 samples 
evenly distributed among 11 spoken vowels. 
The two classes "hud" and "hed" were cho- 
sen to form the target classifier task and 
the remaining 9 classes were used to con- 
struct 36 other 2-class classification tasks in 
a manner similar to the LR data set. Third, 
the well known soybean data set (SOY) con- 
sisting of 683 samples.   The three classes 
"phytophthora-rot", "brown-spot", and "al- 

ternaria leaf-spot" were chosen to be the 
target classes, and the remaining 16 classes 
were used to generate 120 other (2-class) 
classifiers. 

The three data sets were randomly parti- 
tioned into equal sized training and test sets. 
The target training set was used to create 
MLP and single nearest neighbor (1-NN) 
classifiers for each target problem. The 210 
LR 2-class classifiers were trained MLP's, 
while the 120 soy and 36 VOW other 2- 
class classifiers were single Nearest Neigh- 
bor (1-NN) classifiers. These classifier archi- 
tectures were chosen for their good perfor- 
mance on those tasks. In order to consider 
the case of few available target training sam- 
ples, only a fraction of the available target 
training samples was actually used. The set 
of support classifiers for each problem con- 
sisted of simple classifiers for the target class 
and all of the 2-class classifiers built using 
non-target class samples.   Target training 
sets over a range of sizes were applied to 
the support classifiers for the three prob- 
lems.   The outputs of these support clas- 
sifiers were then used as the input vector 
for an HNN supra-classifier.  Results using 
the LR data set (averaged over 20 trials), 
SOY data set (100 trials), and VOW data 
set (100 trials) can be seen in Figures 2, 3, 
and 4 respectively.   For all three data sets, 
the HNN supra-classifier showed improved 
performance over all of the unaided classi- 
fiers, especially with small target training 
sets.  Moreover, the difference between the 
HNN and unaided 1-NN for few examples 
was calculated to be statistically significant 
with greater than a 99% certainty. 

5    CONCLUSIONS AND 
FUTURE WORK 

We   have   discussed   the   motivation   for 
reuse of knowledge from previously trained 
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Figure 2: Test rate vs. number of training 
samples on the letter recognition data set. 

classifiers and presented a framework for 
such reuse which includes the concept of 
supra-classifiers. We introduce the Ham- 
ming Nearest Neighbor supra-classifier and 
demonstrate its usefulness both analytically 
and empirically. This gives evidence that 
the HNN supra-classifier architecture would 
be a useful approach to the problems of in- 
adequate training samples. 

In the future, we intend to do further analy- 
sis of the HNN supra-classifier to determine 
the convergence rate as more support classi- 
fiers and target training samples are added. 
A practical extension will be an application 
to a truly complex problem domain. We en- 
vision the eventual construction of a "ware- 
house" of previously constructed reusable 
classifiers for a large domain of interest (e.g. 
image databases), where the set of support 
classifiers will serve as an efficient represen- 
tation of the problem domain knowledge. 

Unaided l-NN 
Unaided MLP 
Unaided C4.5 

S 10 15 20 

Number ol Training Examples 

Figure 3: Test rate vs. number of training 
samples on the soybean data set. 
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Abstract 

POMDPs are general models of sequential de- 
cisions in which both actions and observa- 
tions can be probabilistic. Many problems 
of interest can be formulated as POMDPs, yet 
the use of POMDPs has been limited by the 
lack of effective algorithms. Recently this 
has started to change and a number of prob- 
lems such as robot navigation and planning 
are beginning to be formulated and solved 
as POMDPs. The advantage of the POMDP 

approach is its clean semantics and its abil- 
ity to produce principled solutions that inte- 
grate physical and information gathering ac- 
tions. In this paper we pursue this approach 
in the context of two learning tasks: learn- 
ing to sort a vector of numbers and learning 
decision trees from data. Both problems are 
formulated as POMDPs and solved by a gen- 
eral POMDP algorithm. The main lessons and 
results are that 1) the use of suitable heuris- 
tics and representations allows for the solu- 
tion of sorting and classification POMDPS of 
non-trivial sizes, 2) the quality of the result- 
ing solutions are competitive with the best 
algorithms, and 3) problematic aspects in 
decision tree learning such as test and mis- 
classification costs, noisy tests, and missing 
values are naturally accommodated. 

1    INTRODUCTION 

POMDPS are general models of sequential decisions in 
which both actions and observations can be proba- 
bilistic (Sondik 1971; Cassandra, Kaebling, & Littman 
1994).  Many problems of interest can be formulated 

as POMDPS yet the use of POMDPS has been limited 
by the lack of effective algorithms (Cassandra, Kae- 
bling, & Littman 1995). Recently this has started to 
change and a number of problems such as robot nav- 
igation and planning are beginning to be formulated 
and solved as POMDPS (Cassandra, Kaebling, & Kurien 
1996; Geffner & Bonet 1998a). The advantage of the 
POMDP approach is its clean semantics and its ability 
to produce principled solutions that integrate physi- 
cal and information gathering actions. In this paper 
we pursue this approach in the context of two learn- 
ing tasks: learning to sort a vector of numbers and 
learning decision trees from data. Both problems are 
formulated as POMDPS and solved by a general POMDP 
algorithm (Geffner & Bonet 1998b) based on the ideas 
of Real Time Dynamic Programming (Barto, Bradtke, 
& Singh 1995). 

The choice of the two tasks requires an explanation. 
Both are sequential decision problems that can be nat- 
urally seen as POMDPs. Yet the difficulties and insights 
that result from modeling and solving each problem as 
a POMDP are different. Sorting involves finding a se- 
quence of comparisons and swaps that would sort any 
vector of size n. This is a challenging planning prob- 
lem and we are not aware of any contingent planner 
that can model and solve problems of this type. Mod- 
eling and solving the problem from the perspective of 
POMDPs is challenging too. For n = 10, the num- 
ber of possible states in the problem is greater than 
106. Until recently POMDPs with more than 20 states 
could not be reasonably solved, especially when they 
involved information-gathering actions. Here we pro- 
vide solutions for POMDPS of size n = 10 that involve 
more than a million states. Moreover the solutions 
are good: on average they involve half the number of 
comparisons and swaps as Quicksort, one of the best 
sorting algorithms (Aho, Hopcroft, & Ullman 1983). 
The solution method relies on good heuristic func- 
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tions, compact representations of beliefs, and suitable 
decompositions. 

The sorting problem is difficult and we use it not to 
learn about sorting but to learn about POMDPS. The 
focus on decision tree induction is different as we ex- 
pect that the POMDP approach may contribute to a 
better understanding of decision tree induction on as- 
pects such as noisy data and tests, missing values, 
and tests and misclassification costs. All these as- 
pects fit into the POMDP formulation of decision tree 
learning in a natural way. We evaluate this formula- 
tion over a number of datasets from (Murphy & Aha 
1998). Our goal is to show that the POMDP approach 
may be competitive with the standard approaches 
and potentially more general. Indeed POMDPS pro- 
vide a unifying framework for modeling and solving 
not only sorting and induction, but other AI tasks as 
well such as robot navigation, planning, control, diag- 
nosis, etc. (Cassandra, Kaebling, & Littman 1994; 
Geffner & Bonet 1998a). On the other hand, the 
POMDPS algorithms we use do not scale up yet to learn- 
ing problems over very large datasets. 

The rest of the paper is organized as follows. First 
we review MDPs, POMDPS, and the POMDP algorithm 
(Sections 2 and 3). Then we formulate the problems 
of sorting and decision tree induction as POMDPS, and 
report empirical results (Sections 4 and 5). Finally we 
summarize the main lessons and ideas (Section 6). 

2    BACKGROUND 

POMDPs are a generalization of a model of sequen- 
tial decision making formulated by Richard Bellman in 
the 50's called Markov Decision Processes or MDPs, in 
which the state of the environment is assumed known 
(Bellman 1957). MDPs provide the basis for under- 
standing POMDPS so we turn to them first.1 

2.1    MDPs 

The type of MDPs that we consider is a generalization 
of the standard search model used in AI in which ac- 
tions can have probabilistic effects. Goal MDPs, as we 
call them, are characterized by: 

1. a state space S 

1For some recent books on MDPs, sec (Puterman 1994; 
Bertsekas & Tsitsiklis 1996); for an AI perspective, sec 
(Boutilier, Dean, & Hanks 1995; Barto, Bradtke, & Singh 
1995). 

2. actions A(s) C A applicable in each state .s 

3. positive costs c(a, s) of performing action a in s 

4. transition probabilities Pa(s'\s) of ending up in 
state s' after doing action a € A(s) in state s 

5. goal states G C S 

Since the effect of actions is assumed to be observable 
but not predictable, the solution of an MDP is not an 
action sequence but a function that maps states s into 
actions a G A(s). Such a function is called a policy, 
and its effect is to assign a probability to each state 
trajectory. We assume that goal states are absorbing 
in the sense that actions in those states have no effects 
and zero costs. As a result, state trajectories that 
contain goal states have finite costs, while others have 
infinite costs. The expected cost of a policy from an 
initial state is the weighted average of the costs of all 
the state trajectories starting in that state times their 
probability. A policy is optimal when its expected cost 
from any state is minimal. General conditions for the 
existence of such policies can be found in (Puterman 
1994; Bertsekas & Tsitsiklis 1996). 

3    POMDPs 

POMDPs generalize MDPs allowing the state to be par- 
tially observable (Sondik 1971; Cassandra, Kaebling, 
& Littman 1994; Russell & Norvig 1994). The solution 
of a POMDP is no longer a mapping from states into 
actions, but a mapping from belief states into actions, 
where belief states are probability distributions over 
the states. A POMDP agent or controller starts with a 
prior belief state that adjusts as a result of the actions 
it performs and the observations it gathers. It is as- 
sumed that the agent has a model of both the actions 
and the sensors. Formally, a goal POMDP is defined in 
terms of: 

1. states s £ S 

2. actions A(s) C A applicable in each state s 

3. positive costs c(a, s) of performing action a in s 

4. transition probabilities P„(s'|s) of ending up 
in state s' after doing action a G A(s) in state .s 

5. initial belief state bo 

6. final belief states bp 

7. observations o in state s after action a with 
probabilities Pa(o\s) 

The first four components define an MDP that is ex- 
tended with prior and final beliefs, and a sensor model. 
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POMDPs can be formulated as information or belief 
MDPs in which states are replaced by belief states 
(Sondik 1971; Cassandra, Kaebling, & Littman 1994). 
The task is to find a mapping ir from belief states to 
actions that will take us from the initial belief state 
bo to a final belief state bF at a minimum expected 
cost. The way actions and observations affect the belief 
state is given by the equations (Cassandra, Kaebling, 
& Littman 1994): 

ba(s) 

ba(o) 

K(s) 

=    E Pa(s\s')b(s') 
s'es 

=  $>>IS)M«) 

(1) 

(2) 
ses 

=    Pa{o\s)ba(s)/ba{o)   iffca(o)#0    (3) 

where ba is the belief state that results after doing 
action a in b, ba{o) is the probability of observing o 
after doing a in b, and b° is the belief state that re- 
sults after doing action a in b and then observing o. 
The cost c(a,b) of an action a in b is the weighted 
average £s€Sc(a,s)6(s). The exception are the final 
belief states bF that are assumed to be absorbing; i.e., 
c(a, bF) is defined as 0, and ba and b° are defined as b, 
when b is a final belief state. Finally, the set of actions 
A(b) applicable in b excludes the actions a that are not 
applicable in states s with b(s) > 0. 

Solving belief MDPs is difficult and until recently only 
very small problems could be solved reasonably well 
especially when they involved information-gathering 
actions. This has started to change (Cassandra, Kae- 
bling, & Littman 1995) and here we use a POMDP al- 
gorithm introduced in (Geffner & Bonet 1998b) that 
is based on the ideas of Real Time Dynamic Program- 
ming (Barto, Bradtke, & Singh 1995). 

RTDP-BEL is a hill-climbing algorithm that from any 
state b searches for the goal states bF by performing 
actions a that lead to new states b° with probability 
ba(o) (Figure 1). Estimates V{b) of the expected costs 
to reach bF guide the search. The main difference with 
standard hill-climbing is that these estimates are up- 
dated dynamically. Initially V(b) is set to h(b), where 
h is a suitable heuristic function, and every time the 
state b is visited V(b) is updated to make it consistent 
with the values V(b') of its possible successor states 
b' (Korf 1990). In the implementation, the estimates 
V(b) are stored in a hash table that initially contains 
an estimate for V(b0)-only. Then when the value V(b') 
of a state b' that is not in the table is needed, a new 
entry with V(b') set to h(b') is created. Usually belief 
states need to be discretized (Geffner & Bonet 1998b) 

1. Evaluate each action a applicable in 6 as 

Q(a,b) = c(a,b) + J2b«(o)V(K) 

initializing V(b°a) to h(b°a) when b°a not in table 

2. Apply action a that minimizes Q(a,b) breaking 
ties randomly 

3. Update V(b) toQ(a,6) 

4. Observe o 

5. Compute b°a using Equations 1-3 

6. Exit if b°a is a final belief state, else set 6 to b"a and 
go to 1 

Figure 1: RTDP-BEL 

but this is not needed in the tasks considered in this 
paper. 

RTDP-BEL combines search and simulation, and in ev- 
ery trial selects a random initial state s with proba- 
bility b0(s) on which the effects of the actions applied 
by RTDP-BEL (Step 2) are simulated. More precisely, 
when action a is chosen, the current state s in the simu- 
lation changes to s' with probability Pa(s'\s) and then 
produces an observation o with probability Pa(o\s'). 
The complete RTDP-BEL algorithm is shown in Fig. 1. 

4    SORTING 

The sorting problem involves arranging a vector of 
numbers in increasing order. We simplify the problem 
slightly assuming that no two numbers in the vector 
are equal. There are two types of actions available: 
swap(i,j) that exchanges the elements in positions i 
and j, and cmp(i,j) that tests whether the element 
in position i is smaller than the element in position 
j. One of the best algorithms for sorting is Quicksort, 
which takes in the order of n log(n) operations on av- 
erage, where n is the size of the problem (the number 
of elements to be sorted). 

4.1    FORMULATION 

We formulate the problem as a goal POMDP in which 
we have to go from an initial belief state to a final belief 
state by means of a number of tests and swaps. The 
state s reflects the way in which the elements in the 
input vector may be ordered; for example, the state 
s = [3,1,2] for n = 3 says that the first element in the 
input vector is the third smallest element, the second 
element is the smallest element of all, and the third el- 
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ement is the second smallest element. More generally, 
a state s will be a vector of size n such that s[i] = j, 
for 1 < i, j < n and s[i] ^ s[j] for i ^ j. The meaning 
of s[i] = j is that the i-th element in the input vector 
is the j-th smallest element. 

Given an input vector, there is a single state that is 
the true state associated with the input vector and 
the swaps performed. The actions cmp(i,j) yield in- 
formation about such state and the actions swap(i,j) 
mutate it. The resulting 'sorting' POMDP for a partic- 
ular problem size n consists of: 

1. states given by the vectors s of size n such that 
s[i] = j for 0 < i, j < n and s[i] ^ s[j] if i # j 

2. actions swap(i, j) and cnip(i, j) for 0 < i < j < n 

3. transition probabilities Pa(s'\s) = 1 for a = 
cmp(i,j) and s' = s, and a = swap(i,j) and s' 
such that s'[j] = s[i], s'[i\ = s[j], and s'[fc] = s[k] 
for k ^ i, k / j. Otherwise Pa(s'\s) = 0 

4. action costs c(a, s) = 1 for all a and s 

5. initial belief state 60 uniform over all states 

6. final belief state bF for which bF(G) = 1, where 
s = G is the sorted state for which s[i] = i for 
i = 1,... ,n 

7. observations oi = (i < j) or o2 = (j < «) 
from the actions a = test(i,j) with probabil- 
ities Pa(oi\s) equal to 1 (0) when s[i] < s[j] 
(s[i] > s[j]), and complementary probabilities for 
Pa(o2\s). 

4.2    IMPLEMENTATION 

Finding a policy to take us from bo to bp at a nearly op- 
timal expected cost is difficult, and for the RTDP-BEL 

algorithm to solve this problem for even small values 
of n, suitable belief representations and heuristic func- 
tions are needed. 

4.2.1    Representation of Beliefs 

The beliefs b(s) encode the probability that state s 
represents the way the elements in the input are or- 
dered. For a sorting problem of size n, the size of the 
state space is n!. For n = 10, this means 106 states. 
Such large state spaces introduce problems of memory 
and time in RTDP-BEL and other POMDP algorithms. 
Memory is a potential problem as in the worst case 
the size of the hash table grows with the size of the 

belief space which is in the order of 2"!. This prob- 
lem, however, can be ameliorated by the use of good 
heuristic functions as discussed below. 

The time complexity is more troublesome. The 
RTDP-BEL loop involves the computation of the be- 
lief states ba and b°a from the original belief state b as 
dictated by Equations 1-3. In the worst case the time 
for these computations grows with \S\2 and \S\\0\ re- 
spectively. If belief states had few non-zero entries, a 
suitable sparse representation could be used, but this 
is not true in sorting where the initial belief state is 
uniform. 

The representation that we use exploits features of 
the sorting problem that we expect would arise in 
other tasks as well.2 First of all, since the prior is 
uniform and the 'sensors' (i.e., tests) are noiseless, 
belief states 6 can be represented by sets of states 
Sb = {s\b(s) > 0}. Indeed, from Bayes' rule it follows 
that b{s) = l/\Sb\ if s £ Sb and b{s) = 0 otherwise. 
Furthermore, in sorting such sets can be conveniently 
encoded by collection of 'links' of the form i -> j for 
0 < i,j < n, where each link i -4 j is a constraint that 
excludes all states s for which s[i] £ s[j]. The initial 
belief state b0 is represented by an empty set of such 
links, while the representation of 6° is obtained from 
the representation of ba by adding the link i -4 j if 
o = (i < j), and j -)• i if o = (j < i). The repre- 
sentation of ba and b are equal for a = cmp{i,j) and 
the first is obtained from the second by exchanging the 
occurrences of i and j when a = swap(i,j). Our imple- 
mentation extends this idea with a simple mechanism 
that removes redundant links after any observation (a 
link is redundant when it can be inferred by transitiv- 
ity). The result of this representation is that we reduce 
the complexity of updating beliefs b into b°a from |5|2 

to |0| which is significantly smaller. 

4.2.2    Updating the values of belief states 

The structures used to represent belief states need to 
be converted into numbers for computing the values 

Q(a,6):=c(a,&) + £K(l£)M<>) 
o€0 

This expression involves a probability ba(o) that has 
to be obtained from the representation of ba. One 
way to compute ba(o) is by computing the proportion 
of states s in ba that satisfy o (s satisfies (i < j) if 

2 In particular wc expect, similar ideas to apply to the 
problem of handling continuous attributes in decision tree 
learning, but we don't deal with such problems here. 
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s[i] < s[j]). This operation, however, is very costly as 
it grows linearly with \S\. For this reason we pursue a 
different approach approximating ba(o) for o = (i < 
j) as: 

{1        if i -> j in ba 

0       if j -> »in ba (4) 
1/2    otherwise 

where i —► j is in &a when the link forms part of 
the representation of ba or can be derived from such 
links by transitivity. The approximation here is that 
probabilities that are neither 0 nor 1 are mapped into 
1/2. This amounts to assuming that a test cmp(i,j) 
whose outcome is not predictable can go either way 
with equal probability. This assumption is not true in 
general but speeds up the computation and does not 
appear to do harm, as it is approximately correct for 
the tests that are optimal. We'll discuss later a similar 
approximation in the context of decision tree learning. 

4.2.3    Heuristic Functions 

The representation of beliefs reduces the complexity 
of updating beliefs b into b°, while the approximation 
eliminates the cost of computing the probability ba(o). 
Both optimizations together speed up considerably the 
inner loop of the RTDP-BEL algorithm that selects and 
applies actions. To speed up the solution of problems 
we need also to consider and apply as few actions as 
possible. We do this by means of an heuristic function 
h(b) that provides an estimate of the minimal expected 
number of actions needed to go from b to the final 
belief state bp. We consider the combination of two 
heuristics: 

1. the longest chain heuristic hi(b) is based on the 
longest sequence of links i\ < ii < is < ... im 

that appear explicitly in the representation of b, 
with hi(b) defined asn-m 

2. the number of misplaced elements heuristic hm(b) 
applies to definite belief states only; i.e., those b's 
such that b(s) = 1 for some state s. In such a 
case hm(b) is defined as the number of positions 
i = 1,..., n, for which s[i] ^ i 

These heuristics are not admissible in the sense that 
they may overestimate the minimum expected cost to 
the goal, and as a result may prevent the estimates 
V(b) to approach the optimal values.3 Yet the admis- 
sible heuristics we have tried were not as informative, 

Sorting 5 Elements 

h = 0 • 
h = longest - 

h = decomposition - 
quicksort - 

3 See (Barto, Bradtke, & Singh 1995) for the relation 
between admissibility and optimality in RTDP algorithms. 

1000    2000    3000   «X»    5000    6000    7000    8000    9000   10000 
trials 

Figure 2: Average number of actions vs Number of 
Trials for sorting problems of sizes n = 5 and n = 10. 
Top line is the curve for Quicksort. 

led the algorithm to visit too many belief states, and 
in general resulted in memory problems. 

A final point about the implementation is that we im- 
pose the precondition that the ordering between the 
elements at positions i and j be known before consid- 
ering a swap between them. This is done by making 
an action swap(i,j) applicable in b only when a link 
i -*• j or j -y i is in the representation of b. This 
condition tends to reduce the branching factor of the 
problem which is still large as it grows linearly with n. 

4.3    EVALUATION 

We tried the above implementation of the RTDP-BEL 
algorithm on sorting problems of two sizes. Figure 2 
shows the performance of the sorting policies com- 
puted by RTDP-BEL for problems of size n = 5 and 
compares them with the ones obtained by Quicksort. 
The y-axis measures the average number of actions 
performed and the as-axis the number of trials. For 
n = 5, there are 5! = 120 states, 20 actions, and 40 
observations. The curves for RTDP-BEL correspond to 
the heuristic h = 0, h = hi and the decomposition 
method to be explained below. The point at trial i 
for i = 1000,2000,3000,... 10000, indicates the aver- 
age cost to reach the goal over 1000 simulations using 
the greedy policy determined by the estimates in the 
table at trial i. RTDP-BEL shows improvement with 
the heuristics h = 0 and hi but no improvement with 
the decomposition method. In all cases they arrive 
to an expected cost that is slightly below 11 which is 
half the expect cost incurred by Quicksort (which is 
the top line in the figure). A run of 10000 trials with 
h — 0 takes in the order of 1.36 minutes and leaves 
4230 entries in the hash table. The heuristic hi and 
the decomposition method are slightly faster. 



78       Bonet and Geffner 

For larger sizes, neither of the two heuristics h = 0 nor 
h = hi scale up, and only the decomposition method 
works. We tried this method for n = 10 that generates 
a POMDP with several million states, 45 actions and 90 
observations. The resulting curve is flat with a cost of 
37. The average curve for Quicksort is also flat with 
an average cost of 64. The idea of the decomposition 
method is the following: the sorting problem is divided 
into two subproblems by introducing the definite be- 
lief states b'F as subgoals, where the b'F's are such that 
b'p(s) = 1 for some s. We deal with the problem of 
going from bo to some b'F, and from b'F to bp sepa- 
rately. That is, each subproblem has its own heuristic 
function and its own hash table. The second subprob- 
lem is triggered after a belief b'F is obtained with b'F as 
the initial belief state. For the first subproblem, the 
heuristic hi is used, while for the second subproblem, 
hm is used. 

For both n = 5 and n = 10 the resulting curves for 
the decomposition method are practically flat. This 
means that the resulting algorithm starts off well but 
then does not improve. As mentioned above this is the 
result of the non-admissibility of the heuristics hi and 
hm for each of the two subproblems. We actually ran 
the same algorithm for both values of n eliminating 
the update step in RTDP-BEL. The resulting algorithm 
is a purely greedy algorithm and produced the same 
results while consuming constant memory (the table 
with the estimates is not needed). However even this 
simplification is not good for very large values of n as 
the branching factor (the number of actions) grows lin- 
early with n. For such problems other optimizations 
are needed. An alternative that we have considered is 
the use of 'indexicals' to control the actions that can 
be considered at any given point. The indexicals in 
this problem can be just a pair of vector subscripts 
so that only comparisons and swaps of elements with 
those subscripts can be considered, in addition to the 
operation of incrementing and decrementing those in- 
dices. Schemes such as these reduce the branching 
factor of the problem but push the solutions deeper in 
search space. Whether and when such tradeoff speeds 
up computation remains an open question. 

4.4    SUMMARY 

Sorting is a challenging problem that can be effec- 
tively modeled and solved as a POMDP provided suit- 
able heuristics, representations and decompositions 
are used. In this way we have solved a POMDP that 
involves millions of states and have obtained solutions 
that compare favorably with Quicksort in terms of the 

number of steps. The obvious weakness of the resulting 
sorting policy is that it applies to a particular prob- 
lem size. An interesting challenge is the extraction of 
a concise and generalized representation of the policy 
that could be applied to problems of any size. 

5    DECISION TREES 

Decision trees are classifiers that map instances into 
classes by sequentially testing the value of a finite set 
of attributes (Mitchell 1997). The standard way to 
learn decision trees from data is by a top-down greedy 
strategy in which the attribute that is most informa- 
tive for classification according to the data is used to 
split the data first, and for each possible outcome, the 
attribute that is most informative according to the 
remaining data is used second and so on, until ei- 
ther there are no more data or no more uncertainty 
regarding the classification (Breiman et al. 1984; 
Quinlan 1993). The generalization power of decision 
tree algorithms is measured by the classification error 
over part of the data that is left aside for testing. De- 
cision tree learning algorithms have been applied to a 
number of domains (Murthy 1998) and a number of 
variations and extensions have been considered (Diet- 
triech 1997). 

5.1    FORMULATION 

The problem of learning decision trees can be seen as 
a sequential decision problem that involves two types 
of actions: report(i) by which the current instance s is 
classified in class Ci, and test(j) by which the attribute 
tj of s is observed. The goal is to have the instance 
s classified, and this can be achieved by any of the 
actions report(i), i = l,...,n where n is the num- 
ber of classes. The expected cost associated with such 
actions depends on the true class of s. The actions 
test(j) provide information about s. The 'classifica- 
tion' POMDP consists thus of: 

1. states s that are the instances in the training set 
supplemented by a separate goal state G 

2. actions report{i) for each of the classes Cj, and 
test(j), for each of the attributes tj 

3. transition probabilities Pa(.s'|,s) = 1 for a = 
test(j) and ,s' = ,s, and a = report(i) and s' = G. 
Otherwise P„(.s'|.s) = 0 

4. action costs c(report(i),s) = dj for class(s) = 
Cj and c(test.(j),s) = Cj for all s 
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5. initial belief state 60 uniform over the non-goal 
states and zero over the goal state 

6. final belief state bF for which bF(G) = 1 

7. observations o after action a = test(j) with 
probabilities P„(o|s) = 1 if o = Vj(s) and 0 oth- 
erwise, where Vj(s) stands for the value of s over 
the attribute £,• 

The POMDP formulation suggests generalizations of the 
standard decision tree learning setting such as different 
test and misclassification costs Cj and dj, noisy tests 
with Pa(o|s) € [0,1], etc. By default we assume here 
that the cost of tests and correct classifications is 1, 
while the cost dj of misclassifications for i ^ j, is 
some constant C > 1. 

5.2 IMPLEMENTATION 

We represent belief states as sets of states (training 
set instances), taking advantage of the the uniform 
prior over the instances and the noiseless 'sensors'. 
With this representation, the complexity of a single 
RTDP-BEL cycle reduces from |5|2 to \S\. The value 
ba(o) for a = test(j) in Equation 2 is obtained as the 
proportion of states s in b for which Vj(s) = o, a pro- 
portion that is computed as |b°|/|6|. 

We use the non-informative heuristic h = 0. Heuris- 
tics based on measures such as information gain (Quin- 
lan 1990) could be used as well but they only make a 
difference in the first trials of RTDP-BEL as they are 
not calibrated with the expected classification costs. 
It may be possible to calibrate such heuristics to ac- 
celerate convergence but we don't know how to do that 
yet. 

5.3 EVALUATION 

Table 1 compares RTDP-BEL with two standard deci- 
sion tree learning algorithms, ID3 and C4.5 (Quinlan 
1990; 1993) over some small datasets obtained from 
the UCI Repository (Murphy & Aha 1998) for two 
different misclassification costs C.4 For each dataset, 

4The figures for ID3 and C4.5 were taken from (Fried- 
man, Kohavi, & Yun 1996). The column named 'Test' 
in the table indicates how the generalization performance 
of the algorithms was measured. The Monk-n datasets 
come with separate training and test data; on the other 
two problems the test-data was generated by 5-fold cross 
validation: the data were partitioned into five segments, 
and fives runs were performed by leaving one different seg- 
ment as test data. The results are the averages over these 
fives runs. 

we constructed the corresponding POMDP and ran the 
RTDP-BEL algorithm with the non-informative heuris- 
tics h = 0 for 10000 trials. The curve in Figure 3 shows 
the average classification accuracy as a function of the 
number of trials in the Monk-1 and Monk-2 datasets. 
A run of 10000 trials over the Monk datasets takes a 
few minutes on average and leaves a few thousand en- 
tries in the hash table. For the larger Votes dataset, 
the run takes 24 minutes on average and leaves around 
16000 entries in the hash table. During testing, when- 
ever a new belief state b°a was generated that was not in 
the hash table, b° was approximated to b. This means 
that unexpected values in the test set are regarded as 
'missing' values. This is not too different from the 
approach taken in decision tree learning when test in- 
stances get to a node with no compatible branches, 
and are classified by the distribution of instances in 
that node. 

5.3.1    Missing Values 

In the presence of missing values in the training set, 
the sum of the beliefs ba(o) over the real observations 
o may fail to add up to 1 due to the mass ba(m) ^ 0 
over the missing values. In such cases, the beliefs ba{6) 
are normalized by dividing them by the sum £V ba{oi) 
taken over the real observations Oj. This amounts to 
assuming that having 'observed' a missing value m is 
like having observed a real observation o; with proba- 
bility ba(oi). This implies that b™ = ba, in agreement 
with the interpretation of missing values as missing ob- 
servations. The dataset Votes in Table 1 has missing 
values. 

5.3.2    Misclassification Costs and Overfitting 

As expected, misclassification costs have an influence 
on the level of overfitting in noisy datasets. Very high 
misclassification costs induce the algorithm to fit the 
training data as much as possible, which in those cases 
may increment the error rate on the test set. This can 
be seen in the last row in Table 1, where the error rate 
in the Votes data set goes up by almost 10 points when 
the misclassification costs are increased from C = 25 
to C = 10000. In general these costs do not have to 
be all equal and can be tuned to produce a minimal 
error rate by leaving aside part of the training data 
for that purpose. In other problems (e.g., medicine), 
these costs can be chosen to approximate the real mis- 
classification costs. 
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Classification Accuracy for Monk-I Daiasct Classification Accuracy for Monk-2 Dalasct 

2000 4000 6000 8000 10000 12000 
trials 

2000 4000 6000 8000 10000 12000 
trials 

Figure 3: Classification Accuracy vs. Trials for Monk-1 and Monk-2 

Table 1: Accuracy after 10000 trials compared with ID3 and C4.5 

RTDP 

Dataset Feat. Miss Train Test ID3 C4.5 C = 25 C = 10000 
monk-1 6 no 124 432 81.25 ±1.89 75.70 ±2.07 97.39 ±0.29 97.39 ± 0.35 
monk-2 6 no 169 432 69.91 ±2.21 65.00 ±2.30 64.42 ±1.13 64.40 ±0.81 
monk-3 6 no 122 432 90.28 ± 1.43 97.20 ± 0.80 95.16 ±0.49 94.33 ± 0.78 
hayes-roth 4 no 160 CV-5 68.75 ± 8.33 74.38 ± 4.24 77.70 ±4.65 72.04 ± 5.44 
votes 16 yes 435 CV-5 93.10 ±2.73 95.63 ± 0.43 94.42 ± 1.88 83.12 ±6.75 

5.3.3    Approximations 

In another set of experiments we introduced an ap- 
proximation in the evaluation of the probability ba(o), 
which in this case stands for the probability of ob- 
serving a value Vj after testing an attribute tj in a 
given context. The exact value of ba(o) is given by the 
number of instances in b whose attribute tj has value 
Vj over the total number of instances in 6. Following 
a similar approximation used in sorting, we approxi- 
mated ba(o) uniformly as 1/n, where n is the number 
of values that attribute tj takes in the training set. 
As before the intuition was that the best action would 
be the most informative and would tend to split the 
data in that way. The results confirmed this intuition 
and matched up almost exactly the ones reported in 
Table 1. The CPU times were reduced three times 
on average. Yet even with this approximation, larger 
datasets could not be handled as memory tends to ex- 
plode. The main problem is the lack of an informa- 
tive heuristic that can guide the search, while leaving 
a large fraction of the (belief) state space unvisited. 
Heuristics such as 'information gain' (Quinlan 1990) 
are informative but are not calibrated with the ex- 
pected costs.5   As a result, they produce a focused 

5That is, information gain is not. a good estimate of the 
expected costs. 

search for the goal in the first few trials, but then be- 
come useless as some of the heuristic values are re- 
placed (updated) by cost estimates. It seems that it 
should be possible to speed up the convergence of RTDP 
algorithms by the use of uncalibrated heuristics, but 
how to do that appears to be an open question. 

5.4    SUMMARY 

We have shown that decision tree induction can be 
modeled and solved as a POMDP problem and that so- 
lutions, while more expensive to compute, may com- 
pete in quality with the standard approaches. POMDPs 
may provide a fresh perspective on the problem of 
inferring decision trees from data as aspects such as 
noisy tests and data, tests and misclassifkation costs, 
and missing values, fit into the POMDP approach in 
a natural way. The POMDP algorithm used, however, 
does not scale up yet to large datasets involving many 
attributes, nor does it apply to datasets involving con- 
tinuous attributes. 

6    CONCLUSIONS 

We aimed to show two things. One is that POMDPs 
can be used to solve complex problems of sequential 
decision by the use of suitable heuristics, representa- 
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tions, and decompositions. The second is that POMDPs 
provide a novel perspective on the problem of inferring 
decision trees from data that may be worth exploring 
in further depth. We have been able to solve very large 
POMDPs with million of states and obtain solutions 
that compete in quality with those produced by some 
of the best algorithms (Quicksort, C4.5). We expect 
that some of the lessons learned will be applicable to 
other problems such as the problem of handling contin- 
uous attributes in decision tree learning that appears 
to have many aspects in common with sorting. We also 
think that the POMDP methods used in this paper can 
be refined so that larger datasets could be handled. 
A number of interesting questions that may be rele- 
vant for the application of POMDP methods to other 
problems remain open; e.g., how can sorting policies 
be generalized to arbitrary array sizes, whether mis- 
classification costs can be used effectively to deal with 
the problem of overfitting, how uncalibrated heuristics 
can be used to speed up converge of RTDP algorithms, 
etc. 
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Abstract 1    INTRODUCTION 

Computational comparison is made between 
two feature selection approaches for finding a 
separating plane that discriminates between 
two point sets in an n-dimensional feature 
space that utilizes as few of the n features 
(dimensions) as possible. In the concave min- 
imization approach [19, 5] a separating plane 
is generated by minimizing a weighted sum of 
distances of misclassified points to two par- 
allel planes that bound the sets and which 
determine the separating plane midway be- 
tween them. Furthermore, the number of di- 
mensions of the space used to determine the 
plane is minimized. In the support vector 
machine approach [27, 7, 1, 10, 24, 28], in 
addition to minimizing the weighted sum of 
distances of misclassified points to the bound- 
ing planes, we also maximize the distance be- 
tween the two bounding planes that generate 
the separating plane. Computational results 
show that feature suppression is an indirect 
consequence of the support vector machine 
approach when an appropriate norm is used. 
Numerical tests on 6 public data sets show 
that classifiers trained by the concave min- 
imization approach and those trained by a 
support vector machine have comparable 10- 
fold cross-validation correctness. However, in 
all data sets tested, the classifiers obtained by 
the concave minimization approach selected 
fewer problem features than those trained by 
a support vector machine. 

The feature selection problem addressed here is that 
of discriminating between two finite point sets in n- 
dimensional feature space R" by a separating plane 
that utilizes as few of the features as possible. 

Classification performance is determined by the in- 
herent class information available in the features pro- 
vided. It seems logical to conclude that a large number 
of features would provide more discriminating ability. 
But, with a finite training sample, a high-dimensional 
feature space is almost empty [12] and many separators 
may perform well on the training data, but few may 
generalize well. Hence the importance of the feature 
selection problem in classification [15]. The optimiza- 
tion formulations in Section 2 exploit one realization 
of the Occam's Razor bias [3]: compute a separat- 
ing plane with a small number of predictive features, 
discarding irrelevant or redundant features. These for- 
mulations can be considered wrapper models as defined 
in [14]. 

The first approach [19, 5], described in Section 2, in- 
volves the minimization of a concave function on a 
polyhedral set. A plane is constructed such that a 
weighted sum of distances of misclassified points to 
the plane is minimized and as few dimensions of the 
original feature space R" are used. This is achieved 
by constructing two parallel bounding planes, in as 
small dimensional space as possible, that bound each 
of the two sets to the extent possible by placing the 
two sets on two opposite halfspaces determined by the 
two planes. The two planes are determined such that 
the sum of weighted distances of points in the wrong 
halfspace to the bounding plane is minimized. This 
leads to the minimization of a concave function on a 
polyhedral set (problems (6) and (8) below) for which 
a stationary point can be obtained a successive lin- 
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earization algorithm (Algorithm 2.1 below). The fi- 
nal separating plane is taken midway between the two 
bounding parallel planes. 

The second approach, that of a support vector ma- 
chine [27, 7, 1, 10, 24, 28], described in Section 3, con- 
structs two parallel bounding planes in n-dimensional 
space Rn as in the first approach outlined above, but 
in addition attempts to push these planes as far apart 
as possible. The justification for this, apart from re- 
ducing the VC dimension [27] which in turn improves 
generalization, is that for the linearly separable case, 
the further apart the planes, the smaller the halfspace 
assigned to each of the two sets, reducing the possi- 
bility that new unseen points from the wrong set lie 
in that halfspace. Although improved generalization 
is the primary purpose of the support vector machine 
formulation, it turns out that the linear program (13) 
resulting from employing the co-norm to measure the 
distance between the two bounding planes, leads also 
to a feature selection method, whereas the linear pro- 
gram resulting from the use of the 1-norm (12) and 
the quadratic program resulting from the 2-norm (14) 
do not lead to feature selection methods. 

In Section 4 we describe our computational experi- 
ments on 6 publicly available data sets using the ap- 
proaches described in Sections 2 and 3. The goal 
is to evaluate the generalization ability of classifiers 
trained by solving: the concave optimization problem 
(8), three versions of the support vector machine prob- 
lem with different norms (12), (13), (14) as well as the 
robust linear program RLP (4). RIP, which underlies 
the proposed feature selection methods here, has no 
feature suppression capability built in. We measure 
generalization ability by 10-fold cross-validation [26]. 
Numerical tests on 6 public data sets show that clas- 
sifiers trained by the concave minimization approach 
and those trained by a support vector machine have 
comparable 10-fold cross-validation correctness. How- 
ever, in all data sets tested, the classifiers obtained 
by the concave minimization approach selected fewer 
problem features than those trained by a support vec- 
tor machine. Further, computational time for the 
normally used quadratic programming approach for 
SVMs, was orders of magnitude larger than the pro- 
posed linear programming approaches. 

We now describe our notation and give some back- 
ground material. All vectors will be column vectors 
unless transposed to-a row vector by a superscript T. 
For a vector x in Rn, \x\ will denote a vector in Rn of 
absolute values of the components of x. For a vector 
x 6 i?n, i+ denotes the vector in Rn with components 

max{0,Xj}. For a vector x € Rn, x* denotes the vec- 
tor in Rn with components (x„)i = 1 if Xi > 0 and 
0 otherwise (i.e. x* is the result of applying the step 
function component-wise to x). The base of the nat- 
ural logarithm will be denoted by s, and for a vector 
y e Rm, e~y will denote a vector in Rm with compo- 
nents e~Vi, i = 1,... , m. For x G Rn and 1 < p < co: 

For a general norm 
Rn is defined as 

• NU = max \XJ\ 
l<J<n 

on Rn, the dual norm on 

tall' = max x'y. 
IMI=i 

The 1-norm and oo-norm are dual norms, and so are 
a p-norm and a g-norm for which 1 < p, q < co and 
i + i = 1. The notation A € RmXn will signify a 

real m x n matrix. For such a matrix AT will denote 
the transpose of A and Ai will denote the i-th row 
of A. A vector of ones in a real space of arbitrary 
dimension will be denoted by e. A vector of zeros in 
a real space of arbitrary dimension will be denoted by 
0.   The notation arg min f(x) will denote the set of 

minimizers of f(x) on the set S. A separating plane, 
with respect to two given point sets A and B in Rn, is a 
plane that attempts to separate Rn into two halfspaces 
such that each open halfspace contains points mostly 
of A or B. 

2    FSV: FEATURE SELECTION VIA 
CONCAVE MINIMIZATION 

In this part of the paper we describe a feature selection 
procedure that has been effective in medical and other 
applications [5, 19]. 

Given two point sets A and B in Rn represented by 
the matrices A € ßmXTl and B £ #*x" respectively, 
we wish to discriminate between them by a separating 
plane: 

P = {x\xeRn,xTw = i}, (1) 

with normal w e Rn and 1-norm distance to the origin 
111 of -r—r— [20]. We shall attempt to determine w and 7 

IMIoo 
so that the separating plane P defines two open halfs- 
paces {x\ x £ Rn,x w > 7} containing mostly points 
of A, and {x \ x e Rn, xTw < 7} containing mostly 
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points of B.  Hence, upon normalization, we wish to 
satisfy 

Aw > e7 + e, Bw < cy — e. (2) 

to the extent possible. Conditions (2) can be satisfied 
if and only if, the convex hulls of .4 and B are disjoint. 
This is not the case in many real-world applications. 
Hence, we attempt to satisfy (2) in some "best" sense 
by minimizing some norm of the average violations of 
(2) such as 

min /(tu,7) = min —1|(—Arw + cy + e)+||i 
ui,7 tu,7    m 

+ l||(B«;-C7 + e)+||i.    (3) 

Recall that for a vector x, x+ denotes the vector with 
components max{0,a:i}. Two principal reasons for 
choosing the 1-norm in (3) are: (1) problem (3) is 
then reducible to a linear program (4) with many im- 
portant theoretical properties making it an effective 
computational tool [2], (2) the 1-norm is less sensitive 
to outliers such as those occurring when the underly- 
ing data distributions have pronounced tails, hence (3) 
has a similar effect to that of robust regression [13],[11, 
pp 82-87]. 

The formulation (3) is equivalent to the following ro- 
bust linear programming formulation (RLP) proposed 
in [2] and effectively used to solve problems from real- 
world domains [21]: 

minimize 

subject to 

m    ^     k 

—Aw + cy + e < y, 
Bw - ej + e < z, 

y>0,z>0. 

(4) 

The linear program (4) or, equivalently, the formu- 
lation (3), define a separating plane P that approx- 
imately satisfies the conditions (2) in the following 
sense. Each positive value of y< determines the dis- 
tance A [20, Theorem 2.2] between a point At of 
A lying on the wrong side of the bounding plane 
xTw = 7 + 1 for A, that is At lying in the open halfs- 
pace 

{x | xTw < 7 + 1}, 

and the bounding plane xTw = 7 + 1. Similarly for 
B and xTw = 7 - 1.  Thus the objective function of 

the linear program (4) minimizes the average sum of 
distances, weighted by ||iu||', of misclassified points to 
the bounding planes. The separating plane P (1) is 
midway between the two bounding planes and parallel 
to them. 

Feature selection [19, 5] is imposed by attempting to 
suppress as many components of the normal vector 
w to the separating plane P that is consistent with 
obtaining an acceptable separation between the sets 
A and B. We achieve this by introducing an extra 
term with parameter A G [0,1) into the objective of 
(4) while weighting the original objective by (1 - A) as 
follows: 

minimize 

-Aw + e7 + e < y, 
subject to Bw - ey + e < z, 

y>0,z>0. 

(5) 

Note that the vector |tu|» € Rn has components which 
are equal to 1 if the corresponding components of w 
are nonzero and components equal to zero if the cor- 
responding components of w are zero. Recall that e 
is a vector of ones and eT\w\* is simply a count of 
the nonzero elements in the vector w. Problem (5) 
balances the error in separating the sets A and B, 
(eTy | eTz\ 

\ m k / 
., and the number of nonzero elements 

m k 
of w, (eT|io|„). Further, if an element of w is zero, the 
corresponding feature is removed from the problem. 

By introducing the variable 7; we are able to eliminate 
the absolute value from problem (5) which leads to 
the following equivalent parametric program (for A G 

[0,D): 

minimize     (1 - A) (sLt + s^.) + \e
Tv, 

ui,7,y,2,u \ / 

-Aw + ej + e < y, 
Bw - ej + e < z, 

y>0,z>0, 
—v<w<v. 

subject to 
(6) 

Since v appears positively weighted in the objective 
and is constrained by -v < w < v, it effectively mod- 
els the vector \w\. This feature selection problem will 
be solved for a value of A G [0,1) for which the result- 
ing classification obtained by the separating plane (1) 
midway between the bounding planes xTw = 7 ± 1, 
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generalizes best, estimated by a cross-validation tun- 
ing procedure. Typically this will be achieved in a fea- 
ture space of reduced dimensionality, that is eTv* < n 
(i.e. the number of features used is less than n). 

Because of the discontinuity of the step function term 
eTvt, we approximate it by a concave exponential on 
the nonnegative real line [19]. The approximation of 
the step vector v* of (6) by the concave exponential : 

u* « t(v, a) = e - e av, a > 0, (7) 

leads to the smooth problem (FSV:Feature Selection 
Concave): 

minimize 

subject to 

—Aw + ej + e < y, 
Bw — ej + e < z, 

y>0,z>0, 
—v<w<v. 

(8) 

It can be shown [4, Theorem 2.1] that for a finite 
value of a (appearing in the concave exponential) the 
smooth problem (8) generates an exact solution of the 
nonsmooth problem (6). We note that this problem is 
the minimization of a concave objective function over 
a polyhedral set. Even though it is difficult to find a 
global solution to this problem, a fast successive linear 
approximation (SLA) algorithm [5, Algorithm 2.1] ter- 
minates finitely (usually in 5 to 7 steps) at a stationary 
point which satisfies the minimum principle necessary 
optimality condition for problem (8) [5, Theorem 2.2] 
and leads to a sparse w with good generalization prop- 
erties. For convenience we state the SLA algorithm 
below. 

Algorithm 2.1 
Successive Linearization Algorithm (SLA) for 
FSV (8). Choose X G [0,1). Start with a random 
(w°, 7°, y°, z°, v°). Having (wl,7l,yt,zl,v%) deter- 
mine (wl+1,Y+1,y1+1,zl+1,vl+1) by solving the linear 
program: 

minimize     (1 - X)(^ + ^Li) + Xa (e-avi)   (v-v1) 

—Aw + ey + e < y, 
Bw — e7 + e < z, 

y>0,z>0, 
— V < W < V. 

Stop when 

m k 

Xa (e-avi) T (vi+1 -vi)=0.    (10) 

Comment: The parameter a was set to 5. The pa- 
rameter X was chosen to "maximize" generalization 
performance. 

We have found useful solutions to (8) for the fixed 
value a = 5 [5, 4]. Another approach, involving more 
computation, is to solve (8) for an increasing sequence 
of a values. 

3    SVM: FEATURE SELECTION 
VIA SUPPORT VECTOR 
MACHINES 

The support vector machine idea [27, 1, 10, 24, 28], 
although not originally intended as a feature selection 
tool, does in fact indirectly suppress components of the 
normal vector w to the separating plane P (1) when 
an appropriate norm is used for measuring the dis- 
tance between the two parallel bounding planes for the 
sets being separated. The SVM approach consists of 
adding another term, ^-, to the objective function of 
the RLP (4) in a similar manner to the appended term 
eT|iü|« of problem (5). Here, || • ||' is the dual of some 
norm on Rn used to measure the distance between the 
two bounding planes. The justification for this term 
is as follows. The separating plane P (1) generated by 
the RLP linear program (4) lies midway between the 
two parallel planes wTx = 7 + 1 and wTx = 7 — 1. 
The distance, measured by some norm || • || on Rn, 
between these planes is precisely TTAT [20, Theorem 
2.2]. The appended term to the objective function of 

the RLP (4), ^-, is the reciprocal of this distance, 
thus driving the distance between these two planes up 
to obtain better separation. This results then in the 
following mathematical programming formulation for 
the SVM formulation: 

subject to 

minimize 

subject to 

(l-X)(eTy + eTz) + ±\\w\\' 

-Aw + cy + e < y, ^j\ 
Bw — ey + e < z, 

y>0,z>0. 

(9) 
Points At G A and J3, G B appearing in active con- 
straints of the linear program (11) with positive dual 
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variables constitute the support vectors of the prob- 
lem. These points are the only data points that are 
relevant for determining the optimal separating plane. 
Their number is usually small and it is proportional to 
the generalization error of the classifier [24]. 

If we use the 1-norm to measure the distance between 
the planes, then the dual to this norm is the oo-norm 
and accordingly ||iu||' = |MU in (11) which leads to 
the following linear programming formulation: 

minimize 
ui,7,j/,z,i> 

subject to 

(l-X)(eTy + eTz) + \ 

-Aw + ej + e < y, 
Bw - ej + e < z, 

—ev <w<eu, 
y >0,z>0. 

(12) 

Similarly if we use the oo-norm to measure the distance 
between the planes, then the dual to this norm is the 1- 
norm and accordingly ||w||' = |M|iin(ll) which leads 
to the following linear programming formulation: 

minimize 
u;,7,y,z,s 

subject to 

(l-A)(eTy + eTz) + feTs 

—Aw + ej + e < y, 
Bw — ey + e < z, 

—s<w<s, 
y>0,z>0. 

(13) 

We note that the first paper on the multisurface 
method on pattern separation [17] also proposed and 
implemented, just as does the support vector machine 
approach, forcing the two parallel planes that bound 
the sets to be separated to be as far apart as possible. 

Usually the support vector machine problem is formu- 
lated using the 2-norm in the objective [27, 1]. Since 
the 2-norm is dual to itself, it follows that the dis- 
tance between the parallel planes defining the separat- 
ing surface is also measured in the 2-norm when this 
formulation is used.   In this case \\w\\' = ||to||2, and 

one usually appends the term -IMI2 to the objective 

of (11) resulting in the following quadratic program: 

minimize 
u;,7,y,z (1- - \)(e

Ty + eTz) + %wT 

—Aw + cy + e < y, 
subject to Bw - e7 + e < z, 

y>0,z>0. 

w 

(14) 

Nonlinear separating surfaces, which are linear in their 
parameters, can also easily be handled by the formu- 
lations (8), (12) and (13) [161. If the data are mapped 
nonlinearly via $ : Rn -» R , a nonlinear separating 

surface in R" is easily computed as a linear separator 
in Rl. In practice, one usually solves (14) by way of its 
dual [18]. In this formulation, the data enter only as 
inner products which are computed in the transformed 
space via a kernel function K{x,y) = $(x) • $(?/) 
[6, 27, 28]. 

We note that separation errors in (12) - (14) are 
weighted equally conforming to the SVM formulations 
in [6, 27].   In contrast, the formulations (4) and (8) 
measure average separation error. Minimizing average 
separation error in (4) ensures that the solution w = 0 

eTA     eTB 
occurs iff = ——, in which case it is not unique 

m 
[2, Theorem 2.5]. 

We turn our attention now to computational testing 
and comparison. 

4    COMPUTATIONAL RESULTS 

4.1    DATA SETS 

The Wisconsin Prognostic Breast Cancer Database 
consists of 198 instances with 35 features represent- 
ing follow-up data for one breast cancer case [23]. 

We used 2 variants of this data set. The first data set 
was created where the elements of the set A were 30 
nuclear features plus diameter of excised tumor and 
number of positive lymph nodes of instances corre- 
sponding to patients in which cancer had recurred in 
less than 24 months (28 points). The set B consisted 
of the same features for patients in which cancer had 
not recurred in less than 24 months (127 points). The 
second variant of the data set consisted of the same 32 
features, but but splits the data into A and B differ- 
ently. Elements of A corresponds to patients with a 
cancer recurrence in less than 60 months (41 points) 
and B corresponds to patients which cancer had not 
recurred in less than 60 months (69 points). 

The Johns Hopkins University Ionosphere data set 
consists of 34 continuous features of 351 instances [23]. 
Each instance represents a radar return from the iono- 
sphere. The set A consists of 225 radar returns termed 
"good" or showing some type of structure in the iono- 
sphere. The set B consists of 126 radar returns termed 
"bad"; their signals pass through the ionosphere. 

The Cleveland Heart Disease data set consists of 297 
instance with 13 features (see documentation [23]). Set 
A consist of 214 instance. The set B consists of 83 
instances. 



Feature Selection via Concave Minimization and Support Vector Machines       87 

Correctness vs. X [Tune", Test] 

Figure 1: Tuning and testing sets correctness for a support 
vector machine (13) versus the sparsity-inducing parameter 
A on the WPBC (24 months) data set. Dashed = "tuning" 
correctness, Solid = test correctness. 

The Pima Indians Diabetes data set consists of 768 
instances with 8 features plus a class label (see doc- 
umentation [23]). The 500 instances with class label 
"0" were place in A, the 268 instances with class label 
"1" were placed in B. 

The BUPA Liver Disorders data set consists of 345 
instances with 6 features plus a selector field used to 
split the data into 2 sets (see documentation [23]). Set 
A consists of 145 instances, the set B consists of 200 
instances. 

4.2    EXPERIMENTAL METHODOLOGY 

Our goal was to evaluate the generalization ability of 
the classifiers obtained by solving: the concave mini- 
mization problem FSV (8), SVM 1-norm problem (13), 
the SVM oo-norm problem (12), the SVM 2-norm 
problem (14) and the robust linear program (RLP) 
(4). We estimate the generalization ability of a classi- 
fier via 10-fold cross-validation [26]. 

We note that the objective function parameter A, 
which can induce sparsity, must be chosen carefully 
to maximize the generalization ability of the resulting 
classifier. Choosing A = 0 will maximize the training 
correctness of the resulting classifier, but often this 
classifier performs poorly on data not in the train- 
ing set [25]. We employ the following "tuning set" 
procedure for choosing A at each fold of 10-fold cross- 
validation: For each A in a candidate set A, we perform 
the following: (i) set aside 10% of the training data as 

a "tuning" set, («') obtain a classifier for the given 
value of A, (iii) determine correctness on the "tuning" 
set, (iv) repeat steps (i)-(m) ten times, each time set- 
ting aside a different 10% portion of the training data. 
The "score" for this value of A is the average of the 10 
correctness values determined in (in). 

We fix the value of A as that with the best "score" de- 
termined from the tuning procedure (ties are broken by 
choosing the smallest A-value). This is the value used 
for the given fold of 10-fold cross-validation. The set A 
is a set of candidate values and for these experiments 
was set at: A = {0.05,0.10,0.20,... ,0.90,0.95}. The 
curves in Figure 1 indicate that the value of A that 
maximizes the "tuning" score (dashed curve in Figure 
1) is a good estimate of the value of A that maximizes 
the test set correctness (solid curve). 

4.3 EXPERIMENTAL RESULTS 

Table 1 summarizes the average number of original 
problem features selected by the classifiers trained by 
each of the methods. 

Table 2 summarizes the results of the 10-fold cross- 
validation experiments on 6 real-world data sets. All 
"Train" and "Test" numbers presented are average 
correctnesses over 10-folds. The p-value is an indicator 
of significance difference in "Test" correctness between 
the classifiers obtained by solving FSV (8) and the 
classifiers obtained by solving the SVM 1-norm prob- 
lem (13) x. Recall that a high p-value indicates that 
the difference is not significant. We note that p-values 
were not calculated for the other pairwise comparisons 
because the solutions obtained by solving the SVM 
oo-norm, SVM 2-norm and the RLP did not suppress 
problem features (see Table 1). 

4.4 DISCUSSION 

The FSV (8) and the SVM 1-norm (13) problems 
where the only ones exhibiting feature selection (Ta- 
ble 1). On the 6 data sets tested, the SVM 1-norm 
classifiers performed slightly better on 3 data sets and 
FSV classifiers performed slightly better on 3 data sets. 
The minimum p-value is 0.1246 indicates that classi- 
fiers obtained by the FSV (8) and the SVM 1-norm 
(13) methods have similar generalization properties. 
Applying the paired t-test to 10-fold cross validation 
results may indicate a difference in the average test 

1 Specifically, this is the p-value of a two-tailed paired 
t-test testing the hypothesis that the difference in "Test" 
correctnesses for the FSV and SVM 1-norm classifiers is 
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set correctness when one is not present [9]. Thus the 
results of these experiments may be more similar than 
indicated by the p-values. 

We note that the classifiers obtained by solving the 
SVM oo-norm (12) suppressed none of the original 
problem features for all but the largest values of A 
(near 1.0), which in general is of little use because it 
is often accompanied by poor set separation. Simi- 
lar behavior was observed by solving the SVM 2-norm 
(14) problem. Note that the co-norm is sensitive to 
outliers, as is the 2-norm squared. 

The classifiers obtained by solving the FSV problem 
(8) selected fewer problem features than the any of the 
SVM formulations (12), (13), (14) and the RLP (4) 
FSV classifiers reduced the number of features used 
over SVM 1-norm by as much as 39.5% (WPBC 60 
month), while maintaining comparable generalization 
performance. 

On the WPBC 24 month dataset, both the FSV clas- 
sifiers (8) and the SVM 1-norm classifiers (13) most 
often selected a nuclear area feature and number of 
lymph nodes removed from the patient. These fea- 
tures are deemed relevant to the prognosis problem. 

All linear programs formulations were solved using the 
CPLEX package [8] called from within MATLAB [22]. 
The quadratic programming problem (14) was solved 
using MATLAB's quadratic optimization solver, which 
encountered difficulty on conditioning the QP con- 
straint matrix, which may affect the interpretation of 
the results for this approach. See Table 3 for average 
solve times. 

5    SUMMARY AND FUTURE 
WORK 

Computational comparisons of classifiers obtained by 
solving four mathematical optimization problems are 
presented. The optimization formulations are either 
linear (4), (12) and (13), or quadratic (14), or can be 
solved by a finite sequence of linear programs (solv- 
ing (8) via Algorithm 2.1). Classifiers obtained 
by solving the FSV problem (8) and the SVM 
1-norm problem (13) exhibit feature suppres- 
sion and have comparable generalization per- 
formance on six publicly available real world 
data sets tested. The classifiers obtained by 
solving the FSV problem (8) suppressed more 
features than the corresponding SVM 1-norm 
classifiers (13). The quadratic SVM (14) took 
orders of magnitude more time than the linear- 

programming-based SVMs (12) and (13). 

When the distance between the 2 parallel planes defin- 
ing the separating surface in the SVM problem is cho- 
sen to be the 1-norm, the resulting SVM optimization 
problem has the oo-norm (dual norm to the 1-norm) 
appearing in the objective. The classifiers obtained by 
solving this problem (SVM oo-norm (12)) did not ex- 
hibit feature selection. Similar behavior was observed 
for classifiers obtained by solving the SVM 2-norm (14) 
problem. The generalization ability of these classifiers 
in comparison with the others presented needs to be 
further investigated. 

Future work includes further analysis of the benefits 
of measuring the distance between the bounding par- 
allel planes defining the separating plane and the re- 
sulting optimization problem utilizing the dual norm 
(11). A characterization of classes of data sets which 
lend themselves to better separation with the choice 
of one norm over another will allow practitioners to 
choose a priori an optimization formulation believed 
to be "best" suited to the separation problem at hand. 
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Abstract 
Practical approaches to clustering use an iterative 
procedure (e.g. K-Means, EM) which converges 
to one of numerous local minima. It is known 
that these iterative techniques are especially 
sensitive to initial starting conditions. We 
present a procedure for computing a refined 
starting condition from a given initial one that is 
based on an efficient technique for estimating the 
modes of a distribution. The refined initial 
starting condition allows the iterative algorithm 
to converge to a "better" local minimum. The 
procedure is applicable to a wide class of 
clustering algorithms for both discrete and 
continuous data. We demonstrate the application 
of this method to the popular K-Means clustering 
algorithm and show that refined initial starting 
points indeed lead to improved solutions. 
Refinement run time is considerably lower than 
the time required to cluster the full database. 
The method is scalable and can be coupled with 
a scalable clustering algorithm to address the 
large-scale clustering problems in data mining. 

1. BACKGROUND 
Clustering is an important area of application for a variety 
of fields including data mining [FPSU96], statistical data 
analysis [KR89.BR93], compression [ZRL97], and vector 
quantization. Clustering has been formulated in various 
ways in the machine learning [F87], pattern recognition 
[DH73.F90], optimization [BMS97.SI84], and statistics 
literature [KR89,BR93,B95,S92,S86]. The fundamental 
clustering problem is that of grouping together 
(clustering) data items which are similar to each other. 
The most general approach to clustering is to view it as a 
density estimation problem [S86, S92.BR93]. We assume 
that in addition to the observed variables for each data 
item, there is a hidden, unobserved variable indicating the 
"cluster membership" of the given data item. Hence the 
data is assumed to arrive from a mixture model and the 
mixing labels (cluster identifiers) are hidden. In general, a 
mixture model M having K clusters C„ i=l,...,K, assigns 
a    probability    to    a    data    point   x    as    follows: 

Usama M. Fayyad 
Microsoft Research 

Redmond, WA 98052, USA 
fayyad @ microsoft.com 

http://research.microsoft.com/~fayyad 

K 

Pr(x I M) = X W,;■ Pt(x \Cj,M) where Wt are called the 

mixture weights. Many methods assume that the number 
of clusters K is known or given as input. 

The clustering optimization problem is that of finding 
parameters associated with the mixture model M (W, and 
parameters of components C,) which maximize the 
likelihood of the data given the model. The probability 
distribution specified by each cluster can take any form. 
The EM algorithm [DLR77, CS96] is a well-known 
technique for estimating the parameters in the general 
case. K-Means clustering is a popular method (historically 
also known as Forgy's method [F65] or MacQueen's 
algorithm [M67]). It is really a special case of EM that 
assumes: 

1) Each cluster is modeled by a spherical Gaussian 
distribution; 

2) Each data item is assigned to a single cluster; 
3) The mixture weights (WJ are equal. 

Note that K-Means [DH73.F90] is defined over numeric 
(continuous-valued) data since it requires the ability to 
compute the mean. A discrete version of K-Means exists 
and is sometimes referred to as harsh EM [NH98]. The K- 
Means algorithm finds locally optimal solutions 
minimizing the sum of the L2 distance squared between 
each data point and its nearest cluster center ("distortion") 
[BMS97.SI84], which is equivalent to a maximizing the 
likelihood given the assumptions listed above. 

There are various approaches to solving the problem of 
determining (locally) optimal values of the parameters 
given the data. Iterative refinement approaches, which 
include EM and K-Means, are the most effective. The 
basic algorithm works as follows: 

1) Initialize the model parameters to a current model; 
2) Decide memberships of the data items to clusters, 

assuming that the current model is correct; 
3) Re-estimate the parameters of the current model 

assuming that the data memberships obtained in 2) 
are correct, producing new model; 

4) If current model and new model are sufficiently close 
to each other, terminate, else go to 2). 
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Figure 1. Two Gaussian bumps in 2-d: full sample versus small subsample. 

We focus on the initialization step 1. Given the initial 
condition of step 1, the algorithms define a deterministic 
mapping from initial point to solution. Both the K-Means 
and EM algorithms converge finitely to a point (set of 
parameter values) that is locally maximal for the 
likelihood of the data given the model. The deterministic 
mapping means the locally optimal solution is sensitive to 
the initial point choice. 
There is little prior work on initialization methods for 
clustering. According to [DH73] (p. 228): 

"One   question   that  plagues   all   hill-climbing 
procedures is the choice of the starting point. 
Unfortunately,  there  is  no  simple,  universally 
good solution to this problem." 

"Repetition with different random selections" [DH73] 
appears to be the defacto method. Most presentations do 
not address the issue of initialization or assume either 
user-provided or randomly chosen starting points [DH73, 
R92, KR89]. A recursive method for initializing the 
means by running K clustering problems is mentioned in 
[DH73]. A variant of this method consists of taking the 
mean of the entire data and then randomly perturbing it K 
times [TMCH97]. This method does not appear to be 
better than random initialization in the case of EM over 
discrete data [MH98]. In [BMS97], the values of initial 
means along any one of the d coordinate axes is 
determined by selecting the K densest "bins" along that 
coordinate. 
Methods to initialize EM include K-Means solutions, 
hierarchical agglomerative clustering (HAC) [DH73,R92, 
MH98] and "marginal+noise" [TMCH97]. It was found 
that for EM over discrete data initialized with either HAC 
or "marginal+noise" showed no improvement over 
random initialization [MH98]. 

For the remainder of this paper we focus on the K-Means 
algorithm although the method can refine an initial point 
for other clustering algorithms. Our focus on K-Means is 
justified by the following: 1) it is a standard technique for 
clustering, used in a wide array of applications and even 
as way to initialize the more expensive EM clustering 
algorithm [B95, CS96, MH98]; 2) regardless of which 
clustering algorithm is being used, K-Means is employed 
internally by our initialization refinement method; 3) the 

purpose of the paper is to illustrate the refinement 
procedure, not to evaluate a variety of clustering 
algorithms. 

2.  REFINING INITIAL CONDITIONS 
We address the problem of initializing a general 
clustering algorithm, but limit our presentation of results 
to K-Means. Since no good method for initialization 
exists [MH98], we compare against the defacto standard 
method for initialization: randomly choosing an initial 
starting point. However, the method can be applied to any 
starting point provided. 
A solution of the clustering problem is a parameterization 
of each cluster model. This parameterization can be 
performed by determining the modes (maxima) of the 
joint probability density of the data and placing a cluster 
centroid at each mode. Hence one clustering approach is 
to estimate the density and attempt to find the maxima 
("bumps") of the estimated density function. Density 
estimation in high dimensions is difficult [S92], as is 
bump hunting [F90]. We propose a method, inspired by 
this procedure that refines the initial point to a point likely 
to be closer to the modes. The challenge is to perform 
refinement efficiently. 

The basic heuristic is that severely subsampling the data 
will naturally bias the sample to representatives "near" the 
modes. In general, one cannot guard against the 
possibility of points from the tails appearing in the 
subsample. We have to overcome the problem that the 
estimate is fairly unstable due to elements of the tails 
appearing in the sample. Figure 1 shows data drawn from 
a mixture of two Gaussians (clusters) in 2-D with means 
at [3,2] and [5,5]. On the left is the full data set, on the 
right a small subsample is shown, providing information 
on the modes of the joint probability density function. 
Each of the points on the right may be thought of as a 
"guess" at the possible location of a mode in the 
underlying distribution. The estimates are fairly varied, 
but they certainly exhibit "expected" behavior. Worthy of 
note here is that good separation between the two clusters 
is achieved. This observation indicates that the solutions 
obtained  by clustering over a small  subsample may 
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Figure 2: Result of clustering two different samples drawn from the same distribution, and 
initialized with the same starting point (produced solution indicated by '+'). 

provide good refined initial estimates of the true means, 
or centroids, in the data. However, this method often 
produces noisy estimates due to single small subsamples, 
especially in skewed distributions and high dimensions 
(Figure 2). This behavior is fairly common when 
clustering over small subsamples. In fact it is surprisingly 
frequent even in low dimensions using data from well- 
separated Gaussians1. Figure 2 can also be used to 
illustrate the importance of the problem of having a good 
initial points. An initial cluster center attracting no data 
may remain empty (Figure 2, left), while a starting point 
with no empty clusters usually produces better solutions 
(right). 

A1 

X 
B1 

C3      D3 

B3 
A3 

C1 

B2 
D2 

X True solution 
A's: solutions from trial 1 
B's: solutions from trial 2 
C's: solutions from trial 3 
D's: solutions from trial 4 

D1      A2 C2 

Figure 3. Multiple Solutions from Multiple Samples. 

2.1   Clustering Clusters 

In order to overcome the problem of noisy estimates, we 
employ the following procedure. Multiple subsamples, 
say J, are drawn and clustered independently producing J 
estimates of the true cluster locations. To avoid the noise 
associated with each of the J solutions, we employ a 
"smoothing" procedure. However, to "best" perform this 
smoothing, one needs to solve the problem of grouping 
the K*J points (7 solutions, each having K clusters) into K 
groups in an "optimal" fashion.     Figure 3  shows 4 

1 In fact data from well-separated Gaussians in low-D are a "best-case" 
scenario for the behavior of a random sampling based approach. Note 
the idealized conditions: no noise, algorithm given the correct number 
of clusters K. With real-wold data ideal conditons are difficult to 
achieve, hence the behavior is expected to be worse (and indeed it is). 

solutions obtained for A=3, 7=4. The "true" cluster means 
are depicted by "X". The A's show the 3 points obtained 
from the first subsample, B's second, C's third, and D's 
fourth. The problem then is determining that Dl is to be 
grouped with Al but A2 should not be grouped with {Al, 
B1.C1.D1}. 

2.2 The Refinement Algorithm 

The refinement algorithm initially chooses J small 
random sub-samples of the data, 5„ i=l,...,J. The sub- 
samples are clustered via K-Means with the proviso that 
empty clusters at termination will have their initial centers 
re-assigned and the sub-sample will be re-clustered. The 
sets CMj, i-l,...,J are these clustering solutions over the 
sub-samples which form the set CM. CM is then clustered 
via K-Means initialized with CMt producing a solution 
FA/,. The refined initial point is then chosen as the FMt 

having minimal distortion over the set CM. 

Clustering CM is a smoothing over the CMj to avoid 
solutions "corrupted" by outliers included in the sub- 
sample St. The refinement algorithm takes as input: SP 
(initial starting point), Data, K, and J (number of small 
subsamples to be taken from Data): 

Algorithm Refine( SP, Data, K, J) 

0. CAf = <(> 
1. Fori=l,...,7 

a. Let Sj be a small random subsample of 
Data 

b. Let CM, = KMeansMod^P, 5„ K) 
c. CM=CMKJ CMJ 

FMS = 4> 
For i=l,...,7 

a. Let FM, = KMeans(CMj, CM, K) 
b. Let FMS=FMSv FMt 

Let FM = ArgMin{Distortion(FM;, CM)} 

5. Return (FM) 

2. 
3. 

4. 
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We define the following functions 
called by the refinement algorithm: 
KMeans(   ),   KMeansMod(   )   and 
Distortion( ).   KMeans is simply a 
call     to    the    classic     K-Means 
algorithm taking:   an initial starting 
point, dataset and the number of 
clusters K, returning a set of K d- 
dimensional vectors, the estimates 
of the centroids of the K clusters. 
KmeansMod     takes     the     same 
arguments as KMeans (above) and 
performs     the     same     iterative 
procedure    as    classic    K-Means 
except   for   the   following   slight 
modification.      When   classic   K- 
Means has converged, the K clusters 
are checked for membership. If any 
of    the    K    clusters    have    no 
membership (which often happens when clustering over 
small subsamples), the corresponding initial estimates of 
the empty cluster centroids are set to data elements which 
are farthest from their assigned cluster center, and classic 
K-Means is called again from these new initial centriods. 

The   heuristic   re-assignment   is    motivated    by   the 
following: if, at termination of K-Means, there are empty 
clusters then reassigning all empty clusters to points 
farthest from their respective centers decreases distortion 
most at this step.   An example of clusters having zero 
membership is depicted in Figure 3 (left). 

Distortion takes set of K estimates of the means and the 
data set and computes the sum of squared distances of 
each data point to its nearest mean. This scalar measures 
the degree of fit of a set of clusters to the dataset. The K- 
Means algorithm terminates at a solution which is locally 
optimal for this distortion function [SI84]. The refinement 
process is illustrated in the diagram of Figure 4. 

2.3 Computational   Complexity   and   Scalability   to 
Large Databases 

The refinement algorithm is primarily intended to work 
on large databases. When working over small datasets 
(e.g. most data sets in the Irvine Repository), applying the 
classic K-Means algorithm from many different starting 
points is a feasible option. However, as database size 
increases (especially in dimensionality), efficient and 
accurate initialization becomes critical. A clustering 
session on a data set with many dimensions and tens of 
thousands or millions of records can take hours to days. 
In [BFR98], we present a method for scaling clustering to 
very large databases, specifically targeted at databases not 
fitting in RAM. We show that accurate clustering can be 
achieved with improved results over classic K-Means 
applied to an appropriately sized random subsample of the 

Cluster multiple 
subsamples 

Select 

Solution 

£ 
Subsample 

J" Multiple Sample     Cluster Solutions 
Solutions (multiple starts) 

Figure 4. The Starting Point Refinement Procedure 

database [BFR98]. Scalable clustering methods 
obviously benefit from better initialization. 

Since our method works on very small samples of the 
data, the initialization is fast. For example, if we use 
sample sizes of 1% (or less) of the full dataset size, trials 
over 10 samples can be run in time complexity that is less 
than 10% of the time needed for clustering the full 
database. For very large databases, the initial sample 
becomes negligible in size. 

If, for a data set D, a clustering algorithm requires Iter(D) 
iterations to cluster it, then time complexity is IDI * 
Iter(D). A small subsample S a D, where ISI << IDI, 
typically requires significantly fewer iteration to cluster. 
Empirically, it is safe to expect that Iter(S) < Iter(D). 
Hence, given a specified budget of time that a user 
allocates to the refinement process, we simply determine 
the number J of subsamples to use in the refinement 
process. When IDI is very large, and 151 is a small 
proportion of IDI, refinement time is essentially 
negligible, even for large J. 

Another desirable property of the refinement algorithm is 
that it easily scales to very large databases. The only 
memory requirement is to hold a small subsample in 
RAM. In the secondary clustering stage, only the 
solutions obtained from the J subsamples need to be held 
in RAM. 

Note we assume that it is possible to obtain a random 
sample from a large-scale database. While this sounds 
simple, in reality this can be a challenging task. Unless 
one can guarantee that the records in a database are not 
ordered by some property, random sampling can be as 
expensive as scanning the entire database (using some 
scheme such as reservoir sampling, e.g. [J62]). Note that 
in a database environment, what one thinks of as a data 
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Figure 5: Left: K-Mean solution (large red circles) from random initial point (blue squares). Right: 
Refined initial point (red circles), random initial point (blue squares). 

table (a view) may not exist as a physical table. The result 
of a query may involve joins, groupings, and sorts. In 
many cases database operations impose a special ordering 
on the result set, and "randomness" of the resulting 
database view cannot be assumed in general. 

2.4 An Example 

Figure 5 illustrates the sensitivity of K-Means solutions to 
initial conditions. Elements are sampled from three 
Gaussians in 2 dimensions. Note that the Gaussians in 
this case happen to be centered along a diagonal. The 
reason for this choice is that even as the dimensionality of 
the data goes higher, any 2 dimensional projection of the 
higher dimensional data will have this same form, making 
the data set easy for a visualization-based approach. 
Simply project the data to 2 dimensions, and the clusters 
reveal themselves. This is a rare property since, if the 
Gaussians are not aligned along the diagonal, any lower- 
dimensional projection may result in overlaps and 
separability in 2 dimensions is lost. The left figure shows 
a random starting point and the corresponding K-Means 
solution. The right figure shows the same initial random 
points and the result of the refinement procedure on this 
random initial point. Note that in this case the refined 
point is very close to the true solution. Running K-Means 
from the refined point converges to the true solution. 

It is important to point out that this example is for 
illustrative purposes only. The interesting cases are high- 
dimensional data sets with more data items. 
Computational results indicate that the refinement method 
scales well to higher dimensions (100-D and more). 

3.  RESULTS ON SYNTHETIC DATA 
3.1 Data Set Description 

Synthetic data was created for dimension d = 2, 3, 4, 5, 
10, 20, 40, 50 and 100. For a given value of d, data was 
sampled from 10 Gaussians (hence K=10) with elements 
of their mean vectors (the true means) ju sampled from a 
uniform distribution on [-5,5]. Elements of the diagonal 
covariance matrices E were sampled from a uniform 
distribution on [0.7,1.5]. The number of data points 
sampled was chosen as 20 times the number of 
parameters estimated by K-Means. The K=\0 Gaussians 
were not evenly weighted. 

3.2 Experimental Methodology 

The goal of this experiment is to evaluate how close the 
means estimated by classic K-Means are to the true 
Gaussian means generating the synthetic data. We 
compare 3 initializations: 

1. point   chosen 

3. 

No   Refinement:   random   starting 
uniformly on the range of the data. 
Refinement (J=10): a starting point refined from (1) 
using our method. The size of the random subsamples 
being 10% of full dataset size and the number of 
subsamples taken being 10. 
Refinement (J=l):  same as 2 but over a single 
random subsample of size 10%. 

Once classic K-Means has computed a solution over the 
full dataset from any of the 3 initial points described 
above, the estimated means must be matched with the true 
Gaussian means in some optimal way prior to computing 
the distance between these estimated means the true 

Gaussian means.    Let 1 = 1 K  be the K true 

Gaussian means and let 3c', / = 1,..., K be the K means 

estimated by classic K-Means over the full dataset. A 
"permutation"   71 is determined so that the following 
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Ratios of Distances to Truth 

2 3 4 5 10        20       40        50       100 

■ Refined (J=10) nUnreflned DRefined (J=1)        Dimension 

Figure 6. Comparing performance as dimensionality increases 

quantity is minimized: / Jju .-»(/) , The "score" for 
/=i 

a solution computed by classic K-Means over the full 
dataset is simply the above quantity divided by K. This is 
the average distance between the true Gaussian means and 
those estimated by K-Means over the full dataset from a 
given initial starting point. 

3.3 Experimental Results 

Figure 6 summarizes results averaged over 10 random 
initial points determined uniformly on the range of the 
data. Note that the K-Means solution computed from 
"Refined (J=10)", is consistently nearer to the true 
Gaussian means generating the dataset than the K-Means 
solution computed from either the random initial point or 
the "Refined (J=l)" initial point. On the left we 
summarize ratios of average distance to the true Gaussian 
means relative to the average distance for the classic K- 
Mean solution computed from the refined initial point. 
Worthy of note in these results are the following facts: 

1. For dimensions 2-50, the refinement method (Refined 
(J=10)) always did better than the random starting 
point (Unrefined) and the point refined over 1 
subsample (Refined (J=l)). 

2. For dimension 100, in 9 of the 10 independent trials 
our refinement method did better than the random 
starting point. 

3. Refiner solutions are between 2.34 (d-3) and 6.44 
(d=50) times closer to the true Gaussian means than 
solutions from the random initial point and between 
1.09 (d=3) and 4.80 (d=50) times closer than solution 
computed from "Refined (J=l)" initial point. 

In one run, we did slightly worse. This explains the large 
variance number for 100 dimensions. If we exclude that 
one data point, the variance drops to within range of all 
other dimensions. The fact that the minimum ratio occurs 
for datasets with small dimensionality and the maximum 
ratio occurs for datasets with large dimensionality 
indicates the utility of the refinement algorithm for large- 
dimensional datasets. 

4.  RESULTS ON REAL-WORLD DATA 
We present computational results on 2 classes of publicly 
available "real-world" datasets. We are primarily more 
interested in large databases - hundreds of dimensions 
and tens of thousands to millions or records. It is for 
these data sets that our method exhibits the greatest value. 
The reason is simple: a clustering session on a large 
database is a time-consuming affair. Hence a refined 
starting condition can insure that the time investment pays 
off. 

To illustrate this, we used a large publicly available data 
set available from Reuters News Service. The data is 
described in Section 4.2. We also wanted to demonstrate 
the refinement procedure using data sets from the UCI 
Machine Learning Repository. For the most part, we 
found that these data sets are too easy: they are low 
dimensional and have a very small number of records. 
With a small number of records, it is feasible to perform 
multiple restarts efficiently. Since the sample size is small 
to begin with, sub-sampling for initialization is not 
effective. Hence most of these data sets are not of interest 
to us. Nevertheless, we report on our general experience 
with them as well as detailed experience with one of these 
data sets to illustrate that the method we advocate is 
useful when applied to smaller data sets. We emphasize, 
however, that our refinement procedure is best suited for 
large-scale data. The refinement algorithm operates over 
small sub-samples of the database and hence run-times 
needed to determine a "good" initial starting point (which 
speeds the convergence on the full data set) arc orders of 
magnitude less than the total time needed for clustering in 
a large-scale situation. 

We note that it is very likely that the cluster labeling 
associated   with   many   real-world   databases   do   not 
correspond to the distortion measure minimized by K- 
Means. 

4.1 Datasets from UCI ML Repository 
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We evaluated our method on several Irvine data sets. First 
we present results on the Image Segmentation data set, 
then we discuss the results over the other data sets. 

Image Segmentation Data Set 

This data set consists of 2310 data elements in 19 
dimensions. Instances are drawn randomly from a 
database of 7 outdoor images (brickface, sky, foliage, 
cement, window, path, grass). Each of the 7 images is 
represented by 330 instances.2 

Experimental Methodology 

Random initial starting points were computed by 
sampling uniformly over the range of the data. We 
compare solutions achieved by the classic K-Means 
algorithm starting from: 1) random initial starting points, 
and 2) initial points refined by our method. 

Once classic K-Means has converged, the "quality" of the 
solution must be determined. Unlike the case of synthetic 
data, we cannot measure distance to the true solution 
since "truth" is not known. However, we can use average 
class purity within each cluster as one measure of quality. 
The other measure, which is not dependent on a 
classification, is the distortion of the data given the 
clusters. Quality scoring methods are: 

Information Gain: estimates the "amount of information" 
gained by clustering the database as measured by the 
reduction in class impurity within clusters. For a database 

with L known classes, let c be the number of data 
elements in class / where / = 1,..., L. Let m be the total 
number of data points in the database. The Total Entropy 

of the  database  is: Total Entropy = X 
fc1^ 

Vmj 

log 
'c<^ 

m 
v     J 

Upon convergence of the classic K-Means algorithm from 
a given initial starting point, the 'Weighted Entropy is 
computed over the given clustering as follows: Form the 
K X L cluster/class matrix C with the (i, j) -th element 

being the number of elements of class j belonging to 

cluster i. Notice that the clustering will completely 
recover the assigned classes if the cluster/class matrix has 
a permuted identity nonzero structure. Let CSk be the size 
of the k-th cluster, then class entropy for the k-th cluster is 

( 
given   by: ClusterEntropy(k) = £ 

C k,l 

cst 
log 

A 

J 

-k,l 

csh \ J 
The weighted entropy of the entire clustering is given by: 

WeightedEntropy(K) = £ 
Jt=i 

CS, \ 
OlusterEntropy(k). 

Information Gain =Total Entropy - Weighted Entropy(K). 

M 
J 

For a more detailed description of the data, see the the Irvine ML Data 
Repository at http://www.ics.uci.edu/-mlearn/MLRepository.html 

Distortion: Given the K means estimated by the classic 
K-Means algorithm, the distortion value that we consider 
is simply the sum of the L2 distance squared between the 
data items and the mean of their assigned cluster. A 
smaller value for the distortion measure indicates that the 
model parameters (i.e. means) are a better fit to the 
database given the K-Means assumptions are true. 

Results: Image Segmentation Database 

Average information gain over 10 random initial points 
for classic K-Mean without refining the initial point was 
0.312510.3188 (±one standard deviation). Average 
information gain for K-Mean initialized from a refined (J 
= 10) starting point was 0.8195 ± 0.1458. The amount of 
information gained on average by the solutions computed 
from the refined point was 2.6222 time that of the 
solution computed over the random initial point. 

Furthermore, on average, solutions computed from the 
refined initial points (7=70) reduced distortion by 44.41% 
over solutions computed from random initial points. 

4.2 Other Real World Datasets 

We evaluated the refinement procedure on other data sets 
such as Fisher's IRIS, Star-Galaxy-Bright, etc. Because 
these data sets are very low dimensional and their sizes 
small, the majority of the results were of no interest. 

Clustering these data sets from random initial points and 
from refined initial points led to approximately equal gain 
in entropy and equal distortion measures in most cases. 
We did observe, however, that when a random starting 
point leads to a "bad" solution, then refinement indeed 
takes it to a "good" solution. So in those (admittedly 
rare) cases, refinement does provide expected 
improvement. We use the Reuters information retrieval 
data set to demonstrate our method on a real and difficult 
clustering task. 

Reuters Information Retrieval Data Set 

The Reuters text classification database is derived from 
the original Reuters-21578 data set made publicly 
available as part of the Reuters Corpus, through available 
as part of the Reuters Corpus, through Reuters, Inc., 
Carnegie Group and David Lewis3. This data consists of 
12,902 documents. Each document is a news article about 
some topic: e.g. earnings, commodities, acquisitions, 
grain, copper, etc... There are 119 categories, which 
belong to some 25 higher level categories (there is a 
hierarchy on categories). The Reuters database consists of 
word counts for each of the 12,902 documents. There are 
hundreds of thousands of words, but for purposes of our 
experiments   we   selected   the   302   most   frequently 

3 
See: http://www.research.att.com/~lewis/ reuters21578/ README.txt 

for more details on this data set. 
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Figure 7: Results on Reuters Data from 5 Starting 
Points: percentage total distortion of refined solution 
relative to unrefined solution. 

occurring words, hence each instance has 302 dimensions 
indicating the integer number of times the corresponding 
word occurs in the given document. Each document in 
the IR-Reuters database has been classified into one or 
more categories. We use K=25 for clustering purposes to 
reflect the 25 top-level categories. The task is then to find 
the best clustering given K=25. 

Reuters Results 
For this data set, because clustering the entire database 
requires a large amount of time, we chose to only evaluate 
results   over  5   randomly   chosen   starting   conditions. 
Results are shown in the chart of Figure 7. The chart 
shows   a   significant   decrease   in   the  total   distortion 
measure. On average the distortion of a solution obtained 
by starting from a refined initial point was about 80% of 
the corresponding distortion obtained by clustering from 
the corresponding randomly chosen initial starting point. 

Since each document belongs to a category (there are 119 
categories),  we can  also  measure the quality of the 
achieved by any clustering by measuring the gain in 
information about the categories that each cluster gives 
(i.e. pure clusters are informative). This is done in the 
same   manner   we   measure   entropy   for   the   image 
segmentation dataset of Section 4.1. The quality of the 
clusters can be measured by the average category purity 
in each cluster. In this case the average information gain 
for the clusters obtained from the refined starting point 
was 4.13 times higher than the information gain obtained 
without refining the initial points. The information gain 
for the refined clustering was 0.071  with a standard 
deviation of 0.001. While the unrefined initial points 
resulted in an average information gain of 0.017 with a 
standard deviation equal to 0.011. 

5.  CONCLUDING REMARKS 
A fast and efficient algorithm for refining an initial 
starting point for a general class of clustering algorithms 
has been presented.   The refinement algorithm operates 

over small subsamples of a given database, hence 
requiring a small proportion of the total memory needed 
to store the full database and making this approach very 
appealing for large-scale clustering problems. The 
procedure is motivated by the observation that 
subsampling can provide guidance regarding the location 
of the modes of the joint probability density function 
assumed to have generated the data. By initializing a 
general clustering algorithm near the modes, not only are 
the true clusters found more often, but it follows that the 
clustering algorithm will iterate fewer times prior to 
convergence. This is very important as the clustering 
methods discussed here require a full data-scan at each 
iteration and this may be a costly procedure in a large- 
scale setting. 

Computational results on synthetic Gaussian data indicate 
that solutions computed by the K-Means algorithm from 
the refined initial points are superior to the random initial 
starting points and to a point refined over a single random 
subsample. Results on the small real-world Image 
Segmentation data set indicate that the K-Means solution 
from the refined points provide twice as much 
"information" than the solutions computed from the 
random initial point. Furthermore, the average distortion 
is decreased by 9%. Computational results on the Reuters 
database of newswire stories in 300 dimensions indicate a 
drop in distortion by about 20%. Information gain was 
improved by a factor of 4.13 times on this data set. 

We believe that our method's ability to obtain a 
substantial refinement over randomly chosen starting 
points is due in large part to our ability to avoid the empty 
clusters problem that plagues traditional K-Mcans. Since 
during refinement we reset empty clusters to far points 
and reiterate the K-Means algorithm, a starting point 
obtained from our refinement method is less likely to lead 
the subsequent clustering algorithm to a "bad" solution. 
Our intuition is confirmed by the empirical results. 

The refinement method presented so far has been in the 
context of the K-Means algorithm. However, we note that 
the same method is easily be generalized to other 
algorithms, and even to discrete data (on which means are 
not defined). The generalized method and its use for 
initializing the EM algorithm, along with empirical 
results, is presented in [FRB98b]. The key insight here is 
that if some algorithm ClusterA is being used to cluster 
the data, then ClusterA is also used to cluster the 
subsamples. The algorithm ClusterA will produce a 
model. The model is essentially described by its 
parameters. The parameters are in a continuous space. 
The stage which clusters the clusters (i.e. step 3 of the 
algorithm Refine in Section 2.2) remains as is; i.e. we use 
the K-Means algorithm in this step. The reason for using 
K-Means is that the goal at this stage is to find the 
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"centroid" of the models, and in this case the harsh 
membership assignment of K-Means is desirable. 
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Abstract 

We show finite-time regret bounds for the mul- 
tiarmed bandit problem under the assumption 
that all rewards come from a bounded and fixed 
range. Our regret bounds after any number T of 
pulls are of the form a+b log T+c log2 T, where 
a, b, and c are positive constants not depending 
on T. These bounds are shown to hold for vari- 
ants of the popular £-greedy and Boltzmann al- 
location rules, and for a new simple determin- 
istic allocation rule. Moreover, our results also 
apply to an extension of the basic bandit prob- 
lem in which reward distributions can depend, to 
some extent, from previous pulls and observed 
rewards. Finally, we discuss the empirical perfor- 
mance of our algorithms with respect to specific 
choices of the reward distributions. 

1   INTRODUCTION 
One of the fundamental issues in reinforcement learning is 
the exploration versus exploitation dilemma, whose sim- 
plest instance is, perhaps, the bandit problem. In its most 
basic formulation, a bandit problem is a set of N (with 
N > 1) gambling machines. When a machine is played 
(i.e., the "arm" of a bandit is pulled) it delivers a reward, 
which we assume here to be a number from a fixed and 
bounded real interval. A crucial feature is that each reward 
is an independent random variable. Moreover, all rewards 
delivered by the same machine are identically distributed 
according to some unknown and fixed law (note, however, 
that different machines may have different reward distribu- 
tions). The goal of the player in the optimality model con- 
sidered here is to minimize its regret, that is, the difference 

between the expected total reward gained in a sequence of 
T plays and the expected total reward one could gain by 
playing T times any machine with maximum expected re- 
ward. The exploration versus exploitation dilemma is now 
clear: the player must trade-off the need to sample differ- 
ent machines, in order to compute reliable estimates of their 
expected reward, with the need of exploiting the machine 
with the highest current reward estimate, in order to keep 
the regret as low as possible throughout the sequence of 
plays. 

A strategy for the player, also called "adaptive alloca- 
tion rule", is a method for selecting the arm to pull at each 
time t based on the rewards obtained during the previous 
t - 1 pulls. The classical result of Lai and Robbins [14] 
states that, asymptotically, the regret of any player strat- 
egy must be n(logT), provided that the reward distribu- 
tions satisfy some mild assumptions. In the same paper, 
Lai and Robbins also propose a general adaptive allocation 
rule that, whenever the reward distributions belong to some 
known parametric family, yields the optimal asymptotical 
regret 0(log T) — see [1,13] and references therein for ex- 
tensions of these results. In this paper we show that simple 
variants of the popular e-greedy and Boltzmann heuristics 
(see [11, 16] for a review of heuristics for the bandit prob- 
lem) achieve a regret of the form o + MogT + clog2 T 
for all T (where a, b, and c are positive constants) when 
a lower bound on the difference between the highest and 
second-highest expected reward is known in advance. We 
also prove that the same regret bound holds for a new deter- 
ministic allocation rule. Our results do not require any fur- 
ther knowledge about the distributions of rewards and hold 
for any set of distributions with bounded rewards. Finally, 
our bounds apply, without modification, to a relaxed vari- 
ant of the bandit problem, where the reward distributions 
can adversarially change after each play provided that each 
reward expectation is kept fixed. 

2   DEFINITIONS AND NOTATION 
Fix a positive integer N > 1. The N-armed bandit prob- 
lem (with bounded rewards) is a collection of N random 
processes {Xjtt : t = 1,2,...}, j = 1,...,N, satisfying 
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0 < Xjjt < 1 (this choice for the range of rewards is not 
crucial, by an appropriate scaling of the regret bounds any 
other bounded real interval would work). Each Xjtt repre- 
sents the random reward a player can obtain by pulling arm 
j at time t. An adaptive allocation rule for the ./V-armed 
bandit problem is an algorithm that, at each time t, chooses 
the index It € {1,..., N} of the next arm to pull based on 
the sequence 

h, Xilti, ■ • •, It-i, Xjt_ut-i 

of past pulls and observed rewards. We will also investigate 
randomized allocation rules, whose behavior depends on an 
additional internal random source. The (expected) regret 
after the first T pulls of the allocation rule that pull arms 
Ii,...,ITis 

max E 
l<j<N 

Y^{Xjtt-XIut) 
t=i 

(1) 

Here the expectation E [•] is understood with respect to the 
stochastic generation of rewards and, for randomized rules, 
also with respect to the internal randomization of the rule. 

In the standard formulation of the bandit problem it 
is assumed that the rewards delivered by the arms are in- 
dependent random variables X^t with stationary means 
ßj, fort = 1,2... and j =' 1,...,JV. All of our 
results will hold under this assumption. Moreover, all 
of our results will also hold under the weaker assump- 
tion that E [Xjj | jFt-i] = ßj for each t and j, where 
Tt-i denotes the er-field generated by random variables 
h,Xilti,..., It-i,Xit_ltt-i- In other words the distri- 
bution of each new random reward can depend in an adver- 
sarial way on the previous pulls and observed rewards, as 
long as its mean is kept fixed. 

Throughout the paper, without loss of generality as- 
sume that ßi > ßj for all j = 2,...,n and let 
A(/xi,..., ßjsf) = min2<j<jv (ßi — ßj) ■ Furthermore, 
let Aj   =   ßi - ßj for each j   =   1,..., N and let 

D = Ylj=i Aj- Our allocation rules have an input pa- 
rameter d > 0 and our regret bounds hold only if 0 < 
d < A(ßi,...,ßN), where ßi,..., ßN are the unknown 
problem parameters. Furthermore, our bounds grow like 
fi(l/cP), so d should be chosen as close as possible to 
A(ßi,...,ßN). However, if an arbitrary value of d is fed 
to the allocation rules described in Section 3, we can still 
prove some weaker form of regret bound. 

Finally, we use In for the natural logarithm and log for 
the base 2 logarithm. 

3   REGRET BOUNDS 

Many heuristics for the bandit problem assign to each arm 
i a probability of being pulled that is proportional to the 
current reward estimate for arm i. A popular example is 
the Boltzmann Exploration (BE) heuristic (see [3] and ref- 
erences therein). This allocation rule, at each time t, draws 
the arm to pull according to the exponential distribution 

efii,t-i/r/Zt for i = 1,..., N, where /iM_i is the cur- 
rent estimate of the expected reward for arm i, the quan- 
tity r > 0 is a "temperature" parameter, and Zt is a nor- 
malization factor. Note that, for r -> 0, BE reduces to 
the greedy rule always choosing to pull the arm with the 
highest current reward estimate. On the other hand, for 
r -> oo arms are pulled independently and uniformly at 
random. Similarly to the Simulated Annealing optimiza- 
tion method [12,17], one can obtain empirical convergence 
to the best arm by letting r = rt monotonically decrease to 
0 according to some "cooling shedule". A natural question 
is then whether there exists a cooling schedule which prov- 
ably yields convergence to the best arm. We now introduce 
a variant of BE, called SOFTMIX, for which we can con- 
struct such an "optimal" cooling schedule. The algorithm 
SOFTMIX (see Figure 1) uses the exponential distribution 
mixed with the uniform distribution.1 This is equivalent 
to saying that, at each time t, we flip a biased coin to de- 
cide whether the next arm to pull should be drawn from the 
exponential distribution (with a prescribed finite tempera- 
ture value) or from the uniform distribution (corresponding 
to the exponential distribution with infinite temperature). 
We use 7t to denote the bias (which we also call mixing 
coefficient) of the coin. A crucial aspect is that both the 
temperature parameter rt and the mixing coefficient 7J de- 
crease with t following a schedule chosen so to minimize 
the regret bound in our analysis. More precisely, we set 
jt = Q(ln(t)/t) and Tt = Q(l/ln(t)). For notationalcon- 
venience, rt is replaced by an "inverse temperature" param- 
eter 1/%. The performance of SOFTMIX is analyzed in the 
following result. 

Theorem 3.1 For all integers N > 1 and for all N-armed 
bandit problems with parameters ßi,..., ßjy, ifO<d< 
A(ßi,...,ßN) then, for all T > 1, the regret after the 
first T pulls of the randomized allocation rule SOFTMIX 
described in Figure 1 is at most 

H* o,     5N        5i   2^ 

^V81n^-+2lnT; + DlnT, 

Recall that in the "zero temperature limit", i.e. when 
the temperature parameter r approaches 0, BE becomes 
greedy: at each time t, the arm i maximizing the reward es- 
timate ßitt-i gets pulled (ties are broken at random). The 
obvious flaw in this strategy is that an early unlucky sam- 
pling of some suboptimal arm might prevent the optimal 
arm from being sampled enough. A more successful vari- 
ant of the greedy rule is the so-called e-greedy heuristic 
(see, e.g., [18]). At each time t, this strategy pulls with 
probability 1 - e any arm with the highest reward estimate 
and pulls with probability e a randomly chosen arm. Now 
note that the zero temperature limit of SOFTMIX (attained 
when the inverse temperature parameter r)t approaches in- 
finity) corresponds to the e-greedy heuristic with the setting 

'The same mix was used in [2]. However, here the mixing co- 
efficient is dynamically adapted to minimize the regret uniformly 
over time, whereas in [2] it was kept constant. 
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Randomized allocation rule: SOFTMIX. 

Input: Real number 0 < d < 1. 
Initialization: Define sequences ft € (0,1] and r)t > 0, 
t = l,2,...,by 

and 

It = 

Vt = 

fmin{l,^!^}if*>2. (2) 
1 1 otherwise 

W^~lln{1+2Nhl-cP)-     (3) 

Lets., =0forj = l,...,iV. 
Loop: For each t = 1,2,... 

• Pull   an   arm   drawn   from   the   distribution 
{Pi )t,...,Pjv,t}, where 

PM = (1"7f)E^ + £'     W 

• Let it be the index of the pulled arm and xit the 
reward obtained. Add xit /Pit,t to si(. 

Figure 1: Description of the randomized allocation rule 
SOFTMIX. 

e = 7t. This observations suggests that the two allocation 
rules might have similar behaviour, especially when t is 
large. The experiments of Section 6 (see Figure 4) confirm 
this conclusion: SOFTMIX has a better start but, for t large 
enough, the two algorithms exhibit the same behavior. On 
the other hand, we now state an upper bound on the regret 
of the 7t-greedy heuristic identical to the one we proved 
for SOFTMIX. SO, with respect to our analysis, the more 
sophisticated selection method used by SOFTMIX does not 
provide any extra benefit. 

Theorem 3.2 For all integers N > 1 and for all N-armed 
bandit problems with parameters ßi,...,ßN, ifO < d < 
A(ni,... ,HN) then, for allT > 1, the regret after the first 
T pulls of the randomized allocation rule GREEDYMlX de- 
scribed in Figure 2 is at most 

K'-S+I-T) + D\nT. 

Some heuristics for the bandit problem, like the so-called 
"optimism in the face of uncertainty" exhibit a two-phase 
behaviour (see [11, Section 2.2.1] for a list of references). 
In the first phase exploration is favored; in the second phase 
exploitation takes over and the heuristic operates in a com- 
pletely greedy way. By extending the initial explorative 
phase long enough one can make arbitrarily small (though 
not vanishing) the risk of converging to a suboptimal arm. 

Randomized allocation rule: GREEDYMlX. 
Input: Real number 0 < d < 1. 
Initialization: Define the sequence jt £ (0,1], * = 
1,2,..„by 

It 
_/min{l,$^}if 
\l ot 

t>2, 

otherwise. 

Lets, = Oforj = 1,...,7V. 
Loop: For each t = 1,2,... 

• Let I be the subset of arms such that, for each i G 
I, Si = maxi<j<;v Sj. 

• With probability 1 - jt pu" a random arm in 1, 
with probability 7t pull a random arm. 

• Let it be the index of the pulled arm and xit the 
reward obtained. Add xit /Qit ,f to sit, where Qj<t 

is the probability of it = j according to the rule 
above, that is 

Q 
lt)/\l\ + 7t/N if j el,     (5) 

otherwise. 

Figure 2:  Description of the randomized allocation rule 
GREEDYMlX. 

We propose a new strategy, called ROUNDS, where a 
purely explorative phase is alternated with a purely ex- 
ploitative phases. To guarantee a good bound on the regret, 
the length of the r-th exploitation is 2r whereas the length 
of the exploration phases grows only linearly. The theoret- 
ical performance of ROUNDS (which is a deterministic al- 
location rule) turns out to be comparable to that of the ran- 
domized strategies SOFTMIX and GREEDYMlX. On the 
other hand, our experiments indicate that both randomized 
rules have an expected performance better than ROUNDS, 
especially for small values of T. 

Theorem 3.3 For all integers N > 1 and for all N-armed 
bandit problems with parameters p\,.. .,HN, if0<d< 
A(/xi,..., nN) then, for all T > 1, the regret after the 
first T pulls of the deterministic allocation rule ROUNDS 
described in Figure 3 is at most 

2D\og(2N) 

d2 
+ l)riog(T + l)l + 2^riog(T + l)r 

Our results of Section 3 hold under the assumption that a 
lower bound d > 0 on the smallest difference fii - p,j, 
j' ^ 1 is known. Arbitrary values of d, however, still allow 
to prove reasonable bounds on the regret. In fact, the re- 
gret bound is similar as before with an additional AT term, 
where A is the difference between ßi (the highest expected 
reward) and the smallest Hi strictly bigger than /xi - d. (If 
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Allocation rule: ROUNDS. 

Input: Real number 0 < d < 1. 

Loop: For each round r — 0,1,... 

• LetTr = \2Qog2(2N)+r)/<P]. 

• For each arm i = 1,..., N: Pull the arm i for Tr 

times and let Si,r the total reward obtained. 

• Let k be such that s*>r = maxi<j<jv Sj,r. Pull 
arm k for 2r times. 

Figure 3: Description of the deterministic allocation rule 
ROUNDS. 

d not larger than the smallest difference ßi — ßj (j ^ 1), 
then A is 0 and we recover the previous bound.) 

Corollary 3.4 For all integers N > 1, for all N-armed 
bandit problems with parameters ßi,..., ßN, and for all 
T > 1, the regret of both randomized allocation rules 
SOFTMIX and GREEDYMlX with input d>0is at most 

Ai(d) = 

where 

and 

max Ai 
{i: fii>/j.i-d} 

D(d) =        J2 Ai 
{j:fij<ßi-d} 

4   REMARKS 

Unbiased estimates. The randomized allocation rules 
SOFTMIX and GREEDYMIX use a special kind of estimate, 
§i,t/t, for the expected reward of each arm i. If Pi,, is the 
probability of pulling arm i at time s, then the reward esti- 
mate at time t for arm i is 

Sj,t-1 

t-1 

t-i 

TEA. (6) 
s=l 

where Xi,s = X^./Pi,. if arm i was pulled at time s and 
Xi,s = 0 otherwise. This estimate, which was previously 
used in [2] to solve a variant of the bandit problem substan- 
tially different from the one studied here, has the correct 
expectation ßi for each arm i. In fact, we have 

E [A- = E ^j± Pilt+0(1-Pit.) 
l,S 

ßi 

We could not prove our results for a different choice of the 
reward estimates. 

Cooling schedule. In order to compare the inverse tem- 
perature parameter r)t of SOFTMIX with the temperature 
parameter rt of BE, in Section 3 we said that the se- 
quence of values r)t for t — 1,2,... corresponds to a cool- 
ing schedule rt = 0(1/ In t). To see why, recall that 
the expression for the probability of drawing arm i in BE 
has ßi,t-iln at the exponent, where ßi,t-i is the cur- 
rent estimate of the expected reward for arm i. The cor- 
responding exponent for the probability of drawing arm i 
in SOFTMIX is Si,t-i% (we are disregarding the contribu- 
tions of the factor 1 - jt and of the term jt/N, both negli- 
gible for t large). As, by (6), SOFTMIX'S reward estimate 
is Si,t-i/(t - 1), we get that ßi,t-i/Tt = ßi,t-i{t - 1)774. 
Hence rt = l/((t - 1)%). Asymptotically, the quantity 
(t — l)t]t shows a logarithmic growth 

lim 

Recall that the idea of BE with cooling is borrowed from 
the Simulated Annealing (SA) optimization method. A re- 
markable fact is that the cooling schedule necessary and 
sufficient for convergence (with probability 1) of SA to the 
global optimum is also 0(1/ In t), as shown in [7]. 

Instantaneous regret bounds. The proof of Theo- 
rems 3.1 and 3.2 also yields bounds on the instantaneous 
regret of both SOFTMIX and GREEDYMIX. In particular, 
for all t > \{8N/d?) In^N/d2)], 

D       5Dln(t-l) 
E[Xltt-Xittt]< — + 

t-1 <P(t-l) 

where it is the arm pulled at time t by any allocation rule 
between SOFTMIX and GREEDYMIX. 

Similarity of the regret bounds. The dominant term 
in the regret bound for the three allocation rules consid- 
ered here is, recalling that D = O(N), of the order of 
(N/d2) log2 T. This similarity is not by accident. In Sec- 
tion 5 we show how the regret of both SOFTMIX and 
GREEDYMIX can be reduced to the expectation of the 
product of moment generating functions for certain random 
variables — see (9) and (15). This product is bounded term 
by term using Taylor expansion of the exponential function. 
For the deterministic rule ROUNDS, we control the accuracy 
of the worst current reward estimate via standard Hoeffd- 
ing bounds. As Hoeffding bounds are again proven through 
Taylor bounds on the moment generating function, we get 
similar rates for the regret. Observe that, in both cases, the 
Taylor expansion heavily relies on the boundedness of the 
rewards. 

Interval estimation method. Another popular allocation 
rule, which works very well in empirical trials, is Kael- 
bling's interval estimation method [10]. This method op- 
erates by computing upper bound estimates Ui,t for the ex- 
pected reward ßi of each arm i satisfying 

P {ßi > Ui,t} = 9 (7) 
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for some parameter 6 > 0. The interval estimation rule 
picks, at each time t, the arm i maximizing Uj,< for a fixed 
value of 6. Clearly, to compute ui}t satisfying (7) one 
needs some information on the reward distributions. For 
Bernoulli bandits (with rewards chosen in {0,1} for each 
arm), one can use the Normal approximation to the bino- 
mial distribution and then apply standard formulae to com- 
pute the quantities u*,*. For unknown reward distributions, 
which is the case of our setup, one must resort to general 
estimates in much the same way we used Hoeffding bounds 
to control the regret of ROUNDS. 

5   PROOFS 

We will make use of the following fact which can be easily 
verified by Taylor expansion of the exponential function (a 
proof can be found in [15, page 155]). 

Fact 5.1 For every real c > 0, define the function <(>c on 
the positive reals by <pc(z) = (e" - 1 - cz)/c2. Then, for 
every y < c and every z > 0, ezy < 1 + zy + <f>c(z)y2. 

Proof of Theorem 3.1. Let Pjtt = P {/* = j | Tt-i) 
be defined as in (4). Recall that we are assuming H\ = 
max.i<i<N Hi- We rewrite the regret (1) as follows 

" T 

/J (Xj,t - Xit.t) max E 
l<j<N 

t-1 

= E 
t=l 

= £E[XM-X/„t] 

T 

= 5]E[E[X1,t-X/„4|^-i]] (8) 

T 

-E« 
t=i 

T 

TV 

Y,±jP{It=3\?t-i} 
3=2 

N 

t=l j=2 

In (8) the inner conditional expectation is understood with 
respect to both the random choice of It and the random re- 
alization of the reward Xiut. The outer expectation simply 
averages over the past t — 1 pulls and obtained rewards. 
Define random variables 

v-    _ / Xj,t/Pj,t if i* = J 
J,t ~ \ 0 otherwi otherwise. 

Note that Xjtt < l/Pj,t < N/jt, a fact which we use 
several times throughout this section. We have 

E[PM] = (l-7t)E 
yN 

-  J=le 

»■* EU -*<■• 

E::; **.• Vt N 

Ri> El:1, **•• 
N 

< (i - 7t)E      :,     + 
e"' E,=, *>•• 

= (i-7t)E[e,"E:;1
l^--*'-)] + ^ 

= (1 - 7*)E 

< e-(«-l)l<AiE 

t-1 

nE^'i^-i] 

+ 
N 

+ lt     (9) 

for Ziit = Xitt - Xi,t + A*. 

In the last step we multiplied and divided by the same quan- 
tity e(t_1^'Ai and then we dropped the factor 0 < 1—7t < 

1. In view of bounding each factor E ie"'^- | T8-\ I via 

Fact 5.1, first we compute the conditional expectation for 
each s, 

E [ziit | T.-i\ 

= E [Xi,. | F.-i] - E [xu. | ^._i] + Ai 
= m - HI + Ai = 0 . 

Second, observing that 7. is positive and nonincreasing in 
s, we get Zit, = Xi,, - Xlt. + A{ < Nfrt + 1. Third, 
using the same observation, we also bound the conditional 
variance for each s as follows. 

E i?. | T..i] = E [(£,. - Xx,.)2 | ^.-i 

+ A?+2Ai(/xi-/xi) 

= Ef(xil,-X1,.)
2|^._i| -A? 

= E[x?.|*-.-1]+E[x1
a
i.|JV-1] 

-2E[Xi,.Xj,. |^._i]-A? 

= E [Xl | ^-x] + E 
as Xi<8 = OorÄ"*,. = 

^i,s I -^»-lj 

= 0 

E 
Y2 

t,8 

+ E -^1,8 

P2 Pi,.+ 0(1-PM) |^,-i A? 

1 1        A,     2JV      A2 

as Pi,. >it/Nfwi = l,...,N. 

i, applying Fact 5.1 with c = iV/7 
id that 

E [e**'" I .P.-i] < E [l + i^Z,,. + Z?, AOfc) I T.-y 

Hence, applying Fact 5.1 with c = iV/7t + 1 and z = T)t 
we find that 
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A?Uc(fft). 
V It 

< exp Uc(rit) ( A? 

for all s = l,...,t-l. Thus 

E[PM] 

< e-(*-l)liAig S«P(^)(^-A?)) 

= exp (-(t - 1) hfcAj - <j>c(f}t)— + MVt)^2i J J 

+ 11 
N 

< expf-(t-l) \ntd-<j)c{r)t) + (t>c(Vt)d?) j 

+ 
N 

(10) 

where (10) is shown using the assumption d < 
A(lii,...,pN). By letting (t - l)d - K and (t - 
l)(2JV/7t - d2) = cr2 the term at the exponent in (10) 
becomes 

-Kr,t + <t>c{rit)a
2 . (11) 

Rewriting % in the simpler form (1/c) ln(l + cK/a2), re- 
placing <j>c with its definition, and using the elementary in- 
equality ln(l + x) > 2x/(2 + x), x > 0, we get that the 
quantity in (11) is smaller or equal to -K2/(2a2 + cK). 
Hence, plugging back in the original expression for K, <r , 
and c, and simplifying the t - 1 factor, we find that (10) is 
smaller or equal to 

exp 
(" 

(t - l)d? 
4N/jt -2<P + d(N/jt 't + l)j 

+ 
N 

(12) 

Now, for t > T0 = \(8N/<P) In^N/d2)], we have that 

5N ln(t - 1) 
It 

<P     t-1 
<1. 

The choice of jt balances the contributions of the terms in 
the right-hand side of (12). Thus, for all t > T0 and all 
j € {2,..., TV}, we can further bound the right-hand side 
of (12) as follows 

exp 
(i-1)^74 \   , lt 

5N      j + N ~ t-1 ' cP    t-1 
1 5 ln(t - 1) 

For t < To the mixing coefficient 7* is 1. Hence, for each 
such t, the regret is Aj with probability 1/N for each j. 
Piecing everything together we obtain the desired bound 

on the regret 

T 

E 2J(-Xi)t -Xit,t) 
U=l 

N 

j=l \t=l t=T0+l J 

N £   1 
= J:^[J:^+ E EP*] 

3=1 \t=l t=TQ+l J 

~ ■,       [d2      &        ^   t-1 3=1 \ t=T0+l 

5     v^ 
+   W2     E 

ln(t - 1) 
d2    ^      f-1 

t=T0+l 

In a; 
dx 

5iV 5 

Proof of Theorem 3.2. The regret (1) can be re-written as 
follows 

max E 
l<j<N 

■ T 

= E 
■ T 

E(*M-*'«.*) 
.«=1 

T 

= ]TE[XM-X/t,t] 

T     A" 

t=l j=2 

N 

i=2 

A - 
\t=i >) 

(13) 

We now bound P {It = j} for each j e {2,..., iV}. To 
this end, define random variables 

X-   = [Xi'tlQjt if/* =3' 
**'     1 0 otherwise 

where the probability QJyt = P {It — j \ Ft-i} is defined 
in (5). Let 2* be the subset of {1,..., N} such that, for 
eachi e It, 

t-i t-i 

EA^^E^.' 
s=l s=l 
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For any fixed j, we have 

P{/t = 3} = PUt =i I J G 2»}P{J G It} 
+ P{I«=j|j*2t}P{j*2t} (14) 

(w + ^)PÜ62i>+^Pü^ } 
^««Hä 

< P{j'€lt} + 2i 
AT 

=p{™nE(^-*-)^°}+^ 

U=i 
r,t(t-l)Aj\ + % 

for Zjit = X,-,t -Xi,t + Aj and 77* > 0 arbitrary 

= P{eK:>'^--'"(t-1)A'>i} + ^ 

<E[eS::i'"^-'"(f-i)^] + ^ 
as P {X > 1} < E [X] for any positive r.v. X 

- e-»)<(t-l)AjE    TTm \-mZi. 1 -r-       I      ,   It 

.8=1 

+ #.(.5) 

The proof is concluded by noting that jt is chosen as in (2), 
rjt can be set as in (3), and (15) is thus equal to (9) as in the 
proof of Theorem 3.1. D 

Proof of Theorem 3.3. Fix a positive integer T and choose 
any integer r > 0. Let p.j<r = Sj,r/Tr, where Sj,r is 
the total reward for arm j during round r. By hypothe- 
sis, E [Xj,t I Tt-i\ = ßj for all j = 1,..., N and all t. 
Thus we can apply Hoeffding bounds [8] and obtain,2 for 
each fixed j and for A = A(/*i,..., HN), 

P{|Ai,r-MJ|>A/2}<2e-A2T-/2 

<2e-^<^. 

Hence, P {3j |£iiP - Mil > A/2} < 2~r. Therefore, the 
regret during round r is at most 

£ A, j Tr + 2ri < 2) r2(log(2JV) + r)/d2} + 1. 

2Note that Hoeffding bounds can be applied, without modi- 
fication, also to the more general bandit model where the reward 
distributions can adversarially change after each play provided the 
reward expectations are kept fixed. 

Let I the total number of rounds. That is, I is the smallest 
integer such that 

1 

Y^ (NTr + 2r)>T. 
r=0 

Clearly, I < £', where I' is the smallest integer such that 
£r=o2r > T. Thus t + 1 < flog(T + 1)1. Without loss 
of generality, assume the last round ends exactly at time T 
(if it ends before, then the bound gets better). We find that 

max E 
l<j<7V 

"52(xj,t - Xiut) 
,t=i 

<D^2 [2(log(2A0 + r)/d2] + £+l 

<D(2S^)(/+1)+«^a)+«+i 

< 
^m+1yl+1) + ^l+ir 

< 

2D\og(2N) 
) Rog(T + i)i 

-*    +1 

-r^riog(T+i)i 

This concludes the proof. 

Proof of Corollary 3.4.   Following (13), the regret of 
GREEDYMIX can be written as 

D 

max E 
l<j<N 

^2,(Xj,t-Xittt) 
.t=i 

j=2 \t=\ / 

<E   EA*p^ = i> 
T N 

+ E   5>jp</t=;> 
t=l{j:itj<fi-d} 

< I       max Av ) 

+ E   EAjp{/f=J} 
t=Hj-fj<^-<i} 

= Ai{d)T + J2       £ AjP{It=j}. 
t=x {J:Mj</»l-rf} 

The proof now goes along the same lines as the proof of 
Theorem 3.1. The analysis of the regret of SOFTMIX is 
similar. D 
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Figure 4: The two graphs are averages over 1,000 runs of 100,000 pulls each. We divided each run in 1000 blocks of 100 
pulls each. At left we plot the fraction of times the true best arm was pulled in each block. At right we plot the average 
reward per block divided by the highest expected reward for that run. 

6   EXPERIMENTS 

We tested the three algorithms on a ten-armed bandit prob- 
lem. Due to the boundedness condition, the rewards were 
drawn from beta distributions whose range is the unit inter- 
val [0,1]. In our experiments we averaged 1,000 runs. In 
each run the two parameters of the beta distributions were 
chosen uniformly and independently for each arm from the 
real interval [2,12]. The parameter d was set to the best 
possible choice A(^l5..., /^jv). All other constants were 
set as shown in Figures 1, 2, and 3. In the plots of Figure 4 
we compare the performance of SOFTMIX, GREEDYMIX, 
and ROUNDS on 100,000 pulls. Observe that SOFTMIX 
and GREEDYMIX have a similar performance, although 
SOFTMIX performs slightly better after a slower short ini- 
tial phase. ROUNDS has the slowest convergence, probably 
due to the long initial domination of explorative phases. 
Tests with up to 400,000 pulls show that the ranking of the 
three algorithms stays the same, though ROUNDS consid- 
erably improves in the long run as exploitation takes over 
exploration. Note that our setting of the constants for the 
mixing coefficient jt is independent of any property of the 
reward distributions other than the parameter d. Hence, it 
is conceivable (as we indeed observed in the experiments) 
that more informed choices of the constants in jt could lead 
to a better empirical performance for specific reward distri- 
butions. Finally, we ran tests for two other distributions 
of the rewards: Bernoulli distribution (rewards in {0,1} 
with expectation of reward 1 chosen independently and uni- 
formly from [0,1] for every arm) and uniform distributions 
on [0,o], where the parameter a is chosen independently 
and uniformly from [0,1] for every arm. The empirical re- 
sults did not differ much from those obtained for the beta 

distribution. We plan to carry out experiments in order to 
test our algorithms against Boltzmann Exploration and In- 
terval Estimation. 

7   CONCLUSIONS 

The main contribution of this paper is the derivation of 
finite-time regret bounds for variants of widely used heuris- 
tics for the bandit problem. Our results demonstrate that 
the average reward per pull obtained by any one of these 
variants converges to that of the best arm, and we show 
explicit bounds on the convergence rate. We remark that, 
rather than improving the empirical performance on spe- 
cific domains, our main interest is the understanding of the 
nature of basic methods like Boltzmann Exploration, and 
the derivation of rigorous regret bounds that are guaranteed 
to hold in a vast range of situations. 

Our work can be extended in many ways. A more 
general version of the bandit problem is obtained by re- 
moving the stationarity assumption on reward expecta- 
tions (see [4, 6] for extensions of the basic bandit prob- 
lem). For example, suppose that a stochastic reward pro- 
cess {Xi(s) : s = 1,2,...} is associated to each arm i = 
1,..., N. Here, pulling arm i at time t yields a reward 
Xi(s) and causes the current state s of arm i to change to 
s + 1, whereas the states of the other arms remain frozen. 
A well studied problem in this setup is the maximization of 
the total expected reward in a sequence of T pulls. There 
are methods, like the Gittins allocation indices, that allow 
to find the optimal arm to pull at each time t by considering 
each reward process independently from the others (even 
though the globally optimal solution depends on all the pro- 
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cesses).3 However, computation of the Gittins indices re- 
quires preliminary knowledge about the reward processes. 
To overcome this requirement, one can learn the Gittins in- 
dices, as proposed in [5] for the case of finite-state Marko- 
vian reward processes. However, there are no finite-time 
regret bounds shown for this solution. At the moment, we 
do not know whether our techniques could be extended to 
these more general bandit problems. 

Another open problem is whether the bounds we prove 
are tight for each one of the three algorithms, and whether 
they are optimal for the bandit problem considered here. 
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Abstract 
Bayesian algorithms for Neural Networks are known to 
produce classifiers which are very resistent to overfit- 
ting. It is often claimed that one of the main distinc- 
tive features of Bayesian Learning Algorithms is that 
they don't simply output one hypothesis, but rather 
an entire distribution of probability over an hypothesis 
set: the Bayes posterior. An alternative perspective is 
that they output a linear combination of classifiers, 
whose coefficients are given by Bayes theorem. One 
of the concepts used to deal with thresholded convex 
combinations is the 'margin' of the hyperplane with 
respect to the training sample, which is correlated to 
the predictive power of the hypothesis itself. 

We provide a novel theoretical analysis of such clas- 
sifiers, based on Data-Dependent VC theory, proving 
that they can be expected to be large margin hyper- 
planes in a Hilbert space. We then present experimen- 
tal evidence that the predictions of our model are cor- 
rect, i.e. that bayesian classifers really find hypotheses 
which have large margin on the training examples. 

This not only explains the remarkable resistance to 
overfitting exhibited by such classifiers, but also co- 
locates them in the same class of other systems, like 
Support Vector machines and Adaboost, which have a 
similar performance. 

Keywords: Bayesian Classifiers, Large margin hyper- 
planes, Hilbert space 

1    INTRODUCTION 

Bayesian learning algorithms for neural networks of 
the kind described in [3] are often claimed to have the 
distinctive feature of outputting an entire distribution 
of probability over the hypothesis space, rather than 
a single hypothesis.    Such a distribution, the Bayes 

posterior, depends on the training data and on prior 
distribution, and is used to make predictions by aver- 
aging the predictions of all the elements of the set, in 
a weighted majority voting scheme. 

The posterior is computed according to Bayes' rule, 
and such a scheme has the remarkable property that - 
as long as the prior is correct and the computations can 
be performed exactly - its expected test error is mini- 
mal. Typically, the posterior is appoximated by com- 
bining a gaussian prior and a simplified version of the 
likelihood (the data-dependent term, that is the term 
that reflects the information gleaned from the train- 
ing set). Such a distribution is then sampled with a 
Montecarlo method, to form a committee whose com- 
position reflects the posterior probability. The predic- 
tive integral over a posterior distribution can hence be 
replaced by a sum. 

The classifiers obtained with this method are known to 
be highly resistent to overfitting. Indeed, neither the 
committee size nor the network size strongly affect the 
performance, to such an extent that it is not uncom- 
mon - in the bayesian literature - to find computations 
with "infinite networks" [4], [10], meaning by this the 
posterior over the complete (infinite) hypothesis space. 

Statistical Learning Theory, on the other hand, is con- 
cerned with the problem of bounding the test error (in 
the worst case and with high probability) using quan- 
tities that are observable in the training set or known 
a priori [9]. 

The expressions obtained for such a bound typically 
depend on the training error, the sample size and the 
VC dimension of the classifier. Given that the number 
of tunable parameters gives a rough estimation of the 
VC dimension, the size of the network and that of the 
committee do matter. 

A more refined, Data-Dependent, version of the theory 
introduced in [8], shows that it is possible to replace 
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the VC dimension in the above mentioned bounds with 
a quantity which depends on the margin of the classi- 
fier on the training examples. 

In this paper we provide a novel description of 
Bayesian classifiers which makes it possible to per- 
form margin analysis on them, and hence to apply 
Data-Dependent VC theory. In particular, by view- 
ing the posterior distribution as a linear functional in 
a Hilbert space, the margin can be computed and gives 
a bound on the generalization error via an 'effective' 
VC dimension which is much lower than the number 
of parameters. 

Finally, experimental study is performed with a stan- 
dard bayesian algorithm [5] on real world data, in order 
to test the predictions of our model. The results of the 
experiments confirm that the model captures the rel- 
evant features of these classifiers, and that they can 
indeed be regarded as large margin hyperplanes in a 
Hilbert space. 
Margin-distribution graphs are provided for different 
data sets, different network sizes, committee sizes and 
choices of prior, always showing the same qualitative 
behaviour: a clear bias toward large margin on train- 
ing examples. 

Our plots can be directly compared with the ones pre- 
sented in the inspiring paper by Shapire et al. [7], 
where this concept was introduced, as we have used 
the same datasets. In that paper, a bound on the test 
error as a function of the margin distribution was first 
obtained. 

These theoretical and experimental results not only ex- 
plain the remarkable resistance to evrfitting observed 
in bayesian algorithms, but also provide a surprising 
unified description of three of the most effective learn- 
ing algorithms: Support Vector Machines, Adaboost 
and now also Bayesian classifiers. 

2    BAYESIAN LEARNING THEORY 

The result of Bayesian learning is a probability distri- 
bution over the (parametrized) hypothesis space, ex- 
pressing the degree of belief in a specific hypothesis as 
approximation of the target function. Such distribu- 
tion is then used to make predictions. 

To start the process of bayesian learning, one must 
define a prior distribution P{w) over the parameter 
space, possibily encoding some prior knowledge. After 
observing the data, the prior distribution is updated 
using Bayes' Rule: 

P{w\D) oc P{D\w)P(w), 

where P(w\D) is the probability of the parameters 
given the data D, P(D\w) the probability of the data 
given the parameters, and P(w) the prior distribution 
over the parameters. The posterior distribution so ob- 
tained, hence, encodes information coming from the 
training set (via the likelihood function P(D\w)) and 
prior knowledge. 

To predict the label of a new point, bayesian classifiers 
integrate the predictions made by every element of the 
hypothesis space, weighting them with the posterior 
associated to each hypothesis, obtaining a distribution 
of probability over the set of possible labels (note that 
hw is the function parametrised by tu): 

P{y\x,D) = I hw(x)p{w\D)dw 
J w 

This predictive distribution can be used to minimize 
the number of misclassifications in the test set; in the 
2-class case this is achieved simply by outputting the 
label which has received the highest vote. 

3    BAYESIAN CLASSIFIERS AS 
LARGE MARGIN 
HYPERPLANES 

Hence, the actual hypothesis space used by Bayesian 
systems is the Convex Hull of H, rather than H. The 
output hypothesis is a hyperplane, whose coordinates 
are given by the posterior. 

In order to study the margin of such hyperplanes, 
we will introduce some simplifications in the general 
model. We assume that the base hypothesis space, 
H is formed by Boolean valued functions, and that 
it is sufficiently rich that all dichotomies can be im- 
plemented. Further, initially we will assume that the 
average prior probability over functions in a particular 
error shell does not depend on the number of errors. 

These are the only assumptions we make, and the sec- 
ond will to be relaxed in a second stage. A natural 
choice for the evidence function in a Boolean valued 
hypothesis space is e~ha, where k is the number of 
mistakes made by the hypothesis and a > 0 an ap- 
propriately chosen constant. The expression has the 
required property of giving low likelihood to the pre- 
dictors which make many mistakes on the training set, 
and to which the usual Bayesian evidence collapses in 
the Boolean case. Our analysis will also suggest suit- 
able choices for cr. 

It can be interpreted with an assumption of Gaussian 
noise corrupting the data after they have been labelled 
by a target function which belongs to H, the variance 
of the noise depending on \/<x. 
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The assumption that all the dichotomies can be im- 
plemented with the same probability corresponds to 
an 'uninformative' prior, where no knowledge is avail- 
able about the target function. In a second stage we 
will examine the effect of inserting some knowledge in 
the prior, by slightly perturbing the uninformative one 
towards the target hypothesis. We will see that even 
slightly favourable priors can give a much smaller VC 
dimension than the uninformative one. 

3.1    THE UNINFORMATIVE PRIOR 

The actual hypothesis space used by Bayesian systems, 
hence, is the Convex Hull of H, rather than H. The 
output hypothesis is a hyperplane, whose coordinates 
are given by the posterior. 

In this section we give an expression for the margin of 
the composite hypothesis, as a function of a parame- 
ter related to our model of likelihood. The result is 
obtained in the case of a uniform prior, and for the 
pattern recognition case. 

Let us start by stating some simple results and defini- 
tions which will be useful in the following. 

Definition 3.1 Let Bi be the balance of the hypothe- 
sis hi over a given sample of size m, that is the num- 
ber of successes S{ minus the number of failures fi: 
B{ = S{- fi, m- Si+ fi. 

Therefore Bi = m — 2fi, which implies Bi/m = 1 — 2e{, 
where e^ = f/rn is the empirical error of h{. 

During the next proof we will need to know the prob- 
ability in the prior distribution of hypotheses in our 
parameter space with a fixed empirical error. Given 
that this information is in general not available, we will 
initially make the simplifying assumption that all be- 
haviours on the training sample can be realised. This 
implies that the hypothesis space has VC dimension 
greater than or equal to the sample size m. 

We make the further assumption that the prior prob- 
ability of hypotheses which have error e = k/m is 

m! 
2m(me)!(m-me)!' 

in other words that the average prior probability for 
functions realising different patterns of k errors is 2~m. 
We will assume that the posterior distribution for a 
hypothesis which has k training errors is proportional 
to e~ak = Ch, where C = e~". We are now ready to 
give the main result of this section. 

Theorem 3.2  Under the above assumptions the mar- 

gin of the Bayes Classifier is given by 

1-™-. 
1 + C 

Proof: Let the set of training examples be 
(xi,...,xm) with classifications y = {yi,...,ym) € 
{-1, l}m. Let the margin M of example i be M,-. 
Consider first the average margin 

<M> = ^E^ = ^E»^) 
»65 »es 

=    —Y]yi       ahh(xi)dP{h) 

=  -E^E^M*») 
»65      j€J 

where hj, j £ J are representatives of each possible 
classification of the sample. We are denoting by Pj the 
prior probability of classifiers agreeing with hj. The 
quantity aj Pj is the posterior probability of these clas- 
sifiers, where the coefficient Oj = Ae~°me' = ACme> 
is the evidence, which depends only on the empirical 
error and the normalising constant A. By assumption, 
we have 

.?__ Pj ~ (*) i h error shell 

Hence, 

<M>   =   — E^E^M**) 
3€J «65 

J6J 

(1) 
J6J 

by the observation concerning the balance Bj of hj 
and the fact that the posterior distribution has been 
normalised, that is 1 = fHa.hdP(h) = ^2j€jCtjPj- 

We now regroup the elements of the sum on the right 
hand side of the above equation by decomposing the 
hypothesis space into error shells. Hence, we can write 
the above sum as 

jeJ fc=o        v   / 
(2) 
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Solving for A and substituting, gives 

£aipiei = 
jtJ EiC*(?) 

We can now use the equality £* C*(") = (1 + C)m, 
and the observation that £fc C* (™)A: can be written as 
ciuT,kck (?) = mC'(1 + c)m_1 to obtain the result 

for the average margin. 

To complete the proof we must show that the average 
margin is in fact the minimal margin. We will demon- 
strate this by showing that the margin of all points is 
equal. Intuitively, this follows from the symmetry of 
the situation, there being nothing to distinguish be- 
tween different training points in the structure of the 
hypothesis. The formal proof relies on performing a 
permutation on the training points, but has had to be 
omitted in this shortened version.   ■ 

There are three relevant bounds on the generalization 
error in terms of the margin on the training set. We 
will quote all three here and then discuss their appli- 
cability in the current context. The first two appear 
in Schapire et dl. [7]. 

Following [7], let H denote the space from which the 
base hypotheses are chosen (for example Neural Net- 
works, or Decision Trees). A base hypothesis h G H is 
a mapping from an instance space X to {-1, +1 }. 

Theorem 3.3 Let S be a sample of m examples cho- 
sen independently at random according to D. Assume 
that the base hypothesis space H has VC dimension d, 
and let be 8 > 0. Then, with probability at least 1 — 8 
over the random choice of the training set S, every 
weighted average function f £ C satisfies the follow- 
ing bound for all 6 > 0: 

PD[yF(x)<0]<Ps[yF(x)<0}+ 

»(^(^»+H 
1/2N 

Theorem 3.4 Let S be a sample of m examples cho- 
sen independently at random according to D. Assume 
that the base hypothesis space H is finite, and let be 
8 > 0. Then, with probability at least 1 — 8 over the 
random choice of the training set S, every weighted av- 
erage function f £ C satisfies the following bound for 
alle > 0: 

PD[yF{x) < 0] < PS[yF{x) <0} + 

f log2 (m) log | ff | 
O 

■s/rn 62 )+log(l/8 f) 

As observed by the authors, the theorem applies to 
every majority vote method, including boosting, bag- 
ging, ECOC, etc. 

The third is contained in Shawe-Taylor etal [8] and 
involves the fat shattering dimension of the space of 
functions. 

Theorem 3.5 Consider a real valued function class 
T having fat shattering function bounded above by the 
function afat : M —>• N which is continuous from the 
right. Fix 6 £ M. If a learner correctly classifies m 
independently generated examples x with h = T$(f) £ 
Te(T) such that erz(/i) = 0 and 7 = min \f(x{) - 9\, 
then with confidence 1 — 8 the expected error of h is 
bounded from above by 

e(m,k,8) = I (*Iog (^p) log(32m) -flog (^)) , 

where k = afat(7/8). 

Since the assumption that the underlying hypothesis 
space can perform any classification of the training set 
implies that its VC dimension is at least m, we can- 
not expect that learning is possible in the situation 
described. Indeed, we have augmented the power of 
the hypothesis space by taking our functions from the 
convex hull of H which would appear to make the sit- 
uation yet worse. 

Hence, in order to obtain useful applications of any 
of the theorems we will need to consider deviations 
from the most general situation described above. The 
deviation should not have a significant impact on the 
margin, while reducing the expressive power of the hy- 
potheses. 

In order to apply Theorem 3.4 the number of hypothe- 
ses in the base class H must be finite. The logarithm of 
the number of hypotheses appears in the result. Since 
we have assumed that all possible classifications of the 
training set can be performed the number of hypothe- 
ses must be at least 2m making the bound uninter- 
esting. To apply this theorem we must assume that 
a very large proportion of the hypotheses have zero 
weight in the prior, while those that have significant 
weights in the posterior (i.e. have low empirical er- 
ror) are retained. Making this assumption the bound 
will become significant. However, we are interested in 
capturing the effect of non-discrete priors, that is sit- 
uations where potentially all of the base hypotheses 
are included, but those with high empirical error have 
lower prior probability. 

In order to apply Theorem 3.3 the underlying hypothe- 
sis class H must be assumed to have low VC dimension 
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in such a way that no significant impact is made on 
the margin. This could be achieved by removing high 
error functions. Note that the functions would have 
to be removed, in other words given prior probabil- 
ity 0. Hence, the bound obtained would be no better 
than a standard VC bound in the original space. A 
situation where this approach and analysis might be 
advantageous is where the consistent hypothesis Ay is 
not included in H. This will reduce the margin by ap- 
proximately a/, 2"m = (1+C)_TO, since Bh = m (see 

equation (1)). The approximation arises from not ad- 
justing the normalisation to take account of the miss- 
ing hypothesis and is thus a very small error. 

These applications are unable to take into account the 
prior distribution in a flexible way. In the next section 
we will present an application of the third approach to 
show how this can take advantage of a beneficial prior. 

3.2    THE EFFECT OF THE PRIOR 
DISTRIBUTION ON THE MARGIN 
BOUND 

We will consider the situation where the prior decays 
arithmetically with the error shells. In other words 
the prior on hypotheses with error k is multiplied by 
ak for some a < 1. We first repeat the calculations of 
Theorem 3.2 for this case. The sum (2) must take into 
account that in this case 

k error shell 

The factor (1 + a)m cancels and the factor a appears 
wherever C appears, that is 

V aPjej = ^_ V Ac"ak (™) *-, 
1GJ k=0 

while 

£cv 
(l+a)m^-'~       \k v '     fc=0 

m 
= 1. 

Hence, the margin can be computed as 

2aC 
1 

1 + aC 

We now quote a theorem due to Gurvits [2] that 
bounds the fat shattering dimension of linear function- 
als in Banach spaces which we will need to bound the 
effective VC dimension. 

Theorem 3.6 [2] Consider a Banach space B of type 
p and the class of linear functions L of norm less than 
or equal to one restricted to the unit sphere. Then 
there is a constant D such that fatj,(7) < Df~p^p~1^. 

Note that for Hilbert spaces which we will consider the 
value of p = 2. 

In order to apply Theorems 3.5 and 3.6 we need 
to bound the radius of the sphere containing the 
points and the norm of the linear functionals involved. 
Clearly, scaling by these quantities will give the mar- 
gin appropriate for application of the theorem. The 
Hilbert space we consider is that given by the input 
space X with inner product 

(x,y)= [ h(x)h{y)dP(h). 
JH 

Hence, the norm of input points is 1 and they are con- 
tained in the unit sphere as required. The linear func- 
tionals considered are those determined by the poste- 
rior distribution. The norm is given by 

H|2 =  / a\dP{h). 
JH 

We must compute this value for the posterior func- 
tional in the prior described above. The integral in 
this case is given by 

m h /    \ lion2 = ra^ = ri2c2'-Vr 
(l + a)TO(l + aC2)m 

(1 + aC)2m 

Hnece, the bound on the fat shattering dimension be- 
comes, 

9(a,C):-- 
2\m (l + q)m(l + aC2) 

(1 + aC)2m-2(l - aC)2 

In the rest of this section we will consider how this 
function behaves for various choices of C and a, show- 
ing that for careful choices of C, values of a close to 1 
can give dimensions significantly lower than m, hence 
give good bounds on the generalization error. The 
analysis shows that using this approach it is possible 
to make use of a beneficial prior. At the same time it 
suggests a value of C most likely to take advantage of 
such a prior. 

First consider the case when a = 1. Hence, 

fl(l,C) = 
2ro(l + C2) 2\m 

(1 + C)2m-2(1 - Cf 

The parameter C can be chosen in the range [0,1). 
However, g{l,C) —>c^i °°, while ff(l,0) = 2m. 
Clearly, the optimal choice of C needs to be deter- 
mined if the bound is to be useful. A routine calcu- 
lation establishes that the value of C which minimises 
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the expression is, Co = (m - y/m - l)/(m - 2), which 
gives a value of 

m-l 

g{l,Co) = m   1 + 
.-1 

This confirms that the effective VC dimension is not 
increased excessively provided C is chosen around 
1 - 2/v/m. In order to study the effect of allowing 
a to move slightly below 1, we will perform a Taylor 
expansion about a = 1. 

Let C" = aC and the function 

i    n<\        (    n'l \     (l + ")m(l + C'2A»)m 

Si (a, C ) := g{a, C /a) = *   + c')7m-*(l - C')2 ' 

Note  that   d9i°f"> oc =   0,   and  so   M§££ 

a = l 
d-^+°-S^n€- Hence, 

dg(a,C0) _d9l(a,C) 
da 

Differentiating gives 

dgi(a,C) 

da 
Q = l 

ml >m — 1 

öa 
(i + c'7 ;2\m-l 

(1 + C")2m-3(1-C) 
a = l 

We can now perform a Taylor series expansion of 
g(a,Co) about a = 1 to obtain g(a, CQ) K; em{\ + 
(a — \)y/m — 1), where we have omitted some routine 
calculations. Hence, the bound on the generalization 
error is (ignoring log factors) 0(1 - (1 -a)s/m - 1), so 
that to obtain generalization error of order e, we need 

1-e 
1- 

J m 1 

Hence, for values of a very close to 1, the prior can 
result in very good generalization properties. 

4    EXPERIMENTS 

In this section we will look at some experiments where 
we calculated margin distributions for two data sets. 
We used the vehicle data and the satimage data, both 
taken from the StatLog l database. These datasets 
were used by [7] for a comparison of the margin distri- 
butions of Bagging and Boosting. We used satimage 
as provided, there are 4435 samples in the training and 
2000 in the test set. The vehicle data were merged, 500 
samples were used for training and 252 for testing. 

'The data are available via the UCI machine learning 
repository at 
http://www.ics.uci.edu/ mlearn/MLRepository.html. 

4.1    EXPERIMENTAL SETUP 

Both datasets are polychotomous classification prob- 
lems. To arrive at a reasonable posterior probability 
density over weight space besides a prior we need a 
proper data model and likelihood term. 

According to [1], the best thing we can do in the case 
of polychotomous classification is to use (3), the gen- 
eralized logistic or softmax transformation of the out- 
put layer activations. Given distributions of hidden 
unit activations, which are members of the exponential 
family, this transformation guarantees that the net- 
work outputs may be interpreted as probabilities for 
classes. 

exp(afc) 
p(Ck | z) (3) 

Ek'exp(a*') 
In (3) the value a* is the value at output node k before 
applying softmax activation. 

Having sampled a sufficient number of weights we are 
ready to predict. In a Bayesian framework each in- 
put value leads to a predictive distribution of network 
outputs. In the case of classifications, the network out- 
put is simply given by integrating over the predictive 
distribution. Having sampled from the posterior over 
weights, in our case the expectation is approximated 
by a sum over the weights. 

The experiments were performed for both datasets 
with different settings. Initially we sampled 600 
weights using the standard method without ARD- 
priors (Automatic Relevance Determination [3]). The 
network size was fixed to 25 hidden units for both 
datasets. This experiment was used to investigate the 
dependence of the margin distribution of the number 
of weights used to represent the posterior. Discarding 
50 initial weights, we calculated the margin distribu- 
tion of a committee consisting of the next 150 weights 
and compared it to the margin distribution when using 
all 550 remaining weights. 

To assess whether the margin distribution changes 
while increasing the size of the network, we per- 
formed two further experiments sampling 150 weights 
for a network with 50 and 200 hidden units respec- 
tively, again using conventional priors without ARD. 
A fourth experiment should reveal the influence of an 
ARD-prior on the margin distribution. We sampled 
150 weights for a network with 25 hidden units using 
an ARD-prior on the input to hidden layer weights. 

Figure 1 shows plots of the resulting margin distribu- 
tions for the vehicle dataset. The margin distributions 
for the satimage data are shown in Figure 2. Look- 
ing at the plots of the margin distributions, we see 
that they are different. It is interesting to investigate 



Bayesian Classifiers are Large Margin Hyperplanes in a Hubert Space 115 

whether these differences are significant and whether 
the differences in the margin distributions are corre- 
lated with the performance of the classifier on an in- 
dependent test set. From theory we expect that a clas- 
sifier which shows larger margins on the training data 
should also show a better generalization error. 

For both experiments with the 200 hidden units net- 
works we see a trend towards lower margins. This 
fact can be understood when remembering that the 
prior variance of the hidden to output weights scales 
inversely with the number of hidden units. Increas- 
ing the number of hidden units forces smaller hidden 
to output weights which leads to a smaller complex- 
ity of the network and therefore to underfitting and 
increased errors on the training set. 

4.2    RESULTS 

In order to compare the margin distribution with the 
generalization error, we used each classifier to predict 
class labels on an independent test set. The different 
experimental setups and the resulting generalization 
errors are summarized in table 1. 

Table 2: Generalization error and margin distributions 

Satimage data Vehicle data 
Error Mean margin Error Mean margin 
9.2% 0.929 15.5% 0.73 
8.9% 0.932 14.7% 0.72 
8.6% 0.926 13.5% 0.78 
7.7% 0.898 24.2% 0.45 
9.7% 0.895 17.5% 0.70 

larger mean values of the margin distribution corre- 
spond to smaller generalization errors. Looking at the 
satimage experiments, we see that this is true for the 
large committee experiment and for the ARD-prior ex- 
periment when compared to the first experiment. For 
the vehicle data we see the expected correlation for 
both large network scenarios and for the ARD-prior 
experiment again comparing with the results of the 
first experiment. 

5    CONCLUSIONS 

Table 1: Network size, information about prior dis- 
tribution, committee size, and generalization error for 
satimage (sat) and vehicle (veh) data. 

$ 
s i o° / / 

25 no r(0.05,0.5) 150 9.2% 15.5% 
25 no r(0.05,0.5) 550 8.9% 14.7% 
50 no r(0.05,0.5) 150 8.6% 13.5% 

200 no r(0.05,0.5) 150 7.7% 24.2% 
25 yes r(0.05,0.5) 150 9.7% 17.5% 

In order to test our hypothesis that a better perfor- 
mance on the test set is indicated by larger margins 
on the training data, we will use the first experiment as 
reference and compare its margin distribution with the 
margin distributions of the second to fifth experiment. 

Four one sided t-tests were used to assess whether the 
observed differences of means are significant. Assum- 
ing independent individual experiments, this approach 
suffers from the fact that the risk of having incorrectly 
rejected one of the hypothesis is as large as the sum of 
the individual significance levels. In this case we get 
no problem because each experiment was highly signif- 
icant. In table 2 we show the generalization error, the 
means of the margin distributions.    We expect that 

Our theoretical analysis and experimental results show 
that Bayesian Classifiers of the kind described in [3] 
can be regarded as large margin hyperplanes in a 
Hubert space, and consequently can be analysed with 
the tools of Data-Dependent VC theory. 

The non-linear mapping from the input space to the 
Hubert space is given by the initial choice of network 
architecture, while the coordinates of the hyperplane 
are given by the Bayes' posterior and hence depend 
both on the training data and on the chosen prior. 

The choice of the prior turns out to be a crucial 
one, since we have shown how even slightly correctly 
guessed priors can be translated into a much lower VC 
dimension of the resulting classifier (and this - coupled 
with high training accuracy - ensures good general- 
ization). But even with a totally uninformative prior 
there is at least no harm in using these apparently 
overcomplex systems. 

Experiments performed on real world data confirm the 
predictions of the model, highlighting a strong bias 
toward large margins in all experimental conditions 
and with different data sets. Their correlation with 
test error has also been studied. 

The practical utility of VC bounds, however, does not 
lie in quantitative predictions of the test error (the 
price for their universality is often a certain looseness), 
but rather in providing an analytical expression of the 
test error which can be used to study the role of the dif- 
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ferent parameters and design choices on the final per- 
formance. Also, via the SRM principle, such bounds 
provide a theoretically sound indicator of performance. 
The results obtained in this work can be incorporated 
in actual learning systems, to provide for example an 
independent stopping criterion: the VC bound on the 
error could be calculated during the learning, and the 
training could be stopped when no significant increase 
in performance is observed. Also, the other choices 
like net size, committee size, type of prior, could be 
performed using as a guideline their effect on the mar- 

gin. 

On the theoretical side, the surprising result of this 
paper is to co-locate Bayesian Classifiers in the same 
category of other systems - namely Support Vector 
Machines and Adaboost - which were motivated by 
very different considerations but which exhibited very 
similar behaviours (e.g. with respect to overfitting). 

A unified analysis of the three systems is now possi- 
ble, which can make potentially fruitful comparisons 
or cross-fertilizations much easier. 
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Figure 1: Plot of margin distribution of the vehicle 
data. The different experimental setups lead to differ- 
ent margin distributions. Further investigations show 
that these differences are highly significant. Using the 
first experiment as reference, the third to fifth margin 
distribution indicate the correct trend in the general- 
ization error for the third to fifth classifier respectively, 
whereas the conclusion we would draw from the second 
margin distribution is misleading. 

Figure 2: Plot of margin distribution of the satim- 
age data. Also in this case we get different margin 
distributions. Again using the first experiment as ref- 
erence, the margin distributions of these experiments 
allow to predict the correct trend of the generalization 
performance for the second and fifth experiment. The 
conclusion of the third and fourth margin distribution 
which indicates worse generalization performance com- 
pared to the first experiment is again misleading. 
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Abstract 

This paper presents a new approach to hier- 
archical reinforcement learning based on the 
MAXQ decomposition of the value function. 
The MAXQ decomposition has both a procedu- 
ral semantics—as a subroutine hierarchy—and a 
declarative semantics—as a representation of the 
value function of a hierarchical policy. MAXQ 
unifies and extends previous work on hierarchical 
reinforcement learning by Singh, Kaelbling, and 
Dayan and Hinton. Conditions under which the 
MAXQ decomposition can represent the optimal 
value function are derived. The paper defines a 
hierarchical Q learning algorithm, proves its con- 
vergence, and shows experimentally that it can 
learn much faster than ordinary "flat" Q learn- 
ing. Finally, the paper discusses some interest- 
ing issues that arise in hierarchical reinforcement 
learning including the hierarchical credit assign- 
ment problem and non-hierarchical execution of 
the MAXQ hierarchy. 

1   Introduction 

Hierarchical approaches to reinforcement learning (RL) 
problems promise many benefits: (a) improved exploration 
(because exploration can take "big steps" at high levels of 
abstraction), (b) learning from fewer trials (because fewer 
parameters must be learned and because subtasks can ig- 
nore irrelevant features of the full state) and (c) faster learn- 
ing for new problems (because subtasks learned on previ- 
ous problems can be re-used). 

Recent research has explored three general approaches to 
reaching these goals. The first approach, introduced by 
Dean and Lin (1995), exploits a hierarchical decomposi- 
tion primarily as a computational device to accelerate the 

computation of the optimal policy. The second approach, 
introduced by Parr and Russell (1998) relies on a program- 
mer to design a hierarchy of abstract machines that con- 
strains the possible policies to be considered. Their method 
computes the policy that is optimal subject to these hier- 
archical constraints by effectively flattening the hierarchy. 
We will call this kind of policy hierarchically optimal, be- 
cause it is the best policy consistent with the imposed hi- 
erarchy. The third approach, pioneered by Singh (1992), 
Kaelbling (1993), and Dayan and Hinton (1993), also re- 
lies on a programmer-designed hierarchy. In this hierarchy, 
each subtask is defined in terms of goal states or termina- 
tion conditions. Each subtask in the hierarchy corresponds 
to its own Markov Decision Problem (MDP), and the meth- 
ods seek to compute a policy that is locally optimal for each 
subtask. We will call such policies recursively optimal. Re- 
cent work by Precup, Sutton. and Singh (1998) studies as- 
pects of both the first third approaches. 

In this paper, we extend the research on recursively opti- 
mal policies by introducing the MAXQ method for hier- 
archical reinforcement learning. The methods introduced 
by Singh, Kaelbling, and Dayan and Hinton arc all spe- 
cific to particular tasks. The Feudal Q learning method 
of Dayan and Hinton suffers from the problem that at all 
non-primitive levels of a Fcudal-Q hierarchy, the learning 
task can become non-Markovian, and therefore difficult to 
solve. In contrast, the MAXQ method is general purpose. 
At each level of the hierarchy, the task is Markovian and 
can be solved by standard RL methods. In many cases, 
state abstractions can be introduced without destroying the 
optimality of the learned policy. Like Kaclbling's work, 
MAXQ supports non-hierarchical execution of the learned 
policy, which permits it to behave well even when the opti- 
mal policy violates the structure of the hierarchy. 

This paper is organized as follows. First, we introduce the 
MAXQ hierarchy using an example and define its procedu- 
ral and declarative semantics. Then we introduce two thco- 
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Figure 1: The Taxi Domain 

rems that describe the conditions under which the MAXQ 
hierarchy can successfully represent the value function of 
a fixed hierarchical policy. Section 4 introduces a learning 
algorithm for training a MAXQ hierarchy and shows ex- 
perimentally and theoretically that it works well. Finally, 
the paper shows how a non-hierarchical policy can be com- 
puted and executed using the MAXQ hierarchy. 

2   The MAXQ Hierarchy 

We will introduce the MAXQ method using the simple Taxi 
Problem shown in Figure 1. A taxi inhabits a 5-by-5 grid 
world. There are four specially-designated locations in this 
world, marked as R(ed), B(lue), G(reen), and Y(ellow). 
The taxi problem is episodic. In each episode, the taxi starts 
in a randomly-chosen state and with a randomly-chosen 
amount of fuel (ranging from 5 to 12 units). There is a 
passenger at one of the four locations (chosen randomly), 
and that passenger wishes to be transported to one of the 
four locations (also chosen randomly). The taxi must go to 
the passenger's location (the "source"), pick up the passen- 
ger, go to the destination location (the "destination"), and 
put down the passenger there. (To keep things uniform, the 
taxi must pick up and drop off the passenger even if he/she 
is already located at the destination!) The episode ends 
when the passenger is deposited at the destination location. 

There are seven primitive actions in this domain: (a) four 
navigation actions that move the taxi one square North, 
South, East, or West (each of these consumes one unit of 
fuel), (b) a Pickup action, (c) a Putdown action, and (d) a 
Fillup action (which can only be executed when the taxi is 
at location F(uel)). Each action is deterministic. There is 
a reward of — 1 for each action and an additional reward of 
+20 for successfully delivering the passenger. There is a 
reward of —10 if the taxi attempts to execute the Putdown 
or Pickup actions illegally. If a navigation action would 
cause the taxi to hit a wall, the action is a no-op, and there 
is only the usual reward of — 1. Finally, the episode also 
ends (with a reward of -20) if the fuel level falls below 

zero. 

We seek a policy that maximizes the average reward per 
step. In this domain, this is equivalent to maximizing the 
total reward per episode. The optimal policy—which is 
non-trivial to implement by hand—attains an average re- 
ward per step of 0.92 (computed over 5000 trials). There 
are 8,750 possible states: 25 squares, 5 locations for the 
passenger (counting the four starting locations and the 
taxi), 5 destinations, and 14 fuel levels. 

This task has a simple hierarchical structure in which there 
are three sub-tasks: Get the passenger, Refuel the taxi, and 
Deliver the passenger. Each subtask involves navigating 
to one of the five locations and then performing a Pickup, 
Fillup, or Putdown action. While the taxi is navigating to 
a location, only that location is relevant. We would like to 
capture this hierarchical structure and take advantage of it 
during learning and performance. 

Figure 2 shows a MAXQ graph for this problem. This 
graph contains two kinds of nodes: Max nodes (indicated 
by triangles) and Q nodes (indicated by ovals). Max nodes 
with no children denote primitive actions in the domain; 
Max nodes with children represent subtasks. In this sim- 
ple problem, there are five such subtasks: (a) Navigate(f) 
(move the taxi to target location t), (b) Get (move to the 
passenger's location and pick up the passenger), (c) Put 
(move to the passenger's destination and put down the pas- 
senger), (d) Refuel (move to F and Fillup), and (e) Root 
(perform the overall task of picking up and delivering the 
passenger). Notice that the Navigate task is shared by the 
Get, Put, and Refuel tasks. 

The immediate children of each Max node are Q nodes. 
Each Q node represents an action that can be performed 
to achieve its parent's subtask. For example, the MaxGet 
node has a child QNavigateForGet which represents the 
action of navigating from the current state to the passen- 
ger's location. The distinction between Max nodes and Q 
nodes is critical to ensuring that subtasks can be shared and 
reused. Each Max node will learn the context independent 
expected cumulative reward of performing its subtask. For 
example, MaxNavigate(f) will estimate the expected cu- 
mulative reward of navigating from any state to one of the 
five target locations t. Each Q node will learn the con- 
text dependent expected cumulative reward of performing 
its subtask. For example, QNavigateForGet(f) will learn 
the expected cumulative reward of navigating to location 
t and then completing the Get task. On the other hand, 
QNavigateForPut(f) will learn the expected cumulative re- 
ward of navigating to location t and then completing the 
Put task. Both of these Q nodes will "ask" MaxNavigate(f) 
how much it will cost to get to location t, and they will use 
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Figure 2: A MAXQ graph for the Taxi Domain 

this to help them compute their Q values. The value func- 
tion computed by MaxNavigate is context independent and 
can be shared by all three of its parent Q nodes. 

In rest of the paper, we will say that Max node a is the 
child of Max node i if there is a Q node whose parent is i 
and whose child is a. 

To define the semantics of the MAXQ graph more formally, 
let us suppose that the overall task is to solve a Markov 
Decision Problem (MDP) M defined over a set of states S 
and actions A with reward function R(s'\s,a) (the reward 
received upon entering state s' after performing action a 
in state s) and transition probability function P(s'\s,a) (the 
probability of entering state s' as a result of performing a in 
s). In this paper, we will assume that the MDP M defines an 
undiscounted stochastic shortest path problem. All of the 
results can be extended to the infinite-horizon discounted 
case. 

Each Max node i corresponds to a separate subtask A/,. The 
children of Max node i are the actions of A/,-. Each subtask 
Mj divides the set 5 of all states into two disjoint subsets: 
Sj and 7}. The set 7} is the set of terminal states for M;. 

Subtask Mj will terminate whenever the environment enters 
one of the states in 7}. A subset G, C 7} of the terminal 
states are the goal states of A/,. Below, we will discuss the 
details of defining a reward function that will encourage 
Mi to terminate in one of these goal states. Let us define 
7t, to be some (arbitrary) policy for subtask /. This policy 
"attempts" to get from any state in 5,- to one of the goal 
states in G,. 

A hierarchical policy for a MAXQ graph is a set of poli- 
cies 7t = {7to,... ,7t„}, one for each Max node, that indicate 
how each Max node should choose its actions. The hierar- 
chical policy is executed the same way that subroutines are 
executed in ordinary programming languages. The Root 
policy chooses one of its child actions to perform, say, Get. 
The Get policy then chooses one of its child actions, say, 
Pickup. Then the Pickup action is executed, since it is a 
primitive. A Max node's policy is executed until that Max 
node enters a terminating state, at which point, "control" 
returns to its parent Max node. 

Therefore, we can view the MAXQ graph as a subroutine 
call graph. Like subroutines, Max nodes can be parame- 
terized. In this graph, MaxNavigate takes one parameter, 
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f, which specifies which of the five locations (R, B, G, Y, 
F) is the target of the MaxNavigate. One way in which the 
graph is different from an ordinary program is that the chil- 
dren of each Max node are unordered. They can be called 
in any order, and a Max node can execute each of its chil- 
dren multiple times before it completes its subtask. The 
MAXQ graph is therefore a kind of incompletely-specified 
non-deterministic program. One result of learning will be 
to determine a policy for each Max node that tells how and 
when to invoke its children. This will make the MAXQ 
graph a completely-specified deterministic program (inter- 
acting with a non-deterministic environment). 

Thus far, our formulation of the MAXQ method is essen- 
tially the same as the Feudal Q learning method of Dayan 
and Hinton (1993). However, an important improvement 
over Feudal Q learning is the ability to interpret the MAXQ 
graph as a representation of the value function for a hierar- 
chical policy. Consider Max node i, and define V^s) to be 
the expected cumulative reward for following the hierarchi- 
cal policy Jt starting in state $ until we enter some state in 
7J. For a fixed hierarchical policy 7t, subtask M; has a well- 
defined transition probability function P^s'lsja), which is 
the probability that the environment will move from state 
s to state s' when Af; executes action a. This probability 
is well defined, because the child Ma is executing a fixed 
policy %a (as are all of its descendants). Hence, node i can 
treat action a as an atomic action. The immediate reward 
for node i of executing a will be the expected reward for 
node a of moving from the current state s to a terminal state 
in Ta according to policy na. This is denoted V£(s). Hence, 
we can write 

TO = TO+X^MTO).        CD 

where a = 7C,(i). This gives us a recursive decomposition 
of the value function so that the value function of the root 
node is the value function of the entire MDP M and each 
subtask Mi is a separate MDP. 

This recursive expression becomes more useful when we 
switch to the action-value (or "Q") representation of the 
value function. Define Qf (s,a) to be the expected cumu- 
lative reward for MDP M,- of performing action a in state s 
and then following the hierarchical policy n thereafter. De- 
fine the second term on the right-hand side of Eq. (1) to be 
Cf(s,a), which we will call the completion function. This 
is the expected cumulative reward of completing MDP Af; 
following policy K after executing action a in state s. With 
these definitions, we can rewrite Eq. (1) as 

where 

TO 
| QUsMs)) 

Zs,p(s'\s,i)R(s'\s,i) 
i composite 
i primitive 

cT(*,a) = X/VMTO) 
s1 

(3) 

(4) 

Q?(s,a) = V?(s) + Cf(s,a) (2) 

These completely define the value-function semantics of 
the MAXQ hierarchy. Each Q node with parent i and child 
a stores the information Cf (s,a) for each state s in 5,-. Each 
Max node / returns the Q value of the child chosen by it,-. 

To compute the value of a hierarchical policy n in state s, 
we begin at MaxRoot (node 0) and compute Qft(s,Ko(s)). 
This requires that we ask our child node a\ = 7to(s) for 
its value V£ (s). Our child recursively asks its child «2 = 
nai (s) for its value, and so on until a leaf node an is reached. 
Let (ai,ü2,... ,an) be the path that was traversed through 
the MAXQ graph. Now leaf node an returns V£(s), to 
which its parent adds C%n (s,a„) and so on recursively. 
The value returned by MaxRoot is 

TO = W + <£-! M + • • • + C, (*.A2) + C5(s,ai) 
(5) 

Figure 3 shows how the sequence of rewards r\, n,... re- 
ceived from the primitive actions is decomposed hierarchi- 
cally into the sum of the C terms. 

3   Representation Theorems 

Under what conditions can this hierarchy represent the 
value function of a fixed, hierarchical policy? We will say 
that a MAXQ graph is a full-state graph if separate Cf (s,a) 
values are stored for each state s £ S,. In most applications, 
including Figure 1, it will be desirable to introduce an ab- 
straction function Xj(s) that will provide a set of features 
that abstract essential information from the state. Each 
Q node will then store the function Cf(Xi(s),a), with one 
value for each distinct abstract state X;(s). 

For full-state graphs, it is easy to prove the following theo- 
rem by expanding Equations (2-4): 

Theorem 1 Letn= {7i,-;i = 0,...,n} be a hierarchical pol- 
icy defined over a full-state MAXQ graph and let i = 0 be 
the root node of the graph. Then there exist values for C, 
(for internal Max nodes) and Vj (for primitive, leaf Max 
nodes) such that Vo(s) is the expected cumulative reward of 
following policy n in state s. 

A more important and difficult question is to understand 
the conditions under which an abstract-state MAXQ graph 
can exactly represent the value function of a hierarchical 
policy. The following theorem establishes one condition: 
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Figure 3: The MAXQ decomposition; r,,..., rH denote the sequence of rewards received from primitive actions at times 1,..., 14. 

Theorem 2 For all Max nodes i and actions a, let 
Resultf{s,a) = {s'\P?{s'\s,a) > 0} be the set of states that 
can result from applying abstract action a in state s at node 
i while following hierarchical policy n. If the following 
condition holds, then the MAXQ graph with abstraction 
functions Xj(s,a) can represent the value function of any 
policy 7C whose value function can be represented by the 
MAXQ graph with no abstraction functions: 

For all Max nodes i, actions a, states s € 5„ 
and distinct states s\ ,S2 € Resultf(s,a) whenever 
Cf(s\,a) ^ Cf{s2,a) it is the case thatXi{s\,a) ^ 
Xi(s2,a) 

In other words, if an abstraction function X, treats a pair of 
result states s\ and 52 as identical, then their un-abstracted 
values must be equal. Otherwise, the value function cannot 
be properly represented. The four children of MaxNavigate 
all satisfy this condition. The expected reward of complet- 
ing the MaxNavigate action depends only on the current lo- 
cation of the taxi, the target location, and the amount of 
fuel remaining. If we are navigating to F (for refueling), 
for example, the expected reward does not depend on the 
source or destination locations. 

The introduction of abstractions can create a hierarchical 
credit assignment problem. For example, in our imple- 
mentation, we used only the taxi location and the target 
location to represent the C functions for QNorth, QSouth, 
QEast, and QWest. We wanted these nodes to learn a nav- 
igation policy that was independent of how much fuel re- 
mained. But this means that when the fuel is exhausted and 
a -20 penalty is received, these Q nodes cannot represent 
the reason for this penalty! This is the hierarchical credit 
assignment problem: to determine which node is respon- 
sible for a reward that is received. Our solution is for the 
designer of the MAXQ hierarchy to also decompose the re- 

ward function. When each reward is generated, a marker 
is attached that indicates which Q nodes are potentially re- 
sponsible for this reward. For the -20 empty fuel penalty, 
the QGet, QPut, and QRefuel nodes are held responsible, 
because their parent, MaxRoot, must compare their Q val- 
ues to decide when to refuel to avoid the penalty. Their C 
functions must therefore be able to represent the rewards. 

This requires a change to the decomposition equations. Let 
/?,(.y'|s,a) be the portion of the reward that is assigned to 
node /. Then we write the following: 

Cf(s,a) = X/>(s'l*,«(*'M + W)] 

V?(s) -{ ß?(*,*/W) 
^P^\s,i)Ri(sf\s,i) 

i composite 
/ primitive 

(6) 

(7) 

In many domains, we believe it will be easy for the de- 
signer of the hierarchy to also decompose the reward func- 
tion. However, an interesting problem for future research 
is to develop algorithms for autonomously solving the hi- 
erarchical credit assignment problem. 

4   A Learning Algorithm 

The preceding section has shown that the hierarchy can cor- 
rectly represent the value function of any hierarchical pol- 
icy if the full state is employed to represent the C, func- 
tion in each node i. Hence, we could apply Parr and Rus- 
sell's HAM-Q algorithm to learn the best hierarchical pol- 
icy. However, because we arc committed to employing 
state abstractions, we have chosen instead to develop a rein- 
forcement learning algorithm for finding a recursively op- 
timal policy. 

It turns out that in general there can be many different re- 
cursively optimal policies, and that some of them achieve 
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better expected rewards than others. The problem is that 
a subtask may have many policies that are locally optimal, 
but some of them are more useful than others for the over- 
all task. For example, suppose we changed the taxi domain 
so that if the taxi hits a wall, the trial is terminated with a 
reward of -5. Then for MaxNavigate(f), if the target loca- 
tion t is more than 5 steps away, the locally optimal policy 
would be to hit a wall. This would not be part of any hi- 
erarchically optimal policy, however! Dayan and Hinton 
faced this same problem, and they solved it by providing a 
penalty of 10 points to subtask i for entering an undesired 
terminal state (i.e., a state in 7] but not in G,). This has 
the proper effect, but in the MAXQ hierarchy, it causes the 
value function computed by the entire hierarchy to be in- 
correct, because it incorporates the (often non-zero) proba- 
bility of receiving these terminal state penalties. 

A better method is to define, for each Max node MDP M,-, a 
parallel Markov decision problem M,- with the same states, 
actions, and transition probabilities as Af; but with a second 
reward function /?, that is zero except for undesired termi- 
nal states, where it provides a large penalty. (We used a 
penalty of -100 points). Our learning algorithm will seek 
a locally optimal policy ft* for M,-. However, it will also 
compute the value function for executing ft* in the original 
MDP Mi, and this is the value that will be passed "up" the 
MAXQ hierarchy. 

Specifically, our learning algorithm MAXQ-Q is a variant 
of Q learning that performs the following. At each compos- 
ite Max node, we maintain two tables Q(s,a) and Cj(s,a). 
The algorithm chooses an action a to perform according to 
its current exploration policy. It executes a, observes the 
resulting state s' and reward Rj(s'\s,a), and computes the 
following: 

a     : =   argmaxfä(s',a') + Vfl'(jO] (8) 

Q(s,a)    :-- 

Q(s,a)    :-- 

(l-at(i))Ci(s,a) + a,(i)- 

[Ri{s') +Ri(s'\s,a) + Q(s',a*) + Va.(s')] 

(9) 
(l-cttWCiis^ + Otii)- 

[Ri(s'\s,a)+Q(s',a*) + Va*{s')] 

(10) 

Here a* is the best action in s' according to the current C 
and V values. Both C and C are updated using a*. At each 
leaf node i, the update is slightly different: 

Vi(s) := (l-OtMViW + OkWiis'lsJ).      (11) 

The quantity ty (i) is the learning rate for node i at time step 
t. 

In order to prove convergence of this algorithm, we must 
make several assumptions. First, we must assume that all 
deterministic policies in MDP M are proper (i.e., they all 
terminate with probability 1). Second, we must assume 
that all locally optimal policies, ft*, give the same transi- 

tion probability distribution Ff"(s'\s,ä). This ensures that 
all locally optimal policies at node a give rise to the same 
MDP at any node i that is a parent of a. (A consequence 
of this assumption is that all recursively optimal policies 
will have the same value function.) Third, we must as- 
sume that \Vj\, |C,|, and \Q\ are bounded at all times (this 
is easy to enforce). Fourth, the exploration policy executed 
at each node i during learning must be a GLIE (greedy in 
the limit with infinite exploration) policy—that is, a policy 
that executes each action infinitely often in every state that 
is visited infinitely often, and that is greedy with respect to 
Qi with probability 1. Finally, the learning rates a,(i) must 
satisfy the usual conditions: 

lim y.ovO) = °°   and    lim "Y.o£(i) < 
r-+. r=l T-x> 

(12) 
r=l 

Theorem 3 Under the assumptions listed above, with 
probability 1, MAXQ-Q will converge to a recursively op- 
timal policy for MDP M consistent with MAXQ hierarchy 
H. 

Proof Sketch: The proof employs a stochastic approxima- 
tion argument similar to those introduced to prove the con- 
vergence of Q learning and SARSA(0) (Jaakkola, Jordan, & 
Singh, 1994; Bertsekas & Tsitsiklis, 1996; Singh, Jaakkola, 
Littman, & Szpesvari, 1998). The proof is by induction on 
the levels of the tree, starting at the Max nodes all of whose 
children are primitive leaf nodes. At these "first-level" Max 
nodes, the standard results for Q learning can be applied to 
prove that the Q values will converge with probability 1 
to the optimal value function. Furthermore, because each 
node i is executing a GLIE exploration policy, the policy 
at these nodes will also converge with probability 1 to a 
locally optimal policy. 

Now consider a Max node j all of whose children are ei- 
ther primitive nodes or "first-level" Max nodes. Define 
Pj{s'\s, i) to be the transition probabilities observed by par- 
ent node j when it invokes child node i in state 5 at time t 
in the learning process. Because the first-level Max nodes 
are executing GLIE policies, Pj(s'\s, i) will converge (with 
probability 1) to the state transitions P*^^,!') that will be 
produced by any of the locally optimal policies for node 
i (by assumption, all of these locally optimally policies 
give the same state transition probabilities). This enables 
us to prove that node j also converges with probability 1 
to the optimal Cj values and a locally-optimal policy. The 
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key is to decompose the error in any particular Cj backup 
into two terms. One term—corresponding to the difference 
between a sample backup (using the observed state tran- 
sition) and a full Bellman backup (using Pj(.y'|.s,i))—has 
expected value of zero. The other term—corresponding to 
the difference between doing a full Bellman backup using 
the current transition probabilities, Pj(s'|s,/) and doing a 
full Bellman backup using the final transition probabilities 
Pj (s'|s, i)—converges to zero with probability 1. By apply- 
ing a stochastic approximation result (Proposition 4.5 from 
Bertsekas and Tsitsiklis, 1996), we can prove that node j 
will converge to a locally optimal policy. Hence, by induc- 
tion, we can prove that the entire hierarchy converges to a 
recursively optimal policy. End of Proof Sketch. 

There is one interesting method that can be employed to 
accelerate learning in the higher nodes of the graph. When 
an action a is chosen for Max node i in state s, the exe- 
cution of a will move the environment through a series of 
states s\,... ,Sk,ty+i = s'. If a was indeed the best action 
to choose in si, then it should also be the best action to 
choose (at node i) in states S2 through Sk- Hence, equations 
(9) and (10) can be applied in all of these states. This re- 
flects an important difference between standard subroutine 
calls and the MAXQ hierarchy. In standard subroutines, 
there is a set of preconditions that must be true at the start 
of the subroutine. A partially-executed subroutine can of- 
ten make these preconditions false, so that it is not possi- 
ble to interrupt a subroutine and then call it again without 
first re-establishing the preconditions. In the MAXQ hier- 
archy, however, a Max node i can be invoked in any state 
s € Si, and it must "complete" execution of the task from 
that state onward. This means that the execution of the Max 
node can be interrupted and restarted with no change to the 
hierarchy. 

We applied algorithm MAXQ-Q to the Taxi task using a 
tabular representation of the C functions. We employed 
state abstraction as follows. For the QNorth, QSouth, 
QEast, and QWest nodes, the C function ignores the pas- 
senger source and destination locations and the amount of 
fuel. The C function of QPickup ignores the passenger des- 
tination and fuel, but it must know the source location and 
taxi location in order to predict the effects of illegal Pickup 
actions. Similarly, QPutdown ignores the passenger source 
location and the fuel, and QFiilup ignores the source and 
destination locations and the fuel. QNavigateForGet can 
represent its C function by a single value, because after 
a successful Navigate, only a Pickup remains to complete 
the Get action. The same is true for QNavigateForPut and 
QNavigateForRefuel. Because of the hierarchical credit as- 
signment, QGet and QRefuel need to see the entire state, 
but QPut can ignore all of the state information, because 
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Figure 4: Online performance of flat and hierarchical Q learning 
on the Taxi task. Each curve is smoothed using a 200-trial moving 
average. The horizontal line shows the average performance of 
the optimal policy. 

once it succeeds, the task is completed. All of these ab- 
stractions mean that instead of a set of seven 8,750-element 
Q functions (61,250 values) for flat Q learning, the MAXQ 
hierarchy requires only 18,253 values to represent the C 
functions. 

Figure 4 compares the online performance of flat and hi- 
erarchical Q learning. For flat Q learning, we employed 
Boltzmann exploration with an initial temperature of 50. 
This was decreased by a factor of 0.997 after each suc- 
cessful trial. We experimented with many different cool- 
ing schedules, but we were unable to get flat Q learning to 
converge to the optimal policy within 50,000 trials. This 
was the fastest cooling schedule that was able to attain (at 
least briefly) the optimal expected reward. For hierarchical 
Q learning, we employed a separate temperature for each 
Max node. The starting temperature for all nodes was 50 
except MaxRoot, which used 100. Each node decreased its 
temperature when it successfully reached a goal terminal 
state. MaxRoot was cooled by a factor of 0.9986, the sec- 
ond level Max nodes at 0.997, and MaxNavigate at 0.995. 
In all cases, a learning rate of a = 1 was employed, since 
all actions and rewards are deterministic. 

These cooling rates were chosen so that the lower Max 
nodes in the graph can become reasonably competent at 
their subtasks before the nodes higher in the graph try to 
learn. If care is not taken, a Max node i may conclude that 
a subtask a is very expensive (because the subtask has not 
yet learned a good policy), and therefore, it sets the C value 
for a very low. When this is combined with Boltzmann ex- 
ploration, the result is that the subtask may never be tried 
again. Hence, we only performed an update for a Q node 
if that node completed its subtask with an average absolute 
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Bellman error per step of less than 0.2. (This parameter 
was not tuned at all.) 

Figure 4 shows that the hierarchical method is able to learn 
the task much faster and achieve a higher level of perfor- 
mance than flat Q learning. Of course, both methods could 
be improved by employing techniques for accelerating Q 
learning, such as eligibility traces (e.g., Peng & Williams, 
1996). 

5   Non-Hierarchical Execution 

We have shown that the MAXQ hierarchy can learn an op- 
timal policy for an MDP if that policy is a recursively opti- 
mal hierarchical. However, there are situations in which the 
optimal policy is almost—but not quite—hierarchical. For 
example, consider a modified Taxi task (the "fickle Taxi 
problem") in which as soon as the taxi picks up the pas- 
senger and moves one square, the passenger can randomly 
change the destination with probability 0.3. This change 
comes after the hierarchical policy has committed to exe- 
cuting QNavigateForPut(f) for the original destination. As 
a result, the MaxNavigate subtask will take the taxi to the 
old destination. Then control will return to MaxPut, which 
will invoke QNavigateForPut to move the taxi to the new 
destination. 

Such "almost hierarchical" MDP's raise the question of 
whether there is a way to convert a recursively-optimal hi- 
erarchical policy into an optimal non-hierarchical policy. 

To answer this question, we implemented the Fickle Taxi 
domain. We removed all aspects of fuel from the domain 
so that we could figure out the optimal policy and hand- 
code it. Figure 5 compares the performance of flat Q learn- 
ing and hierarchical Q learning on this modified task. The 
optimal policy can achieve an average reward per step of 
1.172; but the best hierarchical policy (compatible with the 
MAXQ graph of Figure 2) can only achieve 1.002. Hier- 
archical learning with MAXQ-Q is able to attain this level 
rapidly. Flat Q learning approaches the optimum, but does 
not reach it within 10,000 trials. We tuned each algorithm 
to optimize its performance. We employed a learning rate 
of 0.35 and decayed the initial temperature of 50.0 by a fac- 
tor of .460 (for flat Q) and .211 (for hierarchical Q) when- 
ever a goal terminal state was reached. 

An alternative to hierarchical execution of the MAXQ 
graph is polling execution, as first suggested by Kaelbling 
in her (1993) Hierarchical Distance to Goal method. In the 
polling approach to MAXQ, each action is chosen by start- 
ing at MaxRoot and computing the path (from root to leaf) 
with the highest Q value. The primitive action at the end of 
this path is then executed, and the process is repeated. This 

is equivalent to computing the one-step greedy lookahead 
policy given the current value function. If the hierarchi- 
cal policy is not optimal, then this one-step greedy policy 
will be closer to an optimal policy, because it corresponds 
to one step of policy improvement in the policy iteration 
algorithm (Bertsekas, 1995). This informally proves the 
following: 

Theorem 4 For all states s, the value of the policy com- 
puted by polling execution of the MAXQ hierarchy is > the 
value of the policy computed by hierarchical execution. 

Hence, polling execution of a MAXQ graph can produce a 
non-hierarchical policy that is better than the hierarchical 
policy represented by the graph. 

We tested this on the Fickle Taxi task by first training the 
MAXQ hierarchy by MAXQ-Q for 1000 trials and then 
continuing the training with polling execution. Figure 6 
shows that there is an initial loss of performance when we 
switch to polling execution. This is because during hierar- 
chical training, the more abstract Q nodes in the graph have 
only learned their C values well in states where they were 
frequently executed. Under polling, they are now executed 
in other states as well, and they rapidly learn the correct 
values so that performance is able to reach the level of the 
optimal non-hierarchical policy. In this domain, polling ex- 
ecution of the best hierarchical policy can produce the op- 
timal policy. 

6   Concluding Remarks 

This paper has defined the MAXQ value function decom- 
position for hierarchical reinforcement learning. The pa- 
per has shown that the MAXQ graph can represent the 
value function of any hierarchical policy implemented by 
the graph. A learning algorithm based on Q learning was 
introduced, proved to converge, and shown experimentally 
to perform much better than ordinary, non-hierarchical Q 
learning. 

The most important aspect of the MAXQ method is the sep- 
aration between the context-independent policy and value 
function (represented by the Max nodes) and the context- 
dependent value function (represented by the Q) nodes. 
This permits the value functions of subtasks to be learned 
independent of their context, and this enhances the re- 
usability of the subtasks and makes it easier to employ state 
abstraction within the subtasks. However, optimality of the 
learned policy is lost in general, and hierarchical credit- 
assignment problems may be introduced. Fortunately, the 
ability of the MAXQ hierarchy to represent the value func- 
tion of the hierarchical policy permits the non-hierarchical 
execution of a one-step greedy policy that is better than the 
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Figure 5: Online performance of flat and hierarchical Q learning 
on the Fickle Taxi task. Each curve is the average of 10 runs; 
the returns from each run were smoothed by a 200-trial moving 
average. 

Figure 6: Online performance on the Fickle Taxi task. The first 
1000 trials are trained hierarchically. The remaining trials are 
trained while polling. 

hierarchical policy. 
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Abstract 

Current methods to avoid overfitting are ei- 
ther data-oriented (using separate data for 
validation) or representation-oriented (penal- 
izing complexity in the model). This paper 
proposes process-oriented evaluation, where 
a model's expected generalization error is 
computed as a function of the search pro- 
cess that led to it. The paper develops 
the necessary theoretical framework, and ap- 
plies it to one type of learning: rule induc- 
tion. A process-oriented version of the CN2 
rule learner is empirically compared with 
the default CN2. The process-oriented ver- 
sion is more accurate in a large majority 
of the datasets, with high significance, and 
also produces simpler models. Experiments 
in artificial domains suggest that process- 
oriented evaluation is particularly useful in 
high-dimensional domains. 

1    INTRODUCTION 

Overfitting avoidance is often considered the central 
problem of machine learning (e.g., (Cheeseman & 
Oldford, 1994)). If a learner is sufficiently powerful, 
it must guard against selecting a model that fits the 
training data well but captures the underlying phe- 
nomenon poorly. Current methods to address this 
problem fall into two broad categories. Data-oriented 
evaluation uses separate data to learn and validate 
models, and includes methods like cross-validation 
(Breiman, Friedman, Olshen & Stone, 1984; Stone, 
1974), the bootstrap (Efron & Tibshirani, 1993), and 
reduced-error pruning (Brunk & Pazzani, 1991). It 
has several disadvantages: it is often computationally 

intensive, reduces the data available for learning, can 
be unreliable if the validation set is small, and is it- 
self prone to overfitting if a large number of models is 
compared (Ng, 1997). Representation-oriented evalu- 
ation seeks to avoid these problems by using the same 
data for training and validation, but a priori penaliz- 
ing some models as more likely to overfit. Bayesian ap- 
proaches in general fall into this category (Cheeseman, 
1990; MacKay, 1992). Representation-oriented mea- 
sures typically contain two terms, one reflecting fit 
to the data, and one penalizing model complexity 
(Akaike, 1978; Schwarz, 1978; Wallace & Boulton, 
1968; Rissanen, 1978; Moody, 1992). This approach is 
only appropriate when the simpler models are truly the 
more accurate ones, and there is mounting evidence 
that this is typically not the case ( (Domingos, 1998; 
Domingos, 1997; Schuurmans, Ungar & Foster, 1997; 
Lawrence, Giles & Tsoi, 1997; Webb, 1996; Schaf- 
fer, 1993; Murphy & Pazzani, 1994), etc.). Structural 
risk minimization (Vapnik, 1995) and PAC learning 
(Kearns & Vazirani, 1994) are representation-oriented 
methods that seek to bound the difference between 
training and generalization error using a function of 
the model space's (effective) dimension. This typically 
produces bounds that are overly broad, and requires 
severely restricting the model space. 

In this paper we argue that representation-oriented 
evaluation has these limitations because it only con- 
siders the learner's model space, and not its search 
process. A learner with an unlimited model space can 
avoid overfitting as long as it attempts only a limited 
number of hypotheses (even if it is not possible a priori 
to predict which). If these hypotheses are correlated, 
the chance of overfitting is further reduced. Given 
the sequence of hypotheses that a learner attempts, 
it is possible to estimate the generalization error of 
the "current best" hypothesis taking into account the 
process that led to it. Intuitively, the more hypotheses 
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Figure 1: A simple example of an overfitting avoidance 
problem. 

This notion can be quantified. If a hypothesis h's true 
error rate is e and S consists of n independently drawn 
examples, the number of errors e committed by h on 
5 is a binomially distributed variable with parameters 
n and e: 

p{e n,e) = &(e|n,e)=(^)ee(l-er (1) 

Let B(e\n,e) be the probability that the number of 
errors is greater than e: 

that have been attempted and the less correlated they 
are, the higher the generalization error we expect for a 
given training-set error. This paper begins to develop 
this approach, which we will call process-oriented eval- 
uation (POE for short). The basic theoretical frame- 
work is presented, and then applied to the standard 
"separate and conquer" rule induction process (Clark 
& Niblett, 1989). An empirical study demonstrates 
the effectiveness of POE. The paper concludes with 
sections on related and future work. 

2    PROCESS-ORIENTED 
EVALUATION 

Consider the simplest example of an overfitting avoid- 
ance problem, in a classification context. Suppose 
learner L\ consists of drawing one hypothesis at ran- 
dom from some model space and returning it, and 
learner L2 consists of drawing two hypotheses at ran- 
dom (independently) from the same model space as L\, 
and returning the one with lowest error on a training 
sample S. This situation is shown schematically in 
Figure 1. Let hi be the hypothesis returned by L\, 
hi the hypothesis returned by Li, n the number of 
examples in 5, and e; the number of examples hi mis- 
classifies. The goal is to choose the hypothesis with 
lowest true error t{ (i.e., ej is the probability of hi 
misclassifying an example, given the true example dis- 
tribution). Suppose n = 100, e\ = 12, and ei = 11. 
Should we prefer h\ or h21 According to the maximum 
likelihood principle (DeGroot, 1986), €1 = 0.12 and 
e2 = 0.11, so hi should be chosen. Assuming the two 
hypotheses have the same complexity or prior prob- 
ability, representation-oriented evaluation would give 
the same answer. However, Li had two opportunities 
to draw a hypothesis with low training error, and so 
the probability of e2 being low merely by chance is 
higher than for e\. Thus hi may in fact have a higher 
true error rate than h\. 

B(e\n,e) =  ^2 b(e\n,e) (2) 
i=e+l 

Notice that this notation is the opposite of the usual 
notation for a cumulative distribution function (i.e., 
B(e\n,e) = 1 - Binomial_cdf(e|n,e)). It will be more 
convenient for what follows. 

The probability of hi misclassifying ei examples is 
p(ei|n,ei) = 6(ei|n,ei). This can be used with Bayes's 
theorem to compute the expected value of ei given n 
and ei, £[ei|n,ei]. By finding a similar expression for 
p(ei\n,ei), we can compute 2£[e2|",e2] and choose the 
hypothesis with lowest expected error. Let the two 
hypotheses drawn by Li be /i2,i and /i2,2 (with true 
errors €2,1 and 62,2 respectively, and numbers of train- 
ing errors e2,i and e2,2). From these, L2 chooses the 
one with lowest training error (i.e., hi = h2j, where 
j = argmini61 2 e2,i)- Then the probability of L2 re- 
turning a hypothesis hi that misclassifies ei training 
examples is the probability that /i2,i misclassifies ei 
training examples and /i2,2 misclassifies more, or vice- 
versa, or both hi 1 and h2 2 misclassify e2 examples: 

p(e2\n,ei)    =    b(ei\n,e2A)B(ei\n,ei,i) 

+B(ei\n,eiti)b(e2\n,eiti) 

+ b{ei\n,eiii)b{e2\n,€2ti)      (3) 

Our goal is to use this equation to compute the ex- 
pected value of e2. We are hindered by the fact that 
in addition to e2 (whether it is £2,1 or e2,2) the equa- 
tion contains another unknown parameter (whichever 
e2,i is not e2). Since we are not interested in e2|i or 
£2,2 per se, but only in the effect on t2 of trying two 
hypotheses instead of of one, we propose the following 
heuristic: assume that e2)i = e2,2 = £2- This approx- 
imation will be good if e2,i and e2,2 are similar, and 
poor if they are very different. However, this heuristic 
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may yield good results even in the latter case, because 
a close approximation of £?[e2|n,e2] is not required; 
all that is required is that E[e2\n,e2] > E[ei\n,ei] iff 
€2 > ci, which is a much weaker condition (Domingos 
& Pazzani, 1997). If £2,1 = £2,2 = £2 Equation 3 be- 
comes: 

p(e2|n,e2)    =   &(e2|n,e2)5(e2|n,e2) 

-t-ß(e2|n,e2)&(e2|n,€2) 

+ &(e2|n,e2)&(e2|n,e2) 

=    [B(e2\n,e2) + b(e2\n,e2)]2 

-B2(e2|n,e2) 

=    B2(e2-l|n,e2)-.B
2(e2|n,e2) (4) 

Applying Bayes's theorem: 

p{e2\n,e2) ocp(e2)p(e2|n,e2) (5) 

p(e2) can be used to incorporate prior beliefs about the 
error rate of the hypotheses considered by L2. Here it 
will simply be assumed uniform:1 

p(em\n,em)    oc   p(em\n, em) 

=    Bm(em-l\n,em)-Bm{em\n,em) 

(8) 

Notice that this formula makes intuitive sense: as m 
increases, the mass of probability is shifted to higher 
and higher em's; but as n increases, higher and higher 
m's are needed to make this happen to the same de- 
gree. To see this, consider the binomial expansion 

Bm(em-l\n,em) 

=    [B(em|n,em) + 6(eTO|n,em)]m 

=   Bm(em\n,em) + mBrn~1{em\n,em)b(em\n,em) 
m(m ~ 1) nm-2,.    .      ,    NL2/ + - LB" '(em|n,em)62(em|n,em) + 

(9) 

and consider that, for all but the smallest sample sizes, 
B(em\n,em) » 6(em|n,em). Thus: 

p(e2\n,e2) ocp(e2|n,€2) (6) 

The expected value of (.2 can now be computed by 
integration: 

■E[e2|rc,e2] 
/  C2p{e2\n, 

Jo  
£2) de2 

/ P(e2\n, 
Jo 

(7) 
£2) de2 

Doing this for 62 = 11, n = 100 results in Efaln, e%\ = 
0.134. A similar treatment for e\, using e\ = 12, n = 
100 and p(ei\n,e{) = &(ei|n,ei), yields I5[ei|n,e{\ = 
0.127. Thus the hypothesis output by L\ would be 
preferred, even though L2's has a lower training error. 

Equation 4 can be readily generalized to a learner Lm 

that draws m hypotheses at random and chooses the 
one with lowest training error: 

'This is an unrealistic assumption, and is made solely 
for the sake of simplicity. As the following sections show, 
the proposed method can be effective even when this as- 
sumption is used. This can be attributed to the fact that, 
except for very small sample sizes and/or very extreme pri- 
ors, the effect of the likelihood term p(e2|n, €2) will easily 
dominate the prior's. In any case, a version of POE using 
beta priors is currently being implemented. 

p(em\n, em)    a   p(em\n, em) 

=    Bm(em-l\n,em)-Bm(em\n,em) 

~   mö(em|n,em)ßm_1(em|n,em) 

(10) 

When m = 1, this reduces to b(em\n, em), as expected. 
When m = 2, 6(em|n,em) is multiplied by a constant 
and by B(em\n,em). Since the latter is a function 
that increases monotonically with em for a given n and 
em, the effect of this is to decrease the probability of 
lower em's and increase the probability of higher ones, 
and thus to increase the expected em. Asm increases, 
b(em\n, em) is multiplied by higher and higher powers 
of B(em\n,em). This further decreases the probabil- 
ity of low em's and increases the probability of high 
ones, leading to an ever-increasing expected em. As 
an example, Figure 2 shows 6(25150, em) (magnified 
by a factor of five) and several powers of B(25|50, em). 
The resulting E[em|50,25] (not shown) has a roughly 
similar shape to &(25|50, eTO), but shifts rightward in 
step with B (25150, em). For larger n, the same process 
takes place, but 6(em|n, em) is more sharply peaked, 
B(em\n,em) also transitions from values close to zero 
to values close to one more sharply, and the advance 
of Bm(em\n, em) to the right becomes correspondingly 
slower (since, for any 0 < k < y < 1, asy->l with 
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Figure 2:    Variation of 6(em|n,em)  and powers of 
f?(em|n,em) with tm for n = 50, em = n/2. 
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Figure 3:    Variation of 6(em|n,em)  and powers of 
B(em\n,em) with em for n = 500,em = n/2. 

k held constant higher and higher m's are needed to 
make ym < k). This can be seen by comparing Fig- 
ure 2 with Figure 3, which shows the corresponding 
plots for n = 500. 

Equation 8 still assumes that all m hypotheses drawn 
are independent, but it can be further generalized to 
include the dependent case: 

p{tm\n,em)  oc p(em\n,cm) 

= p(Vi<;<m em,i > em|n,em) 

-p(Vi<i<m em,i > em|n,em) (11) 

Evaluating this expression when high-order dependen- 
cies are present will generally not be feasible, but 
the standard Bayesian network approach (Heckerman, 
1996) is applicable here: the number of training errors 
em,i of each hypothesis hm<i generated by Lm can be 
viewed as a node in a Bayesian network, whose par- 
ents are the training errors of the hypotheses hmj it is 
primarily dependent on. For example, in many greedy 
search processes (e.g., standard decision tree induc- 
tion), if hm,3 was derived from hm>2, which in turn 
was derived from ftm,i, em$ will be approximately in- 
dependent of em,i given em^. In general, the Bayesian 
network for a given learning process will have the DAG 
(directed acyclic graph) of the search process itself as 
a subgraph (e.g., in a greedy search each node em,i 
will have arcs to the training errors of the hypotheses 
that were generated from /im,j). If par(emjl) are the 
parents of em<i in the Bayesian network, Equation 11 
above reduces to: 

p(em|n,em) ocp(em\n,em) = 
m 

JJp(em,i > em|n,e„,,Vem i6par(em <) emj > em) 
t=i 

— |^P(em,i > 6m|n, em, VCm ,epar(em,;) em,j > em] 

(12) 
t=i 

L\ and Li above were considered to be different learn- 
ers, but they can equally well be considered different 
stages of the same learner. For example, Li can take 
the hypothesis output by L\ as its own first hypothesis. 
More generally, Lm can be the result of continuing the 
search of learner Ljt (k < m) with m-k more hypothe- 
ses. Thus this framework can be applied to problems 
like decision tree and rule pruning, to which we now 
turn. 

3    AN APPLICATION: RULE 
INDUCTION 

Most rule induction systems employ a set covering or 
"separate and conquer" search strategy (Michalski, 
1983; Clark k Niblett, 1989). Rules are induced one 
at a time, and each rule starts with a training set com- 
posed of the examples not covered by any previous 
rules. A rule is induced by adding conditions one at a 
time, starting with none (i.e., the rule initially covers 
the entire instance space). The next condition to add 
is chosen by attempting all possible conditions. Con- 
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ditions on symbolic attributes are typically of the form 
Oj = Vij, where Vij is a possible value of attribute Oj. 
Conditions on numeric attributes are typically of the 
form üi < v^ or a; > %■, where the thresholds Uy are 
usually values of the attribute that appear in the train- 
ing set. In the beam search process used by many rule 
learners, at each step the best b versions of the rule 
according to some evaluation function are selected for 
further specialization. AQ (Michalski, 1983) continues 
adding conditions until the rule is "pure" (i.e., until it 
covers examples of only one class). This can lead to se- 
vere overfitting. The latest version of the CN2 system 
(Clark & Boswell, 1991) uses a simple and effective 
Bayesian method to combat this: induction of a rule 
stops when no specialization improves its error rate, 
and the latter is computed using a Laplace correction 
or m- estimate. If nT is the number of examples covered 
by a rule r, and er is the number of those examples 
it misclassifies, the conventional estimate of the rule's 
error rate is er/nr, but its m-estimate is: 

er = 
er + meo 
nr + m 

(13) 

where eo is the rule's a priori error, which CN2 takes to 
be the error obtained by random guessing if all classes 
are equally likely: e0 = (c - l)/c, where c is the num- 
ber of classes. This prior value is given a weight of m 
examples (i.e., the behavior of Equation 13 is equiva- 
lent to having m additional examples covered by the 
rule, one of each class). CN2 uses m=c. As condi- 
tions are added, the rule covers fewer and fewer ex- 
amples, and er tends to eo. Thus a rule making more 
misclassifications may be preferred if it covers more 
examples, causing induction to stop earlier and reduc- 
ing overfitting. Clark and Boswell (Clark & Boswell, 
1991) found this version of CN2 to be more accurate 
than C4.5 (Quinlan, 1993) on 10 of the 12 bench- 
mark datasets they used for testing. However, this 
scheme ignores that, as more and more conditions are 
attempted, the probability of finding one that appears 
to reduce the rule's error merely by chance increases. 
This will lead the m-estimate to underestimate the 
chosen condition's true error, and CN2 to overfit. The 
upward correction made to er should increase with the 
number of conditions attempted. The process-oriented 
evaluation framework described in the previous section 
allows us to do this in a systematic way. 

Let each hypothesis be one version of the rule at- 
tempted during the beam search. The main change 
to Equation 8 required is to take into account that 
different versions of a rule will cover different numbers 

of training examples. In other words, n is now a func- 
tion of the hypothesis, and the hypothesis with lowest 
ei/rti is chosen. Let nm = («i,..., n*,..., nm), where 
rii is the number of examples covered by rule version i, 
and let em = mini<i<m {ei/m} be the lowest training- 
set error rate found so far. Equation 8 becomes: 

p{em\nm,em) ocp(em|nm,em) = 
m m 

Y[ B(riiem - IK, em) - JJ B{rnem\n.i, em) 
i=l i=l 

(14) 

This equation does not need to be computed for ev- 
ery rule version generated during the beam search, but 
only once for each round. One round consists of gen- 
erating every possible one-step specialization of each 
rule version in the beam, and selecting the b best. 
Thus, if there are a attributes and v is the maximum 
number of values of any attribute (in the worst case, 
v = n for numeric attributes), one round corresponds 
to 0(bav) rule versions. Let m* be the total num- 
ber of rule versions generated up to, and including, 
round k. Round 1 consists of the initial rule with 
no conditions, and mi = 1. Induction stops when 
E[emk\nmk,£mk] > •E[emfc_1|nmfc_1,emfc_1], for k > 1. 

Equation 14 is of course only a first approximation. 
Many other aspects of the rule induction process can 
be taken into account using Equation 12, and making 
approximations as needed for computational efficiency. 
A version of CN2 that takes into account the depen- 
dence between each rule version and its parent (i.e., 
the rule version it specializes by one condition) is cur- 
rently being implemented. 

4    EMPIRICAL STUDY 

In order to test the effectiveness of process-oriented 
evaluation, default and process-oriented versions of 
CN2 were compared on the benchmark datasets previ- 
ously used by Clark and Boswell (1991).2 The process- 
oriented version was implemented by adding the nec- 
essary facilities to the CN2 source code. Numerical in- 
tegration (Equation 7) was performed using Simpson's 
rule, and B(e\n,e) (Equation 2) was computed using 
the incomplete beta function (Press, Teukolsky, Vet- 
ter ling & Flannery, 1992). Integrating Equation 14 ev- 
ery time E[emk\nmk,emk] needs to be computed (once 

2 With the exception of pole-and-cart, which is not avail- 
able in the UCI repository  (Merz, Murphy k Aha, 1997). 



132       Domingos 

per round) would generally significantly slow down the 
rule induction process. Instead, it was approximated 
by: 

p(em\n,em) ocp(em\n,em) = 

Bm(nem-l\n,em) - Bm(nern\n,em)    (15) 

where n = ^ Z)£Li ni- This replaces each of the prod- 
ucts with a single-step computation, speeding up eval- 
uation by 0(m). CN2's Laplace estimates are still used 
to choose the best b specializations in each round. This 
is preferable to using uncorrected estimates, since as 
implemented POE has no preference between hypothe- 
ses within the same round, and this is also a factor in 
avoiding overfitting. However, the Laplace correction 
distorts the values used by Equation 15. This will be 
particularly pronounced when there are many classes, 
since CN2 uses m = c. In order to minimize this prob- 
lem, m = 2 was used with POE.3 

The experimental procedure of (Clark & Boswell, 
1991) was followed. Each dataset was randomly di- 
vided into 67% for training and 33% for testing, and 
the error rate and theory size (total number of condi- 
tions) were measured for default CN2 and CN2-POE. 
This was repeated 20 times. The average results and 
their standard deviations are shown in Table l.4 

POE reduces CN2's error rate in 8 of the 11 datasets. 
Using a sign test, these results are significant at the 
4% level. In other words, POE improves CN2 with 
high confidence. It also produces simpler rule sets in 
all but two of the datasets. With the approximation 
used, POE did not noticeably increase CN2's running 
time. This is also due to the fact that POE tends to 
make induction stop sooner than in default CN2, as 
evinced by the theory size results. 

While these results are encouraging, they do not nec- 
essarily prove that CN2-POE reduces overfitting by 
taking into account the increasing number of rule ver- 
sions generated as search progresses. If this is indeed 
what is taking place, the difference in error between de- 
fault CN2 and CN2-POE (errorCN2 -errorCN2-poE) 
should  increase with  the  dataset's  number  of at- 

3Simply changing m = c to m = 2 in default CN2 does 
not change its performance on the datasets used. 

4There are some differences between CN2's results and 
those reported in (Clark &; Boswell, 1991). This may be 
due to the fact that the default version of CN2 uses a beam 
size of 5, whereas Clark and Boswell used b = 20. The 
distribution version of CN2 may also differ from the one 
used in (Clark & Boswell, 1991). 

tributes, since this will increase the number of rule 
versions generated in each round. In order to test this 
hypothesis, experiments were carried out in artificial 
domains. Concepts defined as Boolean functions in 
disjunctive normal form were used as targets. The 
datasets were composed of 100 training examples and 
1000 test examples described by a variable number of 
attributes a. The number of literals d in each dis- 
junct was generated at random, with a mean of d = 5 
and a variance of 5 x (1 - |). This is obtained by 
including each literal in the disjunct with probability 
-. Literals were negated or not with equal probabil- 
ity. The number of disjuncts was set to 2d_1 = 16, 
which ensures the concept covers roughly half the in- 
stance space. Equal numbers of positive and negative 
examples were included in the dataset, and positive ex- 
amples were divided evenly among disjuncts. In each 
run a different target concept was used. One hundred 
runs were conducted for each value of a between 10 
and 100 (at intervals of 5), and the correlation be- 
tween {errorcNi — ZTTOTCNI-POE) and a was mea- 
sured. This was found to be highly positive (p = 0.66), 
confirming our hypothesis. 

5    RELATED WORK 

The literature on model selection and error estimation 
is very large, and we will not attempt to review it 
here. The incompleteness of representation-oriented 
evaluation was noted 20 years ago by Pearl (1978): 

It would, therefore, be more appropriate to 
connect credibility with the nature of the se- 
lection procedure rather than with properties 
of the final product. When the former is not 
explicitly known ... simplicity merely serves 
as a rough indicator for the type of processing 
that took place prior to discovery. 

Huber (St. Amant & Cohen, 1997; Huber, 1994) ex- 
presses thus the need for process-oriented evaluation: 

Data analysis is different from, for exam- 
ple, word processing and batch programming: 
the correctness of the end product cannot be 
checked without inspecting the path leading 
to it. 

Several pieces of previous work take into account the 
number of hypotheses being compared, and so can be 
considered early steps towards process-oriented eval- 
uation.   This includes notably systems that use the 
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Table 1: Empirical results: error rates and theory sizes of default CN2 and CN2 with process-oriented evaluation 
(CN2-POE). 

Dataset Error rate Theory size 
CN2 CN2-POE CN2 CN2-POE 

Breast 30.0±1.4 29.7±1.4 114.5±2.4 58.7±2.6 
Echocardio 32.7±1.2 32.3±1.3 42.9Ü.2 35.4±2.1 
Glass 39.0±1.5 38.3±1.7 51.8±1.0 54.7±1.1 
HeartC 20.8±0.8 22.5±0.8 57.8±0.9 52.0±1.0 
HeartH 22.4±1.1 21.8±1.3 69.2Ü.5 60.3Ü.4 
Hepatitis 21.2±0.9 19.2±1.3 40.2±1.7 34.0±1.3 
Lympho 21.4±1.1 24.1Ü.1 39.5±0.7 38.7±1.0 
Soybean 19.5±1.0 19.4±1.0 116.7±2.3 110.9±3.1 
Thyroid 4.1±0.2 3.8±0.2 97.5±2.0 104.8±2.0 
Tumor 60.1Ü.0 65.1Ü.3 302.8±4.6 273.9±4.4 
Voting 4.8±0.4 4.3±0.3 61.7±2.9 49.6±2.5 

Bonferroni correction when testing significance (e.g., 
(Kass, 1980; Gaines, 1989; Jensen & Schmill, 1997); 
see also (Miller, 1981; Klockars & Sax, 1986; Westfall 
& Wolfinger, 1997)). A key difference between these 
systems and what is proposed here is that they require 
a somewhat arbitrary choice of significance threshold, 
while this paper directly attempts to optimize the end 
goal (expected generalization error). Also, the Bonfer- 
roni correction does not take hypothesis dependencies 
into account, while the present framework offers (at 
least in principle) a way of doing so. 

Quinlan and Cameron-Jones's (1995) "layered search" 
method for automatically selecting CN2's beam width 
can also be considered a form of process-oriented eval- 
uation. While layered search and CN2-POE have sim- 
ilar aims, their biases differ: layered search limits the 
search's width, while CN2-POE limits its length. The 
latter may be more effective in reducing the fragmenta- 
tion and small disjuncts problems (Pagallo &: Haussler, 
1990; Holte, Acker & Porter, 1989). The assumptions 
made by the heuristic proposed here are also clearer 
than those implicit in Quinlan and Cameron-Jones's 
measure. 

Evaluating models that are the result of a search 
process, not just of fitting the parameters of a pre- 
determined structure, has traditionally not been a con- 
cern of statisticians. However, this is beginning to 
change (Chatfield, 1995). 

Some of the arguments made here for taking into ac- 
count the number of hypotheses attempted are made 
in greater detail in (Cohen & Jensen, 1997) and (Ng, 
1997). The present paper goes further in arguing that 
other aspects of the search process should also be taken 

into account whenever possible (for example, in rule 
induction, the number of examples covered by each 
hypothesis). 

6    FUTURE WORK 

The development and evaluation contained in this pa- 
per are obviously only preliminary. As mentioned 
above, a version of CN2-POE that takes hypothesis 
dependencies into account is currently being imple- 
mented. Applications of POE to decision tree in- 
duction, backpropagation, instance selection, feature 
selection and discretization are also areas for future 
work. In each case, the main issue is likely to be find- 
ing the optimal trade-off between the computational 
and mathematical complexity of POE and its payoff 
in reduced error rates. The success of the enterprise is 
likely to hinge on distinguishing strong dependencies 
from weak ones that can be ignored, and on finding ef- 
ficient but roughly correct approximations. For most 
learners in most domains, it is probably not realis- 
tic to expect large error reductions from POE, since 
it does not change the underlying representation or 
search process. However, if POE's gains are small but 
consistent across a broad spectrum of learners and do- 
mains, it will still be worth developing. 

The POE error estimates introduced in this paper have 
two types of statistical bias. One stems from the fact 
that, because evaluation focuses on the lowest error 
found, low outliers have a stronger effect than high 
ones, leading to a negative bias (i.e., underestimating 
error). This bias can be estimated and the POE val- 
ues corrected.  This is an area of current work. The 
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second source of bias is the assumption that all hy- 
potheses tried by the learner have similar error rates. 
This will lead to a positive bias when the error rate 
is decreasing (i.e., POE will tend to overestimate er- 
ror at least up to the point where the learner starts 
overfitting). One way to overcome this is to intro- 
duce explicit expectations about the evolution of the 
learner's error as search progresses. For example, a 
specific type of curve may be assumed, or an "expected 
curve" can be compiled by cross-validation. Another 
approach is to avoid the assumption of similar error 
rates, for example by marginalizing over the true error 
rates of all hypotheses but the chosen one, or by us- 
ing their maximum-likelihood estimates. Both of these 
approaches are also currently being studied. 

The ultimate goal of POE is to accurately predict a 
hypothesis's generalization error from its training-set 
error, using knowledge of how the hypothesis was ob- 
tained. How far this is possible remains an open ques- 
tion. 

7    CONCLUSION 

Two main types of model selection are currently avail- 
able. In data-oriented evaluation, a hypothesis's score 
does not depend on its form or how the hypothe- 
sis was found, but only on its performance on the 
data. In representation-oriented evaluation, the score 
depends on the data and on the hypothesis's form, 
but not on the search process that led to it. This pa- 
per argued that the latter cannot be ignored, and pro- 
posed process-oriented evaluation (POE), which takes 
all three factors into account. An application of POE 
to the CN2 rule induction system was found to reduce 
error in 8 of 11 benchmark datasets, and produce sim- 
pler theories in 9. Experiments in artificial domains 
support the hypothesis that these gains stem at least 
partly from CN2-POE's use of search process informa- 
tion. 
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Abstract 

Relational reinforcement learning is pre- 
sented, a learning technique that combines 
reinforcement learning with relational learn- 
ing or inductive logic programming. Due to 
the use of a more expressive representation 
language to represent states, actions and Q- 
functions, relational reinforcement learning 
can be potentially applied to a new range of 
learning tasks. One such task that we inves- 
tigate is planning in the blocks world, where 
it is assumed that the effects of the actions 
are unknown to the agent and the agent has 
to learn a policy. Within this simple domain 
we show that relational reinforcement learn- 
ing solves some existing problems with rein- 
forcement learning. In particular, relational 
reinforcement learning allows us to employ 
structural representations, make abstraction 
of specific goals pursued and exploit the re- 
sults of previous learning phases when ad- 
dressing new (more complex) situations. 

1    INTRODUCTION 

Within the field of machine learning, both reinforce- 
ment learning [8] and inductive logic programming (or 
relational learning) [12,10] have received a lot of atten- 
tion since the early nineties. It is therefore no surprise 
that both Leslie Pack Kaelbling and Richard Sutton 
(in their invited talks at IJCAI-97, Nagoya, Japan) 
suggested to study the combination of these two fields. 

From the reinforcement learning point of view, this 
could significantly extend the application perspective. 
Most representations used in reinforcement learning 
are inadequate for describing planning tasks such as 
the simple blocks world. Even reinforcement learning 

work that involves generalization has largely employed 
an attribute-value representation. Furthermore, due 
to the use of variables in relational representations, it 
is possible to make abstractions of some specific details 
of the learning tasks, such as the goal pursued. Indeed, 
when learning to plan in the blocks world, one would 
expect that the results of learning how to stack block 
a onto block b would be similar to stacking c onto d. 
Current approaches to reinforcement learning have to 
retrain from scratch if the goal is changed in this man- 
ner. Using relational reinforcement learning retraining 
is unnecessary. Relational reinforcement learning also 
allows us to exploit the results of learning in a simple 
domain when learning in a more complex domain (e.g., 
going from 3 blocks to 4 blocks in the blocks world). 

From the inductive logic programming point of view, 
it is important to address domains such as reinforce- 
ment learning. So far, inductive logic programming 
has mainly studied concept-learning, and largely ig- 
nored the rest of machine learning. By demonstrating 
the potential of relational representations for reinforce- 
ment learning, we hope to show that the relational 
learning methodology does not only apply to concept- 
learning but to the whole field of machine learning. 

With this in mind, we present a preliminary ap- 
proach to relational reinforcement learning and ap- 
ply it to simple planning tasks in the blocks world. 
The planning task involves learning a policy to select 
actions. Learning is necessary as the planning agent 
does not know the effects of its actions. Relational re- 
inforcement learning employs the Q-learning method 
[14, 8, 11] where the Q-function is learned using a re- 
lational regression tree algorithm (see [6, 9]). A state 
is represented relationally as a set of ground facts. A 
relational regression tree in this context takes as input 
a relational description of a state, a goal and an action, 
and produces the corresponding Q-value. 
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This paper is organized as follows. In section 2, we 
view planning (under uncertainty) as a reinforcement 
learning task, and in section 3, we briefly review re- 
inforcement and in particular Q-learning. Section 4 
introduces relational reinforcement learning that com- 
bines Q-learning and logical regression trees. In sec- 
tion 5, we present some experiments, and finally, in 
section 6, we conclude and touch upon related work. 

2    LEARNING TO PLAN AS 
REINFORCEMENT LEARNING 

Consider a planning agent with the following task: 

Given 

c, and the floor. Blocks can be on the floor or 
can be stacked on each other. Each state can 
be described by a set (list) of facts, e.g., si = 
{clear(a), on(a,b),on(b,c),on(c, floor)}. The avail- 
able actions are then move(x,y) where x ^ y and 
x € {a, b,c}, y € {a, b,c, floor}. 

It is then possible to define the preconditions and ef- 
fects of actions. The Prolog code below defines pre 
and S respectively. The predicate pre defines the pre- 
conditions for the action move(X,Y) while the predi- 
cate delta defines its effects: delta(S, A, SI) succeeds 
when S(S, A) = SI. States are represented as lists of 
facts and the auxiliary predicate holds (S, Query) suc- 
ceeds when Query would succeed in the knowledge base 
containing the facts in S only. 

• a set of possible states S, 

• a set of possible actions A, 

• an UNKNOWN function 6: S x A -> A, 

• a function pre:S x A —> {t, /}, 

• a goal goat.S —> {t, /}, and 

• a starting state s £ S, 

find a sequence of actions ai,..., an (a; € A) such that 

• goal(S(...6(s, ai))...),an)) = t, and 

• pre(£(...<5(s,ai))...),...a;)) = t. 

The agent can be in one of the states of S. It can exe- 
cute action o € A in a given state s if the preconditions 
for a are true in s (pre(s,a) = t), e.g., as in STRIPS 
[7]. Executing an action a in a state s will put the 
agent in a new state S(s,a). When placed in a state s 
the task of the agent is to find a (shortest) sequence 
of actions ai,...,an that will lead it to a goal state. 
The prototypical AI task belonging to this category is 
planning. 

It is assumed here that the agent does not know the 
effect of its actions, hence the function 6 is unknown 
to the agent. The above task specification thus con- 
trasts with classical planning in that the S function is 
unknown to the agent. Therefore, this task requires a 
learning component. 

Example: The best known (toy)-domain to study 
planning is the blocks world. Consider the situ- 
ation where we have three blocks called a, b and 

pre(S,move(X,Y)) :- 
holds(S, [clear(X), clear(Y), 

not X=Y, not on(X.floor)]). 
pre(S,move(X,Y)) :- 
holds(S,[clear(X), clear(Y), 

not X=Y, on(X.floor)]). 
pre(S,move(X,floor)) :- 

holds(S,[clear(X), not on(X,floor)]). 

holds(S,[]). 
holds(S,[ not X=Y I R ]) :- 

not X=Y, !, holds(S.R). 
holds(S,[ not A I R ]) :- 

not member(A.S), holds(S,R). 
holds(S,[A I R]) :- 

member(A,R). holds(S.R). 

delta(S,move(X,Y), NextS) :- 
holds(S,[clear(X), clear(Y), 

not X=Y, not on(X.floor)]), 
delete( [clear(Y),on(X,Z)],S,S1), 
add( [clear(Z),on(X,Y)],SI,NextS). 

delta(S,move(X,Y), NextS) :- 
holds(S,[clear(X), clear(Y), 

not X=Y, on(X,floor)]), 
delete ( [clear (Y), on (X, floor)], S, SI), 
add([on(X,Y)],SI,NextS). 

delta(S,move(X,floor), NextS) :- 
holds(S,[clear(X), not on(X,floor)]), 
delete( [on(X,Z)] ,S,S1), 
add( [clear(Z),on(X,floor)],SI,NextS). 

The     goal     is     to     stack     a     onto     b, 
goal(S)   :- member(on(a,b),S). 

i.e. 
D 

3    REINFORCEMENT LEARNING 

Planning with incomplete knowledge as outlined above 
can be recast as a reinforcement learning problem. 



138       Dzeroski, De Raedt, and Blocked 

3.1    THE BASICS OF REINFORCEMENT 
LEARNING 

The basic notions of reinforcement learning can be 
outlined as follows (we follow the notation used by 
Mitchell [11]). 

• The task of the agent is to learn a policy IT : S -> 
A for selecting its next action at based on the 
current state st; that is 7r(sf) = at. 

• The reward at time t is rt = r(st,at). We will 
assume here that rt = 1 if goal(5(st,at)) = t and 
st 7^ o~{st,at); otherwise rt = 0. The reward func- 
tion r is unknown to the learner as it relies on 
the unknown 6. The reward function only gives a 
reward in goal states. 

• The state at time t + 1 is st+i = 6(st,at) if 
goal(st) = /; otherwise st+\ = st. This captures 
the idea that goal states are absorbing states, i.e., 
once a goal state is reached the only available ac- 
tion is to stay in the state. 

• The learned policy should be optimal, i.e., it 
should maximize 

oo 

v"r(st) = E^+i 

i=o 

where 0 < 7 < 1.   We will denote the optimal 
policy by 7r*. 

The optimal policy 7r* allows us to compute the short- 
est plan to reach a goal state. So, learning the optimal 
policy (or approximations thereof) will allow us to im- 
prove our planning performance. 

3.2    Q-LEARNING 

It is well-known that under the conditions sketched in 
the previous subsection, Q-learning allows us to ap- 
proximate the optimal policy. 

The optimal policy IT* will always select the action 
that maximizes the sum of the immediate reward and 
the value of the immediate successor state, i.e., 

7r*(s) = argmaxa(r(s,a) + jV (6(s,a))) 

The problem with this formulation of 7r* is that it re- 
quires knowledge of 6 and r, which the learner does 
not have at its disposal. 

The Q-function is defined as follows : 

Q(s,a) = r(s,a)+jV7r'(S(s1a)) 

Knowing Q allows us to rewrite the definition of ir* as 
follows : 

7T*(s) = argmaxaQ(s,a) 

According to Mitchell, this rewrite is important as it 
shows that if the agent can learn the Q function instead 
of the VK* function, it will be able to act optimally. 
The Q-function for a fixed goal can then be approxi- 
mated by Q, for which a look-up table is learned by 
the following algorithm (cf. [11]). 

for each s, a do 
initialize the table entry Q(s,a) — 0 

do forever 
i :=0 
generate a random state so 
while not goal(si) do 

select an action a; and execute it 
receive an immediate reward r* = r(sj,Oi) 
observe the new state Si+i 
i:=i+l 

for  j=i-l to 0 do 
update Q(sj,a,j) :— rt + ^maxa'Q(sj+i,a') 

It is common in Q-learning to select action a in state 
s probabilistically so that P(a\s) is proportional to 
Q(s,a), e.g., 

P(ai|s) = Jfc<5<''°'V£*<5(''°i) (1) 

Higher values of k give stronger preference to actions 
with high values of Q causing the agent to exploit what 
it has learned, while lower values of k reduce this pref- 
erence allowing the agent to explore actions that cur- 
rently do not have high values of Q. 

4    RELATIONAL 
REINFORCEMENT LEARNING 

4.1    THE NEED FOR RELATIONAL 
REPRESENTATIONS 

Given the above classical framework for Q-learning we 
could now learn to plan in the blocks world sketched 
earlier. Using the approach as it stands we could 
store all the state-action pairs encountered and mem- 
orize/update the corresponding Q values, having in 
effect an explicit look-up table for state-action pairs. 
This has however a number of disadvantages: 
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move(cfloor) move(b,c) 
r=0 r=0 
Q=0.81 Q=0.9 

■» 
■> 

move(a.b) 
r move(a,floor) 
Q=1 r=0 (  

Q=0 

-> 

Figure 1: A blocks-world example for relational Q-learning. 

• It is impractical for all but the smallest state- 
spaces. Furthermore, using look-up tables does 
not work for infinite state spaces which could arise 
when first order representations are used (e.g., if 
the number of blocks in the world is unkown or 
infinite the above method does not work). 

• Despite the use of a relational representation for 
states and actions, the above method is unable 
to capture the structural aspects of the planning 
task. 

• Whenever the goal is changed from say on(a, b) to 
on(b, c) the above method would require retrain- 
ing the whole Q function. 

• Ideally, one would expect that the results of learn- 
ing in a world with 3 blocks could be (partly) re- 
cycled when learning in a 4 blocks world later on. 
It is unclear how to achieve this with the lookup 
table. 

The main point where RRL differs from the algorithm 
in section 3.2 is in the for-loop where the Q function 
is modified. This for-loop now becomes : 

for j=i-l to 0 do 
generate example (sj,a,j,qj), 

where qj := ri + rymaxafQe(sj+i,a') 
update Qe using TILDE-RT 

to produce Qe+\ using the examples (sj,aj,qj) 

TILDE-RT [6] is an algorithm for learning logical re- 
gression trees and will be described briefly below. 

The initial tree Qo assigns zero value to all state-action 
pairs. From each goal state g encountered, an example 
(g,a,0) is generated for each action a whose precondi- 
tions are satisfied in g. The rationale for this is that 
no reward can be expected from applying an action in 
an absorbing goal state. 

The first problem can be solved by using an inductive 
learning algorithm (e.g., a neural network) to approx- 
imate Q. The three other problems can only be solved 
by using a relational learning algorithm that can make 
abstraction of the specific blocks and goals using vari- 
ables. We now present such a relational learning algo- 
rithm. 

4.2    THE RRL ALGORITHM 

The relational reinforcement learning (RRL) algo- 
rithm is obtained by combining the classical Q- 
learning algorithm with stochastic selection of actions 
and a relational regression algorithm. Instead of hav- 
ing an explicit lookup table, an implicit representation 
of the Q-function is learned in the form of a logical re- 
gression tree, called a Q-tree. 

Example: A possible initial episode (e = 0) in the 
blocks world with three blocks a, b, and c, where the 
goal is to stack a on b (i.e., goal(on(a, b))) is depicted in 
Figure 1. The discount factor 7 is 0.9 and the reward 
given is one on achieving a goal state, zero otherwise. 

The examples generated by RRL use the actions and 
the Q-values listed above the arrows representing the 
actions. The actual format of these examples is listed 
in Table 1. It is exactly this input that would be used 
by TILDE-RT to generate the Q-tree Qx. D 

TILDE-RT is not incremental, so we currently simu- 
late the update of Q by keeping all (s, a) pairs encoun- 
tered and the most recent q value for each pair, and 
inducing a relational regression tree Qe from these ex- 
amples after each episode e. This tree is then used to 
select actions in episode e + 1. 
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Table 1: Examples for TILDE-RT generated from the blocks-world Q-learning episode in Figure 1. 

qvalue(0.81). qvalue(0.9). qvalue(l.O). qvalue(O.O). 

action(move(c,floor)). action(move(b.c)). action(move(a,b)). action(move( a,floor)). 

goal(on(a,b)). goal(on(a,b)). goal(on(a,b)). goal(on(a,b)). 

clear(c). clear(b). clear(a). clear(a). 

on(c,b). clear(c). clear(b). on(a,b). 

on(b,a). on(b,a). on(b,c). on(b,c). 

on(a,floor). on(a,floor). on(a,floor). on(c,floor). 

on(c,floor). on(c,floor). 

4.3    TOP-DOWN INDUCTION OF 
LOGICAL REGRESSION TREES 

Logical regression trees are similar to propositional re- 
gression trees [3]: leaves predict a value for a continu- 
ous class, while internal nodes contain conditions that 
partition the example space. The difference is that 
examples here are not feature or attribute-value vec- 
tors, but sets of relational facts, representing, e.g., a 
state of the blocks world, a goal, and an action to be 
taken, all at the same time. Similarly, internal nodes 
are not restricted to attribute-value tests but can be 
first order literals containing predicates, variables and 
complex terms. 

The TILDE-RT system [6] induces such first order logi- 
cal regression trees (or relational regression trees) from 
examples (cf. [9] for a related approach). The input 
for TILDE-RT is a set of state-action pairs together 
with the corresponding Q-values, represented as sets of 
facts. From this TILDE-RT induces (using the classi- 
cal TDIDT-algorithm) a tree in which the classes cor- 
respond to real numbers (Q-values). 

To illustrate the above notions, consider the episode 
shown in Figure 1. The examples for TILDE-RT gen- 
erated by the RRL algorithm are given in Table 1. The 
relational regression tree induced by TILDE-RT from 
these examples is shown in Figure 2. 

Nodes in the tree correspond to Prolog-queries. If 
the query succeeds in an example the yes subtree is 
taken, otherwise the no subtree. Different nodes in 
the tree may share variables, e.g., the bottom node 
in the tree (containing act ion (move (D,B))) refers to 
the variable D that first appear in the root of the tree 
(goal(on(C,D))). The Prolog program corresponding 
to the tree is shown in the lower part of Figure 2. 

The semantics of logical decision trees is extensively 
discussed in [1], as well as the correspondence between 
a tree and a Prolog program. The method to induce 
the trees is described in [6] and is - for the case of 
regression trees - very similar to Kramer's SRT system 
[9]. We refer to these papers for more details on the 
representation and learning of such trees. 

To find the Q-value corresponding to a state-action 
pair, one has to construct a Prolog knowledge base 
containing the Prolog program (corresponding to the 
tree), all facts in the state, the action, and the goal. 
Running the query ?-qvalue(Q) will then return the 
desired result. E.g., the Q-tree above will return a Q- 
value of zero for all actions if the goal is on(C,D) and 
on(C,D) holds in the state (goal states are absorbing). 
On the other hand, if the goal on(C,D) does not yet 
hold and the action is move(C.D)), then a Q-value of 
one is returned (reward of one for achieving a goal 
state). 

action(move(A,B))   , goal(on(C,D)) 
on(C,D)  ? 
+—yes:   [0] 
+—no:     action(move(C,D)) ? 

+—yes:   [1] 
+—no:     action(move(D,B))  ? 

+—yes:   [0.9] 
+--no:     [0.81] 

qvalue(0)   :- 
action(move(A,B))   ,  goal(on(C,D))   , 
on(C,D),   !. 

qvalue(1)   :- 
action(move(A,B))   ,  goal(on(C,D))   , 
action(move(C,D)),   !. 

qvalue(0.9)   :- 
action(move(A,B))   ,  goal(on(C,D))   , 
action(move(D,B)),   !. 

qvalue(0.81). 

Figure 2: A relational regression tree generated by 
TILDE-RT from the examples in Table 1 and its equiv- 
alent Prolog program. 
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action(move(A,B))   ,  goal(on(C,D)) 
on(C,D)  ? 
+—yes:   [0] 
+—no:    action(move(C,D)) ? 

+—yes:   [1] 
+~no:     on(B,C)  ? 

+~yes:   [0.729] 
+—no:     on(B,D)  ? 

+—yes:   [0.729] 
+—no:     action (move (A, O) ? 

+—yes:   [0.81] 
+—no:    action(move(A,D)) ? 

+--yes:   [0.81] 
+—no:     clear(D)  ? 

+~yes: on(C,B) ? 
1               +—yes:  on(A,C) 7 

1                1               +—yes: [0.9] 
1                I                +—no: clear(C)  ? 
1                1 +--yes:   [0.9] 
1                1 +—no:     [0.81] 
1               +—no:     [0.9] 
+--no:     clear(C)  ? 

+—yes:  on(C,B) 7 

1               +—yes: [0.9] 
1               +--no: [0.81] 
+~no:     [0.81] 

Figure 3: The Q-tree generated by RRL in the 3 blocks world after 10 episodes. 

5    EXPERIMENTS 

We applied the RRL algorithm described above to 
learn how to stack one block onto another in worlds 
with three and four blocks, respectively. In particular, 
the goal to achieve was on(a,b), the two other blocks 
being c and d. An example episode in the three blocks 
world is depicted in Figure 1. 

The discount factor 7 had the value 0.9. When select- 
ing states stochastically according to equation 1, the 
constant k was set to e02. Examples for learning Q- 
trees were generated after each episode, as described 
in the section above. 

Using the above settings, the RRL algorithm was first 
run for 10 episodes in the 3 blocks world. The tree 
shown in Figure 3 was generated by TILDE-RT after 
the final episode. This tree represents the optimal pol- 
icy for the given reinforcement learning problem. The 
top two levels of the tree match those of the tree in 
Table 1, which was generated from a single episode. 

It is important to note that the individual blocks are 
not referred to in the tree itself directly, but only 
through the variables of the goal. This means that the 
tree represents the optimal policy not only for achiev- 
ing the goal on(a,b), but also on(b,c) and on(c,a). 
This is one of the major advantages of using a relation 
representation for Q-learning. 

TILDE-RT was used to induce an updated Q-tree after 
each episode. The minimal number of cases in a leaf 
was set to one and TILDE-RT generated unpruned 
trees, which exactly reproduce the Q-values for the 
state-action pairs seen during the learning phase. 

The Q-tree obtained after 10 episodes in the 4 blocks 
worlds was much larger (44 nodes as opposed to the 12 
nodes of the 3-blocks Q-tree). It also represents an op- 
timal policy: it chooses a shortest path to a goal state 
from all initial states, if the action with the highest 
Q-value is always selected. 
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The 3 top levels of the tree match with the tree from 
the 3 blocks world. This indicates that the result of 
learning in the 3 blocks world could be used to boot- 
strap learning in the 4 blocks world. Indeed, if we take 
the Q-tree learned in the 3 blocks world shown in Fig- 
ure 3 and use it to select actions in the 4 blocks world, 
it selects an optimal path to a goal state from all but 
9 of the 73 possible initial states. In 4 of the 9 cases a 
looping behavior is produced, in the remaining 5 cases 
one extra action is needed as compared to an optimal 
plan. 

Using the Q-tree from Figure 3 to bootstrap RRL in 
the 4 blocks world helps improve performance, espe- 
cially in the initial episodes. Without bootstrapping, 
after two episodes a tree is learned which produces 
nonoptimal behavior in 12 of the 73 initial states. 
With bootstrapping, the behavior of the learned tree is 
nonoptimal for 8 of the 73 possible initial states. After 
ten episodes, the learned Q-tree produces optimal be- 
havior and is much smaller (27 nodes) as compared to 
the Q-tree learned without bootstrapping (44 nodes). 

6    DISCUSSION 

We have presented an approach to planning with 
incomplete knowledge that combines reinforcement 
learning and relational regression into a technique 
called relational reinforcement learning. The advan- 
tages of this approach include the ability to use struc- 
tured representations, which enables us to also de- 
scribe infinite worlds, and the ability to use variables, 
which allows us to abstract away from specific details 
of the situations (such as, e.g., the goal). The ability 
to use results of simpler tasks to bootstrap learning in 
more complex tasks is also an advantage worth men- 
tioning. Finally, it is easy to incorporate nondetermin- 
istic actions within the proposed approach. 

Even for standard reinforcement learning, scaling-up 
as the dimensionality of the problem increases can be 
a problem. Using a richer description language may 
seem to make things even worse. However, there are 
reasons to expect that using a richer representation ac- 
tually enables relational Q-learning to scale-up better 
than standard Q-learning. Let us illustrate these on 
the blocks world. 

First, in the representation employed, the relational 
theories learned abstract away the block names, caus- 
ing the number of states that are essentially differ- 
ent to decrease. For instance, with goal(on(a,b)) 
the states {on(a,c),on(c, b), on(b, floor),on(d, floor)} 
and {on(a,d),on(d,b),on(b, floor), on(c,floor)} are 

essentially the same as c and d are interchangeable. 
In standard Q-learning, they would be considered dif- 
ferent. In our 4-blocks example, the number of states 
that essentially differ from one another is 73 for a stan- 
dard Q-learner, but only 38 for a relational one. This 
ratio increases combinatorially (since all blocks that 
do not occur in the goal have no special status and are 
thus interchangeable, the ratio increases roughly with 
(n - 2)!, where n is the total number of blocks). 

Second, the use of background knowledge makes it pos- 
sible to abstract even further from specific situations 
that do not essentially differ. For instance, when a 
has to be cleared in order to be able to move it, it is 
not essential whether there are 1, 5 or 17 blocks above 
a: the top of the stack on a should be moved. Using 
background definitions such as above(X, Y) (the recur- 
sive closure of on(X, Y)) it is possible to state a rule 
such as "if there are blocks on a, move the topmost of 
those blocks to the floor" which captures a very large 
set of specific cases. 

However, the exact scale-up behavior of relational re- 
inforcement learning has still to be determined ex- 
perimentally. The experimental evaluation of our ap- 
proach done so far is preliminary and is mainly in- 
tended to highlight the principal advantages of using 
a relational representation for reinforcement learning. 
We hope that this paper will inspire further research 
into the combination of relational and reinforcement 
learning, as much work remains to be done. This 
includes work in the line of proper performance as- 
sessment, both in terms of standard performance tests 
in reinforcement learning fashion (root mean square 
errors of learned Q-values wrt. the Q-values of the 
optimal policy) and in considering more complex and 
demanding planning problems. 

More complex problems can be obtained by increasing 
the number of blocks in the world, considering more 
complex goals, such as building a stack of all available 
blocks, and considering problems outside the blocks 
world. 

This work is related to work on generalization in re- 
inforcement learning, which has however mainly ad- 
dressed the use of neural networks for this purpose [13]. 
The closest related work is probably Chapman's and 
Kaelbling's decision tree algorithm that was specif- 
ically designed for reinforcement learning [5]. Note 
however that our approach is distinguished from the 
mainstream work in reinforcement learning by the use 
of a relational representation. 
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Relational representations are commonly used in plan- 
ning approaches. There have also been some at- 
tempts to combine planning with relational learning 
within those approaches, e.g., within the PRODIGY 
approach [2]. Our approach is related to them through 
the use of a relational representation. However, it 
seems that the combination of planning, reinforcement 
learning and relational learning has not been addressed 
so far. 

The reinforcement learning part of the work presented 
in this paper is admittedly simple. We have taken a 
standard textbook description of reinforcement learn- 
ing [11] and incorporated an implementation of it 
within our approach. We have considered a deter- 
ministic setting and a goal-oriented formulation of the 
learning problem. However, both restrictions can be 
easily lifted to extend to non-zero rewards on non- 
terminal states (the RRL algorithm actually makes no 
assumption on the reinforcement received) and non- 
deterministic actions. To handle nondeterministic ac- 
tions an appropriate update rule (see page 382 of [11]) 
has to be used to generate examples for the TILDE- 
RT algorithm. Other points where the reinforcement 
learning part can be improved include the initializa- 
tion of Q values and the exploration strategy. 

The current implementation of TILDE-RT is - accord- 
ing to reinforcement standards - not optimal. One of 
the reasons is that it is not incremental. However, in- 
crementality is not enough, as the (estimated) values 
of Q are changing with time. These problems are taken 
care of within the Chapman and Kaelbling's decision 
tree algorithm that was specifically designed for rein- 
forcement learning [5]. A natural direction for further 
work is thus to develop a first order regression tree al- 
gorithm combining the representations of TILDE-RT 
with the algorithm and performance measures of the 
approach by Chapman and Kaelbling. Such an in- 
tegrated approach, which is currently under develop- 
ment, would not suffer from the abovementioned prob- 
lems. 
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Abstract 

The two dominant schemes for rule-learning, 
C4.5 and RIPPER, both operate in two 
stages. First they induce an initial rule set 
and then they refine it using a rather com- 
plex optimization stage that discards (C4.5) 
or adjusts (RIPPER) individual rules to 
make them work better together. In con- 
trast, this paper shows how good rule sets 
can be learned one rule at a time, with- 
out any need for global optimization. We 
present an algorithm for inferring rules by 
repeatedly generating partial decision trees, 
thus combining the two major paradigms 
for rule generation—creating rules from de- 
cision trees and the separate-and-conquer 
rule-learning technique. The algorithm is 
straightforward and elegant: despite this, ex- 
periments on standard datasets show that it 
produces rule sets that are as accurate as and 
of similar size to those generated by C4.5, 
and more accurate than RIPPER's. More- 
over, it operates efficiently, and because it 
avoids postprocessing, does not suffer the ex- 
tremely slow performance on pathological ex- 
ample sets for which the C4.5 method has 
been criticized. 

1    Introduction 

If-then rules are the basis for some of the most popular 
concept description languages used in machine learn- 
ing. They allow "knowledge" extracted from a dataset 
to be represented in a form that is easy for people to 
understand. This gives domain experts the chance to 
analyze and validate that knowledge, and combine it 

with previously known facts about the domain. 

A variety of approaches to learning rules have been 
investigated. One is to begin by generating a deci- 
sion tree, then to transform it into a rule set, and 
finally to simplify the rules (Quinlan, 1987a); the re- 
sulting rule set is often more accurate than the original 
tree. Another is to use the "separate-and-conquer" 
strategy (Pagallo & Haussler, 1990) first applied in 
the AQ family of algorithms (Michalski, 1969) and 
subsequently used as the basis of many rule learning 
systems (Fiirnkranz, 1996). In essence, this strategy 
determines the most powerful rule that underlies the 
dataset, separates out those examples that are covered 
by it, and repeats the procedure on the remaining ex- 
amples. 

Two dominant practical implementations of rule- 
learners have emerged from these strands of research: 
C4.5 (Quinlan, 1993) and RIPPER (Cohen, 1995). 
Both perform a global optimization process on the set 
of rules that is induced initially. The motivation for 
this in C4.5 is that the initial rule set, being gener- 
ated from a decision tree, is unduly large and redun- 
dant: C4.5 drops some individual rules (having pre- 
viously optimized rules locally by dropping conditions 
from them). The motivation in RIPPER, on the other 
hand, is to increase the accuracy of the rule set by re- 
placing or revising individual rules. In either case the 
two-stage nature of the algorithm remains: as Cohen 
(1995) puts it, "... both RIPPER* and C4.5rules start 
with an initial model and iteratively improve it using 
heuristic techniques." Experiments show that both 
the size and the performance of rule sets are signifi- 
cantly improved by post-induction optimization. On 
the other hand, the process itself is rather complex and 
heuristic. 

This paper presents a rule-induction procedure that 
avoids global optimization but nevertheless produces 
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accurate, compact rule sets. The method combines 
the two rule learning paradigms identified above. Sec- 
tion 2 discusses these two paradigms and their incar- 
nation in C4.5 and RIPPER. Section 3 presents the 
new algorithm, which we call "PART" because it is 
based on partial decision trees. Section 4 describes an 
experimental evaluation on standard datasets compar- 
ing PART to C4.5, RIPPER, and C5.0, the commercial 
successor of C4.5.1 Section 5 summarizes our findings. 

2    Related Work 

We review two basic strategies for producing rule sets. 
The first is to begin by creating a decision tree and 
then transform it into a rule set by generating one 
rule for each path from the root to a leaf. Most rule 
sets derived in this way can be simplified dramatically 
without losing predictive accuracy. They are unnec- 
essarily complex because the disjunctions that they 
imply can often not be expressed succinctly in a deci- 
sion tree. This is sometimes known as the "replicated 
subtree" problem (Pagallo k Haussler, 1990). 

When obtaining a rule set, C4.5 first transforms an 
unpruned decision tree into a set of rules in the afore- 
mentioned way. Then each rule is simplified separately 
by greedily deleting conditions in order to minimize the 
rule's estimated error rate. Following that, the rules 
for each class in turn are considered and a "good" 
subset is sought, guided by a criterion based on the 
minimum description length principle (Rissanen, 1978) 
(this is performed greedily, replacing an earlier method 
that used simulated annealing). The next step ranks 
the subsets for the different classes with respect to each 
other to avoid conflicts, and determines a default class. 
Finally, rules are greedily deleted from the whole rule 
set one by one, so long as this decreases the rule set's 
error on the training data. 

The whole process is complex and time-consuming. 
Five separate stages are required to produce the final 
rule set. It has been shown that for noisy datasets, 
runtime is cubic in the number of instances (Cohen, 
1995). Moreover, despite the lengthy optimization 
process, rules are still restricted to conjunctions of 
those attribute-value tests that occur along a path in 
the initial decision tree. 

Separate-and-conquer algorithms represent a more di- 
rect approach to learning decision rules. They gen- 
erate one rule at a time, remove the instances cov- 

ered by that rule, and iteratively induce further rules 
for the remaining instances. In a multi-class setting, 
this automatically leads to an ordered list of rules, 
a type of classifier that has been termed a "decision 
list" (Rivest, 1987). Various different pruning methods 
for separate-and-conquer algorithms have been inves- 
tigated by Fiirnkranz (1997), who shows that the most 
effective scheme is to prune each rule back immediately 
after it is generated, using a separate stopping criterion 
to determine when to cease adding rules (Fiirnkranz 
& Widmer, 1994). Although originally formulated for 
two-class problems, this procedure can be applied di- 
rectly to multi-class settings by building rules sepa- 
rately for each class and ordering them appropriately 
(Cohen, 1995). 

RIPPER implements this strategy using reduced error 
pruning (Quinlan, 1987b), which sets some training 
data aside to determine when to drop the tail of a 
rule, and incorporates a heuristic based on the mini- 
mum description length principle as stopping criterion. 
It follows rule induction with a post-processing step 
that revises the rule set to more closely approximate 
what would have been obtained by a more expensive 
global pruning strategy. To do this, it considers "re- 
placing" or "revising" individual rules, guided by the 
error of the modified rule set on the pruning data. It 
then decides whether to leave the original rule alone or 
substitute its replacement or revision, a decision that 
is made according to the minimum description length 
heuristic. It has been claimed (Cohen, 1995) that RIP- 
PER generates rule sets that are as accurate as C4.5's. 
However, our experiments on a large collection of stan- 
dard datasets—reported in Section 3—do not confirm 
this. 

As the following example shows, the basic strategy of 
building a single rule and pruning it back can lead to 
a particularly problematic form of overpruning, which 
we call "hasty generalization." This is because the 
pruning interacts with the covering heuristic. General- 
izations are made before their implications are known, 
and the covering heuristic then prevents the learning 
algorithm from discovering the implications. 

Here is a simple example of hasty generalization. Con- 
sider a Boolean dataset with attributes a and b built 
from the three rules in Figure 1, corrupted by ten per- 
cent class noise. Assume that the pruning operator is 
conservative and can only delete a single final conjunc- 
tion of a rule at a time (not an entire tail of conjunc- 
tions as RIPPER does). Assume further that the first 

1A     test     version     of    C5.0     is     available     from 
http://www.rulequest.com. 
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Rule Coverage 

Training Set Pruning Set 

© e ©      e 

1: a = true => © 90 8 30          5 

2: a = false A b = true =>■ © 200 18 66          6 

3: a = false A b = false => Q 1 10 0          3 

Figure 1: A hypothetical target concept for a noisy domain. 

rule has been generated and pruned back to 

o = true => © 

(The training data in Figure 1 is solely to make this 
scenario plausible.) Now consider whether the rule 
should be further pruned. Its error rate on the pruning 
set is 5/35, and the null rule 

has an error rate of 14/110, which is smaller. Thus the 
the rule set will be pruned back to this single, trivial, 
rule, instead of the patently more accurate three-rule 
set shown in Figure 1. 

Hasty generalization is not just an artifact of reduced 
error pruning: it can happen with pessimistic prun- 
ing (Quinlan, 1993) too. Because of variation in the 
number of noisy instances in the data sample, one can 
always construct situations in which pruning causes 
rules with comparatively large coverage to swallow 
rules with smaller (but still significant) coverage. This 
can happen whenever the number of errors committed 
by a rule is large compared with the total number of 
instances covered by an adjacent rule. 

3    Obtaining Rules From Partial 
Decision Trees 

The new method for rule induction, PART, combines 
the two approaches discussed in Section 2 in an at- 
tempt to avoid their respective problems. Unlike both 
C4.5 and RIPPER it does not need to perform global 
optimization to produce accurate rule sets, and this 
added simplicity is its main advantage. It adopts the 
separate-and-conquer strategy in that it builds a rule, 
removes the instances it covers, and continues creat- 
ing rules recursively for the remaining instances until 
none are left.   It differs from the standard approach 

in the way that each rule is created. In essence, to 
make a single rule a pruned decision tree is built for 
the current set of instances, the leaf with the largest 
coverage is made into a rule, and the tree is discarded. 
This avoids hasty generalization by only generalizing 
once the implications are known (i.e., all the subtrees 
have been expanded). 

The prospect of repeatedly building decision trees only 
to discard most of them is not as bizarre as it first 
seems. Using a pruned tree to obtain a rule instead of 
building it incrementally by adding conjunctions one 
at a time avoids the over-pruning problem of the basic 
separate-and-conquer rule learner. Using the separate- 
and-conquer methodology in conjunction with decision 
trees adds flexibility and speed. It is indeed wasteful to 
build a full decision tree just to obtain a single rule, but 
the process can be accelerated significantly without 
sacrificing the above advantages. 

The key idea is to build a "partial" decision tree in- 
stead of a fully explored one. A partial decision tree 
is an ordinary decision tree that contains branches to 
undefined subtrees. To generate such a tree, we inte- 
grate the construction and pruning operations in order 
to find a "stable" subtree that can be simplified no fur- 
ther. Once this subtree has been found, tree-building 
ceases and a single rule is read off. 

The tree-building algorithm is summarized in Figure 2: 
it splits a set of examples recursively into a partial tree. 
The first step chooses a test and divides the examples 
into subsets accordingly. Our implementation makes 
this choice in exactly the same way as C4.5. Then 
the subsets are expanded in order of their average en- 
tropy, starting with the smallest. (The reason for this 
is that subsequent subsets will most likely not end up 
being expanded, and the subset with low average en- 
tropy is more likely to result in a small subtree and 
therefore produce a more general rule.) This continues 
recursively until a subset is expanded into a leaf, and 
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Procedure Expand Subset 

choose split of given set of examples into subsets 
while there are subsets that have not been expanded and 

all the subsets expanded so far are leaves 
choose next subset to be expanded and expand it 

if all the subsets expanded are leaves and 
estimated error for subtree > estimated error for node 
undo expansion into subsets and make node a leaf 

Figure 2: Method that expands a given set of examples into a partial tree 

Stage 1 Stage 2 Stage 3 

Stage 4 Stage 5 

Figure 3: Example of how our algorithm builds a partial tree 

then continues further by backtracking. But as soon 
as an internal node appears which has all its children 
expanded into leaves, pruning begins: the algorithm 
checks whether that node is better replaced by a single 
leaf. This is just the standard "subtree replacement" 
operation of decision-tree pruning, and our implemen- 
tation makes the decision in exactly the same way as 
C4.5. (C4.5's other pruning operation, "subtree rais- 
ing," plays no part in our algorithm.) If replacement 
is performed the algorithm backtracks in the standard 
way, exploring siblings of the newly-replaced node. 
However, if during backtracking a node is encountered 
all of whose children are not leaves—and this will hap- 
pen as soon as a potential subtree replacement is not 
performed—then the remaining subsets are left unex- 
plored and the corresponding subtrees are left unde- 
fined. Due to the recursive structure of the algorithm 
this event automatically terminates tree generation. 

Figure 3 shows a step-by-step example. During stages 
1-3, tree-building continues recursively in the normal 
way—except that at each point the lowest-entropy sib- 
ling is chosen for expansion: node 3 between stages 1 
and 2. Gray nodes are as yet unexpanded; black ones 
are leaves. Between Stages 2 and 3, the black node will 
have lower entropy than its sibling, node 5; but cannot 
be expanded further since it is a leaf. Backtracking oc- 
curs and node 5 is chosen for expansion. Once stage 
3 is reached, there is a node—node 5—which has all 
of its children expanded into leaves, and this triggers 
pruning. Subtree replacement for node 5 is consid- 
ered, and accepted, leading to stage 4. Now node 3 is 
considered for subtree replacement, and this operation 
is again accepted. Backtracking continues, and node 
4, having lower entropy than 2, is expanded—into two 
leaves. Now subtree replacement is considered for node 
4: let us suppose that node 4 is not replaced. At this 
point, the process effectively terminates with the 3-leaf 
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Figure 4: CPU times for PART on artificial dataset 

partial tree of stage 5. 

This procedure ensures that the over-pruning effect 
discussed in Section 2 cannot occur. A node can only 
be pruned if all its successors are leaves. This can 
only happen if all its subtrees have been explored and 
either found to be leaves, or are pruned back to leaves. 
Situations like that shown in Figure 1 are therefore 
handled correctly. 

If a dataset is noise-free and contains enough instances 
to prevent the algorithm from doing any pruning, 
just one path of the full decision tree has to be ex- 
plored. This achieves the greatest possible perfor- 
mance gain over the naive method that builds a full 
decision tree each time. The gain decreases as more 
pruning takes place. For datasets with numeric at- 
tributes, the asymptotic time complexity of the algo- 
rithm is the same as for building the full decision tree2 

because in this case the complexity is dominated by 
the time needed to sort the attribute values in the 
first place. 

Once a partial tree has been built, a single rule is ex- 
tracted from it. Each leaf corresponds to a possible 
rule, and we seek the "best" leaf of those subtrees (typ- 
ically a small minority) that have been expanded into 
leaves. Our implementation aims at the most general 
rule by choosing the leaf that covers the greatest num- 
ber of instances. (We have experimented with choosing 

Assuming no subtree raising. 

the most accurate rule, that is, the leaf with the lowest 
error rate, error being estimated according to C4.5's 
Bernoulli heuristic, but this does not improve the rule 
set's accuracy.) 

Datasets often contain missing attribute values, and 
practical learning schemes must deal with them ef- 
ficiently. When constructing a partial tree we treat 
missing values in exactly the same way as C4.5: if 
an instance cannot be assigned deterministically to a 
branch because of a missing attribute value, it is as- 
signed to each of the branches with a weight propor- 
tional to the number of training instances going down 
that branch, normalized by the total number of train- 
ing instances with known values at the node. During 
testing we apply the same procedure separately to each 
rule, thus associating a weight with the application of 
each rule to the test instance. That weight is deducted 
from the instance's total weight before it is passed to 
the next rule in the list. Once the weight has reduced 
to zero, the predicted class probabilities are combined 
into a final classification according to the weights. 

The algorithm's runtime depends on the number of 
rules it generates. Because a decision tree can be 
built in time O (an log n) for a dataset with n exam- 
ples and a attributes, the time taken to generate a 
rule set of size k is 0(kanlogn). Assuming (as the 
analyses of (Cohen, 1995) and (Fiirnkranz, 1997) do) 
that the size of the final theory is constant, the over- 
all time complexity is O (an log n), as compared to 



Generating Accurate Rule Sets Without Global Optimization        149 

Table 1: Datasets used for the experiments 

Dataset Instances Missing Numeric Nominal Classes 
values (%) attributes attributes 

anneal 898 0.0 6 32 5 
audiology 226 2.0 0 69 24 
australian 690 0.6 6 9 2 
autos 205 1.1 15 10 6 
balance-scale 625 0.0 4 0 3 
breast-cancer 286 0.3 0 9 2 
breast-w 699 0.3 9 0 2 
german 1000 0.0 7 13 2 
glass (G2) 163 0.0 9 0 2 
glass 214 0.0 9 0 6 
heart-c 303 0.2 6 7 2 
heart-h 294 20.4 6 7 2 
heart-statlog 270 0.0 13 0 2 
hepatitis 155 5.6 6 13 2 
horse-colic 368 23.8 7 15 2 
hypothyroid 3772 5.5 7 22 4 
ionosphere 351 0.0 34 0 2 
iris 150 0.0 4 0 3 
kr-vs-kp 3196 0.0 0 36 2 
labor 57 3.9 8 8 2 
lymphography 148 0.0 3 15 4 
mushroom 8124 1.4 0 22 2 
pima-indians 768 0.0 8 0 2 
primary-tumor 339 3.9 0 17 21 
segment 2310 0.0 19 0 7 
sick 3772 5.5 7 22 2 
sonar 208 0.0 60 0 2 
soybean 683 9.8 0 25 19 
splice 3190 0.0 0 61 3 
vehicle 846 0.0 18 0 4 
vote 435 5.6 0 16 2 
vowel 990 0.0 10 3 11 
waveform-noise 5000 0.0 40 0 3 
zoo 101 0.0 1 15 7 

O (an log2 n) for RIPPER. In practice, the number of 
rules grows with the size of the training data because of 
the greedy rule learning strategy and pessimistic prun- 
ing. However, even in the worst case when the num- 
ber of rules increases linearly with training examples, 
the overall complexity is bounded by 0(an2 logn). In 
our experiments we only ever observed subquadratic 
run times—even for the artificial dataset that Cohen 
(1995) used to show that C4.5's performance can be 
cubic in the number of examples. The results of timing 
our method, PART, on this dataset are depicted on a 
log-log scale in Figure 4, for no class noise and for 20 
percent class noise. In the latter case C4.5 scales as 
the cube of the number of examples. 

4    Experimental Results 

In order to evaluate the performance of PART on a di- 
verse set of practical learning problems, we performed 
experiments on thirty-four standard datasets from the 
UCI collection (Merz & Murphy, 1996).3 The datasets 
and their characteristics are listed in Table 1. 

As well as the learning algorithm PART described 
above, we also ran C4.5,4 C5.0 and RIPPER on all 
the datasets. The results are listed in Table 2. They 
give the percentage of correct classifications, averaged 
over ten ten-fold cross-validation runs, and standard 

following Holte (Holte, 1993), the G2 variant of the 
glass dataset has classes 1 and 3 combined and classes 4 to 
7 deleted, and the horse-colic dataset has attributes 3, 25, 
26, 27, 28 deleted with attribute 24 being used as the class. 
We also deleted all identifier attributes from the datasets. 

4We used Revision 8 of C4.5. 
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Table 2: Experimental results: percentage of correct classifications, and standard deviation 

Dataset PART C4.5 C5.0 RIPPER 
anneal 98.4±0.3 98.6±0.2 t 98.7±0.3 0 98.3±0.1 
audiology 78.7Ü.1 76.3±1.2 .t 77.3±1.2 t 72.3±2.2 • 
australian 84.3±1.2 84.8±1.1 • 85.4±0.7 85.3±0.7 
autos 74.5±1.4 76.5±2.9 t 79.1±2.1 ot 72.0±2.0 • 
balance-scale 82.3±1.2 78.0±0.7 • 79.0±1.0 • 81.0±1.1 
breast-cancer 69.6±1.6 70.3±1.6 73.6±1.6 o 71.8±1.6 0 

breast-w 94.9±0.4 95.5±0.6 t 95.5±0.3 0 95.6±0.7 
horse-colic 84.4±0.8 83.0±0.6 • 85.0±0.5 85.0±0.8 
german 70.0±1.4 71.9±1.4 o 72.3±0.5 0 71.4±0.7 0 

glass (G2) 80.0±3.6 79.4±2.3 t 80.2±1.8 t 80.9±1.4 
glass 70.0±1.6 67.3±2.4 68.4±2.8 t 66.7±2.1 • 
heart-c 78.5±1.7 79.7Ü.5 79.1±0.9 78.5±1.9 
heart-h 80.5±1.5 79.7±1.7 80.7±1.1 78.7±1.3 • 
heart-statlog 78.9±1.3 81.2Ü.3 0 81.9±1.4 0 79.0±1.4 
hepatitis 80.2±1.9 79.7Ü.0 t 81.1±0.7 77.2±2.0 • 
hypothyroid 99.5±0.1 99.5±0.1 t 99.5±0.0 • ' 99.4±0.1 • 
ionosphere 90.6±1.3 89.9±1.5 t 89.3±1.4 •' 89.2±0.8 • 
iris 93.7±1.6 95.1±1.0 o+ 94.4±0.7 94.4±1.7 
kr-vs-kp 99.3±0.1 99.4±0.1 o+ 99.3±0.1 99.1±0.1 • 
labor 77.3±3.9 81.4±2.6 ot 77.1±3.7 83.5±3.9 0 

lymphography 76.5±2.7 78.0±2.2 76.8±2.7 76.1±2.4 
mushroom lOO.OiO.O lOO.OiO.O .t 99.9±0.0 • ' lOO.OiO.O 
pima-indians 74.0±0.5 74.2±1.2 t 75.5±0.9 o' 75.2±1.1 0 

primary-tumor 41.7Ü.3 40.1±1.7 • 28.7±2.5 • 38.5±0.8 • 
segment 96.6±0.4 96.1±0.3 .t 96.3±0.4 95.2±0.5 • 
sick 98.6±0.1 98.4±0.2 • 98.4±0.1 • 98.3±0.2 • 
sonar 76.5±2.3 74.4±2.9 t 75.3±2.2 75.7±1.9 
soybean 91.4±0.5 91.9±0.7 92.2±0.6 92.0±0.4 
splice 92.5±0.4 93.4±0.3 0 94.3±0.3 0 93.4±0.2 0 

vehicle 72.4±0.8 72.9±0.9 72.4±0.8 69.0±0.6 • 
vote 95.9±0.6 95.9±0.6 t 96.0±0.6 95.6±0.3 
vowel 78.Ü1.1 77.9±1.3 t 79.9±1.2 o* 69.6±1.9 • 
waveform-noise 78.0±0.5 76.3±0.4 • 79.4±0.5 o 79.1±0.6 0 

zoo 92.2±1.2 90.9±1.2 .t 91.5±1.2 t 87.8±2.4 • 

deviations of the ten are also shown. The same folds 
were used for each scheme.5 Results for C4.5, C5.0 
and RIPPER are marked with o if they show signif- 
icant improvement over the corresponding results for 
PART, and with • if they show significant degrada- 
tion. (The f marks are discussed below.) Through- 
out, we speak of results being "significantly different" 
if the difference is statistically significant at the 1% 
level according to a paired two-sided i-test, each pair 
of data points consisting of the estimates obtained in 
one ten-fold cross-validation run for the two learning 
schemes being compared. Table 3 shows how the dif- 
ferent methods compare with each other. Each entry 

5The results of PART and C5.0 on the hypothyroid 
data, and of PART and C4.5 on the mushroom data, are 
not in fact the same- 
place. 

-they differ in the second decimal 

indicates the number of datasets for which the method 
associated with its column is significantly more accu- 
rate than the method associated with its row. 

We observe from Table 3 that PART outperforms C4.5 
on nine datasets, whereas C4.5 outperforms PART on 
six. The chance probability of this distribution is 0.3 
according to a sign test: thus there is only very weak 
evidence that PART outperforms C4.5 on a collection 
of datasets similar to the one we used. According to 
Table 3, PART is significantly less accurate than C5.0 
on ten datasets and significantly more accurate on six. 
The corresponding probability for this distribution is 
0.23, providing only weak evidence that C5.0 performs 
better than PART. For RIPPER the situation is dif- 
ferent: PART outperforms it on fourteen datasets and 
performs worse on six. The probability for this dis- 
tribution is 0.06, a value that provides fairly strong 
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evidence that PART outperforms RIPPER on a col- 
lection of datasets of this type. 

Table 3: Results of paired t-tests (p=0.01): number in- 
dicates how often method in column significantly out- 
performs method in row 

PART C4.5 C5.0 RIPPER 
PART - 6 10 6 
C4.5 9 - 9 4 
C5.0 6 5 - 4 
RIPPER 14 10 12 - 

As well as accuracy, the size of a rule set is impor- 
tant because it has a strong influence on comprehen- 
sibility. The f marks in Table 2 give information 
about the relative size of the rule sets produced: they 
mark learning schemes and datasets for which—on 
average—PART generates fewer rules (this never oc- 
curs for RIPPER). Compared to C4.5 and C5.0, the 
average number of rules generated by PART is smaller 
for eighteen datasets and larger for sixteen. 

5    Conclusions 

This paper has presented a simple, yet surprisingly 
effective, method for learning decision lists based on 
the repeated generation of partial decision trees in a 
separate-and-conquer manner. The main advantage of 
PART over the other schemes discussed is not perfor- 
mance but simplicity: by combining two paradigms of 
rule learning it produces good rule sets without any 
need for global optimization. Despite this simplicity, 
the method produces rule sets that compare favorably 
with those generated by C4.5 and C5.0, and are more 
accurate (though larger) than those produced by RIP- 
PER. 

An interesting question for future research is whether 
the size of the rule sets obtained by our method can be 
decreased by employing a stopping criterion based on 
the minimum description length principle, as is done 
in RIPPER, or by using reduced error pruning instead 
of pessimistic pruning. 
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Abstract 

Most techniques for attribute selection in 
decision trees are biased towards attributes 
with many values, and several ad hoc solu- 
tions to this problem have appeared in the 
machine learning literature. Statistical tests 
for the existence of an association with a 
prespecified significance level provide a well- 
founded basis for addressing the problem. 
However, many statistical tests are computed 
from a chi-squared distribution, which is only 
a valid approximation to the actual distri- 
bution in the large-sample case—and this 
patently does not hold near the leaves of a 
decision tree. An exception is the class of 
permutation tests. We describe how permu- 
tation tests can be applied to this problem. 
We choose one such test for further explo- 
ration, and give a novel two-stage method for 
applying it to select attributes in a decision 
tree. Results on practical datasets compare 
favorably with other methods that also adopt 
a pre-pruning strategy. 

1    Introduction 

Statistical tests provide a set of theoretically well- 
founded tools for testing hypotheses about relation- 
ships in a set of data. One pertinent hypothesis, when 
selecting attributes for a decision tree, is whether there 
is a significant association between an attribute's val- 
ues and the classes. With r attribute values and c 
classes, this equates to testing for independence in the 
corresponding r x c contingency table (White & Liu, 
1994), and statistical tests designed for this purpose 
can be applied directly.  Unlike most commonly-used 

attribute selection criteria, such tests are not biased 
towards attributes with many values, which is impor- 
tant because it prevents the decision tree induction al- 
gorithm from selecting splits that overfit the training 
data by being too fine-grained. 

Statistical tests are based on probabilities derived from 
the distribution of a test statistic. Two popular test 
statistics for assessing independence in a contingency 
table have been proposed for attribute selection: the 
chi-squared statistic \2 an^ the log likelihood ratio 
G2 (White & Liu, 1994). For large samples, both are 
distributed according to the chi-squared distribution. 
But this is not the case for small samples (Agresti, 
1990)—and small samples inevitably occur close to the 
leaves in a decision tree. Thus it is inadvisable to use 
probabilities derived using the chi-squared distribution 
for decision tree induction. 

Fortunately, there is an alternative that does apply in 
small frequency domains. In statistical tests known as 
"permutation tests" (Good, 1994), the distribution of 
the statistic of interest is calculated directly instead 
of relying on the chi-squared approximation—in other 
words they are "non-parametric" rather than "para- 
metric." Such tests do not suffer from the small ex- 
pected frequency problem because they do not use the 
chi-squared approximation. 

This paper describes the application of permutation 
tests to attribute selection in a decision tree. We ex- 
amine one such test—the Freeman and Halton test— 
in detail by performing experiments on artificial and 
practical datasets: the results show that this method 
is indeed preferable to a test that assumes the chi- 
squared distribution. The statistic of the Freeman and 
Halton test is the exact probability pj of a contin- 
gency table / given its marginal totals (Good, 1994). 
Recently, Martin (1997) investigated the use of this 
statistic, p/, directly for attribute selection. We show 
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that results can be improved by using it in conjunction 
with the Freeman and Halton test. 

Section 2 introduces the idea of permutation tests and 
how they can be used to test significance in a contin- 
gency table. In Section 2.2 we describe the Freeman 
and Halton test. The test is expensive, but simple 
computational economies are described in Section 2.3. 
Section 2.4 describes a novel two-stage method, based 
on these ideas, for selecting attributes in a decision 
tree. Section 3 presents experimental results on arti- 
ficial and standard datasets. We verify that the Free- 
man and Halton test does not prefer attributes with 
many values, whereas the test statistic pj by itself is 
biased. We also verify that the parametric version of 
the chi-squared test is biased in small-frequency do- 
mains. Finally, we demonstrate that good results are 
obtained when the new method is applied to decision- 
tree building. Section 4 reviews existing work on us- 
ing statistical tests for contingency tables in machine 
learning, while Section 5 contains some concluding re- 
marks. 

2    A Permutation Test and its 
Application to Attribute Selection 

The procedure for permutation tests is simple (Good, 
1994). First, a test statistic is chosen that measures 
the strength of the effect being investigated, and is 
computed over the data. The null hypothesis is that 
the observed strength of the effect is not significant. 
Next, the labels of the original data are permuted 
and the same statistic is calculated for the relabeled 
data; this is repeated for all possible permutations of 
labels. The idea is to ascertain the likelihood of an 
effect of the same or greater strength being observed 
fortuitously on randomly labeled data with identical 
marginal properties. Third, the test statistic's value 
for the original data is compared with the values ob- 
tained over all permutations, by calculating the per- 
centage of the latter that are at least as extreme, or 
more extreme, than the former. This percentage con- 
stitutes the significance level at which the null hypoth- 
esis can be rejected, in other words, the level at which 
the observed strength of the effect can be considered 
significant. 

2.1    Permutation Tests for Contingency 
Tables 

strength of the dependency between two variables 
(Good, 1994), the two most common being the chi- 
squared statistic x2 and the log likelihood ratio Gi- 
The standard tests using these statistics are based on 
the fact that the sampling distribution of both statis- 
tics is well-approximated by the chi-squared distribu- 
tion. They calculate the significance level directly from 
that distribution. 

Unfortunately, as noted in the introduction, the chi- 
squared distribution assumption is only valid for either 
statistic when the sample size is large enough. The 
chi-squared distribution approximates the true sam- 
pling distribution poorly if the sample size is small 
(or the samples are distributed unevenly in the con- 
tingency table). In a decision tree the sample size be- 
comes smaller and smaller and the distribution of the 
samples more and more skewed the closer one gets to 
the leaves of the tree. Thus one cannot justify using 
a test based on the chi-squared approximation for sig- 
nificance testing throughout a decision tree (although 
one might at the upper levels where samples are large). 
Permutation tests offer a theoretically sound alterna- 
tive that is admissible for any sample size. 

The standard permutation test for r x c contingency 
tables, which we have also chosen to employ for this 
paper, is based on the statistic p/, the exact probabil- 
ity of a contingency table given its marginal totals. It 
is known as the "Freeman and Halton" test and it is 
a generalization of Fisher's exact test for 2 x 2 tables 
(Good, 1994). However, we emphasize that other test 
statistics could equally well be used, thereby obtaining 
exact, non-parametric, versions of conventional para- 
metric tests that are valid in small-frequency domains 
(Good, 1994).1 

2.2    Testing the Significance of an Attribute 

For attribute selection, we seek to test whether there is 
a significant association between an attribute's values 
and the class values. With r attribute values and c 
classes, this is the same as testing for independence in 
the corresponding r x c contingency table (White & 
Liu, 1994). 

If the r x c contingency table / contains the frequencies 
fij with column marginals f.j and row marginals /;., 
the probability pj of this table is given by 

Contingency tables summarize the observed relation- 
ship between two categorical response variables. Sev- 
eral different statistics can be used to measure the 

*We have also used a permutation test based on x2, 
instead of on pf, in all the experiments described in Section 
3, and obtained almost identical results. 
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Permuting the instances' class labels does not affect 
the row and column totals, and therefore the set of all 
permutations of the class labels corresponds to the set 
of all contingency tables with the same row and column 
totals. If p is the proportion of tables for which pf is 
less than or equal to the probability p0 of the original 
table, then 

where J(.) denotes the indicator function, constitutes 
the p-value of the Freeman and Halton test. The func- 
tion computing p is known as a multiple hypergeomet- 
ric distribution (Agresti, 1990). The resulting value 
of p is simply compared with a prespecified desired 
significance level. 

2.3    Approximating the Exact Test 

Exact computation of the p-value of a permutation 
test is only possible for sparsely populated tables, and 
is computationally infeasible for most tables resulting 
from practical machine learning datasets. Fortunately, 
p can be approximated to arbitrary precision by Monte 
Carlo sampling as follows (Good, 1994). 

For each of n trials the class labels are randomly per- 
muted, the test statistic is computed, and its value is 
compared to the value for the original (unpermuted) 
data. The percentage of trials for which the arti- 
ficially generated value is less than or equal to the 
original value constitutes an estimate p of the ex- 
act significance level p. This estimate is a bino- 
mial random variable with standard error se(p) = 
y/p(l —p)/n, and so its 100(1 - a)% confidence inter- 
val is p±tn-i(a/2)se(p), where t„_i(a/2) is obtained 
from Student's redistribution. 

This information is used to decide when to stop per- 
forming trials. Let pßxed be the prespecified desired 
minimum significance level that an attribute must 
achieve unless it is to be considered independent of 
the class—the level at which the null hypothesis of 
"no significant dependence" is to be rejected. Then, 
with probability (1 — a), 

P>Pfixed     if    Pfixed <p-tn-i(a)se(p), 

and 

P<PRxed       if      Pfixed >P+*n-l(a)se(p)). 

If the first inequality holds we judge the attribute to 
be significant; if the second holds we do not.2 As n 
increases, the likelihood that one of the two inequal- 
ities will be true increases, but if p is very close to 
Pfixed, neither inequality will become true in a rea- 
sonable amount of time. Therefore the procedure is 
terminated when the number of trials reaches a pre- 
specified maximum,3 and any attribute that survives 
this number of trials is considered significant. The in- 
troduction of this cut-off point slightly increases the 
probability that an attribute is incorrectly judged to 
be significant. 

2.4    Procedure for Attribute Selection 

At each node of a decision tree we must decide which 
attribute to split on. This is done in two steps. First, 
attributes are rejected if they show no significant as- 
sociation to the class according to a pre-specified sig- 
nificance level. To judge "significance" we employ 
the Freeman and Halton test, approximated by Monte 
Carlo sampling as described above. Second, from the 
attributes that remain, the one with the lowest value 
of pf is chosen.4 The selected attribute is then used to 
split the set of instances, and the algorithm recurses. 

The division into two steps is a crucial part of the pro- 
cedure. It distinguishes clearly between the different 
concepts of significance and strength. For example, it 
is well known that the association between two distri- 
butions may be very significant even if that association 
is weak—if the quantity of data is large enough (Press, 
Teukolsky, Vettering k Flannery, 1988, p. 628). First, 
we test the significance of an association using a per- 
mutation test (specifically, the Freeman and Halton 
test); then we consider its strength (as measured by 
the exact probability pj). 

If no significant attributes are found in the first step, 
the splitting process stops and the subtree is not ex- 
panded any further. This gives an elegant, uniform, 
technique for pre-pruning. 

3    Experimental Results 

We begin with two controlled experiments that are de- 
signed to verify the relative performance of (a) the use 

2Here, a is used instead of a/2 because the comparisons 
are one-sided. In our experiments we set a to 0.005. 

3We use at least 100 and at most 1000 trials in our 
experiments. 

4 Other attribute selection criteria could be employed at 
this stage; p/ was chosen to allow a direct comparison with 
the method proposed by Martin (1997). 
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Table 1: Average probabilities for random data (600 instances; uniformly distributed attribute values) 

Attribute Values Class Values (a)p (b)P/ (c)Px 
2 
2 
2 

2 
5 

10 

0.525 
0.511 
0.506 

0.045 
1.63e-05 
1.80e-10 

0.488 
0.509 
0.505 

5 
5 
5 

2 
5 
10 

0.497 
0.500 
0.491 

1.55e-05 
9.25e-18 
6.62e-35 

0.496 
0.497 
0.487 

10 
10 
10 

2 
5 

10 

0.498 
0.520 
0.512 

1.77e-10 
7.84e-35 
4.89e-68 

0.495 
0.515 
0.503 

ibilities for random data (20 instances; non-uniformly distri 

Attribute Values Class Values (a)p (b)P/ (c)Px 
2 
2 
2 

2 
5 
10 

0.745 
0.674 
0.741 

0.285 
0.024 
0.004 

0.515 
0.466 
0.446 

5 
5 
5 

2 
5 
10 

0.549 
0.561 
0.632 

0.027 
1.02e-4 
1.80e-6 

0.444 
0.448 
0.418 

10 
10 
10 

2 
5 
10 

0.548 
0.581 
0.639 

0.004 
1.72e-6 
1.42e-8 

0.430 
0.425 
0.382 

of the exact-probability pf statistic in the Freeman 
and Halton test, (b) the use of pj by itself with no 
significance test (Martin, 1997), and (c) the use of the 
parametric version of the chi-squared test, that is, the 
probability of \2 calculated from the chi-squared dis- 
tribution (White & Liu, 1994). The first experiment 
exhibits an artificial dataset for which method (b) per- 
forms poorly because it is biased towards many-valued 
attributes, whereas (a) performs well (and so does (c)). 
The second exhibits another dataset for which method 
(c) is biased towards towards many-valued attributes 
and performs poorly (and (b) performs even worse), 
whereas (a) continues to perform well. 

The third subsection presents results for building deci- 
sion trees on practical datasets using the new method. 

the parametric chi-squared test px are calculated for 
this artificial, non-informative, attribute.5 This pro- 
cedure is repeated 1000 times with different random 
seeds used to generate the instances. 

Table 1 shows the average values obtained. It can 
be seen in column (b) that pf systematically decreases 
with increasing number of classes and attribute values. 
Even more importantly, it is always close to zero. If 
used for pre-pruning at the 0.01 level (as proposed by 
Martin, 1997), it would fail to stop splitting in every 
situation except that represented by the first row. On 
the other hand, neither p nor px varies systematically 
with the number of attribute and class values. For 
these reasons it is inadvisable to use pf for attribute 
selection without preceding it with a significance test. 

3.1    Using the Exact Probability pf is Biased        s-2    Parametric Chi-Squared Test is Biased 

In order to show that the exact probability pf is bi- 
ased towards attributes with many values, we adopt 
the experimental setup of White and Liu (1994). This 
involves an artificial dataset that exhibits no actual 
association between class and attribute values. For 
each class, an equal number (300) of instances with 
random, uniformly distributed attribute values is gen- 
erated. The estimated p- value of the Freeman and Hal- 
ton test p, the exact probability pf, and the p- value of 

A similar experimental procedure was used to show 
that the parametric chi-squared test is biased in small 
frequency domains with unevenly distributed samples. 
Instead of generating the attribute values uniformly, 
they are skewed so that more samples lie close to the 
zero point. This is done using the distribution [kx2\, 
where k is the number of attribute values and x is 

5Our experiments use N = 1000 Monte Carlo trials to 
estimate p. 
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distributed uniformly between 0 and 1. The number 
of instances is reduced to twenty. 

Table 2 shows the average values obtained using this 
procedure. It can be seen that px decreases system- 
atically as the number of attribute values increases, 
whereas this is not the case for p. The test based on 
px is too liberal in this situation. There also exist sit- 
uations in which it is too conservative (Good, 1994). 
If used for pruning in a decision tree, a test that is too 
liberal does not prune enough, and a test that is too 
conservative prunes too much. 

3.3    Comparison on Practical Datasets 

Results are now presented for building decision trees 
for thirty-one UCI datasets (Merz k Murphy, 1996) us- 
ing the method described above. We eliminated miss- 
ing values from the datasets by deleting all attributes 
with more than 10% missing values, and subsequently 
removing all instances with missing values. The result- 
ing datasets are summarized in Table 3. All numeric 
attributes were discretized into four intervals of equal 
width.6 

We compare pre-pruned trees built using (a) p/ with 
prior significance testing using the Freeman and Hal- 
ton test p, (b) the exact probability p/, (c) p/ with 
prior significance testing using the parametric chi- 
squared test px, and (d) post-pruned trees built us- 
ing C4.5's pessimistic pruning with default parameter 
settings (Quinlan, 1993). We also include results for 
pruned and unpruned trees as built by C4.5. Note that 
for (a) and (c) we are now applying the two-step at- 
tribute selection procedure developed in Section 2.4, 
first discarding insignificant attributes and then se- 
lecting the best among the remainder. Results are 
reported for three significance levels: 0.01, 0.05 and 
0.10. All results were generated using ten-fold cross- 
validation repeated ten times with different random- 
izations of the dataset. The same folds were used for 
each scheme.7 

Table 4 shows how method (a) compares with the oth- 
ers. Each row contains the number of datasets for 
which it builds significantly more (+) or less (-) ac- 
curate trees, and significantly smaller (+) or larger (-) 
trees than the method associated with this row. We 
speak of results being "significantly different" if the 

Table 3: Datasets used for the experiments 

Dataset Size Attributes 
(numeric/total) 

Classes 

anneal 898 6/38 5 
audiology 216 0/67 24 
australian 653 6/15 2 
autos 193 14/24 6 
balance-scale 625 4/ 4 3 
breast-cancer 277 0/ 9 2 
breast-w 683 9/ 9 2 
german 1000 7/20 2 
glass (G2) 163 9/ 9 2 
glass 214 9/ 9 6 
heart-c 296 6/13 2 
heart-h 261 5/10 2 
heart-statlog 270 13/13 2 
hepatitis 137 3/16 2 
hypothyroid 3404 2/24 4 
ionosphere 351 34/34 2 
iris 150 4/ 4 3 
kr-vs-kp 3196 0/36 2 
lymphography 148 3/18 4 
mushroom 8124 0/21 2 
pima-indians 768 8/ 8 2 
primary-tumor 336 0/15 21 
segment 2310 19/19 7 
sick 3404 2/24 2 
sonar 208 60/60 2 
soybean 630 0/16 15 
splice 3190 0/61 3 
vehicle 846 18/18 4 
vote 312 0/15 2 
vowel 990 10/13 11 
zoo 101 1/16 7 

6If the class information were used when discretizing the 
attributes, the assumptions of the statistical tests would be 
invalidated. 

7Appendix A lists the average accuracy and standard 
deviation for a representative subset of the methods. 

difference is statistically significant at the 1% level ac- 
cording to a paired two-sided i-test, each pair of data 
points consisting of the estimates obtained in one ten- 
fold cross-validation run for the two learning schemes 
being compared. Results are shown for three different 
significance levels: note that this refers to the level 
at which attributes are rejected prior to the selection 
process. 

Observe first that pre-pruning using p outperforms 
pre-pruning using p/ (the three rows marked (b)), con- 
firming our findings from Section 3.1. For all three sig- 
nificance levels p dominates p/ in both accuracy and 
size of the trees produced. These results show that if 
the splitting attribute is selected based on the value of 
Pf, it is better to use a significance test first. 

One might think that p/ performs poorly with respect 
to p because the former does not prune sufficiently— 
it is inferior in terms of both accuracy and tree size. 
Consequently, we also ran pre-pruning using p/ at the 
0.005 and 0.001 levels, and found that the performance 
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Table 4: Number of times p performs significantly better (+) or worse (-) than (b) pf, (c) px, (d) post-pruned 
trees, and pruned and unpruned C4.5 trees with respect to accuracy and tree size 

Accuracy Tree Size 
P + - + — 

Pfixed = 0.01 (b)p/ 
(c)px 
(d) post-pruned 

C4.5 pruned 
C4.5 unpruned 

8 
9 
4 

3 
11 

5 
3 

14 

17 
11 

17 
8 

20 

20 
31 

6 
11 

7 

7 
0 

Pfixed = 0.05 (b)pf 

(c)p* 
(d) post-pruned 

C4.5 pruned 
C4.5 unpruned 

8 
6 
4 

2 
8 

2 
6 
9 

16 
9 

22 
24 

8 

11 
29 

3 
2 

17 

15 
2 

Pfixed = 0.1 (b)P/ 
(c)Px 
(d) post-pruned 

C4.5 pruned 
C4.5 unpruned 

9 
5 
4 

3 
8 

2 
5 

12 

16 
8 

24 
24 

5 

3 
29 

1 
0 

22 

24 
2 

Table 5: Number of times p with gain ratio (Method a') performs significantly better (+) or worse (-) than p 
with pf (Method a), and pruned and unpruned C4.5 trees 

Accuracy Tree Size 
p with gain ratio + - + 

Pfixed = 0.01 p with pf 

C4.5 pruned 
C4.5 unpruned 

8 

3 
13 

3 

14 
7 

10          10 

21 6 
30            1 

Pfixed = 0.05 p with pf 

C4.5 pruned 
C4.5 unpruned 

10 

0 
12 

4 

10 
7 

11          14 

10 14 
30            1 

Pfixed =0.1 p with pf 

C4.5 pruned 
C4.5 unpruned 

10 

1 
13 

5 

15 
8 

11          12 

6 22 
30           0 

difference between p/ and p can not be eliminated by 
adjusting the significance level. 

Next, observe from the three rows marked (c) that for 
the 0.01 significance level, pre-pruning using p beats 
pre-pruning using px with respect to the accuracy 
of the resulting trees. For this significance level the 
two methods produce trees of similar size. However, 
for both the 0.05 and the 0.1 levels p produces trees 
that are significantly smaller than those produced by 
px. For these two significance levels the two methods 
perform comparably as far as accuracy is concerned. 
These facts indicate that for both the 0.05 and the 
0.1 levels px is a more liberal test than p if applied 
to attribute selection and pre-pruning; px stops later 
than p—as for the artificial dataset used in Section 

3.2. However, it is sometimes more conservative—in 
particular for the 0.01 level. The two tests really do 
behave differently: they cannot be forced to behave 
in the same way by adjusting their significance levels. 
However, the results show that trees produced by p are 
preferable to those produced by px. 

Table 4 also shows that post-pruning consistently 
beats pre-pruning using p, so far as accuracy is con- 
cerned (rows marked (d)). Our findings show that all 
the investigated pre-pruning methods perform signifi- 
cantly worse than pessimistic post-pruning.8 For both 
the 0.01 and the 0.05 levels, there are five datasets 

8This contradicts a previous result (Martin, 1997) that 
trees pre-pruned using p/ are as accurate as, and smaller 
than, trees post-pruned using pessimistic pruning. 
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on which all pre-pruning methods consistently per- 
form significantly worse than post-pruning: hypothy- 
roid, kr-vs-kp, sick, splice, and vowel. On kr-vs-kp and 
vowel the pre-pruning methods stop too early, on the 
other three they stop too late. This means that the 
problem cannot be solved by adjusting the significance 
level of the pre-pruning methods. 

For reference Table 4 also includes results for pruned 
and unpruned decision trees built by C4.5. C4.5's 
method for building pruned trees differs from post- 
pruning method (d) only in that it employs the gain 
ratio9 instead of p/ for attribute selection. 

Suprisingly, Table 4 shows that p does not perform 
better than C4.5's unpruned trees as far as accuracy is 
concerned, although p performs better than unpruned 
trees built using p/ (results not shown). This indicates 
that the gain ratio produces more accurate trees than 
Pf. We therefore replaced attribute selection using p/ 
in the second step of pre-pruning method (a) by selec- 
tion based on the gain ratio. As Table 5 shows, the new 
method (a')—selection based on the gain ratio with 
prior significance testing using the Freeman and Hal- 
ton test p—indeed performs better than method (a), 
and it also outperforms C4.5's unpruned trees. How- 
ever, as Table 5 also shows, post-pruning—in this case 
represented by C4.5's pruned trees—still consistently 
beats pre-pruning using p. 

4    Related Work 

Several researchers have applied parametric statistical 
tests to attribute selection in decision trees (White & 
Liu, 1994; Kononenko, 1995) and proposed remedies 
for their shortcomings (Martin, 1997). These are re- 
viewed in the next section. Following that we discuss 
work on permutation tests for machine learning, none 
of which has been concerned with attribute selection 
in decision trees. 

4.1    Use of Statistical Tests for Attribute 
Selection 

White and Liu (1994) compare several entropy-based 
selection criteria to parametric tests that rely on the 
chi-squared distribution. More specifically, they com- 
pared the entropy-based measures to parametric tests 
based on both the chi-squared and log likelihood ra- 
tio statistics. They conclude that each of the entropy 

measures favors attributes with larger numbers of val- 
ues, whereas the statistical tests do not suffer from this 
problem. However, they also mention the problem of 
small expected frequencies with parametric tests and 
suggest the use of Fisher's exact test as a remedy. The 
extension of Fisher's exact test to r x c tables is the 
Freeman and Halton test that we have used above. 

Kononenko (1995) repeated and extended these exper- 
iments and investigated several other attribute selec- 
tion criteria as well. He shows that the parametric test 
based on the log likelihood ratio is biased towards at- 
tributes with many values if the number of classes and 
attribute values relative to the number of instances 
exceed the corresponding figures considered by White 
and Liu (1994). This is not surprising: it can be traced 
to the problem of small expected frequencies. For the 
log likelihood ratio the effect is more pronounced than 
for the chi-squared statistic (Agresti, 1990). 

Kononenko also observes another problem with sta- 
tistical tests. The restricted floating-point precision 
of most computer arithmetic makes it difficult to use 
them to discriminate between different informative at- 
tributes. The reason for this is that the association 
to the class is necessarily highly significant for all in- 
formative attributes.10 However, there is an obvious 
solution, which we pursue in this paper: once it has 
been established that an attribute is significant, it can 
be compared to other significant attributes using an at- 
tribute selection criterion that measures the strength 
of the association. 

Recently, Martin (1997) used the exact probability of 
a contingency table given its marginal totals p/ for at- 
tribute selection and pre-pruning. Our method differs 
from his only in that we employ a significance test, 
based on p/ but not identical to it, to determine the 
significance of an attribute before selecting the best of 
the significant attributes according to p/. As Section 3 
of this paper establishes, direct use of p/ for attribute 
selection produces biased results. 

4.2    Use of Permutation Tests in Machine 
Learning 

Apparently the first to use a permutation test for ma- 
chine learning, Gaines (1989) employs an approxima- 
tion to Fisher's exact test to judge the quality of rules 
found by the INDUCT rule learner.11 Instead of the 

9More precisely, it selects the attribute with maximum 
gain ratio among the attributes with more than average 
information gain. 

10The probability that the null hypothesis of no asso- 
ciation between attribute and class values is incorrectly 
rejected is very close to zero. 

11 He uses the one-tailed version of Fisher's exact test. 
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Figure 1: Two 2 x 2-tables which both optimize the 
test statistic 

3 0 
0 3 

0 3 
3 Ü 

hypergeometric distribution he uses the binomial dis- 
tribution, which is a good approximation if the sam- 
ple size is small relative to the population size (smaller 
than 10 percent). 

Jensen (1992) gives an excellent introduction to per- 
mutation tests.12 He discusses several alternatives, 
points out their weaknesses, and deploys the method- 
ology in a prototypical rule learner. However, he does 
not mention the prime advantage of permutation tests, 
which makes them especially interesting in the context 
of decision trees: their applicability to small-frequency 
domains. 

5    Conclusions 

We have applied an approximate permutation test 
based on the multiple hypergeometric distribution to 
attribute selection and pre-pruning in decision trees, 
and explained why it is preferable to tests based on 
the chi-squared distribution. We have shown that us- 
ing the exact probability of a contingency table given 
its marginal totals without a prior significance test is 
biased towards attributes with many values and per- 
forms worse in comparison. Although we were able to 
improve on existing methods for pre-pruning, we could 
not achieve the same accuracy as post-pruning. 

Apart of the standard explanation that pre-pruning 
misses hidden attribute interactions, there are two 
other possible reasons for this result. The first is that 
we did not adjust for multiple comparisons when test- 
ing the significance of an attribute. Recently, Jensen 
and Schmill (1997) showed how to reduce the size of 
a post-pruned tree significantly by taking multiple hy- 
potheses into account using a technique known as the 
"Bonferroni correction." The second reason is that 
tests for r x c contingency tables are inherently multi- 
sided. Consider the table shown at the left of Fig- 
ure 1, which corresponds to a perfect classification of 
two classes using an attribute with two values. There is 
another permutation of class labels, shown at the right, 
that also results in a contingency table with the same 
optimum value of the test statistic.  The significance 

12He uses the term "randomization test" instead of per- 
mutation test. 

level achieved by the original table is only half as great 
as it would be if there were only one table that opti- 
mized the test statistic. In the case of two attributes 
and two classes, the one-sided version of Fisher's exact 
test avoids this problem. Generalizing this to the rxc 
case appears to be an open problem. 
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A    Accuracy for Practical Datasets 

Table 6: Experimental results: percentage of correct classifications, and standard deviation using p, p/,px, post- 
pruned trees, p with gain ratio, C4.5's pruned trees, and C4.5's unpruned trees. Because of space constraints, 
we could only include results for one of the three pfixed vales used in Table 4: we chose pfixed = 0.05. In the last 
six columns, figures are marked with • if they are significantly worse than the corresponding results for p, and 
with o if they are significantly better. 

P PS Px post- p with C4.5 C4.5 
pruned gain ratio pruned unpruned 

anneal 98.6±0.1 98.5±0.0 • 99.0±0.1 o 98.4±0.1 • 98.3±0.3 98.0±0.3 • 98.3±0.3 
audiology 71.6±1.9 70.3±1.9 • 71.5Ü.7 71.9±1.3 73.8±1.2 o 74.8Ü.0 o 74.8±1.3 o 
australian 85.7±0.5 86.7±0.5 o 85.0±0.5 • 86.4±0.0 o 84.8±0.5 • 85.2±0.4 83.8Ü.0 • 
autos 67.3±2.2 67.2±2.4 72.7±2.4 o 70.5±2.4 o 73.3±2.3 o 73.0±2.0 o 72.9±2.3 o 
balance-scale 66.1±0.9 70.5±1.2 o 65.9Ü.2 67.3Ü.0 67.2±1.2 o 67.9±1.0 o 74.1±1.0 o 
breast-cancer 69.0±1.5 65.0±1.4 • 69.8Ü.2 67.6Ü.1 72.5±1.1 o 74.4±1.2 o 66.6±1.4 • 
breast-w 95.2±0.7 95.1±0.6 95.0±0.7 95.2±0.6 95.7±0.3 96.0±0.3 o 95.6±0.3 
german 70.3±0.7 70.4±0.7 70.4±1.1 70.5±0.5 70.5±0.8 70.9±0.8 67.2±1.2 • 
glass (G2) 70.5±4.3 70.6±2.5 70.5±3.3 71.3±1.7 67.3±2.5 79.7Ü.4 o 79.5±1.6 o 
glass 59.8±1.4 59.3±1.4 59.6±1.1 60.2Ü.3 60.1±1.6 59.9±2.1 59.3±1.4 
heart-c 78.2±1.1 76.8±1.4 76.6±0.9 • 79.2±2.4 77.0Ü.2 77.5Ü.2 75.1Ü.4 • 
heart-h 73.9±0.9 72.6±1.6 74.8±1.2 73.7±0.9 77.8±1.2 o 79.5±0.8 o 76.6±1.0 o 
heart-statlog 79.2±1.5 77.7±1.7 • 78.1Ü.9 • 80.1±0.7 76.2±1.6 • 78.5±1.9 75.7±2.0 • 
hepatitis 79.8±2.4 79.5±2.2 79.5Ü.7 80.7±1.6 84.4±1.8 o 84.4±1.3 o 80.7±1.4 
hypothyroid 91.7±0.1 91.7±0.0 91.7±0.0 91.9±0.0 o 91.7±0.0 91.9±0.0 o 91.7±0.1 
ionosphere 87.0±1.0 86.7±0.8 87.4±0.8 88.1±0.5 o 87.8±1.4 87.2±0.6 86.6±0.7 
iris 91.8±0.3 91.5±0.9 91.8±0.3 91.5±0.8 91.9±0.2 91.5±0.9 90.7±1.1 
kr-vs-kp 99.3±0.1 99.3±0.1 99.3±0.1 99.4±0.1 o 99.3±0.1 99.5±0.1 o 99.5±0.1 o 
lymphography 75.2±0.8 76.3±2.1 75.2±1.5 76.0±2.4 76.1±1.6 78.6±1.6 o 75.8±2.0 
mushroom lOO.OiO.O lOO.OdbO.O lOO.OiO.O lOO.OiO.O lOO.OiO.O lOO.OdbO.O lOO.OiO.O 
pima-indians 74.0±0.8 72.9±0.7 74.2±0.5 71.9±0.4 • 74.1±0.6 74.1±0.5 69.4±0.8 • 
primary-tumor 39.8±1.1 36.Ü1.4 • 37.6±1.4 • 35.7±1.4 • 38.7±1.9 40.0±0.5 40.3±1.1 
segment 91.0±0.2 91.2±0.3 91.1±0.2 o 91.3±0.2 91.5±0.3 o 91.8±0.2 o 91.8±0.3 o 
sick 93.3±0.1 93.3±0.1 93.2±0.1 • 93.4±0.0 o 93.3±0.1 93.4±0.0 o 93.2±0.1 • 
sonax 68.8±2.5 68.3±2.5 68.6±3.5 69.1±2.4 70.3±2.6 71.5±2.2 70.5±3.1 
soybean 75.Ü0.8 72.2±0.8 • 76.Ü0.7 o 73.5±0.6 • 77.6±0.5 o 77.7±0.5 o 76.7±0.7 o 
splice 92.6±0.3 92.3±0.3 • 92.2±0.3 • 93.4±0.2 o 93.2±0.2 o 94.2±0.2 o 92.2±0.2 • 
vehicle 63.4±0.9 62.0±0.6 • 64.1±1.0 o 64.2±0.7 65.7±0.7 o 66.Ü0.5 o 64.2±0.7 
vote 95.4±0.4 95.5±0.4 95.5±0.3 95.6±0.5 95.5±0.4 95.5±0.4 96.2±0.5 o 
vowel 77.9±1.0 78.0±1.0 79.5±1.0 o 80.8±1.0 o 73.8±0.6 • 76.6±0.5 • 78.2±0.7 
zoo 92.5±1.8 92.8Ü.6 94.0±2.0 94.8±2.1 o 89.6±1.4 • 90.8±1.5 91.5±1.4 
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Abstract 

Information extraction (IE) is the problem 
of filling out pre-defined structured sum- 
maries from text documents. We are in- 
terested in performing IE in non-traditional 
domains, where much of the text is often 
ungrammatical, such as electronic bulletin 
board posts and Web pages. We suggest that 
the best approach is one that takes into ac- 
count many different kinds of information, 
and argue for the suitability of a multistrat- 
egy approach. We describe learners for IE 
drawn from three separate machine learning 
paradigms: rote memorization, term-space 
text classification, and relational rule induc- 
tion. By building regression models mapping 
from learner confidence to probability of cor- 
rectness and combining probabilities appro- 
priately, it is possible to improve extraction 
accuracy over that achieved by any individ- 
ual learner. We describe three different mul- 
tistrategy approaches. Experiments on two 
IE domains, a collection of electronic seminar 
announcements from a university computer 
science department and a set of newswire ar- 
ticles describing corporate acquisitions from 
the Reuters collection, demonstrate the effec- 
tiveness of all three approaches. 

1    INTRODUCTION 

Information extraction (IE) poses the following prob- 
lem: Suppose each document in a collection describes 
some entity or event drawn from a semantically coher- 
ent domain. For example, the collection may consist of 
newswire articles describing terrorist attacks in Latin 

America, or of personal home pages from a univer- 
sity computer science departments. Given a document 
from the collection and a set of questions defined for 
the domain, find the answer to each question in the 
form of a fragment of text from the document. In the 
case of articles on terrorism, the object might be to 
find the title of the group responsible for the attack, 
the instrument of the attack, and the victim's name; 
from home pages, we might seek to extract the owner's 
name, home address, and university affiliation. 

There are many possible uses for a successful IE sys- 
tem. As a front end, an IE system can enable database 
mining and knowledge discovery in textual domains, 
where such processing would otherwise be limited or 
impossible. In hypertext, it can support directed and 
efficient automatic navigation. It can serve as a source 
of high-quality features for document categorization. 
And the output of an IE system can be viewed as a 
kind of succinct and directed summarization. 

Although traditional IE (Cowie & Lehnert, 1996) 
concentrates on domains consisting of grammatical 
prose, we are interested in extracting information from 
"messy" text, such as Web pages, email, and fin- 
ger plan files. Our goal is the development of ma- 
chine learning methods for such domains. To per- 
form well, these methods must be prepared to ex- 
ploit non-linguistic information, such as stock phrases, 
document formatting, meta-textual structure (e.g., in 
HTML), and term frequency statistics. 

Several learning IE systems have been proposed which 
are also targeted at such domains (Soderland, 1997) 
(Califf k Mooney, 1997) (Kushmerick, 1997). These 
previous investigations all take a single approach or 
attack a particular kind of domain. However, given 
the wealth of information in a typical document and 
the difficulty of adequately representing this informa- 
tion for learning, we surmise that no individual learn- 
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ing approach is best for all IE problems. An individual 
learner embodies biases that make it more suitable for 
some kinds of information and aspects of a problem 
than for others. A statistical learner like Naive Bayes, 
for example, is useful for problems in which each fea- 
ture contributes some evidence toward the determina- 
tion of class membership, and in which violations of 
the independence assumption do not predominate. It 
is less suitable for problems involving elaborate fea- 
ture sets, in which some features are abstractions or 
combinations of others (i.e., where the independence 
assumption is directly violated). Symbolic learners, 
on the other hand, work quite well for problems with 
elaborate feature sets, especially for those classes ex- 
pressible in logical terms using a small subset of fea- 
tures. These considerations suggest at multistrategy 
approach. 

Multistrategy learning is an attempt to devise sys- 
tems which, by employing multiple constituent learn- 
ers, which are typically drawn from diverse paradigms, 
achieve performance superior to any single learner 
(Michalski & Tecuci, 1994). The bulk of emphasis 
in past research in this area has been on systems 
which combine analytical and empirical techniques. 
Our work, however, is an example of what has been 
called "empirical multistrategy learning" (Domingos, 
1996). All constituent learners are inductive, each de- 
signed to solve the IE problem individually. Elsewhere 
we have shown that heuristic combination of two learn- 
ers from different paradigms can yield substantial per- 
formance improvements for the IE problem (Freitag, 
1997). Here, we ask how we might profitably com- 
bine component learners by treating them as black 
boxes. This approach has been called "meta-learning" 
in the literature (Chan & Stolfo, 1993). Although we 
might expect a heuristic combination to achieve better 
performance, there are clear advantages to the meta- 
learning approach. It is modular and flexible, making 
no assumptions about the design of component learn- 
ers or the number of learners available. 

In this paper, we introduce three machine learning al- 
gorithms for IE, each drawn from a different paradigm 
and each suitable for particular kinds of IE problems. 
Next, we describe three ways of combining the basic 
learners, all variations of the meta-learning idea. Fi- 
nally, we describe a set of experiments on two IE do- 
mains. 

2    LEARNING TO EXTRACT 

In the simplest version of the information extraction 
problem, a single set of questions is applied to each 
document in a domain, and a single text fragment is 
sought as the answer to each question. We call a sin- 
gle question a field; the answer fragment from an in- 
dividual document is a field instance or instantiation. 
For example, in a domain consisting of newswire arti- 
cles describing terrorist attacks, one field might be the 
perpetrator of the attack, and the instantiation of this 
field in a given article might be "FMLN." 

A field can be formalized as a function T(D) = (bb,be) 
that maps a document to the boundaries of a text frag- 
ment (bb and be are the indexes of the beginning and 
ending boundary terms, respectively). Given a set of 
documents in which this mapping is labeled, the goal 
of a ML system is to learn the function T that best 
approximates T. This can be realized in the form of 
an auxiliary function Q(D,bb,be) = RU{nil}, which, 
given a candidate fragment, either returns a confidence 
that it is a field instance or declines to issue a confi- 
dence (nil). The form of Q has a convenient affinity 
with any number of ML algorithms (the nil in its range 
constitutes a failure to match, for algorithms that in- 
clude a notion of matching). The three approaches we 
will discuss, all based on standard ideas from ML, each 
implement Q. 

Note that this learning task is only a part of the 
functionality of a typical participating system at the 
Message Understanding Conference (MUC) (Cardie, 
1997). What we have called fields correspond to slots 
in the MUC setting. A slot is a component of a larger 
structure, called a template, which summarizes the rel- 
evant information contained in a document. In ad- 
dition to the slot-filling task, which we address here, 
the more general MUC problem includes tasks such 
as document relevance determination, discourse anal- 
ysis, and template merging. Thus, our results are best 
regarded as a piece of the larger IE puzzle. 

2.1     ROTE LEARNING 

Perhaps the simplest possible learning approach to 
the IE problem is to memorize field instances verba- 
tim. Presented with a novel document, this memo- 
rizing learner simply matches text fragments against 
its "learned" dictionary, saying "field instance" to any 
matching fragments and rejecting all others. 

As a slightly more sophisticated approach, we can es- 
timate the probability that the matched fragment, is 
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indeed a field instance. The dictionary learner we ex- 
periment with here, which we call Rote, does exactly 
this. Training Rote involves scanning the training cor- 
pus and storing all distinct field instances verbatim 
in its dictionary. Dictionary construction is followed 
by a second pass through the training corpus. For 
each text fragment in its dictionary, Rote counts the 
number of times it appears as a field instance (pos) 
and the number of times it occurs over all (tot). Dur- 
ing test, Rote's confidence in a prediction is the value 
(pos + 1)/(tot + 2), i.e., a Laplace estimate that the 
matching fragment is genuine. 

This approach, simple as it is, is nevertheless surpris- 
ingly applicable in a wide variety of domains. Its confi- 
dence, moreover, correlates well with actual probabil- 
ity of correctness. Because of this, even low-confidence 
predictions are potentially useful. 

2.2    TERM-SPACE LEARNING 

It is straightforward to adapt ideas from document 
classification to the IE setting. A simple mapping 
might transform every field instance into a miniature 
"document" and apply "bag-of-words" algorithms di- 
rectly, such as Rocchio with TFIDF term weighting or 
Naive Bayes. Such an approach could be viewed as a 
generalization of Rote. 

In contrast with document classification, however, pos- 
itive examples in an IE setting always occur embedded 
within some larger context. This context is often crit- 
ical in disambiguating field instances from other frag- 
ments. Although it is hard to exploit contextual regu- 
larities by memorizing, statistical approaches are well 
suited for this. 

We base our bag-of-words learner, which we call Bayes, 
on the Naive Bayes algorithm, as used in document 
classification and elsewhere (originally in (Maron, 
1961)). Each fragment of text in a document (of ap- 
propriate size) is regarded as a competing hypothesis. 
Given a document, we want to find the most likely 
hypothesis (the fragment most likely to be a field in- 
stance) . Bayes Rule tells us how to maintain our belief 
in a set of disjoint hypotheses (Hi) in reaction to ob- 
served data (D): 

Pr(Hi\D) = 
Fr(D\Hj) Pv(Hj) 

£"=1Pr(£|i^)Pr(#i) 

As in Naive Bayes as used elsewhere, the important 
terms to estimate are Pr(iJj) (the prior probability) 
and Pi(D\Hi) (the conditional data probability). 

We assume a hypothesis takes the form, "the field 
instance starts at token s and is k tokens long" (let 
HSik represent such a hypothesis). In other words, a 
single hypothesis consists of two parts, position and 
length. We can estimate the probability of a partic- 
ular position or length from training data. In our 
implementation we treat these two estimates as in- 
dependent, which is different from the typical Naive 
Bayes data independence assumption, but similar in 
spirit. Thus, our prior Pr(HSik) is simply the product 
of Pr(position = s) and Pr(length = k). 

Bayes's data likelihood estimate, Px(D\HS:k), is based 
on the terms that occur in and around the text frag- 
ment to which HSik corresponds. This estimate is 
formed in a way similar to Naive Bayes for document 
classification (a product of individual term estimates), 
but with a few modifications for the IE setting. In 
particular, a context window parameter w is set prior 
to training, and the w tokens on either side of a frag- 
ment are used to form the estimate, in addition to the 
in-field tokens. The algorithm is described in greater 
detail elsewhere (Freitag, 1997). 

2.3    RELATIONAL LEARNING 

Both Bayes and Rote are hobbled by their inability to 
take into account anything but simple term frequency 
statistics. It may be the case, however, that the in- 
formation needed to perform information extraction 
comes in other forms. More abstract clues may be 
important, such as linguistic syntax, document lay- 
out, or simple orthography. In addition, statistical 
approaches like Bayes work by summing all available 
evidence, whereas in IE a more fruitful approach may 
involve identifying simple patterns that serve to dis- 
tinguish sub-classes of a field. 

Symbolic learning algorithms from the "covering" fam- 
ily form hypotheses that match such data spaces well. 
Previous research has shown the effectiveness of such 
methods for the IE problem (Soderland, 1996) (Califf 
& Mooney, 1997). Our relational learner, called SRV, 
is a variant of FOIL (Quinlan, 1990). Its example 
space consists of all text fragments from the train- 
ing document collection as long (in number of tokens) 
as the smallest field instance in the training corpus 
but no longer than the largest. A negative example 
is any fragment that is not tagged as a field instance. 
Note that this includes fragments that contain, are 
contained by, and overlap with field instances. 

Induction proceeds as with FOIL: Starting with a null 
rule that matches all examples not covered by previ- 
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ously learned rules, SRV greedily adds predicates us- 
ing FOIL's information gain metric. In addition to 
the tagged document collection, SRV takes as input a 
set of features to use in conducting search. These fea- 
tures come in two varieties, simple features, which map 
from an individual token to an arbitrary value (e.g., 
capitalized? or noun?), and relational features, which 
map from a token to another token (e.g., next-token or 
subject-verb). 

An individual predicate in SRV belongs to one of a few 
predefined types: 

• length(Relop N): The number of tokens in a frag- 
ment is less than, greater than, or equal to some 
integer. 

• some(Var Path Feat Value): This is a feature- 
value test for some token in the sequence (e.g., 
"the fragment contains some token that is cap- 
italized"). One argument to this predicate is a 
variable. For a rule to match a text fragment, 
each distinct variable in a rule (used in this or ei- 
ther of the position predicates below) must bind 
to a distinct token in the fragment. 

• every(Feat Value): Every token in a fragment 
passes some feature-value test (e.g., "every token 
in the fragment is non-numeric"). 

• position(Var From Relop N): This constrains the 
position of a token bound by a some-predicate in 
the current rule. The position is specified relative 
to the beginning or end of the sequence. 

• relpos(Varl Var2 Relop N): This constrains the or- 
dering and distance between two tokens bound by 
distinct variables in the current rule. 

Relational features are used only in the Path argu- 
ment to the some predicate. This argument can be 
empty, in which case the some predicate is asserting a 
feature-value test for a token actually occurring within 
a field, or it can be a list of relational features. In the 
latter case, it is positing both a relationship about a 
field token with some other nearby token, as well as 
a feature-value for the other token. For example, the 
assertion: 

some(?A [prev-token prev-token] capitalized true) 

amounts to the English statement, "There is some to- 
ken preceded by a capitalized token two tokens back." 

0.85 0.63     0.45 0.77 

A  A     A 
-60.2        0.4       0.6      0.75 -45.3 

f^ m h A A 

...will meet in JBH 303|,!in the|300 [corridor Of |Baker Half;.. 

Figure 1: Hypothetical Extraction of a Seminar Lo- 
cation. Each box style is intended to represent a dif- 
ferent learner. By combining evidence from multiple 
learners, we can correct for the mistakes of individual 
learners. 

In order to enable SRV to return confidences with its 
predictions, training is followed by a validation step. 
Rather than train on the entire training collection, we 
set aside a fraction of the documents (one-third here) 
for validation. With each rule learned by SRV we store 
its performance on the hold-out set. From this perfor- 
mance we estimate a rule's actual accuracy. The confi- 
dence of a prediction made by SRV is formed from the 
estimated accuracy of matching rules. For additional 
details on SRV, please refer to (Freitag, 1998). 

3    COMBINING LEARNERS 

Certain features of the IE problem make it particularly 
amenable to a multistrategy approach. Among these 
are the following: 

• Examples   have   multiple   representations. 
Because documents and text fragments are "nat- 
ural" objects which must be mapped to appro- 
priate representations for learning, multiple map- 
pings are possible. Although some information is 
necessarily lost in any one mapping, we can hope 
that taking multiple views of a document will per- 
mit better overall performance. 

• The problem is essentially Boolean. As out- 
lined above, performing extraction can be reduced 
to the task of accepting or rejecting candidate 
text fragments. Consequently, we can gauge a 
learner's performance on validation documents in 
an attempt to model the relationship between pre- 
diction confidence and probability of correctness. 

• Each document is a case study. In contrast 
with a traditional classification problem, each per- 
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Final prediction scores 

Combiner 

X } Regression 
Models 

Learner A        Learner B Learner C 

Figure 2: The Basic Combination Scheme. Regression 
models based on learner performance on hold-out sets 
are used to map raw confidence scores to probabili- 
ties. The combiner uses these probabilities to order 
all predictions. 

formance unit, a document, is a collection of test 
problems. Overgeneration, the problem of saying 
yes to too many text fragments, can be regarded 
as an asset when multiple learners are available. It 
both affords more data for our attempt to model 
a learner's usefulness, and holds forward the hope 
that the poor predictions of a single learner can be 
corrected by checking them against those of other 
learners. 

Figure 1 shows a hypothetical excerpt from a semi- 
nar announcement and how such correction might take 
place. 

3.1    BASIC COMBINATION METHOD 

Within the constraint that all learners assign a con- 
fidence to any predictions they make (any fragments 
they accept), a wide range of behaviors is possible. 
In particular, for a number of reasons, we cannot as- 
sume that the confidences bear any resemblance to 
true probability of correctness, or even that they are 
comparable across learners. Bayes's confidences are 
large negative log probabilities, for example. 

We do assume, however, that probability of correctness 
increases with increasing confidence for all learners. 
The basic idea, therefore, is to attempt to compute a 
mapping for each learner from confidence to probabil- 
ity of correctness. Figure 2 shows this in outline. The 
specific steps involved are: 

1. Validate performance on a hold-out set. Re- 
serve a part of the training set for validation. 
After training each learner, store its predictions, 
with confidences, on the hold-out set. 

Use regression to map confidences to prob- 
abilities. Based on the learner's performance on 
the hold-out set, attempt to model how its perfor- 
mance varies with confidence. What is modeled, 
and the kind of regression used, depends on the 
combination method. 

3. Use the regression models and calculated 
probabilities to make the best choice on the 
test set. 

We experimented with three basic methods of combi- 
nation. The first two, which we will call Max and Prob, 
both attempt to work with regression models that map 
directly from confidence to probability of correctness. 
The third, which we will call CBayes, uses Bayes Rule 
to make combination decisions. 

3.2    REGRESSION TO ESTIMATE 
CORRECTNESS 

If a learner's confidence numbers are meaningful, then 
the probability that a prediction is correct will increase 
with increasing confidence. We use linear regression 
to model the rate at which this probability increases. 
For each prediction made we create a datapoint (x,y), 
where x is the prediction confidence, and y is 1, if 
the prediction was correct (the corresponding fragment 
was a field instance), else 0. 

The result is a line equation which we use directly 
to map from learner confidence to probability of suc- 
cess. Both Max and Prob use the resulting estimates 
to arbitrate among multiple learners' predictions for a 
document. Estimates are computed for each learner's 
predictions, and the prediction with the highest esti- 
mate is chosen as the top combined prediction. The 
two methods differ only in how they handle the case in 
which multiple learners offer predictions for the same 
text fragment. In such an event, Max simply takes the 
larger estimate as the probability that the fragment is 
a field instance. 

We believe, however, that the fact that two or more 
learners agree on a prediction provides more informa- 
tion than either prediction alone. Indeed, if we as- 
sume that two probability estimates of an event, Pa 

and Pb, are independent, then the combined probabil- 
ity is the probability that they are not both wrong, i.e., 
1 — (1 — Pa)(l — Pb)- Prob's estimate is based on this 
assumption. Given a set of probability estimates Pi, its 
estimate for the combined probability is 1 —f|s(l —Pj). 
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3.3    BAYESIAN PREDICTION 
COMBINATION 

Although Prob may exploit the availability of predic- 
tions from multiple learners better than Max, it still 
leaves something to be desired. In particular, it ig- 
nores some of the available information, such as the 
frequency with which a learner tends to predict at a 
given confidence level and any notion of prior proba- 
bilities. 

For our final combination method, we attempt to apply 
Bayes Rule, which tells us how to maintain our prob- 
ability estimates in response to incoming data. Using 
Bayes Rule offers two advantages over Prob: It allows 
us to incorporate priors into our estimates, and it tells 
us how to maintain our hypothesis space so that the 
resulting estimates are closer to true probabilities—an 
advantage in terms of the accuracy-coverage trade-off. 

Here, a hypothesis Hi takes the form, "the fragment 
at this place in the document is a field instance." Let 
Pai = C be the event, Learner A predicted fragment 
i is a field instance with confidence C. For each frag- 
ment i chosen by any of the learners, we maintain two 
hypotheses explicitly, Hi and —>/7,-. Individual learner 
predictions Pai = C are treated as events which cause 
us to update hypotheses. We want, therefore, to model 
Pr(Pai = C\Hi) and Pr(Pai = Chi/,). It is more con- 
venient, however, to model the event Pa, >= C, i.e., 
the probability of a prediction with confidence at least 
C. Modeling the cumulative probability yields better 
statistics and allows us to avoid the arbitrary decisions 
inherent in binning. 

We use exponential regression to model these two 
probabilities, i.e., we perform linear regression on pairs 
of the form (z,log(;/)), where x is a confidence level, 
and y is the cumulative probability of seeing a predic- 
tion for a fragment given that it either is or is not a 
field instance. As an example, consider the problem 
of creating the "positive" model Pr(Pfll- >= C\H{) for 
some learner A. Let F be the total number of field 
instances in the validation set, and let Ga{C) be the 
number of field instances identified by Learner A with 
predictions having confidence equal to or greater than 
C. For every prediction made by Learner A, we add a 
regression datapoint (x, log(y)), where x is the confi- 
dence of the prediction and y = Ga(x)/F. The "neg- 
ative" model Pr(Pai >= c\->Hi) is constructed in the 
same way, except over non-field-instance fragments— 
any fragment in the validation set identified by any of 
the learners. We settled on exponential regression em- 
pirically, but it is easy to see why it works better than 

Table 1:  Accuracy-Coverage Results for the Seminar 
Announcement Domain. 

speak« 
Ace Cov 

location 
v4cc           Cov 

Rote 57.4 ±8.8 11.8 89.5 ±2.2 64.9 
Bayes 36.1 ±3.5 70.8 59.6 ±2.8 98.7 
SRV 60.4 ±3.0 96.6 75.9 ±2.6 92.3 

Max 59.8 ±3.0 98.8 75.6 ±2.5 99.7 
Prob 60.8 ±3.0 98.8 76.0 ±2.5 99.7 
C Bayes 62.5 ±3.0 98.8 75.6 ±2.5 99.7 

stime etime 
Rote 73.7 ± 2.5 99.6 75.1 ±3.7 95.4 
Bayes 98.2 ±0.7 100.0 96.1 ±1.6 99.6 
SRV 98.6 ±0.7 99.8 94.1 ±2.0 98.4 

Max 96.6 ±1.0 100.0 93.6 ±2.0 100.0 
Prob 99.3 ±0.5 100.0 95.4 ±1.7 100.0 
CBayes 99.3 ±0.5 100.0 96.3 ±1.6 100.0 

linear regression. Low-confidence predictions tend to 
be more frequent than high-confidence ones, obeying 
something like Zipf's Law. 

With each prediction, we use the two models associ- 
ated with a learner to adjust the posterior probabilities 
of the two mutually exclusive hypotheses regarding the 
affected fragment, always normalizing so they sum to 
1. 

4    EXPERIMENTS 

We experimented with data from two IE domains. One 
consists of 485 postings to electronic bulletin boards, 
which describe upcoming seminars in a university en- 
vironment. The earliest of these announcements dates 
to October, 1982; the most recent was posted in Au- 
gust, 1995. We manually tagged these announcements 
for four fields: speaker, location, stime (start time), 
and etime (end time). The other domain is a collec- 
tion of 600 newswire articles on corporate acquisitions 
from the Reuters data set (Lewis, 1992). We defined 
nine fields for this domain and manually annotated the 
collection to identify all instances of them. We selected 
five of the fields for these experiments: acquired (the 
official name of the company or resource that is being 
purchased), purchaser, acqabr (the short name for 
acquired used in the body of the article), purchabr, 
and dlraait (the price paid). 

The performance numbers we report here are the re- 
sult of five-fold experiments in each domain. In each 
iteration the datasets were randomly divided into two 
partitions of equal size. One partition was used for 
training, the other for testing. 
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Table 2: Accuracy-Coverage Results for the Acquisi- 
tion Domain. 

acquir 
Ace 

ed 
Cov 

purchaser 
Ace            Cov 

Rote 56.1 ±5.6 20.5 47.5 ±5.6 22.3 
Bayes 22.4 ±2.2 96.4 41.4 ±2.6 99.7 
SRV 41.1 ±2.6 96.0 49.7 ±2.7 97.8 
Max 43.4 ± 2.5 99.8 51.4 ±2.7 99.9 
Prob 45.0 ±2.5 99.8 53.2 ±2.7 99.9 
C Bayes 45.8 ±2.5 99.8 54.7 ±2.6 99.9 

acqab r purchabr 
Rote 31.7 ±4.2 43.8 24.7±4.1 38.5 
Bayes 33.1 ±2.8 99.7 52.0 ±2.9 99.9 
SRV 45.0 ±3.0 99.8 54.0 ±2.9 99.6 
Max 42.7 ±2.9 100.0 57.4 ±2.9 100.0 
Prob 47.6 ±3.0 100.0 61.0 ±2.9 100.0 
C Bayes 47.2 ±3.0 100.0 60.0 ±2.9 100.0 

dlramt 
Rote 77.2 ±4.7 48.1 
Bayes 62.2 ±4.3 76.9 
SRV 74.4 ±3.5 90.1 
Max 72.0 ±3.5 95.5 
Prob 73.1 ±3.5 95.5 
C Bayes 70.2 ±3.5 95.5 

Table 3: Fl Scores. Two scores are shown for each 
result: Full, the Fl score for the accuracy-coverage re- 
sults reported in Tables 1 and 2, and Peak, the highest 
Fl score along the full accuracy-coverage curve. 

spe 
Full 

aker 
Peak 

loc; 
Full 

it ion 
Peak 

St 
Full 

ime 
Peak 

Rote 19.6 19.6 75.3 75.3 84.7 84.7 
Bayes 47.8 48.0 74.3 75.1 99.1 99.1 
SRV 74.3 74.3 . 83.3 83.3 99.2 99.2 
Max 74.5 74.5 86.0 86.4 98.3 98.3 
Prob 75.3 75.3 86.3 86.6 99.6 99.6 
C Bayes 76.6 76.6 86.0 86.0 99.6 99.6 

etime acquired purchaser 
Rote 84.0 84.0 30.0 30.0 30.3 30.3 
Bayes 97.8 97.8 36.4 38.3 58.5 59.3 
SRV 96.2 96.2 57.5 58.3 65.9 66.4 
Max 96.7 96.7 60.5 61.2 67.9 68.0 
Prob 97.6 97.6 62.0 62.7 69.5 69.7 
C Bayes 98.1 98.1 62.8 63.2 70.7 71.1 

acqabr purchabr dlramt 
Rote 36.8 37.2 30.1 30.8 59.3 59.3 
Bayes 49.7 52.8 68.4 68.6 68.8 68.8 
SRV 62.0 62.0 70.0 70.2 81.5 81.5 
Max 59.8 59.8 72.9 72.9 82.1 82.1 
Prob 64.5 64.5 75.8 75.8 82.8 82.8 
C Bayes 64.1 64.1 75.0 75.0 80.9 80.9 

A third of the training set, randomly selected, was set 
aside for validation. Each learner was trained on the 
remaining two-thirds, and tested on the validation set. 
Following this validation step, each learner was again 
trained on the entire training set and tested on the test 
set. The goal of the combining methods was to use 
performance results on the validation set to arbitrate 
among predictions on the test set. 

The performance of all methods is summarized in Ta- 
ble 1, for the seminar announcement fields, and Ta- 
ble 2, for the acquisition fields. The unit of measure- 
ment here, as elsewhere in this paper, is a document. 
When assessing a learner's performance for a single 
document, we can distinguish among four basic out- 
comes: no prediction from the learner, prediction on a 
document lacking a field instance (spurious), top pre- 
diction is incorrect (wrong), and top prediction is cor- 
rect (correct). The coverage column (Cov) shows for 
what fraction of those documents containing a field 
instance a learner actually made a prediction. The 
number in the accuracy column (Ace) shows the frac- 
tion of correct predictions over documents for which 
the learner made a prediction and which contained 
a field instance, i.e., it ignores spurious predictions. 
Note that if any single learner makes a spurious pre- 
diction, all combining methods also make one, since 
they are limited to ordering the predictions made by 
actual learners. Thus, counting spurious predictions 
as errors, while generally appropriate, tends to obscure 
the differences between the learners and the combining 
methods. 

Both the accuracy and coverage values should be 
considered together. There are cases, for example, 
where the accuracy number makes Rote look like the 
strongest extraction method. Its accuracy, however, 
is usually measured over a much smaller number of 
documents. While it can typically recognize a fraction 
of field instances with reasonable accuracy (especially 
locations), it does not stand up well to overall com- 
parison with the other learners. For convenience in 
comparing systems, it is common in information re- 
trieval and information extraction to combine preci- 
sion and recall into a single, summary number, called 
the F-measure: 

F = 
(ß2 + 1.0)PR 

(ß2P) + R 
The parameter ß determines how much to favor recall 
over precision. Researchers in information extraction 
frequently report the Fl score of a system (ß = 1), 
which weights precision and recall equally. We can do 
the same with our accuracy-coverage results. Table 3 
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Figure 3: Plots of accuracy vs. coverage for all meth- 
ods on two fields, speaker and purchaser. 

shows the Fl scores for all learners and fields. 

For the purchabr field there is clear statistical separa- 
tion between the best individual learner (SRV) and the 
top two combining methods (Prob and CBayes). Note, 
as Table 3 makes clear, that even in the cases where 
the difference is less apparent, the combining meth- 
ods tend to outperform the best individual method at 
higher coverage levels. Among the three combining 
methods there is not one case of statistical separation, 
but across all fields a clear picture emerges in which 
Prob and CBayes are better than Max. Note that even 
in cases where a combining method performs only as 
well as the best individual learner, it has served a valu- 
able purpose—that of relieving us of the requirement 
of choosing a single learner. If a combining method 
can do this in most cases, while providing added value 
in a few, we account it a clear success. 

Perhaps more interesting than summary statistics are 

Table 4: Overlap in Learner Behavior for the Speaker 
Field. Numbers are the probability that column 
learner predicted correctly, given that the row learner 
predicted correctly. 

Rote Bayes SRV Max Prob CBayes 
Rote 1 0.81 0.81 0.90 0.96 0.97 
Bayes 0.22 1 0.68 0.86 0.89 0.86 
SRV 0.09 0.30 1 0.93 0.93 0.97 

Max 0.10 0.37 0.92 1 0.99 0.98 
Prob 0.11 0.38 0.90 0.98 1 0.98 
CBayes 0.11 0.35 0.92 0.93 0.95 1 

accuracy-coverage (similar to precision-recall) graphs. 
Each point x along the horizontal axis represents the 
x% most confident predictions. The vertical value at 
this point is the accuracy of these predictions. If the 
accuracy-coverage curve declines monotonically, it sug- 
gests that the learner's confidence correlates well with 
actual accuracy. 

Figure 3 shows the accuracy-coverage curves for all 
methods on two of the fields. The speaker and 
purchaser fields are the ones for which CBayes docs 
best. These graphs make clear what the summary 
statistics cannot: That combining learners allows us to 
make better accuracy-coverage judgments than we can 
with a single learner. The anomalous high-confidence 
behavior of Prob and Max in the purchaser curve 
may be due to an over-reliance on Rote, which has 
similar behavior. Note that the high-confidence (low- 
coverage) end of the curve is the part with the least 
statistical certainty. Also, although CBayes appears 
better than any individual learner, an examination of 
the graphs for all fields does not support a preference 
of it over Prob, or vice versa. There are cases where 
CBayes has high-confidence difficulties similar to those 
shown here for Prob and Max. We believe that better 
regression models will mitigate some of these phenom- 
ena. 

The strength of a meta-learning approach depends on 
the mutual independence of the constituent learners. 
Table 4 shows where some of the power of combining 
learners comes from on the speaker field, a relatively 
challenging task. In this table we ask the question, 
given that Learner A has predicted correctly on some 
document, what is the probability that Learner B will 
also predict correctly? The number in entry (?', j) is the 
fraction of all documents correctly handled by method 
i which method j also correctly handled. Based on 
this table, it is evident that Rote and Bayes are more 
closely related to each other than either to SRV. 
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The column for a combining method allows us to infer 
which learners it depends on most for its performance. 
It appears from this that all three methods rely more 
on Rote than on Bayes. We would hope to see this, 
based on Figure 3, since the few Rote predictions that 
are available for this field tend to have higher accuracy 
than most Bayes predictions. It is also gratifying that 
all methods appear to rely heavily on SRV, since it is 
the best individual learner in this case. 

5    CONCLUSION 

The experimental results presented here show that 
multistrategy learning can be useful for the problem of 
information extraction. We present one form of multi- 
strategy learning, in which the component learners are 
treated as black boxes and only their reliability, as a 
function of confidence, is modeled. Nothing in the ba- 
sic framework requires the information extraction set- 
ting or makes any assumptions about the number or 
structure of component learners. It is only necessary 
that learners be instrumented to associate a confidence 
with any prediction they make, something which is al- 
ready part of the design of many learners, and which 
can be readily added to others. 

We do not claim that the multistrategy results re- 
ported here are the best that can be achieved. Many 
details remain to be filled in, such as how best to con- 
duct validation and which statistical assumptions are 
appropriate. We have experimented with two kinds of 
regression to model learner reliability, but would not 
be surprised if other methods which we have not tried, 
such as logistic regression or a simple neural network, 
might afford increased accuracy. We regard this as 
future work. 

It also remains to be seen how these results might be 
fit into a more traditional information extraction set- 
ting, in which slot filling is performed as part of a 
larger system and as one of several interacting tasks. 
Still, the approaches described here are immediately 
applicable to a number of unconventional information 
extraction problems. And we can begin to see how 
information extraction from ungrammatical text, and 
other "natural" problems admitting multiple abstract 
representations, can be addressed with machine learn- 
ing methods. 
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Abstract. The problem of combining preferences arises in sev- 
eral applications, such as combining the results of different search 
engines. This work describes an efficient algorithm for combin- 
ing multiple preferences. We first give a formal framework for the 
problem. We then describe and analyze a new boosting algorithm 
for combining preferences called RankBoost. We also describe an 
efficient implementation of the algorithm for a restricted case. We 
discuss two experiments we carried out to assess the performance 
of RankBoost. In the first experiment, we used the algorithm to 
combine different WWW search strategies, each of which is a 
query expansion for a given domain. For this task, we compare 
the performance of RankBoost to the individual search strategies. 
The second experiment is a collaborative-filtering task for mak- 
ing movie recommendations. Here, we present results comparing 
RankBoost to nearest-neighbor and regression algorithms. 

1   Introduction 
Consider the following movie-recommendation task, some- 
times called a "collaborative-filtering" problem [8, 14]. In 
this task, a new user, Alice, seeks recommendations of 
movies that she is likely to enjoy. A collaborative-filtering 
system first asks Alice to rank movies that she has already 
seen. The system then examines the rankings of movies 
provided by other viewers and uses this information to re- 
turn to Alice a list of recommended movies. To do that, the 
recommendation system looks for users whose preferences 
are similar to those of Alice and combines their recommen- 
dations. 

One important property of this problem is that the most 
relevant information to be combined represents relative 
preferences rather than absolute ratings. In other words, 
even if the ranking of movies is expressed by assigning 
each movie a numeric score, we would like to ignore the 
absolute values of these scores and concentrate only on 
their relative order. This distinction becomes very impor- 
tant when we combine the rankings of many users who 
often use completely different ranges of scores to express 
identical preferences. Situations where we need to combine 
the ranking of different models also arise in meta-searching 
problems [5] and in information-retrieval problems [11,10]. 

In this paper, we introduce and analyze an efficient 
algorithm called RankBoost for combining multiple rank- 

*Research conducted while visiting AT&T Labs and with sup- 
port from an NSF Graduate Fellowship. 

ings. This algorithm is based on Freund and Schapire's [6] 
AdaBoost algorithm and its recent successor developed by 
Schapire and Singer [13]. Similar to other boosting al- 
gorithms, RankBoost works by combining many "weak" 
rankings of the given instances. Each of these may be only 
weakly correlated with the target ranking that we are at- 
tempting to approximate. We show how to combine such 
weak rankings into a single highly accurate ranking, and we 
prove a bound on the quality of this final ranking in terms 
of the quality of the weak rankings. 

For the movie task, we use very simple weak rankings 
which partition all movies into only two equivalence sets, 
those which are more preferred and those which are less 
preferred. For instance, we might use another user's ranked 
list of movies partitioned according to whether or not he 
prefers them to some particular movie that appears on his 
list. Such partitions of the data have the advantage that they 
only depend on the relative ordering defined by the given 
rankings rather than absolute ratings. Despite their appar- 
ent weakness, their combination using RankBoost performs 
quite well experimentally. 

Besides giving a theoretical analysis of the quality of 
the ranking produced by RankBoost, we also analyze its 
complexity and show how it can be implemented efficiently. 
We discuss further improvements in efficiency which are 
possible in certain natural cases. 

We report the results of experimental tests of our ap- 
proach on two different problems. The first is the mcta- 
searching problem. In a meta-search application, the goal 
is to combine the rankings of several WWW search strate- 
gies. Each search strategy is an operation which takes as 
input a query, performs some simple transformation of the 
query (such as adding search directives such as "AND", or 
search tokens such as "homepage") and sends it to a partic- 
ular search engine. The outcome of using each strategy is 
a list of URLs which are proposed as answers to the query. 
The goal is to combine the strategies that work best for a 
given set of queries. 

The second problem is the movie-recommendation prob- 
lem described above. For this problem, there exists a 
large publicly available dataset which contains ratings of 
movies by many different people. We compared RankBoost 
to nearest-neighbor and regression algorithms which have 
been previously studied for this application using several 
evaluation measures. 
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Despite the wide range of applications that use and com- 
bine rankings, this problem has received relatively little at- 
tention in the machine-learning community. The few meth- 
ods that have been devised for combining rankings tend 
to be based either on nearest-neighbor methods [9, 14] or 
numerical-optimization techniques [1,3]. In the latter case, 
the rankings are viewed as real-valued scores and the prob- 
lem of combining different rankings reduces to numerical 
search for a set of parameters that will minimize the dis- 
parity between the combined scores and the feedback of a 
user. 

While the above (and other) approaches might work 
well in practice, they still do not guarantee that the com- 
bined system will match the user's preference when we 
view the scores as a means to express preferences. Re- 
cently, Cohen, Schapire and Singer [4] proposed a frame- 
work for manipulating and combining multiple rankings in 
order to directly minimize the number of disagreements. In 
their framework, the rankings are used to construct prefer- 
ence graphs and the problem is reduced to a combinatorial 
optimization problem which turns out to be NP-complete; 
hence, an approximation is used to combine the different 
rankings. They also describe an efficient on-line algorithm 
for a related problem. 

The algorithm we present in this paper uses a similar 
framework to theirs, but sidesteps the intractability prob- 
lems. Furthermore, RankBoost is more appropriate for 
batch settings where there is "enough" time to find a good 
combination. Thus, the two approaches complement each 
other. Together, these algorithms constitute a viable ap- 
proach to the problem of combining multiple rankings, that, 
as our experiments indicate, work very well in practice. 

2   A formal model of the ranking problem 

In this section, we describe our formal model for studying 
ranking. Let ^bea set called the domain or instance 
space. Elements of X are called instances. For example, 
in the movie-ranking task, each movie is an instance. 

A learning algorithm in our model accepts as input a 
set of ranking features f\,..-,fn- These are intended to 
provide a base level of information about the ranking task. 
Said differently, the learner's job will be to learn a ranking 
expressible in terms of the ranking features, similar to or- 
dinary features in more conventional learning settings. For 
the movie task, each ranking feature corresponds to a single 
viewer's past ratings of movies. 

Formally, each ranking feature fi is a function of the 
form fi : X ->• R. The set E consists of all real numbers, 
plus one additional element <f> which indicates that no rank- 
ing is given and which is defined to be incomparable to all 
real numbers. For two instances XQ and x\, we interpret 
fi{%\) > fi(xo) to mean that x\ is ranked higher than XQ 
by fi. If fi(x) = <f> then x is unranked by /,. For the movie 
ranking task, fc(x) is simply the numerical rating provided 
by movie-viewer i on movie x, or <j> if the movie was not 
rated. 

The final input to the learning algorithm is a feedback 
function O. This function encodes known relative ranking 

information about a subset of the instances. Typically, the 
learner will try to approximate <E> to produce a ranking of 
unseen instances. For the movie task, the feedback consists 
of the known movie preferences provided by the current 
movie-viewer (i.e., the one for whom the system is currently 
attempting to recommend movies). 

Formally, we assume the feedback function has the form 
O : X x X ->• R with the interpretation that <!>(xo,x\) 
represents the degree to which xi should be correctly ranked 
above xo. Large positive values mean that x\ should be 
ranked above xo while negative values mean the opposite; 
a value of zero indicates no preference between xo and 
x\. Consistent with this interpretation, we assume that 
®(x, x) = 0 for all x £ X, and that O is anti-symmetric in 
the sense that «I>(xo, x\) = — <J>(a;i, XQ) for all xo, x\ G X. 
Note, however, that we do not assume transitivity of the 
feedback function. 

For the movie task, we can define <&(a;o, x j) to be +1 if 
movie x\ was preferred to movie XQ by the current viewer, 
— 1 if the opposite was the case, and 0 if either of the movies 
was not seen or if they were equally rated. 

We generally assume that the support of <i> is finite. Let 
Xu, denote the set offeedback instances, i.e., those instances 
which occur in the support of O: 

X<t = {x£X\3x' £X : 4>(x,x') # 0}. 

Also, let |3>| be the size of the support of <&: 

|<D| = |{(ao,a:,) e X x X | ^(x0,Xi) ? 0}|. 

In some settings, it may be appropriate for the learner to 
accept a set of feedback functions <J>i,..., <l>m. However, 
all of these can be combined into a single function <& sim- 
ply by adding them: 3> = ^. <J>j. (If some have greater 
importance than others, then a weighted sum can be used.) 

Formally, we require the learner to output a ranking of 
all instances represented in the form of a function H : X —► 
R with a similar interpretation to that of the ranking features, 
i.e., x\ is ranked higher than #o by H if H(x\) > H(XQ). 
For the movie task, this corresponds to a complete ordering 
of all movies (with possible ties allowed). 

The goal of the learner is to produce a "good" ranking 
of all instances, including those not observed in training. 
For instance, for the movie task, we would like to find a 
ranking of all movies which accurately predicts which ones 
a movie-viewer will like more or less than others; obviously, 
this ranking should include movies that the viewer has not 
already seen. As in other learning settings, how well the 
learning system performs on unseen data depends on many 
factors, such as the number of instances covered in training 
and the representational complexity of the ranking produced 
by the learner. 

There are various methods that can be used to evaluate 
such a ranking. Some of these are discussed in Section 5. 
The boosting algorithm described in the next section at- 
tempts to minimize one possible measure called the ranking 
loss. 
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Given: initial distribution D over X x X. 
Initialize: D\ = D. 
Fort= 1,...,T: 

• Train weak learner using distribution Dt. 
• Get weak hypothesis ht : X -4 R. 
• Choose at 6 R. 
• Update: 

Dt(xo,x\)exp(at(ht(x0)-ht(xi))) 
Dt+\{xo,x\) =  

At 
where Zt is a normalization factor (chosen so that Dt+\ will 
be a distribution). 

T 

Output the final hypothesis: H(x) = \]cttht(x). 
t=i 

Figure 1: The RankBoost algorithm. 

3   A boosting algorithm for the ranking task 
In this section, we describe an approach to the ranking prob- 
lem based on a machine learning method called boosting, in 
particular, Freund and Schapire's [6] AdaBoost algorithm 
and its successor developed by Schapire and Singer [13]. 
Boosting is a method of producing highly accurate predic- 
tion rules by combining many "weak" rules which may be 
only moderately accurate. 

In the current setting, we seek a learning algorithm 
which will produce a function H : X -> R whose induced 
ordering of X will approximate the relative orderings en- 
coded by the feedback function <t>. To formalize this goal, 
let D(xo,x\) — c • max{0,4>(xo,a;i)} so that all negative 
entries of <I> (which carry no additional information) are set 
to zero. Here, c is a positive constant chosen so that 

^2 D{x0,xi) = 1. 
Xo,X\ 

(When a specific range is not specified on a sum, we always 
assume summation over all of A".) Apairxo,xi is said to be 
crucial if 4>(£o, x\) > 0 so that the pair receives non-zero 
weight under D. 

Our boosting algorithm is designed to find an H with a 
small weighted number of crucial-pair misorderings, namely, 

££>(*<>,*,)[Jf(a;,) <ff(a:o)] 

=   Vt{x0tX^D[H{xx)<H{xQ)]. (1) 

Here and throughout this paper, we define [ir] to be 1 if 
predicate n holds and 0 otherwise. We call the quantity in 
Eq. (1) the ranking loss and we denote it by T\OSSD(H). 

3.1    The RankBoost algorithm 

We call our boosting algorithm RankBoost, and its pseu- 
docode is shown in Figure 1. Like all boosting algorithms, 
RankBoost operates in rounds. We assume access to a 
separate procedure called the weak learner which, on each 
round, is called to produce a weak hypothesis. RankBoost 
maintains a distribution Dt over X x X which is passed on 
round t to the weak learner. This distribution encodes the 
relative importance to the weak learner that one instance is 
ranked above another. 

Weak hypotheses have the form ht : X -> R. We think 
of these as providing ranking information in the manner 
described above. The weak learner we used in our exper- 
iments is based on the given ranking features; details are 
given in Section 4. 

The boosting algorithm uses the weak hypotheses to 
update the distribution as shown in Figure 1. Suppose that 
ZOJZI is a crucial pair so that we want xi to be ranked higher 
than XQ (in all other cases, Dt will be zero). Assuming for 
the moment that the parameter at > 0 (as it usually will be), 
this rule has the effect of decreasing the weight Dt (xo, x\) if 
ht gives a correct ranking (ht(x\) > ht(xo)) and increases 
the weight otherwise. Thus, Dt will tend to concentrate 
on the pairs whose relative ranking is hardest to determine. 
The actual setting of at will be discussed shortly. 

The final or combined hypothesis if is a weighted sum 
of the weak hypotheses. We can prove the following bound 
on the ranking loss of H. This theorem also provides guid- 
ance in choosing at and in designing the weak learner as 
we discuss below. Note that this theorem only concerns 
performance on the training data. As in more standard clas- 
sification problems, the loss on a separate test set can also be 
theoretically bounded given appropriate assumptions using 
uniform-convergence theory [2, 7, 12, 15]. 

Theorem 1 Assuming the notation of Figure 1, the ranking 
loss ofH is 

r\ossD(H) <f[Zt . 
t=i 

Proof: Unraveling the update rule, we have that 

D(xo,xi)exp(H(x0) - H(x\)) 
DT+\{XQ,X\) = 

n«Zi t*t 

Note that [x > 0] < ex for all real x. Therefore, the ranking 
loss with respect to initial distribution D is 

Y/D(x0,xi)lH(x0)>H(xl)] 

<    £jD(z0):r,)exp(#(a:o)-ff(a:i)) 

=    ^2DT+](x0,xl)Y[Zt = Y[Zt. 
Xo,X] t t 

This proves the theorem.    ■ 
Note that RankBoost generally requires 0(101) space 

and time per round. 

3.2   Choosing a, and criteria for weak learners 

Thus to minimize ranking loss, on each round t we should 
choose at and construct weak hypotheses ht in a manner 
that tends to minimize 

Zt=^2 Dt(x0,xi)exp(at{ht(xo) - ht(xi))) . 
X0,X\ 

There are various methods for achieving this end. Here we 
sketch three.  Let us fix t and drop all t subscripts when 
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clear from context. (In particular, for the time being, D will 
denote Dt rather than an initial distribution.) 

First and most generally, for any given weak hypothesis 
h, it can be shown that Z, viewed as a function of a, has 
a unique minimum which can be found numerically via a 
simple binary search (except in trivial degenerate cases). 
Details are omitted. 

The second method of minimizing Z is applicable in 
the special case that h has range {0,1}. In this case, we can 
minimize Z analytically as follows: For be {-1,0, +1}, 
let 

Wb = Y, D(xo,xi)[h{xo) - h(xi) = &]. 

Also, abbreviate W+i by W+ and W-\ by W_. Then Z - 
W-e~a + Wo + W+ea. Using simple calculus, it can be 
verified that Z is minimized by setting a = \ In (W- /W+) 

which yields Z = Wo + 2^/W-W+. Thus, if we are using 
weak hypotheses with range restricted to {0,1}, we should 
attempt to find h which tends to minimize this value of Z 
and we should then set a accordingly. 

For weak hypotheses with range [0,1], we can use a 
third method based on an approximation of Z. Specifically, 
note that 

< i^y+M 
for all real a and x £ [- 
Zby 

Z   < 

!,+!]. Thus, we can approximate 

h(x0) -h(xi)\   0 

2 )e 
^2D(X0,XI)   (  

+ n-h(x0) + h(Xl)\ g_, 

(2) 

where 

r=Yl D(x0,xi)(h(xi) - h(x0)). (3) 

The right hand side of Eq. (2) is minimized when 

a = | In 

which, plugging into Eq. (2), yields Z < \/l - r2. Thus, 
to approximately minimize Z using weak hypotheses with 
range [0,1], we can attempt to maximize \r\ as defined in 
Eq. (3) and then set a as in Eq. (4). This is the method used 
in our experiments. 

3.3   An efficient implementation for bipartite 
feedback 

In this section, we describe a more efficient implementation 
of RankBoost for feedback of a special form. We say that 
the feedback function is bipartite if there exists disjoint 
subsets Xo and X\ of X such that O ranks all instances 
in X\ above all instances in XQ and says nothing about 

Given: disjoint subsets Xo and X\ of X. 
Initialize: vi(x) = (\X0\ |X,|)-'/2; 

SW-|  _i    ifx€X0 

¥oTt= 1,...,T: 

• Train weak learner using distribution Dt (as defined by 
Eq. (5)) 

• Get weak hypothesis ht : X -¥ E. 
• Choose at e M.. 

vt(x)exp(-ats(x)ht(x)) 
• Update: vt+i(x) = j=  

where Zt = 

(^vt(x)exp(ai/it(x))| I y^vt{x)exp(-atht{x))\. 
x€X0 /    \i6X, / 

T 

Output the final hypothesis: H(x) = ^ atht(x). 
t=i 

Figure 2: A more efficient version of RankBoost for bipartite 
feedback. 

any other pairs. That is, formally, for all xo e XQ and all 
xi € X\ we havethatO(zo,a;i) = +1. ^{xi,x0) = -1 
and <& is zero on all other pairs. 

Such feedback arises naturally, for instance, in docu- 
ment rank-retrieval tasks common in the field of informa- 
tion retrieval. Here, a set of documents may have been 
judged to be relevant or irrelevant, and the goal is to find a 
ranking of all documents which will tend to rank all rele- 
vant documents above all irrelevant documents. A feedback 
function which encodes these preferences will be bipartite. 

If RankBoost is implemented naively as in Section 3.2, 
then the space and time-per-round requirements will be 
0(|A"o| |-X"i|)- In this section, we show how this can be 
improved to O(|-Xo| + l-X'il)-   Note that, in this section, 
X® = XQ U X i. 

The main idea is to maintain a set of weights vt over 
X (rather than the two-argument distribution Dt), and to 
maintain the condition that, on each round, 

£»t(a;o,xi) = vt(x0)vt(xi) (5) 

for all crucial pairs XQ, X\ (recall that Dt is zero for all other 
pairs). 

The pseudocode for this implementation is shown in 
Figure 2. Eq. (5) can be proved by induction. Details 
omitted for lack of space. 

Finally, note that all space requirements and all per- 
round computations are O (\X0\ + \XX \), with the possible 
exception of the call to the weak learner. However, if we 
want the weak learner to maximize \r\ as in Eq. (3), then 
we also only need to pass |X<p\ weights to the weak learner, 
all of which can be computed in linear time. Omitting t 
subscripts, and defining s() as in Figure 2, we can rewrite 
r as 

r   =    ^ D(x0,x\)(h(xi) -h(x0)) 
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=   Yl    Y2 v(x0)v(xi)(h(xi)s(x1) + h(x0)s(x0)) 
xoGXo X]£X\ 

s(x0) h(x0) 

+ H   {v(x\) ]T v(x0)\s(xl)h{x]) 
xi£X\  \ xo€Xo / 

=    £d(x)s(z)/i(x) (6) 
x 

whered(z) = v(x) T,X':s(x)^s(x') v(x')- All of the weights 
d(x) can be computed in linear time by first computing the 
sums which appear in this equation for the two possible 
cases that x is in XQ or X\. Thus, we only need to pass 
\X®\ weights to the weak learner in this case rather than the 
full distribution Dt of size |Xo| |Xi|. 

4   Weak hypotheses for ranking 
As described in Section 3, our algorithm RankBoost re- 
quires access to a weak learner to produce weak hypotheses. 
In this section, we describe an efficient implementation of 
a weak learner for ranking. 

Perhaps the simplest and most obvious weak learner 
would find a weak hypothesis h which is equal to one of the 
ranking features fi, except on unranked instances. That is, 

h{x) { fi(x iffi{x) el 
if fi(x) = (f> 

for some qM G E. 
The main problem with such a weak learner is that it 

depends critically on the actual values defined by the rank- 
ing features, rather than relying exclusively on the relative- 
ordering information which they provide. We believe that 
learning algorithms of the latter form will be much more 
general and applicable. Such methods can be used even 
when features provide only an ordering of instances and 
no scores or other information are available. Such meth- 
ods also side-step the issue of combining ranking features 
whose associated scores have different semantics (such as 
the different scores assigned to URL's by different search 
engines). 

For these reasons, we focus in this section and in our 
experiments on {0, l}-valued weak hypotheses which use 
the ordering information provided by the ranking features, 
but ignore specific scoring information. In particular, we 
will use weak hypotheses h of the form 

h(x) = 
iffi(x)>0 
if fi(x) <e 
if fi(x) = 4> 

(7) 

where 6 G K and q^ £ {0,1}. That is, a weak hypothesis 
is derived from a ranking feature fi by comparing the score 
of /, on a given instance to a threshold 6. To instances 
left unranked by f,, the weak hypothesis assigns the default 
score (jfdCf. For the remainder of this section, we show how 
to choose the "best" feature, threshold and default score. 

Let us fix t and drop it from all subscripts to simplify 
the notation. Since the ranges of our weak hypotheses are 
bounded in [0,1], we can use the third method1 described in 
Section 3.2 to guide us in our search for a weak hypothesis. 
Recall that, according to this method, the weak learner 
should seek a weak hypothesis which maximizes \r\ as 
given by Eq. (3). For a given candidate weak hypothesis, 
we can compute r directly in 0(|<J>|) time. Moreover, for 
each of the n ranking features, there are at most \X<t>\ + 1 
thresholds to consider (as defined by the range of fi on X®) 
and two possible default scores (0 and 1). Thus, naively, \r\ 
canbemaximizedin0(n|O||A'(D|) time. We now describe a 
time and space efficient algorithm for maximizing \r\ which 
requires only 0(n|Ao| -I-1*1) time. (In case of bipartite 
feedback, if the boosting algorithm of Section 3.3 is used, 
only 0(n| A^i,|) time is needed.) 

We begin by rewriting r for a given D and h as follows: 

r   = Y2 D{xo, x\) {h{x\) - h(x0)) 
xo,x> 

=    Y2 D(xo, x\ )h{x\) - Y2 D(xo>x' )Hxo) 
Xo,X\ XQ,X\ 

XX' x x' 

x x' 

=    £>(*)*(*), (8) 
X 

where we define TT(X) = ^2xi(D(x',x) — D(x,x')) as the 
potential of x. Note that 7r(a;) depends only on the current 
distribution D. Hence, the weak learner can precompute 
all the potentials at the beginning of each boosting round 
in 0(|0|) time and 0(1^1) space. When the feedback is 
bipartite, comparing Eqs. (6) and (8), we see that TT(X) — 
d(x)s(x) where d and s are defined in Section 3.3; thus, in 
this case, n can be computed even faster in only 0(|A"<i>|) 
time. 

Now let us address the problem of finding a good thresh- 
old value 6 and default value qiQi. We need to scan the 
candidate ranking features fi and evaluate \r\ (defined by 
Eq. (8)) for each possible choice of fi, 6 and qicf. For h 
defined by Eq. (7), we have that 

=   Yl   ^{x) + qM   Y2   7r^)- (9) 
x:fi(x)>$ x:fi{x) = 4> 

For a fixed ranking feature fi, let Xj. = {x £ X® \ fi(x) ^ 
<f>} be the set of feedback instances ranked by fi. We 
only need to consider \Xj{ \ + 1 threshold values, namely, 
{fi(x) | i £ A/JU {oo} since these define all possible 
behaviors on the feedback instances. Moreover, we can 
straightforwardly compute the first term of Eq. (9) for all 
thresholds in this set in time 0{\Xji |) simply by scanning 

'Although the second method could have been used, we chose 
to focus on the third method because it is slightly simpler. Exper- 
iments using the second method are in our future plans. 
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ML Domain 
Top 
1 

Top 
2 

Top 
5 

Top 
10 

Top 
20 

Top Avg 
30     Rnk 

RankBoost 
Best (Top 1) 
Best (Top 10) 
Best (Top 30) 

102 
117 
112 
95 

144 
137 
147 
129 

173 
154 
172 
159 

184 
167 
179 
178 

194 
177 
185 
187 

202 4.38 
181 6.80 
187 5.33 
191    5.68 

University Domain 
RankBoost 
Best single query 

95 
112 

141 
144 

197 
198 

215 
221 

247 
238 

263 7.74 
247    8.17 

Table 1: Comparison of the combined hypothesis and individual 
search templates. 

down a presorted list of threshold values and maintaining 
the partial sum in the obvious way. 

For each threshold, we also need to evaluate \r\ for the 
two possible assignments of qie! (0 or 1). To do this, we 
simply need to evaluate Y^x-fdx^A^fa) once- Naively, 
this takes 0(|Ao - Xft\) time, i.e., linear in the number 
of unranked instances. We would prefer all operations to 
depend instead on the number of ranked instances since, 
in applications such as meta-searching and information re- 
trieval, each ranking feature may rank only a small fraction 
of the instances. To do this, note that J2X n(x) — 0 by 
definition of n(x). This implies that 

]T    vr(x) = -    Y,    7r(x)- 
x:fi(x)=<l> x:fi(x)^4> 

The right hand side of this equation can clearly be computed 
in 0(1^1) time. 

Thus, for a given ranking feature, the total time required 
to evaluate \r\ for all candidate weak hypotheses is only 
linear in the number of instances that are ranked by that 
feature. 

5   Experimental evaluation of RankBoost 
In this section, we report experiments with RankBoost on 
two ranking problems. The first is a simplified Web meta- 
search task, the goal of which was to build a search strategy 
for finding homepages of machine-learning researchers and 
universities. The second task is a collaborative-filtering 
problem of making movie recommendations for a new user 
based on the preferences of previous users. 

In each experiment, we divided the available data into 
training data and test data, ran each algorithm on the training 
data, and evaluated the output hypothesis on the test data. 
Details are given below. 

5.1   Meta-search task 

We first present experiments on learning to combine the 
results of several Web searches. This problem exhibits 
many facets that require a general approach such as ours. 
For instance, approaches that learn to combine similarity 
scores are not applicable since the similarity scores of Web 
search engines are often unavailable. 

In order to test RankBoost on this task, we used the 
data of Cohen, Schapire and Singer [4]. Their goal was to 
simulate the problem of building a domain-specific search 
engine. As test cases, they picked two fairly narrow classes 

of queries—retrieving the homepages of machine-learning 
researchers (ML), and retrieving the homepages of uni- 
versities (UNIV). They chose these test cases partly be- 
cause the feedback was readily available from the Web. 
They obtained a list of machine-learning researchers, iden- 
tified by name and affiliated institution, together with their 
homepages,2 and a similar list for universities, identified by 
name and (sometimes) geographical location from Yahoo! 
We refer to each entry on these lists (i.e., a name-affiliation 
pair or a name-location pair) as a base query. The goal is 
to learn a meta-search strategy which, given a base query, 
will generate a ranking of URL's that includes the correct 
homepage at or close to the top. 

Cohen, Schapire and Singer also constructed a series of 
special-purpose search templates for each domain. Each 
template specifies a query expansion method for converting 
a base query into a likely seeming AltaVista query which we 
call the expanded query. For example, one of the templates 
has the form+"NAME" +machine +learning which 
means that AltaVista should search for all the words in 
the person's name plus the words 'machine' and 'learning'. 
When applied to the base query 'Joe Researcher from Learn- 
ing University' this template expands to the expanded query 
+"Joe Researcher"   +machine +learning. 

A total of 16 search templates were used for the ML 
domain and 22 for the UNIV domain. Each search template 
was used to retrieve the top thirty ranked documents. If 
none of these lists contained the correct homepage, then 
the base query was discarded from the experiment. In the 
ML domain, mere were 210 base queries for which at least 
one search template returned the correct homepage; for the 
UNIV domain there were 290 such base queries. 

It is instructive to see how this ranking problem can be 
mapped into our framework. Formally, the instances now 
are all pairs of the form (q, u) where q is a base query and 
u is one of the URL's returned by one of the search tem- 
plates for this query. Each ranking feature f, is constructed 
from a corresponding search template i by assigning the j'th 
URL u on its list (for base query q) a rank of -j; that is, 
fi((q, u)) = -j. If u was not ranked for this base query, 
then we set fi((q,u)) = <f>. We also construct a separate 
feedback function <bq for each base query q which ranks 
the correct homepage URL u* above all others. That is, 
*9((g, «),(?,«*)) = 4-1 and *,((g,«»)»(«»«)) = -lfor 

all u ■£ u». All other entries of ®q are set to zero. All 
the feedback functions <&q were then combined into one 
feedback function 4> by summing as described in Section 2. 

Given this mapping of the ranking problem into our 
framework, we can immediately apply RankBoost. This 
mapping implies that each weak hypothesis is defined by a 
search template i (corresponding to ranking feature /j), and 
a threshold value 9. Given a base query q and a URL u, 
this weak hypothesis outputs 1 or 0 if u is ranked above or 
below the threshold 6 on the list of URL's returned by the 
expanded query associated with search template i applied to 
base query q. As usual, the final hypothesis if is a weighted 

2From   'http://www.aic.nrl.navy.mil/~aha/research/machine- 
learning.html'. 
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Figure 3: Performance of algorithms with respect to feature sets of sizes 100,200,500,750,1000,2000. 

sum of the weak hypotheses. Thus, given a test base query 
q, we first form all of the expanded queries and send these to 
the search engine to obtain lists of URL's. We then evaluate 
H as above on each pair (q, u), where u is a returned URL, 
to obtain a predicted ranking of all of the URL's. 

For evaluation, we divided the data into training and 
test sets using four-fold cross-validation. We created four 
partitions of the data, each one using 75% of the base queries 
for training and 25% for testing. Of course, the learning 
algorithms had no access to the test data during training. 

Experimental parameters and evaluation. Since all 
search templates had access to the same set of documents, if 
a URL was not returned in the top 30 documents by a search 
template, we interpreted this as ranking the URL below all 
of the returned documents. Thus we set the parameter 
qit.(, the default value for weak hypotheses, to be 0 (see 
Section 4). 

In order to determine a good number of boosting rounds, 
we first ran RankBoost on each partition of the data and 
produced a graph of the average training error (omitted due 
to space constraints). On average, the training error reached 
zero after 85 rounds of boosting, so that is the number 
of boosting rounds that we used in all of the meta-search 
experiments. 

To evaluate the performance of the individual search 
templates in comparison to the combined hypothesis out- 
put by RankBoost, we measured the number of queries for 
which the correct document was in the top k ranked doc- 
uments, for various values of k. We then compared the 
performance of the combined hypothesis to that of the best 
search template for each value of k. The results for the 
ML and UNIV domains are shown in Table 1. All columns 
except the last give the number of base queries for which 
the correct homepage was retrieved above rank k. Bold 
figures give the maximum value over all of the search tem- 
plates on the test data. Note that the best search template is 
determined based on its performance on the test data, while 
RankBoost only has access to training data. 

For the ML data set, the combined hypothesis closely 
tracked the performance of the best expert at every value of 
k, which is especially interesting since no single template 
was the best for all values of k. For the UNIV data set, a 
single template was the best-' for all values of k, and the 
combined hypothesis performed almost as well as the best 
template for k = 1,2,..., 10 and then outperformed the 
best template for k = 20,30. 

We also computed (an approximation to) average rank, 
i.e., the rank of the correct homepage URL, averaged over 
all base queries in the test set. Since the correct URL 
was sometimes not ranked or given a very high rank, we 
artificially assigned a rank of 31 to every document that was 
either unranked or ranked above rank 30. We also limited 
the maximum rank in the output generated by RankBoost 
to 31 to compensate for the fact that 31 was the maximum 
rank that can be assigned by any single search template. 

The last column of Table 1 gives average rank. This 
table illustrates the robustness of the combined hypothesis 
on the ML domain. It outperforms the best template for 
all measures except top 1, where it differs from the best 
expert by 12%, and top 2, where it differs by 2%. On the 
UNIV queries, the combined hypothesis is almost always 
competitive with the best template for every value of k, 
with the exception of k = 1, where it trails the best expert 
by 15%. (Nevertheless, since this domain included such 
a good template, there is little reason to use something as 
complicated as RankBoost.) 

5.2    Movie recommendations 

We also tested RankBoost on the movie-recommendations 
task described in the introduction. For our experiments, 
we used publicly available4 data provided by the Digi- 
tal Equipment Corporation which ran its own EachMovie 
recommendation service for eighteen months from March 
1996 to September 1997 and collected user preference 
data. Users were able to assign a movie a score from 
the set R = {0.0,0.2,0.4,0.6,0.8,1.0}, 1.0 being the 
best. We used the data of 61,625 users entering a total 
of 2,811,983 numeric ratings for 1,628 different movies 
(films and videos). 

Most of the mapping of this problem into our frame- 
work was described in Section 2. For our experiments, we 
selected a subset C of the users to serve as ranking features: 
each user in C defined an ordering of the set of movies 
which he or she viewed. Wc did not set the parameter <2»dcf, 
allowing the weak learner to choose it adaptivcly. The feed- 
back function <I> was then defined as in Section 2 using the 
movie ratings of a single target user. We used half of the 
movies viewed by the selected target user for the feedback 
function in training, and used the other half of the viewed 
movies for testing as described below. We then averaged 
all results over many runs with many different target users. 
In these experiments, we ran RankBoost for 100 rounds. 

3The best query expansion heuristic for the UNIV domain was 
"NAME"   PLACE. 

4From 'http://www.research.digital.com/SRC/eachmovic/'. 



An Efficient Boosting Algorithm for Combining Preferences        177 

100 150 

Figure 4: Performance of the algorithms on different feature densities. 

We compared the performance of RankBoost on this 
data set to two other algorithms, a regression algorithm and 
a nearest-neighbor algorithm. 

Regression. We used a regression algorithm similar 
to the ones used by Hill and others [8]. The regression 
algorithm employs the assumption that the preferences of a 
target user Alice can be described as a linear combination 
of the preferences of other users. Formally, let o be a row 
vector whose components are the scores Alice assigned to 
movies (discarding unranked movies). Let C be a matrix 
containing the scores of the other users for the subset of 
movies that Alice has ranked. Since some of the users have 
not ranked movies that were ranked by Alice, we need to 
decide on a default rank for these movies. For each user 
represented by a row in C, we set the score of the user's 
unranked movies to be the user's average score over all 
movies. We next use linear regression to find a vector w 
of minimum length which minimizes | \w C — a\ \. This can 
be done using standard numerical techniques (we used the 
package available in Matlab). Given w we can now predict 
the ratings of all the movies. 

Nearest neighbor. Given a target user Alice with 
certain movie preferences, the nearest-neighbor algorithm 
(NN) finds a user Bob whose preferences are most similar 
to Alice's and then uses Bob's preferences to make rec- 
ommendations for Alice. More specifically, we find the 
ranking feature fi (corresponding to one of the other movie 
viewers) which gives an ordering most similar to that of the 
target user as encoded by the feedback function O. The 
measure of similarity we use is the ranking loss of fi with 
respect to the same initial distribution D which was con- 
structed by RankBoost. Thus, in some sense, NN can be 
viewed as a single weak hypothesis output after one round 
of RankBoost (although no threshold of/j is performed). 

A problem with this algorithm is that the user it selects 
may not rank all the movies ordered by the target user. To 
fix this, we modified NN to associate with each feature fi a 
default rank qit! € R which /, assigns to unranked movies. 
When searching for the best feature, NN chooses qit( by 
calculating and then minimizing the ranking loss for each 
possible value of qia!. If it is the case that this user ranks all 
of the movies seen by the target user, then NN sets gdef to 
the average rank over all movies that it ranked (including 
those not ranked by the target user). 

In order to evaluate and compare performance, we used 
four different error measures. We assume that the learning 
system produces a real-valued function H which orders 
instances in the usual way (x\ ranked higher than XQ if 

H(x\) > H(XQ))- We compare the ordering of H to a 
"correct" ordering c over test instances, also represented 
formally as a real-valued function. For simplicity, we here 
only give definitions for these measures when H defines a 
total order of all instances so that no ties occur in either 
order. The definitions can be extended by assuming that 
ties are broken randomly and taking expectations (details 
omitted for lack of space). 

All our measures have range [0,1], with a value 0 being 
a "perfect" score. 

Disagreement. Disagreement is the fraction of distinct 
pairs of instances which are misordered by H (with respect 
to c). If c were used to construct a feedback function, this 
would be equivalent to the ranking loss of H. 

Predicted-rank-of-top (PROT). This is the minimum 
rank (according to H) of any of the truly top-rated instances 
(according to c). The score is then rescaled to have a 
possible range of [0,1]. 

Coverage. This is the maximum rank (according to H) 
of any of the truly top-rated instances (according to c). The 
score is then rescaled to have a possible range of [0,1]. 
(Note that coverage and PROT are equal if there is a unique 
top-rated instances according to c.) 

Rank-of-predicted-top (ROPT). This is the number 
of instances ranked strictly higher (according to c) than the 
predicted top-rated instance (according to H). The score is 
then rescaled to have a possible range of [0,1]. 

We now describe our experimental results. We ran 
a series of three tests, examining the performance of the 
algorithms as we varied the number of features, the density 
of the features (number of movies ranked by each user), and 
the density of the feedback. 

We first experimented with the number of features used 
for ranking. We selected two disjoint random sets T and V 
of 2000 users each. We further divided T into six subsets 
TUT2,...,T6 of respective sizes 100,200,500,750,1000, 
2000, such that Tx C T2 C ■ • • C T6. Each Tj served as 
a feature set for training on half of a target user's movies 
and testing on the other half, for each user in T". For 
each algorithm, we calculated the measures described above 
averaged over the 2000 test users. We ran the algorithms 
on five disjoint random splits of the data into feature and 
feedback sets, and we averaged the results, which are shown 
in Figure 3. 

RankBoost was the clear winner for all four perfor- 
mance measures. The performance of regression was much 
poorer, and NN was in between. For the most part, the 
performance of the algorithms improved as the number of 
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Figure 5: Performance of algorithms on different feedback densities 
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features increased. RankBoost and NN did reasonably well 
with respect to disagreement, which they directly tried to 
minimize, while regression's error rate was just slightly bet- 
ter than 50%. All three algorithms did well on PROT and 
ROPT, although again regression was worse (about 30% 
worse than RankBoost). All three algorithms had difficulty 
with coverage. In all cases, RankBoost was better able to 
use the increased number of features. 

We next explored the effect of the features and feedback 
density, the number of movies ranked by each user. We 
partitioned the set of features into bins according to their 
density. The bins were 10-20, 21-40, 41-60, 61-100, 101- 
1455, where 1455 was the maximum number of movies 
ranked by a single user in the data set. We selected a random 
set of 1000 features (users) from each bin to be evaluated 
on a disjoint random set of 1000 feedback users (of varying 
densities). We ran the algorithms on six such random splits, 
calculated the averages of the four error measures on each 
split, and then averaged them together. The results are 
shown in Figure 4. The ^-coordinate of each point is the 
average density of the features in a single bin; for example, 
80 is the average density of features whose density is in the 
range 61-100. The relative performance of the algorithms 
was the same as in Figure 3. RankBoost was again able 
to use the denser features to obtain lower error rates, while 
the improvement of NN was less dramatic. Regression 
actually performed the same or worse as the feature density 
increased. 

We varied the feedback densities in the same way as the 
feature densities. We used a random set of 1000 features and 
again ran on six random splits, taking averages. The results 
appear in Figure 5. As feedback density increased, Rank- 
Boost and NN improved with respect to disagreement and 
ROPT, while regression performed worse. All three algo- 
rithms did well on PROT, as might be expected, since larger 
feedback sets will likely have many top-ranked movies. 
For the same reason, all three algorithms were very poor on 
coverage. 

We see from these graphs that RankBoost performed the 
best on this ranking task. RankBoost's approach of order- 
ing based on relative comparisons performed much better 
than regression which treats the movie scores as absolute 
numerical values. RankBoost also improved on the nearest- 
neighbor algorithm by combining multiple features to form 
an accurate prediction rule. 
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Abstract 
In a recent paper, Friedman, Geiger, and Goldszmidt [8] 
introduced a classifier based on Bayesian networks, called 
Tree Augmented Naive Bayes (TAN), that outperforms 
naive Bayes and performs competitively with C4.5 and 
other state-of-the-art methods. This classifier has several 
advantages including robustness and polynomial compu- 
tational complexity. One limitation of the TAN classifier 
is that it applies only to discrete attributes, and thus, con- 
tinuous attributes must be prediscretized. In this paper, 
we extend TAN to deal with continuous attributes directly 
via parametric (e.g., Gaussians) and semiparametric (e.g., 
mixture of Gaussians) conditional probabilities. The result 
is a classifier that can represent and combine both discrete 
and continuous attributes. In addition, we propose a new 
method that takes advantage of the modeling language of 
Bayesian networks in order to represent attributes both in 
discrete and continuous form simultaneously, and use both 
versions in the classification. This automates the process 
of deciding which form of the attribute is most relevant 
to the classification task. It also avoids the commitment 
to either a discretized or a (semi)parametric form, since 
different attributes may correlate better with one version 
or the other. Our empirical results show that this latter 
method usually achieves classification performance that is 
as good as or better than either the purely discrete or the 
purely continuous TAN models. 

1   INTRODUCTION 
The effective handling of continuous attributes is a cen- 
tral problem in machine learning and pattern recognition. 
Almost every real-world domain, including medicine, in- 
dustrial control, and finance, involves continuous attributes. 
Moreover, these attributes usually have rich interdependen- 
cies with other discrete attributes. Many approaches in 
machine learning deal with continuous attributes by dis- 
cretizing them. In statistics and pattern recognition, on the 
other hand, the typical approach is to use a parametric family 
of distributions (e.g. Gaussians) to model the data. 

Each of these strategies has its advantages and disadvan- 
tages. By using a specific parametric family, we are making 
strong assumptions about the nature of the data. If these 
assumptions are warranted, then the induced model can be a 

*Current  address:     Institute  of Computer  Science,   The 
Hebrew   University,   Givat   Ram,   Jerusalem   91904,   Israel, 
nir@cs.huji.ac.il. 

good approximation of the data. In contrast, discretization 
procedures are not bound by a specific parametric distribu- 
tion; yet they suffer from the obvious loss of information. 
Of course, one might argue that for specific tasks, such as 
classification, it suffices to estimate the probability that the 
data falls in a certain range, in which case discretization is 
an appropriate strategy. 

In this paper, we introduce an innovative approach for 
dealing with continuous attributes that avoids a commit- 
ment to either one of the strategies outlined above. This 
approach uses a dual representation for each continuous 
attribute: one discretized, and the other based on fitting 
a parametric distribution. We use Bayesian networks to 
model the interaction between the discrete and continuous 
versions of the attribute. Then, we let the learning proce- 
dure decide which type of representation best models the 
training data and what interdependencies between attributes 
are appropriate. Thus, if attribute B can be modeled as a 
linear Gaussian depending on A, then the network would 
have a direct edge from A to B. On the other hand, if the 
parametric family cannot fit the dependency of B on A, then 
the network might use the discretized representation of A 
and B to model this relation. Note that the resulting models 
can (and usually do) involve both parametric and discretized 
models of interactions among attributes. 

In this paper we focus our attention on classification tasks. 
We extend a Bayesian network classifier, introduced by 
Friedman, Geiger, and Goldszmidt (FGG) [8] called "Tree 
Augmented Naive Bayes" (TAN). FGG show that TAN out- 
performs naive Bayes, yet at the same time maintains the 
computational simplicity (no search involved) and robust- 
ness that characterize naive Bayes. They tested TAN on 
problems from the UCI repository [16], and compared it 
to C4.5, naive Bayes, and wrapper methods for feature se- 
lection with good results. The original version of TAN 
is restricted to multinomial distributions and discrete at- 
tributes. We start by extending the set of distributions that 
can be represented in TAN to include Gaussians, mixtures 
of Gaussians, and linear models. This extension results in 
classifiers that can deal with a combination of discrete and 
continuous attributes and model interactions between them. 
We compare these classifiers to the original TAN on sev- 
eral UCI data sets. The results show that neither approach 
dominates the other in terms of classification accuracy. 

We then augment TAN with the capability of representing 
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each continuous attribute in both parametric and discretized 
forms. We examine the consequences of the dual represen- 
tation of such attributes, and characterize conditions under 
which the resulting classifier is well defined. Our main hy- 
pothesis is that the resulting classifier will usually achieve 
classification performance that is as good or better than both 
the purely discrete and purely continuous TAN models. This 
hypothesis is supported by our experiments. 

We note that this dual representation capability also has 
ramifications in tasks such as density estimation, cluster- 
ing, and compression, which we are currently investigating 
and some of which we discuss below. The extension of 
the dual representation to arbitrary Bayesian networks, and 
the extension of the discretization approach introduced by 
Friedman and Goldszmidt [9] to take the dual representation 
into account, are the subjects of current research. 

2   REVIEW OF TAN 
In this discussion we use capital letters such as X, Y, Z 
for variable names, and lower-case letters such as x,y,z 
to denote specific values taken by those variables. Sets 
of variables are denoted by boldface capital letters such as 
X, Y, Z, and assignments of values to the variables in these 
sets are denoted by boldface lowercase letters x, y, z. 

A Bayesian network over a set of variables X = 
{X\,... ,Xn] is an annotated directed acyclic graph that 
encodes a joint probability distribution over X. Formally, 
a Bayesian network is a pair B — (G, C). The first com- 
ponent, G, is a directed acyclic graph whose vertices cor- 
respond to the random variables X\,... ,Xn, and whose 
edges represent direct dependencies between the variables. 
The second component of the pair, namely £, represents 
a set of local conditional probability distributions (CPDs) 
L\,..., L„, where the CPD for X, maps possible values x, 
of Xi and pa(Xi) of Pa(Xj), the set of parents of X{ in G, 
to the conditional probability (density) of Xi given pa(X;). 
A Bayesian network B defines a unique joint probability 
distribution (density) over X given by the product 

pB(xu. ..,*„) = nr=,£i(*iipa(*,o) ■   (i) 
When the variables in X take values from finite discrete 

sets, we typically represent CPDs as tables that contain pa- 
rameters BXi\pa(Xi) for all possible values of Ar, andPa(A*). 
When the variables are continuous, we can use various para- 
metric and semiparametric representations for these CPDs. 

As an example, let X = {A\,... ,A„,C}, where the 
variables A\,..., An are the attributes and C is the class 
variable. Consider a graph structure where the class variable 
is the root, that is, Pa(C) = '0, and each attribute has the 
class variable as its unique parent, namely, Pa(.A;) = {C} 
for all 1 < i < n. For this type of graph structure, Equa- 
tion 1 yields Pr(yl,,..., An, C) = Pr(C) • U"=\ MMC)- 
From the definition of conditional probability, we get 
?r(C\Au . ..,An) = Q-Pr(C) ■ njL, Pr^lC), where a is 
a normalization constant. This is the definition of the naive 
Bayesian classifier commonly found in the literature [5]. 

The naive Bayesian classifier has been used extensively 
for classification. It has the attractive properties of being 
robust and easy to learn—we only need to estimate the CPDs 
Pr(C) and Pr(Ai | C) for all attributes. Nonetheless, the 
naive Bayesian classifier embodies the strong independence 
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Figure 1: A TAN model learned for the data set "glass2." The 
dashed lines represent edges required by the naive Bayesian clas- 
sifier. The solid lines are the tree augmenting edges representing 
correlations between attributes. 

assumption that, given the value of the class, attributes arc 
independent of each other. FGG [8] suggest the removal 
of these independence assumptions by considering a richer 
class of networks. They define the TAN Bayesian classifier 
that learns a network in which each attribute has the class and 
at most one other attribute as parents. Thus, the dependence 
among attributes in a TAN network will be represented via a 
tree structure. Figure 1 shows an example of a TAN network. 

In a TAN network, an edge from Ai to Aj implies that the 
influence of Ai on the assessment of the class also depends 
on the value of Aj. For example, in Figure 1, the influence 
of the attribute "Iron" on the class C depends on the value of 
"Aluminum," while in the naive Bayesian classifier the in- 
fluence of each attribute on the class is independent of other 
attributes. These edges affect the classification process in 
that a value of "Iron" that is typically surprising (i.e., P{i\c) 
is low) may be unsurprising if the value of its correlated 
attribute, "Aluminum," is also unlikely (i.e., P(i\c, a) is 
high). In this situation, the naive Bayesian classifier will 
overpenalize the probability of the class by considering two 
unlikely observations, while the TAN network of Figure 1 
will not do so, and thus will achieve better accuracy. 

TAN networks have the attractive property of being lcarn- 
able in polynomial time. FGG pose the learning problem as 
a search for the TAN network that has the highest likelihood 
LL(B : D) = PB(D), given the data D. Roughly speaking, 
networks with higher likelihood match the data better. FGG 
describe a procedure Construct-TAN for learning TAN 
models and show the following theorem. 
Theorem 2.1: [8] Let D be a collection of N instances of 
C,A\,...,A„. The procedure Construct-TAN builds a 
TAN network B that maximizes LL(B : D) and has time 
complexity 0(n2 ■ N). 

The TAN classifier is related to the classifier introduced 
by Chow and Liu [2]. That method learns a different tree 
for each class value. FGG's results show that the TAN and 
Chow and Liu's classifier perform roughly the same. In 
domains where there is substantial differences in the inter- 
actions between attributes for different class values, Chow 
and Liu's method performs better. In others, it is possible 
to learn a better tree by pooling the examples from different 
classes as done by TAN. Although we focus on extending 
the TAN classifier here, all of our ideas easily apply to clas- 
sifiers that learn a different tree for each class value. 

3   GAUSSIAN TAN 
The TAN classifier, as described by FGG, applies only to 
discrete attributes.   In experiments run on data sets with 
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continuous attributes, FGG use the prediscretizion described 
by Fayyad and Irani [7] before learning a classifier. In 
this paper, we attempt to model the continuous attributes 
directly within the TAN network. To do so, we need to learn 
CPDs for continuous attributes. In this section, we discuss 
Gaussian distributions for such CPDs. The theory of training 
such representations is standard (see, for example, [1, 5]). 
We only review the indispensable concepts. 

A more interesting issue pertains to the structure of the 
network. As we shall see, when we mix discrete and contin- 
uous attributes, the algorithms must induce directed trees. 
This is in contrast to the procedure of FGG, which learns 
undirected trees and then arbitrarily chooses a root to define 
edge directions. We describe the procedure for inducing 
directed trees next. 

3.1   THE BASIC PROCEDURE 
We now extend the TAN algorithm for directed trees. This 
extension is fairly straight forward and similar ideas have 
been suggested for learning tree-like Bayesian networks 
[12]. For completeness, and to facilitate later extensions, 
we rederive the procedure from basic principles. Assume 
that we are given a data set D that consists of N identically 
and independently distributed (i.i.d.) instances that assign 
values to A\,...,An and C. Also assume that we have 
specified the class of CPDs that we are willing to consider. 
The objective is, as before, to build a network that maxi- 
mizes the likelihood function LL(B : D) = log PB {D). 

Using Eq. (1) and the independence of training instances, 
it is easy to show that 

LL(B:D)    =    EiE^ilogLi^lPaprO') 

=    EiS{Xi\Ptk{Xi):Li), (2) 

where x{ and Pa(Xt)J' are the values of Xi and Pa(Xj) in the 
j'th instance in D. We denote by S(Xi | Pa(Xj)) the value 
attained by S(Xi | Pa(Xj),Lj) when L* is the optimal 
CPD for this family, given the data, and the set of CPDs 
we are willing to consider (e.g., all tables, or all Gaussian 
distributions). "Optimal" should be understood in terms of 
maximizing the likelihood function in Eq. (2). 

We now recast this decomposition in the special class 
of TAN networks. Recall that in order to induce a TAN 
network, we need to choose for each attribute At at most 
one parent other than the class C. We represent this selection 
by a function n(i), s.t., if ir(i) = 0, then C is the only parent 
of Ait otherwise both A^ and C are the parents of A,. We 
define LL(n : D) to be the likelihood of the TAN model 
specified by it, where we select an optimal CPD for each 
parent set specified by n. Rewriting Eq. (2), we get 

LL(TT : D) 
=   Tli^(i)>oS{Ai\C,AAi)) + 

£^(i)=o^i|C) + S(C|0) 

=   EiMi)>o(S(Ai | C, 4r(i)) - S(Ai | C)) + 

£.S(Aj | C) + S(C | 0) 

=   Ei,w(i)>o(5(^ I C, AAi)) - S{M | O) + c, 
where c is some constant that does not depend on it. Thus, 
we need to maximize only the first term. This maximization 

can be reduced to a graph-theoretic maximization by the 
following procedure, which we call Directed-TAN: 
1. Initialize an empty graph Q with n vertices labeled 

l,...,n. 
2. For each attribute Aj, find the best scoring CPD for 

P(Ai | C) and compute S(Ai \ C). For each Aj with 
j ^ i, if an arc from Aj to Ai is legal, then find the 
best CPD for P{A{ \ C, Aj), compute S(Aj | C,Aj), 
and add to Q an arc j —> i with weight S(Ai | C, Aj) - 
S(At | C). 

3. Find a set of arcs A that is a maximal weighted branching 
in Q. A branching is a set of edges that have at most one 
member pointing into each vertex and does not contain 
cycles. Finding a maximally weighed branching is a 
standard graph-theoretic problem that can be solved in 
low-order polynomial time [6, 17]. 

4. Construct the TAN model that contains arc from C to 
each Ai, and arc from Aj to Aj if j —> i is in A. For each 
Ai, assign it the best CPD found in step 2 that matches 
the choice of arcs in the branching. 

From the arguments we discussed above it is easy to see that 
this procedure constructs the TAN model with the highest 
score. We note that since we are considering directed edges, 
the resulting TAN model might be a forest of directed trees 
instead of a spanning tree. 
Theorem 3.1: The procedure Directed-TAN constructs 
a TAN network B that maximizes LL(B : D) given the 
constraints on the CPDs in polynomial time. 

In the next sections we describe how to compute the op- 
timal 5 for different choices of CPDs that apply to different 
types of attributes. 

3.2   DISCRETE ATTRIBUTES 
Recall that if Aj is discrete, then we model P(Aj | Pa(Aj)) 
by using tables that contain a parameter 0ai|pa(>i;) f°r eacn 

choice of values for Aj and its parents. Thus, 

5(Aj|Pa(Aj))    =    ^logP(aJ | pa(^)J) 
3 

=    N    5Z    P*(ai, pa( Ai)) log öa; |pa(j4 (), 
Oi,pa(>li) 

where P(-) is the empirical frequency of events in the train- 
ing data. Standard arguments show that the maximum like- 
lihood choice of parameters is P(x \ y) = P(x \ y). 
Making the appropriate substitution above, we get a nice 
information theoretic interpretation of the weight of the arc 
fromAjtoA^SCAj | C,Aj)-S{Ai \ C) = N-I{Ai\Aj \ 
C). The /() term is the conditional mutual information be- 
tween Aj and Aj given C [3]. Roughly speaking, it 
measures how much information Aj provides about Aj if 
already know the value of C. In this case, our procedure 
reduces to Construct-TAN of FGG, except that they use 
J(Aj-, Aj | C) directly as the weight on the arcs, while we 
multiply these weights by N. 

3.3   CONTINUOUS ATTRIBUTES 
We now consider the case where X is continuous. There 
are many possible parametric models for continuous vari- 
ables.    Perhaps the easiest one to use is the Gaussian 
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distribution. A continuous variable is a Gaussian with 
mean (i and variance a2 if the pdf of X has the form 

(p(x : ß,cr2) — J—^e 2" • If a" tne parents of a 
continuous Ai are discrete, then we learn a conditional 
Gaussian CPD [11, 15] by assigning to A, different mean 
^a;|pa(^i) and variance cr2„v|pa(yii) f°r eacn joint value of 
its parents. Standard arguments (e.g., see [1]) show that we 
can rewrite S(Ai | Pa(A;)) as a function of E\Aj | pa(Aj)] 
and E[A2 | pa(v4,)]—the expectations of At and A2 in 
these instances of the data where Pa(;4,-) take a particular 
value. Standard arguments also show that we maximize the 
likelihood score of the CPD by choosing 

ßAi\MAi) = E\Ai I Pa(^i)l 

*
2
*IP-(*) = E[A] | pa(A)] - E2[AX | pa(A)] • 

When we learn TAN models in domains with many con- 
tinuous attributes, we also want to have families where one 
continuous attribute is a parent of another continuous at- 
tribute. In the Gaussian model, we can represent such 
CPDs by using a linear Gaussian relation. In this case, 
the mean of At depends, in a linear fashion, on the value 
of Aj. This relationship is parameterized by three parame- 
ters: aAi\AhC,ßAi\Aj<c and a2

A,\AjtC for each valuccof the 
class variable. The conditional probability for this CPD is a 
Gaussian with mean aAi\A tc + AjßAi\Ajtc ar|d variance 
a2Ai\A-,c- Again, by using standard arguments, it is easy to 
show that S(Ai \ Aj,C) is a function of low-order statistics 
in the data, and that the maximal likelihood parameters are 

ßAi\Aj,c 

aAi\Aj,c 

a\ 

ElA^-E^AM 

E[Ai\c]-ßAMi<c*E\Ai 

E[A2 | c] - E2\Ai 
c] 

c - 

{ElAjAM-ElA^ElA^c})2 

E[AJ\c}-E^A}\c] 

In summary, to estimate parameters and to evaluate the 
likelihood, we need only to collect the statistics of each 
pair of attributes with the class, that is, terms of the form 
E[Ai | dj,c] and E[A{Aj | c]. Thus, learning in the case of 
continuous Gaussian attributes can be done efficiently in a 
single pass over the data. 

When we learn TAN models that contain discrete and 
Gaussian attributes, we restrict ourselves to arcs between 
discrete attributes, arcs between continuous attributes, and 
arcs from discrete attributes to continuous ones. If we want 
also to model arcs from continuous to discrete, then we need 
to introduce additional types of parametric models, such as 
logistic regression [1]. As we will show, an alternative 
solution is provided by the dual representation approach 
introduced in this paper. 

3.4   SMOOTHING 
One of the main risks in parameter estimation is overfit- 
ting. This can happen when the parameter in question is 
learned from a very small sample (e.g., predicting Ai from 
values of Aj and of C that are rare in the data). A standard 
approach to this problem is to smooth the estimated param- 
eters. Smoothing ensures that the estimated parameters will 

not be overly sensitive to minor changes in the training data. 
FGG show that in the case of discrete attributes, smoothing 
can lead to dramatic improvement in the performance of the 
TAN classifier. They use the following smoothing rule for 
the discrete case 

a _  iyP(pa(^,))P(n,|pa(/t,)) + .iP(a,) 
Ca,|pa(.4,) - N-P(pa{Ai)) + i> 

where s is a parameter that controls the magnitude of the 
smoothing (FGG use .s = 5 in all of their experiments.) 
This estimate uses a linear combination of the maximum 
likelihood parameters and the unconditional frequency of 
the attribute. It is easy to sec that this prediction biases the 
learned parameters in a manner that depends on the weight 
of the smoothing parameter and the number of "relevant" 
instances in the data. This smoothing operation is similar to 
(and motivated by) well-known methods in statistics such 
as hierarchical Bayesian and shrinkage methods [10]. 

We can think of this smoothing operation as pretending 
that there are s additional instances in which Aj is dis- 
tributed according to its marginal distribution. This imme- 
diately suggests how to smooth in the Gaussian case: we 
pretend that for these additional s samples A,, A2 have the 
same average as what we encounter in the totality of the 
training data. Thus, the statistics from the augmented data 
are 

E[AtlMAi)]      =      N-PirtAy^^.E^ 

E[AUMAi)]      =      ^(MA^E^^EM 

We then use these adjusted statistics for estimating the mean 
and variance of A{ given its parents. The same basic smooth- 
ing method applies for estimating linear interactions be- 
tween continuous attributes. 

4   SEMIPARAMETRIC ESTIMATION 

Parametric estimation methods assume that the data is (ap- 
proximately) distributed according to a member of the given 
parametric family. If the data behaves differently enough, 
then the resulting classifier will degrade in performance. 
For example, suppose that for a certain class c, the attribute 
Ai has bimodal distribution, where the two modes x\ and 
xi are fairly far apart. If we use a Gaussian to estimate the 
distribution of A{ given C, then the mean of the Gaussian 
would be in the vicinity of /i = Xl^T1. Thus, instances 
where Ai has a value near \i would receive a high probabil- 
ity, given the class c. On the other hand, instances where A, 
has a value in the vicinity of either x,\ or x,j would receive a 
much lower probability given c. Consequently, the support 
c gets from Ai behaves exactly the opposite of the way it 
should. It is not surprising that in our experimental results, 
Gaussian TAN occasionally performed much worse than the 
discretized version (see Table 1). 

A standard way of dealing with such situations is to al- 
low the classifier more flexibility in the type of distribu- 
tions it learns. One approach, called semiparamctric esti- 
mation, learns a collection of parametric models. In this 
approach, we model P(Ai | Pa(/i;)) using a mixture of 
Gaussian distributions:   P(Ai  | pa(.A;))  = Ylj'fii^i  '■ 
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M^|pa(J4i),^°'2>i,|pa(>ii),i)
w^i|pa(Ai)j' 

where the parame- 
ters specify the mean and variance of each Gaussian in the 
mixture and w^. |pa(Ai),j aretne weights of the mixture com- 
ponents. We require that the WAi\pa{Ai),j sum up to 1, for 
each value of Pa(^4,). 

To estimate P(Ai \ pa(Aj)), we need to decide on the 
number of mixture components (the parameter j in the equa- 
tion above) and on the best choice of parameters for that mix- 
ture. This is usually done in two steps. First, we attempt to 
fit the best parameters for different number of components 
(e.g., j = 1,2,...), and then select an instantiation for j 
based on a performance criterion. 

Because there is no closed form for learning the pa- 
rameters we need to run a search procedure such as the 
Expectation-Maximization (EM) algorithm. Moreover, 
since EM usually finds local maxima, we have to run it 
several times, from different initial points, to ensure that we 
find a good approximation to the best parameters. This op- 
eration is more expensive than parametric fitting, since the 
training data cannot be summarized for training the mixture 
parameters. Thus, we need to perform many passes over 
the training data to learn the parameters. Because of space 
restrictions we do not review the EM procedure here, and 
refer the reader to [1, pp. 65-73]. 

With regard to selecting the number of components in the 
mixture, it is easy to see that a mixture with k+1 components 
can easily attain the same or better likelihood as any mixture 
with k components. Thus, the likelihood (of the data) alone 
is not a good performance criterion for selecting mixture 
components, since it always favors models with a higher 
number of components, which results in overfitting. Hence, 
we need to apply some form of model selection. The two 
main approaches to model selection are based on cross- 
validation to get an estimate of true performance for each 
choice of fc, or on penalizing the performance on the training 
data to account for the complexity of the learned model. For 
simplicity, we use the latter approach with the BIC/MDL 
penalization. This rule penalizes the score of each mixture 
with ^\-3k, where k is the number of mixture components, 
and N is the number of training examples for this mixture 
(i.e., the number of instances in the data with this specific 
value of the discrete parents). 

Once more, smoothing is crucial for avoiding overfitting. 
Because of space considerations we will not go into the de- 
tails. Roughly speaking, we apply the Gaussian smoothing 
operation described above in each iteration of the EM proce- 
dure. Thus, we assume that each component in the mixture 
has a preassigned set of s samples it has to fit. 

As our experimental results show, the additional flexi- 
bility of the mixture results in drastically improved perfor- 
mance in the cases where the Gaussian TAN did poorly (see, 
for example, the accuracy of the data sets "anneal-U" and 
"balance-scale" in Table 1). In this paper, we learned mix- 
tures only when modeling a continuous feature with discrete 
parents. We note, however, that learning a mixture of linear 
models is a relatively straightforward extension that we are 
currently implementing and testing. 

5   DUAL REPRESENTATION 

The classifiers we have presented thus far require us to make 
a choice. We can either prediscretize the attributes and use 
the discretized TAN, or we can learn a (semi)parametric 
density model for the continuous attributes. Each of these 
methods has its advantages and problems: Discretization 
works well with nonstandard densities, but clearly loses 
much information about the features. Semiparametric esti- 
mation can work well for "well-behaved" multimodal den- 
sities. On the other hand, although we can approximate any 
distribution with a mixture of Gaussians, if the density is 
complex, then we need a large number of training instances 
to learn a mixture with large number of components, with 
sufficient confidence. 

The choice we are facing is not a simple binary one, that 
is, to discretize or not to discretize all the attributes. We can 
easily imagine situations in which some of several attributes 
are better modeled by a semiparametric model, and others 
are better modeled by a discretization. Thus, we can choose 
to discretize only a subset of the attributes. Of course, the 
decision about one attribute is not independent of how we 
represent other attributes. This discussion suggests that we 
need to select a subset of variables to discretize, that is, to 
choose from an exponential space of options. 

In this section, we present a new method, called hybrid 
TAN, that avoids this problem by representing both the con- 
tinuous attributes and their discretized counterparts within 
the same TAN model. The structure of the TAN model deter- 
mines whether the interaction between two attributes is best 
represented via their discretized representation, their con- 
tinuous representation, or a hybrid of the discrete represen- 
tation of one and the continuous representation of the other. 
Our hypothesis is that hybrid TAN allows us to achieve per- 
formance that is as good as either alternative. Moreover, 
the cost of learning hybrid TAN is about the same as that of 
learning either alternative. 

Let us assume, that the first k attributes, A\,...,Ak, 
are the continuous attributes in our domain. We denote by 
A*,..., A*k the corresponding discretized attributes (i.e., A* 
is the discretized version of A\), based on a predetermined 
discretization policy (e.g., using a standard method, such 
as Fayyad and Irani's [7]). Given this semantics for the 
discretized variables, we know that that each A* is a de- 
terministic function of A{. That is, A* state corresponds 
to the interval [x 1,2:2] if and onry if M € [11,3:2]. Thus, 
even though the discretized variables are not observed in the 
training data, we can easily augment the training data with 
the discretized version of each continuous attribute. 

At this stage one may consider the application of one of 
the methods we described above to the augmented training 
set. This, however, runs the risk of "double counting" the 
evidence for classification provided by the duplicated at- 
tributes. The likelihood of the learned model will contain 
a penalty for both the continuous and the discrete versions 
of the attribute. Consequently, during classification, a "sur- 
prising" value of an attribute would have twice the (neg- 
ative) effect on the probability of the class variable. One 
could avoid this problem by evaluating only the likelihood 
assigned to the continuous version of the attributes. Unfor- 
tunately, in this case the basic decomposition of Eq. (2) no 
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longer holds, and we cannot use the TAN procedure. 

5.1    MODELING THE DUAL REPRESENTATION 

Our approach takes advantage of Bayesian networks to 
model the interaction between an attribute and its discretized 
version. We constrain the networks we learn to match our 
model of the discretization, that is, a discretized attribute is 
a function of the continuous one. More specifically, for each 
continuous attribute At, we require that PB{A* \ Ai) = 1 
iff Ai is in the range specified by A*. It is easy to 
show (using the chain rule) that this constraint implies that 
PB{A\,...,An,A],...,Al) = PB(Au...,An) avoiding 
the problem outlined in the previous paragraph. 

Note that by imposing this constraint we are not requiring 
in any way that Ai be a parent of A*. However, we do need 
to ensure that P{A* \ Ai) is deterministic in the learned 
model. We do so by requiring that A{ and A* are adjacent 
in the graph (i.e., one is the parent of the other) and by 
putting restrictions on the models we learn for P(Ai \ A*) 
and P(A* \ Ai). There are two possibilities: 

If Ai —> A*; is in the graph, then the conditional distri- 
bution P{A* I Ai,C) is determined as outlined above; it 
is 1 if Ai is in the range defined by the value of A* and 0 
otherwise. 

If A* —► Ai is in the graph, then we require that 
P(Ai | A* ,C) = 0 whenever Ai is not in the range spec- 
ified by A*. By Bayes rule P(A* | A{) oc £c P(A{ \ 
A*,C)P(A*,C); Thus, if A{ is not in the range of A', 
then P(A* \ Ai) oc £c° x p(AhQ = 0. Since the 
conditional probability of A* given Ai must sum to 1, we 
conclude that P(A* | A{) = 1 iff Ai is in the range of A*. 

There is still the question of the form of P(Ai \ A*,C). 
Our proposal is to learn a model for At given A* and C, using 
the standard methods above (i.e., a Gaussian or a mixture 
of Gaussians). We then truncate the resulting density on 
the boundaries of the region specified by the discretization, 
and we ensure that the truncated density has total mass 1 by 
applying a normalizing constant. In other words, we learn 
an unrestricted model, and then condition on the fact that 
Ai can only take values in the specified interval. 

Our goal is then to learn a TAN model that includes both 
the continuous and discretized versions of each continuous 
attribute, and that satisfies the restrictions we just described. 
Since these restrictions are not enforced by the procedure of 
Section 3.1, we need to augment it. We start by observing 
that our restrictions imply that if we include B —» A in the 
model, we must also include A —> A*. To see this, note that 
since A already has one parent (B) it cannot have additional 
parents. Thus, the only way of making A and A* adjacent 
is by adding the edge A —+ A*. Similarly, if we include the 
edge B —> A*, we must also include A* —> A. 

This observation suggests that we consider edges between 
groups of variables, where each group contains both versions 
of an attribute. In building a TAN structure that includes 
both representations, we must take into account that adding 
an edge to an attribute in a group, immediately constraints 
the addition of other edges within the group. Thus, the TAN 
procedure should make choices at the level groups. Such a 
procedure, which we call hybrid-TAN is described next. 

©   ©: ;®   © 

(a) (b) (c)  

Figure 2: The three possible ways of placing an edge from {B, B'} 
into {-4, A"). The parameterization of possible arcs arc as follows: 
B' —> A' is a discrete model, both B" —► A and B -> A 
are continuous models (e.g., Gaussians), A' —> A is a truncated 
continuous model (e.g., truncated Gaussian), and A —> A' is a 
deterministic model. 

5.2   HYBRID-TAN 
We now expand on the details of the procedure. As with 
the basic procedure, we compute scores on edges. Now, 
however, edges are between groups of attributes. Each group 
consisting of the different representations of an attribute. 

Let A be a continuous attribute. By our restriction, either 
A G Pa(i4*), or A* € Pa(.4). And since each attribute has 
at most one parent (in addition to the class C), we have that at 
most one other attribute is in Pa(.4)UPa(j4*)- {A, A* ,C). 
We define a new function T(A \ B) that denotes the best 
combination of parents for A and A* such that either B or 
B* is a parent of one of these attributes. Similarly, T(A | 0) 
denotes the best configuration such that no other attribute is 
a parent of A or A*. 

First, consider the term T(A | 0). If we decide that 
neither A nor A* have other parents, then we can freely 
choose between A —> A* and A* —» A. Thus 

T(A\9)=   max(    S(A \ C,A*) + S(A* | C), 
S(A\C) + S(A*\C,A)), 

where S{A | C,A*) and S{A* \ C,A) arc the scores of 
the CPDs subject to the constraints discussed in Subsec- 
tion 5.1 (the first is a truncated model, and the second is a 
deterministic model). 

Next, consider the case that a continuous attribute B is 
a parent of A. There are three possible ways of placing an 
edge from the group {B, B*} into the group {,4, A*}. These 
cases are shown in Figure 2. (The fourth case is disallowed, 
since we cannot have an edge from the continuous attribute, 
B to the discrete attribute, A*.) It is easy to verify that in 
any existing TAN network, we can switch between the edge 
configurations of Figure 2 without introducing new cycles. 
Thus, given the decision that the group B points to the group 
A, we would choose the configuration with maximal score: 

T(A\B)=   max(    S(A\C,B*) +S(A* \C,A), 
S(A\C,A*) + S(A* \C,B*), 
S{A\C,B) + S(A* \C,A)) 

Finally, when B is discrete, then T(A \ B) is the maximum 
between two options (B as a parent of A or as a parent of 
B*), and when A is discrete, then T(A \ B) is equal to one 
term (either S(A | C, B) or S(A | C,B*), depending on 
JB'S type). 

Wc now define the Hybrid-TAN procedure: 
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Figure 3: A hybrid TAN model learned for the data set "glass2." For clarity, the edges from the class to all the attributes are not shown. 
The attributes marked with asterisks (*) correspond to the discretized representation. Dotted boxes mark two versions of the same 
attribute. 

Mixture Hybrid Training Data 

Figure 4: Differences in the modeling of the interaction between attributes, for mixtures of Gaussians and the hybrid model. The graphs 
show the interaction between Calcium (C) and Magnesium (M) in the "glass2" data set, given a specific value of the class. 

1. Initialize an empty graph Q with n vertices labeled 
l,...,ra. 

2. For each attribute Ai, compute the scores of the form 
S(Ai | C), S(A* | C), S(Ai | C,A*), etc. For each 
Aj with j T^ i, add to Q an arc j —* i with weight 
T(Ai\Aj)-T(Ai\9). 

3. Find a maximal weighted branching A in Q. 
4. Construct the TAN model that contains edges from C to 

each Ai and ^4*. If j —> i is in A, add the best configu- 
ration of edges (and the corresponding CPDs) from the 
group Aj into Ai. Hi does not have an incoming arc in 
A, then add the edge between Ai and A\ that maximizes 
T(Ai : 0). 

It is straight forward to verify that this procedure performs 
the required optimization: 
Theorem 5.1: The procedure Hybrid-TAN constructs in 
polynomial time a dual TAN network B that maximizes 
LL(B : D), given the constraints on the CPDs and the 
constraint that Ai and A* are adjacent in the graph. 

5.3   AN EXAMPLE 
Figure 3 shows an example of a hybrid TAN model learned 
from one of the folds of the "glass2" data set.1 It is instruc- 
tive to compare it to the network in Figure 1, which was 
learned by a TAN classifier based on mixtures of Gaussians 
from the same data set. As we can see, there are some 
similarities between the networks, such as the connections 
between "Silicon" and "Sodium," and between "Calcium" 
and "Magnesium" (which was reversed in the hybrid ver- 
sion).   However, most of the network's structure is quite 

'Some of the discrete attributes do not appear in the figure, 
since they were discretized into one bin. 

different. Indeed, the relation between "Magnesium" and 
"Calcium" is now modulated by the discretized version of 
these variables. This fact, and the increased accuracy of hy- 
brid TAN for this data set (see Table 1), seem to indicate that 
in this domain attributes are not modeled well by Gaussians. 

As a further illustration of this, we show in Figure 4 the 
estimate of the joint density of "Calcium" and "Magnesium" 
in both networks (given a particular value for the class), as 
well as the training data from which both estimates were 
learned. As we can see, most of the training data is centered 
at one point (roughly, when M = 3.5 and C — 8), but 
there is fair dispersion of data points when M = 0. In the 
Gaussian case, C is modeled by a mixture of two Gaussians 
(centered on 8.3 and 11.8, where the former has most of 
the weight in the mixture), and M is modeled as a linear 
function of C with a fixed variance. Thus, we get a sharp 
"bump" at the main concentration point on the low ridge in 
Figure 4a. On the other hand, in the hybrid model, for each 
attribute, we model the probability in each bin by a truncated 
Gaussian. In this case, C is partitioned into three bins and 
M into two. This model results in the discontinuous density 
function we see in Figure 4b. As we can see, the bump 
at the center of concentration is now much wider, and the 
whole region of dispersion corresponds to a low, but wide, 
"tile" (in fact, this tile is a truncated Gaussian with a large 
variance). 

6   EXPERIMENTAL EVALUATION 
We ran our experiments on the 23 data sets listed in Table 1. 
All of these data sets are from the UCI repository [16], and 
are accessible at the MLC+-1- ftp site. The accuracy of 
each classifier is based on the percentage of successful pre- 
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Figure 5: Scatter plots comparing the performance (a) of Disc (x axis) vs. Mix (y axis), (b) of H/Mix (x axis) vs. Disc and Mix (y axis), 
and (c) of H/Mix (x axis) vs. H/Mix-FS (y axis). In these plots, each point represents a data set, and the coordinates correspond to the 
prediction error of each of the methods compared. Points below the diagonal line correspond to data sets where the y axis method is 
more accurate, and points above the diagonal line correspond to data sets where the x axis method is more accurate. In (b), the dashed 
lines connect points that correspond to the same data set. 

dictions on the test sets of each data set. We estimate the 
prediction accuracy of each classifier as well as the variance 
of this accuracy by using the MLC++ system [14]. Ac- 
curacy was evaluated using 5-fold cross validation (using 
the methods described in [13]). Since we do not currently 
deal with missing data, we removed instances with missing 
values from the data sets. To construct discretizations, we 
used a variant of the method of Fayyad and Irani [7], using 
only the training data, in the manner described in [4]. These 
preprocessing stages were carried out by the MLC++ sys- 
tem. We note that experiments with the various learning 
procedures were carried out on exactly the same training 
sets and evaluated on exactly the same test sets. 

Table 1 summarizes the accuracies of the learning proce- 
dures we have discussed in this paper: (1) Disc-TAN clas- 
sifier based on prediscretized attributes; (2) Gauss-TAN 
classifier using Gaussians for the continuous attributes and 
multinomials for the discrete ones; (3) Mix-TAN classifier 
using mixtures of Gaussians for the continuous attributes; 
(4) H/Gauss-hybrid TAN classifier enabling the dual repre- 
sentation and using Gaussians for the continuous version of 
the attributes; (5) H/Mix-hybrid TAN classifier using mix- 
tures of Gaussian for the continuous version of the attributes; 
and (6) H/Mix-FS-same as H/Mix but incorporating a prim- 
itive form of feature selection. The discretization procedure 
often removes attributes by discretizing them into one inter- 
val. Thus, these attributes are ignored by the discrete version 
of TAN. H/Mix-FS imitate this feature selection by also ig- 
noring the continuous version of the attributes removed by 
the discretization procedure. 

As we can see in Figure 5(a), neither the discrete TAN 
(Disc) nor the mixture of Gaussians TAN (Mix) outper- 
forms the other. In some domains, such as "anneal-U" and 
"glass," the discretized version clearly performs better; in 
others, such as "balance-scale," "hayes-roth," and "iris," the 
semiparametric version performs better. Note that the latter 
three data sets are all quite small. So, a reasonable hypothe- 
sis is that the data is too sparse to learn good discretizations. 

On the other hand, as we can see in Figure 5(b), the hybrid 
method performs at roughly the same level as the best of 
either Mix or Disc approaches. In this plot, each pair of 
connected points describes the accuracy results achieved by 
Disc and Mix for a single data set. Thus, the best accuracy of 
these two methods is represented by the lower point on each 
line. As we can see, in most data sets the hybrid method 
performs roughly at the same level as these lower points. In 
addition, in some domains such as "glass2," "hayes-roth," 
and "hepatitis" the ability to model more complex interac- 
tions between the different continuous and discrete attributes 
results in a higher prediction accuracy. Finally, given the 
computational cost involved in using EM to fit the mixture 
of Gaussians we include the accuracy of H/Gauss so that 
the benefits of using a mixture model can be evaluated. At 
the same time, the increase in prediction accuracy due to 
the dual representation can be evaluated by comparing to 
Gauss. 

Due to the fact that H/Mix increases the number of pa- 
rameters that need to be fitted, feature selection techniques 
are bound to have a noticeable impact. This is evident 
in the results obtained for H/Mix-FS which, as mentioned 
above, supports a primitive form of feature selection (see 
Figure 5(c)). These results indicate that we may achieve bet- 
ter performance by incorporating a feature selection mech- 
anism into the classifier. We leave this as a topic for future 
research. 

7   CONCLUSIONS 
The contributions of this work are twofold. First, we extend 
the TAN classifier to directly model continuous attributes by 
parametric and semiparametric methods. We use standard 
procedures to estimate each of the conditional distributions, 
and then combine them in a structure learning phase by 
maximizing the likelihood of the TAN model. The resulting 
procedure preserves the attractive properties of the original 
TAN classifier—we can learn the best model in polynomial 
time. Of course, one might extend TAN to use other para- 



Bayesian Network Classification with Continuous Attributes       187 

Table 1: Experimental Results. The first four column describe the name of the data sets, the number of continuous and discrete attributes, 
and the number of instances. The remaining columns report percentage classification error and std. deviations from 5-fold cross validation 
of the tested procedures (see text). 

Attr. Prediction Errors 
Data set C D Size Disc Gauss Mix H/Gauss H/Mix H/Mix-FS 
anneal-U 6 32 898 2.45 +-1.01 23.06 +- 3.49 7.46+-3.12 10.91 +-1.79 4.12+-1.78 4.34+-1.43 
australian 6 8 690 15.36 +- 2.37 23.77 +- 3.26 18.70+-4.57 17.10+-2.83 16.23+-2.38 15.80+-1.94 
auto 15 10 159 23.93 +- 8.57 28.41 +- 10.44 29.03 +- 10.04 27.10+-8.12 26.47 +- 8.44 21.41 +- 4.27 
balance-scale 4 0 625 25.76 +- 7.56 11.68+-3.56 9.60+-2.47 11.84+-3.89 13.92+-2.16 13.92+-2.16 
breast 10 0 683 3.22+1.69 5.13+-1.73 3.66+-2.13 3.22 +-1.69 4.34+-1.10 4.32 +- 0.96 
carsl 7 0 392 26.52 +- 2.64 25.03+-7.11 26.30 +- 4.44 25.28 +- 6.54 24.27 +- 7.85 25.79 +- 6.21 
cleve 6 7 296 18.92+-1.34 17.23+-1.80 16.24+-3.97 16.24+-3.97 15.89+-3.14 16.23+-3.58 
crx 6 9 653 15.01 +-1.90 24.05 +- 4.44 19.76+-4.04 17.31 +- 1.60 15.47+-1.87 15.47+-2.09 
diabetes 8 0 768 24.35 +- 2.56 25.66 +- 2.70 24.74+-3.74 22.65 +- 3.21 24.86 +- 4.06 24.60 +- 3.45 
echocardiogram 6 1 107 31.82+-10.34 28.23 +-13.86 30.13+-14.94 29.18+-14.05 29.18+-14.05 30.95+-11.25 
flare 2 8 1066 17.63 +- 4.19 17.91 +- 4.34 17.63 +- 4.46 17.91 +- 4.34 17.63 +- 4.46 17.63 +- 4.19 
german-org 12 12 1000 26.30 +- 2.59 25.30 +- 2.97 25.60+-1.39 25.70 +- 3.47 25.20 +-1.75 26.60+-2.27 
german 7 13 1000 26.20+-4.13 25.20+-2.51 24.60+-1.88 25.10+-2.07 25.30+-3.33 25.70+-4.40 
glass 9 0 214 30.35 +- 5.58 49.06 +- 6.29 48.13+-8.12 32.23 +- 4.63 31.30+-5.00 33.16+-5.65 
glass2 9 0 163 21.48 +- 3.73 38.09+-7.92 38.09 +- 7.92 34.39 +- 9.62 31.27+-9.63 23.30+-6.22 
hayes-roth 4 0 160 43.75 +- 4.42 33.12+-11.40 31.88+-6.01 29.38 +- 10.73 18.75+-5.85 14.38 +- 4.19 
heart 13 0 270 16.67+-5.56 15.56+-5.65 15.19 +- 5.46 15.19 +- 3.56 17.41+-4.65 15.93+-5.34 
hepatitis 6 13 80 8.75 +- 3.42 12.50+-4.42 10.00 +- 3.42 12.50+-7.65 10.00+-5.59 11.25+-5.23 
ionosphere 34 0 351 7.70+-2.62 9.13+-3.31 9.41 +- 2.98 6.85 +- 3.27 6.85 +- 3.27 7.13+-3.65 
iris 4 0 150 6.00 +-2.79 2.00+-2.98 2.00 +- 2.98 4.67+-1.83 4.67+-1.83 4.67+-1.83 
liver-disorder 6 0 345 41.16+-1.94 40.29+-5.16 33.33+-4.10 36.52 +- 7.63 30.43 +- 5.12 41.74+-2.59 
pima 8 0 768 24.87 +- 2.82 24.35+-1.45 24.35 +- 3.47 22.92 +- 3.96 25.52 +- 2.85 24.48 +- 2.87 
post-operative 1 7 87 29.74 +-13.06 34.38 +- 10.09 30.98+-11.64 34.38 +-10.09 30.98+-11.64 29.74+-13.06 

metric families (e.g., Poisson distributions) or other semi- 
parametric methods, (e.g., kernel-based methods). The gen- 
eral conclusion we draw from these extensions is that if the 
assumptions embedded in the parametric forms "match" the 
domain, then the resulting TAN classifier generalizes well 
and will lead to good prediction accuracy. We also note 
that it is straightforward to extend the procedure to select, 
at learning time, a parametric form from a set of parametric 
families. 

Second, we introduced a new method to deal with differ- 
ent representations of continuous attributes within a single 
model. This method enables our model learning procedure 
(in this case, TAN) to automate the decision as to which rep- 
resentation is most useful in terms of providing information 
about other attributes. As we showed in our experiments, 
the learning procedure managed to make good decisions on 
these issues and achieve performance that roughly as good 
as both the purely discretized and the purely continuous 
approaches. 

This method can be extended in several directions. For 
example, to deal with several discretizations of the same 
attributes in order to select the granularity of discretization 
that is most useful for predicting other attributes. Another 
direction involves adapting the discretization to the particu- 
lar edges that are present in the model. As argued Friedman 
and Goldszmidt [9], it is possible to discretize attributes to 
gain the most information about the neighboring attributes. 
Thus, we might follow the approach in [9] and iteratively 
readjust the structure and discretization to improve the score. 
Finally, it is clear that this hybrid method is applicable not 
only to classification, but also to density estimation and 
related tasks using general Bayesian networks. We are cur- 
rently pursuing these directions. 
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Abstract 

Support Vector Machines work by mapping 
training data for classification tasks into a 
high dimensional feature space. In the fea- 
ture space they then find a maximal margin 
hyperplane which separates the data. This 
hyperplane is usually found using a quadratic 
programming routine which is computation- 
ally intensive, and is non trivial to imple- 
ment. In this paper we propose an adap- 
tation of the Adatron algorithm for clas- 
sification with kernels in high dimensional 
spaces. The algorithm is simple and can 
find a solution very rapidly with an exponen- 
tially fast rate of convergence (in the number 
of iterations) towards the optimal solution. 
Experimental results with real and artificial 
datasets are provided. 

Keywords: Support Vector Machine, Large Margin Clas- 
sifier, Adatron, Statistical Mechanics 

1    INTRODUCTION 

Support Vector (SV) machines are an algorithm in- 
troduced by Vapnik and co-workers [5, 4] theoretically 
motivated by VC theory. They are based on the fol- 
lowing idea: input points are mapped to a high dimen- 
sional feature space, where a separating hyperplane 
can be found. The algorithm is chosen in such a way 
to maximize the distance from the closest patterns, a 
quantity which is called the margin. 

This is achieved by reducing the problem to a 
quadratic programming problem, which is then usu- 
ally solved with optimization routines from numerical 
libraries. This step is computational intensive, can be 

subject to stability problems and it is non trivial to 
implement. 

SV machines have a proven impressive performance on 
a number of real world problems such as optical char- 
acter recognition and face detection [5, 6,19,17]. How- 
ever, their uptake has been limited in practice because 
of the mentioned problems with the current training 
algorithms. 

An analogous problem has been studied in the Statis- 
tical Mechanics literature, which has produced a num- 
ber of perceptron learning procedures aimed at find- 
ing maximal margin hyperplanes in the input space 
[11, 15, 13]. For some of them also theoretical guaran- 
tees are provided, as in the case of Adatron [2], where 
not only the convergence toward the optimal solution 
has been proved, but also an exponential rate of con- 
vergence in the number of iterations. 

We propose a "hybrid" algorithm, the Kernel-Adatron 
(KA), which combines the implementational simplicity 
of Adatron with the capability of working in nonlin- 
ear feature spaces as SV machines do. By introducing 
Kernels into the algorithm it is possible to maximize 
the margin in the feature space, which is equivalent 
to nonlinear decision boundaries in the input space. 
The algorithm comes with all the theoretical guaran- 
tees given by VC theory for large margin classifiers, 
as well as the convergence properties studied in the 
Statistical Mechanics literature. 

The result is a fast, robust and extremely simple proce- 
dure which implements the same ideas and principles 
as SV machines at much smaller cost. Experimental 
results are provided which show that indeed the pre- 
dictive power of our algorithm is equivalent to that of 
a SV machine. Furthermore, we show that the running 
time can be orders of magnitude faster. 
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2    SUPPORT VECTOR MACHINES 

Support Vector (SV) machines implement complex 
(nonlinear) decision rules in terms of hyperplanes in 
high dimensional spaces and were originally introduced 
by Vapnik and co-workers [24, 5, 10]. 

The decision function realized by SV machines can 
conceptually be described in two steps: first the train- 
ing points are mapped by a nonlinear function <j> to 
a high-dimensional space where they are linearly sep- 
arable. Then a separating hyperplane is found which 
maximizes its distance from the training set, called the 
margin. 

Theoretical results exist from VC theory [24, 21], 
which guarantee that such solution has high predic- 
tive power, in the sense that it minimizes an upper 
bound on the test error (a complete survey covering 
the generalization power of SV machines can be found 
in [3]). 

Let S = {(x1,yi),(x2,y2),—,{xp,yP)} be a sample of 
points Xi 6 X labelled by yi £ {—1,+1}. 

Consider a hyperplane defined by (w,6), where w is a 
weight vector and 6 a threshold value. Let S = (X, Y) 
a labeled sample of inputs from X that has empty 
intersection with the hyperplane, so that 

e(m,7) = i(Hog(^)log(32m) + log(^)) 

where k= [577R2/j2\. 

The quantity which upper bounds the generalization 
error does not depend on the dimension of the input 
space, and this is the theoretical reason why SV ma- 
chines can use high dimensional spaces without over- 
fitting. 

Two main ideas (data-dependent representation and 
kernels) make it possible to efficiently deal with very 
high dimensional feature spaces. 

The first is based on the identity: 

N p 

^Wifatx) + 0 = ^2 ak<l>(xk)<t>(x) + 9 
i=l fc=l 

which provides an alternative, data-dependent, repre- 
sentation of the hypothesis itself, and the other is the 
use of kernels: 

tf(x',x) = ]T &(*')&(*) 

7 = min | (x, w) + 6\ > 0 

We call this distance the margin of the hyperplane w 
with respect to the sample S. 

We also say that the hyperplane is in canonical form 
with respect to the sample if 

min \(x,w) +6\ = 1 

which are equivalent to computing the dot product 
of the images of two vectors in the feature space [1], 
provided some (nontrivial) conditions are satisfied. 

A common choice are Radial Basis Functions (RBF) 
such as gaussians, 

*:(*,*') = e-n*-*'ii2/2*2 

or polynomial kernels 

It is possible to prove that for canonical hyperplanes K(x,x') = {(x,x') + l)d 

7 = l/|Hl2 

The following theorem holds: 

Theorem: [21] Suppose inputs are drawn indepen- 
dently according to a distribution whose support is 
contained in a ball in 3fn centered at the origin, of ra- 
dius R. If we succeed in correctly classifying m such 
inputs by a canonical hyperplane with ||w|| = I/7 and 
|0| < R, then with confidence 1 - S the generalization 
error will be bounded from above by 

which satisfy such conditions. 

The use of the kernels instead of the dot product, 
in the data-dependent representation of the decision 
function, automatically provides a way to represent 
hyperplanes in a feature space rather than in the in- 
put space, as first described in [1]. 

The second conceptual step, aimed at finding the large 
margin hyperplane, is performed in SV machines by 
trasforming the problem into a Quadratic Program- 
ming one, subject to linear constraints. 
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Kuhn-Tucker theory [24] provides the framework un- 
der which the problem can be solved and gives the 
properties of the solution. 

In the data-dependent representation, the lagrangian 

p v 

t=i x,j'=l 

has to be maximized with respect to the a*, subject to 
the constraints 

(Xi>0 Yl^i 
i=i 

This formulation has a number of interesting proper- 
ties, characterizing the behaviour of the optimal hy- 
perplane. 

There is a Lagrange multiplier a, for each training 
point. Only the points which lie closest to the hy- 
perplane, (on parallel hyperplanes at distance 7 from 
the optimal one) have a* > 0 and are called support 
vectors. All the others have a* = 0. 

This means that in the representation of the solution, 
only the points which are closest to the hyperplane 
contribute: in fact they represent the hypothesis it- 
self, (and their number can also be used to give an 
independent bound on its reliability [3]). 

The resulting decision function can be written as: 

f(x) = sign I ^ Vi<x°iK(x, xt) - 6 \ 
\t€SV / 

where a° is the solution of the constrained maximiza- 
tion problem and SV represents the (indexes of) sup- 
port vectors. 

Such a scheme has proved to be very resistent to over- 
fitting in many classification problems [19, 6, 24]. How- 
ever this scheme is non trivial to implement, and com- 
putationally expensive. Furthermore, in some condi- 
tions, it can suffer from numerical conditioning prob- 
lems. 

It is interesting to note that other algorithms which 
were developed with different motivations have been 
shown to use a similar technique, equivalent to map- 
ping points to a high dimensional feature space and 
separating them with a large margin hyperplane. This 
is the case for Adaboost [18], and for Bayesian Clas- 
sifiers [7] where the margin distribution over all the 

training set is used as an estimator, rather than the 
margin. 

This is justified by a theorem from Schapire et al. 
[18] proving that the fraction of training points which 
are classified with large margin controls the predictive 
power, and that valid generalization can be guaran- 
teed even when few points lie near the boundary and 
hence the margin of the sample is small. 

3 THE KERNEL-ADATRON (KA) 
ALGORITHM 

In the Statistical Mechanics approach to learning [25], 
a very similar problem has been studied, with different 
motivations. The "perceptron with optimal stability" 
has been the object of extensive theoretical and exper- 
imental work, [15, 11, 2], and a number of simple iter- 
ative procedures have been proposed, aimed at finding 
hyperplanes which have "optimal stability" or - in our 
terms - maximal margin. 

One of them, the Adatron, comes with theoretical 
guarantees of convergence to the optimal solution, and 
of a rate of convergence exponentially fast in the num- 
ber of iterations [2,15], provided that a solution exists. 

We demonstrate that such models can be adapted, 
with the introduction of kernels, to operate in a high- 
dimensional feature space, and hence to learning non- 
linear decision boundaries. This provides a procedure 
which emulates SV machines but doesn't need to use 
the quadratic programming toolboxes. 

In this section we will briefly sketch the Adatron algo- 
rithm, and we will list the theoretical results which can 
be proved for it (in the Statistical Mechanics frame- 
work), pointing to the relevant papers for the proofs 
of the theorems. Finally we will show how it is pos- 
sible to introduce the kernels. The next section will 
be devoted to experimental comparisons between KA 
and SV machine, and to benchmarking. 

The Adatron is a an on-line algorihm for learning 
perceptrons which has an attractive fixed point cor- 
responding to the maximal-margin consistent hyper- 
plane, when this exists. 

By writing the Adatron in the data-dependent repre- 
sentation, and by substituting the dot products with 
kernels, we obtain the following algorithm: 
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The Kernel-Adatron Algorithm.  

1. Initialise a, = 1. 

2. Starting from pattern i = 1, for labeled points 
(xi,yi) calculate zt = yi Yfj=.i ajVjK(xi^xj)- 

3. For all patterns i calculate 7« = y%Zi and execute 
steps 4 to 5 below. 

4. Let Sa* = 77(1 - 7*) be the proposed change to the 
multipliers a*. 

5.1. If (a* + Sot*) < 0 then the proposed change to 
the multipliers would result in a negative a1. Conse- 
quently to avoid this problem we set a% = 0. 

5.2 If (a* + Sot1) > 0 then the multipliers are updated 
through the addition of the Sa% i.e. a1 <— a1 + 8a%. 

6. Calculate the bias b from 

b = - (min (*<+) + max (zt )) 

where zf are those patterns i with class label +1 and 
zj are those with class label — 1. 

7. If a maximum number of presentations of the pat- 
tern set has been exceeded then stop, otherwise return 
to step 2. 

The kernel K(x,x') can be any function satisfying 
Mercer's condition, in particular it is possible to use 
RBF or polynomial kernels given in section 2. 

Important Remarks 

Using results reported in the Statistical Mechanics lit- 
erature, the following important properties of the Ada- 
tron can be derived: 

1. (Anlhauf and Biehl [2]) Every stable point for 
the Adatron algorithm is a maximal margin point and 
vice versa. 

Proof Sketch 

By inserting the Kuhn-Tucker conditions for the max- 
imal margin («j > 0 — 7» = 1, on = 0 - 7* > 1) 
in the Adatron updating rule it follows that the opti- 
mal margin is a fixed point. Vice versa by imposing 
Scti = 0 Vi the Kuhn-Tucker conditions are obtained. 

2. (Anlhauf and Biehl [2]) The algorithm converges 
in a finite number of steps to a stable point if a solution 
exists. 

Proof Sketch The functional 

f   

L = ^2,ai- l/2'Yll<Xi<X}ViVj(xiixi) 
i=l «J 

can be shown to be upper bounded, and to increase 
monotonically at each updating step of the Adatron. 
So it has to find a fixed point in a finite number of 
steps. 

3. (Opper [16], [15]) The rate of convergence to 
the optimal solution follows an exponential law in the 
number of iterations. 

The proof makes use of replica calculations from Sta- 
tistical Mechanics (and the standard assumptions of 
that model [25]). 

Note: The convergence proof relies on an adequate 
choice of 77, which also controls the speed of the con- 
vergence itself. The issues regarding the choice of n 
cannot be discussed here for lack of space, but we ob- 
serve that the theory provides an interval within which 
a valid n can be chosen. Results will be presented else- 
where. 

4    EXPERIMENTAL RESULTS 

We have evaluated the performance of the KA algo- 
rithm with gaussian kernels on a number of standard 
classification datasets, both artificial and real. The 
artificial datasets include the two-spirals problem [8], 
n-parity [14], mirror symmetry [14]. The real world 
data include the sonar classification problem [9], the 
Wisconsin breast cancer dataset [23] and a database of 
handwritten digits collected by the US Postal Service 
[12]. 

4.1    THE TWO SPIRALS PROBLEM AND 
n-PARITY 

For the two spirals problem the task is to discriminate 
between two sets of points which lie in two spirals in 
a plane. 

The solution found by the KA algorithm is illustrated 
in Figure 2 and compared with the solution provided 
by a kernel-perceptron, i.e. a generic hyperplane in 
the feature space (Fig. 1). 

The diagrams present different decision functions; in 
the kernel-perceptron's case the small margin yields a 
highly non smooth boundary while for the KA algo- 
rithm a smooth and centered solution has been found. 
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Useful insight about the differences between these two 
learning machines can be obtained by observing the 
margin distribution graphs in Fig. 3, which present the 
cumulative distribution of the margins of all individual 
training points, i.e. the fraction of patterns (vertical 
axis) which have a margin larger than a given value 
8 (horizontal axis). It is interesting to note that the 
effect on the margin distribution of the training in KA 
is similar to the one in Adaboost, discussed in [18]. 

The solution for the n-parity problem [14], which is 
hard to separate for neural networks, was found in 1 
epoch for n = 3 and n = 6, while it took respectively 
3 and 5 epochs to maximise the margin. 

Figure 1:   Kernel-Perceptron (small margin) clearly 
overfits 
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Figure 2:   Kernel-Adatron learns a much smoother 
boundary 
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Figure 3: Cumulative margin distribution for kernel- 
perceptron and for KA. Note the scaling of the mar- 
gins: we denote with 100 the null margin (points on 
the boundary). 

4.2    MIRROR SYMMETRY 

In the mirror symmetry problem [14] the output y is 
a 1 if the input pattern x (with components from {-1, 
+1}) is exactly symmetrical about its centre, other- 
wise the output is a —1. For randomly constructed 
input strings the output would be a —1 with a high 
probability. Consequently the labels ±1 are selected 
with a 50% probability and the first half of the input 
string is randomly constructed from components in {- 
1,-1-1} (both selected with a 50% probability) and the 
second half of the string is symmetrical or random de- 
pending on the target value given. Generalisation was 
evaluated using a test set drawn from the same distri- 
bution (eliminating any instances for which the input 
string is identical to a member of the training set). 

In Figure 4 we plot the generalisation error on the 
test set (100,000 examples including repetitions) ver- 
sus a for the KA algorithm trained to 200 epochs with 
j] = 1.0. 200 training examples were used with in- 
put strings consisting of 30 components. The gen- 
eralisation error passes through a mimimum between 
cr = 4 — 5 with a maximum generalisation of 95.1%. 
To compare with other algorithms in a machine inde- 
pendent way we have implemented all algorithms in 
MATLAB (using its optimization toolbox) and esti- 
mated the individual speeds using FLOPS (Table 1). 
We see that the KA algorithm is substantially faster 
that Support Vector machines while also having a com- 
parable generalisation performance to the latter (TR 
is the number training errors, TS the number of test 
errors on a set of 100 patterns). It also performs much 
better than /c-nearest neighbour (fcNN) on the test set. 
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Alg. EP. a TR. TS. FLOPS 
kNN(k=l) - - 0 25 0 
kNN(k=7) - - 0 22 0 
SVM - 3.5 0 3 0.173 xl0a 

SVM - 4.2 0 2 0.318 xl0y 

SVM - 5.0 0 5 0.694 xl0a 

KA 10 3.5 0 4 1210000 
KA 10 4.2 0 5 1210000 
KA 10 5.0 0 6 1210000 
KA 100 3.5 0 3 12100000 
KA 100 4.2 0 3 12100000 
KA 100 5.0 0 4 12100000 
KA 250 3.5 0 3 30250000 
KA 250 4.2 0 4 30250000 
KA 250 5.0 0 5 30250000 

Table 1: comparison for mirror symmetry 

4.3    SONAR CLASSIFICATION 

The sonar classification problem of Gorman and Se- 
jnowski [9] consists of 208 instances formed by 60 
analogue inputs, representing returns from a roughly 
cylindrical rock or a metal cylinder, equally divided 
into training and test sets. For the aspect-angle de- 
pendent dataset [9] they trained a standard back- 
propagation neural network with 60 inputs and 2 out- 
put nodes. Experiments were performed with up to 
24 hidden nodes and each neural network was trained 
with 300 epochs through the training set. Their results 
are reproduced in Table 2. 

Figure 4:   Generalisation error (vertical axis) vs.   a 
(horizontal axis): mirror symmetry problem 

# hidden 0 2 3 6 12 24 
% gen. 73.1 85.7 87.6 89.3 90.4 89.2 

Table 2: Gorman and Sejnowki results for sonar 

For the KA algorithm we plot a against generalisation 

error in Figure 5 and the best generalisation perfor- 
mance is 95.2% by comparison. The KA algorithm is 
also very fast. Figure 6 illustrates the approach of the 
margin towards 1 (for a = 1.0 and r\ — 1.0). The train- 
ing error fell to 0 in the second epoch (it was 0.077 at 
the end of the first epoch). We also show the generali- 
sation error versus number of epochs (Figure 7). As for 
mirror symmetry we give a comparison with Support 
Vector Machines in Table 3. 

Alg. EP. <T TR. TS. FLOPS 
kNN(k=l) - - 0 10 0 
kNN(k=3) - - 0 19 0 
SVM - 0.57 0 8 3.476 xl0a 

SVM - 0.71 0 7 6.750 xl0a 

SVM - 0.85 0 7 8.878 xl0y 

KA 10 0.57 0 6 329680 
KA 10 0.71 0 9 329680 
KA 10 0.85 0 8 329680 
KA 100 0.57 0 6 3296800 
KA 100 0.71 0 6 3296800 
KA 100 0.85 0 7 3296800 
KA 250 0.57 0 6 8242000 
KA 250 0.71 0 6 8242000 
KA 250 0.85 0 7 8242000 

4.4 

Table 3: comparison for sonar classification 

WISCONSIN BREAST CANCER 
DATASET 

The Wisconsin breast cancer dataset contains 699 pat- 
terns with 10 attributes for a binary classification task 
(the tumour is malignant or benign). 

This dataset has been extensively studied by other 
authors. CART gives a generalisation of 94.2%, an 
RBF neural network gave 95.9%, a linear discriminant 
method gave 96.0% and a multi-layered neural network 
(trained via Back-Propagation) 96.6% (all the results 
have been obtained using 10-fold cross-validation [23]). 
Our optimal test performance was of 99.48%, which is 
superior to the previous reported results. However we 
regard this result as simply indicating that we are com- 
parable with other approaches, as this difference can 
also be due to other factors and requires further inves- 
tigation. Among them are differences in the handling 
of instances with missing values (16 in the database), 
in the preprocessing (we have removed the first column 
of the database reporting the patient's code number, 
like some other authors) and in the choice of a. We 
note that the test error is insensitive to the choice of v 
in a broad interval, as can be seen in Fig. 11. In this 
diagram we give a plot of generalisation error versus 
a for 10-fold cross validation on the 699 instances (50 
iterations were used and 77 = 1.0). 
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Figure 5: Generalisation error of KA (vertical axis) vs. 
a (horizontal axis) for the sonar classification problem. 
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Figure 6: Margin (vertical axis) vs. number of epochs 
(horizontal axis) for sonar classification (a = 1.0, T) = 
1.0). 
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Figure 7: Generalization error (vertical axis) vs. num- 
ber of epochs (horizontal axis) for sonar classification 
{a = 1.0, i\ = 1.0). 

Furthermore, for a particular split of the database with 
550 training examples and 149 test examples, a = 3.2 
and 77 = 1.0, we give plots of the generalisation error 
(Fig. 8), margin (Fig. 9) (all versus number of epochs 
and the final spectrum of a values (Figure 10). 

To compare the computational cost of KA with other 
classifiers we have used a matlab implementation of 
them, and run it on a reduced subset of the database 
(199 training and 168 testing points) using the FLOPS 
as an indication of the algorithmic complexity. The re- 
sults are reported in Table 4 and indicate that KA can 
achieve about the same generalization performance of 
SV machines at a cost which is orders of magnitude 
smaller. 

Alg. EP. a TR. TS. FLOPS 
kNN(k=l) - - 0 13 0 
kNN(k=3) - - 0 9 0 
SVM - 0.28 0 11 2.4541 xl0u 

SVM - 0.35 0 10 2.7763 xl0y 

SVM - 0.42 0 11 2.8043 xlO9 

KA 10 0.28 0 8 1197980 
KA 10 0.35 0 9 1197980 
KA 10 0.42 0 11 1197980 
KA 100 0.28 0 10 11979800 
KA 100 0.35 0 9 11979800 
KA 100 0.42 0 9 11979800 
KA 250 0.28 0 10 29949500 
KA 250 0.35 0 9 29949500 
KA 250 0.42 0 10 29949500 

Table 4: comparison for cancer classification (a subset has 
been used for this comparison 

4.5    US POSTCODE DATABASE 

The benchmarking of classification algorithms of the 
class of SV machines has traditionally been performed 
using the database of handwritten digits from US 
Postal Codes [12, 20]. 

This dataset consists of a training set of 7,291 exam- 
ples and a test set of 2,007. Each digit is given by a 
16 x 16 vector with components which lie in the range 
— 1 to 1. In this experiment we have performed two- 
class classification i.e. separating a particular digit 
from the others. To find suitable values for er the train- 
ing set was split into a smaller training set of 6,000 
examples and a validation set of 1,291. The best value 
of a was found by evaluating performance on the val- 
idation set across the range (1,10). The full training 
set of 7,291 was then used with the selected value of 
a to train the system to classify each digit. 

The results are shown in Table 5 where the last column 
shows the best value of a found from the validation 
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Figure 8: Generalization error (vertical axis) vs. num- 
ber of epochs (horizontal axis) for cancer classification 
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Figure 9: Margin (vertical axis) vs. number of epochs 
(horizontal axis) for cancer classification 
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Figure 10: Spectrum of a values for the 550 patterns 
found by the KA algorithm (cancer classification ex- 
periment 
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Figure 11: Generalisation error (vertical axis) vs.  a 
(horizontal axis) for cancer classification (77 = 1.0) 

study. The other columns show the number of errors 
on the test set of 2,007 examples for the KA algorithm 
and 3 comparative algorithms as reported by [20]. The 
latter three algorithms are an RBF neural network, a 
Support Vector Machine (SVM) and a hybrid model in 
which the support vectors found by the SVM are used 
as the centers of receptive fields in an RBF network 
[20]. 

Digit RBF SVM Hybrid KA a 
0 20 16 9 13 1.8 
1 16 8 12 10 1.6 
2 43 25 27 21 2.4 
3 38 19 24 24 2.0 
4 46 29 32 26 4.0 
5 31 23 24 19 1.8 
6 15 14 19 15 2.4 
7 18 12 16 11 2.8 
8 37 25 26 26 3.2 
9 26 16 16 14 1.6 

Table 5: comparative performance on the USPS database 
(number of errors in a 2007 points test set) 

The performance of KA is comparable with the other 
algorithms. 

5    CONCLUSIONS AND FUTURE 
WORK 

We have presented an algorithm which finds maxi- 
mal margin hyperplanes in a high dimensional feature 
space, emulating Vapnik's Support Vector machines. 

Experiments performed on artificial and real data show 
that the generalization performance of this algorithm 
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is comparable with that of SV machines, while the 
computational cost of finding the hypothesis is signif- 
icantly smaller. Also, the introduction of kernels into 
the Adatron provides a very simple, compact and ro- 
bust algorithm. 

Further work is now needed to introduce the capabil- 
ity of tolerating training errors, so that the machine 
can deal with outliers and noisy datasets, following the 
soft-margin approch used in SV machines. 
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Abstract 

We consider multi-criteria sequential decision 
making problems where the vector-valued 
evaluations are compared by a fixed total or- 
dering of the vectors. Conditions for the op- 
timality of stationary policies and the Bell- 
man optimality equation are given for a spe- 
cial, but important class of problems, when 
the evaluation of policies can be computed 
componentwise. The analysis requires special 
care as the topology introduced by pointwise 
convergence and the order-topology intro- 
duced by the preference order are in general 
incompatible several. Reinforcement learn- 
ing algorithms are then proposed and an- 
alyzed. Preliminary computer experiments 
confirm the validity of the derived algo- 
rithms. These type of multi-criteria problems 
are most useful when there are several opti- 
mal solutions to a problem and one wants to 
choose the one among these which is optimal 
according to another fixed criterion. Possible 
application in robotics and repeated games 
are outlined. 

1    Introduction 

Scalar-valued reinforcement learning (RL) algorithms 
are capable of solving difficult multi-step decision 
problems when the decision criteria can be expressed 
in a recursive way as a function of the immediate scalar 
reinforcement. However, there are some important 
cases when there is no simple way to express the opti- 
mization criteria as a function of a single scalar rein- 
forcement value. Consider, for example, the dilemma 

of Buridan's ass.1 This poor animal is placed at equal 
distances away from two platefuls of food. He is hun- 
gry so he feels like going to one of the plates. However, 
if he goes to one plate then there is a chance that the 
dish from the other one gets stolen. Since the ass is 
greedy (he does not want any dish to be stolen away) 
he will never move and will, eventually, die. 

In this example the ass has two different objectives 
competing with one another. The first one is to eat 
so that he can stay alive, the second one is to prevent 
the dishes from being stolen. A reasonable compro- 
mise, which could be termed the "watchmen's com- 
promise" , is to minimize the number of dishes stolen 
per unit time such that the ass manages to stay alive: 
liniT^oo i ££=o St -¥ min s.t. liniT-yoo y E£=O 

Rt ^ 
i?cr;t. Here St G {0,1} is the indicator of whether a 
plate was stolen at time t, Rt = {0,1} is the indicator 
of whether the ass was consuming at time t, and RCTlt 

is the critical amount of food per unit time needed for 
staying alive. We can use a Tauberian approximation 
to the above criterion [Ross, 1970]: 

^2 llSt -> min    s.t.    ^ ^Rt > R'c crit' (1) 
t=0 t=0 

where 0 < 7 < 1 is a value sufficiently close to 1, 

1Buridan, a French philosopher of the mediaeval pe- 
riod, wrote several significant commentaries on the classi- 
cal philosophical, logical, and physical works of Aristotle, 
including the Physics. Actually, he never referred to the 
infamous ass in his extant writings, but this concept was 
invented by his opponents to ridicule his use of animals 
in the examples he used to expound his theories on free 
will. In the original version of the story a hungry ass stood 
between two haystacks, both of which were equally appe- 
tizing. Unable to decide from which stack to eat, the ass 
eventually starved to death. However, the example in this 
form did not serve well our purposes so we felt free to mod- 
ify it slightly. 
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R'crit = .Rcrit/(1 _ 7)- 2 Since the decision should be 
made on the basis of both the amount of food eaten 
and the number of plates stolen and both of these 
should be computed separately, the normal form of 
reinforcement at time t will be (Rt,St)- 

Note that there exists other ways to formalize the 
dilemma of Buridan's ass. Another reasonable com- 
promise, e.g., is to maximize the weighted sum of pro- 
tected plates and the amount eaten: Y!,u=o 7* (wi 0- ~ 
St) + wiRt) -► max, where w\,W2 > 0. This reduces 
the problem to the case of scalar-valued reinforcement 
values. Here, we do not want to argue against this or 
other reductions, but we want to show that under cer- 
tain conditions reinforcement learning algorithms can 
be extended to the vector-valued case in a sensible way. 

If the immediate reinforcement is vector-valued then so 
will be the long-term reinforcement, and, specifically, 
the evaluation of policies. Then the comparison of 
policies becomes problematic. The requirements for a 
meaningfull comparioson are the following: we want 
to compare any pairs of policies and, in particular, we 
want a transitive and reflexive comparison operator. 
Several approaches will be shown below. No matter 
how the policies are compared the notion of an optimal 
policy can be defined at this point: an optimal policy 
is one which compares favorably with any other policy. 

The comparison methods are best illustrated by the 
above problem. Let v* (x) 6 R2 denote the evaluation 
of policy 7T in state x with v„(x)T = (v„,i(x),vn,2(x)), 
where vn>i(x) is the maximum of the amount of food 
eaten and Rent, while vnfi(x) is the number of plates 
stolen, both being computed when policy n is being 
used beginning from state x. The criterion of the in- 
troduction suggests to compare any pair of policies 
(TIJI^) by first comparing the first components of 
their respective evaluation functions: 7Ti is better than 
7T2 if vni<i(x) > v„2^(x). Since evaluations are cut at 
■Rcrit we may expect that vnui(x) and 1^2(2;) will 
be equal in a large number of cases. Then, we com- 
pare the second components: ni is better than -KI if 
^1,2(2;) < ^2,2(2:) (note the reversed relational sym- 
bol). That is, among policies which let Buridan's ass 
stay alive, the ones with a smaller number of stolen 
plates are preferred. Since here the policies are com- 
pared on the basis of an ordering among the vector- 
components of the policy evaluation functions, this 
problem is one example of ordinal multi-criteria deci- 

2In order to simplify the presentation we implicitly as- 
sume here that the decision process is deterministic. How- 
ever, this assumption is in no way essential to the subse- 
quent developments and will be abandoned later. 

sion problems, which were considered a long time ago 
by Mitten [1964] and Sobel [1975] in terms of prefer- 
ence relations over "partial policies". In order the sub- 
ordinate criteria to be useful at all, the optimization 
problem corresponding to the main objective should 
have multiple solutions. This can be achieved using 
reduced reinforcement-spaces. As an interesting exam- 
ple note that Asimov's robots obey multi-criteria rules 
of this form. The "laws of robotics" claims that robots 
have to i) defend human beings, ii) defend themselves 
unless this conflicts with rule i); and Hi) serve human 
beings unless this conflicts with rules i) or ii). This 
can be clearly understood as an ordinal multi-criteria 
optimization problem. This type of criterion is also 
related to solving MDPs in parallel, a problem sim- 
ilar to that of considered by Singh and Cohn [1997] 
and empirically Asada et al. [1994] for football playing 
robots. In this latter case a robot's primary goal could 
be to win the game, while it's subordinate goal could 
be to keep clear of opponents as much as it is possible. 

Criterion (1) can also be viewed as one that defines 
a discounted optimization problem subject to a dis- 
counted constraint. Structural properties of such prob- 
lems were studied extensively in the control and oper- 
ations research literature, e.g. by Prid [1972], Heyman 
and Sobel [1984], Altman and Schwartz [1991]. 

Another approach is to compare any pair of policies, 
(fli > 7r2), by comparing the weighted sum of the compo- 
nents of theirs evaluation functions, e.g. wiv„ui(x) + 
W2Vnu2(x) and wiv^^ix) + w2v7r2,2(x) (wi,w2 e R). 
Note that this criterion, often called the weighted cri- 
terion (see Feinberg and Schwartz [1995] and the ref- 
erences therein), is different from the one obtained by 
the linear combination of the immediate reinforcement 
values iff the discount factors of the two components 
are different. 

If there is no natural weighing of components then 
one can still use the canonical ordering over the re- 
turn space. In this case, however, not all policies will 
be comparable and so the notion of optimality needs 
to be adjusted. The natural choice is then Pareto- 
optimality: a policy IT is called Pareto-optimal in state 
x if no other policy can majorize ir at x, i.e., if there 
is no policy IT' s.t. tv(a;) > v„(x). A policy is called 
Pareto-optimal iff it is Pareto-optimal for each state. 
It turns out, that Pareto-optimality is equivalent to 
weighted optimality with appropriately chosen weights 
and if each component of the evaluation is computed 
as the total discounted reward for some reward func- 
tion [Feinberg and Schwartz, 1995, Lemma 7.4]. In 
the above example, assuming that the amount of con- 
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sumed food is not truncated, a Pareto-optimal pol- 
icy would be one for which there is no other policy 
that would allow the ass to consume more (than the 
amount ensured by the Pareto-optimal policy) while 
assuring a smaller number of stolen plates at the same 
time. Pareto-optimality has been studied by many re- 
searchers from the point of view of providing condi- 
tions which ensure the existence of optimal policies 
of certain forms (stationary policies are not Pareto- 
optimal in general). 

Apparently the earliest result for dynamic vector- 
valued models are those of Brown and Strauch [1965], 
who considered abstract return spaces having a general 
multiplicative lattice structure and who showed that 
the "principle of optimality" holds for finite-horizon 
problems. Their results were later extended to infi- 
nite horizon problems in many special cases (see, e.g. 
[Feinberg, 1982, Henig, 1983, Feinberg and Schwartz, 
1994]). 

In this article we present a general framework based on 
abstract dynamic programming models, and which is a 
mixture of the above approaches [Denardo, 1967, Bert- 
sekas, 1977, Littman and Szepesväri, 1996, Szepesväri, 
1998]. Namely, we suggest an approach based on the 
notion of reinforcement-propagating operators, which 
now act on function spaces defined over an abstract 
return space with a given ordering. In this way we 
can address constrained problems, lexicographic crite- 
ria, lattice return spaces and different reinforcement 
propagation scenarios within the same framework. 

The article is organized as follows: in Section 2 we 
introduce the concepts necessary for the development 
and list some basic results concerning the Bellman- 
optimality equation and the existence of optimal sta- 
tionary policies. Reinforcement learning algorithms 
are introduced in Section 3. Some computer experi- 
ments, illustrating the theory, are given in Section 4 
and conclusions are drawn in Section 5. 

2    Abstract ordinal dynamic 
programming 

An Abstract Dynamic Programming (ADP) problem 
can be given as a 5-tuple (11, X, A, A, Q), where X is 
the state-space of the decision problem, A is the set 
of actions, A : X -¥ A, A(x) are the actions feasi- 
ble in state x, 7?. is the return space and Q : TZX -> 
TZXxA is the so-called reinforcement-propagator op- 
erator [Szepesväri, 1998].  3   In order to explain the 

meaning of these components consider the problem of 
Buridan's ass once again. A simplified representation 
of that problem could be the following : the ass's state 
assumes three values: being in the middle, at the plate, 
or at the right plate. The plates can be empty or full. 
A state of the decision problem is composed of the 
position of the ass, and the states of the plates. So 
the state space (X) has 12 elements. The actions 
taken by the ass can be to stay at that position, move 
to the left, or move to the right; so the action space 
(A) has three elements. The dynamics is given by the 
following (stochastic) rules: the move actions work as 
intended. If the ass chooses to stay at a full plate then 
that plate becomes empty (consuming), if the ass stays 
at an empty plate then food may appear at that plate 
according to some fixed stochastic rule and if the ass 
stays at a plate (either full or empty) then the state 
of the other plate can change according to some other 
fixed (stochastic) rule. If the ass is in the middle then 
none of the plates can become empty in the next step 
(the ass is guarding the food). The dynamics can be 
summarized by a random mapping t : X x A -> X 
(or, equivalently, as a set of transition probabilities). 
The ass is considered to be consuming a unit food if 
he chooses to stay at a full plate. If Xt is the state 
at time t then the reinforcement streams {Rt,St} of 
Eq. (1) can be given by Rt = 1 if in state xt the ass 
is at a full plate and the chosen action, at, is "stay". 
Rt = 0, otherwise. Therefore, Rt = R(xt,at) for some 
function R. Further, St = 1, if the food disappears 
from a plate while the ass is at the other plate, oth- 
erwise St = 0. That is, St = S(xt,at,xt+i), where 
xt+1 = t(xt,a,t). Let us define the evaluation of a (de- 
terministic, stationary) policy, n : X —► A, by 

oo 

vn,i(x)    =   min(ßcrit, E[^ ^Rt | x0 - x] J, 
t=o 

oo 

v*,2(x)    =   E[J2ltSt\x0 = x] 
t=0 

3Here AB denotes the set of functions mapping B into 

where E[-] is the expectation operator underlying 
the decision process. By standard arguments, and 
since mm(R, E[£ + 7?]) = min(J?, E[£] + E[rj\) = 
mm(R,E[£\ + mm(R,E[rj\)) holds if R > 0 and £,r? 
are nonnegative random variables, one can show that 
vn can be written recursively: 

vn,i(x)    =   min^i?crit,JR(x,7r(x)) + 

min(i?crit,7 X} P(
X

>?(
X

)>V)
V

*,I(j/)))> 
vex 
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v„,2{x) = ^2 P(
X

> 
n(x)>y) t5^' 7r(x)> 2/) + 7^,2(j/)} ■ 

vex 
(2) 

Here p(x,a,y) = P(y = t(x,a)). Similar recursions 
hold for non-deterministic, Markovian, and even for 
non-Markovian policies [Szepesväri, 1998]. Now, if one 
defines Q by 

(Qv)(x,a)i    =   mini Rent, R(x, a) + min(i?crit, 

nf^2p(x,a,y)vi(y)yj, 
vex 

(Qv)(x,a)2    =    ^2p(x,a,y){S(x,a,y)+-fV2(y)} 
vex 

and T* : ft -> ft by (T„v){x) = (Qv)(x, ir[x)), x € 
X, then we see that v„ becomes the fixed point of 
T„. Note that the definition of Q is obtained from (2) 
by systematically replacing n(x) by a, and vn by v, 
meaning that Q provides a concise summary of both 
the state- and reinforcement-dynamics of the decision 
process in an abstract form. 

Policies are compared on the basis of their evaluations. 
Since now vn{x) € ft = R2 is vector-valued we need 
a way to compare pairs of vectors. Therefore, we will 
assume that a binary relation < over ft is given which 
is reflexive, transitive and trichotomous (i.e., < is an 
ordering, or ft = (ft; <) is a lattice). 4 Buridan's ass 
requires a "reverse-2nd" lexicographic ordering: r <r' 
if 7"i < r[ or if r\ = r[ and r2 > r'2 (here the com- 
ponents of r and r' were denoted by lower indices). 
This finishes the construction of the ADP describing 
the problem-structure of Buridan's ass. This "reverse- 
2nd" lexicographic ordering differs from lexicographic 
ordering only by the condition on the second compo- 
nents: we wrote r2 > r'2 instead of r2 < r2. For conve- 
nience, we will continue with considering lexicographic 
ordering. Lexicographic ordering (and also "reverse- 
2nd" ordering) satisfies the above properties, i.e., it is 
an ordering. 

In order to facilitate the connection with RL we will 
define the notion of optimal value function (instead 
of relying on Pareto-optimality), but first we need to 
assign a meaning to the supremum of subsets of ft: for 
A C ft, a = s.u.p. A is a value such that for all c> A, 

4 A binary relation < over 1Z is called i) reflexive if r < r 
for any r e 11; ii) transitive if r, r' and r" are such that 
r < r' and r' < r" then r < r" (r,r',r" € 1Z); and Hi) 
trichotomous if for any pairs (r, r') € 11 either r < r' or 
r' <r (the ordering is total) and if both relations hold then 
r — r'. 

also c > a (a > b is defined by b < a, and a > A is 
defined as a > a' for all a1 € A). The infimum of sets 
is defined analogously. The maximum of a set A is 
defined by 

a = m.a.x. A,    iff   a € .A   and   a > b, V6 € A, 
(3) 

the minimum could be defined analogously. A lattice 
(7?.; <) is said to be complete if for all bounded subsets 
A, both the infimum and the supremum of the set 
exist. Lexicographic ordering can be made complete 
if the set of reals R is replaced by the set of extended 
reals, R = {-00, +00} U R, which is understood with 
the natural topology. Then if the return space is H = 
R2, the supremum a* of a set A C R2 can be defined 
in the standard way as follows: a* = sup{ai : a = 
(ai,o2)

T € A] and a2 = inf{a2„ : a„ = (ai„,a2n)T £ 
As.t.ain -> a*}. 

The ordering < of H is extended to functions assuming 
values in 1Z in the usual way: for v,w € 1ZY we say 
that v < w iff for all y G Y, v(y) < w(y) holds. Note 
that the induced ordering, <, is only a partial ordering 
over 1ZY (i.e., it is not total). 

Equipped with the notion of supremum we can define 
the optimal reinforcement function: 

v*(x) = s.u.p. v„(x),    x G X. (4) 
neu 

Here n denotes a fixed set of policies. We will consider 
the case when n equals to the set of all stationary 
policies. A policy in the class n is said to be optimal 
if vn = v*. 

Now, we can answer the question about the form of op- 
timal stationary policies in the case of Buridan's ass. 
For sure, an "optimal ass" would indefinitely repeat 
"guarding steps" (staying in the middle) and "con- 
sumation steps". It should also be clear then that 
the exact ratio of the waiting periods would depend 
on the value of fiCrit- It should also be clear that for 
some values of RCr\t all stationary policies would be 
suboptimal. A form of optimal policies for this class 
of problems can be found in [Feinberg and Schwartz, 
1995]. Note that if one extends the state space, so 
that the ass has counting-actions with a limited set of 
numbers (i.e. if the ass is enabled to count up to a 
fixed maximum number of steps) and if the ass can 
choose actions randomly then optimal policies w.r.t. 
the falls set of policies can be recovered exactly. So 
this case reduces to the case of randomized station- 
ary policies. The following theorem restricts the set 
of policies further to deterministic stationary policies, 
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so that tractability of the learning problem will be en- 
sured, but global optimality may be lost. The theorem 
is proven in the appendix. 

Theorem 2.1 Consider a finite 
ADP, (TZ,X,A,A,Q),5 where (i) (7l;+,A-, || • \\n) is 
a Banach-space and TZ is equipped with (ii) a com- 
plete ordering < which satisfies the following countable 
transitivity property: (Hi) if rn is weakly convergent 
in TZ, and ro < r\ < r% < ... rn < rn+i < ... 
then ro < linin-KxjTV Further, assume that (iv) 
Q : TZX —¥ 1ZXy~A is monotone: Qv < Qw when- 
ever v < w, v,w G 1ZX, continuous in the topologies 
induced by pointwise convergence over7Zx andTZXxA, 
(v) and that Q is a contraction w.r.t. the induced max- 
norm7 || • ||OO,K. (vi) Assume that T : TZ ->• 11, defined 
by 

(Tv)(x) = m.a.x.(Qv)(x,a) 
a€A(x) 

(5) 

has a unique fixed point v+, and limn^f00T
nv = v+ 

for all v G 1ZX s.t. |M|OO,TC < oo. Let II = Ax be the 
space of stationary policies. Then (a) v+ > v„ for 
all 7T (IT is a deterministic stationary policy) and v+ = 
v*, so Tv* = v* (Bellman optimality equation); (b) if 
T„-u+ = Tv+, i.e., if it is myopic w.r.t. v+, then vn = 
v* (myopic policies are optimal); (c) if Tn>v„ > vn 

then v„i > I>7T (Howard's policy improvement routine 
is valid). 

Operator T, as defined by (5), is called the optimal 
value operator. 

It is easy to check that countable transitivity holds 
for sequences of Rn and the lexicographic ordering. 
Note that contraction arguments cannot be used since 
there is no norm over R™ with the lexicographic or- 
dering for which the m.a.x. operator would be a non- 
expansion. For a further discussion of this and addi- 
tional peculiarities related to lexicographic orderings 
see [Gabor et al., 1998]. 

Note that ii TZ = Rn with the lexicographic ordering 
then the actions at which the maximum is reached in 

5An ADP (ft, X, A, A, Q) is called finite if both X and 
A are finite. The finiteness assumption could be relaxed 
by some extra work. 

6 A sequence rn is said to be weakly convergent in TZ if it 
is convergent in the topology induced by the vector space 
structure of TZ. 

The induced maximum-norm || 
\\v\\oo,K =SUp2€Z|Kz)|k- 

o,n is defined by 

Eq. (5) can be computed by first computing the sets 

Ai+1 = { a e Ai(x) |   max {Qf)(x, b)t = {Qf)(x, a)i } 
b€Ai(x) 

(6) 

recursively for i = 0,1,2,... ,n — 1, with AQ = A(x). 
For convenience, we will denote the action sets as de- 
fined above by Ai(Q,x) when Qf is replaced by any 
function Q £ 1Z{X x A): 

A0(Q,x)    =   A(x) 

Ai+l(Q,x)   =   {aeAi(Q,x)\ 

max    Q{x,b)i = Q{x,a)t}, 
o€.Ai(Q,x) 

where i = 0,1,2,... ,n - 1. Then (Tv)(x)i+1 = 
Tnaxa€Ai(Qv,x)(Qv)(x, a)i+i. Now we show that T has 
a unique fixed point and Tnv converges to this fixed 
point for all bounded v 6 7£* provided that Q sat- 
isfies the conditions of the above theorem and if Q 
acts componentwise, i.e., if (Qv)i = (Qw)i whenever 
Vi = Wf. 

Theorem 2.2 Assume that Q acts componentwise 
and that conditions (i)-(v) of Theorem 2.1 are sat- 
isfied. Then also condition (vi) is satisfied and thus 
the conclusions of Theorem 2.1 hold. 

Proof. Fix v and consider the first component of 
Tnv. Define Ti : Rx -> Hx by Txf = (T/)i, 
where / = (/,/2,.-. ,fn) with /2)... ,/„ being ar- 
bitrary. T\ is well defined and is a contraction. More- 
over, (Tnv)i = T£vi holds for all n G N, and there- 
fore (Tnv)i converges to the unique fixed point of 
T\. Similarly, if u and w are both fixed points of 
T then u\ = w\. Let us denote this common value 
by vf. Now, consider (Tnv)2. Since (Tn+1v)2(x) = 
max.a£A1(QTnv,x)(QTnv)(x,a)2, and since Q is compo- 
nentwise, Ai(QTnv,x) depends only on (T"u)i which 
is known to converge. Therefore, because of the finite- 
ness of A, for n large enough Ai(QTnv,x) will sta- 
bilize at some set A\{v,x). Now, since the oper- 
ator u(x) i-> maxaeJ4.(„]a.)(Qü)(x,a)2 is a contrac- 
tion, where ü = (vf,u,u',...), also (Tnv)2 will con- 
verge to some value (the operator is well defined 
since Q is componentwise). Moreover, if u and w 
are both fixed points of T then u\ = wx and thus 
Ai(Qu,x) = Ai(Qv,x)(= A*(x)) for all x £ X, and 
so U2 and w2 are both the fixed points of the con- 
traction z H-> maxag^«(a;)(Qz)(a;,0)2 and are therefore 
equal. Continuing in this way for the higher indices 
we get the proof of the required statement. Q.u.e.d. 

The above theorem shows that the dilemma of Buri- 
dan's ass is indeed in the realm of Theorem 2.1, since 
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the appropriate reinforcement propagator operator, Q, 
acts componentwise. 

Theorem 2.1 is just one example of how the existence 
of optimal stationary policies can be ensured in multi- 
criteria problems. There are many possible extensions 
of it, but these are outside of the scope of the present 
article. 

3    Learning optimal policies 

Since most convergence proofs for RL algorithms rely 
on contraction arguments the generalization of results 
like the convergence of such as the Adaptive Real- 
Time Dynamic Programming [Barto et al., 1991], Q- 
learning [Watkins, 1990], TD(A) [Sutton, 1988] are 
easy to obtain for vector-valued MDPs provided that T 
is a contraction8. Unfortunately, this will hold rarely. 
Nevertheless a componentwise analysis, similar to the 
one presented at the end of the previous section, will 
in general yield the desired convergence result. 

As a particular example consider the case of Q- 
learning. Let Q* = Qv* be the optimal action-value 
function. Q-learning solves the fixed point equation 
Q* = QSQ; (SQ){X) = m.a.x.beA{x)Q{x,b), by re- 
laxation and without ever estimating Q. In the case 
of an MDP with the expected discounted total cost 
Q-learning takes the form 

Qt+i(xt,at) = (1 - at(xt,at))Qt(xt,at)+ 

ctt(xt,at){Rt{xt,at,xt+i) + 7  max  Qt(xt+i,b)}, 
beA(xi) 

with Qt+i(x,a) = Qt(x,a) for pairs (x,a) ^ (xt,at). 
The relaxation factor (learning rate) 0 < at(xt, at) < 1 
is gradually decreased towards zero so that the vari- 
ance of the estimates are reduced and (probability one) 
convergence can be achieved. 

A raw generalization of Q-learning to vector-valued Q- 
learning would replace the immediate-reward scalars 
(Rt) in the above equation by immediate-reward vec- 
tors and "max" by "m.a.x." (remember that m.a.x. 
is the maximum element of A according to the cho- 
sen ordering < of TZ - see Eq. (3) for the definition of 
m.a.x.). For simplicity, consider a two-dimensional re- 
turn space with the lexicographic ordering and a com- 
ponentwise reinforcement propagation scenario when 

8In fact, since the convergence of the vast majority 
of RL algorithms follows from the general asynchronous 
contraction-mapping theorem of [Littman and Szepesväri, 
1996] (see also [Szepesväri and Littman, 1997]), it is suffi- 
cient to reproduce the proof of that theorem. It turns out, 
that the raw generalization of that proof will work without 
any problems for contractions. However, this is out side of 
the scope of this article. 

the components are computed by some expected value 
criteria. Proceeding componentwise, we see that the 
update equation for the first component is left intact, 
but the update of the second component becomes 

Qt+\,2(xt,at) = (1 -at(xt,at)Qt,2(xt,at) + at(xt,at) 

{Rta(xt,at,xt+i) + i     max     Qt,2{xt+i,b)}, 
&€.4i(Q, ,x,) 

where Ai(Q,x) is defined by Eq. (6). Note that in the 
example of Buridan's ass the first criterion is a trun- 
cated evaluation criterion and thus must be treated 
differently. Unfortunately, due to the lack of space 
we cannot present the direct learning rules for this 
criterion, but we note here that this rule can be ob- 
tained almost entirely automatically if one tries to 
estimate Z*(x,a) = YlyP(x->a>y)Qi(x'a) instead of 
Q\ [Szepesväri and Littman, 1997]. Note that know- 
ing Z* alone is insufficient to recover Q*. Therefore ei- 
ther one estimates R(x, a) and then computes Q\ (x, a) 
or, one may estimate Q* in a second update rule us- 
ing the estimates of Z* directly, without ever estimat- 
ing R(x,a). This latter rule will work only if R(x,a) 
is deterministic. The convergence of these algorithms 
follows by the standard proofs completed with a com- 
ponentwise analysis. 

The analogue of Q-learning for MDPs with the max- 
imin criterion, proposed by Heger [Heger, 1994, 1996], 
is the Q-hat algorithm given by 

Qt+i(xt,at)    =    mm{Qt(xt,at),Rt(xt,at,xt+\) + 

7maxQt(xt+i,b)}. 
b£A 

This algorithm will converge to the optimal Q-function 
if Qo > Q* (the initial estimate is optimistic). The raw 
generalization replaces "min" and "max" by "m.i.n." 
and "m.a.x.", respectively. Unfortunately, this gener- 
alization may fail to converge to Q* since the conver- 
gence of Q-hat exploits Qt > Q" {t > 0) and this may 
become invalid in this case.9 In order to surmount this 
problem one has to update the second and larger index 
components by some means other than Q-hat learning. 

It is natural then to consider adaptive real-time dy- 
namic programming algorithms.   For maximin prob- 

9This can be shown in the following way: Con- 
sider again 11 = R2 with the lexicographic ordering. 
Then Qt+\,2{xt,at) = mm{Qt,2{xt,a.i),Rt,i{xt,at,Xt+i) + 
7max6e.41 QtAxt+\,b)}, where Ai = Ai(Qt,xt). Notice 
that Q(+i,2(x,a) < Qt,2(x,a) for all (x,a) € U so if once 
Q(,2(x,a) < Q'2(x,a) then Qt,2(x,a) cannot converge to 
Q'2{x,a). Here, A\(Qt,xt) may be quite different from 
Ai(Q',xt) which means that Q(+i,2(x(,a() may become 
smaller than Q"(xt,at) even if Qt,2 = Qi, depending only 
on the values of Qt.i- 
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lems this algorithm builds an estimate of the transition 
sets T(x,a) = {y € X \p(x,a,y) > 0} using 

Tt+i{xt,at) =Tt(xt,at)U{xt+1} 

and another estimate of the rewards R(x,a,y) by 
Rt+i(xt,at,%t+i) = Rt, where xt,at are the state and 
action at time t, and where Rt € R2 is the immediate 
reward vector at time t. The value function estimate 
vt(x) e R2 is updated by the equation 

vt+i (xt) = m.a.x.     m.i.n.     (Rt (xt ,at,y) + ivt (y)). 
a      y£Tt+1(xt,at) 

Since there is no "optimistic initialization" condition 
here, one may show (using a componentwise analy- 
sis) that this algorithm converges to optimality if some 
other conditions ensuring "sufficient exploration" hold. 
Further discussions related to action-selection strate- 
gies ensuring "sufficient exploration" in minimax prob- 
lems can be found in [Gabor et al., 1998]. 

4    Computer simulations 

The purpose of the computer simulations was twofold: 
to demonstrate that the theory works in practice, and 
to provide some hints on the rate of convergence of dif- 
ferent algorithms. The ARTDP algorithm were tried 
out for tic-tac-toe with lexicographic ordering. The 
first criterion prescribed the desire to win (or make 
a draw) and the second to finish the game as soon 
as possible.10 The action selection procedure was the 
greedy policy in all of the cases, i.e., Qt(x,a(t)) = 
m.a.x. Qt(x, a) for each t. Several opponents were tried 
whose stategy was a mixture of the optimal minimax 
policy (computed by a — ^-pruning with ties broken 
randomly) and a totally randomized one. The de- 
gree of randomness was set to 0, 0.25, 0.5, 0.75 and 
1, so that the first opponent, corresponding to ran- 
domness 0, is the optimal one, while the last one is 
the totally randomized one. For comparison both the 
multi-criteria and single criterion ARDTP algorithms 
were tried (called MC-ARTDP and ARTDP, respec- 
tively.) The learner started the game in each trial. 
The percent of wins and draws, and the number of 
steps in the cases of won or drew games are shown in 

0 0.25 0.5 0.75 1 

ARTDP Win or draw 0.73 0.74 0.74 0.76 0.74 

Steps 3.55 4.2 4.18 4.18 4.19 

MC- 

ARTDP 

Win or draw 0.85 1 0.96 1 1 

Steps 3.59 3.28 3.29 3.28 3.28 

10The first component of the reinforcement-vector was 
+1 if the learner won, 0 if the game was a draw and —1 if 
he lost the game. The second component was unity in each 
step. We used the well known minimax representation of 
alternating games [see e.g. Littman and Szepesvari, 1996]. 
Note that hy a simple change to the lexicographic ordering 
one may consider another criterion when the learner mini- 
mizes the number of steps only when starting from winning 
states, otherwise trying to mark time. 

Table 1: Results of exhaustive testing. Percents of 
optimal moves learnt, and average number of steps to 
the end of the game for cases when the learner won 
are shown for both learners learning with ARTDP and 
MC-ARTDP. In the first raw the degree of randomness 
of the opponents are shown: a randomness of 0 means 
an optimal opponent, while a randomness of 1 means a 
perfectly random opponent. The results suggest that 
since the learners do not explore, a complete optimal 
policy cannot be learned against the perfect opponent 
(just part of the game-tree is explored). The number of 
steps until the end of the game are consistently smaller 
for MC-ARTDP than that of for ARTDP. Also MC- 
ARTDP can win a larger percent of games. 

Table l.The percents are computed by employing an 
exhaustive search, i.e., the percent of those leaves in 
the full reachable game-tree when our learner did not 
lose the game was measured. As expected, the num- 
ber if steps until the end of game is lower on average 
for the MC-ARTDP algorithm than that of for the 
ARTDP algorithm. Note that this comparision is not 
entirely satisfactory since this number is computed just 
for a part of the games and this obviously distorts the 
results. The effect of this can be observed in the statis- 
tics of the games played against the perfect opponent: 
apparently here MC-ARTDP needed more steps than 
ARTDP, but since MC-ARTDP won a larger percent 
of games this increase can be accounted for the games 
that MC-ARTDP won (or drew) and ARTDP lost. In- 
triguingly, the results also show that MC-ARTDP per- 
forms better than ARTDP in all of the cases, i.e., it 
could explore a larger part of the game-tree. We con- 
jectured that the reason for this is that MC-ARTDP 
uses more information than ARTDP. In particular, 
since the second components of its evaluation function 
are initialized to zero, initially unexplored actions will 
look more favourable than explored ones, meaning that 
dependence on the second component will facilitate ex- 
ploration. To confirm the conjecture we ran another 
set of experiments using the ARTDP algorithm and 
when actions were chosen based on one of the following 
two well-known exploration stategies: the Boltzmann- 
exploration and the e-greedy strategy with decaying 
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Figure 1: Results of learning with the one-criterion 
and multi-criteria ARTDP algorithms against oppo- 
nents of different strengths. MC-ARTDP-0.25 and 
MC-ARTDP-0.75 label the curves of MC-ARTDP for 
an opponent with randomness 0.25 and 0.75 , respec- 
tively. 

exploration.11 In this case ARTDP yielded compara- 
ble results to that of MC-ARTDP, thus confirming the 
hypothesis.12 

Exploration has a price, though. The more ex- 
ploratory actions the player tries the larger is the num- 
ber of games lost during the learning trials. In order to 
get a more complete picture about the performances 
of the two algorithms we have measured on-line (or 
during-learning) performance. Results are shown in 
Figures 1. The upper subfigure shows the percent of 
plays won or drew. The larger the convergence speed 
to 1 is, the smaller is the cost of exploration. The lower 
subfigure depicts the number of steps until the end of 
the game, for the games when our learner actually won. 
Both figures show results for the opponents with ran- 
domness 0.25 and 0.75 (results for the other cases can 

11 The e-greedy exploration stategy chooses the best- 
looking (greedy) action with probability 1 — e and chooses 
an action uniformly randomly from the rest with probabil- 
ity e [Thrun, 1992]. 

12In theory, as time goes to infinity both algorithms will 
converge to optimality. So the worse than optimal results 
should not be considered as cases when the algorithms got 
stuck in "local minima". 

be roughly obtained by intra- and extrapolations and 
are not shown). Note that both the ARTDP and MC- 
ARTDP learn faster against weaker opponents which 
could be accounted for the small average depth of vis- 
ited game tree when playing against a weak opponent. 
Note that the learner trained against a weak oppo- 
nent will probably fail to win over a strong one, and 
the reverse may hold, too: in order to learn the op- 
timal minimax strategy the opponents should not be 
restricted 13. Also, in the case of both opponents MC- 
ARTDP learns slightly slower (in the short-term) but 
results in a better policy in the medium-term. More 
experiments are needed to analyze these findings. 

5    Conclusions 

We have considered multi-criteria decision problems 
in the framework of abstract dynamic programming. 
The reinforcements were assumed to be vector-valued 
and were compared by a total ordering defined over an 
appropriate vector space. A result, showing the exis- 
tence of optimal policies was derived and it was shown 
that it applies to lexicographic ordering when the rein- 
forcement propagation works "componentwise". Next, 
reinforcement learning algorithms were derived for this 
case and we have argued that their convergence can be 
proven by componentwise analysis. Experimental re- 
sults were presented to illustrate the behavior of the 
algorithms. In the future we plan to extend the re- 
sults and run other simulations to reinforce the utility 
of multi-criteria learning. 
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Appendix 

Here we prove Theorem 2.1, the text of which is not 
repeated here because of lack of space.   Firstly, we 

13Since the opponents are randomized (except the op- 
timal opponent) the algorithms will eventually converge 
to optimality. However, the convergence rate will still de- 
pend on the degree of randomness of the opponent. The 
convergence rate will depend on how fast can the part of 
the game-tree which is accessible for an optimal player be 
fully explored. For opponents with higher randomness deep 
parts can hardly be accessed, for opponents with small ran- 
domness parts that follow an initial sub-optimal choice will 
be hard to explore. 
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shall prove that v+, the unique fixed point of T, ma- 
jorizes the optimal value function, v*. Fix an arbi- 
trary policy ■K and observe that Tvn > T^v^. Since 
Tnvn = Vn, also Tvv > vn. From this, and because 
of the monotonicity of T (which holds because A is 
finite), we obtain T2vv > Tvn > v„. Iterating this 
indefinitely, we get that Tn+V > Ty* > ... > vv 

holds for all n G N. Thus, Tnvv is monoton increasing 
and thus (by the countable transitivity assumption) 
linin-xx, Tnvv > vn. Now, since limn-^ooT™^ = v+, 
so v+ > vn. Since n was arbitrary, it follows that 
v+ > v* by the definition of the s.u.p. operator. 
Now, let 7T be a policy which is myopic w.r.t. v+: 
Twv+ = Tv+. Since Tv+ = v+, so Tnv

+ = v+ . Now, 
since v„ is the unique fixed point of Tn (Tn is a con- 
traction since Q is a contraction), we get that v+ = vn. 
This shows that v+ = v* and that TT is optimal. In or- 
der to prove the third part consider a pair of policies 
(n, 7r') s.t. Tniv„ > vn. By the first train of thoughts, 
we get that T£,vn > vv is a monotone increasing se- 
quence, so that iv = limn-KjoT",^ > v„ holds, too, 
thus finishing the proof. 
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Abstract 1    Introduction 

In a previous work we have presented Cas- 
cade Generalization, a new general method 
for merging classifiers. The basic idea of Cas- 
cade Generalization is to sequentially run the 
set of classifiers, at each step performing an 
extension of the original data by the inser- 
tion of new attributes. The new attributes 
are derived from the probability class distri- 
bution given by a base classifier. This con- 
structive step extends the representational 
language for the high level classifiers, relax- 
ing their bias. In this paper we extend this 
work by applying Cascade locally. At each 
iteration of a divide and conquer algorithm, 
a reconstruction of the instance space occurs 
by the addition of new attributes. Each new 
attribute represents the probability that an 
example belongs to a class given by a base 
classifier. We have implemented three Local 
Generalization Algorithms. The first merges 
a linear discriminant with a decision tree, the 
second merges a naive Bayes with a deci- 
sion tree, and the third merges a linear dis- 
criminant and a naive Bayes with a decision 
tree. All the algorithms show an increase of 
performance, when compared with the cor- 
responding single models. Cascade also out- 
performs other methods for combining clas- 
sifiers, like Stacked Generalization and com- 
petes well against Boosting, with statistically 
significant confidence levels. 

Keywords:   Multiple Models,  Constructive Induc- 
tion, Merging Classifiers. 

The ability of a chosen algorithm to induce a good 
generalization depends on how appropriate the class 
model underlying the algorithm is for the given task. 
An algorithm class model is the representation lan- 
guage it uses to express a generalization of the ex- 
amples. The representation language for a standard 
decision tree is the DNF formalism that splits the in- 
stance space by axis-parallel hyper-planes, while the 
representation language for a linear discriminant func- 
tion is a set of linear functions that split the instance 
space by oblique hyper-planes. Since different learn- 
ing algorithms employ different knowledge representa- 
tions and search heuristics, different search spaces are 
explored and diverse results are obtained. The prob- 
lem of finding the appropriate bias for a given task 
is an active research area. We can consider two main 
lines: on one hand methods that try to select the most 
appropriate algorithm for the given task, for instance 
Schaffer's selection by Cross-Validation, and on the 
other hand, methods that combine predictions of dif- 
ferent algorithms, for instance Stacked Generalization 
[25]. This work follows the second research line. In- 
stead of looking for methods that fit the data using a 
single representation language, we present a family of 
algorithms, under the generic name of Cascade Gen- 
eralization, whose search space contains models that 
use different representation languages. Cascade gen- 
eralization was first presented in [14]. It performs an 
iterative composition of classifiers. At each iteration 
a classifier is generated. The input space is extended 
by the addition of new attributes. These are in the 
form of a probability class distribution which are ob- 
tained, for each example, by the generated base classi- 
fier. The language of the final classifier is the language 
used by the high level generalizer. This language uses 
terms that are expressions from the language of low 
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level classifiers. In this sense, Cascade Generalization 
generates a unified theory from the base theories. 

Here we extend the work presented in [14], by applying 
Cascade locally. In our implementation, Local Cascade 
Generalization generates a decision tree. The experi- 
mental study shows that this methodology usually im- 
proves both accuracy and theory size with statistical 
significance levels. 

The next section presents the framework of Cascade 
Generalization. In section 3 we define a new family of 
algorithms that apply Cascade Generalization locally. 
In section 4 we review previous work in the area of 
multiple models. In section 5, we perform an empirical 
study using UCI data sets. The last section presents 
an analysis of the results and concludes the paper. 

2    Cascade Generalization 

Consider a learning set D = {x"n,yn) n = 1,..., N, 
where x"n = [xi,...,xm] is a multidimensional input 
vector, and yn is the output variable. Since the fo- 
cus of this paper is on classification problems, yn 

takes values from a set of predefined values, that is 
yn £ {Cli,...,Clc}, where c is the number of classes. 
A classifier ö is a function that is applied to the train- 
ing set D in order to construct a model $>(D). The 
generated model is a mapping from the input space 
X to the discrete output variable Y. When used as a 
predictor, represented by Ö(x, D), it assigns a y value 
to the example x. This is the traditional framework 
for classification tasks. Our framework requires that 
the predictor 9(x, D) outputs a vector representing 
conditional probability distribution \pl,...,pc], where 
Pi represents the probability that the example x be- 
longs to class i, i.e. P(y = CU\x). The class that is 
assigned to the example x, is the one that maximizes 
this last expression. Most of the commonly used clas- 
sifiers, such as naive Bayes and Discriminant, classify 
each example in this way. Other classifiers, for ex- 
ample C4-5, have a different strategy for classifying 
an example, but it requires small changes to obtain a 
probability class distribution. 

We define a constructive operator $(D',$s(x,D)). 
This operator has two input parameters: a data set 
D' and a predictor $s(x, D). The classifier 9 generates 
a theory from the training data D. For each exam- 
ple x £ D', the generated theory outputs a probabil- 
ity class distribution. For all the examples in D' the 
operator $ concatenates the input vector x with the 
output probability class distribution. The output of 
$(£>', 5s(x,D)) is a new data set D".   The cardinal- 

ity of D" is equal to the cardinality of D' (i.e. they 
have the same number of examples). Each example 
in x e D" has an equivalent example in £>', but aug- 
mented with c new attributes. The new attributes are 
the elements of the vector of class probability distri- 
bution obtained when applying classifier 9(x, D) to 
the example x. Cascade generalization is a sequential 
composition of classifiers, that at each generalization 
level applies the $ operator. Given a training set L, 
a test set T, and two classifiers 9i, and Ö2, Cascade 
generalization proceeds as follows: 
Using classifier $i, generates the Leveh data: 

Levehtrain = $(L, öi(x, L)) 
Levehtest = $(T, öx (x, L)) 

Classifier 3*2 learns on Leveh training data and clas- 
sifies the Leveh test data: 

%2(x, Levehtrain) for each x G Levehtest 

Those steps perform the basic sequence of a cascade 
generalization of classifier 92 after classifier 3v. We 
represent the basic sequence by the symbol V. 

The previous composition could be shortly represented 
by: 

SfeVQi = ^2(^5 Levehtrain) for each x £ Levehtest 

which is equivalent to: 

$2V9i = %(x, $(L, 3i(a?, L))) for each 
fe*(T,9i(a;7',L)) 

This is the simplest formulation of Cascade General- 
ization. Some possible extensions include the compo- 
sition of n classifiers, and the parallel composition of 
classifiers. 

A composition of n classifiers is represented by: 

9nV3n_iV9n_2...V91 

In this case, Cascade Generalization generates n-1 lev- 
els of data. The high level theory, is that one given by 
the Ö„ classifier. 

A variant of cascade generalization, which includes 
several algorithms in parallel, could be represented in 
this formalism by: 

9n+1V[3i,...,5„] = 
Zn+1(xML,l%i(x',L),-^n(x',L)})) 

for each x G $(T, [3i(s?',L),.... S„(a;7', L)]) 
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The algorithms Si, ..., S„ run in parallel. The oper- 
ator $(L, [Si(aT',L),...,S„(x',.L)]) returns a new data 
set L' which contains the same number of examples as 
L. Each example in L' contains n * c new attributes, 
where c is the number of classes. Each algorithm in 
the set Si, ...,Sn contributes with c new attributes. 

3    Local Cascade Generalization 

Most of Machine Learning algorithms for supervised 
learning use a divide and conquer strategy that at- 
tacks a complex problem by dividing it into simpler 
problems and recursively applies the same strategy 
to the subproblems. Solutions of sub-problems can 
be combined to yield a solution of the complex prob- 
lem. This is the basic idea behind well known decision 
tree based algorithms: ID3 (Quinlan, 1984), ASSIS- 
TANT (Kononenko et all, 1987), CART (Breiman et 
all, 1984), C4.5 (Quinlan, 1993), etc. The power of 
this approach comes from the ability to split the hyper- 
space into subspaces and fit each subspace with differ- 
ent functions. In our previous work [14] we have shown 
that Cascade significantly improves the performance 
of this type of learning algorithms. In this paper we 
explore the applicability of Cascade on the problems 
and subproblems that a divide and conquer algorithm 
must solve. The intuition behind this hypothesis is the 
same as behind any divide and conquer strategy. The 
relations that can not be captured at global level can 
be discovered on the simpler subproblems. 

Local cascade generalization, is a composition of al- 
gorithms that is performed for each task when build- 
ing the classifier. At each iteration of a divide and 
conquer algorithm, local cascade generalization will be 
performed by applying the $ operator. The effect is 
that the input space is reconstructed by the insertion 
of the new attributes. These new attributes are prop- 
agated down to the subtasks that the algorithm might 
consider. In this paper we restrict the use of local Cas- 
cade Generalization to decision tree based algorithms. 
However, it would be possible to use it with any divide 
and conquer algorithm. Figure 1 presents the general 
algorithm of local Cascade Generalization, applied to 
a decision tree. 

When growing the tree, at each decision node new 
attributes are computed by applying the $ operator. 
The new attributes that are created there are propa- 
gated down the tree. The number of new attributes is 
equal to the number of classes of the examples that fall 
at this node. At different levels, the algorithm consid- 
ers data sets with different number of attributes and 

Input: A data set D, a base classifier S 
Output: A decision Tree 
Function CGtree(D, S) 

IF stop criteria(D) = TRUE 
return a Leaf with class probability distribution 

D' = 9(D,Q(S,D)) 
Choose the attribute that maximizes 

splitting criterion on D' 
For each partition of examples based on 

chosen attribute values 
Treet = CGtree(D{, S) 

return Tree as a decision node based on 
chosen attribute, storing S(L>) 
and descendants Treei 

End 

Figure 1: Local Cascade Algorithm based on a Deci- 
sion Tree 

classes. Deeper nodes contain an increasing number 
of attributes. This could be a disadvantage of the sys- 
tem, but the number of new attributes is not constant. 
As the tree grows and the classes are discriminated, 
deeper nodes also contain examples from a decreasing 
number of classes. This means that as the tree grows 
the number of new attributes decreases. 

In order to be applied as a predictor, any CGTree 
must store, at each node, the model generated by the 
base classifier using the examples that fall at this node. 
When classifying a new example, the example tra- 
verses the tree in the usual way, but at each decision 
node it is extended by the insertion of the probability 
class distribution provided the base classifier predictor 
at this node. 

In the framework of local cascade generalization, 
we have developed a CGLtree, that uses the 
$(D,Discrim(x,D)) operator in the constructive 
step. Each internal node of a CGLtree contains a dis- 
criminant function. This discriminant function is used 
to build new attributes. For each example x, the value 
of a new attribute Ai is computed using the probabil- 
ity p(Ci\x) which is given by the linear discriminant 
function. At each decision node, the number of new 
attributes built by CGLtree is always equal to the 
number of classes taken from the examples that fall 
at this node. We use the following heuristic: we only 
consider a classi if the number of examples, at this 
node, belonging to classi is greater than N times the 
number of attributes1. By default N is 3. This implies 

'This heuristic was suggested by Breiman et al.[3] 
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that at different nodes, different number of classes will 
be considered and a different number of new attributes 
is added. 

In our empirical study we have used two other 
algorithms that locally apply Cascade Generaliza- 
tion. CGBtree that uses as constructive operator 
$(D,naiveBayes(x,D)), and CGBLtree that uses as 
constructive operator: 
$(£>, [naiveBayes(x, D),Discrim(x, D)]). In all 
other aspects these algorithms are similar to CGLtree. 

There is one restriction to the application of the 
#(£>', 9(x,Z))) operator: the Ö classifier must return 
a probability class distribution for each x € D'. Any 
classifier that satisfies these requisites could be ap- 
plied. It is possible to imagine a CGTree, whose in- 
ternal nodes are trees themselves. For example, small 
modifications to C4.52, will allow the construction of a 
CGTree whose internal nodes are trees generated by 
C4.5. 

of each hypothesis should be weighted by the poste- 
rior probability of that hypothesis given the training 
data. Several variants of the voting method can be 
found in the machine learning literature. From uni- 
form voting where the opinion of all base classifiers 
contributes to the final classification with the same 
strength, to weighted voting, where each base classi- 
fier has a weight associated, that could change over 
the time, and strengthens the classification given by 
the classifier. 

Ortega [20] presents the "Model Applicability Induc- 
tion" approach for combining predictions from mul- 
tiple models. The approach consists of learning for 
each available model a referee that characterize situ- 
ations in which each of the models is able to make 
correct predictions. In future instances these referees 
are first consulted to select the most appropriate pre- 
diction model and the prediction of the selected model 
is then returned. 

4    Related Work 

With respect to the final model, there are clear similar- 
ities between CGLtree and Multivariate trees [5, 15]. 
Any multivariate tree is topologically equivalent to a 
three-layer inference network [18]. The constructive 
ability of our system is similar to the Cascade Corre- 
lation Learning architecture [11]. Also the final model 
of CGBtree is related with the recursive naive Bayes 
presented in [17]. In a previous work [13], we have 
compared system Ltree, similar to CGLtree, with Ocl 
[19] and LMDT [5]. The focus of this paper is on 
methodologies for combining classifiers. As such, we 
review other methods that generate and combine mul- 
tiple models. 

4.1    Combining Classifications 

We can consider two main lines of research. One group 
includes methods where all base classifiers are con- 
sulted in order to classify a query example. The other 
includes methods that characterize the area of exper- 
tise of the base classifiers and for a query point only 
ask the opinion of the experts. Voting is the most com- 
mon method used to combine classifiers. As pointed 
out by Ali and Pazzani [1], this strategy is motivated 
by the Bayesian learning theory which stipulates that 
in order to maximize the predictive accuracy, instead 
of using just a single learning model, one should ide- 
ally use all models in the hypothesis space. The vote 

Two different methods are presented in [14, 23]. 

4.2    Generating different models 

Several methods for generating multiple models ap- 
pear in the literature. Breiman [3] proposes bagging, 
that produces replications of the training set by sam- 
pling with replacement. Each replication of the train- 
ing set has the same size as the original data, but some 
examples do not appear in it, while others may appear 
more than once. From each replication of the training 
set a classifier is generated. All classifiers are used to 
classify each example in the test set, usually using a 
uniform vote scheme. 

The boosting algorithm of Freund and Schapire [12] 
maintains a weight for each example in the training 
set that reflects its importance. Adjusting the weights 
causes the learner to focus on different examples lead- 
ing to different classifiers. Boosting is an iterative al- 
gorithm. At each iteration the weights are adjusted in 
order to reflect the performance of the corresponding 
classifier. The weight of the misclassified examples is 
increased. The final classifier aggregates the learned 
classifiers at each iteration by weighted voting. The 
weight of each classifier is a function of its accuracy. 

Wolpert [25] proposed Stacked Generalization, a tech- 
nique that uses learning in two levels. A learning algo- 
rithm is used to determine how the outputs of the base 
classifiers should be combined. The original data set 
constitutes the level zero data. All the base classifiers 
run at this level. The level one data are the outputs of 
the base classifiers. Another learning process occurs 
using as input the level one data and as output the 
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final classification. This is a more sophisticated tech- 
nique of cross validation that could reduce the error 
due to the bias. 

Brodley [4] presents MCS, a hybrid algorithm that 
combines, in a single tree, nodes that are univariate 
tests, multivariate tests generated by linear machines 
and instance based learners. At each node MCS uses 
a set of //- Then rules to perform a hill-climbing search 
for the best hypothesis space and search bias for the 
given partition of the dataset. The set of rules incor- 
porates knowledge of experts. MCS uses a dynamic 
search control strategy to perform an automatic model 
selection. MCS builds trees, which could apply a dif- 
ferent model in different regions of the instance space. 

Chan and Stolfo [7] presents two schemes for classi- 
fier combination: arbiter and combiner. Both schemes 
are based on meta learning, where a meta-classifier is 
generated from a meta data, built based on the pre- 
dictions of the base classifiers. An arbiter is also a 
classifier and is used to arbitrate among predictions 
generated by different base classifiers. The training 
set for the arbiter is selected from all the available 
data, using a selection rule. An example of a selec- 
tion rule is "Select the examples whose classification 
the base classifiers cannot predict consistently". This 
arbiter, together with an arbitration rule, decides a 
final classification based on the base predictions. An 
example of an arbitration rule is "Use the prediction 
of the arbiter when the base classifiers cannot obtain 
a majority". Later [8], they have extended this frame- 
work using arbiters/combiners in an hierarchical fash- 
ion generating arbiter /combiner binary trees. 

4.3    Discussion 

Earlier results of boosting or bagging are quite impres- 
sive. Using 10 iterations (i.e. generating 10 classifiers) 
Quinlan [22] reports reductions of the error rate be- 
tween 10% and 19%. Quinlan argues that these tech- 
niques are mainly applicable for unstable classifiers. 
Both techniques require that the learning system is 
not stable, to obtain different classifiers when there 
are small changes in the training set. Under an anal- 
ysis of bias-variance decomposition of the error [16], 
the reduction of the error observed with boosting or 
bagging is mainly due to the reduction in the variance. 
As mentioned in Ali et al. [1] "the number of training 
examples needed by Boosting increases as a function of 
the accuracy of the learned model. Boosting could not 
be used to learn many models on the modest training 
set sizes used in this paper.". 

Wolpert [25] says that successful implementations of 
Stacked Generalization is a "black art", for classifi- 
cation tasks and the conditions under which stacking 
works are still unknown. Recently, Ting and Witten 
[23] have shown that successful stacked generalization 
requires the use of output class distributions rather 
than class predictions. In their experiments, only the 
MLR. algorithm (a linear discriminant) was suitable for 
level-1 generalizer. Cascade Generalization belongs to 
the family of stacking algorithms. In the experiments 
described in [14] we have used the Bias Variance anal- 
ysis as a criterion to select algorithms. The experi- 
ments suggest that at the top level an algorithm with 
low bias, like a decision tree, should be used. 

The main achievement of our proposed method is its 
ability to merge different models. As such, we get a 
single model whose components are terms of the base 
model language. The bias restriction imposed by us- 
ing single model is relaxed. Cascade gives a single and 
structured model for the data, and this is a strong ad- 
vantage over the methods that combine classifiers by 
voting. Another advantage of Cascade Generalization 
is related to the use of probability class distributions. 
Usual learning algorithms produced by the Machine 
Learning community use categories when classifying 
examples. Combining classifiers by means of categor- 
ical classes looses the strength of the classifier in its 
prediction. The use of probability class distributions 
allows us to explore that information. 

5    Empirical Evaluation 

5.1    The Algorithms 

Ali and Pazzani [1] and Turner and Gosh [24] present 
empirical and analytical results that show that "the 
combined error rate depends on the error rate of in- 
dividual classifiers and the correlation among them". 
They suggest the use of "radically different types of 
classifiers" to reduce the correlation errors. This was 
our criterion when selecting the algorithms for the ex- 
perimental work. We use three classifiers that have 
different behaviors under a bias-variance analysis: a 
naive Bayes, a Linear Discriminant, and a Decision 
Tree. 

5.1.1    Naive Bayes 

Bayes theorem allows to optimally predict the class 
of an unseen example, given a training set. The 
chosen class is the one that maximizes: p(d\E) = 
p(d)p(E\Ci)/p(E).    If the attributes are indepen- 
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dent, p(E\Ci) can be decomposed into the product 
p(vi\Ci) * ... * p(vk\Ci). Domingos and Pazzani [9] 
show that this procedure has a surprisingly good per- 
formance in a wide variety of domains, including many 
where there are clear dependencies between attributes. 
In our reimplementation of this algorithm, the required 
probabilities are estimated from the training set. In 
the case of nominal attributes we use counts. Continu- 
ous attributes were discretized. This has been found to 
produce better results than assuming a Gaussian dis- 
tribution [10, 9]. The number of bins used is a function 
of the number of different values observed on the train- 
ing set: k = max(l;2 * log(nr. different values)). 
This heuristic was used in [10] and elsewhere with good 
overall results. Missing values were treated as another 
possible value for the attribute. In order to classify 
a query point, a naive Bay es uses all of the available 
attributes. Langley [17] refers that naive Bayes re- 
lies on an important assumption that the variability 
of the dataset can be summarized by a single prob- 
abilistic description, and that these are sufficient to 
distinguish between classes. Prom an analysis of Bias- 
Variance, this implies that naive Bayes uses a reduced 
set of models to fit to the data. The result is low vari- 
ance, but if the data cannot be adequately represented 
by the set of models, we obtain large bias. 

5.1.2    Linear Discriminant 

A linear discriminant function is a linear composition 
of the attributes where the sum of squared differences 
between class means is maximal relative to the internal 
class variance. It is assumed that the attribute vectors 
for the examples of class Cj are independent and follow 
a certain probability distribution with probability den- 
sity function /j. A new point with attribute vector x 
is then assigned to that class for which the probability 
density function fi(x) is maximal. This means that 
the points for each class are distributed in a cluster 
centered at /Xj. The boundary separating two classes 
is a hyper-plane and it passes through the midpoint of 
the two centers. If there are only two classes, a unique 
hyper-plane is needed to separate the classes. In the 
general case of q classes, q — 1 hyper-planes are needed 
to separate them. By applying the linear discriminant 
procedure described below, we get qnode — 1 hyper- 
planes. The equation of each hyper-plane is given by: 

Hi = cti + Y,j ßij * xj where 

on = -\nj5_1/ij an<i ßi = S"~V» 

We use a Singular Value Decomposition (SVD) to com- 
pute 5_1. SVD is numerically stable and is a tool for 

detecting sources of collinearity. This last aspect is 
used as a method for reducing the features of each 
linear combination. A linear discriminant uses all, or 
almost all, of the available attributes when classifying 
a query point. Breiman[2] refers that from an anal- 
ysis of Bias-Variance, Linear Discriminant is a stable 
classifier although it can fit a small number of models. 
It achieves stability by having a limited set of models 
to fit the data. The result is low variance, but if the 
data cannot be adequately represented by the set of 
models, then we obtain large bias. 

5.1.3    Decision Tree 

Dtree is our version of a decision tree. It uses the 
standard algorithm to build a decision tree. The split- 
ting criterion is the gain ratio. The stopping criterion 
is similar to C4.5. The pruning mechanism is simi- 
lar to the pessimistic error of C4.5. Dtree uses a kind 
of smoothing process that usually improves the perfor- 
mance of tree based classifiers. When classifying a new 
example, the example traverses the tree from the root 
to a leaf. In Dtree, the example is classified taking 
into account not only the class distribution at the leaf, 
but also all class distributions of the nodes in the path. 
That is, all nodes in the path contribute to the final 
classification. Instead of computing class distribution 
for all paths in the tree at classification time, as it is 
done, for instance, in Buntine [6], Dtree computes a 
class distribution for all nodes when growing the tree. 
This is done recursively, taking into account class dis- 
tributions at the current node and at the predecessor 
of the current node, using the formula: 

P{d\en,e) = P{Ci\en)!^gA 

where P(e|en) is the probability that one example that 
falls at Noden goes to Noden+i, and P(e\en, d) is the 
probability that one example from class C, goes from 
Noden to Noden+i [21]. This recursive formulation, 
allows Dtree to compute efficiently the required class 
distributions on the fly. The smoothed class distribu- 
tions have influence on the pruning mechanism and on 
the treatment of missing values. It is the most relevant 
difference from C4.5. 

A decision tree uses a subset of the available attributes 
to classify a query point. Kohavi and Wolpert [16], 
Breiman [2, 3] among other researchers, note that de- 
cision trees are unstable classifiers. Small variations 
on the training set can cause large changes in the re- 
sulting predictors. They have high variance but they 
can fit any kind of data: the bias of a decision tree is 
low. 



212 Gama 

5.1.4    Local Cascade Generalization 
Algorithms 

All the implemented Local Cascade Generalization al- 
gorithms are based on Dtree. That is they use exactly 
the same splitting criteria, stopping criteria, pruning 
mechanism, etc. Moreover they share many minor 
heuristics that individually are too small to mention, 
but collectively can make difference. 

At each decision node, CGLtree applies the Linear 
discriminant describe above, while CGBtree applies 
the naive Bayes algorithm. CGBLtree applies the 
Linear discriminant to the ordered attributes and the 
naive Bayes to the categorical attributes. In order to 
prevent overfitting the construction of new attributes 
is constrained to a depth of 5. In addition, the level of 
pruning is greater than the level of pruning in Dtree. 

5.2 The Datasets 

We have chosen 17 data sets from the UCI repository. 
All of them were previously used in other comparative 
studies. Evaluation was done using a 10 fold stratified 
Cross Validation (CV). Datasets were permuted once 
before the CV procedure. All algorithms where used 
with the default settings. At each iteration of CV, 
all algorithms were trained on the same training par- 
tition of the data. Classifiers were also evaluated on 
the same test partition of the data. Comparisons be- 
tween algorithms were performed using t-paired tests 
with significance level set at 95%. 

Table 1 presents the data sets characteristics, the er- 
ror rate, and standard deviation of each base classifier. 
Relative to each algorithm, a +(-) sign on the first 
column means that the error rate of this algorithm, is 
significantly better (worse) than Dtree. The error rate 
of C5.0 is presented for reference. These results pro- 
vide an evidence, once more, that no single algorithm 
is better overall. 

5.3 Local Cascade Generalization 

Table 2a presents the results of local Cascade Gen- 
eralization. Each column corresponds to a Cascade 
Generalization algorithm. Each algorithm is com- 
pared against its components using t-paired tests. For 
example, CGLtree is compared against Dtree and 
Discrim. A +(-) sign means that the error rate of 
the composite model is, with statistical significance, 
higher (lower) than the respective component model. 
The trend on these results shows a clear improvement 
over the base classifiers. We never observe degradation 

on the error rate of a composite model in relation to 
all the components. In same cases there is a significant 
increase of performance comparing to all the compo- 
nents. For example CGBLtree improves in 2 datasets 
over the 3 components, and in 5 datasets over 2 com- 
ponents. 

Table 2b presents the results of C5.0 boosting with 
the default parameter of 10, that is aggregating over 
10 trees, and Stacked Generalization as it is defined 
in [23]. That is, the levels classifiers are C4.5 and 
Bayes, and the leveh classifier is Discrim. The at- 
tributes for the leveh data are the probability class 
distributions, obtained from the levelo classifiers us- 
ing a 5 stratified cross validation. Both Boosting 
and Stacked are compared against CGBLtree, us- 
ing t-paired tests with the significance level set to 
95%. A +(-) sign means that Boosting or Stacked 
performs significantly better (worst) than CGBLtree. 
In this study, CGBLtree performs significantly bet- 
ter than Stacked, in 5 datasets and never performs 
worse. Comparing with CS.OBoosting, CGBLtree 
significantly improves in 4 datasets and loses in 3 
datasets. The improvement observed with Boosting 
is mainly due to the reduction of the variance com- 
ponent of the error rate while, in Cascade algorithms, 
the improvement is mainly due to the reduction on the 
bias. We intend, in a near future, to boost CGBLtree. 

Another dimension for comparisons involves measur- 
ing the number of leaves. This corresponds to the 
number of different regions into which the instance 
space is partitioned by the algorithm. In almost all 
datasets3, any Cascade tree splits the instance space 
into half of the regions needed by Dtree or C5.0. This 
is a clear indication that Cascade models capture bet- 
ter the underlying structure of the data. 

6    Conclusions 

This paper presents a new methodology for classifier 
combination. The basic idea of Cascade Generaliza- 
tion consists of a reformulation of the input space by 
means of insertion of new attributes. A base classi- 
fier computes the new attributes. Each new attribute 
is the instantiation of P(d\x) given by the predictor 
function generated by the base classifier on this ex- 
ample. In this sense, the new attributes are terms, 
or functions, in the representational language of the 
base classifier. This constructive step acts as a way 
of extending the description language of the high level 

3Except on Monks-2 dataset,  where both Dtree and 
C5.0 produce a tree with only one leaf. 
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Dataset Class Nr.Ex. Types Dtree C5.0 Bayes Discrim 
Australian 2 690 8 Ord,6 Cont 14.37 ±6.18 13.63 ±4.36 15.07 ±3.76 14.05 ±5.23 
Balance 3 625 4 Cont 21.91 ±4.63 21.92 ±4.93 -    30.08 ±7.01 + 13.14 ±2.46 
Breast (W) 2 699 9 Ord 5.84 ±4.64 5.42 ±4.08 +     2.43 ±2.52 + 4.27 ±4.58 
Diabetes 2 768 8 Cont 25.14 ±5.78 23.69 ±6.48 24.62 ±4.58 22.92 ±4.97 
German 2 1000 17 Ord,7 Cont 28.70 ±4.30 29.10 ±2.81 27.60 ±5.15 + 23.50 ±5.54 
Glass 6 213 9 Cont 31.85 ±7.61 32.30 ±10.19 - 46.35 ±10.93 - 36.78 ±8.07 
Heart 2 270 6 Ord,7 Cont 25.16 ±9.84 22.96 ±8.69 +   15.93 ±8.56 + 15.93 ±4.29 
Ionosphere 2 351 33 Cont 8.54 ±5.80 9.66 ±3.47 11.07 ±7.76 - 14.26 ±4.68 
Iris 3 150 4 Cont 4.67 ±5.48 4.67 ±4.50 4.00 ±4.66 2.00 ±3.22 
Monks-1 2 432 6 Ord 6.33 ±7.45 +     0.00 ±0.00 -    25.07 ±5.96 - 33.39 ±10.06 
Monks-2 2 432 6 Ord 32.90 ±0.63 32.86 ±0.65 -    49.32 ±8.50 33.32 ±1.60 
Monks-3 2 432 6 Ord 0.00 ±0.00 0.00 ±0.00 -      2.79 ±2.42 - 22.89 ±8.96 
Satimage 6 6435 36 Cont 13.35 ±1.51 13.53 ±1.57 -    19.55 ±1.48 - 15.91 ±1.49 
Segment 7 2310 18 Cont 3.64 ±1.13 3.38 ±1.34 -    10.22 ±0.74 - 8.18 ±0.83 
Vehicle 4 846 18 Cont 28.11 ±4.87 27.27 ±5.48 -    37.70 ±2.18 + 22.34 ±2.87 
Waveform 3 2581 21 Cont 23.38 ±3.40 -    24.88 ±2.94 +   18.52 ±2.24 + 15.15 ±1.86 
Wine 3 178 13 Cont 6.66 ±6.32 7.19 ±7.44 2.22 ±3.88 + 0.56 ±1.76 
Mean of ei •ror rate 16.50 16.02 20.15 17.56 
Mean nr. leaves 45.6 51.3 

Table 1: Data Characteristics and Results of Base Classifiers 

Dataset GGLtree CGBtree CGBLtree 
Australian 
Balance 
Breast (W) 
Diabetes 
German 
Glass 
Heart 
Ionosphere 
Iris 
Monks-1 
Monks-2 
Monks-3 
Satimage 
Segment 
Vehicle 
Waveform 
Wine 

14.354 ±4.77 
+ +    7.016 ±2.68 
+         3.280 ±2.59 

23.565 ±3.12 
24.700 ±4.19 
33.866 ±9.26 

+       17.037 ±5.58 
11.363 ±4.32 
2.667 ±3.44 

+    2.976 ±4.43 
33.335 ±5.81 

+    0.698 ±1.12 
+ 12.385 ±1.44 
+    3.853 ±1.22 

+      21.025 ±3.08 
+       16.351 ±1.68 
+         0.556 ±1.76 

14.499 ±3.76 
+ +   6.704 ±3.64 
+        2.712 ±2.27 

26.693 ±5.87 
27.100 ±5.48 

+ 27.004 ±7.51 
+      16.667 ±6.11 

9.369 ±5.12 
4.000 ±4.66 

- + 14.372 ±8.69 
+ + 13.874 ±6.97 

+   0.465 ±0.47 
+ + 11.673 ±1.25 

+   4.416 ±1.47 
+ 28.844 ±3.88 

+     16.004 ±2.78 
3.403 ±3.94 

14.058 ±4.80 
+ + +   7.016 ±2.68 

3.280 ±2.68 
23.565 ±3.12 

- 25.300 ±5.25 
+     33.866 ±9.26 

+          17.037 ±5.58 
11.363 ±4.32 
2.667 ±3.44 

+ +   2.565 ±3.77 
+ + + 11.120 ±5.36 

+ +   0.465 ±1.47 
+ + 12.385 ±1.44 
+ +   3.853 ±1.21 

+ +     21.025 ±3.08 
+          16.351 ±1.68 
+            0.556 ±1.76 

Mean error rate 
Mean nr.leaves 

13.47 
23.9 

13.40 
23.7 

12.15 
22.9 

C5Boost Stacked 
13.337 ±3.33 

- 20.184 ±4.17 
3.135 ±3.20 

24.728 ±5.46 
23.200 ±2.35 

25.020 ±10.09 
19.630 ±9.25 

+     5.947 ±3.06 
- 5.333 ±4.22 

0.000 ±0.00 
- 36.353 ±5.87 

0.000 ±0.00 
+     9.062 ±1.07 
+     1.905 ±1.05 
- 24.922 ±3.71 

17.980 ±1.86 
2.222 ±2.87 

13.766 ±4.47 
- 12.309 ±3.63 

2.427 ±2.52 
22.657 ±5.42 
24.800 ±4.24 
35.753 ±6.20 
16.667 ±8.24 
10.758 ±7.33 
4.667 ±3.22 
0.682 ±2.16 

- 32.865 ±0.65 
- 2.072 ±2.01 
- 13.303 ±1.63 

3.420 ±1.35 
- 27.731 ±5.06 

16.429 ±1.50 
2.778 ±3.93 

13.70 14.30 

Table 2: Results of (a)Local Cascade Generalization (b)Boosting and Stacked 

classifiers. The number of new attributes is equal to 
the number of classes, and for each example, they are 
computed as the conditional probability of the exam- 
ple belonging to classi given by the base classifier. 

Cascade Generalization can be applied locally by any 
learning algorithm that uses a divide-conquer strategy. 
As pointed by several researchers, successful combina- 
tion of classifiers requires different syntactic models. 
We have chosen, for the implementation of Local Cas- 
cade Generalization algorithms, three algorithms that 
have very different behavior from a bias-variance anal- 
ysis: as high level classifier we use a decision tree and 
as low level classifier we use a naive Bayes, giving CG- 
Btree and a Linear Discriminant, giving CGLtree. At 
each decision node a constructive step is performed by 
applying the base classifier. The new axis incorporates 
new knowledge provided by the base classifiers. The 

bias restriction imposed by using single model classes 
is relaxed in the directions given by the base classi- 
fiers. It is this kind of synergy among classifiers that 
Cascade explores. 

There are two main issues that differentiate Cascade 
from other previous methods on multiple models. The 
first one is related to its ability to be applied locally 
merging different models. We get a single model whose 
components are terms of the base model language, ex- 
tending the high level model language. Cascade gives 
a single structured model for the data, and in this 
way is more adapted to capture insights about prob- 
lem structure. The second point is related to the use 
of probability class distributions. Using these prob- 
abilities allows the system to use information about 
the strength of the classifier. This is very useful in- 
formation, particularly when combining predictions of 
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classifiers. We have shown that this methodology can 
improve the accuracy of the base classifiers, competing 
well with other methods for combining classifiers, pre- 
serving the ability to provide a single albeit structured 
model for the data. 
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Abstract 

Many reinforcement learning algorithms, like 
Q-Learning or R-Learning, correspond to 
adaptative methods for solving Markovian 
decision problems in infinite-horizon when 
no model is available. In this article we 
consider the particular framework of non- 
stationary finite-horizon Markov Decision 
Processes. After establishing a relationship 
between the finite-horizon total reward cri- 
terion and the average-reward criterion in 
finite-horizon, we define Q-H-Learning and 
R-H-Learning for finite-horizon MDPs. Then 
we introduce the Ordinary Differential Equa- 
tion (ODE) method to conduct a learn- 
ing rate analysis of Q-H-Learning and R-H- 
Learning. R-H-Learning appears to be a ver- 
sion of Q-H-Learning with matrix-valued step- 
sizes, the corresponding gain matrix being 
very close to the optimal matrix which re- 
sults from the ODE analysis. Experimental 
results confirm that performance hierarchy. 

1      Introduction 

The search for optimal policies in Markov Decision 
Processes has been deeply studied according to dif- 
ferent optimality criteria and has led to the definition 
of the well known Bellman optimality equations, and 
dynamic programming algorithms [Puterman, 1994]. 
Most Reinforcement Learning (RL) algorithms that 
have been recently developed [Kaelbling et al., 1996, 
Bertsekas and Tsitsiklis, 1996] take a stochastic opti- 
mization approach to solve these optimality equations, 
by directly learning the optimal policies from iterated 
observations of rewards and state transitions, without 

a priori knowledge about the system. 

In this paper we consider the case of non stationary 
Markov decision problems in a finite horizon. Despite 
being an accurate modelling of many applications con- 
cerning the management of industrial production sys- 
tems, finite-horizon MDPs have not been yet specifi- 
cally considered in reinforcement learning. This article 
is a first attempt to fill this gap. 

Our work relies on two parts. First we propose a refor- 
mulation of the two main classical optimality criteria, 
expected total reward criterion and average expected 
reward criterion, given the finite-horizon assumption. 
After establishing an equivalence between them, we 
conclude that it is possible to use the two adapted 
reinforcement learning algorithms, Q-H-Learning and 
R-H-Learning, to learn optimal policies for non station- 
ary finite-horizon MDPs. 

Secondly, we conduct an analysis of the respec- 
tive rates of convergence of Q-H-Learning and R^- 
Learning. Surprisingly, R-H-Learning appears to be a 
version of Q-n-Learning with matrix-valued stepsizes. 
Furthermore, the ordinary differential equation (ODE) 
method enables to determine a theoretical optimal 
matrix-valued gain, and it appears that the gain cor- 
responding to R-H-Learning is numerically and struc- 
turally very close to that optimal gain. The experi- 
mental study we conducted confirms these results: in 
most situations we tested, R-H-Learning performs bet- 
ter than Q-n-Learning, and the implementation of the 
optimal matrix-valued gain defines a reinforcement al- 
gorithm that surpasses R-H-Learning. 
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2    Reinforcement Learning in 
Finite-Horizon 

2.1    Non-Stationary MDP in Finite-Horizon 

The majority of reinforcement learning algorithms 
solve stationary infinite-horizon Markov Decision 
Problems. Given a state-space S and an action-space 
A, the dynamic of a Markov decision process is char- 
acterized as follows: at each time step t £ T, the ex- 
ecution of action at € A in state xt £ S leads to the 
new state xt+\ € S with a probability p(xt+i | xt,at), 
and to the instantaneous reward r(xt,at). 

A Markov Decision Problem is defined by adding to 
that process a performance criterion to maximize over 
a set of decisional policies. This criterion is a measure 
of the expected sum of the rewards along a trajectory, 
and policies are functions that indicate the action at to 
execute given informations about the past trajectory 
at time t. For stationary infinite-horizon Markov deci- 
sion problems, most of the perfomance criteria lead to 
the existence of stationary optimal policies, i.e. func- 
tions 7T that map states in S to actions in A. 

In finite-horizon problems, trajectories are sequences 
of exactly N transitions, with T = {1,...,N}. 
The performance criterion considered in that case is 
the finite total expected reward criterion V"(x) = 
En[r(xi,ai) + r(x2,a2) + ... + r(xN,aN) \ xx = x] 
where x 6 S and En is the expected value given the 
policy 7T. 

When dealing with finite-horizon MDPs, the station- 
ary assumption cannot be considered anymore. A first 
reason is that even for stationary finite-horizon MDP 
models (time-independent spaces S and A, transition 
probabilities p() and rewards r()), optimal policies are 
no longer stationary, and are functions of T x S into 
A: t, x A  ir(t,x) [Puterman, 1994]. 

More practically, in most of the problems of indus- 
trial production process control that lead to finite- 
horizon MDPs, the main cause of non-stationarity of 
optimal policies is the non-stationarity of the MDP 
model itself: is is very common to have different state- 
spaces, decision-spaces, transition probabilities and re- 
ward values at each decision step. In order to take into 
account this characteristic, we consider the following 
formal model of finite-horizon MDP: 1) to each time 
step i £ T = {1, 2, ..., N} is associated a finite state 
space Si and a finite decision space vl,; 2) for each 
step i € {1, 2, ..., JV - 1}, the execution of action 

a* 6 Ai from the state xt e Si leads to the new state 
Xi+i 6 Si+i with a probability Pi{xi+\ \ Xi,ai), and 
with the instantaneous reward rj(x;,aj); 3) at the last 
decision step, the system receives a reward rjv(£yv, ayv) 
after the execution of a/v in xyv, and stops. 

For this particular kind of MDP a policy ix can 
be decomposed into a set {K\,-K2, ■■■,'^N} of poli- 
cies 7Tj : Si -> Ai. For each decision step, a 
value function associated to it is defined as V*(x) = 

^7r[E<=f'rt(xt,M
xt)) I Xi = x). 

We say a policy TT is optimal if it maximizes the value 
function V{ on S\. For this criterion, the classical 
Bellman optimality equations that characterize opti- 
mal policies are 

V*{x) =m&xlri(x,a)+   ^  Pi{y \ x,a)Vi'+i(y) 
{ y€S, + 1 

(1) 
for all x £ Si, i E {l,-,N} and V£+1 = 0 
[Puterman, 1994]. Then TT*(X) = argmaxQ{r;(a:,a)-l- 
T,yes,+lPi(y I x,a)vi*+i(y)}- This optimality equation 
has a single solution V* - {V{,..., Vfi}, that can be 
easily obtained by a dynamic programming algorithm 
in O(N.nA-ns) complexity (for state spaces Si and 
decision spaces Ai of constant size ns and UA) when 
transition probabilities and reward function are known 
[Puterman, 1994]. The associated learning problem is 
to adaptatively estimate the optimal value functions 
V* and the corresponding policies n*, from observed 
transitions and rewards when the Markov decision pro- 
cess is not known. 

2.2      Q^-Learning in Finite-Horizon 

Q-Learning [Watkins, 1989] is based on the rewrit- 
ing of the Bellman optimality equation, replacing the 
V*(x) value function of a policy by a new function 
Q^lx,^: for all x £ 5,-, a € At QJ(x,a) = ri(x,a) + 

Ey&s,+1Pi(y\x'a)vi+i(y)- 

We have V7T(x) = Qn(x,n(x)), and the optimality 
equation becomes 

Q*(x,a) = ri(x,a)+   Y]  pi{y \ x,a)maxQ*i+l(y,b), 

for all x € Sj and a G At. Then V*{x) = 
maxQQ*(x,a) and 7r*(x) = argmax0C?*(a;,a). 

Q-Learning is a reinforcement learning algorithm al- 
lowing the iterative generation of the solution Q* and 
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the optimal policies IT* . The algorithm consists in up- 
dating at each iteration n the estimation Qn of the 
value function Q*, from the current observed transi- 
tion and reward < xn,an,yn,rn >. Q-Learning is a 
natural candidate for solving finite-horizon MDPs. It 
is indeed easy to transform an N-step non-stationary 
MDP into an infinite-horizon process, by adding an 
artificial final absorbing state xai,s, that is reward-free 
and such that all actions ajy in AN lead with proba- 
bility 1 to xabs (figure 1). 

Figure 1: infinite process with absorbing state 

Hence the first reinforcement learning algorithm we 
propose for finite horizon MDPs is: 

Finite-Horizon Q^-Learning. 
Observe < xn,an,yn,rn > 
Update 

Qn+i(x,a) = Qn(x,a) + an(x,a).en (2) 

with en = 

r„+max6 Qn(yn,l>)-Qn(x,a) if (x,a)=(xn,an),xn€Si,i<N 

r„-Qn(x,a) if (x,a) = (xn,a„),xneSN 

o otherwise 

If xn g SN set xn+i = yn ; 
otherwise choose randomly xn+i in S±. 
If xn+\ G Sj select an+i in Aj 

In this algorithm QQ(x,a) = 0 and an(x,a) are small 
learning rates decaying over time. The state explo- 
ration is classically determined by the dynamic of the 
process (that is, xn+\ = yn), until the last decision 
step is reached and we restart a new trajectory by 
choosing randomly a new initial state in Si. The spe- 
cific learning rule for SN is equivalent to directly set- 
ting VN+1{xabs) = QN+1(xabs,ai00p) = 0. The action 
selection is as usual based on an exploration function. 

Let us assume that each pair (x,a) in Si x Ai 
is visited an infinite number of times, and that 
X]nQ:n(x,a) = oo and Y^n

an(x>a) < °°- The 
convergence of Q-Learning [Watkins and Dayan, 1992, 

Jaakkola et al., 1994, Tsitsiklis, 1994] in case of no- 
discounting (7=1) and with the presence of reward- 
free absorbing states proves that this finite-horizon 
Q-H-Learning algorithm will converge in probability 
1 towards the optimal value function: Vx G Sj, a G 
Ai,     lim Qn(x,a)  = Q*(x,a) a.s.    with V?{x)  = 

n—too 
maxa6j4i Q*(x,a). 

2.3    R/H-Learning and the average-reward 
criterion 

The average reward criterion was introduced in Re- 
inforcement Learning by Schwartz through the R- 
Learning algorithm [Schwartz, 1993]. It has been 
studied since then by many researchers [Singh, 1994, 
Ok and Tadepalli, 1996, Mahadevan, 1996b]. The 
goal is to search for gain-optimal policies that max- 
imize the expected payoff per step, which is a very 
natural measure of optimal acting: 

1   " 
pn(x) = lim E„[- yVt I xi = x}. 

nt=l 

For the particular case of unichain MDPs (that is, 
for all policy n, the Markov chain {xn}n contains a 
single recurrent class of states, and a possibly empty 
set of transient states), the average reward associated 
to each policy is independent of the state : p7r{x) — 
Pn(y) = Pn ■ For simplicity reasons, most of the results 
concerning average reward criterion in Reinforcement 
Learning have been established with this unichain as- 
sumption [Mahadevan, 1996b]. 

A more selective optimality criterion can be defined. 
It is based on a new value function U* of a policy n, 
called bias value [Puterman, 1994]. For all state x G S 
we have 

n 

U*{x) = lim £„[$>* - p") I Xl = x}. 
t=l 

A policy 7T* is said to be bias-optimal (or T-optimal in 
[Schwartz, 1993]) if it is gain-optimal, and if Un* (x) > 
Uv{x) for all x and all policy IT. 

The existence of optimal stationary policies for gain 
and bias optimality has been shown [Puterman, 1994]. 
For all unichain MDPs, there exists a pair (U*,p*) 
solution of the Bellman equation for the average crite- 
rion: 

U*{x) +p* = max   r(x,a) + ^p{y \ x,a)U*{y)    , 

(3) 
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for all x G S, such that the average reward of the policy 
7T* that maximizes the right-hand side of (3) is the op- 
timal average reward p*. Furthermore, if ([/*', p*') is 
also a solution of (3), then p* = p*'. The solutions U* 
of (3) are not unique, since for each solution (U*,p'), 
the pair (U* + k,p*) is also a solution (one can show 
that this is a complete characterization of the set of so- 
lutions for unichain MDP models [Puterman, 1994]). 

That last remark shows that (3) is not sufficient to pro- 
duce bias optimal policies. Another optimality equa- 
tion, based on a third notion of value function called 
bias offset, is generally required [Puterman, 1994, 
Mahadevan, 1996a]. 

In order to adapt the average-reward criterion to finite- 
horizon MDPs, we first transform the initial process 
5i -> SN into a new infinite process Si -> SN Ö Si. 
The natural solution we propose is to close artificially 
the loop between SN and Si by adding a uniform tran- 
sition: Vx € SAT, Va e AN, Vy £ Si,pN(y \x,a) = ^ 

(figure 2). 

Figure 2: infinite process with looping on Si 

For the new MDP Si ->• SN Ü Si we proved the fol- 
lowing proposition [Garcia and Ndiaye, 1998]: 

Proposition 1 For the cycling process Si -> SN Ö 
Si, for all policy ir, 

WxeSi    p*(x)    =    ~ £ V?(xi) = p« 

Va:€5i,i=i,...,jv    U*{x)    =    V?(x) - (N - i + l)p\ 

£ U"(Xl)    =   0. 
<ti€Si 

The first aspect of this result, the state independence 
of p*, is not surprising since the looping SN O Si 
transforms the original MDP into a unichain pro- 
cess.    More interesting are the next equalities;  the 

second one establishes an equivalence between the 
bias-value function, the average reward and the value 
function in finite-horizon, and the last one com- 
pletely determines this bias-value function. From 
that properties we proved the following theorem 
[Garcia and Ndiaye, 1998]: 

Theorem 1 // {U*,p*) is a solution of average- 
reward Bellman equation (3) for Si —> SN Ö S\ with 
the constraint J2X es U*(xi) ~ 0> and »/7r* ** an aÄ~ 
sociated gain-optimal policy, then the value functions 
V*(x) = U?(x) + (N -i + l)p* are solutions of finite- 
horizon Bellman equation (1), and TT* is a policy that 
maximizes V*(x) for x € Si, i = 1,..., TV. 

That result shows that there is an equivalence between 
the finite-horizon and average-reward criteria, and a 
solution of (3) necessary leads to a solution of (1). 
The following corollary characterizes more deeply this 
equivalence [Garcia and Ndiaye, 1998]. 

Corollary 1 // {U",p*) is solution of (3) for Sx -> 
SN O SI with £x,es, U*{xx) = 0, then (U*,p*) also 
defines a bias-optimal solution. 

From these results, it appears natural to use R- 
Learning for solving finite-horizon MDPs. The second 
reinforcement learning algorithm we propose, called 
R^-Learning, is an adaptation of R-Learning with an 
update rule for states in SN that directly integrates the 
final condition R*N(x,a) — rN(x,a) - pn for x € SN, 

a € AN' 

Finite-Horizon R^-Learning 
Observe < xn,an,yn,rn > 
Update 

Rn+i(x,a)    =    Rn(x,a) + a„(x,a).en 

Pn+l      =     Pn + ßn-e'n 

rn— pn+niax(, R„(y„,b) — R„(x,a) 

if (x,a) = (x„,a„)x„eSi,i<N 

—      ^    rn-p„-Rn(x,a) 

if (x,a) = (xn,on) X„£SN 

0 otherwise 

=     < 

r„—pn+maxb R„(y„,6) — R„(xn,a„) 

if x„eS,, i<N a„ = TTn(x„) 

r„—pn—Rn(xn ,0„) 

if x„ eS,v n„=ir„(x„ ) 

0 otherwise 

If xn+\ = yn £ Sj select an+\ in Aj 
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3    A learning rate analysis of 
Q^-Learning and R^-Learning 

The simulations we conducted from a random finite- 
MDP generator (see [Garcia and Ndiaye, 1998] and 
section 4) have shown experimentally that Q-H- 

Learning and R-H-Learning always converge to an opti- 
mal policy, and that R^-Learning is most of the time 
faster than Q-^-Learning. However, it still does not 
exist any definitive theoretical results about the con- 
vergence of R-Learning-like algorithms, with a mixed 
iteration on Rn and pn. 

The aim of this section is to introduce a comparison 
of the respective learning rates of convergence of Q«- 
Learning and R«-Learning. The analysis we propose 
below is made possible by an original equivalent trans- 
formation of R^-Learning into a new reinforcement al- 
gorithm, the form of which is closer to Q«-Learning. 
We first present that transformation. 

3.1    An equivalent formulation of 
R^-Learning 

Just consider the second equation of Proposition 1. It 
sets a direct relation between the value functions Un 

and V* of a policy n, that can be directly translated 
in terms of functions Rn and Qn : Vx £ Si, Va 6 
Ai RJ(x,a) = QJ(x,a) - (N -i + l)p". Prom that 
observation we propose to transform the iteration on 
Rn in the R«-Learning algorithm by an iteration on 
Qn. With this aim, we define the new series {Qn}n- 

VzG Si, VaeAi    Qn{x,a) = Rn(x,a) + (N-i + l)pn 

(4) 
with {Rn}n and {pn}n the two series of the R«- 
Learning algorithm. That transformation leads to the 
following equivalent reinforcement algorithm: 

Finite-Horizon R^-Learning - Q formulation . 

Qn+1(x,a)    =    Qn(x,a)+7n(x,a).en 

Pn+l      =     Pn + ßn-en if «n = irn{xn) 

(5) 

&n      — 

7„(a;,o)    =    < 

r„+maxi Qn (j/„ ,b)-Q„ (xn ,a„) 

if x„€Si,i<N 

rn-Q-n(xn,an) if xneSN 

an(x,a)+(N-i+l)ßn 

if (x,a)={xn,an),Xn£Si,an=irn(xn) 

an(x,a) 

if (x,a)=(xn,an),an^irn(xn) 

(N-i+l)0n 

if (x,a)^(xn,an),x£Si, a„=7r„(x„) 

o otherwise 

As we can see, the two series {Qn}n and {Pn}n 
are now decoupled. Furthermore, since irn(x) = 
argmax0i?n(a;,a) = argmaxa(Qn(x,a) — (N - i + 
l)pn) = argmaxa Qn(x,a), the {pn}n iteration is even 
not necessary to determine the current policy 7rn. 

Hence the two algorithms Q-^-Learning and R«- 
Learning in finite-horizon can be considered as two 
different updating rules of the same value function 
Q. More precisely, the main difference between Q^- 
Learning and R-^-Learning can now be clearly associ- 
ated to the number of components Qn(x, a) which are 
modified at each iteration of the algorithm. In Q%- 
Learning, we only update the component Qn(xn,o,n)- 
In R^-Learning, if (x,a) ^ (xn,an), Q(x,a) can still 
be updated if the action an corresponds to a greedy 
action for the state xn in the policy 7rn. 

3.2    Reinforcement Learning and the ODE 
method 

Now that we have seen that R«-Learning is a par- 
allel version of Q^-Learning, we intend to compare 
their respective rates of convergence. The theoret- 
ical tool we have chosen is the Ordinary Differen- 
tial Equation (ODE) method recently introduced in 
reinforcement learning [Bertsekas and Tsitsiklis, 1996, 
Kushner and Yin, 1997]. The ODE method results 
from the combination of dynamical systems and 
stochastic approximation techniques. The classical 
theory of stochastic approximation introduced by Rob- 
bins and Monro [Robbins and Monro, 1951] concerns 
the analysis of adaptive stochastic algorithms 

®n+l — @n + 7nH(9n, Xn+i) (6) 

where 9n is the parameter vector, and Xn the in- 
put random vector bringing some information on 9n 

at time n. The application of this theory to the 
domain of Reinforcement Learning has led to gen- 
eral proofs of convergence for Q-Learning or TD{\) 
[Jaakkola et al., 1994, Tsitsiklis, 1994]. The ODE 
method was initially proposed by Ljung [Ljung, 1977], 
and then has been the source of many works, as in 
[Kushner and Clark, 1978, Benai'm, 1996]. It consists 
in the introduction of the averaged differential equa- 

tion — = H(fl) where H{6) =  lim E[H(8,Xn)], the 
at n-»oo 

behaviour of which can be compared to the asymptotic 
behaviour of (6). 

The use of the ODE method for analysing learning 
algorithms like neural nets has originally been intro- 
duced by BenaTm [Benai'm, 1995].  An application to 
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the analysis of reinforcement learning algorithms has 
already 
been considered in [Bertsekas and Tsitsiklis, 1996, 
Kushner and Yin, 1997], where convergence analysis 
of Q-Learning are presented. The point we want to 
emphasize in this article is that the ODE method can 
also be applied to study the learning rates of rein- 
forcement learning algorithms like Q^-Learning and 
R-H-Learning. 

The representation we adopt for this study is the fol- 
lowing: the parameter vector 6 to estimate is the opti- 
mal value function Q*, Xn represents the observation 
at time n, and is defined as Xn = (xn_i,an_i,xn), 
H() is the update rule of Q^-Learning in finite- 
horizon. Here H(Q, (x,a,y)) is set to the vector: 

(x,a) 

\ 

r(x,a)+maxt Q(y,b)—Q(x,a) 

r(x,a) — Q(x,a) 

0 

if xeS,,i<N 

if xESN 

) 

Thus   the   two   algorithms   Q^-Learning   and   R-H- 

Learning can be described as 

Qn+l=Qn + -rH(Qn,Xn+l) (7) 
n 

where V = T^n or TRn is an adaptive gain matrix. 
For ßn = 0 and an(x,a) = £, T*** = Tfl« = / which 
corresponds to the simplest version of Q-n-Learning. 
Therefore, within the ODE method, Qw-Learning and 
R-H-Learning can be considered as two discrete approx- 
imations with adaptive matrix-valued gains TQn and 
TRn of the same differential equation: 

* = ««> 
(8) 

with h(Q) =   lim EQ[H(Q,Xn)].   h(Q) can be cal- 
n-+oo 

culated from the stationary distribution pfi of the 
Markov chain {Xn}n given a constant parameter Q: 

h(Q) = '£H(Q,X)ffi(X). 
x 

To calculate the stationary distribution nQ we have to 
take into account the fact that for reinforcement learn- 
ing algorithms, the input sequence {Xn}n is a Markov 
process controlled by the parameter vector Qn itself 
[Benveniste et al., 1990].   For Markovian exploration 

functions, where an depends probabilistically of xn 

and Qn, ffi is given by: 

VX = (x,a,x'),    ßQ(X).= iiQE{x)Pgp{a | x)P(x' \ x,a) 

where fi® is the stationary distribution of the Markov 
chain {xn}n defined by P(x' | x) = £aej4.P;(x' I 
x,a)PQp(a | x) for x 6 Si, and P^xp{an | xn) is the se- 
lection probability of the exploration function. Since 
we added a uniform return form S^ to Si, we have 
Vx £ Si, HE{X) = jf^—. Iteratively, ßg can be com- 

puted on each state-space Si as: Vx G Si+\, ß%{x) = 

Ez6s, p(x I *)/*!(«)■ 

We easily check that Q* is a stable attractive point of 
(8). First we can see that h(Q") = 0. Moreover, we 
can calculate the jacobian matrix of h on that point: 

(zV) 

(9) 

(x,a) 

\ 

-fi"(x,a) if (x,a) = (x',a') 

Pi(z'|x,a)/i*(x,a)     ifi6S,,t<Ar, 

x'£Si + i, a' = 7r*(;r') 

0 otherwise 
/ 

with 7r*(x) = argmaxa Q'(x,a) and fi*(x,a) = 
f/^ (x)pQ'p(a | x). The eigenvalues of HQ{Q*) are 
equal to -/x*(x,o). They are strictly negative with 
the simple assumptions that the Markov chain {xn}„ 
is recurrent at Q = Q*, and that Vx, a P^'p(a | x) > 0. 

Based on that material, we can now focus on the 
problem of the learning rate analysis, and its appli- 
cation to the comparison between Q^-Learning and 
R-^-Learning in finite-horizon MDPs. 

3.3    Optimal matrix-valued learning rates 

The use of a matrix-valued gain to guide and acceler- 
ate the convergence of a stochastic adaptive algorithm 
is a classic result of stochastic approximation theory 
[Benveniste et al., 1990, Kushner and Yin, 1997]. 

For the algorithm (7) the gain matrices T that main- 
tain Q* as a stable equilibrium of the new ODE 

dQ 
dt 

= Th(Q), 

are characterized by VA eigenvalue of |/ + 
r./ig(Q*), Tle(X) < 0. Among all these matri- 
ces, it is possible to prove [Benveniste et al., 1990, 
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Kushner and Yin, 1997] that the one that minimizes 
the asymptotic variance   lim \\Qn - Q*\\2 is defined 

n—foo 
by 

r = -hQ-\Q*) (10) 

As we can see the knowledge of the target parameter 
Q* is generally required and an adaptive matrix-valued 
gain T„ that converges toward T* is often used. In 
our case, T* can be calculated by inverting (9). We 
obtain the following upper triangular optimal matrix 
[Garcia and Ndiaye, 1998]: 

(x'.a1) 

T* = 
(x,a) 

V 

/j,'(x,a) 
PQ   (x'\x,a) 

ß*(x' ,a') 

if (x,a)=(x' ,a') 

if x€Si,x'eSj, 

i<j, a'=7r*(x') 

otherwise 
/ 

where PQ(x' \ x,a) is the probability of going from 
x G Si to x' 6 Sj, 1 < i < j < N, in j — i steps, by 
first executing the action a, and then by following the 
current policy ir^(x) = argmaxa Q(x,a) for the last 
j — i — 1 steps. 

3.4    Comparison between TQn, Tfi" and T* 

For the two algorithms Q^-Learning (2) and R/^- 
Learning (5) that we consider in this paper, the gains 
TQn and TRn are adaptive gains that depend on n, 
but also on Xn and Qn. 

In order to be able to compare these matrix-valued 
gains with the optimal gain T*, it is necessary to con- 
sider their asymptotic behaviour. If we assume classi- 
cally that an(x, a) = N?£a\ where N(x,a) is the total 
number of times the pair (x, a) was visited at time n, 
and ßn = ^, we show in [Garcia and Ndiaye, 1998] 
that T^* and TRn converge respectively toward: 

ß*(x,a) 

Vo ■••/ 

(x,a) 

rR-H — 
x oo 

:(x',a') 

+       (N-i+l)ß0 

if (x,a)=(x',a'), x€Si , a=7r*(x) 

if (x,a)=(x',a'),o^ir*(x) 

(N-i+l)ßo     if (x,a)Tt(x',a'),xeSi,a'=iT*(x') 

0 if (t,a)54(V,a/),a,
?!ir'(i') 

ß'(x,a) 

ß*(x,a) 

A first remark about these matrix-valued gains is that 
the stability condition on Q* implies that ao > \. This 
explains some empirical results concerning R-Learning 
which reveal that higher initial values of ao are to be 
preferred to lower values [Mahadevan, 1996b]. 

It is now interesting to compare rJJ", Y^1 and T*. For 
ao = 1 and a small /3o, the three matrices have more or 
less the same diagonal values, which is a confirmation 
of the good choice an(x,a) = N,1x  i, asymptotically 

equivalent to nß.\Xta). 

Another important similarity between T**™ and T* is 
about the structure of the matrices : both of them 
have exactly the same null columns. 

4    Simulations 

In order to experimentally compare Q-H-Learning, R«- 
Learning and the T*Q-Learning corresponding to (7) 
with T = T*, we have developed a random finite-MDP 
generator. At each step i, a set Si of ns states and a 
set Ai of riA actions are defined. Each transition from 
Si to Si+i is characterized by a set of TIA transition 
matrices pi(. \ ., a) and UA reward vectors ri(.,a). The 
problem parameters are N, ns and UA- The reward 
values r*i(s, a) and the probabilities pi(s' \ s,a) are 
drawn in [0,1] from a random number generator, with 
the constraints J28' Pi(s' I s>a) = !• 

For a given random MDP, we first calculate the exact 
finite-horizon optimal policy n* with the classical N- 
step backward dynamic programming algorithm, using 
the pi and Vi values. Then we calculate \i*', P® , and 
finally the T* optimal gain. 

We evaluated the performance of the 3 algorithms Q-^- 
Learning, R^-Learning and r*Q-Learning on different 
random MDPs [Garcia and Ndiaye, 1998]. 

The learning parameters a„ et ßn were defined by 

an(x,a) 
ao 

N(x,a) 
and ßn = ßo 

n/N' 

where N(x, a) is the number of times the action a has 
been chosen in the state x. We used ao = 1 and ßo = 
0.4 for all simulations, with a semi-uniform exploration 
function (r = 90%). These choices of learning rates 
were made to optimize the behaviour of Q«-Learning 
and Rft-Learning on the set of problems we considered. 

We chose />„„ = j±^ Ex€Sj v\" (x) as a performance 
measure of the current policy 7rn at iteration n, and 
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the variability of this policy 7rn for different learn- 
ing trajectories was taken into account by calculat- 
ing the mean of the value p„n on M different runs 
(we took M = 5). More precisely we considered 
for each algorithm the two criteria C\ : p^/p* for 
n = 500N, and C2 : pnn Ip* for n = 5000 N, where 
p* = —^- J2xes Vi(x) 1S ^e optimal average gain of 
7T*. 

The first surprising fact we noticed was that most of 
the time the r* Q-Learning did not converge. An ex- 
planation we found is that for large sized problems, the 
initial gains .,*a\ n 

0I" r* Q-Learning are too large, 

and make the series {Qn}n leaves its convergence do- 
main. To fix that problem we decided to replace T* 
by an adapative matrix T* asymptotically equivalent 
to T*, where is used instead of The re- N(x,a)   10 "oou i"ou<-«u v,i  ß.(x<a) 

suits we finally obtained showed that r* Q-Learning is 
a bit better than ft« -Learning, and that both of them 
are always faster than Q-H-Learning, as illustrated in 
table 3 and figure 4. 

f«r, If'    % C'l (n = 500/V) c2 (n = 5000A') 
N,ns,nA Qw R-H T;Q Qn R-H T;Q 

5,25,10 79.54 89.71 92.55 97.90 99.39 99.42 
5,50,10 71.79 84.57 89.93 96.50 98.15 99.12 
5,50,50 65.26 78.56 80.32 94.53 95.87 95.95 
5,100,10 62.87 78.82 87.19 91.79 95.85 97.91 
5,300,10 56.42 64.32 82.24 77.88 89.24 93.27 
10,25,10 74.35 90.57 95.90 94.62 99.28 99.83 
10,50,50 61.72 77.72 88.06 92.72 95.81 97.61 
10,100,10 61.21 79.01 91.41 87.21 95.80 97.94 
50,50,10 63.43 85.24 86.94 72.38 98.32 97.39 
50,50,50 58.53 79.65 84.52 74.54 95.67 96.87 

Figure 3:   Relative evaluation of Q-H-Learning, 
Learning and r* Q-Learning. 

RH- 

0   500  1000 1500 2000 2500 3000 3500 4000 4500 5000 
\ \\ n/N 
\  \ Q-H -Learning 
\ * R-j^-Learning 

vr* Q-Learning 

Figure 4: 7M=10, n5=300, N=5 (5 runs). 

5    Conclusion 

The underlying goal of this article was to tackle the 
problem of using reinforcement learning algorithms in 
the framework of finite-horizon Markov Decision Pro- 
cesses. Two main results have been obtained. 

First we proved the equivalence between the total re- 
ward criterion and the average-reward criterion in fi- 
nite horizon. An interesting conclusion is that classical 
Q-Learning and R-Learning algorithms can be adapted 
to define Q^-Learning and R^-Learning algorithms in 
finite horizon. Both of these algorithms converge ex- 
perimentally toward the optimal V* value functions, 
with a convergence proof for Q^-Learning. 

The other important result is about the comparison 
between the learning rates of Q-w-Learning and R^- 
Learning. It appears that R-^-Learning can be seen 
as a version of Q^-Learning using matrix-valued step- 
sizes, where several components of the Q function are 
updated simultaneously. Furthermore, we showed that 
this stepsize matrix is structurally and numerically 
very close to the optimal gain matrix proposed by the 
ODE method, and that R^-Learning performs very 
similarly to the learning algorithm corresponding to 
this optimal gain matrix. Consequently we argue in 
favor of using R-^-Learning when solving finite-horizon 
MDPs. 

Different open questions still deserve to be considered. 
First we would like to know whether it is possible to 
derive from T* Q-Learning an equivalent reinforcement 
learning algorithm where only one component is up- 
dated at each state transition, like it is the case for 
R^-Learning in its initial formulation. For the mo- 
ment, independently of the fact that it requires to 
know P® and p*, T* Q-Learning cannot be used in 
practice since it is too much slow. 

Another question we are currently considering is to ex- 
ploit the equivalent Q formulation of R-^-Learning for 
proving its convergence. Some recent theoretical re- 
sults concerning the ODE method could be sufficient, 
like in [Benai'm et al., 1998]. 

Finally, we are trying to generalize our results concern- 
ing the convergence of Q^-Learning and R-^-Learning 
to Q-Learning and R-Learning within the classical 
framework of stationary infinite MDPs. 
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Abstract 

How can we guarantee that our software and 
robotic agents will behave as we require, even 
after learning? Formal verification should 
play a key role but can be computationally 
expensive, particularly if re-verification fol- 
lows each instance of learning. This is espe- 
cially a problem if the agents need to make 
rapid decisions and learn quickly while on- 
line. Therefore, this paper presents novel 
methods for reducing the time complexity of 
re-verification subsequent to learning. The 
goal is agents that are predictable and can 
respond quickly to new situations. 

1    INTRODUCTION 

Software and robotic agents are becoming increasingly 
prevalent. Agent designers can furnish such agents 
with plans to perform desired tasks. Nevertheless, 
a designer cannot possibly foresee all circumstances 
that will be encountered by the agent. Therefore, in 
addition to supplying an agent with plans, it is es- 
sential to also enable the agent to learn and mod- 
ify its plans to adapt to unforeseen circumstances. 
The introduction of learning, on the other hand, of- 
ten makes the agent's behavior significantly harder to 
predict. Our objective is to develop methods that pro- 
vide verifiable guarantees that the behavior of learning 
agents always remains within the bounds of specified 
constraints (called "properties"), even after learning. 
An example of a property is Asimov's First Law of 
Robotics (Asimov, 1942). This law, which has recently 
been studied by Weld and Etzioni (1994), states that 
a robot may not harm a human or allow a human to 
come to harm.   Weld and Etzioni advocate a " 'call 

to arms:' before we release autonomous agents into 
real-world environments, we need some credible and 
computationally tractable means of making them obey 
Asimov's First Law...how do we stop our artifacts from 
causing us harm in the process of obeying our orders?" 
Asimov's law can be operationalized into specific prop- 
erties testable on a system, e.g., "Never delete another 
user's file." This paper addresses Weld and Etzioni's 
"call to arms" in the context of adaptive agents. It is 
a very important topic for real-world agents and is a 
dominant theme in science fiction, which is sometimes 
prescient. Examples include the Borgs (Star Trek, The 
New Generation), Bolos (Laumer, 1976), and Berserk- 
ers (Saberhagen, 1967) - fictional agents that demon- 
strate the dangerous behavior that can result from in- 
sufficient constraints. 

We assume that an agent's plan has been initially veri- 
fied offline. Then, the agent is fielded and has to adapt 
online. After adaptation via learning, the agent must 
rapidly re-verify its new plan to ensure this plan still 
satisfies required properties.1 Re-verification must be 
as computationally efficient as possible because it is 
performed online, perhaps in a highly time-critical sit- 
uation. There are numerous applications of this sce- 
nario, including software agents that can safely ac- 
cess information in confidential or proprietary environ- 
ments while responding to rapidly changing access re- 
quirements, planetary rovers that quickly adapt to un- 
foreseen planetary conditions but behave within criti- 
cal mission constraints, and JAVA applets that can get 
smarter but not become destructive to our computing 
environments. 

Typically, properties desired by a user are orthogo- 
nal to both the agent's planning goals and its learning 

Current output is success/failure. Future work will 
consider using re-verification counterexamples to choose a 
better learning method when re-verification fails. 
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goals. For example, the agent may generate a plan 
with the objective of maximizing the agent's profit. 
Learning might have the goal of achieving the agent's 
plan more efficiently or modifying the plan to adapt 
to unforeseen events. The designer may have an addi- 
tional constraint that the agent does not cheat in its 
dealings with other agents. Why doesn't the planner 
incorporate all properties into the plan? There are a 
number of possible reasons, e.g., not all properties may 
be known at the time the plan is developed, or security 
reasons. 

Re-verification can be (from least to most time re- 
quired): none, incremental, or complete. It is pos- 
sible to avoid re-verification entirely if we restrict the 
agent to using only those learning methods determined 
a priori to be "safe" with respect to certain classes of 
properties in which we are interested. In other words, 
if a plan satisfies a property prior to learning, we want 
an a priori guarantee that the property will still be 
satisfied subsequent to learning. Note that this incurs 
no run-time cost. It is called "moving a tester into the 
generator" or "compiling constraints." 

Unfortunately, the safety of some learning methods 
may be very difficult or maybe impossible to deter- 
mine a priori. When a priori determination is too dif- 
ficult, it is helpful to use incremental re-verification. 
Incremental methods save computational costs over 
re-verification from scratch by localizing re-verification 
and/or by reusing knowledge from the original verifica- 
tion. Furthermore, incremental methods may identify 
positive results that cannot be determined a priori. 
When an agent needs to learn, we suggest that the 
agent should consult the a priori results first. If no 
positive results exist, then incremental re-verification 
proceeds. The least desirable of the three alternatives 
is to do complete re-verification from scratch. 

Gordon (1997a) begins to explore the extent to which 
we can prove a priori results that certain machine 
learning operators are, or are not, safe for certain 
classes of properties. The paper has positive a priori 
results for plan efficiency improvements via deletion 
of plan elements, as well as for plan refinement meth- 
ods. Unfortunately, we have not yet obtained positive 
a priori results for popular machine learning operators 
such as abstraction (unless one is willing to accept an 
abstracted property) or generalization. Abstraction 
is a more global operator than generalization. Ab- 
straction alters the language of a plan (e.g., by feature 
selection), whereas generalization alters the condition 
for a state-to-state transition within a plan. Both are 
extremely common operators in concept learning, but 

are also very appropriate for plan modification. 

This paper has two contributions beyond (Gordon, 
1997a). First, the previous paper models agent plans 
using automata on infinite strings. This paper reaches 
a wider audience by using the more familiar automata 
on finite strings. Second, this paper addresses two, 
new questions: Are there situations in which an ab- 
stracted property is acceptable? If yes, we have pos- 
itive a priori results for abstraction. Also, can we 
get positive results by using incremental re-verification 
rather than a priori? Initial, positive answers to these 
questions are presented here. 

The remainder of this paper is organized as follows. 
Section 2 presents an illustrative example that is used 
throughout the paper. 2 Section 3 contains back- 
ground material and definitions on automaton plans, 
temporal logic properties, and "safe" learning. The 
formal definitions provide a precise foundation for un- 
derstanding the incremental re-verification methods 
presented later. Section 4 lists situations in which 
property abstraction is acceptable. Sections 4 and 5 
present novel (and as far as we are aware, the only) 
methods for incremental re-verification of abstraction 
and generalization, respectively, on automata. Finally, 
time complexity comparisons between incremental and 
complete re-verification are provided. 

2    ILLUSTRATIVE EXAMPLE 

This section provides an example to illustrate some 
of the main ideas of the paper. Although the plan 
in this example is very small, it is important to point 
out that existing automata-based verification methods 
currently handle huge, industrial-sized problems (e.g., 
see Kurshan, 1994). Our goal is to improve the time 
complexity of verification over current methods when 
learning occurs. 

In our example, hundreds of tiny, micro air vehicles 
(MAVs) are required to perform a task within a region. 
The MAVs are divided into two groups called "swarm 
A" and "swarm B." One constraint, or property, is that 
only one MAV may enter the region at a time - because 
multiple MAVs entering simultaneously would increase 
the risk of detection. Each swarm has a separate FIFO 
queue of MAVs. MAVs enter the queue when they 
return from their last task. A second constraint is that 
some (at least one) MAVs from each swarm eventually 

2 Examples in this paper have been implemented us- 
ing Kurshan's COSPAN verification system. COSPAN is 
an AT&T verification tool, which is described in Kurshan 
(1994). 
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(A:no-MAVs) + 
Q  ((A:MAVs-wait) * -. (C:go-A)) 

/      WAIT       \ 

(A:no-MAVs) + 
((A:MAVs-go) * 
-(C:go-A)) 

c 
(A:MAVs-wait) * 
(C:go-A) 

GO 3 
Q  (A:MAVs-go) * (C:go-A) 

Figure 1: Plan A 

'C 

X 

(C:go-A) * 
(J-n(B:MAVs-wait) 

GO-A 

(C:go-B) * 
(A:MAVs-wait) 

J 
(C:go-A) * 
(B:MAVs-wait) 

GOB J 
Q (C:go-B) * -n(A:MAVs-wait) 

Figure 2: Plan C 

enter the region. One distinguished MAV, C, acts as a 
task coordinator. C selects which swarm, A or B, may 
send in an MAV next.3 

Plans for swarm A and task controller C are shown in 
Figures 1 and 2. The plan for swarm B is not shown 
in the figure, but it is identical to the plan for A ex- 
cept all instances of "A" are replaced by "B." Each 
of these plans is a finite-state automaton, i.e., a graph 
with states (the vertices) and allowable state-to-state 
transitions (the directed edges between vertices). The 
transition conditions (i.e., the logical expressions label- 
ing the edges) describe the set of actions that enable a 
state transition to occur. The possible actions A can 
take from a state are (A:no-MAVs), (A:MAVs-wait), 
or (A:MAVs-go). The first action means the queue is 
empty, the second that the queue is not empty but 
the MAVs in the queue must wait, and the third that 
the first MAV in the queue enters the region. Likewise 
for B. The possible actions C can take from a state 
are (C:go-A) or (C:go-B). The first action means con- 
troller C allows swarm A to send one MAV into the 
region, the second means C allows B to send one MAV 
into the region. 

Swarms A and B are single agents, i.e., although indi- 
vidual MAVs may each have their own plan, such as 
queuing within a swarm, for simplicity we ignore that 
level of detail. We can form a multiagent plan by tak- 
ing a "product" (see Section 3.1) of the plans for A, B, 
and C. This product synchronizes the behavior of A, 
B, and C in a coordinated fashion. At every discrete 
time step, every agent (A, B, C) is at one state in its 
plan, and it selects its next action. The action of one 
agent (e.g., A) becomes an input to the other agents' 
plans (e.g., B and C). If the joint actions chosen by all 
three agents satisfy the transition conditions of a plan 
from the current state to some next state, then that 

3This example is a variant of the traffic controller in 
Kurshan (1994). 

transition may be made. For example, if the agents 
jointly take the actions (A:MAVs-wait) and (B:MAVs- 
wait) and (C:go-A), then the multiagent plan can tran- 
sition from the global, joint state (WAIT, WAIT, GO- 
A) to the joint state (GO, WAIT, GO-B) represented 
by triples of states in the automata for agents A, B, 
and C. 

Given the full, multiagent plan, verification now con- 
sists of asking the question: Does this plan satisfy the 
two required properties, i.e., some MAVs from each 
swarm enter the region, but only one MAV enters the 
region at a time? Assuming our initial plan in Figures 
1 and 2 satisfies these properties, we next ask whether 
the properties are still satisfied subsequent to learning. 
The latter question is the topic of this paper. 

An example of learning is the following. Suppose co- 
ordinator C discovers that the B swarm has left the 
region. One way agent C can adapt to incorporate 
this new knowledge is by deleting the action (C:go-B) 
from its action repertoire. This is a form of abstrac- 
tion. There are alternative modifications agent C can 
do, but the selection between these alternatives is a 
learning issue, which we do not address here. What 
we do address here are the implications of this choice, 
in particular, which learning methods are safe, i.e., 
preserve the properties. 

3    PLANS, PROPERTIES, AND 
"SAFE" LEARNING 

3.1    AUTOMATON PLANS 

This subsection, which is based on Kurshan (1994), 
briefly summarizes the basics of the automata used 
to model plans. Figures 1 and 2 illustrate the defini- 
tions. Essentially, an automaton is a graph with ver- 
tices corresponding to states and directed edges corre- 
sponding to state-to-state transitions. The terms "vcr- 
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tex" and "state" are used interchangeably throughout 
the paper. For an automaton representing an agent's 
plan, vertices represent the internal state of the agent 
and/or the state of its external environment. State-to- 
state transitions have associated transition conditions, 
which are the conditions under which the transition 
may be made. An agent action that satisfies a transi- 
tion condition enables that transition to be made. We 
assume finite-state automata, i.e., the set of states is 
finite, and that the transition conditions are elements 
of a Boolean algebra. Therefore, we briefly diverge to 
summarize the basics of Boolean algebras. 

A Boolean algebra K is a set with distinguished ele- 
ments 0 and 1, closed under the Boolean operations * 
(logical "and"), + (logical "or"), and -i (logical nega- 
tion), and satisfying the standard properties (Kurshan, 
1994). 

The Boolean algebras are assumed to be finite. There 
is a partial order among the elements, <, which is 
defined as x < y if and only if x * y = x. The elements 
0 and 1 are defined as Vz 6 K, 0 < x and Va: G K-, x ^ 
1. The atoms of K, T(/C), are the nonzero elements 
of K, minimal with respect to <. For two different 
atoms x and y within the same Boolean algebra, x * y 
= 0. For Figures 1 and 2, agents A, B, and C each 
have their own Boolean algebra with its atoms. The 
atoms of A's Boolean algebra are the actions (A:no- 
MAVs), (A:MAVs-wait), and (A:MAVs-go); the atoms 
of B's algebra are (B:no-MAVs), (B:MAVs-wait), and 
(B:MAVs-go); the atoms of C's algebra are (C:go-A) 
and (C:go-B). 

A Boolean algebra K' is a subalgebra of K if K' is a 
non-empty subset of K, that is closed under the op- 
erations *, +, and -i, and also has the distinguished 
elements 0, 1. Let K, = \[ICi, i.e., K is the product 
algebra of the Id. In this case the /Q are subalgebras 
of K,. An atom of the product algebra is the product of 
the atoms of the subalgebras. For example, if c^,..., an 

are atoms of subalgebras K,\, ...,£„, respectively, then 
a\ * ... * an is an atom of tC. 

In Figure 1, the Boolean algebra A used by agent A 
is the smallest one containing the atoms of A's alge- 
bra. It contains all Boolean elements formed from A's 
atoms using the Boolean operators *, +, and ->, includ- 
ing 0 and 1. These same definitions hold for B and C's 
algebras B and C. One atom of the product algebra 
ABC is (A:no-MAVs) * (B:no-MAVs) * (C:go-A). This 
is the form of actions taken by the three agents in the 
multiagent plan. Algebras A, B, and C are subalge- 
bras of the product algebra ABC. Finally, ABC is the 

Boolean algebra for the transition conditions in the 
multiagent plan. 

Let us return now to automata. This paper focuses on 
automata that model agents with finite lifetimes (rep- 
resented as a finite string, or sequence of actions). An 
example is an agent that is created specially to exe- 
cute a plan and is destroyed immediately afterwards. 
In particular, we focus on processes. Processes are 
automata, but they are the dual of our usual notion of 
an automaton, which accepts any string beginning in 
an initial state and ending in a final state (Hopcroft & 
Ullman, 1979). Instead, processes accept any string 
beginning in an initial state and ending in a non- 
final state.4 A string is a sequence of actions (atoms). 
Therefore, by specifying the set of final states, we can 
infer the set of action sequences not permitted by the 
plan. It consists of those strings ending in a final state. 
All other action sequences that begin in an initial state 
are permitted by the plan. Processes are used here to 
be consistent with the automata theoretic verification 
literature. 

Formally, a process is a three-tuple S = 
(MK(S),I(S),F(S)) where K is the Boolean algebra 
corresponding to S. MK{S) : V(S) x V(S) -»• K, is the 
matrix of transition conditions, which are elements of 
£, V{S) is the set of vertices of S, 7(5) C V(S) are 
the initial states, and F(S) C V(S) are the final states. 
Also, E(S) = {e e V(S) x V(S) \ MK{e) ^ 0} is the 
set of directed edges connecting pairs of vertices of S, 
and M/c(e) is the transition condition of M/c(S) corre- 
sponding to edge e. Note that we omit edges labeled 
"0." By our definition, an edge whose transition con- 
dition is 0 does not exist. We can alternatively denote 
M/c(e) as MK.{V%, Vi+i) for the transition condition cor- 
responding to the edge going from vertex «,- to vertex 
v,-+i. For example, in Figure 1, MK (WAIT, GO) is 
(A: MAVs-wait) * (C: go-A). 

Figures 1 and 2 illustrate the process definitions. 
There are process plans for two agents: swarm A and 
task coordinator C. Recall that agent B is identical 
to A but with "A" replaced by "B." An incoming ar- 
row to a state, not from any other state, signifies that 
this is an initial state. Recall that the output actions 
of process A are its atoms, and likewise for processes 
B and C. The transition conditions are the labels on 
the edges. We assume for process X = A, B, or C, 
F(X) = 0, i.e., there are no final states. Therefore 
every finite string of actions that starts in an initial 

4 For the case of deterministic and complete transition 
conditions, reversing the acceptance condition will comple- 
ment the language. 
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state and satisfies the transition conditions is accept- 
able behavior for the plan. 

A multiagent plan is formed from single agent plans by 
taking the tensor product of the processes correspond- 
ing to the individual plans. Essentially, this is done 
by taking the Cartesian product of the vertices and 
the intersection of the transition conditions. For de- 
tails see Kurshan (1994). The product process models 
a set of synchronous processes. The Boolean algebra 
corresponding to the product process is the product 
algebra. For Figures 1 and 2, to formulate the process 
S modeling the entire multiagent plan, we take the ten- 
sor product S = A ® B ® C of the three processes. For 
this tensor product, 7(S) = { (WAIT, WAIT, GO-A), 
(WAIT, WAIT, GO-B) }, and F(S) = 0. The tensor 
product process is not shown in a figure because it's 
quite large. 

Formally, a string x is a finite-dimensional vector, 
(xo,...,x„) £ T(/C) , i.e., a string is a sequence of 
one or more actions. A run v of string x is a se- 
quence (DO, ..., vn+i) of vertices such that Vi, 0 < i < n, 
xt * MK(vi,vi+i) ^ 0, i.e., Xi < MK(vi,vi+1) because 
the a;,- are atoms. 

The language of S is C(S) = {x € T(£) | x has a 
run in MK(S) from I(S) to V(S) \ F(S)}. Such a run 
is accepting. The language of a plan is the set of all 
action sequences (i.e, strings) allowed by the plan. 

An example string in the language of process S, 
the multiagent process that is the product of A, 
B, and C, is (((A:MAVs-wait) * (B:MAVs-wait) * 
(C:go-A)), ((A:MAVs-go) * (B:MAVs-wait) * (C:go- 
B)), ((A:MAVs-wait) * (B:MAVs-go) * (C:go-B)), 
((A:MAVs-wait) * (B:MAVs-go) * (C:go-A))). This is 
a sequence of atoms of S. An accepting run of this 
string is ((WAIT, WAIT, GO-A), (GO, WAIT, GO- 
B), (WAIT, GO, GO-B), (WAIT, GO, GO-A), (GO, 
WAIT, GO-A)). Because F(S) = 0, all runs beginning 
in an initial state are accepting runs and they form the 
elements of the language of S. 

3.2    TEMPORAL LOGIC PROPERTIES 

We assume properties are expressed in temporal logic. 
For formal versions of the definitions here, see Manna 
and Pnueli (1991). Linear time is assumed here. In 
other words, time proceeds linearly and we do not 
consider simultaneous possible futures. The type of 
verification used in this paper is "model checking." In 
other words, verification tests whether S (= P for plan 
S and property P, i.e., whether plan S "models," or 
satisfies, property P. 

For consistency with the temporal logic literature, we 
define a computational state (estate) as the action 
chosen from each process state. Then a computation is 
a finite sequence of temporally ordered computational 
states, i.e., a string. To distinguish the two types of 
states, we will refer to a process state as a pstate. 

P is a property true (false) for a process S, i.e., 5 (= P 
(S \fc P), if and only if it is true for every string in the 
language £(S) (false for some string in C(S)). The 
notation x \= P (x |£ P) means string x satisfies (does 
not satisfy) property P, i.e., the property holds (does 
not hold) for x. Before defining what it means for 
properties to be true (i.e., hold) for a string, we first 
define what it means for a formula that is Boolean 
expression to be true at a c-state. A estate formula 
p is true (false) at c-state £,-, i.e., z,- (= p (xi ^ p) 
if and only if x,- ■< p (x,- ■£ p), i.e., #,- * p / 0 (= 0) 
because p is a Boolean expression with no variables on 
the same Boolean algebra used by process S, and a:,- 
is an atom of that algebra. For example, (A:MAVs- 
wait) |= ((A:MAVs-wait) + (A:no-MAVs)) for c-state 
(A:MAVs-wait) and c-state formula ((A:MAVs-wait) 
+ (A:no-MAVs)). 

A c-state formula p is true/false in particular c-stat.es 
of a string. Property P is defined in terms of p, and 
is true/false of an entire string, i.e., x f= P or x \k P 
for string x. We now define two property classes that 
are among those most frequently encountered in the 
verification literature for finite strings. Assume x = 
(xo, ...,in) is a string of process S. For c-state formula 
p and plan S, define Sometimes property P = O p 
("Sometimes p") as a property that is true for string x 
if only if p is true in at least one c-state x, of x, where 
0 < i < n. An Invariance property P = ty ("Invariant 
p") is a property true for string x if and only if p is 
true in every c-state x, of x. 

Continuing with the MAVs example, a desirable In- 
variance property Pj states that "only one MAV enters 
the region at a time." This can be expressed in tempo- 
ral logic as Pi = a( -i ((A:MAVs-go) * (B:MAVs-go))). 
A desirable Sometimes property P$ states that "Some- 
times MAVs from swarm A enter the region." In logic 
this property is expressed as P$ — O (A:MAVs-go). 
Pj, but not Ps, holds for the multiagent plan S. 

3.3    "SAFE" LEARNING 

This paper is concerned with "safe" machine learning 
methods (SMLs), i.e., machine learning operators that 
preserve properties, also called "correctness preserv- 
ing mappings."   For plan S and property P, suppose 
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verification has succeeded prior to learning, i.e., Vx, 
x 6 C(S) implies x |= P (i.e., S \= P). Then according 
to Gordon (1997a), a machine learning operator ml(S) 
is an SML if and only if verification succeeds after 
learning, i.e., Vx, x € C(ml(S)) implies x |= ml{P). 
Note that a machine learning operator may also affect 
the property P, which could be undesirable. There- 
fore, being an SML is not always sufficient. Additional 
requirements on learning - in particular, abstraction, 
are discussed next. 

4    BOOLEAN ALGEBRA 
ABSTRACTION 

Kurshan (1994) presents methods for improving the 
efficiency of automata-based verification, but does not 
consider the possibility of automata, such as agents, 
that can learn. By applying some of the results of 
Kurshan (1994) in a novel way, Gordon (1997a; 1997b) 
shows that when agents learn using certain abstrac- 
tions, the abstractions are a priori guaranteed to be 
SMLs for all property classes - but only if abstraction 
is performed to both the plan and property. 5 There- 
fore, this section identifies situations in which it is ac- 
ceptable to apply an SML abstraction to a property. 

The SML abstractions include very useful ones, such as 
partitioning the Boolean algebra atoms e.g., using con- 
structive induction, and projection, which is a form of 
feature selection (or, more properly, action deletion). 
Although the methods described in this section apply 
to any of these abstractions, for illustration we focus 
only on projection, which is a mapping from a Boolean 
algebra to a subalgebra. For a formal definition of pro- 
jection, see Kurshan (1994). Here, we continue with 
the MAVs example. 

Suppose all the MAVs in the B swarm leave the re- 
gion. To incorporate this knowledge, Boolean algebra 
projection, a type of abstraction, projects the product 
algebra ABC onto subalgebra AC. Projection projAC : 
ABC —>■ AC is defined as projAC(a * b * c) = a * c 
for atoms a £ T(A), b e T(B) and c G T(C), and 
is extended linearly to the full algebra. For example, 
projAC ((A: MAVs-wait) * (B: MAVs-wait) * (C: go- 
A)) = (A: MAVs-wait) * (C: go-A). In addition to re- 
moving entire subalgebras, it is also possible to remove 
atoms from within a subalgebra. 

Projection projAC removes all references to swarm B 
from the multiagent plan S. This projection reduces 

5This result  applies to  agents with finite  or infinite 
lifetimes. 

B's plan to the trivial plan which allows B to do any- 
thing. We assume that when the agent applies a pro- 
jection to the plan, it has justification to do so - be- 
cause the purpose of abstraction is to modify the plan. 
Modification of the property, on the other hand, may 
be a side effect required for an a priori guarantee that 
the abstraction is an SML. Applying projAC to the 
Invariance property Pj, which states that "only one 
MAV may enter the region at a time," results in a 
property which accepts any multiagent plan of agents 
A, B, and C. When applied to both plan and property, 
projAC is an SML. Nevertheless, if the B swarm re- 
turns to the region and is restored into the multiagent 
plan, then this new property which allows the agents 
to do anything could have disastrous, unintended (by 
the user) consequences. 

This example illustrates our dilemma: If we abstract 
the property along with the plan, the abstraction will 
be guaranteed a priori to be an SML. However, by ab- 
stracting the property, we risk violating the user's orig- 
inal intentions. When is it ok to abstract a property? 
There are at least three cases when it is permissible: 

(1) When the abstraction is property invariant. 

Applying the projection projAC to the Sometimes 
property Ps, which states that "Sometimes MAVs 
from swarm A enter the region," leaves Ps invariant, 
i.e., projAC(Ps) = Ps- Therefore the abstraction is 
property invariant. The intuition is that the behavior 
of agent B is irrelevant when testing this property. 

In general, to determine whether property invariance 
holds, an agent must apply abstraction to each prop- 
erty P and then check whether P remains unaltered by 
abstraction. This simple syntactic check is a form of 
incremental re-verification because it is localized to a 
test on the property alone. The check has a worst case 
time complexity of 0(|P|) for any property P. This 
is lower than the worst case time complexity of com- 
plete re-verification from scratch (following abstrac- 
tion), which is 0(|r(/C)|*|P|) for Invariance and Some- 
times properties, where |r(£)| is the number of atoms 
in the plan ( Lichtenstein & Pnueli, 1984). Further- 
more, if the agent will only accept property invariant 
abstractions, then the cost of plan abstraction can be 
avoided when this incremental check fails. 

(2) When the abstraction is property irrelevant. 

An example is when the agents discover, or are told 
about, a permanent change that henceforth renders 
one or more items (e.g., an agent or action) irrelevant. 
The term "permanent" in this context means a change 
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whose effects are sustained at least until the last agent 
has terminated. Because the change is permanent, we 
can be assured that no problems are caused by apply- 
ing an SML abstraction to the properties. 

Consider an example in which a swarm agent be- 
comes irrelevant. Suppose the lives of all MAVs in 
the B swarm have terminated, e.g., they become per- 
manently inoperative, but we wish to continue with 
the multiagent plan because the other agents survived. 
Then the application of projM to the property Pj has 
no significant effect - because Pi is no longer needed. 

(3) When the abstraction is property reversible. 

Suppose the agents determine that one or more items 
are not relevant to the objectives of their multiagent 
plan, but this is a temporary change in condition, i.e., 
the items may become relevant again. For example, 
agents may disappear to attend to different tasks then 
possibly return, and actions may become temporar- 
ily disabled due to mechanical failures. Items irrel- 
evant to the multiagent objectives could be removed 
from the multiagent plan and also from the properties. 
Under these circumstances, we want the abstraction 
to be property reversible. An abstraction is property 
reversible if the pre-abstraction property can be re- 
stored, e.g., by saving it. This way we can retest the 
original property after undoing the effects of abstrac- 
tion. 

We only want our agents to perform property irrel- 
evant and property reversible abstractions when ab- 
straction is restricted to removing irrelevant items. If 
agents are not told relevance, they may need to per- 
form relevance determination, perhaps using methods 
such as those of Subramanian (1988). Other research 
related to the ideas in this section includes feature se- 
lection (see http://ai.iit.nrc.ca/bibliographies/feature- 
selection.html), and plan abstraction (Knoblock, 
1990). 

5    GENERALIZATION 

Although we have been unable to obtain positive a 
priori results for generalization, this section presents 
a novel method for incremental re-verification after 
generalization. Efficiency is gained by tailoring in- 
cremental re-verification methods to specific prop- 
erty classes. Because there are only about a dozen 
property classes commonly used in practice (Kurshan, 
1994), this seems reasonable to do. The re-verification 
method presented in this section is specific to Invari- 
ance properties.  A method for Sometimes properties 

may be found in Gordon (1997b). Methods for other 
property classes are currently being investigated. 

Generalization differs from abstraction in that you are 
not changing the entire Boolean algebra (e.g., taking 
a subalgebra) but instead you are increasing the gen- 
erality of a transition condition labeling one or more 
edges (for simplicity, here we consider one). Gener- 
alization is done when the agent discovers that the 
transition can/should be taken under a larger set of 
circumstances. It is only done to the plan. In the 
context of a process, generalization raises the level of 
a particular p-state-to-p-state transition condition in 
the partial order ^, whereas specialization lowers it, 
e.g., as in Mitchell's Version Spaces (Mitchell, 1978). 

Formally, we define generalization of the condition 
along edge (v,w) as follows. Generalization operator 
mlgen : S —*■ S', where both S and S' use Boolean alge- 
bra K, is defined as mlgen : MJC(S) —► M/c(S'), where 
mlgen(Mic(v,w)) = Mfc(v, w) + z, for some z G IC.6 

An example of generalization is the following. The 
transition condition associated with the edge ((WAIT, 
WAIT, GO-A), (GO, WAIT, GO-B)) in the multi- 
agent plan S is (A:MAVs-wait) * (B:MAVs-wait) * 
(C:go-A). This could be generalized to ((A:MAVs- 
wait) * (B:MAVs-wait) * (C:go-A)) + ((A:MAVs-wait) 
* -i(B:MAVs-wait) * (C:go-A)), i.e., (A:MAVs-wait) * 
(C:go-A) for new plan S'. 

To illustrate our incremental approach, recall S satis- 
fies the Invariance property Pj which states that "only 
one MAV enters the region at a time," i.e., Q ( -> 
((A:MAVs-go) * (B:MAVs-go))). We could check this 
property against the entire, new plan S', but a prefer- 
able alternative is to simply check it against the new 
addition to the transition condition, namely, is Pj sat- 
isfied by (A:MAVs-wait) * -> (B: MAVs-wait) * (C:go- 
A)? In fact it is, because (A:MAVs-go) is not true, and 
that is all we need to know to be sure that the mlgen 

just applied is an SML. We can now formalize this. 

Let us consider the Invariance property P = Q p for 
c-state formula p. Let y be the existing transition con- 
dition for edge (v,w) in plan S, i.e., M/c(v,w) = y. We 
previously defined what it means for a c-state formula 
p to be true at a c-state, but it is also useful to de- 
fine what it means for a c-state formula to be true of 
a transition condition. Let T(/C) = {a | a G T(AC) 
and a < y}. A c-state formula p is defined to be true 
of a transition condition y, i.e., y \= p, if and only if 
Vaer(AC)y,a^p. 

55' differs from S only by the results of mlgc„- 
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Assume every string x in C{S) satisfies Invariance 
property P, so for each x, p is true of every atom 
in x. This implies y \= p.7 Now we generalize the 
edge (v,w) to form S' via mlgen (MJC(V,W)) = y+ z. 
This operator mlgen is an SML with respect to Invari- 
ance property P if and only if S' \= P, which is true 
if and only if z |= p. The reason for this is that we 
know S satisfies P from our original verification, and 
therefore p is true for all atoms in all strings in C(S). 
The only new atoms in C(S') but not in C(S) are in 
r(/C)z. Therefore, if z \=p, then p is true for all atoms 
in C(S'), which implies every string in JC(S') satisfies 
P, i.e., S' \= P. Therefore, re-verification need only 
test whether z \= p, i.e., Va £ T(/C)^, a ■< p. (We as- 
sume transition conditions are represented extension- 
ally, i.e., as the unique sum of atoms equivalent to the 
Boolean expression.) If z ^ p, S' |£ P.8 This test 
is incremental because it is localized to just checking 
whether the property holds of the newly added atoms 
in z, rather than all atoms in C(S'). 

For example, suppose a, b, c, d, and e are atoms, and 
the transition condition y between v and w equals a. 
Let (a, b, b, d) be an accepting string of S that in- 
cludes v and w as the first two vertices in its accepting 
run. The property is P = Q-i e. Assume the fact that 
this string satisfies -> e was proved in the original ver- 
ification. Suppose mlgen generalizes M)c(v,w) from a 
to (a + c), which adds the string (c, b, b, d) to C(S'). 
Then rather than test whether the elements of { a, b, 
c, d } are < -i e, all we really need to test is whether 
c^-ie- because c is the only newly added atom. 

By storing and reusing knowledge from previous veri- 
fication^), we can increase the efficiency of this test. 
Suppose some atoms a such that a < z were tested 
for a < p during previous verification(s), and the out- 
comes of these tests were stored. Then lookup will 
suffice, and the only atoms in T(IC)Z that need to be 
tested against p during the current re-verification are 
those not previously tested. 

What cost benefit(s) does incremental re-verification 
have over complete re-verification from scratch? Ver- 
ification, or complete re-verification from scratch, in 
the worst case has time complexity 0(|r(/C)| * \p\) for 
Invariance properties, where |r(£)| is the total number 
of atoms, and \p\ is the length of the c-state formula 
p (Lichtenstein & Pnueli, 1984).  This is because the 

7This statement is based on our assumption that (v, w) 
is part of an accepting run for at least one x € £■{$)■ This 
assumption motivates re-verification. 

8That is, unless (v, w) is not part of any accepting run 
- but then the test is unnecessary. 

c-state formula may have to be tested in every unique 
c-state, which is an atom. \T(K,)\ is exponential in 
the number of single agent plans forming a multiagent 
plan. In the worst case, incremental re-verification 
has the same time complexity, but this would be a 
very bizarre situation indeed. It would require that no 
atoms were tested against the property in the original 
verification (which could occur if C(S) were empty), 
and all atoms are added to the transition condition 
during generalization, i.e., Va £ T(/C), a -< z. 

Let us consider a more realistic comparison. The worst 
case time complexity for complete re-verification as- 
sumes all c-states are reachable from some initial p- 
state. This may not be true, e.g., the number of ini- 
tial p-states might be very small. Re-verification is 
required to determine Vx £ C(S') whether x |= P. At 
the very least, complete re-verification of an Invariance 
property P = H p must test whether a:,- |= p Va:,- in x, 
Vx £ C(S'). The complexity of this test is C'complete = 
0(|r(/C)£(S;J * |p|), where |r(/C)£/s,J is the number 
of unique atoms in all strings x £ JC(S'). 

A more realistic cost estimate for incremental re- 
verification is Cincrem = 0(\T(IC)s^\ + (\T(IC)n3^\* 
\p\)), where T()C)s,z-< (r(/C)ns/^) contains atoms whose 
results are (are not) previously stored. The first ad- 
dend is the cost of lookup of results from previous ver- 
ification^), and the second addend is the cost added 
by testing the atoms that were not previously tested. 
Whenever generalization is reasonably conservative, 
i.e., |T(JC)J << |r(£)£(s'll' incremental can provide 
considerable savings over complete re-verification! 

6    DISCUSSION 

Here we have addressed the question of how agents can 
adapt (learn) safely, i.e., by preserving critical prop- 
erties, and how they can do this in a time-efficient 
manner. We extended the work of Gordon (1997a) to 
obtain positive results for two popular machine learn- 
ing methods: abstraction and generalization. For ab- 
straction to be a priori safe (property-preserving), the 
property must also be abstracted. This paper enu- 
merates situations in which it is permissible to ab- 
stract the property. Furthermore, novel incremental 
re-verification methods are presented for abstraction 
and generalization. These methods have the potential 
to provide large computational savings over complete 
re-verification from scratch. With our methods (in- 
cluding a priori), agents can use abstraction and gen- 
eralization to adapt to novel situations, and can do so 
with quick checks that ensure the reliability of their 
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behavior. 

There is a small amount of prior research on incre- 
mental re-verification. Reps and Teitelbaum (1989) 
developed a verifier for users to check their code while 
writing in traditional programming languages, such as 
PL/I. Their verifier can incrementally re-check soft- 
ware after edits using Hoare-style proofs. However, 
unlike our re-verification methods, these proofs require 
some interaction with the user. Sokolsky and Smolka 
(1994) have an incremental method for verifying added 
or deleted state transitions in an automaton-like repre- 
sentation. However they do not address generalization 
or abstraction. Finally, Weld and Etzioni (1994) have 
a method to incrementally test an agent's plan to de- 
cide whether to add new actions to the plan. There 
are certain similarities between our work and that of 
Weld and Etzioni. They add actions to a plan only 
when their effects do not violate dont-disiurb proper- 
ties, which are a type of Invariance property. Our gen- 
eralization also adds actions to a plan. Furthermore, 
both approaches localize verification. The main differ- 
ences are that unlike Weld and Etzioni, we: (1) use 
a formal foundation based on the verification litera- 
ture, in particular, model-checking and automata, (2) 
assume the existence of prior verification knowledge 
and use this knowledge to streamline re-verification, 
(3) use reactive rather than necessarily goal-oriented 
plans, and (4) address abstraction. 

One aspect of Weld and Etzioni (1994) that was pur- 
posely not addressed here is that of how to select 
which method to use in repairing a plan. This is a 
rich issue for future research, and could draw on cost- 
effective methods such as those of Joslin and Pollack 
(1994). Rather than repair, this paper focuses on re- 
verification. We are unaware of any methods besides 
ours for incrementally re-verifying abstraction or gen- 
eralization in automata. Much more work remains 
to be done on the important topic of incremental re- 
verification - especially for adaptive agents. 

Acknowledgments 

Thanks to Bill Spears and Sampath Kannan for useful 
inputs on this paper. Bill suggested the alliterative 
title. This research was sponsored by the Office of 
Naval Research N001498WX20296. 

References 

Asimov, I. (1942). Runaround. In Astounding Science 
Fiction. 

NCARAI Technical Report 97-016. Also submitted 
to Machine Learning. 

Gordon, D. (1997b). Machine learning and finite- 
lifetime agents: Some preliminary results. NCARAI 
Technical Report 97-017. 

Hopcroft, J. k Ullman J. (1979). Introduction to Au- 
tomata Theory, Languages, and Computation. Menlo 
Park: Addison-Wesley. 

Joslin, D. k Pollack, M. (1994). Least-cost flaw repair: 
A plan refinement strategy for partial-order planning. 
Proceedings ofAAAI94 (pp. 1004-1009). AAAI Press. 

Knoblock, C. (1990). A theory of abstraction for hier- 
archical planning. In D. P. Benjamin (Ed.), Change of 
Representation and Inductive Bias. Norwell: Kluwer 
Academic Publishers. 

Kurshan, R. (1994). Computer Aided Verification of 
Coordinating Processes. Princeton, N.J.: Princeton 
University Press. 

Laumer, K. (1976). Bolo, The Annals of the 
Dinochrome Brigade. New York, N.Y.: Berkeley Pub- 
lishing Corp. 

Lichtenstein, O. k Pnueli, A. (1984). Checking that 
finite state concurrent programs satisfy their linear 
specifications. Proceedings of the Twelfth ACM Sym- 
posium on Principles of Programming Languages (pp. 
271-276). 

Manna, Z. k Pnueli, A. (1991). Completing the tem- 
poral picture. Theoretical Computer Science, 83(1), 
97-130. 

Mitchell, T. (1978). Version Spaces: An Approach to 
Concept Learning. Ph.D. thesis, Stanford University. 

Reps, T. k Teitelbaum, T. (1989). The Synthesizer 
Generator. New York: Springer-Verlag. 

Saberhagen, F. (1967). Berserkers. New York: The 
Berkley Publishing Group. 

Sokolsky, O. k Smolka, S. (1994). Incremental model 
checking in the modal mu-calculus. Proceedings of 
Computer-Aided Verification. 

Subramanian, D. (1988). A Theory of Justified Refor- 
mulations. Ph.D. thesis. Stanford University. 

Weld, D., k Etzioni, O. (1994). The First Law of 
Robotics. Proceedings of AAAI9J, (pp. 1042-1047). 
AAAI Press. 

Gordon,   D.  (1997a).     Asimovian  adaptive  agents. 



233 

Solving a huge number of similar tasks: a combination of multi-task 
learning and a hierarchical Bayesian approach 

Tom Heskes 
Foundation for Neural Networks 

Geert Grooteplein 21, 6525 EZ  Nijmegen, The Netherlands 
tom@mbfys.kun .nl 

Abstract 

In this paper, we propose a machine-learning 
solution to problems consisting of many sim- 
ilar prediction tasks. Each of the individual 
tasks has a high risk of overfitting. We com- 
bine two types of knowledge transfer between 
tasks to reduce this risk: multi-task learning 
and hierarchical Bayesian modeling. Multi- 
task learning is based on the assumption that 
there exist features typical to the task at 
hand. To find these features, we train a huge 
two-layered neural network. Each task has 
its own output, but shares the weights from 
the input to the hidden units with all other 
tasks. In this way a relatively large set of 
possible explanatory variables (the network 
inputs) is reduced to a smaller and easier 
to handle set of features (the hidden units). 
Given this set of features and after an appro- 
priate scale transformation, we assume that 
the tasks are exchangeable. This assumption 
allows for a hierarchical Bayesian analysis in 
which the hyperparameters can be estimated 
from the data. Effectively, these hyperpa- 
rameters act as regularizers and prevent over- 
fitting. We describe how to make the system 
robust against nonstationarities in the time 
series and give directions for further improve- 
ment. We illustrate our ideas on a database 
regarding the prediction of newspaper sales. 

1    INTRODUCTION 

1.1    PROBLEM DESCRIPTION 

In this paper, we focus on problems such as 

• efficient distribution of newspapers and maga- 
zines; 

• predicting gas consumption of different compa- 
nies; 

• analyzing    sales    figures    of   many    company 
branches; 

• optimizing stock selection and portfolio manage- 
ment. 

The main characteristic of each of these problems is 
that they are in fact composed of many similar predic- 
tion tasks. These individual tasks usually have a low 
signal-to-noise ratio: in some cases one would be happy 
if one could explain 10 percent of the variance in the 
data. Because of the large amount of different tasks, 
any performance improvement is almost immediately 
significant, both financially and statistically. Further- 
more, in most cases one can easily come up with quite 
a few (possibly) explanatory variables. For example, 
in predicting sales figures, one may want to include 
some of the recent sales figures, sales figures from the 
same period last year, sales figures from other com- 
panies, different kinds of weather information, and so 
on. Overfitting then becomes a major concern. The 
question addressed in this paper is therefore: how can 
we exploit the benefit of not having a single predic- 
tion task but a whole set of seemingly similar tasks, 
such that we can reduce the risk of overfitting in a 
computationally feasible way? 

We propose to combine two approaches: multi- 
task learning, suggested in the neural-network 
and machine-learning community, and hierarchical 
Bayesian modeling, developed in the statistics com- 
munity. Multi-task learning is treated in Section 2. 
The idea is that tasks can learn from each other by 
sharing the same features. The underlying assump- 
tion is that such features, typical to the task at hand, 
indeed exist.  Hierarchical Bayesian modeling applies 
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when one can rely on the assumption that a priori, 
i.e., before taking into account the data itself, there is 
no information to distinguish the model parameters of 
any one task from those of any of the other tasks. We 
will describe hierarchical modeling in Section 3. 

We will illustrate our ideas on a database concern- 
ing the prediction of newspaper sales. This database 
consists of several years of weekly sales figures for a 
set of 343 different points of sale. Each points of sale 
represents a different time-series prediction task. In 
Section 1.2 we first discuss how to make the tasks 
"sufficiently similar", i.e., such that we can apply the 
approach proposed in Section 2 and 3. Although our 
examples include collections of time-series tasks, our 
analysis in these sections in completely static. In Sec- 
tion 4.1 we therefore describe a first crude attempt to 
handle nonstationarities in the data. Section 4 further 
links the different components together, recapitulates 
the assumptions and discusses directions for further 
improvements. 

c 
.2     1 
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0) n 
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«0 

10" 

10 10 10 
average sales 

Figure 1: Average newspaper sales 0,- versus the cor- 
responding standard deviation for 343 different points 
of sale. The dashed line is the least squares fit of the 
logarithm of the standard deviation as a function of 
the logarithm of the average sales. 

1.2    MAKING TASKS SIMILAR 

The underlying assumption of both the multi-task 
learning approach and the hierarchical Bayesian ap- 
proach is that the different tasks can be considered 
similar. This is not always immediately obvious. As 
can be seen for example from Figure 1, where we plot- 
ted the averages sales of 343 newspaper points of sale 
versus their standard deviation, the typical number of 
single copies sold at each outlet ranges from just a 
few to a few hundred. Still we want to assume that 
the tasks are, in some sense, exchangeable. In Sec- 
tion 2 this implies that sales figures, when used as 
explanatory variables, should have more or less the 
same meaning: 20 newspapers may be quite a lot for a 
small outlet, but are well below average for a large out- 
let. Similar reasoning applies to the scaling of model 
parameters in our choice of prior distributions in Sec- 
tion 3. In the newspaper example, our working hy- 
pothesis will be that the points of sale are exchange- 
able, after correcting for their typical scale. 

Such a correction can be accomplished by normalizing 
the sales figures for each outlet separately. The strong 
correlation between the average sales and the noise 
level in Figure 1 (i?2 = 0.90 on the logarithmic scale) 
suggests that we can represent the typical scale of each 
individual outlet through just one parameter 0,, denot- 
ing the average sales of outlet i. We can correct for 
this typical scale by normalizing all sales figures using 
this average and the fitted standard deviation as given 
by the dashed line in Figure 1. 

2    MULTI-TASK LEARNING 

2.1    ARGUMENTATION 

We want to build and train a model relating a set of 
explanatory variables x to an output z. First we have 
to choose which explanatory variables to include in 
such a model. Typically, it is easy to come up with on 
the order of njnpUts « 20 input variables (see for ex- 
ample Table 1 where we describe the explanatory vari- 
ables incorporated in our newspaper example). With 
on the order of a hundred training patterns per task 
and a low signal-to-noise ratio, any attempt to fit a 
direct model between the input variables and the tar- 
gets corresponding to a single task, is doomed to lead 
to overfitting and thus lousy prediction performance. 

We need some preprocessing stage transforming the 
"inputs input variables x into a small set of say 
"features « 3 features y, typical to the task at hand. In 
practice, one often tries to find these features through 
an iterative process of thinking and testing (see also 
Figure 4). For example, one tries several ways of com- 
bining the most recent sales figures into a single num- 
ber, tests each of them, and takes the best. Here we 
propose to learn this transformation. We combine all 
tasks into one big network (see Figure 2). The in- 
put units are connected to the hidden (feature) units 
through a weight matrix B. The weight vector con- 
necting the hidden units to the output unit corre- 
sponding to task i is denoted A,. In other words, all 
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outputs 

the targets D,- = {tf} are independently and iden- 
tically distributed (iid) given the inputs /,- = {zf}, 
model parameters Ai and <r,- and feature matrix B, we 
can compute the probability of observing these targets 
through 

P(Di\Ii, At,(Ti,B) oc exp[-E(Ai,<r,-,B\Duh)\ ,   (2) 

where we have defined the error 

E{Ai,*i,B\Di,Ii) = -'%2 (t    2
J   -log<r, 

explanatory variables 

Figure 2: Typical network structure: a reasonably 
large number of input units, a small number of hid- 
den units, and huge number of output units. 

tasks share the weight matrix B, but have independent 
weight vectors Ai. 

In this paper, we will consider the case of linear hid- 
den units. Given an input vector x, the features and 
outputs are then computed through 

(3) 
with the output z? computed as in (1). For notational 
convenience we will from now on leave out the explicit 
dependency on the inputs U. The iid assumption may 
be too strong for time-series prediction tasks. We will 
come back to that in Section 4.1. 

We propose to find an appropriate feature matrix B 
through a maximum likelihood procedure: we mini- 
mize the error (3), averaged over all «tasks tasks and 
obtain the maximum likelihood solutions BML, A^L 

and TML 

Vi YjBjkXk   and  zi = Ai0 + Y^Aiiyi,      (1)       2.2    SIMILAR IDEAS 

where Z{ refers to the output corresponding to task 
i. We will use Ai to denote the set of all hidden- 
to-output weights specific to each task, i.e., Ai = 
{AJO, • • .,j4,-,nfeatures}- We refer to Ai and <T,- as the 
set of model parameters of task i. 

The inputs x can be divided into two categories: those 
with equal input values across all tasks and those with 
input values specific to a particular task. Nonspecific 
inputs in the newspaper example (see Table 1) are e.g. 
seasonal variables and weather figures (we considered 
the "average" weather across The Netherlands instead 
of more local weather figures). The specific inputs 
should have more or less the same meaning across all 
tasks. This is accomplished by the transformation of 
the sales figures described and discussed in Section 1.2. 
We will use Xj to denote the set of inputs correspond- 
ing to task i. 

Hidden units do not have bias units: it is easy to see 
that these can be scaled away into the bias of the out- 
put units. We further assume a Gaussian noise model 
with standard deviation &{, which is different for each 
task, but independent of the inputs a;,-. Assuming that 

There has been quite a lot of interesting research in 
the area of inductive transfer, yielding both empirical 
and theoretical evidence that multi-task learning im- 
proves performance (see [10] for collections of papers 
on multi-task learning). In [1] the advantage of com- 
bining several tasks is investigated theoretically, under 
the assumption that a feature matrix B common to all 
tasks indeed exists. 

In most approaches to multi-task learning (see e.g. [2] 
and references therein), all tasks receive the same in- 
put information, i.e., all inputs are nonspecific. As 
in our case, the different tasks are forced to share 
the same hidden unit representation. Often, but not 
always, this leads to a better generalization perfor- 
mance [2]. The problems considered in the litera- 
ture are mostly artificial and combine on the order 
of 10 or less tasks. An exception is [7], where different 
tasks concerning stock selection and portfolio manage- 
ment are combined in various ways. This experimental 
study is probably closest in spirit to our multi-tasking 
approach, but its number of tasks (36) is still much 
smaller than the 343 real-world tasks that we use in 
our simulation. 
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Group # Type Bi B2 B3 

last year sales 3 specific 0.8 54.1 2.9 

last year sellouts 3 specific 0.6 1.0 3.6 

recent sales 5 specific 93.5 15.4 0.4 

recent sellouts 5 specific 1.9 2.9 10.6 

weather figures 5 nonspec. 1.2 15.8 15.0 

season variables 2 nonspec. 1.9 10.7 67.6 

Table 1: List of input variables (see text for further 
explanation) on the lefthand side. Numbers on the 
righthand side give the percentage of variance of the 
features explained by a particular group of input vari- 
ables. 

2.3    FEATURES FOR THE PREDICTION 
OF NEWSPAPER SALES 

The explanatory variables that we took into account 
are summarized in Table 1. We normalized all non- 
specific variables. Sales figures were rescaled for each 
outlet separately as described in Section 1.2. Sellout 
figures were not rescaled: a sellout is represented by 1, 
a non-sellout by 0. Recent figures start from 4 weeks 
ago (the time it takes to collect and administrate all 
sales figures) and end at 8 weeks ago. Figures from 
last year are from exactly the same week and the week 
just before and after that. Weather information in- 
cludes temperature (relative to the average tempera- 
ture at the time of year), wind velocity, percentage 
sunshine, and precipitation (both amount and dura- 
tion). We slightly changed the definition of the prob- 
ability model (2) and error (3) to incorporate sellouts 
(number of sold copies equal to the number of deliv- 
ered copies) and to take into account that newspaper 
sales is always integer. 

We trained networks with «features = 1 to 8 hidden 
units. The percentages in Table 1 indicate what part 
of the variance in each of the features is explained by 
a particular group of input variables for natures = 3. 
The features are ordered from most to least relevant. 
The first feature strongly focuses on the recent sales, 
the second mostly on the sales from last year, the third 
mostly on the seasonal variables. Sellouts and weather 
figures seem to play a minor role, although especially 
the weather figures explain some of the variance of the 
second and third feature. 

We can also compute the variance in the outputs ex- 
plained by each group of input variables. The cir- 
cles in Figure 3 show these percentages for different 

numbers of hidden units. With any number of hidden 
units, the recent sales figures come out to be most rele- 
vant. There are, however, interesting differences: a re- 
markable increase in the relevance of seasonal variables 
when going from one to two hidden units, a similar in- 
crease in the relevance of the recent sellouts when go- 
ing from two to three hidden units, and somewhat less 
dramatic increases in last year's figures and weather 
information. 

3    HIERARCHICAL BAYES 

3.1    BAYESIAN MODELING 

In this section, we replace the maximum likelihood ap- 
proach of the previous section by a Bayesian approach. 
We will focus on a Bayesian inference of the model pa- 
rameters Aij and standard deviations <x,, given the 
feature matrix BML obtained in the previous section. 
The underlying assumption is that, if there indeed ex- 
ist features typical to the task of predicting newspaper 
sales, it should not matter too much whether we find 
these through an, in this context computationally un- 
feasible, Bayesian approach or through a much simpler 
maximum likelihood procedure. Furthermore, we are 
making lots of other assumptions: our choice of possi- 
ble explanatory variables, the number of hidden units, 
the linear transfer function and thus restriction to find 
linear relationships, and so on. Each set of assump- 
tions corresponds to a different model or hypothesis 
%. We can simply include BMh in our definition of 
%. In the following, all probability distributions are 
conditioned on this %. We will omit this explicit de- 
pendency from our notation. 

Equation (2) gives the probability distribution of the 
data for a single task given its model parameters. The 
probability distribution of all data follows from 

P(V\A) = HP(Di\A>), 
i 

where A{ now stands for all model parameters of 
task i (including the standard deviation <T;),  A  = 
Mi ^tukl}, and V = {A,..., A,lMk.}.   In a 
Bayesian analysis, we infer the probability of the model 
parameters given the data using Bayes' rule: 

P(A\V) = 
P(V\A)P(A) 

P(V) 
(4) 

where P(V) is a normalization factor independent of 
the model parameters and P(A) is a prior distribution 
of the model parameters. 
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Figure 3: Percentage of variance explained by each group of input variables for various numbers of hidden units: 
maximum likelihood solution (circles, dashed lines) and most probable solutions (crosses, solid lines). 

We take a Gaussian prior on the model parameters 
Ai   =   {>W--,^.\nfelture3+l},   with  Ai,nfeatures+1    = 
logo-;: 

P(Ai\A) oc exp -(A, -m)TX(Ai -m) 

where A = {A, m} is called a set of hyperparameters 
with A an [(natures + 2) x («features + 2)]-dimensional 
symmetric matrix and m an («features + 2)-dimensional 
vector. The model parameters of each task are as- 
sumed to be exchangeable, i.e., 

P(A\A) = Y[P{Ai\A)- 
i 

This exchangeability assumption can be compared 
with the iid assumption in (2). It implies that, prior 
to the arrival of data, the probability distribution of 
the model parameters is invariant under renumbering 
of the tasks. This is not directly obvious, but may be 
a reasonable assumption if the outputs for each of the 
tasks are appropriately rescaled, as discussed in Sec- 
tion 1.2. Another interpretation is that the parameters 
of the different tasks are penalized by the same set of 
hyperparameters. 

In an exact Bayesian procedure, one should always 
integrate out the hyperparameters.   In a hierarchical 

Bayesian procedure, we approximate (4) through 

P{A\V) =   fdAP{A\A,V)P{A\V)nP(A\AUP,V), 

with AMP = argmaxF(A|X>). 
A 

The procedure is called hierarchical to indicate that 
the hyperparameters are inferred at a higher level than 
the model parameters. The idea behind this approx- 
imation is that the distribution P(A|Z>) is sharply 
peaked around its most probable value AMP. In our 
case, where we can use the data for all ntasks tasks 
to infer the most probable AMP, this approximation is 
extremely accurate and useful. We will simply take an 
(improper) flat prior for A, i.e., P(A) oc 1, such that 
the most probable AMP is in fact equivalent to the set 
of maximum likelihood hyperparameters AML. 

3.2    RELEVANT LITERATURE 

A nice overview of hierarchical (also called empirical) 
Bayesian modeling, with both a discussion of its under- 
lying assumptions and lots of references to its applica- 
tions in statistics, can be found in [6]. Our approach is 
quite similar in spirit to the use of empirical Bayesian 
techniques in law school validity studies, described and 
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discussed in [9]. James-Stein estimation can be viewed 
as the frequentists' equivalent of hierarchical Bayesian 
modeling. A nice link is provided in [4], 

In the neural-network community, hierarchical Bayes 
is often referred to as the evidence framework [8]. The 
focus is on learning a single task, where the prior dis- 
tribution of the weights (usually a diagonal matrix A 
and m equal to zero) is chosen to reflect the belief 
that weights should be small. This yields the Bayesian 
justification for weight decay or ridge regression. Al- 
though from a technical point of view our analysis is 
at some points quite similar, the meaning of the prior 
distribution is different: our choice of priors has noth- 
ing to do with an a priori assumption of small weights, 
only with exchangeability under a Gaussian probabil- 
ity model. 

3.3 INFERENCE OF THE 
HYPERPARAMETERS 

To find the most probable set of hyperparameters 
AMP, we have to maximize the posterior distribution 
P(A\T>). One way of doing this is through an EM al- 
gorithm (see e.g. [6]). The multi-task situation allows 
for quite a lot of simplifications, which in the end lead 
to update equations for A(n). Here we only state the 
result: 

m(n + 1) =  V] Ai(n) 
fttasks     . 

t 

"tasks 
i 

—J— J2 [Ä-W - m(n + 1)] [Mn) - m(n + 1)]T 
n

tasks 

where Ai(n) and E?(n) are the mean and variance 
of the distribution P(A\D{, A(n)), respectively. The 
second term on the righthand side measures the vari- 
ance between the most probable solutions [given A(n)] 
for the different tasks, the first term the variance of 
P(A\Di, A(n)) around these most probable solutions, 
averaged over all tasks. We can use Laplace's method 
(see [6]), based on a quadratic Taylor expansion of 
logP(j4|jD;, A(n)) around its mode, to find approxi- 
mations for Ai(n) and T,f(n): 

Äi(n)  ss  argmax \ogP(A\Di, A(n)) 
A 

and   EftrOwJff.-M + An]-1, 

where the Hessian matrix H{(n) of the error E(A\Di) 
has to be evaluated at Ai(n): 

«,,„). *!£""D'> 
0AdAT 

A = A,(n) 

Laplace's method becomes more and more accurate for 
large sample sizes p per task. 

The EM algorithm is intuitive and computationally 
feasible with the approximation suggested by Laplace's 
method. A disadvantage of the EM algorithm is that 
its convergence can be rather slow. A more direct 
method can be obtained if we make a stronger assump- 
tion, namely that the error E(A\Di) is approximately 
quadratic in the model parameters A, i.e., 

1 
E(A\Di) * E{ATl'\Di > + ^- A^T Hi(A-A^), 

with ylfL the maximum likelihood solution minimiz- 
ing E(A\Di) and Hi the Hessian evaluated at A™1'. 
This is the approximation frequently applied in the 
evidence framework for neural networks (see e.g. [8]). 
Now all integrations needed to compute 

P(A|2>) oc Y[jdAP{Di\A)P(A\\), 

are over Gaussian probability distributions, yielding 

logP(A|P)  =   -l^A^-mfZiWiA^-m) 

+ i^log[detZ,(A)], (6) 

with Z{(\) = (H~l + A-1) and where we neglected 
irrelevant additive constants. The most probable AMP 

maximizes (6) and can be found using e.g. a standard 
BFGS quasi-Newton algorithm. 

3.4    SIMULATIONS 

In our newspaper example, the approximation (5) ap- 
peared to be extremely accurate. AMP was therefore 
obtained through direct optimization of (6). Given 
this AMP, we computed the most probable model pa- 
rameters AMP exactly, i.e., without making the ap- 
proximation (5). The difference between the calcu- 
lation of the maximum likelihood solutions and the 
most probable solutions is that the latter are regular- 
ized through the hyperparameters AMP. 

In the previous section we noted dramatic changes 
in the relevance of groups of input variables with in- 
creasing number of hidden units.   The relevances for 
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the most probable solutions, shown by the circles in 
Figure 3, are surprisingly constant across the differ- 
ent networks with «features > 1: given the correct 
prior parameters AMP, the most probable solutions are 
roughly the same. Especially the influence of the sell- 
outs, which seemed to be highly relevant according to 
the maximum likelihood solutions, almost completely 
vanishes. 

4    DISCUSSION AND 
CONCLUSION 

4.1    DEALING WITH 
NONSTATIONARITY 

Until now, our analysis has been completely static. 
However, the typical examples given in Section 1 are 
mostly time-series prediction problems, for which the 
iid assumption (2) can be too strong. Suppose that 
we want to predict the output z at "time" fx given 
inputs x1* (we leave out the index i for notational con- 
venience). As in the previous sections, we fit the pa- 
rameter set A = {6, A, a} on a training set containing 
the most recent p patterns. This is a kind of "sliding 
window approach": with the addition of every new 
pattern, the oldest pattern is deleted from the train- 
ing set. With a delay of «delay patterns between the 
most recently available pattern and the output to be 
predicted, the training set ends at (X — «delay The 
naive sliding window approach now computes the out- 
put from the input xß and the scale and model parame- 
ters A'l-"delay, which in a way assumes stationarity of 
the scale and model parameters, i.e., A*1 « A'4-nde,ay. 
This naive approach may work fine for many predic- 
tion tasks, but leads to lousy predictions on some of 
them. 

To take nonstationarity into account, we add a correc- 
tion term to the uncorrected prediction: 

^+"delay _    '*+"delay      ,    A ^ 
corrected uncorrected "■* ' 

The parameter set A used to compute the uncorrected 
zuncorrected *s determined as before and we still make 
the assumption that this parameter set is roughly sta- 
tionary on a time scale of a few patterns. Any nonsta- 
tionarity should be corrected through A*1. A simple, 
but efficient procedure for updating AM is through an 
exponential smoothing procedure: 

*" = «<ncorrected + (l-«)ÄM_1 = ^corrected + Ä^1, 

with  ^corrected   =   ^ and eü„ 

corrected 

uncorrected   IMIU  "^corrected 
the difference between the target and 

the uncorrected and corrected prediction, respectively, 
a is a so-called smoothing parameter and 1/a corre- 
sponds to a typical time scale. It seems reasonable 
to choose the same a for all tasks. Furthermore, it is 
well-known (see e.g. [3]) that the precise setting of the 
smoothing parameter in exponential smoothing hardly 
affects the prediction performance (see also Figure 4). 
Perfectly stationary tasks hardly suffer from the extra 
correction, since their errors e(|ncorrec(.ed and e£orrected 

tend to average out anyways. 

4.2 TEST PERFORMANCE 

Some results are displayed in Figure 4. All ideas pre- 
sented in this paper have been implemented and tested 
on the prediction of newspaper sales for 343 points of 
sale. The test set consists of 85 weeks after the training 
set that has been used for computation of the feature 
matrix, hyperparameters and most probable model pa- 
rameters. The model parameters are updated weekly 
using the sliding windows approach described above. 
The hyperparameters and feature matrix have been 
kept constant. The test error is minus the loglikeli- 
hood, averaged over both patterns and points of sale. 

The network with two hidden units appears to be the 
best. The regularization through the Bayesian ap- 
proach cannot completely avoid the risk of overfitting. 
On the other hand, the best solution without regular- 
ization (not shown) is the one with one hidden unit, 
with a test error of about 2.7, increasing rapidly for 
more hidden units. The star shows the test perfor- 
mance for a fixed choice of the feature matrix B, made 
before the start of this project after quite a lot of it- 
erations of thinking, trying and testing. The solution 
obtained through the multi-tasking approach is signif- 
icantly better. The righthand side shows the sensitiv- 
ity to the choice of the smoothing parameter. Taking 
a = 0 is suboptimal: at least for some points of sale, 
the time series are clearly nonstationary. Any choice 
of a typical smoothing time between half a year and a 
year leads to about the same performance. 

4.3 STATIONARITY AND SPECIFICITY 

A summary of the most important parameters in the 
complete system is given in Table 2. At the highest 
level, we have global parameters as the number of fea- 
tures «features and the smoothing parameter a. The 
choice of these scalar parameters is not extremely crit- 
ical (see Figure 4) and can be based either on experi- 
ence with similar databases or by testing a few differ- 
ent alternatives. This is much less the case for the next 
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2.665 
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1 / smoothing parameter 

Figure 4: Test error (minus loglikelihood) averaged over 85 weeks and 343 points of sale. Error bars indicate the 
significance of the difference with the best solution. Lefthand side: as a function of the number of hidden units 
for smoothing parameter a = 0.05. The star corresponds to the performance with a choice of three features 
obtained after extensive trial and error. Righthand side: as a function of the typical smoothing time (number of 
weeks) for the network with two hidden units. 

level of parameters: the input-to-hidden weights and 
the hyperparameters of the prior distribution. These 
parameters are typical to the task at hand. For exam- 
ple, in predicting newspaper sales, they may be quite 
different for different days of the week. They can be 
optimized on a representative set of tasks and kept 
fixed afterwards. The model and scale parameters as 
well as the correction terms are obviously specific to 
each task. We assume that the model parameters are 
roughly stationary over the length of the training set 
and can thus be determined through a sliding window 
approach. The correction terms can be interpreted 
as corrections to the scale parameters. These may be 
much less stationary and should be updated with the 
addition of every single pattern. 

4.4    IMPROVEMENTS AND FURTHER 
DIRECTIONS 

Let us recapitulate our approach and underlying as- 
sumptions. We started with the observation that we 
needed some transformation from the possibly quite 
high-dimensional input space to a much lower dimen- 
sional feature space. We proposed to learn this trans- 
formation through a maximum likelihood procedure 
on the weights of a huge network containing all tasks. 
In this we did not incorporate any prior information, 
nor did we worry about nonstationarity of the time 
series involved. Keeping the weights from input to 
hidden units fixed, we then performed a hierarchical 
Bayesian analysis to compute hyperparameters, which, 
roughly speaking, gave us the proper regularization of 
the model parameters specific to each task.   Again, 

we disregarded any of the nonstationarity in the data. 
Finally, keeping both the hyperparameters and input- 
to-hidden weights fixed, we proposed an exponential 
smoothing procedure to correct for nonstationarities. 

We might try and think of ways to integrate the parts 
of our approach, instead of applying them sequentially. 
For example, it may be possible to treat the input to 
hidden weights as hyperparameters, i.e., at the same 
level as the hyperparameters A for the mean and vari- 
ance of our prior distribution. The problem here is 
that it is much more difficult to compute how a change 
in the hyperparameters of the prior distribution af- 
fects the input-to-hidden weights than vice versa. Our 
treatment follows from the assumption that this ef- 
fect is negligible for practical purposes. It is not easy 
to see how to go beyond this simplification, without 
having to rely on procedures that are computationally 
unfeasible for any reasonable number of tasks. 

About integrating nonstationarity and the Bayesian 
hierarchical analysis, we may be somewhat more pos- 
itive. There has been some recent work, which can 
be viewed as a first attempt to combine Kaiman fil- 
tering and the Bayesian evidence framework [5]. In 
this approach the hyperparameters are recomputed 
every time step. Similar ideas may be applicable to 
our multi-task situation, although also here we have 
to worry about the computational feasibility. 

Another improvement could be to work with a more 
complicated prior for the model parameters of the dif- 
ferent tasks than the Gaussian considered in this pa- 
per. One suggestion is to take another functional form, 
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Symbol Description Time Tasks Procedure 

"features 

a 

number of hidden units 

smoothing parameter 

constant 

constant 

same 

same 

experience/test performance 

experience/test performance 

B 

A 

input-to-hidden weights 

hyperparameters 

constant 

constant 

same 

same 

multi-task learning 

Bayesian inference 

0 

A 

scale parameters 

model parameters 

sliding window 

sliding window 

specific 

specific 

maximum likelihood 

MAP estimation 

A correction terms single pattern specific exponential smoothing 

Table 2: Characteristics of the most important parameters. 

for example, a cluster of Gaussians or a prior which 
forces each task to focus on a subset of the available 
features. An even more appealing approach would be 
to make the prior distribution dependent on (known) 
characteristics of the particular task. In our newspa- 
per case, the width and mean of the distribution could 
be functions of the distance from the point of sale to 
the beach, the population density in the vicinity of the 
point of sale, and so on. The hyperparameters to be 
inferred from the data would be the parameters in this 
functional dependency. 
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Abstract 

In this paper, we adopt general-sum stochas- 
tic games as a framework for multiagent re- 
inforcement learning. Our work extends pre- 
vious work by Littman on zero-sum stochas- 
tic games to a broader framework. We de- 
sign a multiagent Q-learning method under 
this framework, and prove that it converges 
to a Nash equilibrium under specified condi- 
tions. This algorithm is useful for finding the 
optimal strategy when there exists a unique 
Nash equilibrium in the game. When there 
exist multiple Nash equilibria in the game, 
this algorithm should be combined with other 
learning techniques to find optimal strategies. 

1    Introduction 

Reinforcement learning has gained attention and ex- 
tensive study in recent years [8, 15]. As a learning 
method that does not need a model of its environment 
and can be used online, reinforcement learning is well- 
suited for multiagent systems, where agents know lit- 
tle about other agents, and the environment changes 
during learning. Applications of reinforcement learn- 
ing in multiagent systems include soccer [1], pursuit 
games [17, 4] and coordination games [2]. In most 
of these systems, single-agent reinforcement learning 
methods are applied without much modification. Such 
approach treats other agents in the system as a part 
of the environment, ignoring the difference between re- 
sponsive agents and passive environment. In this pa- 
per, we propose that a multiagent reinforcement learn- 
ing method should explicitly take other agents into 
account. We also propose that a new framework is 
needed for multiagent reinforcement learning. 

The framework we adopt is stochastic games (also 
called Markov games) [5, 18], which are the general- 
ization of the Markov decision processes to the case of 
two or more controllers. Stochastic games are defined 
as non-cooperative games, where agents pursue their 
self-interests and choose their actions independently. 

Littman [9] has introduced 2-player zero-sum stochas- 
tic games for multiagent reinforcement learning. In 
zero-sum games, one agent's gain is always the other 
agent's loss, thus agents have strictly opposite in- 
terests. In this paper, we adopt the framework of 
general-sum stochastic games, in which agents need 
no longer have opposite interests. General-sum games 
include zero-sum games as special cases. In general- 
sum games, the notions of "optimality" loses its mean- 
ing since each agent's payoff depends on other agents' 
choices. The solution concept Nash equilibrium [11] is 
adopted. In a Nash equilibrium, each agent's choice is 
the best response to the other agents' choices. Thus, 
no agent can gain by unilateral deviation. 

we are interested in the Nash equilibrium solution be- 
cause we want to design learning agent for noncoopera- 
tive multiagent systems. In such systems, every agent 
pursues its own goal and there is no communication 
among agents. A Nash equilibrium is more plausible 
and self-enforcing than any other solution concept in 
such systems. 

If the payoff structure and state transition probabil- 
ities are known to all the agents, we can solve for 
an Nash equilibrium strategy using a nonlinear pro- 
gramming method proposed by Filar and Vrieze [5]. 
In this paper, we are interested in situations where 
agents have incomplete information of other agents' 
payoff functions and the state transition probabilities. 
We show that an multiagent Q-learning algorithm can 
be designed, and it converges to the Nash equilibrium 
Q values under certain restrictions of the game. Our 
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algorithm is designed for 2-player general-sum stochas- 
tic games, but can be extended to n-player general-sum 
games. 

Our learning algorithm guarantees that an agent can 
learn a Nash equilibrium. But it does not say whether 
the other agent will learn the same Nash equilibrium. 
When there exist only one Nash equilibrium in the 
game, our learning algorithm works effectively. How- 
ever, a game can have multiple Nash equilibria. In that 
case, our learning algorithm needs to be combined with 
empirical estimation of the action choices of the other 
agent. 

2    Some preliminaries 

We state some basic game theory concepts in this sec- 
tion. All concepts here refer to single-state (static) 
games. In later sections, we will see how the concepts 
here are connected to multi-state stochastic games. 

For zero-sum games, the payoff matrices of two players 
can be described as (M, —M), since one player's payoff 
is always the negative of the other. It is sufficient to 
simplify the game by either M or —M. Thus, 2-player 
zero-sum games are also called matrix games. For 2- 
player general-sum games, the agents' payoff matrices 
M1 and M2 are unrelated. The solutions of the game 
depend on both M1 and M2. Such games are called 
bimatrix games. 

Definition 1 A pair of matrices (Ml,M2) consti- 
tutes a bimatrix game, where M1 and M2 are of the 
same size. The payoff rk(a1, a2) to player k can be 
found in the corresponding entry of the matrix Mk, 
k = 1,2. The rows of Mk correspond to actions of 
player 1, a1 € A1. The columns of Mk correspond to 
actions of player 2, a2 £ A2. A1 and A2 are the sets 
of discrete actions of players 1 and 2 respectively. 

Next, we state some solution concepts for bimatrix 
games. The main concept is Nash equilibrium [12]. 
In a Nash equilibrium, each agent's action is the best 
response to other agents' choices. 

Definition 2 A pure strategy Nash equilibrium for 
bimatrix game G is an action profile (al,a2) such that 

^{a^al) > r1 {a1,al)   for all a1 G A1 

r2(al,al) > r2(a\,a2)    for all a2 € A2 

An example of a bimatrix game can be seen in Figure 
1, in which the strategy pair (a\, a2) constitutes a pure 
strategy Nash equilibrium. 

M1 M2 

a: a,   az a: a:  a: 
a\(\ 
a' 0    1 

4^ 
1 

a 
a: 

\( 2    1 
0   -3 

0^ 
2 

Figure 1: A bimatrix game example 

Definition 3 A mixed strategy Nash equilibrium for 
bimatrix game G is a pair of vectors (pi, p2), such that 

p\Mxpl > pxMxpl    for all p1 € a(A^ 

p\M2pl > p\M2p2    for all p2 € a(A2) 

where cr(Ak) is the set of probability distributions over 
action space Ak,   such that for any pk   £   o'(Afe), 

p'M'p2 = Eai E^V^V.aVCa2) is the ex- 
pected payoff of agent 1 under the situation that 
playerl and player 2 adopt their mixed strategies p1 

and p2 respectively. 

The reason we are interested in mixed strategies is 
that an arbitrary bimatrix game may not have a pure 
strategy Nash equilibrium, but it always has a mixed 
strategy Nash equilibrium. 

Theorem 1 (Nash, 1951) There exists a mixed strat- 
egy Nash equilibrium for any finite bimatrix game. 

A mixed strategy Nash equilibrium for any bimatrix 
game can be found by Mangasarian-Stone algorithm 
[10], which is a quadratic programming algorithm. 

3    Markov Decision Process and 
reinforcement learning 

For comparison purpose, we state the framework of 
Markov decision process here. Later we can see how 
the stochastic game framework is related to Markov 
decision process. 

Definition 4 A Markov Decision Process is a tuple 
< S,A,r,p >, where S is the discrete state space, A 
is the discrete action space, r : S x A -> R is the 
reward function of the agent, and p : S x A -> A is the 
transition function, where A is the set of probability 
distributions over state space S. 

1We abuse the notation a little here. p\Mlp2, should be 
(pi)1'M1pl, where pi is transposed before being multiplied 
to the matrix M1. 
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In a Markov decision process, the objective of the 
agent is to find a strategy (policy) ?r so as to maxi- 
mize the expected sum of discounted rewards, 

u(s,7r) = ^/3'£(rt|7r,s0 = s) (1) 
t=o 

where So is the initial state, rt is the reward at time t, 
and ß € [0,1) is the discount factor. We can rewrite 
Equation (1) as 

v(s,7r) = r(s,a„) + ß^2p(s'\s,an)v{s' ,n)       (2) 

where an is action determined by policy ir. It has been 
proved that there exists an optimal policy n* such that 
for any s G S, the following Bellman equation holds: 

v(s,n*) = max lr(s, a) + ß)p(s'\s,a)v(s',Tr*)\, 

(3) 
where v(s,n*) is called the optimal value for state s. 

If the agent knows the reward function and the state 
transition function, it can solve for 7r* by some iter- 
ative searching methods [13]. The learning problem 
arises when the agent does not know the reward func- 
tion or the state transition probabilities. Now the 
agent needs to interact with the environment to find 
out its optimal policy. The agent can learn about 
the reward function and the state transition function, 
and then solve for its optimal policy using Equation 
(3). Such approach is called model-based reinforce- 
ment learning. The agent can also directly learn about 
its optimal policy without knowing the reward func- 
tion or the state transition function. Such approach 
is called model-free reinforcement learning. One of 
the model-free reinforcement learning methods is Q- 
learning [19]. 

The basic idea of Q-learning is that we can define the 
right-hand side of Equation (3) as 

Q*(s,a)=r(s,a)+ßJ2p(s'\s,a)v(s',7:*)       (4) 

By this definition, Q*(s,a) is the total discounted re- 
ward attained by taking action a in state s and then 
following the optimal policy thereafter. Then by Equa- 
tion (3), 

u(s,7T*) = maxQ*(s,a). (5) 
a 

If we know Q*(s,a), then the optimal policy 7r* can 
be found, which is alway taking an action so as to 
maximize Q*(s,a) under any state s. 

In Q-learning, the agent starts with arbitrary initial 
values of Q(s,a) for all s £ S, a € A. At each time 
t, the agent choose an action and observes its reward 
rt. The agent then updates its Q-values based on the 
following Equation: 

Qw(s,a) = (1 - at)Qt(s,a) + at[rt + ßm&xQt(s' ,b)]. 
b 

(6) 
where at € [0,1) is the learning rate. The learning rate 
at needs to decay over time in order for the learning 
algorithm to converge. Watkins and Dayan [19] proved 
that sequence (6) converges to the optimal Q*(s,a). 

4    The stochastic game framework 

Markov decision process (MDP) is a single agent de- 
cision problem. A natural extension of MDP to mul- 
tiagent systems is stochastic games, which essentially 
are n-agent Markov decision processes. In this paper, 
we focus on 2-player stochastic games since they have 
been well studied. 

4.1     Definition of stochastic games 

Definition 5 A 2-player stochastic game T is a 6- 
tuple < S,Al,A2,rl ,r2,p >, where S is the discrete 
state space, Ak is the discrete action space of player 
k for k = 1,2, rk : S x A1 x A2 -► R is the payoff 
function for player k, p : S x A1 x A2 -* A is the tran- 
sition probability map, where A is the set of probability 
distributions over state space S. 

To have a closer look at a stochastic game, consider 
a process that is observable at discrete time points 
t = 0,1,2,     At each time point t, the state of 
the process is denoted by st- Assume St takes on 
values from the set S. The process is controlled 
by 2 decision makers, referred to as player 1 and 
player 2, respectively. In state s, each player inde- 
pendently chooses actions a1 £ A1, a2 € A2 and re- 
ceives rewards r1^,«!1,^) and r2(s,al,a2), respec- 
tively. When rl(s,al,a2) ■{■ r2{s,o},a2) = 0 for all 
s,al,a2, the game is called zero sum. When the sum 
is not restricted to 0 or any constant, the game is called 
a general-sum game. 

It is assumed that for every s,s' € S, the transition 
from s to s' given that the players take actions a1 € A1 

and a2 € A2, is independent of time. That is, there 
exist stationary transition probabilities p(s'|s,a1,a2) 
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for all t = 0,1,2,... , satisfying the constraint 

m 
y£p(s'\s,a1,a2) = l, (7) 

t=0 

»'=i 

The objective of each player is to maximize a dis- 
counted sum of rewards. Let ß e [0,1) be the discount 
factor, let n1 and IT

2
 be the strategies of players 1 and 2 

respectively. For a given initial state s, the two players 
receive the following values from the game: 

v1(syy) = ^ßtE(r1
t\n

iy,So = s) (8) 
t=o 
oo 

v2(Syy) = Y,PE(r2\n\7r2,s0 = s) (9) 
t=o 

A strategy 7r = (7r0,... ,7rt,...) is defined over the 
whole course of the game. nt is called the decision rule 
at time t. A strategy n is called a stationary strategy 
if 7Tt = 7f for all t, where the decision rule is fixed over 
time. 7T is called a behavior strategy if 7rf = f(ht), 
where ht is the history up to time t, 

ht = (s0,ao,ao,Si,ai,af,...,aJ_1,at_1,st).     (10) 

A stationary strategy is a special case of behavior 
strategy when ht = 0. 

A decision rule assigns mixed strategies to different 
states. A decision rule of a stationary strategy has the 
following form: n = (n(s1),..., f (sm)), where m is the 
maximal number of states. 7f(s) is a mixed strategy 
under state s. 

A Nash equilibrium for stochastic games is denned as 
following, assuming that the players have complete in- 
formation about the payoff functions of both players. 

Definition 6 In stochastic game V, a Nash equilib- 
rium point is a pair of strategies (nl,n2) such that for 
all s G S 

vHs,KlO>vl(sy,*l)  v^en1 

and 

v2(S,7rl,7r2)>v2(s,nlTr2)    VTT
2
 € II2 

The definition of Nash equilibrium requires that each 
agent's strategy is a best response to the other's strat- 
egy. Such definition of Nash equilibrium is similar as 
in other games. The strategies that constitute a Nash 
equilibrium can be behavior strategies, Markov strate- 
gies, or stationary strategies.   In this paper, we are 

f1 (s) r2(s) 

t=1 

r1(Si) |g(sQ 

r1 (S2 r2(s2) 

f1(Sm) r2( Sm) 

Figure 2: Stochastic games and bimatrix games 

interested in stationary strategies, which are the most 
simple strategies. The following theorem shows that 
there always exist a Nash equilibrium in stationary 
strategies for any stochastic game. 

Theorem 2 (Filar and Vrieze [5], Theorem 4-6-4) 
Every general-sum discounted stochastic game pos- 
sesses at least one equilibrium point in stationary 
strategies. 

4.2    Stochastic games and bimatrix games 

We can view each stage of a stochastic game as a bi- 
matrix game, as in Figure 2. 

At each time period of a stochastic game, under state 
s, agent 1 and 2 choose their actions independently and 
receive their payoffs according to the bimatrix game 
(r1(s),r2(s)). Repeated games can be seen as a de- 
generate case of stochastic games when there is only 
one state. For example, let s be the index of the only 
state, a repeated game will always have the bimatrix 
game (r1^),!-2^)) at each time period. 

5    Multiagent reinforcement learning 

We want to extend traditional reinforcement learning 
method based on Markov decision process to stochas- 
tic games. We assume that our games have incomplete 



246       Hu and Wellman 

but perfect information, meaning agents do not know 
other agents' payoff functions but they can observe 
other agents' immediate payoffs and actions taken pre- 
viously. 

5.1    Issues in designing a multiagent 
Q-learning algorithm 

The target of our Q-learning is the optimal Q-values, 
which we define as the following: 

Ql(s,a\a2) = 
N 

rl(s,a\a2) + ßJ2p(s'\s,a\a*)vl(s'yy)(U) 

Qi(s,a\az) = 

s' = l 

N 

r2(Sla\a2)+ßY/P(s'\s,a1,a2)v2(s',n\n2) (12) 
s' = \ 

The optimal Q-value of state s and action pair (a1, a2) 
is the total discounted reward received by an agent 
when both agents execute actions (a1, a2) in state s 
and follow their Nash equilibrium strategies (TT

1
^

2
) 

thereafter. 

To learn about these Q-values, an agent needs to main- 
tain m Q-tables for its own Q-values, where m is the 
total number of states. For each agent k, k = 1,2, a 
Q-table Qk{s) has its rows corresponding to o1 € A1, 
columns corresponding to o2 € A2, and each entry 
as Qk(s,a1,a2), k = 1,2. The total number of en- 
tries agent k needs to learn is m x \Ar\ x \A2\, where 
l-A1! and \A2\ are the sizes of action spaces A1 and 
A2. Assuming I-41! = \A2\ = \A\, then space require- 
ment is m x \A\2. For n agents, the space requirement 
is m x \A\n, which is exponential in the number of 
agents. Thus for large number of agents, we need to 
find some compact representation of action space. 

As in single-agent Q-learning, the learning agent in 
multiagent systems updates its Q tables for a given 
state after it observes the state, actions taken by both 
agents, and the rewards received by agents. The dif- 
ference is in the updating rule. In single-agent Q- 
learning, the Q-values are updated as following, 

Qt+i(s,a) (1 -at)Qt{s,a) + at[rt + ßma,xQt(s',b)]. 
b 

In multiagent Q-learning, we cannot just maximize our 
own Q-values since the Q-values depend on the action 
of the other agent. 

If it is a zero-sum game, we can minimize over the other 
agent's actions, and then choose our own maximal af- 
ter that. This is the minimax-Q learning algorithm in 

update 
C!(.V«,'.«,2) 

.v,„   ß'(.v«>')     a]. 
■*/+! 

t+! time 

Figure 3: Time line of actions 

Littman [9]. For general-sum games, we cannot use 
mini-max algorithm because the two agent's payoffs 
are not the opposite of each other. We propose that 
an agent adopt a Nash strategy to update its Q-values, 
and this is the best an agent can do in a general-sum 
game. 

5.2    A multiagent Q-learning algorithm 

Our Q-learning agent, say agent 1, updates its Q- 
values according to the following rule: 

Q]+i(s,al,a2) = 
(1 - at)Ql(s, a1,a2) + a,[r? + ßn1 (s')Ql(s')ir2(s')ll3) 

where (7r1(s'),7r2(s')) is a mixed strategy Nash equi- 
librium for the bimatrix game (Q}{s'),Q2{s')). In or- 
der to find out 7T2(s')> agent 1 needs to learn about 
Q2(s') in the game. The learning is as following: 

Q2
+1(s,a\a2) = 

(1 - at)Q
2(s,a\a2) + a([r

2 + /37rV)Q?(«>V)I14) 

Therefore, a learning agent maintains two Q-tables 
for each state, one for its own Q-values and one for 
the other agent's. This is possible since we assume an 
agent can observe the other agent's immediate rewards 
and previous actions during learning. 

The detail of our Q-learning algorithm is stated in Ta- 
ble 1. 

When the game is zero-sum, Q1(s,a1,a2) = 
-Q2(s,a1 ,a2) = Q(s,a1,a2). Thus agent 1 needs to 
learn only one Q-table for every state. Our Q-learning 
algorithm becomes, 

Qt+\{s,al ,a2) = 

(l-at)Qt(s,a1,a2) + at[rt+ß     max 
ni(s')€<r(A1) 

min      7rV)Qt(*V(a')] 
n*{s')e<r(A2) 

This is different from Littman's minimax-Q learning 
algorithm where Q-value is updated as 

Qt+i{s,a},a2) = 

(1 -at)Qt{s,a},a2) + at[rt + ß     max 
vl(»')£o(A*) 

mm ^{s')Qt(s\a2)} 
O1€LA'1 
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Table 1: Multiagent Q-learning algorithm for Agent 1 

Initialize: 
Let t = 0, 
For all s in S, a1 in A1, and a2 in A2, 

let Ql(S>a\a2) = l,Q2(s,a\a2) = 1 
initialize so 

Loop 
Choose action a\ based on 7r1(st), which is a 

mixed strategy Nash equilibrium solution of the 
bimatrix game (Q1(st))Q

2(st)). 
Observe rj,r2,a2, and st+i 
Update Q1, and Q2 such that 
(2J+I(s,a\a2) = (l-at)Ql{s,a1,a2) + at[r

1
t + 

ß^(st+i)QKst+iW(st+1)] 
Q2

t+1{s,a\a2) = (1 - at)Q
2(s,a1,a2) + at[rl + 

^(«t+OQtte+O^fo+i)] 
where (7r1(st+i),7r2(st+i)) are mixed strategy 

Nash solutions of the bimatrix game (Q1(st+x), 
Q2(st+i)) 

Let t := t + 1 

In Littman's Q-learning algorithm, it is assumed that 
the other agent will always choose a pure Nash equi- 
librium strategy instead of a mixed strategy. 

Another thing to note is that in our Q-learning algo- 
rithm, how an agent chooses its action at each time t 
is not important for the convergence of the learning. 
But the action choices are important for short-term 
performance. In this paper, we have not studied the 
issue of action choice, but will explore it in our future 
work. 

5.3    Convergence of our algorithm 

In this section, we prove the convergence of our Q- 
learning algorithm under certain assumptions. The 
first two assumptions are standard ones in Q-learning: 

Assumption 1 Every state and action have been vis- 
ited infinitely often. 

Assumption 2 the learning rate at satisfies the fol- 
lowing conditions: 

1. 0 <at < l,Et^oa* = °°>andY,tloat < °°> 

2. at(s,o},a2) =0 if(s,o},o?) ^ (sua\,a2
t). 

We make further assumptions regarding the structure 
of the game: 

Assumption 3 A Nash equilibrium (ir1(s),ir2(s)) for 
any bimatrix game {Q1(s),Q2(s)) satisfies one of the 
following properties: 

1. The Nash equilibrium is global optimal. 

n1(s)Qk(s)n2(s)  > 7T1(s)Qfc(s)f2(s)    VTT^S)  £ 
a(A1),ir2(s)&a{A2), and k = 1,2. 

2. If the Nash equilibrium is not a global optimal, 
then an agent receives a higher payoff when the 
other agent deviates from the Nash equilibrium 
strategy. 
w1{s)Q1(s)Tr2(s)  <  n1(s)Q1(s)ir2(s)    VTT

2
(S)  € 

a (A2), and 
7r1(s)Q2(s)7r2(s)   <  7T1(s)Q2(s)7r2(s)    VTTHS)  € 
a(A'). 

Our convergence proof is based on the following two 
Lemmas proved by Szepesvari and Littman [16]. 

Lemma 1 (Conditional Average Lemma) Under As- 
sumptions 1-2, the process Qt+i = (1 - at)Qt + <xtwt 
converges to E(wt\ht,at), where ht is the history at 
time t. 

Lemma 2  Under Assumptions 1-2, If the process de- 
fined by Ut+1(x) = (1 - at(x))Ut(x) + at(x)[Ptv*](x) 
converges to v* and Pt satisfies || PtV — Ptv* ||< 7 
|| V - v* || +\t for all V, where 0 < 7 < 1 and Xt > 0 
converges to 0, then the iteration defined by 

Vt+1(x) = (1 - at(x))Vt(x) + at(x)[PtVt](x) 

converges to v*. 

In order to prove that the convergence point of our 
Q-learning algorithm is actually the Nash equilibrium 
point, we need the following theorem proved by Filar 
and Vrieze [5]. 

Theorem 3 (Filar and Vrieze [5]) The following as- 
sertions are equivalent: 

1. For each s 6 S, the pair (n1(s),ir2(s)) con- 
stitutes an equilibrium point in the static bima- 

trix game (Q1{s),Q2(s)) with equilibrium pay- 

offs (v1(s,n1,'K2),v2(s,iv1,Tr2)\, and for k=1,2 

the entry (a1, a2) in Qh(s) equals 

Qk(s,a\a2) 
N 

rk(s,a\a2) + /^(S'ISX^VO^STT
2
). 

»'=1 
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2. (n1,^2) is an equilibrium point in the dis- 
counted stochastic game T with equilibrium pay- 

off (w1(7r1,7r2),i;2(7r1)7r2))f where vfc(7r1,7r2) = 

(vk(8\w\n2),---,vk(s'ny,ir*)),k = l,2. 

The above theorem showed that the Nash solution of 
the bimatrix game (Q1(s),Q2(s)) defined in Theorem 
3 will also be part of the Nash solution for the whole 
game. If the sequence in our Q-learning algorithm con- 
verges to the Q-values defined in Theorem 3, then a 
pair of stationary Nash equilibrium strategies (f1, 7f2) 
can be derived, where #* = (7f*(s1),---,7r*(sm)) for 
k = 1,2. For each state s, nk(s) is part of a Nash equi- 
librium solution of the bimatrix game (Q1(s),Q2(s)). 

Lemma 3 Let Pt
kQk{s) = rk + ßir1 {s)Qk (s)n2 {s), 

k = 1,2, where (■K1
(S),TT

2
(S)) is a pair of mixed 

Nash equilibrium strategies for the bimatrix game 
(Q1(s),Q2(s)). Then Pt = (Pt,P?) »* a contraction 
mapping. 

Proof. Case 1: Pt
kQk(s) > Pt

kQk{s)   VJfc = 1,2. 

We have 

0   <   Pt
kQ1(s)-PkQ1(s) 

=   ß (n1(s)Q1(s)n2(S) - *\s)Ql(s)n2(,)) 

< ß{jT1(S)Q1(s)n2(S)-7rl(s)Ql(s)e(s))   (15) 

< ß(j:1(s)Q\s)7t2(s)-Tr1(S)Q1(s)n2(s))   (16) 

=   ^EEAsy^WXQW,«2)- 
a*     a" 

QW.O) (17) 
^ 0£5>1(*,a1)*1W) IIQXW - G'OO II 

=   ß\\QHs)-Q1(s)l 

where || Qk(s) - Qk(s) \\= imxai^\Qk(s,a\a2) - 
Qk(s,a1,a2)\. Inequality (15) derives from definition 
of Nash equilibrium. Inequality (16) is from property 
2 of Assumption 2. For cases satisfying property 1 of 
Assumption 2, the proof is simpler, and we omit it 
here. 

k = 2, similar proof as above. Under property 1 of 
Assumption 2, we have 

0   <    PkQ2{s)-PkQ2{s) 

<   /SEE^aV^a2) II QHs) - Q2(s) || 
a1     a2 

=   ß\\Q2(s)-Q2(s)\\. 

Under property 2 of Assumption 2, we have 

0    <    PkQ2{s)-PkQ2(s) 

<    /^E^V^W) II Q2(s) ~ Q2(s) || 
a»     a* 

=   ß\\Q2(s)-Q2(s)\\. 

Case 2: Pt
kQk(s) < Pt

kQk(s). Similar proof as in Case 
1. For A; = 1, under property 2 of Assumption 2, we 
have 

0   <   Pt
kQ1(s)-PkQ1{s) 

a1     a3 

=   ß\\Q1(s)-Q1(s)\\. 

Therefore we have \Pt
kQk(s)-Pt

kQk(s)\ < ß \\ Qk(s)- 
Qk{s) ||. Since this holds for every state s, we have 
|| PkQk - PkQk ||< ß || Qk - Qk ||. G 

Now we proceed to prove our main theorem, which 
states that the multiagent Q-learning methods con- 
verges to the "optimal" (Nash equilibrium) Q values. 

Theorem 4 In stochastic game T, under Assump- 
tions 1-3, the coupled sequences {Q\,Q2}, updated by 

<3*+i(s,a1,o2) = 

(1 - oct)Q
k

t{s,a\a2) + at[r
k + /^TT

1
 («')<#(*>V)I18) 

where k = 1,2, converge to the Nash equilibrium Q 
values {Q\,Q2), with Qk defined as 

Qk(s,a\a2) = 

where (it1(s'),ir2(s')) is a pair of mixed Nash equilib- 
rium strategies for the bimatrix game (Ql(s'),Q2(s')), 
function vk is defined as in (8) and (9), and (7rJ,7r2) 
is a Nash equilibrium solution for stochastic game F. 

Proof.  By Lemma 3, || PkQk - PkQk \\< ß \\ Qk - 

Qk.l 
From Lemma 1, the sequence 

Qk
+1(s,a1,a2) = 

(1 - at)Q
k(s,a\a2) + at[r

k + ßirl(s')Qk(s')n2(s')) 

converges to 

£7(r* +/?7r1QV)0 = $>(«>, a\ a2) 

(rk (s, a1, o?) + ßn1 (s')Qk (s >2 («')) • 
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Define Tk as 

(TkQh)(s,a1,a2) = 

£,, P(s'\s, a1, a2) (r*(a,a1,a2) + /fcrV)Q V)*V)) 

Prom above, the sequence {Qk} converges to TkQk. 
It is easy to show that Tk is a contraction map- 
ping. To see this is true, rewrite Tk as TkQk(s) = 
Y,siP(s'\s,a1,a2)PtQ

k(s). Since Pt is a contraction 
mapping of Qk and P(s'\s,o},a2) > 0, Tk is also a 
contraction mapping of Qk. We proceed to show that 
Qk defined in (19) is the fixed point of Tk. From the 
definition of Tk, we have 

{TkQk){s,a\a2) 

=    J2s,P(s'\s,a\a2)(rk(sy,a2) + ßnl(s')Qk(s')n2(s')) 

=    rh(8,a\aa) + Zt,P{S\s,a1
ta

a)ßxW)QW)**.W) 

By Theorem 3, 7r}(s')Q*(«>*(«') = «VX,»*), 
thus Qk =TkQk. Therefore the sequence 

Qk
+1{s,a1,a2) = 

(1 - at)Q
k(s,a\a2) + at[r\ + ß7rlQk(s')n2) (20) 

converges to TkQk = Qk. By Lemma 2, the sequence 
(18) converges to Qk. O 

5.4    Discussions 

First we want to point out the convergence result does 
not depend on the sequence of actions taken by either 
agent. The convergence result only requires that every 
action has been tried and every state has been visited. 
It does not require that agent 1 and agent 2 agree on 
the Nash equilibrium of each bimatrix Q-game during 
the learning. In fact, agent 1 can learn its optimal 
Q-value without any behavior assumption of agent 2, 
as long as agent 1 can observe agent 2's immediate 
rewards. 

Second, the convergence depends on certain restric- 
tions on the bimatrix games during learning. This is 
required because Nash equilibrium operator is usually 
not a contraction operator. However, we can probably 
relax the restriction by proving that a Nash equilib- 
rium operator is a non-expansion operator. Then by 
the theorem in Szepesväri and Littman [16], the con- 
vergence is guaranteed. 

6    Future work 

There are several issues we have not addressed in this 
paper. The first is the equilibrium selection problem. 

When there exist multiple Nash equilibria, learning 
one Nash equilibrium strategy does not guarantee the 
other agent will choose the same Nash equilibrium. 
Our future work is to combine empirical estimation of 
the other agent's strategy with reinforcement learning 
of the Nash equilibrium strategy. 

Another issue is related to the action choice during 
the learning. Even though the multiagent reinforce- 
ment learning method converges, it requires infinite 
trials. During the learning, an agent can choose a 
myopic action or other kinds of actions. If the agent 
chooses the action to maximize its current Q-value, its 
approach is called greedy approach. The drawback of 
this greedy approach is that the agent may be trapped 
in a local optimal. To avoid this problem, the agent 
should explore other possible actions. However, there 
is cost associated with exploration. By conducting ex- 
ploration, an agent gives up a better current reward. 
In our future work, we intend to design an algorithm 
that can handle exploration and exploitation tradeoff 
in stochastic games. 
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Abstract 

Coevolutionary learning, which involves the 
embedding of adaptive learning agents in 
a fitness environment that dynamically re- 
sponds to their progress, is a potential so- 
lution for many technological chicken and 
egg problems. However, several impediments 
have to be overcome in order for coevolution- 
ary learning to achieve continuous progress 
in the long term. This paper presents some 
of those problems and proposes a framework 
to address them. This presentation is illus- 
trated with a case study: the evolution of 
CA rules. Our application of coevolution- 
ary learning resulted in a very significant im- 
provement for that problem compared to the 
best known results. 

1    Introduction 

A recurrent issue in the field of machine learning is that 
the performance of a learning system relies heavily on 
the amount of knowledge that has been introduced by 
the designer. This knowledge can be expressed in the 
form of an appropriate representation, specific search 
operators, a training set which provides a good gradi- 
ent or a special utility function. The success of most 
learning systems actually results from all this engineer- 
ing effort. 

However, the goal of machine learning is a system that 
can improve itself by continuously capturing and ex- 
ploiting new knowledge. The framework which is pre- 
sented in this paper to achieve such a goal is based 
on a coevolutionary approach. An important factor in 
the performance of learning systems is the design of a 

training environment. Usually, this training environ- 
ment is fixed and constructed by the human designer. 
However, when little knowledge is available about the 
problem or if this knowledge is difficult to introduce 
in the training environment, learning can become in- 
tractable. The approach proposed in this paper to get 
round that problem consists of coevolving the train- 
ing environment with a population of learners. Start- 
ing with simple problems, the training environment 
gets more challenging as learners are improving them- 
selves. Hopefully, such a setup leads to continuous 
progress. For the rest of the paper, we define coevo- 
lutionary learning as a search procedure involving a 
population of learners coevolving with a population of 
problems such that continuous progress results from 
this interaction. 

In practice, the picture is not that simple. We will dis- 
cuss the different issues that are involved to achieve co- 
evolutionary learning by considering a particular prob- 
lem: the discovery of cellular automata rules to im- 
plement a classification task. This problem presents 
some interesting properties that provide us with a sim- 
ple framework to monitor the dynamics of the search 
resulting from different setups. Section 2 describes 
this problem. In section 3, an experimental analysis 
presents the different impediments to coevolutionary 
learning and a solution to address them is proposed in 
section 4. Experimental results for the classification 
problem are presented in section 5. 

2    Description of the Problem 

2.1    One-Dimensional Cellular Automata 

A one-dimensional cellular automaton (CA) is a linear 
wrap-around array composed of N cells in which each 
cell can take one out of k possible states.   A rule is 
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Figure 1: Three space-time diagrams describing the evolution of CA states: in the first two, the CA relaxes to 
the correct uniform pattern while in the third one it doesn't converge at all to a fixed point. 

Table 1: Performance of different published CA rules and a new best rule for the pc = 1/2 task. 

N 149 599 999 
Coevolution 0.863 +/- 0.001 0.822 +/- 0.001 0.804 +/- 0.001 

Deis rule 0.823 +/- 0.001 0.778 +/- 0.001 0.764 +/- 0.001 
ABK rule 0.824 +/- 0.001 0.764 +/- 0.001 0.730 +/- 0.001 
GKL rule 0.815 +/- 0.001 0.773 +/- 0.001 0.759 +/- 0.001 

defined for each cell in order to update its state. This 
rule determines the next state of a cell given its cur- 
rent state and the state of cells in a predefined neigh- 
borhood. For the model discussed in this paper, this 
neighborhood is composed of cells whose distance is at 
most r from the central cell. This operation is per- 
formed synchronously for all the cells in the CA. From 
now on, we will consider that the state of cells is bi- 
nary (k = 2), N = 149 and r = 3. This means that 
the size of the rule space is 22 "     =2 128 

Cellular automata have been studied widely as they 
represent one of the simplest systems in which complex 
emergent behaviors can be observed. This model is 
very attractive as a means to study complex systems 
in nature. Indeed, the evolution of such systems is 
ruled by simple, locally-interacting components which 
result in the emergence of global, coordinated activity. 

2.2    The Majority Function 

This is a density classification task, for which one 
wants the state of the cells of the CA to relax to all 
0's or all l's depending on the density of the initial 
configuration (IC) (whether it has more 0's or more 
l's), within a maximum of M time steps.   Following 

[Mitchell et al., 1994], pc denotes the threshold for the 
classification task (here, pc = 1/2), p denotes the den- 
sity of l's in a configuration and p0 denotes the density 
of l's in the initial configuration. Figure 1 presents 
three examples of the space-time evolution of a CA. 
One with p0 < pc on the left and another with po > Pc 
in the middle for which the CA relaxes to the cor- 
rect configuration. The third one shows an instance 
for which the CA doesn't relax to any the two desired 
convergence patterns. For each diagram, the initial 
configuration is at the top and the evolution in time 
of the state of the CA is represented downward. 

The task pc = 1/2 is known to be difficult. In par- 
ticular, it has been proven that no rule exists that 
results in the CA relaxing to the correct state for all 
possible ICs [Land k Belew, 1995]. Indeed, the den- 
sity is a global property of the initial configuration 
while individual cells of the CA have access to local 
information only. Discovering a rule that will dis- 
play the appropriate computation by the CA with the 
highest accuracy is a challenge, and the upper limit 
for this accuracy is still unknown. Table 1 describes 
the performance for that task for different published 
rules and different values of N, along with the perfor- 
mance of the new best rule that resulted from the work 
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presented in this paper. The Gacs-Kurdyumov-Levin 
(GKL) rule was designed in 1978 for a different goal 
than solving the pc = 1/2 task [Mitchell et al., 1994]. 
However, for a while it provided the best known per- 
formance. [Mitchell et al., 1994] and [Das et al., 1994] 
used Genetic Algorithms (GAs) to explore the space 
of rules. The main purpose of this work was to 
develop a particle-based methodology for the anal- 
ysis of the complex behaviors exhibited by CAs. 
The GKL and Das rules are human-written while 
the Andre-Bennett-Koza (ABK) rule has been dis- 
covered using the Genetic Programming paradigm 
[Andre et al., 1996]. More recently, [Paredis, 1997] de- 
scribes a coevolutionary approach to search the space 
of rules and shows the difficulty of coevolving consis- 
tently two populations towards continuous improve- 
ment. [Capcarrere et al, 1996] also reports that by 
changing the specification of the convergence pattern, 
a two-state, r = 1 CA exists that can perfectly solve 
the density problem in \N/2] time steps. 

For the pc = 1/2 task, it is believed that the best 
rules are in the domain of the rule space with density 
close to 0.5. An intuitive argument to support this 
hypothesis is presented in [Mitchell et al., 1993]. It is 
also believed that the most difficult ICs are those with 
density close to 0.5. 

3    Models for Coevolutionary Search 

The idea of using coevolution in search was introduced 
by [Hillis, 1992]. In coevolution, individuals are eval- 
uated with respect to other individuals instead of a 
fixed environment (or landscape). As a result, agents 
adapt in response to other agents' behavior. The par- 
ticular model of coevolution considered in this paper 
is based on two populations for which the fitness of 
individuals in each population is defined with respect 
to the members of the other population. Two cases 
can be considered in such a framework, depending on 
whether the two populations benefit from each other 
or whether they have different interests. Those two 
modes of interaction are called cooperative and com- 
petitive respectively. In the following sections, those 
modes of interaction are described experimentally us- 
ing the pc = 1/2 task in order to stress the different 
issues related to coevolutionary learning. 

For the experiments presented in this section, we used 
an implementation of Genetic Algorithms similar to 
the one described in [Mitchell et al., 1994]. Each rule 
is coded on a binary string of length 22*r+1 = 128. 
One-point crossover is used with a 2% bit mutation 

probability. The population size is UR = 200 for rules 
and nie = 200 for ICs. The population of ICs is com- 
posed of binary strings of length N = 149. The pop- 
ulation of rules and ICs are initialized according to 
a uniform distribution over [0.0,1.0] for the density. 
For all the experiments in this paper, the value of M 
(the maximum number of time steps) is set to 320 
and is kept unchanged. At each generation, the top 
95% of each population reproduces to the next gener- 
ation and the remaining 5% is the result of crossover 
between parents from the top 95% selected using a 
fitness proportionate rule. This small generation gap 
(the percentage of new individuals) has been used be- 
cause of the dynamic fitness landscape. Indeed, a large 
generation gap can result in a dramatic change in the 
composition of the population. As a consequence, be- 
cause of the relative definition of the fitness, a lot of 
variation in individuals' fitness can occur from one gen- 
eration to the other, making the identification of the 
most promising individuals very unreliable. 

3.1     Cooperation between Populations 

In this mode of interaction, improvement on one side 
results in positive feedback on the other side. As 
a result, there is a reinforcement of the relationship 
between the two populations. From a search point 
of view, this can be seen as an exploitative strategy. 
Agents are not encouraged to explore new areas of the 
search space but only to perform local search in order 
to further improve the strength of the relationship. In 
the cooperative model, a natural definition for the fit- 
ness of rules (resp. ICs) is the number of ICs (resp. 
rules) for which the CA relaxes to the correct state: 

nie 

f(Ri) =J2C0Vered(Ri'ICj) 
i=i 

■n-R 

f(ICj) = Ylcovered(Ri>ICi) 
t=i 

where covered{Ri,ICj) returns 1 if a CA using rule 
Ri and starting from initial configuration ICj relaxes 
to the correct state. Otherwise, it returns 0. 

Figure 2 presents the evolution of the density of rules 
and ICs for one run using this cooperative model. 
Without any surprise, the population of rules and ICs 
quickly converge to a domain of the search space where 
ICs are easy for rules and rules consistently solve ICs. 
As a result, there is little exploration of the search 
space. The convergence configuration depends on the 
initial populations, some other runs ended up with low 
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Figure 2: Coevolution of CA rules (left) and ICs (right) in a cooperative relationship. 

density rules and ICs. This experiment confirms that 
ICs with low or high density are the easiest to classify 
since a larger number of rules classify them correctly. 

3.2     Competition between Populations 

In this mode of interaction, the two populations are in 
conflict. Improvement on one side results in negative 
feedback for the other population. The fitness of rules 
and ICs defined in the cooperative case can be modified 
as follows to implement the competitive model: 

/(J?i) = Y^covered(Rx,IC3) 

f(ICj) = J^coverediRiJC-j) 

where covered(Ri,ICj) returns the inverse of the orig- 
inal function. Here, the goal of rules is to defeat (i.e. 
cover) ICs, while the goal of ICs is to defeat rules by 
discovering initial configurations that are difficult to 
classify. Figure 3 describes a run using this definition 
of the fitness. Two kind of behaviors can be observed 
in this experiment. In a first stage, the two popula- 
tions exhibit a cyclic behavior. It is a consequence 
of the Red Queen effect [Cliff & Miller, 1995]: fitness 
landscapes are changing as a result of agents of each 
population adapting in response to the evolution of 
members of the other population. The evaluation of 
individuals' performance in this changing environment 
makes continuous progress difficult. A typical conse- 
quence is that agents have to learn again what they 
already knew in the past. In the context of evolu- 
tionary search, this means that domains of the state 

space that have already been explored in the past are 
searched again. Then, a stable state is reached: in 
this case, the population of rules adapts faster than 
the population of ICs, resulting in a population focus- 
ing only on rules with high density and eliminating 
all instances of low density rules (a finite population 
is considered). Then, low density ICs exploit those 
rules and overcome the entire population. A similar 
experiment is described in [Paredis, 1997], 

3.3     Resource Sharing and Mediocre Stable 
States 

Several techniques have been designed to improve 
evolutionary search. Usually they maintain diver- 
sity in the population in order to avoid premature 
convergence. [Mahfoud, 1995] presents different nich- 
ing techniques that achieve this goal. Resource 
sharing, first introduced in [Rosin & Belew, 1995], is 
a technique that we successfully used in the past 
[Juille & Pollack, 199C]. Resource sharing implements 
a coverage-based heuristic by giving a higher payoff 
to problems that few individuals can solve. Resource 
sharing can be introduced in the competitive model of 
coevolution as follows: 

UK) 
nie 

vcightJCj x covrrrd(R{, ICj) 

i/here: 

iccightJCj 
E'^covcrcdiR.JCj) 
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Figure 3: Coevolution of CA rules (left) and ICs (right) in a competitive relationship. 

and 

f(ICj) = yj weight-Ri x covered(Ri,ICj) 

where: 

weight-Ri = 
Y,k=iCooered(Ri,ICk) 

In this definition, the weight of an IC corresponds to 
the payoff it returns if a rule covers it. If few rules cover 
an IC, this weight will be much larger than if a lot of 
rules cover that same IC. The definition for the weight 
of rules has the same purpose. This framework allows 
the presence of multiple niches (or species) in popula- 
tions. Figure 4 describes one run for this definition of 
the fitness. The cyclic behavior which was observed in 
the previous section doesn't occur anymore. Instead, 
two species coexist in the population of rules: a species 
for low density rules and another one for high density 
rules. Those two species drive the evolution of ICs 
towards the domain of initial configurations that are 
most difficult to classify (i.e., po = 1/2). However, the 
two populations have entered a mediocre stable state. 
This means that multiple average performance niches 
coexist in both populations in a stable manner. Put in 
another way, this can be seen as an equilibrium config- 
uration in which a number of suboptimal species have 
found a way to collude by sharing the total credit be- 
tween themselves. Usually, this is a consequence of 
some singularities inherent in the problem definition 
and/or the search procedure. In our example, ICs are 
concentrated around the p0 = 1/2 threshold and they 
can be divided into two groups: those with density 
po < 1/2 and those with density po > 1/2. This dis- 
tribution means that ICs can be exploited consistently 

by rules with low and high density that both occur in 
the second population (because a CA implementing 
a low (resp. high) density rule usually relaxes to all 
O's (resp. all l's) for most ICs). However, this is a 
mediocre stable state in the sense that evolved rules 
have poor performance with respect to the pc = 1/2 
task and there is no pressure towards improvement. 
The concept of mediocre stable states is also discussed 
in [Pollacket al, 1996]. 

3.4    Discussion 

We have described different models for the coevolu- 
tion of two populations. Some of the fundamental im- 
pediments to coevolutionary learning have been iden- 
tified along with some of the reasons why continuous 
progress is difficult to achieve. It is now clear that none 
of these approaches can address successfully the prob- 
lem of coevolutionary learning alone. All the rules dis- 
covered in those experiments perform poorly since they 
never approach the 50% density. The following section 
proposes a framework to get around those problems. 

Each of the canonical models discussed so far imple- 
ments a single specific strategy. In the literature, there 
has been some successful applications for both the co- 
operative and the competitive approaches. However, 
those works usually introduce some mechanisms to ad- 
dress the problems specific to each model. For in- 
stance, a noisy evaluation of the fitness can force ex- 
ploration in a cooperative model, and an evaluation 
of individuals with respect to a set of opponents ex- 
tracted from previous generations can limit the cyclic 
behavior observed in competitive models (e.g., see 
the life-time fitness evaluation technique described in 
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Figure 4: Coevolution of CA rules (left) and ICs (right) in a competitive relationship with resource sharing. 

[Paredis, 1996] or the "hall of fame" method presented 
in [Rosin, 1997]). However, those mechanisms usu- 
ally fail to address entirely the fundamental issues dis- 
cussed previously. 

4    Coevolving the "Ideal" Trainer 

4.1    Presentation of our Approach 

From the analysis of the experiments presented in sec- 
tion 3 at least two reasons seem to prevent continu- 
ous progress in coevolutionary search. The first one is 
that the training environment provided by the popu- 
lation of ICs returns little information to the popula- 
tion of evolving rules because a stable configuration is 
reached in which the credit is distributed according to 
a fixed pattern (e.g., all the ICs are covered by rules). 
The second reason is that the dynamics of the search 
performed by the two coevolving populations doesn't 
drive individuals to the domain of the state space that 
contains most promising solutions because there is no 
"high-level" strategy to play that role. This is a con- 
sequence of the Red Queen effect. 

Our approach proposes a coevolutionary framework in 
which those two issues are addressed as follows: 

• the training environment provides at any time a 
gradient for search by proposing a variety of prob- 
lems covering a range of difficulty. Indeed, if prob- 
lems are too difficult, nobody can solve them. On 
the contrary, if they are too easy, everybody can 
solve them. In both cases, those problems are use- 
less for learning since they provide little feedback. 

by preventing the negative effects associated with 
the Red Queen. 

The central idea of this coevolutionary learning ap- 
proach consists in exposing learners to problems that 
are just beyond those they know how to solve. By 
maintaining this constant pressure towards slightly 
more difficult problems, a arms race among learners is 
induced such that learners that adapt better have an 
evolutionary advantage. The underlying heuristic im- 
plemented by this arms race is that adaptability is the 
driving force for improvement. The difficulty resides in 
the accurate implementation of the concepts presented 
above in a search algorithm. So far, our methodology 
to implement such a system consists in the construc- 
tion of an explicit topology over the space of problems 
by defining a partial order with respect to the relative 
difficulty of problems among each other. In our cur- 
rent work, the concept of "relative difficulty" has been 
defined by exploiting some a priori knowledge about 
the task. The definition of this topology over the space 
of problems makes possible the implementation of the 
two goals required in our coevolutionary learning ap- 
proach. Indeed, since learners are evaluated against a 
known range of difficulty for problems, it is possible to 
monitor their progress and to expose them to problems 
that are just "a little more difficult"'. In our work, this 
last concept has been formalized by defining empiri- 
cally a distance measure. In this framework, learners 
are always exposed to a gradient for search and it is 
possible to control the evolution of the training envi- 
ronment towards more difficult problems in order to 
ensure continuous progress. 

a "high-level" strategy allows continuous progress       In the future, our goal is to eliminate some of those ex- 
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plicit components by introducing some heuristics that 
automatically identify problems that are appropriate 
for the current set of learners. The work of Rosin 
[Rosin, 1997] already describes some methods to ad- 
dress this issue. 

4.2    Discussion 

As stated previously, the coevolutionary learning 
framework introduces a pressure towards adaptabil- 
ity. The central assumption is that individuals that 
adapt faster than others in order to solve the new chal- 
lenges they are exposed to are also more likely to solve 
even more difficult problems. The main difficulty is 
to setup a coevolutionary framework that implements 
this heuristic accurately and efficiently. 

The new contribution of this work is the idea of main- 
taining a gradient for search as one of the underlying 
heuristics. In the literature, different approaches have 
been proposed to address the issues associated with the 
Red Queen effect [Paredis, 1996, Rosin, 1997]. How- 
ever, to our knowledge, explicit methods to force 
progress and to prevent mediocre stable states in the 
context of evolutionary search have never been tried. 

The idea of introducing a pressure towards adapt- 
ability as the central heuristic for search is not new. 
Schmidhuber [Schmidhuber, 1995] proposed the Incre- 
mental Self-Improvement system in which adaptabil- 
ity is the measure that is optimized. The concept 
of an ideal trainer is also discussed in [Epstein, 1994] 
in the context of game learning. However, this work 
addresses the issue of designing the "ideal" training 
procedure which would result in high quality players 
rather than coevolving the training environment in re- 
sponse to the progress of learners. 

5    Application to the Discovery of CA 
Rules 

5.1     Experimental Setup 

The approach described in the previous section is ap- 
plied to the pc = 1/2 task. It is believed that ICs 
become more and more difficult to classify correctly as 
their density gets closer to the pc threshold. Therefore, 
our idea is to construct a framework that adapts the 
distribution of the density for the population of ICs 
as CA-rules are getting better to solve the task. The 
following definition for the fitness of rules and ICs has 

been used to achieve this goal. 

f(Ri) = 2_, weightJCj x covered(Ri,ICj) 
3 = 1 

where: 
1 

weight JCj = 3 v-ins J2k=i covered(Rk,ICj 

and 

f(ICj)    =   Y^weightJi'ixE(Ri,p(ICj)) 
t=i 

covered(Ri, ICj) 

where: 

weiaht-R': =  ======= 
Efcici E(Ri, p{ICk)) x covered(Ri, ICk) 

This definition implements the competitive relation- 
ship with resource sharing. However, a new compo- 
nent, namely E(Ri,p(ICj)), has been added in the 
definition of the ICs' fitness. The purpose of this new 
component is to penalize ICs with density p{ICj) if 
little information is collected with respect to the rule 
Ri. Indeed, we consider that if a rule R{ has a 50% 
classification accuracy over ICs with density p{ICj) 
then this is equivalent to random guessing and no pay- 
off should be returned to ICj. On the contrary, if 
the performance of Ri is significantly better or worse 
than the 50% threshold for a given density of ICs this 
means that Ri captured some relevant properties to 
deal with those ICs. Once again, the idea is that the 
training environment should be composed of ICs that 
provide useful information to identify good rules from 
poor ones. In order to allow continuous progress, our 
implementation exploits an intrinsic property of the 
pc = 1/2 task. Indeed, it seems that CA-rules that 
cover ICs with density p0 < 1/2 (resp. p0 > 1/2) with 
high performance will also be very successful over ICs 
with density p'0 < p0 (resp. p'0 > po). Therefore, as 
ICs become more difficult, their density is approach- 
ing p0 = 1/2 but rules don't have to be tested against 
easier ICs. Following this idea, we defined E() as the 
complement of the entropy of the outcome between a 
rule and ICs with a given density: 

E(Ri,p(ICj))=log(2)+plog(p)+q\og(q) 

where: p is the probability that an IC with density 
p(ICj) defeats the rule Ri and q = 1 - p. E() imple- 
ments the distance measure discussed in section 4.1. 
Its purpose is to maintain the balance between the 
search for more difficult ICs and ICs that can be solved 
by rules. In practice, the entropy is evaluated by per- 
forming some statistics over the population of ICs. 
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Table 2: Description of the current host rule and published rules for the [>,. = 1/2 task. 

Cocvolution 00010100 
00010100 

01011111 
01011111 

01000000 
00000011 

oooonooo 
00001111 

00010111 
00010111 

11111100 
11111111 

00000010 
11111111 

00010111 
110101 II 

Das rule 00000111 
00001111 

00000000 
00000000 

00000111 
00000111 

11111111 
11111111 

00001111 
00001111 

00000000 
00110001 

00001 1 1 1 
0000111 I 

inn 111 
inn i n 

ABK rule 00000101  00000000  01010101  00000101  00000101  00000000  01010101  00000101 
01010101  11111111  01010101  11111111  01010101  11111111  01010101  llllllll 

GKL rule 00000000 
00000000 

0101 
0101 

mi 
1111 

00000000 
llllllll 

01011111 
01011111 

00000000 
00000000 

0101 1111 
01011111 

00000000 
llllllll 

0101 111 I 
0101 I I 11 

5.2     Experimental Results 

Experiments were performed with different sizes for 
the population of rules and ICs. The best rule whose 
performance is reported in table 1 resulted from the 
experiments that used the largest population size. In 
those experiments, 6 runs were performed for 5, 000 
generations, using a size of 1,000 for the two pop- 
ulations. Each rule is coded on a binary string of 
length 22*r+1 = 128. One-point crossover is used with 
a 2% bit mutation probability. The population of rules 
is initialized according to a uniform distribution over 
[0.0,1.0] for the density. Each individual in the popu- 
lation of ICs represents a density p0 G [0.0.1.0]. This 
population is also initialized according to a uniform 
distribution over p0 e [0.0,1.0]. At each generation. 
each member generates a new instance for an initial 
configuration with respect to the density it represents. 
All rules are evaluated against this new set of ICs. The 
generation gap is 5% for the population of ICs (i.e.. the 
top 95% ICs reproduce to the next generation). There 
is no crossover nor mutation. The new 5% ICs are 
the result of a random sampling over p() € [0.0.1.0] 
according to a uniform probability distribution. The 
generation gap is 80% for the population of rules. New 
rules are created by crossover and mutation. Parents 
are randomly selected from the top 20%. All runs 
consistently evolved some rules that score above 82%. 
Table 2 describes lookup tables for the current best 
CA rule and other rules discussed in the literature. 
The leftmost bit corresponds to the result of the rule 
on input 0000000, the second bit corresponds to in- 
put 0000001, ... and the rightmost bit corresponds to 
input 1111111. 

Figure 5 describes the evolution of the density of rules 
and ICs for one run. As rules improve, their density 
gets closer to 1/2 and the density of ICs is distributed 
on two peaks on each side of pc = 1/2. In that par- 
ticular run, it is only after 1,300 generations that a 
significant improvement is observed for rules and that, 
in response, the population of ICs adapts dramatically 

in order to propose more challenging initial configura- 
tions. This shows that our strategy to eoovolve the 
training environment and tin» learners has been suc- 
cessfully implemented in the definition of the fitness 
functions. 

6    Conclusion 

This paper presents a new framework based on the 
concept of cocvohitionary learniny. This approach coc- 
volves the training environment with respect to a pop- 
ulation of learners such that learners are always ex- 
posed to a gradient for search, and evolution of prob- 
lems towards increasing difficulty is maintained. The 
work presented in this paper addresses those issues 
by defining a topology over the space of problems. 
Then, a procedure is implemented such that the train- 
ing environment automatically adapts in response to 
the progress of learners by proposing more challenging 
problems. We applied this framework to the prob- 
lem of evolving CA rules for a classification task. Our 
experiments resulted in a new rule whose performance 
improves very significantly over previously known rules 
for that particular task. 
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Abstract 

We present new algorithms for reinforce- 
ment learning, and prove that they have 
polynomial bounds on the resources required 
to achieve near-optimal return in general 
Markov decision processes. After observing 
that the number of actions required to ap- 
proach the optimal return is lower bounded 
by the mixing time T of the optimal policy 
(in the undiscounted rase) or by the horizon 
time T (in the discounted rase), we then give 
algorithms requiring a number of actions and 
total computation time that are only poly- 
nomial in T and the number of states, for 
both the undiscounted and discounted cases. 
An interesting aspect of our algorithms is 
their explicit handling of the Exploration- 
Exploitation trade-off. 

1     Introduction 

In reinforcement learning, an agent interacts with an 
unknown environment, and attempts to choose actions 
that maximize its cumulative payoff (Sutton c.V Barto. 
1998; Barto et al., 1990, Bertsekas fc Tsitsiklis. 199G). 
The environment is typically modeled as a Markov de- 
cision process (MDP), and it is assumed that the agent 
does not know the parameters of this process, but has 
to learn how to act directly from experience. Thus, 
the reinforcement learning agent faces a fundamental 
trade-off between exploitation and exploration (Thrun. 
1992; Sutton & Barto, 1998): should the agent exploit 
its cumulative experience so far, by executing the ac- 
tion that currently seems best, or should it execute a 
different action, with the hope1 of gaining information 
or experience that could lead to higher future payoffs? 

Too little exploration can prevent the agent from ever 
converging to the optimal behavior, while too much 
exploration can prevent the agent from gaining near- 
optimal payoff in a timely fashion. 

There is a large literature on reinforcement learning, 
which has been growing rapidly in the last decade. To 
the best of our knowledge, all previous results on rein- 
forcement learning in genera! MDP's are asymptotic in 
nature, providing no explicit guarantees on either the 
number of actions or the computation time the agent 
requires to achieve near-optimal performance (Sutton. 
1988; Watkins ,v- Dayan. 1992; Jaakkola et al.. 1991; 
Tsitsiklis. 1991: Cullapalli ^ Barto. 1991). On the 
other hand, finite-time results become available if one 
considers restricted classes of MDP's. if the model of 
learning is modified from the standard one, or if one 
changes the criteria for success (Saul >v- Singh. 1990: 
Fiechter. 1991: Fiechter. 1997: Schapire \- Warmuth. 
1991: Singh cV- Dayan. in press). Fiechter (1991.1997), 
whose results are closest in spirit to ours, considers 
only the discounted case, and makes the learning pro- 
tocol easier by assuming the availability of a "reset" 
button that allows tin- agent to return to a fixed set of 
start states at any time. 

Thus, despite the many interesting previous results in 
reinforcement learning, the literature has lacked algo- 
rithms for learning optimal behavior in general MDP's 
with provably finite bounds on the resources (actions 
and computation time) required, under the standard 
model of learning in which the agent wanders contin- 
uously in the unknown environment. The results pre- 
sented in this paper fill this void in what is essentially 
the strongest possible sense. 

We present new algorithms for reinforcement learn- 
ing, and prove that they have poli/nomial bounds on 
the resources required to achieve near-optimal payoff 
in general MDP's.  The bounds are polynomial in the 
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number of states, and also in the mixing time of the op- 
timal policy (undiscounted case), or the horizon time 
1/(1 — 7) (discounted case). One of the contributions 
of this work is in simply identifying the fact that finite- 
time convergence results must depend on these param- 
eters of the underlying MDP. An interesting aspect of 
our algorithms is their rather explicit handling of the 
exploration-exploitation trade-off. 

For lack of space, here we present only our re- 
sults for the more difficult undiscounted case. The 
analogous results for the discounted case are cov- 
ered in a forthcoming longer paper; interested read- 
ers can retrieve the latest version from the web page 
http://www.research.att.com/~mkearns. 

2    Preliminaries and Definitions 

We begin with the basic definitions for MDP's. 

Definition 1 A Markov decision process (MDP) 
M on states 1,...,N and with actions a,i,...,a,k, 
consists of: 
Transition probabilities P^iij) > 0, which for any 
action a, and any states i and j, specify the probability 
of reaching state j after executing action a from state 
i in M. Thus, V ■P^(ij) = 1 for any state i and ac- 
tion a. 
Payoff distributions, for each state i, with mean 
R\f(i) (where Rmax > -RM(*) > 0), and variance 
VarM(i) < Varmax. These distributions determine the 
random payoff received when state i is visited. 

For simplicity, we will assume that the number of ac- 
tions A; is a constant; it will be easily verified that if k is 
a parameter, the resources required by our algorithms 
scale polynomially with k. 

Several comments regarding some benign technical as- 
sumptions that we will make on payoffs are in order 
here. First, it is common to assume that payoffs are 
actually associated with state-action pairs, rather than 
with states alone. Our choice of the latter is entirely 
for technical simplicity, and all of the results of this 
paper hold for the standard state-action payoffs model 
as well. Second, we have assumed fixed upper bounds 
Rmax and Varmax on the means and variances of the 
payoff distributions; such a restriction is necessary for 
finite-time convergence results. Third, we have as- 
sumed that expected payoffs are always non-negative 
for convenience, but this is easily removed by adding 
the minimum expected payoff to every payoff. 

If M is an MDP over states l,...,iV and with ac- 
tions ai,...,a,k, a policy in M is a mapping ir : 
{1,...,N} ->■ {ai,...,~fc}. An MDP M, combined 
with a policy n, yields a standard Markov process on 
the states, and we will say that 7r is ergodic if the 
Markov process resulting from -K is ergodic (that is, 
has a well-defined stationary distribution). For the 
development and exposition, it will be easiest to con- 
sider MDP's for which every policy is ergodic, the so- 
called unichain MDP's (Puterman, 1994). Consider- 
ing the unichain case simply allows us to discuss the 
stationary distribution of any policy without cumber- 
some technical details, and as it turns out, the result 
for unichains already forces the main technical ideas 
upon us. Also, note that the unichain assumption does 
not imply that every policy will eventually visit every 
state, or even that there exists a single policy that 
will do so quickly; thus, the exploration-exploitation 
dilemma remains with us strongly. We discuss the ex- 
tension to the multichain case in the longer version of 
this paper. 

If M is an MDP, then a T-path in M is a se- 
quence p of T + 1 states (that is, T transitions) of 
M: p = «i,«2j • ■ • ,iT,ir+i- The probability that p is 
traversed in M upon starting in state i\ and executing 
policy 7T is Pr^[p] = UT=1P^ik\ikik+1). The (ex- 
pected) undiscounted return along p in M is UM(P) — 
(\/T){Ri1 + ■ ■ ■ + RiT) and the T-step undiscounted 
return from state i is U^(i,T) = Z)PP~M[P]£/M(P), 
where the sum is over all T-paths p in M that start 
at i. We define U%[(i) = limT-voo ^M(*>

T
)- 

Since 

we are in the unichain case, U^ii) is independent 
of i, and we will simply write Ufa. Furthermore, 
we define the optimal T-step undiscounted return 
from i in M by U*M{i,T) = max,{U]^(i,T)}. Also, 
Uli(i) = limr^oo U^f(i,T). Finally, we observe that 
the maximum possible T-step return is Rmax- 

3    Mixing Times for Policies 

It is easy to see that if we are seeking results about the 
undiscounted return of a learning algorithm after a fi- 
nite number of steps, we need to take into account 
some notion of the mixing times of policies in the 
MDP. To put it simply, for finite-time results, there 
may no longer be an unambiguous notion of "the" 
optimal policy. There may be some policies which 
will eventually yield high return (for instance, by fi- 
nally reaching some remote, high-payoff state), but 
take many steps to approach this high return, and 
other policies which yield lower asymptotic return but 
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1- A 

Figure 1: A simple Markov process demonstrating that 
finite-time convergence results must account for mix- 
ing times. 

higher short-term return. Such policies are simply in- 
comparable, and the best we could hope for is an al- 
gorithm that "competes" favorably with any policy, in 
an amount of time that is comparable to the mixing 
time of that policy. 

Definition 2 Let M be an MDP, and let TT be an er- 
godic policy in M. Then the e-return mixing time 
of IT is the smallest T such that for all T' > T, 
\Vh(i,T') ~ Uh\ < e for alii1. 

Suppose we are simply told that there is a policy ix 
whose asymptotic return £/Af exceeds R in an un- 
known MDP M, and that the e-return mixing time 
of 7T is T. In principle, a sufficiently clever learning 
algorithm (for instance, one that managed to discover 
7T "quickly") could achieve return close to U^4 - e in 
not much more than T steps. Conversely, without fur- 
ther assumptions on M or IT, it is not reasonable to 
expect any learning algorithm to approach return U%f 

in many fewer than T steps. This is simply because 
it may take the assumed policy IT itself on the order 
of T steps to approach its asymptotic return. For ex- 
ample, suppose that M has just two states and only 
one action (see Figure 1): state 0 with payoff 0, self- 
loop probability 1 - A, and probability A of going to 
state 1; and absorbing state 1 with payoff R » 0. 
Then for small e and A, the e-return mixing time is on 
the order of 1/A; but starting from state 0, it really 
will require on the order of 1/A steps to reach the ab- 
sorbing state 1 and start approaching the asymptotic 
return R. (A more formal lower bound along the lines 
of this argument will be given in the long version.) 

'in the long version, we relate the notion of e-return 
mixing time to the standard notion of mixing time to sta- 
tionary distributions (Puterman, 1994). The important 
point here is that the e-return mixing time is polynomially 
bounded by the standard mixing time, but may in some 
cases be substantially smaller. 

Thus, we would like a learning algorithm such that for 
any T, in a number of actions that is polynomial in 
T, the return of the learning algorithm is close to that 
achieved by the best policy among those that, mix in 
time T. This motivates the following definition. 

Definition 3 Let M be a Markov decision process. 
We define IIA/ to be the class of all ergodic policies 

■K in M whose e-return mixing time is at most T. We 
let opt(U^j() denote the optimal expected asymptotic 

undiscounted return among all policies in IIAj . 

Our goal in the undiscounted case will be to compete 
with the policies in Il^f in time that is polynomial 
in T, 1/e and N. We will eventually give an algo- 
rithm that meets this goal for every T and e simulta- 
neously. An interesting special case is when T — T*, 
where T* is the e-mixing time of the asymptotically 
optimal policy, whose asymptotic return is U*. Then 
in time polynomial in T*, 1/e and N, our algorithm 
will achieve return exceeding U* - e with high proba- 
bility. It should be clear that, modulo the degree of the 
polynomial running time, such a result is the best that 
one could hope for in general MDP's. We briefly note 
that in the case of discounted reward, we can still hope 
to compete with the asymptotically optimal policy in 
time polynomial in the horizon time; this is discussed 
and achieved in the long version. 

4    Main Theorem 

We are now ready to describe our learning algorithm, 
and to state and prove our main theorem: namely, that 
the new algorithm will, for a general MDP, achieve 
near-optimal undiscounted performance in polynomial 
time. For ease of exposition only, we will first state 
the theorem under the assumption that the learning al- 
gorithm is given as input a "targeted" mixing time T, 
and the value opt(U^'/) of the optimal return achieved 
by any policy mixing within T steps. These assump- 
tions are entirely removed in Section 4.6. 

Theorem 1 (Main Theorem) Let M be a Markov de- 
cision process over N states. Recall that. IIA/ is the 
class of all ergodic policies whose e-return rnixing time 
is bounded by T, and that opt(U^f) is the optimal 
asymptotic expected undiscounted return achievable in 
Yl\f. There exists an algorithm A, taking inputs 
e,S,N,T and opt(U^'r

c), such that if the total number 
of actions and computation time taken by A exceeds 
a pohjnomial in l/e,l/5,N, T, and 7?mnT, then with 
probability at least 1—6, the. total undiscounted return 
of A will exceed opt^Tl^) — e. 
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In the long version, we give a similar theorem for the 
discounted case (via a similar algorithm), with the 
horizon time playing the role of T. The criterion for 
success needs to be altered, however, since in the dis- 
counted case it is not possible to insist that the actual 
return achieved by the learning algorithm approach 
the optimal. This is due to the exponentially damped 
contribution of successive payoffs. Intuitively, in the 
discounted case it is not possible for a learning algo- 
rithm to recover from its "youthful mistakes" as it can 
in the undiscounted case, so we must settle for an al- 
gorithm that simply finds a near-optimal policy from 
its current state after a short learning period. 

The remainder of this section is divided into several 
subsections, each describing a different and central as- 
pect of the algorithm and proof. The full proof of the 
theorem is rather technical, but the underlying ideas 
are quite intuitive, and we sketch them first as an out- 
line. 

4.1    Overview of the Proof and Algorithm 

Our algorithm will be what is commonly referred to 
as indirect or model-based: namely, rather than only 
maintaining a current policy or value function, the al- 
gorithm will actually maintain a model for the tran- 
sition probabilities and the expected payoffs for some 
subset of the states of the unknown MDP M. It is 
important to emphasize that although the algorithm 
maintains a partial model of M, it may choose to never 
build a complete model of M, if doing so is not neces- 
sary to achieve high return. 

It is easiest to imagine the algorithm as starting off 
by doing what we will call balanced wandering. By 
this we mean that the algorithm, upon arriving in a 
state it has never visited before, takes an arbitrary 
action from that state; but upon reaching a state it 
has visited before, it takes the action it has tried the 
fewest times from that state (breaking ties between ac- 
tions randomly). At each state it visits, the algorithm 
maintains the obvious statistics: the average payoff 
received at that state so far, and for each action, the 
empirical distribution of next states reached (that is, 
the estimated transition probabilities). 

A crucial notion for both the algorithm and the anal- 
ysis is that of a known state. Intuitively, this is a 
state that the algorithm has visited "so many" times 
(and therefore, due to the balanced wandering, has 
tried each action from that state many times) that the 
transition probability and expected payoff estimates 
for that state are "very close" to their true values in 

M. An important aspect of this definition is that it is 
weak enough that "so many" times is still polynomially 
bounded, yet strong enough to meet the simulation re- 
quirements we will outline shortly. 

States are thus divided into three categories: known 
states, states that have been visited before, but are still 
unknown (due to an insufficient number of visits and 
therefore unreliable statistics), and states that have 
not even been visited once. An important observation 
is that we cannot do balanced wandering indefinitely 
before at least one state becomes known: by the Pi- 
geonhole Principle, we will soon start to accumulate 
accurate statistics at some state. 

Perhaps our most important definition is that of the 
known-state MDP. If S is the set of currently known 
states, the current known-state MDP is simply an 
MDP Ms that is naturally induced on 5 by the full 
MDP M; briefly, all transitions in M between states 
in S are preserved in Ms, while all other transitions 
in M are "redirected" in Ms to lead to a single ad- 
ditional, absorbing state that intuitively represents all 
of the unknown and unvisited states. 

Although the learning algorithm will not have direct 
access to Ms, by virtue of the definitionof the known 
states, it will have an approximation Ms- The first 
of two central technical lemmas that we prove (Sec- 
tion 4.2) shows that, under the appropriate definition 
of known state, Ms will have good simulation accu- 
racy: that is, the expected T-step return of any policy 
in Ms is close to its expected T-step return in Ms- 
(Here T is the mixing time.) Thus, at any time, Ms 
is a partial model of M, for that part of M that the 
algorithm "knows" very well. 

The second central technical lemma (Section 4.3) is 
perhaps the most enlightening part of the analysis, 
and is named the "Explore or Exploit" Lemma. It 
formalizes a rather appealing intuition: either the opti- 
mal (T-step) policy achieves its high return by staying, 
with high probability, in the set S of currently known 
states — which, most importantly, the algorithm can 
detect and replicate by finding ajiigh-return exploita- 
tion policy in the partial model Ms — or the optimal 
policy has significant probability of leaving S within 
T steps — which again the algorithm can detect and 
replicate by finding an exploration policy that quickly 
reaches the additional absorbing state of the partial 
model Ms- 

Thus, by performing two off-line, polynomial-time 
computations on Ms (Section 4.4), the algorithm is 
guaranteed to either find a way to get near-optimal 
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return in M quickly, or to find a way to improve the 
statistics at an unknown or unvisited state. Again by 
the Pigeonhole Principle, the latter case cannot occur 
too many times before a new state becomes known, 
and thus the algorithm is always making progress. In 
the worst case, the algorithm will build a model of the 
entire MDP M, but if that does happen, the analysis 
guarantees that it will happen in polynomial time. 

The following subsections flesh out the intuitions 
sketched above, providing a detailed sketch of the 
proof of Theorem 1; the full proofs are provided in 
the long version. In Section 4.6, we discuss how to 
remove the assumed knowledge of the optimal return 
and the targeted mixing time. 

4.2    The Simulation Lemma 

In this section, we prove the first of two key techni- 
cal lemmas mentioned in Jbe sketch of Section 4.1: 
namely, that if one MDP M is a sufficiently accurate 
approximation of another MDP M, then we can actu- 
ally approximate the T-step return of anyjsolicy in M 
quite accurately by its T-step return in M. The im- 
portant technical point is that the goodness of approx- 
imation required depends only polynomially on 1/T, 
and thus the definition of known state will require only 
a polynomial number of visits to the state. Eventually, 
we will appeal to this lemma to show that we can ac- 
curately assess the return of policies in the induced 
known-state MDP Ms by computing their return in 
the algorithm's approximation Ms (that is, we will 
appeal to Lemma 2 below using the settings M = Ms 
and M = Ms). 

We begin with the definition of approximation we re- 
quire. 

Definition 4 Let M and M be Markov decision pro- 
cesses over the same state space. Then we say that. 
M is an a-approximation of M if for any state i, 
-RM(0 — Q < R^j{i) < Rm{i) + ct, and for any states 
i and j, and any action a, P^f(ij) - a < P~(ij) < 

Pa
M{iJ) + <*- 

Ar 

any policy TT and for any state i, 

UUhT) - e < U*~(i,T) < Uh(i,T) + e.      (1) 

Proof:(Sketch) Let M be an a-approximation of M, 
and let us fix a policy ■n and a start state i. Let us 
say that a transition from a state i' to a state j' un- 
der action a is /3-small in M if Pjlf(i'j') < ß. It 
is possible to bound the difference between U%t(i,T) 
and U~(i,T) contributed by those T-paths that cross 

at least one /J-small transition by (a + 2ß)NTRmax 

(details omitted). For the value of a stated in the 
theorem, our analysis chooses a value of ß that yields 
(a + 2ß)NTRmax < e/4. 

Thus, for now we restrict our attention to the walks of 
length T that do not cross any /3-small transtion of M. 
It can be shown that for any T-path p that, under n, 
does not cross any /?-small transitions of M, we have 

(1 - A)TPrlf\p] < Pr^lp] < (1 + A)TPr'M]p]    (2) 

where A = a/ß. The approximation error in the pay- 
offs yields 

UM(P) -a< Ur-Jp) < UM{p) + a. (3) 

We now state and prove the Simulation Lemma, which 
says that provided M is sufficiently close to M in the 
sense just defined, the T-step return of policies in M 
and M will be similar. 

Lemma 2 (Simulation Lemma) Let M be any 

Markov decision process over N states. Let M be 
an 0((e/(NTRmax))

2)-approximation of M. Then for      Ti1^1 is well approximated by its T-step return in M. 

Since these inequalities hold for any fixed T-path that 
does not traverse any /3-small transitions in M under 
7T, they also hold when we take expectations over the 
distributions on such T-paths in M and M induced by 
IT. Thus, 

(l-A)T[c/^(i,T)-a]-e/4    <    Uf^T) 

<(l + A)TK,(i,T) + a] + e/4 

where the additive e/4 terms account for the contribu- 
tions of the T-paths that traverse /?-small transitions 
under 7r, as bounded above. The desired constraint 
that the outermost quantities in this chain of inequal- 
ities be separated by an additive factor of at most 2e 
determines choices for A and a that yield the theorem 
(details omitted). D 

What role does T play in the Simulation Lemma? As 
we make T larger, M must be a better approximation 
of M in order to satisfy the conditions of the Sim- 
ulation Lemma — but Üien we are guaranteed of the 
simulation accuracy of M for a larger number of steps. 
If we wish to "compete" with the policies in n^f , then 
by appealing to the Simulation Lemma using T, we en- 
sure that the asymptotic return in M of any policy in 
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Thus, the Simulation Lemma essentially determines 
what the definition of known state should be: one that 
has been visited enough times to ensure (with high 
probability) that the estimated transition probabilities 
and the estimated payoffs for the state are all within 
0{(e/(NTRmax))

2) of their true values. A straight- 
forward application of Chernoff bounds shows that the 
desired approximation will be achieved for those states 
from which every action has been executed at least 

mknown = 0(((NTRmax)/e)4 Varmax log(l/<5))    (4) 

times, where Varmax = max(l, max* [VarM (01) is tne 

maximum of 1 and the maximum variance of the ran- 
dom payoffs over all states. 

4.3    The "Explore or Exploit" Lemma 

The Simulation Lemma indicates the degree of ap- 
proximation required for sufficient simulation accu- 
racy, and led to the definition of a known state. If we 
let S denote the set of known states, we now specify 
the straightforward way in which these known states 
define an induced MDP. This induced MDP has an ad- 
ditional "new" state, which intuitively represents all of 
the unknown states and transitions. 

Definition 5 Let M be a Markov decision process, 
and let S be any subset of the states of M. The in- 
duced Markov decision process on S, denoted 
Ms, has states 5U {so}> o,nd transitions and payoffs 
defined as follows: 

• For any state i 6 S, #MS(0 = #M(*)>' oil payoffs 
in Ms are deterministic (zero variance) even if 
the payoffs in M are stochastic. 

• RMS(SO) = 0. 

• For any action a, PMS(
S

OSQ) = 1- Thus, s0 is an 
absorbing state. 

• For any states i,j G S, and any action a, 
p°^ (ij) = P°^{ij). Thus, transitions in M be- 
tween states in S are preserved in Ms- 

• For any state i G S and any action a, P£fs(«so) = 
S -as ^M (*.?')• Thus, all transitions in M that are 
not between states in S are redirected to so in Ms ■ 

Definition 5 describes an MDP directly induced on S 
by the true unknown MDP M, and as such preserves 
the true transition probabilities between states in S. 
Of course, our algorithm will only have approximations 

to these transition probabilities, leading to the follow- 
ing obvious approximation to Ms: if we simply let M 
denote the empirical approximation to M — that is, 
the states of M are simply all^the states visited so far, 
the transition probabilities of M are the observed tran- 
sition frequencies, and the rewards are the observed re- 
wards — then Ms is the natural approximation to Ms- 
Now if we let S be the set of known states, as defined 
by Equation (4), then the simulation accuracy of Ms 
with respect to Ms in the sense of Equation 1 follows 
immediately from the Simulation Lemma. Let us also 
observe that any return achievable in Ms (and thus 
approximately achievable in Ms) is also achievable in 
the "real world" M — that is, for any policy 7r in M, 
any state i G S, and any T, Ufos(i,T) < U^(i,T). 

We are now at the heart of the analysis: we have iden- 
tified a "part" of the unknown MDP M that the algo- 
rithm "knows" very well, in the form of the approxima- 
tion Ms to Ms- The key lemma follows, in which we 
demonstrate the fact that Ms (and thus, by the Simu- 
lation Lemma, Ms) must always provide the algorithm 
with either a policy that will yield near-optimal return 
in the true MDP M, or a policy that will allow rapid 
exploration of an unknown state in M (or both). 

Lemma 3 (Explore or Exploit Lemma) Let M be any 
Markov decision process, let S be any subset of the 
states of M, and let Ms be the induced Markov deci- 
sion process on M. For any i G S and any T, and any 
1 > a > 0, either there exists a policy it in Ms such 
that U%ts(i,T) > Ujlf(i,T) - a, or there exists a pol- 
icy n in Ms such that the probability that a walk of T 
steps following ir will terminate in so exceeds a/Rmax. 

Proof:Let 7r be a policy in M satisfying U^(i,T) = 
U*M{i,T), and suppose that Un

Ms{i,T) < U*M{i,T) - 
a (otherwise, ir already witnesses the claim of the 
lemma). We may write 

UM*,?)   =   Y,
FT

M\PPM(P) 
P 

= EPr^M^M(9) + EPrMH^M(r) 
q T 

where the sums are over, respectively, all T-paths 
p in M, all T-paths q in M in which every state 
in q is in S, and all T-paths r in M in which at 
least one state is not in 5. Keeping this interpreta- 
tion of the variables p, q and r fixed, we may write 
EqP^M[q]UM(q) = Zq-PrnMs[q}UMs(q) < UfcfrT). 
The equality follows from the fact that for any path 
q in which every state is in S, Pr^fa]  = PIMS[<?] 
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and UM(Q) — UMs(q), and the inequality from the 
fact that Ufa (i,T) takes the sum over all T-paths in 
Ms, not just those that avoid the absorbing state SQ- 

Thus E, Prl,[q\UM{q) < Ufa(i,T) - a which implies 
that ZrPrl,[r]UM(r) > a. But £rP

rA/M^/(r) < 

Rmax Er 
PrA/[rl and s0 Er 

PrM W > a I Rmax as de- 
sired, o 

4.4    Off-line Optimal Policy Computations 

Let us take a moment to review and synthesize. The 
combination of the simulation accuracy of Ms and the 
Explore or Exploit Lemma establishes our basic line 
of argument: 

4.5    Putting it All Together 

All of the technical pieces we need are now in place, 
and we now give a more detailed description of the 
algorithm, and sketch the remainder of the analysis. 
(Again, full details are provided in the long version.) 
We emphasize that for now we assume the algorithm 
is given as input a targeted mixing time T and the 
optimal return opt(HAf) achievable in 11^. In Sec- 
tion 4.6, we remove these assumptions. 

We call the algorithm Explicit Explore or Exploit, or 
E3, because whenever the algorithm is not engaged 
in balanced wandering, it performs an explicit off-line 
computation on the partial model in order to find a 
T-step policy guaranteed to either explore or exploit. 

• At any time, if 5 is the set of current known states, 
the T-step return of any policy ix in Ms (approx- 
imately) lower bounds the T-step return of (any 
extension of) IT in M. 

• At any time, there must either be a policy in Ä/5 
whose T-step return in M js^ nearly optimal, or 
there must be a policy in Ms that will quickly 
reach the absorbing state — in which case, this 
same policy, executed in M, will quickly reach a 
state that is not currently in the known set S. 

At certain points in the execution of the algorithm, 
we will perform T-step value iteration (which takes 

0(N2T) computation) off-line twice: once on A/5, and 

a second time on what we will denote M's. The MDP 

M's has the same transition probabilities as Ms, but 

different payoffs: in M's, the absorbing state SQ has 
payoff Rmax and all other states have payoff 0. Thus 
we reward exploration (as represented by visits to SQ) 

rather than exploitation. If 9 is the policy returned 
by value iteration on Mg and 7?' is the policy returned 
by value iteration on M's, then Lemma 3 guarantees 
that either the T-step return of 7? from our current 
known state approaches the optimal achievable in M 
(which for now we are assuming we know, and can 
thus detect), or the probability that 7?' reaches s0, 
and thus that the execution of 7?' in M reaches an 
unknown or unvisited state in T steps with significant 
probability (which we can also detect). Finally, note 
that even though T-step value iteration produces a 
non-stationary policy, it is the expected payoff that 
is important, not whether we follow a stationary or 
non-stationary policy. 

Explicit Explore or Exploit (E3) Algorithm: 

• (Initialization) Initially, the set S of known states is 
empty. 

• (Balanced Wandering) Any time the current state is 
not in S, the algorithm performs balanced wandering. 

• (Discovery of New Known States) Any time a state i 
has been visited mj;n„„,n times during balanced wan- 
dering, it enters the known set S, and no longer par- 
ticipates in balanced wandering. 

• Observation: Clearly, after N(m^nn,„„ — 1) + 1 steps 
of balanced wandering, by the Pigeonhole Principle 
some state becomes known. More generally, if the 
total number of steps of balanced wandering the al- 
gorithm has performed ever exceeds Arrr(^„„„,n, then 
every state of M is known (even if these steps of bal- 
anced wandering are not consecutive). 

• (Off-line Optimizations) Upon reaching a known state 
i € S during balanced wandering, the algorithm per- 
forms the two off-line optimal policy computations on 
Ms and M's described in Section 4.4: 

— (Attempted Exploitation) If the resulting ex- 

ploitation policy 7? achieves return from i in Mi- 
that is at least opt(TlTh]') - f/2, the algorithm 
executes 7? for the next T steps. 

- (Attempted Exploration) Otherwise, the algo- 
rithm executes the resulting exploration policy 
7?' (derived from the off-line computation on M's) 
for T steps in 71/, which by Lemma 3 is guaran- 
teed to have probability at least e/(2R,nnr) of 
leaving the set S. 

• (Balanced Wandering) Any time an attempted ex- 
ploitation or attempted exploration visits a state not 
in 5, the algorithm immediately resumes balanced 
wandering. 
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This concludes the description of the algorithm; we can 
now wrap up the analysis. One of the main remain- 
ing issues is our handling of the confidence parameter 
8 in the statement of the main theorem: Theorem 1 
ensures that a certain performance guarantee is met 
with probability at least 1 - <5. There are essentially 
three different sources of failure for the algorithm: 

• At some known state, the algorithm actually has 
a poor approximation to the next-state distribu- 
tion for some action, and thus Ms does not have 
sufficiently strong simulation accuracy for Ms- 

• Repeated attempted explorations fail to yield 
enough steps of balanced wandering to result in a 
new known state. 

• Repeated attempted exploitations fail to result in 
actual return that is near opt{U.^). 

Our handling of the failure probability 8 is to simply 
allocate 8/3 to each of these sources of failure. The fact 
that we can make the probability of the first source of 
failure (a "bad" known state) small is handled by a 
standard Chernoff bound analysis applied to the defi- 
nition of known states. 

For the second source of failure (failed attempted ex- 
plorations), a standard Chernoff bound analysis again 
suffices: by Lemma 3, each attempted exploration 
can be viewed as an independent Bernoulli trial with 
probability at least e/(2Rmax) of "success" (at least 
one step of balanced wandering). In the worst case, 
we must make every state known before we can ex- 
ploit, requiring Nrriknown steps of balanced wander- 
ing. The probability of having fewer than Nrriknown 
steps of balanced wandering will be smaller than 6/3 
if the number of (T-step) attempted explorations is 
O ({Rmax/e)N\0g(l/6)m known)- 

Finally, we do not want to simply halt upon finding 
a policy whose expected return is near opt (11^), but 
want to achieve actual return approaching opt(Iij^), 
which is where the third source of failure (failed at- 
tempted exploitations) enters. We have already ar- 
gued that the total number of T-step attempted ex- 
plorations the algorithm can perform before S con- 
tains all states of M is polynomially bounded. All 
other actions of the algorithm must be accounted for 
by T-step attempted exploitations. Each of these T- 
step attempted exploitations has expected return at 
least opt(nfye) - e/2. The probability that the ac- 
tual return, restricted to just these attempted exploita- 
tions,  is less than  opi(II^£) - 3e/4,  can be made 

smaller than 6/3 if the number of blocks exceeds 
0((l/e)2log(l/<5)); this is again by a standard Cher- 
noff bound analysis. However, we also need to make 
sure that the return restricted to these exploitation 
blocks is sufficient to dominate the potentially low re- 
turn of the attempted explorations. It is not difficult 
to show that provided the number of attempted ex- 
ploitations exceeds 0(l/e) times the number of at- 
tempted explorations, both conditions are satisfied, 
for a total number of actions bounded by 0(T/e) 
times the number of attempted explorations, which 
is 0(NT(Rmax/e2)\og(l/6)mknown). The total com- 
putation time is thus 0(N2T/e) times the number of 
attempted explorations, and thus bounded by 

0(N3T(Rmax/e2)\og(l/6)mknown). (5) 

This concludes the proof of the main theorem. We re- 
mark that no serious attempt to minimize these worst- 
case bounds has been made; our immediate goal was to 
simply prove polynomial bounds in the most straight- 
forward manner possible. It is likely that a practical 
implementation based on the algorithmic ideas given 
here would enjoy performance on natural problems 
that is considerably better than the current bounds 
indicate. (See Moore and Atkeson, 1993, for a related 
heuristic algorithm.) 

4.6    Eliminating Knowledge of T and op^II^) 

In order to simplify our presentation of the main the- 
orem and the E3 algorithm, we made the assumption 
that the learning algorithm knew the targeted mixing 
time T and the target optimal return opti^i.^) achiev- 
able in this mixing time. In this section, we briefly out- 
line the straightforward way in which these assump- 
tions can be removed without changing the qualitative 
nature of the results. Details are in the long version 
of this paper. 

In the absence of knowledge of opt(U^f), the Explore 
or Exploit Lemma (Lemma 3) ensures us that it is safe 
to have a bias towards exploration. More precisely, 
any time we arrive in a known state i, we will first 
determine the exploration policy 5r' and compute the 
probability that 9' will reach the absorbing state s0 of 
M's in T steps. We can then compare this probability 
to the lower bound e/(2Rmax) of Lemma 3. As long as 
this lower bound is exceeded, we may execute 9' in an 
attempt to visit a state not in S. If this lower bound 
is not exceeded, Lemma 3 guarantees that the off-line 
computation on Ms in the Attempted Exploitation 
step must result in an exploitation policy 9 that is 
close to optimal. We execute 9 in M and continue. 
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Note that- this exploration-biased solution to remov- 
ing knowledge of opt(IlAf) or V*(i) results in the al- 
gorithm always exploring all states of M that can be 
reached in a reasonable amount of time, before doing 
any exploitation. This is a simple way of removing the 
knowledge while keeping a polynomial-time algorithm: 
but we explore more practical variants of this strategy 
in the longer paper. 

To remove the assumed knowledge of T, we observe 
that we already have an algorithm A(T) that, given T 
as input, runs for P(T) steps for some fixed polynomial 
P(-) and meets the desired criterion. We now propose 
a new algorithm A', which does not need T as input, 
and simply runs A sequentially for T = 1,2,3,  For 
any T, the amount of time A' must be run before A' 

has executed A(T) is £f=] P{t) < TP(T) = P'(T), 
which is still polynomial in T. We just need to run A' 
for sufficiently many steps after the first P'(T) steps 
to dominate any low-return periods that took place 
in those P'{T) steps, similar to the analysis done for 
the undiscounted case towards the end of Section 4.5. 
We again note that this solution, while sufficient for 
polynomial time, is not the one we would implement 
in practice. 

5    Conclusion 

In this paper, we presented the E3 algorithm, and 
showed that it achieves near-optimal undiscounted re- 
turn in general MDP's in polynomial time. In the long 
version, we show that a slight modification of E3 gives 
similar results for the discounted case, that the algo- 
rithms can deal with MDP's with terminating states in 
a natural way, and that they also work in multichain 
MDP's. 

There are a number of interesting lines for further re- 
search. We are developing the basic ideas underlying 
E3 into a practical algorithm, and hope to report on 
an implementation and experiments soon. Finding an 
efficient model-free version of our algorithm, and tech- 
niques for dealing with large state spaces, remain for 
future work. 
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Abstract 

In this work, we present a new bottom-up al- 
gorithm for decision tree pruning that is very 
efficient (requiring only a single pass through 
the given tree), and prove a strong performance 
guarantee for the generalization error of the re- 
sulting pruned tree. We work in the typical set- 
ting in which the given tree T may have been 
derived from the given training sample S, and 
thus may badly overfit S. In this setting, we 
give bounds on the amount of additional gener- 
alization error that our pruning suffers compared 
to the optimal pruning of T. More generally, our 
results show that if there is a pruning of T with 
small error, and whose size is small compared to 
\S\, then our algorithm will find a pruning whose 
error is not much larger. This style of result 
has been called an index of resolvability result 
by Barron and Cover in the context of density 
estimation. 
Our algorithm is local — the decision to prune 
a subtree is based entirely on properties of that 
subtree and the sample reaching it. To analyze 
our algorithm, we develop tools of local uniform 
convergence, a generalization of the standard no- 
tion that may prove useful in other settings. 

1    Introduction 

We consider the common problem of finding a good 
pruning of a given decision tree T on the basis of sam- 
ple data S. We work in a setting in which we do not 
assume the independence of T and S. In particular, we 
allow for the possibility that T was in fact constructed 
from S, perhaps by a standard greedy, top-down pro- 
cess as employed in the growth phases of the C4.5 and 
CART algorithms [8, 3]. Our interest here is in how 
one should best use the data S a second time to find a 
good subtree of T. Note that T itself may badly overfit 
the data. 

Our main result is a new and rather efficient pruning 
algorithm, and the proof of a strong performance guar- 
antee for this algorithm (Theorems 5 and 6). Our algo- 
rithm uses the sample S to compute a subtree (prun- 
ing) of T whose generalization error can be related to 
that of the best pruning of T. More generally, the gen- 
eralization error of our pruning is bounded by the min- 
imum, over all prunings T', of the generalization error 
e(T") plus a "complexity penalty" that depends only 
on the size of T". Thus, if there is a relatively small 
subtree of T with small error, our algorithm enjoys a 
strong performance guarantee. This type of guarantee 
is fairly common in the model selection literature, and 
is sometimes referred to as an index of resolvability 
guarantee [1]. (It is also similar to the types of results 
stated in the literature on combining "experts" [4], al- 
though the interest there is not in generalization error, 
but in on-line prediction. This is discussed further be- 
low.) Our algorithm is a simple, bottom-up algorithm 
that performs a single pass over the tree T; hence its 
running time is linear in size(T). The only informa- 
tion our algorithm needs for this bottom-up pass is, 
for each node in T, the depth of the node in T, the 
size of the subtree rooted at the node, and the number 
of positive and negative examples reaching the node. 
This information is typically available from the con- 
struction of the tree, or can be computed explicitly in 
time 0(\S\depth{T)). 

An important aspect of our algorithm is its locality. 
Roughly speaking, this means that the decision to 
prune or not prune a particular subtree during the ex- 
ecution is based entirely on properties of that subtree 
and the sample that reaches it. A number of common 
pruning methods behave locally in this sense. The 
analysis of our algorithm requires us to develop the 
notion of local uniform convergence, a generalization 
of the standard notion of uniform convergence, and a 
tool that we believe may prove useful in other settings. 
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2    Related Work 

There are a number of previous efforts related to our 
results, which we only have space to discuss briefly 
here; more detailed comparisons will be given in the 
full paper. First of all, our pruning algorithm is closely 
related to one proposed by Mansour [7], who gave pri- 
marily experimental results, and did not give bounds 
on the generalization error of the resulting pruned tree. 

Helmbold and Schapire [4] gave an efficient algorithm 
for predicting nearly as well as the best pruning of a 
given tree. However, this algorithm differs from ours 
in a number of important ways. First of all, it can- 
not be directly applied to the same data set that was 
used to derive the given tree in order to obtain a good 
pruning — the predictive power is only on a "fresh" or 
held-out data set. (A standard transformation of their 
algorithm can be used on the original data set, but 
results in a considerably less efficient algorithm, as it 
requires many executions of the algorithm.) Second, it 
does not actually find a good pruning of the given tree, 
but a weighted combination of prunings. However, in 
the on-line prediction model of learning, their result is 
quite strong. Here we study the typical batch model 
in which we may not assume independence of our tree 
and data set. 

The use of dynamic programming for pruning was al- 
ready suggested in the original book on CART [3] in 
order to minimize a weighted sum of the observed error 
and the size of the pruning. Bohanec and Bratko [2] 
showed that it is possible to compute in quadratic time 
the subtree of a given tree that minimizes the training 
error while obeying a specified size bound. By com- 
bining this observation with the ideas of structural risk 
minimization [10], it is possible to derive a polynomial- 
time algorithm for our setting with error guarantees 
quite similar to those we will give for our algorithm. 
However, this algorithm would be considerably less ef- 
ficient than the one we shall present. 

Finally, our ideas are certainly influenced by the many 
single-pass, bottom-up pruning heuristics in wide use 
in experimental machine learning, including that used 
by C4.5 [8]. While we do not know how to prove 
strong error guarantees for these heuristics, our cur- 
rent results provide some justification for them, and 
suggest specific modifications that yield fast, practi- 
cal and principled methods for pruning with proven 
error guarantees. Combined with earlier results prov- 
ing non-trivial performance guarantees for the com- 
mon greedy, top-down growth heuristics in the model 
of boosting [5], it is fair to say that there is now a solid 

theoretical basis for both the top-down and bottom-up 
passes of many standard decision tree learning algo- 
rithms. 

3    Framework and Preliminaries 

We consider decision trees over an input domain A". 
Each such tree has binary tests at each internal node, 
where each test is chosen from a class T of predicates 
over X. We use TREES(T, d) to denote the class of all 
binary trees with tests from T and at most d internal 
nodes, and leaves labeled with 0 or 1. 

We will also need notation to identify paths in a 
decision tree. Thus, we use PATHS(T, 1) to denote 
the class of all conjunctions of at most t predicates 
from T. Clearly, if v is a node in a decision tree 
T £ TREES(T, d), then we may associate with v a pred- 
icate reachv £ PATHS(T, d), which is simply the con- 
junction of the predicates along the path from the root 
to v in T. Thus, for any input x € X, rcachv(x) = 1 if 
and only if the path defined by x in T passes through 
v. 

Given a node v in T, we let Tv denote the subtree of T 
that is rooted at v, and for any probability distribution 
P over X, we let Pv denote the distribution induced 
by P on just those x satisfying reach,,(.T) = 1. 

In our framework, there is an unknown distribution 
P over X and an unknown target function f over X. 
We are given a sample S of m pairs (x;, /(x;)), where 
each Xi is drawn independently according to P. We 
are also given a tree T = T(S) that may have been 
built from the sample S. Now for / and T fixed, for 
any distribution P, we define the generalization error 
e(T) = ep(T) = Prp[T(x) ^ /(x)], and also the train- 
ing error e(T) = es(T) = (l/m)Z"U Wi*) * /(*)]- 
where I is the indicator function. In this notation, for 
any node v in T, we can define the local generaliza- 
tion error ev = ep (Tv) and the local training error 

Zv   =   (V\Sv\)ZT(:sJlT(X)   *   /Ml'   whCTC   5"   !S   the 

set of all x £ S satisfying reach„(x) = 1. We will also 
need to refer to the local errors incurred by deleting 
the subtree T„ and replacing it by a leaf with the ma- 
jority label of the examples reaching v. Thus, we use 
et,(0) to denote min{PrPv[/(x) = 0],Prn[/(x) = 1]}; 
this is exactly the error, with respect to Pv, of the op- 
timal constant function (leaf) 0 or 1. Similarly, we will 
use et,(0) to denote the quantity 

(l/|S,|)min{|{x£S„ :/(x) = 0}|, 

|{xGS„:/(x) = l}|} (1) 

which is the observed local error incurred by replacing 
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Tv by the best leaf. 

As we have mentioned in the introduction, we make 
no assumptions on /, and our goal is not to "learn" / 
in the standard sense of, say, fitting a decision tree to 
the data and hoping that it generalizes well. Here we 
limit our attention to the problem of pruning a given 
decision tree. Thus, we assume that we are given as 
input the sample S and a particular, fixed tree T, with 
the goal of finding a pruning of T with near-optimal 
generalization. 

It is important to specify what we mean by a prun- 
ing of T, since allowing different pruning operations 
clearly can result in different classes of trees that can 
be obtained from T. We let PRUNINGS(T) denote 
the class of all subtrees of T, that is, the class of 
all trees that can be obtained from T by specifying 
nodes vi,...,Vk in T and then deleting from T the 
subtrees TVl,...,TVk rooted at those nodes. The al- 
lowed operation is that of deleting any subtree from 
the current tree; PRUNINGS(T) is exactly the class of 
trees that can be obtained from T by any sequence 
of such operations. Thus, any non-empty tree in 
PRUNINGS(T) shares the same root as T, and can be 
"superimposed" on T. In particular, we are not al- 
lowing operations such as the replacement of an inter- 
nal node by its left or right subtree [8]. Nevertheless, 
the class PRUNINGS(T) contains an exponential num- 
ber of subtrees of T, and our goal will be find a tree in 
PRUNiNGS(T)'with close to the smallest generalization 
error. 

Let us again emphasize that we do not assume any "in- 
dependence" between the given tree T and the sample 
S — indeed, the likely scenario is that T was built us- 
ing S. Formally, we are given a pair (S, T) in which 
we allow T = T(S). We are imagining the common 
scenario in which the sample S is to be used twice — 
once for top-down growth of T using a heuristic such 
as those used by C4.5 or CART, and now again to find 
a good subtree of T. If one assumes that 5 is a "fresh" 
or held-out sample (that is, drawn separately from the 
sample used to construct T), the problem becomes eas- 
ier in some ways, since one can then use the observed 
error on S as an approximate proxy for the general- 
ization error of any tree in PRUNINGS(T). There is a 
trade-off that renders the two scenarios incomparable 
in general [6]: by using a hold-out set for the pruning 
phase, we gain the independence of the sample from 
the given tree T, but at the price of having "wasted" 
some potentially valuable data for the training (con- 
struction) of T; whereas in our setting, we waste no 
data, but cannot exploit independence of T and S. 

In the hold-out setting, a good algorithm is one that 
chooses the tree in PRUNINGS(T) that minimizes the 
error on S (which can be computed in polynomial 
time via a dynamic programming approach [2]), and 
fairly general performance guarantees can be shown [6] 
that necessarily weaken as the hold-out set becomes a 
smaller fraction of the original data sample. 

4    Description of the Algorithm 

We begin with a detailed description of the pruning 
algorithm, which is given the random sample S and a 
tree T = T(S) as input. The high-level structure of 
the algorithm is quite straightforward: the algorithm 
makes a single "bottom-up" pass through T, and de- 
cides for every node v whether to leave the subtree 
currently rooted at v in place (at least for the mo- 
ment), or whether to delete this subtree. More pre- 
cisely, imagine that we place a marker at each leaf of 
T, and for any node v in T, let MARKERS(u) denote the 
set of markers in the subtree Tv rooted at v. When all 
of the markers in MARKERS(u) have arrived at v, our 
algorithm will then (and only then) consider whether 
or not to delete the subtree then rooted at v; the al- 
gorithm then passes all of these markers to its parent. 
Thus, the algorithm only considers pruning at a node 
v once it has first considered pruning at all nodes be- 
low v; this simply formalizes the standard notion of 
"bottom-up" processing. Also, note that the size of 
the subtree rooted at v is easily computed by counting 
the number of markers arriving there. 

Two observations are in order here. First, the algo- 
rithm considers a pruning operation only once at each 
node v of T, at the moment when all of MARKERS(ü) 
resides at v. Second, the subtree rooted at v when all 
of MARKERS(u) reside at v may be different than Tv 

(the original subtree of T rooted at v), because parts 
of Tv may have been deleted as markers were being 
passed up towards v. We thus introduce the notation 
T* to denote the subtree that is rooted at v when all of 
MARKERS(u) resides at v. It is T* that our algorithm 
must decide whether to prune, and T* is defined by 
the operation of the algorithm itself. We will use T* 
to denote the final pruning of T output by our algo- 
rithm. 

It remains only to describe how our algorithm decides 
whether or not to prune T*. For this we need some 
additional notation. We define mv = \SV\, and we let 
sv denote the number of nodes in T*, and tv be the 
depth of the node v in T. Recall that ev{T*) is the 
fraction of errors T* makes on the local sample Sv, 
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and e„(0) is the fraction of errors the best leaf makes 
on Sv. Then our algorithm will replace T* by this best 
leaf if and only if 

ev(T:)+a(mv:sv,ev,6)>ev(IH) (2) 

where S G [0,1] is a confidence parameter. The exact 
choice of a(mv,sv,Ev,S) will depend on the setting, 
but in all cases can be thought of as a penalty for the 
complexity of the subtree T*. Let us first consider 
the case in which the class T of testing functions is fi- 
nite, in which case the class of possible path predicates 
PATHS(T, iv) leading to v and the class of possible sub- 
trees TREES(T,sv) rooted at v are also finite. In this 
case, we would choose 

a(mv,sv>lv,6) = c\ 
llog(A) + log(B) + log(m/<J) 

m„ 

(3) 
for some constant specific c > 1 determined by the 
analysis, where 

and 

A = |PATHS(T,^)| 

B = |TREES(T,S„)|. 

(4) 

(5) 

Perhaps the most natural and common special case of 
this finite-cardinality setting is that in which the input 
space X is the boolean hypercube {0,1}", and the 
test class T contains just the n single-variable tests x,. 
These are the kinds of tests allowed in the vanilla C4.5 
and CART packages, and since |PATHS(T,£)| < nl and 
|TREES(T, S)\ < (an)s for some constant a, Equation 
(3) specializes to 

, ,   x\       '  /(4 + st,)log(n) + log(m/(5) 
a{mv,sv,lv,d) = c \    

y m„ 
(6) 

for some specific constant c' > 1 determined by the 
analysis. To simplify the exposition and to make it 
more concrete, we will work with this particular choice 
of T in most of our proofs, but specifically point out 
how the analysis changes for the case of infinite T, 
where the pruning rule is given by choosing 

a(mv,sv,lv,S) = d 
„  /(d*„+d,„)log(2m) + log(m/(J) 

m,, 

(7) 
for some specific constant c" > 1 determined by the 
analysis, where div and dSv are the VC dimensions 
of the classes PATHS(T, (V) and TREES(T, SV), respec- 
tively. 

Let us first provide some brief intuition behind our al- 
gorithm, which will serve as motivation for the ensuing 
analysis as well. At each node v, our algorithm con- 
siders whether to leave the current subtree T* or to 
delete it. The basis for this comparison must clearly 
make use of the sample S provided. Beyond this obser- 
vation, a number of ways of comparing T* to the best 
leaf are possible. For instance, we could simply prefer 
whichever of T* and the best leaf makes the smaller 
number of mistakes on Sv. This is clearly a poor idea, 
since T* cannot do worse than the best leaf (assum- 
ing majority labels on the leaves of T*), and may do 
considerably better — but generalize poorly compared 
to the best leaf due to overfitting. Thus, it seems we 
should penalize T* for its complexity, which is exactly 
the role of the additive term a(mv,sv,£v,S) above. 

One important and natural aspect of our algorithm 
(and many commonly used pruning methods) is the 
fact that the comparison between T* and the best leaf 
is being made entirely on the basis of the local reduc- 
tion to the observed error. That is, the comparison 
depends on Sv and T* only, and not on all of S and T. 
A reasonable alternative "global" comparison might 
compare the observed error of the current entire tree, 
e(T*), plus a penalty term that depends on sizc(T*), 
with the observed error of the entire tree but with T* 
pruned, t{T* - T*) (where T* - T„* is the tree after 
we prune at v), plus a penalty term that depends on 
size(T* — T*). The important difference between this 
global algorithm and ours is that in the global algo- 
rithm, even when there is a large absolute, difference in 
complexity between T* and a leaf, this difference may 
be swamped by the fact that both are embedded in the 
much larger supertree T* — that is, the difference is 
small relative to the complexity of T*. This may cause 
a suboptimal insensitivity, leading to a propensity to 
leave large subtrees unpruned. Indeed, it is possible to 
construct examples in which the global approach leads 
to primings strictly worse than those produced by our 
algorithm, and demonstrating that results as strong as 
we will give are not possible for the global method. 

Our analysis proceeds as follows. We first need to ar- 
gue that any time our algorithm chooses not to prune 
T*, then (with high probability) this was in fact the 
"right" decision, in the sense that the current tree T* 
would be degraded by deleting T*. This allows us to 
establish that our final pruning will be a subtree of 
the optimal pruning, so our only source of additional 
error results from those subtrees of this optimal prun- 
ing that we deleted. A careful amortized analysis al- 
lows us to bound this additional error by a quantity 
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related to the size of the optimal pruning. This line 
of argument establishes a relationship between the er- 
ror of our pruning and that of the optimal pruning; 
a slight modification of the algorithm and a more in- 
volved analysis let us make a similar comparison to 
any pruning. This extension is important for cases 
in which there may be a pruning whose error is only 
slightly worse than that of the optimal pruning, but 
whose size is much smaller. In such a case our bounds 
are much better. 

5    Local Uniform Convergence 

In standard uniform convergence results, we have a 
class of events (predicates), and we prove that the ob- 
served frequency of any event in the class does not 
differ much from its true probability. We would like 
to apply such results to events of the form "subtree 
T* makes an error on x", but do not wish to take 
what is perhaps most obvious approach towards doing 
so. The reason is that we want to examine this event 
conditioned on the event that x reaches v, and obvi- 
ously this conditioning event differs for every v. One 
approach would be to redefine the class of events of 
interest to include the conditioning events, that is, to 
look at events of the form "x satisfies reachv(x) and 
T* makes an error on a;" for all possible reachv (x) and 
T*. It turns out that this approach would result in 
final bounds on our performance that are significantly 
worse than what we will obtain. What we really want 
is the rather natural notion of local uniform conver- 
gence: for any conditioning event c in a class C, and 
any event e in a class E, we would like to relate the 
observed frequency of e restricted to the subsample sat- 
isfying c to the true probability of e on the distribution 
conditioned on c; and clearly the accuracy of this ob- 
served frequency will depend not on the overall sam- 
ple size, but on the number of examples satisfying the 
conditioning event c. Such a relationship is given by 
the next two theorems, which treat the cases of finite 
classes and infinite classes separately. 

Lemma 1 Let C and H be finite classes of boolean 
functions over X, let f be a target boolean function 
over x, and let P be a probability distribution over X. 
For any c £ C and h € H, let ec(h) = Prp[h(x) ^ 
f(x)\c(x) = 1], and for any labeled sample S of f(x), 
let ec(h) denote the fraction of points in Sc on which 
h errs, where Sc = {x £ S : c(x) = 1}. Then the 
probability that there exists a c 6 C and an h € H 

such that 

lec{h)-Uh)\ >     W) + log(l*l) + log(l/*)  (8) 

is at most 5, where mc — \SC\- 

Proof:Let us fix c € C and h € H. For these fixed 
choices, we have for any value A 

PrP[\ec(h)-ec(h)\>X} = 

Eme[Prse[|ccW-ec(Ä)|>A]]. (9) 

Here the expectation is over the distribution on val- 
ues of mc induced by P, and the distribution on Sc 

is over samples of size mc (which is fixed inside the 
expectation) drawn according to Pc (the distribution 
P conditioned on c being 1). Since mc is fixed, by 
standard Chernoff bounds we have 

PrSe[|cc(A) - ic(h)\ > X] < e~x^ (10) 

giving the bound 

PrP[|ec(/i) -ec(h)\ > X] < E^e"^].        (11) 

If we choose 

A = (log(|C|) + log(|H|) + log(l/*) (12) 

then e~x ™c = <S/(|C||.fir|), which is a constant in- 
dependent of mc and thus can be moved outside 
the expectation. By appealing to the union bound 
(Pr[A V B] < Pr[A] + Pr[B]), the probability that 
there is some c and h such that \ec(h) — ic(h)\ > X is 
at most |C||jff|(«/(|C7||ff|)) = S, as desired. D 

Our use of Lemma 1 will be straightforward. Suppose 
we are considering some node v in a decision tree T at 
depth £v, and with a subtree T* of size sv rooted at v. 
Then we will appeal to the lemma choosing the condi- 
tioning class C to be the class PATHS{T,£V), choosing 
H to be TREES(T, s„), and choosing S to be 6'/m2, 
where 5' is the overall confidence we desire. In this 
case, the local complexity penalty a(£v,sv,mv,6) in 
Equation (3) and the deviation A in Equation (12) co- 
incide, and thus we can assert that with probability 
1 - S'/m2 there is no leaf of depth lv and subtree of 
size sv such that the local observed error of the sub- 
tree deviates by more than a(mv,sv,£v,S) from the 
local true error. By summing over all m2 choices for 
lv and s„, we obtain an overall bound of 5' on the 
failure probability. 
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In other words, if wc limit our attention to the lo- 
cal errors e^ (generalization) and ev (observed), then 
with high probability we can assert that they will be 
within an amount (namely, a(mv,sv,£v,S)) that de- 
pends only on local quantities: the local sample size 
mv, the length lv of the path leading to v, and the size 
of the subtree rooted at v. 

A more complicated argument is needed to prove local 
uniform convergence for the case of infinite classes. 

Lemma 2 Let C and H be classes of boolean func- 
tions over X, let f be a target boolean function over x, 
and let P be a probability distribution over X. For any 
ceC andheH, let ec(h) = PrP[h(x) ^ f{x)\c(x) = 
1], and for any labeled sample S of f(x), let ec(h) de- 
note the fraction of points in Sc on which h errs, where 
Sc = {x (E S : c(x) = 1}- Then the probability that 
there exists a c G C and an h G H such that 

\ec(h) - ec(h)\ > 
l(dc + dH)\og{2m)+\og(l/S) 

(13) 
is at most S, where mc — \SC\, and dc and dn are the 
VC dimensions of C and H, respectively. 

Proof:(Sketch) The proof closely follows the "two- 
sample trick" proof for the classical VC theorem [9], 
with an important variation. Intuitively, we introduce 
a "nested two-sample trick", since we need to apply 
the idea twice — once for C, and again for H. 

As in the classical proof, we define two events, but 
now they are "local" events. Event A(S) is that in a 
random sample S of m examples, there exists a c G C 
and an h G H such that \ec(h) - ec(h)\ > A. Event 
B(S,S') is that in a random sample S U S' of 2m ex- 
amples, there exists a c G C and an h G H such that 
\ec(h) - e'c(h)\ > A/2, where ec(h) and e'c(h) denote the 
observed local error of h on S and 5', respectively. 

We use the fact that 

Prs[A(S)} 

=    Prs,S/[>l(5)] (14) 

=   Prs,s, [A(S) A B(S, S')]/Prs,s> [B(S, S')\A(S)] 

(15) 

Clearly, Prs,s>[A(S) A B(S,S')} < Prs,s.[B(5,5')] ■ 
We also have the inequality Prs,s<[B(S,S')|^(S)] > 
1/2. Therefore, Prs,S'[^(5)] < 2Prs,s<[B(S,S')], and 
we can concentrate on bounding the probability of 
event B. 

Let us first consider a fixed set of 2m inputs x,\,... i2m • 
The number of possible subsets of this set induced by 

taking intersections with sets in C is at most $r(2m), 
where $c is the dichotomy counting functions of clas- 
sical VC analysis. Let us fix a c G C, and consider the 
subset Sc of xi,... ,x-2m that fall in r; let mc = \SC\. 
Now consider all possible labelings of Sc by the concept 
class H\ there are at most $//(mc) < <bn{2m) such la- 
belings. Let us now also fix one of these labelings, by 
fixing some h G H. 

Now both c G C and h G H are fixed. Consider split- 
ting Sc randomly into two subsets Si and 5^. For 
event B to hold, we need the difference between the 
observed errors of h on 5C

! and S% to be at least A/2. 
It can be shown that this will occur with probability 
at most e~A mc/i2^ wncre the probability is taken only 
over the random partitioning of Sc. Now if we choose 

A = 
f(dc + d//)log(2m) + log(l/<5) 

(16) 

then e-*
2"Wi2 = (\l(2m)dc){\/{2m)d")5, which is 

independent of mc. We can then bound the probabil- 
ity that this event occurs for some c and h by summing 
this bound over all possible subsets Sc, and all possi- 
ble labelings of Sc by functions in H', giving a bound 
of ^c(2m)^H(2m){l/mdc)(l/md")S. Using the fact 
that $c(m) < rndc and $//(m) < md" yields an over- 
all bound of 6, as desired. □ 

6    Analysis of the Pruning Algorithm 

In this section, we apply the tools of local uniform 
convergence to analyze the pruning algorithm given in 
Section 4. As mentioned earlier, for simplicity in expo- 
sition, we will limit our attention to the common case 
in which A" is the boolean hypercube {0, l}n and the 
class T of allowed node tests is just the input variables 
Xi, in which case the pruning rule used by our bottom- 
up algorithm is that given by Equation (6). However, 
it should be clear how the analysis easily generalizes 
to the more general algorithms given by Equations (3) 
and (7). 

We shall first give an analysis that compares the gen- 
eralization error of the pruning T* produced by our 
algorithm from S and T to the generalization error of 
Topt, the pruning of T that minimizes the generaliza- 
tion error. Recall that we use T* to denote the subtree 
that is rooted at node v of T at the time our algorithm 
decides whether or not to prune at v, which may be a 
subtree of T„ due to primings that have already taken 
place below v. 

We will show that e(T*) is larger than eopi = f(Topt) 
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by an amount that can be bounded by a function of 
the size sopt and depth lopt of Topt. Thus, if there is 
a reasonably small subtree of T with small generaliza- 
tion error, our algorithm will produce a pruning with 
small generalization error as well. In Section 7, we 
will improve our analysis to compare the error of T* 
to that of any pruning, and provide a discussion of sit- 
uations in which this result may be considerably more 
powerful than our initial comparison to Topt alone. 

For the analysis, it will be convenient to introduce the 
notation 

rv = (4 + s„) log(n) + log(m/6) (17) 

for any node v, where lv is the depth of v in T, and 
sv is the size of T*. In this notation, the penalty 
a(mv,sv,lv,6) given by Equation (6) is simply a con- 
stant (that we ignore in the analysis for ease of exposi- 
tion) times yjrv/mv. (We assume that \Jrvjmv < 1, 
since a penalty which is larger than 1 can be modified 
to a penalty of 1 without changing the results.) 

Lemma 3 With probability at least 1 — 6 over the draw 
of the input sample S, T* is a subtree ofTopt- 

Proof:Consider any node v that is a leaf in Topt. It 
suffices to argue that our algorithm would choose to 
prune T*, the subtree that remains at v when our al- 
gorithm reaches v. By Equation (6), our algorithm 
would fail to prune T* only if e„(0) exceeded ev(T*) 
by at least the amount a(mv,sv,£v,S), in which case 
Lemma 1 ensures that ev(T*) < £„(0) with high prob- 
ability. In other words, if our algorithm fails to prune 
T*, then Topt would have smaller generalization error 
by including T* rather than making v a leaf. This 
contradicts the optimality of Topt- □ 

Lemma 3 means that the only source of additional er- 
ror of T* compared to Topt is through overpruning, not 
underpruning. Thus, for the purposes of our analysis, 
we can imagine that our algorithm is actually run on 
Topt rather than the original input tree T (that is, the 
algorithm is initialized starting at the leaves of Topt, 
since we know that the algorithm will prune everything 
below this frontier). 

Let V = {vi,... ,vt] be the sequence of nodes in Topt 

at which the algorithm chooses to prune the subtree 
T*. rather than to leave it in place; note that t < sopt- 
Then we may express the additional generalization er- 
ror e(T*) - topt as 

t 

e(T*) - eopt = 5>„s(0) - eVi(T;{))pVi (18) 
t=i 

where pVi is the probability under the input distribu- 
tion P of reaching node Vi, that is, the probability of 
satisfying the path predicate reachVi. Each term in the 
summation of Equation (18) simply gives the change 
to the global error incurred by pruning T*, expressed 
in terms of the local errors. Clearly the additional 
error of T* is the sum of all such changes. 

Now we may write 

e(T*) - eopt 

t 

<  £ (MW -e~*.Wl + M0) - ^(K)\ 

+ \^vi(T:i)-eVi(T:i)\)pVi (19) 

* E /(*„4 + l)log(n)+log(m/a) 

i=l 
m„ 

+a(mVi,sVi,£Vi,6) 

+ J(4,+^log(n)+log(m/a)\ (2o) 

TO,,. 

< 4SG/5K (21) 

The first inequality comes from the triangle inequal- 
ity. The second inequality uses two invocations of 
Lemma 1, and the fact that our algorithm directly 
compares £^(0) and eVi(T*.), and prunes only when 
they differ by less than a(mVi,sVi,tVi,5). 

Thus, we would like to bound the sum A = 
X)j=i (\A«i /mvi )Pvi ■ The leverage we will eventually 
use is the fact that X)i=i rvi can be bounded by quan- 
tities involving only the tree Topt, since all of the T* 
are disjoint subtrees olTopt. First it will be convenient 
to break this sum into two sums — one involving just 
those terms for which pVi is "small", and the other in- 
volving just those terms for which pVi is "large". The 
advantage is that for the large pVi, we can relate pVi to 
its empirical estimate pVi = mVi/m, as evidenced by 
the following lemma. 

Lemma 4 The probability, over the sample S, that 
there exists a node Vi G V such that pVi > 
12\og(t/5)/m but pVi > 2pVi, is at most 8. 

Proof:We will use the relative Chernoff bound 

Pr[Pv;<(l-7)fc]<e-mp72/3 (22) 

which holds for any fixed V{. By taking 7 = 1/2 and 
applying the union bound, we obtain 

Prpvj &V:pv> 2pv] < te_^ro/12.        (23) 
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Now we can use the assumed lower bound on pVi to 
bound the probability of the event by 6. □ 

Let V be the subset of V for which the lower bound 
pv. > 12\og(t/5)/m holds. We divide the sum that 
describes A into two parts: 

A =     Yl     (VrvJmv^pVl +  J2   {Vrv,/rnVijpVi 

Vi€V-V v,€V 
(24) 

The first sum is bounded by l2\og(sopt/S)sopt/m, 

since \/rVi /mVi is at most 1, and t < sopt- 

For the second sum, we perform a maximization. By 
Lemma 4, with high probability we have that for ev- 
ery Vi e V, pVi < 2pVi = 2mVi/m. Thus, with high 
probability we have 

E ;/^.   <    E \f^(2—) 
ViGV ViEV 

m  iL-/„ viev 

2_ 
m1 < ^/(E^.xE™,) 

(25) 

(26) 

(27) 

To bound this last expression, we first bound 
Ylvev rvf Recall that 

rVi = (tv. + 8vi) log(n) + log(m/<S). (28) 

Since for any V{ G V, we have tVi < lopt, we have that 
Evi6V tVi < s0pttopt, since \V'\ < t < sopt. Since the 
subtrees T*. that we prune are disjoint and subsets of 
the optimal subtree Topt, we have ^Zr.-ev' s"i — s°pf- 
Thus 

J2 ri ^ ^ptd1 + toPt)log(n) + log(m/6)).     (29) 
Vi€V 

To bound Ylviev mi>i m Equation (27), we observe 
that since the sets of examples that reach different 
nodes at the same depth in the tree are disjoint, we 
have J2vi€V m". - m^opt- Thus, with probability 1 - 
S, we obtain an overall bound 

A <12\og(sopt/6)S-^ 

2    /  
+ — yJsopt((l + lopt)tog(n) + log{m/6)){mtopt) 

(30) 

=    o((\og(sopt/S) + eopt^log{n) + log(m/<J)J x 

/¥)     <ai» 

This gives the first of our main results. 

Theorem 5 Let S be a random sample of size m 
drawn according an unknown target function and in- 
put distribution. Let T = T(S) be any decision tree, 
and let T* denote the subtree ofT output by our prim- 
ing algorithm on inputs S and T. Let eopt denote the 
smallest generalization error among all subtrees of T, 
and let sopt and i0pi denote the size and depth of the, 
subtree achieving eopt. Then with probability 1—6 over 
S, 

e{T') -eopt 

=    0 ( (\og(sopt/6) + lopt \/\og{n) + log(m/<5) J x 

\fsopt/m) (32) 

7    An Index of Resolvability Result 

Roughly speaking, Theorem 5 ensures that the true er- 
ror of the pruning found by our algorithm will be larger 
than that of the best possible pruning by an amount 
that is not much worse than \Jsoptlm (ignoring log- 
arithmic and depth factors for simplicity). How good 
is this? Since we assume that T itself (and therefore, 
all subtrees of T) may have been constructed from the 
sample 5, standard model selection analyses [10] indi- 
cate that eop( may be larger than the error of the best 
decision tree approximation to the target function by 
an amount growing like y/sopt/m. (Recall that enpt 
is only the error of the optimal subtree of T — there 
may be other trees which are not subtrees of T with 
error less than eopt, especially if T was constructed by 
a greedy top-down heuristic.) Thus, if we only com- 
pare our error to that of Topt, we are effectively only 
paying an additional penalty of the same order that 
T0pt pays- If sopt is small compared to m — that is, 
the optimal subtree of T is small — then this is quite 
good indeed. 

But a stronger result is possible and desirable. Sup- 
pose that Topt is not particularly small, but that there 
is a much smaller subtree T' whose error is not much 
worse than eopt- In such a case, we would rather claim 
that our error is close to that of T\ with a penalty 
that goes only like y/s'/m. This was the index of re- 
solvability criterion for model selection first examined 
for density estimation by Barron and Cover [1], and 
we now generalize our main result to this setting. 

Theorem 6 Let S be a random sample of size m 
drawn according an unknown target function and input 
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distribution. Let T = T(S) be any decision tree, and 
let T* denote the subtree of T output by our pruning 
algorithm on inputs S and T. Then with probability 

1 — 5 over S, ■ 

e(T*) 

<    minje(T') + o((\og(seff(T')/ö)+ 

leff(T')y/\og(n)+log(m/S)^ ^seff(T')/m^ } . 

(33) 

Here the min is taken over all subtrees T1 of T, and 

we define the "effective" size 

Seff(T') = s' + 2m(e(T') - eopt) + 6s' log(s'/S)   (34) 

and the "effective" depth £eg{T') = mm{(.opt,s'}, 
where s' and £' are the size and depth of T', eopt de- 
notes the smallest generalization error among all sub- 
trees of T, and £opt denotes the depth of the subtree 

achieving eopt- 

The proof is omitted due to space considerations, but 
the main difference from the proof of Theorem 5 is that 
our pruning is no longer a subtree of the pruning T" 
to which it is being compared. This requires a slight 
modification of the pruning penalty a(mv,sv,£v,S), 
and the analysis bounding the sum of the sizes of the 
pruned subtrees becomes more involved. 

Again ignoring logarithmic and depth factors for sim- 
plicity, Theorem 6 compares the error of our pruning 
simultaneously to all prunings T'. Our additional er- 
ror goes roughly like y^seff(T')/m. In Equation (34), 
if s' is small compared to m and e(T') is not much 
larger than eopt, then the bound shows that our error 
will compare well to eopt — even though the tree T' 
achieving the min may not be Topt. This is the power 
of the guarantee provided by index of resolvability re- 
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Abstract 

We present an analysis of actor/critic algo- 
rithms, in which the actor updates its policy 
using eligibility traces of the policy parame- 
ters. Most of the theoretical results for eligi- 
bility traces have been for only critic's value 
iteration algorithms. This paper investigates 
what the actor's eligibility trace does. The 
results show that the algorithm is an exten- 
sion of Williams' REINFORCE algorithms 
for infinite horizon reinforcement tasks, and 
then the critic provides an appropriate re- 
inforcement baseline for the actor. Thanks 
to the actor's eligibility trace, the actor im- 
proves its policy by using a gradient of ac- 
tual return, not by using a gradient of the 
estimated return in the critic. It enables the 
agent to learn a fairly good policy under the 
condition that the approximated value func- 
tion in the critic is hopelessly inaccurate for 
conventional actor/critic algorithms. Also, if 
an accurate value function is estimated by the 
critic, the actor's learning is dramatically ac- 
celerated in our test cases. The behavior of 
the algorithm is demonstrated through simu- 
lations of a linear quadratic control problem 
and a pole balancing problem. 

1    Introduction 

Actor/critic architecture is an adaptive version of pol- 
icy iteration [Kaelbling et al.96]. In general, policy 
iteration alternates two phases: a policy evaluation 
phase and a policy improvement phase. The actor im- 
plements a stochastic policy that maps from a repre- 
sentation of a state to a probability distribution over 

* Interdisciplinary Graduate School of Science and En- 
gineering, Tokyo Institute of Technology, 4259 Nagatsuta 
Midori-ku Yokohama 226-8502 JAPAN. 

actions. The critic attempts to estimate the evaluation 
function for the current policy. The actor improves its 
control policy using critic's temporal difference (TD) 
as an effective reinforcement. In many cases, the policy 
improvement is executed concurrently with the policy 
evaluation, because it is not feasible to wait for the 
policy evaluation to converge. 

The actor/critic algorithms have been success- 
fully applied to a variety of delayed reinforcement 
tasks; ASE/ACE architecture for a pole balancing 
[Barto et al. 83} [Gullapalli 92], RFALCON for a pole 
balancing and for control of a ball-beam system 
[Lin et al. 96], a cart-pole swing-up task [Doya96]. 
Although convergence proofs for the actor/critic algo- 
rithms (e.g. [Williams et al. 90] and [Gullapalli 92]) 
are less than value-iteration based algorithms such 
as Q-learning [Watkins et.al 92], the actor/critic algo- 
rithms have the following practical advantages. 

• It is easy to implement multidimensional contin- 
uous action, that is often mixed with discrete ac- 
tion [Gullapalli 92]. Because the actor selects ac- 
tion by its stochastic policy, therefore problems of 
action selection like as Q-learning does not exist. 
The Q-learning needs to estimate returns for all 
state-action pairs, but the critic would estimate 
only the return of each state. 

• Memory-less stochastic policies can be con- 
siderably better than memory-less determinis- 
tic policies in the case of partially observable 
Markov decision processes (POMDPs) [Singh 94] 
[Jaakkola 94] or multi-player games [Littman 94]. 

• It is easy to incorporate an expert's knowledge 
into the learning system by applying conven- 
tional supervised learning techniques to the actor 
[Clouse et al. 92]. 

Eligibility traces are a fundamental mechanism 
that has been widely used to handle delayed 
reward [Singh 96]. Also the traces are often 
used to overcome non-Markovian effects [Sutton 95], 
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[Pendrith et al. 96]. In Barto, Sutton and Anderson's 
ASE/ACE architecture, both the critic and the actor 
make use of the eligibility trace. Theoretical results of 
eligibility traces in the context of TD(A) [Sutton 88] 
have been obtained. But, in actor/critic algorithms, 
the effect of the actor's trace has not been investigated. 
This paper presents an analysis of an actor/critic al- 
gorithm, in which the actor improves its policy using 
eligibility traces of the policy parameters. This may 
be the first analysis of the actor's eligibility traces. 

2    Discounted Reward Criteria 

At each discrete time t, the agent observes x% contain- 
ing information about its current state, select action 
at, and then receives an instantaneous reward rt re- 
sulting from state transition in the environment. In 
general, the reward and the next state may be ran- 
dom, but their probability distributions are assumed 
to depend only on xt and at in Markov decision pro- 
cesses (MDPs), in which many reinforcement learning 
algorithms are studied. The objective of reinforcement 
learning is to construct a policy that maximizes the 
agent's performance. A natural performance measure 
for infinite horizon tasks is the cumulative discounted 
reward: 

Vt 

k=0 
7* rt+k (1) 

where the discount factor, 0 < 7 < 1 specifies the 
importance of future rewards. Vj is called the actual 
return, that specifies how good the reward sequence 
after time t is. By this notation, the goal of the learn- 
ing is to maximize the expected return. In MDPs, the 
expected return can be defined for all states as: 

VW(X) = ET ^2ykrk\x0 = x 
U=o 

(2) 

where Ev denotes the expectation assuming the agent 
always uses stationary policy TT. V^a;) is called the 
value function, that specifies how good the given state 
x is. In MDPs, the goal of the learning is to find an 
optimal policy that maximizes the value of each state 
x defined by Equation 2. Although similar value func- 
tions can be given in POMDPs, difficulties to define 
the optimum have pointed out in [Singh 94]. 

3    Actor/Critic Algorithms 

Figure 1 and 2 give an overview of actor/critic algo- 
rithms [Sutton 90] [Crites et al. 94]. There are many 
ways to implement the policy and its updating scheme 
in the actor. The algorithms for the critic are mostly 
TD methods. We should notice the following two 
points; one is the actor implements stochastic policy, 

the other is the actor improves its policy using TD- 
error. This paper especially investigates an algorithm 
for the actor. 

Agent 

xt Actor 

stochastic policy x 

at 

T reinforcement fo r at 

TD-error rt + lV(xHi) - V(xt) 

Critic   V(x) 
rt 

Observation                       Reward Action 

Environment 

Figure 1: A generic actor/critic framework. 

1. The agent observes xt in the environment, and the 
actor executes action at according to the current 
stochastic policy v. 

2. The critic receives the immediate reward rt, and then 
observes the resulting next state xt+i. The critic pro- 
vides TD error as an useful reinforcement feedback to 
the actor, according to 

(TD-error) = [r, + 7 V(xt+1)] - V{xt) , 

where 0 < 7 < 1 is the discount factor, V(x) is an 
estimated value function by the critic. 

3. The actor updates the stochastic policy using the TD- 
error. If (TD-error) > 0, action at performed rela- 
tively good and its probability should be increased. If 
(TD-error) < 0, action at performed relatively poorly 
and its probability should be decreased. 

4. The critic updates estimated value function V(x) ac- 
cording to TD methods, e.g., TD(0) algorithm adjusts 
V(xt) <— V(xt)+a (TD-error), where a is the learning 
rate. 

5. Go to step 1. 

Figure 2: 
rithm. 

Main loop of the generic actor/critic algo- 
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Adding Eligibility Trace to the 
Actor 

4.1     Function Approximation for Stochastic 
Policies 

In this paper, 7r(a, W, x) denotes probability of select- 
ing action a under the policy IT in the observation x. 
The ir(a,W, X) is taken to be a probability density 
function when the set of possible action is continu- 
ous. The policy is represented by a parametric func- 
tion approximator using the internal variable vector 
W. The agent can improve the policy 7r by modifying 
W. For example, W corresponds to synaptic weights 
where the action selecting probability is represented by 
neural networks, or W means weight of rules in clas- 
sifier systems. The advantage of using the notation 
of the parametric function 7r() is that computational 
restriction and mechanisms of the agent can be spec- 
ified simply by a form of the function, and then we 
can provide a sound theory of learning algorithms for 
arbitrary types of the actor. 

4.2     Details of the Algorithm 

Figure 3 specifies the actor/critic algorithm that uses 
the eligibility trace in the actor. The ASE/ACE sys- 
tem configured for pole-balancing [Barto et al. 83] is 
just an instance of this algorithm. The actor's eligibil- 
ity in step 3 is the same variable defined in Williams' 
REINFORCE algorithms [Williams 92]. The eligibil- 
ity ei(t) specifies a correlation between the associated 
policy parameter Wi and the executed action at. The 
eligibility trace Di(t) is a discounted running average 
of eligibility. It accumulates the agent's history. When 
a positive reinforcement is given, the actor updates W 
so that the probability of actions recorded in the his- 
tory is increased. It means the TD-error at the time 
t affects not only the action a< but also a<_i, a,t-2, ■ ■ ■. 
At first glance, this idea is senseless for improving the 
policy, but it has very interesting features given in de- 
tail later. Note that the algorithm shown in Figure 3 is 
identical to a stochastic gradient ascent for discounted 
reward [Kimura et al. 97] when the actor's discount 

factor ß = 7 and the V(x) in the critic equals a con- 
stant 6 for all observations. 

The actor requires a memory to implement W for the 
policy and to implement Di for the eligibility trace. 
The amount of the memory for Di is equal to W's. 

4.3    An Analysis of the Algorithm 

Assume that the actor's discount factor ß equals 7, 
and for all t < 0, Di(t) = 0, then the algorithm shown 

1. The agent observes it, and the actor executes action 
at with probability 7r(at, W, xt). 

2. The critic receives the immediate reward r(, and then 
observes the resulting next state xt+i. The critic pro- 
vides TD error to the actor according to 

(TD-error) = [r, + 7 V(xt+1)] - V(x,) ,      (3) 

where 0 < 7 < 1 is the discount factor, V(x) is an 
estimated value function by the critic. 

3. The actor updates the stochastic policy using the TD- 
error according to: 

Eligibility: e,(<)     = 
_d_ 
dw 

-lnU(a,,W,xt)j 

Eligibility Trace:      £>,-(<)     =     e,(t) + ßD,(t - 1) , 

Awi(t)    =     (TD-error) D,(t) 

W    «-    W + apAW(t) , 

where tu, denotes the i'h component of W, e, and 
Di are the associated eligibility and eligibility trace 
respectively, /?(0</?<l)isa discount factor for the 
eligibility trace, ap is the learning rate for the actor. 

4. The critic updates estimated value function V(x) ac- 
cording toTD methods, e.g., TD(0) algorithm adjusts 
V'(i) «— V(x) + a (TD-error), where a is the learning 
rate. 

5. Go to step 1. 

t = 0 

Figure 3: The actor/critic algorithm adding the eligi- 
bility trace to the actor. 

in Figure 3 updates the policy parameters as: 

$>u,,-(o 
00 

00 / t \ 

=    ^(r<+7^+i)-^))     £7(-Te,(0 
(=0 \T=0 / 
00/00 \ 

=      Ee'W     X>T"' (»V +7^ + 1) - V{*rj) 
1=0 \r=t / 

= f>w((f>T-v)-n*o)        (4) 
00 

=   X>W (v« - V(*0) (5) 
t = 0 

Equation 5 is given by Equation 1 and 4. Here we as- 
sume that the statistics of the random variable Vt de- 
pends only on the current policy parameter. It means 
E{Vt} is a deterministic function of W, where E de- 
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notes the expectation operator. This assumption may 
be right if the policy is converged to an equilibrium 
point. The critic's estimation V(xt) is obviously inde- 
pendent of the action at the time t. From the theory 
of Williams' REINFORCE algorithm [Williams 92], 
the value Vt and V(xt) in Equation 5 can be seen 
as a reinforcement signal and a reinforcement base- 
line respectively, then we have E{e{(t) (Vt — V(xt))} = 
(d/dwi)E{Vt}. It says that the algorithm updates pol- 
icy parameters statistically in a direction for increasing 
the actual return Vt, not in a direction of a gradient 
of estimated value function in the critic. Also It can 
be seen as an extension of reinforcement comparison 
methods [Sutton et al. 98], then V(xt) corresponds to 
the reference reward. 

From the above analysis and Figure 3, we can ex- 
plain what the actor's eligibility trace does. At the 
time t, the algorithm reinforces at using TD error 
rt + V(xt+\) — V(xt) as a temporary expedient, there- 
after the actor's eligibility trace replaces V(xt+i) with 
the actual return (rt+1 + jrt+2 + 72rt+3 • • •) in order. 

The critic does not affect the direction of the average 
update vector, because the critic works as a reinforce- 
ment baseline. Therefore, the actor can improve its 
policy, whether the critic is able to learn the value 
function or not. If the critic approximates the value 
function well, the actor's learning would be acceler- 
ated. 

The above results are under the special condition ß = 
7. If ß = 0, the actor updates W in the direction 
of the gradient of the approximated value function in 
the critic. The ß (0 < ß < 7) interpolates between 
the above two limiting cases. The characteristics of 
the ß are similar to the A in TD(A) [Sutton 88] and 
Q(A)-learning [Peng et al. 94]. 

5    Preliminary Experiments 

This section demonstrates the performance of the al- 
gorithm applying to a simple linear control problem. 

5.1    A Linear Quadratic Regulator (LQR) 

The following linear control problem can serve as a 
benchmark of delayed reinforcement tasks [Baird 94]. 
At a given discrete-time t, the state of the environ- 
ment is the real value xt. The agent chooses a control 
action at that is also real value. The dynamics of the 
environment is: 

«t+i = xt + at + noise , (6) 

where the noise is the normal distribution that follows 
the standard deviation <rnoise = 0.5. The immediate 

reward is given by 

(7) 
The goal is to maximize the total discounted reward, 
defined by Equation 1 or 2 for all x. Because the task is 
a linear quadratic regulator (LQR) problem, it is pos- 
sible to calculate the optimal control rule. From the 
discrete-time Riccati equation, the optimum regulator 
is given by 

a* = — ki x*   .where    fci = 1 , 
1 + 2T + v/47

2 + 1 
(8) 

The optimum value function is given by V*(xt) = 
—&2«t, where &2 is a some positive constant. In this 
experiment, the set of possible states is constrained to 
lie in the range [—4,4]. When the state transition given 
by Equation 6 does not result in the range [—4,4], the 
xt is truncated.When the agent chooses an action that 
is not lie in the range [—4,4], the action executed in 
the environment is also truncated. 

5.2    Implementation for the LQR Problem 

5.2.1    The Actor 

Remember the policy ir(a, W, X) is a probability den- 
sity function when the set of possible action is con- 
tinuous. The normal distribution is a simple multipa- 
rameter distribution for a continuous random variable. 
It has two parameters, the mean fj, and the standard 
deviation <r. When the policy function ir is given by 
the equation 9, the eligibility of fi and a are 

»(a, p. (7)    =    -4=expC(a
o:/

)2)        (9) 
0-V27r 2<r2 

at 

ea    = 
(at - y)2 - cr2 

(10) 

(11) 

One useful feature of such a Gaussian unit 
[Williams 92] is that the agent has a potential to con- 
trol its degree of exploratory behavior. We must draw 
attention to the fact that the eligibility is to divergent 
when <T goes close to 0, because the parameter a is 
occupying the denominators of Equation 10 and 11. 
The divergence of the eligibility has a bad influence on 
the algorithm. One way to overcome this problem is 
to control the step size of the update parameter vec- 
tor using cr. It is obtained by setting the learning rate 
parameter proportional to <r2, then the eligibility can 
be seen as 

e„=at-n 
(at - fi)2 - <r2 

(12) 

The actor would first compute p and <r deterministi- 
cally and then draw its output from the normal dis- 
tribution that follows mean equal to \i and standard 
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deviation equal to a. The actor has two internal vari- 
ables, wi and w2, and computes the values of \i and a 
according to 

/j, = W\ xt a — 
1 

1 + exp(-u>2)' 
(13) 

Then, tuj can be seen as a feedback gain. The reason 
for this calculation of a is to guarantee the <r to keep 
positive. The ei and e2 are the characteristic eligibil- 
ities of wi and w2 respectively. From Equation 12, ej 
and e2 are given by 

ei    =    e^-r—fi   =   {at-fi)xt 

e2    = 

1W\ 

d 
e<>-z—o- 

ow2 

(14) 

jr- a   =   ((a, - tf - <r2)(l - a) .(15) 

The Wi is initialized to 0.35 ± 0.15, and w2 = 0, i.e., 
a = 0.5. The learning rate ap is fixed to 0.001. 

5.2.2    The Critic 

The critic quantizes the continuous state-space (—4 < 
x < 4) into an array of boxes. We have tried two types 
of the quantizing: one is discretizing x evenly into 3 
boxes, the other is 10 boxes. And the critic attempts to 
store in each box a prediction of the value V by using 
TD(0) [Sutton 88]. The learning rate a for TD(0) is 
fixed to 0.2. 

using the trace was not influenced by the critic's abil- 
ity in terms of the quality of the mean of the policy. 
We can also see this property in Figure 8, but its de- 
viation is considerably large. Figure 9 shows the value 
function that is defined by Equation 1 and 7 over the 
parameter space /z and a. The value of performance is 
fairly flat around the optimal solution. This is the rea- 
son that the deviation of the policy is large in Figure 
8. This example makes it clear that the critic controls 
step-size of the actor's backups so that the step-size is 
taken to be smaller around the local maximum. 

The algorithm in Figure 7 achieved best results in 
terms of both the mean and the deviation of the pol- 
icy. The reason for this may be owing to the critic's 
perfect value estimation. 

In this preliminary experiment, we can see that the 
algorithm using the actor's eligibility trace performed 
better than the algorithm without using the trace in 
the same computational resources. 

Here we presented the results of the actor-critic that 
use only TD(0) in the critic, but we have also experi- 
mented on TD(A) where 0 < A < 1. Roughly speaking, 
we have poor performance when the A approaches close 
to 1. It follows from this that the eligibility trace in 
the critic cannot make up for the critic's poor ability 
of function approximation. The details of the experi- 
ments using TD(A) will appear in other papers. 

5.3    Simulation Results 

Figure 4, 5, 6, 7 and 8 show the performance of 100 
trials in the LQR problem with the discount rate 7 = 
0.9. 

Figure 4 shows the performance of the algorithm, in 
which the critic uses 3 boxes, the actor does not use 
eligibility traces, i.e, ß = 0. Figure 6 shows the perfor- 
mance where the critic uses 10 boxes, the actor does 
not use the traces. The algorithm in Figure 6 con- 
verged close to the optimum feedback gain. In con- 
trast, Figure 4 didn't. The reason for this is that the 
ability of the function approximation (3 boxes) is in- 
sufficient for learning policy without the trace. 

Figure 5 shows the performance where the critic uses 
3 boxes, the actor uses the trace, ß = 7 = 0.9. It 
achieved much better results in terms of both the 
learning efficiency and the quality of the mean value of 
the converged policy than the algorithm in Figure 4 or 
5. Obviously, the actor's eligibility trace relates these 
two advantages. The reason for the learning efficiency 
in this case may be that the actor's trace accelerates 
propagating information. The better quality of the 
policy is clearly owing to the property that the actor 
improves its policy by using a gradient of actual re- 
turn, shown in Section 4.3. Therefore, the algorithm 
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Critic's Grid  =   3 

beta  B 0.0 
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optimum 

0   500  1000 1500 2000 2500 3000 3500 4000 4500 5000 
Learning steps 

Figure 4: The average performance of 100 trials with- 
out the actor's eligibility trace (ß = 0). The critic uses 
3 boxes. 
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Figure 5: The average performance of 100 trials using 
the actor's trace ß = 0.9. The critic uses 3 boxes. 
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Figure 7: The average performance of 100 trials using 
the actor's trace ß = 0.9. The critic uses 10 boxes. 
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Figure 6: The average performance of 100 trials with- 
out the actor's trace (ß = 0). The critic uses 10 boxes. 
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Figure 8: The average performance of 100 trials, ß — 
0.9. The agent learns without the critic, i.e., the critic 
provides V(x) = 0 for all a;. 
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Optimum point 

0.5 

Deviation 

Feedback gain 

Figure 9: Value function over the parameter space in 
the LQR problem, where 7 = 0.9. It is fairly fiat 
around the optimum: fi = —0.5884, a = 0. 

6    Applying to a Cart-Pole Problem 

The behavior of this algorithm is demonstrated 
through a computer simulation of a cart-pole con- 
trol task, that is a multi-dimensional nonlinear non- 
quadratic problem. We modified the cart-pole prob- 
lem described in [Barto et al. 83] so that the action is 
taken to be continuous. 

6.1     Problem Formulation 

The dynamics of the cart-pole system is modeled by 

gsinfl + COS0 (-F-mlS'ünt+ßc'g 
M+m )        ml 

p (4   m cosa $ \ 
* \3 M+m  ) 

F + ml id2 sin 0 - 0 cos o\ - ncsgn(x) 
x   =     ^ L  

M + m 

where M = 1.0 (kg) denotes mass of the cart, m = 0.1 
(kg) is mass of the pole, 2£ = 1 (m) is a length of 
the pole, g = 9.8 (m/sec2) is the acceleration of grav- 
ity, F (N) denotes the force applied to cart's center of 
mass, p,c = 0.0005 is a coefficient of friction of cart, 
fip = 0.000002 is a coefficient of friction of pole. In 
this simulation, we use discrete-time system to approx- 
imate these equations, where At = 0.02 sec. At each 
discrete time step, the agent observes (x,x,0,0), and 
controls the force F. The agent can execute action in 

^^^ 

x = 0 

Figure 10: The cart-pole problem. 

arbitrary range, but the possible action in the cart-pole 
system is constrained to lie in the range [-20,20](N). 
When the agent chooses an action which is not lie in 
that range, the action executed in the system is trun- 
cated. The system begins with (x,i,6,0) = (0,0,0,0). 
The system fails and receives a reward (penalty) signal 
of —1 when the pole falls over ±12 degrees or the cart 
runs over the bounds of its track (-2.4 < x < 2.4), 
then the cart-pole system is reset to the initial state. 

6.2    Details of the Agent 

In this experiment, the actor adopts similar im- 
plementation shown in Equation 9 and 12. The 
state space is constrained in the range (x,x,6,6) = 
(±2.4 m, ±2 m/sec, ±TT X 12/180 rad, ±1.5 rad/sec). 
The actor has five internal variables wi---ws, and 
computes the /i and a according to 

'( 
^U + W2Y + ^Uw/m + U>4 

1.5 

=    0.1 + 
1 

l+exp(-u>5)' 
(16) 

Similarly to Equation 14 and 15, the eligibilities 
t\ ■ ■ -es are given by 

ci = K - n) xt , e2 = (at - fi) x\ 

G3 = (at - A4) 0t , e4 = (at - p) 0t 

e5    =    ((at - tf - <r2)(l + 0.1 - cr) . 

The critic discretizes the normalized state space evenly 
into 3x3x3x3 = 81 boxes, and attempts to store in 
each box V by using TD(0) algorithm [Sutton 88]. The 
parameters are set to 7 = 0.95, a = 0.5, ap 

6.3     Simulation Results 

0.001. 

Figure 11 shows the performance of three learning 
algorithms in which the policy representation is the 
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same. The actor/critic algorithm using the actor's 
trace achieved best results. In contrast, the algorithm 
without using the trace couldn't learn the control pol- 
icy because of the poor ability of function approxima- 
tion in the critic. 

Actor/Critic 
using actor's 

eligibility trace 

200  250  300  350  400  450  500 
Trials 

Figure 11: The average performance of three algo- 
rithms on 100 trials. The critic uses 3x3x3x3 
boxes. A trial means an attempt from initial state to 
a failure. 

7    Discussion 

Representation of Policies: First of all, ac- 
tor/critic algorithms should have sufficient ability to 
approximate policies. If it is satisfied, use of the ac- 
tor's eligibility trace (/? = 7) enables to learn an ac- 
ceptable policy with less cost rather than increasing 
the critic's ability of function approximation in our 
test cases. The reason is that the policy function rep- 
resentation would require less memory than the rep- 
resentation of the state-action value function in many 
cases. 

Controlling Step-Size of Backups:    It is 
analytically shown in Section 4.3 that the critic pro- 
vides an appropriate reinforcement baseline to the ac- 
tor. The adaptive baseline controls step-size of the 
actor's backups so that the step-size is taken to be 
smaller around the local maximum. This property 
would contribute the better learning efficiency and 
the suppression of harmful drift of the policy that are 
shown in the experiments. 

To Overcome non-Markovian: There 
are many ways to implement the critic's learning 
scheme. [Peng et al. 94] and [Sutton 95] pointed out 
that increasing A makes TD(A) less sensitive to non- 
Markovian effect. The actor's eligibility traces are 
also useful in getting over non-Markovian problems 
[Kimura et al. 97]. Therefore, the combination of 
TD(A) and the actor's eligibility trace will be robuster 
in non-Markovian problems. 

Combining with Effiicient DP-based 
Methods: If the hidden state is relatively small 
in the state space, the agent may perform good in 
which efficient DP-based algorithms are adopted for 
the critic. The DP-based algorithms accelerate the ac- 
tor's learning in completely observable states, and the 
actor's stochastic policy and its trace (/? = 7) would 
make up for the non-Markovian effects owing to the 
hidden state or function approximation. 

8    Conclusions 

This paper presented an analysis of actor/critic algo- 
rithms in which the actor updates its policy using the 
eligibility trace of the policy parameters. The results 
show that when the discount rate of the value function 
equals the discount factor of the actor's trace, the actor 
improves its policy by using a gradient of actual return, 
not by using a gradient of the estimated return in the 
critic. Then, the critic provides an adaptive reinforce- 
ment baseline to the actor controlling the step-size of 
the actor's backups. It enables the agent to learn a 
fairly good policy under the condition that the approx- 
imated value function in the critic is hopelessly imper- 
fect. The behavior is demonstrated through simula- 
tions showing that the trace contributes the learning 
efficiency and the suppression of undesirable drifts of 
the policy. Analysis of the algorithm in non-Markovian 
environments is a future work. 
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Abstract 

To monitor or control a stochastic dynamic system, 
we need to reason about its current state. Exact 
inference for this task requires that we maintain a 
complete joint probability distribution over the pos- 
sible states, an impossible requirement for most pro- 
cesses. Stochastic simulation algorithms provide an 
alternative solution by approximating the distribu- 
tion at time t via a (relatively small) set of samples. 
The time t samples are used as the basis for generat- 
ing the samples at time t + 1. However, since only 
existing samples are used as the basis for the next 
sampling phase, new parts of the space are never ex- 
plored. We propose an approach whereby we try to 
generalize from the time t samples to unsampled re- 
gions of the state space. Thus, these samples are 
used as data for learning a distribution over the states 
at time t, which is then used to generate the time t+l 
samples. We examine different representations for a 
distribution, including density trees, Bayesian net- 
works, and tree-structured Bayesian networks, and 
evaluate their appropriateness to the task. The ma- 
chine learning perspective allows us to examine is- 
sues such as the tradeoffs of using more complex 
models, and to utilize important techniques such as 
regularization and priors. We validate the perfor- 
mance of our algorithm on both artificial and real 
domains, and show significant improvement in ac- 
curacy over the existing approach. 

1   Introduction 
In many real-world domains, we are interested in moni- 
toring the evolution of a complex situation over time. For 
example, we may be monitoring a patient's vital signs in 
an ICU, analyzing a complex freeway traffic scene with the 
goal of controlling a moving vehicle, or even tracking mo- 
tion of objects in a visual scene. Such systems have com- 
plex and unpredictable dynamics; thus, they are often mod- 
eled as stochastic dynamic systems. Even when a model of 

the system is known, reasoning about the system is a com- 
putationally difficult task. Our main concern in this paper 
is in using machine learning techniques as part of a reason- 
ing task; specifically, the task of monitoring the state of the 
system as it evolves and as new observations are obtained. 

Theoretically, the monitoring task is straightforward. 
We simply maintain a probability distribution over the pos- 
sible states at the current time. As time evolves, we update 
this distribution using the transition model; as new observa- 
tions are obtained, we use Bayesian conditioning to update 
it. Such a distribution is called a belief state; in a Marko- 
vian process, it provides a concise summary of all of our 
past observations, and suffices both for predicting the fu- 
ture trajectory of the system as well as for making optimal 
decisions about our actions [Ast65]. 

Unfortunately, even systems whose evolution model is 
compactly represented rarely admit a compact representa- 
tion of the belief state and an effective update process. Con- 
sider, for example, a stochastic system represented as a dy- 
namic Bayesian network (DBN) [DK89]. A DBN partitions 
the evolution of the process into time slices, each of which 
represents a snapshot of the state of the system at one point 
in time. Like a Bayesian network (BN), the DBN utilizes 
a decomposed representation of the state via state variables 
and a graphical notation to repesent the direct dependencies 
between the variables in the model. The evolution model of 
the system—the distribution over states at time t + l given 
the state at time t—is represented in a network fragment 
such as the one in Figure 1(a) (appropriately annotated with 
probabilities). DBNs have been used for a variety of appli- 
cations, including freeway surveillance [FHKR95], moni- 
toring complex factories [JKOP89], and more. 

Exact inference algorithms for BNs have analogues for 
inference in DBNs [Kja92]. Unfortunately, in most cases-, 
these algorithms also end up maintaining a belief state—a 
distribution over most or all of the variables in a time slice. 
Furthermore, it can be shown [BK98] that the belief state 
rarely has any structure that may support a compact repre- 
sentation. Thus, exact inference algorithms are forced to 
maintain a fully explicit joint distribution over an exponen- 
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Figure 1: (a) The simple CAPITAL 2TBN for tracking the growth of a hi-tech company; (b) The same 2TBN unrolled for 3 time slices- 
(c) The WATER 2TBN. 

tially large state space, making them impractical for most 
complex systems. 

A similar problem arises when we attempt to monitor a 
process with complex continuous dynamics. Here also, an 
explicit representation of the belief state is infeasible. 

This limitation has led to work on approximate infer- 
ence algorithms for complex stochastic processes [GJ96, 
BK98, KKR95, IB96]. Of the approaches proposed, 
stochastic simulation algorithms are conceptually sim- 
plest and make the fewest assumptions about the struc- 
ture of the process. The survival of the fittest (SOF) al- 
gorithm [KKR95] has been applied with success to large 
discrete DBNs [FHKR95]. The same algorithm (indepen- 
dently discovered by [IB96]) has been applied to the con- 
tinuous problem of tracking object motion in cluttered vi- 
sual scenes. 

The algorithm, which builds on stochastic simulation 
algorithms for standard BNs [SP89], is as follows: For 
each time slice, we maintain a (small) set of weighted sam- 
ples; a sample is one possible state of the system at that 
time, while its weight is some measure of how likely it is. 
This set of weighted samples is, in effect, a very sparse 
estimate of the belief state at time t. A sample at time 
t is propagated to time t + 1 by a random process based 
on the dynamics of the system. In a naive generalization 
of [SP89], each time t sample is propagated forward to time 
t + 1. However, as shown by [KKR95], this approach re- 
sults in extremely poor performance, with the error of the 
approximation diverging rapidly as t grows. They propose 
an approach where samples are propagated preferentially: 
those whose weight is higher are more likely to be propa- 
gated, while the lower weight ones tend to be "killed off." 
Technically, samples from time t are selected for propa- 
gation using a random process that chooses each sample 
proportionately to its weight. The resulting trajectories are 
weighted based on how well they fit the new evidence at 
time t + 1, and the process continues. Despite its simplicity 
and low computational cost, the SOF algorithm performs 
very well; as shown in [KKR95], its error seems to remain 
bounded indefinitely over time. As shown in [IB96], this 
algorithm can also deal with complex continuous processes 

much more successfully than standard techniques. 
In this paper, we use machine learning techniques to im- 

prove the behavior of the SOF algorithm, with the goal of 
applying it to real-world complex domains. The SOF algo- 
rithm shifts its effort from less likely to more likely trajec- 
tories, thereby focusing on the more relevant parts of the 
space. However, at time t + 1, it only samples parts of the 
space that arise from samples that it had at time t. Thus, 
it does not allow for correcting earlier mistakes: if its sam- 
ples at time t were unrepresentative in some way, then its 
samples at time t + 1 are also likely to be so. We can rein- 
terpret this behavior from a somewhat different perspective. 
The set of time t samples arc an approximation to the belief 
state at time t. When SOF chooses which samples to prop- 
agate it is simply sampling from this approximate belief 
state. Thus, the SOF algorithm is using a set of weighted 
samples as an approximation to a belief state, and a random 
sampling process to propagate an approximate belief state 
at time t to one at time t+1. 

This perspective is a natural starting point for our ap- 
proach. Clearly, a small number of weighted points is a 
suboptimal way of representing a complex distribution over 
a large space: As the number of samples is much smaller 
than the total size of the space, the representation is very 
sparse, and therefore necessarily unrepresentative. Our key 
insight is that our information about the relative likelihood 
of even a small number of points in the space can tell us 
a lot about the relative likelihood of others. Thus, we can 
treat our samples as data cases and use them to leant the 
shape of the distribution. In other words, we can use our 
own randomly generated samples as input to a density esti- 
mation algorithm, and use them to learn the distribution. 

This insight leads us to explore a number of improve- 
ments to the SOF algorithm. We first note, in Section 3, 
that the number of samples needed to adequately estimate 
the distribution can vary widely: in situations where the 
evidence is unlikely, more samples will be needed in order 
to "find" relevant regions of the space. Luckily, as we are 
generating our own data, we can generate as many samples 
as we need; that is, we can perform a simple type of active 
learning [CAL94]. 



Using learning for approximation in stochastic processes        289 

We then introduce a Dirichlet prior over the parameters 
of our distribution in order to deal with the problem of nu- 
merical overfitting, a particularly serious problem when we 
have a sparse sample for a very large space. We show that 
even these two simple improvements serve to significantly 
increase the accuracy of our algorithm. 

We then proceed to investigate the issue of generalizing 
from the samples to other parts of the space. Of course, in 
order to generalize, we need a representation whose bias is 
higher. The requirements of our task impose several con- 
straints both on the representation of the distribution and 
on the algorithm used to estimate it. First, as our state 
space is exponentially large, we must restrict attention to 
compact representations of distributions. Second, we must 
allow samples to be generated randomly from the distribu- 
tion in a very efficient way. Thus, for example, a neural 
network whose input is a possible state of the process and 
whose output is the probability of that state would not be 
appropriate. Finally, as we are primarily interested in fast 
monitoring in time-critical applications, we prefer density 
estimation algorithms that are less compute-intensive. 

Based on these constraints, we explore three main ap- 
proaches, appropriate to processes represented as DBNs: 
Bayesian networks with a fixed structure, tree-structured 
Bayesian networks with a variable structure, and density 
trees, which resemble decision trees or discrete regression 
trees. We compare the performance of these algorithms to 
that of the SOF algorithm, and show that all three track the 
process with higher accuracy. We show that the density 
tree approach seems particularly promising, and suggest a 
possible explanation as to why it behaves better than the 
other approaches. We conclude with some discussion and 
possible extensions of our approach to other domains. 

2   Preliminaries 

A discrete time stochastic process is viewed as evolving 
randomly from one state to another at discrete time points. 
Formally, there is a set of states £ such that at any point in 
time t, the situation can be described using some state x € 
S. We typically assume that the process is Markovian so 
that the probability of being in state x' at time t+1 depends 
only on the state of the world at time t. Formally, letting 
X^ denote the random variable (or set of random vari- 
ables) representing the state at time t, we have that X^t+1' 
is independent of X^°\..., X{t~l) given Xw.   Thus, 
p(x(°\...,xW) = p(xW)ifi=1p(xW I xV-V). 
We also typically assume that the process is time invariant, 
so that P{X{t) | X{t~1]) does not depend on t. Thus, 
it can be specified using a single transition model which 
holds for all time points. 

In a DBN, the state of the process at time t is specified in 
terms of a set of state variables X{ (0 , X„ . The transi- 
tion model therefore has to define a probability distribution 
P(x{t+1),..., X%+1) | X[t],..., XP). We specify such 

a distribution using a network fragment called a 2TBN—a 
two time-slice Bayesian network, as shown in Figure 1(a). 
A 2TBN defines the probability distribution for any time 
slice t + 1 given time slice t: for each variable X\ 
in the second time slice, the network fragment specifies a 
set of parents Parents{x\i+1>), which can be variables ei- 
ther in time slice t + 1 or in time slice t; it also specifies 
a conditional probability table, which describes the proba- 

bility distribution over the values of xf+1) given any pos- 
sible combination of values for its parents. As a whole, the 
2TBN completely specifies P(X{t+1) | X(t)). The net- 
work fragment can be unrolled to define a distribution over 
arbitrarily many time slices. Figure 1(b) shows the 2TBN 
of Figure 1(a) unrolled over three time slices. 

The state of the process is almost never fully observ- 
able; thus, in any time slice, we will get to observe the 
values of only some subset of the variables. In most mon- 
itoring tasks, the set of observable variables is the same in 
the different time slices. These variables typically represent 
sensor readings, e.g., the reading of some blood-pressure 
monitor in the ICU or the output of a video camera on a 
freeway overpass. Let O^ be the set of observable vari- 
ables at time t, and let o^ be the instantiation of values for 
these variables observed at time t. In the monitoring task, 
we are interested in reasoning about X[',..., X„ given 
all the observations seen so far; i.e., we want to maintain 
P(X« | o(°\... ,<>«). 

As we discussed in the introduction, the stochastic sim- 
ulation algorithms for DBNs is based on the standard like- 
lihood weighting (LW) algorithm. The algorithm, shown 
in Figure 2, generates a sample by starting at the roots of 
the network and continuing in a top-down fashion, picking 
a value for every variable in turn. A value for a variable 
is sampled according to the appropriate conditional distri- 
bution, given the values already selected for its parents. 
Variables whose values were observed as evidence are not 
sampled; rather the variable is simply instantiated to its ob- 
served value. However, we must compensate for the fact 
that we forced this variable to take a value which may or 
may not be likely. Thus, we modify the weight of the sam- 
ple to reflect the likelihood of having observed this partic- 
ular value for this variable. It is easy to see that, while our 
algorithm only generates points x that are consistent with 
our observations, the expected weight for any such x (i.e., 
the probability with which it is generated times its weight 
when it is) is exactly its probability. Thus, our weighted 
samples are an unbiased estimator of the (unnormalized) 
distribution over the states and the observations. Note that 
the weight of the sample represents how well it explains 
our observations. Thus, a sample of very low weight is a 
very bad explanation for the observations, and contributes 
very little to our understanding of the situation. 

The straightforward application of LW to DBNs is sim- 
ply by treating the DBN as one very long BN. Roughly 
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LikelihoodWeighting(x((),o(t+1)) 
w := 1 
for i := 1 ton 

Let u be the assignment to Parents(x\l+^) in x((), x(f+1) 

IfXjt+1)isnotinO<t+1> 
Sample ^(+1) from P{x\t+l) | Pwmts{X\t+l)) = ti) 

Else 
Set x;       to be Xi 's observed value in o(,+1^ 
Set w := w • P(xlt+1) = x\t+1) \ Parents{X\t+l)) = «) 

Return(x(t+1),w) 

Figure 2: A temporal version of the likelihood weighting algo- 
rithm; it generates an instantiation x('+1) for the time t + 1 vari- 
ables given an instantiation x(() for the time t variables. 

speaking, the algorithm would maintain a set of samples 
xW[l],...,a;W[iV] for every time slice t, representing 
possible states of the process at that time. At each time 
slice t, each of the samples is propagated to the next time 
slice using the LW algorithm, and its weight is adjusted 
according to how well it reflects the new observations. Un- 
fortunately, as observed by [KKR95], this approach works 
very poorly for most DBNs. Intuitively, the process by 
which samples are randomly generated is oblivious to the 
evidence, which only affects the weight assigned to the 
samples. Therefore, the samples represent random trajec- 
tories through the system, most of which are completely 
irrelevant. As a consequence, as shown in [KKR95], the 
accuracy of LW diverges extremely quickly over time. 

The survival of the fittest algorithm of [KKR95] ad- 
dresses this problem by preferentially selecting which sam- 
ples to propagate according to how likely they are, i.e., their 
weight relative to other samples. Technically, each sam- 
ple a;^[j] is associated with a weight w/''[j]. In order to 
propagate to the next time slice, the algorithm first renor- 
malizes all of the weights u/'' [j] to sum to 1. Then, it 
generates N new samples for time t + 1 as follows: For 
each new sample j, it selects x^ randomly from among 
ajOfl],..., x® [N], according to their weight. It then calls 
LW with x^ as a starting point, and gets back a time t + 1 
sample a:'t+1) and a weight w. It sets a^'"1"1^'] := cc'<+1' 
and u;('+1)[j] := w. Note that the weight of the sam- 
ple VJW [j] manifests in the relative proportion with which 
x^\j] will be propagated, so that we do not need to re- 
count it when defining w^t+1^[j]. Kanazawa et al. show 
empirically that, unlike LW, the error of SOF seems to re- 
mains bounded indefinitely over time. 

3   Belief state estimation 

We can interpret the SOF algorithm as estimating a proba- 
bility distribution over the states at time t. Having gener- 
ated some number of samples x^[l],.. .,x^[N], itrenor- 
malizes their weights to sum to 1. The result is a simple 

count distribution asc' over the states at time t, one which 
gives some positive probability to states that correspond to 
one or more samples, and zero probability to all the rest. 
The SOF algorithm then generates N new samples from 
aSc, and propagates each of them to time t + 1 using the 
LW algorithm. The result samples arc again renormalizcd, 
and the process repeats. 

The distribution asc   is a compact approximation to 
the belief state er*'' at time t—the correct distribution 

o''').  Assuming we know the initial P{X™ | o(°\ 

state at time 0, al"' is precisely the belief state at time 0. 
The properties of LW imply that our weighted samples at 

,(°) 

time 1 are an unbiased estimator for P(X( ',o(1' | o(0)). 

Thus, after renormalization, asc is an estimator (albeit a 
biased one) for P(X^ \ of0\o^). By similar reason- 

ing, we have that ale is a (biased) estimator for P{X^ | 
o( '). However, each asc  is only a very sparse o<°>, 

approximation to a^\ and thus one which is less than rep- 
resentative. It is also highly variable, with a strong depen- 
dence on which samples we happened to pick at the mul- 
tiple previous random sampling stages. Both the sparsity 
and variability of our estimate propagate to the next time 
slice, increasing the variance of our approximation. 

Our first attempt to control this variance relates to the 
amount of data on which our estimation is based. Naively, 
it seems that, at each phase, we arc basing our estimation 
procedure on the same number N of samples. However, 
when we are renormalizing our distribution, we arc not di- 
viding by N, but rather by the total weight of the samples. 
Intuitively, if the evidence observed at a given time point is 
unlikely, each sample generated will explain it less well, so 
that its weight will be low. Thus, if the total weight of our 
N samples is low, then we have not really sampled a signif- 
icant portion of the probability mass. Indeed, as argued by 
Dagum and Luby [DL97], the actual number of effective 
samples is their total weight. Thus, we modify the algo- 
rithm to guarantee that our estimation is based on a fixed 
weight rather than a fixed number of samples. 

Our results for this improvement, applied to the simple 
CAPITAL network, are shown in Figure 3. The data were 
generated over 25 runs. In each run, the observations were 
generated randomly, from the correct distribution; thus they 
correspond to typical runs of the algorithm over a typical 
evidence sequence. Figure 3(a) shows the number of sam- 
ples used over different time slices; we sec that the number 
of samples varies significantly over time, illustrating that 
the algorithm is taking advantage of the additional flexi- 
bility. The average number of samples per time slice used 
over the run is 65. Figure 3(b) compares the accuracy of 
this algorithm to that of a fixed-samples algorithm using 65 
samples in each time slice. We see that while the average 
number of samples used is the same, the variable-samples 
approach obtains consistently higher accuracy; in order to 
obtain comparable accuracy from the fixed-samples algo- 



Using learning for approximation in stochastic processes 291 

fcounting with variable number of samples - 
aim ile counting with fixed number of samples - 

(a) 

iblpiiikf 

Simple counting with variable number of samples - 
Simple counting with fixed number of samples - 

0     20    40    60    80    100    120    140    160    160 

(b) 

Figure 3: Comparison of variable-samples and fixed-samples algorithms for the CAPITAL network, averaged over 25 sequences: (a) 
number of samples used; (b) £i error. 

rithm, around 70 samples are needed. We note that while 
both the error and the number of samples varies widely, 
they remain bounded indefinitely over time. This bound- 
edness property continues to hold even in long runs with 
thousands of time slices. We also note that the number of 
states in the explicit belief state representation is 256, as 
compared to 55-80 samples used; thus our sampling ap- 
proach allows considerable savings. 

We have experimented with the number of samples re- 
quired for different evidence sequences. Our results show 
that unlikely evidence sequences require many more sam- 
ples than likely evidence, thereby justifying our intuition 
about the reason for the variability in the number of sam- 
ples needed. Furthermore, the accuracy maintained by the 
variable-samples algorithm for likely and unlikely runs is 
essentially the same; thus, in a way, the algorithm gener- 
ates as many samples as it needs to maintain a certain level 
of performance. We can view this ability as a type of ac- 
tive learning [CAL94], where the learning algorithm has 
the ability to ask for more data cases when necessary. In 
our context, the active learning paradigm is particularly ap- 
propriate, as the algorithm is generating its own data cases. 

Our next improvement relates to another problem with 
the SOF algorithm. Our time t samples are necessarily very 
sparse, so that many entries in the probability distribution 
ai^ will have zero probability, even though their true prob- 
ability is positive. This type of behavior can cause signif- 
icant problems, as samples at time t + 1 are only gener- 
ated based on our existing samples at time t. If the pro- 
cess is not very stochastic, i.e., if there are parts of the 
state space that only transition to other parts with very low 
probability, parts of the space that are not represented in 
o$ will not be explored. Unfortunately, the parts of the 
space that are not represented may be quite likely; our sam- 
pling process may simply have missed them earlier, or they 
may be the results of trajectories that appeared unlikely in 

earlier time slices because of misleading evidence. This 
problem is reflected clearly if we measure the distance be- 
tween our approximation and the exact distribution using 
relative entropy [CT91], for many reasons the most ap- 
propriate distance measure for this type of situation. For 
an exact distribution <j) and an approximate one ip over 
the same space H, the relative entropy D(</>\\ip) is defined 
as 5Zw€fj^(a;)log(0(u;)/^(w)). In cases» such as ours> 
where the approximate distribution ascribes probability 0 
to entries that are not impossible, the relative entropy dis- 
tance is infinite. 

The machine learning perspective offers us a simple and 
theoretically well-founded solution to the problem of un- 
warranted zeros in our estimated distribution. We view the 
problem from the perspective of Bayesian learning, where 
we have a prior distribution over the parameters we are try- 
ing to estimate: the probabilities 9W of the different states 
x in our belief state. An appropriate prior for multinomial 
distributions such as this is the Dirichlet distribution. We 
omit the formal definition of the Dirichlet prior, referring 
the reader to [Deg86]. Intuitively, it is defined using a set of 
hyperparameters aXi, each representing "imaginary" sam- 
ples observed for the state a:*. In our case, as we have no 
beliefs in favor of one state x over another, we chose aXi 

to be uniformly a/r, where r is the total number of states 
consistent with our evidence. 

Computing with this seemingly complex two-level dis- 
tribution is actually quite simple, as most computations are 
equivalent to working with a single distribution cr)c'+, ob- 
tained from taking the expectation of the parameters {6X} 
relative to their prior distribution. In our case, for each 
x consistent with our evidence, we have that cr)c'+ (x) = 
(w^ix) + a/r)/Z where w^(x) is the total weight of 
samples x^[j] whose value is x, and Z is a normaliz- 
ing factor. We see that each instantiation x in our distri- 
bution a^J+ (if consistent with our evidence) will have at 
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least some very small probability mass. Wc note that, even 
though a(

sc'+(x) > 0 for every x, we need only represent 
explicitly those states which have materialized in our sam- 
pling algorithm. Thus, the cost of maintaining such a dis- 
tribution is no higher than that of maintaining our original 
sparse set of samples. 

The introduction of a prior serves to "spread out" some 
of the probability mass over unobserved states, increasing 
the amount of exploration done for unfamiliar regions of 
the space. We investigated the tradeoff between sampling 
in regions that are known to be likely and in new regions. 
As Q grows, the performance of our algorithm first im- 
proves, then gradually decreases, as we would expect. 

4   Alternative belief states representations 

While this approach allows us to generate samples from 
unexplored parts of the space, it does so blindly: all un- 
sampled states are treated in exactly the same way. How- 
ever, our state space is not a completely arbitrary set of 
points. Two states x and x' which give the same values 
to almost all of the variables in our domain may be quite 
similar, and it may make sense to assume that their proba- 
bilities are much closer than that of other pairs. That is, we 
want to use our results for the states that we sampled to in- 
duce the probabilities of other states. This task is precisely 
a density estimation task (a type of unsuperviscd learning), 
where the set of sampled states are the training data.1 

As in any learning task, wc must first define the hypoth- 
esis space. Essentially, our representations above fall into 
the category of nonparametric density estimators [Sco92]. 
(Roughly speaking, they arc a discrete form of Parzen win- 
dow.) As applied in our setting, these density estimators 
have no bias (and high variance); thus, they are incapable 
of generalizing from the training data to the rest of the 
space. In this section, we explore alternative representa- 
tions of discrete densities that have higher bias and a corre- 
spondingly higher generalization power. As we discussed 
in the introduction, not every representation is suitable for 
our needs. Our representation must be significantly more 
compact than the full joint over the state variables; it must 
support an effective sampling process; and it must be eas- 
ily learned. Two appropriate representations are Bayesian 
networks and density trees. 

Bayesian networks. Given our overall problem, a 
Bayesian network representation for our distribution seems 
particularly appropriate. After all, our process is repre- 
sented as a DBN, and is therefore highly structured. While 
it is known that conditional independences are not main- 
tained in the belief states [BK98], it is reasonable to as- 
sume that some of the random variables in a time slice are 

only weakly correlated with each other, and perhaps even 
weaker when conditioned on a third variable. 

There has been a substantial amount of recent work on 
learning Bayesian networks from data (sec [Hcc95] for a 
survey). The simplest option is to fix the structure of the 
Bayesian network and to use our data to fill in the pa- 
rameters for it. This process can be accomplished very 
efficiently, by a simple traversal over our data. Specif- 
ically, if our Bayesian network contains a node X with 
parents V, then we need to estimate each of the param- 
eters P(X — x | Y = y). The maximum likelihood 

estimate for these parameters would be "" T'v.   How- 
' c.it(V) 

ever, maximum likelihood estimates result in precisely the 
type of numerical ovcrfitting (and particularly zero prob- 
ability estimates) that wc strove to avoid in the previous 
section. It turns out that, if wc instead estimate the param- 
eter as g,f+ Tv' 7 . we get the effect of introducing 
a Dirichlct prior over each of our BN parameters. For a 
given Bayesian network structure B, the resulting distri- 
bution abn(B) is the one that minimizes D(asc+\\ai>n^)) 
among all distributions reprcsentablc by B. 

One potential problem with this approach is that the 
BN structure B must be determined in advance, based on 
some prior knowledge of the user or on a manual analy- 
sis of the DBN structure. Furthermore the BN structure is 
fixed over the entire length of the run, whereas the true be- 
lief state er''' can change drastically as the process evolves. 
It seems quite likely that the most appropriate BN struc- 
ture for approximating (jO also varies. This observation 
suggests that wc select a different BN structure for each 
time slice. Unfortunately, learning of BN structure is a 
hard problem. Theoretically, even the problem of learn- 
ing the optimal structure where each node is restricted to 
have at most k parents is NP-hard for any k > 1 [CHG95]. 
Pragmatically, the algorithms for this learning task arc ex- 
pensive, performing a greedy search, with multiple restarts, 
over the combinatorial (and supcrexponential) space of BN 
structures. 

One option is to restrict our search to tree-structured 
BNs—ones where each node has at most one parent. Chow 
and Liu [CL68] present a simple (quadratic time) algo- 
rithm for finding the tree-structured BN whose distribu- 
tion is closest—in terms of relative entropy—to the one 
in our data. The intuition is that, in a tree-structured BN, 
the edges should correspond to the strongest correlations. 
Thus, the algorithm introduces a direct connection between 
the variables whose mutual information [CT91] is largest. 
Formally, for each pair of variables Xi,Xj, wc define an 
edge-weight 

W(Xi,Xj) = ^2 crsc+{xi,Xj)\og 
0~sc+(Xi)asc+(Xj) 

1U we view SOF as doing a process akin to bootstrapping by 
sampling from its own samples, our extension is akin to smoothed 
bootstrapping [Sil86]. 

which is precisely the mutual information between X{ and 
Xj in asc+. We then choose a maximum-weight spanning 
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tree over these nodes, where the weight of the tree is the 
sum of the weights of the edges it spans. We then select an 
arbitrary root for the tree, and fill in the conditional proba- 
bility tables for the nodes in the network using asc+ (as in 
the case of a fixed BN). Here, again, choosing the parame- 
ters using asc+ is equivalent to introducing a Dirichlet prior 
over the network parameters. Chow and Liu show that the 
distribution ast represented by the resulting spanning tree 
minimizes jD(<7sc+||<7st). 

Density trees. A discrete density tree is similar in overall 
structure to a classification decision tree. However, rather 
than representing a conditional distribution over some dis- 
tinguished class variable given the features, the density tree 
represents a probability distribution an over some set of 
variables X. Each interior node in the tree is labelled with 
a variable X, and the branches at that node with values x 
for that variable. A path on the tree to a node n thus corre- 
sponds to an assignment yn to some subset of the variables 
in the domain Yn. 

The tree is a recursive representation of a multivariate 
distribution. At a high level, the tree structure partitions 
the space into bins, corresponding to the leaves in the tree. 
The distribution at each leaf n is uniform over the variables 
X - Yn\ the different leaf distributions are combined in 
a weighted average, where the weight of a leaf is simply 
the product of the edge-weights along the path to it. More 
technically, letting Zn represent X - Y„, we have that if 
n is a leaf, then Odt(Zn \ n) is uniform over the values of 
Zn; if n is an interior node labelled with X, then oat (Zn | 
n) = Ex adt{X = x | n) • adt{Zn - {X} \ nx), where 
nx is the child of n corresponding to the value x of X and 
Cdt{X = x | n) is the weight along the edge to it. 

Our error function for the density tree learning algo- 
rithm is the relative entropy between our empirical distri- 
bution asc+ and Odt- We use a greedy algorithm which is 
very similar to the one for classification trees. We start out 
with the tree containing only the root node. We then iter- 
atively split nodes on the variable that most decreases this 
error function. At each point, we estimate the parameters 
using asc+, as we did for BNs. We use a greedy algorithm 
to determine the splits. The contribution that n makes to 
the overall relative entropy, if it remains a leaf, is propor- 
tional to D{asc+(Zn | yn)\\uZn), where uZn is the uni- 
form distribution over the assignments z to Zn. If we split 
n on a variable X, each of its children nx (assuming they 
remain leaves) would make a contribution proportional to 
asc+(x | yn)D(asc+{Zn - {X} \yn,x)\\uZn_{x}). It 
is easy to show that the decrease in the relative entropy is 
precisely D(asc+(X \ yn)\\ux)- We split n on that vari- 
able X which maximizes this decrease. Intuitively, this 
rule makes perfect sense: if we are representing the dis- 
tributions at the leaves as uniform, then we should first ex- 
tract these variables whose marginal distribution at n is the 
farthest from being uniform. 

In order to avoid overfitting, we prevent the density-tree 

Relative error #samples/slice runtime/slice 
(minutes) 

counting 2.275 ±1.07 X 10-4 1024 ± 1066 0.722 

Chow-Liu tree 2.106 ±0.75 X 10"" 962 ± 977 0.044 

BN 1 (29 params) 2.102 ±0.96 X 10~4 981 ± 970 0.064 

BN 2 (340 params) 2.104 ±0.79 X 10"4 962 ± 1045 0.07 

BN 3 (1401 params) 2.112 ±0.73 X 10"4 990 ± 1045 0.07 

density tree 1.816 ±0.89 X 10-4 985 ± 1063 0.068 

Figure 4: Means and standard deviations for different belief state 
representations 

from growing to fit all of the samples. We utilize the stan- 
dard idea of early stopping; our stopping rule prevents a 
node from splitting when the improvement to the relative 
entropy score is lower than some minimal amount. Specif- 
ically, we only allow a split of n on X when <7sc+(yn) • 
D(asc+(X | yn)\\ux) is higher than some threshold. 

We note that our notion of a density tree draws upon 
the literature of semiparametric density estimation tech- 
niques for continuous densities [Sco92]. The uniform dis- 
tribution over samples at each leaf is similar to multi- 
dimensional histogram techniques; however, the tree struc- 
ture allows variable-sized bins, and therefore greater flex- 
ibility in matching the number of parameters to the com- 
plexity of the distribution. 

5   Experimental results 

To provide a more realistic comparison, we tested the dif- 
ferent variants of our algorithm on the practical WATER 
DBN [JKOP89], used for monitoring the biological pro- 
cesses of a water purification plant. (Comparable results 
were obtained for the CAPITAL network.) The WATER DBN 
had a substantially larger state space, with 27,648 possible 
values taken by the (non-evidence) variables. The structure 
of the WATER network is shown in Figure 1(c). 

We experimented with several belief state representa- 
tions: simple counting (SOF extended with priors); three 
different Bayesian networks of fixed structure, with 29, 
340, and 1401 parameters respectively; Chow-Liu span- 
ning trees; and density trees. We tested each representa- 
tion on 10 runs, each of length 100, and where we used a 
variable-samples approach with a target weight of 5. For 
each run, we tested the average relative entropy error over 
the run.2 (We also tested A error, with comparable re- 
sults.) We then computed the mean and standard deviation 
of these run-average errors for the different representations. 
We did the same for the number of samples utilized per 
time slice. The results are shown in Figure 4. 

Not surprisingly, the worst performer in terms of ac- 

2We note that the momentary errors within a run—for belief 
states at individual time slices—can also vary widely, as can be 
seen from Figure 3. We tested the standard deviation of the mo- 
mentary errors within a run, and it was approximately the same 
among all representations—around 50-55% of the overall aver- 
age for the run. We omit the detailed results. 
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curacy is the simple counting approach. The performance 
of the Chow-Liu trees and the fixed Bayesian networks is 
about comparable, although the Bayesian network with a 
large number of parameters performs slightly worse than 
the rest. The density tree approach performs best, with 
a fairly significant margin. The number of samples used 
by the different approaches are not significantly different. 
What is significant is the fact that the number of samples 
generated is a factor of 15-25 smaller than the number 
of states in the state space. Indeed, the running times for 
the different approaches are all significantly lower than the 
1.89 minutes per time slice required by exact inference. We 
note that the running times were all estimated on simple 
prototype code. We expect the running times for optimized 
code to be significantly lower. However, the relative effi- 
ciencies of the different algorithms should remain the same. 

0.00022 

v 

I                  i 1                              1                              1                  T-                 I      

simple counting   
Chow-Liu spanning tree   

average complexly Bayesian network — 
Density tree       ■■   . 

0.0002 ■ - 
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0.00016 • N. ..^^>. 
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Figure 5: Average error for the WATER network for different tar- 
get weights. The average is over 10 runs of 100 time slices each. 

Figure 5 gives more evidence in favor of the density tree 
approach, demonstrating that it makes somewhat better use 
of data. The graph is a type of learning curve for the dif- 
ferent approaches: the average error as a function of the 
target weight. We see that, for any given target weight, 
the density tree achieves higher accuracy. Furthermore, as 
we increase the target weight for our sampling algorithm, 
the error in the density tree approach descreases slightlu 
faster. We note that this improvement does not come at the 
expense of increasing the overall number of samples: our 
experiments show that the average number of samples used 
is essentially identical for the different algorithms, and es- 
sentially linear in the target weight. 

We believe that two factors contribute to making den- 
sity trees a suitable representation for this task. The first is 
its inductive bias. A BN representation reflects an assump- 
tion that some of the random variables in the domain in- 
fluence each other only weakly or indirectly via other vari- 
ables. A density tree representation reflects an assumption 
that the distribution is substantially different when condi- 

tioned on different values of the same variable. Our re- 
sults indicate that the variability across different values of 
a variable is a more significant factor than any (weak) in- 
dependences found in the distribution. Wc believe that the 
evidence serves to sharply skew the distribution in a certain 
direction, making it much more important for the approx- 
imate probability distribution to appropriately model that 
part of the space. Indeed, an examination of the trees pro- 
duced by the density tree algorithm for different time slices 
shows that the parts of the tree corresponding to more likely 
parts of the space are usually represented using a much 
finer granularity—with subtrees that arc two or more levels 
deeper—than the less likely ones. 

A secondary factor that we believe also contributes to 
these performance results is the more flexible choice of the 
structure of the representation. This flexibility, which is 
shared by Chow-Liu trees and density trees, allows the rep- 
resentation of the approximate belief state to adapt to the 
current state of the process. An examination of the actual 
models learned by these algorithms at different points in 
time, shows that the structure does, in fact, vary signifi- 
cantly. This property is particularly helpful in the density 
tree case, as the most likely part of the state space changes 
in virtually every time slice. 

6    Extensions and Conclusions 

This paper deals with sampling-based approximate mon- 
itoring algorithms for a stochastic dynamic process. We 
have proposed the use of machine learning techniques in or- 
der to allow the algorithm to generalize from samples it has 
generated to samples it has not. We have shown that this 
idea can significantly improve the quality of our tracking 
for a given allocation of computational resources. Wc note 
that a related idea [BD97] has been proposed in the domain 
of combinatorial optimization algorithms, and has proved 
very effective. There, rather than maintaining a popula- 
tion of candidate solutions (as in genetic algorithms), the 
"good" candidate solutions generated by the algorithm arc 
used to learn a distribution, from which samples arc then 
generated for the next optimization phase. 

We have investigated the use of several representations 
for our probability distributions. We saw that wc get signif- 
icant benefits from allowing the structure of the distribution 
to vary according to context—both for different parts of the 
space within the same distribution, and for different distri- 
butions over time. In our density tree representation, this 
flexibility was part of the definition. It would be interest- 
ing to see whether we could get even better performance 
by allowing the other representations to be more flexible. 
One possibility is to combine Bayesian networks and den- 
sity trees; there are several ways of doing so, which we arc 
currently investigating. We are also considering the use of 
other (computationally more expensive) representations of 
a density, e.g., as a mixture model where the mixture com- 
ponents have independent features [CS95]. 
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It is interesting to also compare our approach to other 
types of algorithms for inference in stochastic processes. 
As we have shown, the number of samples generated 
by our algorithm is significantly lower than the num- 
ber of states in the explicit representation of the belief 
state. Thus, our algorithm allows us to deal with do- 
mains in which exact inference is intractable. Another op- 
tion is to use non-stochastic approximate inference algo- 
rithms [GJ96, BK98]. The approach of [GJ96] is not re- 
ally intended for real-time monitoring, and is probably too 
computationally expensive to be used in that role. It also 
applies only to a fairly narrow class of stochastic models. 
The algorithm of [BK98] is more comparable to ours; es- 
sentially, it avoids the sampling step, directly propagating a 
time t approximate belief state to a time t + 1 approximate 
belief state. For certain types of processes, this approach 
probably dominates ours, as it avoids the additional vari- 
ance introduced by the sampling phase. However, it is not 
obvious how it can be implemented effectively for all be- 
lief state representations (e.g., for density trees). Further- 
more, it does not apply to processes where the represen- 
tation of the process itself does not admit exact inference 
(e.g., highly-connected DBN models or models involving 
continuous variables). 

By contrast, we note that our ideas are not specific to 
DBNs. The only use we made of the DBN model is as a 
representation from which we can generate random sam- 
ples. We believe that our ideas apply to a much wider 
range of processes. Indeed, Isard and Blake [IB96] have 
obtained impressive results by using a stochastic sampling 
algorithm identical to simple SOF for the task of monitor- 
ing object motion in cluttered scenes. Here, the process is 
described using fairly complex continuous dynamics, that 
do not permit any exact inference algorithm. We believe 
that our ideas can also be used to provide improved algo- 
rithms for complex processes such as these, as well as for 
processes involving both continuous and discrete variables. 
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Abstract 

Similarity is an important and widely used con- 
cept. Previous definitions of similarity are tied 
to a particular application or a form of knowl- 
edge representation. We present an information- 
theoretic definition of similarity that is applica- 
ble as long as there is a probabilistic model. We 
demonstrate how our definition can be used to 
measure the similarity in a number of different 
domains. 

1   Introduction 

Similarity is a fundamental and widely used concept. 
Many similarity measures have been proposed, such as 
information content [Resnik, 1995b], mutual information 
[Hindle, 1990], Dice coefficient [Frakes and Baeza-Yates, 
1992], cosine coefficient [Frakes and Baeza-Yates, 1992], 
distance-based measurements [Lee et al., 1989; Rada et al., 
1989], and feature contrast model [Tversky, 1977]. McGill 
etc. surveyed and compared 67 similarity measures used in 
information retrieval [McGill et al., 1979]. 

A problem with previous similarity measures is that each 
of them is tied to a particular application or assumes a 
particular domain model. For example, distance-based 
measures of concept similarity (e.g., [Lee et al., 1989; 
Rada et al., 1989]) assume that the domain is represented in 
a network. If a collection of documents is not represented 
as a network, the distance-based measures do not apply. 
The Dice and cosine coefficients are applicable only when 
the objects are represented as numerical feature vectors. 

Another problem with the previous similarity measures is 
that their underlying assumptions are often not explicitly 
stated. Without knowing those assumptions, it is impossi- 
ble to make theoretical arguments for or against any par- 

ticular measure. Almost all of the comparisons and evalu- 
ations of previous similarity measures have been based on 
empirical results. 

This paper presents a definition of similarity that achieves 
two goals: 

Universality: We define similarity in information- 
theoretic terms. It is applicable as long as the domain 
has a probabilistic model. Since probability theory 
can be integrated with many kinds of knowledge 
representations, such as first order logic [Bacchus, 
1988] and semantic networks [Pearl, 1988], our def- 
inition of similarity can be applied to many different 
domains where very different similarity measures had 
previously been proposed. Moreover, the universality 
of the definition also allows the measure to be used in 
domains where no similarity measure has previously 
been proposed, such as the similarity between ordinal 
values. 

Theoreticaljustification: The similarity measure is not 
defined directly by a formula. Rather, it is derived 
from a set of assumptions about similarity. In other 
words, if the assumptions are deemed reasonable, the 
similarity measure necessarily follows. 

The remainder of this paper is organized as follows. The 
next section presents the derivation of a similarity mea- 
sure from a set of assumptions about similarity. Sections 3 
through 6 demonstrate the universality of our proposal by 
applying it to different domains. The properties of different 
similarity measures are compared in Section 7. 

2   Definition of Similarity 

Since our goal is to provide a formal definition of the in- 
tuitive concept of similarity, we first clarify our intuitions 
about similarity. 
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Intuition 1: The similarity between A and B is related 
to their commonality. The more commonality they 
share, the more similar they are. 

Intuition 2: The similarity between A and B is related to 
the differences between them. The more differences 
they have, the less similar they are. 

Intuition 3: The maximum similarity between A and B is 
reached when A and B are identical, no matter how 
much commonality they share. 

Our goal is to arrive at a definition of similarity that cap- 
tures the above intuitions. However, there are many alter- 
native ways to define similarity that would be consistent 
with the intuitions. In this section, we first make a set of 
additional assumptions about similarity that we believe to 
be reasonable. A similarity measure can then be derived 
from those assumptions. 

In order to capture the intuition that the similarity of two 
objects are related to their commonality, we need a measure 
of commonality. Our first assumption is: 

Assumption 1: The commonality between A and B is mea- 
sured by 

7(common(A, B)) 
where common(A, B) is a proposition that states the com- 
monalities between A and B; I(s) is the amount of infor- 
mation contained in a proposition s. 

For example, if A is an orange and B is an apple. The 
proposition that states the commonality between A and B 
is "fruit(A) and fruit(B)". In information theory [Cover and 
Thomas, 1991], the information contained in a statement 
is measured by the negative logarithm of the probability of 
the statement. Therefore, 

7(common(A, B)) = - log P(fruit(A) and fruit(-B)) 

We also need a measure of the differences between two ob- 
jects. Since knowing both the commonalities and the dif- 
ferences between A and B means knowing what A and B 
are, we assume: 

Assumption 2: The differences between A and B is mea- 
sured by 

/(description^, B)) — J(common(A, B)) 
where description(A, B) is a proposition that describes 
what A and B are. 

Intuition 1 and 2 state that the similarity between two ob- 
jects are related to their commonalities and differences. We 
assume that commonalities and differences are the only fac- 
tors. 

Assumption 3: The similarity between A and B, 
sim(A, B), is a function of their commonalities and dif- 

ferences. That is, 
sim(A,ß) = /(/(common(A,B)),/(description^, B))) 
The domain of fv&{{x,y)\x > 0,y > 0,y > x}. 

Intuition 3 states that the similarity measure reaches a con- 
stant maximum when the two objects are identical. We as- 
sume the constant is 1. 

Assumption 4: The similarity between a pair of identical 
objects is 1. 

When A and B are identical, knowing their commonalities 
means knowing what they are, i.e., I(common(A,B)) = 
/(description^, £?)). Therefore, the function / must have 
the property: Vx > 0, f{x, x) = 1. 

When there is no commonality between A and B, we as- 
sume their similarity is 0, no matter how different they are. 
For example, the similarity between "depth-first search" 
and "leather sofa" is neither higher nor lower than the sim- 
ilarity between "rectangle" and "interest rate". 

Assumption 5: Vy > 0, /(0, y) = 0. 

Suppose two objects A and B can be viewed from two in- 
dependent perspectives. Their similarity can be computed 
separately from each perspective. For example, the simi- 
larity between two documents can be calculated by com- 
paring the sets of words in the documents or by compar- 
ing their stylistic parameter values, such as average word 
length, average sentence length, average number of verbs 
per sentence, etc. We assume that the overall similarity of 
the two documents is a weighted average of their similari- 
ties computed from different perspectives. The weights are 
the amounts of information in the descriptions. In other 
words, we make the following assumption: 

Assumption 6: 
Vzi < 2/i,x2 < 2/2 : f(x! + x2,yi + 2/2) = 

5fe/(*i,Vi) + i3k/(*2,!fe) 

From the above assumptions, we can proved the following 
theorem: 
Similarity Theorem: The similarity between A and B is 
measured by the ratio between the amount of information 
needed to state the commonality of A and B and the infor- 
mation needed to fully describe what A and B are: 

sim(A,B) = 
log P(common(.A, B)) 

log P(description(A, B)) 

Proof: 
f(x,y) 

=   f(x + 0,x + (y-x)) 
=    I x f(x, x) + i^z*x /(0, y-x)    (Assumption 6) 

- (Assumption 4 and 5) 
Q.E.D. 

=      fxl + ^XO: 
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Since similarity is the ratio between the amount of infor- 
mation in the commonality and the amount of information 
in the description of the two objects, if we know the com- 
monality of the two objects, their similarity tells us how 
much more information is needed to determine what these 
two objects are. 

In the next 4 sections, we demonstrate how the above defi- 
nition can be applied in different domains. 

3   Similarity between Ordinal Values 

Many features have ordinal values. For example, the "qual- 
ity" attribute can take one of the following values "excel- 
lent", "good", "average", "bad", or "awful". None of the 
previous definitions of similarity provides a measure for 
the similarity between two ordinal values. We now show 
how our definition can be applied here. 

If "the quality of X is excellent" and "the quality of Y is 
average", the maximally specific statement that can be said 
of both X and Y is that "the quality of X and Y are between 
"average" and "excellent". Therefore, the commonality be- 
tween two ordinal values is the interval delimited by them. 

Suppose the distribution of the "quality" attribute is known 
(Figure 1). The following are four examples of similarity 
calculations: 

simfexcellent aood) =    2xlogP(exce»entvg0od) simyexceueni, gooa) - log p(eiceHent)+iog p(g00d) 
_ 2xlog(0.05-H).10)  _ n 79 

sim(good, average) 
log 0.05+log 0.10 

2xlog P(goodVaverage) 
log P(average)+log P(good) 
2xlog(0.10+0.50)  _ f> q4 
log 0.10+log 0.50   ~~ uo^ 

clo   "' 
sim{excellent, average) =  ,   P<Xceiient)+\lz peerage) 

_ 2xlog(0.05+0.10+0.50)   _ r> 90 
— log 0.05+log 0.50 ~~ U    ° 

sMgoodMd)='-asaby 
_ 2xlog(0.10+0.50+.20)  „nil 
— Iog0.10+log0.20        — V'lX 

The results show that, given the probability distribution in 
Figure 1, the similarity between "excellent" and "good" is 
much higher than the similarity between "good" and "av- 
erage"; the similarity between "excellent" and "average" is 
much higher than the similarity between "good" and "bad". 

4   Feature Vectors 

Feature vectors are one of the simplest and most commonly 
used forms of knowledge representation, especially in case- 
based reasoning [Aha et al., 1991; Stanfill and Waltz, 1986] 
and machine learning. Weights are often assigned to fea- 
tures to account for the fact that the dissimilarity caused 
by more important features is greater than the dissimilarity 

50% 

10% 

20% 

15% 

excellent   good   average   bad     awful      Quality 

Figure 1: Example Distribution of Ordinal Values 

caused by less important features. The assignment of the 
weight parameters is generally heuristic in nature in pre- 
vious approaches. Our definition of similarity provides a 
more principled approach, as demonstrated in the follow- 
ing case study. 

4.1   String Similarity—A case study 

Consider the task of retrieving from a word list the words 
that are derived from the same root as a given word. For 
example, given the word "eloquently", our objective is to 
retrieve the other related words such as "ineloquent", "in- 
eloquently", "eloquent", and "eloquence". To do so, as- 
suming that a morphological analyzer is not available, one 
can define a similarity measure between two strings and 
rank the words in the word list in descending order of their 
similarity to the given word. The similarity measure should 
be such that words derived from the same root as the given 
word should appear early in the ranking. 

We experimented with three similarity measures. The first 
one is defined as follows: 

i 

simeditfoy) 
1 + editDist(a;, y) 

where editDist(rc, y) is the minimum number of character 
insertion and deletion operations needed to transform one 
string to the other. 

The second similarity measure is based on the number of 
different trigrams in the two strings: 

sim,n(a;,y) 
1 + |tri(x)| + |tri(j/)| - 2 x |tri(x) n tri(y)| 

where tri(x) is the set of trigrams in x.   For example, 
tri(eloquent) = {elo, loq, oqu, que, ent}. 
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Table 1: Top -10 Most Similar Words to "grandiloquent' 

Rank Simedit sim,n sim 
1 grandiloquently 1/3 grandiloquently 1/2 grandiloquently 0.92 
2 grandiloquence 1/4 grandiloquence 1/4 grandiloquence 0.89 
3 magniloquent 1/6 eloquent 1/8 eloquent 0.61 
4 gradient 1/6 grand 1/9 magniloquent 0.59 
5 grandaunt 1/7 grande 1/10 ineloquent 0.55 
6 gradients 1/7 rand 1/10 eloquently 0.55 
7 grandiose 1/7 magniloquent 1/10 ineloquently 0.50 
8 diluent 1/7 ineloquent 1/10 magniloquence 0.50 
9 ineloquent 1/8 grands 1/10 eloquence 0.50 

10 grandson 1/8 eloquently 1/10 ventriloquy 0.42 

Table 2: Evaluation of String Similarity Measures 

Root Meaning \WToot\ 

11-point average precisions 
Simedit sim^i sim 

agog leader, leading, bring 23 37% 40% 70% 
cardi heart 56 18% 21% 47% 
circum around, surrounding 58 24% 19% 68% 
gress to step, to walk, to go 84 22% 31% 52% 
loqu to speak 39 19% 20% 57% 

The third similarity measure is based on our proposed defi- 
nition of similarity under the assumption that the probabil- 
ity of a trigram occurring in a word is independent of other 
trigrams in the word: 

simfz v) ~ 2X^tri(s)nm(y)'°g^) 2xEfetri(3)ntri(y)logp(*) 

Etetri(x) l°gp(t) + Etetrifr) *>gP(t) 

Table 1 shows the top 10 most similar words to "grandilo- 
quent" according to the above three similarity measures. 

To determine which similarity measure ranks higher the 
words that are derived from the same root as the given 
word, we adopted the evaluation metrics used in the Text 
Retrieval Conference [Harman, 1993]. We used a 109,582- 
word list from the AI Repository.1 The probabilities of 
trigrams are estimated by their frequencies in the words. 
Let W denote the set of words in the word list and Wroot 

denote the subset of W that are derived from root. Let 
(wi,...,wn) denote the ordering of W — {w} in de- 
scending similarity to w according to a similarity measure. 
The precision of (wi,.. .,wn) at recall level N% is de- 
fined as the maximum value of ltv-°°'n{%" Wk^ such that 

k G {1,... ,n} and lW-f4Zl:rWh}l * N%. The qual- 
ity of the sequence (tui,..., wn) can be measured by the 

'http://www.cs.cmu.edu/afs/cs/project/ai-repository 

11-point average of its precisions at recall levels 0%, 10%, 
20%,..., and 100%. The average precision values are then 
averaged over all the words in Wroot. The results on 5 
roots are shown in Table 2. It can be seen that much better 
results were achieved with sim than with the other similar- 
ity measures. The reason for this is that simedit and srnitri 
treat all characters or trigrams equally, whereas sim is able 
to automatically take into account the varied importance in 
different trigrams. 

5   Word Similarity 

In this section, we show how to measure similarities be- 
tween words according to their distribution in a text corpus 
[Pereiraetal., 1993]. Similar to [Alshawi and Carter, 1994; 
Grishman and Sterling, 1994; Ruge, 1992], we use a parser 
to extract dependency triples from the text corpus. A de- 
pendency triple consists of a head, a dependency type and 
a modifier. For example, the dependency triples in "I have 
a brown dog" consist of: 

(1)   (have subj I), (have obj dog), (dog adj-mod brown), 
(dogdeta) 

where "subj" is the relationship between a verb and its sub- 
ject; "obj" is the relationship between a verb and its object; 
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"adj-mod'1 is the relationship between a noun and its adjec- 
tive modifier and "det" is the relationship between a noun 
and its determiner. 

We can view dependency triples extracted from a corpus 
as features of the heads and modifiers in the triples. Sup- 
pose (avert obj duty) is a dependency triple, we say that 
"duty" has the feature obj-of(avert) and "avert" has the fea- 
ture obj(duty). Other words that also possess the feature 
obj-of(avert) include "default", "crisis", "eye", "panic", 
"strike", "war", etc., which are also used as objects of 
"avert" in the corpus. 

Table 3 shows a subset of the features of "duty" and "sanc- 
tion". Each row corresponds to a feature. A V in the 
"duty" or "sanction" column means that the word possesses 
that feature. 

Table 3: Features of "duty" and "sanction" 
Feature duty sanction Hfi) 
/i: subj-of(include) X X 3.15 
/2i obj-of(assume) X 5.43 
fc. obj-of (avert) X X 5.88 
fi; obj-of(ease) X 4.99 
fa: obj-of(impose) X X 4.97 
/e: adj-mod(fiduciary) X 7.76 
fa: adj-mod(punitive) X X 7.10 
/8: adj-mod(economic) X 3.70 

Let F(w) be the set of features possessed by w. F(w) can 
be viewed as a description of the word w. The commonali- 
ties between two words wi and tU2 is then F(wi) nf(w2). 

The similarity between two words is defined as follows: 

(Ti   sim(w, w->) - 2xHF(v,i)nFlv,3)) 

where 7(5) is the amount of information contained in a set 
of features S. Assuming that features are independent of 
one another, I(S) = - T,f€s loS p(f)>where p(f)is the 

probability of feature /. When two words have identical 
sets of features, their similarity reaches the maximum value 
of 1. The minimum similarity 0 is reached when two words 
do not have any common feature. 

The probability P(f) can be estimated by the percentage 
of words that have feature / among the set of words that 
have the same part of speech. For example, there are 32868 
unique nouns in a corpus, 1405 of which were used as sub- 
jects of "include". The probability of subj-of(include) is 
^|j. The probability of the feature adj-mod(fiduciary) is 
g^g because only 14 (unique) nouns were modified by 
"fiduciary". The amount of information in the feature adj- 
mod(fiduciary), 7.76, is greater than the amount of infor- 

mation in subj-of(include), 3.15. This agrees with our intu- 
ition that saying that a word can be modified by "fiduciary" 
is more informative than saying that the word can be the 
subject of "include". 

The fourth column in Table 3 shows the amount of infor- 
mation contained in each feature. If the features in Table 3 
were all the features of "duty" and "sanction", the similar- 
ity between "duty" and "sanction" would be: 

 2x/({/1,/3,/5,/7})  

/({/l, /2,/3,/5,/6,/7}) + /({/!, h,h,h,fl,fS}) 
which is equal to 0.66. 

We parsed a 22-million-word corpus consisting of Wall 
Street Journal and San Jose Mercury with a principle-based 
broad-coverage parser, called PRINCIPAR [Lin, 1993; 
Lin, 1994]. Parsing took about 72 hours on a Pentium 
200 with 80MB memory. From these parse trees we ex- 
tracted about 14 million dependency triples. The frequency 
counts of the dependency triples are stored and indexed in 
a 62MB dependency database, which constitutes the set of 
feature descriptions of all the words in the corpus. Using 
this dependency database, we computed pairwise similarity 
between 5230 nouns that occurred at least 50 times in the 
corpus. 

The words with similarity to "duty" greater than 0.04 are 
listed in (3) in descending order of their similarity. 

(3) responsibility, position, sanction, tariff, obligation, 
fee, post, job, role, tax, penalty, condition, function, 
assignment, power, expense, task, deadline, training, 
work, standard, ban, restriction, authority, 
commitment, award, liability, requirement, staff, 
membership, limit, pledge, right, chore, mission, 
care, title, capability, patrol, fine, faith, seat, levy, 
violation, load, salary, attitude, bonus, schedule, 
instruction, rank, purpose, personnel, worth, 
jurisdiction, presidency, exercise. 

The following is the entry for "duty" in the Random House 
Thesaurus [Stein and Flexner, 1984]. 

(4) duty n. 1. obligation , responsibility ; onus; 

business, province; 2. function , task , assignment, 

charge. 3. tax , tariff, customs, excise, levy . 

The shadowed words in (4) also appear in (3). It can be 
seen that our program captured all three senses of "duty" in 
[Stein and Flexner, 1984]. 

Two words are a pair of respective nearest neighbors 
(RNNs) if each is the other's most similar word. Our pro- 
gram found 622 pairs of RNNs among the 5230 nouns that 



An Information-Theoretic Definition of Similarity       301 

Table 4: Respective Nearest Neighbors 
Rank RNN Sim 

earnings profit 0.50 
11 revenue sale 0.39 
21 acquisition merger 0.34 
31 attorney lawyer 0.32 
41 data information 0.30 
51 amount number 0.27 
61 downturn slump 0.26 
71 there way 0.24 
81 fear worry 0.23 
91 jacket shirt 0.22 

101 film movie 0.21 
111 felony misdemeanor 0.21 
121 importance significance 0.20 
131 reaction response 0.19 
141 heroin marijuana 0.19 
151 championship tournament 0.18 
161 consequence implication 0.18 
171 rape robbery 0.17 
181 dinner lunch 0.17 
191 turmoil upheaval 0.17 
201 biggest largest 0.17 
211 blaze fire 0.16 
221 captive westerner 0.16 
231 imprisonment probation 0.16 
241 apparel clothing 0.15 
251 comment elaboration 0.15 
261 disadvantage drawback 0.15 
271 infringement negligence 0.15 
281 angler fishermen 0.14 
291 emission pollution 0.14 
301 granite marble 0.14 
311 gourmet vegetarian 0.14 
321 publicist stockbroker 0.14 
331 maternity outpatient 0.13 
341 artillery warplanes 0.13 
351 psychiatrist psychologist 0.13 
361 blunder fiasco 0.13 
371 door window 0.13 
381 counseling therapy 0.12 
391 austerity stimulus 0.12 
401 ours yours 0.12 
411 procurement zoning 0.12 
421 neither none 0.12 
431 briefcase wallet 0.11 
441 audition rite 0.11 
451 nylon silk 0.11 
461 columnist commentator 0.11 
471 avalanche raft 0.11 
481 herb olive 0.11 
491 distance length 0.10 
501 interruption pause 0.10 
511 ocean sea 0.10 
521 flying watching 0.10 
531 ladder spectrum 0.09 
541 lotto poker 0.09 
551 camping skiing 0.09 
561 lip mouth 0.09 
571 mounting reducing 0.09 
581 pill tablet 0.08 
591 choir troupe 0.08 
601 conservatism nationalism 0.08 
611 bone flesh 0.07 
621 powder spray 0.06 

occurred at least 50 times in the parsed corpus. Table 4 
shows every 10th RNN. 

Some of the pairs may look peculiar. Detailed examination 
actually reveals that they are quite reasonable. For exam- 
ple, the 221 ranked pair is "captive" and "westerner". It is 
very unlikely that any manually created thesaurus will list 
them as near-synonyms. We manually examined all 274 oc- 
currences of "westerner" in the corpus and found that 55% 
of them refer to westerners in captivity. Some of the bad 
RNNs, such as (avalanche, raft), (audition, rite), were due 
to their relative low frequencies,2 which make them sus- 
ceptible to accidental commonalities, such as: 

(5) The {avalanche, raft} {drifted, hit} .... 
To {hold, attend} the {audition, rite}. 
An uninhibited {audition, rite}. 

6   Semantic Similarity in a Taxonomy 

Semantic similarity [Resnik, 1995b] refers to similarity be- 
tween two concepts in a taxonomy such as the WordNet 
[Miller, 1990] or CYC upper ontology. The semantic simi- 
larity between two classes C and C is not about the classes 
themselves. When we say "rivers and ditches are simi- 
lar", we are not comparing the set of rivers with the set 
of ditches. Instead, we are comparing a generic river and 
a generic ditch. Therefore, we define sim(C, C) to be the 
similarity between x and x' if all we know about x and x' 
is that x e C and x' G C 

The two statements "x € C" and "x' e C" are indepen- 
dent (instead of being assumed to be independent) because 
the selection of a generic C is not related to the selection 
of a generic C. The amount of information contained in 
"a; <E C and x' e C" is 

- log P(C)- log P{C) 

where P(C) and P(C) are probabilities that a randomly 
selected object belongs to C and C, respectively. 

Assuming that the taxonomy is a tree, if x\ € C and xi e 
C2, the commonality between x\ and xi is xi £ C0AW2 £ 
Co, where Co is the most specific class that subsumes both 
C\ and C-i. Therefore, 

sim(a;i,a;2) = 
2xlogP(C0) 

logP(Ci) +log P(C2) 

For example, Figure 2 is a fragment of the WordNet. The 
number attached to each node C is P(C). The similarity 

They all occurred 50-60 times in the parsed corpus. 
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entity   0.395 

inanimate-object    0.167 

natural-object       0.0163 

geological-formation 0.00176 

0.000113   natural-elevation        shore    0.0000836 

0.0000189 hill coast    0.0000216 

Figure 2: A Fragment of WordNet 

between the concepts of Hill and Coast is: 

sim(Hill, Coast) = 
2 x logP(Geological-Formation) 

logP(Hill)+logP(Coast) 

which is equal to 0.59. 

There have been many proposals to use the distance be- 
tween two concepts in a taxonomy as the basis for their 
similarity [Lee et al., 1989; Rada et al., 1989]. Resnik 
[Resnik, 1995b] showed that the distance-based similar- 
ity measures do not correlate to human judgments as 
well as his measure. Resnik's similarity measure is 
quite close to the one proposed here: simResnjic(yl, B) — 
|/(common(A, B)). For example, in Figure 2, 
simResnik (Hill, Coast) = — logP(Geological-Formation). 

Wu and Palmer [Wu and Palmer, 1994] proposed a measure 
for semantic similarity that could be regarded as a special 
case of sim(A, B): 

simwu&Palmer(j4,-B) = 
2xJV3 

Ni + N2 + 2 x N3 

where Ni and JV2 are the number of IS-A links from A and 
B to their most specific common superclass C; A3 is the 
number of IS-A links from C to the root of the taxonomy. 
For example, the most specific common superclass of Hill 
and Coast is Geological-Formation. Thus, A7! = 2, A2 = 
2, A3 = 3 and simWu&Paimcr(Hill, Coast) = 0.6. 

Interestingly, if P(C\C) is the same for all pairs of con- 
cepts such that there is an IS-A link from C to C" in the 
taxonomy, simwu&Paimer(A B) coincides with sim(yl, B). 

Resnik [Resnik, 1995a] evaluated three different similar- 
ity measures by correlating their similarity scores on 28 
pairs of concepts in the WordNet with assessments made 
by human subjects [Miller and Charles, 1991]. We adopted 

Table 5: Results of Comparison between Semantic Simi- 
larity Measures 

Word Pair Miller& 
Charles 

Resnik Wu& 
Palmer 

sim 

car, automobile 3.92 11.630 1.00 1.00 
gem, jewel 3.84 15.634 1.00 1.00 
journey, voyage 3.84 11.806 .91 .89 
boy, lad 3.76 7.003 .90 .85 
coast, shore 3.70 9.375 .90 .93 
asylum, madhouse 3.61 13.517 .93 .97 
magician, wizard 3.50 8.744 1.00 1.00 
midday, noon 3.42 11.773 1.00 1.00 
furnace, stove 3.11 2.246 .41 .18 
food, fruit 3.08 1.703 .33 .24 
bird, cock 3.05 8.202 .91 .83 
bird, crane 2.97 8.202 .78 .67 
tool, implement 2.95 6.136 .90 .80 
brother, monk 2.82 1.722 .50 .16 
crane, implement 1.68 3.263 .63 .39 
lad, brother 1.66 1.722 .55 .20 
journey, car 1.16 0 0 0 
monk, oracle 1.10 1.722 .41 .14 
food, rooster 0.89 .538 .7 .04 
coast, hill 0.87 6.329 .63 .58 
forest, graveyard 0.84 0 0 0 
monk, slave 0.55 1.722 .55 .18 
coast, forest 0.42 1.703 .33 .16 
lad,wizard 0.42 1.722 .55 .20 
chord, smile 0.13 2.947 .41 .20 
glass, magician 0.11 .538 .11 .06 
noon, string 0.08 0 0 0 
rooster, voyage 0.08 0 0 0 
Correlation with 1.00 0.795 0.803 0.834 
Miller & Charles 

the same data set and evaluation methodology to compare 
simResnik- simwu&Paimcr and sim. Table 5 shows the simi- 
larities between 28 pairs of concepts, using three different 
similarity measures. Column Miller&Charles lists the av- 
erage similarity scores (on a scale of 0 to 4) assigned by 
human subjects in Miller&Charles's experiments [Miller 
and Charles, 1991]. Our definition of similarity yielded 
slightly higher correlation with human judgments than the 
other two measures. 

7   Comparison between Different Similarity 
Measures 

One of the most commonly used similarity measure is 
call Dice coefficient. Suppose two objects can be de- 
scribed with two numerical vectors (ai,a2,...,an) and 
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Table 6: Comparison between Similarity Measures 

Property 

Similarity Measures: 
WP:        Simwu&Palmer 
R:            SimResnik 

Dice:    simaice 
sim WP R     Dice simdist 

increase with 
commonality 

yes yes yes     yes no 

decrease with 
difference 

yes yes no      yes yes 

triangle 
inequality 

no no no      no yes 

Assumption 6 yes yes no     yes no 
max value=l yes yes no      yes yes 
semantic 
similarity 

yes yes yes      no yes 

word 
similarity 

yes no no      yes yes 

ordinal 
values 

yes no no      no no 

their shades, B and C are similar in their shape, but A and 
C are not similar. 

(&i, &2i • • • j &n). their Dice coefficient is defined as 

sim^ce(A,B) = 
Z^i=l,n ai + l^i=l,n " 

,2- 

Another class of similarity measures is based a distance 
metric. Suppose dist(A, B) is a distance metric between 
two objects, simdist can be defined as follows: 

S™*«iA>B)=l + dist(A,B) 

Table 6 summarizes the comparison among 5 similarity 
measures. 

Commonality and Difference: While most similarity 
measures increase with commonality and decrease with 
difference, simdist only decreases with difference and 
simResnik only takes commonality into account. 

Triangle Inequality: A distance metrics must satisfy the 
triangle inequality: 

dist(A, C) < dist(A, B) + dist(B, C). 
Consequently, sim^st has the property that simdiSt(>l, C) 
cannot be arbitrarily close to 0 if none of simdist(-4, B) and 
simdist (B,C) is 0. This can be counter-intuitive in some 
situations. For example, in Figure 3, A and B are similar in 

ABC 

Figure 3: Counter-example of Triangle Inequality 

Assumption 6: The strongest assumption that we made in 
Section 2 is Assumption 6. However, this assumption is 
not unique to our proposal. Both simwu&Palmer and shridice 
also satisfy Assumption 6. Suppose two objects A and B 
are represented by two feature vectors (ai, 02, -. -, an) and 
(61,62, • • •, bn), respectively. Without loss of generality, 
suppose the first k features and the rest n — k features rep- 
resent two independent perspectives of the objects. 

2xY\ a;6; 
sim^ce(A,B) = v— ~£ftp Z2 = 

V o?+V 6? 2xV 0(6; 

y    a?+r    6?y—^T—*?+ 

y    a?+T    i?  y      ä^+y      6? 

which is a weighted average of the similarity between A 
and B in each of the two perspectives. 

Maximum Similarity Values: With most similarity mea- 
sures, the maximum similarity is 1, except simResnik, which 
have no upper bound for similarity values. 

Application Domains: The similarity measure proposed in 
this paper can be applied in all the domains listed in Table 
6, including the similarity of ordinal values, where none of 
the other similarity measures is applicable. 

8   Conclusion 

Similarity is an important and fundamental concept in AI 
and many other fields. Previous proposals for similarity 
measures are heuristic in nature and tied to a particular do- 
main or form of knowledge representation. In this paper, 
we present a universal definition of similarity in terms of 
information theory. The similarity measure is not directly 
stated as in earlier definitions, rather, it is derived from a 
set of assumptions. In other words, if one accepts the as- 
sumptions, the similarity measure necessarily follows. The 
universality of the definition is demonstrated by its applica- 
tions in different domains where different similarity mea- 
sures have been employed before. 
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Abstract 

This paper defines a formal approach to learning 
from examples described by labelled graphs. We 
propose a formal model based upon lattice theory 
and in particular with the use of Galois lattice. 
We enlarge the domain of formal concept 
analysis, by the use of the Galois lattice model 
with structural description of examples and 
concepts. Our implementation, called "Graal" (for 
GRAph And Learning) constructs a Galois lattice 
for any description language provided that the 
two operations of comparison and generalization 
are determined for that language. We prove that 
these operations exist in the case of labelled 
graphs. 

1.   INTRODUCTION 

The Galois lattice is the foundation of a set of conceptual 
classification methods. This approach defined by Barbut 
and Monjardet (Barbut, 1970), was popularized by 
(Wille, 1982), (Wille, 1992), who used this structure as 
the kernel of formal concept analysis. 

Wille proposed considering each node of a Galois lattice 
as a formal concept. Each node has two parts: the 
extension (a subset of the examples) and the intension (the 
description). In addition, the lattice gives the relations 
(generalisation/specialization) between concepts. An 
advantages of this formalization is a good description of 
the concept space. Additionallly, there are many methods 
for the construction of such lattice (depth first search 
(Bordat, 1986), incremental construction (Ganter, 1988), 
(Missikoff, 1989)). 

In the context of machine learning, the automatic 
construction of such a hierarchy can be viewed as an 
unsupervised conceptual classification method as seen in 
(Michalski, 1982) because we give a general method and 
look for all the concepts that can be extracted from the 
examples. 

In this way, research space is not limited by the use of 
parameters although this method cannot be used in all 
practical applications. Its advantage is that we can study 
precisely the impact of biais and heuristic. 

An important limitation of the method using the Galois 
lattice is the classical propositional description of the 
examples (Wille, 1982), (Ganascia, 1993), (Mephu 
Nguifo, 1994), (Carpineto, 1994). There is a great deal of 
research on the extension of the description language: 
valued attributes (Wille, 1989), (Carpineto, 1994), term 
(Daniel-Vatonne, 1993), graph (Liquiere, 1989), (Godin, 
1995). 

In the case of structural description, the actual methods 
use a two step mechanism. 

1) the goal of the first step is to find structures 
repeated in the set of descriptions of the examples. 

2) the second step uses the structures found and 
changes the description of the example. Each structural 
description is converted in a list of binary attributes (one 
attribute by structure). An attribute is true if the associated 
structure appears in the example. 

• in our work (Liquiere, 1989), (Liquiere, 1994), 
we used labelled graphs, and the goal of our first step was 
to find repeated paths and trees in the description of the 
examples. 

• in the work of (Daniel-Vatonne, 1993), the 
description language is based upon rooted tree (term) and 
the first step research path. 

1995) uses a similar • Godin, Mineau (Godin, 
method with conceptual graphs. 

The first step research repeated triplet graphs (graph like 
<Object>-relation-<Object>). This limits the complexity 
of the research. The second step finds sets of triplet graphs 
viewed in the same set of examples, but the link between 
the nodes are overlooked. So the structural descriptions of 
the examples are not exploited. 

In this paper we give a general one step mechanism, 
without changing the description of the examples. This 
mechanism uses a generalization operation and we specify 
this operation for different classes of description languages. 
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This paper is organized as follows. 

A  generalized method  of learning   from   examples   is 
presented in section 2. 

In section 3, we specify this model for description with 
labelled graphs. 

Then, we study the complexity of the operation in the 
case of descriptions with labelled graphs, in section 4 

Finally, in section 5 we give an example of the results 
found. 

2. THE GALOIS LATTICE AS A 
CORRESPONDANCE BETWEEN TWO 
LATTICES 

Using lattice theory, the formal framework is based on the 
use of two lattices as in (Ganascia, 1993). This model, 
uses lattice results given in (Birkoff, 1967) and (Barbut, 
1970). This approach was used in machine learning 
(Ganascia, 1993), but only in propositional description. 

Ganascia writes: "this framework is adequate to represent 
classical top-down induction systems .. but it is too 
restricted to formalize first order logic languages ..." 

In fact, this approach can be used for structured 
description as well. Thus there is an unifying method for 
many types of description language. 

2.1        Two isomorph lattices 

This formalization is based on the use of two lattices: the 
description lattice D and the instance lattice I. 

• The instance lattice I, corresponds to the set of 
parts of the training set E, and is ordered by the inclusion 
relationship which is noted 3 where A z> B means that A 
is included in B. Given two elements a and b, the least 
upper bound - and the greatest lower bound- corresponds 
to the classical union -i.e u - and intersection -i.e n -. 

• The description lattice D contains all the 
possible descriptions ordered by a > relation. This 
relation > corresponds to the generalization relationship. 

> : D x D —> {true, false} for two descriptions 
d i, d2£ D, d i > d2 means that d ] is more general than 

d2- Let us just consider that it structures the description 

space with a partial ordering. 

From this relation we can define the equivalence 
relation. =:DxD-> {true, false), dj = d2 iff (dj > d2) 

and (d2 S dj) 

Because D is a lattice, two elements of D have a 
least upper bound. We note CT/AC^ this bound. This is 

the least general generalisation of dj and d2- 

We have A: D x D -> D, if d>dj and d>d2 then d> 

djAd2- 

This is a generalization operator (Plotkin, 1971), as 
defined in (Muggleton, 1994). For a set of description 
S,"A minimal generalization G of S is a generalisation of 

S such that S is not a generalisation of G, and there is no 
generalization G' of G such that G is a generalization de 
G' ". 

2.2 Galois lattice. 

Let us begin by building two correspondances between the 
lattice I and D. 

First there is a mapping d between set ^ and the description 
space D: d: ^—>D, for e; e £, d(ej)e D is the description of 

the example ej. 

For example: 

• with  a propositional   description,   d(ej)   is   a   list   of 

attributes. 

• in case of structural description, d(e;) can be a graph. 

Now, from this simple description mapping, we can build 
two correspondences between I and D. 

The correspondance a: D -> I associates each 
description d of D the set of all instances of the training set 
^ which are covered by d. 

a(d)={eie^|d>d(ei)} 

Properties 1 

l)d>d'<=>a(d)3a(d') 

2) a(d i Ad2) = a(d i) u a(d2) 

Proof in appendix 

The correspondance ß: I -> D is equivalent to 
making the least general generalization for the description 
of all the elements ofHc^. This means that: 

ß(H)=AceHd(e) 

Theorem 1 The correspondance a et ß defines a Galois 
connection between I and D. 

Proof in appendix, see also (Ganascia, 1993). 

Now we have a generalization of the classical definition of 
concept. 

For a set of example 2;, for a description space D, for an 
instance space I, a concept C is a pair [Ext x Int] with: 

• Int eD | Int=ß(Ext)= AeeExtd(e) 

•Extel | Ext=a(Int)={e,ei;| Int > d(ej)}. 

All   the   concepts   are   ordered   by   the   superconcept- 
subconcept (generalisation-specialisation) relation >c. 

[Ej, I,] >c [E2, I2]ifTEI2E2andI1 > h 

With   >c,   the set of all concepts has the mathematical 

structure of a complete lattice and is called the Galois 
Lattice of the context (!; , d.  D). 
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3. DEFINITION OF THE ORDER (>) AND 
GENERALIZATION OPERATION (A) 

FOR LABELLED GRAPHS 

In section 2, we proposed a formal model. In this model 
we defined two basic operations > and A. If these 
operations verify different properties (order, generalization 
operator), then the concept space is a Galois lattice. 

Our goal is to use this model for structural description, 
more precisely for graphs descriptions. 

In order to demonstrate this we must first define the 
operations > , A and prove that the description space D is 
a lattice. 

3.1        > Definition for labelled graphs 

In this paragraph, we define an pre-order between graphs 
using the homomorphism relation. We will show (3.2) 
that for a class of graphs (core graphs), this pre-order is an 
order. 

Notations 

We note a graph G:(V,E,L) . 

The vertex set of G is denoted by V(G). 

The edge set of G is denoted by E(G). Each edge is a 
ordered pair (v i ,V2), v \ ,v2e V(G). 

The Label set of G is denoted by L(G). For a vertex v we 
note L(v) the label of this vertex. 

In the following paragraphs, we give properties for 
directed graphs, these properties are true as well for 
undirected graphs. 

Definition labelled graph homomorphism 

A homomorphism /:Gi->G2 is a mapping 

/:V(Gi)  ->   V(G2)   for which  (f(V1),   fl>2))   e E(G2) 
whenever (vi,v2) e E(Gj) and L(vj)=L(v2) 

Operation = : D x D ->  {True, False} 

Two labelled graphs Gi and G2 are homomorphically 
equivalent, denoted by GisG2, if both Gi>G2 anQ" 
G2>Gl. 

Gl G2 

Figure 1: Homomorphism example Gl -> G2 

This is not the classical subgraph isomorphism relation. 

Operation >:DxD->   {True, False} 

For     two     labelled     graphs     Gi:(Vi,Ei,Li)     and 
G2:(V2>E2,L2),    we    note    Gi>G2    iff   there    is    a 
homomorphism from G\ into G2. 

© © 
 > © 

Gl G2 

Figure 2: Gi=G2 

Operation *.D x D -»  {True, False}: dj*d2 iff not (dj 

■d2) 

3.2        D for labelled graphs 

The homomorphism relation is only a pre-order because 
the antisymmetry property is not fulfilled (Chein, 1992). 
An order relation between element of D is necessary in 
order to use results of section 2. 

The same problem occurs in Inductive Logic 
Programming (Muggleton, 1994) 

"Because two clauses equivalent under 6-subsumption are 
also logically equivalent (implication), ILP systems 
should generate at most one clause of each equivalence 
class. To get around this problem, Plotkin defined 
equivalence classes of clauses, and showed that there is a 
unique representative of each clause, which he named 'the 
reduced clause'". 

In the case of labelled graphs, we can use the same 
strategy. For this purpose, we use the class of core 
labelled graphs (Zhou, 1991). 

Definition retract 

A strict subgraph G' of G is a retract of G ((Zhou, 1991), 
if there is a homomorphism called a retraction r: G -> G' 
such that r(v)=v for each ve V(G'). 

Definition core 

A graph is called a core (or minimal graph (Fellner, 
1982), or irredundant graph (Cogis, 1995)) if it has no 
proper retracts. 

Property 2 

For the equivalence relation defined above (=). An 
equivalence class of labelled graphs contains one and only 
one core labelled graph, which is the (unique) graph with 
the smallest vertex number (Mugnier, 1994). 

Notation R: 

We can construct a core graph from a graph as proved by 
Mugnier (Mugnier, 1994). This operation is called 
reduction (notation R). 

Let g be a labelled graph, R(g) is a core labelled graph 
such that g=R(g). 
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G R(G) 

Figure 3: Example G and R(G) 

We need an order relation in order to use labelled graph. 
For core labelled graph, we have this order. So, we define 
D as a set of core labelled graphs. All labelled graph 
description of the example can be converted to an 
equivalent core labelled graph, using the R operation. 

Theorem 2 The restriction of > to the set of core labelled 
graphs is a lattice (Zhou, 1991), (Poole, 1993), (Chein, 
1994) 

For this lattice, the v operation is the disjoint sum of the 
graph, gjvg2= gj+g2 (Chein, 1994) ( g] with g2 form a 

new graph). 

The A operation is more complex and is defined in the 
following paragraph. 

3.3        A  Definition for labelled graphs 

The A operation for graph is based on a following 
classical Kronecker product operation x (Weichsel, 
1962). 

Gl xG2 

Figure 4: Labelled graphs product 

Lemma 1 

if G],G2,G are labelled graphs then 

a) Gi x G2 > Gi and G) x G2 > G2 

b) if G > G) and G > G2, then G > G] x G2 

c)G) >Gi xG2ifandonlyifGi >G2- 

Proof: from the definitions and (Zhou, 1991) 

Remark: The product operation can be easely improved 
when the label set is a hierarchy or a lattice. 

Definition X operation for graphs Definition operation A: D x D —>D 

For two graphs, the product G) x G2   has the vertex set      for Gj G2 two core labelled graphs, GJAG2= R(GjX G2) 

V(Gi) x V(G2) and the edges ((v],v2), (v'i,v'2)), where 
(vi.v'i) eE(Gi) and (v2,v'2) e E(G2). 

This  product operation can be determined for labelled 
graphs. 

Definition x operation for labelled graphs 

For     two      labelled     graphs     GI:(VJ,EI,LJ)     and 

G2:(V2,E2,L2) 

The product G(V,E,L) = Q\ x G2 is defined by: 

• L = Li n L2 

•V  cV| XV2 ={ v I v=[vj v2] with L(vj) = 

L(v2)andL(v)=L(v,)} 

•U= {(v^vi^l.v-tv'^v^])! (vl>v'l)eVl and 

(v2,v'2)e V2)(edge oriented) 

R(G1 xG2) 

Figure 5: GIAG2 with Gj and G2 defined in Figure 4 

3.4        Galois lattice for graphs 

Now, We have all the operations for the construction of a 
Galois lattice when example are described by graphs. 

Each node of this Galois lattice is a pair [Ext x Int] with 

Ext is a subset of £, and Int is a core graph. This core 
graph is the generalization of the description of the 
examples in Ext. 
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Theorem 3 

With: 

t, a set of examples, 

D a lattice description for core labelled graphs, 

d a description mapping, d: ^->D, 

I the instance lattice, n© set power of \, 

> and order relation DxD—»{True,false}, 

A the generalization operation DxD—»D for graphs. 

We can define a,ß. 

forg6D)a(g)={eis^|g>d(ei)} 

forH6l,ß(H)=AeeHd(e) 

The correspondence a et ß defines a Galois connection 
between I and D. 

Proof: see lemma 1 and proof for the Theorem 1. 

Using this Galois connection, we can define a Galois 
lattice (see 2.2). We name this lattice T. 

We have defined a formal model for labelled 
graphs. This model uses , >, and A operations in the case 
of labelled graphs. In the next section, we study the 
complexity of these operations. 

THE     COMPLEXITY     OF 
LATTICE CONSTRUCTION 

GALOIS 

The complexity in the construction of a Galois lattice in 
our model, is a function of: 
1) the number of nodes in the lattice, 
2) the time and space complexity of the operations (A,R), 
3) the algorithm used for Galois lattice construction (see 
5.1) 

4.1        the size of the Galois lattice 

Property 3: The number of nodes for T can be 2|£|. 

proof. It is well known that, Galois lattice can be 
isomorphic to the power set of % (I) which is the maximal 
complexity for the size of T. 
A similar situation occurs in our model. The proof comes 
from the fact that each binary attribute description can be 
converted to a structural description. 
For example the list  [Big]  [Blue] [Expensive] can be 

structurally described as: 

Object XA 
Big        Blue       Expensive 

Figure 6: graph representation for an list of attributes. 

Using this description, the A operation for the tree 
representation is equivalent to n for the attribute 
representation. 

4.2        Complexity of the A operation 

In (Muggleton, 1994) S.  Muggleton and L. de Raedt 
wrote: 
"... ILP systems can get around the problem of equivalent 
clauses when working with reduced clauses only". 
This affirmation is true but the problem of the complexity 
of the R operator has not been taken into account. 

• for two labelled graphs, GI=(VJ,EI,LJ) and 

G2=(V2'^2'L2)'tne complexity of the product is: 0(nix 
x\2) where nj=|Vj| et ri2=|V2l. 

For a set of graph P, 

G=AGiepGi=R(xGisPGi). 
the size of XQiepGj can be exponential. 

Property 4 

the operation R is co-Np-complete (Mugnier, 1994). So, 
in general application, this operation cannot be used. 

However we do have an interesting result: 

Property 5 (Mugnier, 1994) 
If, for a class of labelled graphs, the homomorphism is 
polynomial, then the reduction operation is polynomial. 

The homomorphism for the following class of labelled 
graphs is polynomial. 

• trees (Mugnier, 1994), 

• locally injective graph (Liquiere, 1994) (see definition 
below) 

• 1/2 locally injective graph (see definition below) (see 
langage theory, automata (Aho, 1986)) 

Property 6 

For a set of path or tree P, G=AQJS pGj is polynomial 
(time and size) (Horvath, 1995) 

4.3        Study for a class of Graphs. 

We study the complexity of the operation (A,R) for the 

class of locally injective graphs (LIG) (Liquiere, 1994). 

Notation 

We  note   N+(v)=   {v'   |   (v,v')gV)   and  N"(v)=   {v'| 
(v',v)eV}. 
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Definition LIG graph 

For a labelled graph G=(V,E,L), G is locally injective   if 

for each vertex veV, V vj,V2eN+(v), V^MJ => L(v[)* 

L(v2) and V v j ,V2€ N"(v), v ] *V2 => L(v | )* L(v2). 

Gl G2 

Figure 7. LIG Property 

In figure 7, G\ is an LIG graph. G2 is not an LIG graph 

because, for the C node, there is two edges C -> b. G2 is a 

1/2 locally injective graph (see the next definition). 

Table 1: Complexity for different class of language 

Language ^,-> R    Size for n graphs 

Path 
(Horvath,1995) 

P Polynomial 

Tree 
(Horvath,1995) 

P Polynomial 

LIG 
(Liquiere, 1994) 

P ? 

1/2LIG 
(Aho,1986) 

P Exponential 

Graph 
(Garey,1987) 

NPC Exponential 

With P: polynomial, NPC: NP complete. 

Definition 1/2 locally injective graph 

A 1/2 locally injective graph   is a oriented graph where 

V Vj,v2eN+(v) (resp. N"(c)), V[*v2 => L(vj)* L(v2). 

Property 7: > is polynomial for locally injective graph 
(Liquiere, 1994) and for 1/2 locally injective graph (Aho, 
1986). 

Property 8: For G\ G2 two LIG, G= G\X G2 is a LIG. 

Partial proof: come from the definition of x . 

Property 9: A connected LIG is an irredundant graph 
(Cogis, 1995) 

Property 10: For G a LIG, we note CC(G) the set of 
maximal connected subgraph of G. Then R(G)= 
{cje CC(G)| Vj j j^j there is no projection from c; to c; } 

Proof: property 9 => Property 10 

These properties are interesting because for LIG we can 
construct the R, >, x and A operations, for two graphs, 
with a polynomial complexity. 

Property 11: For a set of 1/2 locally injective graphs P, 

G=A(-;jepGj is  size exponential so time  exponential 

(results for deterministic automata (Aho, 1986)). 

5.   GRAAL IMPLEMENTATION 

Traditionally machine learning offers mechanisms for a 
class of language. The idea is, if an algorithm is good for 
a general class of language, it would also work well for a 
less general class included in the first one. It is true, but 
in many cases, the general mechanism does not use all the 
interesting properties of the restricted language. So the 
complexity of the operation is not optimal for this 
language. 

A second drawback of this approach, comes from the need 
for a translation process. Each description in the restricted 
language has to be converted into a more general one. For 
example a list of attributes is converted into a graph 
(Liquiere, 1994). 

In our new method. Graal (for GRAph And Learning), we 
have implemented a general mechanism where description 
language and operations A,> are parameters. Our tool is 
generic but it cannot yet be used in practical cases when 
important sets of examples are described by large graphs. 
It in fact, an algorithm for formal analysis. 

5.1 A  utilization  of  a  classical   Algorithm   for 
Galois Lattice construction. 

We give an algorithm which can be used on any 
description language with operations < and A. 

This algorithm is based on a classical method (Chein, 
1969). Another algorithm can be used (Bordat, 1986) 
which gives the set of nodes of the Galois lattice and also 
the set of edges. 

We note [ej x dj] the concept numbered i of Tk. 
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T<-0    /* concept set empty */ 
/* description of the examples */ 

T^tfWxiKeiMJandiell.fcl] 

k<-l 

While |Tk| > 1 do 

For each i<j and ije [1, |Tk|] (so we have: [ej x dj] [e; 

x d;] ) /* we create a new concept from two concepts 

already found in the previous step*/ 

djj<- djAdj /* description for the new concept */ 
if dy* 0 then 

/* test if there is a concept with the same description */ 

ifdy-e Tk+1 then 

else 

ejj <- ejjuej 

Tk+1<_ Tk+1 u [e[(Je. x d„j 

/* test if the description is a generalisation */ 
if dj, = dj then 

Tk <- Tk - [ej x dj ] 

ifdü d; then 

Tk <- Tk - [ej x dj] 

End-if 
end-for 

T<- TuTk 

k<-k+l 
end-while 
T<- TuTk 

Graal is written in Java language and uses object 
programming properties. We have defined an abstract 
class (interface) so a user can add his own description 
language if he implements the interface. 

The complexity of Galois Lattice construction with the 

Bordat's algorithm (Bordat, 1986) is less than 0(n3*p) 
where n is the number of objects and p the size of T. 

5.2        An experimental example. 

We present an example where each object is described by 
a locally injective labelled graph. 

We use a classical example based on arch definition. 

D o 
EO El 

rectangle 

rectangle circle 
"'"bright-*' 

n. 
TJ 

E2 

square 
T 

rectangle 
i^-on 

square 

o 
E4 

Figure 8: set of examples 

The lattice is: 

[0,1] [1, 4] /      |[2, 41 

[0,1,21      [0,1,3] 

[0,1,2,3]       [0,1,2,4]    [0,1,3,4] 

71 / t°- '< 41 

2,4]    [0,1, 

[0,1,2,3,4] 

Figure 9: the structure of the Galois lattice for our set of 
examples. 

For each node of the lattice there is a pair consisting of a 
graph and a set of examples. Additionally, if nodei.. 
nodefc are linked to nodep then nodep is the least 
common superconcept (generalisation) of nodei... nodefc. 

In figure 9 we observe the subset of examples (extension). 
In out tool, by double diking on a node we obtain the 
following descriptions. 
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rectangle 

on       riSht 

rectangle circle 

rectangle 

I 
.on 

circle  -►right 

x[0,l] x[l,4] 

rectangle -►on ►square 

x[2,4] 

rectangle 

on rectangle 

x [0,1,2] x [0,1,3] 

rectangle 

on 

circle 

right 

x [0,1,4] 

on 
i 

rectangle 

rectangle rectangle 

on 
circle 

x [0,1,2,3]       x [0,1,2,4]        x [0,1,3,4] 

rectangle 

on 

x [0,1,2,3,4] 

Figure 10: the graph and subset for each node. 

This lattice gives all the classification for the examples 
without duplication. All concepts are differents 
(description and extension), two differents descriptions 
necessarily have distinct extensions. 

Remark: For this example, the unconnected nodes like on 
can be interpreted as: there is something on something. 

6.   CONCLUSION 

Our work enlarges and expands the domain of formal 
concept analysis by demonstrating that the Galois lattice 
can be used for structural description. 

Coming from graph theory, our work provides operations 
and shows that they can be used to build a generalization 
operator for labelled graphs. 

In addition, the LIG graphs we use are an excellent 
compromise between complexity and expressiveness. 

Our method, written in Java, offers a general tools for 
formal structural concept analysis. 

We are now working on the following improvements: 

• To prove that LIG is PAC learnable or not, 

• a survey of classical Galois lattice results in 
case of structural concept description, 

• an implementation of heuristic in   Graal,  to 
make Graal a tool for practical application, 

• an   improvement   of  the   approaches   with 
categorical operations. 
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Appendix 

Properties 1 proof 
Proofl) 
g>g' <=> CC(g) 2 oc(g') 

=> property of the order relation > 
<= a definition 

a(giAg2) = a(g1)ua(g2) 

Proofl) 
a(g)={ee^g>d(e)} 
We  have giAg2^gi   and  g]Ag2^g2     so   a(g]Ag2) 
3a(g1)ua(g2) 
We know that gjAg2 , Vg ,g>gi and g>g2    then g> 
g!Ag2.so a(g) 2 cx(giAg2) 2 a(g\) u a(g2) 
if a(g1Ag2) =>a(g!) u a(g2) then for g7 a(g')=a(gi) 
u a(g2) we have 

gjAg2>g' and g'Sgj then g'Sg2 so we don't have 
the property of giAg2_ 

then a(g1Ag2) = a(g1)ua(g2) 

Theorem 1 proof 
a and ß is a Galois connection iff: 
a) V l{ and I2 e I, I^ => ß(Ii) < ß(I2) 
b) V g1;g2eD, g!>g2 => a^) 2 a(g2) 
and for h= a o ß and h-ß o a 
c) V H € I, H c h(H) 
d) V  g  e D,  g   Sh'(g)   (remark  classicaly  we   note 
generalisation < so we have a more classical definition. 

Proof a) We have gjAg2 ^ gi then 

ß0l)=AeeE1d(e)= g and IlSI2 ß(l2>= (ßfll» 
A(ß(I2-I1)soß(I2)>ß(Ii) 

Proof b)   We have gj > g2 and g2 S g3 => g\ S g3 
because > is an order relation cc(g2)={ee ^/ g2^d(e)} 
we have gj>g2 then g|> d(e) with eea(g2> so oc(gi) 

2 a(g2) 

Proof c) We have gj > g =* gjA g2 ^ g 

ß(H)=AeE H d(e), a(ß(H))={ee^/ ß(H)>d(e)} 

But VeeH, we have ß(H)>d(e) because ß({e}u K)>d(e) 
property of A. 

Proof d) We have, g>gj and g^g2=> g^gl^g2 so 
V g e D, h'(g)= ß(a(g)), a(g)={e6^/ g>d(e)}, 

g sAee a(a)d(e) because g>d(e) with ee a(g). 
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Abstract 

Cross-language latent semantic indexing is 
a method that learns useful language- 
independent vector representations of terms 
through a statistical analysis of a document- 
aligned text. This is accomplished by tak- 
ing a collection of, say, English paragraphs 
and their translations in Spanish and pro- 
cessing them by singular value decomposition 
to yield a high-dimensional vector represen- 
tation for each term in the collection. These 
term vectors have the property that seman- 
tically similar terms have vectors with high 
cosine measure, regardless of their source 
language. In the present work, we extend 
this approach to the case in which English- 
Spanish translations are not available, but 
instead, translations for documents in both 
languages are available in a third "bridge" 
language, say, French. Thus, although no 
aligned English-Spanish documents are used, 
our method creates a representation in which 
English and Spanish terms can be compared. 
The resulting vector representation of terms 
can be useful in natural language applications 
such as cross-language information retrieval 
and machine translation. 

1    INTRODUCTION 

Vector representations of word "meaning" are useful 
for creating computer systems that manipulate tex- 
tual information. Such representations are routinely 
used in information retrieval (Salton and McGill, 1983; 
Deerwester et al., 1990) and filtering, and may find 
application in word sense disambiguation, natural lan- 

guage generation, text comprehension and summariza- 
tion, and speech recognition. This vector lexicon rep- 
resentation, in which words are "defined" by numerical 
vectors, has even served as a model for the acquisition 
of human knowledge (Landauer and Dumais, 1997). 

A natural extension of the vector-lexicon represen- 
tation for terms in a single language is a language- 
independent representation. This is a promising tech- 
nique used in cross-language text retrieval (Landauer 
and Littman, 1990; Oard, 1997; Carbonell et al., 
1997), in which natural-language queries in one lan- 
guage are matched against documents in another lan- 
guage. It may also be important to automating the 
creation of machine-translation systems. The key 
property of a good multi-lingual vector lexicon is that 
terms with similar meanings, regardless of their lan- 
guages, are assigned vectors with high cosine measure. 

A major appeal of the vector-lexicon representation is 
that it can be learned automatically from text. In la- 
tent semantic indexing (LSI) (Deerwester et al., 1990), 
this is accomplished by taking a collection of text that 
contains m documents (paragraphs, articles, abstracts, 
etc.) and TIE distinct English terms, and forming 
an TIE x tn term-document matrix £. The entry £y 
records a value related to the number of times term 
i appears in document j; in our work, we use "log 
entropy" weighting: £y = In(1.0 + tf*j) x gi, where 

9i = l-(gfilog2(gfi)-^(tffjlog2(tfii))/(gfilog2(m))), 
3 

(1) 
tfy is the number of times term i appears in document 
j, and gfj = X^tfy. This weighting scheme gives 
higher weights to distinctive terms. 

For any given dimensionality fc,1 we can find a k- 
dimension vector lexicon by performing a singular 

Reasonable choices for k range from 50 to 1000, de- 
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value decomposition (SVD) and reestimating £ » 
EHVT, where E is an TIE x k matrix, V is an m x k 
matrix, both E and V are orthonormal (ETE = I, 
VTV = I), and £ is a k x fc diagonal matrix of the 
largest singular values of £. In many experiments, it 
has been demonstrated that the matrix E of the left 
singular vectors of £ is a useful vector lexicon of the 
terms. This can be justified as follows. A basic result 
from linear algebra (Golub and Van Loan, 1989) is 
that, of all rank k matrices, ETiVT gives the best ap- 
proximation of £. Similarly, document-document cor- 
relations £T£ are approximated by (£VT)T(EVT) w 
(£TE)(£TE)T. As £TE is precisely the result of rep- 
resenting corpus £ via vector lexicon E, this choice of 
vector lexicon best captures the document-document 
correlations in the training corpus. 

LSI has been extended to produce vector lexicons 
for groups of languages simultaneously by analyzing 
aligned document collections. Here, in addition to an 
TIE x m term-document matrix £ of English, we also 
have a ns x m term-document matrix S of Spanish. 
These matrices represent an aligned corpus in that the 
jth documents in the collections are on the same topic, 
or even translations of each other. Cross-language 
LSI (CL-LSI) (Landauer and Littman, 1990; Littman 
et al., 1998) works by computing a fc-dimension singu- 
lar value decomposition of the (TIE + ns) x m matrix 

£ 
S 

E 
S 

TV1 

Here, the matrix 
E 
S 

is orthonormal (E and 5 are 

not), and E and S can serve as vector lexicons for the 
English and Spanish terms, respectively. 

CL-LSI has been successfully applied to many different 
pairs of languages, such as English-French (Littman 
et al., 1998), English-Japanese (Landauer et al., 1992), 
English-Spanish (Carboneil et al., 1997), and English- 
Greek (Berry and Young, 1995). It has also been 
applied to language triples such as English-French- 
Spanish and English-French-German (Rehder et al., 
1997) when three-way document-aligned corpora are 
available. 

Ultimately, our goal is to solve the corpus hypergraph 
problem, illustrated in Figure 1. In a corpus hyper- 
graph, nodes are different languages and hyperedges 
represent aligned corpora. A hyperedge connects the 
set of languages appearing in the corresponding cor- 
pus.  The corpus hypergraph problem is, given a set 

pending on the application; in general, we must have 
k < min(m,n.E). We use k = 500 in this work. 

( German J 

Figure 1: A corpus hypergraph shows how various lan- 
guages are connected by available corpus resources. 
The darkened subgraph is the corpus hypergraph used 
in our experiments. 

of languages related by corpora given in a hypergraph, 
support the comparison of documents expressed in any 
two languages connected by a path in the hypergraph. 
If this could be accomplished for the corpus hyper- 
graph in Figure 1, it would become possible to compare 
text passages in Russian to text passages in Greek, 
even though no corpus was provided that related those 
two languages directly. 

As yet, no general solution to the corpus hypergraph 
problem has been proposed. In this paper, we con- 
sider an important and difficult special case in which 
all available pairwise document-aligned corpora have a 
single core language in common. In our experiments, 
this lingua franca is French, although we expect En- 
glish to play this role in many applications. 

In particular, we consider the problem of finding a 
vector lexicon for English, Spanish, and French terms 
given a document-aligned English-French corpus and a 
document-aligned Spanish-French corpus. This would 
be represented by a corpus hypergraph with three 
nodes for the three languages, an edge between En- 
glish and French, and another edge between Spanish 
and French; this is the darkened subgraph in Figure 1. 
We call such a corpus partially aligned because each 
document is available in only French and English or 
French and Spanish, but not all three languages. 

Section 2 describes the way we evaluate our proposed 
methods. In Section 3, we show that the application 
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of CL-LSI to partially aligned corpora does not cre- 
ate adequate vector lexicons. In this method, we at- 
tempt to capture the relationships between all three 
languages using a single singular value decomposition. 
In Section 4, we show how a technique called Pro- 
crustes analysis can be applied to combine separate 
SVD analyses to create a unified representation. This 
technique shows great promise in our initial evalua- 
tions. We conclude with simple baseline comparisons 
and thoughts about the applicability of our approach. 

2    EXPERIMENTAL EVALUATION 

We will explore techniques for attacking the following 
problem. The input is a set of four term-document ma- 
trices: a document-aligned pair of English and French 
matrices, and a document-aligned pair of Spanish and 
French matrices. Each matrix contains 500 documents 
drawn from a corpus of United Nations reports (de- 
scribed in more detail below). The output is a 500- 
dimension vector lexicon denning each English, Span- 
ish, and French term. 

These vectors are then evaluated by the mate-retrieval 
test (Littman et al., 1998). In this test, we take an 
independent 2500-document aligned English-Spanish 
corpus and represent each document in the corpus by 
the sum of the vectors representing the terms it con- 
tains (with term vector i weighted by </* from Equa- 
tion 1). Then, for each English document vector, we 
compute its cosine to all 2500 of the Spanish docu- 
ment vectors and sort the resulting list from largest 
to smallest. We note the rank of the Spanish doc- 
ument that is the English document's translation or 
mate in the document-aligned collection. We repeat 
this for all 2500 English test documents and compute 
mean and median ranks, as well as the percentage of 
English documents with mates at rank 1 and ranks in 
the top 10. 

To the extent that the vector lexicon generated is good, 
similar documents will get similar representations and 
the mate-retrieval test will reveal this by a low median 
rank. Although the mate-retrieval test is a poor sub- 
stitute for traditional information-retrieval evaluation 
methods, it is sufficient for distinguishing between the 
techniques explored in this paper. 

2.1    EXPERIMENTAL MATERIALS 

Our experimental text collection was drawn from the 
United Nations Parallel Text Corpus (version 1.0), 
available through the Linguistic Data Consortium. 

This collection contains approximately 1.5 gigabytes of 
text in English, French and Spanish. The majority of 
the documents were professionally translated from En- 
glish, although some of the documents were originally 
written in Arabic, French, Spanish, Russian, or Chi- 
nese. We started with the 1990, section 00 documents 
in all three languages (826 files). We then removed 
SGML tags and extracted paragraphs with a leading 
number to help ensure that paragraphs were aligned 
between the three languages. We selected paragraphs 
that had at least 10 words and that varied in length 
no more than 75% among the three languages, yielding 
6151 triplets of paragraphs, which in English ranged 
from 10 to 448 words (mean 68.4, s.d. 48.5). 

From this collection of paragraphs, we randomly se- 
lected two disjoint sets of 500 three-way aligned para- 
graphs to serve as training texts. We formed 6488 x 500 
English term-document matrices £ and £', 7812 x 500 
French term-document matrices T and T', and 8313 x 
500 Spanish term-document matrices <S and <S' (£, T, 
and S are aligned, and £', P', and <S' are aligned). 
Note that we tagged all terms with their source lan- 
guage, so our results are not due to the incidental 
overlap of, e.g., numerals and proper names across 
languages. Table 1 gives an example of the type of 
documents we used. 

From the same collection, we extracted 2500 aligned 
English and Spanish test documents, £ and <S, for use 
in the mate-retrieval experiments. All matrices are 
weighted using Equation 1. 

3    CROSS-LANGUAGE LSI 

As a first test, we applied CL-LSI to the problem of 
learning a vector lexicon from the partially aligned 
English-French-Spanish corpus. 

3.1    FULLY ALIGNED CORPUS 

As a baseline, we began with an experiment using the 
fully aligned English-French-Spanish documents. We 
used CL-LSI to find a 500-dimension vector lexicon for 
the terms in all three languages by computing an SVD 
of the matrix 

\ £    £' ] r E i 
T r K, F 
S    S' S 

iT E'V 

yielding representations in the form of matrices E, 
F, and S. Evaluating these representations using the 
mate-retrieval test gave the performance listed Row 9 
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Table 1: An example of aligned English, Spanish, and 
French documents 

Despite the difficult situation, there has been a strong political 

desire to incorporate child-related activities into the national 

political agenda. However, more efforts are needed to coor- 

dinate the activities of the public and private sectors. The 

experience gained during this period demonstrated that stud- 

ies were an important contribution to the social mobilization 

process, and that UNICEF cooperation should further rein- 

force the adoption of low-cost measures for child survival and 

development (CSD), with greater community participation. 

Pese a la diffcil situaciön existente, se ha expresado un notable 

interes polftico por incorporar las actividades relacionadas con 

el nino en el programa polftico del pafs. Sin embargo, hay que 

desplegar mayores esfuerzos para coordinar las actividades de 

los sectores publico y privado. La experiencia adquirida du- 

rante este perfodo demoströ que los estudios constitufan una 

importante contribuciön al proceso de movilizaciön social y 

que la cooperation del UNICEF debfa reforzar aun mäs la 

adopciön de medidas de bajo costo destinadas a la superviven- 

cia y el desarrollo del nino en que se diera mayor participation 

a la comunidad. 

On a pu constater qu'il existait, malgre les difficult« une 

forte volont6 d'intägrer des activity en faveur des enfants 

dans le programme politique national. Mais l'action du 

secteur public et celle du secteur prive' ne sont pas en- 

core suffisamment coordonn^es. On a aussi constate ä 

I'evidence durant cette peViode qu'il est tres utile de pou- 

voir s'appuyer sur des Etudes lorsqu'on cherche ä mobiliser les 

collectivites et que dans faction menee pour assurer la survie 

et le developpement des enfants I'UNICEF devrait encour- 

ager encore davantage ä prendre des mesures peu coüteuses 

et   qui   fassent   davantage   intervenir   les   communaut£s. 

of Table 2. This performance is quite strong—the av- 
erage rank of an English document compared to its 
Spanish mate is 2.0, and 99.6% of the time, the mate 
is ranked in the top 10. This is consistent with results 
obtained with CL-LSI in other text collections. 

To help understand mathematically why CL-LSI is 
able to handle fully aligned corpora so well, con- 
sider the following idealized experiment. Imagine that 
[£ £' ] = [ T T' ] = [ S S' ], as would be 
the case if language translation were a simple matter of 
word substitution (as one might get in, say, Pig Latin). 
In this pure case, the vector lexicon for the terms in 
all three languages E, F, and S can be shown to be 
equal to y/1/3 times the matrix of left singular vectors 

r s 0  1 
T r 
0 S' 

of [ T T' ]. The important thing here is that the 
method correctly assigns identical vectors to the words 
in the "different" languages. 

3.2    PARTIALLY ALIGNED CORPUS 

In the partially aligned case, the matrices £' and <S 
are not available, and we still seek to find a vector 
lexicon for English and Spanish so that similar terms 
are assigned vectors with high cosines. 

We attacked this problem using CL-LSI by computing 
an SVD of the matrix 

V = 

Extracting the left singular vectors from this decompo- 
sition, we obtained a 500-dimension vector lexicon for 
English, French, and Spanish. The hope was that the 
method would be able to identify English-Spanish term 
relationships transitively through the common French 
terms. The evaluation of the derived vector lexicon 
using mate retrieval appears in Row 2 of Table 2. 

Although this is perhaps the most elegant approach to 
the problem, it has the unfortunate property of giv- 
ing dismal performance. In fact, the mean and me- 
dian ranks are much worse than the 1250 expected by 
pure chance (Row 1). The reason for this poor per- 
formance is obvious in retrospect. The zeros in the 
definition of V are meant to denote missing informa- 
tion (e.g., that we have no Spanish documents related 
to £ and T). However, SVD treats these as real zeros 
and detects the fact that English and Spanish terms 
never co-occur; it assigns representations that capture 
this, making English and Spanish terms appear quite 
different. 

A similar analysis of the idealized case from the previ- 
ous section is quite instructive here. Imagine that £ = 
T = T' = S'. Let F be the matrix of left singular vec- 
tors of T\ this is the vector lexicon learned by LSI from 
an analysis of T. Applying CL-LSI to V yields a vector 
lexicon for English of E = [ -y/T/6 F -y/Tß F ] 
and for Spanish of S = [ - y/T/6 F J\jl F ] . This 
is interesting because the matrix of English-Spanish 
term correlations EST = -1/3 FFT, or sign-reversed 
from the French-French term correlations. Essentially, 
terms that should have the highest similarity, like 
translations, are actually assigned the most dissimi- 
lar vectors by this method. While this simple analysis 
does not precisely capture the complexity of a realis- 
tic experiment, it does strongly suggest that CL-LSI is 
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Table 2: Mate-retrieval results for English to Spanish for several approaches 

METHOD MEAN % IN TOP 1 % IN TOP 10 MEDIAN 
1 partially aligned 2177.8 0.3% 0.7% 2455 
2 random order 1250.0 0.0% 0.4% 1250 
3 partially aligned (reversed) 323.2 7.9% 28.9% 46 
4 Procrustes on terms (to FF) 235.2 11.6% 37.8% 26 
5 Procrustes on terms 216.5 11.8% 38.6% 22 
6 Word matching 45.4 20.0% 47.6% 14 
7 Dictionary translation 17.2 79.9% 93.8% 1 
8 Procrustes on documents 14.0 57.5% 87.4% 1 
9 fully aligned 2.0 92.2% 99.6% 1 

not well suited to analyzing partially aligned corpora, 
even under idealized circumstances. 

Row 3 of Table 2 gives the results of applying CL- 
LSI to the partially aligned corpus, then performing 
the mate-retrieval experiment, computing document 
similarities using negative cosine. The results here are 
actually quite good considering the vector lexicon is 
being used backwards! 

In the next section, we show how to improve perfor- 
mance, with the added benefit that we no longer need 
to use the negative cosine similarity for cross-language 
comparisons. 

4    PROCRUSTES APPROACHES 

The results of the previous section show that it does 
not make sense to use a single SVD to create a vector 
lexicon from a partially aligned corpus. However, it is 
also clear that, within fully aligned corpora, we can use 
CL-LSI to find vector lexicons that produce acceptable 
performance. 

Since a partially aligned corpus contains smaller, fully 
aligned corpora within it, this suggests a different 
strategy. Specifically, we can take the fully aligned 
corpus formed by £ and T and use it to build a vector 
lexicons for English and French, E and F, derived by 

CL-LSI from a singular value decomposition of     T 

Once this is done, each English and French term can 
be thought of as a point in a high-dimensional vec- 
tor space—the rows of the E and F matrices are the 
coordinates of the points. 

The English-French vector space can also be thought 
to contain points for the documents in various docu- 
ment collections, since a document can be represented 
as the weighted sum of the representations of the terms 

English-French Spanish-French 

Figure 2: After performing separate CL-LSI analy- 
ses, English terms E, French terms F, English test 
documents E, and French training documents F oc- 
cupy the English-French vector space while Spanish 
terms 5', French terms F', Spanish test documents S, 
and French training documents F' occupy the Spanish- 
French vector space. 

it contains. The French documents are the points cor- 
responding to the rows of F = TTF and the English 
test documents are the points corresponding to the 
rows of E = £TE. Within the English-French vec- 
tor space, English terms, French terms, English docu- 
ments, and French documents can be compared using 
the cosine metric. 

Separately, we can also construct a Spanish-French 
vector space using CL-LSI applied to the fully aligned 
<S' and T1 collections. This situation is depicted in 
Figure 2. Let F' and S' be the vector lexicons derived 
by CL-LSI; the rows of these matrices are the points 
corresponding to the terms in the Spanish-French vec- 
tor space. The rows of F' = T'TF' and S = STS' 
are the points corresponding to the French training 
documents and Spanish test documents, respectively. 
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English-French Spanish-French 

Figure 3: English term and document vectors can be 
transformed from the English-French vector space into 
the Spanish-French vector space using a Procrustes 
analysis derived from shared French terms. 

4.1    PROCRUSTES ON TERMS 

Although the two vector spaces in Figure 2 are sep- 
arate, they do have something in common. Specifi- 
cally, both have points corresponding to French terms. 
Thus, the rows of F and F' can be seen as a set of 
"bridge" vectors that can be used to find a way of 
transforming points in the English-French vector space 
into the Spanish-French vector space. 

Mathematically, we need to derive a transformation 
matrix TF->F< that rotates the English-French vec- 
tor space so that the rows of F become as simi- 
lar as possible to the rows of F'. Thus, TF-+F' 

should be a rotation matrix (TF->F' TF^F
1
 = I = 

Tp^F' TF->F'
T

) that minimizes the Frobenius norm 
||F' - F Tj?_*.j?/||; an algorithm for computing such a 
transformation (Golub and Van Loan, 1989) is given 
in Appendix A and is known as Procrustes analysis.2 

Given the transformation matrix TF-*F' , we create a 
new vector lexicon E = E Tp->F' ■ The vector lexicon 
E has the property that English-English term simi- 
larities are unchanged from the CL-LSI-derived vector 
lexicon E, since 

EE      =   E TF-*F'\E Tp-yF1) 
         7? rn rrt T TnT     T? TpT. 
=     Hi lp-iF' J-F-tF'    &     = ■C'-C'   i 

however, these English term vectors now occupy the 
Spanish-French vector space, so comparisons between 
English and Spanish terms can be made. Figure 3 
illustrates this procedure. 

To evaluate this idea, we carried out the following ex- 
periment.   First, we listed all the French terms that 

appear in both T and F (for the purposes of this 
experiment, we excluded terms with digits in them). 
This results in a set of 3311 French terms, from which 
we picked 500 terms uniformly at random without re- 
placement to form a set of bridge vectors.3 We used 
these terms to find a transformation from English- 
French vector space tö Spanish-French vector space, 
applied this transformation to the English test docu- 
ments E TF-+F> , and performed the mate-retrieval test 
against the Spanish test documents S. The result of 
this test is given in the Row 5 of Table 2. 

The median rank of mates for this method is 22, mak- 
ing it better than the performance of "reversed" CL- 
LSI applied to this partially aligned corpus (median 
rank of mate of 46), but still far from the performance 
of CL-LSI on the fully aligned corpus (median rank of 
mate of 1). Note that transforming the Spanish terms 
into the English-French vector space via an appropri- 
ately defined TF>-+F gives precisely the same mate- 
retrieval performance because of the symmetric nature 
of the transformation matrix. 

To understand why Procrustes on terms did not per- 
form quite up to expectations, we tested a fundamen- 
tal hypothesis behind this approach. In particular, 
we were assuming that the French vector lexicon de- 
rived from the English-French corpus was essentially 
the same as that derived from the Spanish-French cor- 
pus. In particular, we were assuming that the French 
term-term correlations in the two vector spaces were 
roughly the same. To test whether this was true, we 
measured the stability of the term-term similarities in 
the two vector spaces by the correlation between FFT 

and F'F'T; it is 0.52, suggesting a positive correlation, 
but perhaps not one strong enough to form an ideal 
bridge between English and Spanish. 

4.2    PROCRUSTES ON DOCUMENTS 

We felt we could establish a stronger bridge using a 
more stable French vector lexicon. We considered the 
corpus formed by taking the union of the documents 
in T and T'. Let FFF be the vector lexicon derived 
by LSI on the matrix [ T T' ]. This vector lexi- 
con defines a French-French vector space that contains 
French terms FFF as well as both sets of French train- 
ing documents FFF = J^FFF and FFF' = F FFF- 

As we had hoped, this procedure strengthened some- 
what the stability of the French vector lexicons.   In 

2Procrustes is the robber of Greek legend who forced 
people of varying sizes to fit perfectly in a fixed sized bed 
by stretching or cutting them as appropriate. 

3 Of course, there are many other ways one might select 
a set of terms to create bridge vectors. Our choice was 
motivated by a combination of simplicity and practicality. 
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particular, for the set of French bridge terms, the 
correlation between FFT and FFFFFF

T is 0.74 and 
the correlation between F'F'T and FFFFFF

T is 0.72. 
Hence, we'd expect the bridge between the English- 
French vector space and the French-French vector 
space to be stronger than the one between the English- 
French vector space and the Spanish-French vector 
space from the previous experiment, where the cor- 
relation was 0.52. 

To evaluate the revised method, we constructed 
TF-*FFF and TF>->FFF by Procrustes analysis and 
transformed the English and Spanish test documents 
from their respective vector spaces into the French- 
French vector space. 

Performing a mate-retrieval test on these collections 
gave the results appearing in Row 4 of Table 2, which 
are just slightly worse than those of the previous exper- 
iment (e.g., median rank of mate of 26 instead of 22), 
in spite of the apparently higher correlations for the 
bridge vectors. We explain this by noting that in the 
previous experiment, English terms were transformed 
into the Spanish-French vector space via a transforma- 
tion with a correlation of 0.52. Here, before English 
and Spanish terms or documents can be compared, two 
transformations take place. Under an independence 
assumption, we estimate the cumulative correlation of 
the two transformations as .74 x .72 « 0.53, which is 
about the same as in the previous experiment. 

We then repeated the experiment with the difference 
that we based our transformations on document vec- 
tors instead of term vectors. Our intuition is that doc- 
uments are more stable predictors of meaning than are 
individual terms. 

Figure 4 illustrates our technique of merging vec- 
tor spaces by a Procrustes analysis of shared docu- 
ments. The basic idea is that we first create separate 
English-French, Spanish-French, and French-French 
vector spaces from the various combinations of pieces 
of the partially aligned corpus. We then create vec- 
tor representations for the French training documents 
T in both the English-French F and French-French 
FFF spaces. This allows us to create a transformation 
matrix TF_>FFF fr°m English-French to French-French 
via Procrustes analysis. English test documents € can 
now be located in the French-French space via 

E TF->FFF • 

A similar analysis results in transforming the Spanish 
test documents into the French-French vector space. 

The resulting vectors for the test documents can then 

English-French Spanish-French 

French-French 

Figure 4: English term and document vectors can be 
transformed from the English-French vector space into 
the French-French vector space using a rotation de- 
rived from shared French documents. Spanish term 
and document vectors can be transformed analogously. 

be evaluated using the mate-retrieval test. The perfor- 
mance, given in Row 8 of Table 2, is quite encouraging. 
We find that, more than half the time English test doc- 
uments are closest to their Spanish mates and 87.4% 
of the time, the mate is ranked in the top 10 out of 
2500 Spanish test documents. This is not quite as good 
as the results of training directly on aligned English- 
Spanish documents, but, considering the small amount 
of training data, the performance is quite respectable. 

It is instructive to look once more at the correlations 
of the bridge vectors used to map between the vari- 
ous vector spaces. The correlation between the French 
T document-document correlations in the English- 
French vector space FFT and the French-French vec- 
tor space FFFFFF

T
 is 0.98. Similarly, the correlation 

between the French T' document-document correla- 
tions in the Spanish-French vector space F'F' and 
the French-French vector space FFF'FFF' is 0.98. 
The product of these correlations is 0.97, providing 
strong evidence that the transformations that bring 
the English and Spanish test documents together in 
the French-French space are robust and accurate. 
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5    BASELINE COMPARISONS 

To help evaluate our results, we carried out two 
simple comparative experiments. First, we repeated 
the mate-retrieval evaluation using English to retrieve 
Spanish using only direct word matching. That is, only 
words appearing in both languages (proper names, 
numbers, acronyms, and some cognates like "idea") 
were used to measure the similarity between docu- 
ments. This type of information is routinely used to 
align texts and it is reasonable to ask how this method 
compares to Procrustes by documents. 

The result of mate-retrieval via word matching appears 
in Row 6 of Table 2. This method scores between 
the term-based Procrustes methods and Procrustes by 
documents. Thus, Procrustes by documents is extract- 
ing useful information beyond simply pairing up cross- 
language homographs. 

A second comparison used an available 21,000-word 
English-Spanish bilingual dictionary to compare En- 
glish and Spanish documents. Although this approach 
does not construct a vector lexicon, it does help estab- 
lish the baseline difficulty of the mate-retrieval task 
when additional linguistic resources are available. 

We created a simple word-for-word translation system 
from English to Spanish. For each English word found 
in the dictionary, we substituted all Spanish entries. 
English words not found were left untranslated (al- 
lowing proper names and acronyms to pass through). 
We performed no stemming or morphological analysis 
in either language. The translation procedure substi- 
tuted about 23.6% of types and 69% of tokens in the 
original English. 

The translated English documents were then matched 
against the Spanish test documents and mate-retrieval 
statistics collected; they are given in Row 7 of Table 2. 
In terms of mean rank of mate, Procrustes on docu- 
ments, which used no direct English-Spanish informa- 
tion, performed better than the human constructed 
dictionary (14.0 vs. 17.2). However, dictionary trans- 
lation scored better in percentage in top 1 and top 10. 

The results in Table 2 suggest that, when a parallel 
corpus is available (Row 9), it is the most effective 
method for constructing a vector lexicon. In the ab- 
sence of a parallel corpus, a bilingual dictionary can 
be used to match documents with one another and 
this works relatively well (Row 7), at least for "query 
by example" type of tasks. Procrustes on documents 
(Row 8) performs a bit less well by some measures, 
but does not require any direct resources relating the 

languages in question. 

That a parallel corpus technique outperforms dic- 
tionary translation is consistent with earlier studies 
measuring average precision for information-retrieval 
tasks (Carboneil et al., 1997). We are in the process 
of evaluating Procrustes by documents on this task. 

6    CONCLUSIONS 

In this paper, we introduce the problem of learning 
multi-lingual vector lexicons for partially aligned cor- 
pora. We couch the general problem in terms of tak- 
ing a corpus hypergraph and finding vector represen- 
tations for all the terms so that semantically similar 
terms have representations with high cosine, indepen- 
dent of language. 

Although we do not propose a solution to the gen- 
eral corpus hypergraph problem, we attack the specific 
case in which two languages are related only indirectly 
through a third language. Specifically, we have an 
English-French aligned corpus and a Spanish-French 
aligned corpus and we want to make comparisons tran- 
sitively between English and Spanish terms. We evalu- 
ate several algorithms for deriving vector lexicons from 
this type of corpus. 

Of the approaches we considered, the most successful 
was Procrustes on documents, in which English and 
Spanish terms are transformed into a French-only vec- 
tor space on the basis of the representation of a core set 
of French documents. A vector lexicon derived by this 
method was able to perfectly identify Spanish transla- 
tions of English documents from a field of 2500 choices 
57.5% of the time. While this is not nearly as ac- 
curate as a vector lexicon trained directly on aligned 
English and Spanish documents (92.2%), it is encour- 
aging given that all English-Spanish term-term rela- 
tionships were derived indirectly and completely auto- 
matically through connections with French terms. 

Our technique is applicable for finding relationships 
among arbitrarily large sets of languages as long as all 
these languages are related through aligned corpora 
with some core language (be it French, English, Rus- 
sian, etc.). In future work, we hope to extend this 
approach to use information in a web of aligned cor- 
pora to establish a robust representation for terms in 
any of the world's languages. 
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A    PROCRUSTES DERIVATION 

We seek a transformation TA-*B that rotates the vec- 
tors in the rows of A and makes them as similar as 
possible to the vectors of the rows of B. Specifically, 
we want TA-+B to be the k x k orthonormal matrix Q 
such that Frobenius norm \\B — AQ\\ is minimized over 
all matrices Q with QTQ = I = QQT. 

First, using the definition that trace(X) is the sum of 
the diagonal entries of X and ||X|| is the sum of the 
squares of all the entries of X, 

min   IIB-AQH 
QTQ=I 

=     min  trace((5 - AQ)(B - AQ)T) 

=      min (trace(ßßT) - trace(BQTAT) 
QTQ=r 

-tr&ce(AQBT) + trace(J4AT)) 

=     max trace(vlQßT). 
QTQ=I 

Now, note that trace(Xy) = trace(FX) and let 
ATB = UT,VT be the singular value decomposition 
of ATB. This gives us 

max trace(AQB )    = 
QTQ=I 

max trace(BTAQ) 
QTQ=I 

max trace(^Ef/TQ) 
QTQ=I 

max trace(SC/TQn. 
QTQ=I 

Since V, Q, and U are all orthonormal, they cannot 
increase the length of any of the rows of E. This means 
that the maximum of the sum of the diagonal entries 
of trace(E[/TQV) occurs when UTQV = I, or when 
Q = UVT. Thus, TA->B = UVT is the transformation 
that maximizes the alignment between A and B. 
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Abstract 1    Introduction 

Recent research on hidden-state reinforce- 
ment learning (RL) problems has concen- 
trated on overcoming partial observability by 
using memory to estimate state. However, 
such methods are computationally extremely 
expensive and thus have very limited appli- 
cability. This emphasis on state estimation 
has come about because it has been widely 
observed that the presence of hidden state 
or partial observability renders popular RL 
methods such as Q-learning and Sarsa use- 
less. However, this observation is misleading 
in two ways: first, the theoretical results sup- 
porting it only apply to RL algorithms that 
do not use eligibility traces, and second these 
results are worst-case results, which leaves 
open the possibility that there may be large 
classes of hidden-state problems in which RL 
algorithms work well without any state esti- 
mation. 

In this paper we show empirically that 
Sarsa(A), a well known family of RL algo- 
rithms that use eligibility traces, can work 
very well on hidden state problems that have 
good memoryless policies, i.e., on RL prob- 
lems in which there may well be very poor 
observability but there also exists a mapping 
from immediate observations to actions that 
yields near-optimal return. We apply conven- 
tional Sarsa(A) to four test problems taken 
from the recent work of Littman, Littman 
Cassandra and Kaelbling, Parr and Russell, 
and Chrisman, and in each case we show that 
it is able to find the best, or a very good, 
memoryless policy without any of the com- 
putational expense of state estimation. 

Sequential decision problems in which an agent's sen- 
sory observations provide it with the complete state 
of its environment can be formulated as Markov deci- 
sion processes, or MDPs, for which a number of very 
succesful planning (Sutton & Barto, 1998) and rein- 
forcement learning (Barto et al., 1983; Sutton, 1988; 
Watkins, 1989) methods have been developed. How- 
ever, in many domains, e.g., in mobile robotics, and 
in multi-agent or distributed control environments, 
the agent's sensors at best give it partial informa- 
tion about the state of the environment. Such agent- 
environment interactions suffer from hidden-state (Lin 
& Mitchell, 1992) or perceptual aliasing (Whitehead 
k. Ballard, 1990; Chrisman, 1992) and can be formu- 
lated as partially observable Markov decision processes, 
or POMDPs (e.g., Sondik, 1978). Therefore, finding 
efficient reinforcement learning methods for solving in- 
teresting sub-classes of POMDPs is of great practical 
interest to AI and engineering. 

Recent research on POMDPs has concentrated on 
overcoming partial observability by using memory to 
estimate state (Chrisman, 1992; McCallum, 1993; Lin 
& Mitchell, 1992) and on developing special purpose 
planning and learning methods that work with the 
agent's state of knowledge, or belief state (Littman 
et al., 1995). In part, this emphasis on state esti- 
mation has come about because it has been widely 
observed and noted that the presence of hidden state 
renders popular and succesful reinforcement learning 
(RL) methods for MDPs, such as Q-learning (Watkins, 
1989) and Sarsa (Rummery k. Niranjan, 1994), use- 
less on POMDPs (e.g., Whitehead, 1992; Littman, 
1994; Singh et al., 1994). However, this observation 
is misleading in two ways: first, the theoretical re- 
sults (Singh et al., 1994; Littman, 1994) supporting it 
only apply to RL algorithms that do not use eligibility 
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traces, and second, these results are worst-case results 
which leaves open the possibility that there may be 
large classes of POMDPs in which existing RL algo- 
rithms work well without any state estimation. 

The main contribution of this paper is to show empir- 
ically that Sarsa(A), a well known family of reinforce- 
ment learning algorithms that use eligibility traces, 
can work very well on POMDPs that have good mem- 
oryless policies, i.e., on problems in which there may 
well be very poor observability but there also exists a 
mapping from the agent's immediate observations to 
actions that yields near-optimal return. We also show 
how this can be extended to low-order-memory-based 
policies. This contribution is significant, because it 
may be that most real-world engineering problems that 
are well designed have good memoryless or good low- 
order-memory-based policies. We apply conventional 
Sarsa(A) on four test problems taken from recent pub- 
lished work on POMDPs and in each case show that 
it is able to find the best, or a very good, memory- 
less policy without any of the computational expense 
of state estimation. However, these results have to 
be interpreted with caution for the problem of finding 
optimal memoryless policies in POMDPs is known to 
be computationally challenging (Littman, 1994); they 
are evidence that Sarsa(A) is at least competitive to 
and at best better than other existing algorithms for 
solving POMDPs when good low-order-memory-based 
policies exist. 

2    POMDP Framework 

In this section we briefly describe the POMDP frame- 
work. An environment is defined by a finite set of 
states S, the agent has recourse to a finite set of ac- 
tions A, and the agent's sensors provide it observa- 
tions from a finite set X. On executing action a € A 
in state s € S the agent receives expected reward r° 
and the environment transits to a random state s' € S 
with probability P°s,. The probability of the agent ob- 
serving x e X given that the environment's state is s 
is 0(x\s). In the reinforcement learning (RL) problem 
the agent does not know the transition and observation 
probabilities P and O and its goal is to learn an ac- 
tion selection strategy that maximizes the return, i.e. 
the expected discounted sum of rewards received over 
an infinite horizon, -EiX^o^M- where 0 < 7 < 1 
is the discount factor that makes immediate reward 
more valuable than reward more distant in time, and 
Tt is the reward at time step t. 

In fully observable RL problems or MDPs it is known 

that there exists an optimal policy that is memory- 
less, i.e., is a mapping from states to actions, S —* A. 
RL algorithms such as Q-learning and Sarsa are able 
to provably find such memoryless optimal policies in 
MDPs. It is known that in POMDPs the best memo- 
ryless policy can be arbitrarily suboptimal in the worst 
case (Singh et al., 1994). We ask below if these same 
RL algorithms can find the best memoryless policy 
in POMDPs (Jaakkola et al., 1995; Littman, 1994), 
regardless of how good or how bad it is; for if they 
are able to find it, then they can at least be useful 
in POMDPs with good memoryless policies. We note 
that the success of RL algorithms when using com- 
pact function approximation in fully observable prob- 
lems (Barto et al., 1983; Tesauro, 1995) provides some 
evidence that this is possible because the use of com- 
pact function approximation introduces hidden state 
into otherwise completely observable MDPs. 

3    Eligibility Traces and Sarsa(A) 

In MDPs reinforcement learning algorithms such as 
Sarsa(A) use experience to learn estimates of optimal 
Q-value functions that map state-action pairs, s, a, to 
the optimal return on taking action a in state s. The 
transition at time step t, < st,at,rt,St+i >, is used to 
update the Q-value estimate of all state-action pairs 
in proportion to their eligibility. The idea behind the 
eligibilities is very simple. Each time a state-action 
pair is visited it initiates a short-term memory or trace 
that then decays over time (exponentially with param- 
eter 0 < A < 1). The magnitude of the trace deter- 
mines how eligible a state-action pair is for learning. 
So state-action pairs visited more recently are more 
eligible. 

In POMDPs the transition information available to the 
agent at time step f is < xt,at,rtlxt+i >■ A straight- 
forward way to extend RL algorithms to POMDPs 
is to learn Q-value functions of observation-action 
pairs, i.e., to simply treat the agent's observations 
as states. Below we describe standard Sarsa(A) ap- 
plied to POMDPs in this manner. At step t the Q- 
value function is denoted Qt and the eligibility trace 
function is denoted r]t. On experiencing transition 
< xt,at,rt,xt+i > the following updates are per- 
formed in order: 

■>li(xt,at)    =    1 

V (x jLxt or a ^ a,); r),{x,a)    =    ^\qt-i(x,a) 

Vx and a; 

Qt+1(x,a) = Q,{x,a) + a * 8t * r]t(x,a) (1) 
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where 5t = rt + jQt(xt+i,at+i) - Qt(xt,at), and a 
is the step-size. The eligibility traces are initialized 
to zero, and in episodic tasks they are reinitialized 
to zero after every episode. The greedy policy at 
time step t assigns to each observation x the action 
a = argmaXbQt{x,b). Note that the greedy policy is 
memoryless. 

3.1    Using Sarsa(A) with Observation 
Histories 

The Sarsa(A) algorithm can also be easily used to de- 
velop memory-based policies by simply learning a Q- 
value function over estimated-states and actions, and 
by keeping eligibility traces for estimated-state and ac- 
tion pairs. So for example, we could augment the im- 
mediate observation with the past K observations to 
form the estimated-state and derive a memory-based 
policy that maps K + 1 observations to actions. The 
only change to the equations in (1) would be that the 
immediate observations (x's) would be replaced by the 
estimated states. 

4    Empirical Results 

The Sarsa(A) algorithm was applied in an identical 
manner to four POMDP problems taken from the re- 
cent literature and described below. Here we describe 
the aspects of the empirical results common to all four 
problems. At each step, the agent picked a random ac- 
tion with a probability equal to the exploration rate, 
and a greedy action otherwise. Except where explic- 
itly noted, we used an initial exploration rate of 20% 
decreasing linearly with each action (step) until the 
200000"1 action from where onwards the exploration 
rate was 0%. Q-values were initialized to 0. The agent 
starts each episode in a problem specific start state 
or a randomly selected start state as specified by the 
originators of the problems. Both the step-size (a) and 
the A values are held constant in each experiment. We 
did a coarse search over a and A for each problem but 
present results only for A = 0.9 and a = 0.01 which 
gave about the best performance across all problems. 
In all cases, a value of A between 0.8 and 0.975 worked 
the best. This is qualitatively similar to the results 
obtained for MDPs, and a bit surprising given that 
Sarsa(l) (or Monte-Carlo) has been recommended as 
the way to deal with hidden state (Singh et al., 1994). 

The data for the learning curves is generated as fol- 
lows: after every 1000 steps (actions) the greedy pol- 
icy is evaluated offline to generate a problem specific 
performance metric. All the learning-curves below are 

plotted after smoothing this data by doing a running 
average over 30 data points. 

For each POMDP we first present its structure by 
defining the states, actions, rewards, and observations 
and then we present our results. 

4.1    Sutton's Grid World 

Sutton's grid world problem (see Figure 1A) is from 
Littman (1994) who took a navigation gridworld from 
Sutton (1990) and made it a POMDP by not allowing 
its exact position to be known to the agent. 

States: This POMDP is a 9 by 6 grid with several 
obstacles and a goal in the upper right corner (see Fig- 
ure 1A). The state of the environment is determined by 
the grid square the agent occupies. State transitions 
are deterministic. 

Actions: The agent can choose one of 4 actions: move 
north, move south, move east, and move west. 

Observations: The agent can observe its 8 neigh- 
boring grid squares yielding 256 possible observations. 
Only 30 (of the 256 possible) unique observations oc- 
cur in the gridworld. Observations are deterministic. 
Figure 1A shows the gridworld with observations indi- 
cated by the number in the lower right corner of each 
square. 

Rewards: The agent receives a reward of —1 for each 
action that does not transition to the goal state. A 
reward of 0 is received for any action leading to the 
goal state. 

When the agent reaches the goal state it transitions to 
a uniformly random start state. 

4.1.1    Sarsa(A) Results 

After every 1000 steps of experience in the world, the 
greedy policy is evaluated to determine the total num- 
ber of steps required to reach the goal from every possi- 
ble non-goal start state (46 start states). The agent is 
limited to a maximum of 1000 steps to reach the goal. 
Thus a policy which cannot reach the goal from any 
start state would have a total steps to goal of 46,000. 

Sarsa(A) converged to the 416 total step policy shown 
with arrows in Figure 1A; the learning-curve is shown 
in Figure IB. The total steps to the goal for the opti- 
mal policy in the underlying MDP is 404, and so in this 
case a very good memoryless policy was found. This 
416 step policy matches exactly with the 416 step pol- 
icy Littman (1994) found using an expensive branch 
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Figure 1: Sutton's Grid World (from Littman, 1994). 
A) The grid world environment. The numbers on the 
lower right are the observations. The arrows show the 
optimal memoryless policy found by Sarsa. B) The 
total steps to goal of the greedy policy as a function 
of the amount of learning steps. The inset plot shows 
the same data at a different scale. 

and bound method that searches directly in memory- 
less policy space and is guaranteed to find the optimal 
memoryless policy. Note that the number of possi- 
ble memoryless policies is (4 actions, 30 observations) 
430 = 1.2 x 1018 policies. 

Observe that in Figure 1A the agent learns to go left 
in the state just to the left of the goal. This is because 
it has to go up in the state immediately below (obser- 
vation 18) because of its aliasing with the state 4 steps 
below the goal (both states have 3 walls to the right). 

4.2    Littman, Cassandra, and Kaelbling's 89 
State Office World 

States: The gridworld for Littman et al.'s (1995) 89 
state office problem is shown in Figure 2A. The state of 
the environment is the combination of the grid square 
that the agent is occupying and the direction that the 
agent is facing (N, S, E, W). The are 22 possible agent 
locations times 4 directions for 88 states plus the goal 
state for 89 total states. State transitions are stochas- 
tic. 

Actions: The agent can choose one of 5 actions: stay 
in place, move forward, turn right, turn left, and turn 
around. Both the state transitions and the observa- 
tions are noisy with the agent getting the correct ob- 
servation only 70% of the time. 

Observations: The agent can observe the relative 
position of obstacles in 4 directions: front, back, left 
and right. There are 16 possible observations plus the 
goal observation. 

Rewards: The agent receives a reward of +1 for any 
action leading to the goal observation with all other 
rewards equal to 0. 

After reaching the goal observation the agent transi- 
tions to a uniformly random start state. 

4.2.1    Sarsa(A) Results 

After every 1000 steps of experience the greedy policy 
is evaluated. As in Littman et al., for each evalua- 
tion 251 trials are run using the greedy policy with a 
maximum step cutoff at 251 steps. Two performance 
metrics are used: the median number of steps to the 
goal for the 251 trials, and the percent of the 251 trials 
which reach the goal state within 251 steps. 

The best memoryless policy found by Sarsa(0.9) was 
able to reach the goal on average 77% of the 251 tri- 
als (see Figure 2B) with a median number of steps 
to goal of 73 steps (see Figure 2C). The best policy 
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Figure 2: Littman et al.'s 89 state office world. A) 
The office world environment where the goal state is 
denoted with a star. The state of the environment is 
the combination of the grid square that the agent is 
occupying and the direction that the agent is facing (N, 
S, E, W). B) The percentage of trials with the greedy- 
policy that succeed in getting to the goal in less than 
251 steps. C) Median number of steps to goal of the 
greedy policy as a function of the number of learning 
steps. 

found by Sarsa(0.9) outperformed all of the memory- 
based policies found by Littman et al. in their Table 
3. Their best policy was able to reach the goal in only 
44.6% of the 251 trials with a median steps to goal of 
> 251 steps and was found using truncated value it- 
eration algorithm on belief states. Littman et al. also 
presented a hybrid method that finds a policy that 
reached the goal in 58.6% of the trials (still below the 
percentage for the best memoryless policy found by 
Sarsa(0.9) with median steps to goal of 51 steps (this 
is better than Sarsa(0.9)'s 73 steps). 

There are 516 = 1.53 x 1011 possible memoryless poli- 
cies for this problem. Therefore it is not practical to 
enumerate the performance of every possible policy to 
verify if the policy found by Sarsa(0.9) is indeed the 
optimal memoryless policy, but its performance vis-a- 
vis the state-estimation based methods of Littman et 
al. was encouraging. 

4.3    Parr and Russell's Grid World 

States: Parr and Russell's (1995) gridworld consists 
of 11 states in a 4 by 3 grid with a single obstacle 
(see Figure 3A). The state of the environment is de- 
termined by the grid square occupied by the agent. 

Actions: The agent can choose one of 4 actions: move 
north, move south, move east, and move west. State 
transitions are stochastic with the agent moving in the 
desired direction 80% of the time and slipping to either 
side 10% of the time. 

Observations: The agent can only observe if there 
is a wall to its immediate left or right. There are 4 
possible observations corresponding to the combina- 
tions of left and right obstacles plus two observations 
for the goal and penalty states yielding a total of 6 
observations. Observations are deterministic. 

Rewards: There is a goal state in the upper right cor- 
ner with a penalty state directly below the goal state. 
The agent receives a reward of -0.04 for every action 
which does not lead to the goal or penalty state. The 
agent receives a reward of +1 for any action leading 
to the goal state and a reward of —1 for any action 
leading to the penalty state. 

4.3.1    Sarsa(A) Results 

Every 1000 steps the greedy policy was evaluated and 
the learning curve is presented in Figure 3B. The av- 
erage reward per step was computed for 101 trials of 
up to 101 steps per trial. There are 46 = 4096 pos- 
sible memoryless policies for this problem.   We veri- 
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Figure 3: Parr & Russell's Grid World. A) The grid- 
world environment. The numbers in the lower right 
are the observations. The arrows show the optimal 
memoryless policy found by Sarsa. B) The average re- 
ward per action of the memoryless greedy policy as a 
function of the number of learning steps. 

Figure 4:. Parr & Russell's Grid World. A) We add 
one past observation to the immediate observation. 
The performance of the greedy policy. B) We add two 
past observations to the immediate observation. The 
performance of the greedy policy. Note the different 
scales. 
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fied that Sarsa(0.9) found the optimal memoryless pol- 
icy by evaluating the performance of all 4096 possible 
policies. In this problem, the best memoryless policy 
is rather poor compared to policies which use mem- 
ory. The best memoryless policy yields an average re- 
ward per step of 0.024 compared to the memory-based 
policy found by the Witness algorithm (Littman et 
al., 1995) which yields an average reward per step of 
0.1108. 

Parr k Russell's SPOVA-RL (Smooth Partially Ob- 
servable Value Approximation Reinforcement Learn- 
ing) algorithm learns a value function over belief states 
and did even better yielding an average reward per 
step of 0.12 with a memory-based policy1. 

The poor relative performance of the optimal memory- 
less policy is due to the non-optimal actions the agent 
must take in the aliased states. For example observa- 
tion 0 (see Figure 3A) is observed for 3 states in the 
grid. The state to the left of the penalty state is ob- 
served as observation 0 and causes the optimal action 
in observation 0 to be move north instead of move east. 
This causes the agent to continuously bump into the 
upper left corner wall until the transition noise causes 
a transition to the state to the east. 

We investigated the performance improvement ob- 
tained by Sarsa(A) when the immediate observation 
is augmented with 1 and with 2 previous observations. 
The performance of the policy using 1 previous obser- 
vation yielded an average reward per step of 0.1124 
(see Figure 4A) which is better than the policy found 
by the Witness algorithm and almost as good as the 
policy found by SPOVA-RL. Sarsa(A) required fewer 
than 60 CPU seconds to find its policy compared to 
the 42 CPU minutes for SPOVA-RL and the 12 CPU 
hours required by the Witness algorithm (Parr & Rus- 
sell, 1995). The 3-observation performance is shown 
in Figure 4B and is the same as the 2-observation per- 
formance. 

We were able to verify that the policy found by 
Sarsa(A) using 1 previous observation was indeed the 
optimal policy in that space. Only ten 2-observation 
sequences are encountered in the gridworld leading to 
410 = 1,048,576 possible 2 observation policies. We 
evaluated the performance of all possible 2-observation 
policies and again verified that the policy found by 
Sarsa(A) was the same as the best 2-observation pol- 

1Parr and Russell state that their implementation of the 
Witness algorithm did not converge on this problem, which 
probably accounts for the better performance of SPOVA- 
RL relative to the exact Witness algorithm. 

icy. 

4.4    Chrisman's Shuttle Problem 

States: Chrisman's (1992) shuttle problem involves 
an agent operating in an environment with 8 states, 
3 actions, and 5 observations. The scenario consists 
of two space stations with loading docks. The task is 
to transport supplies between the two docks. There is 
noise in both the state transitions and observations. 

Actions: The agent can execute one of 3 actions: go 
forward, backup, and turn around. 

Observations: The 5 observations are: can see the 
least recently visited (LRV) station; can see the most 
recently visited (MRV) station; can see that we are 
docked in most recently visited (MRV) station; can 
see that we are docked in least recently visited (LRV) 
station; and can see nothing. There is sensor noise 
causing the agent to make faulty observations. 

Rewards: The agent receives a reward of +10 when it 
docks with the least recently visited station. The agent 
must back into the dock to dock with the station. If 
the agent collides with the station by moving forward 
it receives a reward of —3. All other action rewards 
are 0. 

4.4.1    Sarsa(A) Results 

Every 1000 steps (actions) the performance of the 
greedy policy is evaluated. The performance metric 
is the average reward per step for 101 trials of up 
to 101 steps (actions) each. There are (3 actions, 5 
observations) 35 = 243 possible memoryless policies. 
Sarsa(0.9) finds a memoryless policy which yields an 
average reward per step of 1.02 (see Figure 5A for 
the learning curve). We verified that the policy found 
by Sarsa(0.9) was indeed the optimal memoryless pol- 
icy by evaluating the performance of the 243 possible 
memoryless policies. 

The two best memory-based policies for Chrisman's 
shuttle problem found by Littman et al. (1995) were 
found through truncated exact value iteration and 
their Qmdp method. Truncated exact value iteration 
found a policy with an average reward per step of 1.805 
while Qmdp yielded 1.809. The performance of the 
optimal memoryless policy is rather poor compared to 
the performance of policies using memory. This is due 
to the conservative nature of the optimal memoryless 
policy which avoids any forward actions so as to avoid 
receiving the —3 penalty for hitting the station while 
moving forward. 
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We also investigated the performance improvement ob- 
tained by augmenting the current observation with 1 
and 2 previous observations. By including the previ- 
ous observation the performance improved by 37% to 
an average reward per step of 1.37 (see Figure 5B). By 
including the 2 previous observations the performance 
improved by 80% to an average reward per step of 
1.804 (see Figure 5C). The performance of the best 
policy found by Sarsa with 2 previous observations is 
as good as the truncated exact value iteration method 
and the Qmdp method, again at a much lower compu- 
tational cost. 

4.5    Discussion 
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Figure 5: Chrisman's shuttle problem. A) The aver- 
age reward per action of the memoryless greedy policy 
as a function of the number of learning steps. B) We 
add one past observation to the immediate observa- 
tion. The performance of the greedy policy. C) We 
add two past observations to the immediate observa- 
tion. The performance of the greedy policy. 

In all the empirical results presented above either 
we were able to confirm by enumeration that Sarsa 
found the best policy representable as a mapping from 
estimated-states (immediate, or immediate and past 1 
or past 2 observations) to actions, or in cases where it 
was not possible to enumerate we observed that Sarsa 
did as well as the algorithms presented by the, origina- 
tors of the specific POMDPs. Speculating from these 
empirical results, we conjecture that Sarsa(A) may be 
hard to beat in problems where there exists a good 
policy that maps the observation space to actions. 

4.5.1    Why do Eligibility Traces Work? 

Consider the set of states that map onto the same ob- 
servation x. The neighbours of this set of states for 
some action a may map to several different observa- 
tions. This can lead to conflicting pulls for the Q- 
value of x, a depending on which state is providing the 
experience; some may suggest a is good, some may 
suggest that a is bad. However these different pulls 
could get resolved if we considered what happens af- 
ter n steps. Indeed if we wait until we get to the goal 
(Monte-Carlo or Sarsa(l)) there would be no confu- 
sion due to the hidden state at all. Eligibility traces 
allow an observation-action pair to access what hap- 
pens many time steps later, bridging the gap to un- 
ambiguous information about the quality of an action. 
This reasoning indicates that there may be a minimum 
problem-specific A that would be needed to bridge the 
smallest such "gap" in each problem. Our observa- 
tions during the current work support this; however a 
careful analysis remains as future work. 

5    Conclusion 

Partial observability is inevitable in many sequential 
decision problems of interest to both AI and engineer- 
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ing. Given the worst-case computational intractabil- 
ity of POMDPs, it is useful to identify sub-classes of 
POMDPs and algorithms that work well in them. We 
believe that eligibility trace based RL methods such as 
Sarsa(A) can be be useful in POMDPs that have good 
memoryless or good low-order-memory-based policies. 
We demonstrated this empirically on four POMDP 
problems from the recent literature. A more power- 
ful result that remains future work would be to prove 
this theoretically. 
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Abstract 

This paper addresses the problem of determin- 
ing an object's 3D location from a sequence of 
camera images recorded by a mobile robot. The 
approach presented here allows people to "train" 
robots to recognize specific objects, by present- 
ing it examples of the object to be recognized. A 
decision tree method is used to learn significant 
features of the target object from individual cam- 
era images. Individual estimates are integrated 
over time using Bayes rule, into a probabilistic 
3D model of the robot's environment. Experi- 
mental results illustrate that the method enables 
a mobile robot to robustly estimate the 3D loca- 
tion of objects from multiple camera images. 

1   INTRODUCTION 

In recent years, there has been significant progress in the 
field of mobile robotics. Applications such as robots that 
guide blind or mentally handicapped people, robots that 
clean large office buildings and department stores, robots 
that assist people in recreational activities, etc., are slowly 
getting in reach. Many of these robots must integrate 
mobility with manipulation. They must be able to move 
around, and they must also be capable of manipulating their 
environment. For such robots, their practical success will 
partially depend on their ability to identify and localize ob- 
jects. 

This paper addresses the problem building robots that can 
be trained to recognize and locate user-specified objects. 
More specifically, it proposes an algorithm that enables 
people to train robots by simply showing a few poses of the 
object. Once trained, the robot can recognize these objects 
and determine their location in 3D space.  In contrast to 

existing approaches to mobile manipulation, which usually 
assumes that objects are located in floor or table-height, 
our approach does not make restrictive assumptions as to 
where the object is located. This poses new challenges on 
the ability to localize objects, as a single camera image is 
insufficient to determine the location of an object in 3D 
space. 

The approach proposed here uses probabilistic representa- 
tions to estimate the identity and location of the target ob- 
ject from multiple views. It maps camera images into 2D 
probabilistic maps, which describe, for each pixel in the 
camera image, the likelihood that this pixel is part of the 
target object. This mapping is established by a decision tree 
applied to local image features, which is constructed during 
the training phase from labeled images. The 2D probabilis- 
tic map is then projected into the 3D work space, based on 
straightforward geometric considerations. Since a single 
camera image is insufficient to determine the location of 
an object in 3D, our approach integrates information from 
multiple images, taken from multiple viewpoints. It em- 
ploys Bayes rule to generate a consistent probabilistic 3D 
model of the workspace. Our approach also takes into ac- 
count the uncertainty introduced by robot motion, by using 
a probabilistic model of robot motion. As the robot moves 
in the environment taking images, it gradually improves the 
estimation of the identity and location of an object, until it 
finally knows what and where the object is. Experimental 
results using a RWI B21 robot equipped with a color cam- 
era show that multi-part objects can be located robustly and 
with high accuracy. 

The remainder of this paper is organized as follows. In sec- 
tion 2, we briefly describe decision trees along with the way 
our approach uses them for characterizing images. In sec- 
tion 3, we show how image information is integrated into 
a 3D model, and provide a method for accommodating the 
uncertainty that is introduced by robot motion. In section 4, 
we present experimental results, obtained with a RWI B21 
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Figure 1: The top few nodes of an example decision tree. A 
leaf represents the probability conditioned on the values of 
the attributes. Internal nodes test on the fraction of positive 
pixels of a tile that fall in the corresponding hue range. 

robot, followed by a survey of related research (section 5). 
Finally, in section 6, we comment on the assumptions and 
limitations of the approach and suggest directions for fu- 
ture research. 

2   DECISION TREE LEARNING 

A decision tree is a succinct and explicit way of repre- 
senting a multidimensional discrete-valued function / : 
1Zn x Xm ->■ y, where X and y are finite sets of discrete 
elements and 11 is the set of real numbers. The (n + m) 
inputs to this function frequently correspond to discrete 
and/or continuous-valued attributes of an object and the 
output represents an object's property that we want to pre- 
dict. Each node of the tree is associated with a partition 
of the input space. An internal node further partitions its 
space into two subspaces based on the value of a single in- 
put variable, associating each of the resultant subspaces to 
each of the two children. The set of decision trees is com- 
plete in the space of discrete-valued functions i.e. any such 
function can be represented by at least one decision tree. 
An example of a decision tree, obtained in the context of 
image analysis in a fashion similar to the one used in this 
paper (see below), is illustrated in Fig. 1. 

Our approach uses decision trees to approximate condi- 
tional probability density functions. Decision trees are usu- 
ally used to answer YES/NO queries regarding the output 
value of / given an input tuple of values. If, for example, / 
is a boolean-output function, querying is typically done by 
comparing the number of positive and the number of nega- 
tive training examples that were assigned during training to 
the leaf node that is associated with the partition that the in- 
put tuple lies in. The algorithm would then return the value 
(YES/NO) that is in majority in that leaf. In our use of a de- 
cision tree we differ in that we instead output the fraction 

of positive or negative examples found in the leaf. As such, 
we use the decision tree to represent an approximation of 
the probability density function on the output space condi- 
tioned on the values of attributes in the input space of /. 
If appropriately pruned (during a post-pruning phase that 
is intended to increase compactness and, more importantly, 
generalization over future data), these probabilities are usu- 
ally not zero or one because of training set noise in either 
the values of the inputs or the output or non-determinism 
due to use of a set of input variables that is insufficient to 
deterministically model /. 

2.1   A PDF FOR CHARACTERIZING AN IMAGE 

Our approach uses a decision tree to map (filter) camera im- 
ages into 2D probabilistic maps, which describe the prob- 
ability of the presence of a target object at the various lo- 
cations in the image. More specifically, the inputs to the 
tree are image features in a local region (called: tile) in 
the image, and the output is a probability value that mea- 
sures the likelihood of the presence of a target object in the 
respective tile. In principle, our approach can be applied 
to arbitrary image features (e.g., pixels, edges, brightness, 
color, texture, etc.). In our implementation, local color his- 
tograms are used as input to the decision tree. 

The tree is learned using labeled training examples. More 
specifically, construction of the training, test and pruning 
sets is done using the following procedure: 

1. An input picture is obtained. 
2. A rectangle R is drawn around the object by the user. 

This might include parts of the background. 
3. The image is divided in a matrix of non-overlapping 

rectangular tiles, completely covering its surface. The 
size of each tile is small relative to the projection of 
the object on the image. 8 x 8 is used in this paper. 

4. Each tile is used to construct a single positive or nega- 
tive example. The features that occur in the tile, which 
can be continuous or discrete, are extracted and used 
as input values for the example associated with that 
tile. 

5. Depending on whether each tile is fully contained 
within R or not, the example is assigned to be posi- 
tive or negative, respectively. 

This set of examples is equally divided into training, test 
and pruning sets, and these are used in growing a decision 
tree for that combination of object and environment that it 
was seen in. The resulting tree, when applied to new im- 
ages within that environment, provides probability densi- 
ties for the presence of a target object. 

Figure 2 illustrates our method. Shown there, in the top 
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Figure 2: Detection of a bottle from previous examples. 
The top row contains images where the outlined part con- 
tains the tiles used as positive examples. The rest of the 
image's tiles are negative examples. Probabilities above 0.8 
are marked in the previously unseen picture in the bottom 
row. Not shown is another set of 18 "background" pictures 
consisting of negative examples only. 

row, is a series of three training images. The target object 
is labeled by hand. The bottom row shows a test image, 
along with the probability field generated by the tree. As 
can be seen there, the algorithm assigned high likelihood to 
the correct location, but also misclassified a small number 
of regions in the image background. From this single cam- 
era image, it is impossible to determine the location of the 
target object in 3D coordinates. The remainder of this pa- 
per describes our approach to integrating these probabilistic 
estimates in 3D space. 

3   INTEGRATING MULTIPLE CAMERA 
IMAGES IN 3D 

Our approach integrates the probabilistic information, ex- 
tracted from individual images, into a spatial 3D model of 
the world. Information about the location of the object is 
represented as a 3D occupancy grid. Each grid cell is as- 
sociated with an approximation of the probability that part 
of the object occupies that particular cell. Each such prob- 
ability is initialized with a number that corresponds to a 
prior belief that the object occupies a cell given no infor- 
mation about the world. This number can be learned from 
data, typically though counting according to the frequen- 
tists' approach to probability. The exact value of the prior 
is not significant in the long term, since the value will con- 
verge towards the actual probability after a sufficient num- 
ber of observations. However, if there is evidence that the 
object in question occurs more frequently in certain areas 

(for example, a shoe may be expected to lie on the floor 
most of the time), this information can be used to appro- 
priately initialize prior probabilities and assign higher val- 
ues to these locations. During detection, each information- 
gathering step is followed by an updating of the probability 
of each cell according to Bayes law, as described below. 
Robot motion also affects the grid due to uncertainty of the 
robot's translational and rotational velocities. 

3.1    INFORMATION INTEGRATION 

The key idea for mapping 2D image information into a 3D 
spatial representation is to map image tiles into pyramids 
in space. Each image obtained from the environment pro- 
vides us with information about the location of parts of the 
object. Since we assume a single camera input, we have no 
information about the depth of features contained in one of 
the tiles of the image. We therefore make no assumption on 
the distance of the part from the eyepoint. However, we do 
obtain information about the Euler angles (azimuth 6 and 
altitude <f>) of the feature with respect to the robot's current 
location. In particular we know that it is contained within 
the pyramid emanating from the eyepoint whose four con- 
verging sides intersect the four corners of the tile on the im- 
age plane that is perpendicular to the direction the camera 
is facing. Grid cells intersecting this pyramid are therefore 
updated using Bayes law. 

An example of the updating is shown in Fig. 3. Here two 
different pyramids are shown (projected into the x-y plane), 
which have been generated from camera images taken at 
different locations. Bayes rule is applied to integrate these 
pyramids, in order to generate a single, consistent belief. 

The integration works as follows. The probability that a 
part of the object occupying a cell at grid location (x, y, z) 
at time t is denoted by Pr[£(x, y, z,t)]. Coordinates x, y 
and z are with respect to a fixed, world-centered coordi- 
nate system (they are not local robot-centered coordinates). 
£(x, y, z, t) is a boolean random variable denoting the exis- 
tence of a part of the object at a location somewhere inside 
the corresponding grid cell. In the following we will use £ 
instead of £(x, y, z,t) for the sake of brevity. If i(t) denotes 
the image obtained at time / and D(t — 1) the set of pre- 
vious images/motion commands in all previous steps, the 
probability value p(£) at grid cell location £ is computed as 
follows: 

p(0    =    Pi[£\i(t),D{t-l)] 

=    Pr[i{t)\t,D(t-l)] 
Pr[»(0|ö(/-1)]' 
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Figure 3: On the top, the robot used in our experiments 
is shown. It is equipped with a parallel two-fingered grip- 
per for object manipulation. On the bottom, an illustration 
is presented of how information from images taken from 
two different viewpoint is integrated in the occupancy grid. 
Shown to the left are two single projections applied to an 
"empty" grid. The picture on the right shows how they are 
combined together. The images depict the average values 
of grid cell probabilities when viewed from above (i.e. av- 
eraging probability values along the z-axis). 

Pr[£ | D(t — 1)] is the prior probability accumulated in the 
cell from previous iterations of the procedure, which takes 
into account all previous data. Pr[i(i) | £, D(t — 1)] = 
Pr[i(t) | £] by making a Markov conditional independence 
assumption that implies that, given the fact of the existence 
or not of part of the object in the cell, the image obtained 
does not depend on previous images. Under this assump- 
tion, by using 

PrK | iß] PtfWl Pr[i(«) | £] 
PrK] 

we obtain 

Pit) 
PrK I i(t)] Pr[i(*)]    PrK I D(t - 1)] 

and 

P(0 

PrK] Pr[t(i) | D(t - 1)] 

(1 - Pr[^ | i(t)]) Pr[i(t)] 1 - PrK 1 D(t - 1)] 
1-Prfc] Pr[i(t) | D(t - 1)] 

where £ is the complement of event £. Pr[£ I i(t)] is the 
probability estimate returned by the decision tree for the 

tile corresponding to the cell at (x, y, z) by only taking the 
current image into account. In estimation problems of this 
type, it is common practice to compute the odds-ratio, for 
which Pr[«(<)] and Pi[i(t) | D(t - 1)] cancel out: 

odds-ratio(£,)    = 
p(0 

PrK *(*)] PrK I D(t - 1)] 

P(0    = 

1 - PrK | »(*)] 
1-Pr[fl 

PrK] 
odds-ratio^) 

1 + odds-ratio(^) 

1 - PrK | D(t - 1)] 

Similar formulas for belief integration can be found in 
[Pea88, Thr98b]. 

3.2   ROBOT MOTION 

Each robot motion introduces uncertainty into the robot's 
estimate of the object's location because of imperfect actu- 
ators and measuring devices. We model the translational as 
well as rotational magnitude of the velocity of the robot as a 
Gaussian random variable with mean equal to the nominal 
velocity given to the robotic motion controller—we make 
the assumption that there are no systematic errors. The 
standard deviations used are pessimistic estimates of the 
deviation around the nominal corresponding velocity mag- 
nitude. The accurate determination of the standard devia- 
tions does not significantly influence our location estimates 
given frequent enough observations. Under this assump- 
tion, their actual value is not critical and can be overesti- 
mated. 

If the magnitude of the velocity is normally distributed with 
mean v0 and standard deviation <r„, v ~ N(vo,(r%) (as- 
sume one-dimensional for the purpose of this example), the 
location of a object with that velocity after time t is a ran- 
dom variable x ~ N(vot, <r%t2), also normally distributed, 
with mean v0t and standard deviation avt. This suggests 
that uncertainty of an objects location increases with time 
as time goes by, as shown in Fig. 4. 

4   EXPERIMENTAL RESULTS 

We conducted our experiments on a B21 mobile robot 
equipped with a single Sony XC-999 color camera with a 
6mm focal length lens, mounted on a pan-tilt unit. Images 
of size 240 x 256 are acquired through a Matrox Meteor 
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Evolution of the location pdf with time 

Figure 4: Probabilistic model of robot motion. Top im- 
age: Belief of the location of the object deteriorates in time 
under uncertainty of the magnitude of the velocity. Here 
v ~ N(10, l2). Bottom image: This graph illustrates the 
outcome of specific motion commands projected along the 
z axis (a translation and a rotation). 

framegrabber connected to the camera and are used to train 
a decision tree in the manner described in section 2.1. 

We chose a simple histogram representation of down- 
sampled versions of the training images as the input fea- 
tures to our decision tree algorithm. In particular, we use 
color histograms for each tile, at resolution of 256 color 
bins. Therefore each tile represents an example of 256 in- 
put features, namely the pixel percentages at each color 
bin, and one binary-valued output, corresponding to the 
event that the tile is part of the object being trained on. 
Even though this choice of input features does not take 
into account all information present in the picture, this is 
simply an artifact of the current implementation and by 
no means imposes any restriction on the choice of input 
features of the approach in general. More complex fea- 
tures may be employed in future implementations. How- 
ever, as we demonstrate below, this simple representation 
performs adequately well in certain frequently occurring 
situations where the object is sufficiently distinct from the 
background, containing enough information for recovering 
the approximate location of simple objects in 3D. The "dis- 
tinctiveness" is determined by the resolution of our color 
histogram, coupled with the amount of hue variation that 
changes in light intensity on the object result in. 

Figure 5: Probability map that is the output of the decision 
tree trained to recognize the red chair. The brightest tiles in 
the probability map (second column) correspond to prob- 
ability greater than 0.9. Projection of the map in 3D are 
shown in the last three columns, as averages along the x, y 
and z (rightmost column) axis respectively. 

An example application of a decision tree trained on three 
examples with an object (in this case, a bottle) and 18 
background images (containing negative examples only) is 
shown in Fig. 2. The top few nodes of the tree are shown in 
Fig. 1. In a similar fashion we constructed a decision tree 
to recognize a larger simple object, a red chair, by using 
the same all-negative example images and three additional 
images containing the chair in different poses. We then 
manually maneuvered the mobile robot around the chair 
taking 7 new pictures from different angles. These pictures 
are shown in Fig. 5. The second column in that figure de- 
picts the probability map that is output from the decision 
tree for each image. At certain locations we acquired im- 
ages and projected the probability map in 3D, with each 
probability map element corresponding to a pyramid, as de- 
scribed in 3.1. Every cell covered by a pyramid is affected 
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by the corresponding probability in the probability map. 
The results of projection when viewed along the x, y and 
z axes are shown in the three rightmost columns in Fig. 5. 
Each pixel in these projections has intensity proportional to 
the average probability along the axis of projection passing 
from that pixel. The z-axis projections make the locations 
around the chair that the pictures were taken particularly 
easy to see. 

In reality, the robot does not keep a 3D grid for each im- 
age but rather incorporates information incrementally in the 
single grid it maintains, which is justified under the Markov 
assumption. This is done by applying Bayes law for each 
cell individually. There is no normalization done over the 
whole grid, which corresponds to the semantics we assign 
to the probability stored at each cell: it represent the prob- 
ability that a part of the object occupies that cell. As such, 
we make no assumptions about the size of the object with 
respect to the cell size. 

Between images, the robot is maneuvered manually to the 
spot where the next image will be taken. These motions 
increase our uncertainty in the manner described in sec- 
tion 3.2. The robot used in the experiments is a semi- 
holonomic one, its motion consisting of rotations and for- 
ward or backward motions in the direction it is facing. As 
such we model rotational and translational uncertainty in 
the magnitude of the velocity. 

The updating of the grid using the above procedure is 
shown in Fig. 6 for one run. This sequence of beliefs cor- 
responds to a situation where a robot faces a chair. The 
grid size used is 100 x 100 x 100 and each unit along any 
direction corresponds to 4cm in the real world. All beliefs 
shown in Fig. 6 are projected horizontally. 

As can be seen in Fig. 6, the initial location of the target 
object(s) is unknown. After taking a first image, the robot's 
belief is a conjunction of pyramids, corresponding to the 
output of the decision tree. As the robot moves, it loses 
information. As it takes the second snapshot from a dif- 
ferent perspective, the belief is refined. After taking seven 
images, the location and the shape of the target object are 
reconstructed with high accuracy. As these results demon- 
strate, our approach can accurately determine the location 
of the target object. It is also robust to errors in the robot's 
odometry. This robustness is a result of incorporating our 
probabilistic model of robot motion. 

5   RELATED WORK 

Decision trees [Qui86, Qui93, Mit97] are one of the most 
popular inductive machine learning method to date. The 
early algorithms were only applicable to problems with 

discrete input and output spaces. Decision tree learning 
algorithms in AI for real-valued input spaces were pro- 
posed by [BFOS84], as a reinvention of earlier work. Tree- 
based regression methods for real-valued input and output 
spaces can also be found in [Fri91, Moo90]. The work pre- 
sented in this paper provides an example where a decision 
tree is used to learn a conditional probability density func- 
tion. Like the approaches presented in [FI93, MKS94], it 
partitions a real-valued high-dimensional input space into 
hypercubes. The output nodes, however, represent con- 
ditional densities, which are estimated using a frequen- 
tist approach [CB90]. This is related to results reported 
in [TLS89, Mac92, Mit97], which show that under appro- 
priate assumptions, artificial neural networks approximate 
conditional probability density functions. 

The mathematical approach for integrating information is 
adopted from the statistical literature [CB90, Pea88]. The 
approach presented in this paper also bears close resem- 
blance to occupancy grids [Mor88, Elf89]. Occupancy grid 
approaches are popular techniques for learning models of 
mobile robot environments from sensor data. Just like the 
approach proposed here, they represent the environment us- 
ing fine-grained, evenly spaced grids. Each grid point is an- 
notated by a probability, which describes the evidence that 
a location contains an object/obstacle. The vast majority 
of existing approaches differs from the one proposed here 
in three aspects. First, they model occupancy, not the lo- 
cation of a specific target object. Second they are usually 
constructed from range measurements (e.g., sonar, laser), 
not from camera images. Third, they are usually two- 
dimensional. There are, however, notable exceptions. The 
approaches described in [MM94, TBB+98] construct oc- 
cupancy grids from sequences of camera images. Moravec 
and Martin's approach [MM94] has probably been the first 
to construct 3D grids, instead of the commonly used 2D 
representations. Both approaches, however, used stereo 
vision to estimate the location of obstacles. Stereo vi- 
sion generates distance estimates, which greatly facilitates 
the construction of the maps. The approach reported here 
estimates distance indirectly, through integrating multiple 
camera images recorded at different locations. Unfortu- 
nately, the approach in [MM94] is incapable of dealing 
with error in the robot's odometry. 

Object-centered 3D object reconstruction has also been in- 
vestigated in the context of computer vision. Two ap- 
proaches have emerged. One models objects as 3D sur- 
faces, typically represented as a polygonal meshes. For ex- 
ample, [FL95] uses stereo and intensity matching to con- 
struct and fit the mesh. The second approach uses a grid 
representation essentially similar to the one used in this pa- 
per (e.g. [Col96]), and employs a technique sometimes re- 
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Figure 6: Cumulative effects on motion and probability map projection on grid as viewed along the x-axis (that is running 
perpendicular from the door facing the interior of the room in the pictures in Fig. 5). The two distinct parts of the chair 
(back and seat) are discernible. 
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ferred to as "3D voting" to update cell "occupancies." This 
differs from our approach in two ways: first, cells are up- 
dated by counting votes in a straightforward if ad hoc man- 
ner which employs techniques such as voting for cells in a 
radius of the intersecting with the line through the eyepoint 
and the line segment. This is necessitated partly from the 
inability to model inaccuracies in the viewpoint location, 
although in many such applications—for example, military 
aerial photography—the camera location is estimated rel- 
atively accurately. Second, these techniques do not learn 
a probabilistic model of the set of features that are em- 
ployed from examples. As such, all features are equally 
weighted, necessitating the use of a threshold—in order to 
produce a recognizable picture—the selection of which can 
be difficult (although see [Col96] for a statistical approach 
to threshold estimation). 

Our approach is similar to Markov localization [BFHS96, 
NPB95, SK95, Thr98a], a method for probabilistically es- 
timating the pose of a mobile robot in a (known) environ- 
ment. Markov localization relies on the same statistical 
principles for integrating multiple sensor readings into a 
single belief. In fact, the approach in [BFHS96] uses the 
same basic representations as our approach: evenly spaced 
grids. Markov localization, however, rests on the assump- 
tion that there is exactly one object (i.e., the robot) whose 
location is to be estimated. Our approach can handle situ- 
ations that contain a variable (unknown) number of target 
objects. 

Finally, the problem of finding and manipulating objects 
has received considerable attention within the AI commu- 
nity (see [Hor94] and various papers in [Sim95, KBM98]). 
For example, Buhmann et al. [BBC+95] described an ap- 
proach where a robot could be trained to recognize specific 
objects. Most existing approaches in the mobile robot com- 
munity, however, make the assumption that the object is lo- 
cated in floor-height, in which case camera coordinates can 
directly be converted to real-world coordinates. Our ap- 
proach is specifically designed to find objects at arbitrary 
locations in space. This is important in many real-world 
applications, as objects may frequently be found in tables, 
chairs, etc. 

6   DISCUSSION AND FUTURE 
RESEARCH 

This paper presented a novel approach to estimating the 
3D location of an object with a mobile robot. Individ- 
ual camera images are interpreted using a decision tree 
method, which maps image regions (tiles) into probabilis- 
tic estimates for the presence of target objects. Based on 
a straightforward geometric consideration, these probabil- 

ities are mapped into 3D pyramids in global world co- 
ordinates. Multiple pyramids, obtained from camera im- 
ages recorded from different viewpoints, are integrated us- 
ing Bayes rule into a single probabilistic model of the ob- 
ject location. Noise in robot motion is accounted for by a 
probabilistic model of robot motion. Experimental results 
demonstrate that the method can robustly localize objects 
in 3D space. 

A key advantage of the current approach is its generality. 
No assumption is made concerning the typical location of 
objects (e.g., they are not assumed to lie on the floor). The 
approach can also be trained easily to recognize new, user- 
specified objects. While our current implementation uses 
color as the primary cue for object recognition, the method 
can equally be applied to a much richer range of image 
features, making it fit for a large class of target objects (i.e., 
objects that can be recognized from local image features). 

Our approach rests on several limiting assumptions. First 
of all, it assumes that object does not move. To accommo- 
date moving objects, our approach would have to be ex- 
tended by a probabilistic model of object motion. Such a 
model might characterize the typical motion speed of the 
target object. It is unclear, however, if such an approach 
would be able to gather sufficient information to estimate 
the location of a moving object with the necessary accu- 
racy. 

Our approach also assumes that the training images ac- 
curately represent the situation during testing. In our ex- 
periments, we usually enriched the training set by a small 
number of pictures recorded at random locations in our 
lab. These pictures were used as negative training exam- 
ples when growing the tree. We found that these addi- 
tional images increased the robustness of the image analy- 
sis, thereby improving the overall estimation results. How- 
ever, the method might fail if the robot encounters an object 
which similar to the target object, but which has not been 
part of its training set. 

The spatial resolution in the experiments described in this 
paper is low, due the enormous complexity involved in up- 
dating 3D grids. By choosing a 4cm resolution, the compu- 
tational overhead was manageable. Denser and larger grids 
are desirable, but unfortunately the computational cost of 
of updating the grid is cubic in the number of grid cells. 
An interesting extension of the current approach would be 
to use variable-resolution representations, such as oct-trees 
[Sam89b, Sam89a, Moo90], for representing object loca- 
tion. Such representations could balance the computational 
and memory resources, by modeling regions coarsely that 
are unlikely to contain a target object. If the density of tar- 
get objects is low (which is usually the case), such an ex- 
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tension could improve the computational efficiency of the 
approach substantially. 

Another promising extension of the current approach 
would be to devise methods that actively control the robot 
so as to maximize information gain. In the experiments 
presented here, a human manually positioned the robot. In 
our previous work [Thr98b], however, we already devel- 
oped successful methods for active information gathering, 
which were applied in the context of learning 2D occu- 
pancy grid maps. In the context of object localization, such 
methods could lead to a behavior where a robot investigates 
the object from multiple viewpoints, in order to estimate its 
location accurately. The development of such methods is 
subject to future research. 
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Abstract 

Multiple-Instance learning is a way of mod- 
eling ambiguity in supervised learning exam- 
ples. Each example is a bag of instances, but 
only the bag is labeled - not the individual 
instances. A bag is labeled negative if all the 
instances are negative, and positive if at least 
one of the instances in positive. We apply 
the Multiple-Instance learning framework to 
the problem of learning how to classify nat- 
ural images. Images are inherently ambigu- 
ous since they can represent many different 
things. A user labels an image as positive 
if the image somehow contains the concept. 
Each image is a bag, and the instances are 
various sub-regions in the image. From a 
small collection of positive and negative ex- 
amples, we can learn the concept and then 
use it to retrieve images that contain the con- 
cept from a large database. We show that 
the Diverse Density algorithm performs well 
in this task, that simple hypothesis classes 
are sufficient to classify natural images, and 
that user interaction helps to improve perfor- 
mance. 

1    INTRODUCTION 

Scene classification is an open problem in machine vi- 
sion and has applications in image and video database 
indexing. We investigate a method for learning visual 
concepts that encode the properties of a scene class 
from a small set of positive and negative examples. 
Extracted concepts are simple templates that capture 
some color and spatial properties of the class. Work 
by Lipson [Lipson et al., 1997] illustrates that sim- 

ple, hand-crafted templates that describe the relative 
color and spatial properties in an image can be used 
successfully to classify natural scenes like fields, snowy 
mountains and waterfalls. In this paper we show that 
these templates can be learned. We describe a frame- 
work for learning scene-class concepts that can be used 
effectively for the task of content-based image retrieval 
from large databases. The learning framework we use 
in this paper is called Multiple-Instance learning [Di- 
etterich et al, 1997],[Maron and Lozano-Perez, 1998]. 
In this framework, examples are not labeled examples, 
but are labeled bags. Each bag is a collection of in- 
stances (Figure 1). A bag is labeled negative if all the 
instances in it are negative, and positive if at least one 
of the instances in it is positive. We use this framework 
to model the ambiguity in mapping an image to many 
possible templates which describe the image. Specifi- 
cally, every image is a bag, and each possible template 
for describing the image is one instance in the bag. 
We discuss a method called Diverse Density [Maron 
and Lozano-Perez, 1998] for learning concepts from 
Multiple-Instance examples. 

We test our approach on images from the COREL 
photo library. We show that the system is succesful 
even when the hypothesis class involves very simple 
templates, and even when the images are sampled very 
coarsely. In addition, we show that user interaction 
(refining the hypothesis through the addition of more 
examples) is helpful in improving the performance of 
the learning system. In Section 2, we discuss previous 
and related work in image classification. We then de- 
scribe the Multiple-Instance learning framework and 
the Diverse Density algorithm. In section 4 we de- 
tail our experimental setup and show results on var- 
ious concept classes, hypothesis classes, and training 
regimes. 

The third contribution of this paper (in addition to 
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a novel application of Multiple-Instance learning and 
the discovery that surprisingly simple concepts do well 
on this task) is the development of a general architec- 
ture to combine ideas from the vision and machine 
learning communities. A key part of our system is the 
bag generator: a mechanism which takes an image and 
generates a set of instances, where each instance is a 
possible description of what the image is about. If an 
idealized object recognizer existed, then the bag gen- 
erator would simply output a list of the objects in the 
image. The learning algorithm would be straightfor- 
ward: find an intersection between the positive lists 
that didn't include elements from the negative lists. 
On the other extreme, if we had a learning algorithm 
that could handle billions of instances per bag, then 
we would not need an object recognizer. Instead, the 
bag generator would simply output every subcombi- 
nation of pixels in the image. In this paper, we use 
a slightly more sophisticated bag generator (one that 
generates subregions), which limits the number of in- 
stances per bag and therefore allows us to use an algo- 
rithm such as Diverse Density. The key observation is 
that a better bag generator (progress in the vision com- 
munity) leads to a simpler learning algorithm, while 
at the same time a better Multiple-Instance learning 
algorithm (progress in the machine learning commu- 
nity) allows us to use simpler segmentation algorithms. 
This is in contrast with the architecture of [Keeler et 
al., 1991], for example, where the learning mechanism 
is woven into the position-invariant representation of 
subimages. 

2    IMAGE CLASSIFICATION 
SYSTEMS 

In the past few years, the growing number of digital 
image and video libraries has led to the need for flexi- 
ble, automated content-based image retrieval systems 
which can efficiently retrieve images from a database 
that are similar to a user's query. Because what a user 
wants can vary greatly, we also want to provide a way 
for the user to explore and refine the query by letting 
the system bring up examples. 

One of the most popular global techniques for index- 
ing is color-histogramming which measures the over- 
all distribution of colors in the image. While his- 
tograms are useful because they are relatively insensi- 
tive to position and orientation changes, they do not 
capture the spatial relationships of color regions and 
thus have limited discriminating power. Many of the 
existing image-querying systems work on entire im- 

ages or in user-specified regions by using distribution 
of color, texture and structural properties. The QBIC 
system [Flickner et al, 1995] is an example of such a 
system. Some recent systems that try to incorporate 
some spatial information into their color feature sets 
include [Smith and Chang, 1996, Huang et al., 1997, 
Belongie et al, 1998]. Promising work by Rubner 
[Rubner et al, 1998] on the earth mover's distance 
provides a metric that overcomes the binning problems 
of existing definitions of distribution distances for in- 
dexing. Most of these techniques require the user to 
specify the salient regions in the query image. One of 
the goals of our system is to learn the relevant color 
and spatial properties that best describe a particular 
class of natural scenes. 

More recently, work by Lipson and Sinha ([Lipson et 
al, 1997]) in scene classification illustrates that pre- 
defined flexible templates that describe the relative 
color and spatial properties in the image can be used 
effectively for this task. The flexible templates con- 
structed by Lipson [Lipson et al, 1997] encode the 
scene classes as a set of image patches and qualita- 
tive relationships between those patches. Each im- 
age patch has properties in the color and luminance 
channels. These templates describe the color relation- 
ship (relative changes in the R,G,B channels), lumi- 
nance relationship (relative changes in the luminance 
channel) and spatial relationship between two image 
patches. Lipson hand-crafted these flexible templates 
for a variety of scene classes and showed that they 
could be used to classify natural scenes of fields, wa- 
terfalls and snowy mountains efficiently and reliably. 
For example, the following concept might be learned 
for the snowy-mountain class: "if the image contains a 
blue blob which is above a white blob which is above a 
brown blob, then it is a mountain". In this paper, we 
would like to learn such concepts for natural images 
given a small set of positive and negative examples. 

All of the systems described above require users to 
specify precisely what they want. Minka and Pi- 
card [Minka and Picard, 1996] introduced a learn- 
ing component in their system by using positive and 
negative examples which let the system choose image 
groupings within and across images based on color and 
texture cues; however, their system requires the user 
to label various parts of the scene, where as our system 
only gets a label for the entire image and automatically 
extracts the relevant parts of the scene. In this paper, 
we focus on learning natural scene concepts by extract- 
ing color and spatial relations between image patches 
using a small set of positive and negative examples. 
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Our system uses a small set of user-selected positive 
and negative examples to learn a scene concept which 
is used to retrieve similar images from the database. 
The system also lets the user add more positive and 
negative examples after each iteration in order to re- 
fine the concept. 

3    MULTIPLE-INSTANCE 
LEARNING 

In traditional supervised learning, a learning algorithm 
receives a training set which consists of individually la- 
beled examples. There are situations where this model 
fails, specifically, when the teacher cannot label indi- 
vidual instances, but only a collection of instances. For 
example, given a picture containing a waterfall, what 
is it about the image that causes it to be labeled as 
a waterfall? Is it the butterfly hovering in the corner, 
the blooming flowers, or the white stream of water? 
It is impossible to tell by looking at only one image. 
The best we can say is that at least one of the ob- 
jects in the image is a waterfall. Given a number of 
images (each labeled as waterfall or non-waterfall), we 
can attempt to find commonalities within the waterfall 
images that do not appear in the non-waterfall images. 
Multiple-Instance learning is a way of formalizing this 
problem, and Diverse Density is a method for finding 
the commonality. 

In Multiple-Instance learning, we receive a set of bags, 
each of which is labeled positive or negative. Each 
bag contains many instances, where each instance is a 
point in feature space. A bag is labeled negative if all 
the instances in it are negative. On the other hand, a 
bag is labeled positive if there is at least one instance 
in it which is positive. From a collection of labeled 
bags, the learner tries to induce a concept that will 
label unseen bags correctly. This problem is harder 
than even noisy supervised learning because the ratio 
of negative to positive instances in a positively-labeled 
bag (the noise ratio) can be arbitrarily high. 

The multiple-instance learning model was only re- 
cently formalized by [Dietterich et at, 1997], where 
they develop algorithms for the drug activity predic- 
tion problem. This work was followed by [Long and 
Tan, 1996, Auer et al., 1996, Blum and Kalai, 1998], 
who showed that it is difficult to PAC-learn in the 
Multiple-Instance model unless very restrictive inde- 
pendence assumptions are made about the way in 
which examples are generated. [Auer, 1997] shows 
that despite these assumptions, the MULTINST al- 
gorithm performs competitively on the drug activity 

prediction problem. [Maron and Lozano-Perez, 1998] 
develop an algorithm called Diverse Density, and show 
that it performs well on a variety of problems such as 
drug activity prediction, stock selection, and learning 
a description of a person from a series of images that 
contain that person. 

3.1    MULTIPLE-INSTANCE LEARNING 
FOR SCENE CLASSIFICATION 

In this paper, each training image is a bag. The in- 
stances in a particular bag are various subimages. If 
the bag is labeled as a waterfall (for example), we know 
that at least one of the subimages (instances) is a wa- 
terfall. If the bag is labeled as a non-waterfall, we 
know that none of the subimages contains a waterfall. 
Each of the instances, or subimages, is described as a 
point in some feature space. As discussed in section 4, 
we experimented with several ways of describing an 
instance. We will discuss one of them (single blob 
with neighbors) in detail: a subimage is a 2x2 set 
of pixels (referred to as a blob) and its four neighbor- 
ing blobs (up, down, left, and right). The subimage is 
described as a vector [x\,i2, • • ■,#15], where x\,X2,x% 
are the mean RGB values of the central blob, X4, X5,XQ 

are the differences in mean RGB values between the 
central blob and the blob above it, etc. One bag is 
therefore a collection of instances, each of which is a 
point in a 15-dimensional feature space. We assume 
that at least one of these instances is the template 
that contains the waterfall. 

We would now like to find a description which will 
correctly classify new images as waterfalls or non- 
waterfalls. This can be done by finding what is in 
common between the waterfall images given during 
training and the differences between those and the 
non-waterfall images. The main idea behind the Di- 
verse Density (DD) algorithm is to find areas in feature 
space that are close to at least one instance from ev- 
ery positive bag and far from every negative instance. 
The algorithm searches the feature space for points 
with high Diverse Density. Once the point (or points) 
with maximum DD is found, a new image is classified 
positive if one of its subimages is close to the maximum 
DD point. As seen in Section 4, the entire database 
can be sorted by the distance to the learned concept. 
Figure 1 is a schematic of how the system works. 

In the following subsection, we will describe a deriva- 
tion of Diverse Density and how we find the maximum 
in a large feature space. We will also show that the 
appropriate scaling of the feature space can be found 
by maximizing DD not just with respect to location in 
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Figure 1: System Diagram 

feature space, but also with respect to a weighting of 
each of the features. 

3.2    DIVERSE DENSITY 

In this section, we derive a probabilistic measure of 
Diverse Density. More details are given in [Maron, 
1998]. We denote positive bags as Z?t

+, and the jth 

instance in that bag as B^. Likewise, B~, repre- 
sents an instance from a negative bag. For simplic- 
ity, let us assume that the true concept is a single 
point t in feature space. We can find t by maximizing 
Pr(i | By , • • •, £+, Bf, • • •, B~) over all points in fea- 
ture space. Using Bayes' rule and a uniform prior over 
the concept location, we see that this is equivalent to 
maximizing the likelihood: 

it. In this paper, we use the noisy-or model as follows: 

arg max Pr(Bj ,ß+,ßf,...,ß-|0.    (i) 

By making the additional assumption that the bags are 
conditionally independent given the target concept t: 

this decomposes into 

argmaxJIPr^ I <)I[Pr(ßr I 0 (2) 

which is equivalent (by similar arguments as above) to 
maximizing 

argmaxJJPr(t | B+) JJPr(f. | £r) (3) 

This is a general definition of Diverse Density, but we 
need to define the terms in the products to instantiate 

Pi(t\B+) = l-H(l-Pr(t\B+)). (4) 

The noisy-or model makes two assumptions: one is 
that for f to be the target concept it is caused by 
(hence close to) one of the instances in the bag. It 
also assumes that the probability of instance j not be- 
ing the target is independent of any other instance not 
being the target. 

Finally, we estimate the distribution Pr(f | B*) with 
a Gaussian-like distribution of exp(- || Bf^ — t ||2). 
A negative bag's contribution is likewise computed as 
Pr(r. | B~) = n,-(l - Pr(< I £"■))• A supervised learn- 
ing algorithm such as nearest-neighbor or kernel re- 
gression would average the contribution of each bag, 
computing a density of instances. This algorithm com- 
putes a product of the contribution of each bag, hence 
the name Diverse Density. Note that Diverse Density 
at an intersection of n bags is exponentially higher 
than it is at an intersection of n - 1 bags, yet all it 
takes is one well placed negative instance to drive the 
Diverse Density down. 

The initial feature space is probably not the most 
suitable one for finding commonalities among images. 
Some features might be irrelevant or redundant, while 
small differences along other features might be crucial 
for discriminating between positive and negative ex- 
amples. The Diverse Density framework allows us to 
find the best weighting on the initial feature set in the 
same way that it allows us to find an appropriate lo- 
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cation in feature space. If a feature is irrelevant, then 
removing it can only increase the DD since it will bring 
positive instances closer together. On the other hand, 
if a relevant feature is removed then negative instances 
will come closer to the best DD location and lower it. 
Therefore, a feature's weight should be changed in or- 
der to increase DD. Formally, the distance between 
two points in feature space (Bij and t) is 

B+j - * \\2=Y,Wk(Biik ~ tk? (5) 

where B^ is the value of the kth feature in the jth 

point in the ith bag, and u>k is a non-negative scaling 
factor. If Wk is zero, then the kth feature is irrelevant. 
If Wk is large, then the kth feature is very important. 
We would like to find both t and w such that Diverse 
Density is maximized. We have doubled the number 
of dimensions in our search space, but we now have 
a powerful method of changing our representation to 
accomodate the task. 

We can use also use this technique to learn more com- 
plicated concepts than a single point. To learn a 2- 
disjunct concept iVs, we maximize Diverse Density as 
follows: 

arg max    f[(l ~ U1 ~ Pr^ V s \ B+))) 
t,s 

nnpr(*v'iB5) (6) 

where Pr(t V s | B^) is estimated as max{Pr(£ | 
B^),Pi(s | Bfj)}. Other approximations (such as 
noisy-or) are also possible. 

Finding the maximum Diverse Density in a high- 
dimensional space is a difficult problem. In general, 
we are searching an arbitrary landscape and the num- 
ber of local maxima and size of the search space could 
prohibit any efficient exploration. In this paper, we 
use gradient ascent (since DD is a differentiable func- 
tion) with multiple starting points. This has worked 
successfully because we know what starting points to 
use. The maximum DD point is made of contributions 
from some set of positive points. If we start an ascent 
from every positive point, one of them is likely to be 
closest to the maximum, contribute the most to it and 
have a climb directly to it. Therefore, if we start an 
ascent from every positive instance, we are very likely 
to find the maximum DD point. When we need to find 
both the location and the scaling of the concept, we 
perform gradient ascent for both sets of parameters at 
the same time (starting with all scale weightings at 

1). The number of dimensions in our search space has 
doubled, though. When we need to find a 2-disjunct 
concept, we can again perform gradient ascent for all 
parameters at once. This carries a high computational 
burden because the number of dimensions has doubled, 
and we perform a gradient ascent starting at every pair 
of positive instances. 

Our goal in the next section is to show that: (1) 
Multiple-Instance learning by maximizing diverse den- 
sity can be used in the domain of natural scene classi- 
fication, (2) simple concepts in low resolution images 
are sufficient to learn some of these concepts (3) adding 
false positives and false negatives over mutiple itera- 
tions (user interaction) can be used to improve the 
classifier performance. 

4    EXPERIMENTS 

In this section, we show four different types of results 
from running the system: one is that Multiple-Instance 
learning is applicable to this domain. A second result 
is that one does not need very complicated hypoth- 
esis classes to learn concepts from the natural image 
domain. We also compare the performance of various 
hypotheses, including the global histogram method. 
Finally, we show how user interaction would work to 
improve the classifier. 

4.1    EXPERIMENTAL SETUP 

We tried to learn three different concepts: waterfall, 
mountain, and field. For training and testing we used 
natural images from the COREL library, and the la- 
bels given by COREL. These included 100 images from 
each of the following classes: waterfalls, fields, moun- 
tains, sunsets and lakes. We also used a larger test set 
of 2600 natural images from various classes. 

We created a potential training set that consisted of 20 
randomly chosen images from each of the five classes 
mentioned above. This left us with a small test set 
consisting of the remaining 80 images from each of 
the five classes. We seperated the potential training 
set from the testing set to insure that results of using 
various training schemes and hypothesis classes can be 
compared fairly. Finally the large test set contained 
2600 natural images from a large variety of classes. 

For a given concept, we create an initial training set 
by picking five positive examples of the concept and 
five negative examples, all from the potential training 
set. After the concept is learned from these exam- 
ples (by finding the point in and scaling of feature 
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space with maximum DD), the unused 90 images in 
the potential training set are sorted by distance from 
the learned concept1. This sorted list can be used to 
simulate what a user would select as further refining 
examples. Specifically, the most egregious false posi- 
tives (the non-concept images at the beginning of the 
sorted list) and the most egregious false negatives (the 
concept images at the end of the sorted list) would 
likely be picked by the user as additional negative and 
positive examples. 

We attempted four different training schemes: 
initial is simply using the initial five positives and 
five negative examples. +5f p adds the five most egre- 
gious false positives. +10fp repeats the +5fp scheme 
twice. +3f p+2f n adds 3 false positives and 2 false neg- 
atives. 

All images were smoothed using a gaussian filter and 
subsampled to 8 x 8. We used the RGB color space 
in these experiments. For every class and for every 
training scheme, we tried to learn the concept using 
one of seven hypothesis classes (Figure 1 shows some 
examples): 
1. row: an instance is the row's mean color and the 
color difference in the rows above and below it. 
2. single blob with neighbors: an instance is the 
mean color of a 2 x 2 blob and the color difference with 
its 4 neighboring blobs. 
3. single blob with no neighbors: an instance is 
the color of each of the pixels in a 2 x 2 blob. 
4. disjunctive blob with neighbors: an instance 
is the same as the single blob with neighbors but the 
concept learned is a disjunction of two single blob con- 
cepts. 
5. disjunctive blob with no neighbors: an in- 
stance is the same as the single blob with no neighbors 
but the concept learned is a disjunction of two single 
blob concepts. 
6. two blob with neighbors: an instance is the 
mean color of two descriptions of two single blob 
with neighbors and their relative spatial relation- 
ship (whether the second blob is above or below, and 
whether it is to the left or right, of the first blob). 
7. two blob with no neighbors: an instance is the 
mean color of two descriptions of two single blob 
with no neighbors and their relative spatial rela- 
tionship. 

Learning a concept took anywhere from a few sec- 

xAn image/bag's distance from the concept is the min- 
imum distance of any of the image's subregions/instances 
from the concept. 

Figure 2: Comparison of learned concept (solid curves) 
with hand-crafted templates (dashed curves) for the 
mountain concept on 240 images from the small test 
set. The top and bottom dashed precision-recall curves 
indicate the best-case and worst-case curves for the 
first 32 images retrieved by the hand-crafted template 
which all have the same score. 

onds for the simple hypotheses to a few days for the 
2-blob and disjunctive hypotheses. The more compli- 
cated hypotheses take longer to learn because of the 
higher number of features and because the number of 
instances per bag is large (and to find the maximum 
DD point, we perform a gradient ascent from every 
positive instance). Because this is a prototype, we 
have not tried to optimize the running time; however, 
a more intelligent method of generating instances (for 
example, a rough segmentation using connected com- 
ponents) will reduce both the number of instances and 
the running time by orders of magnitude. 

4.2    RESULTS 

In this section we show results of testing the vari- 
ous hypothesis classes, training schemes, and concept 
classes against the small test set and the larger one. 
The small test set does not intersect the potential 
training set, and therefore more accurately represents 
the generalization of the learned concepts. The large 
test set is meant to show how the system scales to 
larger image databases. 
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The graphs shown are precision-recall and recall 
curves. Precision is the ratio of the number of correct 
images to the number of images seen so far. Recall is 
the ratio of the number of correct images to the total 
number of correct images in the test set. For example, 
in Figure 3, the waterfall precision-recall curve has re- 
call 0.5 with precision of about 0.7, which means in 
order to retrieve 40 of the 80 waterfalls, 30% of the 
images retrieved are not waterfalls. We show both 
curves for because (1) the beginning of the precision- 
recall is of interest to applications where only the top 
few objects are of importance, and (2) the middle of 
the recall curve is of interest to applications where cor- 
rect classification of a large percentage of the database 
is important. 

Figure 2 shows that the performance of the learned 
mountain concept is competitive with a hand-crafted 
mountain template (from [Lipson et al., 1997]2). The 
test set consists of 80 mountains, 80 fields, and 80 
waterfalls. It is disjoint from the training set. The 
hand-crafted model's precision-recall curve is flat at 
84% because the first 32 images all receive the same 
score, and 27 of them are mountains. We also show 
the curves if we were to retrieve the 27 mountains first 
(best-case) or after the first five false positives (worst- 
case). 

In Figure 3, we show the performance of the best hy- 
pothesis and training method on each concept class. 
The dashed lines show the poor performance of the 
global histogram method. The solid lines in the 
precision-recall graph show the performance of single 
blob with neighbors with +10f p for waterfalls, row 
with +10fp for fields, and disjunctive blob with 
no neighbors with +10fp for mountains. The solid 
lines in the recall curve show the performance of the 
single blob with neighbors with +10f p for water- 
falls, single blob with neighbors with +3fp+2fn 
for fields, and row with +3f p+2f n for mountains. This 
behavior continues for the larger test set. 

In Figure 4, we show the precision-recall curves for 
each of the four training schemes. We average over 
all concepts and all hypothesis classes. We see that 
performance improves with user interaction. This be- 
havior continues for the larger test set as well. 

In Figure 5, we show the precision-recall and recall 
curves for each of the seven hypotheses averaged over 
all concepts and all training schemes. Note that these 
curves are for the larger 2600 image database.   We 

^    Mountain 
«•»•* Fields 
^    Waterfalls 

^     Mountain 
.#**" Fields 
y    Waterfall; 

100       200  .     300 
Number retrieved 

2Lipson's classifier was modified to give a ranking of 
each image, rather than its class. 

Figure 3: The best curves for each concept using 
a small test set. Dashed curves are the global his- 
togram's performance. 

see that the single blob with neighbors hypothesis has 
good precision. We also see that the more compli- 
cated hypothesis classes (i.e. the disjunctive concepts 
and the two-blob concepts) tend to have better recall 
curves. 

In Figure 6, we show a snapshot of the system in 
action. The system is trained using training scheme 
+10f p for the waterfall concept. It has learned a water- 
fall concept using the single blob with neighbors 
hypothesis. The learned waterfall concept is that 
somewhere in the image there is a blob whose left 
neighbor is less blue, whose own blue value is 0.5 
(where RGB values are in the [0,1] cube), whose neigh- 
bor below has the same blue value, whose neighbor 
above has the same red value, whose green value is 
0.55, whose neighbor above has the same blue value 
and whose red value is 0.47. These properties are 
weighted in the order given, and any other features 
were found to be irrelevant. A new image has the rat- 
ing of the minimum distance of one of its instances to 
the learned concept, where the distance metric uses 
the learned scaling to account for the importance of 
the relevant features. As we can see in the figure, this 
simple learned concept is able to retrieve a wide variety 
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Precision 

Figure 4:   Different training schemes, averaged over 
concept and hypothesis class, using a small test set. 

of waterfall scenes. 

The top 20 images in the figure are the training set. 
The first 10 images are the initial positive and negative 
examples used in training. The next 10 images are the 
false positives added. The last 30 images are the top 
30 returned from the large dataset. 

5    CONCLUSIONS 

In this paper, we have shown that Multiple-Instance 
learning by maximizing diverse density can be used 
to classify images of natural scenes. Our results are 
competitive with hand-crafted models, and much bet- 
ter than a global histogram approach. We have also 
demonstrated that simple learned concepts that cap- 
ture color relations in low resolution images can be 
used effectively in the domain of natural scene classi- 
fication. Our experiments indicate that complicated 
concepts (e.g. disjunctive concepts) tend to have bet- 
ter recall curves and that user interaction (adding false 
positives and false negatives) over multiple iterations 
can improve the performance of the classifier. Our ar- 
chitecture, by seperating the bag generator from the 
learning mechanism, allows progress in the field of 
computer vision to benefit the field of machine learning 
and vice versa. 
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Figure 5:  Different hypothesis classes averaged over concept and training scheme, using a large test set with 
2600 images. 

Figure 6: Results for the waterfall concept using the single blob with neighbors concept with +10fp. Top 
row: Initial training set-5 positive and 5 negative examples. Second Row: Additional false positives. Last three 
rows: Top 30 matches retrieved from the large test set. The red squares indicate where the closest instance to 
the learned concept is located. 
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Abstract 

This paper shows how a text classifier's need 
for labeled training documents can be re- 
duced by taking advantage of a large pool 
of unlabeled documents. We modify the 
Query-by-Committee (QBC) method of ac- 
tive learning to use the unlabeled pool for 
explicitly estimating document density when 
selecting examples for labeling. Then ac- 
tive learning is combined with Expectation- 
Maximization in order to "fill in" the class 
labels of those documents that remain unla- 
beled. Experimental results show that the 
improvements to active learning require less 
than two-thirds as many labeled training ex- 
amples as previous QBC approaches, and 
that the combination of EM and active learn- 
ing requires only slightly more than half as 
many labeled training examples to achieve 
the same accuracy as either the improved ac- 
tive learning or EM alone. 

1    Introduction 

Obtaining labeled training examples for text classifica- 
tion is often expensive, while gathering large quantities 
of unlabeled examples is usually very cheap. For ex- 
ample, consider the task of learning which web pages 
a user finds interesting. The user may not have the 
patience to hand-label a thousand training pages as 
interesting or not, yet multitudes of unlabeled pages 
are readily available on the Internet. 

This paper presents techniques for using a large pool 
of unlabeled documents to improve text classification 
when labeled training data is sparse. We enhance the 

QBC active learning algorithm to select labeling re- 
quests from the entire pool of unlabeled documents, 
and explicitly use the pool to estimate regional doc- 
ument density. We also combine active learning with 
Expectation-Maximization (EM) in order to take ad- 
vantage of the word co-occurrence information con- 
tained in the many documents that remain in the un- 
labeled pool. 

In previous work [Nigam et al. 1998] we show that 
combining the evidence of labeled and unlabeled doc- 
uments via EM can reduce text classification error by 
one-third. We treat the absent labels as "hidden vari- 
ables" and use EM to fill them in. EM improves the 
classifier by alternately using the current classifier to 
guess the hidden variables, and then using the cur- 
rent guesses to advance classifier training. EM con- 
sequently finds the classifier parameters that locally 
maximize the probability of both the labeled and un- 
labeled data. 

Active learning approaches this same problem in a dif- 
ferent way. Unlike our EM setting, the active learner 
can request the true class label for certain unlabeled 
documents it selects. However, each request is consid- 
ered an expensive operation and the point is to per- 
form well with as few queries as possible. Active learn- 
ing aims to select the most informative examples -in 
many settings defined as those that, if their class la- 
bel were known, would maximally reduce classifica- 
tion error and variance over the distribution of exam- 
ples [Cohn, Ghahramani, & Jordan 1996]. When cal- 
culating this in closed-form is prohibitively complex, 
the Query-by-Committee (QBC) algorithm [Freund et 
al. 1997] can be used to select documents that have 
high classification variance themselves. QBC measures 
the variance indirectly, by examining the disagreement 
among class labels assigned by a set of classifier vari- 
ants, sampled from the probability distribution of clas- 
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sifiers that results from the labeled training examples. 

This paper shows that a pool of unlabeled examples 
can be used to benefit both active learning and EM. 
Rather than having active learning choose queries by 
synthetically generating them (which is awkward with 
text), or by selecting examples from a stream (which 
inefficiently models the data distribution), we advo- 
cate selecting the best examples from the entire pool 
of unlabeled documents (and using the pool to explic- 
itly model density); we call this last scheme pool-based 
sampling. In experimental results on a real-world text 
data set, this technique is shown to reduce the need 
for labeled documents by 42% over previous QBC ap- 
proaches. Furthermore, we show that the combination 
of QBC and EM learns with fewer labeled examples 
than either individually—requiring only 58% as many 
labeled examples as EM alone, and only 26% as many 
as QBC alone. We also discuss our initial approach to 
a richer combination we call pool-leveraged sampling 
that interleaves active learning and EM such that EM's 
modeling of the unlabeled data informs the selection 
of active learning queries. 

ponent generate a document according to its own pa- 
rameters, with distribution P(di|e,;0). We can char- 
acterize the likelihood of a document as a sum of total 
probability over all generative components: 

|C| 

P(di\6) = Y/ncj\0Wi\cf,8). (1) 
J=l 

Document di is considered to be an ordered list of word 
events. We write Wdih for the word in position k of doc- 
ument di, where the subscript of w indicates an index 
into the vocabulary V = (wi,W2, ■ ■ ■,w\v\)- We make 
the standard naive Bayes assumption: that the words 
of a document are generated independently of context, 
that is, independently of the other words in the same 
document given the class. We further assume that the 
probability of a word is independent of its position 
within the document. Thus, we can express the class- 
conditional probability of a document by taking the 
product of the probabilities of the independent word 
events: 

2    Probabilistic Framework for Text 
Classification 

This section presents a Bayesian probabilistic frame- 
work for text classification. The next two sections add 
EM and active learning by building on this frame- 
work. We approach the task of text classification 
from a Bayesian learning perspective: we assume that 
the documents are generated by a particular paramet- 
ric model, and use training data to calculate Bayes- 
optimal estimates of the model parameters. Then, we 
use these estimates to classify new test documents by 
turning the generative model around with Bayes' rule, 
calculating the probability that each class would have 
generated the test document in question, and selecting 
the most probable class. 

Our parametric model is naive Bayes, which is 
based on commonly used assumptions [Friedman 1997; 
Joachims 1997]. First we assume that text documents 
are generated by a mixture model (parameterized by 
9), and that there is a one-to-one correspondence be- 
tween the (observed) class labels and the mixture com- 
ponents. We use the notation Cj G C = {ci,...,C|c|} to 

indicate both the jth component and jth class. Each 
component Cj is parameterized by a disjoint subset 
of 9. These assumptions specify that a document is 
created by (1) selecting a class according to the prior 
probabilities, P(e,|0), then (2) having that class com- 

1*1 
p(di\cj;e) = p(|4|) n P(^*JC,;0),        (2) 

*=i 

where we assume the length of the document, \d(\, 
is distributed independently of class. Each individ- 
ual class component is parameterized by the collection 
of word probabilities, such that 9Wt\Cj = P(wt\cjm,9), 
where t € {1,...,|V|} and Etp(wt|cj;0) = 1- The 
other parameters of the model are the class prior prob- 
abilities 6C. = P(CJ|0), which indicate the probabilities 
of selecting each mixture component. 

Given these underlying assumptions of how the data 
are produced, the task of learning a text classifier con- 
sists of forming an estimate of 9, written 9, based on a 
set of training data. With labeled training documents, 
V = {di,...,d|x>|}, we can calculate estimates for the 
parameters of the model that generated these docu- 
ments. To calculate the probability of a word given 
a class, 9Wt\Cj, simply count the fraction of times the 
word occurs in the data for that class, augmented with 
a Laplacean prior. This smoothing prevents probabil- 
ities of zero for infrequently occurring words. These 
word probability estimates 9Wt\Cj are: 

"wt\cj 
l + ZtJNjwudiWcjldi) 

(3) 
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where N(wt,di) is the count of the number of times 
word wt occurs in document dj, and where P(e,|d;) G 
{0,1}, given by the class label. The class prior proba- 
bilities, 9Cj, are estimated in the same fashion of count- 
ing, but without smoothing: 

A   _EgjP(cj|di) 
C' " |2>| 

(4) 

Given estimates of these parameters calculated from 
the training documents, it is possible to turn the gener- 
ative model around and calculate the probability that 
a particular class component generated a given docu- 
ment. We formulate this by an application of Bayes' 
rule, and then substitutions using Equations 1 and 2: 

P(cj\di;6) = PfotönLt'iPO^M) 
£ri1P(cr|0)m=liPK<.J<v;0) <M (5) 

If the task is to classify a test document d* into a single 
class, simply select the class with the highest posterior 
probability: argmaxj P(cj|dj;0). 

Note that our assumptions about the generation of 
text documents are all violated in practice, and yet 
empirically, naive Bayes does a good job of clas- 
sifying text documents [Lewis & Ringuette 1994; 
Craven et al. 1998; Joachims 1997]. This para- 
dox is explained by the fact that classification es- 
timation is only a function of the sign (in binary 
cases) of the function estimation [Friedman 1997; 
Domingos & Pazzani 1997]. Also note that our for- 
mulation of naive Bayes assumes a multinomial event 
model for documents; this generally produces better 
text classification accuracy than another formulation 
that assumes a multi-variate Bernoulli [McCallum & 
Nigam 1998]. 

3    EM and Unlabeled Data 

When naive Bayes is given just a small set of labeled 
training data, classification accuracy will suffer be- 
cause variance in the parameter estimates of the gen- 
erative model will be high. However, by augmenting 
this small set with a large set of unlabeled data and 
combining the two pools with EM, we can improve the 
parameter estimates. This section describes how to 
use EM to combine these pools within the probabilistic 
framework of the previous section. 

EM is a class of iterative algorithms for maximum like- 
lihood estimation in problems with incomplete data 

[Dempster, Laird, & Rubin 1977]. Given a model of 
data generation, and data with some missing values, 
EM alternately uses the current model to estimate the 
missing values, and then uses the missing value esti- 
mates to improve the model. Using all the available 
data, EM will locally maximize the likelihood of the 
generative parameters, giving estimates for the miss- 
ing values. 

In our text classification setting, we treat the class la- 
bels of the unlabeled documents as missing values, and 
then apply EM. The resulting naive Bayes parameter 
estimates often give significantly improved classifica- 
tion accuracy on the test set when the pool of labeled 
examples is small [Nigam et al. 1998].* This use of 
EM is a special case of a more general missing values 
formulation [Ghahramani & Jordan 1994]. 

In implementation, EM is an iterative two-step pro- 
cess. The E-step calculates probabilistically-weighted 
class labels, P(cj\di;0), for every unlabeled document 
using a current estimate of 6 and Equation 5. The M- 
step calculates a new maximum likelihood estimate for 
8 using all the labeled data, both original and proba- 
bilistically labeled, by Equations 3 and 4. We initialize 
the process with parameter estimates using just the la- 
beled training data, and iterate until 6 reaches a fixed 
point.   See [Nigam et al. 1998] for more details. 

4    Active Learning with EM 

Rather than estimating class labels for unlabeled doc- 
uments, as EM does, active learning instead requests 
the true class labels for unlabeled documents it selects. 
In many settings, an optimal active learner should se- 
lect those documents that, when labeled and incorpo- 
rated into training, will minimize classification error 
over the distribution of future documents. Equiva- 
lent^ in probabilistic frameworks without bias, active 
learning aims to minimize the expected classification 
variance over the document distribution. Note that 
Naive Bayes' independence assumption and Laplacean 
priors do introduce bias. However, variance tends to 
dominate bias in classification error [Friedman 1997], 
and thus we focus on reducing variance. 

The Query-by-Committee (QBC) method of active 
learning measures this variance indirectly [Freund et 
al. 1997]. It samples several times from the classifier 
parameter distribution that results from the training 

1When the classes do not correspond to the natural clus- 
ters of the data, EM can hurt accuracy instead of helping. 
Our previous work also describes a method for avoiding 
these detrimental effects. 
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data, in order to create a "committee" of classifier vari- 
ants. This committee approximates the entire classi- 
fier distribution. QBC then classifies unlabeled docu- 
ments with each committee member, and measures the 
disagreement between their classifications—thus ap- 
proximating the classification variance. Finally, docu- 
ments on which the committee disagrees strongly are 
selected for labeling requests. The newly labeled doc- 
uments are included in the training data, and a new 
committee is sampled for making the next set of re- 
quests. This section presents each of these steps in 
detail, and then explains its integration with EM. Our 
implementation of this algorithm is summarized in Ta- 
ble 1. 

Our committee members are created by sampling clas- 
sifiers according to the distribution of classifier param- 
eters specified by the training data. Since the prob- 
ability of the naive Bayes parameters for each class 
are described by a Dirichlet distribution, we sample 
the parameters 6Wt\Cj from the posterior Dirichlet dis- 
tribution based on training data word counts, N(-, •). 
This is performed by drawing weights, vtj, for each 
word wt and class Cj from the Gamma distribution: 
vtj = Gamma(at + N(wt,Cj)), where at is always 
1, as specified by our Laplacean prior. Then we set 
the parameters 0Wt\c. to the normalized weights by 
6Wt\c- = '"tjl YJS 

v*j- We sample to create a classifier k 
times, resulting in k committee members. Individual 
committee members are denoted by m. 

We consider two metrics for measuring committee dis- 
agreement. The previously employed vote entropy [Da- 
gan & Engelson 1995] is the entropy of the class la- 
bel distribution resulting from having each commit- 
tee member "vote" with probability mass 1/A; for its 
winning class. One disadvantage of vote entropy is 
that it does not consider the confidence of the com- 
mittee members' classifications, as indicated by the 
class probabilities Pm(cJ|di;ö) from each member. 

To capture this information, we propose to mea- 
sure committee disagreement for each document us- 
ing Kullback-Leibler divergence to the mean [Pereira, 
Tishby, & Lee 1993]. Unlike vote entropy, which com- 
pares only the committee members' top ranked class, 
KL divergence measures the strength of the certainty 
of disagreement by calculating differences in the com- 
mittee members' class distributions, Pm(C\di).2 Each 

2While naive Bayes is not an accurate probability esti- 
mator [Domingos & Pazzani 1997], naive Bayes classifica- 
tion scores are somewhat correlated to confidence; the fact 
that naive Bayes scores can be successfully used to make 
accuracy/coverage trade-offs is testament to this. 

• Calculate the density for each document. (Eq. 9) 
• Loop while adding documents: 

- Build an initial estimate of 9 from the labeled docu- 
ments only. (Eqs. 3 and 4) 

- Loop k times, once for each committee member: 

+ Create a committee member by sampling for 
each class from the appropriate Dirichlet distri- 
bution. 

+ Starting with the sampled classifier apply EM 
with the unlabeled data. Loop while parameters 
change: 

■ Use the current classifier to probabilistically 
label the unlabeled documents. (Eq. 5) 

■ Recalculate the classifier parameters given 
the probabilistically-weighted labels. (Eqs. 3 
and 4) 

+ Use the current classifier to probabilistically la- 
bel all unlabeled documents. (Eq. 5) 

- Calculate the disagreement for each unlabeled docu- 
ment (Eq. 7), multiply by its density, and request the 
class label for the one with the highest score. 

• Build a classifier with the labeled data. (Eqs. 3 and 4). 
• Starting with this classifier, apply EM as above.  

Table 1: Our active learning algorithm. Traditional Query- 
by-Committee omits the EM steps, indicated by italics, 
does not use the density, and works in a stream-based set- 
ting. 

committee member m produces a posterior class distri- 
bution, Pm(C|dj), where C is a random variable over 
classes. KL divergence to the mean is an average of 
the KL divergence between each distribution and the 
mean of all the distributions: 

i£z>(Pm(cwi|P.«,(cw), (6) 
m=l 

where Vavg{C\di) is the class distribution mean 
over  all  committee  members,   m:    Pavg(C\di)   = 

(EmPm(C7|*))/*. 

KL divergence, D(-||-)> is an information-theoretic 
measure of the difference between two distributions, 
capturing the number of extra "bits of information" 
required to send messages sampled from the first dis- 
tribution using a code that is optimal for the second. 
The KL divergence between distributions Pi(C) and 
Pa(C) is: 

IHPtfOIIPatC)) = gPiteJlog (|ig|) (7) 



354 McCallum and Nigam 

After disagreement has been calculated, a document 
is selected for a class label request. (Selecting more 
than one document at a time can be a computational 
convenience.) We consider three ways of selecting 
documents: stream-based, pool-based, and density- 
weighted pool-based. Some previous applications of 
QBC [Dagan & Engelson 1995; Liere k Tadepalli 1997] 
use a simulated stream of unlabeled documents. When 
a document is produced by the stream, this approach 
measures the classification disagreement among the 
committee members, and decides, based on the dis- 
agreement, whether to select that document for la- 
beling. Dagan and Engelson do this heuristically by 
dividing the vote entropy by the maximum entropy to 
create a probability of selecting the document. Dis- 
advantages of using stream-based sampling are that it 
only sparsely samples the full distribution of possible 
document labeling requests, and that the decision to 
label is made on each document individually, irrespec- 
tive of the alternatives. 

An alternative that aims to address these problems 
is pool-based sampling. It selects from among all 
the unlabeled documents in a pool the one with the 
largest disagreement. However, this loses one bene- 
fit of stream-based sampling—the implicit modeling 
of the data distribution—and it may select documents 
that have high disagreement, but are in unimportant, 
sparsely populated regions. 

We can retain this distributional information by se- 
lecting documents using both the classification dis- 
agreement and the "density" of the region around 
a document. This density-weighted pool-based sam- 
pling method prefers documents with high classifica- 
tion variance that are also similar to many other doc- 
uments. The stream approach approximates this im- 
plicitly; we accomplish this more accurately, (espe- 
cially when labeling a small number of documents), 
by modeling the density explicitly. 

We approximate the density in a region around a par- 
ticular document by measuring the average distance 
from that document to all other documents. Distance, 
Y, between individual documents is measured by using 
exponentiated KL divergence: 

Y(dhdh) = e-ßD(P(W\dh) || (AP(W|di)+(l-A)P(W)))) 

(8) 

where If is a random variable over words in the 
vocabulary; P(W|dj) is the maximum likelihood es- 
timate of words sampled from document di,  (i.e., 

P(wt\di) = N(wt,di)/\di\); P(W) is the marginal dis- 
tribution over words; A is a parameter that determines 
how much smoothing to use on the encoding distribu- 
tion (we must ensure no zeroes here to prevent infinite 
distances); and ß is a parameter that determines the 
sharpness of the distance metric. 

In essence, the average KL divergence between a docu- 
ment, di, and all other documents measures the degree 
of overlap between di and all other documents; expo- 
nentiation converts this information-theoretic number 
of "bits of information" into a scalar distance. 

When calculating the average distance from di to all 
other documents it is much more computationally ef- 
ficient to calculate the geometric mean than the arith- 
metic mean, because the distance to all documents 
that share no words words with dj can be calculated 
in advance, and we only need make corrections for the 
words that appear in di. Using a geometric mean, we 
define density, Z of document di to be 

Z(di) = e^ ^ 
, ln(y(<fc,<!,,)) 

(9) 

We combine this density metric with disagreement by 
selecting the document that has the largest product of 
density (Equation 9) and disagreement (Equation 6). 
This density-weighted pool-based sampling selects the 
document that is representative of many other docu- 
ments, and about which there is confident committee 
disagreement. 

Combining Active Learning and EM 

Active learning can be combined with EM by run- 
ning EM to convergence after actively selecting all the 
training data that will be labeled. This can be under- 
stood as using active learning to select a better start- 
ing point for EM hill climbing, instead of randomly 
selecting documents to label for the starting point. A 
more interesting approach, that we term pool-leveraged 
sampling, is to interleave EM with active learning, so 
that EM not only builds on the results of active learn- 
ing, but EM also informs active learning. To do this 
we run EM to convergence on each committee mem- 
ber before performing the disagreement calculations. 
The intended effect is (1) to avoid requesting labels 
for examples whose label can be reliably filled in by 
EM, and (2) to encourage the selection of examples 
that will help EM find a local maximum with higher 
classification accuracy. With more accurate commit- 
tee members, QBC should pick more informative doc- 
uments to label.  The complete active learning algo- 
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rithm, both with and without EM, is summarized in 
Table 1. 

Unlike settings in which queries must be generated 
[Cohn 1994], and previous work in which the unlabeled 
data is available as a stream [Dagan k Engelson 1995; 
Liere k Tadepalli 1997; Freund et al. 1997], our as- 
sumption about the availability of a pool of unlabeled 
data makes the improvements to active learning pos- 
sible. This pool is present for many real-world tasks 
in which efficient use of labels is important, especially 
in text learning. 

5 Related Work 

A similar approach to active learning, but without EM, 
is that of Dagan and Engelson [1995]. They use QBC 
stream-based sampling and vote entropy. In contrast, 
we advocate density-weighted pool-based sampling 
and the KL metric. Additionally, we select committee 
members using the Dirichlet distribution over classi- 
fier parameters, instead of approximating this with a 
Normal distribution. Several other studies have inves- 
tigated active learning for text categorization. Lewis 
and Gale examine uncertainty sampling and relevance 
sampling in a pool-based setting [Lewis k Gale 1994; 
Lewis 1995]. These techniques select queries based on 
only a single classifier instead of a committee, and thus 
cannot approximate classification variance. Liere and 
Tadepalli [1997] use committees of Winnow learners 
for active text learning. They select documents for 
which two randomly selected committee members dis- 
agree on the class label. 

In previous work, we show that EM with unlabeled 
data reduces text classification error by one-third 
[Nigam et al. 1998]. Two other studies have used 
EM to combine labeled and unlabeled data without 
active learning for classification, but on non-text tasks 
[Miller k Uyar 1997; Shahshahani k Landgrebe 1994]. 
Ghahramani and Jordan [1994] use EM with mixture 
models to fill in missing feature values. 

6 Experimental Results 

This section provides evidence that using a combina- 
tion of active learning and EM performs better than 
using either individually. The results are based on data 
sets from UseNet and Reuters.3 

3These data sets are both available on the In- 
ternet. See http://www.cs.cmu.edu/~textlearning and 
http://www.research.att.com/~lewis. 

The Newsgroups data set, collected by Ken Lang, con- 
tains about 20,000 articles evenly divided among 20 
UseNet discussion groups [Joachims 1997]. We use 
the five comp. * classes as our data set. When tokeniz- 
ing this data, we skip the UseNet headers (thereby 
discarding the subject line); tokens are formed from 
contiguous alphabetic characters, removing words on 
a stoplist of common words. Best performance was 
obtained with no feature selection, no stemming, and 
by normalizing word counts by document length. The 
resulting vocabulary, after removing words that occur 
only once, has 22958 words. On each trial, 20% of the 
documents are randomly selected for placement in the 
test set. 

The 'ModApte' train/test split of the Reuters 21578 
Distribution 1.0 data set consists of 12902 Reuters 
newswire articles in 135 overlapping topic categories. 
Following several other studies [Joachims 1998; Liere 
k Tadepalli 1997] we build binary classifiers for each 
of the 10 most populous classes. We ignore words on 
a stoplist, but do not use stemming. The resulting vo- 
cabulary has 19371 words. Results are reported on the 
complete test set as precision-recall breakeven points, 
a standard information retrieval measure for binary 
classification [Joachims 1998]. 

In our experiments, an initial classifier was trained 
with one randomly-selected labeled document per 
class. Active learning proceeds as described in Table 1. 
Newsgroups experiments were run for 200 active learn- 
ing iterations, each round selecting one document for 
labeling. Reuters experiments were run for 100 itera- 
tions, each round selecting five documents for labeling. 
Smoothing parameter A is 0.5; sharpness parameter ß 
is 3. We made little effort to tune ß and none to tune 
A. For QBC we use a committee size of three (fc=3); 
initial experiments show that committee size has lit- 
tle effect. All EM runs perform seven EM iterations; 
we never found classification accuracy to improve be- 
yond the seventh iteration. All results presented are 
averages of ten runs per condition. 

The top graph in Figure 1 shows a comparison of dif- 
ferent disagreement metrics and selection strategies 
for QBC without EM. The best combination, density- 
weighted pool-based sampling with a KL divergence to 
the mean disagreement metric achieves 51% accuracy 
after acquiring only 30 labeled documents. To reach 
the same accuracy, unweighted pool-based sampling 
with KL disagreement needs 40 labeled documents. 
If we switch to stream-based, sampling, KL disagree- 
ment needs 51 labelings for 51% accuracy. Our ran- 
dom selection baseline requires 59 labeled documents. 
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Figure 1: On the top, a comparison of disagreement met- 
rics and selection strategies for QBC shows that density- 
weighted pool-based KL sampling does better than other 
metrics. On the bottom, combinations of QBC and EM 
outperform stand-alone QBC or EM. In these cases, QBC 
uses density-weighted pool-based KL sampling. Note that 
the order of the legend matches the order of the curves and 
that, for resolution, the vertical axes do not range from 0 
to 100. 

Surprisingly, stream-based vote entropy does slightly 
worse than random, needing 61 documents for the 51% 
threshold. Density-weighted pool-based sampling with 
a KL metric is statistically significantly better than 
each of the other methods (p < 0.005 for each pairing). 
It is interesting to note that the first several documents 
selected by this approach are usually FAQs for the var- 
ious newsgroups. Thus, using a pool of unlabeled data 
can notably improve active learning. 

In contrast to earlier work on part-of-speech tagging 
[Dagan & Engelson 1995], vote entropy does not per- 
form well on document classification. In our experi- 
ence, vote entropy tends to select outliers—documents 
that are short or unusual. We conjecture that this oc- 
curs because short documents and documents consist- 
ing of infrequently occurring words are the documents 
that most easily have their classifications changed by 
perturbations in the classifier parameters. In these 
situations, classification variance is high, but the dif- 

ference in magnitude between the classification score 
of the winner and the losers is small. For vote en- 
tropy, these are prime selection candidates, but KL 
divergence accounts for the magnitude of the differ- 
ences, and thus helps measure the confidence in the 
disagreement. Furthermore, incorporating density- 
weighting biases selection towards longer documents, 
since these documents have word distributions that are 
more representative of the corpus, and thus are consid- 
ered "more dense." It is generally better to label long 
rather than short documents because, for the same la- 
beling effort, a long document provides information 
about more words. Dagan and Engelson's domain, 
part-of-speech tagging, does not have varying length 
examples; document classification does. 

Now consider the addition of EM to the learning 
scheme. Our EM baseline post-processes random se- 
lection with runs of EM (Random-then-EM). The most 
straightforward method of combining EM and ac- 
tive learning is to run EM after active learning com- 
pletes (QBC-then-EM). We also interleave EM and 
active learning, by running EM on each committee 
member (QBC-with-EM). This also includes a post- 
processing run of EM. In QBC, documents are selected 
by density-weighted pool-based KL, as the previous ex- 
periment indicated was best. Random selection (Ran- 
dom) and QBC without EM (QBC) are repeated from 
the previous experiment for comparison. 

The bottom graph of Figure 1 shows the results of 
combining EM and active learning. Starting with the 
30 labeling mark again, QBC-then-EM is impressive, 
reaching 64% accuracy. Interleaved QBC-with-EM lags 
only slightly, requiring 32 labeled documents for 64% 
accuracy. Random-then-EM is the next best performer, 
needing 51 labeled documents. QBC, without EM, 
takes 118 labeled documents, and our baseline, Ran- 
dom, takes 179 labeled documents to reach 64% accu- 
racy. QBC-then-EM and QBC-with-EM are not statis- 
tically significantly different (p = 0.71 N.S.); these two 
are each statistically significantly better than each of 
the other methods at this threshold (p < 0.05). 

These results indicate that the combination of EM 
and active learning provides a large benefit. However, 
QBC interleaved with EM does not perform better 
than QBC followed by EM—not what we were expect- 
ing. We hypothesize that while the interleaved method 
tends to label documents that EM cannot reliably la- 
bel on its own, these documents do not provide the 
most beneficial starting point for EM's hill-climbing. 
In ongoing work we are examining this more closely 
and investigating improvements. 
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Figure 2: A comparison of random initial labeling and no 
initial labeling when documents are selected with density- 
weighted pool-based sampling. Note that no initial labeling 
tends to dominate the random initial labeling cases. 

Another application of the unlabeled pool to guiding 
active learning is the selection of the initial labeled ex- 
amples. Several previous implementations [Dagan k 
Engelson 1995; Lewis k Gale 1994; Lewis 1995] sup- 
pose that the learner is provided with a collection of 
labeled examples at the beginning of active learning. 
However, obtaining labels for these initial examples 
(and making sure we have examples from each class) 
can itself be an expensive proposition. Alternatively, 
our method can begin without any labeled documents, 
sampling from the Dirichlet distribution and select- 
ing with density-weighted metrics as usual. Figure 2 
shows results from experiments that begin with zero 
labeled documents, and use the structure of the un- 
labeled data pool to select initial labeling requests. 
Interestingly, this approach is not only more conve- 
nient for many real-world tasks, but also performs 
better because, even without any labeled documents, 
it can still select documents in dense regions. With 
70 labeled documents, QBC initialized with one (ran- 
domly selected) document per class attains an average 
of 59% accuracy, while QBC initialized with none (re- 
lying on density-weighted KL divergence to select all 
70) attains an average of 63%. Performance also in- 
creased with EM; QBC-with-EM rises from 69% to 72% 
when active learning begins with zero labeled docu- 
ments. Each of these differences is statistically signif- 
icant (p < 0.005). Both with and without EM, this 
method successfully finds labeling requests to cover all 
classes. As before, the first requests tend to be FAQs 
or similar, long, informative documents. 

In comparison to previous active learning studies 
in text classification domains [Lewis k Gale 1994; 
Liere k Tadepalli 1997], the magnitude of our clas- 
sification accuracy increase is relatively modest. Both 
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Figure 3: Active learning results on three categories of 
the Reuters data, corn, trade, and acq, respectively from 
the top and in increasing order of frequency. Note that 
active learning with committees outperforms random se- 
lection and that the magnitude of improvement is larger 
for more infrequent classes. 

of these previous studies consider binary classifiers 
with skewed distributions in which the positive class 
has a very small prior probability. With a very in- 
frequent positive class, random selection should per- 
form extremely poorly because nearly all documents 
selected for labeling will be from the negative class. 
In tasks where the class priors are more even, random 
selection should perform much better—making the im- 
provement of active learning less dramatic. With an 
eye towards testing this hypothesis, we perform a sub- 
set of our previous experiments on the Reuters data 
set, which has these skewed priors. We compare Ran- 
dom against unweighted pool-based sampling (QBC) 
with the KL disagreement metric. 
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Figure 3 shows results for three of the ten binary clas- 
sification tasks. The frequencies of the positive classes 
are 0.018, 0.038 and 0.184 for the corn (top), trade 
(middle) and acq (bottom) graphs, respectively. The 
class frequency and active learning results are repre- 
sentative of the spectrum of the ten classes. In all 
cases, active learning classification is more accurate 
than Random. After 252 labelings, improvements of 
accuracy over random are from 27% to 53% for corn, 
48% to 68% for trade, and 85% to 90% for acq. The 
distinct trend across all ten categories is that the less 
frequently occurring positive classes show larger im- 
provements with active learning. Thus, we conclude 
that our earlier accuracy improvements are good, given 
that with unskewed class priors, Random selection pro- 
vides a relatively strong performance baseline. 

7    Conclusions 

This paper demonstrates that by leveraging a large 
pool of unlabeled documents in two ways—using EM 
and density-weighted pool-based sampling—we can 
strongly reduce the need for labeled examples. In fu- 
ture work, we will explore the use of a more direct ap- 
proximation of the expected reduction in classification 
variance across the distribution. We will consider the 
effect of the poor probability estimates given by naive 
Bayes by exploring other classifiers that give more re- 
alistic probability estimates. We will also further in- 
vestigate ways of interleaving active learning and EM 
to achieve a more than additive benefit. 
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Abstract 

When documents are organized in a large 
number of topic categories, the categories 
are often arranged in a hierarchy. The U.S. 
patent database and Yahoo are two examples. 

This paper shows that the accuracy of a naive 
Bayes text classifier can be significantly im- 
proved by taking advantage of a hierarchy of 
classes. We adopt an established statistical 
technique called shrinkage that smoothes pa- 
rameter estimates of a data-sparse child with 
its parent in order to obtain more robust pa- 
rameter estimates. The approach is also em- 
ployed in deleted interpolation, a technique 
for smoothing n-grams in language modeling 
for speech recognition. 

Our method scales well to large data sets, 
with numerous categories in large hierarchies. 
Experimental results on three real-world data 
sets from UseNet, Yahoo, and corporate web 
pages show improved performance, with a re- 
duction in error up to 29% over the tradi- 
tional flat classifier. 

1    Introduction 

As the dramatic expansion of the World Wide Web 
continues, and the amount of on-line text grows, 
the development of methods for automatically cate- 
gorizing this text becomes more important. A va- 
riety of recent work has demonstrated the success 
of statistical approaches for learning to classify text 
documents [Joachims 1997; Koller k Sahami 1997; 
Yang & Pederson 1997; Nigam et al. 1998]. These 
approaches, such as TFIDF [Salton 1991] and naive 
Bayes [Lewis & Ringuette 1994; McCallum k Nigam 

1998], typically represent documents as vectors of 
words, and learn by gathering statistics from the ob- 
served frequencies of these words within documents 
belonging to the different classes. Because they rely 
on these learned word statistics, these approaches are 
data-intensive: they often require large numbers of 
hand-labeled training documents per class to achieve 
high classification accuracy. 

This paper considers the question of how to scale up 
these statistical learning algorithms to tasks with a 
large number of classes and sparse training data per 
class. When humans organize extensive data sets into 
fine-grained categories, topic hierarchies are often em- 
ployed to make the large collection of categories more 
manageable. Yahoo, the U.S. patent database, MED- 

LINE and the Dewey Decimal System are all examples 
of such hierarchies. 

We present a technique that leverages these 
commonly-available topic hierarchies in order to sig- 
nificantly improve classification accuracy, especially 
when the hierarchy is large and the training data for 
each class is sparse. We also present a method for ex- 
ponentially reducing the amount of computation nec- 
essary for classification, while sacrificing only a small 
amount of accuracy. 

Our approach applies a well-understood technique 
from Statistics called shrinkage that provides improved 
estimates of parameters that would otherwise be un- 
certain due to limited amounts of training data [Stein 
1955; James & Stein 1961]. The technique exploits a 
hierarchy by "shrinking" parameter estimates in data- 
sparse children toward the estimates of the data-rich 
ancestors in ways that are provably optimal under the 
appropriate conditions. We employ a simple form of 
shrinkage that creates new parameter estimates in a 
child by a linear interpolation of all hierarchy nodes 
from the child to the root. The interpolation weights 
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are learned by a form of Expectation Maximization 
[Dempster, Laird, k Rubin 1977]. This form of shrink- 
age is also applied in deleted interpolation, a tech- 
nique for smoothing n-grams in language modeling for 
speech recognition [Jelinek k Mercer 1980]. 

Note that our approach to text classification in a hi- 
erarchy is quite different than work by Koller and Sa- 
hami [Koller k Sahami 1997]. Their Pachinko Ma- 
chine employs the hierarchy by learning separate clas- 
sifiers at each internal node of the tree, and then la- 
beling a document by using these classifiers to greed- 
ily select sub-branches until it reaches a leaf. Their 
approach is shown to be helpful when documents are 
represented using a small subset (< 100 words) of 
the available vocabulary, and a different subset of 
the vocabulary is selected at each node of the hi- 
erarchy. However, their approach did not show im- 
provement with larger vocabularies, and in many do- 
mains (including the domains studied in this paper) 
it has been established that large vocabulary sizes of- 
ten perform best [Joachims 1997; Nigam et al. 1998; 
McCallum k Nigam 1998]. 

Somewhat surprisingly, it can be shown that a prob- 
abilistic form of Pachinko Machine, when trained us- 
ing maximum likelihood estimates and a constant vo- 
cabulary, is equivalent to the simple non-hierarchical 
classifier [Mitchell 1998]. At each node in the hier- 
archy this non-deterministic version of the Pachinko 
Machine assigns each document probabilistically to all 
of its descendants, whereas the deterministic Pachinko 
Machine proposed by Koller and Sahami assigns each 
document to its single most probable descendant. 

The remainder of this paper is structured as follows: 
we explain our probabilistic approach to text classifi- 
cation, and present the use of shrinkage in this context. 
Then we show experimental results on three real-world 
data sets, present related work, and close with a dis- 
cussion of future work. 

2    Probabilistic Framework 

We approach the task of text classification in a 
Bayesian learning framework. We assume that the 
text data was generated by a parametric model, and 
use training data to calculate estimates of the model 
parameters. Then, equipped with these estimates, we 
classify new test documents by using Bayes rule to 
turn the generative model around and calculate the 
posterior probability that a class would have generated 
the test document in question. Classification then be- 
comes a simple matter of selecting the most probable 

class given the document's words. 

We assume that the data is generated by a mixture 
model, (parameterized by 6), with a one-to-one cor- 
respondence between mixture model components and 
(the observed) classes, Cj 6 {C}. This specifies that 
a document, d;, is created by (1) selecting a class, Cj, 
according to the class priors, P(c_,|0), then (2) hav- 
ing the corresponding mixture component generate a 
document according to its own parameters, with dis- 
tribution P(di\cj-,0). The marginal probability of gen- 
erating document d; is thus a sum of total probability 
over all mixture components: 

\c\ 
P(di\9) = '£P(cj\0)P(di\cj;e). (1) 

i=i 

A document is comprised of an ordered sequence of 
word events, drawn from a vocabulary V. We make the 
naive Bayes assumption: that the probability of each 
word event in a document is independent of the word's 
context given the class, and furthermore independent 
of its position in the document. Thus, each document 
di is drawn from a multinomial distribution with as 
many independent trials as the number of words in 
di. We also assume that document lengths, |d;|, are 
independent of class. We write w<iik for the word in 
position k of document d;, where the subscript of w (in 
this case d;*) indicates an index into the vocabulary. 
Then the probability of a document given its class is: 

P(di\cJ;e) = P(\di\)l[P(wdJcj;0). (2) 
*=i 

Given the assumption about one-to-one correspon- 
dence between mixture model components and classes, 
the naive Bayes assumption, and the position indepen- 
dence assumption, the mixture model is composed of 
disjoint sets of parameters, 9j, for each class Cj. This 
parameter set for each class, 9j, is composed of prob- 
abilities for each word, wt, such that 0jt = P(wt\cj;9) 

and 5^1=1 Ojt — 1- The on'y other parameters in 
the model are the class prior probabilities, written 
e0j = P(Cj\6). 

Given a set of labeled training documents, V, we can 
calculate estimates for the parameters of the model 
that generated the documents. These estimates con- 
sist of straightforward counting of events, supple- 
mented by standard Laplace 'smoothing' that primes 
each estimate with a count of one to avoid probabili- 
ties of zero. We define N(wt, d,) to be the count of the 
number of times word wt occurs in document d,, and 
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define P(cj|di) <E {0,1}, as given by the document's 
class label. Then, the estimate of the probability of 
word Wt in class Cj is 

P ("believe") = 
UNIFORM IVI 

ejt = p(wt\Cj;e) 

(3) 

The class prior parameters are set by the maximum 
likelihood estimate: 

PI 
0oj=P(c#) = £Pfe|di)/|£>|. (4) 

i=l 

Given estimates of these parameters calculated from 
the training documents, classification can be per- 
formed on test documents by calculating the posterior 
probability of each class given the words observed in 
the test document, and selecting the class with the 
highest probability. We formulate this by first apply- 
ing Bayes rule, and then substituting for V(di\cj\6) 
and P(di\6) using Equations 1 and 2. 

P(cj|d<;0)    = 
nci\6)P(di\cj;e) 

P{di\0) 

p(c#) nitlPKii je;;*) 

(5) 

1*1 Elt'iPtCrWnlt'lP^JCr;*) 

Sports 
P ("believe" I Sports) 

Religion 
P ("believe" I Religion) 

alt.atheism 
P ("believe" I altatheism) 

P ("believe" I alt.atheism) =    Vaheism p ("believe" I alt.atheism) + 
SHRINKAGE MLE 

Vaheism p ("believe" I Religion) + 
MLE 

4..aUKism
P("belieVe"IR00t> + 

MLE 

C«hdsmp ("believe") 
UNIFORM 

Figure 1: The new, shrinkage-based estimate of the proba- 
bility of a word (e.g. "believe") given a UseNet class (e.g. 
alt.atheism) is a weighted sum of the maximum-likelihood 
estimates from the leaf to the root, and beyond the root to 
the uniform distribution over words. 

Despite the fact that the mixture model and word 
independence assumptions are strongly violated with 
real-world data, naive Bayes performs text classifica- 
tion very well. Friedman and Domingos and Pazzani 
discuss why the violation of the word independence 
assumption sometimes does little damage to classifi- 
cation accuracy [Friedman 1997; Domingos k Pazzani 
1997]. 

3    Hierarchical Classification 

This section presents a method of improving our es- 
timates of the model parameters by taking advantage 
of the hierarchy. We first briefly describe shrinkage 
in a general sense, then discuss its application to text 
classification in a hierarchy, and the mechanics of our 
algorithm. 

Background on Shrinkage 

We wish to estimate parameters 0\,.. . ,0|c|, (i.e. each 
class's probability distribution over words). The es- 
timates §j of 9j can often be improved by shrinking 

each of them towards some common value. See Carlin 
and Louis [1996] for a recent summary of shrinkage. 
There are two justifications for shrinkage. First, if the 
quantities 6\,... ,0\c\ are thought to be similar, then 
they can regarded as draws from a common distribu- 
tion. In this case, the shrinkage estimator is just the 
Bayes estimate. More surprisingly, even if the quan- 
tities are completely unrelated, and even if the data 
upon which each estimator is based are independent 
of each other, shrinkage estimators still reduce the risk 
of the estimators. This is a deep and counterintuitive 
fact discovered by Stein [1955] and James and Stein 
[1961]. 

Shrinkage for Text Classification 

We use shrinkage to better estimate the probability Ojt 
of word wt given class Cj. For each node in our tree we 
construct a maximum likelihood (ML) estimate based 
on the data associated with that node (Equation 3 
without the Laplace smoothing). An improved esti- 
mate for each leaf node is then derived by "shrinking" 
its ML estimate towards the ML estimates of all its an- 
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cestors, namely those estimates found along the path 
from that leaf to the root. Figure 1 illustrates this pro- 
cess. In statistical language modeling terms, we build 
a unigram model for each node in the tree, and smooth 
each leaf model by linearly interpolating it with all the 
models found along the path to the root. 

The estimates along a path from the leaf to the root 
represent a tradeoff between specificity and reliability. 
The estimate at the leaf is the most specific (most 
pertinent, least biased), since it is based on data from 
that topic alone. However it is also the least reliable, 
since it is based on the smallest sample of data. The 
estimator at the root is the most reliable, but the least 
specific. 

Since even the root contains a finite amount of data, 
it may estimate some rare words unreliably. We there- 
fore extend the tree by adding, beyond the root, the 
uniform estimate. Thanks to the latter, we no longer 
need to smooth the individual ML estimates with the 
Laplacean prior. 

To ensure that the ML estimates along a given path 
are independent, we subtract each child's data from 
its parent's before calculating the parent's ML esti- 
mate. Thus the latter estimate is based on data that 
belongs to all the siblings of said child, but not to the 
child itself. Note that in this way, for any path from 
leaf to root, every datum in the tree is used in exactly 
one of the ML estimates, providing both independence 
among the estimates and efficient use of the training 
data. 

Determining Mixture Weights 

Given a set of ML estimates along the path from a 
leaf to the root (and beyond it, to the uniform esti- 
mate), how do we decide on the weights for interpo- 
lating (mixing) them? Let {#j,0|, ■• -,#*} be k such 

estimates, where 6j = Oj is the estimate at the leaf, 

and 0j is the uniform estimate (6jt = 1/\V\ for all 
words wt), and A; —2 is the depth of class Cj in the tree. 
The interpolation weights among the ancestors of class 
Cj are written {Aj, A|,..., A*}, where Y,*i=i <*} = 1- 

We write 6j for the new estimate of the class- 
conditioned word probabilities based on shrinkage. 
The new estimate for the probability of word wt given 
class Cj is 

9jt = PK|ci;6j) = \)e)t + x)e% + ... + \)ekjt. (6) 

We derive empirically optimal weights, AJ, between 
the ancestors of Cj, by finding the weights that maxi- 

mize the likelihood of some hitherto unseen "held-out" 
data. We use the fact that the likelihood of data ac- 
cording to the mixture model is a convex function of 
the weights (this falls out of Jensen's inequality), and 
thus attains a single, global maximum. We find that 
maximum for each leaf class, Cj, using the following 
iterative procedure: 

Initialize: Set the A/s to some initial values, say Aj = 
j- (any normalized non-zero initial values will do). 

Iterate: 

(1) Calculate the degree to which each estimate pre- 
dicts the words wt in the held-out set, 7ij, from class 

ßj    =      2_]  P(^j was used to generate wt) 

£ W. 
E\mäm 

m    j    jt 
(7) 

(2) Derive new (and guaranteed improved) weights by 
normalizing the /?'s: 

j        Em ßf 
(8) 

Terminate: Upon convergence of the likelihood func- 
tion (usually achieved within a dozen or so iterations). 

This algorithm can be viewed as a particularly simple 
form of EM [Dempster, Laird, & Rubin 1977], where 
each datum is assumed to have been generated by first 
choosing one of the tree nodes in the path to the root, 
say 6j (with probability A}), then using that estimate 
to generate that datum. EM then maximizes the total 
likelihood when the choices of estimates made for the 
various data are unknown. The first step in the iter- 
ative part is thus the "E" step, and the second one is 
the "M" step. 

While conceptually simple, this method makes ineffi- 
cient use of the available training data by carving off 
some of it to be used as a held-out set. To overcome 
this problem, we modify the algorithm as follows: all 
the available data is used both to construct the ML es- 
timates and to optimize the weights. However, as each 
document is used in the above algorithm, the ML esti- 
mates are modified to exclude its data, so as to make 
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# training 
documents Class child 

Mixture Weights 
parent     g'parent uniform 

235 

root/politics/talk.politics.guns 0.368 0.092 0.017 0.522 
root/politics/talk.politics.mideast 0.256 0.132 0.001 0.611 
root/politics/talEpölitics.misc 0.197 0.213 0.026 0.564 
root/religion/ alt. atheism 0.235 0.158 0.022 0.585 
root/religion/soc.religion.Christian 0.181 0.189 0.052 0.578 
root/religion/talk.religion.misc 0.104 0.255 0.028 0.613 

7497 

root/politics/talk.politics.guns 0.801 0.089 0.048 0.061 
root/politics/talk.politics.mideast 0.859 0.061 0.010 0.071 
root /politics/talk, politics, misc 0.762 0.126 0.043 0.068 
root/religion/alt. atheism 0.766 0.174 0.043 0.018 
root/religion/soc.religion.christian 0.837 0.098 0.041 0.024 
root/religion/talk.religion.misc 0.663 0.226 0.049 0.062 

Table 1: Mixture weights learned by EM for some nodes in the UseNet class hierarchy described in section 4. Notice that 
when training data is sparse (top half of table), classes mix more strongly with their parents than when data is plentiful. 
Notice also that more 'generic' classes mix more strongly with their parents, e.g. talk.politics.misc's weight on its parent 
is higher than is talk.politics.guns's). 

them independent of it. This method is very similar to 
the "leave-one-out" cross-validation commonly used in 
statistical estimation. 

This technique of finding the optimal weights is rou- 
tinely used in statistical language modeling to inter- 
polate together different models (such as trigram, Di- 
gram, unigram and uniform), where it is known as 
"deleted interpolation" [Jelinek & Mercer 1980]. It 
was similarly used to interpolate estimates from nodes 
along a tree path in [Bahl et al. 1989]. This cross- 
validation approach to setting the mixture weights is 
not exactly the same style of shrinkage as Stein [1955] 
and James and Stein [1961], but is similar in spirit. 
In future work we will compare the different styles of 
shrinkage. 

Table 1 shows a subset of the mixture weights learned 
by EM for a hierarchy based on UseNet articles. 

4    Experimental Results 

This section provides empirical evidence that shrink- 
age reduces text classification error by up to 29%. We 
also show that shrinkage helps most when training 
data is sparse and the number of classes is large. Fi- 
nally, we demonstrate that dynamically pruning the 
tree can exponentially reduce computation time, at 
minimal loss of accuracy. Experiments are based on 
three different real-world data sets, one consisting of 
UseNet articles, and two of web pages.1 All the results 
are averages of ten cross-validation trials. 

■"■All   three   data   sets   are   available   on-line. 
http://www.cs.cmu.edu/~textlearning. 

See 

The Industry Sector hierarchy, made available by Mar- 
ket Guide Inc. (www.marketguide.com), consists of 
company web pages classified in a hierarchy of indus- 
try sectors. Using all classes at depth two results in 
6440 web pages partitioned into 71 classes. In tokeniz- 
ing the data we skip all MIME headers and HTML 
tags, use a stoplist, but do not stem. After removing 
tokens that occur only once, the corpus contains 1.2 
million words, with a vocabulary of size 29964. 

The Newsgroups data set, collected by Ken Lang, con- 
tains about 20,000 articles evenly divided among 20 
UseNet discussion groups [Joachims 1997]. Several of 
the topic classes are quite confusable: five of them 
are about computers; three discuss religion. From this 
data set, we build a two-level hierarchy from the 15 
classes that fit into the following top level categories: 
vehicles, computers, politics, religion and sports. We 
tokenize the data in the same way as above. The re- 
sulting data set, after removing words that occur only 
once, contains 1.7 million words, and a vocabulary size 
of 52309. 

We gathered the entirety of the Yahoo 'Science' hierar- 
chy in July 1997. The web pages pointed to by Yahoo 
are divided into 264 disjoint classes containing 14831 
pages as result of descending to deeper nodes of Ya- 
hoo's hierarchy until each class contains less than 200 
documents, and then removing classes with fewer than 
20 documents. After tokenizing as above and removing 
stopwords and words that occur only once, the corpus 
contains 3.0 million words, with a vocabulary size of 
76624. 

Feature selection, when used, is performed by select- 
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Figure 2: Classification accuracy on the Industry Sector 
data set with varying vocabulary size in the horizontal axis. 
The tiny vertical bars at each data point indicate standard 
error. Performance is best with the full vocabulary, where 
shrinkage reduces error by almost one-third. 

ing the words that have highest mutual information 
with the class variable. A previous study found this 
method to be the best for text among several com- 
mon methods [Yang & Pederson 1997]. In addition to 
selecting features by the traditional, flat use of mu- 
tual information, we also use the hierarchy for feature 
selection. Hierarchical feature selection selects equal 
numbers of top words by mutual information at each 
internal node of the tree, using the node's immedi- 
ate children as the classes. This corresponds to Koller 
and Sahami's hierarchical feature selection with zero 
dependencies [Koller & Sahami 1997], except that we 
define the total vocabulary to be the union of all the 
vocabularies chosen by the internal nodes. The union 
is necessary so that the models we will mix share the 
same event space. 

Hierarchical classification improves accuracy 

Figure 2 shows classification accuracy on the Indus- 
try Sector data set with 50-50 train-test splits while 
varying vocabulary size. No partial credit is given for 
classification into neighbors of the true class. 

First, note that larger vocabulary sizes generally per- 
form better; this is consistent with previous results of 
naive Bayes on several other data sets [Joachims 1997; 
Nigam et al. 1998; McCallum k Nigam 1998]. Sec- 
ond, note that Hierarchical Feature Selection some- 
what improves the performance of flat naive Bayes 
in the mid-range of feature selection—at about 5000 
words, traditional, flat feature selection obtains 59% 
accuracy, while hierarchical feature selection reaches 

Figure 3: Classification accuracy on the Newsgroups data 
set with varying amounts of training data. The vertical 
axis is zoomed for magnification of the error bars. Over- 
all, hierarchical modeling provides less improvement than 
it does in the Industry Sector data set because the hierar- 
chy is much smaller. Notice, however, that, as expected, 
shrinkage helps more when there is less training data. 

64%. Third, and most importantly, observe that 
shrinkage improves classification accuracy across the 
board, making the largest improvement at the full, 
unpruned vocabulary size, where it achieves 76% accu- 
racy. In comparison, the flat classifier reaches its best 
performance of 66% at about 10000 words. This differ- 
ence represents a 29% reduction in classification error. 
We maintain that low-frequency words contribute sig- 
nificantly to correct classifications, and that shrinkage 
helps reduce variance of the estimates in the larger pa- 
rameter space that results from the larger vocabulary.2 

Shrinkage helps more when training data is 
sparse. 

Figure 3 shows accuracy on the Newsgroups data set 
with the full vocabulary, while varying amount of 
training data. Our experiments indicate that accuracy 
in this domain is highest with no feature selection, (i.e. 
using the full vocabulary), for both flat and hierar- 
chical classifiers, even with small amounts of training 
data. 

It is interesting to see that hierarchical modeling pro- 
vides less improvement on this data set than it does 
in the Industry Sector corpus. We expect that this is 

2Large vocabularies need not be a computational con- 
cern. In our experiments, with the largest vocabulary, 
it takes only 216 seconds to classify 3220 Industry Sector 
documents and write the results to disk. In comparison, 
the smallest vocabulary takes 208 seconds—a difference of 
0.002 seconds per document on average. 
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due to the significantly reduced branch-out factor in 
this smaller hierarchy. Unlike the Industry Sector hi- 
erarchy, in which the mean number of siblings is six, 
here the mean number of siblings is three. Thus each 
child has fewer siblings and less data from which to 
"borrow strength." 

The second expected result, exhibited in Figure 3, is 
that shrinkage provides more improvement when the 
amount of training data is small, and that shrinkage 
reduces variance in the classifications; (notice larger 
error bars on the 'flat classification' curve). If each 
class had an infinite amount of training data, accurate 
parameter estimates could be obtained for each class 
independently; however, when training data is sparse, 
estimates are improved by using shrinkage to smooth 
a class's parameters with its ancestors. 

The two findings that (1) shrinkage allows the use of 
helpful large vocabulary sizes, and (2) shrinkage im- 
proves performance more when training data is sparse, 
are both confirmed by our experiments with the Ya- 
hoo data set. Figure 4 shows classification accuracy 
on the Science hierarchy as a function of vocabulary 
size, again, with no partial credit for near misses. Flat 
naive Bayes reaches its highest accuracy of 36.4% at 
a relatively small vocabulary size of 1449. Hierarchi- 
cal classification always performs better than flat, but 
attains its best accuracy of 39.5% at a larger vocab- 
ulary size of 13311. The improvement in accuracy is 
not as dramatic here as with the Industry Sector data 
set, perhaps because the Yahoo set is more noisy (be- 
ing gathered automatically rather than by hand, and 
containing many documents that are simply timeout 
messages or pointers to moved pages), and because 
Yahoo has many classes with overlapping or closely 
neighboring definitions.3 However, it is interesting to 
note that among those classes with small quantities of 
training data, shrinkage improves performance more 
strongly. Among those 151 classes with 50 documents 
or less, shrinkage improves accuracy by 8%, from 29% 
to 37%. Among those 50 classes containing more than 
100 documents, shrinkage does not improve accuracy, 
both obtaining about 45%. 

This result indicates that shrinkage would be all the 
more important if we attempted to classify documents 
into Yahoo's deepest leaf categories instead of into the 
somewhat coalesced and pruned version that is used 

3Using more complex Bayesian classifiers that capture 
more dependancies than naive Bayes may help this last 
problem. The larger number of paramters in these models 
will make training data even more sparse, and this suggests 
that the use of shrinkage would be all the more important. 
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Figure 4: Classification accuracy on the Yahoo Science data 
set with varying vocabulary sizes. Tiny vertical bars at 
each data point indicate standard error. The large number 
of classes and noisy data make this task difficult. 

here and is defined at the beginning of this section. 
However, this would result in thousands of classes— 
quite a computational burden. Next we describe how 
the hierarchy itself can be used to ease this burden. 

Pruning the tree for increased computational 
efficiency 

In addition to improving accuracy, the class hierarchy 
can also be leveraged to improve computational effi- 
ciency. The classifier can avoid calculating P(cj|dj) 
for a majority of the classes (leaves of the tree) by 
pruning the tree dynamically during the classification 
of each document. Like the Pachinko Machine [Koller 
& Sahami 1997] we can classify the document at in- 
ternal nodes of the tree, and choose only to calculate 
probabilities for classes underneath the branches se- 
lected by these higher-level, coarse-grained classifiers. 
Note, however, that when we do this, each "pruning 
classification" at the interior of the tree is an opportu- 
nity for error, and the deeper the hierarchy the more 
the opportunities for error will compound. 

As expected, our experimental results show that per- 
forming this pruning does indeed reduce classification 
accuracy. However, one may be willing to accept this 
reduction in exchange for the exponential reduction in 
the amount of computation necessary for classification. 
On the Industry Sector data set, averaged over ten runs, 
pruning that removes from consideration all but a sin- 
gle branch at each interior node reaches 70.0% accu- 
racy, more than 5% points lower than without pruning. 
However, unlike the Pachinko Machine, our paradigm 
allows for the comparison of classification scores from 
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leaves that do not share the same parent. Thus we 
can also prune less aggressively. Pruning that keeps 
two branches attains 74.3%. And pruning to three 
branches achieves 75.2%. This last result is only half a 
percent less than the 75.8% obtained by the full evalu- 
ation of the tree without pruning. The same approach 
could also be used for Yahoo. 

5    Related Work 

Shrinkage estimation is now considered standard 
methodology in Statistics. It is used routinely in a vast 
array of problems and its theoretical properties have 
been studied from both the Bayesian and frequentist 
points of view. A good discussion with ample refer- 
ences and examples is contained in [Carlin & Louis 
1996]. Although MacKay and Peto [1994] do not use 
the term "shrinkage" in their paper, they apply this 
Bayesian style of shrinkage in their hierarchical Dirich- 
let model for n-grams. 

Shrinkage in the cross-validation style was first used 
to derive a language model in [Jelinek & Mercer 1980], 
where it is known as deleted interpolation. Interpola- 
tion of language models along the path of a tree is de- 
scribed in [Bahl et al. 1989]. More recently, Seymore 
and Rosenfeld [1997] classified a speech recognizer's 
output into multiple topics, then used an automati- 
cally derived "topic tree" to interpolate the models 
associated with appropriate nodes up that tree. 

A variety of work in the Information Retrieval and 
Machine Learning communities has demonstrated the 
success of statistical approaches for learning to classify 
text documents. Naive Bayes has been used for text 
classification, and due to its probabilistic foundations, 
been applied in several extensions [Lewis & Ringuette 
1994; Joachims 1997; Nigam et al. 1998]. 

An earlier approach to hierarchical document classi- 
fication, the Pachinko Machine, has been proposed 
by Koller and Sahami [1997]. Their method differs 
significantly from shrinkage. The Pachinko Machine 
classifies documents at internal nodes of the tree, and 
greedily selects sub-branches until it reaches a leaf. 
Since classification errors at internal nodes compound, 
the accuracy at all the internal nodes must be very 
high in order for overall accuracy to be higher than 
a flat classifier (especially for deeper hierarchies). We 
experimented with schemes that allow a lower node 
to "reject" a document and send it back up the tree 
for re-classification, but did not find these to work 
well. Koller and Sahami present results with small 
vocabularies (less than 100 words);  however, other 

results in the literature indicate that large vocabu- 
lary sizes often have higher accuracy [Joachims 1997; 
Nigam et al. 1998]. A possible explanation for the 
discrepancy is that Koller and Sahami use a multi- 
variate Bernoulli model while we use a multinomial 
model [Sahami, Personal Communication]. In our ex- 
periments we have found multinomials to outperform 
Bernoullis [McCallum & Nigam 1998]. Our use of 
shrinkage has allowed us to more robustly keep large 
vocabulary sizes, which we believe are necessary for 
classifying large data sets with large numbers of di- 
verse classes. 

Another learning method that uses EM to set mixture 
weights among ancestors in a hierarchy is Adaptive 
Mixtures of Probabilistic Transducers [Singer 1997]. 
Each node in a hierarchy that represents a history- 
window is linearly mixed with its parent, which in 
turn, is mixed with its parent. The model is applied 
with success to noun phrase recognition. 

Hofmann and Puzicha's [1998] Hierarchical Asymet- 
ric Clustering Model (HACM) performs unsupervised 
clustering with a mixture model in which EM is also 
used to set weights among the ancestors in a hierarchy. 

6    Conclusions 

This paper has examined the use of class hierarchies for 
improving text classification. As the amount of on-line 
text increases and the number of topic categories into 
which it is organized grows, hierarchies are becoming 
an increasingly prevalent way to make a collection of 
categories manageable. Thus, the need for good text 
classification algorithms that take advantage of these 
hierarchies becomes more important. 

In this paper we demonstrate that shrinkage with a 
class hierarchy improves parameter estimation, and 
can reduce text classification error by up to 29%. Be- 
cause shrinkage helps especially when there is sparse 
training data, shrinkage should be all the more benefi- 
cial as we scale up to larger, higher-resolution, deeper 
hierarchies with more classes that require larger vo- 
cabularies. 

We also show that a class hierarchy can be used to 
exponentially reduce the amount of computation re- 
quired to classify documents, and that we can do so 
without sacrificing significant classification accuracy. 

In future work, we will investigate the use of shrinkage 
to learn more complex Bayesian models with less re- 
strictive assumptions than naive Bayes. The improve- 
ments due to shrinkage should be increasingly strong 
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as we move to models that have more parameters, and 
thus sparser training data. We will also explore alter- 
native methods of shrinkage, including the Bayesian 
methods in the style of James and Stein. We plan to 
work with a related approach that uses EM to clus- 
ter the data in a parent, and then allows the child to 
mix with the different clusters independently. In other 
ongoing work we are studying the advantages of using 
EM not only to set the mixture weights, but also re- 
distribute individual words of training data among the 
nodes on the path from the leaf to the root. 

Lastly, we plan to explore ways to learn the class 
hierarchy—investigating methods that specifically aim 
to increase classification accuracy. In early experi- 
ments, it appears that when the learner is not explic- 
itly given a hierarchy, then even using the "trivial" 
hierarchy (each class being a leaf off the root) does 
better than the flat classifier, though not as well as 
when we are given a "non-trivial" hierarchy. Further- 
more, using a "bad" or scrambled hierarchy also does 
better than the flat classifier—the mixture weights are 
set by EM to mimic the trivial hierarchy. 
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Abstract 

Research emanating from Artificial Intelli- 
gence has throughout its history contributed 
to techniques and ideas in Software Engineer- 
ing. We describe in this paper a case study 
showing the use of theory revision to the re- 
finement of a formally specified requirements 
model. In a previous project we were con- 
tracted to create a precise model of the com- 
plex criteria governing the separation of air- 
craft profiles in Atlantic Airspace. During 
that work it became clear that the (auto- 
mated) validation of the model was of the ut- 
most importance, and in our current project 
we have used machine learning tools to pro- 
vide extra support in bug identification, bug 
removal and maintenance of such a require- 
ments model. In this paper we give an 
overview of the domain, identify a relevant 
learning bias which makes search for revi- 
sions tractable, and describe a systematic ap- 
proach for the application of theory revision 
to such a model. We illustrate the approach 
with results of experiments where theory re- 
vision techniques have identified and removed 
errors, and induced a new part of the model. 

Keywords Theory Revision, Machine Learning and 
Software Engineering, Requirements Model, Auto- 
mated Validation. 

1    INTRODUCTION 

Promoting and maintaining the quality of require- 
ments specifications has a vital role in the engineer- 
ing of software. Some software projects, such as those 

involving safety-critical elements, necessitate that pre- 
cise, mathematical specifications of their requirements 
domains be constructed. Such 'requirements models' 
must be validated to satisfy certain major quality ob- 
jectives such as accuracy, completeness, usability, and 
understandability, and during the model's lifetime it 
is likely to be incrementally updated, and will require 
re-validation. Validation and maintenance of realistic 
domain models is a very time consuming, expensive 
process where the role of support tools in vital. The 
process is best carried out using diverse techniques, 
and one of the most useful techniques is to test an an- 
imated form of the model. Even when an animated 
version is available, however, it is not easy to pinpoint 
the causes of bugs and subsequently provide the cor- 
rect revision that eliminates them. 

In this work we view a precise requirements model 
as an imperfect theory of the requirements domain 
that needs to undergo refinement to remove bugs or 
to reflect changes in the domain, and we formulate 
the problem as one of theory revision. The case study 
uses an air traffic control requirements model devel- 
oped in a previous project called FAROAS (McCluskey 
et al. 1995). The model represents aircraft sepa- 
ration criteria and conflict prediction procedures re- 
lating to airspace over the North East Atlantic, and 
is recorded in the 'Formal Methods Europe Applica- 
tions Database'1. The model's 'conventional' support 
environment had been used for verification and vali- 
dation of models written as a set of axioms in many 
sorted first order logic. (Meinke and Tucker 1993) - 
here abbreviated to msl. During the current IMPRESS 
project we extended the environment to include ma- 
chine learning tools which perform blame assignment, 
explanation-based generalisation and theory revision 
(TR). We show in this paper how we overcame the in- 

'web site http://www.cs.tcd.ie/FME 
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tractability problems in fielding TR by firstly focusing 
on likely faulty axioms sets using a blame assignment 
algorithm, then targeting for revision the ordering re- 
lations between values of ordinal sorts. We describe a 
method and a class of revision operator that has been 
successfully used to (a) find and remove bugs from the 
requirements model, and (b) to construct a new part of 
the model to cope with the changing of criteria for ver- 
tical separation between subsonic aircraft. Thus TR 
can be seen as a useful embedded component within a 
requirements validation regime for high integrity sys- 
tems. 

2    THE ATC DOMAIN 

2.1    DOMAIN DESCRIPTION AND 
ACQUISITION 

'Shanwick' is a large area of airspace in the eastern 
half of the North Atlantic, managed by air traffic con- 
trol centres in Shannon, Ireland and Prestwick, Scot- 
land. Controllers must organise this airspace daily, 
taking into account such factors as weather and the de- 
sired flight paths of aircraft companies. They plan the 
four dimensional flight profiles of aircraft crossing this 
airspace in good time before the aircraft reaches the 
boundary, and for this task require a precise definition 
of aircraft separation criteria, and an algorithm for 
predicting conflicts. The controllers are supported in 
their safety-critical work by a computer system which 
performs predication and resolution of conflicts be- 
tween pairs of flight profiles, and our involvement came 
about as part of the research and development con- 
cerning the requirements specification of a replacement 
for their current flight data processing system. 

In the FARO AS project, we created a precise require- 
ments model (called the GPS) of the conflict predic- 
tion of aircraft flight profiles through the Shanwick 
airspace, together with a software support environ- 
ment. Knowledge sources used were manuals of air 
traffic control, existing computer systems documenta- 
tion, and air traffic control officers themselves. The 
current CPS contains a kernel of 300 - 400 axioms 
in msl representing aircraft profile separation criteria 
and a conflict prediction method; the total number of 
axioms in an instance of the model, which includes 
airspace and short term flight information for a day's 
set of profiles, exceeds two thousand. The model is 
structured into 23 sorts, and is enriched with real and 
natural numbers. An example of an axiom in the CPS 
is provided in Figure 1. This represents the condition 
for a vertical separation of 2,000 feet, where segments 

(Segment1 and Segment2 
are_subject_to_oceanic_cpr) => 
[(the_min_vertical_sep_Val_in_feet_required_for 
Flight.levell of Segmentl 
and Flight_level2 of Segments) =    2000 <=> 
[[(both Segmentl and Segment2 
are_flown_at_subsonic_speed) 
&  (one_or_both_of    Flight_levell and 

Flight_level2 are.above    FL 290)  ]   or 
[(one_or_both_of Segmentl and Segment2 

are_flown_at_supersonic_speed) ft 
(one_or_both_of Flight.levell and 

Flight_level2 are_at_or_below   FL 430) ]  ]  ] 

Figure 1: Condition for a Minimum Vertical Separa- 
tion of 2000 feet 

are roughly 'straight' components of an aircrafts pro- 
file. Either the two aircraft are both subsonic and are 
flying above FL 290 (29,000 feet) or one or both are 
supersonic and are flying at or below FL 430. 

2.2    A CONVENTIONAL SUPPORT 
ENVIRONMENT 

The CPS is highly structured, with axioms containing 
very complex conditions, but the support of an in- 
tegrated tools environment alleviates its analysis and 
manipulation. In the FAROAS project diverse valida- 
tion was carried out using tight syntactic checking, se- 
mantic internal consistency checks, expert inspection, 
simulation and batch testing. The most complex tool 
in the environment is a translator program which in- 
puts the CPS (or more generally a set of wffs in msl), 
together with a syntactic definition of the tailored msl 
language expressed in grammar rules. It parses the 
wffs and outputs an animation of them by translating 
them into what we call 'EF' (execution form). This 
is similar to general clausal form, except clauses may 
contain nested negation and disjunction in their bod- 
ies. EF obeys the syntax rules of Prolog and is ex- 
ecutable by a Prolog interpreter. This parsing and 
translation process takes less than 5 minutes for all of 
the CPS, and its translated form we term CPSEF 

2- 

Flight profiles are input to the software environment 
as msl axioms and are translated into EF. Although 
in theory any part of the CPS can be tested, virtually 
all of the instances we obtained were for the 'top level' 

2all software tools reported in this paper are imple- 
mented in Sicstus Prolog and were tested using a SUN 
SPARC station 4 processor with 32MB memory 
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conflict axiom defining the mixfix conflict predicate: 

SegmentX of Profilel and SegmentY of Profile2 
areJn_oceanic_conflict 

A day's worth (500 - 800) of cleared aircraft profiles, 
where each profile is cleared with (say) the last 20 
cleared aircraft in chronological order, results in ap- 
proximately 10,000 instances classified as false for the 
conflict axiom, where the SegmentX and SegmentY 
are existentially quantified variables representing seg- 
ments of an aircrafts profile. 

In the rest of this paper we use the following nota- 
tion: a classified instance that is labelled true and 
which CPSEF classifies as true is called truly positive 
('TP'), and denoted eTP, whereas one that executes 
to false is called falsely negative('FN') and denoted 
eFN. A classified instance labelled false which executes 
to false using CPSEF is called truly negative ('TN'), 
whereas one that executes to true is called falsely pos- 
itive ('FP'); these are denoted eTN and eFP respec- 
tively. Early phases of validation during the FARO AS 
project involving syntax checking and painstaking ex- 
pert inspection increased the accuracy and complete- 
ness of the CPS so that dynamic testing of the con- 
flict axiom resulted in a large number of TN, with a 
smaller (about 5 per cent) but significant number of 
FP. Although investigation of the set FP helped to find 
bugs, it became clear that more powerful tools for bug 
identification and removal were needed when building 
up and maintaining such a complex, precise domain 
model. 

3    APPLICATION OF THEORY 
REVISION 

3.1    RATIONALE 

The principle objectives of the current project, IM- 
PRESS, were to test the use of ML to help improve 
the quality (in terms of accuracy and completeness) of 
a formalised requirement specification written in msl 
and to increase the quality of the CPS itself. The focus 
was not only on bug removal but also on maintenance, 
to support the inevitable changes in the requirements 
model. Since we started with an existing symbolic do- 
main model, the principle ML paradigm we decided 
to use was theory revision (Wrobel 1996). Our initial 
formulation was as follows: 

Revisable theory: a subset of CPSEF clauses. 
We can keep some parts of the CPSEF immune or 
'shielded' from the revision process, as they were ad- 

equately validated using other processes. For exam- 
ple, it may be assumed that the 'top level' axioms, 
i.e. those defining the basics of separation in terms of 
vertical and horizontal dimensions, are correct. The 
target concept is the conflict predicate shown above. 

Training Instances: The main source is a day's 
worth of cleared flight profiles supplied directly by the 
UK National Air Traffic Services. The conflict predi- 
cate can be executed, and when instantiated with pairs 
of cleared flight profiles should return false. The na- 
ture of the application skews the training somewhat as 
it is driven by FPs only. However, experiments have 
also been conducted with other, lower-level predicates 
as target concepts, such as those involved in vertical 
conflict. Instances associated with these conflicts are 
classified into FNs and TPs as well as TNs and FPs. 

Learning Biases: the language used for the CPSEF 

is strongly typed, which provides a useful constraint in 
the generalising or specialising of predicates. Also we 
assume a minimal revision bias: we know from other 
forms of validation that its structure mirrors the re- 
quirements domain, and so we assume only minimal 
revisions are necessary. 

Given the general problem outlined above, we imple- 
mented a standard, simple TR algorithm with opera- 
tors such as 'add antecedent' and 'delete clause'. How- 
ever we only confirmed that a 'mainstream' approach 
to TR would be impracticable. Even given the biases, 
the potential space of revisions is enormous, and 'hill- 
climbing' with traditional TR operators appears out 
of the question. The CPSEF executes the conflict ax- 
iom at an average rate of about one test per minute 
and results in a batch of tests taking perhaps days to 
execute! 

We also investigated using TR tools, available via ftp, 
but came to the conclusion that we would need to build 
our own environment (West et al. 1996). This was 
based on the need for a flexible tool base given we 
were embarking on a research project, and the need 
for tool integration, particularly with our existing val- 
idation tools from the earlier FARO AS project. More- 
over, the existing tools we examined were not powerful 
enough for our use. For example, FORTE (Richards 
and Mooney 1995), though well tested, could not cope 
with negation or functors. Both the latter arc impor- 
tant features of the CPS. Also, while tools presented in 
the literature had been tested on theories of the order 
of 10's of predicates calls within a similar number of 
non-atomic clauses, the CPSEF contains c.2,000 pred- 
icate calls within more than 300 non-atomic clauses. 
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3.2    ORDINAL SORTS 

The key to our approach lay in the introduction of a 
further bias. Although the sorts comprising universes 
of objects are distinct, each sort can be characterised 
as either ordered or not (Birkhoff 1967). The sorts 
which are ordered are termed ordinal in this paper, 
and those which are not are termed nominal. Associ- 
ated with each ordinal sort X is an arbitrary binary, 
transitive, ordering relationship we call '>;'. Exam- 
ples of ordinal sorts are Flight Level, Time and Lati- 
tude, where primitive order relations are for example 
'is above', 'is later than', 'is west of. Examples of 
nominal sorts are Aircraft, Airspace, Segment, Profile. 
Technical specifications such as the CPS include many 
references to ordinal sorts, and our experience in the 
validation phase had shown that very often clauses in- 
volving comparisons and limits were to blame. For 
example, of the 17 primitive order relations defined in 
the CPS's grammar, there are 204 occurrences of them 
within the current version of the CPS. 

Each axiom in the CPS has as its variable domain: 

I1x...xI„xDiX...x Dm, n,m>0. 

where each Xi is an ordinal sort and each Dj is a 
nominal sort. We will focus on axioms containing 
'y': examples are x y a,xx y x2, where x,xi,X2 are 
ordinal variables and a a constant, limiting value of 
some appropriate sort. The axiom involving ordering 
might be an equation defining a function, T which 
returns different values for different subsets of its do- 
main Xi x ... x Xn x Di x ... x Dm, or a predicate, 
V. The statements involved in the definition of V re- 
turn 'true' or 'false' for different subsets of its domain 
I1x...xl„xflix...x Dm- If we factor out the Xi 
from the Dj components, for each main predicate and 
function, for each tuple (d±,...,dm) oi values, there is 
defined an n dimensional region %(di,..., dm) - the 
domain of applicability of the predicate or function. 
For the remainder of the paper, we shall shorten this 
toll. 

When the CPS is translated to executable form, each 
axiom becomes a Prolog clause. The regions described 
above, for the main axioms, now become regions for 
Prolog clauses, where tuples of variables now become 
tuples of Prolog variables. In the case where a wff is 
an equation, its domain is extended by the returned 
term. 

3.3    SIMPLE REVISIONS 

Given a concept (for example the conflict predicate) 
and a set of positive instances of the concept, trans- 
lated to EF, then the set of proof trees of the in- 
stances involve a set of clauses. Consider a clause C 
from this set, where its (Prolog) variables are the tu- 
pleXl, ... ,Xn, Dl, ... ,Dn, where the X's and D's 
are ordinal and nominal respectively (where n > 0). 
Each instance of C is associated with an n-tuple of 
ordinal variables (xi,...,xn) = x. We should expect 
positive instances to have x£Ä. The region K is 
defined by logical expressions £(x) involving ordinal 
variables x and is not necessarily connected. In a sim- 
ilar manner a clause C which does not succeed and 
which is involved in a failed proof tree (or trace) of 
a negative instance will have x $ 11. In order for in- 
stances to fail where they previously succeeded, and 
vice-versa, then region It is revised to become region 
VJ, for clause C. We classify revision operators that 
may change a clause containing an ordinal literal into 
two: simple and composite. Simple operators involve 
deletion and addition of antecedents from a clause, as 
in conventional TR, although the antecedents are re- 
stricted to occurrences of order relations This kind of 
operator is mainly for finding and possibly correcting 
bugs in the model. For example, the condition x y y 
may be either removed or replaced by y y x. This 
latter is akin (in 2-D geometrical terms) to examining 
reflections of the region about a straight line. 

3.4    COMPOSITE REVISIONS 

The second kind of revision is designed to clarify 
requirements involving complex conditions involving 
limiting values, which might not have been captured 
initially from the expert sources, and also to cope with 
changing requirements. We first deal with specialisa- 
tion. Suppose C to be a candidate for revision, or 
revision point, where C contains antecedents of the 
form x y a, a a constant. Further, suppose C suc- 
ceeds with instances 0jC in proofs of some training 
instances eFP e FP, with tuple xs the ordinal vari- 
ables of 6,C. Suppose also that C is successful with 
instances faC in proof tree of training instances ejp\ 
the tuples yj are the ordinal variables of <j>jC Failure 
of C would ensure the removal of some instances efp 

and in order that C should fail, we need to revise 11 
to TV. 

Vxi : Xi i TV. 

However, in order that C should safely succeed for 
correctly classified instances, then tuples x associated 
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with eTP should not be removed from H. Thus 

Vyj: yj € TV. 

We calculate the two sets of tuples: 

gFP _ ^x. | Xj ordinal variables of öjC}, 

STP — {yj | yj ordinal variables of <£jC}.    (1) 

This allows for the fact that the mis-classification of 
some/all of the instances eFP may have arisen from 
another clause. Recalling that the variables of C are 
x = xi... xn, we denote the minimum and maximum 
values of variable component Xi of the SFP variables 
by minFP, maxFP respectively. In a similar manner 
the minimum and maximum values of components of 
the STP variables are respectively min?p ,max?p. 

We induce the following, that for instances 6{ C to fail, 
the new specialised region is V, less an n dimensional 
interval TZFP bounded by minFP, maxFP. We have 

T^FP = {(a?i... a;n) | minFP y x\ y maxFP A 

... A minFP y x„ y maxFP}   (2) 

However for instances </>jC to succeed, TV must in- 
clude an n dimensional interval TZTP bounded by 

•    TP TP mmf r, max-1 r: 

TZTP = {(xi... xn) | minyP y X\ y maxjrp A 

A min^p y xn y max^p)   (3) 

We have 

TZ' = (TZ\ TZFP) UTLTP (4) 

(TZTP = TZFP is the limiting case, where all of the mis- 
classified instances have arisen from another clause.) 
In order to accomplish the revision, we specialise the 
clause C as follows: every occurrence in the unrevised 
body of C of the logical expression E(x\ ...xn), should 
be replaced in the revised body of C by £'(xi... xn), 
which is defined: 

(£(x\... Xn) A -i (minFP y xi y max[p A 

... A minFP y xn y maxFP)) 

V (min^p y xi y max^p 

... A min^p y xn y max^p)     (5) 

Generalisation can be explained in a similar manner: 
in order for instances eFN to succeed, their x compo- 
nents are added to the region. However instances eTN 

must still fail. We calculate sets SFN, STN and re- 
gions TIFN,T^TN in an analogous manner to SFP, STP 

in (1) and TZFP,TITP in (2). 

We induce the following, that for some FN instances 
to succeed and all the TN instances to fail, then the 
new generalised region is 

TI' = (TIUTIFN)\TITN    (6) 

In order to accomplish this, we generalise the clause 
C, so that every occurrence in the unrevised body of 
C of the logical expression £(x\... xn), should be re- 
placed by £'(xi... xn), in an analogous manner to (5). 
In the next section we explain how these simple and 
composite revisions were applied to CPSEF ■ 

4    EXPERIMENTS WITH TR 
TOOLS 

We report experiments involving two kinds of data set: 

1. The first data-set consists of training instances 
from a day's cleared flight profiles recorded in 
January 1995. This data was used with the ob- 
ject of testing our current techniques using 'sim- 
ple' ordinal operators. When tested, the errors in 
the CPS as measured by this training set were 33 
in 5070, having been previously reduced by other 
techniques. Use of TR with simple operators fur- 
ther reduced the errors to 1 in 5070. 

2. 'Reduced separation for vertical minima' (RVSM) 
criteria have recently been introduced for certain 
types of aircraft in North Atlantic airspace. A 
days cleared flight profiles were provided (from 
April 1997), where clearance is subject to the new 
revised criteria (of flight levels) for vertical sepa- 
rations for pairs of aircraft.The new criteria in- 
volved flight level intervals for both aircraft and 
was not captured by our current theory. 'Simple' 
ordinal operators were not suitable for revisions 
of the type investigated, so this data-set was used 
for independently testing 'composite' ordinal op- 
erators. After the CPS was revised using simple 
operators, it was then re-revised using training in- 
stances from post-RVSM data and composite op- 
erators. All 121 errors resulting from the data 
cleared by the changed separation standard were 
eliminated by the method. 

4.1    THE METHOD AND RESULTS 

The method shown here is a general one for revision 
of a theory, T, containing significant ordinal variables, 
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although it is based on experiments with the CPS. We 
have implemented TR in a manner based on the 'geo- 
metrical' discussion above, and integrated it into our 
legacy software environment (McCluskey et al. 1995). 
This architecture has had to be both flexible and ex- 
perimental in response to the inherent complexity of 
formal specifications of the size and expressiveness of 
the CPS. For example, we have had to develop a form 
of blame assignment that can cope with proof trees 
from general clausal form logic programmes. This in- 
volves first unfolding and then transforming negative 
literals using De Morgan's laws and is detailed in (West 
et al. 1997). 

4.1.1    An Error Removal Experiment 

The algorithm for simple ordinal revisions is based on 
conventional theory revision techniques and used hill- 
climbing based on the accuracy of the theory T. It is 
shown in Figure 2. The potential of a clause C is the 
number of instances in which it succeeds in a proof 
tree, and the negative potential is the number of in- 
stances in which it fails in a proof trace; this notion was 
used in the description of the FORTE tool (Richards 
and Mooney 1995). 

1. Collect training set of instances of a concept, L, 
known to contain misclassified instances. 

2. Classify training instances into TNs, FPs, FN's, 
TPs and calculate accuracy. 

3. Run blame assignment on instances in FN giving 
set of potential-pairs, PI. 
PI = {(C,N) | C revisable clause in T and 
TV is the potential of C } 
Find subset OP1 of PI: 
OP1 = {(C,N) | (C,N) S PI A C contains an 
ordinal relation }. 

4. Repeat step 3 for instances in FP giving set of 
potential-pairs, P2, and subset OP2. 
Let OP = OP1 U OP2. 

5. Revision points = {C \ (C,N) e} OP. 
Apply each simple TR operator to each revision 
point, in order of C with largest potential. Im- 
plement the best revision. 

6. Repeat from step 2, unless a maximum accuracy 
has been reached. 

Using a day's worth of training instances (cleared flight 
profiles) we obtained 33 FPs and 5037 TNs out of 5070 
runs of the conflict axiom. Because of the complex- 
ity of the criteria the revision was accomplished by 
focusing the revision space to the longitudinal separa- 
tion criteria (i.e. concept L in Figure 2) rather than 
from the initial training instances. L was selected by 
studying the output of blame assignment for all the 
FPs, and the generalised explanation output for indi- 
vidual FPs. Longitudinal separation values in minutes 
can be 5,6,7,8,9,10,15,20 or 30, and the CPS contains 
formalised criteria for all of these. 75 new training 
instances were generated from proof trees and proof 
traces in which a longitudinal separation value of 10 
minutes was assigned to two aircraft at least one of 
which is flying at subsonic speed. The training in- 
stances included 25 FN and 50 TP, the concept being: 

the_basic_mm_longitudinal_sep_Val_in_mins_ 
required_for(Segmentl,Segment2) = 10. 

The TP's were generated by re-running the day's 
worth of instances, and identifying those in vertical 
conflict that gave a longitudinal separation of 10 min- 
utes, but were not in overall conflict according to both 
air traffic control officers and the CPSEF (thus lower- 
ing the possibility of noisy data). The FN's of con- 
cept L are derived directly from the 33 false positives 
from the conflict predicate. The algorithm using sim- 
ple reverse and dropping conditions operators returned 
a new theory with two clauses altered by both the op- 
erators; after revision, 74 of the training instances were 
covered, and only 1 (FN) uncovered. Significantly, one 
of the clauses that was revised, defining the predicate: 

are-after _a_common_pt_from_which_profile_tracks 
_are_same_or_diverging_thereafter_and_at_which 
_both_aircraft-have-already _reported_by 

has been subsequently identified as an incorrect read- 
ing of an ATC Manual. 

4.1.2    A Requirements Change Experiment 

The method for implementing composite ordinal oper- 
ators is shown in Figure 3. Steps 1 and 2 are similar 
to those of the simple operator. If after step 2, FN 
is larger than FP, then generalisation of a clause C 
occurs in steps 4b .. 8b in a similar manner. Note 
that the driver for the algorithm is the stability of the 
clauses in OP, rather than the increase in accuracy of 
r. 

Figure 2: Algorithm for Simple Ordinal Operators 
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1. Collect training set of instances of a concept, known 
to contain misclassified instances. Initialise: D = 
Deleted clauses = { } , A — added clauses = { }■ 

2. Classify training instances into TNs, FPs, FN's, 
TPs and calculate accuracy. 

3a. Specialise T in a manner indicated by steps 3a .. 
8a.   Run blame assignment on instances in FP 
giving set of potential-pairs, P. 
P = {(C,N) \ C revisable clause in T and 
JV is the potential of C }. 
Find subset OP of P: 
OP = {(C,N) | (C,N) e P A C contains an 
ordinal relation }. 

4a. Select pair {C,N) where N is maximum of 
{N\{C,N)£} OP. 

5a. Calculate the n dimensional regions TZFN,T^TN 

defined by (1), (2) and (3). 

6a. If 11 FNJTITN are not equal 
set head of C" := head of C; 
set body of C" := body of C with £ replaced by 
£' from (5) 
else 
delete C from OP and repeat from step 4a. 

7a. Replace C with C" and calculate accuracy. 

8a. D' = DöC;A' = AuC. 

9. Repeat from step 1 until OP is stable or accuracy 
is 100 %. 

Figure 3: Algorithm for Composite Ordinal Operators. 

Because of the safety-critical nature of the application, 
and the fact that some data values may occur only 
rarely, it is necessary to check that a clause C € A orig- 
inally arising from a function, remains defined over its 
intended domain. If this is the case, a post-processing 
phase is necessary. 

204 training instances (classified according to post- 
RVSM criteria) of the conflict axiom were used to re- 
vise the CPS using the algorithm in Figure 3. How- 
ever, revisions were confined to ordinals of the form 
'is_above'. When tested, there were found to be 121 
FP instances, and 83 FN instances. The 'blame as- 
signment pinpointed the clause 
'the_min_vertical_sep_Val_in_feet_required_for( 
A,  B,  C,  D,   2000)' 

as a revision point and the results are shown below. 
(The 'limitvar' predicate is a device for marking vari- 
able occurrences.) As can be seen, for supersonic air- 
craft, the criteria is unaltered. The criteria for a verti- 
cal separation of 2000 feet are specialised; they exclude 
the region where both flight levels are between FL 330 
and FL 370 as shown in the following result: 

lengths of FN,  FP,  TN,  TP 

0  121 83 0 

*/.'/. set P. 
[potential(l,121),potential(2,121),   .., 
potential(23,l),potential(26,121),   ..] 

'/,'/, list of revision points 

[26] 

New_accuracy = 100.0, 01d_accuracy = 40.686 

'/.'/.revised code for 2000 
the_min_vertical_sep_Val_in_feet_required_for( 

A, B, C, D, 2000) :- 
(both_are_flown_at_subsonic_speed(B, D), 

(A is.above fl(290), limitvar(l), 

(( not__(A is_at_or_above f1(330)) 
not__(A is_at_or_below fl(370))) 

not__(C is_at_or_above f1(330)) 

not__(C is_at_or.below fl(370))) 

; C is_above f1(290), limitvar(2), 

(( not (A is_at_or_above f1(330)) 

; not__(A is_at_or„below f1(370)) 

) 
; not (C is_at_or_above fl(330)) 

; not__(C is_at_or_below fl(370)))) 

one_or_both_of_are_flown_at_supersonic_speed( 
B,  D), 

(A is_at_or_below f1(430),  limitvar(3), 
;  C is_at_or_below f1(430),  limitvar(4))),!. 

5    RELATED WORK 

Some recent work has pointed to the similarities 
between the validation of requirements models and 
knowledge based systems development (McCluskey 
et al. 1996; Shaw and Gaines 1996), and hence the area 
of Knowledge Base Refinement (KBR) is related to 
our work. A detailed comparison of validation in soft- 
ware engineering and KBS is given in reference (Ver- 
mesan and Bench-Capon 1995), and the state of the 
art in automated KBS validation is surveyed in refer- 
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ence (Zlatareva and Preece 1994). 

As far as we are aware our work is the first to apply ma- 
chine learning techniques to formal specifications of re- 
quirements, although, as mentioned above, work most 
related to our own occurs in the field of KBR. Both 
areas have to adopt strategies to overcome the com- 
plexity pitfalls surrounding the use of TR (where the- 
oretical results suggest that no polynomial algorithm 
exists to perform global optimisation in hill climbing 
algorithms (Greiner 1995)). In KRUST (Palmer and 
Craw 1996), for example, test cases are used one at 
a time to refine the KBS, in contrast to our focusing 
procedure, which uses multiple examples and a form 
of statistical blame assignment. In MOBAL, an envi- 
ronment for knowledge acquisition that has been used 
with a large security rule base, TR is also used but in 
restrained fashion and with limited success (see (Som- 
mer et al. 1994) page 453). Experience with MOBAL 
is consistent with our experience that ML tools work 
well in the context of a diverse tools environment. 

Imperfect theory refinement techniques have been well 
researched in the machine learning literature, includ- 
ing reviews (Wrobel 1996), and a text relating ML to 
Software Engineering (Bergadano and Gunetti 1996). 
The case where theories represent planning domains is 
described in reference (Tae and Cook 1996) and the 
case where theories are posed as Horn Clause mod- 
els is described in reference (Richards and Mooney 
1995). Machine learning in domains containing sig- 
nificant numerical components has previously been ac- 
complished by using neural networks (Opitz and Shav- 
lik 1997). Constraint Inductive Logic Programming 
(Anthony and Frisch 1997; Sebag and Rouveirol 1996) 
has been utilised for generalisation and specialisation 
of numerical predicates. Theory Patching (Argamon- 
Engelson and Koppel 1998) is described as a type of 
TR in which revisions are made to individual compo- 
nents of the theory. (The concern of the latter paper 
is to determine which classes of logical domain theo- 
ries the theory patching problem is tractable.) Theory 
patching compares with our work on focusing on ordi- 
nal revisions and on shielding clauses which are not to 
be revised. 

6    CONCLUSIONS AND FURTHER 
WORK 

In this paper we have reported the application of the- 
ory revision techniques to the validation and main- 
tenance of a substantial 'theory', the formal require- 
ments model of an air traffic control application. The 

model is encoded in msl, is customised by a genera- 
tive grammar, animated by a Prolog generator, and 
can be analysed using an integrated environment sup- 
porting a diverse range of validation techniques (Mc- 
Cluskey 1997). After overcoming problems to do with 
blame assignment in general clause form programs 
(West et al. 1997), we developed the method whereby 
batches of tests were used by blame assignment, and 
single tests were used by explanation-based tools, to 
identify axioms sets in which bugs were likely to reside. 
After acquiring classified instances for these faulty 
components, we used theory revision operators, tar- 
geting comparison operators acting on ordinal sorts, 
to identify and remove the bugs. Here we have shown 
two different experiments where bugs were identified 
and removed, and a new part of the model was in- 
duced. The project started with an error rate for the 
conflict predicate of several hundred errors per 10,000 
tests. The application of ML techniques in general has 
lead us to establish the cause of all the errors shown 
up in our initial tests, and the error rates using code 
generated from the current version of our model have 
been cut by 2 orders of magnitude. Having said this, 
our success in fielding TR seems to depend on correctly 
predicting how fundamental the revisions are, and hav- 
ing the machinery available to bring about such a level 
of revision. 

Many problems for future work remain, however. Most 
outstanding is the generalisation of our environment so 
that other customised msl model's can be created and 
analysed using ML tools. Secondly, the TR algorithms 
for simple and composite revisions need to be further 
refined and perhaps merged. Also, the implications of 
using blame assignment which takes into account neg- 
ative literals in proof trees needs to be fully evaluated. 
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Abstract 1    STOCHASTIC RESONANCE 

Adaptive systems can learn to add an optimal 
amount of noise to some nonlinear feedback 
systems. Noise can improve the signal-to- 
noise ratio of many nonlinear dynamical sys- 
tems. This "stochastic resonance" effect oc- 
curs in a wide range of physical and biological 
systems. The SR effect may also occur in en- 
gineering systems in signal processing, com- 
munications, and control. The noise energy 
can enhance the faint periodic signals or faint 
broadband signals that force the dynamical 
systems. Most SR studies assume full knowl- 
edge of a system's dynamics and its noise and 
signal structure. Fuzzy and other adaptive 
systems can learn to induce SR based only 
on samples from the process. These samples 
can tune a fuzzy system's if-then rules so that 
the fuzzy system approximates the dynami- 
cal system and its noise response. The pa- 
per derives the SR optimality conditions that 
any stochastic learning system should try to 
achieve. The adaptive system learns the SR 
effect as the system performs a stochastic 
gradient ascent on the signal-to-noise ratio. 
The stochastic learning scheme does not de- 
pend on a fuzzy system or any other adap- 
tive system. The learning process is slow and 
noisy and can require heavy computation. 
Robust noise suppressors can improve the 
learning process when we can estimate the 
impulsiveness of the noise or of other learn- 
ing terms. Simulations test this SR learning 
scheme on the popular quartic-bistable dy- 
namical system and on other dynamical sys- 
tems for many types of noise. Simulations 
suggest that fuzzy techniques and perhaps 
other "intelligent" techniques can induce SR 
in many cases when users cannot state the 
exact form of the dynamical systems. 

Noise can sometimes enhance a signal as well as cor- 
rupt it. This fact may seem at odds with almost a 
century of effort in signal processing to filter noise or 
to mask or cancel it. But noise is itself a signal and 
a free source of energy. Noise can amplify a faint sig- 
nal in some feedback nonlinear systems even though 
too much noise can swamp the signal. This implies 
that a system's optimal noise level need not be zero 
noise. It also suggests that nonlinear signal systems 
with nonzero-noise optima may be the rule rather than 
the exception. 

Stochastic resonance (SR) [2, 3T 16] occurs when noise 
enhances an external forcing signal in a nonlinear dy- 
namical system. SR occurs im a signal system if and 
only if the system has a nonzero noise optimum. The 
classic SR signature is a signal-to-noise ratio (SNR) 
that is not monotone. Figure 1 shows the SR effect for 
the popular quartic bistable dynamical system [2, 3]. 
The SNR rises to a maximum and then falls as the 
variance of the additive white noise grows. More com- 
plex systems may have multimodal SNRs. 

SR holds promise for the design of engineering systems 
in a wide range of applications. Engineers may want to 
shape the noise background of a fixed signal pattern to 
exploit the SR effect. Or they may want to adapt their 
signals to exploit a fixed noise background. Engineers 
now add noise to some systems to improve how humans 
perceive signals [12, 14]. Some control schemes add a 
noise-like dither to improve system performance [18]. 

The study of SR has emerged largely from physics and 
biology. The awkward term "stochastic resonance" 
stems from a 1981 article in which physicists observed 
"the cooperative effect between internal mechanism 
and the external periodic forcing" in some nonlinear 
dynamical systems [2]. Scientists soon explored SR in 
climate models [17] to explain how noise could induce 
periodic ice ages [1]. They conjectured that global or 
other noise sources could amplify small periodic vari- 
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Figure 1: The non-monotonic signature of stochas- 
tic resonance. The graph shows the smoothed output 
signal-to-noise ratio of the noisy signal-forced quartic 
bistable system x = f(x) + s(t) + n(t) — x-x3 + s(t) + 
n(t). The vertical dashed lines show the absolute devi- 
ation between the smallest and largest outliers in each 
sample average of 20 outcomes. The system has a 
nonzero noise optimum and thus shows the SR effect. 
The Gaussian noise n(t) adds to the external forcing 
narrowband signal s(t) = esinujot. Other systems can 
use multiplicative noise or use non-Gaussian noise [4]. 

ations in the Earth's orbit. This might explain the 
observed 100,000 year primary cycle of the Earth's ice 
ages. Physicists have since found stronger evidence of 
SR in various systems [11, 16, 19]. 

Below we explore how to learn the SR effect with adap- 
tive systems in general and with adaptive fuzzy func- 
tion approximators [9] in particular. Neural-like learn- 
ing laws tune and move the fuzzy rule patches as they 
tune the shape of the fuzzy sets that make up the 
rule patches. The learning laws use input-output data 
from the sampled noisy dynamical system. The rule 
patches move quickly to cover optimal or near-optimal 
regions of the function (such as its extrema). Fuzzy 
systems achieve their patch-covering approximation at 
the high cost of rule explosion [9]. The number of rules 
grows exponentially with the state-space dimension of 
the fuzzy system. We stress that our SR learning laws 
can also tune non-fuzzy adaptive systems. Our first 
goal was to show that adaptive systems can learn to 
shape the input noise and perhaps shape other terms 
to achieve SR in the main closed-form dynamical sys- 
tems that scientists have shown produce the SR effect. 
Our second goal was to suggest through these sim- 
ulation experiments that adaptive fuzzy systems or 
other model-free approximators might achieve SR in 
the more complex dynamical systems that defy easy 

math modeling or measurement. 

This paper presents three main results. The first and 
central result is that a system can learn the SR effect if 
it performs a stochastic gradient ascent on the signal- 
to-noise ratio SNR = S/N. Then the random noise 
gradient e|^R can tune the parameters in any adap- 
tive system through a slow type of stochastic approxi- 
mation. The second result is that the SNR first-order 
condition for an extremum has the ratio form j$ = jp 

for S' = |f. The term ^ can produce impulsive or 
even Cauchy noise that can destabilize the stochastic 
gradient ascent. Time lags in the training process can 
compound this impulsiveness. The third result is that 
a Cauchy-based noise suppressor from the theory of 
robust statistics can often reduce the impulsiveness of 
the noise gradient 8S^R and thus improve the learning 
process. 

2    ADDITIVE FUZZY SYSTEMS & 
FUNCTION APPROXIMATION 

A fuzzy system F : Rn -> Rp stores m rules of the 
word form "If X = Aj Then Y = Bj" or the patch 
form Aj x Bj C X xY = Rn x Rf. The if-part fuzzy 
sets Aj C Rn and then-part fuzzy sets Bj C Rp have 
set functions aj : Rn -> [0,1] and bj : Rp -> [0,1]. 
Generalized fuzzy sets map to intervals other than 
[0,1]. The scalar sine set functions in Figure 6 map 
real inputs to "membership degrees" in the bipolar 
range [-0.217,1]. The system design must take care 
when these negative set values enter the SAM ratio in 
(2). The system can use the joint set function aj or 
some factored form such as aj(x) = a](xi) • • -o"(a;„) 
or aj(x) = min(aj(:Ei),... ,a?(xn)) or any other con- 
junctive form for input vector x = (ii,... ,xn) £ Rn 

[9]. An additive fuzzy system [9] sums the "fired" then- 
part sets Bj : 

m m 

B[x)    =    Y,wiB'i    =    $>jOj (*)*,■•      (!) 
3=1 3 = 1 

Figure 2a shows the parallel fire-and-sum structure of 
the standard additive model (SAM). These nonlinear 
systems can uniformly approximate any continuous (or 
bounded measurable) function / on a compact domain 
[9]. Engineers often apply fuzzy systems to problems 
of control but fuzzy systems can also apply to problems 
of communication and signal processing [9] and other 
fields. 

Figure 2b shows how three rule patches can cover 
part of the graph of a scalar function / : R —► R. 
The patch-cover structure implies that fuzzy systems 
F : Rn -» Rp suffer from rule explosion in high dimen- 
sions. A fuzzy system F needs on the order of kn+p~1 

rules to cover the graph and thus to approximate a 
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-F(x) 

(b) 

Figure 2: Feedforward fuzzy function approximator. (a) The parallel associative structure of the additive fuzzy 
system F : Rn -> R? with m rules. Each input xo € Rn enters the system F as a numerical vector. At the 
set level XQ acts as a delta pulse S(x — XQ) that combs the if-part fuzzy sets Aj and gives the m set values 
a,j(xo) = JR„ S(x — xo)aj(x)dx. The set values "fire" or scale the then-part fuzzy sets Bj to give B'j. A standard 
additive model (SAM) scales each Bj with dj(x). Then the system sums the B' sets to give the output "set" 
B. The system output F(a;o) is the centroid of B. (b) Fuzzy rules define Cartesian rule patches Aj x Bj in the 
input-output space and cover the graph of the approximand /. 

vector function / : Rn -> RP. Optimal rules can help 
deal with the exponential rule explosion. Lone or local 
mean-squared optimal rule patches cover the extrema 
of the approximand / [9]. They "patch the bumps." 
Better learning schemes move rule patches to or near 
extrema and then fill in between extrema with extra 
rule patches if the rule budget allows. 

The scaling choice B'j = a,j(x)Bj gives a standard ad- 
ditive model or SAM. Taking the centroid of B(x) in 
(1) gives the following SAM ratio [9] 

F(x) = 
T^=iWjaj{x)VjCj 

=  SPjOOc,-.       (2) 

system dynamics. It can also tune the parameters in 
other adaptive systems. We first define a practical 
SNR measure in terms of discrete Fourier transforms. 
Other SR measures can give other learning laws. 

3.1    THE SNR IN NONLINEAR SYSTEMS 

Suppose a nonlinear dynamical system has a sinewave 
forcing function s(t) of known frequency /o Hz. We 
search the sinusoidal part r(t) of the output y(t) for 
the known frequency /o but unknown amplitude and 
phase in the system output response y(t). The "noisy 
signal" y(i) has the form of "signal" plus noise 

3=1 

The if-part fuzzy sets Aj C Rn has set functions aj : 
Rn -+ [0,1]. The then-part sets Bj C RP has finite 
positive volume or area Vj and centroid or its center of 
mass Cj. The convex weights p\ (x),..., pm {x) have the 

form Pj(x) = v*™     .   /'u/ •  The convex coefficients 

yt n + nt. (3) 

The signal-to-noise ratio (SNR) at the output is the 
spectral ratio of the energy of {rt} to the energy of 
{nt}. We assume that the signal s(t) is always present. 
This ignores the important problem of signal detection 
but lets us focus on learning the SR effect. 

Here S = 2|F[fc0]|2, P = £fc=o \Y[k]\2, and Y[k] is 
the L-point discrete Fourier transform (DFT) of yn: 

Pi (x) change with each input vector x. We can ignore      ,,,   , a     i.u   OMD iu      i       • u        -r J. ^ n We define the SNR measure as the rule weights Wj if we put wi = ... = wm > 0. 

SNR = I = p^s- 3    SR LEARNING AND ^       F   b 

EQUILIBRIUM 

The scalar standard additive model (SAM) [9] fuzzy 
system F : Rn -> R can learn the SR pattern of op- 
timum noise of an unknown dynamical system if it 
uses enough rules and if it samples enough data from 
a dynamical system that stochastically resonates. Be- 
low we derive a gradient-based learning law that tunes 
the SAM parameters to achieve SR from samples of 

(4) 

L-l 

Y[k] = ^yte- (5) 
t=o 

We assume that the discrete frequency fco = foLTs > 0 
is an integer for sampling rate 1/TS and wo = 27r/o- We 
also assume that there is no aliasing due to sampling. 
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Then we can show that for large L the SNR measure in 
(4) tends to the standard definition of SNR as a ratio 
of variances: 

Theorem:   SNR =       .   ,    2^k°^  
E^oMfc]l2-2|r[fc0]|

2 

v   ol  _ A2/2 _  i Ef=o r? 

Here a: 
rT 

2     _ 

n2 n2 1   V^-l „2' 

Var(n)   =   E[n2]   <   oo  and ar   = 

i /  (A sinujotfdt = A212. 
T Jo 

3.2    SR LEARNING AND OPTIMALITY 

An adaptive system can learn a SR noise pattern that 
maximizes a dynamical system's SNR. The learning 
law updates a parameter rrij of a SAM fuzzy system 
(or of any other adaptive system) at time step n with 
the deterministic law 

m,j(n + 1)  = mj(n) + ßn 
d£[SNR] 

drrij 
(6) 

for learning coefficients {ßn}- This is gradient ascent 
learning. We assume that the first-order moment of 
the SNR exists and is finite. We seldom know the 
probability structure or the expectation of the SNR. 
So we estimate this expectation with its random real- 
ization at each time step: £[SNR] ss SNR. This gives 
the stochastic gradient learning law 

rrij{n + 1)  = mj(n) + iin 
dSNR 
drrij 

(7) 

or simple random hill climbing. We assume the chain 
rule holds (at least approximately) to give 

dSNR 
drrij 

ÖSNR  da ÖSNR dF 

da    drrij da    drrij 
(8) 

Here a is the noise level or standard deviation of the 
forcing noise term n(t). We want the SAM or other 
adaptive system F to approximate the optimal noise 
level aopt for any input signal or initial condition of 
the dynamical system: F « aopt. We then use o and 
F interchangeably in (8). The term ^- shows how 
any adaptive system F depends on its jth parameter 
rrij. We again assume that the chain rule holds to get 

d SNR 
da 

5 SNR dS 
dS    da + 

ÖSNRÖiV 
dN    da' 

Then SNR = 10 log S/N implies that 

ÖSNR 
dS 

d SNR 
dN 

dSm°gN 
9  mi      S 

dNm°gN 

= (lOloge)- 

=  -(lOloge) 
N 

(9) 

(10) 

(11) 

for base-10 logarithm. We next put (10)-(11) into (9) 
to get the log term that drives SR learning: 

d SNR fldS 
-da~  =  (101Oge)b^ -—) (12) 

Nda)-        {U) 

The right side of (12) leads to the first-order condition 
for an SNR extremum: 

Ids 
Sda N da 

=  0 or 
N N ^  =   777 (13) 

when the partial derivatives of S and N with respect 
to a are not zero at a — aopt- Equation (13) gives a 
necessary condition for the SR maximum. The result 
(13) says that at SR the ratio of the rate of changes of S 
and iV must equal the ratio of 5 and N. But (13) holds 
only in a stochastic sense for sufficiently well-behaved 
random processes. The second-order condition for an 
SR maximum is 

0  > 
a2 SNR 

da2 

d_ 
da 

.,„,      s\ldS      1 dN 
(m0genSd;-N-da- 

/,«,     % r !d2S     1 fdS\2 
=  (10loge) I -^r-— I —I 

=  (10 log e) 

Sda2     S2\da) 
1 d2N 

N da2 

i d2s    l d2N 

Sda2 

J_(9N_\2] 

} N da2 

(14) 

(15) 

(16) 

or s^ < Hi 
or    S    ^    AT ' 

The last equality follows from the first- 

order condition 5§f-^|^=0or^- = ^- since then 

Ig! = 1^1. A like result holds for SNR = S/N. 
These first- and second-order conditions show how the 
signal power S and noise power N relate to each other 
and to their derivatives at the SR maximum. 

We now derive the SR learning laws in terms of DFTs. 
We can approximate ^- and ^- with a ratio of time 
differences at each iteration n: 

dSn ^    A5n   _ 5n — 5n_i 
dan Aan an - an-\ 
dNn _    AN„   = Nn - Nn-i 

dan Aan an - cr„-i 

(17) 

(18) 

Then put (17) and (18) into (9) to get the stochastic 
gradient learning law: 

m n+l „ aSNRn 

asNRn dF 
i       n   dan    drrij 

(19) 

(20) 

1 dSn       1  dNn\ dF = mn + ^^^-^^j^-.  (21) 

Below we derive the last partial derivative ■$£- in the 

chain-rule expansion (8) for all SAM fuzzy parameters. 
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Figure 3: Learning paths of <r„ for the quartic bistable system (30)-(31). The input sinusoid signal function 
is s(t) = 0.1sin27r(0.01)£. The optimum noise intensity lies near a = 0.5 from the SNR-noise profile in Figure 
1. (a) Impulsive effects on learning paths of noise level an with different initial values. The paths of an do 
not converge to the optimum noise. This stems from the impulsiveness of the derivative term dS^n in the SR 

learning law. (b) Learning paths of an with the Cauchy noise suppressor 0. The term ^>(8|^") replaces dS™n 

in the SR learning law as in (36). The paths of an wander in a Brownian-like motion around the optimum noise. 
The suppressor function (f> makes the learning algorithm more robust against impulsive shocks. 

This is again the step where users can insert other 
adaptive function approximators F and derive learning 
laws for their parameters rrij by expanding -g£-. The 
chain rule gives the partial derivatives 

dF _      Wj a,j (ar) Vj 
dcj 

8F wjaj(x)[cj-F(x)] 

TiiLiWiai(x)Vi 

= PAX) 

Pj(x) 
Vi 

[Cj 

dF _ dF daj 

drrij düj drrij 
where 

A        9F and wr dF daj 
daj ddj 

dF 
F(x)] PAX) 

aj{x)' 

(22) 

F(x)](23) 

(24) 

(25) 

We used the sine set functions [9, 13] in our simu- 
lation.   The sine set function has the form a,j(x) = 

sin (x~™' ) / (x~Jn') • So the partial derivatives are 

i2L = l (*i(*) - cos (^)) ^7 for x * m* (26) 
drrij      1   0 for x = rrij 

daj 
ddi 

0 

= (aj(x) cos 
(X — TTlj\\   1 

\    dj    JJTj' 
(27) 

We used small but constant learning rates in most sim- 
ulations. 

4    SIMULATION RESULTS 

This section shows how the stochastic SR learning laws 
in Section 3 tend to find the optimal noise levels. The 

learning process updates the noise parameter an at 
each sample time n. The learning process is noisy 
and may not be stable due to the impulsiveness of 
the random gradient a|^R". We used a Cauchy noise 
suppressor from the theory of robust statistics [8] to 
stabilize the learning process. Then sample paths of 
<jn converged and wander about the optimal values if 
the initial values were close to the optimum. 

The response of a system depends on its dynamics and 
on the nature of its input signals. We applied the SNR 
measure to the quartic bistable system with sinusoidal 
inputs. Future research may extend SR learning to 
wideband input signals. Figure 7a shows how the op- 
timum noise level varies for each input sinewave in the 
quartic bistable system. The learning process sam- 
ples the system's input-output response as it learns 
the optimum noise. It does not make direct use of the 
equation that underlies the system. It needs access 
only to the system's input-output responses. Then an 
adaptive fuzzy system encodes this pattern of opti- 
mum noise in its if-then rules when gradient learning 
tunes its parameters. The fuzzy system learns this 
optimum noise level as it varies the output of a ran- 
dom noise generator. More complex fuzzy systems can 
themselves act as adaptive random number generators 
[9]. 

4.1    SR IN THE QUARTIC BISTABLE 
SYSTEM 

We tested the quartic bistable system x = ax - bx3 + 
s(t) + n(t) because of its wide use in the SR literature 
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Figure 4: Learning paths of an with the suppressor cf> for other noise densities in the quartic bistable system 
(30)-(31) with input signal s(t) = 0.1sin27r(0.01)£. The noise n has densities (a) Laplace noise and (b) uniform 
noise. The SNR-noise profiles show that optimal noise levels lie near a = 0.5 for both cases. 

as a benchmark SR dynamical system. The constants 
o = 6=l and the binary output give the system [16] 

x    =    x - x3 + s(t) + n(t) (28) 

y(t)    =   sgn(x(t)) (29) 

where s = s sin u)0t is a sinewave input forcing term 
and n is a zero-mean additive white noise with variance 
D = a\. The simulation uses the discrete version: 

xt+i   = xt+ T(xt -x
3

t+e sin 27r/0Tt) + Vfnt (30) 
yt  =  sgn(zt) (31) 

with initial condition x0 and time step T. The zero- 
mean white noise sequence {nt} has variance Dt = 
a^(t). The term y/T scales nt so that it conforms 
with the Wiener increment [6]. The simulations use 
Gaussian noise, Laplace noise, and uniform noise. 

We look at the equilibrium term or the random opti- 
mality "error" process 

dS/da 
N     dN/da 

(32) 

near the optimum noise a = aopt.   The probability 
density of £ depends on the statistics of the input 

noise, the differential equation that defines the dynam- 
ical system, and how we define the signal and noise 
terms S and N. The empirical test of £n found that 
£n had infinite variance in our simulations. The log- 
tail test of parameter a in the family of alpha-stable 
probability densities leads to the estimate a fa 1.0. So 
the £n density is approximately Cauchy. Recall also 
that Z = X/Y is a Cauchy random variable if X and 
Y are Gaussian or if they obey certain more general 
statistical conditions [10]. This suggests that much of 
the impulsive nature of £„ and hence of the learning 
process may stem from the ratio of derivatives in (32). 

We sample S„ and Nn after a long period of time in 
(17) and (18). This approximation lets us choose the 
time length between step n and step n + 1. Longer 
time lengths can better show how the noise intensity 
an affects 5n, Nn, and the SNRn. We chose the time 
length Tn+i —Tn = 2000 seconds for the simulations. 
The learning process's sampling interval Ts differs from 
the time step T of the dynamical system's simulator 
in (30)-(31). The time step is T - 0.0195. The sam- 
pling period is Ts = 0.976 seconds. This yields 2048 
samples per iteration. This long period of time allows 
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Figure 5: SR learning paths of a„ for other dynamical systems, (a) The forced bistable neuron model x = 
-x + 2tanha; + esin(w0*) +n(t) with binary output y(t) = sgn(a;(i)). The parameters of the input sinewave are 
wo = 2nf0 with /0 = 0.01 Hz and e = 0.3. (b) The FitzHugh-Nagumo neuron model ex = -x(x2 - \) - w + A 4- 
s(t) + n(t) and w = x - w with output y(t) = x(t). The parameters are e = 0.005 and A = -(5/12\/3 + 0.07). 
The sinewave input signal is s(t) =ssin2irfot where e = 0.01 and /o = 0.5 Hz. 

for low frequency signals such as /o = 0.001 Hz. We 
ignored all aliasing effects. We also replace the differ- 
ence crn — <7n_i with sgn(<7„ — CT„_I) to avoid numerical 
instability. The gradient becomes 

-öMrK{-sv-i^r)s&n{crn-(7n-i) (33) 

for ASn = 5„ - Sn-i and ANn = Nn - iVn_x. This 
approximation gives the SR learning law when F = an: 

,       (ASn    AAT„> Ljsgn(ffn-CTn_i). (34) 

Figures 3a shows sample learning paths of an for the 
quartic bistable system. The an learning paths con- 
verge to the optimum noise values only in some cases. 
The simulations confirm that the random gradient 
a|^Rn in (33) is often impulsive and can destabilize 
the learning process (34). The impulsiveness of a|^" 
suggests that it may have an alpha-stable probability 
density function with parameter a < 2. A log-tail test 
found that ami. This means that 9™fn has an 
approximate Cauchy distribution. 

The theory of robust statistics [8] suggests one way to 
reduce the impulsiveness of 8|^n.  We can replace e<7„ 
the noisy random sample zn with a Cauchy-like noise 
suppressor <j>{zn) [8]: 

4>(Zn)   = 
2*n (35) 

So <f>( I;; ") replaces the approximation of the noise 
gradient df^n in (33). This gives the robust SR 
learning law 

<3SNRn> 
a»+l   =   °n+ßn<t>{-ö—-) (36) 

Figure 3b shows the results of the SR learning law 
(36) with the gradient in (33). The an learning paths 
converge to the optimum noise level if the initial value 
lies close enough to it and then an wanders in a small 
Brownian-like motion about the optimum noise level. 

Like results hold for other noise densities with finite 
variance such as Laplace and uniform noise. Figure 4 
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shows an learning paths for the quartic bistable system 
(30)-(31) with Laplace noise and uniform noise. 

4.2    SR IN OTHER DYNAMICAL 
SYSTEMS 

We tested the bistable potential neuron model with 
Gaussian white noise [4] 

x    =    -x + 2t&nhx + s(t)+n(t)       (37) 

y(t)    =   sgn(x(t)). (38) 
Figure 5a shows the SR learning paths of an. The 
sinewave input is s(t) = esin27r/0£ where f0 = 0.01 
Hz and e = 0.1 and the e = 0.3. The time step in 
the discrete simulation is T = 0.0195. The sampling 
interval is Ts = 0.975 or 50 times the time step T. 

We next tested the forced FitzHugh-Nagumo neuron 
model [5, 7, 15] 

1, 
ex =    -x{x<--\ w + A + s(t) + n{t) (39) 

w    =   x - w (40) 

y(t)  =  x(t). (4i) 
The constants are e = 0.005, a = 0.5, and A = 
-(5/12\/3 + 0.07). The sinewave input is s(t) = 
esm2nfot with e = 0.01, f0 = 0.1, and 0.5 Hz. The 
sampling interval is Ts = 0.01 with T = 0.001. Figure 
5b shows the learning paths of the standard deviation 
<rn of the Gaussian white noise n. 

4.3    FUZZY SR LEARNING: THE 
QUARTIC BISTABLE SYSTEM 

We used a fuzzy function approximator F : Rn -> 
R to learn and store the entire surface of optimal 
noise values for the quartic bistable system with in- 
put sinewaves. The fuzzy system had as its input the 
2-D vector of sinewave amplitude e and frequency /o- 
We tested the system with the fixed input initial value 
x(0) — — 1. The fuzzy system itself defined a vector 
function F : R2 ->■ R and used 200 rules. The Cauchy 
noise suppressor gives the learning law (21) as 

,       ,. . . vöSNRnN  dF 
m,(n + l)  =roj(„) + ^B^-g_)_.    (42) 

Figure 6 shows how we formed a first set of rules on 
the product space of the two variables e and /o. It 
also shows how the learning laws move and shape the 
width of the if-part sine set. Figure 7 shows the results 
of SAM learning of the optimal noise pattern for the 
quartic bistable system. The sine SAM used 200 rules. 
Fewer rules gave a coarser approximation. 

5    CONCLUSIONS 

Stochastic gradient ascent can learn to find the SR 
mode of at least some simple dynamical systems. This 

(b)    o: I l\     ■     /\ /\ /\ /\     '■     /\        ' f\ /\ /\ \ 
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Figure 6: If-part sine fuzzy sets, (a) Scalar sine set 
function ay(x) = sinrr/z. Sine sets are generalized 
fuzzy sets with "membership values" in [-.217,1]. Ele- 
ment x belongs to set Aj to degree a,j(x): Degree(a; G 
Aj) = a,j(x). (b)-(c) Initial subsets for sinewave am- 
plitudes and frequencies. There are 10 fuzzy sets 
for amplitude e and 20 fuzzy sets for frequency /0. 
The product of two 1-D sets gives the 2-D joint sets: 
dj(x) = aj(e,fo) = a1

j(e)a'j(fo)- So the product space 
gives 10 x 20 = 200 if-part sets in the if-then rules. 

learning scheme may fail to scale up for more com- 
plex nonlinear dynamical systems of higher dimension 
or may get stuck in the local maxima of multimodal 
SNR profiles. Simulations showed that the key learn- 
ing term itself can give rise to strong impulsive shocks 
in the learning process. These shocks often approached 
Cauchy noise in intensity. A Cauchy noise suppressor 
gave a working SR learning scheme for the DFT-based 
SNR measure. Other SNR measures or other process 
statistics may favor other types of robust noise sup- 
pressors or may favor still other techniques to lessen 
the impulsiveness. 

Gradient-ascent learning can find the SR mode of the 
main known dynamical models that show the SR ef- 
fect and can do so in the presence of a wide range of 
noise types. This suggests that SR may occur in many 
multivariable dynamical systems in science and engi- 
neering and that simple learning schemes can some- 
times measure or approximate this behavior. We lack 
formal results that describe when and how such SR 
learning algorithms will converge for which types of 
SR systems. This reflects the general lack of a formal 
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Figure 7: Optimal noise levels in terms of the signal-to-noise ratio for the quartic bistable system (30)-(31). 
(a) The optimum noise pattern when inputs are sinewaves with distinct amplitudes and frequencies, (b) SAM 
fuzzy approximation of the optimum noise after 30 epochs. The sine SAM used 200 rules. One epoch used 20 
iterations that trained on 200 input amplitudes and frequencies. The initialized SAM gave the output value 0.2 
as its first estimate of the optimal noise level. 

taxonomy in this promising new field: Which noisy dy- 
namical systems show what SR effects for which forc- 
ing signals? 
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Abstract 

This paper introduces a new algorithm, Q2, 
for optimizing the expected output of a multi- 
input noisy continuous function. Q2 is de- 
signed to need only a few experiments, it 
avoids strong assumptions on the form of the 
function, and it is autonomous in that it re- 
quires little problem-specific tweaking. 

These capabilities are directly applicable to 
industrial processes, and may become in- 
creasingly valuable elsewhere as the machine 
learning field expands beyond prediction and 
function identification, and into embedded 
active learning subsystems in robots, vehicles 
and consumer products. 
Four existing approaches to this problem (re- 
sponse surface methods, numerical optimiza- 
tion, supervised learning, and evolutionary 
methods) all have inadequacies when the re- 
quirement of "black box" behavior is com- 
bined with the need for few experiments. Q2 
uses instance-based determination of a con- 
vex region of interest for performing exper- 
iments. In conventional instance-based ap- 
proaches to learning, a neighborhood was de- 
fined by proximity to a query point. In con- 
trast, Q2 defines the neighborhood by a new 
geometric procedure that captures the size 
and shape of the zone of possible optimum 
locations. Q2 also optimizes weighted com- 
binations of outputs, and finds inputs to pro- 
duce target outputs. 
We compare Q2 with other optimizers of 
noisy functions on several problems, includ- 
ing a simulated noisy process with both 
non-linear continuous dynamics and discrete- 
event queueing components. Results are en- 
couraging in terms of both speed and auton- 
omy. 

1    ACTIVE LEARNING FOR 
OPTIMIZATION 

The apparently humble task of parameter tweaking for 
noisy systems is of great importance whether the pa- 
rameters being tweaked are for an algorithm, a real 
manufacturing process, a simulation, or a scientific ex- 
periment. The purpose of this paper is two-fold. First, 
we wish to highlight the potential importance of ma- 
chine learning as an as-yet underexploited tool in this 
domain. Second, we will introduce Q2, a new algo- 
rithm designed for this domain. 

We consider a generalized noisy optimization task in 
which a vector x of real-valued inputs produces a scalar 
output y that is a noisy function of x: 

y = g(x) + noise (1) 

Given a constrained space of legal inputs, the task is 
to find the input vector xopt that maximizes g, using 
only a small number of experiments. 

In both industrial settings and in algorithm-tuning, 
this task often demands considerable human interven- 
tion and insight. A factory manager who wants to 
optimize a process can: 

• Buy a computer, statistics software, and hire a 
professional statistician to solve the problem using 
insight and experiment design. 

• Save money and try to "wing it" by manually tun- 
ing the parameters. 

For highly expensive or safety-critical processes, the 
first option is always preferable, leaving only the ques- 
tion of which are the best analysis and experiment 
design tools for the statistician to use. This area is 
heavily investigated by the academic statistics com- 
munity. 

But there are also many situations in which it is im- 
practical to enlist human-aided analysis during opti- 
mization, for example if a vehicle engine self-tunes 
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during driving. And there are many other situations 
in which the potential benefit from optimization is too 
small to justify paying for expert professional analysis. 
In such cases, it is tempting to ask: Can "black box" 
automated methods optimize noisy systems? If practi- 
cal black box methods are found, they could be widely 
used. Somewhat fancifully, this could lead to the even- 
tual inclusion of Black Box Optimizer chips within a 
huge range of consumer products, from vehicle engines 
and industrial equipment down to refrigerators, toast- 
ers, and toys. 

In the next section we discuss variants of the Black 
Box Noisy Optimization task. Then in Section 3 we 
discuss existing approaches. After that we present and 
evaluate Q2, a new algorithm. 

VARIANTS OF NOISY 
OPTIMIZATION 

• Are we doing local or global optimization? 
Unless we have strong prior knowledge, global op- 
timization of a function of more than a couple 
of inputs requires a very large number of exper- 
iments. Q2 is only designed to find a local opti- 
mum, though empirically it appears to be good at 
discovering the global optimum. 

• Can we re-use old data? Many algorithms 
have a "current location" or "current set of k re- 
cent evaluations" but otherwise disregard earlier 
evaluations. Q2, however, can exploit any exist- 
ing data, including previous evaluations obtained 
by other experimental methods. 

In this paper we also assume that there are no long 
term dynamics, i.e. the output of the ra'th experiment 
depends only on the n'th chosen x, not on previous x 
values or the time. Unlike [2, 6] we only try to find 
the optimum, not to model the g function. 

The generalized noisy optimization task summarized 
by Equation 1 has many variants. For instance, in 
some domains each experiment is a lengthy procedure, 
and so there is ample computation time between ex- 
periments. In other domains, experiments are very 
quick, leaving an optimizer little time to make its rec- 
ommendations. The specifics of the domain determine 
which methods are appropriate. The following factors 
need to be considered: 

• Minimize regret or the number of experi- 
ments? Do we pay a constant cost per exper- 
iment, or do experiments with poor results cost 
us more? In scenarios such as tuning the parame- 
ters for an algorithm, or optimizing a test plant in 
which all products will be discarded, the cost per 
experiment may be constant. But in a task such 
as minimizing the fuel consumption of a running 
engine, some experiments cost more than others. 
Here, we focus on simply minimizing the number 
of experiments. Note that this presumes that we 
are not risk-averse: there is no penalty for per- 
forming highly unpredictable experiments. 

• How much computer time is available to 
choose experiments? If experiments are very 
cheap and very quick, then an algorithm that 
needs extensive CPU time to select the ideal next 
experiment could still be inferior to one that re- 
quires only a fraction of a second to suggest a 
reasonable-but-less-than-ideal experiment. Here, 
we assume that experiments are costly enough (in 
time or money) that it pays to choose them care- 
fully. But the Q2 algorithm can be adjusted to 
satisfy any desired tradeoff between the speed and 
the quality of proposed experiments. 

3    POSSIBLE APPROACHES 

Many disciplines have methods that are relevant to 
noisy optimization. Space permits only a brief survey. 

Numerical analysis: Numerical methods such as 
Newton-Raphson or Levenberg-Marquardt [11] have 
fast convergence properties, but they must be applied 
carefully to prevent oscillations or divergence to infin- 
ity, which violates our desire for black box autonomy. 
Furthermore, current numerical methods cannot sur- 
vive noise. 

Stochastic approximation: The algorithm of [12] 
finds roots without the use of derivative estimates. 
Keifer-Wolfowitz (KW) [5] is a related algorithm for 
noisy optimization. It estimates the gradient by per- 
forming experiments in both directions along each di- 
mension of the input space. Based on the estimate, 
it moves its experiment center and repeats. It uses 
decreasing step sizes to ensure convergence. KW's 
strengths are its aggressive exploration, its simplicity, 
and that it comes with convergence guarantees. How- 
ever, it can attempt wild experiments if there is noise, 
and discards the data it collects after each gradient 
estimate is made. Amoeba (see below) is a similar 
approach, but in our experience is superior to KW. 

Amoeba search: Amoeba [11] searches k-d space 
using a simplex (i.e. a fc-dimensional tetrahedron). 
The function is evaluated at each vertex. The worst- 
performing vertex is reflected through the hyperplane 
defined by the remaining vertices to produce a new 
simplex that has moved up the estimated gradient. In- 
genious simplex transformations let the simplex shrink 
near the optimum, grow in large linear zones, and ooze 
along ridges. 
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Experiment design & response surface meth- 
ods: Current RSM practice is described in the clas- 
sic reference [1]. It proceeds by cautious steepest as- 
cent hill-climbing. A region of interest (ROI) is estab- 
lished at a starting point and experiments are made 
at positions that can best be used to identify local 
function properties with low-order polynomial regres- 
sion. Much of the RSM literature concerns experi- 
mental design—deciding where to take data in order 
to acquire the lowest variance estimate of the poly- 
nomial coefficients in a fixed number of experiments. 
When the gradient is estimated confidently, the ROI 
is moved accordingly. Quadratic regression locates op- 
tima within the ROI, and diagnoses ridge systems and 
saddle points. The strength of RSM is that it avoids 
changing operating conditions based on inadequate ev- 
idence, but moves once the data justifies it. A weak- 
ness of RSM is that human judgment is needed: it is 
not an algorithm, but a manufacturing methodology. 

Evolutionary computation and learning au- 
tomata: Methods such as genetic algorithms begin by 
sampling uniformly, but then bias later samples in fa- 
vor of the experiments that had good outcomes. There 
is a vast literature of refinements of such methods. 
These approaches need thousands, sometimes millions, 
of evaluations, because they attack a different problem: 
Global Optimization, usually for noise-free, cheap-to- 
evaluate criteria. 

PMAX: PMAX is a simple, effective algorithm. 
Based on the data from the experiments so far, it uses 
a non-linear function approximator to estimate the un- 
derlying function </(x). The next experiment is taken 
at the point that maximizes the estimate of g. This ap- 
proach has been used with a decision-tree approxima- 
tor [13], with neural nets (in many commercial prod- 
ucts), and with locally weighted regression [9]. Vari- 
ations of PMAX include taking the next experiment 
not at the predicted optimum, but instead where the 
confidence intervals are widest [6], or where the top 
of the confidence interval is maximized [9], or in ac- 
cordance with the Interval Estimation heuristic [4] or 
similar criteria [13]. 

Empirically, we have found that PMAX using locally 
weighted regression as the function approximator is 
often faster than more sophisticated alternatives [9]. 
However it has some serious drawbacks: 

• In conventional function approximation one must 
solve the bias-variance tradeoff. This is often de- 
termined automatically using cross-validation [8], 
but this proves difficult with a set of very few, 
weirdly distributed datapoints obtained during 
optimization. Empirically we have observed dis- 
mal performance when attempting this. In addi- 
tion, conventional approaches search for the best 
model over the whole data range, whereas we only 

need our model to be accurate in the vicinity of 
the optimum. 

• PMAX is very expensive. It needs to train a 
function approximator each time an experiment is 
made, and then the approximate function must be 
numerically optimized to produce the suggested 
experiment. 

• PMAX can get stuck in hallucinated optima since 
it is not choosing experiments to give the most 
information (in the way that RSM docs). 

4    THE Q2 ALGORITHM 

The Q2 algorithm is an attempt to combine the 
strengths of Newton's method (superlinear conver- 
gence), RSM (using estimates of significance in the face 
of noise), and PMAX (exploiting all available data). 
Let us first outline the structure of the Q2 algorithm, 
before discussing its details: 

1. Input a set of previous experimental results 

(xi->yi),(x2->y2),--.,(x„->y„)      (2) 

and HR: a hyper-rectangular portion of input 
space over which the optimization is constrained 
to take place. 

2. Select a convex Region Of Interest (ROI) within 
HR such that: 

• The constrained optimum within HR is ex- 
pected to lie within ROI. 

• There is no evidence to contradict the 
assumption that the function is well- 
approximated by a quadratic within ROI. 

3. Select a useful experiment to take within ROI. 

4. Return the experiment, the estimated location of 
the optimum, and (optionally) other information 
such as the ROI and a regression analysis of the 
local quadratic. 

In typical operation, the suggested experiment will 
be performed, we will add the new datapoint to the 
dataset, and return to Step 2. 

Step 2: Selecting the ROI 

Step 2 begins by generating a sequence of candidate 
Regions Of Interest, ROh, ROh,..., ROIj,... from 
which the final ROI will be selected. The generated 
sequence has the properties that 

ROh:=HR and ROIj D ROIj+i (3) 

where ROIj+i is determined by cutting away an un- 
promising subregion of ROIj. How is the cut deter- 
mined? Let us consider an example. 
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Figure 1 shows a Gaussian function of two inputs. Sup- 
pose HR is set to be the full square region depicted 
in the figure, and suppose we have available the thirty 
noisy datapoints that are also shown. Call this dataset 
DSi. We can fit a quadratic to DSi. Write 

yk = c + bTxfc + ix^Axfc (4) 

where A is symmetric, or, equivalently, 

yk = c+bixk\ + b2Xk2+ %auxl1 + ai2XkiXk2 + %a22Xk2 
.(5) 

The regression is a matter of simple matrix manipu- 
lation. Write z/j = the vector of polynomial terms for 
the feth input point, x*. 

zfc = (1, Xki, xk2, x2
kl,xkixk2, x\2) (6) 

Write Z = a matrix whose fcth row is zk, and write 
Y = a vector whose Arth element is yk. Finally define 

ß = (c,6i,62,iaii,ai2, £a22)
T 

as the regressed coefficients. Then using Bayesian re- 
gression with non-informative priors on ß and <r2 (the 
estimated Gaussian noise), we have the MAP of ß (also 
the maximum likelihood value in this case) as 

We have described how ROh is constructed from 
ROI\. In general, ROIj+\ is constructed from ROIj 
using a similar recipe: set DSj+i = DSj — (xk(j),yk(j)), 
do a regression using dataset DSj+i (which will be 
less biased than using DSj), and cut using the point 
that the new regression predicts will be worst. Fig- 
ure 3 shows the approximation that results after the 
first cut has been made (giving a less biased fit than 
Figure 2), and also shows the second cut. Figure 4 
shows what remains after the twelfth cut: the fit is 
now good, because it is only based on datapoints near 
the quadratic-shaped optimum. Figures 5-7 use a big- 
ger dataset and an extreme ridge system. 

At this point Q2 has generated a series of candidate 
regions, ROh, ROh .... To decide which to select, we 
perform regression analysis on the quadratics in each 
of the ROh. As j increases, ROIj shrinks and is based 
on fewer datapoints. So, as j increases, ROIj's bias de- 

(7)       creases and its variance increases. We select the ROIj 

/3 = (ZTZ)-1ZTY (8) 

In practice, if the information is known, we can put 
Gaussian priors on the coefficients and an inverse- 
Gamma prior on the noise. For our dataset the re- 
sulting quadratic approximation is shown in Figure 2. 
Note that because the underlying function is so far 
from quadratic, this is a poor fit. 

Q2 evaluates each of the datapoints in DSi using the 
quadratic, producing the values of Equation 5. Let 
(xfc(i),y*(i)) be the datapoint that is predicted to be 
the worst, i.e. k(l) = argminfcyfc. It will be used to 
define a cut of ROh. We look at the direction of the 
steepest gradient, Vy, of the quadratic at x.k^), and we 
cut using the half-plane perpendicular to this direction 
so that 

ROh = ROh n {x I (x - xfc(i)).di > 0}      (9) 

where di = Vy evaluated at xk(i). 

In Figure 2, the worst point according to the quadratic 
is at the top left, and with some effort the resulting 
cut-plane can be seen. 

Why do we use the above approach? We want to use 
our unreliable (probably biased) quadratic to tell us 
how to reduce the ROI. We assume that even if the 
quadratic is a poor model for y, it will be adequate 
to predict an unpromising location for the optimum. 
Why pick the point with the predicted worst value in- 
stead of the actual worst value? Because the actual 
values are noisy, meaning that an unlucky datapoint 
could be misleadingly removed. 

with the best tradeoff using the criterion: Choose the 
smallest ROI for which Bayesian regression analysis 
is confident about the location of the optimum, and for 
which the optimum is, with high probability, inside the 
ROI.1 

The results of this criterion are shown in Figures 8- 
13. With fewer or noisier datapoints, larger ROIs are 
chosen. The shape of the chosen ROIs nicely reflects 
the shape of the local ridge system (Figure 7). If ir- 
relevant inputs are included, the ROI chosen by Q2 
tends to stretch to ignore irrelevant dimensions (pic- 
tures omitted because of space constraints). 

Step 3: Choosing the experiment 

Once the ROI is determined, the estimated optimum 
is easily obtained as 

xopt = -A^b (10) 

(assuming the quadratic fit has revealed a maximum, 
meaning A is negative-definite). xopt is not necessar- 
ily the best place to experiment in order to gain useful 
new information. Instead, we investigated these op- 
tions: 

1. Put experiment at xopt. 

2. Choose a random point within ROI. 

3. Choose the point in ROI that is predicted to most 
reduce the uncertainty about the location of the 

'This is achieved by taking the joint posterior distri- 
bution (normal-gamma) on the noise and the coefficients 
of the quadratic form, and then (via Monte Carlo sam- 
pling) seeing whether at least T = 98% of the samples lie 
in the ROI and whether the expected regret of committing 
to the optimum is below a threshold (2% of the range of 
output values). Empirically these threshold choices are not 
performance-critical. 
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Figure 1:  A function of two inputs.   The optimum is at (0.75,0.25).       Figure 2: The best-fitting global quadratic regression approximation 

It is a Gaussian bump, and hence very flat more than about 0.4 units      obtained by least squares regression on the 30 datapoints. The worst- 

of distance from the optimum.   Also shown are 30 noisy datapoints.      scoring datapoint is in the top left. 
These were generated with uniformly random (x,y) coordinates, with 

z (height) set to f(x,y) plus Gaussian noise with standard deviation 

0.1. 

optimum. 

4. Choose the point in ROI that keeps the regres- 
sion as orthogonal [1] as possible, mimicking es- 
tablished RSM practice. 

5. Choose the point in ROI as far away from any 
previous datapoints (in or out of ROI) as possible. 

Option 5 is best empirically. This is because options 
3 and 4, despite their elegance, usually choose exper- 
iments at the edge of the ROI, reducing the opportu- 
nity for future cuts to shrink future ROIs. Option 1 
quickly becomes stuck, and option 2 frequently wastes 
experiments. 

Details 

In this short paper, many details have been omitted. 
Some regressions predict a minimum or a saddlepoint, 
instead of a maximum. We have special-purpose tech- 
niques to deal with this. The Bayesian analysis is 
largely standard, and also omitted: see [3] for more de- 
tails. Some confidence measures require Monte Carlo 
integration. These details will be discussed in a forth- 
coming technical report [10]. 

5    RESULTS 

We begin by comparing Q2 with four versions of 
Amoeba and three versions of PMAX on the func- 
tion /i from Figure 1 with noise of 0.3 added to each 
evaluation2.   Amoeba is the classic search algorithm 

2 These tasks are 
http://www.cs.cmu.edu/~AUTON 

available from 

from [11]. Amoeba2 is the same except it is made re- 
sistant to noise by doing two evaluations and taking 
their average at each simplex vertex. Amoeba4 and 
Amoeba8 similarly average four and eight evaluations 
at each vertex. All the Amoebas begin with a medium- 
sized simplex started randomly in input space. 

The results are in Figure 14. In this (and all subse- 
quent experiments) we performed 25 independent runs 
of each optimizer, with each run consisting of 60 ex- 
periments. As well as selecting the datapoints for the 
experiments, at every stage the optimizers also gave 
their estimate of the location of the optimum. To as- 
sess the various optimizers, we wish to compare how 
good they are at estimating the optimum, and so we 
look at the true value of the underlying function at 
these estimates of the optimum. For the fth run of a 
particular optimizer, let s, denote the mean of the true 
values at the estimates of the optimum. The figures in 
the left hand column are the mean s,- value of the opti- 
mizer over all 25 runs (i.e. (£,■s,)/25). These values 
are also drawn graphically in the same column: the 
further to the right the dot lies, the better the mean 
score. The horizontal lines depict the 95% confidence 
intervals on the mean. The right hand column shows 
the mean performance of the optimizer on the final 15 
of the 60 experiments. Unsurprisingly, all methods do 
better in later experiments, so the right hand means 
are higher. 

Figure 14 shows that Q2 outperforms all the other 
methods on this problem. Amoeba4 is the best of the 
Amoebas; it is less affected by noise than Amoeba and 
Amoeba2, but it makes better progress than Amoeba8, 
which wastes 8 evaluations on every vertex. 
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Figure 3: After the worst-scoring point is removed from the regression, Figure 4:  After 12 cuts the remaining datapoints (those inside the 
we have the following fit to the remaining 29 datapoints.  The worst convex region defined by the cuts) are relatively close to the optimum, 
predicted point among these is halfway up along the left edge.  Note and the resulting local quadratic regression is an excellent local ap- 

the cut that it causes. proximation. 

Figure 5:   Another function of two inputs. Figure 6: After the first 150 cuts, the region       Figure 7: After the first 180 cuts, the region 
The optimum is on the banana-shaped ridge of interest nicely surrounds the ridge.                     of interest is smaller still, yet continues to sur- 

at (0.75,0.2). 200 datapoints are shown (their round the true optimum, 

heights omitted). 

Table 1 (shown later) gives results for the 2d-functions 
of Figures 5, 15, and 16 for noise levels of 0 and 0.3. 
With no noise, the one-evaluation-per-step version is 
always the best Amoeba. With noise, the best Amoeba 
is problem specific. The best PMAX is also problem 
specific. Q2 adapts well to noise and to differing levels 
of function complexity. Q2 is beaten by the Global and 
mediumly local PMAX for the noisy pure quadratic 
/3(zi,Z2)- In all other cases Q2 wins, but its main 
strength is autonomy: unlike Amoeba and PMAX no 
problem specific parameter needs to be chosen to make 
Q2 perform well. 

Figure 17 shows a simulated, sanitized version of a real 
industrial process. Liquids enter a tank at a certain 
rate (a parameter) and a certain mix-ratio (a parame- 
ter) unless the tank is above a certain level (a parame- 
ter). They react causing a color dependent on the tank 
mix-ratio and the time spent in the tank. Thickener is 

added at a certain rate (a parameter), and the output 
passes through a cooling tunnel to wait on a holding 
belt. While waiting, color may change. When the belt 
fills beyond a certain level (a parameter), production 
halts. Customer demand randomly consumes material 
on the holding belt. The yield is the amount of ma- 
terial that reaches the customer with color lying in an 
acceptable tolerance range. This is a very noisy task. 
The yield is a highly non-quadratic function; one in- 
put is almost irrelevant, the others are all important, 
and two of the inputs must run to their maximum le- 
gal value for best performance. The results are given 
in Figure 18, and show a significant win for Q2. Q2 
and the PMAX's also have far more repeatable results 
than the Amoebas. 

We also applied conventional RSM to this task, using 
a star design prescribed by [1]. The star occupied the 
hyperrectangle defined by the legal ranges of values for 
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Figure 8:  The region of interest selected for       Figure 9:  The region of interest when given        Figure 10: The region of interest when given 

the function of Figure 1 given a dataset of only      30 datapoints. 50 datapoints. 

10 points. 

Figure 11: The region of interest selected for       Figure 12: The region of interest when noise        Figure 13:  The region of interest, when a 

the function of Figure 1 given a dataset of 30      with std. dev.  a = 0.5 is added to the obser-      2.0. 

points, with no noise. vations. 

each input. It needed 76 evaluations, but the chosen 
optimum had a yield below 10 units: worse than all 
the other methods, indicating that the assumption of 
a global quadratic is inadequate in this domain. 

Next, we examine a domain where experiments are 
time-consuming. Figure 19 shows a generalization of 
the multi-buffer machine task described in [7] (this 
makes 10 products instead of 5). There are two in- 
puts defining a simple parameterized policy for when 
to service the machine. Services are costly, but un- 
scheduled breakdown is much worse. This task is eval- 
uated by a computationally expensive simulation; for 
each setting of the two inputs, we perform 10000 simu- 
lation steps to evaluate the performance. Evaluations 
are very stochastic (with highly non-Gaussian noise). 
The results are shown for runs of only 24 experiments. 
Q2 learns a good policy in these 24 experiments, i.e. 
a total of only 24 x 10000 simulation steps. This com- 
pares favorably with the tens of millions of simulation 
steps needed for reinforcement learning in [7], but Q2 
is unlikely to find as good a policy as their semi-MDP 
formulation. 

The final results show Q2 being used for root-finding 

instead of optimization. The hand position in Fig- 
ure 21 is a noisy function of 0i and 02. The task re- 
quires us to achieve the goal hand position. Although 
space permits no details, the version of Q2 for root (or 
target) finding uses linear instead of quadratic regres- 
sion in its ROIs. The results are shown in Figure 22. 
Figure 23 shows the results when, on each experi- 
ment, the target position is varied randomly within the 
workspace. Amoeba, a pure optimization method for 
a fixed goal, is no longer applicable here, but PMAX 
and Q2 can still be used because their decision making 
simply requires a dataset of previous experiences. Q2's 
ability to tune its regions of interest decisively beats 
all PMAXs. 

Mean over all 100 trials Mean over last 25 trials 

PmaxGlobal -0.417 _»- -0.368  -»- 

PmaxLocal -0.402 -♦_ -0.342   —»- 

PmaxVLocal -0.475-»- -0.418 -f- 

Q2 (Linear) -0.042              . -0.021              . 

Figure 23:  Performance on kinematics when the target 

varies during each experiment. 
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Mean over all 60 trials Mean over last 15 trials 

Amoeba 1.040 »  

Amoeba2 1.130    —i— 

Amoeba4 1.181      —«— 

Amoeba8 0.950—t— 1.209      —i— 

PmaxGlobal 1.667                           ♦ 1.812                              ♦ 

PmaxLocal 1.681                          . 1.846                               . 

PmaxVLocal 1.517                      ♦ 1.691                         ♦ 

Q2 1.716                             . 1.894                                . 

Figure 14: Performance on /i(xi,*2) from Figure 1. 

Noise 
0.0 

f2(xi,X2) 

Figure 15: f3{xi,X2): a simple (pure 
quadratic) two-input function with an 

optimum at (0.5,0.5). 

Mean over all 60 trial! Kaan over last 15 trials 

Amoeba 2.16! •+ ^2.509                                 ( 

Amoeba2 1.879 ->- 2.250 -»- 
Amoeba4 1.S76 -»- 1.993 ->- 
AmoebaS 1.202-f- 1.8« —♦— 

PmaxGlobal 1.735 -*- 1.859 -•- 
PmaxLocal 1.866 * 2.116 -f- 

PmaxVLocal 1.938 ♦ 2.268 ♦ 

02 1.968 ♦ 2.176 • 

Noise 
0.3 

Kean over all 60 trials Mean over last 15 trials 

Amoeba 1.633        —e— 1.728          —♦— 

Amoeba2 1.656          -»- 1.819              —4— 

Amoeba4 1.479      -»- 1.849 —1— 

AmoebaB 1.182-4- 1.802 -4- 

PmaxGlobal 1.769               -4- 1.909 ->- 
PmaxLocal 1.861                  + 2.092 -4- 

PmaxVLocal 1.835                  ♦ 2.117 ♦ 
02 1.859                  . 2.388 4 

h(x\,X2 ) 
Kean over all 60 trials Mean over last 15 trials 

Amoeba 1.985 * 2.000                                 ( 

kmoeba2 1.970 -4- 2.000                                 1 

Amoeba4 1.940                —4— 1.996                                • 

Amoebae 1.982                            -4- 

PmaxGlobal 1.953 •*■ 1.998                                 • 

PmaxLocal 1.953 ■4- 1.998                                 t 

PmaxVLocal 1.938 ♦ 1.994                                • 

02 1.959 •«- 2.000                                 ( 

Mean over all 60 trials Mean over last 15 trials 

Amoeba 

Aaoeba2 1.871 -4- 1.890                  —4— 

Amoeba4 1.904 -4- 1.954                            -4~ 

Amoeba8 1.865 -♦- 1.936                         -4- 

PmaxGlobal 1.910 •4- 1.979                                < 

PmaxLocal 1.911 + 1.984                                 < 

PmaxVLocal 1.787 ♦ 1.868                  -4- 

02 1.892 -4- 1.944                           -t- 

Figure 16: /4(zi,X2): a function in 
which the only relevant direction is x+ 

y. The optima lie along a diagonal 

ridge. 

fi{xi,.X2) 

Mean over all 60 trials Mean over last 15 trials 

Amoeba 1.816                          • 2.000                              t 

Amoeba2 1.631                        ♦ 1.999                                I 

Amoeba4 1.275              -4- 1.944                               < 

AmoebaS 0.700-e- 1.158         —»— 

PmaxGlobal 1.618                       + 1.803                            . 

PmaxLocal 1.691                          . 1.870                             < 

PmaxVLocal 1.661                         • 1.908                              < 

02 1.730                           • 1.999                                ■ 

Mean over all 60 trials Mean over last 15 trials 

Amoeba 0.B0B—»— 0.861  ■  

Amoaba2 0.075   —I— 1.009      1  

Amoeba4 0.962      —♦— 1.38B               1  

Amoebae 0.637-4- 0.956     —«— 

PmaxGlobal 1.549                       + 1.738                           + 

PmaxLocal 1.619                         ♦ 1.843                              « 

PmaxVLocal 1.489                      « 1.756                            « 

02 1.675                          ( 1.947                                t 

Table 1: Optimization results for seven optimizers on three problems at two noise levels. 

6    CONCLUSION 

This paper has highlighted the importance of Black 
Box Noisy Optimization, surveyed possible ap- 
proaches, and then introduced a new algorithm: Q2. 

Algorithms like Newton's method, golden ratio search 
and conjugate gradient [11] maintain a region expected 
to contain an optimum and in which future experi- 
ments will occur. Q2 tries to do the same thing with 
two innovations. First, it can derive a ROI from a 
previous dataset irrespective of how that dataset was 
collected. Second, Q2 can survive noise. Q2 is also 
related to RSM and traditional instance-based learn- 
ing. Future Q2 work will include trials on real pro- 
cesses, batching experiments, semi-quadratic regres- 
sion for high dimensions, and survival of slowly time- 
varying systems. 

Future work: This algorithm only finds local optima: 
what can be done to encourage further exploration for 
alternative optima? We also hope to produce a for- 
mal characterization of when this approach will best 
work. The main limitation is that the computational 
cost grows rapidly with the number of inputs, and the 

current Q2 is unlikely to be useful above 10 inputs. 
We have begun investigation into versions applicable 
to hundreds of inputs. 
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Abstract 

We apply various generalizations of weighted 
majority prediction algorithms for on-line 
prediction of binary relations to the problem 
of predicting personal preferences over infor- 
mation contents, which is a key issue in col- 
laborative filtering. Note that the collabora- 
tive filtering problem can be casted as learn- 
ing a binary relation between the users (as 
the rows) and the contents (as the columns). 
The original prediction algorithm of Gold- 
man and Warmuth [GW95] makes its pre- 
diction by majority voting by the rows with 
observed data in the same column, weighted 
by the believed similarity between the rows. 
In the present paper, we propose a general- 
ization 'G-Learn-Relation' of their algorithm 
to the multi-valued setting, and empirically 
demonstrate that it performs better than ex- 
isting filtering methods based on correlation 
coefficients, both on simulated and real data. 
The performance comparison was done in 
terms of the total number of prediction mis- 
takes and the measures of precision and re- 
call. Additionally, we propose a version of 
G-Learn-Relation that makes use of indirect 
evidence available as believed similarity be- 
tween other rows, and another version in 
which both row similarity and column sim- 
ilarity are used for prediction. In both cases, 
significant improvement was observed in ex- 
periments involving simulated data. Finally, 
we give a theoretical performance guarantee 
for G-Learn-Relation in terms of an upper 
bound on the worst case number of mistakes, 
which together with a lower bound on the 
number of mistakes made by a correlation- 
based method establishes that its worst case 
performance is better than the correlation- 
based methods. 

1    Introduction 

We apply various generalizations of weighted majority 
prediction algorithms, proposed in the context of on- 
line prediction of binary relations, to the problem of 
predicting user's preferences on information contents. 
This is a key issue in personalized information filter- 
ing, an area that is gaining increasing attention in in- 
ternet related technology. Information filtering tech- 
niques known in the literature can, for the most part, 
be classified into two types. One is the contents-based 
approach to filtering, which is based on the features 
of the actual contents such as word counts, and the 
other is the so-called collaborative (or social) filter- 
ing approach, which makes use of similarities between 
the users observed in the past scoring data represent- 
ing their preferences. Methods combining the two ap- 
proaches have also been proposed. In this paper, we 
are concerned with the latter approach, namely filter- 
ing methods that are based solely on the scores given 
by the users on the contents. 

Existing methods of collaborative filtering [RISBR94, 
SM95] make use of correlation coefficients. In this ap- 
proach, the preference of a user on a particular con- 
tent is predicted by taking a weighted average of all 
scores given to that content by various users in the 
past, weighted by the correlation coefficients between 
their scores and those of the user in question, calcu- 
lated using scores given to common contents.1 These 
methods are based on a reasonable intuition that corre- 
lation coefficients can quantify the similarity between 
the users' preferences but one shortcoming of this ap- 
proach is that the estimation confidence of the corre- 
lation coefficients is not taken into account. 

As a way to address this issue, we resort to on-line pre- 
diction algorithms for binary relations proposed and 
studied in the areas of computational learning theory 

'It has been reported that a variant of this method that 
uses a threshold and a fixed average do the best among var- 
ious methods based on the correlation coefficients [SM95]. 
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and machine learning [GR.S93, GW95, NA95]. Note 
that, information filtering can in principle be viewed 
as a learning problem for a binary relation, in which 
a user is related to a content just in case he or she 
prefers it. Such a binary relation can be represented 
by a 0,1-valued matrix, in which the rows represent 
users and the columns represents contents. In par- 
ticular, we make use of the weighted majority pre- 
diction algorithm proposed and analyzed by Goldman 
and Warmuth and its generalizations [ALN95]. These 
methods learn weights that roughly represent the be- 
lieved similarities between the rows (and columns) and 
make predictions by weighted majority voting. Here 
we further extend these algorithms so as to handle the 
cases in which the scores are not necessarily binary but 
many-valued. 

First, we generalized the original weighted majority 
prediction algorithm 'Learn-Relation' [GW95] into the 
many-valued setting. (We call the generalized algo- 
rithm 'G-Learn-R.elat.ion.') We evaluated the perfor- 
mance of this method using both simulated and real 
data. In our evaluation, we considered that a predic- 
tion whose round-off integral value is at most one off 
the correct value to be correct and all others to be 
mistakes. The experimental results indicate that G- 
Learn-Relation out-performs the best known method 
based on correlation coefficients in experiments using 
both simulated and real data, in terms of the total 
number of mistakes. With respect to more widely used 
measures of precision and recall, G-Learn-Relation had 
a better overall performance as well. Furthermore, 
it was found that G-Learn-Relation is less sensitive 
to the choice of its parameters, as compared to the 
correlation-based methods. 

Next, we evaluated the effect of using the similarities 
between the columns as well as the rows in making 
predictions. It has been verified, using several two- 
dimensional extensions of Learn-Relation, that such 
an approach can improve the predictive performance 
in another application domain [ALN95]. In our exper- 
iments using simulated data, the effect of using both 
rows and columns was observed for both correlation- 
based methods and for G-Learn-Relation, the two- 
dimensional extension of G-Learn-Relation being the 
most favored. With respect to real data, however, the 
effect was minimal. This may be attributable to the 
fact that the real data used in our experiments had 
very uneven number of rows and columns (48 rows 
and 277 columns). 

As an attempt to further improve the performance of 
G-Learn-Relation, we enhanced its prediction by us- 
ing indirect evidence. In particular, we incorporate 
an idea suggested by Lang and Baum [LR97] into 
the weighted majority prediction algorithm. Their 
method, which they call 'triple row,' is based on the 

idea that 'a friend's friends is a friend, too' (and a 
friend's enemy is an enemy, too. ) That is, in deter- 
mining the similarity between two rows, we take into 
account the (dis)similarity between the two rows and 
a third row. Our experimental results indicate that 
this enhancement results in a significant performance 
improvement on simulated data, but on real data the 
effect was inconclusive. 

Finally, we give a theoretical performance guarantee 
for G-Learn-Relation in terms of an upper bound on 
the worst case number of mistakes it makes. We 
also show a lower bound on the worst case number 
of mistakes made by the correlation-based method 
and establish that the worst case performance of the 
weighted majority type algorithms is better than that 
of the correlation-based methods. 

2 The problem formulation 

Collaborative filtering using methods that are based 
solely on the scores given by the users on the con- 
tents can be viewed as an on-line prediction problem 
for binary relations (and multi-valued functions). The 
target binary relation (or function) can be represented 
by a matrix M, whose «,j-entry represents the score 
given by user i on contents j. On-line learning pro- 
ceeds as follows. At any given time /, the learning al- 
gorithm is given an arbitrary pair i,j and predicts its 
value as A/;J, based on an observation matrix O'. Here 
an observation matrix O in general satisfies Ol; = Mjj 
whenever the i,j entry has been observed, and Ojj = * 
otherwise. The learner is then given the actual value of 
Mjj, and Ox is updated (to Ot+1) accordingly. Start- 
ing initially with O0 whose elements are all *, the 
above process is repeated until the matrix is fully ob- 
served, namely until Ol = M. In our experiments, 
we assume that the scores arc integers between 1 and 
5 (5 being the highest score) and prediction is done 
with a real number. A prediction is considered correct, 
if its round-off value2 is at most 1 different from the 
correct value. The performance of an on-line learn- 
ing algorithm is measured in terms of the total num- 
ber of mistakes in the entire trial sequence, often as 
a function of various parameters quantifying the size 
of the problem. These include the numbers of rows 
and columns as well as the numbers of row types and 
column types, where two rows /,/' are said to belong 
to the same type, if they agree in all columns, namely 
if Mjj = M,,j holds for all j. (The column types are 
similarly defined.) 

3 Algorithms Employed 

In this section, we describe the generalized weighted 
majority    algorithms   we   propose    in    this   paper. 

For example, the round-off values of 3.4 and 3.5 are 3 
and 4. respectively. 
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The original weighted majority prediction algorithm 
(Learn-Relation) makes its prediction My by weighted 
majority voting by all rows ■/' such that the entry Mi>j 
in the same column has been observed, each weighted 
by the weight ww representing the believed degree of 
similarity between the rows i and /'. The weights are 
updated by multiplying those contributing to the cor- 
rect value by (2-7) and those contributing to a wrong 
value by 7, for some 7 < 1. Note that this update is 
equivalent to defining the weight ww at each trial as 
(2 — ■))C""2W"1, where Cw is the number of times i' 
has voted for a correct value in row / and Ww the 
number of times it voted for a wrong value. 

G-Learn-Relation generalizes Learn-Relation for 
multi-valued functions by letting each row i' vote for 
all values (in V(a)) within a permitted tolerance from 
its predicted value a = MJJJ. Its weights are updated 
in the same manner as in Learn-Relation. 

G-Learn-Relation(0 < 7 < 1) 
With each row pair (?',«') is associated a weight, ivw ■ 
We let A denote the range of entries of M, and for any 
a G A, V(a) denotes the set of prediction values that 
are considered correct when the true value is a. 
Initialization: iuw := 1 
Prediction: 

Prediction: 

Mij = 

arg max       N ivw      if {1  : O,;/,- ^ *} ^ 
a£A *■—' 

i':0,,,eV(o) 
CQ(a constant) otherwise 

Weight update: For al i'(^ i) such that 0,;<j ^ * 

._ /  (2 - y)wu 
ywu' 

if Oi>j G V(Mij) 
if Or, $ V(Mij) 

Note in the above (and else-where) that Co is the 
default value which is used to predict when no rele- 
vant observations have been made. In all the filter- 
ing methods we describe here and in all of our experi- 
ments, we set Co = 3. Also in our experiments we set 
V(a) = {x G A : a - 1 < x < a + 1}. 

We also consider an extension of G-Learn-Relation, 
which we call Cross-G-Learn-Relation, which makes 
use of observed values in the same row and differ- 
ent columns, in addition to those in the same column 
and different rows. (This is a generalization of the 
two-dimensional weighted majority algorithm called 
WMP2 proposed in [ALN95].)' 

Cross-G-Learn-Relation(0 < 7 < 1) 
With each row pair (i, i') is associated a weight, -ww, 
and with each column pair (j,f) is associated a weight, 

Mij = { 

'»'+       J2      wh') arg max > 
«':0,./7-eV(a) j':0,7,eV(a) 

ifii'^Oi.jt^UiJ'-.'Oij.j:*}^® 
C0(a. constant) otherwise 

Weight update:   Update ww as in G-Learn-Relation 
and additionally for all j'(/ j) such that 0,:;/ ^ *, 

33 

(2-7)u£,     ifOy. eV(Mij) 
jw]jt if Oij.^ViMij) 

Next the version of G-Learn-Relation in which we 
incorporate indirect evidence, referred to as Learn- 
Relation-IE, enhances the weights used in G-Learn- 
Relation by taking into account indirect evidence. If 
we let da' — Cw — Ww with C,;,;/ and Ww as defined 
above, then roughly speaking dw > 0 is evidence for 
row i being similar to row i', and dw < 0 for the con- 
verse. If, for some third row i", we have both <:/,;,:<< > 0 
and dmji > 0, then this can be used as indirect evi- 
dence for i and i' being similar. Conversely, if we have 
du" -c/,:'j» < 0, then this is indirect evidence for i and i1 

being dissimilar. Thus, we redefine the weights of G- 
Learn-Relation by adding 6-mrn{\dw> |, K',:» |} to Cw if 
du» > 0 and d,y,;» > 0, and adding fi-min{|dü»|, |cA'?:"|} 
to Ww if dw1 ■ di'i" < 0, where 6 is a small constant 
controlling the degree of contribution of indirect evi- 
dence. The rest of the algorithm (prediction and direct 
weight update) is the same as G-Learn-Relation. 

Learn-Relation-IE(0 < 7 < 1, 0 < S) 
With   each   row   pair   (i, i')   is   associated   counters 
Cw, Ww■ 
Initialization: Cw — Ww '■= 0 
Prediction: Predict as in G-Learn-Relation, except the 
weights ww are calculated as follows. 

dw    —    Cw — Ww 

Cw + &        X/        m'n{ 1^"" I' 1^'«" 1} 
rfi,//>0,(iJ/i;;>0 

Wu> + 6      ^2      min{|djj»|,|rfj/s-//|} 

(2-7)e"'7/"' 

C i i'       — 

Jii' 

Wit' 

Update: For all i'(£ i), 

Ww ~ Ww + 1 
ifOvj €V{Mtj) 
if Oilj^V{Mij) 

Initialization: ww 33 
:= 1 

We compare the performance of these generalized 
weighted majority algorithms against standard meth- 
ods based on correlation coefficients. Here we infor- 
mally describe these methods and refer the interested 
reader to [SM95] for detailed definitions. Like G- 
Leam-Relation, the correlation-based methods make 
predictions by weighted voting by different rows for 
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which the entries in the same column have been ob- 
served, except the weights between the rows are com- 
puted using "correlation coefficients." The correlation 
coefficient between any pair of rows is calculated using 
(.he observed values in those rows in common columns. 
Following [SM95], we also consider three variants of 
the basic correlation-based method (also known as 
Pearson r method): The I hresholded method (Pear- 
son r L = 0) which lets only rows with a corre- 
lation coefficient higher than threshold 0 vote: the 
constrained method (constrained Pearson r) which 
fixes the average in calculating the correlation coeffi- 
cients at a constant rather than calculating it from the 
data (in our experiments it was fixed at 3). and the 
combination of the two: the thresholded constrained 
method (constrained Pearson r /, = 0). 

4 Experiments 
4.1     The data 

In our experiments, we made use of artificially con- 
structed (simulated) data, as well as real data obtained 
through actual experiments on collaborative filtering 
in a. patent clipping service [AI97]. The simulation 
data we used were for a target matrix of size 100 by 100 
with 5 row types and 5 column types, with noise added. 
We first generated a 5 by 5 matrix Mi, by randomly 
assinging one of four groups {1,2}. {2. 3}, {3,4}, {4,5} 
to each of its entries. Then, based on Mb, we gener- 
ate a 100 by 100 matrix M by randomly assigning one 
of the five rows of A//, to each row of M. and one of 
the five columns of Mi, to each column of M. Finally, 
we introduce noise by probabilistically assigning one 
of five scores (1 through 5) to each group according to 
the following probability table. For example, if row /' 
of Mi, is assigned to row / of M. column / of Mi, is as- 
signed to column j of M. and the group assigned to the 
•/',/-entry of Mi, is {2,3}, then, the scores 1,2.3.4 and 
5 are assigned to the /,j-entry of M with probability 

Tj-, \ — %, \ — -y, $ — '\ and ~-, respectively. 

entry vnluo 

of Mh 

probability of assigning each score 
1            2 3                 4             5 

{1,2} I        I _ ü a          0            a"          ft'           n" 
•)           •>            •)            ')            •> 

{2,3} a             I         n 
')             '2         2 

{3,4} 2            't           v 

{4,5} 
ill        2L        ill 

'>           •>            •> £L _ 111          1 _ £.            1 
•)          ')            •>         •>             9 

In our experiments, we set n = 0.1, which translates 
to noise rate of 0.07.r). 

The real data we used in our experiments are scores 
given by various people on patents according to their 
interests. Scores were given by 77 people on 2558 
patents, with about, 5.4 per cent of the entries filled. 
Since on those entries for which few related entries are 

known, none of the filtering methods considered hero 
would do well, wo extracted a portion of this data by 
restricting the people to those who scored at least- 50 
patents, and the patents to those that were rated by 
at least 10 people. This resulted in reducing the ma- 
trix to 48 people by 277 patents, and 29 per cent of 
this smaller matrix was filled. The scores, which arc 
integers between 1 and 5. are distributed as follows. 

1 2 3 4 5 Total 
1541 (559 590 (500 425 38 15 

Note that the higher the score of a patent is the more 
interesting it is perceived by the user who scored it. 

In our experiments involving simulated data, the per- 
formance of each method was averaged over 4 random- 
ized runs on 4 randomly generated target matrices, 1(5 
runs in total. For the experiments with real data, we 
took average over 4 randomized runs for each method. 

4.2     Comparison with Correlation-based 
methods 

First, we compared the predictive performance of (i- 
Learn-Relation against those of the four variants of 
correlation-based methods described in Section 3, For 
the threshold value in a thresholded method, and for 
the value of 7 in (i-Learn-Rolation(-)■), we tried all mul- 
tiples of 0.1 between 0 and 1. The results are shown 
in Figure 1. Among the correlation-based methods, 
it is verified that the thresholded constrained Pear- 
son r method did the best, as reported in [SM95]. It is 
clear that Ci-Learn-Rolation out-performed all of these 
methods on real data, and it was essentially tied with 
the best of all the correlation-based methods on sim- 
ulated data. On real data, this tendency is more ev- 
ident for column(patent)-based methods, but as the 
column-based methods perform better than the row- 
based methods, Ci-Learn-Rolation is clearly the best 
performing method overall. 

We also evaluated these methods using measures that 
are more often used in practical applioat ions, preci- 
sion and recall. Figure 2 compares precision and re- 
call (in the last 200 trials at each trial) for the two 
thresholded correlation-based methods and (i-Learn- 
Relation. Figure 3 plots a combination of those two 
measusres called 'F-moasure' (more precisely I']n=\ in 

[Lewis94]), namely f,, }v where P stands for precision 
and R for recall. 

These graphs were obtained using real data using simi- 
larity between patents. We considered the entries that 
were given the score of 5 as desirable and predicted 
valued of at least 3.5 to be selected* We can see that 
(i-Loarn-Rolation achieves the highest  recall rate and 

''The precision is calculated as -—^. where ;V, is the num- 
ber of selected  entries and   A7,   is  the number of com fill/ 
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Figure 1: Correlation-based methods vs. G-Learn-Relation: Left graph: cumulative number of mistakes; Right 
graph: error rate in the last 200 trials. Top: simulated data; Middle: Real data (similarity between people); 
Bottom: Real data (similarity between patents). 

the precision is comparable to others.  Note that the 
thresholded constrained Pearson method which enjoys 

selected entries of those. The recall is jjf-, where Nj is the 

number of desirable entries. 

the highest precision suffers from having a very low 
recall rate. 

Another desirable aspect of G-Learn-Relation is its rel- 
ative insensitivity towards the exact choice of its pa- 
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Figure 2: Procision(left) and recall(right) in the last 200 trials. 
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rameter (7.) Figure 4 shows how the predictive perfor- 
mance of G-Learn-Rolation and the thresholded con- 
strained correlation method vary, as we change their 
parameters. From the data we can see that the perfor- 

mance of the thresholded correlation-based method is 
extremely sensitive to small changes in the threshold 
value in a certain range. In contrast., small changes in 7 
of (i-Learn-Relat ion do not significantly affect its pro- 
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Figure 3: F-measure (75^) in the last 200 trials. 

dictive performance. This phenomenon is especially 
noticeable on the simulated data, although the same 
tendency is observed in the real data. In a practi- 
cal application, a wrong choice of threshold could be 
costly for correlation-based methods. 

4.3 Using both rows and columns 

We evaluated the performance improvement brought 
about by the 'cross-methods,' namely methods that 
make use of both row similarity and column sim- 
ilarity, on G-Learn-Relation and the best perform- 
ing correlation-based method - the thresholded con- 
strained Pearson r method. 

The results of this experimentation are shown in Fig- 
ure 5. On the simulated data, it is observed that G- 
Learn-Relation is more radically by the cross method, 
and as a result its cross version clearly out-performs 
that of the Thresholded Constrained Pearson r. On 
the real data, however, the performance of the cross 
method (for both G-Learn-Relation and Constrained 
Pearson r) was comparable to that of the column-based 
method, although it was significantly better than the 
row-based method. This may be partly attributable 
to the asymmetry of the real data we used: there were 
only 48 rows whereas there were 277 columns. In prac- 
tical applications with more even numbers of rows and 
columns, the effect may be more visible. 

4.4 Using indirect evidence 

We compared the performance of Learn-Relation-IE 
and that of G-Learn-Relation, as well as their respec- 
tive 'cross' versions. Of the two parameters y,S in 
Learn-Relation-IE(7,6), the same choice of 7 was used 
as G-Learn-Relation, and the best choice (out of a 
few) was used for 6. The results are shown in Fig- 
ure 6. On the simulated data, it is observed that 
the performance is improved significantly for both G- 
Learn-Relation and Cross-G-Learn-Relation, for a cer- 

tain range of trial numbers; trials around 1,000th to 
3,000th out of 10,000. On real data, unfortunately, no 
significant improvement was observed, except a little 
for the row(people)-based method. It may be that, 
with this particular data set, the range of trial num- 
bers on which significant improvement is achieved is 
yet to come. 

5    Theoretical analysis 

In this section, we theoretically analyze the perfor- 
mance of G-Learn-Relation and that of correlation- 
based methods. In particular, we prove an upper 
bound on the worst case number of mistakes made 
by G-Learn-Relation. We also show a lower bound 
on the worst case number of mistakes made by the 
correlation-based method, which shows that, as a 
learning method, the correlation-based method does 
not necessarily converge, and can make a huge num- 
ber of mistakes in the worst case. 

5.1     Mistake bound for G-Learn-Relation 

It can be shown that the upper bound obtained by 
Goldman and Warmuth for Learn-Relation can be gen- 
eralized for G-Learn-Relation, when the target func- 
tion is real-valued and  V(a) is defined as  V(a)   = 

Vd(a) = {x:a-d<x<a+-d}. 

We need a few definitions to state our result. Let p be 
a partition over the set of rows R, kp the size of the 
partition, and p = {S1, ...,Sk*}. Them Let *»■,- = |5*| 
and S] = {Mrj; : r 6 S% Let ßfa$S].) he the number 
of r E S'; such that Mrj E Vk ([<*'), and define 

6{j = Hi — maxj\fa(Sj). 

Let the set of columns be {1,..., ra}. Let 6j. — Y2j=i % 

and define the noise ap of partition p as ap = J2iLi h- 
Then, the following theorem holds. 

Theorem 1 For all 7 6 [0,1), Algorithm G-Learn- 
Relation(y) makes at most 

mm < kpm. + min 
2jloge + ap(n- kvm )M 

log! 2 
+ß 

\ 

3ra?i2 log kp + 2ap(mn — ap) log A 

lo§w 
mistakes. Here, ß — ^—, and the first minimization 
is with respect to all possible partitions p satisfying the 
following condition: 

(1) Si < nj,m/'2 for all i = 1,..., kp. 

The proof is similar to the proof of the analogous the- 
orem for Learn-Relation in [GW95], and omitted due 
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to lack of space. The condition (1) states that more 
than half the elements in each partition assumes a rep- 
resentative value. This is reasonable, and note in par- 
ticular, that it, always holds when the target function 
is binary. Now, by plugging in -, = 0,or = 0 in the 
above theorem, we obtain the following as corollary. 

Corollary 1 For any noise-le ss parlilion p (willi 
ap — 0), Algorithm (i-iearn-R< lation(O) makes at 
most 

kpiv + min <\ — log r. yj'.htn)- log /-,, 

mistakes. 

5.2     A mistake* lower hound for the 
eorre.lation-hased methods 

We show that, in the absence of noise, the correlation- 
based method can make a lot more mistakes in the 
worst case than G-Learn-Relation(O) with V(a) = {a}. 

For this analysis, we assume that a prediction is correct 
only when the round-off value equals the correct value. 

Theorem 2 In the worst case, any of the four 
correlation-based methods can make as many as nnt/C 
mistakes, where u is the number of rows and in is the 
number of columns, and C is a positive constant. 

Proof 
We first prove the statement for the basic correlation- 
based method with no threshold and no constraint. 
Suppose that the target matrix consists of many repe- 
titions (in both row and column directions) of the fol- 
lowing block consisting of two types of rows and four 
types of columns, where / ranges over 0 to ;JI/8 — 1. 

Column 
No. 

8/ 
+ 1 

8/ 
+2 

8/ 
+3 

8/ 
+4 

8? 
+5 

8/ 8/ 
+7 

8/ 
+8 

Type 1 5 1 5 1 5 1 5 1 
'type 2 1 5 5 1 !) 1 5 1 
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Thus if the target matrix were'?», by in, it would consist 
of n/2 rows of type 1 arid nj'2 rows of type 2, and 
each type of row would consist of 7Ji/8 repetitions of S 
columns. Suppose that the trials proceed from left to 
right and top down by blocks. Within each block, the 
trials proceed by column, except the first, two columns 
(8i + 1-st and Si + 2-nd columns) are predicted in the 
row-first ordering. That is, after predicting the 8/ + 1- 
st column in the type 1 row, the 8» + 2-nd column in 
the same row is predicted before the two columns in 
the other (type 2) row are predicted. Note, with this 
ordering, that when predicting an 8i + 1-st column of 
any block, the average of the past values for any rows 
is 3. It can be shown that, when the correlation-based 
method is predicting an entry in the 8i+ 1-st column, 
the predicted value will not exceed 3 + 2/3 for a row of 
type 1, and it will be at least 3 - 2/3 for a type 2 row. 
This is because the number of known entries in a row 
of the same type does not exceed the number of known 
entries in a different type of row. Thus, the correlation- 
based method makes a mistake on every entry in the 
8i + 1-th column. Hence, if n is the number of rows 
and 77i is the number of columns, it will make at least 
nm/8 mistakes. 

Note that the above argument applies on the con- 
strained correlation-based method, since the average 
is fixed at 3. A thresholded correlation-based method 
can beat the above example by setting the threshold to 
be higher than 1/2, but for any fixed value of thresh- 
old, an analogous example can be constructed by mak- 
ing the block longer, repeating the last two columns an 
appropriate number of times. This would yield a sim- 
ilar bound, except a different constant replaces 8. D 

In contrast, we know from Corollary 1 that G-Learn- 
Relation(O) makes at most 2m+n\/3m mistakes. Note 
that as m and n become large, the final error rate of 
G-Learn-Relation(O) will approach zero (the learning 
converges), but the error rate of the correlation-based 
method (in this worst case) will not be lower than 1/C. 

6    Concluding remarks 

We have applied weighted majority type prediction 
algorithms on the problem of collaborative filtering, 
and empirically demonstrated that they perform bet- 
ter than the correlation-based filtering methods. In so 
doing, we proposed a generalization G-Learn-Relation 
of the weighted majority prediction algorithm of Gold- 
man and Warmuth [GW95] to the multi-valued set- 
ting, and gave a theoretical performance guarantee on 
the performance of this algorithm. Additionally, we 
proposed a version of G-Learn-Relation that makes 
use of indirect evidence, as well as a version in which 
both row similarity and column similarity are used for 
prediction. In both cases, significant performance im- 
provement was observed in experiments involving sim- 

ulated data. It is left as future research to verify the 
same on real data, which we believe will require larger- 
scale experiments. 
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Abstract 1    Introduction 

We consider feature selection in the "wrap- 
per" model of feature selection. This typi- 
cally involves an NP-hard optimization prob- 
lem that is approximated by heuristic search 
for a "good" feature subset. First consider- 
ing the idealization where this optimization is 
performed exactly, we give a rigorous bound 
for generalization error under feature selec- 
tion. The search heuristics typically used are 
then immediately seen as trying to achieve 
the error given in our bounds, and succeed- 
ing to the extent that they succeed in solv- 
ing the optimization. The bound suggests 
that, in the presence of many "irrelevant" 
features, the main source of error in wrap- 
per model feature selection is from "overfit- 
ting" hold-out or cross-validation data. This 
motivates a new algorithm that, again under 
the idealization of performing search exactly, 
has sample complexity (and error) that grows 
logarithmically in the number of "irrelevant" 
features - which means it can tolerate hav- 
ing a number of "irrelevant" features expo- 
nential in the number of training examples 
- and search heuristics are again seen to be 
directly trying to reach this bound. Experi- 
mental results on a problem using simulated 
data show the new algorithm having much 
higher tolerance to irrelevant features than 
the standard wrapper model. Lastly, we also 
discuss ramifications that sample complexity 
logarithmic in the number of irrelevant fea- 
tures might have for feature design in actual 
applications of learning. 

In recent years, Feature Selection for classification 
and regression has been enjoying increasing interest 
in the Machine Learning community. Impressive per- 
formance gains have been reported by numerous au- 
thors, and numerous feature subset search heuristics 
have been proposed. (The literature is too wide to sur- 
vey here, but see [Langley, 1994] and [Miller, 1990] for 
overviews.) In view of these significant empirical suc- 
cesses, one central question is: What theoretical jus- 
tification is there for feature selection? For example, 
in parametric function approximation schemes such as 
linear regression, it is often the case that excluding a 
feature is mathematically identical to setting the co- 
efficient's) associated with that feature to 0. As fea- 
ture selection typically runs a risk of misidentifying the 
"irrelevant" features, why then is it apparently often 
superior to try to estimate which features are "irrele- 
vant" and set their coefficients to 0, rather than leave 
them and use the estimated coefficients for these fea- 
tures (which will typically be near 0 anyway)? The 
theoretical results in this paper will address this ques- 
tion. 

Since feature selection attempts to eliminate "irrele- 
vant" features, another central question is: How does 
the performance of feature selection scale with the 
number of irrelevant features? The Winnow algorithm 
of Littlestone for learning Boolean monomials, or more 
generally also A--DNF formulae and r-of-A: threshold 
functions (over boolean inputs), from noiseless data 
enjoys worst-case loss logarithmic in the number of 
irrelevant features [Littlestone, 1988]. Likewise, the 
EG algorithm for linear regression with quadratic error 
also has such loss (and indeed sample complexity) that 
grows logarithmically in the number of irrelevant fea- 
tures [Kivinen and Warmuth, 1994]. For learning from 
noiseless data, of a representation of a boolean concept 
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(over boolean inputs), Almuallim and Dietterich have 
also shown that an algorithm that finds the smallest 
set of features consistent with the training data (such 
as by exhaustive enumeration) also enjoys loss loga- 
rithmic in the number of irrelevant features [Almual- 
lim and Dietterich, 1994]. If it were true in general 
that feature selection makes sample complexity loga- 
rithmic in the number of irrelevant features (though 
possibly depending more heavily on the number of rel- 
evant features), then this would imply, for example, 
that squaring the number of features we have means 
needing only twice as much training data. This could 
have huge ramifications on the way features are de- 
signed for real-world applications. In this paper, we 
will show that, modulo computational and approxi- 
mation issues, this ideal of logarithmic sample com- 
plexity in the number of irrelevant features - which of 
course means being able to handle exponentially many 
irrelevant features as training examples - can indeed 
be achieved with a new feature selection algorithm we 
propose. 

Next, the notion of "relevance" is closely related to fea- 
ture selection. Intuitively, one goal of feature selection 
is to eliminate all but a small set of "relevant" fea- 
tures, which are then given to an induction algorithm. 
However, there have been difficulties with a number 
of definitions of "relevance" [Kohavi and John, 1997], 
and we take the alternative view, which is quite simi- 
lar in flavor to those in [Littlestone, 1988] and [Kivinen 
and Warmuth, 1994], of the goal of feature selection 
as this: If there exists a hypothesis that, using only a 
"small" number of features, gives good generalization 
error, then we want our classifier to achieve close to 
this level of performance with high probability. This 
will be made rigorous in subsequent sections, but note 
in particular that we make no claims towards exclud- 
ing "irrelevant" features or including all the "relevant" 
features, so long as the particular set of selected fea- 
tures allows us to have performance close to that of 
using the "optimal" set of features. 1 In the remain- 
der of this paper, we will use the terms "relevant" and 
"irrelevant" only when we expect them to be consis- 
tent with any reasonable definition of relevance. 

Using the terminology introduced by [John et al., 
1994], feature selection algorithms broadly fall into 
the "filter" and the "wrapper" models. The filter 
model relies on general characteristics of the training 

1 Aside from good generalization error, other goals of 
feature selection might be user-interpretability and parsi- 
mony of hypotheses for fast prediction. We will not address 
these goals in this paper. 

data to select some feature subset, doing so without 
reference to the learning algorithm. In the wrapper 
model, one generates sets of candidate features, runs 
them through the learning algorithm, and uses the per- 
formance of the resulting hypothesis to evaluate the 
feature set. While the wrapper model tends to be 
more computationally expensive, it also unsurprisingly 
tends to find feature sets better suited to the inductive 
biases of our learning algorithm, and tends to give su- 
perior performance [Langley, 1994]. In this paper, we 
study only the wrapper model of feature selection, and 
largely in the context of classification. 

Our analysis is largely inspired by [Kearns, 1996], with 
our theoretical results heavily based on the techniques 
given there and those outlined in [Kearns et al., 1997]. 
We also rely heavily on tools from [Vapnik, 1982], that 
give a very general framework for bounding the devi- 
ation of training error from generalization error. 

2    Preliminaries. 

2.1    Feature Selection 

Let X be the fixed /-dimensional input space, where / 
is the number of features in the inputs we are provided. 
For simplicity, we also assume a fixed binary concept 
c : X i—► {0,1}. We are provided m training exam- 
ples S = {ar'jj/^Jlj, with each of the /-dimensional 
input vectors xi — [x[ x\ ... x%

f]
T drawn i.i.d. from 

some fixed distribution Dx over X, and correspond- 
ing labels yi = 0(0;*) e {0,1}. In this development, 
we will also briefly consider the case where the labels 
are independently corrupted by noise with a noise rate 
77 € [0,0.5), so that yi = c(xl) with probability 1 - n, 
and y* = 1 - c(xV) with probability 77. Note that c 
may use all / features, but we hope that it can be ap- 
proximated well (in the generalization-error sense, to 
be defined shortly) by a function that depends only on 
a small subset of the / features. 

We will use uppercase F to denote sets of features, 
and use Fi to identify the i-th feature. For exam- 
ple, the feature set including the 1st, 4th and 10th 
features may be written F = {Fi,F4,Fi0}. For any 
input vector x, let x\p be x with all the features not 
in F eliminated; sometimes, we will call this "x re- 
stricted to F." Analogously, let X\F denote the in- 
put space X with all the dimensions/features not in 
F eliminated, and S\p be the data set S with each 
xi replaced by xx\p- In a slight abuse of notation, if 
we have a hypothesis h : X\p 1—► {0,1} defined only 
the subspace of features X\F, we extend it to X in 
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the natural way (with h ignoring features not in F). 
Thus, for any hypothesis h, we can write the gener- 
alization error (with respect to unoorrupted data) as 
e{h) = PrxtzDx[h{x) / c(x)] (where the dependence 
of e{h) on D\ has been suppressed for notational 
brevity,) and the empirical error on a set of data S 
asis(h) = ^\{(x,y)eS\h(x)jty}\. 

2.2    The wrapper model 

In the wrapper model of feature selection suggested 
by [John et al., 1994], we are given a learning algo- 
rithm L that, for any set of features F, takes a training 
set S\F, and outputs a hypothesis h : X\F '—► {0,1}. 
Given a training set S, an application of feature se- 
lection under this model might randomly split S into 
a training set S' of size (1 - 7)771 and a hold-out set 
S" of size jm, and perform a search for a set of fea- 
tures F so that when the learning algorithm is ap- 
plied to S" restricted to F, the resulting hypothesis 
h = L(S'\F) has low empirical error is"(h) on the 
hold-out data S". Here, 7 € [0,1], the fraction of 
S assigned to the hold-out set, is called the hold-out 
fraction. A more sophisticated application of feature 
selection may use n-fold or leave-one-out cross valida- 
tion rather than hold-out. But as they asymptotically 
yield at best small-constant improvements over using 
hold-out and as leave-one-out is at worst little better 
than training error in estimating generalization error, 
while rendering the algorithm's performance much less 
tractable to analysis [Kearns and Ron, 1997], we will 
not explicitly consider them here, though we believe 
our results will be suggestive of the performance of 
these schemes as well. 

For any given learning algorithm L, the optimal way 
to perform feature selection is intimately related to 
the inductive biases of L. For example, if L is "suffi- 
ciently clever" about doing its own feature selection, 
then one would simply give it S unrestricted to any fea- 
ture subset, and allow it to select its own features. For 
this analysis, therefore, we make the (rather strong) 
assumption that given a particular data set S\F, L 
chooses the hypothesis h from some class of hypotheses 
(shortly to be formalized) so as to minimize training 
error. This closely ties in with the learning framework 
studied by [Vapnik, 1982], and is also used in [Kearns, 
1996] and [Kearns et al., 1997] in proving bounds on 
generalization error. We believe it to be a very natural 
model, and that it is a rich enough class of learning al- 
gorithms to merit detailed study. (But also see [Kearns 
et al., 1997] for comments regarding relations to learn- 
ing algorithms that do not exactly do this; for example, 

it is not difficult to derive rigorous generalizations of 
all of our results if L manages to only approximately 
minimize training error.) 

More formally, for any feature set F, we assume that 
we have a hypothesis class HF, of hypotheses each with 
domain X\F- But, with many induction algorithms, 
each feature is treated in a "similar" manner - for ex- 
ample, when X = fcf, then for two feature sets F and 
F' of the same size, it makes intuitive sense to iden- 
tify X\F and X\p> and therefore Hp and HF>, as they 
are both sets of functions mapping from 7£,FI to {0,1}. 
For simplicity, let us further make the assumption that 
the hypothesis class Hp depends on F only through 
|F|, and let Hr be our set of functions with domain X 
restricted to any set of r features. (This assumption is 
not really necessary, but it greatly eases our notational 
burden, and leaving out the assumption does not gain 
much in terms of theoretical results.) It will always be 
clear from context which particular set F of features 
h € #|F| takes as input. Note also that we have as- 
sumed that there is some "uniform" way of handling all 
features, whether they are discrete/continuous, have 
different ranges, etc.. For simplicity, one may wish 
to think of the particular case where all features are 
real numbers for the remainder of this paper. In this 
notation then, our previous assumption of error min- 
imization is that when L is given S\F, it outputs the 
hypothesis h e HF (where HF is identified with H\F\) 
that minimizes training error on S\p- For the remain- 
der of this paper, we will implicitly assume L meets 
these two assumptions - that it treats features "uni- 
formly," and that it minimizes training error over H\F\. 

One more definition we need is to let rye be the 
Vapnik-Chervonenkis dimension [Vapnik and Chervo- 
nenkis, 1971, Vapnik, 1982] of the hypothesis class Hr. 
Normally, we expect 0yC < 1 vc < 2VC < ■ ■ •, though 
this is not an assumption we use. For example, if Hr 

is the class of linear discriminant functions over TV, 
then rye = r + 1. We chose this notation so that, 
to specialize our ensuing bounds on generalization er- 
ror to linear discriminant functions, which we later use 
in our experiments, rye may everywhere be replaced 
with r (or at least when r > 0). 

Finally, to obtain the performance bounds, we wish 
to make statements of the form that "we will, with 
high probability, find a hypothesis with generalization 
error no worse than z more than the best hypothesis 
that uses r features." To formalize this, define the ap- 
proximation rate function eg(r) to be the least gener- 
alization error achievable by any hypothesis h £ Hr 

using any set of r features.    In general, we expect 
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£s(l) > £3(2) > • ■ •, though this is also not an assump- 
tion we require (except briefly when we summarize our 
results in terms of sample complexity). 

Thus, in the common instantiation of wrapper model 
feature selection, we search for a feature set F such 
that when L is applied to S'\F, the resulting hypothe- 
sis has low empirical error on the hold-out set. (That 
is, is" {L(S'\F)) is minimized.) Leaving aside details 
of the actual search, we will call this idealization the 
STANDARD-WRAP algorithm. Note that in performing 
the search, enumeration over all the 2? possible fea- 
ture sets is usually intractable, and there is no known 
algorithm for otherwise performing this optimization 
tractably. Indeed, the Feature Selection problem in 
general is NP-hard [Garey and Johnson, 1979], but 
much work over recent years has developed a large 
number of heuristics for performing this search effi- 
ciently. (Again, the literature is too wide to survey 
here, but examples include [Moore and Lee, 1994, 
Caruana and Frietag, 1994, Yang and Hoavar, 1997], 
and [Langley, 1994, Miller, 1990] include overviews.) 
In this development, we will, in the style of [Reams, 
1996], give bounds for generalization error when this 
optimization is performed exactly. Of course, the ex- 
tent to which our bounds predict actual performance 
will in part depend on the extent to which the opti- 
mization algorithms succeed in performing this search 
on "real life" distributions of data. Alternatively, 
one can also view these bounds as what the heuris- 
tic search/approximation algorithms are (in a rigorous 
sense, to be discussed later) aspiring to do, with the 
bounds giving insight into how we might expect the 
algorithms to perform. 

3    Main Results 

The ensuing bounds are all given to hold "with high 
probability." We defer their more detailed versions to 
the full paper, but note that when we say "with high 
probability," we mean that the bound holds with at 
least probability 1 - 8 for any 8 > 0, with constants 
that depend on 8 (through an omitted log | term) hid- 
den by the O(-) notation. 

Bound for performance without feature selec- 
tion 

The Universal Estimate Rate bound of Vapnik and 
Chervonenkis [Vapnik and Chervonenkis, 1971, Vap- 
nik, 1982] gives a bound on generalization error when 
learning using all / features without feature selection. 

Theorem 1 (Vapnik and Chervonenkis, 1971) 
With high probability, the generalization error of the 
hypothesis h = L(S), given by L applied to S (unre- 
stricted to any feature subset), is bounded by: 

e(h)<eg(f) + 0 
m   \     /vc 

(1) 

Note this is a bound for learning from noiseless data; 
when the training data labels have independently been 
corrupted at some noise rate 77, the second term in the 

bound becomes O (^§^_(log^ + 1)). 

Bound for performance of wrapper model 

Applying the proof technique given in [Kearns, 1996] 
(used to bound the error of hold-out) to feature selec- 
tion, we obtain the following theorem: 

Theorem 2 Given L, S, 7, the hypothesis h output by 
STANDARD-WRAP, given by h = L(S'\F) where F = 
argminF SS"(L(S'\F)), will, with high probability, have 
generalization error bounded by 

e(h)< 

omta  Ug(r) + 0 rvc 
(1 — 7)771 V     *Vc       ) 

+0 (2) 

Proof (Sketch): The first square-root term is sim- 
ply the universal estimation rate bound as before, 
that says that with high probability, the hypothe- 
sis obtained by applying L to S'\p for any fixed 
F with |F| = r will give additional error no more 

than 0(v/TI^(log^ + l)). Following this, using 

a holdout-test set of size 7771 to test 2? hypotheses 
will, by a standard Chernoff-bound argument, result 
with high probability in picking a hypothesis with gen- 
eralization error no more than 0(^/log(2-f)/7?n) = 
Oiy/f/im) higher. D 

Again, this bound holds only when learning from 
noiseless data. Similar to Theorem 1, a generalization 
to learning from noisy data can be obtained by replac- 
ing all occurrences of m in any denominator term in 
the bound by (1 — 2r/)2m, where 77 is the noise rate. 
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One important remark here is that the O(yffp)rn) 
term is a worst-case bound for evaluating 2? hypothe- 
ses on the independent hold-out set 5" of size 7m. 
Its increase with / reflects the fact that we are test- 
ing a set of hypotheses of size exponential in /, and 
that there is potential for "overfitting" the jm hold- 
out samples. (In the context of feature selection, the 
issue of overfitting of hold-out data was also raised 
by [Kohavi and Sommerfield, 1995]; see also [Ng. 1997] 
for a detailed discussion of overfitting of hold-out data 
in hypothesis selection.) But since this is a worst- 
case bound, it holds in particular for the "bad case" 
where all 2? hypotheses are "very different" from each 
other. This is unlikely as they were trained on the 
same dataset S' and using only / distinct features. 
For at least some pathological hypothesis classes (that 
may, for example, include a set of hash-like basis func- 
tion so that changing one feature's range dramatically 
changes the output hypotheses,) this is certainly pos- 
sible; but for more "sensible" hypothesis classes, we 
might expect it to be possible to significantly tighten 
this bound. We have not managed to formalize this 
yet, but conjecture, based on the behavior of power- 
law decay learning curves, that the asymptotic be- 
havior for "many" learning algorithms will be better 
modeled by replacing this last term in the bound by 
y/fa/lrn f°r some a £ (0,1]. (A preliminary analy- 
sis suggests that under a (perhaps surprisingly large) 
range of formal modeling assumptions regarding how 
much hypotheses change when F is changed, the num- 
ber of "significantly different" hypotheses does grow 
as 2°M\ which would suggest a■ — 1 behavior. On the 
other hand, there are certainly also some reasonable 
assumptions that would lead to a < 1; and we defer a 
detailed discussion of this to the full paper.) 

Bound for performance of new algorithm 

For STANDARD-WRAP, the dependence on / of our 
bound on the error is y/f/jm (or possibly \/ftt/jm), 
and it comes from testing 2? hypothesis on holdout- 
data. If / 3> rvc where r is the number of features 
needed to approximate the target concept well, this 
\fjjym will be the dominant term. Consider instead 
the following algorithm, which we call ORDERED-FS: 

1. For each 0 < r < /, find the hypothesis hr that, of 
all the hypotheses using exactly r features, mini- 
mizes error on the training set S'. (This involves 
a search over all sets of r features.) 

2. Evaluate all / + 1 hypotheses {/ir}f=0 on the hold- 
out set 5", and pick the one with the smallest 

hold-out error. 

Note that we are now testing only 0(f) hypotheses on 
the hold-out data, so the previous y/f/jm term now 
becomes y/(logf)/')m. 

Theorem 3 Given L. S, 7, the hypothesis h output, by 
ORDERED-FS will, with high probability, have general- 
ization error bounded by 

e(h) < 

min   { ea(r) + O 
0<r<f 

(3) 

Proof (Sketch): The first square-root term is simply 
the uni^rsal estimation rate bound as before, used 
to bounct the additional error when training on any 
fixed feature set. For this to hold with probability 
1 — S, there is also an additive (1/m) log(l/<5) within 
the square-root. Now, for any fixed r, we want to 
uniformly bound the deviation of training error from 
generalization error for all (f) hypotheses that use 
exactly r features. Taking a standard union bound 
(see [Vapnik, 1982]), we replace (l/m) hg(l/S) with 
(l/m)log((£)/<5), which (noting log ((■) < rlogf) 
gives the second term. Lastly, the third term comes, 
using a standard Chernoff-bound argument as before, 
from testing O(f) hypotheses on the hold-out set of 
size 7m. □ 

Notice that, similar to STANDARD-WRAP, we have 
not explicitly addressed the NP-hard search problem 
for the optimal (here in the minimum training error 
sense) set of r features, and actual implementations 
of ORDERED-FS will generally have to rely on heuristic 
search. But for now, let us beg this computational 
issue and treat it similarly to how we had treated 
STANDARD-WRAP, appealing to the same approxima- 
tions/idealizations as before, and also mentioning that, 
in a rigorous sense to be discussed later, the extent to 
which an approximation algorithm can solve the opti- 
mization is exactly the extent to which its error bound 
will reach the bound we give here, which means that 
our bound can as before be interpreted, in a formal 
sense, as being exactly what a heuristic search imple- 
mentation is trying to attain. (In considering heuris- 
tic search implementations, it is also worth mention- 
ing that searching to minimize training error is prob- 
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ably often somewhat easier than searching to mini- 
mize hold-out error, which STANDARD-WRAP requires; 
for example, in linear regression, we have fast algo- 
rithms for simultaneously evaluating training error for 
all single-feature changes to a feature subset.) This 
bound is also easily generalized to learning from noisy 
examples (again by replacing all occurrences of m in 
any denominator term with (1 — 2rj)2m). 

In any case, the key point of this bound is then the 
following: The dependence of our bound on / is only 
logarithmic in /. It is also easy to see from the bound 
that the sample complexity m is also logarithmic in /. 
As discussed in the Introduction, this means that, from 
an information-theoretic point of view, one may square 
the number of features (for example by adding all 
cross-terms between all features), and expect to need 
only twice as much training data. We believe that this, 
if even only approximately realizable by search algo- 
rithms, may have tremendous consequences for feature 
design - that modulo computational expense, overly 
careful human design of features would oflfen be un- 
necessary, so long as additional training data can be 
obtained reasonably cheaply. 

To close this section, we informally restate our the- 
oretical results in terms of upper bounds on sample 
complexity, if the target concept is well represented by 
some small number r* of features. That is, we want 
the number m* of examples required so that general- 
ization error will be close to that of the optimal hy- 
pothesis that uses r* features. (Slightly more formally, 
we want, for any fixed e > 0, that e(h) < eg(r*) + e 
with high probability, and where dependence of m* on 
e will again be hidden by the O(-) notation.) Prom 
the earlier theorems, it is not difficult to derive the 
following (upper bounds on) sample complexity: 

algorithm m* 
No feature selection O(fvc) 
STANDARD-WRAP 0{r*vc + fa),a<l 
ORDERED-FS 0(r*vc+r* log/) 

Particularly if rvc grows superlinearly in r, we easily 
see STANDARD-WRAP has a significantly smaller sam- 
ple complexity than not performing feature selection 
if r* <C /. This appears to us to be rather strong the- 
oretical justification for performing feature selection, 
thereby answering the question of "why feature selec- 
tion" raised in the Introduction. Also, when r* <C /, 
ORDERED-FS, which has sample complexity logarith- 
mic in /, is likely to learn with many fewer training 
examples than STANDARD-WRAP. 

4    Experimental Results 

Our theoretical results predicted ORDERED-FS to be 
much more tolerant to having a large number of ir- 
relevant features than STANDARD-WRAP. To test this 
hypothesis, we ran both algorithms on a small, artifi- 
cial feature selection problem. 

The learning algorithm used was logistic regres- 
sion [McCullagh and Neider, 1989], used to fit a linear 
discriminant function, and which, while not minimiz- 
ing training error, approximates that reasonably. The 
input space was X = TV', and the first target concept 
c we used had only one relevant feature: 

c(. *>-{S if xi + 0.2 > 0 
0    otherwise 

Training examples were corrupted at a noise rate 
r\ = 0.3, and all input features were i.i.d. zero-mean 
unit variance normally distributed random variables. 
The search heuristic was beam search/forward search 
(starting out with the empty set of features, and in- 
crementally adding features until we have the full set 
of features). Forward search is a popular choice that 
appears to usually do well [Miller, 1990], and beam 
search, with a beam width of 50 in our case, should 
be a strict improvement. (Notice also that, while 
ORDERED-FS was originally formulated as consisting 
of / + 1 separate searches, it is probably most nat- 
urally implemented as carrying out all the searches 
"together"; our beam search implementation, which 
starts from zero features and incrementally considers 
higher numbers of features, is one example of such.) 
Unlike many "real life" problems, all of our input fea- 
tures are independent, and so there were, for example, 
no complicated interactions between them that could 
complify the search procedure. For STANDARD-WRAP, 
we are searching for a feature set F so that training 
on S'\F would give low hold-out error. For ORDERED- 
FS, we are searching, for each r, for a feature set F of 
size r so that training on S'\F gives low training error. 
In the rest of this section, we will not distinguish be- 
tween the "idealized" versions of these two algorithms 
and the approximate versions of the algorithms. All 
experimental results reported here are averages of 200 
independent trials. 

For both algorithms, the hold-out fraction 7 is a 
parameter that had to be chosen. The analysis 
of [Kearns, 1996] suggests that, for a wide range of 
hold-out testing applications, 7 « 0.3 is a good choice 
(though it is unclear STANDARD-WRAP would fall into 
his framework). Using this as an initial choice for 7, 
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we obtain Figure 1, as we vary the total number of 
features. We see from the graph that ORDERED-FS is 
performing significantly better on this domain. For 
reference, the performance of learning without feature 
selection, using all the features and not saving any 
data for hold-out testing, has also been plotted; for 
this problem, this is not really a competitive algorithm 
(and it is only very slightly competitive on the other 
target concept we test), and we omit it from the rest 
of our graphs. 

Earlier, our bound had predicted that as / increases, 
the dominating factor for the error of STANDARD- 
WRAP comes from testing 2? hypotheses on 7m hold- 
out samples, thereby possibly "overfitting" the hold- 
out data. For STANDARD-WRAP, it is therefore natural 
to see if increasing the hold-out fraction 7 might alle- 
viate this effect. Doing so, we obtain Figure 2, which 
shows results for STANDARD-WRAP using 7 = 0.3, 0.5, 
and 0.7. While still inferior to ORDERED-FS, the choice 
of 7 — 0.5 does appear to give better performance for 
large /, and for the remainder of our experimental re- 
sults, we report results using STANDARD-WRAP with 
7 = 0.3 and 0.5. 
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Figure 1: performance of no feature selection 
training on all the data (dot), of STANDARD- 
WRAP (dash) with 7 = 0.3 and ORDERED-FS 
(solid) with 7 = 0.3. Vertical dashes are lse. 

Total numb«« ol tenli 

Figure 2: performance of STANDARD-WRAP us- 
ing 7 = 0.3 (dash), 7 = 0.5 (dot-dash) and 
7 = 0.7 (dot). Vertical dashes are lse. 

Next, as we vary m, keeping the total number of fea- 
tures at 20, Figure 3 shows ORDERED-FS still consis- 
tently beating STANDARD-WRAP. Lastly, performing 
similar experiments with a new target function, this 
time with 3 relevant features 

(x) =  (   1     if; 
~ { 0    otl 

Xi + X,2 + X3 > 0 
otherwise 

we obtain Figures 4 and 5, which both show ORDERED- 
FS performing significantly better. 

Figure 3: performance of STANDARD-WRAP with 
7 = 0.3 (dash) and 7 = 0.5 (dot-dash), and 
ORDERED-FS with 7 = 0.3 (solid). 
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Figure 4: performance of STANDARD-WRAP and 
ORDERED-FS. Target has 3 relevant features. 
(Same legend as Figure 3.) 
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Figure 5: performance of STANDARD-WRAP and 
ORDERED-FS. Target has 3 relevant features. 
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5    Discussion and Conclusions 

Our experimental results showed our heuristic-search 
version of ORDERED-FS generally beating that of 
STANDARD-WRAP. Of course, we do not claim that this 
will always be the case; indeed, a more detailed analy- 
sis than we had given suggests STANDARD-WRAP might 
do slightly better than ORDERED-FS when the number 
of relevant features is large, for example if r « 0.5/. 
(But then, this is often also the case when feature se- 
lection is less useful, compared to learning on the entire 
set of features.) 

Throughout the paper, we skirted the issue of compu- 
tational expense in (approximately) finding the best 
(in the training or hold-out error sense) set of fea- 
tures. Indeed, we believe that much work remains to 
be done on this field, perhaps particularly in design- 
ing algorithms for finding feature subsets that mini- 
mize training error such as ORDERED-FS requires; for 
example, we have very efficient algorithms for per- 
forming forward and backward search for linear regres- 
sion [Miller, 1990], but few generalizations or fast ap- 
proximations thereof to other algorithms. Moreover, 
for our bounds to predict actual performance well on 
real problems, we have to rely on these heuristics to 
perform well, though rigorous bounds for performance 
using search heuristics can also be given if we can 
bound how well the heuristic performs the required 
search/optimization. In particular, if heuristic approx- 
imation to STANDARD-WRAP finds only a feature sub- 
set that comes within only e+ of minimizing hold-out 
error, then a rigorous bound for its generalization er- 
ror is the same as for STANDARD-WRAP with an ad- 
ditional s+ term. For ORDERED-FS, if for each value 
of r, we succeed in finding only a feature subset that 
comes within £+(r) of minimizing training error over 
all feature subsets of size r, then a rigorous bound for 
generalization error is the same as for ORDERED-FS but 
with an additional e+(r) term in the {} curly brack- 
ets. (We defer proofs and a more detailed discussion 
of implications to the full paper.) Nevertheless, search 
heuristics are then immediately seen to be trying to 
drive e+ or e+(r) to zero, and can therefore be argued 
to be trying to reach the performance suggested by 
our bounds. (However, one other surprising effect not 
modeled by our bounds and which deserves mention is 
that when STANDARD-WRAP is "badly" overfitting the 
hold-out data, then our earlier work suggests that even 
randomly throwing some subset of the 2^ hypotheses 
away may improve performance [Ng, 1997]. This sug- 
gests that in such somewhat-degenerate cases, using a 
weaker search heuristic may actually be helpful. In our 

experiments, we did manage to find parameter ranges 
that seemed to exhibit this effect; but, we do not know 
how prevalent this effect is in practice, and would of 
course recommend using a good optimization criteria, 
like ORDERED-FS's, rather than using a less-sound cri- 
teria and then to trying to do a poor job in optimizing 
it.) 

Finally, using techniques similar to those used in this 
paper, it is possible to derive other algorithms or mod- 
ified versions of our algorithm that, like ORDERED-FS, 
have strong theoretical properties regarding tolerance 
to the presence of many irrelevant features, and which 
may have slightly different strengths and weaknesses 
than ORDERED-FS; and we discuss a number of them 
in detail in the full paper. But for now, a significant 
result of this work is that with appropriate feature se- 
lection, sample complexity becomes logarithmic in the 
number of irrelevant features, so that we can handle 
exponentially many irrelevant features as training ex- 
amples. Of course, we still have rely on search heuris- 
tics to help us reach these bounds, and while much em- 
pirical work remains to be done evaluating ORDERED- 
FS and comparing it to STANDARD-WRAP and possible 
interpolations between the two algorithms, we also be- 
lieve that being able to give these bounds is very en- 
couraging, because it means that if they are even only 
approximately realizable by search algorithms, they 
may have tremendous consequences for feature design 
- that modulo computational expense, overly careful 
human design of features may often be unnecessary, 
so long as additional training data can be obtained 
reasonably cheaply. 

Acknowledgments 

I give warm thanks to Michael Jordan and Dana Ron 
for interesting and helpful conversations. Also, this 
work would not have been possible if not for numerous 
greatly edifying early conversations I had with Michael 
Kearns about VC theory in general and related work. 
The author was supported by the National Science 
Foundation under Contract No. ASC-92-17041. 

References 

[Almuallim and Dietterich, 1994] Almuallim, H. and 
Dietterich, T. (1994). Learning boolean concepts in 
the presence of many irrelevant features. Artificial 
Intelligence, 69(l-2):279-305. 

[Caruana and Frietag, 1994] Caruana, R. and Frietag, 
D. (1994). Greedy attribute selection. In Proceed- 



412       Ng 

ings of the Eleventh International Conference on 
Machine Learning. Morgan Kaufmann. 

[Garey and Johnson, 1979] Garey, M. R. and John- 
son, D. S. (1979). Computers and Intractability: A 
Guide to the Theory of NP-Completeness. Freeman. 

[John et al., 1994] John, G., Kohavi, R., and Pfleger, 
K. (1994). Irrelevant features and the subset selec- 
tion problem. In Proceedings of the Eleventh Inter- 
national Conference on Machine Learning. Morgan 
Kaufmann. 

[Kearns, 1996] Kearns, M. J. (1996). A bound on 
the error of Cross Validation using the approxima- 
tion and estimation rates, with consequences for the 
training-test split. In Advances in Neural Informa- 
tion Processing Systems 8, pages 183-189. Morgan 
Kaufmann. 

[Kearns et al., 1997] Kearns, M. J., Mansour, Y., Ng, 
A. Y., and Ron, D. (1997). An experimental and 
theoretical comparison of model selection methods. 
Machine Learning Journal, 27(l):7-50. 

[Kearns and Ron, 1997] Kearns, M. J. and Ron, D. 
(1997). Algorithmic stability and sanity-check 
bounds for leave-one-out cross-validation. In Pro- 
ceedings of the Tenth Annual Conference on Com- 
putational Learning Theory. Morgan Kaufmann. 

[Kivinen and Warmuth, 1994] Kivinen, J. and War- 
muth, M. K. (1994). Exponentiated gradient ver- 
sus gradient descent for linear predictors. Technical 
Report UCSC-CRL-94-16, Univ. of California Santa 
Cruz, Computer Research Laboratory. 

[Kohavi and John, 1997] Kohavi, R. and John, G. H. 
(1997). Wrappers for feature subset selection. Arti- 
ficial. Intelligence, 97:273-324. 

[Kohavi and Sommerfield, 1995] Kohavi, R. and Som- 
merfield, D. (1995). Feature subset selection using 
the wrapper model: Overfitting and dynamic search 
space topology. In Proceedings of the First Inter- 
national Conference on Knowledge Discovery and 
Data Mining. 

[Langley, 1994] Langley, R (1994). Selection of rele- 
vant features in machine learning. In Proceedings 
of the AAAI Fall Symposium on Relevance. AAAI 
Press. 

[Littlestone, 1988] Littlestone, N. (1988). Learn- 
ing quickly when irrelevant attributes abound: A 
new linear-threshold algorithm. Machine Learning. 
2:285-318. 

[McCullagh and Neider, 1989] McCullagh, P. 
and Neider, J. A. (1989). Generalized Linear Models 
(second edition). Chapman and Hall. 

[Miller, 1990] Miller, A. J. (1990). Subset Selection in 
Regression. Chapman and Hall. 

[Moore and Lee, 1994] Moore, A. W. and Lee, M. S. 
(1994). Efficient algorithms for minimizing cross 
validation error. In Proceedings of the 11th Inter- 
national Conference on Machine Learning. 

[Ng, 1997] Ng, A. Y. (1997). Preventing "overfitting" 
of Cross-Validation data. In Proceedings of the Four- 
teenth International Conference on Machine. Learn- 
ing. Morgan Kaufmann. 

[Vapnik, 1982] Vapnik, V. N. (1982). Estimation of 
dependencies based on empirical data. Springer Ver- 
lag. 

[Vapnik and Chervonenkis, 1971] Vapnik, V. N. and 
Chervonenkis, A. Y. (1971). On the uniform conver- 
gence of relative frequencies of events to their prob- 
abilities. Theory of Probability and its Applications, 
16(2):264-280. 

[Yang and Hoavar, 1997] Yang, J. and Hoavar, V. 
(1997). Feature subset selection using a genetic al- 
gorithm. In IEEE Expert (Special Issue on Feature 
Transformation and Subset Selection). In press. 



413 

On the power of Decision Lists 

Richard Nock 
LIRMM 

161, rue Ada 
34392 Montpellier, Prance 

nock@lirmm.fr 

Pascal Jappy 
LIRMM 

161, rue Ada 
34392 Montpellier, France 

j appy @lirmm .fr 

Abstract 

This paper adresses the problem of using de- 
cision lists for building machine learning al- 
gorithms. In this work, we first highlight the 
expressive power of decision lists, which were 
already known to generalize decision trees. 
We also present ICDL, a new algorithm for 
learning simple Decision Lists. This problem 
-learning low size and high accuracy lists- is, 
as we prove formally, theoretically hard and 
calls for the use of heuristics such as CN2, 
BruteDL or ICDL. Our method is based on 
an original technique midway between learn- 
ing rule based procedures and decision trees. 
ICDL operates in two stages : it first greed- 
ily builds a large decision list then prunes it 
to obtain a smaller yet accurate one, thereby 
avoiding the drawbacks associated with the 
first phase alone. Experimental results show 
the efficiency of our approach by compar- 
ing them to the two well-known algorithms 
CN2 and C4.5. ICDL's time complexity is 
low. It produces decision lists whose size is 
far smaller compared to both CN2 and C4.5, 
and whose accuracy also compares favourably 
with theirs. 

1    Introduction 

A Decision List (DL) is an ordered list of conjunc- 
tive rules [Riv87]. It classifies examples by assigning 
to each the class associated with the first rule the ex- 
ample triggers. Decision lists were first introduced by 
[Riv87], and shown to be very expressive. A moti- 
vation for the study of decision lists was their rela- 
tionships with decision trees, which are widely used 

as concept representations in state-of-the-art machine 
learning algorithms such as CART [BFOS84] or C4.5 
[Qui93]. More precisely, [Riv87] proved that decision 
lists generalize decision trees, which proves their ex- 
pressive power. In this paper we first give further in- 
sight on this property. We show that while it strictly 
generalizes decision trees, the decision list formalism 
can be used to capture the expressive power of deci- 
sion committees [NG95], a class generalizing multilin- 
ear polynomials [Noc98]. Moreover, decision lists, un- 
like decision trees, represent classification procedures 
based on rules [CN89], and not on some ordering of 
variables. These two properties make decision lists de- 
sirable for mining sets of examples or databases, an- 
alyze their information, and improve prediction accu- 
racy. These goals are important as many organizations 
tend to have massive amounts of data, which they need 
to understand, interpret and extrapolate [KSD96]. 

The work of [SE94, KSD96, Koh95, CN89, CB91] 
shows that any machine learning algorithm should 
meet four essential requirements to be of practical use: 

1. Accurate classification. The induced decision list 
should be able to classify new examples accu- 
rately. 

2. Noise handling. The algorithm should work even 
in domains where there might be noise. 

3. Simple decision lists. For the sake of interpretabil- 
ity, the induced decision list should be as simple 
as possible. This constraint conflicts with the ac- 
curacy constraint. Generally, satifying both im- 
plies finding a good tradeoff between simplicity 
and goodness-of-fit [NG95]. In practice this im- 
plies releasing the goal of finding a decision list 
consistent with the dataset used to build it. 
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4. Efficient rule generation. In order to handle large 
datasets, the algorithm must be fast. [CN89] ar- 
gue that the time taken to generate one rule in 
the decision list should be linear in the size of the 
dataset used to build the decision list. 

There are very few available theoretical results allow- 
ing to conclude positively to the possibility or impossi- 
bility of meeting the four quality requirements stated 
above. It is not even known whether finding simple 
and accurate decision lists is feasible within a reason- 
able time [dCGG94]. Yet a positive result would prove 
the existence of efficient algorithms for this task, and 
a negative result would formally prescribe the use of 
heuristics to meet these criteria. Our second contribu- 
tion in this paper is to show that meeting the four re- 
quirements above for decision lists is hard. As has pre- 
viously been done for decision trees [HR76], we prove 
that finding the smallest decision list consistent with 
a set of examples is ./VP-Hard, for various notions of 
sizes. Keeping in mind the four requirements men- 
tioned above, this justifies the heuristic character of 
algorithms such as CN2 [CN89], BruteDL [SE94], SDL 
[dCGG94], or ICDL, the algorithm we propose below. 

There are at least three categories of algorithms that 
learn decision lists, each following a different construc- 
tion method. The first are greedy, iterative algorithms 
such as CN2 [CN89] which add rules one-at-a-time in 
the decision list according to a quality criterion. When 
a rule is built, the examples it covers are removed from 
the training set. The process is repeated until a stop 
criterion is satisfied (e.g. the dataset is exhausted). 
The second are based on a search of the rule space 
to find a set of good rules, before putting them into 
a decision list, in the same way as BruteDL [SE94]. 
The search is based on a branch-and-bound algorithm 
and proceeds by specializing iteratively a set of rules 
initialized to the empty set. The aim is to find all 
the most general homogeneous rules, that is, those 
rules whose accuracy does not change when special- 
ized. The third are based on a stochastic search of the 
decision list space, as SDL does with simulated anneal- 
ing [dCGG94]. 

However, practical shortcomings have been observed 
in all these families. As pointed out by [SE94], al- 
gorithms such as CN2 suffer from the rule overlap 
problem. When large decision lists are greedily con- 
structed, the last rules in the decision list are built 
using very few examples, a situation which has two 
consequences: these rules are difficult to comprehend 

and they may exhibit low accuracy w.r.t. new exam- 
ples. The problem with algorithms such as BruteDL 
is that the search of the rule space that can take too 
long: this requires the use of thresholds to limit the 
search [SE94], and eventually leads to the construc- 
tion of very large decision lists. Finally, algorithms 
such as SDL suffer the problem of stochastic search 
convergence, making it necessary to run the algorithm 
for long periods, a situation which makes them poten- 
tially time consuming. 

Our third contribution in this paper is a new algo- 
rithm for the induction of short decision lists. ICDL, 
which stands for "Induction of CART-based Decision 
Lists", is a two-stage heuristic. First, it proceeds by 
building rules iteratively and greedily using a proce- 
dure inspired from decision tree induction. ICDL then 
prunes the decision list using a CART-like criterion to 
obtain a shorter decision list used for testing. ICDL 
takes advantage of the adaptation to decision lists for- 
malism of previous successful approaches for building 
decision trees. 

The rest of this paper is organized as follows. First we 
give results completing those of [Riv87] on the expres- 
sive power of decision lists. Then we give formal proof 
of the hardness of building small and accurate deci- 
sion lists. In the following section we present ICDL, 
adducing experimental results which prove the valid- 
ity of our approach w.r.t. the four introductory re- 
quirements. We then compare our results with those 
obtained using CN2 and C4.5. 

2    Expressive power of Decision Lists 

Following [SE94], we let E denote the universe of ex- 
amples, each of which is described using n variables. 
In this section, we consider for simplicity that each 
variable is Boolean. Given a set of n Boolean vari- 
ables, we let {x,i,xi,X2,X2, ■■■,xn,xn} denote the set 
of corresponding literals. We suppose that examples 
are classified according to a set of goal classes de- 
noted G. We note a rule: t —> g, where g E G, 
and t is a non-empty monomial, that is, a conjunc- 
tion of literals.   We note a decision list with k rules: 
(<i -> 3i),(<2 -> 92),-,{tk -> 9k),9k+\ where the 
class p/t+i is called the default class. The class as- 
sociated to any example e E E is the goal class cor- 
responding to the first monomial satisfied by the ex- 
ample. If none is passed, the example is assigned the 
default class.   VO < k < n, we let A>DL denote the 
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set of decision lists whose monomials have at most k 
literals. Let DT stand for the class of binary decision 
trees, as described e.g. in [Riv87]. Let fc-DT be the 
set of decision trees having depth at most k, which is 
the size of the longest path from the root to a leaf of 
the tree. In his seminal article on DL, [Riv87] proved 
how decision lists generalize decision trees, by study- 
ing the inclusion relationships between classes k-DL 
and Jfc-DT. More formally, we have 

Theorem 1 [Riv87] VO < k < n, k-DT C k-DL. 

[NG95] have presented a new class of Boolean formal- 
ism allowing to precise the real power of decision lists 
: the decision committees. A decision committee con- 
tains two parts: a set of unordered couples (or rules) 
{(U,Vi)}, where each U is a monomial over {0,1, *}n 

and each vi is a vector in Mc (in the two-classes case, 
it is sufficient to add a single number rather than a 2- 
component vector). It also contains a Default Vector 
D in [0, l]c. Again, in the two-classes case, the reader 
shall remark that D can be replaced by a default class 

€{+,-}. 
The classification of any example e £ E is made by 
summing in a vector Ve the vectors of each rule e sat- 
isfies. If the maximal component of Ve is unique then 
its index gives the class assigned to e. Otherwise, we 
take the index of the maximal component of D corre- 
sponding to the maximal components of Ve. Let DC 
stand for the whole class of decision committees. De- 
fine Mk < n, fc-DC to be the subclass of DC where each 
element has monomials of length < k. The following 
theorem shows that decision committees are at least 
as expressive as decision lists: 

Theorem 2 [NG95] VO < k < n constant, k-DL C 
k-DC. 

Although theorem 1 still holds for non-constant value 
of k, we have (n - 1)-DL = (n - 1)-DC [Noc98]. This 
states that there exist a value k! such that Vfc > k!, 
classes k-DL and fc-DC coincide, although k-DL still 
strictly contains fc-DT. Apart from the fact that de- 
cision lists are rule-based procedures unlike decision 
trees, this result is another reason to advocate for use 
of decision lists instead of decision trees in machine 
learning algorithms. 

3    Learning small accurate DLs 

In the introduction, we have presented four require- 
ments which should try to meet any efficient learning 
algorithm.  Previous studies on decision trees [HR76] 

and decision committees [NG95] have established that 
they are hard to satisfy for machine learning algo- 
rithms using these respective classes. These results 
justify a part of the heuristic nature of algorithms such 
as CART [BFOS84], C4.5 [Qui93], or IDC [NG95]. We 
now prove that this aim is also intractable for DL 
and thereby offer a positive answer to a conjecture 
of [dCGG94]. We define the size of a DL as the to- 
tal number of literal occurences in the decision list (if 
a literal appears k times, it is counted k times). This 
definition is very close to the one used in [Ris78] which 
is the smallest number of bits needed to write down a 
procedure, given an optimal encoding. 

Theorem 3 It is NP-Hard to find the smallest deci- 
sion list consistent with a set of examples LS. 

Proof: We use a reduction from the iVP-Hard "Min- 
imum Cover" problem [GJ79]: 

• Name : "Minimum Cover". 

• Instance : A collection C of subsets of a finite 
set S. A positive integer K, K < Card(C), where 
Card(.) denotes the cardinality. 

• Question: Does C contain a cover of size at most 
K, that is, a subset C" C C with Card(C') < K, 
such that any element of S belongs to at least one 
member of C" ? 

The reduction is constructed as follows : from a "Min- 
imum Cover" instance we build a learning sample LS 
such that if there exists a cover of size Card(C') < K 
of S, then there exists a decision list with Card(C') 
literals consistent with LS, and, reciprocally, if there 
exists a decision list with k literals consistent with LS, 
then there exists a cover of size k of S. Hence, finding 
the smallest decision list consistent with LS is equiva- 
lent to finding the smallest K for which there exists a 
solution to "Minimum Cover", and this is intractable 
if P £ NP. 
Let Cj denote the jth element of C, and Sj the jth 

element of S. We define a set of Card(C) Boolean 
variables {vi,v2, ■■■,Ucard(c)}) in one to one correspon- 
dence with the elements of C, which we use to de- 
scribe the examples of LS. The corresponding set of 
literals is denoted {xi,xi,x2,X2, ...,3:card(c)>^card(C)}- 
Our reduction uses two classes, one positive and one 
negative respectively denoted by "1" and "0". The 
sample LS contains two disjoint subsets : the set of 
positive examples LS+, and the set of negative ones 
LS~.   LS+ contains Card(S) examples, denoted by 
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{e1 ,e~2 , •••>ecard(s)}- We construct each positive ex- 
ample so that it encodes the membership of the cor- 
responding element of S in the subsets of S present 
in C.    More precisely, VI   <  i   <  Card(S),  e+   = 

[hy.'iecj xi) A \l\i:sitcj*i)-  LS~ contains a single 

negative example, defined by: e~ = Aj=i Xj. 
• Suppose there exists a cover C of S satisfying 
Card(C') < K. We create a single rule decision list: 
(t -> 0),1. t equals /\ ..c.€C,Xj. Since any element 
of S belongs to an element of C", no positive example 
passes the monomial t. Thus all positive examples are 
correctly classified, as well as the negative example, 
which satisfies t. This decision list contains Card(C') 
literals, and is consistent with LS. 
• Suppose there exists a DL h with k literals consis- 
tent with LS. Name it {t\ —> g\), (£2 —> 92), ■■■, (tv ~* 
<?*:')> <7fc'+ii with k' < k. The three properties below 
hold because /;, is consistent. 
[PI] Since there exists only one negative example, we 
can suppose without loss of generality that only one 
goal class is negative. This is either the default class if 
the negative example satisfies no monomial inside the 
decision list, or a goal class from a rule whose mono- 
mial is satisfied by the negative example. Any other 
goal class is positive. Let gi denote the goal class (or 
the default class) which is negative, where / is an in- 
teger from the set {1,2,..., k1 + 1}. 
[P2] Any rule preceeding gi in h contains a literal in- 
volving an equality comparison to "1". Otherwise, 
the negative example would satisfy the corresponding 
monomial, thereby being incorrectly classified. 
[P3] If gi is not the default class, monomial ti is not 
empty and contains only negative literals. Otherwise, 
the negative example would not pass the monomial. 

We now create two subsets of C, namely C[ and C2, 
whose union C = C[ U C2 is a cover of S with at most 
k subsets. 

«H 0 if / = 1 
{d : 31 <j < l,r,i € tj}    if   I > 1 

If gi is not, the first goal class, C[ contains all indices of 
positive literals appearing in rules tj —» Cj with j < I. 

C'2 = [ {< eu} 
if 
if 

l = k' + l 
I < k' + 1 

C2 contains all indices of literals variables appearing 
in ti, if gi is not the default class. 
At least one of the two subsets is not empty.   Oth- 
erwise, that would mean / = 1 = k' + 1, leading to 

k' = 0 : the decision list would consist in one default 
class for all negative and positive examples, which is 
impossible. 
Because the DL is consistent, any positive example 
either satisfies a monomial tm before tt, or does not 
satisfy monomial tt. In the first case, property [P2] 
implies that the example has some positive literal in 
common with tm ; therefore, one element in C[ con- 
tains the element of S from which the positive example 
was created. In the second case, if the positive ex- 
ample does not satisfy monomial fy, then by property 
[P3], there is in ti at least one negative literal it does 
not satisfy. To this negative literal in t[ corresponds 
a positive one in the example, and therefore there ex- 
ists an element of C2 containing the element of S from 
which the positive example was created. The union 
Cj U CJ = C" contains at most k elements, and is a 
cover of 5. This achieves the proof. D 

The limitation of the whole number of literals of a 
decision list is one of the finest size notion, since it 
comes close to the one of [Ris78]. However, the prob- 
lem of constructing decision lists with limited complex- 
ity is also hard for a relaxed notion of size presented 
in [KLPV87] : the whole number of rules. 

Theorem 4 [Noc98] It is NP-Hard to find the small- 
est decision list consistent, with a set of examples LS, if 
the notion of size is the number of rules of the decision 
list. 

4    ICDL 

We now present our two-stage, decision list learning 
algorithm, ICDL. The first stage consists of the greedy 
construction of a large decision list, dl,TUlx, and the 
second one prunes dlmait, to obtain dl,,lu1, the decision 
list used for testing. 

4.1     Building dlmax 

Table 1 presents a pseudo-code description of the al- 
gorithm used to build dlmnx, as well as two procedure 
it uses, MakeRuleQ and BestLQ. Function GiniQ 
returns the value of the Gini criterion [BFOS84] of 
a decision list in the following way. Let (t\ —> 
5i).(*2 -> 32), ■■■,(t-k -» 9k),9k+i denote the decision 
list CurrentDL. VI < i < k + 1,V1 < j < Card(G), 
let LSij C LS stand for the subset of examples from 
class j that are classified by goal class g, (which is the 
default class if i = k + 1) ; VI < i < k + 1, define 
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BuildLmaxO 
DecisionList := MakeEmptyDLO; 

StopDLConstruction := FALSE; 
WHILE StopDLConstruction = FALSE DO 

CurrentRule := MakeRule(DecisionList); 

IF NotEmpty(CurrentRule) THEN 

AddLast(CurrentRule, DecisionList); 

ELSE StopDLConstruction := TRUE; 

END 

END 

MakeRule(CurrentDL) 
newRule := MakeEmptyRule0; 

StopRuleConstruction := FALSE; 

WHILE StopRuleConstruction = FALSE DO 

LTest := BestL(CurrentDL, newRule); 

IF NotEmpty(LTest) THEN 

AddLiteral(LTest, newRule); 
ELSE StopRuleConstruction := TRUE; 

END 
Return(newRule); 

END 

BestL(CurrentDL, Rule) 

newDL := CurrentDL; 

newRule := Rule; 
GiniOpt := Gini(CurrentDL); 
optimalL := MakeEmptyLiteraK) ; 
FOR LTest := FirstLTest to LastLTest DO 

AddLiteral(LTest, newRule); 

AddLast(newRule, newDL); 
IF Gini(newDL) < GiniOpt THEN 

optimalL := LTest; 

GiniOpt := Gini(newDL); 

newDL := CurrentDL; 

newRule := Rule; 

END 
Return(optimalL); 

END 

PruneDL(DecisionList) 

DLSequence := MakeEmptySequenceO; 

CurrentDL := DecisionList; 

WHILE NotEmpty(CurrentDL) DO 
DLSequence := DLSequence + CurrentDL; 

CurrentLit := LitToPrune(CurrentDL); 

Prune(CurrentDL, CurrentLit); 

END 
ReturnBestDL(DLSequence); 

END 

Table 2: Pseudocode for pruning dlmaxto obtain dlend. 

LSi = uj-^^LSij. VI < i < k + 1, define 

r-   ■C\—    V^    Ca.rd(LSjj)      Caxd(LSjtk) 
GimW-    2^     Card(LSi)   X   Card(LS4) 

The Gini criterion measured for CurrentDL equals 

Gini(CurrentDL) 
k+i , 

»=iv 

fCaxd(LSi) 
Card(LS) 

x Gini( 
«) 

BuildLmaxO adds rules at the end of a decision list 
initialized to the empty decision list, using the pro- 
cedure AddLast(). Each rule is constructed using 
MakeRule(). This construction consists in building 
a rule by adding literals one-at-a-time using the pro- 
cedure BestL(). The best literal returned by BestLO 
is the one, if it exists, that satisfies the two following 
conditions: 

• it diminishes the most the Gini criterion of the 
whole decision list, for any addition of literal in 
the current rule constructed, and 

• it dimishes the value of the Gini criterion com- 
pared to the value of the decision list before ad- 
dition of the literal. 

BuildLmaxO stops when any one-literal rule added at 
the end of the decision list fails to lower the value of 
Gini criterion. 

Table 1: Pseudocode for the building of dln 4.2    Pruning of dlmaxto obtain dlend 

Table 2 presents a pseudo-code description of the al- 
gorithm used to prune dlmax, to obtain dlend. In 
our experiments, the examples set used to prune is 
different from the one used to construct dlmax. At 
each step, the literal to be pruned is returned by the 
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procedure LitToPruneQ, and is the literal J, among 
all those of CurrentDL, which minimizes the function 
PruneValue(CurrentDL,  1): 

PruneValue(CurrentDL,  1) = 
 Delta(CurrentDL, J) 

N(CurrentDL,  i) x(NDT(CurrentDL, i)-i) 

Delta(CurrentDL, i) returns the number of examples 
well classified by CurrentDL, and that are no longer 
well classified when we remove literal 1. N(CurrentDL, 
i) returns the number of examples that do not 
pass any literal preceeding I in the decision list. 
NDT(CurrentDL, 1) returns the product of sizes of all 
rules following the one in which 1 is present. This cri- 
terion is analoguous to the pruning criterion used in 
CART [BFOS84], measured over a decision tree built 
from the decision list such that each node in the deci- 
sion tree is one literal corresponding to an literal in the 
decision list. We refer the reader to [BFOS84] for addi- 
tional details on this criterion. dlcnd, is the DL which, 
among all DLs pruned from dlmax, has the highest ac- 
curacy over the examples used to prune dl,nax. 

5    Experimental results 

ICDL was run on several benchmark problems. Its re- 
sults are compared to those of CN2 [CN89] and C4.5 
[Qui93]. Table 3 presents the datasets which were 
used for comparisons (c is a shorthand for Card(G)). 
Dataset references are [CB91] for VO, PC, GL, HH, 
HC, EC, HP, [TBB+91] for Ml, M2, M3 and [BFOS84] 
for WO. All datasets, except WO (artificial problem 
generated following [BFOS84]), can be found in the 
UCI repository of Machine Learning database. 

A learning sample LS is split in two subsets, the 

Table 3: Characteristics of Data Sets. 

Table 4: ICDL vs CN2. 

Card(LS) c Test set Comments 

VO 435 2 0 Congress votes 
wo 10x300 3 5000 Waveform recognition 
Ml 124 2 432 MONKS #1 
M2 169 2 432 MONKS #2 
M3 122 2 432 MONKS #3 
PC 1044 2 0 Pole and Cart 
GL 214 6 0 Glass recognition 
HH 294 2 0 Heart Hungary 
HC 303 2 0 Heart Cleveland 
EC 131 2 0 Echocardio 
HP 157 2 0 Hepatitis 

ICDL ace CN2 are ICDL size CN2 size 
VO 95.9±1.0 94.8±1.7 3.1 ±1.6 41.6±8.2 
WO 66.5±4.6 65.6±4.3 21.8±6.8 28.6±5.1 
Ml 83.3 100 6 13 
M2 65.1 69 14 145 
M3 100 89.1 4 38 
PC 70.7±1.5 70.6±3.1 14.8±9.8 133.6±6.3 
GL 58.9±6.4 58.5±5.0 12.6±3.9 32.8±3.0 
HH 79.4±3.4 75.4±3.6 13.4±6.9 35.1±2.5 
HC 79.0±4.2 75.0±3.8 15.5±7.5 40.9±4.0 
EC 70.7±4.7 62.3±5.1 4.7±2.4 26.4±4.0 
HP 79.6±3.5 77.6±5.9 4.2±2.8 24.0±5.5 
Avg. 77.19 76.17 10.37 50.81 

first used for building dlmax(2/3 of the examples), and 
the second one for pruning to obtain dlcnd(l/3 of the 

Results for CN2 are those of [CB91] (V0, PC, GL, HH, HC, 
EC, HP), [TBB+91] (Ml, M2, M3) and [dCGG94] (W0). 

examples). When only one dataset exists for learn- 
ing and testing (which is the case for all datasets ex- 
cept W0, Ml, M2, M3), we proceed by averaging over 
10 iterations the result of the following split-and-build 
experiment: randomly split the whole sample into a 
learning sample (2/3 of the examples) and a test sam- 
ple (1/3 of the examples); use the learning sample to 
construct a decision list with ICDL, and test it on the 
test set (ratios follows [CB91]). Therefore, in that case, 
4/9 of the examples are used for building dl,„„x, 2/9 
are used for building dlcnri, and 1/3 arc used for eval- 
uating the accuracy of dleiKl. Table 4 presents ICDL's 
results compared to CN2's ("ace" means accuracy ; 
"size" stands for the whole number of literals in the 
formula ; "Avg." gives average results) ; when there 
are more than one learning sample (W0), or when 
split-and-build is used, results arc given in the form 
"Mean±Standard deviation". 
On all but two problems, ICDL achieves better accura- 
cies than CN2. Results are even more favourable if we 
take into account the sizes obtained. In all datasets, 
the DLs found by ICDL are much smaller than those 
of CN2. If we exclude W0, sizes obtained for ICDL 
are up to fourteen times smaller than CN2's. 
Comparisons with the state-of-the-art decision tree 
learning algorithm C4.5 are presented in table 5. De- 
cision tree size is the number of nodes including leaves 
[CB91]. To make correct comparisons, a DL size given 
is now total number of literals plus total number of 
classes in the DL. With the exception of PC and GL, 
ICDL outperforms C4.5 on all datasets. Again, the 
size comparison points out important differences, that 
are on average in favor of ICDL. However, the gap is 
less important than for CN2 and on three problems, 
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Table 5: ICDL vs C4.5. 

ICDL ace C4.5 ace ICDL size C4.5 size 

vo 95.9±1.0 95.6Ü.1 6.9 ±2.7 7.7±3.4 
Ml 83.3 80.6 10 
M2 65.1 64.8 23 
M3 100 97.2 8 
PC 70.7±1.5 74.3±3.1 22.6±13.2 90.2±10.2 
GL 58.9±6.4 64.2±5.1 18.9±5.2 30.9±5.8 
HH 79.4±3.4 78.0±5.5 21.7±10.0 7.2±3.7 
HC 79.0±4.2 76.4±4.5 24.0±9.9 22.7±4.6 
EC 70.7±4.7 63.6±5.3 9.1±3.7 9.2±4.7 
HP 79.6±3.5 79.3±5.8 7.5±3.7 6.4±2.6 

Avg. 78.26 77.4 15.81* 24.9* 

Results for C4.5 are those of [CB91] (VO, PC, GL, HH, 
HC, EC, HP) and [Koh95] (Ml, M2, M3). 
(*) Average sizes do not take into account Ml, M2, M3 
(we did not have C4.5's). 

the formulae sizes found by C4.5 are actually smaller 
than for ICDL. 

6    Discussion 

While the results above illustrate ICDL's good per- 
formances, we now discuss how close this algorithm 
comes to the four widely accepted requirements pre- 
sented in the introduction : high accuracy, noise tol- 
erancy, small sizes, and low time complexity. As 
pointed out by [CN89], time complexity needs only 
to be evaluated on the crucial steps of the algo- 
rithm. During the construction of dlmax, ICDL's 
crucial step is the same as CN2: namely the ad- 
dition of a single literal to the current rule. So 
this complexity is that of the BestLiteralO sub- 
routine. It represents 0(Card(LS) x Card(Atests)) 
in ICDL, where "Atests" denotes the set of possi- 
ble literals. This complexity is smaller than that of 
CN2 [CN89]. The time complexity of the crucial step 
of the pruning phase corresponds to the complexity 
of the LiteralToPruneO subroutine, which deter- 
mines which literal is to be removed from the cur- 
rent formula. Its time complexity is 0(Card(LS) x 
Card(AtestsFormula)), where "AtestsFormula" de- 
notes the multiset of literals of the current formula. In 
fact, ICDL's whole complexity is not high w.r.t. clas- 
sical induction algorithms. 

M2 and VO are relevant to the discussion of sizes. In 
VO, empirical studies (see the ML repository) show 
that there exists a single literal DL that performs 
around 95 % accuracy. We noticed that the DL found 

by ICDL always included this formula, which leads to 
excellent tradeoffs between size and accuracy. On the 
artificial domain M2, the function to learn is an XOR 
function [TBB+91], which is very difficult to encode 
with small DL (compare with the result obtained by 
CN2). Again, in this case, ICDL found a tiny formula 
which is highly accurate considering its size and the 
difficulty of the domain. 
ICDL obtained very good results w.r.t. the complex- 
ity vs accuracy tradeoff. As a means of evaluating 
this for each possible dataset, we have calculated the 
accuracy/size ratio, which constitutes a rough "infor- 
mative measure" of each literal with respect to the 
overall accuracy. Provided accuracies are sufficiently 
high (which was the case for CN2, C4.5 and ICDL), the 
higher this ratio, the better and the more interesting 
the accuracy/size compromise the algorithm obtains. 
The calculation shows that, for each dataset, this ratio 
is higher for ICDL than for CN2. Furthermore, with 
the exception of Ml and WO, ICDL's lowest ratio is 
higher than CN2's highest. Finally, if we exclude the 
HH and HC problems, ICDL also outperforms C4.5 
on all domains for which we possess accuracy and size 
measures for C4.5. Tables 4, 5 and [CB91] show that 
for datasets VO, PC, GL, EC, HP, ICDL outperforms 
C4.5, which in turn outperforms CN2. ICDL's accu- 
racy is on average slightly better than C4.5's, yet its 
average output size is smaller. Thus, ICDL appears 
to be able to compact the knowledge of the decision 
trees in small DLs. This result concords with [Riv87], 
section 3.2, who shows that decision lists generalize 
decision trees. 

Finally, ICDL's handling of noise can be experimen- 
tally evaluated using problems WO and M3, which are 
artificial noisy problems. On both problems, ICDL's 
results are good. In M3, there is a little noise, and very 
few learning algorithms in [TBB+91] achieve 100% ac- 
curacy. ICDL achieves the perfect classification, and 
surpasses all inductive learning algorithms tested in 
[TBB+91] : ID3, ID5R, AQR, CN2 and CLASSWEB. 
Again, the size of the formula found by ICDL is smaller 
than that of these algorithms. 
[SE94] point out a limiting aspect of decision list con- 
struction using greedy algorithms such as CN2 : rules 
cannot be considered in isolation, and, after each rule 
building stage, fewer examples are available to the 
learning algorithm. ICDL reduces the adverse effects 
of both problems by building small decision lists using 
efficient pruning. Indeed, the pruning step uses new 
examples, which are not used for building dlmax. Fur- 
thermore, it uses a criterion reducing the effect of the 
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limited number of examples available to the rules at 
the end of the decision list. 

7    Conclusion 

In this paper, we introduce ICDL, a new algorithm 
for learning simple decision lists. Its originality stems 
from the adaptation to decision lists of the combina- 
tion of two techniques which have proved very effi- 
cient in CART and C4.5. It combines the building 
of a decision list in a greedy way using a Gini cri- 
terion calculated on the whole decision list. It then 
prunes the decision list using a CART-like criterion. 
However, its result formulae are rule-based procedures 
which provide an alternative to decision trees for build- 
ing knowledge-based systems. 
We prove formally that inducing short and accurate 
DLs is intractable, which prescribes the use of heuris- 
tics such as CN2, ICDL, or BruteDL [SE94]. We 
then give experimental results which compare very 
favourably to those of CN2 and C4.5, and which show 
experimentally that ICDL meets the accepted criteria 
of low-time complexity, noise handling, small output 
size and high accuracy. We believe this efficiency is 
clue to ICDL's successful application of a combination 
of decision tree learning techniques to the more expres- 
sive DL representation. 
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Abstract 

It is well known that for Markov decision pro- 
cesses, the policies stable under policy iteration 
and the standard reinforcement learning methods 
are exactly the optimal policies. In this paper, 
we investigate the conditions for policy stability 
in the more general situation when the Markov 
property cannot be assumed. We show that for a 
general class of non-Markov decision processes, 
if actual return (Monte Carlo) credit assignment 
is used with undiscounted returns, we are still 
guaranteed the optimal observation-based poli- 
cies will be equilibrium points in the policy space 
when using the standard "direct" reinforcement 
learning approaches. However, if either dis- 
counted rewards, or a temporal differences style 
of credit assignment method is used, this is not 
the case. 

1   Introduction 

be cast into the form of finding an optimal policy for a 
Markov decision process (MDP), and methods like 1-step 
Q-learning can be shown to be a form of incremental, asyn- 
chronous dynamic programming (Watkins, 1989; Barto, 
Bradtke, & Singh, 1995). 

In practice, however, RL techniques are routinely applied 
to many problem domains for which the Markov property 
does not hold. This might be because the environment is 
non-stationary, or is only partially observable; often the 
side-effects of state-space representation can lead to the do- 
main appearing as non-Markov to a reinforcement learning 
agent. 

In this paper, we examine various issues arising from ap- 
plying standard RL algorithms to non-Markov decision 
processes (NMDPs). In particular, we are interested in 
the implications of using a "direct" or observation-based 
method of RL for a non-Markov problem, i.e. where the 
problem is known to be non-Markov but partial or noisy 
state observations are presented directly to the RL algo- 
rithm without any attempt to identify a "true" Markov state 
(Singh, Jaakkola, & Jordan, 1994). 

The techniques of reinforcement learning (RL) have been 
developed to effect autonomous learning in agents interact- 
ing with an initially unknown and possibly changing envi- 
ronment. In its simplest formulation, the problem of RL is 
cast into a table lookup representation, where the agent can 
be in one of a finite number of states at any time, and has 
the choice of finite number of actions to take from within 
each state. For this representation, powerful convergence 
and optimality results have been proven for a number of al- 
gorithms designed with the simplifying assumption that the 
environment is Markov, e.g. 1-step Q-learning (Watkins, 
1989). With this assumption, the problem of learning can 
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2   Policy stability in Dynamic Programming 

In this section, we review the important idea of a stable pol- 
icy in terms of classical dynamic programming (DP) meth- 
ods. 

It is well known (e.g. Puterman (1994)) that for any MDP, 
all suboptimal policies are unstable under policy iteration 
i.e. one step of the policy iteration process will result in a 
different policy. Moreover, the new policy will be a better 
policy; and so the process of policy iteration can be viewed 
as a hill-climbing process through the policy space of sta- 
tionary policies, i.e. the result of each step in policy itera- 
tion results in a monotonic improvement in policy until an 
optimal policy is reached. 
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Any optimal policy will have the property of being stable 
under a single step of policy iteration. The special prop- 
erties of a Markov domain ensure the policy space to be 
well-suited to a hill-climbing strategy; there are no "local 
maxima" or suboptimal equilibrium points to contend with, 
and all the global maxima form a single connected "max- 
ima plateau" that can be reached by starting a hill-climbing 
process from any point in the space. 

It is also the case that a "partial" policy iteration, where 
only a subset of the states that would have policy changes 
under a full policy iteration step have their policy actions 
changed, will also monotonically improve the policy, and 
therefore result in effective hill-climbing. This is the key 
property that makes MDPs susceptible to RL techniques; it 
has become the convention to characterise RL in Markov 
domains as an incremental, asynchronous form of dynamic 
programming (Watkins, 1989;Bartoetal., 1995). IftheRL 
method is a 1-step temporal differences (TD) method, like 
Watkins' 1-step Q-learning, the method resembles an in- 
cremental, asynchronous form of value-iteration. If the RL 
method is an actual return or Monte Carlo based method, 
like C-Trace (Pendrith & Ryan, 1996) the method more 
closely resembles an incremental, asynchronous form of 
policy iteration. 

So, for an MDP, the optimal policies correspond to the pol- 
icy iteration equilibrium points in the policy space. By way 
of contrast, forNMDPs it is straightforward to demonstrate 
that suboptimal policy iteration equilibria are possible, and 
subsequently that policy iteration methods can fail by get- 
ting "stuck" in local maxima. Consider the NMDP in Fig- 
ure 1. 

Figure 1 shows an NMDP with two actions available from 
starting observation A, and two actions available from the 
successor observation B.1 Both action 0 and action 1 from 
observation A immediately lead to observation B with no 
immediate reward. Action 0 and action 1 from observa- 
tion B both immediately lead to termination and a reward; 
the decision process is non-Markovian because the reward 
depends on what action was previously selected from ob- 
servation A, according to the schedule in Table 1. 

In the policy space for this NMDP, the deterministic pol- 
icy 7C3 is clearly optimal, with a total reward of 2. Fur- 
ther, it represents an equilibrium under policy iteration: if 
states A or B independently change policy, the total reward 
becomes -2 and 0 respectively. Notice that policy 7io, al- 
though clearly suboptimal with a total reward of 1, is also 

Figure 1: An NMDP demonstrating an suboptimal equilibrium. 

A action    B action    reward 
rtO 0 0 1 
rtl 0 1 -2 
7T.2 1 0 0 

^3 1 1 2 

'in general, we will be referring to the "observations" rather 
than "states" of an NMDP, as we will be moving on later to discuss 
a specific class of NMDPs that are defined in a POMDP frame- 
work, where this terminological distinction becomes important. 

Table 1: Reward schedule for NMDP in Figure 1. 

an equilibrium: if states A or B independently change pol- 
icy, the total reward becomes 0 and -2 respectively. 

Although we have only explicitly considered determinis- 
tic policies in the above discussion, we note that the result 
generalises straightforwardly to stochastic policies. 

In the case of the example above the optimal policy was 
also a deterministic policy. However, it is known that in 
general forNMDPs there may be be no deterministic policy 
among the optimal policies, as will always be the case for 
MDPs (Singh et al., 1994). 

Further, we will show in this paper that if a TD method of 
credit assignment is used, or the rewards arc discounted, the 
optimal policies may not represent equilibrium points in the 
policy space, even if an optimal deterministic policy exists. 
This means that even if the problems of local maxima are 
overcome, the optimal policies may not be attractive under 
some standard RL techniques. 

It turns out the key property of optimal policies being stable 
under RL is only preserved if the additional restrictions of 
using undiscounted rewards and using actual return credit 
assignment methods are imposed. 

3   Learning Equilibria 

For the analysis of standard RL algorithms for NMDPs, it 
is useful for us to introduce the notion of a learning equi- 
librium, an equilibrium in policy resulting from a particular 
learning method. So just as we can talk about a policy that 
is stable under policy iteration, we might talk about a policy 
that is stable under 1-step Q-learning, for example. 

Definition 1 A learning equilibrium has the property that 
if you replace the current state (or {state,action)) value es- 
timates with the expected value of the those estimates given 
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the current policy and the learning method being used, then 
the policy remains unchanged. 

A learning equilibrium can be considered to be a stochas- 
tic fixed point in the policy space with respect to a given 
learning method. 

We consider that, in general, an RL system will in the 
course of learning perform a series of updates to a set of 
real-valued utility estimators. These estimators will typi- 
cally estimate state value or (state,action) value, or some- 
times both. Further, we are assuming the current policy of 
an RL system will be a function of these estimator values, 
which we might write as /:£->• I~I, where E represents 
the space of possible estimator values, and n is the policy 
space. 

We can also consider a mapping in the reverse direction 
g : n -y E, where the point g(n) in the estimator space 
corresponds to the expected values of the estimators with 
respect to the learning rules and a policy n. For example, 
if the system is a Q-learning system, g : Tl -> E would be 
denned by the Q function, where QK(s,a) is the expected 
value of the (s,a) estimator under policy K. 

If we consider h : n -» n to be the composition of func- 
tions / and g such that h{n) = f(g{rt)), then if a policy 
7t' meets the fixed point condition n' = h(n'), then 7t' is a 
learning equilibrium. In this way a learning equilibrium 
can be considered a generalisation of the notion of a pol- 
icy that is stable under policy iteration. However, given 
the stochastic nature of the g mapping, such a fixed point 
represents stability in terms of expection only. 

For any MDP with a total discounted reward optimality cri- 
terion, the only equilibrium policies for any of the RL or 
DP methods discussed so far will be optimal policies. A 
policy that is stable under policy iteration is also stable un- 
der value iteration, or under 1-step Q-learning. 

On the other hand, in a non-Markov setting there may be 
suboptimal equilibria for RL systems. The example in Fig- 
ure 1 provides an example of this possibility. 

Clearly, having a global maximum in policy space which 
is also a learning equilibrium is a necessary condition for 
convergence to an optimal policy under a given learning 
method. This basic idea provides the motivation for the 
form of analysis that follows. 

4   hPOMDPs 

The essence of an NMDP is that the history of states and 
actions leading to the present state may in some way in- 
fluence the expected outcome of taking an action within 

that state. When applying a standard RL method like 1- 
step Q-learning to an NMDP, the history is not used even if 
available — this is what Singh et al. (1994) call direct RL 
for NMDPs. Therefore, one potentially useful approach 
to modelling a general class of NMDPs is by considering a 
process that becomes Markov when the full history of states 
and actions leading to the present state is known, but may 
be only partially observable if this history is not available 
or only partially available, i.e. the full history is guaranteed 
to provide any missing state information. 

Another way of expressing this is to say that nothing apart 
from the currently observed state information along with 
the history is required to provide a sufficient statistic. This 
property defines a class of partially observable Markov de- 
cision process (POMDP) we will call hPOMDPs (with h 
for history). 

We should emphasise that in the hPOMDP model the full 
history is always sufficient, but not always necessary, to 
disambiguate the true state. hPOMPDs include processes 
where only some or even none of the history is required. 
For example, a fully Markov process, which requires no 
history at all to disambiguate the state, is included in the 
hPOMDP class. Another example would be a process 
that only requires the current observation plus the start- 
ing observation for full state disambiguation. Using a 
POMDP formulation, we can formalise the properties of an 
hPOMDP stated above by requiring the existence of a func- 
tion §(s,h) that maps the current observation s and history 
h into a unique state in the underlying MDP. 

The original motivation behind the formalisation of 
hPOMDPs was to provide a model for the sort of non- 
Markovianness that is encountered when state aggregation 
due to state-space representation or other forms of state- 
aliasing occur; usually, in cases like these, history can make 
the observation less ambiguous to some extent, and the 
more history you have the more precisely you can deter- 
mine the true state.2 However, hPOMDPs may also be used 
to model the more discrete kinds of perceptual-aliasing 
more frequently encountered in the RL literature, a proto- 

2We note that for some control processes, even the entire his- 
tory is not able to completely disambiguate the state. For exam- 
ple, the original noise- and disturbance-free formulation of the 
pole-and-cart problem using a "boxed" state-space representation 
(Michie & Chambers, 1968; Barto, Sutton, & Anderson, 1983; 
Pendrith & Ryan, 1996) is well-modelled using hPOMDPs when 
the initial state of the system is known (e.g. zero for all state vari- 
ables), but if the initial state variables are randomised or otherwise 
uncertain, then access even to the full history may not make the 
true current state unambiguous. However, even in this situation, 
we note the history will make the true state less ambiguous; and so 
the hPOMDP model might be considered to be a useful "limiting 
case" approximation for domains like these. 
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typical example being Kaclbling et al.'s "robot in the corri- 
dors" scenario (Kaelbling, Littman, & Cassandra, 1995).3 

5   A Discounted Reward Framework for 
NMDPs 

Because wc are interested in what happens when applying 
standard discounted reward RL methods like Q-learning 
to NMDPs, we restrict our attention to the class of fi- 
nite hPOMDPs (i.e., a hPOMDP such that the observa- 
tion/action space 5 x A is finite).4 This effectively mod- 
els the RL table-lookup representation for which all the 
strong convergence results have been proven in the context 
ofMDPs. 

5.1    Summing Over Histories 

We consider a total path or trace through a finite hPOMDP 
which can be written as a sequence of observation/action 
pairs 

((so,aQ),(si,ai),...,(si,ai),...) 

where (i,-,a,) is the pair associated with the i'h time-step 
of this path through the system. For any finite or infinite 
horizon total path co there is an associated total discounted 
reward 

r=0 
(1) 

where ye [0,1] is the discount factor, r, is the immediate 
reward associated with taking action a, from observation 
st, and n is the horizon. 

In measure theoretic terms, we can express the probability 
Pf of a particular observation s ever being visited under 
policy 71 as 

P? = Pn(Ts) (2) 

where the set Ts is the set of possible traces that includes 
s, and PK is a suitably defined probability measure over the 
space of all possible traces T with respect to policy 7t. We 
can also write 

' 5 (\-P?)=P"(n) 

where P* is the complementary probability of observation 
s not being visited, Tj being the set of traces that do not 
include s. These "visit probabilities" assume there is a 
distribution of starting observations V|/ associated with an 

3We note however that for such systems to be accurately mod- 
elled by hPOMDPs some additional restrictions on the problem 
may need to be applied, e.g. the initial state must be known to the 
RL agent. 

4Note that this does not imply there are only a finite number 
of states in the underlying MDP. (cf. Singh et al., 1994). 

hPOMDP, where \ys is the a priori probability of observa- 
tion .9 being the initial observation of the process. 

We note that in general, e.g. if the process is non-absorbing, 
a trace may be of infinite length, and therefore the associ- 
ated probability of it occurring may be infinitesimal, and 
the set Ts uncountable; these considerations motivate intro- 
ducing the techniques of measure theory.5 

We also note that executing a trace that involves one or 
more visits to 5 is logically equivalent to executing a trace 
that involves a first visit to s, and therefore 

/* = 5>(M) 
h£H, 

(3) 

where Hs is the set of finite \cngihfirst-visit histories, which 
are the possible chains of observation/action pairs leading 
to a first visit to observation s, and p(h,n) is the associated 
probability of a first visit occurring by that history under 
policy TC. Because h e Hs are of finite length, p(h,n) is 
finite and Hs is countable, and therefore we can express the 
value as a sum rather than an integral. 

The technical issue of defining an appropriate probability 
measure Pn consistent with the value of this sum to enable 
working with Lebesgue integrals is dealt with in detail in 
(Pendrith & McGarity, 1997), where the equivalence of (2) 
and (3) is used as a starting point. However, it is not nec- 
essary to immediately consider these details to follow the 
development of this paper. 

5.2    Defining Analogs of Q-value and State Value for 
hPOMDPs 

A stochastic policy takes the form of a set of action se- 
lection distributions, with one distribution for each obser- 
vation. Thus a deterministic policy can be considered to 
be a special case of a stochastic policy. So for generality, 
we define the following hPOMDP values with respect to 
stochastic policies. 

We consider the expected future discounted reward (i.e. 
utility) of taking an action randomly selected with respect 
to a distribution d from an observation s, with first-visit his- 
tory h and following policy 7C thereafter. We denote this as 
UK(s,d,h). For notational convenience, we will also write 
UK(s,a,h) to represent the utility of taking a particular ac- 
tion a from observation s with history h and following pol- 
icy TC thereafter. (This can be considered shorthand where 
a stands in for the distribution that would deterministically 
select a.) 

5For a review of the essential measure theory concepts used in 
this paper sec e.g. (Billingsley, 1986). 
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Q\s,d) = 

Q%{s,a) _ J   Ifte«s 

5.3   Policy Values for hPOMDPs 

We can write the policy value, or total expectation, of an 
hPOMDP in terms of a Lebesgue integral 

J(n)= f    R((o)dPK((£>) (4) 

integrating over total paths. 

We can further decompose the total expectation into a con- 
ditional expectation component that involves observation s 
and another that is independent of change to the policy for 
observation s in the following expression: 

7(K)= f     R((u)dPK{(0)+[     R((d)dP*(<o)     (5) 
J<ä€Ts J(ä€Tj 

Note that for a general discounted reward structure we can 
write 

Ett&U*(s,a,h)   if/f>0 /     R{<o)dF*(<a)=Zp{h,n)[R(h)+Tl>U*{s,ns,h)] 

We note that the values Un(s,d,h) and UK(s,a,h) are both 
well-defined by the definition of an hPOMDP. U%(s,a,h) 
can be considered the "Q-value" of the underlying (possi- 
bly infinite state) MDP where the action a is taken from 
"true" state ty(s,h). UK(s,d,h) would therefore be a 
weighted average of these Q-values for that state. 

A value that is of interest if we are considering what can 
be learned by applying standard RL methods directly to 
hPOMDPs is the following weighted average of the above 
defined utilities 

lheH,B$1UK{s,d,h)   ifi?>0 
0 undefined if P* 

Extending our shorthand notation introduced above, we 
will also write 

undefined if P* = 0 

QK(s,a) is what might be called the "observation first-visit 
Q-value"; we observe it is the value a first-visit Monte 
Carlo method will associate with taking action a from ob- 
servation s in the hPOMDP.6 Similarly, QK(s,d) is the ex- 
pected value a first-visit Monte Carlo method will come to 
associate with selecting an action using distribution d from 
observation s. 

Using the definitions above, we define the value of an ob- 
servation for a policy to be Vn(s) = Qn(s,ns) where ns is 
the action selection distribution associated with observation 
s under stochastic policy 7t; if n represents a deterministic 
policy, then ns denotes the policy action for observation s. 

We note that the values of Q*{s,d), Q*(s,a) and hence 
V*(s) are undefined for s if Pf = 0 (i.e., s is unreachable 
under 7t). This is because, unlike the case for MDPs, it is 
difficult to assign a sensible meaning to the notion of the 
value of taking an action from an unreachable observation. 
In short, the notion of an "observation first-visit Q-value" 
is fairly empty if a first visit simply isn't possible. 

h&Hs 
(6) 

where 0 < y < 1 is the discount factor, //, is the length of 
history h, and R(h) is the value of the truncated discounted 
return associated with history h (cf. Equation (1)). Thus, 
the LHS and RHS of this identity are different expressions 
for the conditional expectation assuming a visit to observa- 
tion s. 

Finally, we define an optimal observation-based policy n* 
simply by 

ji* e arg max J(n) (7) 
7C 

These definitions provide a framework for analysing 
hPOMDPs using a total future discounted reward criterion 
which applies equally well to both ergodic and non-ergodic 
systems. 

6   Analysis of Observation-Based Policy 
Learning Methods for hPOMDPs 

The first result we present is a lemma useful in the proof of 
Theorem 1. The proof of the lemma is omitted for space 
reasons; for the proof see (Pendrith & McGarity, 1997). 

6Recall that Hs is a set of first-visit histories. We consider 
first-visit rather than multiple-visit Monte Carlo methods because 
there are some basic conceptual problems with using the latter in a 
non-Markovian context (in the general case, it doesn't make sense 
to apply multiple-visit Monte Carlo when histories may matter, 
i.e. the Markov assumption doesn't hold.) For an introduction to 
concepts of first-visit versus multiple-visit Monte Carlo methods 
as applied to RL, see (Singh & Sutton, 1996). 

Lemma 1 If two observation-based policies Jt and n for 
an undiscounted hPOMDP differ only in one observation 
s, then the difference in values between the policies n and 

TC can be expressed as 

J(K)-J(K) = P?[V«(S)-V«(S)] (8) 
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We note Lemma 1 has a strong intuitive basis, suggesting 
its applicability to a very general class of decision pro- 
cesses including but not limited to hPOMDPs. Equation (8) 
corresponds to the straightforward observation that for an 
undiscounted reward process, by changing policy in exactly 
one reachable state under policy n, the change in value of 
the expected total reward for the new policy is equal to the 
change in first-visit expected value for the changed state 
multiplied by the a priori probability that state will have a 
first-visit under policy n. 

Theorem 1 If a first-visit Monte Carlo method of credit as- 
signment is used for an hPOMDP where y = 1, then the 
optimal observation-based policies will be learning equi- 
libria. 

Proof Suppose an optimal observation-based policy it is 
not a learning equilibrium under a first-visit Monte Carlo 
credit assignment method; then there must exist an obser- 

•' ? 
vation s such that VK(s) > Vn(s) for some policy k that 
differs from n only in observation s. By Lemma 1, the dif- 
ference in policy values is 

J(n)-J(n) = P?[Vh(s)-VK(s)] 

Since V"(j) > Vn(s) and P? > 0 (i.e. observation s is 

reachable under 7i),7 then J(h) > J(n). But this is not pos- 
sible since n is an optimal policy; hence an optimal policy 
is a learning equilibrium. □ 

Theorem 1 is a positive result: it shows that, at least under 
certain restricted conditions, an optimal observation-based 
policy is also guaranteed to represent a policy equilibrium 
for a direct RL style learner. 

The next question is whether we can generalise the result. 
Does the result hold for general y? Does the result hold for 
TD returns instead of Monte Carlo style "roll-outs"? 

The next result addresses the issue of using discounted re- 
turns for general y. 

Theorem 2 Theorem I does not generalise to JE [0,1). 

Proof We prove this by providing a counter-example. We 
consider the hPOMDP in Figure 2. 

Figure 2 shows an hPOMDP with one action available from 
the two equiprobable starting observations A and B; one 

Figure 2: The hPOMDP discussed in the proof of Theorem 2. 

action available from intermediate observation C; and two 
actions available from the penultimate observation D. An 
action from observation A leads to observation C without 
reward; actions from observations B and C lead to observa- 
tion D without reward. Both action 0 and action 1 from ob- 
servation D immediately lead to termination and a reward; 
the decision process is non-Markovian because the reward 
depends not only on the action taken from observation D, 
but also on the starting observation. 

We assume that y < 1 for this discounted reward decision 
process; suppose the reward schedule is as follows: 

Start observation    action D    reward 
A 0 r\ 
A 1 n 
B 0 n 
B 1 n 

7Note that observation s must be reachable under both K and 
s s 

K otherwise both VK(s) and Vn(s) would be undefined, which is 
s 

incompatible with the hypothesis VK(s) > Vn(s). 

Let no and n\ be the policies that correspond to 0 and 1 
being the policy action from D. We set r\... r$ such that 
QK(D,0) > Qn{D, 1) for arbitrary JU (i.e. (n +r3)/2 > (r2 + 
rj,)/2), but also so that 7(;to) < 7(7Ci) (i.e. (yn + ri)jl < 
{in + n)/2). For example, let r2 = 0, rj = 1, n, = 2, and 
select r\ such that yn < 1 < r\. 

In such a case, D will see action 0 as preferable, which 
appears locally optimal even though the choice results in 
suboptimal policy Ko. Thus the sole optimal policy n\ docs 
not represent a learning equilibrium for this hPOMDP.   □ 

Next, we examine the case where TD style returns are used: 

Theorem 3 If a TD(X) credit-assignment method is used 
for direct RL of a NMDP, then for X< 1 it is not guaranteed 
there exists an optimal observation-based policy represent- 
ing a learning equilibrium. 

Proof Consider the hPOMDP in Figure 3. Observations A 
and B are the equiprobable starting observations. We note 
all the transitions are deterministic, and that in observation 
A there are two actions to select from while observations 
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Figure 3: The hPOMDP discussed in the proof ofTheorem 3. 

B and C have only one. Action 0 from observation C leads 
directly to termination with an immediate reward; if the 
starting observation is A, the immediate reward is 1, but if 
the starting observation is B, the immediate reward will be 
zero. Action 0 from observation A also has a termination 
and a non-zero immediate reward associated with it, the 
exact value of which we will discuss in a moment. All 
other transitions have a zero immediate reward associated 
with them. 

The expected value of (C,0) for an observation based pol- 
icy 71 depends upon the relative frequency of the transitions 
A-+C and B -» C; this in turn depends upon how often ac- 
tion 1 is selected from observation A for the sake of active 
exploration. We make no special assumptions regarding 
an active exploration strategy: we only assume the relative 
frequencies of action 0 and action 1 selections from obser- 
vation A are both non-zero; hence QK{C,Q) € (0,0.5). 

From the rules of TD updates we can derive that Qn(A, 1) = 
y(X.\ + (1 - X)ß,t(C,0)), assuming y € [0,1]. This inter- 
ests us, because QK(A,\) would equal y under a Monte 
Carlo method of credit assignment, but for TD(A,) returns 
ö7t(A,l)<YforallX<l. 

Therefore, if the value of the immediate reward for (A,0) 
is such that Qn(A, 1) < Q*(A,0) < y, then observation A 
would see action 0 as preferable to action 1, even though 
the optimal policy corresponds to selecting action 1. In 
such a case, the optimal observation-based policy for this 
hPOMDP does not represent a learning equilibrium if 
TD(X) returns are used with A, < 1. □ 

Firstly, we should point out that proof of Theorem 3 has 
been constructed so that it applies equally to both on-policy 
methods, such as SARSA (e.g. Singh & Sutton, 1996), and 
to off-policy methods, such as Q-learning. 

Further, if we consider the special case of X = 0, we can 
use this proof to additionally arrive at the following result: 

Corollary I If a 1-step Q-learning (or 1-step SARSA) 
method of credit assignment is used for direct RL of a 
NMDP, then it is not guaranteed that there exists an opti- 
mal observation-based policy representing a learning equi- 
librium. 

We note we can also use the proof of Theorem 3 to settle a 
conjecture in (Singh et al., 1994) regarding the optimality 
of Q-learning for observation-based policies of POMDPs. 
The authors of that paper conjectured that Q-learning in 
general might not be able to find the best deterministic 
memoryless (i.e. observation-based) policy for POMDPs. 
If we consider X = 0 case (i.e., the case corresponding to 1- 
step Q-learning), this result follows directly from the proof, 
since the optimal policy for the hPOMDP used in the proof 
of Theorem 3 is in fact also deterministic. 

We also note that in (Pendrith & McGarity, 1997) is a proof 
that extends these results from 1-step to multi-step cor- 
rected truncated returns (CTRs). We omit the proof here 
for space reasons. 

Taken together, these results show that the key property of 
optimal observation-based policies being stable for direct 
RL methods does not generalise from Markovian to non- 
Markovian domains. The stability of optimal observation- 
based policies under standard RL methods can be guaran- 
teed for hPOMDPs, a general class of NMDPs, only if the 
additional restrictions of using undiscounted rewards and 
using actual return credit assignment methods are imposed. 
These results apply for stochastic as well as for determin- 
istic optimal observation-based policies. 

7   Related work 

The POMDP theoretical framework was originally formu- 
lated in the context of a set of operations research (OR) 
problems; the wider RL literature reflects an important line 
of research that is bringing OR methods to bear on the gen- 
eral problem of discovering effective policies in partially 
observable stochastic domains (Kaelbling et al., 1995). In 
contrast to "direct" methods of RL for POMDPs, however, 
these methods generally rely on state-estimation techniques 
that attempt to disambiguate observations into true Markov 
states. 

Although an analysis of direct RL for POMDPs as pre- 
sented in this paper might prima facie seem to have lit- 
tle bearing on such approaches, this is not necessarily the 
case. We consider that even if we are using active state- 
estimation techniques in a POMDP setting, the problem 
will remain non-Markov to some degree or another while 
the state-estimation is imperfect; and, in general, the prob- 
lem of state-disambiguation has been shown to be difficult 
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(Littman, 1996). 

In (Littman, 1994) is a complexity analysis of the general 
problem of finding the optimal deterministic memoryless 
(i.e., observation-based) policy for an NMDP. In the gen- 
eral case, this turns out to be NP-complete. More opti- 
mistically, in the same paper there is evidence presented 
that heuristic methods for searching the policy space might 
be expected to find very good or even optimal policies in 
the average case. 

In (Singh et al., 1994) is proposed a framework for the anal- 
ysis of direct RL for NMDPs; it is built around a class of 
POMDPs conceptually similar to hPOMDPs in several im- 
portant respects. 

The authors analyse what two different 1 -step TD RL meth- 
ods (TD(0) and 1-step Q-learning) will learn as value func- 
tions for the class of POMDPs under consideration. While 
they do not continue to a full analysis of TD(A) for general 
A. < 1, they do point out that a Monte Carlo method like 
TD(1) will result in accurate value estimates for an exam- 
ple POMDP they analyse. 

As noted earlier, they conjecture that, in general, 1-step Q- 
learning is not guaranteed to learn even the best determinis- 
tic observation-based policy for a POMDP. However, their 
analyses are concentrated on the issue of the accuracy of 
observation-based value estimation, rather than on the sta- 
bility of optimal policies, which has been our primary fo- 
cus. Also, as a consequence of the multiple-visit definition 
of V(s) in their framework, their analysis was necessarily 
restricted to the asymptotic behaviour of ergodic systems, a 
limitation which does not apply to the framework presented 
here. 

The analyses of cooperative learning automata in Markov 
settings by Witten (1977) and Wheeler & Narendra (1986) 
provided the game theoretic perspective facilitating the 
original intuitions and reasoning leading to the results pre- 
sented in this paper. 

8   Conclusions and Future Work 

An analysis of hPOMDPs has proven to be an aid to un- 
derstanding the theoretical implications of applying stan- 
dard discounted reward RL methods to non-Markov en- 
vironments. Extending earlier work, the framework we 
present applies to non-ergodic as well as discounted reward 
NMDPs, facilitating a more direct understanding of the is- 
sues involved. 

Our analysis starts with the simple observation that having 
a global maximum in policy space which is also a learn- 
ing equilibrium is a necessary condition for convergence 

to an optimal policy under a given learning method. We 
discover that for an important general class of non-Markov 
domains, undiscounted, actual return RL methods have sig- 
nificant theoretical advantages over discounted returns and 
TD methods of credit-assignment. 

A move from discounted to undiscounted rewards natu- 
rally suggests a closer look at average reward RL methods 
for equilibrium properties in non-Markov environments. 
Some steps in this direction have already been made in 
(Singh et al., 1994) and (Jaakkola, Singh, & Jordan, 1995). 
Theorem 2 may point to subtle problems translating "tran- 
sient reward" sensitive metrics such as Blackwell optimal- 
ity (Mahadevan, 1996) from MDPs to NMDPs. Investiga- 
tions are continuing in this direction. 
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Abstract 

Three factors are related in analyses of per- 
formance curves such as learning curves: the 
amount of training, the learning algorithm, and 
performance. Often we want to know whether 
the algorithm affects performance and whether 
the effect of training on performance depends on 
the algorithm. Analysis of variance would be an 
ideal technique but for carryover effects, which 
violate the assumptions of parametric analysis 
of variance and can produce dramatic increases 
in Type I errors. We propose a novel, random- 
ized version of the two-way analysis of variance 
which avoids this problem. In experiments we 
analyze Type I errors and the power of our tech- 
nique, using common machine learning datasets. 

1   INTRODUCTION 

A common task in machine learning is comparative assess- 
ment of learning methods. Most research on this issue fo- 
cuses on performance measures such as classification accu- 
racy after training, or percentage of games won by a game- 
playing program (e.g. Mitchell 1997 ch. 5, Dietterich (in 
press), Rasmussen et al. 1996). However, it is sometimes 
interesting to compare time series of performance, such as 
learning curves. For example, two algorithms might have 
comparable asymptotic performance, but we would like to 
test the hypothesis that one achieves this level of perfor- 
mance more quickly than the other. 

Which statistical procedures are appropriate to identify dif- 
ferences between the performance of algorithms over time, 
and particularly during training? One obvious approach 
might be to apply the aforementioned methods repeatedly 

at different times, comparing the performance of algo- 
rithms at each of several levels of training. Unfortunately, 
multiple comparisons can lead to overestimates of the sig- 
nificance of results (see Section 2) and are inappropriate for 
comparing performance curves. 

A better approach is to describe differences between algo- 
rithms during training in terms of two effects: 

Algorithm Effect: Does one algorithm generally achieve 
higher performance than another? 

Interaction Effect: Does the influence of training on per- 
formance depend on the algorithm? 

Figures la and lb illustrate prototypical cases for each ef- 
fect. In practice, however, some combination of effects 
will occur. In Figure lc, for instance, both curves start out 
with similar slopes, but one of them converges to a lower 
asymptote. Figure Id shows a case where both curves start 
at the same point and achieve similar asymptotic perfor- 
mances, but one algorithms learns faster (with respect to 
the amount of training) than the other. In this latter case, we 
find that both algorithm and interaction effects concentrate 
in the early stages of training, and both effects essentially 
disappear with increasing amount of training. 

This paper presents a method for detecting Algorithm and 
Interaction effects in learning curves. Actually, the method 
is not restricted to learning curves, it applies to any kind of 
performance curves. The method tests two hypotheses: 

• The mean performances of two or more algorithms are 
the same (no Algorithm effect). 

• The relationship between training and performance 
does not depend on Algorithm (no Interaction effect). 

Such effects are typically tested with analysis of variance 
(ANOVA). However, the conventional parametric ANOVA is 
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o 
(b) 

Algorithm 
Interaction 

Algorithm, 
Interaction 

Algorithm, 
Interaction 

Training 

Figure 1: Some kinds of differences between learning curves. The statistical effects on performance (Algorithm and/or 
Interaction effects) are listed for each situation. In case c, the Interaction effect disappears at the later stages of training; in 
case d, both effects disappear. 

based on several assumptions, of which one, homogene- 
ity of covariance, is strongly violated by most time se- 
ries data. In particular, conventional ANOVAs on learning 
curves can dramatically overestimate the significance of al- 
gorithm effects and underestimate the significance of in- 
teraction effects. Following some statistical preliminaries 
in Section 2, we demonstrate how ANOVA gives incorrect 
results for learning curves (Section 3) and then introduce 
our novel procedure, a randomized version of ANOVA (Sec- 
tion 4). The remainder of the paper presents experimental 
results with conventional and randomized ANOVA, compar- 
ing the power and Type I errors of the methods. 

2   STATISTICAL HYPOTHESIS TESTING 

This section defines terms and may safely be skipped by 
readers familiar with statistical hypothesis testing. 

Hypothesis testing involves these steps: Assert a null hy- 
pothesis Ho- Decide on a statistic (j>. Collect a sample s 
of size n and calculate (fi(s) for the sample. Derive the 
probability distribution S of all possible values of (j>(i) for 
samples i of size n under Ho- These restrictions are im- 
portant: <S isn't the distribution of <f> for any sample, but 
for samples of size n that would arise if the null hypoth- 
esis were true. S is called the sampling distribution of (j>. 
One may then ask, "What is the probability of obtaining a 
statistic value of (f>(s) or more by chance if HQ were true?" 
The answer, called a p value, is the area of S above (j>(s). 
Suppose p = .01. Should you reject the null hypothesis? 
There isn't a correct answer to this question, but you can be 
assured that if you do reject HQ, the probability that you do 
so in error is no greater than p. Rejecting Ho when it is true 
is called a Type I error. Failing to reject Ho when it is false 
is a Type II error, and the power of a test—the probability 
that you will reject Ho when it is false—is one minus the 
probability of a Type II error. 

One may also ask, "What value of </>(s) must I exceed to 
be assured that my p value is less than some threshold a?" 
This is called the critical value of(j) and, obviously, it varies 
with a. 

One should not compare performance curves by repeatedly 
comparing points on the curves (e.g., comparing perfor- 
mance after z, 2i, Si... training instances). Each compari- 
son will with some probability a assert a difference in per- 
formance when in reality there is none — a Type I error. 
If the comparison procedure is applied m times, to m pairs 
of points on learning curves, then the total probability of 
Type I error is roughly 1 — (1 — a)m. (The probability is 
exactly 1 — (1 — a)m if the comparisons are independent, 
but they are not, and their non-independence necessitates 
the technique developed in this paper.) One can control the 
total probability of a Type I error, but only by reducing a 
— which increases the critical values for individual com- 
parisons — making it less likely that comparisons will find 
differences that actually exist. Said differently, the power 
of the tests is reduced (see Cohen 1995 for a discussion of 
related issues). Multiple comparisons are not the right tool 
for comparing performance curves. 

3   ANOVA FOR COMPARING 
PERFORMANCE CURVES 

Suppose we have two learning algorithms A\ and A2, each 
of which trains I times on a set of k instances, e.g., in an 
Z-fold cross validation procedure. Then we have / estimates 
of the performance of each algorithm at each level of train- 

..L^for ing. Put another way, we have I "lines" Li',. 
-(2) (2) Ai and another I lines L\ ',..., L\ ', where each line is 

a list of k numbers that represent die performance of the 
algorithm at level h (1 < h < k) of training, on that par- 
ticular fold of the cross validation. A schematic data table 
is shown in Figure 2, where the axes of the table represent 
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the factors Training and Algorithm. Lines may of course 
be generated by methods other than cross-validation; for 
example, they might represent training on several differ- 
ent datasets. The important thing is that the data points on 
a line are not independent. In statistical parlance, they are 
repeated measures and they create carryover effects, mean- 
ing that the performance represented by earlier points on a 
line influences, or carries over to, later performance. 

*i h 
Training 

tk 

Ai 

i   A2 ■3 
•c o 

<     ; 

Figure 2: Data table setup for randomized ANOVA. This 
example shows I = 4 learning curves per algorithm. 

Were it not for these carryover effects, analysis of variance 
would be an ideal tool to analyze learning curves. Analysis 
of variance tests for main effects of factors and interaction 
effects between factors. Each kind of effect is represented 
by an F statistic, which has an expected value of 1.0 under 
the null hypothesis of no effect. Formulae for calculating 
F are straightforward and widely available (e.g., see Cohen 
1995) and will not be repeated here. The patterns of data in 
Figure 1 can be discriminated by F statistics for main and 
interaction effects. 

Carryover effects make it difficult to specify the sampling 
distributions of F statistics. Classical F distributions are 
derived under some assumptions, and while F tests are ro- 
bust against departures from most of these, learning curves 
violate an important one: homogeneity of covariance. To 
see what this means, note that we could calculate a correla- 
tion between the four data points in the A\, t\ cell of Figure 
2 and the four in the Ai, t<i cell. Under homogeneity of co- 
variance, this correlation would be constant for any pair of 
cells Ak,ti and Ak,tj. However, the correlation between 

performance after t and t+1 training instances is apt to be 
higher than the correlation between performance after t and 
t + 100 instances, so homogeneity of covariance is apt to 
be violated. The consequence is that the Type I error prob- 
abilities no longer correspond to the given a level (Cohen 
1995 (p. 306), Keppel 1973, O'Brien and Kaiser 1985). 

So F statistics can represent the effects in Figure 1, nicely, 
but carryover effects bias the p values of the statistics. Can 
we salvage ANOVA and F tests? One common tactic is to 
correct statistics to compensate for biases. The following 
experiment (and those in Sec. 5) shows that this tactic will 
not work. We generated learning curves from three dif- 
ferent datasets (Chess, RL, and Tic-Tac-Toe; see the Ap- 
pendix). The results (Figure 3) demonstrate a dramatic in- 
crease in Type I error in the case of Algorithm effects, and 
a decrease for Interaction effects. The histograms demon- 
strate that the frequencies of these errors depend on the 
dataset, which implies that one cannot correct the F statis- 
tics with a simple adjustment. In particular, the Chess and 
Tic-Tac-Toe learning curves were generated according the 
same procedure, their degrees of freedom are identical, and 
yet their mean rejection rates differ dramatically. 

Another way to salvage ANOVA is to somehow find the ap- 
propriate sampling distributions for F statistics when ho- 
mogeneity of covariance is violated. This would allow us 
to control Type I errors precisely. Our method, discussed 
in Section 4, yields these sampling distributions, and ac- 
curate p values, whether or not homogeneity of covariance 
is violated. The procedure is based on randomization (see, 
e.g., Cohen 1995, ch. 5). Consider first the null hypothe- 
sis that Algorithm has no effect on performance. If it were 
true, then the lines associated with algorithm A\ in Figure 2 
might equally well be associated with A2, or with any other 
algorithm. Thus, if we randomly redistribute lines among 
algorithms, and then calculate Faig in the usual way, we 
will derive one value of Faig under the null hypothesis that 
Algorithm is independent of performance. For clarity, de- 
note this statistic Fal to remind us that it was derived by 
randomization, that is, shuffling lines, and to distinguish 
it from the sample statistic Faig that was calculated from 
the original (unshuffled) data table. If we shuffle the lines 
again, we will get another, somewhat different value of 
FjJl , and if we shuffle 1000 times we can get a distribu- 
tion of 1000 values of this statistic. 

By shuffling lines instead of, say, individual data points 
among algorithms, we preserve the dependencies among 
the data points on each line. Said differently, we treat a line 
as a unit for the purpose of estimating the distribution of 
Fa, , so the degree of dependence among the data on a line 
is irrelevant. As mentioned above, when homogeneity of 
covariance is violated, comparing Fa|g to a conventional F 
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Initialize c = 0. Then do 1000 times: 
1. Generate a set L of learning curves using C4.5. 

2. Partition L randomly into L\ and L2 representing two different imaginary algorithms, 
with |Li| = |La| = J§1. 

3. Perform conventional ANOVA on these data, obtaining the probability p that it is incor- 
rect to reject the null hypothesis that there is no effect of Algorithm on performance. 

4. If p < 0.05 then increment c. 

•c o 

Chess RL Tic-Tac-Toe 

300      350      400      450    50 100 150   100 150 200 

60 

•2      40 

a   20 

C40| ■ ■  

10        20        30     20        40        60 

Figure 3: Illustration of the increase in Type I error resulting from carryover effects. For each dataset, the procedure 
given above was executed 100 times and the resulting c values averaged. Without carryover effects, one would expect 
c = 1000a = 50. The histograms of c values show that Ho was rejected much more frequently, which demonstrates the 
inappropriateness of the conventional ANOVA for comparison of learning curves. See the Appendix for details about the 
datasets used. 

distribution will underestimate p, that is, it will make Faig 

look significant at a given level of a when it is not. The 
distribution of F*lg protects against this error, as illustrated 
by Figure 4. 

F*lg is not technically a sampling distribution but it serves 
the same purpose, namely, to estimate a p value for a sam- 
ple result, or to find a critical value that Faig must exceed 
to reject Ho with some level a of confidence (Cohen 1995, 
p. 175). 

4   THE PROCEDURE IN DETAIL 

ing.' Note that k and the th, (1 < h < k) are the same for all 
algorithms, but I, the number of learning curves generated 
by an algorithm, need not be the same for all algorithms. 

We will test two null hypotheses: There is no effect of 
Algorithm on performance, and there is no effect of Al- 
gorithm on the relationship between Training and perfor- 
mance. These correspond to F tests of a main effect and 
the interaction effect in a two-way analysis of variance, so 
we will compute the appropriate statistics, F^g and Fint, 
but we will compare them to the randomized sampling dis- 
tributions of F^lg and F;*,.. 

The complete procedure can be summarized as follows: 
Consider a set A of m learning algorithms A\,..., Am 

For each algorithm At we have a set L& 0f I learning 1. For each algorithm i,   collect I learning curves 
-(0 r(i) 

curves L\',..., L\'. Each learning curve L)' constitutes (0 r(i) 'W 

-(*) r(0 (0 
L\',..., L\'. If there are m algorithms, this will pro- 

a fc-tuple (Lj [,..., Lj'f.) of real numbers, where each Ljh 

gives the performance score of the learning algorithm Ai on 
the jth run after Ai has performed an amount th of train- 

'The "amount of training" is an abstract notion here which 
could be given by the number of training instances processed, the 
number of trials run, or even by the training time. 
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Chess 

<        5 

20 40 60 80 

RL Tic-Tac-Toc 

100 

Figure 4: Histograms generated by the sam: procedure as Figure 3, but p-values were compared against randomized F 
distributions (500 shuffles) instead of the parametric distributions. In fact, the mean rejection rates of around 50 correspond 
to the target significance level of a — 0.05. This is also true for the corresponding histograms for the Interaction effect 
(not shown). 

duce a data table like the one in Figure 2. 5   EXPERIMENTAL RESULTS 

2. Run a conventional two-way analysis of variance on 
this data table to obtain sample statistics Fa|g and F\nt. 

3. Generate the sampling distributions Fa]  and F*nt: 

Throw the m x I learning curves into a "pool" V. 

Do i = l...z times (where z is large, e.g., 
1000): 

(a) Shuffle V and reassign each of the ml learn- 
ing curves to the m algorithm categories 
(rows in the data table) such that each row 
contains I curves. Shuffling V enforces the 
null hypothesis of no association between 
performance and algorithm. 

(b) Run a conventional two-way analysis of vari- 
ance on the resulting data table and record 

^lg,iandFint,r 

4. Find the critical values in the distributions F*x and 
F*nt. If a = .05 and z = 1000 then the critical value 
in each sorted distribution is the 950th, because 5% of 
the distribution lies above this value. In general, the 
critical value is the alOOth quantile. 

5. If Faig exceeds the critical value for the Falg distri- 
bution, reject the null hypothesis that Algorithm does 
not affect performance. Similarly if Fjnt exceeds the 
critical value for the F^t distribution, reject the null 
hypothesis of no interaction effect. 

6. The p value for each hypothesis is derived from the 
rank of the closest value in the sorted sampling dis- 
tribution. For example, if Faig = 10.3 and the closest 
value in Fal is 10.2, and if the rank of this value is 972 
out of 1000, then p < (1000 - 972)/1000 = .028. 

In Section 3 we illustrated the increase in Type I error 
caused by comparing F statistics to standard F distribu- 
tions. This section provides a more detailed account of this 
phenomenon. Both Algorithm and Interaction effects arc 
analyzed on the Chess dataset (see Appendix). The fol- 
lowing section discusses the probability of Type I error, 
and Section 5.2 compares the power of the conventional 
and randomized ANOVAs. In all cases we use m = 2 sets 
of learning curves. Note that our method applies to any 
m> 2. 

5.1    TYPE I ERROR MEASUREMENTS 

As shown in Section 3, the standard F distributions tend to 
overestimate the significance of Algorithm effects, but un- 
derestimate the Interaction effects. We expected the overes- 
timations based on previously published results (e.g., Kep- 
pel 1973, p. 464) but the underestimations were a surprise 
and we do not have a satisfactory explanation for this phe- 
nomenon. In one sense, we do not care why the standard 
F distributions detect Interaction effects less often than ex- 
pected, because we have a method to construct correct F 
distributions. Yet we were curious. To shed some light on 
this issue, we examined the frequency of Type I errors for 
Interaction and Algorithm effects, for conventional ANOVA 
and our method, in a variety of conditions. 

Recall that Type I error rates are the frequencies with which 
the null hypothesis is rejected when it is true, i.e., when 
there is no effect. In Section 3 we enforced the null hy- 
pothesis by splitting a set of learning curves generated by 
one algorithm into two groups, calling one group "algo- 
rithm A," the other "algorithm B," then testing for an Al- 
gorithm effect and an Interaction effect. Because the two 
groups were generated by one algorithm, we expected nei- 
ther effect; that is, we expected Type I error rates of a. In 
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the following experiments we enforce the null hypothesis 
in a slightly different way. First we generated a set L of 
learning curves with C4.5, then to each curve we applied 
a transformation, yielding another set V. The transforma- 
tion induced an Algorithm effect or an Interaction effect or 
both. In other words, the mean curves for L and L' corre- 
spond to the pairs of curves in Figure 1. Then, to enforce 
the null hypothesis, we shuffled the curves in L and V'. 
Whereas the earlier procedure enforced the null hypothesis 
by randomly dividing a set of statistically-identical learn- 
ing curves, this procedure is more natural in starting with 
two sets of curves {L and V) that are different, then shuf- 
fling them. Moreover, we have tight control over the degree 
of difference between L and V because we transform the 
former to get the latter. 

We now describe this procedure in detail. The following 
steps compute the number c of rejections of Ho during 
1000 analyses of variance, starting from a set L of learn- 
ing curves: 

Initialize cCOnv = c^md = 0. Then do 1000 times: 

1. Construct V by modifying each curve from L accord- 
ing to one of the cases given in Figure 1. The degree 
of modification is controlled by a factor /. We will 
denote this operation by V = Ma(L, f) for case a in 
Figure 1, and likewise for cases b, c, d. 

2. Partition LL)L' randomly into L\ and L2, with |Li | = 
|L2| = 20. 

3. Perform conventional ANOVA on these data to obtain 
the F statistic for the tested effect. 

4. Compare F to the appropriate conventional F distri- 
bution and read off the probability pconv that it is in- 
correct to reject Ho- 

5. Generate a randomized sampling distribution F* us- 
ing 400 shuffles as described in Section 4 item 3, and 
read Off Prand- 

6. If Pconv < a then increment Cconv 
If Prand < " then increment Crand- 

This procedure was performed with respect to Algorithm 
and Interaction effects, and for 10 different values of /. 
For each of these cases, the c values resulting from 10 such 
runs were averaged to yield a data point shown in Figure 5. 
The effect of the modification factor / on the shape of a 
curve is also illustrated in the figure. Details on the four 
modification procedures are given in the Appendix. 

As expected, the randomized ANOVA always achieves 
Type I error probabilities near the target significance level 

of a = 0.05. The conventional method, however, tends to 
assert an Algorithm effect too often (increase in Type I er- 
ror probability). In contrast, Interaction effects are mostly 
detected less often than the expected 5%. 

Modification Mj is a dramatic case: This modification did 
not introduce an Algorithm effect, and yet such an effect 
was often detected by the conventional ANOVA at a fre- 
quency inversely proportional to the modification factor 
/. The modification introduced an Interaction effect which 
was then shuffled away, enforcing the null hypothesis of no 
interaction, yet the frequency with which conventional AN- 
OVA detected Interaction effects increases with /. We do 
not know why, and these experiments fail to explain why 
Type I errors for interaction effects are lower than expected, 
although the dependence on / is intriguing. 

The magnitude of these misjudgments can be quite dra- 
matic (up to a factor often in these examples), but depends 
on the type of the effect and the modification factor /. Be- 
cause of these dependencies, we think it is not possible to 
correct the standard F statistics to control Type I errors pre- 
cisely. No matter: Our randomized ANOVA produces the 
expected Type I errors. 

5.2   POWER MEASUREMENTS 

Whereas Type I errors involve detecting effects that don't 
exist, Type II errors involve failing to detect errors that do 
exist. The power of a test is one minus the Type II error 
rate, that is, the probability of detecting a true effect. To 
measure the power of both conventional and randomized 
versions of ANOVA, we employed the same modification 
strategy as in the previous section. Here, however, L and 
V are not shuffled. In other words, L and V give us con- 
trolled Algorithm and Interaction effects. The following 
procedure measures the power of both ANOVAs to detect 
these effects: 

1. Construct L2 = Mx(Li,f), where x is one of 
a,...,d. 

2. Generate a randomized sampling distribution F*, as 
described in Section 4 item 3, using 500 shuffles of 
2 x 10 learning curves each. 

*•  Cconv = Crand = t). 

4. Do 100 times: 

(a) Randomly draw a set L[ of 10 unique curves 
from L\. 
Randomly draw a set L'2 of 10 unique curves 
fromZ/2- 

(b) Perform conventional ANOVA and obtain F. 
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Figure 5: Effects asserted by the conventional and randomized ANOVA methods. Each row shows one of the modification 
cases a-d from Figure 1. The left column illustrates the effect of the modification for different values of/ (/ = 0 means no 
modification). The center and right columns plot the number of times (of 1000) the conventional and randomized analyses 
asserted an Algorithm or Interaction effect at a = 0.05. 
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(c) Compare F to the parametric F distribution and 
obtain pconv 
Compare F to the randomized F* distribution 

and obtain prand- 

Cd) If pconv < a then increment cconv 
If Prand < a then increment crand. 

Divide cconv and crand by 100 to obtain the power 
measurements. 

This procedure was performed to introduce Algorithm and 
Interaction effects for 10 different values of /. For each of 
these cases, the c values resulting from 8 such runs were 
averaged to yield a data point shown in Figure 6. 

As in earlier experiments, the conventional ANOVA usually 
overestimates the presence of an Algorithm effect, thus it 
appears more powerful than our randomized ANOVA. But 
this "power" is illusory, like a watchdog that barks all night 
whether or not a prowler is on the premises. Sure, the dog 
will bark when there is a prowler — the probability of de- 
tecting a prowler is 1.0—but it is a useless animal. In mod- 
ifications a, c and d, where Algorithm effects are present, 
our method detects them handily and at a Type I error rate 
of approximately 5%. In case b, where there is no algorithm 
effect, our method does not report one, but the conventional 
method does. Similarly, for interaction effects, our method 
does not detect one in case a, because none exists, and it is 
quite powerful in the other cases, where interaction effects 
are present. 

6   CONCLUSION 

We have presented a statistical method for comparing sets 
of performance curves, such as learning curves, when 
points on the curves are not independent, that is, when there 
are carryover effects and homogeneity of covariance is vi- 
olated. We demonstrated that in these conditions conven- 
tional analysis of variance produces a sometimes dramatic 
surplus of Type I errors for main (algorithm) effects and a 
shortfall of Type I errors for interaction effects. Because 
the magnitude of these surpluses and shortfalls depends on 
the original dataset, among other things, we do not think 
they can be corrected by adjusting conventional F statis- 
tics. Instead we show how to construct sampling distribu- 
tions for the F statistics that correct for violations of ho- 
mogeneity of covariance. With this method, one can con- 
trol error rates precisely. We recommend the method for 
its simplicity and hope it will be a helpful addition to the 
statistical toolbox of the machine learning community. 

Algorithm Effect Interaction Effect 

a a 
| 0.5 
0. 

/ 
/         J 

/        / 
- conv 
— rand 

1 

I 0.5 
Q_ 

0 2 4 
Modification factor f 

0 2 4 
Modification factor f 

Figure 6: Power measurements of the conventional and 
randomized ANOVA methods. Each row shows one of the 
modification cases a-d from Figure 1. The horizontal axes 
indicate the degree / to which one of one underlying two 
sets of curves was modified with respect to the other (see 
Figure 5). 
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Appendix: Sources of Learning Curves 

Chess: Chess Endgame Database (king-rook-vs-king, 
Bain 1994) provided by the UCI Machine Learning 
Repository (Merz and Murphy 1996). Twenty Learn- 
ing curves were generated by running the decision tree 
algorithm C4.5 (Quinlan 1993) in a 20-fold cross val- 
idation procedure. 

We now describe the modification functions Mx (L,f) 
used in Section 5. In the following, r refers to the dif- 
ference between the performance values of the last and 
first points of a given learning curve, i.e. r = Lk-L\. 
For each learning curve L, each performance value L* 
is altered according to a given modification case (cf. 
Figure 1): 

RL: 

(a) Li = Li + /& 

(b) L 

(c) Li = L{ + f±\Q0 

ion'2     * + 1) 

100 *■"     2) 

if* < I 
if i > I 

1) 

These data were generated by an AI program that em- 
ployed TD(0) Reinforcement Learning (Sutton 1988) 
to learn to play Tic-Tac-Toe against a random oppo- 
nent. The performance score was the cumulative score 
of one hundred test games against a random player, 
where losses, draws and wins scored -1,0, and 1 re- 
spectively. Ten learning curves were generated by one 
training session each. 

Tic-Tac-Toe: Tic-Tac-Toe Endgame Database (Aha 1991) 
provided by the UCI Machine Learning Repository. 
Learning curves were generated as with the Chess 
dataset. 
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Abstract 

The classification algorithm CLEF combines a 
version of a linear machine known as a $- 
machine with a non-linear function approxima- 
tor that constructs its own features. The al- 
gorithm finds non-linear decision boundaries by 
constructing features that are needed to learn the 
necessary discriminant functions. The CLEF al- 
gorithm is proven to separate all consistently la- 
belled training instances, even when they are not 
linearly separable in the input variables. The al- 
gorithm is illustrated on a variety of tasks, show- 
ing an improvement over C4.5, a state-of-art de- 
cision tree learning algorithm. 

1   Introduction 

The task of classification is to find an approximate defini- 
tion for an unknown function / : X -» {ci, ..CR}, R > 2 
based on a set of training examples of the form (XJ, /(XJ)). 

The components of an instance vector Xj can take values 
from discrete or continuous domains. It is also possible 
that the values of one or more components are missing or 
imprecisely recorded for certain training instances, or that 
an instance is mislabeled. 

This paper presents a different approach to classification, 
centered around the idea of constructing a machine that is 
linear in its parameters, but non-linear in the input vari- 
ables. Therefore, the algorithm constructs a non-linear fit 
of the data. Unlike decision tree induction, the method does 
not partition the data into subproblems. The whole training 
set is used at all the stages of the classifier's construction. 
The algorithm does not need multiple runs to achieve good 
results, and finds a perfect separation of the training in- 
stances into classes, if one exists. The features it extracts 

from the data have a logical form, and thus are easy to in- 
terpret. 

2   Linear Machines 

One approach that constructs a classifier using all the train- 
ing data is to use linear machines (Nilsson, 1965; Duda & 
Hart, 1973). A linear machine is a set of R linear discrim- 
inant functions gt used collectively to assign an instance to 
one of R classes. Let x = (1, x\, ..£„) be an instance de- 
scription. Each discriminant function gj(x) has the form 
w?x, where w is an (n -I- l)-dimensional vector of coeffi- 
cients (weights). An instance is assigned class i if and only 
if 3i(x) > £j(x) Vj ^ i. If a tie occurs, the instance is 
attributed randomly to one of the classes. 

The training algorithm of a linear machine adjusts its 
weights based on a set of training instances. The machine 
starts with arbitrary initial weights, and sweeps through the 
set of training instances repeatedly. If an instance having 
class i is erroneously placed into class j, the weight vec- 
tors corresponding to the two classes are adjusted as fol- 
lows: Wj <- Wj + ex and Wj <- Wj - ex. The amount 
of correction c can be computed using the fractional error 
correction rule: 

c = aK-w^x+e) 

2xxx 

where a e (0,1) is the step size, controlling the magnitude 
of the correction, and e > 0 controls the "safety margin" 
between the two classes. If the training instances are lin- 
early separable, this update rule guarantees that the linear 
machine will converge to a boundary that classifies them 
correctly. 

For many tasks, linear combinations of the input values 
are not enough to discriminate the groups of instances be- 
longing to each class. When a non-linear discriminant is 
needed, one possible solution is to use a ^-machine (Nils- 
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son, 1965), which is much like a linear machine, except 
that it uses discriminant functions of the form gi(x) = 
wjFi(x), where Fi = (/i,..., JM) is a vector of linearly 
independent, real, single-valued functions fj■. : X -> 3?, in- 
dependent of the weights. This means that fj are not vary- 
ing with the weight adjustments. Multilayered neural net- 
works, for instance, do not satisfy this requirement, since 
their hidden units change with the weight adjustements. 

^-machines preserve the theoretical advantages of linear 
machines, while allowing for non-linear combinations of 
the inputs. Therefore, ^-machines can represent partitions 
of the input space that cannot be represented by linear ma- 
chines. The training procedures used for linear machines 
can be applied to adjust the weights of ^-machines. All 
the convergence theorems for linear machines apply to $- 
machines as well. 

Due to the great variety of classification tasks, one cannot 
know a priori what mappings fj would be useful as compo- 
nents of discriminants. It would be useful to construct such 
functions fj automatically, based on the training instances. 

3   Constructing a $-machine for 
classification 

Any method for automatically constructing ^-machines 
needs to generate functions fj that are linearly indepen- 
dent and do not vary when the parameters Wj of the ma- 
chine are adjusted. Constructive methods that adjust the 
function while correcting the output weights (by adjusting 
input weights, for instance) are not suitable candidates, be- 
cause they generate functions fj that are not independent 
of the machine parameters Wj. 

In the case of Boolean input variables, one alternative 
would be to choose fj from a set of basis functions, such 
as Rademacher-Walsh or Bahadur-Lazarsfeld polynomials 
(Duda and Hart, 1973). However, if the fj are orthogonal 
(i.e. fi ■ fj = 0, Vi ^ j and fi ■ fi ^ 0), the information that 
can be gathered during training can only say whether more 
terms are needed, but not what those terms should be. The 
search for a good set of discriminant functions is therefore 
quite difficult. 

An automatic method for constructing a ^-machine ade- 
quate for the task at hand is needed. To this end, we use the 
ELF function approximation algorithm, (Utgoff & Precup, 
1998) which constructs new features as needed, by iden- 
tifying subsets of instances that share intrinsic properties. 
One could substitute ELF with any other algorithm that can 
automatically construct linearly independent features. 

ELF assumes that the instances are represented using 

Boolean input variables. Its goal is to find set covers over 
the instance space, grouping those instances into subsets 
that share an intrinsic property, i.e. that can be associated 
with a common value. Let X be the space of all describable 
input instances. An ELF feature is a membership function 
for a subset of instances Xj C X: 

/;(*) 
f 1 if 
\ 0   ot 

xeXj 
otherwise 

When a feature fj is multiplied by its single corresponding 
weight, each term Wjfj has value Wj for the instances that 
Xj covers, and 0 elsewhere, thus associating a particular 
value with a particular set of instances. 

The subset Xj is represented by a pattern vector with as 
many components as the dimensionality of an instance vec- 
tor x. Each component of a pattern has either the value '#' 
or the value '0'. A '#' matches either of the possible values 
of the corresponding input vector, while a '0' in the pattern 
matches only a '0' value. For example, the pattern '#0' 
covers the instances '10' and '00' and does not cover either 
'01' or *H'. The pattern of all '#' covers every domain 
element because the pattern matches any domain element 
at every component. One pattern is more general than an- 
other if and only if it covers all the instances covered by the 
other, and some additional instances as well. 

Initially, each discriminant function consists of one feature, 
which covers the whole instance space, and has a weight 
of 0. To evaluate an instance using a discriminant func- 
tion, one computes the linear combination of the feature 
values and feature weights. To update the approximation, 
the training procedure revisits the training instances and ad- 
justs the weights of the discriminant functions using the 
fractional error correction rule (Nilsson, 1965). Only fea- 
tures that matched the instance have their weights adjusted, 
because features that did not match have value 0. 

For each feature, the algorithm keeps track of the errors as- 
sociated with each input bit, in order to determine which 
feature is having the greatest difficulty in fitting. When an 
adjustment of the weights has ceased to be productive, the 
algorithm adds a new feature, which is a specialization of 
the feature that has been producing the largest errors. Spe- 
cialization is performed by copying the feature and chang- 
ing a '#' in its pattern to a '0'. The choice of the bit to 
specialize is based on the variance of the input errors for 
each feature. The bit whose errors are most different from 
the mean bit error of the feature is specialized. The new 
feature will cover half of the set covered by its "parent". 

The features that are created by this procedure are linearly 
independent. The proof of this statement can be done by in- 
duction on the number n of bits that are present in an input 
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instance. Consider the base case, in which n = 1. The in- 
stance space contains two instances: '0' and '1'. There are 
two features that can be defined over this instance space: 
the most specialized feature, which is associated with the 
pattern '0' and only covers the first instance, and the most 
general feature, which corresponds to the pattern '#' and 
covers both instances. The values of the features for each 
instance can be tabulated in the following determinant: 

o   # 
0 1  1 
1 0    1 

which can be reduced to a unit determinant, by subtracting 
the last line from the first one. 

Now comes the induction step. Consider the space of the 
instances that can be generated by n input bits. These in- 
stances can be viewed as being generated from the (n — 1)- 
bit instances, by adding a '0' or a '1' on the first position of 
the vector. Similarly, the features that can be defined over 
these instances are generated from (n - l)-bit features by 
adding a '0' or a '#' on the first position of the feature. Let 
dn_i define the determinant of the (n - l)-bit space in- 
put features. The determinant dn on the n-bit space can be 
written as: 

O-Fn-l      #-Fn-l 

1-Xn-l 
dn-1 

0 
dn-l 
dn-1 

The induction hypothesis is that dn-\ can be reduced to 
a unit determinant. This can be done by adding and sub- 
tracting lines from each other, as we did in the base case. 
If there is a sequence of transformations that achieves this 
goal, we can apply it in the upper and lower part of dn. The 
resulting determinant will have the form: 

1    0    . 
0    1    . 

.    0 

.    0 
1 
0 

0 . 
1 . 

. 0 

.   0 

0   0    . .   1 0 0    . .  1 

0   0    . 
0   0    . 

.    0 

.    0 
1 
0 

0 . 
1 . 

. 0 

.    0 

0   0    . .    0 0 0    . .  1 

By subtracting the bottom half of the determinant from the 
upper half, dn can also be reduced to a unit determinant. 
Thus, the set of all possible features is linearly indepen- 
dent. This means that any subset of features will be linearly 
independent as well. ■ 

The process of training CLEF's classifier can be viewed 
as constructing a sequence of ^-machines. The previous 
proof ensures that at any point between two feature addi- 
tions, the classifier that is built is a ^-machine. A machine 
will converge to a set of weights that separates the train- 
ing instances, if a separation is possible given the current 
set of features. If no linear separation can be found given 
the current feature set, by gradually reducing the size of 
the corrections, the weights will still settle into a particular 
range (Frean, 1990). 

In this case, a new feature will be added, and training will 
resume with a new machine. In the worst case, the pro- 
cess will continue until all the 2n features that are possible 
have been generated. If the instances are separable when 
mapped through a subset of the features, they will also be 
separable when the whole set is used. Thus, if a linear sep- 
aration of the training instances is possible, the algorithm 
is guaranteed to find one. In practice, CLEF also proved to 
be quite efficient with respect to the number of features it 
generates for a particular instance space. 

4   Input representation 

The non-linear machine described so far requires boolean 
input values. Such an encoding can be generated auto- 
matically for classification tasks. Symbolic variables are 
mapped into a 1-of-m encoding, where m is the number of 
possible values for each variable. A variable v with possi- 
ble values vi,.. .vm is represented in m bits. Bit j will have 
the value 1 in an instance representation if and only if the 
test v(x) = Vj is true. 

Since ELF only deals with Boolean inputs, some form of 
discretization is needed for continuous variables. We have 
experimented with two methods for discretizing the contin- 
uous variables. The first method was suggested by Fayyad 
and Irani (1993). The basic mechanism is to sort the in- 
stance class labels based on the value of the countinuous 
variable. The points at which the class label changes are 
potential cutpoints for the variable. At each step, the al- 
gorithm looks at the list of possible cutpoints and deter- 
mines the information gain for each partition generated by 
the cutpoint. A cutpoint is accepted if its information gain 
is above a certain threshold, and in this case the algorithm 
proceeds recursively to partition the sub-intervals left and 
right of the cutpoint. We found this method to be quite con- 
servative in the number of intervals used in the discretiza- 
tion, which led to poor performance when used for our clas- 
sification algorithm. 

The second method was originally proposed by Fulton, 
Kasif and Salzberg (1995) and then extended by Elomaa 
and Rousou (1996). In this case, the algorithm searches 
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for the best split with a given maximum number of inter- 
vals. The quality of a partition is evaluated by an impurity 
measure, and the efficiency of the search is ensured by a 
dynamic programming algorithm. The impurity measure 
used for the experiments reported in this paper is informa- 
tion gain. Based on the intervals determined in this way, the 
continuous values for all the instances are transformed into 
a 1-of-m encoding, with one bit for each of the m intervals. 

The number of bits representing each input variable varies 
widely. If the input variables were coded in the same 
number of bits, the probability of any input bit having the 
value 1 is equal, assuming that all the input instances are 
equiprobable. For variables coded with different numbers 
of bits, the probability of a bit corresponding to a low ar- 
ity variable being on is higher than the probability of a bit 
being on for a high arity variable. A simple adjustment is 
used to remove this bias: the error attributed to each bit is 
normalized with respect to the number of bits used to en- 
code the variable to which the bit belongs. 

To handle missing values, if the value of a variable is miss- 
ing in the input then all the bits corresponding to that vari- 
able are set to 0. This prevents the missing value from hav- 
ing any role in the classification process, since it will not 
interfere with the matching (all features will match at that 
input variable). 

5   Illustration 

The Boolean encoding of the features allows an interpre- 
tation of the units that form a non-linear classification ma- 
chine. Feature interpretation can be generated automati- 
cally, by printing the negation of each test for which there 
is a '0' in the feature's pattern. 

Table 1 illustrates the features that have been constructed 
for one of the units (discriminant functions) in the hepatitis 
task from the UCI data repository (Murphy and Aha, 1994). 
This is a two-class problem, thus the corresponding linear 
machine will have two discriminant functions, one for each 
class. However, due to the training procedure, these dis- 
criminant functions are always trained with equal amounts 
of error having opposite signs. In this two class case, the 
functions end up having the same features, with weights of 
opposite sign. 

This table is analogous to a "health test", which tells 
how to compute a score for an instance. For each line 
in the table, one would check if the instance satisfies 
the test in the right column. If so, the corresponding 
weight would be added to the total score. If the total 
score is positive, the instance would be considered as 
belonging to the "die" class. For example, a patient with 

Table 1: Unit corresponding to the "die" class in the hep- 
atitis task 

Hepatitis 
Weight Feature 

-0.019 age ft 37.50 
0.013 ascites ^ no 

-0.012 age ft 37.50, liver-firm ^ yes, spiders ^ 
varices ^ no 

no, 

0.008 intercept term 
0.008 age ft 37.50, protime ft 44.50 
0.008 age ft 37.50, varices ^ no 
0.007- age ft 37.50, spiders ^ no, varices ^ no 

-0.006 sgot ft 80.50, protime ft 87.50 
-0.005 steroid ^ yes 
-0.004 bilirubin ft 1.35 
-0.004 protime ft 87.50 
-0.004 sex 7^ female 
0.003 sex ^ female, anorexia / yes 

-0.002 sex / female, liver-firm ^ no 
0.001 spiders ^ no, histology / yes 

-0.000 spiders / no 

the following characteristics: age=30, ascites=yes, 
spiders=no, sex=female, steroid=no, sgot=79.6, 
steroid=no, bilirubin=2, protime=80 will be evalu- 
ated to a score of 0.013 + 0.008 - 0.005 - 0.004 = 0.0012, 
and will therefore be classifed as belonging to the "die" 
class. 

6   Analysis 

How does CLEF perform compared with other classifica- 
tion algorithms? Will it find a separating ^-machine in 
a reasonable amount of time? Will it construct a large 
number of features, perhaps producing an incomprehensi- 
ble classifier? 

In order to answer these questions empirically, CLEF and 
C4.5 were run on several classification tasks, mostly from 
the UCI data repository (Murphy and Aha, 1994). This 
allows for a comparison in terms of classification accuracy, 
and provides some insight on the efficiency of CLEF and 
the form of the function it provides. 

The salient difference between CLEF and decision tree in- 
ducers is that CLEF uses all the training set to construct 
its classifier. It should be advantageous to CLEF that it 
solves one classification problem using all the data, instead 
of many subproblems, each using only some of the data. 

CLEF was trained by repeatedly sampling at random N = 
100|X| times from the training set (where |X| is the size 
of the training set), for a fixed number of epochs. Training 
can stop early, if the instances in the training set arc per- 
fectly separated. For C4.5, the default settings were used 
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Table 2: Accuracy results 

Task C4.5 C4.5p CLEF 
audio-no-id 75.7 ±  9.6 77.8 ±  6.6 79.1 ±  9.1 

balance-scale 78.3 ±  4.1 77.5 ±  3.2 92.5 ±  4.0 
breast-cancer 66.2 ±  6.9 75.5 ±  3.9 70.3 ±  7.1 

bupa 64.6 ±  5.3 64.6 ±  5.6 68.7 ±  5.0 
Cleveland 46.8 ±  4.1 46.8 ±  5.4 48.7 ±  8.4 
hepatitis 76.9 ±  4.9 77.5 ±  5.7 81.9 ±  5.2 

iris 94.4 ±  7.6 94.4 ±  7.6 94.4 ±  7.1 
led24 61.0 ±  9.0 62.4 ±  9.4 61.9 ±11.1 

lymphography 77.3 ± 12.4 78.0 ±11.9 80.7 ±  6.3 
monks-2 44.5 ±  9.3 65.9 ±  0.0 92.3 ±  4.8 
mplex-6 57.1 ±20.2 57.1 ± 19.2 91.4 ±14.6 

promoter 80.9 ± 14.3 77.3 ± 14.2 87.3 ±  6.0 
soybean 90.3 ±  2.8 92.2 ±  2.4 91.9 ±  3.1 

Switzerland 32.3 ±  9.6 33.1 ±  7.7 35.4 ± 14.7 
tictactoe 66.3 ±  2.0 68.1 ±  2.3 78.4 ±  2.8 

va 28.1 ± 12.7 26.7 ± 10.0 32.9 ±  7.2 
votes 95.7 ±  3.7 96.6 ±  3.3 94.3 ±  3.1 

waveform 69.7 ± 10.4 70.0 ± 10.7 73.9 ±  9.1 
wine 93.3 ±  6.0 93.3 ±  6.0 94.2 ±  8.3 

zoo 92.7 ±  6.8 91.8 ±  6.4 96.4 ±  4.5 
69.6 71.4 77.3 

Table 4: Characteristics of the classifier produced 

Task CPU CLEF Size CLEF Match 
audio-no-id 218.2 ± 42.2 88.0 ± 2.8 77.3 ±0.8 

balance-scale 59.9 ± 37.8 39.0 ± 2.3 66.6 ±1.9 
breast-cancer 191.2±    8.7 47.1± 1.8 47.7 ±1.6 

bupa 245.4 ± 35.8 49.2 ± 2.4 64.9 ±4.6 
Cleveland 496.0 ± 46.2 117.4± 6.1 72.1 ±2.6 
hepatitis 58.8 ±  18.2 17.4± 1.0 50.4 ±4.9 

iris 15.4±  12.8 19.0± 8.2 74.2 ±6.9 
led24 36.9 ±    9.4 76.8 ± 4.9 54.2±1.3 

lymphography 39.7 ±  15.3 28.6 ± 2.8 66.8 ±2.3 
monks-2 926.2±515.1 59.3 ± 8.3 27.6 ±2.2 
mplex-6 0.8 ±    0.8 11.5=1= 1.8 37.6 ±2.2 

promoter 26.9 ±    6.2 7.8 ± 0.4 64.8±1.6 
soybean 1684.0 ± 30.5 96.9 ± 2.5 71.5±0.8 

Switzerland 182.8 ±  16.9 72.2 ± 4.5 85.9 ±4.1 
tictactoe 5792.5 ±236.0 241.6 ±14.0 29.6±1.1 

va 351.2± 28.8 123.0 ± 7.0 70.5 ±1.9 
votes 22.3 ±    1.3 14.3 ± 1.4 46.3 ±3.4 

waveform 346.6 ±105.3 43.6 ± 4.9 79.5 ±1.9 
wine 14.2±    4.6 16.5 ± 3.6 81.3±4.0 
zoo 3.1 ±    0.7 19.0± 1.2 75.8 ±3.0 

Table 3: Duncan Multiple Range Test 

C4.5    C4.5p    CLEF 
69.6      71.4       77.3 

(Quinlan, 1993), both with and without pruning. The rea- 
son for including the results without pruning as well is that 
CLEF does not currently use any mechanism for avoiding 
overfitting. Therefore, using C4.5 without pruning offers 
some insight into the comparative quality of the learning 
algorithm itself, though we would like to devise a pruning 
mechanism for CLEF. 

Table 2 shows the accuracy results of the two algorithms, 
in terms of the mean and standard deviation for each task. 
All values are computed from a ten-fold stratified cross- 
validation, with CLEF and C4.5 using the same partitions 
for each task. As shown in the table, CLEF constructs more 
accurate classifiers than C4.5 without pruning on 19 of the 
20 tasks considered. The classifiers are also more accurate 
that those constructed by C4.5 with pruning on 15 out of 
the 20 datatsets considered. By doing one-way ANOVA, 
the difference between CLEF and C4.5 with no pruning 
is significant at the 0.05 level. The difference with C4.5 
with pruning is not statistically significant. These results 
are confirmed also by the Duncan Multiple Range Test (as 
shown in Table 3). There is a statistical difference between 
CLEF and C4.5 without pruning, but there is no statistical 
difference between CLEF and C4.5 with pruning. 

CPU and memory costs are indicated in Table 4. Compu- 
tationally, the CLEF algorithm is more costly than C4.5. 
Memory costs are not large. The table presents the mem- 
ory requirements of the resulting classifier in terms of the 
total number of features present in the machine. CLEF typ- 
ically constructs a small set of features, each of which con- 
sists of a simple bit pattern and a single weight. In order 
to measure the degree of overlap of the features that form 
a classifier, the average percentage of features matching an 
instance was evaluated. The "match train" column shows 
this measure for the instances in the training set. The values 
show that there is a high degree of overlap in the features 
that are constructed. 

7   Related work 

A variety of constructive methods have been devised for 
classification problems. A large class of algorithms con- 
struct networks of thresholded logic units, by adding 
boundaries that correct for misclassified examples (Parekh 
et. al, 1997). These algorithms also separate consistently 
labelled examples. The experimental results that have been 
published regarding these algorithms are limited, so they 
do not provide a good basis for comparison with CLEF. 

Several algorithms that automatically construct a neural 
network configuration have also been used in classifica- 
tion tasks. Fahlman and Lebiere's (1990) cascade corre- 
lation method constructs a new hidden unit (feature) in or- 
der to minimize the residual error and freezes its defining 
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weights. The original input variables and the newly con- 
structed unit become the input variables for the next layer. 
The algorithm has produced good results when applied to 
classification tasks. Wynne-Jones (1992) presents an ap- 
proach called node splitting that detects when the hyper- 
plane of a hidden unit is oscillating, indicating that the unit 
is being pushed in conflicting directions in feature space. 
Such a unit is split into two units, and the weights are set 
so that the units are moved apart from each other along an 
advantageous axis. A meiosis network (Hanson, 1990) is a 
feed-forward network in which the variance of each weight 
is maintained. For a hidden unit (feature) that has one or 
more weights of high variance, the unit is split into two. 
The input weights that define the feature, and the output 
weight for the linear combination are altered so that the 
two units are moved away from their means in opposite di- 
rections. 

Support Vector Machines (Vapnik, 1995) can also be 
viewed as constructing features automatically, but the form 
of the features that are constructed needs to be defined a 
priori. More work would be needed to explore the relation- 
ship between CLEF and support vector machines. 

8   Summary 

CLEF is a classification algorithm that constructs a $- 
machine to fit the multiclass data. By using the ELF func- 
tion approximator, non-linear features are constructed as 
needed. The sequence of feature sets produced by ELF has 
the effect that CLEF produces a sequence of ^-machine 
classifiers. This sequence will ultimately produce a $- 
machine that separates the instances, whether or not they 
are linearly separable in the input variables. By contrast to 
decision trees, which recursively partition the training in- 
stances, CLEF constructs a classifier using the whole train- 
ing set. This approach provides an advantage in terms of 
the accuracy of the resulting classifiers. 
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Abstract 

We analyze critically the use of classifica- 
tion accuracy to compare classifiers on natu- 
ral data sets, providing a thorough investiga- 
tion using ROC analysis, standard machine 
learning algorithms, and standard bench- 
mark data sets. The results raise serious con- 
cerns about the use of accuracy for comparing 
classifiers and draw into question the conclu- 
sions that can be drawn from such studies. 
In the course of the presentation, we describe 
and demonstrate what we believe to be the 
proper use of ROC analysis for comparative 
studies in machine learning research. We ar- 
gue that this methodology is preferable both 
for making practical choices and for drawing 
scientific conclusions. 

1    INTRODUCTION 

Substantial research has been devoted to the devel- 
opment and analysis of algorithms for building clas- 
sifiers, and a necessary part of this research involves 
comparing induction algorithms. A common method- 
ology for such evaluations is to perform statistical 
comparisons of the accuracies of learned classifiers 
on suites of benchmark data sets. Our purpose is 
not to question the statistical tests (Dietterich, 1998; 
Salzberg, 1997), but to question the use of accuracy 
estimation itself. We believe that since this is one of 
the primary scientific methodologies of our field, it is 
important that we (as a scientific community) cast a 
critical eye upon it. 

The two most reasonable justifications for comparing 
accuracies on natural data sets require empirical ver- 
ification.   We argue that a particular form of ROC 

analysis is the proper methodology to provide such 
verification. We then provide a thorough analysis of 
classifier performance using standard machine learning 
algorithms and standard benchmark data sets. The re- 
sults raise serious concerns about the use of accuracy, 
both for practical comparisons and for drawing scien- 
tific conclusions, even when predictive performance is 
the only concern. 

The contribution of this paper is two-fold. We analyze 
critically a common assumption of machine learning 
research, provide insights into its applicability, and dis- 
cuss the implications. In the process, we describe what 
we believe to be a superior methodology for the eval- 
uation of induction algorithms on natural data sets. 
Although ROC analysis certainly is not new, for ma- 
chine learning research it should be applied in a princi- 
pled manner geared to the specific conclusions machine 
learning researchers would like to draw. We hope that 
this work makes significant progress toward that goal. 

2    JUSTIFYING ACCURACY 
COMPARISONS 

We consider induction problems for which the intent in 
applying machine learning algorithms is to build from 
the existing data a model (a classifier) that will be 
used to classify previously unseen examples. We limit 
ourselves to predictive performance—which is clearly 
the intent of most accuracy-based machine learning 
studies—and do not consider issues such as compre- 
hensibility and computational performance. 

We assume that the true distribution of examples to 
which the classifier will be applied is not known in 
advance. To make an informed choice, performance 
must be estimated using the data available. The 
different methodologies for arriving at these estima- 
tions have been described elsewhere (Kohavi, 1995; 
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Dietterich, 1998). By far, the most commonly used 
performance metric is classification accuracy. 

Why should we care about comparisons of accuracies 
on benchmark data sets? Theoretically, over the uni- 
verse of induction algorithms no algorithm will be su- 
perior on all possible induction problems (Wolpert, 
1994; SchafTer, 1994). The tacit reason for comparing 
classifiers on natural data sets is that these data sets 
represent problems that systems might face in the real 
world, and that superior performance on these bench- 
marks may translate to superior performance on other 
real-world tasks. To this end, the field has amassed 
an admirable collection of data sets from a wide vari- 
ety of classifier applications (Merz and Murphy, 1998). 
Countless research results have been published based 
on comparisons of classifier accuracy over these bench- 
mark data sets. We argue that comparing accuracies 
on our benchmark data sets says little, if anything, 
about classifier performance on real-world tasks. 

Accuracy maximization is not an appropriate goal for 
many of the real-world tasks from which our natural 
data sets were taken. Classification accuracy assumes 
equal misclassification costs (for false positive and false 
negative errors). This assumption is problematic, be- 
cause for most real-world problems one type of clas- 
sification error is much more expensive than another. 
This fact is well documented, primarily in other fields 
(statistics, medical diagnosis, pattern recognition and 
decision theory). As an example, consider machine 
learning for fraud detection, where the cost of missing 
a case of fraud is quite different from the cost of a false 
alarm (Fawcett and Provost, 1997). 

Accuracy maximization also assumes that the class 
distribution (class priors) is known for the target envi- 
ronment. Unfortunately, for our benchmark data sets, 
we often do not know whether the existing distribu- 
tion is the natural distribution, or whether it has been 
stratified. The iris data set has exactly 50 instances of 
each class. The splice junction data set (DNA) has 
50% donor sites, 25% acceptor sites and 25% non- 
boundary sites, even though the natural class distri- 
bution is very skewed: no more than 6% of DNA ac- 
tually codes for human genes (Saitta and Neri, 1998). 
Without knowledge of the target class distribution we 
cannot even claim that we are indeed maximizing ac- 
curacy for the problem from which the data set was 
drawn. 

If accuracy maximization is not appropriate, why 
would we use accuracy estimates to compare induc- 
tion algorithms on these data sets? Here are what we 

believe to be the two best candidate justifications. 

1. The classifier with the highest accuracy may very 
well be the classifier that minimizes cost, particu- 
larly when the classifier's tradeoff between true 
positive predictions and false positives can be 
tuned. Consider a learned model that produces 
probability estimates; these can be combined with 
prior probabilities and cost estimates for decision- 
analytic classifications. If the model has high clas- 
sification accuracy because it produces very good 
probability estimates, it will also have low cost for 
any target scenario. 

2. The induction algorithm that produces the 
highest accuracy classifiers may also produce 
minimum-cost classifiers by training it differently. 
For example, Breiman et al. (1984) suggest that 
altering the class distribution will be effective 
for building cost-sensitive decision trees (see also 
other work on cost-sensitive classification (Tur- 
ney, 1996)). 

To criticize the practice of comparing machine learn- 
ing algorithms based on accuracy, it is not sufficient 
merely to point out that accuracy is not the metric by 
which real-world performance will be measured. In- 
stead, it is necessary to analyze whether these candi- 
date justifications are well founded. 

3    ARE THESE JUSTIFICATIONS 
REASONABLE? 

We first discuss a commonly cited special case of the 
second justification, arguing that it makes too many 
untenable assumptions. We then present the results 
of an empirical study that leads us to conclude that 
these justifications are questionable at best. 

3.1    CAN WE DEFINE AWAY THE 
PROBLEM? 

In principle, for a two-class problem one can repropor- 
tion ("stratify") the classes based on the target costs 
and class distribution. Once this has been done, max- 
imizing accuracy on the transformed data corresponds 
to minimizing costs on the target data (Breiman et al, 
1984). Unfortunately, this strategy is impracticable for 
conducting empirical research based on our benchmark 
data sets. First, the transformation is valid only for 
two-class problems. Whether it can be approximated 
effectively for multiclass problems is an open question. 



The Case Against Accuracy       447 

Second, we do not know appropriate costs for these 
data sets and, as noted by many applied researchers 
(Bradley, 1997; Catlett, 1995; Provost and Fawcett, 
1997), assigning these costs precisely is virtually im- 
possible. Third, as described above, generally we do 
not know whether the class distribution in a natural 
data set is the "true" target class distribution. 

Because of these uncertainties we cannot claim to be 
able to transform these cost-minimization problems 
into accuracy-maximization problems. Moreover, in 
many cases specifying target conditions is not just 
virtually impossible, it is actually impossible. Of- 
ten in real-world domains there are no "true" tar- 
get costs and class distribution. These change from 
time to time, place to place, and situation to situation 
(Fawcett and Provost, 1997). 

Therefore the ability to transform cost minimization 
into accuracy maximization does not, by itself, justify 
limiting our comparisons to classification accuracy on 
the given class distribution. However, it may be that 
comparisons based on classification accuracy are use- 
ful because they are indicative of a broader notion of 
"better" performance. 

3.2    ROC ANALYSIS AND DOMINATING 
MODELS 

We now investigate whether an algorithm that gen- 
erates high-accuracy classifiers is generally better be- 
cause it also produces low-cost classifiers for the target 
cost scenario. Without target cost and class distribu- 
tion information, in order to conclude that the clas- 
sifier with higher accuracy is the better classifier, one 
must show that it performs better for any reasonable 
assumptions. We limit our investigation to two-class 
problems because the analysis is straightforward. 

The evaluation framework we choose is Receiver Op- 
erating Characteristic (ROC) analysis (Egan, 1975; 
Swets and Pickett, 1982; Swets, 1988), a classic 
methodology from signal detection theory that is now 
common in medical diagnosis (Beck and Schultz, 1986) 
and has recently begun to be used more generally in 
AI (Bradley, 1997; Provost and Fawcett, 1997). 

We briefly review some of the basics of ROC analy- 
sis. ROC space denotes the coordinate system used 
for visualizing classifier performance. In ROC space, 
typically the true positive rate, TP, is plotted on the Y 
axis and the false positive rate, FP, is plotted on the X 
axis. Each classifier is represented by the point in ROC 
space corresponding to its (FP,TP) pair. For models 
that produce a continuous output (e.g., an estimate of 

the posterior probability of an instance's class mem- 
bership), these statistics vary together as a threshold 
on the output is varied between its extremes, with 
each threshold value defining a classifier. The result- 
ing curve, called the ROC curve, illustrates the error 
tradeoffs available with a given model. ROC curves 
describe the predictive behavior of a classifier inde- 
pendent of class distributions or error costs, so they 
decouple classification performance from these factors. 

For our purposes, a crucial notion is whether one 
model dominates in ROC space, meaning that all other 
ROC curves are beneath it or equal to it. A dominat- 
ing model (e.g., model NB in Figure la) is at least as 
good as all other models for all possible cost and class 
distributions. Therefore, if a dominating model exists, 
it can be considered to be the "best" model in terms 
of predictive performance. If a dominating model does 
not exist (as in Figure lb), then none of the models 
represented is best under all target scenarios; in such 
cases, there exist scenarios for which the model that 
maximizes accuracy (or any other single-number met- 
ric) does not have minimum cost. 

Figure 1 shows test-set ROC curves on two of the UCI 
domains from the study described below. Note the 
"bumpiness" of the ROC curves in Figure lb (these 
were two of the largest domains with the least bumpy 
ROC curves). This bumpiness is typical of induction 
studies using ROC curves generated from a hold-out 
test set. As with accuracy estimates based on a sin- 
gle hold-out set, these ROC curves may be misleading 
because we cannot tell how much of the observed vari- 
ation is due to the particular training/test partition. 
Thus it is difficult to draw strong conclusions about the 
expected behavior of the learned models. We would 
like to conduct ROC analysis using cross-validation. 

Bradley (1997) produced ROC curves from 10-fold 
cross validation, but they are similarly bumpy. 
Bradley generated the curves using a technique known 
as pooling. In pooling, the ith points making up each 
raw ROC curve are averaged. Unfortunately, as dis- 
cussed by Swets and Pickett (1982), pooling assumes 
that the ith points from all the curves are actually esti- 
mating the same point in ROC space, which is doubtful 
given Bradley's method of generating curves.1 For our 
study it is important to have a good approximation of 
the expected ROC curve. 

We generate results from 10-fold cross-validation using 
a different methodology, called averaging. Rather than 

1Bradley acknowledges this fact, and it is not germane 
to his study. However, it is problematic for us. 
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Figure 1: Raw (un-averaged) ROC curves from two UCI database domains 

using the averaging procedure recommended by Swets 
and Pickett, which assumes normal-fitted ROC curves 
in a binormal ROC space, we average the ROC curves 
in the following manner. For fc-fold cross-validation, 
the ROC curve from each of the k folds is treated 
as a function, Ru such that TP = Ri(FP). This 
is done with linear interpolations between points in 
ROC space2 (if there are multiple points with the 
same FP, the one with the maximum TP is chosen). 
The averaged ROC curve is the function R(FP) = 
mean(Ri(FP)y To plot averaged ROC curves we 
sample from R at 100 points regularly spaced along 
the FP-axis. We compute confidence intervals of the 
mean of TP using the common assumption of a bino- 
mial distribution. 

3.3    DO STANDARD METHODS 
PRODUCE DOMINATING MODELS? 

We can now state precisely a basic hypothesis to be in- 
vestigated: Our standard learning algorithms produce 
dominating models for our standard benchmark data 
sets. If this hypothesis is true (generally), we might 
conclude that the algorithm with higher accuracy is 
generally better, regardless of target costs or priors.3 

2Note that classification performance anywhere along a 
line segment connecting two ROC points can be achieved 
by randomly selecting classifications (weighted by the in- 
terpolation proportion) from the classifiers defining the 
endpoints. 

3However, even this conclusion has problems. Accuracy 
comparisons may select a non-dominating classifier because 
it is indistinguishable at the point of comparison—yet it 

If the hypothesis is not true, then such a conclusion 
will have to rely on a different justification. We now 
provide an experimental study of this hypothesis, de- 
signed as follows. 

From the UCI repository we chose ten datasets that 
contained at least 250 instances, but for which the ac- 
curacy for decision trees was less than 95% (because 
the ROC curves are difficult to read at very high ac- 
curacies). For each domain, we induced classifiers for 
the minority class (for Road we chose the class Grass). 
We selected several inducers from MCC++ (Kohavi et 
al, 1997): a decision tree learner (MC4), Naive Bayes 
with discretization (NB), fc-nearest neighbor for sev- 
eral k values (IBfc), and Bagged-MC4 (Breiman, 1996). 
MC4 is similar to C4.5 (Quinlan, 1993); probabilistic 
predictions are made by using a Laplace correction at 
the leaves. NB discretizes the data based on entropy 
minimization (Dougherty et al, 1995) and then builds 
the Naive-Bayes model (Domingos and Pazzani, 1997). 
IBA: votes the closest k neighbors; each neighbor votes 
with a weight equal to one over its distance from the 
test instance. 

The averaged ROC curves are shown in Figures 2 
and 3. For only one (Vehicle) of these ten domains 
was there an absolute dominator. In general, very few 
of the 100 runs we performed (10 data sets, 10 cross- 
validation folds each) had dominating classifiers. Some 
cases are very close, for example Adult and Waveform- 
21. In other cases a curve that dominates in one area 
of ROC space is dominated in another. Therefore, we 

may be much worse elsewhere. 
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Figure 2: Smoothed ROC curves from UCI database domains 

can refute the hypothesis that our algorithms produce 
(statistically significantly) dominating classifiers. 

This draws into question claims of "algorithm A is bet- 
ter than algorithm B" based on accuracy comparison. 
In order to draw such a conclusion in the absence of 
target costs and class distributions, the ROC curve for 
algorithm A would have to be a significant dominator 
of algorithm B. This has obvious implications for ma- 
chine learning research. 

In practical situations, often a weaker claim is suffi- 
cient: Algorithm A is a good choice because it is at 
least as good as Algorithm B (i.e., their accuracies 
are not significantly different). It is clear that this 
type of conclusion also is not justified. In many do- 
mains, curves that are statistically indistinguishable 

from dominators in one area of the space are signifi- 
cantly dominated in another. Moreover, in practical 
situations typically comparisons are not made with 
the wealth of classifiers we are considering. More of- 
ten only a few classifiers are compared. Considering 
general pairwise comparisons of algorithms, there are 
many cases where each model in a pair is clearly much 
better than the other in different regions of ROC space. 
This clearly draws into question the use of single num- 
ber metrics for practical algorithm comparison, unless 
these metrics are based on precise target cost and class 
distribution information. 
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Figure 3: Smoothed ROC curves from UCI database domains, cont'd 
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3.4    CAN STANDARD METHODS BE 
COERCED TO YIELD DOMINATING 
ROC CURVES? 

The second justification for using accuracy to compare 
algorithms is subtly different from the first. Specifi- 
cally, it allows for the possibility of coercing algorithms 
to produce different behaviors under different scenar- 
ios (such as in cost-sensitive learning). If this can be 
done well, accuracy comparisons are justified by argu- 
ing that for a given domain, the algorithm with higher 
accuracy will also be the algorithm with lower cost for 
all reasonable costs and class distributions. 

Confirming or refuting this justification completely is 
beyond the scope of this paper, because how best to co- 
erce algorithms for different environmental conditions 
is an open question. Even the straightforward method 
of stratifying samples has not been evaluated satisfac- 
torily. We propose that the ROC framework outlined 
so far, with a minor modification, can be used to eval- 
uate this question as well. 

For algorithms that may produce different models un- 
der different cost and class distributions, the ROC 
methodology as stated above is not quite adequate. 
We must be able to evaluate the performance of the 
algorithm, not an individual model. However, one can 
characterize an algorithm's performance for ROC anal- 
ysis by producing a composite curve for a set of gen- 
erated models. This can be done using pooling, or by 
using the convex hull of the ROC curves produced by 
the set of models, as described in detail by Provost 
and Fawcett (1997; 1998). 

We can now form a hypothesis for our second potential 
justification: Our standard learning algorithms pro- 
duce dominating ROC curves for our standard bench- 
mark data sets. Confirming this hypothesis would be 
an important step in justifying the common practice of 
ignoring target costs and class distributions in classfier 
comparisons on natural data. Unfortunately, we know 
of no confirming evidence. 

On the other hand, there is disconfirming evidence. 
First, consider the results presented above. Naive 
Bayes is robust with respect to changes in costs—it 
will produce the same ROC curve regardless of the 
target costs and class distribution. Furthermore, it 
has been shown that decision trees are surprisingly ro- 
bust if the probability estimates are generated with 
the Laplace estimate (Bradford et al, 1998). If this 
result holds generally, the results in the previous sec- 
tion would disconfirm the present hypothesis as well. 

Second, Bradley's (1997) results provide disconfirming 
evidence. Specifically, he studied six real-world med- 
ical data sets (four from the UCI repository and two 
from other sources). Bradley plotted the ROC curves 
of six classifier learning algorithms, consisting of two 
neural nets, two decision trees and two statistical tech- 
niques. Bradley uses composite ROC curves formed 
by training models differently for different cost distri- 
butions. We have previously criticized the design of 
his study for the purpose of answering our question. 
However, if the results can be replicated under the 
current methodology, they would make a strong state- 
ment. Not one of the six data sets had a dominating 
classifier. This implies that for each domain there exist 
disjoint sets of conditions for which different induction 
algorithms are preferable. 

4    RECOMMENDATIONS AND 
LIMITATIONS 

When designing comparative studies, researchers 
should be clear about the conclusions they want to 
be able to draw from the results. We have argued 
that comparisons of algorithms based on accuracy are 
unsatisfactory when there is no dominating classifier. 
However, presenting the case against the use of accu- 
racy is only one of our goals. We also want to show 
how precise comparisons still can be made, even when 
the target cost and class distributions are not known. 

If there is no dominator, conclusions must be quali- 
fied. No single number metric can be used to make 
very strong conclusions without domain-specific infor- 
mation. However, it is possible to look at ranges of 
costs and class distributions for which each classifier 
dominates. The problems of cost-sensitive classifica- 
tion and learning with skewed class distributions can 
be analyzed precisely. 

Even without knowledge of target conditions, a pre- 
cise, concise, robust specification of classifier perfor- 
mance can be made. As described in detail by Provost 
and Fawcett (1997), the slopes of the lines tangent to 
the ROC convex hull determine the ranges of costs 
and class distributions for which particular classifiers 
minimize cost. For specific target conditions, the cor- 
responding slope is the cost ratio times the reciprocal 
of the class ratio. For our ten domains, the optimal 
classifiers for different target conditions are given in 
Table 1. For example, in the Road domain (see Fig- 
ure 3 and Table 1), Naive Bayes is the best classifier 
for any target conditions corresponding to a slope less 
than 0.38, and Bagged-MC4 is best for slopes greater 
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Table 1: Locally dominating classifiers for ten UCI domains 
Domain Slope range Dominator Domain Slope range Dominator 

Adult 0, 7.72] 
7.72, 21.6] 
21.6, oo) 

NB 
Bagged-MC4 
NB 

Pima 0, 0.06] 
0.06, 0.11] 
0.11, 0.30] 
0.30, 0.82] 
0.82, 1.13] 
1.13, 4.79] 
4.79, oo) 

NB 
Bagged-MC4 
NB 
Bagged-MC4 
NB 
Bagged-MC4 
NB 

Breast 
cancer 

Ö, 0.37] 
0.37, 0.5] 
0.5, 1.34] 
1.34, 2.38] 
2.38, oo) 

NB 
IB3 
IB5 
IB3 
Bagged-MC4 Satimage 0, 0.05] NB 

Bagged-MC4 
IB5 
IB3 
IB5 
IB3 
Bagged-MC4 

CRX 0, 0.03] 
0.03, 0.06] 
0.06, 2.06] 
2.06, oo) 

Bagged-MC4 
NB 
Bagged-MC4 
NB 

0.05, 0.22 
0.22, 2.60 
2.60, 3.11 
3.11, 7.54 

German 0, 0.21] 
0.21, 0.47] 
0.47, 3.08] 
3.08, oo) 

NB 
Bagged-MC4 
NB 
IB5 

7.54, 31.14] 
31.14, oo) 

Waveform 
21 

0, 0.25] 
0.25, 4.51 
4.51, 6.12 
6.12, oo) 

NB 
Bagged-MC4 
IB5 
Bagged-MC4 

Road 
(Grass) 

0, 0.38] 
0.38, oo) 

NB 
Bagged-MC4 

DNA [0, 1.06] 
1.06, oo) 

NB 
Bagged-MC4 

Vehicle 0, oo) Bagged-MC4 

than 0.38. They perform equally well at 0.38. We 
admit that this is not as elegant as a single-number 
comparison, but we believe it to be much more useful, 
both for research and in practice. 

In summary, if a dominating classifier does not exist 
and cost and class distribution information is unavail- 
able, no strong statement about classifier superiority 
can be made. However, one might be able to make 
precise statements of superiority for specific regions of 
ROC space. For example, if all you know is that few 
false positive errors can be tolerated, you may be able 
to find a particular algorithm that is superior at the 
"far left" edge of ROC space. 

We limited our investigation to two classes. This does 
not affect our conclusions since our results are nega- 
tive. However, since we are also recommending an an- 
alytical framework, we note that extending our work 
to multiple dimensions is an interesting open problem. 

Finally, we are not completely satisfied with our 
method of generating confidence intervals. The 
present intervals are appropriate for the Neyman- 
Pearson observer (Egan, 1975), which wants to max- 
imize TP for a given FP. However, their appropriate- 
ness is questionable for evaluating minimum expected 
cost, for which a given set of costs contours ROC space 
with lines of a particular slope. Although this is an 
area of future work, it is not a fundamental drawback 
to the methodology. 

5    CONCLUSIONS 

We have offered for debate the justification for the use 
of accuracy estimation as the primary metric for com- 
paring algorithms on our benchmark data sets. We 
have elucidated what we believe to be the top can- 
didates for such a justification, and have shown that 
either they are not realistic because we cannot specify 
cost and class distributions precisely, or they are not 
supported by experimental evidence. 

We draw two conclusions from this work. First, the 
justifications for using accuracy to compare classifiers 
are questionable at best. Second, we have described 
what we believe to be the proper use of ROC analysis 
as applied to comparative studies in machine learning 
research. ROC analysis is not as simple as compar- 
ing with a single-number metric. However, we believe 
that the additional power it delivers is well worth the 
effort. In certain situations, ROC analysis allows very 
strong, general conclusions to be made—both positive 
and negative. In situations where strong, general con- 
clusions cannot be made, ROC analysis allows very 
precise analysis to be conducted. 

Although ROC analysis is not new, in machine learn- 
ing research it has not been applied in a principled 
manner, geared to the specific conclusions machine 
learning researchers would like to draw. We hope that 
this work makes significant progress toward that goal. 
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Abstract 

While there has been a growing interest in the problem of 
learning Bayesian networks from data, no technique exists 
for learning or revising Bayesian networks with hidden vari- 
ables (i.e. variables not represented in the data), that has 
been shown to be efficient, effective, and scalable through 
evaluation on real data. The few techniques that exist for 
revising such networks perform a blind search through a 
large space of revisions, and are therefore computationally 
expensive. This paper presents BANNER, a technique for 
using data to revise a given Bayesian network with noisy-or 
and noisy-and nodes, to improve its classification accuracy. 
The initial network can be derived directly from a logical 
theory expressed as propositional rules. BANNER can revise 
networks with hidden variables, and add hidden variables 
when necessary. Unlike previous approaches, BANNER em- 
ploys mechanisms similar to logical theory refinement tech- 
niques for using the data to focus the search for effective 
modifications. Experiments on real-world problems in the 
domain of molecular biology demonstrate that BANNER can 
effectively revise fairly large networks to significantly im- 
prove their accuracies. 

1    Introduction 

Bayesian networks have become the most popular ap- 
proach to uncertain reasoning due to their precise 
probabilistic semantics as well their success in practi- 
cal applications. In an attempt to automate their con- 
struction, induction of Bayes nets has become a topic 
of increasing interest. A number of learning methods 
have been developed for the case where all relevant 
variables are observable (Heckerman, 1995). Param- 
eter learning methods for networks with hidden vari- 
ables (variables not represented in the data) have also 
been developed (Russell, Binder, Koller, & Kanazawa, 
1995; Thiesson, 1995). However, learning both the 
structure and the parameters of a Bayesian network 
with hidden variables remains a problem. Many of 
the existing methods can be adapted to discover hid- 
den variables, but only by conducting extensive search 

that is impractical for most problems. A recent devel- 
opment is MS-EM (Friedman, 1997), which learns the 
structure of a network with hidden variables; however, 
it requires specifying the number of hidden variables 
and has not been tested on real data. 

As demonstrated by theory refinement research on 
rule-bases, using empirical data to revise an initial im- 
perfect knowledge base can significantly improve per- 
formance over induction from scratch (Opitz & Shav- 
lik, 1993; Ourston & Mooney, 1994; Towell & Shav- 
lik, 1994; Mahoney & Mooney, 1994; Brunk & Paz- 
zani, 1995). A few techniques have been developed 
for revising Bayesian networks (Lam & Bacchus, 1994; 
Buntine, 1991); however, they do not handle hidden 
variables. Many existing Bayes-net induction meth- 
ods could be adapted to revision, but only by examin- 
ing all possible individual modifications. By contrast, 
rule-revision systems use classification errors on the 
training data to propose specific modifications rather 
than blindly examining all possible options. The result 
is an efficient, directed revision process. 

We have developed a technique, BANNER, for refin- 
ing Bayesian networks with hidden variables that, like 
rule-refinement algorithms, uses the data to focus the 
search for effective modifications. BANNER'S goal is to 
improve the accuracy of an initial network for a spe- 
cific inference task by modifying both its parameters 
and structure, including adding new hidden variables. 
Although Bayesian networks can simultaneously sup- 
port many types of inference, training directly for 
the desired classification task results in better perfor- 
mance (Friedman & Goldszmidt, 1996). Since gen- 
eral Bayesian networks are impractical for many large 
problems because the number of parameters grows ex- 
ponentially in the fan-in of a node, we focus on net- 
works with noisy-or and noisy-and nodes, specialized 
models that require only a linear number of param- 
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eters (Pearl, 1988; Pradhan, Provan, Middleton, & 
Henrion, 1994). Since these models are close to logical 
functions, they also allow a rule-base to be used as an 
initial theory by mapping the rules to a network in the 
obvious way. Existing results show that the accuracy 
of rule bases can be dramatically improved by mapping 
them to a representation that provides numerical sum- 
ming of evidence (Towell & Shavlik, 1994; Mahoney 
& Mooney, 1994). However, the neural networks or 
certainty-factor rules employed in these results do not 
provide an interpretable knowledge base with parame- 
ters that have a precise semantics. An important goal 
of theory refinement is to provide interpretable knowl- 
edge, and we believe Bayes nets are preferable in this 
regard. 

Experimental evaluation of Bayes net learning has 
largely been conducted on artificial data and not ade- 
quately compared to other methods on real problems 
(exceptions include Provan and Singh (1994), Fried- 
man and Goldszmidt (1996)), and we know of no 
Bayes-net results on revising real knowledge bases to 
fit actual data. We have evaluated BANNER on several 
realistic problems used to test other theory refinement 
systems, obtaining performance competitive with the 
current best results while maintaining the advantages 
of a Bayes-net representation. The remainder of the 
paper presents an overview of BANNER'S learning al- 
gorithm and the promising results of this evaluation. 

2    Refinement Algorithm 

As in general in theory refinement, the goal is to min- 
imally modify the initial theory to make it consistent 
with the available training data. Taking the standard 
approach, BANNER employs one procedure to revise 
the parameters of a network and another to revise the 
structure. First, the parameters are revised to im- 
prove classification accuracy. If the resulting network 
does not adequately fit the training data, the struc- 
ture of the network is modified and the parameters 
are retrained. This process repeats until it is deter- 
mined that additional training results in over-fitting.1 

In this paper, we focus on structure revision. Our cur- 
rent implementation includes two parameter revision 
algorithms, BANNER-PR (Ramachandran & Mooney, 
1996) and C-APN (based on (Russell et al., 1995)), 
which use different forms of gradient descent. Ra- 
machandran (1998) presents further details. 

1The parameter revision component uses 10-fold inter- 
nal cross-validation on the training set to determine when 
to stop (Mitchell, 1997). 

Structure revision exploits the idea that networks with 
noisy-or/and nodes are similar to logical theories and 
therefore techniques used to revise rule bases are use- 
ful. These methods attribute classification errors on 
particular examples to specific portions of the theory 
and directly construct revisions to handle the mis- 
classified cases. Most logical refinement systems use 
abduction to diagnose faults (Mooney, 1997). Since 
Bayesian networks place no restrictions on the direc- 
tion of inference, abduction can be performed using the 
standard inference algorithms. In addition, leak nodes 
(Pradhan et al., 1994) provide a way to model the in- 
completeness and incorrectness of a Bayesian network 
with noisy-or/and nodes. A leak node is a source in 
the graph added as an extra input to a node in order 
to represent a possible unknown cause. BANNER diag- 
noses faults in a network by temporarily instrumenting 
each node with leak nodes that indicate potential re- 
vision points. It then uses training data to select a 
small set of revision points and construct appropriate 
refinements. 

2.1    Selecting Revision Points 

The procedure for instrumenting a network with leak 
nodes is best illustrated with an example, such as that 
shown in Figure 1 (A-G are the original nodes). Each 
noisy-or/and has an added parent called a node-leak 
node. In order to avoid significantly altering the se- 
mantics of the net, the prior of the leak node and its 
link parameter are initially set very low. However, 
when the algorithm detects misclassifications, it re- 
estimates the prior probabilities by training a copy of 
the network augmented with leak node-leak nodes us- 
ing the parameter revision module. All of the orig- 
inal noisy-or (noisy-and) nodes also have their par- 
ents routed through an intervening noisy-and (noisy- 
or) node. The intervening nodes themselves have at- 
tached leak nodes called link-leak nodes. To avoid al- 
tering the semantics, the weights on the links are set 
to simulate logical functions and the prior probability 
of the link-leak node is set to the weight on the origi- 
nal link. The leak nodes effectively represent possible 
faults in the theory, with node-leak nodes representing 
the need for new inputs to a node, and link-leak nodes 
representing the need for new intervening hidden vari- 
ables between two nodes. 

Once the network is properly instrumented, BANNER 
performs abduction on each misclassified example to 
generate a set of repairs that could correct the ex- 
ample. This involves instantiating both the evidence 
and the target variables in the augmented network to 
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Figure 1: Augmenting a network with leak nodes 

their observed values and inferring the beliefs asso- 
ciated with the leak nodes using standard Bayesian 
inference. For each misclassified example, it collects a 
set of leak nodes, whose beliefs deviate from their prior 
probability by more than 10%. Such leak nodes are 
said to cover the example, and indicate potential revi- 
sion points in the theory. When the belief in the truth 
of a leak node decreases from its prior, it is called an 
inhibitor for that example; if it increases, it is called 
an enabler. Each leak node covering an example is 
associated with the degree to which its belief devi- 
ated from its prior, indicating the extent to which it is 
blamed for the misclassification. Once leak nodes are 
collected for all misclassified examples, BANNER uses 
a greedy set covering algorithm (where the contribu- 
tion of each leak node is weighted by its degree) to 
generate a small set of leak nodes that cover all of the 
misclassified examples. While BANNER uses only mis- 
classified examples to generate a set of revision points, 
it performs abduction on all the examples, generating 
leak nodes that are enablers or inhibitors for each ex- 
ample. This information is used during the generation 
of appropriate revisions. 

2.2    Revision Operators 

For each revision point in the covering set, BANNER 

implements one of the following modifications to help 
correct the misclassified examples covered by the cor- 
responding leak node: 1) Add a new parent, 2) Add a 
new hidden node, 3) Delete a link. The first operator 

is invoked when a revision point is a node-leak node, 
in which case it adds a new parent to the appropriate 
node in the original network. In the example, if G- 
leak is a selected revision point, then a new parent is 
added to G. The heuristic for selecting the new parent 
is discussed below. 

If a revision point is a link-leak node, BANNER modi- 
fies the corresponding link. One option is to introduce 
a new hidden variable with an additional parent and 
the same type as the corresponding intervening node. 
In the example, if E-A-leak is the revision point, a new 
noisy-or node is added between E and A (see Figure 2). 
The rationale for such a revision is that the previous 
step of abduction with the augmented network indi- 
cated that such a structure would better explain the 
misclassified data. 

However, in some cases, the problematic link is simply 
deleted. For example, if E-A-leak is an enabler for sev- 
eral examples but never an inhibitor, the link may be 
deleted to correct the misclassified examples without 
affecting other examples since the link is effectively an 
always-true input to a noisy-and which therefore has 
no effect. A dual argument can be made for noisy-or 
nodes. A link is also deleted if, when a hidden node 
is added, the chosen parent has the same effect as link 
deletion. For example, if the negation of A is chosen 
as the new parent of E-A, the link between E and A 
is deleted. 

New parents are selected based on the examples for 
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Given: An initial network, and a set of training data. Output: A revised network. 
1. Initialize the parameters of the network either randomly or based on some prior knowledge. 
2. Repeat steps a-e until there is no improvement in training accuracy over a pre-specified number of 

consecutive cycles. 
(a) set train-net = initial network. 

set leak-net = train-net augmented with node-leak nodes. 
Train network train-net to revise parameters. 
If the previous step indicates overfitting, or all examples are correctly classified, return tram-net. 
else 

i. Train network leak-net to estimate prior probabilities of the node-leak nodes. 
ii. Set augmented-net = train-net augmented with node-leak and link-leak nodes, 

iii. Copy priors of leak nodes from leak-net to augmented-net. 
iv. For each example, 

A. Instantiate input and target nodes of augmented-net with values from the example. 
B. Infer beliefs of all the nodes in augmented-net. 
C. Collect all enabled and inhibited node-leak and link-leak nodes, 

v. Set revision-points = small set of node-leak and link-leak nodes that cover all the misclassified 
examples (computed using greedy set covering) 

vi. For each revision point in revision-points, revise train-net at the revision point using one of the 
revision operators. 

Figure 3: Outline of the Refinement Algorithm 

noisy-or 

Figure 2: Revision operator: Adding a bidden node 

which the chosen leak-node is an enabler or inhibitor. 
The new parent needs to be true for the examples 
it must enable and false for the ones it must in- 
hibit. BANNER uses a standard information gain met- 
ric (Quinlan, 1990) to choose a parent that best dis- 
criminates between these two sets of examples. This 
metric, commonly used in inductive learning algo- 
rithms (Mahoney & Mooney, 1994; Quinlan, 1990, 
1986), estimates the information gained about a target 
function value from knowing the value of an attribute. 
Two versions of this metric that are commonly used. 
The version used by "Quinlan (1990) to learn preposi- 
tional Horn-clause theories, is designed to pick a fea- 
ture that best discriminates between sets of examples, 
with the additional constraint that the feature have 

specific values (e.g. true or false) for each set of exam- 
ples. This version is most appropriate for our theory 
refinement algorithm because we need to select a new 
parent that discriminates between the examples that 
need an enabling influence, and the examples that need 
an inhibitory influence, with the additional constraint 
that the new parent be true for the former set of ex- 
amples and false for the latter set of examples. 

Suppose that we are given a set of examples, S, of 
size N, of which N+ a re positive examples of a given 
class C, and N~ are negative examples of C. Also as- 
sume that all the features in the examples are boolean- 
valued. For any given feature F, let Nf be the number 
of examples for which F is true; of these let, N~£ be 
the number of examples which are positive examples 
of C, and JV7 be the number of examples which are 
negative examples of C. Then, the reduction due to 
F in the total number of bits required to encode the 
positive members of C is given by 

Gain(C, F) = N+* (I(S) - I{Nf)), 

where I(S) = -log2 ( N^+N+ ) *s tne numDer of bits 
required to encode a positive member of class C, and 

I(Nf) = - log2 1 N-1N+ ) is tne number of bits re- 

quired to encode the positive members of class C, given 
that F is true. The higher the value of this func- 
tion, the greater the correlation between the examples 
for which F is true and the positive examples of G. 
Note that this computation can be easily generalized 
to hidden variables and variables with missing values. 
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Information gain for such nodes can be obtained by 
weighting the frequency measures Nt and NT by the 
degree of belief associated with these nodes for each 
example. 

So far, we have described this metric with a view to 
selecting an enabling parent. The same metric is used 
to select an inhibitory parent by defining Nf to be the 
number of examples for which F is false. Every other 
term in the computation of the metric is defined as 
before. In general, all nodes in the network and their 
negations are potential candidates; however, to avoid 
redundancy and the introduction of loops, the existing 
parents and descendents of the recipient of the new 
parent are excluded. Figure 3 shows a summary of the 
overall algorithm. 

3    Experimental Evaluation 

We conducted experiments on realistic problems and 
data to demonstrate that BANNER is effective at re- 
vising networks to improve their classification accu- 
racy. We also compared its performance to naive Bayes 
which learns a simple Bayes net that includes all fea- 
tures and assumes conditional independence,2 with 
KBANN (Towell & Shavlik, 1994) a neural-network 
refinement method, RAPTURE (Mahoney & Mooney, 
1994) a certainty-factor refinement method, and with 
two standard inductive algorithms: C4.5 (Quinlan, 
1993) for decision trees and BACKPROP (McClelland 
& Rumelhart, 1988) for neural networks. In order 
to study the contribution of BANNER'S components, 
we also performed ablation studies, where we disabled 
parts of the algorithm and compared performance to 
the full system. BANNER-IND, is an inductive version 
which does not utilize an initial theory but starts with 
a default network with input and output variables but 
no links, and BANNER-PR (parameter revision), which 
uses an initial theory but does not perform structure 
revision. Finally, we specifically evaluated structure 
revision by attempting to fix an artificially corrupted 
initial theory. 

We present results on two molecular biology problems 
employed in previous refinement experiments: recog- 
nizing promoters and splice-junctions in DNA strands 
(Towell & Shavlik, 1994). These problems include im- 
perfect, expert-provided theories represented as propo- 
sitional rules. These theories contain fan-ins of up 
to 17 inputs, which would require more than 130,000 

2Our version includes smoothing with Laplace estimates 
which significantly improves performance (Kohavi, Becker, 
& Sommerfield, 1997) 

parameters for general nodes, demonstrating the im- 
portance of using noisy-or/ands. Here we present the 
splice-junction results and results on a corrupted ver- 
sion of the promoter theory. BANNER also performs 
well on revising the original promoter theory, but since 
its structure is already adequate, this problem does 
not test structure revision. The system also performed 
well on revising a knowledge base on C++ program- 
ming to model students for an intelligent tutoring sys- 
tem (Baffes k Mooney, 1996). Ramachandran (1998) 
presents complete results. 

In order to compare to previous results, we generated 
learning curves in which the data was randomly split 
into independent training and test sets, systems were 
trained on the training data, and then tested on classi- 
fying the test examples. Results were averaged over 20 
random training/test splits. This was done for training 
sets with increasing number of examples. A two-tailed 
paired t-test is used to evaluate the statistical signif- 
icance of differences in performance given a specific 
number of training examples. 

3.1    DNA Splice-Junction 

This problem addresses the task of detecting splice- 
junctions, the boundaries between the utilized and un- 
utilized sequences in DNA. The data set consists of 
3190 examples consisting of strings of 60 nucleotides 
with the values A, C, G, or T, and assigned to three 
different categories. The initial theory consists of 47 
prepositional rules. 

Figures 4 shows the primary results and Figure 5 shows 
the ablation results. The experiment provides evi- 
dence that BANNER is successful at improving the ac- 
curacy of the initial theory significantly with just a 
small number of examples. The accuracy of the initial 
theory has risen from 55%, before revision, to 73.6% 
when trained on just 20 examples, and to about 91.2% 
when trained on 400 examples. The performance of 
the three refinement algorithms RAPTURE, BANNER, 

and KBANN are similar, although RAPTURE performs 
slightly better. The differences between RAPTURE and 
BANNER are small but statistically significant for all 
points on the learning curve at the 0.01 level. The in- 
ductive algorithms all perform significantly worse for 
smaller training sets, although NAIVE BAYES catches 
up with RAPTURE at 200 examples. The differences 
between the BANNER and NAIVE BAYES are signifi- 
cant at at least the 0.01 level for 20, 50, and 100 exam- 
ples, where the former performs considerably better, 
at the 0.001 level for 400 examples where it performs 
slightly worse. 
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Figure 4:   Splice-Junction:   Performance of Various 
Systems 

Figure 5 demonstrates that structure revision con- 
tributes significantly to BANNER'S performance on 
smaller training sets. Structure revision has con- 
tributed to an improvement in accuracy of about 13% 
over BANNER-PR for 20 examples (significant at 0.001 
level), and an improvement of about 2.8% for 50 ex- 
amples (significant at the 0.05 level). The revisions 
that contributed the most to this improvement were 
deletions of the links between nodes IE and PR, and 
nodes El and P5G. The differences between BANNER 
and BANNER-PR are not statistically significant at the 
rest of the points on the learning curve. As expected, 
starting out with an initial theory gives BANNER a 
significant edge over BANNER-IND. The difference in 
performance between these systems is statistically sig- 
nificant for all points on the learning curves, except at 
100 example, at levels of at least 0.02. 

3.2    Evaluation of Structure Revision on 
DNA Promoter 

In order to more directly study structure revision, an 
existing theory with adequate structure was corrupted 
and BANNER'S ability to recover the lost structure was 
examined. The DNA promoter recognition problem 
involves identifying DNA sequences that indicate the 
start of a new gene. Figure 6 shows a portion of the 
Bayesian network derived from the initial theory for 

Figure 5: Splice-Junction: Banner Ablations 

this problem, The data set contains 468 examples, con- 
sisting of strings of 57 nucleotides classified as pro- 
moters or non-promoters. Although in refinement ex- 
periments theories are sometimes corrupted randomly 
(Pazzani & Brunk, 1993), we found that the redun- 
dancy in this theory makes it very robust to small 
corruptions. Therefore, we generated a corrupt the- 
ory by deleting a portion of the theory we knew to 
be critical, namely the intermediate concept minus.35 
(deleted portion shown in bold in Figure 6). 

Figure 7 shows BANNER-PR and BANNER'S perfor- 
mance with this damaged theory compared to BAN- 

Figure  6:     DNA   Promoter  Recognition  -  Initial 
Bayesian Network 
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Figure 7: Effect of structure revision on corrupted pro- 
moter theory 

NER's performance with the original theory. The graph 
shows that removing minus -35 degrades the theory to 
the extent that, for most points in the learning curve, 
parameter revision alone cannot recover the accuracy 
attained with the original theory. The results shows 
that, for larger training sets, structure revision is ef- 
fective at recovering a fair bit of the accuracy lost 
due to the corruption, although the difference between 
BANNER-PR and BANNER is only significant (at the 
0.05 level) at 400 examples. 

The fact that BANNER and BANNER-PR result in com- 
parable accuracies for smaller training sets can be ex- 
plained by the fact that none of the trials with 10 and 
20 training examples, and less than half the trials with 
50 examples required structure revision. Notice that 
the corrupted theory results in better networks than 
the original when trained on 10 examples. With 20 
and 50 examples, the corrupted theory is still usually 
able to fit the training examples without structure re- 
vision, but results in poorer generalization. This leads 
to the hypothesis that, for smaller training sets, there 
are several theories that are as good as the original the- 
ory in fitting the training set, but are worse in terms 
of generalization, which would partially explain the 
observation that structure revision leads to improved 
training accuracies without any improvements in gen- 
eralization, when trained on 50 and 100 examples. 

Figure 8: Example of a revised promoter network 

Figure 8 illustrates a revised network. The nodes and 
links added by BANNER are indicated by shaded el- 
lipses and bolder arrows and the numbers beside the 
links represent parameter values. Note that some 
nodes have been replicated in the figure for clarity 
only. BANNER added several features to the network: 
P-35=T, P-36=T, P-34=G, P-33=A and P-3=A and 
added new links from features already present in the 
network: P-ll-A, and P-10=A. In addition, it has 
added three hidden variables, 1-1 through 1-3. A com- 
parison with the original theory indicates that the 
added unit 1-1 roughly corresponds to the deleted 
minus-35 concept. However, in the original the- 
ory, mtnus-35 combines conjunctively with minus A0, 
whereas, here it combines disjunctively. That could 
explain why BANNER also added some of these fea- 
tures to the sub-network above minus A0A. However, 
realize that the initial theory is not known to have 
the correct structure, it is simply one proposed in the 
biological literature that is also consistent with the 
available data. Also, note that the modifications to 
the network are not confined to any particular level 
(as they are in Mahoney and Mooney (1994)). 

In summary, our experiments demonstrate that BAN- 

NER is effective in revising an Bayesian networks with 
hidden variables to significantly improve their accu- 
racy. They also demonstrate that the structure revi- 
sion algorithm contributes significantly to the overall 
algorithm and makes semantically interpretable revi- 
sions. The effectiveness of the structure revision al- 
gorithm is also illustrated by the fact that BANNER- 

IND learns highly accurate classifiers. Experiments 
have also been performed that show that BANNER- 

IND learns more accurate classifiers that Naive Bayes 
on the problem of classifying chess end-games (Quin- 
lan, 1983). Ramachandran (1998) provides details on 



Theory Refinement of Bayesian Networks with Hidden Variables 461 

these results. 

4    Related Work 

While recent techniques have begun to address the 
problem of learning the structure of a Bayesian net- 
work from incomplete data (Ramoni & Sebastiani, 
1997; Friedman, 1997), only a few address the prob- 
lem of learning or revising networks with hidden vari- 
ables. MS-EM (Friedman, 1997) extends EM to learn 
the structure as well as the parameters of a network 
from incomplete data. While it works when the ini- 
tial theory contains hidden variables, it cannot con- 
struct new hidden variables. Kwoh and Gillies (1996) 
present a procedure for adding hidden variables by 
first learning a Bayesian network from data without 
hidden variables, and then using statistical analysis to 
find correlations between variables with the same cause 
and clustering such variables with a new hidden node. 
These techniques have been demonstrated on learning 
small networks, but have not been evaluated on larger, 
real-world problems. Moreover, it has no mechanism 
for selecting a candidate set of nodes that need to be 
revised, instead relying on blind search through the 
space of all possible revisions. 

5    Future Research 

Experiments on other realistic problems, particularly 
ones in which the initial theory is specified as a 
Bayesian network (rather than translated from rules), 
is one area for future research. The current results for 
BANNER involve problems of causal inference, tests on 
tasks involving abductive inference are also needed. 
More detailed comparisons of different Bayes-net in- 
duction and revision algorithms and competing meth- 
ods on realistic problems measuring both training time 
and predictive accuracy are clearly needed. The cur- 
rent literature on Bayes-net learning is particularly 
lacking in this regard relative to other areas of ma- 
chine learning (Friedman, Goldszmidt, Heckerman, & 
Russell, 1997). 

Extending BANNER'S general approach to handle 
nodes other than noisy-or/and ones is an important 
area for future study. Another is theory refinement 
for unsupervised learning where there is not a specific 
targeted inference task. The algorithm can also be ex- 
tended to use Bayesian metrics to select new nodes to 
be added to the parent set of a node. A number of 
interesting ideas for learning and revising Bayes nets 
have been proposed, but integrating them into an ef- 

ficient and effective system with clearly demonstrated 
advantages over other machine-learning methods on 
realistic problems is still a challenge. 

6    Conclusion 

We have introduced a novel technique for revising 
Bayesian networks that can handle existing hidden 
variables as well as create new ones. We have demon- 
strated, through experiments on realistic problems, 
that this approach can efficiently revise large networks 
and produce highly accurate classifiers. The results 
are also competitive with those of the best theory re- 
finement systems while maintaining the precise proba- 
bilistic semantics of Bayesian networks that we believe 
make the resulting theories significantly more com- 
prehensible. Whereas existing techniques for revising 
Bayesian networks must search through the space of 
all possible revisions, we have presented novel mech- 
anisms for using the information in the data to guide 
the search for useful revisions, thus focusing the search 
and making it tractable for larger, more realistic prob- 
lems. 
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Abstract 

We present and solve a real-world problem of 
learning to drive a bicycle. We solve the prob- 
lem by online reinforcement learning using the 
Sarsa(A)-algorifhm. Then we solve the compos- 
ite problem of learning to balance a bicycle and 
then drive to a goal. In our approach the rein- 
forcement function is independent of the task the 
agent tries to learn to solve. 

1   Introduction 

Here we consider the problem of learning to balance on a 
bicycle. Having done this we want to drive the bicycle to 
a goal. The second problem is not as straightforward as it 
may seem. The learning agent has to solve two problems 
at the same time: Balancing on the bicycle and driving to 
a specific place. Recently, ideas from behavioural psychol- 
ogy have been adapted by reinforcement learning to solve 
this type of problem. We will return to this in section 3. 

In reinforcement learning an agent interacts with an envi- 
ronment or a system. At each time step the agent receives 
information on the state of the system and chooses an ac- 
tion to perform. Once in a while, the agent receives a re- 
inforcement signal r. Receiving a signal could be a rare 
event or it could happen at every time step. No evalua- 
tive feedback from the system other than the failure sig- 
nal is available. The goal of the agent is to learn a map- 
ping from states to actions that maximizes the agent's dis- 
counted reward over time [Bertsekas and Tsitsiklis, 1996, 
Sutton and Barto, 1998]. The discounted reward is the sum 
SSo Jlrt+i> where 7"is the discount parameter. 

A lot of techniques have been developed to find near opti- 
mal mappings on a trial-and-error basis. In this paper we 
use the Sarsa(A)-algorithm, developed by Rummery and 

1. Initialize all eligibility traces eo = 0. 
2. Set t - 0. 
3. Choose action at. 
4. If t> 0 then learn 

wt = wt-i + a [rt-i + jQt - Qt-i] et-i- 
5. Calculate VwQt with respect to the chosen action. 
6. Update accumulating traces as 

e* = 7-W-i + Vw<?t. 
Update replacing traces as 

VwQt ifV„,Qt^0, 
7Aet_i(s)    otherwise. 

7. Perform action, receive reinforcement-signal. 
8. If the system has entered a terminal state, then 

t <- t + 1 and jump to point 3. 
9. Otherwise perform the learning (point 4) with 

Qt=0- 

et(s) 

11/  L\SlJ 

-{ 

Figure 1: The Sarsa(A)-algorithm. 

Niranjan [Rummery and Niranjan, 1994, Rummery, 1995, 
Singh and Sutton, 1996, Sutton and Barto, 1998], because 
empirical studies seem to suggest that this algo- 
rithm is the best so far [Rummery and Niranjan, 1994, 
Rummery, 1995, Sutton and Barto, 1998]. Figure 1 shows 
the Sarsa(A)-algorithm. We have modified the algorithm 
slightly by cutting of eligibility traces that fall below 10-7 

in order to save calculation time. For replacing traces we 
allowed the trace for each state-action pair to continue un- 
til that pair occurred again, contrary to Singh and Sutton 
[Singh and Sutton, 1996]. 

2   Learning to balance on a bicycle 

Our first task is to learn to balance. At each time step the 
agent receives information about the state of the bicycle, 
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the angle and angular velocity of the handle bars, the an- 
gle, angular velocity and acceleration of the angle from the 
bicycle to vertical. For details of the bicycle system we 
refer to appendix A. 

The agent chooses two basic actions. What torque should 
be applied to the handle bars, T G {-2N,0N,+2N}, 
and how much the centre of mass should be displaced 
from the bicycle's plan, d G {-2cm, Ocm,+2cm} —a 
total of 9 possible actions. Noise is laid on the choice 
of displacement, to simulate an imperfect balance, d = 
^agents choice+sp. where p is a random number within [-1; 1] 
and s is the noise level measured in centimeters. We use 
s = 2 cm. 

Our agent consists of 3456 input neurons and 9 output neu- 
rons, with full connectivity and no hidden layers. The 
learning rate is a = 0.5. The continuous state data is 
discretised by non-overlapping intervals in the state-space, 
such that there is exactly one active neuron in the input 
layer. This neuron represent state information for all the 
different state variables. The discrete intervals (boxes) are 
based on the following quantization thresholds: 

The angle the handle bars are displaced from normal, 6: 0, 
±0.2, ±1, ±f radians. 

The angular velocity of the angle, 6: 0, ±2, ±oo radi- 
ans/second. 

The angle from vertical to bicycle, w. 0, ± 0.06, ± 0.15, 
±j^7T radians. 

The angular velocity, w: 0, ± 0.25, ± 0.5, ±oo radi- 
ans/second. 

The angular acceleration, w: 0, ±2, ±co radians/second2. 

1000 2000 3000 4000 5000 6000 7000 8000 
Trial 

Figure 2: Number of seconds the agent can balance on the 
bicycle, as a function of the number of trials. Average of 40 
agents. (After the agent has learned the task, 1000 seconds 
are used in calculation of the average.) 

Figure 2 shows the number of seconds the agent can bal- 
ance on the bicycle as a function of the number of trials. 
When the agent can balance for 1000 seconds, the task is 
considered learned. Here A = 0.95 and 7 = 0.99. Sev- 
eral CMAC-systcms (also know as generalized grid cod- 
ing) [Watkins, 1989, Santamarfa et al., 1996, Sutton, 1996, 
Sutton and Barto, 1998], were also tried, but none of them 
gave the agent a learning time below 5000 trials. 

Figures 3 and 4 show the move- 
ments of the bicycle at the be- 
ginning of a learning process 
seen from above. Each time the 
bicycle falls over it is restarted 
at the starting point. At each 
time step a line is drawn be- 
tween the points where the 
tyres touch the ground. 

Both accumulating and replac- 
ing eligibility traces were tried. 
The results are shown in fig- 
ure 5. The results found sup- 
port the general conclusions 
drawn by Singh and Sutton 
[Singh and Sutton, 1996]: Re- 
placing traces make the agent 
perform much better than con- 
ventional, accumulating traces. 
Long traces help the agent best. 

Figure 3: The first 151 
trials seen from above. 
The longest path is 7 
meters. 

3   Shaping 

The idea of shaping, which is borrowed from behavioural 
psychology, is to give the learning agent a scries of rela- 
tively easy problems building up to the harder problem of 
ultimate interest [Sutton and Barto, 1998]. The term origi- 
nates from the psychologist Skinner [Skinner, 1938], who 
studied the effect on animals, especially pigeons and rats. 

To train an animal to produce a certain behavior, the 
trainer must find out what subtasks constitute an approx- 
imation of the desired behavior, and how these should 
be reinforced [Staddon, 1983]. By rewarding successive 
approximations to the desired behavior, pigeons can be 
brought to pecking a selected spot [Skinner, 1953, p. 93], 
horses to do clever tricks in a circus like seemingly recog- 
nize flags of nations or numbers and to do calculation 
[J0rgensen, 1962, pp. 137-139], and pigs to perform com- 
plex acts as eating breakfast at a table and vacuuming 
the floor [Atkinson et al., 1996, p. 242]. Staddon notes 
that human education as well is built up as a process of 
shaping if behavior is taken to include "understanding" 
[Staddon, 1983, p. 458]. 
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Figure 4: The same route as figure 3 a little later. Now the 
agent can balance the bicycle for 30-40 meters. The agent 
starts each trial in a equilibrium position (6,9, w, w, w) = 
(0,0,0,0,0). During the first trials it learns to avoid dis- 
turbing this unnecessarily, i.e. it learns to keep driving 
straight forward. Now the most difficult part of the learning 
remains: To learn to come safe though a dangerous situa- 
tion. A weak (random) preference for turning right (instead 
of left) is strengthened during the learning as the agent gets 
better at handling problematic situations and therefor re- 
ceives less discounted punishment than expected. 

Shaping can be used to speed up the learning process for 
a problem or in general to help the reinforcement learning 
technique scale to large and more complex problems. But 
there is a price to be paid for faster learning: We must give 
up the tabula rasa attitude that is one of the attractive as- 
pects of basic reinforcement learning. To use shaping in 
practice one must know more about the problem than just 
under which conditions an absolute good or bad state has 
been reached. This introduces the risk that the agent learns 
a solution to a problem that is only locally optimal. 

There are at least three ways to implement shaping in rein- 
forcement learning: By lumping basic actions together as 
macro-actions, by designing a reinforcement function that 
rewards the agent for making approximations to the desired 
behavior, and by structurally developing a multi-level ar- 
chitecture that is trained part by part. 

Selfridge, Sutton and Barto showed that transferring 
knowledge from solving an easy version of a problem such 
as the classical pole mounted on a cart can ease learning a 
more difficult version [Selfridge et al., 1985]. 

McGovern, Sutton and Fagg have tested macro-actions in a 
gridworld and found that in some cases they accelerate the 
learning process [McGovern et al., 1997]. 

Dorigo, Colombetti and Borghi have worked with 
shaping for real robots [Dorigo and Colombetti, 1993, 
Colombetti et al., 1996, Dorigo and Colombetti, 1997]. 
They use reinforcement learning as a mean to translate 
suggestions from an external trainer. The trainer is a 
programme in itself with a high-level representation of 
the desired behavior that provided immediate reinforce- 
ment. For instance in the "The Hamster Experiment" 
[Colombetti et al., 1996] the robot's task is to collect 
pieces of food (colored cans) and bring them to its nest. 
The trainer provides the agent with a reinforcement signal 
for approaching the food. This signal is proportional to the 
decrease in the distance between the robot and the pieces 
of food. The training of the agent boils down to translating 
the high-level trainer to a low-level control programme. 
This method of shaping by a trainer has a number of 
advantages as well as disadvantages. The agent does not 
have to solve the delayed reinforcement problem. But on 
the other hand, the programmer of the trainer must know 
in advance what high-level behavior is desired, and to such 
a degree that the trainer can judge how well a single move 
fits into the desired behavior. 

Mataric has studied the possibility of putting implicit do- 
main knowledge into the agent by construction a more 
complex reinforcement function than commonly used 
[Mataric, 1994]. Again the theory was tested on a real robot 
moving cans to a nest. Here the constructed function did 
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Figure 5: Learning time for different values of A for accumulating eligibility traces (left) and replacing traces (right). Each 
point is an average of 30 simulations. 

not eliminate the need for solving the delayed reinforce- 
ment problem. 

Gullapalli has studied two implementations of shaping 
[Gullapalli, 1992]. In the first the complexity of the con- 
trol task is gradually increased during learning, and the re- 
inforcement function used is changed accordingly. In this 
way most of a training run is used in learning the approx- 
imation to the current target behavior. This system was 
used to make a simulated robot hand perform a series of 
key strokes on a calculator. The actual task consisted of six 
subtasks. Secondly Gullapalli considered structural shap- 
ing: An incremental development of the learning system 
where a multi-level architecture is trained in parts. 

Gerald Tesauro's Backgammon playing agent achieved 
master level play through self-play [Tesauro, 1992, 
Tesauro, 1994, Tesauro, 1995]. This can be considered as 
a very succesfull example of the use of shaping. Self-play 
is a sort of shaping, since at first the agent plays against a 
nearly random opponent and thereby solves an easy task. 
The complexity of the task then grows as the agent gets 
better at playing. 

In Gullapalli's experiments [Gullapalli, 1992] and 
Selfridge, Sutton and Barto's [Selfridgeetal., 1985], 
as well as in Dorigo, Colombctti and Borghi's 
[Colombetti et al., 1996, Dorigo and Colombetti ,1997], 
the agent received a different reinforcement signal over 
time for the same behavior. This is not in agreement with 
the original inspiration of the reinforcement signal as being 
a hardwired signal inside the brain of a animal. To solve 
this problem, we need the reinforcement function to be 
independent of what task the agent tries to learn to solve. 
Our approach in general is to let the most basic tasks result 
in the lowest reinforcement signals and more advanced 
tasks correspond to larger signals. 

Signal for running 

~" Signal for walking 

Signal for crawling 

Signal for rolling 

Signal for not moving 

Figure 6: Reinforcement signals 
for the movements of a child- 
robot. 

Say, we want a robot 
to   learn   to   move 
forward like a child 
(see figure 6).  As a 
child grows stronger 
it   discovers   more 
complex and faster 
ways    of   moving. 
Performing       each 
way of moving can 
be  seen  as  a task 
that is more difficult 
than    the    former. 
The    robot     starts 
by learning to roll. 
Having done so,  it 
might discover how to crawl. The reinforcement signal for 
crawling is greater than rolling, and greater than what the 
agent expects to receive, and therefore it acts as a reward. 
Later after having learned to walk, failing to walk and 
falling back on crawling makes the robot receive a smaller 
reinforcement signal than it expected, and the internal 
reinforcement signal becomes negative—that is the signal 
acts as a punishment. 

Can these basic ideas of shaping be applied to reinforce- 
ment learning, and make it possible to solve a complex 
problem with more than one goal? We will now turn to 
a practical study of these theoretical issues. 

4   Learning to drive to a goal using shaping 

We want to study shaping on the composite problem of 
learning to balance a bicycle and then drive to a goal. In 
contrast to other experiments with shaping, we want the 
agent to be totally in charge of when to switch task. When 
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Figure 7: The weight, from the u>-oriented input neurons (left) and the weights from the angle oriented input neurons 
(right). Note the difference of the scale. 

one drives a bicycle in the morning to the institute and hits 
a hole in the road, one instantaneously forgets about where 
to go and focus attention on the balance. We want the agent 
to be able to switch task equally swiftly when it find the sit- 
uation appropriate. 

The bicycle starts out at the origin heading west. The goal 
is a circular spot (10 meter radius) positioned 1000 meters 
to the north of the starting point. 

We enlarge our basic network by 20 more input neurons, 
with full connectivity to the 9 output neurons. The angle 
between the driving direction and the direction to goal is 
discretised by 18° intervals, one for each neuron. Now 
there are exactly two active neurons in the agents input 
layer—one for the state of the bicycle and one for the driv- 
ing direction relative to the goal. The learning rate for 
the weights from the angle-input neurons is chosen to be 
0.01—much smaller than the rate for the other weights, 
in order to reflect the different time scales in the learning 
tasks: We do not want the weights in the angle oriented part 
to grow large while the agent learns to balance the bicycle. 
The odds are against these weights ending up containing 
anything useful. 

The reinforcement function is independent of the task the 
agent tries to learn to solve. If the bicycle falls over, the 
agent always receives -1, if the agent reaches the goal 
it is rewarded by r = 0.01, and otherwise the agent re- 
ceives r = (4 - ip*) • 0.00004, where tpg is the angle be- 
tween the driving direction and the direction to goal mea- 
sured in radians. The agent is punished when driving away 
from the goal and rewarded when driving towards it. This 
reinforcement function is inspired by the signal used by 
Colombetti, Dorigo and Borghi [Colombetti et al., 1996] 
mentioned earlier. Note that the agent still have to solve 
the delayed reinforcement problem. As one can see, the 

numerical value of this signal is quite small. We tried 
larger values, which made the agent learn to drive in the 
correct orientation without being able to balance. After a 
few hundred trials the agent at the starting point immedi- 
ately threw the bicycle to the right. The positive reinforce- 
ment it received due to the correct orientation in several 
time steps was large enough to make up for the punishment 
from falling. 

25 
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Figure 8: Number of times an agent drives the bicycle to 
the goal for twelve agents. 

Figure 8 shows the number of times twelve agents reach 
the goal. In a typical learning process it takes the agent 
1700 trials to learn to balance (i.e. drive more than 1000 s 
without falling), and after about 4200 trials it gets to the 
goal for the first time. After a total of approximately 5700 
trials it drives to the goal more or less every time. 

Figure 7 shows the values of some of the important weights 
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after learning. The w-weights shown arc an average of 
weight values around 6 = 0, 6 = 0, w - 0 and w = 0. 
If the agent drives along in balance, the weights with val- 
ues in the relatively flat upper area are active for the bal- 
ance oriented input neurons, and the values of the an- 
gle oriented neurons matter for the choice of action. The 
weights belonging to the balance oriented input neurons 
makes the agent prefer action 3,4 and 5 (which corresponds 
to T = 0), but the weights belonging to the angle oriented 
neurons decide which one. But if the state of the bicycle 
enters an area of unbalance, the balance oriented input neu- 
rons have far greater differences in values of the weights, 
and as a result the angle oriented input neurons do not make 
any difference for the choice of action. In other words: The 
agent swiftly shifts attention from the task of finding the 
goal to the task of balancing the bicycle if required. 

Figure 9: A typical route when the agent reaches the goal 
for the first time. 

Figure 9 and 10 shows routes from the starting point to the 
goal (the grey circle on the y-axis). The first drives to the 
goal can be as long as 200 km, but the agent soon learns to 
drive to the goal driving "only" 7 km. A driving distance 
as short as 1680 m has been observed. 

Figure 10: Already after 10 drives to the goal the agent 
navigates a little better. 

The goal is not reached just by coincidence. The probabil- 
ity for hitting the goal at random is quite small. An estimate 
for the time required to reached the goal by doing a corre- 
lated random walk is 1010 time steps. (The bee line from 
the starting point to the goal is 3.6104 time steps.) In other 
words: If the agent had to solve the problem of learning to 
drive to the goal without access to the shaping reinforce- 
ment signal, i.e. the tabular rasa approach, it would take 
enormous amounts of time before it hits the goal for the 
first time and experiences the reward for getting there. 

We agree with Mataric [Mataric, 1994] that these hetero- 
geneous reinforcement functions have to be designed with 
great care. In our first experiments we rewarded the agent 
for driving towards the goal but did not punish it for driv- 
ing away from it. Consequently the agent drove in circles 
with a radius of 20-50 meters around the starting point. 
Such behavior was actually rewarded by the reinforcement 
function, furthermore circles with a certain radius are phys- 
ically very stable when driving a bicycle because of the 
cross terms in eqs. (2) and (3) in the appendix. 
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5   Conclusion 

Our results demonstrate the utility of reinforcement learn- 
ing on a difficult, dynamical real world problem. It is pos- 
sible to learn to balance a bicycle by pure reinforcement 
learning with only one (rare) reinforcement signal. Further- 
more it is possible to learn a solution to the double problem 
of balancing on the bicycle and driving to a goal by com- 
bining reinforcement learning with shaping. The applica- 
tion of shaping accelerated the learning process immensely. 
Without shaping, it would not have been practical to wait 
for the agent to discover the goal and the reward for getting 

there. 
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A   Details of the Bicycle Simulation 

The bicycle must be held upright within ±12° measured 
from vertical position. If the angle from the vertical to the 
bicycle falls outside this interval, the bicycle has fallen, and 
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the agent receives punishment -1. The Bicycle is mod- 
eled by the following non-linear differential equations. One 
simplification was made to ease the derivation of the equa- 
tions: The front fork was assumed to be vertical, which is 
unusual but not impossible. This, however, made the task a 
bit more difficult for the agent. 

There are two important angles in this problem: The angle 
9 of the direction of the bicycle from straightforward, and 
the angle w the bicycle is tiled from vertical. The conser- 
vations of angular momentum of the tyres results in some 
important cross terms. 

The equations do not model a bicycle exactly, as some sec- 
ond order cross effects were ignored during the derivation. 
However we believe that the largest problem of transfer- 
ring to a real bicycle would be to build hardware that could 
withstand falling over a thousand times—not just without 
crashing but also without changing and thereby make the 
system unstationary. 

Figure 11: The bicycle as seen from behind. The thick 
line represents the bicycle. CM is the centre of mass of the 
bicycle and cyclist. 

The following equations describe the mechanics of the sys- 
tem. (See figure 11.) The angle tp is the total angle of tilt 
of the centre of mass, and is defined as: 

def 
<p = w + arctan 

The angular acceleration w can be calculated as: 

1 

'bicycle and cyclist 
Mhg sirup 

- cosip[ Idc&9 + sign(9) (2) 

vi(Mdr |  Mdr [  Mh\\\ 

This equation is the mechanical equation for angular mo- 
mentum. The physical contents of the right hand side arc 
terms for the gravitation, effects of the the conservation of 
angular momentum of the tyres and the fictional centrifugal 
force. The term Idc &9 is important for understanding why 
it is relative easier to ride a bicycle than to keep the balance 
on a bicycle standing still. The cross effects that originate 
from the conservation of angular momentum of the tyres 
stabilize the bicycle, and this effect is proportional to the 
angular velocity of the tyres & and thereby to the velocity 
of the bicycle. 

The angular acceleration 9 of the front tyre and the handle 
bars is: 

■A     T - Idv & w 

Id, 
(3) 

These equations are not an exact analytical description, as 
some second (and higher) order terms have been ignored. 
The values of u>, w, ii), 9, 9 are send to the agent at each 
time step. The agent returns the value of d and the torque 
T. 

(1) 

Figure 12: Seen from above. The thick line represents the 
front tyre. 

The front and back tyres follow different paths in a curve 
with different radii (see figure 12). The front tyre follows 



Learning to Drive a Bicycle using RL and Shaping 471 

the longest path. The radius for the front tyre is: 

I I 
17 = 

cos(§-0)|      |sin0| 

And for the back tyre: 

n = I tan ( — - 8) \ = 7-—-r? 
\2       /I      |tan0| 

(4) 

(5) 

For the CM the radius can be calculated as: 

rcM = ((1 - c)2 + j^) 

The equations of the position of the tyres for the front tyre: 

(6) 

(Xf) 
Xf\ /=*/ 

yf)(t+D \yfJ(t) 

(- sin(</> + 6 + sign(V> + 6) arcsin(f^)) 
+ vdty cos(^ + 9 + sign(</> + 6) arcsin(f^)) 

And for the back tyre: 

(*+i) (*) 
sm{ip + sign(V>) arcsin(|f)) 

+ VM[   cos(^ + sign(V)arcsin(|f)) 

We estimated the values of the moments of inertia to: 

13 
bicycle and cyclist = yMc/l

2 + Mp (/l + ^CM)
2

        (7) 

The various moments of inertia for a tyre was estimated to 
(see figure 13): 

Ida    =    Mdr
2 (8) 

hv    =    2Mdr"2 (9) 

hi    =    \Mdr
2 (10) 

Table 1 shows the values of the parameters used for the 
bicycle system. 

Figure 13: Axis for moments of inertia for a tyre. 

Notation 

CM 

dcM 

Mc 

Md 

Mv 

a 
T 

Horizontal distance between the 
point, where the front wheel 
touches the ground and the CM. 
The Centre of Mass of the 
bicycle and cyclist as a total 
The agent's choice of the 
displacement of the CM 
perpendicular to the plan of the 
bicycle 
The vertical distance between 
the CM for the bicycle and for 
the cyclist. 
Height of the CM over the 
ground 
Distance between the front tyre 
and the back tyre at the point 
where they touch the ground 
Mass of the bicycle 
Mass of a tyre 
Mass of the cyclist 
Radius of a tyre 
The angular velocity of a tyre 
The torque the agent applies on 
the handlebars 
The velocity of the bicycle 

Value 
66 cm 

30 cm 

94 cm 

111cm 

15 kg 
1.7 kg 
60 kg 
34 cm 
0 = 1 

10 km/h 

Table 1: Notation and values for the bicycle system. 



472 

Learning First-Order Acyclic Horn Programs from Entailment' 

Chandra Reddy        Prasad Tadepalli 
Dearborn 303 

Department of Computer Science 
Oregon State University, 

Corvallis, OR 97331-3202. 
{reddyc,tadepalli}<3cs.orst.edu 

Abstract 

In this paper, we consider learning first-order 
Horn programs from entailment. In particu- 
lar, we show that any subclass of first-order 
acyclic Horn programs with constant arity is 
exactly learnable from equivalence and en- 
tailment membership queries provided it al- 
lows a polynomial-time subsumption proce- 
dure and satisfies some closure conditions. 
One consequence of this is that first-order 
acyclic determinate Horn programs with con- 
stant arity are exactly learnable from equiv- 
alence and entailment membership queries. 

1    Introduction 

Learning first-order Horn programs—sets of first-order 
Horn clauses—is an important problem in inductive 
logic programming with applications ranging from 
speedup learning to grammatical inference. 

We are interested in speedup learning, which concerns 
learning domain-specific control knowledge to allevi- 
ate the computational hardness of planning. One kind 
of control knowledge, which is particularly useful in 
many domains, is represented as goal-decomposition 
rules. Each decomposition rule specifies how a goal 
can be decomposed into a sequence of subgoals, given 
that a set of conditions is true in the initial problem 
state. Each of the subgoals might in turn have a set 
of decomposition rules, unless it is a primitive action, 
in which case it can be directly executed. 

Unlike in logical inference, for which Horn clauses are 
ideally suited, in planning, one needs to keep track of 

"This paper also appears in the proceedings of 8th In- 
ternational Conference on Inductive Logic Programming, 
1998 (ILP-98). 

time. In spite of this difference, goal-decomposition 
rules can be represented as first-order Horn clauses by 
adding two situation variables to each literal to in- 
dicate the time interval in which the literal is true. 
Hence, the problem of learning goal-decomposition 
rules for a single goal can be mapped to learning first- 
order Horn definitions—a set of Horn clauses, all hav- 
ing the same head or consequent literal. Learning goal- 
decomposition rules for multiple goals corresponds to 
learning first-order Horn programs. Henceforth, we 
omit the prefix "first-order", except when there is a 
possibility of ambiguity. 

In learning from entailment, a positive (negative) ex- 
ample is a Horn clause that is implied (not implied) 
by the target. Results by Cohen (1995a, 1995b), Dze- 
roski et al. (1992) and others indicate that classes of 
Horn programs having a single or a constant number of 
clauses are learnable from examples. Khardon shows 
that "actions strategies" consisting of a variable num- 
ber of constant-size first-order production rules can be 
learned from examples (Khardon, 1996). However, Co- 
hen (1995a) proves that even predicting very restricted 
classes of Horn programs (viz. function-free 0-depth 
determinate constant arity) with variable number of 
clauses of variable size from examples alone is crypto- 
graphically hard. 

Prazier and Pitt (1993) first used the entailment set- 
ting for learning arbitrary propositional Horn pro- 
grams. In addition to examples, they also used entail- 
ment membership queries ("entailment queries" from 
now on) which ask if a Horn clause is entailed by the 
target. Moving to first order representations, Frazier 
and Pitt (1993) showed that CLASSIC sentences are 
exactly learnable in polynomial time from examples 
and entailment queries. A Horn clause is simple if 
the terms and the variables in the body of the clause 
are restricted to the terms that appear in the head. 
Page (1993) considered non-recursive Horn programs 
restricted to simple clauses and predicates of constant 
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arity, and showed that they are learnable from exam- 
ples and entailment queries. Arimura (1997) general- 
ized Page's result to acyclic (possibly, recursive) simple 
Horn programs with constant-arity predicates. Reddy 
and Tadepalli (1997b) showed that function-free non- 
recursive Horn definitions are learnable from examples 
and entailment queries. The result we present here ap- 
plies to non-generative Horn programs, where the vari- 
ables and the terms in the head are restricted to those 
in the body. We show that acyclic non-generative Horn 
programs with constant arity that have polynomial- 
time subsumption procedure are learnable from exam- 
ples and entailment queries when certain closure con- 
ditions are satisfied. In particular, the result applies 
to acyclic Horn programs with constant arity determi- 
nate clauses. 

Goal-decomposition rules are hierarchical in nature, 
as are Horn programs. One aspect of learning in hi- 
erarchical domains is the hierarchical order of literals 
(goals or concepts). In many systems, learning hierar- 
chically organized knowledge assumes that the struc- 
ture of hierarchy or the order of the literals is known 
to the learner. Examples of such work include Mar- 
vin (Sammut & Banerji, 1986) and XLearn (Reddy 
& Tadepalli, 1997a), on the experimental side; learn- 
ing from exercises by Natarajan (1989) and learning 
acyclic Horn sentences by Arimura (1997), on the theo- 
retical side. In fact, Khardon shows that learning hier- 
archical strategies can be computationally hard when 
the structure of the hierarchy is not known (Khardon, 
1996). Our algorithm also assumes that the hierarchi- 
cal order of the literals is known. 

The rest of the paper is organized as follows. Section 
2 provides definitions for some of the terminology we 
use. Section 3 describes the learning model and the 
learning algorithm, and proves the learnability result. 
Section 4 concludes the paper with some discussion on 
implications and limitations of the work. 

2    Preliminaries 

In this section, we define and describe some of the ter- 
minology we use in the rest of the paper. For brevity, 
we omit some of the standard terminology (as given 
in books such as (Lloyd, 1987)). In the following, we 
use p and its variants, and o and its variants each to 
stand for a conjunction of literals; and b, q, I and their 
variants each to stand for a single literal. 

Definition 1 A definite Horn clause (Horn clause 
or clause, for short) is a finite set of literals that con- 
tains exactly one positive literal—{I, ->li, -1I2, • • •, ->ln}- 
It is treated as a disjunction of the literals in the set 
with universal quantification over all the variables. Al- 
ternately, it is represented as h,h,■ • • ,ln -* I, where 

I is called the head or consequent, and h,l2,---,ln 
is called the body or antecedent and is interpreted as 
h hh A...hin- A unit Horn clause is a Horn clause 
with no negative literals and hence no body. A Horn 
program or Horn sentence is a set of definite Horn 
clauses interpreted conjunctively. 

Definition 2 Let Ci and C2 be sets of literals. We 
say that C\ subsumes C2 (denoted Ci t C2) iff there 
exists a substitution 0 such that C\0 C C2. We also 
say C\ is a generalization of C2. 

Definition 3 (Plotkin, 1970) LetC, C, d andC2 

be sets of literals. We say that C is the least general 
generalization (Igg) of C\ and C2 iff C y C\ and 
C yC2, and C t C, for any C such that C h C\ 
andC >C2. 

Definition 4 (Plotkin, 1970) A selection of clau- 
ses C\ and Ci is a pair of literals (I1J2) such that 
h G Ci and Z2 G C2, and h and Z2 have the same 
predicate symbol, arity, and sign. 

If C\ and C2 are sets of literals, then IggiC^Ci) is 
{lgg(h,h) • (h,h) is a selection of C\ and C2}. If I 
is a predicate, lgg(l(si,s2,■ ■ ■ ,sn),l(ti,t2,■ ■ ■ ,tn)) is 
l(lgg{si,ti),...,lgg(sn,tn)). The Igg of two terms 
/(«!,...,*„) and g(ti,...,tm), if / = g and n = m, 
is f(lgg(si,ti),...,lgg{sn,tn)); else, it is a variable 
x, where x stands for the Igg of that pair of terms 
throughout the computation of the Igg of the set of 
literals. 

As an example, let C\ be l(a,b),l{b,c),m(b) -» 
l{a,c), and C2 be Z(1,2),Z(2,3), m(2) -> J(l,3). 
(i(a,c),l(l,3)) and (-.m(6),-im(2)) are two of 
the selections of Cx and C2. lgg(Ci,C2) is 
l(x,y),l(y,z),l(t,u),l(v,w),m(y) -» l{x,z), where 
x, y, z, t, u, v and w are variables standing for the pairs 
(a, 1), (b, 2), (c, 3), (a, 2), {b, 3), (6,1) and (c, 2). 

Definition 5 A derivation of a Horn clause p -» 
q from a Horn program H is a finite directed acyclic 
graph G such that there is a node q, there is no arc 
(q, r) in G, and for each node I in G, either I G p or 
if {li,l),...,(ld,l) are the only arcs of G terminating 
at I, then h,... ,ld -> I = Cd for some clause C G H 
and a substitution 0. 

For example, let H be {parent(x,y),parent(y,z) -> 
grandParent(x,z); mother(x,y) -¥ parent(x,y)}. 
Figure 1 shows a derivation of mother(a,b), mot- 
her(b,c) -> grandParent(a,c). 

Proposition 1 In a derivation G of a clause p —► q 
from a Horn program H, for any node I, either I is in 
p or H\=p-*l. 
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grandParenl(a.c) 

parent(a.b) parenl(b,c) 
i 

mother(a,b) mother(b,c) 

Figure 1: A derivation of mother (a, b), mother(b,c) -> 
grandParent(a, c) from H. 

Let P be a set of predicate symbols, and T be a set of 
terms. Let L be a set of atoms defined using P and 
T. Let H be a set of Horn programs using atoms in 
L only. If k is an integer, then Pk is a subset of P 
containing only those predicate symbols of arity k or 
less. Further, Lk is a set of atoms defined using Pk and 
T, and %k is a set of Horn programs using atoms in Lk 

only. In the following three definitions, we describe a 
class of Horn programs AHk for which minimal models 
are of polynomial size. 

Definition 6 (Arimura, 1997) Let E € U. Then 
a binary relation supported by (denoted, y) over 
atoms in L w.r.t. E is such that (1) for allp-t I G E, 
and for all h e p, I y li; (2) for all lul2 £ L and 
every substitution 6, if lx y l2, then h6 y l26; and (3) 
ifh y l2 and l2 y l3 then lx y l3. 

Definition 7 A Horn program E is acyclic over L 
if the relation y over L w.r.t. E is terminating; i.e., 
for any I £ L, there is no infinite decreasing sequence 
lyhy.... 

In the last example, H is acyclic because grandPar- 
ent(x, y) y parent(x, y) y mother(x, y) and there is 
no cycle formed by the >- relation. 

Following Khardon (1998), we call a definite clause a 
non-generative clause if the set of terms in its conse- 
quent are a subset of the set of terms and subterms in 
its antecedent. 

Definition 8 If k is a constant, we define a Horn pro- 
gram E e 7ik to be in the class AHk, if E is acyclic 
over Lk, and each clause is either non-generative or 
has an empty antecedent. 

Definition 9 Let a -» b be a clause in a Horn pro- 
gram E, and p -> q be a clause. Then, a ->■ b is a 
target clause in E of p ->qifja->by_p^q, i.e., 
for a substitution 6, a0 C p, W = q. We call p -> q a 
hypothesis clause of a -> b. 

Definition 10 For an antecedent p, q' 
consequent of p wrt E if E (= p -» q' 
there is no I G L such that q' y I, E (= p 
l*P- 

is a prime 
q' # p, and 

I and 

In the last example, parent(a, b) is a prime consequent 
of mother (a, b), mother (b, c), but grandParent(a, c) is 
not—since parent (a, b) y grandParent(a,c). 

3    Learning Horn Programs 

In this section, we show that a subclass of AHk is 
exactly learnable, using the exact learning model (An- 
gluin, 1988), in entailment setting. Henceforth, E € 
AHk denotes a target Horn program. 

3.1 The Learning Model 

In learning from entailment, an example is a Horn 
clause. An example p -» q is a positive example of 
E if E (= p -> q; negative, otherwise. An entailment 
query takes as input an example (p -> q), and outputs 
yes if it is a positive example of E (E |= p -> q), and no 
otherwise. An equivalence query takes as input a Horn 
program H and outputs yes if H and E contain (en- 
tail) exactly the same Horn clauses; otherwise, returns 
a counterexample that is in (entailed by) exactly one of 
H and E. A derivation-order query, y, takes as input 
two atoms Zj and l2 in L and outputs yes if li y l2, 
and no otherwise. An algorithm exactly learns a Horn 
program E in AHk in polynomial time from equiva- 
lence, entailment, and derivation-order (y) queries if 
and only if it runs in time polynomial in the size of 
E and in the size of the largest counterexample, and 
outputs a Horn program in AHk such that equivalence 
query answers yes. 

3.2 The Learning Algorithm 

In this section, we describe the learning algorithm, 
PLearn, shown in Figure 2. PLearn always maintains a 
hypothesis H which is entailed by the target, so that 
every instance of H is also an instance of E and all 
counterexamples are positive. 

Suppose that a counterexample p -» q is given to the 
learner—see Figure 2. Every such counterexample has 
a derivation from the target theory, E. Since this 
derivation is not possible from the current hypothe- 
sis H, there is some clause used in the derivation that 
has not been learned with sufficient generality. The al- 
gorithm tries to identify the antecedent literals of such 
a clause, c*, in the target by expanding the derivation 
graph from its leaves in p toward the goal using the 
clauses in H. In other words, PLearn computes the 
minimal model (p'j) of H implied by p ("closure" or 
"saturation") by forward chaining (line 4). To iden- 
tify the consequent of c*, also called the "prime conse- 
quent" of p'j, PLearn calls PrimeCons in line 5. Prime- 
Cons finds the prime consequent of p', by tracing the 
"supported-by" chain starting from q for a literal qj 
not in p'j, but is directly supported by some of the lit- 
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PLearn 
Given equivalence, entailment and >- queries 
outputs a Horn program H s.t. equivalent?(i7, E) is Yes. 
(1) H = {} /* empty hypothesis-clauses set */ 
(2) while not equivalent?(if, E) do { 
(3) Let p -+ q be the counterexample returned 
(4) p'f = {I : H \= (p -> 0} /* forward chaining */ 
(5) qj = PrimeCons(p'^ -4 3) 
(6) Pf-*qf = Reduce^ -> g/) 
(7) if 3pi ->qi€H such that E |= p9 -> g9, 
(8) where p9->qg = lgg(j)i->qi,Pf ~>qf) 
(9) then replace first such pi -* qt by Reduce(p9 -* qg) 
(10) else append p/ -¥ q/ to H 
(11)} /* while */ 
(12) return H 

PrimeCons(p -¥ q) /* finds prime consequents */ 
(13) Let L be the set of all possible literals having 

only those terms that are in p 
(14) 4 = q; 
(15) H = {I: I € L - p and E |= p -> /} 
(16) while 3Z € L' such that g' >- / 
(17) 4=1; 
(18) return q' 

Reduce(p -)• g) /* trims irrelevant literals */ 

(19) p'=p 
(20) repeat 
(21) for each literal I in p' in sequence do 
(22) if E £ (p'-{«})-►'and E(= (?'-{/})-► 9 
(23) then p' =p' - {1} 
(24) until there is no change to p' 
(25) return p' -¥ q 

Figure 2: PLearn Algorithm 

erals in p'f (lines 13-18). In line 6, PLearn makes use of 
Reduce to trim away "irrelevant" literals from the an- 
tecedent p'f to form a new clause pf -» qf that is also a 
counterexample to the hypothesis and is subsumed by 
a single target clause—see Lemmas 9,2,3. PLearn com- 
bines pf -» qf with an "appropriate" clause pi -> qi in 
H using Igg (lines 7-9). It uses the entailment query 
to find an appropriate hypothesis clause by checking 
if the result of Igg is implied by the target (line 7). If 
no such clause exists in H, pf -¥ qf is appended to H 
as a new clause (line 10). 

One problem with this approach is that the size of the 
Igg is a product of the sizes of its two arguments. This 
causes the size of a hypothesis clause to grow expo- 
nentially in the number of examples combined with 
it in the worst case. To avoid this, the antecedent 
literals of the clause after Igg are again trimmed us- 
ing Reduce so that the size of the resulting clause is 
bounded, while it is still subsumed by the target clause 
(lines 19-25). The result of Reduce then replaces the 
original hypothesis clause pi -»■ qi it is derived from 
(line 9). After this step, only the antecedents of the 
target clause and some of their consequents remain in 

the resulting hypothesis clause—see Lemma 5. This 
process repeats until the hypothesis H is equivalent to 
S. The algorithm works for unit clauses (which have 
empty antecedents) without change. 

3.3    An Example 

As an example to see how PLearn works, consider 
s = {ii(f{x))M*)M*) -» h(*)-Mf(x))Mx) -»• 
k(x);li{x),l5(x) -> l7(x)} where / is a function sym- 
bol. Suppose H = {li(f{c)),l2(c) -> /6(c)}. We 
adopt the convention that the letters such as o, b, c, 
etc. at the beginning of the alphabet are constants 
and the letters at the end of the alphabet such as 
x, y, z, etc.   are variables.   Let the counterexample 

be h{f(d))Md),h(d) -> M«Q- In steP 4> {t does 

not change. In PrimeCons, since l7(d) y h(d) and 
k(d) y k(d), h(d) is not a prime consequent, but 
any one of U(d) and l5(d) is. Suppose PrimeCons 
returns l5(d). Reduce eliminates l3(d) from the an- 
tecedent, because S |= Zi(/(d)),^(d) -» h(d), and 
S £ h(f(d))Md) -> h{d). Thus, pf -> qf = 
h (/(d)), h(d) -> l5(d). Combining this with the clause 
in H, we obtain pg -> qg = h(f(x)),l2(x) -> h(x) is 
entailed by E, new H is {h(f(x)),l2(x) ->• h(x)}. 

Suppose the next counterexample is l\(/(c)),h{c), 
h(c)    -)•     /7(c). Then,    qf     =     U(c),    and 
P'f = {h(J(c))Mc)Mc)Mc)}- Pf -> Qf = 
Ji(/(c)),la(c),fs(c),l5(c) -*• h{c), since Reduce can- 
not remove /5(c), because it is implied by the other 
literals wrt E (line 22). The modified counterexam- 
ple pf -> qf cannot be combined with the clause 
in H, because the resultant pg -> qg after Igg, 
h{f(x)),h(x) ->, is not entailed by E. Hence, it 
is appended to H to make H = {li(f(x)),l2(x) ->■ 
k(x);li(f(c))Mc)Mc),h(c) -4 Z4(c)}. 

Suppose the next counterexample is again h(f(c)), 
l2(c),l3(c) -> k(c). After line 4, p'} = 
h(f(c))Mc),h{c),k(c),k(c). qs now is l7(c), be- 
cause it is a prime consequent of p'j. After Reduce, 
Pf = Z5(c),/4(c). pf -¥ qf cannot be combined with 
the clauses in H, because the resultant Igg's are not 
entailed by E. Again, pf -)• qf is added to H. This 
process continues until H and E are equivalent. 

To bring out the nuances in Reduce, let us revisit 
the last part of the previous example. Consider the 
input k(c),l2(c),h(c),h(f(c)),li(c) -> h(c) to Re- 
duce. Although E |= li(f(c)),l2{c),h(c) -> l7(c), 
since E |= h(f(c)),l2{c),k{c) -> h(c) and E (= 
h(f(c)),l2(c) -> k(c), the literal l5{c) cannot be re- 
moved. This is because /5(c) is implied by the other 
literals (h(f(c)),l2(c)) wrt E. The order in which the 
literals are removed in Reduce follows the derivation or- 
der: if U >- lj, if at all U is removed, it is removed after 
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lj is removed. This can be intuitively imagined in the 
following way. Consider a derivation tree for a coun- 
terexample, with the consequent literal on top and the 
antecedent literals at the bottom. The above process 
trims off the literals bottom-up in the tree up to the 
appropriate level, so that the resulting clause is sub- 
sumed by some clause in the target. In the above case, 
if Reduce removes Z5(c) and leaves over /i(/(c)),/2(c), 
the resulting clause (li(f(c)),l2(c),l3(c),U(c) -* /7(c)) 
is not subsumed by any clause in £. 

However, this means that Reduce leaves over literals 
which are implied by the remaining literals, i.e., I can- 
not be removed from p' if £ (= (p' - {/}) ->■ / (line 
22). Removing such literals could result in hypoth- 
esis clauses which are not subsumed by any target 
clause, as the following example illustrates. Let E be 
{h(a) -> l2(a)\ li(x),l2(x) -+ l3(x)}. Suppose the 
first counterexample is li(a),l2(a) -> l3(a). Hence p'f 
= {h(a), h(a)} and qs = l3(a) in line 6. If Reduce were 
to remove l2(a) from p'f because £ (= li(a) -> l3(a), 
it ends up with a clause that is not subsumed by any 
target clause. We would like to prevent such redun- 
dant hypothesis clauses so that their number is not too 
high compared to the number of target clauses. (This 
argument is formalized in Lemmas 6, 7 and 8.) 

3.4    Learnability of AHk 

In this section, we prove that PLearn algorithm in Fig- 
ure 2 exactly learns a subclass of AHk for which sub- 
sumption is of polynomial-time complexity. The plan 
of the proof is as follows: Through a series of lemmas, 
we first establish that every hypothesis clause learned 
has a target clause (Lemma 6). We then show that 
every target clause has at most one hypothesis clause 
(Lemma 8). Together, these two lemmas establish that 
the number of hypothesis clauses is bounded by the 
number of target clauses. We use this fact and the 
bounds of the sizes on the hypothesis clauses (estab- 
lished in Lemma 5) to show that PLearn learns success- 
fully in polynomial time (Theorems 10 and 11). We 
then define a specific hypothesis class that obeys the 
conditions of these theorems and prove that this class 
is learnable (Theorem 12). 

Lemmas 2 and 3 show that PrimeCons with the input 
p -> q finds a (prime) consequent q' of p such that 
p ->• q' is subsumed by a clause in £. 

Lemma 2 Let p ->• q be the input and q' be the out- 
put of PrimeCons. Assume that q g p and E (= p -> q. 
Then, (1) PrimeCons terminates; (2) q' is a prime con- 
sequent ofp wrt E. 

Proof. (1) Since E is acyclic, there is a terminating 
sequence q y h y l2 .... Since the loop of lines 16-17 
can only iterate as many times as the length of the 

sequence, PrimeCons terminates. 
(2) q' is such that E \= p ->■ q', and q' g p (by lines 
15-17). Since q' is as in line 17 in the iteration im- 
mediately prior to the terminating iteration of lines 
16-17, there is no / such that q' y I, E f= p -> I and 
/ & p. Thus, q' is a prime consequent ofp wrt E.      D 

Lemma 3 If q' is a prime consequent ofp wrt E, then 
there is a clause C G E such that C y_p ^ q'. 

Proof. Assume that q' is a prime consequent of p 
wrt E. Consider a derivation G of p -t q' in E. Let 
(li,q'),..., (Id, q') be the only arcs of G that terminate 
at q'. This implies that q' y /,• for all /; € {h,... ,/<*}• 
It must be that every /* is in p; otherwise, there 
is an / (viz. lt) such that q' y I, E (= p -* / 
and I g p—contradicting the assumption that </' is 
a prime consequent. Thus, {/i,...,/rf} C p. But, 
Zi,..., lj ->• q' = Cd for some clause C € H and a 
substitution 0, following the definition of derivation. 
Thus, CO C p -> q', implying that C y p -> q'. D 

The following definition and Lemmas 4 and 5 help 
show that Reduce, given a clause p -> q as input, 
removes irrelevant literals from antecedent p, while 
maintaining q as a consequent. 

Definition 11 If a is a conjunction, closure of a 
with respect to E, denoted by Ka, is defined as {f|£ \= 

(o->/)}■ 

Lemma 4 If q is a prime consequent of p and p' —>• 
q = Reduce(p -> q), then q is a prime consequent ofp' 
also. 

Proof. Because q is a prime consequent of p and p' C 
p, any literal other than the ones in p - p', cannot be 
prime consequents of p'. By lines 22-23, only those 
literals I that are not supported by p' are removed. 
In which case, no literal I in p — p', can be such that 
E |= p' -> I. Hence, q is a prime consequent of p' as 
well. D 

Lemma 5 // the input p —> q to Reduce is s.t. q is a 
prime consequent ofp wrt E, then the output p' -» q 
is such that p' C nae where a —> b is a clause in E and 
aO C p' and b6 = q. 

Proof. Since q is a prime consequent of p, by 
Lemma 4, q is a prime consequent ofp' also. Then, by 
Lemma 3, there is a clause a -> b G E, and a 6 such 
that a6 C p' and b6 = q. We now show that p' C nag. 
Assume that there exists a literal in p' — nao- Let 
I € p' - Kao be a least such literal so that there is no 
literal /' in p'-/ca» such that I y V. Such a literal must 
exist, because E is acyclic. There are two reasons for 
/ to remain in p' - Kag: either (a) E ^ (p' -{/})-» q 
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or (b) E |= (p' - {/}) -» I. We disprove both the cases: 
(a) Since aß C p', and I is not in Kae and thus not in 
aß, aß C (p' - {I}). Therefore, E^(p'- {I}) -> g. 
(b) The only other reason why I remains in p' is that 
E |= (p' - {I}) -»• Z. That means that p' - {1} contains 
literals that imply I. There must be at least one such 
literal in p' that is not in Kae, or else I G Kae, contra- 
dicting I G p' -Kae- But then p' - Kae contains literals 
V such that I y I', which contradicts the statement 
that there is no such V'. Thus, we disprove both the 
possibilities. Hence, p' Cy. Ü 

Lemmas 6, 7 and 8, below, show that PLearn only 
maintains right clauses in H. 

Lemma 6 Every clause pi 
clause. 

qi G H has a target 

Proof. We first show that each pi -> & G H is such 
that qi is a prime consequent of p*. Then, by Lemma 3, 
Pi -> qi has a clause C G E such that C ^ Pi -» g*. 

We show that qi is a prime consequent of pi by induc- 
tion on the number of times a clause at position i in 
H is updated. It is first introduced by line 10. By 
Lemmas 2 and 4, g/ is a prime consequent of p/. This 
proves the base case. The other way a clause becomes 
a hypothesis clause is by line 9. The clause at position 
i in H (pi ->■ qi) is updated by line 9. As inductive hy- 
pothesis, assume that each p* -> qi in H is such that qi 
is a prime consequent of pi, at the beginning of an iter- 
ation of the loop of lines 2-11 when position i in H is 
updated. Consider pg -»• qg = Zff#(pi ->• gi,p/ -» g/). 
Suppose g9 is not a prime consequent of pg, but q'g such 
that qg y q'g is. Let Of and 0* be substitutions such 
that pg0f C p/, qg0f - qf, pg0i C pi; and gfl0i = g*. 
Let q'f = g^0/ and g< = g£0<. Since gg y q'g, by the 
definition of >- order, qf y q'f and qi y ql Since g/ is 
a prime consequent of p/, gj> must be in p/. Similarly, 
q\ must be in g*. Therefore, lgg(q'i,q'f) = q'g must be 
in ps, contradicting the assumption that gg is a prime 
consequent of pfl. Hence, qg is a prime consequent of 
pg. By Lemma 4 if p, -> g* = Reduce(p9 -+ gs), then gi 
is a prime consequent of p,. So by Lemma 3, pi -> g« 
has a target clause. □ 

Lemma 7 // PLearn combines a modified counterex- 
ample pf -> qf with a clause pi -> qi G if, iften 
tftere is a target clause C s.t. C y Pf -> g/ and 
C ypi-t qi- Further, there is no C s.t. C y Pj -> qj 
and C ypf -*• g/, /or any j < i. 

Proof. PLearn combines p/ -> g/ with pt -> gi only 
if E |= ^0(pi ->■ gi,p/ -> g/). By Lemma 6, qg is a 
prime consequent of pg where pg -> gfl = Zfffl(pi -> 
gi,p/ -> g/). By Lemma 3, there is a C G E such that 
C y_pg -> qg. Hence, C >; Pi -> g, and C ^ p/ ->■ g/. 

Since p/ -> g/ is combined with p» -> g», for any j < i, 
E ^ ^5ff(Pi ->• <lj>Pf -+ Qf)- Therefore, there is no C 
s.t. C" >: Iggipj -»• gj,P/ ->■ g/)- Thus, there is no C" 
s.t. C" >: pj -> qj and C" h p/ -> g/. ü 

Lemma 8 Every cZause C G E has at most one hy- 
pothesis clause. 

Proof. First, we show that any new hypothesis clause 
added to H has a target clause distinct from the target 
clauses of the other hypothesis clauses in H. Next, 
we show that if two hypothesis clauses do not have 
common target clauses at the beginning of an iteration 
of the loop of lines 2-11, then they still have distinct 
target clauses at the end of the iteration. 

When pf -¥ qf is added to H, by Lemma 7, for any 
clause Hi in H, there is no C G E such that C y 
Hi and C ± pf -► qf. Therefore, p/ -> g/, a new 
clause added to H, has a target clause distinct from 
the target clauses of the other hypothesis clauses then 
in H. Next, at most one of Hi and Hj can change in an 
iteration of the loop. If neither changes, we are done 
with the proof. Suppose that Ht changes, without 
loss of generality. Let C be any target clause of Hj. 
Assume that Hi and Hj do not have a common target 
clause at the beginning of an iteration. Hence, C is 
not a target clause of Hi. That is, C >t Hi. Let e 
be the counterexample for the current iteration. We 
first show that lgg(Hi,e) does not have C as a target 
clause. Since C £ Hu C t lgg(Hue). Therefore, C 
is not a target clause of lgg(Hi,e). Let lgg(Ht,e) be 
pg ->• qg, and C be a -> b. Hence, for every 6, either 
aO % pg or W ^ qg. If a9 % pg, ad is not a subset 
of any subset of pg. Since Reduce outputs a clause 
with a subset of pg as the antecedent and qg as the 
consequent, C t Reduce(lgg(Hi,e)). Therefore, Hj 
and the new clause in position i, Reduce(lgg(Hi,e)), 
do not have a common target clause even at the end 
of the iteration. D 

The following lemma shows that even after the modifi- 
cations due to PrimeCons and Reduce counterexample 
remains a counterexample. 

Lemma 9 p/ -> g/ as in line 6 of PLearn is a positive 
counterexample. 

Proof. First, we show that every counterexample p ->• 
g, as in line 3, is a positive counterexample. Then, we 
argue that p'f -> g/ (lines 4 and 5) is also a positive 
counterexample. Finally, we show that p/ ->• g/ (line 
6) is a positive counterexample. 

Since, by Lemma 6, for every Ht G H, there is a clause 
C G E such that C t Hu E |= H. Therefore, p -> g, as 
in line 3, is a positive counterexample. Since p C p'/; 
E (= p'f -> g.   Since p'f contains all and only those 
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literals I such that H (= p -► I, for any literal I' £ p'f, 
H ¥ P'f -* I'- Since qf (by lines 5 and 15) is not 
in p'f, H \fc p'f ->■ 9/. By line 15, Y, \= p'f -+ qf. 
Therefore, p'f -> 9/ is also a positive counterexample. 
Finally, since pf C p'f, H \k pf -> g/. By lines 6 
and 22, E |= pj -» <^. Thus, p/ -4 g/ is a positive 
counterexample. D 

Finally, Theorem 10 shows that PLearn exactly learns 
AHk when forward chaining using H is of polynomial- 
time complexity. Theorem 11 identifies conditions on 
E such that PLearn returns an H for which time com- 
plexity of forward chaining is polynomial. 

Theorem 10 PLearn exactly learns AHk with equiva- 
lence, >-, and entailment queries, provided determining 
H (= p -* I is polynomial in the sizes of H and p. 

Proof. By Lemma 9, p/ -4 qf is a positive coun- 
terexample. For each counterexample, either a new 
antecedent is added (line 10) or an existing antecedent 
is replaced (line 9). In the latter case, the replaced 
clause pi -> qt must be subsumed by the replacing 
clause p' -t qg, since both Igg and Reduce generalize 
the original clause by turning constants to variables 
and dropping literals. On the other hand, the replaced 
clause must not subsume (and hence be different from) 
the replacing clause p' -> qg = Reduce(ps ->• qg). If 
not, that is if p, -> qi>zp' -)• qg, since p' -> qg > pg -> 
QgtPf -» Qf, Pi-+qihPf -> qf- Since p{ -> q{ e H, 
H |= pf -> qf—thus contradicting that pf -> qf was 
a counterexample of H. Hence, the replacement at a 
position in H changes the clause at that position. The 
minimum change there can be is either a variablization 
of a constant or a removal of a literal. 

Let n be the number of clauses, and s be the number 
of distinct predicate symbols in E. Further, let the 
maximum number of terms in any clause be t, and in 
any counterexample be te. 

The maximum possible number of literals there can 
be using t terms is at most sth. Hence, the maxi- 
mum number of literals in K0, and therefore, by Lem- 
mas 5 and 6, in each clause is at most stk. This in- 
cludes all literals and their variablized versions. Hence, 
we can consider variablization as removing a literal. 
Thus, we need at most stk counterexamples for each 
clause. (This includes one base counterexample to in- 
troduce a clause into H.) By Lemmas 6 and 8, there 
are at most n clauses in H. Hence, we need at most 
nstk counterexamples or equivalence queries. A call 
to PrimeCons from line 5 takes at most stk entailment 
queries, because the literals we need to try as possible 
consequents are all in L, and \L\ < stke. PrimeCons is 
called once for each of the counterexamples. 

For each of the nstk counterexamples, the condition 

in line 7 is tested at most n times, which needs at 
most n entailment queries. Reduce is called with the 
argument p'f -> qf once for each of the counterexam- 
ples, and with the arguments pg -» qg for at most 
nstk counterexamples. In Reduce(p -> q), in \p\ iter- 
ations of the loop of lines 21-23, at least one literal 
is removed. So, this loop can be tried at most \p\ 
times. Each iteration of the loop of lines 21-23 takes 
two entailment queries. Therefore, Reduce(p -> q) 
needs at most |p|(|p| + 1) entailment queries. Hence, 
Reduce(p^ -> qf) needs at most n/ = stk(stk + 1) 
entailment queries. Since p; -> qt and p/ -> qf 
are outputs of Reduce, the maximum possible num- 
ber of literals in pg -»• qg = lgg(pt -> qt,pf -> qf) 
is at most s2t2k. Hence, Reduce(pff -> qg) needs at 
most ng = s2t2k(s2t2k + 1) entailment queries. Thus, 
the total number of entailment queries is at most 
nstk(stk + n + nf + ng). 

If determining H \= (p -> I) takes V(n,l,te) time 
where V is a polynomial, then line 4 takes at most 
stk ■ V(n,l,te) time. In the rest, the number of en- 
tailment queries dominates the time. Hence, the time 
taken by PLearn is polynomial in n,s,l,v,t, and te. O 

Definition 12 Let p -> q be a Horn clause, p' -> q 
is called its antecedent expansion if p C p' and p' 
contains only those variables in p. A class C of Horn 
sentences is closed under antecedent expansion, if ev- 
ery Horn sentence obtained by selecting a subset of its 
Horn clauses and replacing them with their antecedent 
expansions is also in C. 

Definition 13 A subsumption algorithm takes a 
clause a —> b, a conjunction of literals p, and a ground 
substitution 9 for the variables in b, and returns true 
if and only if a9 y p. 

Theorem 11 PLearn exactly learns a subclass C of 
AHk with equivalence, y, and entailment queries, pro- 
vided that (a) C is closed under substitution and an- 
tecedent expansion and (b) the clauses a -> b of the 
target concepts in C have a polynomial-time subsump- 
tion algorithm. 

Proof. By Lemma 5, each clause p* -4 qi € H in 
PLearn has a target clause a -> b and a substitution 
9 such that a9 C p{ C Kag. Since the target class is 
closed under substitution and antecedent expansion, 
the hypothesis clauses have a polynomial-time sub- 
sumption algorithm. Hence, the forward-chaining step 
of computing the consequents of p in line 4 of PLearn 
can be done in polynomial time by repeatedly check- 
ing for a hypothesis clause a —> b whose antecedent 
subsumes p after a substitution 9 of the variables in 6, 
and adding bO to p. Hence, by the previous theorem, 
PLearn exactly learns C. D 
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The following definition and theorem identify some 
syntactic restrictions on AHk such that the resulting 
subclass satisfies the conditions of the previous theo- 
rem. 

Definition 14 Let p be a set of literals. A Horn 
clause li,...,ln -> q is i-determinate w.r.t. p 
iff there exists an ordering l0l,---Jon of h,...,ln 

such that for every i < j < n and every substitu- 
tion 0 such that (l0i,---,l0j-i -> 0)9 is ground and 
{l0l,... ,i0_i}ö C p, there is at most one substitution 
a for the variables in lOj0 such that lOj0a is ground 
and is in p.1 We call such an ordering of the literals 
in the clause an i-determinate ordering w.r.t. p. A 
Horn program is i-determinate w.r.t. p iff each of the 
clauses in the program is i-determinate w.r.t. p. 

Theorem 12 The class of i-determinate Horn pro- 
grams in AHk, denoted as iDetAHk, is exactly learn- 
able with equivalence, >-, and entailment queries. 

Proof. First we show that iDetAHk is closed un- 
der substitution and antecedent expansion. Consider 
a target clause (h, • • •, L -> q) for a target program in 
iDetAHk, whose antecedent literals are sorted in the 
determinate order. Let (h,...,ln,ln+i,...,lm -> q)ß 
be the target clause after antecedent expansion and 
substitution. We want to show the new clause to be 
i-determinate. 

For every set of literals p, substitution 0, and j such 
that i < j < m and (h,.. .,lj-i)ß0 C p is ground, 
there is a substitution 7 which is equivalent to applying 
ß and 0 one after another so that (h,.. .,lj-i)ß0 = 
(^,...,Zj_i)7 and ljß0 = Ij'y for any lj. Since the 
target clause satisfies i-determinacy, there must be at 
most a single ground substitution a for Ijj, j < n, so 
that Ij'ja e p, which means that this is true for ljß0 
as well. Since the literals from ln+i through lm do not 
have any variables not already in l\ through ln, there is 
at most a single ground substitution for them as well. 
Hence, (h,..., lm ->■ q)ß is also i-determinate. 

Now we show that the clauses of the programs in 
iDetAHk have a polynomial-time subsumption al- 
gorithm. Given a set of literals p and a clause 
li,...,ln -> q (whose literals have an unknown de- 
terminate ordering), consider all possible subsets of 
{h,...,ln) of size i and less. Note that there are at 
most 0(nl) such subsets. For each such subset, instan- 

1This definition strictly generalizes the standard defini- 
tion of determinacy (Muggleton & Feng, 1990), in that a 
Horn clause (program) is determinate w.r.t. a set of lit- 
erals p when it is O-determinate w.r.t. p. i-determinacy 
should not be confused with ij-determinacy, or constant- 
depth fixed-arity determinacy, which is more restricted 
than determinacy. 

tiate all the ki variables in that subset in all possible 
ways. If the total number of terms in p and £ is t, 
this gives us tki different substitutions. For each such 
substitution, there is at most one substitution for the 
remaining literals in the clause. The order in which the 
remaining literals have to be substituted can be deter- 
mined by sequential search—apply the current substi- 
tution to each literal and pick the one that only allows 
one possible substitution for its remaining variables. 
This can be done in 0(n2\p\) time. If the antecedent 
li,...,ln subsumes p, then one of the considered sub- 
sets should yield a successful match. Hence, the total 
time for the algorithm is bounded by 0(ritkin2\p\), 
which is polynomial in all variables except k and i 
which are assumed to be constants. 

Since the class iDetAHk satisfies the two conditions 
required by Theorem 11 for PLearn to be successful, 
the result follows. 0 

4    Discussion and Conclusions 

In this paper, we have shown the learnability of cer- 
tain subclasses of acyclic fc-ary Horn programs. More 
specifically i-determinate Horn programs in AHk, are 
exactly learnable with equivalence and entailment 
queries. Unlike the work of Page (1993) and Arimura 
(1997), the programs we considered allow local vari- 
ables in the antecedents. However, the clauses must 
be non-generative in that the set of terms and vari- 
ables that occur in the head of the clause must be a 
subset of those that occur in the body of the clause. 
This is needed to constrain the forward-chaining in- 
ference step to finish in polynomial-time, which could 
otherwise become unbounded. It appears that simul- 
taneously removing both the non-generative and sim- 
plicity restrictions could be difficult when functions are 
present, due to the unbounded nature of inference in 
that case. 

Learning from entailment and learning from interpre- 
tations are two of the standard settings for first-order 
learning (De Raedt, 1997). In learning from inter- 
pretations, the learner is given a positive (or neg- 
ative) interpretation for which the Horn sentence is 
true (or false). Interpretations can be partial in that 
the truth values of some ground atoms may be left 
unspecified. When membership queries are available, 
learning from entailment and learning from interpre- 
tations are equivalent for Horn programs. Hence we 
can use PLearn to learn from (negative) interpreta- 
tions as follows. Given a negative interpretation, "min- 
imize" it by removing the negative literals from it 
and asking membership queries. Since every nega- 
tive interpretation must violate some Horn clause, this 
yields an interpretation with a set of positive liter- 
als h,...,ln and at most one negative literal &. We 
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can convert this into a positive counterexample for 
PLearn: h A ... Aln -* qt. Similarly, if PLearn asks 
an entailment membership query on some clause, say, 
h A ... A ln -> qi, we can turn that into a membership 
query on the interpretation lt,... ,ln, ->qi after substi- 
tuting a unique skolem constant for each variable in 
the clause. The answer to the entailment query is true 
iff the answer to the membership query is false. 

One limitation of our algorithm is that it assumes that 
the supported by relation, y, is given. While this is 
a reasonable assumption in some planning domains, 
where it is known which goals occur as subgoals of 
which, it is desirable to learn this relation. Unfortu- 
nately, this seems difficult due to a number of prob- 
lems. One of the main difficulties is that it is some- 
times not possible to determine which, of the set of 
consequents of an antecedent, is the prime consequent. 
For example, consider the target £ : {l\(x) A l2(x) -> 
h(x); h(%) A l3(x) -> IA(X)}. Given the counterexam- 
ple li(c) A 12(c) -> /4(c), the literal /4(c) is not a cor- 
rect consequent, but l3(c) is. Although Lemma 3 says 
that prime consequent is a right consequent to choose, 
without knowing the order it is not clear how to iden- 
tify it. Learning all possible clauses while maintaining 
all consequents also does not seem to work, resulting 
in spurious matches between some of these redundant 
clauses and counterexamples in some cases. 

As shown in (Reddy & Tadepalli, 1997b), Horn pro- 
grams can be used to express goal-decomposition rules 
(d-rules) for planning using the situation-calculus for- 
malism. We believe that the algorithm discussed here 
and its extensions can be applied to learn d-rules, 
which is an important problem in speedup learning, 
d-rules are a special case of hierarchical task net- 
works or HTNs (Erol, Hendler, & Nau, 1994)—in 
that HTNs allow partial ordering over subgoals and 
non-codesignation constraints over variables whereas 
d-rules do not. Nevertheless, it can be shown that 
HTNs can be expressed as Horn programs. 
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Abstract 

This paper introduces the RL-TOPs archi- 
tecture for robot learning, a hybrid system 
combining teleo-reactive planning and rein- 
forcement learning techniques. The aim of 
this system is to speed up learning by de- 
composing complex tasks into hierarchies of 
simple behaviours which can be learnt more 
easily. Behaviours learnt in this way can 
subsequently be re-used to solve a variety of 
problems, reducing the need to learn every 
new task from scratch. It is even possible 
to learn multiple behaviours simultaneously, 
thus making more efficient use of experience. 
We demonstrate these advantages in a simple 
simulated environment. 

1    INTRODUCTION 

Programming robots is difficult (Dorigo, 1996). Of- 
ten the best way for the robot to solve a problem is 
unknown, or hard to express. The real world is dy- 
namic, and to be truly autonomous, robots need to be 
able to cope with a changing environment (Covigaru k 
Lindsay, 1991). Robot programming would be greatly 
simplified if robots were able to learn appropriate be- 
haviours of their own accord, and could adapt those 
behaviours to changes in the world around them. Re- 
inforcement Learning (RL) provides an elegant theo- 
retical framework to achieve these goals but often fails 
in practice due to the "curse of dimensionality" oper- 
ating in large state spaces and with complex problems 
such as those typically found in real robot domains. As 
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the number of states grows, the problem of determin- 
ing the best action to perform in each state becomes 
impossibly difficult. 

This problem is not peculiar to RL, traditional robot 
programmers have faced it also. It is generally not 
feasible to produce a single monolithic control system 
which handles all possibilities. Instead, the trend has 
been towards behaviour-based programming (Mataric, 
1996). A complex task is decomposed into a set of 
simple modules or behaviours, each of which handle 
a small part of the problem. These are more easily 
programmed, and can then be combined to solve the 
full problem. 

One such technique, Brook's subsumption architecture 
(Brooks, 1986), has been successfully transferred to 
the RL domain, to simplify learning. Mahadevan and 
Connell (Mahadevan k Connell, 1992) showed that 
a complex learning task (robot box-pushing), which 
could not be learnt by a simple reinforcement learner, 
could, however, be learnt by decomposing it into a 
subsumption-style hierarchy of simple behaviours, and 
learning each of these behaviours as distinct reinforce- 
ment learning tasks. Thus the robot effectively had 
several separate learning modules, each of which works 
independently to learn a sub-part of the task, but 
which can all cooperate together to provide the overall 
solution to the problem. 

Task decomposition of this kind is well recognised as 
a way to improve learning rates. As each module only 
has to learn its behaviour on a small subset of possible 
states, its search-space is reduced, and so it can find 
the optimal policy more quickly. Other authors to have 
produced algorithms based on this realisation include 
Kaelbling's HDG (Kaelbling, 1993), Dayan and Hin- 
ton's Feudal Reinforcement (Dayan k Hinton, 1992) 
and Dietterich's MAXQ (Dietterich, 1997) algorithms. 
These algorithms differ from Mahadevan and Connell's 
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in that they are based on more geometrical decom- 
positions of the world, rather than using specific do- 
main knowledge to define the behaviours. Because of 
this, they appear to be less applicable to problems in 
robotics, which involve high-dimensional state infor- 
mation, from a variety of sensing apparatus, without 
a simple uniform geometry. 

The advantages of the subsumption-architecture, how- 
ever, are offset by the rigidity of the representation 
used. The hierarchy has to be designed by hand by 
the programmer, which can be a non-trivial task for 
many problems. What is more, a new task requires a 
new set of behaviours and a new hierarchy. Is it possi- 
ble to design a more flexible system that can automat- 
ically build behaviour hierarchies to solve particular 
problems? Can behaviours learnt to solve one task be 
re-used to accelerate the learning of others? These are 
the questions that this paper seeks to address. 

2    TELEO-REACTIVE PLANNING 

achieved, n is maintained1. 

Teleo-reactive plans are represented as structures 
called TR-Trees. Nodes in TR-Trees represent state 
descriptions, with the root node as the goal. Connec- 
tions between nodes are labelled with actions, indicat- 
ing that if the action shown is executed in the lower 
node, then the condition of the upper node will even- 
tually be achieved. 

TR-trees are executed reactively. The nodes in the 
tree are continually re-evaluated and the action corre- 
sponding to the shallowest true node is executed. If 
at any time there is no true node in the tree, then the 
planner can be reactivated to grow the plan to cover 
the new situation; thus TR-trees represent (near-) uni- 
versal plans. 

REINFORCEMENT LEARNT 
BEHAVIOURS AND 
TELEO-OPERATORS 

This problem of selecting and ordering an appropri- 
ate set of predefined behaviours to achieve a cer- 
tain goal has traditionally been the domain of plan- 
ning algorithms. Historically, planning systems have 
been deemed unsuitable for robot control, because 
they failed to model the complexity of the real world. 
Plans were based on sequences of instantaneous ac- 
tions, which were expected to succeed every time; but 
in the real world actions take time to perform, and 
are not always reliable. However modern planning al- 
gorithms are now able to produce plans which closely 
resemble the behaviour based architectures of Brooks 
and others. Plans can now include durative actions, 
which operate over a period of time. Execution of 
plans is reactive (i.e. the state of the world is con- 
stantly re-evaluated to determine which action to per- 
form), and universal (i.e. contingencies exist for all sit- 
uations) . 

One such planner is Nilsson's Teleo-Reactive (TR) 
planning system (Nilsson, 1994). It is based around 
the notion of a teleo-operator (or TOP), which is a 
means of describing a durative action in terms of its 
conditions and effects. A TOP consists of an action a, 
a pre-image 7r and a post-condition A. The pre-image 
and post-condition are conjunctions of predicates from 
the planner's state description language. The action 
may be a simple primitive action, or may be a com- 
plex behaviour in its own right. The TOP a : IT -> A 
signifies that if a is executed while n is true, then A 
will eventually become true.  Until such time as A is 

Like TOPs, behaviours acquired by reinforcement 
learning are also durative actions with a pre-image (ap- 
plication space) and a post-condition (goal). Given a 
suitable language to describe these attributes, a set of 
reinforcement learnt behaviours can easily be repre- 
sented as a list of TOPs. A TR-planner could then be 
used to combine these behaviours automatically into a 
hierarchy to solve a given problem, removing the need 
for the programmer to do this by hand. 

Furthermore, the same TOP descriptions can also be 
used at the lower level as reinforcement schema for the 
learning algorithm: The post-condition, if achieved, 
indicates success, which should be rewarded. Prema- 
turely quitting the pre-image indicates failure, which 
carries a punishment. Thus the one description has 
two functions: it is used at the high level to tell the 
planner how to use the behaviour, and at the low level 
to tell the learner what it is trying to learn. This du- 
ality is the basis of the Reinforcement Learnt TOPs 
(RL-TOPs) system. 

4    THE RL-TOPS ARCHITECTURE 

The RL-TOPs architecture is a combination of a sim- 
ple goal-regression TR-planner, and the discounted- 

1A TOP may also have side-effects which are not part of 
its post-condition, but these are not relevant to the current 
discussion. 
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Figure 1: The RL-TOPs architecture. 

reward  reinforcement  learning  algorithm  C-Trace 
(Pendrith k Ryan, 1996). An outline is shown in Fig- 
ure 1. 

Based on the domain and the problem to be solved, 
the user provides five things: 

• A Low-level State representation, based on the 
robot's sensors, 

• A set of primitive Actions, based on the available 
actuators, 

• A High-level State description language (which 
includes whatever features of the state space are 
likely to be relevant to the planner, including the 
goal), 

• A Goal description, 

• A set of behaviour descriptions of the form 
(Name, Pre-image, Post-condition), which form 
the RL-TOP Library. 

The first thing the system does is to supplement each 
of these RL-TOPs with its own Q-Module. This con- 

2 The actual reinforcement learning algorithm used is 
not important, except insofar as it must support learning 
from both successful and unsuccessful trials. This includes 
most common RL algorithms such as Q-Learning (Watkins, 
1989) and SARSA(A) (Singh & Sutton, 1996). 

tains all the information required by the reinforcement 
learning algorithm to represent the behaviour. The 
primary component is the utility (or Q) function, but 
there may be other components depending on the al- 
gorithm. Unless previously saved behaviours are being 
re-used, the Q-function is initialised to be zero every- 
where. 

Now, given the goal definition and the library of be- 
haviours available to it, the Planner constructs a plan 
in the form of a TR-Tree. The Planner only constructs 
as much of the tree as is necessary at any time. Ini- 
tially the tree consists of just the goal node. As the 
agent encounters situations which aren't covered by 
the plan, the Planner will add new nodes to the tree 
to cover these states, and will add appropriate actions 
to the plan to link them in to the tree. 

The plan is passed to the Plan Executor, which 
also reads the current high-level state description, and 
chooses which TOP to execute. If the plan does not 
cover the state, then the Executor re-calls the Planner. 
Otherwise, the selected TOP is passed to the TOP Ex- 
ecutor. 

The TOP Executor takes the active RL-TOP and 
the current low-level state, and decides which low-level 
action to execute. Typically, this will be the policy 
action provided by the TOP's Q-Module, but an occa- 
sional exploratory action may also be performed. For 



484       Ryan and Pendrith 

Figure 2: The gridworld domain. 

the experiments detailed in this paper, the e-greedy 
exploration algorithm (Thrun, 1992) was used, with 
e = 0.1 (i.e. at each step a random exploratory action 
is chosen with probability 1 in 10.) 

The result of the executed action, in terms of changes 
in the high-level state description, is used by the Rein- 
forcement Schema to determine the reinforcement 
feedback, r, to provide to the Learner. This unit de- 
termines whether, in terms of the its pre-image and 
post-condition, the RL-TOP has succeeded or failed. 
If the post-condition has become true, then the TOP 
has succeeded, and a reward of r = +1 is returned. 
Otherwise, if the pre-image is no longer true, then the 
TOP has failed (by exiting its application space pre- 
maturely), and a punishment of r = — 1 is returned. If 
neither of these is the case, then r = 0. 

Combining the low-level state and action information, 
and the reinforcement signal provided by the Rein- 
forcement Schema, the Learner then performs the 
appropriate update on the RL-TOP's Q-Module, ac- 
cording to whatever reinforcement learning algorithm 
is used. Then the process repeats, with the Plan Ex- 
ecutor deciding which TOP to execute for the next 
time step, until the goal is achieved. 

RL-TOP pre-image post-condition 
go02 room(0) room(2) 
go20 room(2) room(0) 
gol2 room(l) room(2) 
go21 room(2) room(l) 
go32 room(3) room(2) 
go23 room(2) room(3) 
go42 room(4) room(2) 
go24 room(2) room(4) 

Table 1: RL-TOPs used for gridworld experiments. 

world, as shown in Figure 2. At the low-level, the 
agent can sense its position within the world (as an 
^-coordinate) and has four actions available to it, to 
move north, south, east or west. Each action is guar- 
anteed to succeed unless there is a wall in the way. 

The world is divided into five rooms, labelled 0 through 
4, and the agent's goal is to reach a particular one, 
from a randomly chosen starting position. The high- 
level state and action descriptions are all in terms of 
which room the agent occupies, given by the predicate 
room(R). 

For each of the experiments following, the agent was 
allowed to run for 400 trials, each starting at a random 
location in the world and finishing when the goal is 
achieved. The length of each trial, in terms of the total 
number of low-level actions performed, was recorded. 
Twenty such runs were performed for each algorithm 
presented, and the results are the average trial lengths 
over these twenty runs. 

The measurement we are interested in comparing is 
the time taken to learn the task, that is, the number 
of primitive actions performed before the agent con- 
verged to an optimal (or near-optimal) policy. To this 
end, the graphs compare cumulative trial lengths for 
each experiment. The cumulative trial length is the 
sum of the lengths all trials up to and including the 
current one. 

5    EXPERIMENTAL DOMAIN 

Experimental work is currently under way to demon- 
strate the RL-TOPs architecture on an insectoid robot 
called Prometheus, aiming to get the robot to learn 
how to walk towards a beacon. Results from this plat- 
form are not yet available, so a simple simulated do- 
main was constructed to demonstrate the system. 

The simulation consists of an agent in a 30 x 21 grid- 

5.1    EXPERIMENT 1: MODULAR VS. 
MONOLITHIC 

The first experiment demonstrates the improvement 
in performance of the modular RL-TOPs architec- 
ture over a simple monolithic reinforcement learner. 
The agent's goal is to reach room 4. The monolithic 
learner has a single Q-Module which covers the entire 
state space, whereas the modular learner has been pro- 
vided with eight RL-TOP descriptions, corresponding 
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Figure 3: The TR-Tree for going to room 4. 350 400 

Graph 1: Learning times for gridworld task using (la) 
Monolithic learner, (lb) RL-TOPs, (2) RL-TOPs re- 
using previously learnt behaviours, (3) RL-TOPs using 
behaviours learnt with concurrent learning. 

to movement from one room to an adjoining one, as 
listed in Table 1. The TR-Tree produced by the plan- 
ner is shown in Figure 3. 

The C-Trace learning algorithm was used in both 
cases, with the learning rate ß = 0.1 and discount 
factor 7 = 0.9. The monolithic learner was rewarded 
on success only, with a reinforcement value of 1. As 
with the RL-TOPs algorithm, the monolithic learner 
used the e-greedy exploration algorithm, with e = 0.1. 

Graph 1 shows the results of the two experiments. 
Both approaches converged to a nearly optimal pol- 
icy within about 200 trials, but the monolithic learner 
took about 40,000 more steps to reach this point. A 
large part of this difference is established in the first 20 
trials, which took the monolithic and modular systems, 
25,372 and 11,253 steps respectively. This demon- 
strates the important difference between the two. In 
the early stages of learning, when the Q-function is still 
mostly zero, the only actions that provide any informa- 
tion are those that provide non-zero feedback. Since, 
in the monolithic case, rewards are few, the agent has 
nothing to direct it, and a large amount of time is 
spent aimlessly exploring the world, without learning 
anything. 

In the modular system, however, the application 
spaces for individual behaviours are smaller, so the 
rewards (and penalties) are closer at hand. Thus ran- 
dom exploration is more likely to result in useful in- 
formation more quickly, and learning is significantly 
faster. 

5.2    EXPERIMENT 2: RE-USING 
BEHAVIOURS 

Another advantage of the modular system over the 
monolithic is that the individual behaviours learnt in 
the modular trials can be re-used in a way that the 
monolithic policy cannot. In the next experiment, 
the same RL-TOPs from the previous experiment were 
used, with the Q-Modules saved from each run, in or- 
der to solve a new problem. 

The goal is now to reach room 3. The new plan is 
shown in Figure 4. Notice that it includes two of 
the behaviours learnt in the previous experiment go02 
and gol2. The other two behaviours, go42 and go23, 
haven't been used before and still need to be learnt. 

From the graph, we can see that a significant amount 
of time is saved in learning to perform this new task, 
compared to the previous one, which did not have the 
benefit of pre-existing behaviours. The reason for this 
is obvious: the agent does not need to waste time re- 
learning the go02 and gol2 behaviours. 

Still, a significant amount of time was taken up with 
learning the go23 behaviour which would appear to be 
redundant. Although the agent has never performed 
this behaviour before, it has nevertheless spent a lot 
of time in room 2 in the previous experiment, albeit 
while executing a different behaviour. Common sense 
suggests that this prior experience should be of some 
use in learning the new behaviour more quickly. Is 
it possible to make use of information gathered while 
executing one behaviour in order to learn another? We 
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usual. 

This technique should significantly speed up learning 
more than one task, because it makes more effective 
use of experience gained. 

Figure 4: The TR-Tree for going to room 3. 

address this question in the next section of this paper. 

6    CONCURRENT LEARNING: 
MAKING BETTER USE OF 
EXPERIENCE 

At this point, one under-appreciated feature of cer- 
tain RL algorithms comes to our aid. Algorithms such 
as Q-Learning and C-Trace (but not SARSA) are off- 
policy learners, which means that they sequence of ac- 
tions presented to the learner do no have to correspond 
to an actual execution of the policy (Sutton & Barto, 
1998). It is even possible to learn one behaviour while 
executing a quite different one, so long as their appli- 
cation spaces overlap. 

This technique, called concurrent learning can be 
added to the RL-TOPs architecture by a simple mod- 
ification to the Learner module. Rather than just up- 
dating the Q-Module of the currently active TOP, the 
Learner examines the RL-TOP Library and selects all 
the behaviours which are eligible to be updated. This 
includes any behaviour the pre-image of which was 
satisfied before the most recent action was performed. 
Thus, to use the simulation above as an example, if the 
agent executes some action in room 2, then, regardless 
of the result of the action, all those behaviours which 
have room(2) as their pre-image, will be eligible to be 
updated. 

The Learner then consults the Reinforcement Schema 
for each behaviour separately, to find out the reinforce- 
ment value for that particular TOP. For some, the ac- 
tion just executed may comprise success, for others 
failure, and for others neither of the two. The Learner 
uses the reinforcement value for each TOP, to update 
that TOP's Q-Module.   Then execution proceeds as 

6.1    EXPERIMENT 3: 
LEARNING 

CONCURRENT 

To demonstrate the benefit of concurrent learning the 
two previous experiments were repeated, but this time 
with all eligible behaviours being learnt concurrently. 
First the agent did 400 trials with room 4 as its goal. 
Then, using the same learnt behaviours, the goal was 
changed to room 3. Graph 1 shows the results of this 
run. Compare these to the results of experiment 2, 
which had the same goal, but did not use concurrent 
learning. The concurrent system converged in very lit- 
tle time at all. The behaviour go23 was almost com- 
pletely optimised before it was even run. The only be- 
haviour to be learnt was go42, because the agent had 
had no prior experience with performing any actions 
in room 4. 

7 RELATED WORK 

In addition to those already mentioned, other hi- 
erarchical learning/planning systems of note include 
Singh's Compositional Q-Learning system (Singh, 
1992), which learns a Q-function for a complex prob- 
lem by constructing a gating module which selects an 
appropriate lower-level behaviour at each step; and the 
work of Precup et al. (Precup, Sutton, k Singh, 1997), 
which extends standard dynamic programming tech- 
niques to be able to use macro actions (behaviours) 
as well as primitive actions in their policies. Both 
of these systems assume that the behaviours that are 
used are already fully specified, perhaps by earlier 
learning runs. 

Benson has produced a system that is complementary 
to that presented here. His TRAIL (Benson, 199C) ar- 
chitecture takes an existing set of actions or behaviours 
and, by guided experiments, learns appropriate TOP 
descriptions. It may be possible to combine that work 
and this, to produce a system in which learnt infor- 
mation goes in both directions, refining both the be- 
haviours and the model. 

8 CONCLUSION 

As has been demonstrated, modular decomposition is 
an effective way to improve the speed of reinforce- 
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ment learning algorithms. The Reinforcement Learnt 
Teleo-operators (RL-TOPs) architecture, combining 
low-level reinforcement learning with high-level sym- 
bolic planning, is an elegant and effective way of ex- 
pressing this decomposition. The system allows the 
automatic construction of appropriate hierarchies of 
learnt behaviours to solve a give problem, and pro- 
vides a means of re-using behaviours learnt in one task, 
for solving another. With the addition of concurrent 
learning of multiple behaviours, this can greatly im- 
prove learning times over a variety of problems. 

A limitation of this system is that the policy learnt 
is sub-optimal because the agent cannot "cut corners" 
between behaviours. Work is in progress to find a way 
to allow the agent to benefit from the domain informa- 
tion given by the task decomposition, while still being 
able to converge eventually to an optimal policy. 

Another avenue for future research would be to investi- 
gate the question of what to do when the programmer- 
specified TOPs are insufficient to find a path to the 
goal. Possibly the system could be extended so as to 
postulate its own new behaviours in this state. How- 
ever, this is likely to be a very difficult problem. 
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Abstract 

To evolve structured programs we intro- 
duce H-PIPE, a hierarchical extension of 
Probabilistic Incremental Program Evolution 
(PIPE). Structure is induced by "hierarchi- 
cal instructions" (His) limited to top-level, 
structuring program parts. "Skip nodes" 
(SNs) allow for switching program parts on 
and off. They facilitate synthesis of certain 
structured programs. In our experiments H- 
PIPE outperforms PIPE: structural bias can 
speed up program synthesis. 

Keywords: Probabilistic Incremental Program Evo- 
lution, Structured Programs, Hierarchical Programs, 
Non-Coding Segments. 

1    Introduction 

Overview. Automatic program synthesis is of in- 
terest because it addresses the problem of searching 
in general algorithm space as opposed to more lim- 
ited search spaces like those of, say, feedforward neu- 
ral networks. Hierarchical Probabilistic Incremental 
Program Evolution (H-PIPE) is a novel method for 
synthesizing structured programs. It uses the PIPE 
paradigm (Salustowicz and Schmidhuber, 1997) to it- 
eratively generate successive populations of functional 
programs from an adaptive probability distribution 
over all possible programs constructible from a prede- 
fined instruction set. As in PIPE the probability dis- 
tribution is adapted in three ways: (1) Each iteration 
the probability of the best program in the current pop- 
ulation is increased; (2) occasionally the probability of 
the best program found so far (elitist) is increased; (3) 
sometimes probabilities are mutated to better explore 

the search space. H-PIPE uses "hierarchical instruc- 
tions" (His) and "skip nodes" (SNs). His can be used 
to combine lower-level program parts, thus inducing 
structure. SNs function as gates that allow for keep- 
ing program parts dormant without losing them in the 
course of evolution. In combination with His they also 
enable H-PIPE to substitute program parts by supe- 
rior partial solutions discovered at later evolutionary 
stages. 

Structure. Early genetic programming (GP) work 
(Dickmanns et al., 1987) as well as Adaptive Levin 
Search (Schmidhuber, 1997, Schmidhuber et al., 
1997b) allow for powerful programs with arbitrary 
loops etc. Sometimes, however, it is beneficial to in- 
troduce inductive bias by appropriately constraining 
the search space of possible programs. Except for 
programs evolved by tree-based GP (Cramer, 1985; 
Koza, 1992), however, not much work has been done 
on evolution of programs with significant structural 
constraints. There are two such GP variants. 

The first reuses program parts, usually in a way less 
general than that achievable through arbitrary jumps 
(Dickmanns et al., 1987). Typically subprograms are 
generated and/or extracted from evolved programs; 
they may then be called in a usually non-recursive 
fashion from different positions in the code. Exam- 
ples are: "automatically defined functions" and encap- 
sulation (Koza, 1992), module acquisition (Angeline 
and Pollack, 1992), adaptive representations through 
learning (Rosca and Ballard, 1996), automatically de- 
fined macros (Spector, 1996). Other approaches do not 
generate or extract subprograms but restrict GP's re- 
combination operator such that it cannot destroy cer- 
tain program parts to be reused in the future (e.g., 
Langdon, 1995; Pringle, 1995; Zannoni and Reynolds, 
1997). 

The second variant uses grammars to induce struc- 
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ture, constrain the search space, and provide initial 
bias to speed up evolution. Examples are context- 
free (Whigham, 1995, Gruau, 1996) or logic grammars 
(Wong and Leung, 1996). 

Hierarchical Instructions. H-PIPE's programs are 
composed of instructions from a fixed instruction set 
S = {Ii,l2,---,IZ}- Each node of the code tree con- 
tains an instruction I and can have several son nodes 
whose instructions are viewed as arguments of I. Pro- 
grams with hierarchical instructions (His) are special 
cases of programs constrained by context-free gram- 
mars: We partition S into m disjoint, non-empty in- 
struction sets 5°, S1,..., Sm, and ensure that all "ter- 
minal instructions" - instructions with zero arguments 
- are in 5°. Hierarchical order is imposed as follows: 
Each argument of an instruction in Sv is in Sv or in the 
"lower level" set 5"_1. At least one argument must be 
in 5"_1, except when v = 0. Higher-level instructions 
can be used to combine program parts made out of 
lower-level instructions, thus inducing structure. 

Non-Coding Program Parts. Non-coding program 
parts ("introns") are those that do not affect the re- 
sults the program calculates. E.g., in f(x) = x * 1, the 
"*1" part is non-coding. Most previous work on non- 
coding program parts focuses on genetic program syn- 
thesis (Blickle and Thiele, 1994, McPhee and Miller, 
1995, Nordin et al., 1996, Haynes, 1996, Wineberg and 
Oppacher, 1996). Usually non-coding program parts 
evolve or can be inserted to protect coding program 
parts (parts that do affect results calculated by the 
program) from destructive genetic recombination op- 
erators (Blickle and Thiele, 1994, McPhee and Miller, 
1995, Nordin et al., 1996, Haynes, 1996). Blickle and 
Thiele (1994), as well as McPhee and Miller (1995), 
however, point out that large blocks of non-coding seg- 
ments in tree-based GP programs cause very slow con- 
vergence and difficulties in escaping from local minima. 
Haynes (1996), on the other hand, shows that artificial 
removal of non-coding segments from those programs 
leads to premature convergence. Nordin, Francone, 
and Banzhaf (1996) investigate the role of non-coding 
segments in a GP approach based on variable-length 
strings. They note that non-coding segments may play 
an important role in finding good solutions and speed- 
ing up convergence. Wineberg and Oppacher (1996) 
use /irced-length strings and find that non-coding seg- 
ments reduce the search space and speed up evolution. 

General observation. The literature above suggests: 
in tree-based GP programs with little structure, the 
effect of non-coding segments is twofold. On the one 
hand they seem necessary to protect blocks of coding 

segments, on the other hand they can hinder discovery 
of acceptable solutions. In the case of structured pro- 
grams, however, non-coding program parts can both 
speed up convergence and aid in finding good solu- 
tions. Loosely speaking, the more structured the pro- 
grams (e.g., the greater the restrictions on the cod- 
ing strings), the higher the potential significance of 
non-coding segments. Our own experiments with skip 
nodes will add more empirical evidence in this direc- 
tion. 

Skip Nodes (SNs). Much like certain "jump" in- 
structions, skip nodes (SNs) are instructions that al- 
low for skipping program parts. In the context of tree- 
based functional programs, SNs are functions with n 
arguments, where n denotes the maximal number of 
arguments of functions in S. SNs return exactly one 
of their arguments and ignore the others, which thus 
represent non-coding program parts if n > 1. We will 
demonstrate the benefits of SNs in structuring parts 
of H-PIPE programs. 

Outline. Section 2 describes the H-PIPE approach. 
Section 3 compares the use of His and SNs to standard 
PIPE on function regression and 6-bit parity. Section 
4 concludes. 

2    Hierarchical PIPE 

Overview. We will describe H-PIPE, a hierarchi- 
cal extension of PIPE (Salustowicz and Schmidhu- 
ber, 1997). Like PIPE, H-PIPE combines probability 
vector coding of program instructions (Schmidhuber 
et al., 1997a, 1997b) , Population-Based Incremental 
Learning (PBIL - Baluja & Caruana, 1995), and tree- 
coded programs like those used in variants of GP. Un- 
like PIPE, H-PBPE uses His to evolve structured pro- 
grams and SNs to facilitate this process. We will first 
describe His and then SNs. 

2.1    Hierarchical Instructions (His) 

Program Instructions. H-PIPE's programs are 
composed from z instructions in the instruction set 
5 = {ii,l2,• • • ,-M- Each instruction Ij (1 < j < z) 
is either a function or a terminal. Functions and ter- 
minals differ in that the former have one or more ar- 
guments and the latter have zero. Thus S = F U T, 
where F = {/i,/2,-•• ,/*} is a function set with k 
functions and T = {h, t2, ■ ■ ■, U} is a terminal set with 
I terminals. Since FHT = {}, z = k + l holds. Pro- 
grams are encoded in trees. Each node of the code 
tree contains an instruction I and can have several 



490 Saiustowicz and Schmidhuber 

son nodes whose instructions are viewed as arguments 
of /. To allow for His we partition S into m dis- 
joint, non-empty instruction sets 5°,51,...,5m, and 
ensure that all "terminal instructions" - instructions 
with zero arguments - are in S°. Hierarchical order 
arises as follows: Each argument of an instruction in 
5" is in Sv or in the "lower level" set 5U_1. At least 
one argument must be in 5"_1, except when v = 0. 
To allow for enforcing descents in the instruction set 
hierarchy we add "level down" instructions |, to all 
instruction sets Sv (0 < v < m), where 0 < i < l(v) 
is the argument index of an instruction I e Sv with 
l(v) arguments from S"_1. Although "level downs" 
take a single argument and return it, they are treated 
as terminal symbols. Thus each instruction set 5" 
(0 < v < m) can be written as Fv U Tv, where 
pv = ifiJSf-ifki»)} is a function set with k(v) 
functions and Tv = {|0, li,- • •,!/(«)} is a terminal 
set containing l(v) "level down" instructions. We also 
have S° = F° U T°, where F° = {/», /°,..., /°    } i is 

a function set with fc(0) functions and T° = T is a 
terminal set containing all terminals of 5 (1(0) — I). 

To solve a one-dimensional function approximation 
task one might use F = {+, -,*,%, sin, cos, exp, rlog} 
and T = {x,R}, where % denotes protected di- 
vision (Vy,u e M,u ^ 0: y%u = y/u and 
j/%0 = 1); rlog denotes protected logarithm (Vj/ G 
R,y ? 0: rlog(y)=\og(abs(y)) and rlog(0) = 0); 
x is an input variable; and R is a generic ran- 
dom constant in [0;1) (see below). To structure 
this function approximation task as a linear combi- 
nation of non-linear parts we split the instruction set 
S = {+,—,*,%, sin, cos, exp, rlog, x,R} into 5° = 
{*,%,sin,cos,exp,rlog,x,R} and S1 = {+,-}. We 
then add a |o instruction to S1 and obtain S1 = 
{+>—i lo}- Function and terminal sets for the lower 
and upper level then become F° = {*, %, sin, cos, exp, 
rlog },T° = {x,R} and F1 = {+,-},Tl = {|0}, re- 
spectively. Figure 1 shows an example program. 

Generic Random Constants. A generic random 
constant (GRC) (compare also "ephemeral random 
constant" (Koza, 1992)) is a zero argument function 
(a terminal). When accessed during program creation, 
it is either instantiated to a random value from a pre- 
defined, problem-dependent set of constants or a value 
previously stored together with the probability distri- 
bution (see below). 

Program Representation. With His the arity n(v) 
of a program tree may vary depending on the hierar- 
chical level v. On each level v, n(v) is the maximal 
number of function arguments required by functions 

Figure 1: f(x)=x*sin(x)+exp(cos(0.2))+x%0.1-(x+- 
rlog(x)). Exemplary program tree for function approx- 
imation constrained to a linear combination of non- 
linear parts. Top-level structuring instructions from 
S1 appear in boldface. 

Figure 2: f(x)=0.7*x*sin(x)+0.2%(x*x*x)-x. Exem- 
plary program tree for function approximation, with 
different level-dependent arities. Top-level program 
parts are 2-ary. Lower level program parts are 3-ary. 

in Sv. For instance, in the function approximation ex- 
ample above, if we add to 5° a three argument func- 
tion, e.g **, where **(ai, 0,2,0,3) = o,\ * 02 * 03, then 
the lower-level part of the program tree will be 3-ary 
while the top-level part will remain 2-ary, as depicted 
in Figure 2. 

Probability Distribution. The probability dis- 
tribution is stored in a "hierarchical probabilistic 
prototype tree" (H-PPT). At each hierarchical level 
v(0 < v < m) the H-PPT generally contains in- 
finite n(v)-&ry subtrees ppTiw(~v\ where the list 
dw(v) = ((dv+1,wv+i),(dv+2,wv+2),..., (dm,wm)) 
describes the absolute position of a subtree: it con- 
tains 0 to 771 — 1 components depending on the hi- 
erarchical position v of ppTdw^ (0 components, if 
v = m). Each component pair (di,W{) describes the 

position of a higher level node N^} in PPTdw^ to 

which ppTiw^ is attached.  The position of a node 
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Nd
w^] inside a subtree PP2*0« is defined by JVf^'s 

depth di > 0 (PPJ^W's root node has dt = 0) and its 
horizontal position Wi when subtree nodes with equal 
depth are read from left to right (0 < w» < n(i)di). 
Each node Nd^' contains a variable probability vec- 

tor Pd,„. In addition, each node N^jw^ contains 

a random constant R^^l' ^e probability vectors 

Pd™wv> ^v : Q — v — m ^ave k(v) + l(v) compo- 
dw(v)/ m nents.  Each component Pd ^ '(I), Vv : 0 < v < 

denotes the probability of choosing instruction I £ Sv 

at N*£>. We maintain Eies- ^S?W = 1- 
H-PPT Initialization.  Each H-PPT node Nd

w^ av,wv 

requires an initial probability Pd ^ (I) for each in- 
struction I € 5U. Furthermore, each bottom level 
(y = 0) node N^^ requires an initial random con- 

stant Rfa^l- We pick Rd^Wo uniformly random in the 
interval [0;1). To initialize instruction probabilities we 
use for each hierarchical level v a constant probability 
FT» for selecting an instruction from Tv and (1 — PT«) 

for selecting an instruction from Fv. Pd ^ is then 
initialized as follows: 

PTv 

W ^2(0:=^, v/:ie:r and 

0dw(v) 
dv,wv 

(/):= 1 — Pj"> 

k{v) 
VI:IeFv 

Program Generation. Program generation in H- 
PIPE is analogous to program generation in PIPE (see 
Salustowicz and Schmidhuber, 1997), except that in- 
structions are selected from the appropriate 5", de- 
pending on the hierarchical level. To generate a pro- 
gram PROG from H-PPT, an instruction I 6 Sv is 
selected with probability Pd ^ (I) for each accessed 

node Nd^ of H-PPT. This instruction is denoted by 

Id„wl- Nodes are accessed in a depth-first way, start- 
ing at the root node iV0)o, and traversing H-PPT from 
left to right. Figure 3 shows a H-PPT and a corre- 
sponding possible program. 

Tree Shaping. To reduce memory requirements and 
allow for discarding elements of the probability dis- 
tribution that have become irrelevant over time the 
H-PPT is incrementally grown and pruned just like 
PIPE's probability tree (see Salustowicz and Schmid- 
huber, 1997). 

Update Rules. H-PIPE's update rules are analogous 
to PIPE's (see Salustowicz and Schmidhuber, 1997). 

The only difference is the more sophisticated indexing 
method due to H-PPTs the hierarchical structure. 

2.2    Skip Nodes (SNs) 

Overview. Skip nodes are functions that serve to 
switch code parts on and off. We will first define SNs 
for PIPE, then for H-PIPE. 

SNs for PIPE. PIPE's probability distribution is 
stored in a probabilistic prototype tree (PPT - see 
Salustowicz and Schmidhuber (1997) for details). Let 
n denote the maximal arity of the PPT (the maximal 
number of arguments of functions that are not SNs). 
There are at most n SNs. The i-tb. is denoted —>;. It 
is a function with n arguments and returns the i-th. 
Its interpretation is: evaluate the i-th argument but 
ignore the others. 

SNs are elements of the function set F. For instance, 
if we add SNs to the instruction set of the function 
approximation example from Section 2.1 we obtain: 
F — {+, -,*,%,sin, cos,exp,rlog,-^o,—>i} and T = 
{x, R}. Figure 4 shows an unstructured PIPE program 
with SNs.  The dashed parts of the program can be 

Figure 4: A PIPE program with SNs for function ap- 
proximation: f(x) = (0.11 + x)*(0.2 — x). The dashed 
parts of the program are non-coding segments. 

xi      ; sin t 

Figure 5: A H-PIPE program with SNs for function 
approximation: f(x) = exp(cos(0.2)) + x + rlog(x). 
The dashed parts of the program are non-coding seg- 
ments. 
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Figure 3: A H-PPT (left) and a corresponding possible program (right). The structuring parts of the program 
are highlighted. 

viewed as non-coding segments. Note that they need 
not even be created during program generation and 
are therefore computationally cheap. 

SNs for H-PIPE. Let h(v) denote the maximal num- 
ber of arguments of non-SN functions in Sv. At level 
v (0 < v < m) there are at most h(v) SNs. The i-th is 
denoted —►?. It is a function with h(v) arguments and 
returns the z-th. Its interpretation is: evaluate the i-th 
argument but ignore the others. There are no SNs in 
5°. 
SNs are elements of the function set Fv. For in- 
stance, if we add SNs to the instruction set of the 
function approximation example from Section 2.1 we 
obtain: F° = {*,%,sin,cos,exp,rlog},T° = {x,R} 
and F1 = {+,-,-*l},T1 = {|0}. Figure 5 shows a 
H-PIPE program with SNs. 

Changes to PIPE's and H-PIPE's Update 
Rules. 

(1) Parts of PPT or H-PPT corresponding to non- 
coding segments are not updated. (2) To mutate prob- 
abilities we calculate program size |PROG(,|. With 
SNs |PROG(,| denotes the number of nodes in program 
PROG;, without the non-coding segments created by 
SNs. See Sahistowicz and Schmidhuber (1997) for de- 
tails. 

3    Experiments 

To evaluate the impact of His and SNs we cross- 
compare: (1) PIPE, (2) H-PIPE without SNs (H- 
PIPE-NO-SN), (3) PIPE with SNs (PIPE-SN), (4) and 
H-PIPE (PIPE with His and SNs in the structuring 
program parts). To illustrate the significance of appro- 
priate initial bias we also test H-PIPE with different 
structuring instructions (H-PIPE-DIFF). We consider 
a nontrivial continuous function regression problem 
and the 6-bit parity problem, a discrete task involving 
just 65 distinct fitness values. For each combination 
of learning algorithm and problem we conduct 50-200 
independent runs to obtain statistically significant re- 
sults. 

3.1    Function Regression 

The function to be approximated is plotted in Figure 6. 
The training data set Dtr samples / at 101 equidistant 
points in the interval [0;10]. Dtr is used to calculate 
fitness values during program evolution. Thus, the 
fitness value of each program PROG is FIT(PROG) = 
Y.vx6Dtr \f(x) ~ PROG(x)|, where PROG(X) denotes 
the result of applying PROG to data x. 

Set-up. We time-constrain all runs to PE = 100,000 
and use the following parameter setting empirically 
found to work well: PT=PTo=PTi=0.8, e = 0.000001, 
Pe<=0.01, PS=10, lr=0M, PM=0.4, mr=0.4, Tfi=0.3, 
TP=0.999999, FIT, = 0 (see Salustowicz and Schmid- 
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Figure 6: f(x) 
cos(x) — 1) 

x3 ■ e~x ■ cos(x) ■ sin(x) • (sin2(x) 

huber (1997) for detailed description of parameters). 
We use the following instruction sets: (1) PIPE: F = 
{+,-,*, %,sin,cos,exp,rlog}, T = {x,R}; (2) H- 
PIPE-NO-SN: F1 = {+,-}, T1 = {!«,}, F° = {*, 
%,sin,cos, exp, rlog}, T° = {x,R}; (3) PIPE-SN: 
F = {+,-,*, %,sin,cos,exp,rlog,-+o,-*i}, T = 
{x,R}; (4) H-PIPE: F1 = {+,-,-»5}, T1 = {|0}, 
F° = {*, %, sin, cos, exp, rlog}, T° = {x,R}; (5) H- 
PIPE-DIFF: F1 = {*, %,-+£}, T1 = {|0}, F° = {+, 
-, sin, cos, exp, rlog}, T° = {x, R}. 

Results. Figure 7 summarizes all results in form 
of cumulative histograms. We plot performance u 
against percentage of programs with FIT(PROG) < 
u. Each point indicates the number of programs with 
F/T(PROG) equal to or better than its x-axis value: 
algorithms with better performance have more points 
with smaller x-values. 

PIPE vs. H-PIPE. H-PIPE outperforms PIPE. H- 
PIPE's fitness in the median run is FITmed = 2.39, 
slightly better than PIPE'S with FITmed = 2.55. In 
82% of all runs H-PIPE finds programs with fitness 
below 4, while only 67% of all PIPE runs accomplish 
this. On the other hand, the worst 3% of all H-PIPE 
runs resulted in programs worse than the best found 
by all PIPE runs. The median of H-PIPE's program 
size {Nodtmed = 92 nodes) is significantly smaller than 
PIPE'S (Nodemed = 157). 

How much of the performance improvement can be 
attributed to His, how much to SNs? To study this 
question we now compare PIPE and H-PIPE to PIPE 
with SNs (PIPE-SN) and H-PIPE without SNs (H- 
PIPE-NO-SN). 

PIPE & H-PIPE vs. PIPE-SN. PIPE-SN per- 
forms much like PIPE, and worse than H-PIPE. PIPE- 
SN's FITmed = 2.70 is slightly higher than PIPE'S 
(FITmed = 2.55). Like PIPE, in 67% of all runs PIPE- 

SN found programs with fitness below 4. Its worst 
programs are slightly better than the worst program 
among the best of the individual PIPE runs. PIPE- 
SN's programs {Nodemed = U7) tend to be smaller 
than PIPE'S (Nodemed = 157), but larger than H- 
PIPE's {Nodemeä = 92). 

We observe that SNs in unstructured PIPE programs 
are neither harmful nor beneficial. 

PIPE & H-PIPE vs. H-PIPE-NO-SN. H-PIPE- 
NO-SN is the best competitor, slightly better than 
H-PIPE, much better than PIPE. H-PIPE-NO-SN's 
FITmed - 2.38 is roughly as good as H-PIPE's 
FITmed = 2.39. In 91% of all runs , however, H-PIPE- 
NO-SN found programs with fitness below 4, compared 
to H-PIPE's 82% and PIPE'S 67%. Furthermore, un- 
like with H-PIPE and PIPE, no program found by 
H-PIPE-NO-SN has fitness above 7.39. The median 
size of H-PIPE-NO-SN programs, Nodemed = 96, is 
roughly the same as H-PIPE's (Nodemed = 92) and 
significantly smaller than PIPE'S (Nodemed = 157). 

We observe that His by themselves increase PIPE'S 
performance. Later (in Section 3.2) we will see that 
both His and SNs are sometimes needed to solve cer- 
tain tasks more efficiently. But first we will illustrate 
the importance of choosing the right His. 

PIPE & H-PIPE vs. H-PIPE-DIFF. H-PIPE- 
DIFF performs significantly worse than H-PIPE and 
PIPE. The fitness of the best program found by H- 
PIPE-DIFF in 50 independent runs is only 7.52. H- 
PIPE-DIFF's median fitness FITmed = 10.62. Com- 
pare H-PIPE's and PIPE's, which are 2.39 and 2.55, 
respectively. 

This demonstrates, not unexpectedly, that appropriate 
initial bias due to "good" His is crucial to H-PIPE's 
success. 

Conclusion. His can increase PIPE'S performance 
significantly. They need to be selected carefully, how- 
ever. SNs do not contribute much to solving the func- 
tion regression task. In case of PIPE they reduce pro- 
gram size without affecting solution quality. In case 
of H-PIPE they have a slightly detrimental effect on 
overall performance. 

The next experiment will show that for some tasks only 
the combination of His and SNs leads to significant 
performance improvement. 
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Figure 7: Results for the regression problem. 

3.2    6-Bit Parity 

The 6-bit parity function has six Boolean arguments 
represented by integers: 1 for true and 0 for false. It 
returns 1 if the number of nonzero arguments is odd 
and 0 otherwise. The fitness of a program is the num- 
ber of patterns it classifies incorrectly. Best (worst) 
fitness for classifying all (no) patterns correctly is 0 
(64). We use all 64 patterns for training. 

Set-up. We time-constrain all runs to PE = 500,000 
and use the following parameter settings empirically 
found to work well: PT=PTo=PTi=0.6, e = 0.000001, 
Pej=0.01, PS=10, /r=0.01, PM=0.4, mr=0.4, Tfl=0.3, 
7>=0.999999, FIT, = 0 (see Salustowicz and Schmid- 
huber (1997) for detailed description of parameters). 
Note that, except for PT, PT°, and PTi, all param- 
eters are set to the same values as for the function 
regression task (see Section 3.1). Most of PIPE'S 
and H-PIPE's parameters seem robust with respect 
to changing tasks. We use the following instruction 
sets:  (1) PIPE: F = {+,-,*, Vo,sin,eos,exp,rlog}, 

T = {x0,x1,x2,X3,x4,x5,R}; (2) H-PIPE-NO- 
SN: P1 = {*,%}, T1 = {jo}, P° = {+, 
-,sin,cos,exp,rlog}, T° = {x0,xi,x2,x3,X4,x5,R}; 
(3) PIPE-SN: P = {+,-,*, %,sin,cos,exp,rlog,->0 

,->i},  T   =   {x0,x1,x2,x3,X4,x5,R};   (4)  H-PIPE: 
P1 = {*,%,-5}, P1 = {lo}, P° = {+, 
-,sin,cos,exp,rlog}, T° = {x0,x1,X2,x3,X4,x5,R}; 
(5) H-PIPE-DIFF: P1 = {+,-,-£}, T1 = {|0 

}, P° = {*, Vo,sin,cos,exp,rlog}, T° = {a;o,a;i, 
x2,x3,X4,x5,R}. To fit the Boolean nature of the 
problem the real-valued output of a program is 
mapped to 0 if negative and to 1 otherwise. 

Results. Table 1 summarizes all results. The first 
column displays for each algorithm the percentage of 
independent runs leading to perfect solutions within 
the given time frame (PE). The next three columns 
show the numbers of program evaluations necessary 
to find perfect solutions in the shortest, median, and 
longest run, respectively. The final three columns list 
the minimal, median, and maximal program sizes em- 
bodying perfect solutions. 
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Table 1: Summary of 6-bit parity results. Best values are in boldface. 

6-bit parity 

Algorithm solved 
Program Evaluations 

min- med  -max 
Nodes 

min-med-max 
H-PIPE 94 % 5,700-37,460-397,000 23- 61 -96 
PIPE 79  % 3,520-79,950-497,220 24- 64 -137 

PBPE-SN 76  % 1,676-73,720-487,930 25- 58 -110 
H-PIPE-NO-SN 66  % 3,720-166,740^68,950 21- 49 -85 
H-PIPE-DIFF 28  % 38,300-216,570-457,330 24- 61 -94 

Comparison. H-PIPE performs best. It solves the 
task more often and significantly faster (with less pro- 
gram evaluations) than PIPE, PIPE with SNs, and H- 
PIPE without SNs. PIPE and PIPE-SN have roughly 
the same performance. PIPE-SN finds slightly fewer 
solutions, but is faster than PIPE in the median run. 
The median size of its solutions is also slightly smaller 
than PIPE'S. Although its solution size is smallest 
in the median run, H-PIPE-NO-SN performs signifi- 
cantly worse than PIPE and PIPE-SN. It finds fewer 
solutions and requires more than twice as many pro- 
gram evaluations (in the median run). H-PIPE-DIFF 
with wrong initial bias is worst of all. It needs more 
than five times as many program evaluations as H- 
PIPE to find roughly three times fewer solutions. 

Conclusion. With this particular task H-PIPE out- 
performs PIPE. Neither SNs by themselves nor His by 
themselves are able to improve PIPE'S performance. 
In absence of structure SNs' effects are neither harm- 
ful nor beneficial, while His by themselves decrease 
PIPE's performance. The combination of both His 
(embodying the proper initial bias) and SNs in H- 
PIPE, however, allows for significant improvement. 

4    Conclusion 

H-PIPE, a novel method for synthesizing structured 
programs, uses hierarchical instructions (His) to struc- 
ture programs and skip nodes (SNs) to facilitate their 
synthesis. His combine program parts, while SNs al- 
low for non-coding segments. In our experiments, His 
by themselves sometimes worked extremely well, but 
not always. Then, however, combining them with 
SNs helped to achieve dramatic improvement. SNs 
by themselves were useless for improving performance. 
Our review of previous work on non-coding segments 
suggests that non-coding segments seem to require 
structured code to unfold their benefits. Our own re- 
sults add further empirical evidence in this vein. 

Limitations and Future Work. His are chosen a 
priori — currently there is no recipe for finding the 
optimal ones. But it may be possible to automatize 
the HI selection process itself by making it subject to 
data-driven evolutionary optimization. 
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Abstract 

This paper presents results from the first at- 
tempt to apply Transformation-Based Learn- 
ing to a discourse-level Natural Language 
Processing task. To address two limita- 
tions of the standard algorithm, we developed 
a Monte Carlo version of Transformation- 
Based Learning to make the method 
tractable for a wider range of problems 
without degradation in accuracy, and we 
devised a committee method for assigning 
confidence measures to tags produced by 
Transformation-Based Learning. The pa- 
per describes these advances, presents ex- 
perimental evidence that Transformation- 
Based Learning is as effective as alterna- 
tive approaches (such as Decision Trees 
and N-Grams) for a discourse task called 
Dialogue Act Tagging, and argues that 
Transformation-Based Learning has desirable 
features that make it particularly appealing 
for the Dialogue Act Tagging task. 

1    INTRODUCTION 

Transformation-Based Learning is a relatively new 
machine learning method, which has been as effec- 
tive as any other approach on the Part-of-Speech 
Tagging problem1 (Brill, 1995a). We are utilizing 
Transformation-Based Learning for another important 
language task called Dialogue Act Tagging, in which 
the goal is to label each utterance in a conversational 
dialogue with the proper dialogue act. A dialogue act 
is a concise abstraction of a speaker's intention, such as 
SUGGEST or ACCEPT. Recognizing dialogue acts is 
critical for discourse-level understanding and can also 

xThe goal of this Natural Language Processing task is 
to label words with the proper part of speech tags, such as 
Noun and Verb. 

be useful for other applications, such as resolving am- 
biguity in speech recognition. But computing dialogue 
acts is a challenging task, because often a dialogue act 
cannot be directly inferred from a literal reading of an 
utterance. Figure 1 presents a hypothetical dialogue 
that has been labeled with dialogue acts. 

Our research efforts led us to address some limitations 
of Transformation-Based Learning. We developed a 
Monte Carlo version of the algorithm that overcomes 
the limitation of Transformation-Based Learning's de- 
pendence on manually-generated rule templates and 
enables Transformation-Based Learning to be applied 
effectively to a wider range of tasks. We also devised 
a technique that uses a committee of learned models 
to derive confidence measures associated with the dia- 
logue acts assigned to utterances. 

We experimentally compared our modified version of 
Transformation-Based Learning with C5.0, an imple- 
mentation of Decision Trees, and N-Grams, which was 
previously the best reported method for Dialogue Act 
Tagging (Reithinger and Kiesen, 1997). Our system 
performs as well as these benchmarks, and we note 
that Transformation-Based Learning has several char- 
acteristics that make it particularly appealing for the 
Dialogue Act Tagging task. 

This paper begins with an overview of the 
Transformation-Based Learning method, describing 
the training phase and the application phase of the al- 
gorithm and presenting some of Transformation-Based 
Learning's most attractive characteristics for Dialogue 
Act Tagging. The following section describes the ex- 
perimental design used for the experiments presented 
in the paper. Then Section 4 presents two limi- 
tations of Transformation-Based Learning, a depen- 
dence on rule templates and a lack of confidence mea- 
sures, and describes our solutions for these problems, 
a Monte Carlo strategy and a committee method. 
Next we present an experimental comparison between 
Transformation-Based Learning, N-Grams, and Deci- 
sion Trees, and conclude with a discussion of this work. 
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#     Speaker Utterance 
1 John 
2 John 
3 
4 
5 

Mary 
Mary 
John 

6 John 

Dialogue Act 
Hello. GREET 
I'd like to meet with you on Tuesday at 2:00. SUGGEST 
That's no good for me, REJECT 
but I'm free at 3:00. SUGGEST 
That sounds fine to me. ACCEPT 
I'll sec you then. BYE 

Figure 1: A sample dialogue 

2    TRANSFORMATION-BASED 
LEARNING 

Brill (1995a) developed a symbolic machine learn- 
ing method called Transformation-Based Learning. 
Given a tagged training corpus, Transformation-Based 
Learning produces a sequence of rules that serves as a 
model of the training data. Then, to derive the ap- 
propriate tags, each rule may be applied, in order, 
to each instance in an untagged corpus. For all of 
the results and examples in this paper, we are using 
Transformation-Based Learning on the Dialogue Act 
Tagging task, so the instances are utterances and the 
tags are dialogue acts. In one experiment, our system 
produced a learned model with 213 rules; the first five 
rules are presented in Figure 2. 

# Condition(s) 
New 

Dialogue Act 
1 none SUGGEST 
2 Includes "see" and "you" BYE 
3 Includes "sounds" ACCEPT 
4 Length < 4 words 

Previous tag is none? 
GREET 

5 Includes "no" 
Previous tag is SUGGEST 

REJECT 

Figure 2: Rules produced by Transformation-Based 
Learning for Dialogue Act Tagging 

2.1    THE TRAINING PHASE 

The training phase of TBL, in which the system learns 
a sequence of rules based on a tagged training corpus, 
proceeds in the following manner: 

1. Label each instance with a dummy tag. 
2. Until no useful rules are found, 

a. For each incorrect tag 
i.     Generate all rules that 

correct the tag. 
b. Score each generated rule. 
c. Output the highest scoring rule. 
d. Apply this rule to the corpus. 

First, the system initializes the training corpus by la- 
beling each instance with a dummy tag. Brill (1995a) 
suggested using a more complex initialization step, but 
we found that this simple strategy is more effective in 
practice.3 Then the system generates all of the poten- 
tial rules that would make at least one tag in the train- 
ing corpus correct, under the restrictions described be- 
low. For each potential rule, its improvement score is 
defined to be the number of correct tags in the train- 
ing corpus after applying the rule minus the number of 
correct tags in the training corpus before applying the 
rule. The potential rule with the highest improvement 
score is output as the next rule in the final model and 
applied to the entire training corpus. This process re- 
peats (using the updated tags on the training corpus), 
producing one rule for each pass through the training 
corpus until no rule can be found with an improve- 
ment score that surpasses some predefined threshold. 
In practice, threshold values of 1 or 2 appear to be 
effective. 

Since there are potentially an infinite number of rules 
that could produce the tags in the training data, it is 
necessary to restrict the range of patterns that the sys- 
tem may consider by providing a set of rule templates, 
such as: 

utterance u contains the word(s) w 
the tag on the utterance preceding u is X 
change u's tag to Y 

This template can be instantiated to produce the last 
rule in Figure 2 by setting w="no", X=SUGGEST, 
and Y=REJECT. 

For the first rules of the learned model, the emphasis 
is on getting as many tags correct as possible with 
no penalty imposed for changing an incorrect tag to 
another incorrect tag. Then for the later rules, the 
system must avoid changing any of the tags that are 

IF 
AND 
THEN 

2 This condition is true only for the first utterance of a 
dialogue. 

3This is because Transformation-Based Learning uses 
an error-driven approach, only generating rules for the in- 
stances that are incorrectly labeled. If every instance is 
initialized with a dummy tag, then all of the labels are 
incorrect, and so they all contribute to learning. Alterna- 
tively, using a more involved initialization step results in a 
greater number of correct tags and, effectively, less training 
data. 
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already correct. Thus, this method tends to produce 
a sequence of rules that progresses from general rules 
to specific rules. 

2.2    THE APPLICATION PHASE 

To see how a rule sequence can be used to label data, 
consider applying the rules in Figure 2 to the dialogue 
in Figure 1. The first rule labels every utterance with 
the dialogue act SUGGEST. Next, the second rule 
changes an utterance's tag to BYE if it contains the 
words "see" and "you", which only holds for utterance 
#6. Similarly, the third rule changes utterance #5's 
tag to ACCEPT. Then the fourth rule tags utterance 
#1 as GREET, since its length is 1 and there is no pre- 
ceding utterance in the dialogue. And finally, the last 
rule relabels utterance #3 as REJECT, since utter- 
ance #2 is currently tagged SUGGEST, and the word 
"no" is found in utterance #3. Although the first five 
rules label these six utterances correctly, the remain- 
ing 208 rules in the sequence may continue to adjust 
the tags on the utterances. 

2.3    ATTRACTIVE CHARACTERISTICS 

For the Dialogue Act Tagging task, we selected 
Transformation-Based Learning for several reasons. 
Brill reported that Transformation-Based Learning is 
as good as or better than any other algorithm for the 
Part-of-Speech Tagging problem, labeling 97.2% of the 
words correctly. The part-of-speech tag of a word is . 
dependent on the word's internal features and on the 
surrounding words; similarly, the dialogue act of an 
utterance is dependent on the utterance's internal fea- 
tures and on the surrounding utterances. This parallel 
suggests that Transformation-Based Learning has po- 
tential for success on the Dialogue Act Tagging prob- 
lem. 

Since we currently lack a systematic theory of dia- 
logue acts, another reason that Transformation-Based 
Learning is an attractive choice is that its learned 
model consists of relatively intuitive rules (Brill, 
1995a), which a human can analyze to determine what 
the system has learned and develop a working theory. 
Also, Transformation-Based Learning is good at ig- 
noring any potential rules that are irrelevant. This 
is because irrelevant rules tend to have a random ef- 
fect on the training data, which usually results in 
low improvement scores, so these rules are unlikely 
to be selected for inclusion in the final model. This 
is very helpful for Dialogue Act Tagging, since we 
don't know what the relevant templates are for this 
problem. Ramshaw- and Marcus (1994) experimen- 
tally demonstrated Transformation-Based Learning's 
robustness with respect to irrelevant rules. 

For these reasons, along with others that are pre- 

sented at the end of the paper, we believe that 
Transformation-Based Learning is worthy of investi- 
gation for the Dialogue Act Tagging task. 

3    EXPERIMENTAL DESIGN 

All of the results presented in this paper followed the 
same experimental design as the third experiment in 
Reithinger and Kiesen (1997). The corpus consisted of 
appointment-scheduling face-to-face dialogues in En- 
glish, which was divided into a training set with 143 
dialogues (2701 utterances) and a disjoint testing set 
with 20 dialogues (328 utterances). Each utterance 
was manually labeled with one of 18 abstract dia- 
logue acts, such as SUGGEST, ACCEPT, REJECT, 
GREET, and BYE. The full list of dialogue acts is 
found in Reithinger and Kiesen (1997). 

The Transformation-Based Learning experiments pre- 
sented in this paper were run on a Sun Ultra 1 ma- 
chine with 508MB of main memory. Within a set of 
experiments, only the specified parameters were var- 
ied, but between sets of experiments many parameters 
may have been varied, so it is not possible to draw 
conclusions across experiment sets. 

Our rule templates consist of all possible combinations 
of a preselected set of conditions. Some of these con- 
ditions are presented in Figure 3. Each condition con- 
sists of a feature and a distance, where the feature 
specifies a characteristic of utterances that might be 
relevant for the Dialogue Act Tagging task, and the 
distance specifies the relative position (from the utter- 
ance under analysis) of the utterance that the feature 
should be applied to. 

Feature Distance 

length of the      current utterance 
tag of the    preceding utterance 

cue patterns    of the      current utterance 
speaker        of the      current utterance 
speaker        of the    preceding utterance 

Figure 3: Some conditions used in our experiments 

In discourse, it is widely acknowledged that some of 
the short phrases (and specific words) found in an 
utterance provide strong clues to determine the ap- 
propriate dialogue act. Several researchers proposed 
different cue phrases, which are phrases that appear 
frequently in dialogue and convey useful discourse in- 
formation, such as "but", "so", and "by the way". Un- 
fortunately, there is no universal agreement on which 
phrases should be considered cue phrases, and in a pre- 
liminary experiment using all of the cue phrases pro- 
posed in the literature,4 our system's accuracy only 

4These lists of cue phrases can be found in Hirschberg 
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improved by 1.03%. 

In order to identify the phrases that will be useful for a 
particular domain, we need an automatic method for 
collecting a set of phrases that is tuned to that do- 
main. So we are using a statistical approach to select 
relevant cue patterns5 from a training corpus. Assum- 
ing that a phrase is relevant if it co-occurs frequently 
with a few specific dialogue acts, we analyze the dis- 
tribution of dialogue acts for utterances that include a 
given phrase, selecting those phrases that correspond 
to dialogue act distributions with low entropy. When 
using these cue patterns, our system's accuracy rose 
by 17.63%. For more details on this work, see Samuel, 
Carberry, and Vijay-Shanker (1998b). 

4    TRANSFORMATION-BASED 
LEARNING IN DISCOURSE 

4.1    TWO LIMITATIONS 

Transformation-Based Learning has two serious limi- 
tations, which we will address in this section. First, 
although Transformation-Based Learning produces a 
tag for each instance, it doesn't offer any measure 
of confidence in these tags. Alternatively, probabilis- 
tic machine learning approaches generally label an in- 
stance with a set of tags, which are assigned numbers 
to represent the likelihood that they are correct. So 
"probabilistic methods ... provide a continuous rank- 
ing of alternative analyses rather than just a single 
output, and such rankings can productively increase 
the bandwidth between components of a modular sys- 
tem." (Brill and Mooney, 1997) 

The second limitation of Transformation-Based Learn- 
ing is that it is highly dependent, on the rule templates, 
which are manually developed in advance. Since the 
omission of any relevant templates would handicap the 
system, it is essential that these choices be made care- 
fully. But in Dialogue Act Tagging, no one knows ex- 
actly which conditions and combinations of conditions 
are relevant, so it is preferable to err on the side of cau- 
tion by constructing an overly-general set of templates 
and allowing the system to learn which templates are 
useful. As discussed earlier, Transformation-Based 
Learning is capable of discarding irrelevant rules, so 
this approach should be effective, in theory. 

Unfortunately, this strategy is not tractable, because 
for each pass through the training data, for each in- 
stance that the system has tagged incorrectly, every 
rule template must be instantiated in all possible ways. 

and Litman (1993) and Knott (1996). 
In practice, the concept of cue patterns tends to 

be more general than cue phrases, including many more 
phrases. 

Suppose that we can postulate f different features that 
might be relevant, and we wish to consider these fea- 
tures for all instances that occur within a distance 
d of a given instance. (In other words, we are us- 
ing a contextual window of size 2d+l.) Then there 
are (2d + l)f conditions and 2(2d+1'f possible tem- 
plates, since each condition may either be included or 
excluded. Also, suppose that when a feature is applied 
to an instance, it produces v distinct values, on aver- 
age. This results in (v + i)(2d+iK ruios pnr instance, 
which can be proven by induction on the number of 
conditions. Given a training corpus with i instances, 
if the algorithm makes p passes through the train- 
ing data, then the system must generate and evaluate 
0(ip(v + l)(2d+i)f) ruies Some realistic values for 
these variables are f=10, d=2 (a contextual window 
of size 5), v=3, i=3000, and p=100, which generates 
around 1035 rules. Based on experimental evidence, 
it appears that it is necessary to drastically limit the 
number of potential rules that the system generates,6 

or the memory and time costs are so exorbitant that 
the method becomes intractable. But this limitation 
would preclude considering all of the features and fea- 
ture interactions that might be relevant for Dialogue 
Act Tagging. 

4.2    A MONTE CARLO VERSION 

We developed a Monte Carlo version of 
Transformation-Based Learning, so that the sys- 
tem can consider a huge number of templates while 
still maintaining tractability. Rather than exhaus- 
tively searching through the space of possible rules, 
only R of the available template instantiations are 
randomly selected for each training instance on each 
pass through the training data, where R is some small 
integer. With this modification, the total number 
of rules generated is only O(ipR), which no longer 
explodes with the number of templates. In fact, 
the formula doesn't even depend on the number of 
features, the contextual window size, or the value of 
v. But one would still expect good results, because 
Transformation-Based Learning only needs to find the 
best rules, and the best rules tend to be effective for 
a large number of different instances. So the system 
has many opportunities to find these rules, and since 
the algorithm generally makes many passes through 
the training data before halting, if it should select a 
suboptimal rule, it can use later rules to compensate. 
Thus, although random sampling will miss some rules, 
it is still highly likely to find an effective sequence of 
rules. 

Our experiments confirm these intuitions, as shown 
in Figures 4 and 5.    For these runs,  eight condi- 

6For the Part-of-Speech Tagging task, Brill used only 
about 30 simple rule templates (Brill, 1995a). 
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Standard TBL 
Monte Carlo TBL with R=16 
Monte Carlo TBL with R=6 
Monte Carlo TBL with R=l 

2345678# Conditions 

Figure 4: Number of conditions vs. training time 

tions were preselected, and for different values of n, 
0 <n< 8, the first n conditions were combined in all 
possible ways to generate 2n templates. Using these 
templates, we trained, tested, and compared the stan- 
dard Transformation-Based Learning method and our 
Monte Carlo version of Transformation-Based Learn- 
ing. 

For the standard Transformation-Based Learning 
method, training time rises dramatically as the num- 
ber of conditions increases, as shown in Figure 4.7 

In fact, when given seven conditions, the standard 
Transformation-Based Learning algorithm could not 
complete the training phase, even after running for 
more than 24 hours. But our Monte Carlo version 
of Transformation-Based Learning keeps the efficiency 
relatively stable.8 The reason for the slight increase in 
training time as the number of conditions increases is 

7The value of v (the average number of rules generated 
per instance) varies slightly across the eight conditions, 
and so the shape of the curve might vary depending on 
the order in which the conditions are presented. But the 
critical point is that the training time rises exponentially 
with the number of conditions. 

8The Monte Carlo version of Transformation-Based 
Learning can be slower "than the standard method, because 
the Monte Carlo version always generates R rules for each 
instance, without checking for repetitions. (It would be too 
inefficient to prevent the system from generating any rule 
more than once.) 

that, as the system gains access to a greater number 
of useful conditions, it's likely to find a greater num- 
ber of useful rules, meaning that the training phase 
makes a greater number of passes through the train- 
ing data. Thus, p increases, and so the training time, 
O(ipR), also increases. But this increase is linear (or 
less), while standard Transformation-Based Learning's 
training time increases exponentially with the number 
of conditions. Figure 4 supports this analysis. 

This improvement in time efficiency would be quite un- 
interesting if the performance of the algorithm deteri- 
orated significantly. But, as Figure 5 shows, this is not 
the case. Although setting R too low (such as R=l for 
7 and 8 conditions) may result in a decrease in accu- 
racy, the lowest possible setting (R=l) is as accurate 
as standard Transformation-Based Learning for 6 con- 
ditions (64 templates). For 7 and 8 conditions, train- 
ing of the standard Transformation-Based Learning 
method took too much time, so those results could not 
be produced. But, as the curves for R=6 and R=16 do 
not differ significantly, it is reasonable to predict that 
standard Transformation-Based Learning would pro- 
duce similar results as well.9  Therefore, we conclude 

9 One might wonder how the Monte Carlo version of 
Transformation-Based Learning can ever do better than 
the standard Transformation-Based Learning method, 
which occurred for the experiments that used five con- 
ditions. Because Transformation-Based Learning is a 
greedy algorithm, choosing the best available rule on each 
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Figure 5: Number of conditions vs. tagging accuracy on unseen data 

that our Monte Carlo version of Transformation-Based 
Learning (with R=6) works effectively for more than 
250 templates (8 conditions) in only about 15 minutes 
of training time. 

4.3    A COMMITTEE METHOD 

We wanted to extend Transformation-Based Learning 
so that it could provide some idea of the likelihood 
that each of its tags are correct. So we attempted to 
develop a strategy for assigning confidence measures 
to the rules in the learned model. Then, in the ap- 
plication phase, a given instance's confidence measure 
would be a function of the confidences of the rules that 
applied to that instance. Unfortunately, due to the na- 
ture of the Transformation-Based Learning method, 
this straightforward approach has been unsuccessful, 
because the rule sequence does not contain enough 
information to derive confidence measures; often, the 
same pattern of rules applies to instances that should 
be marked with high confidence as well as instances 
that should be marked with low confidence. 

So, for the purpose of computing confidence measures, 
we adapted two techniques that were developed for 
very different tasks. The Boosting approach has been 
used to improve accuracy in tagging data (Freund and 
Schapire, 1996), and Committee-Based Sampling uti- 
lized a very similar strategy to minimize the required 

pass through the training data, sometimes the standard 
Transformation-Based Learning method selects a rule that 
locks it into a local maximum, while the Monte Carlo ver- 
sion might fail to consider this attractive rule and end up 
producing a better model. 

size of a training corpus (Dagan and Engelson, 1995). 
We applied these methods to compute confidence mea- 
sures, by training the system a number of times to 
produce a few different but reasonable learned models, 
which are called committee members. Then given new 
data, each committee member independently tags the 
input, and a given tag's confidence is based on how 
well the committee members agree on that tag. We 
are currently defining the confidence of a given tag to 
be the number of committee members that preferred 
the tag. In the future, we will investigate confidence 
formulas that are based on the entropy of the tags se- 
lected by the different committee members. 

We considered several ways to develop the committee 
members, and we decided to apply the strategy that 
Freund and Schapire (1996) used for Boosting: The 
first committee member is trained in the standard way, 
and then the second committee member pays special 
attention to those instances in the training data that 
the first committee member did not tag correctly. To 
do this in Transformation-Based Learning, we adjust 
the improvement score formula to weight success on 
these "hard" instances more heavily. (In effect, it is 
as if we were adding multiple copies of these instances 
to the training corpus.) This process can be repeated 
to generate more committee members by basing the 
score for correctly tagging a training instance on the 
number of previous committee members that tagged 
that instance incorrectly. We are currently using 2C 

as the score for correctly tagging a given instance that 
c committee members have mistagged. This strategy 
tends to produce committee members that are very 
different, as they are focusing on different parts of the 
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training corpus. 

Minimum 
Confidence 

Percentage of 
Instances Tagged 
45.12% ± 1.28% 
69.79% ± 1.60% 
92.38% ± 1.32% 
99.85% ± 0.20% 
100.00% ± 0.00% 

Average 
Precision 

90.09% ± 1.51% 
83.53% ± 1.27% 
76.57% ± 0.79% 
73.56% ± 1.10% 
73.45% ± 1.06% 

Figure 6:  Testing the committee method on unseen 
data, varying the minimum confidence considered 

As a preliminary experiment we ran ten trials with five 
committee members, testing on held-out data.   Fig- 
ure 6 presents average scores and standard deviations, 
varying the minimum confidence, m. For a given in- 
stance, if at least m committee members agreed on 
a tag, then the most popular tag was applied, break- 
ing ties in favor of the committee member that was 
developed the earliest; otherwise no tag was output. 
The results show that the committee approach as- 
signs useful confidence measures to the tags: All five 
committee members agreed on the tags for 45.12% of 
the instances, and 90.09% of those tags were correct. 
Also, for 69.79% of the instances, at least four of the 
five committee members selected the same tag, and 
this tag was correct 83.53% of the time.  We foresee 
that our module for tagging dialogue acts can poten- 
tially be integrated into a larger system so that, when 
Transformation-Based Learning cannot produce a tag 
with high confidence, other modules may be invoked 
to provide more evidence.   In addition, like Boost- 
ing, the committee method improves the overall ac- 
curacy of the system. By selecting the most popular 
tag among all five committee members, the average ac- 
curacy in tagging unseen data was 73.45%, while using 
the first committee member alone resulted in a signifi- 
cantly (t = 5.42 > 2.88, a = 0.01) lower average score 
of 70.79%. 

4.4    ALTERNATIVE METHODS 

Previously, the best success rate achieved on the Dia- 
logue Act Tagging problem was reported by Reithinger 
and Kiesen (1997), whose system used a probabilistic 
machine learning approach based on N-Grams to cor- 
rectly label 74.7% of the utterances in a test corpus. 
(See Samuel, Carberry, and Vijay-Shanker (1998a) for 
a more extensive analysis of previous work on this 
task.) As a direct comparison, we applied our system 
to exactly the same training and testing set. Over 
five runs, the system achieved an average10 accuracy 
of 75.12%±1.34%, including a high score11 of 77.44%. 

10The variation in the scores is due to the random nature 
of the Monte Carlo method. 

nThe rules in Figure 2 were produced in this experiment. 

In addition, we ran a direct comparison between 
Transformation-Based Learning and C5.0 (Rulequest 
Research, 1998), which is an implementation of the 
Decision Trees method. The accuracies on held-out 
data for training sets of various sizes are presented 
in Figure 7. For Transformation-Based Learning, we 
averaged the scores of ten trials for each training set 
(to factor out the random effects of the Monte Carlo 
method), and the standard deviations are represented 
by error bars in the graph. These experiments did not 
utilize the committee method, and we would expect 
the scores to improve when this extension is used. 

With C5.0, we wanted to use the same features that 
were effective for Transformation-Based Learning, but 
we encountered two problems: 1) Since C5.0 requires 
that each feature take exactly one value for each in- 
stance, it is very difficult to utilize the cue patterns 
feature. We decided to provide one boolean feature 
for each possible cue pattern, which was set to True 
for instances that included that cue pattern and False 
otherwise. 2) Our Transformation-Based Learning sys- 
tem utilized the system-generated tag12 of the preced- 
ing instance. C5.0 cannot use this information, as it 
requires that the values of all of the features are com- 
puted before training begins. 

The training times of Transformation-Based Learning 
and C5.0 were relatively comparable for any number 
of conditions, although Boosting sometimes resulted 
in a significant increase in training time. The ac- 
curacy scores of Transformation-Based Learning and 
C5.0, with and without Boosting, are not significantly 
different, as shown in Figure 7. 

5    DISCUSSION 

This paper has described the first investigation of 
Transformation-Based Learning applied to discourse- 
level problems. We extended the algorithm to ad- 
dress two limitations of Transformation-Based Learn- 
ing: 1) We developed a Monte Carlo version of 
Transformation-Based Learning, and our experiments 
suggest that this improvement dramatically increases 
the efficiency of the method without compromising ac- 
curacy. This revision enables Transformation-Based 
Learning to work effectively on a wider variety of tasks, 
including tasks where the relevant conditions and con- 
dition combinations are not known in advance as well 
as tasks where there are a large number of relevant 
conditions and condition combinations. This improve- 
ment also decreases the labor demands on the human 
developer, who no longer needs to construct a mini- 

12For Transformation-Based Learning, the tags change 
as the system applies the rules in the learned model. When 
a rule references a tag, it uses the value of the tag at the 
point when that rule is processed. 
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8    23    38    53    68    83    98   113  128  143 # Training Dialogues 

Figure 7: Training set size vs. tagging accuracy on unseen data 

mal set of rule templates. It is sufficient to list all of 
the conditions that might be relevant and allow the 
system to consider all possible combinations of those 
conditions. 2) We devised a committee strategy for 
computing confidence measures to represent the reli- 
ability of tags. In our experiments, this committee 
method improved the overall tagging accuracy signif- 
icantly. It also produced useful confidence measures; 
nearly half of the tags were assigned high confidence, 
and of these, 90% were correct. 

For the Dialogue Act Tagging task, our modified ver- 
sion of Transformation-Based Learning has achieved 
an accuracy rate that is comparable to any previously 
reported system. In addition, Transformation-Based 
Learning has a number of features that make it par- 
ticularly appealing for the Dialogue Act Tagging task: 

1. Transformation-Based Learning's learned model 
consists of a relatively short sequence of intuitive 
rules, stressing relevant features and highlight- 
ing important relationships between features and 
tags (Brill, 1995a). Thus, Transformation-Based 
Learning's learned model offers insights into a the- 
ory to explain the training data. This is especially 
useful in Dialogue Act Tagging, which currently 
lacks a systematic theory. 

2. With its iterative training algorithm, when devel- 
oping a new rule, Transformation-Based Learning 
can consider tags that have been produced by pre- 
vious rules (Ramshaw and Marcus, 1994). Since 
the dialogue act of an utterance is affected by the 
surrounding dialogue acts, this leveraged learn- 
ing approach can directly integrate the relevant 

contextual information into the rules. In addi- 
tion, Transformation-Based Learning can accom- 
modate the focus shifts that frequently occur in 
discourse by utilizing features that consider tags 
of varying distances. 

Our Transformation-Based Learning system is 
very flexible with respect to the types of features 
it can utilize. For example, it can learn set-valued 
features, such as cue patterns. Additionally, be- 
cause of the Monte Carlo improvement, our sys- 
tem can handle a very large number of features. 

For the Dialogue Act Tagging task, people still 
don't know what features are relevant, so it is very 
difficult to construct an appropriate set of rule 
templates. Fortunately, Transformation-Based 
Learning is capable of discarding irrelevant rules, 
as Ramshaw and Marcus (1994) showed exper- 
imentally, so it is not necessary that all of the 
given rule templates be useful. 

Ramshaw and Marcus's (1994) experiments sug- 
gest that Transformation-Based Learning tends to 
be resistant to the overfitting13 problem. This can 
be explained by observing how the rule sequence 
produced by Transformation-Based Learning pro- 
gresses from general rules to specific rules. The 
early rules in the sequence are based on many ex- 
amples in the training corpus, and so they are 
likely to generalize effectively to new data. Later 
in the sequence, the rules don't receive as much 

Other machine learning algorithms may overfit to the 
training data and then have difficulty generalizing to new 
data. 
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support from the training data, and their applica- 
bility conditions tend to be very specific, so they 
have little or no effect on new data. Thus, resis- 
tance to overfitting is an emergent property of the 
Transformation-Based Learning algorithm. 

For the future, we intend to investigate a wider variety 
of features and explore different methods for collecting 
cue patterns to increase our system's accuracy scores 
further. Although we compared Transformation- 
Based Learning with a few very different machine 
learning algorithms, we still hope to examine other 
methods, such as Naive Bayes. In addition, we plan 
to run our experiments with different corpora to con- 
firm that the encouraging results of our extensions to 
Transformation-Based Learning can be generalized to 
different data, languages, domains, and tasks. We 
would also like to extend our system so that it may 
learn from untagged data, as there is still very little 
tagged data available in discourse. Brill developed an 
unsupervised version of Transformation-Based Learn- 
ing for Part-of-Speech Tagging (Brill, 1995b), but this 
algorithm must be initialized with instances that can 
be tagged unambiguously (such as "the", which is al- 
ways a determiner), and in Dialogue Act Tagging there 
are very few unambiguous examples. We intend to 
investigate the following weakly-supervised approach: 
First, the system will be trained on a small set of 
tagged data to produce a number of different com- 
mittee members. Then given untagged data, it will 
derive tags with confidence measures. Those tags that 
receive very high confidence can be used as unam- 
biguous examples to drive the unsupervised version of 
Transformation-Based Learning. 
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Abstract 

We study the classification problem that 
arises when two variables—one continu- 
ous (a;), one discrete (s)—evolve jointly in 
time. We suppose that the vector x traces 
out a smooth multidimensional curve, to each 
point of which the variable s attaches a dis- 
crete label. The trace of s thus partitions the 
curve into different segments whose bound- 
aries occur where s changes value. We con- 
sider how to learn the mapping between x 
and s from examples of segmented curves. 
Our approach is to model the conditional ran- 
dom process that generates segments of con- 
stant s along the curve of x. We suppose 
that the variable s evolves stochastically as 
a function of the arc length traversed by x. 
Since arc length does not depend on the rate 
at which a curve is traversed, this gives rise 
to a family of Markov processes whose pre- 
dictions, Pr[s|x], are invariant to nonlinear 
warpings (or reparameterizations) of time. 
We show how to learn the parameters of these 
Markov processes from labeled and/or unla- 
beled examples of segmented curves. The re- 
sulting models are motivated for automatic 
speech recognition, where x are acoustic fea- 
tures and s are phonetic transcriptions. 

1    INTRODUCTION 

The automatic segmentation of continuous trajecto- 
ries poses a challenging problem in machine learning. 
The problem arises whenever a multidimensional tra- 
jectory {E(2)|2 6 [0,r]} must be described by a se- 

quence of discrete labels S1S2 ■. .sn. A simple way to 
map trajectories into sequences is to specify consecu- 
tive time intervals such that s(t) = Sk for t G [<fc_i,tjfe]. 
This attaches the labels Sk to contiguous arcs along the 
trajectory. The learning problem is to discover such a 
mapping from labeled and/or unlabeled examples. 

In this paper, we study this problem, paying special 
attention to the fact that curves have intrinsic geomet- 
ric properties that do not depend on the rate at which 
they are traversed (do Carmo, 1976). Such properties 
include, for example, the total arc length and the max- 
imum distance between any two points on the curve. 
Given a multidimensional trajectory {x(<)|^ £ [0,r]}, 
these properties are invariant to reparameterizations 
t ~~* /(0> where f(t) is any monotonic function that 
maps the interval [0, r] into itself. Put another way, 
the intrinsic geometric properties of the curve are in- 
variant to nonlinear warpings of time. 

Invariance to nonlinear warpings of time is an example 
of a mathematical symmetry. The importance of such 
symmetries in statistical pattern recognition (Duda & 
Hart, 1973) is well-known. For example, in the prob- 
lem of object recognition from two dimensional images, 
one often incorporates invariances to translations, ro- 
tations, and changes of scale (Simard et al, 1993). In 
the segmentation of continuous trajectories, one natu- 
rally encounters the question of invariance to nonlinear 
warpings of time. A better understanding of this in- 
variance is therefore valuable in its own right. Beyond 
its mathematical interest, however, the principled han- 
dling of this invariance suggests new algorithms for the 
automatic segmentation of continuous trajectories. In- 
deed, the primary motivation for this work is its po- 
tential application to automatic speech recognition—a 
subject to which we return in the final section of the 
paper. 

The study of curves requires some simple notions from 
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differential geometry. As a matter of terminology, we 
refer to particular parameterizations of curves as tra- 
jectories. We regard two trajectories xi(t) and x2(t) as 
equivalent to the same curve if there exists a monoton- 
ically increasing function / for which xi(t) - x2 (/(<))• 
(To be precise, we mean the same oriented curve: the 
direction of traversal matters.) Here, as in what fol- 
lows, we adopt the convention of using x(t) to denote 
an entire trajectory as opposed to constantly writing 
out {x(t)\t 6 [0,r]}. When necessary to refer to the 
value of x(t) as a particular moment in time, we use a 
different index, such as x(ti). 

Let us return now to the problem of automatic segmen- 
tation. Consider two variables—one continuous (x), 
one discrete (s)—that evolve jointly in time. Thus the 
vector x traces out a smooth multidimensional curve, 
to each point of which the variable s attaches a discrete 
label. Note that each trace of s yields a partition of 
the curve into different components; in particular, the 
boundaries of these components occur at the points 
where s changes value. We refer to such partitions 
as segmentations and to the regions of constant s as 
segments; see figure 1. 

Our goal in this paper is to learn a probabilistic map- 
ping between trajectories x(t) and segmentations s(t) 
from labeled and/or unlabeled examples. Consider the 
conditional random process that generates segments 
of constant s along the curve traced out by x. Given 
a trajectory x(t), let Pi[s(t)\x(t)] denote the condi- 
tional probability distribution over possible segmenta- 
tions. Suppose that for any two equivalent trajectories 
x(t) and x(/(i)), we have the identity: 

Pt[*(t) | *(0] = Pr[«(/W) I «(/(*))]• (!) 

Eq. (1) captures a fundamental invariance—namely, 
that the probability that the curve is segmented in 
a particular way is independent of the rate at which 
it is traversed. In this paper, we study Markov pro- 
cesses with this property. We call them Markov pro- 
cesses on curves (MPCs) because for these processes 
it is unambiguous to write Pr[s | x] without provid- 
ing explicit parameterizations for the trajectories, x(t) 
or s(t). The distinguishing feature of MPCs is that the 
variable s evolves as a function of the arc length tra- 
versed along x, a quantity that is manifestly invariant 
to nonlinear warpings of time. 

The main contributions of this paper are: (i) to pos- 
tulate eq. (1) as a fundamental invariance of random 
processes; (ii) to introduce MPCs as a family of prob- 
abilistic models that capture this invariance; (iii) to 
derive monotonically convergent learning procedures 

s(t) = s j 
s(t) = s3 

Figure 1: Two variables—one continuous (x), one dis- 
crete (s)—evolve jointly in time. The trace of s par- 
titions the curve of x into different segments whose 
boundaries occur where s changes value. Markov pro- 
cesses on curves model the conditional distribution, 
Pr[s|x]. 

for MPCs based on the principle of maximum like- 
lihood estimation; and (iv) to contrast the proper- 
ties of MPCs with those of hidden Markov models 
(HMMs), especially as they relate to problems in au- 
tomatic speech recognition (Rabiner k Juang, 1993). 
In terms of previous work, our motivation most closely 
resembles that of Tishby (1990), who several years ago 
proposed a dynamical system approach to speech pro- 
cessing. 

The organization of this paper is as follows. In sec- 
tion 2, we begin by reviewing some basic concepts 
from differential geometry. We then introduce MPCs 
as a family of continuous-time Markov processes that 
parameterize the conditional probability distribution, 
Pr[s | x]. The processes are derived from a set of differ- 
ential equations that describe the pointwise evolution 
of s along the curve traced out by x. 

In section 3, we consider how to learn the parameters 
of MPCs in both supervised and unsupervised settings. 
These settings correspond to whether the learner has 
access to labeled or unlabeled examples. Labeled ex- 
amples consist of trajectories x(t), along with their 
corresponding segmentations: 

{START -f («i.ii) • • • (*„,*n) — END}.       (2) 

The ordered pairs in eq. (2) indicate that s(t) takes 
the value Sk between times tk-i and <j,; the START 
and END states are used to mark endpoints. Unlabeled 
examples consist only of the trajectories x(t) and the 
boundary values: 

{(0, START)   —f  (r.END)}. (3) 

Eq. (3) specifies only that the Markov process starts 
at time t = 0 and terminates at some later time r. In 
this case, the learner must infer its own target values 
for s(t) in order to update its parameter estimates. We 
view both types of learning as instances of maximum 
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likelihood estimation and describe an Expectation- 
Maximization (EM) algorithm for the more general 
case of unlabeled (or partially labeled) examples. 

In section 4, we discuss the application of MPCs to au- 
tomatic speech recognition (Rabiner & Juang, 1993). 
Here we can identify the curves x with time-varying 
spectral signatures and the segmentations s with pho- 
netic transcriptions. We discuss possible advantages of 
MPCs over hidden Markov models, the current lead- 
ing technology for automatic speech recognition. The 
most important of these are: (i) the natural han- 
dling of variations in speaking rate—i.e., the rate at 
which acoustic features (summarized by a;) change 
with time—and (ii) the emphasis on learning a recog- 
nition model Pr[s|a:], as opposed to a synthesis model 
Pr[a:|s]. Finally, we conclude by outlining our plans 
for future work. 

2    MARKOV PROCESSES ON 
CURVES 

Markov processes on curves are based fundamentally 
on the notion of arc length. After reviewing how to 
compute arc lengths along curves, we show how they 
can be used to define random processes that capture 
the invariance of eq. (1). 

2.1    ARC LENGTH 

Let g(x) define a D x D matrix-valued function over 
x 6 liP ■ If g(x) is everywhere non-negative definite, 
then we can use it as a metric to compute distances 
along curves. In particular, consider two nearby points 
separated by the infinitesimal vector dx. We define the 
squared distance between these two points as: 

dt- 2    _ dx  g(x) dx. (4) 

Arc length along a curve is the non-decreasing function 
computed by integrating these local distances. Thus, 
for the trajectory x(t), the arc length between the 
points aj(<i) and xfa) is given by: 

= /' Jti 
dt x g{x)x (5) 

where x = -^[x{t)] denotes the time derivative of x. 
Note that the arc length between two points is in- 
variant under reparameterizations of the trajectory, 
x{i) —► x(f(t)), where /(<) is any smooth monotonic 
function of time that maps the interval [tfi,^] into it- 
self. 

In the special case where g(x) is the identity ma- 
trix, eq. (5) reduces to the standard definition of arc 
length in Euclidean space. More generally, however, 
eq. (4) defines a non-Euclidean metric for computing 
arc lengths. Thus, for example, if the metric g(x) 
varies as a function of x, then eq. (5) can assign differ- 
ent arc lengths to the trajectories x(t) and x(t) + x0, 
where x0 is a constant displacement. 

2.2    STATES AND LIFETIMES 

The problem of segmentation is to map a trajectory 
x(t) into a sequence of discrete labels sis2 • • -sn. If 
these labels are attached to contiguous arcs along the 
curve of x, then we can describe this sequence by a 
piecewise constant function of time, s(t), as in figure 1. 
We refer to the possible values of s as states. In what 
follows, we introduce a family of conditional random 
processes that evolve s as a function of the arc length 
traversed along the curve traced out by x. These ran- 
dom processes are based on a simple premise—namely, 
that the probability of remaining in a particular state 
decays exponentially with the cumulative arc length 
traversed in that state. The signature of a state is 
the particular way in which it computes arc length. 

To formalize this idea, we associate with each state i 
the following quantities: (i) a position-dependent ma- 
trix gi(x) that can be used to compute arc lengths, as 
in eq. (5); (ii) a decay parameter A,- that measures the 
probability per unit arc length that s makes a transi- 
tion from state i to some other state; and (iii) a set 
of transition probabilities ai;-, where a,j represents the 
probability that—having decayed out of state i—the 
variable s makes a transition to state j. Thus, a,j de- 
fines a stochastic transition matrix with zero elements 
along the diagonal and rows that sum to one: a,-,- = 0 
and J2ja>j = 1- 

Together, these quantities can be used define a Markov 
process along the curve traced out by a;. In particular, 
let pi(t) denote the probability that s is in state i at 
time t, based on its history up to that point in time. 
A Markov process is defined by the set of differential 
equations: 

dpi 
dt 

= -A,pi •T 
x gi 

12 r 
(x) x j ' +Y^ ^jPjaji   xTgj(x) x 

(6) 
The right hand side of eq. (6) consists of two compet- 
ing terms. The first term computes the probability 
that s decays out of state i; the second computes the 
probability that s decays into state i. Both probabil- 
ities are proportional to measures of arc length, and 
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combining them gives the overall change in probability 
that occurs in the time interval [t,t + dt]. The process 
is Markovian because the evolution of p« depends only 
on quantities available at time t; thus the future is 
independent of the past given the present. 

Eq. (6) has certain properties of interest. First, note 
that summing both sides over i gives the identity 
J2idpi/dt = 0. This shows that p; remains a nor- 
malized probability distribution: i.e., Y.iP> — 1 at a11 

times. Second, suppose that we start in state i and 
do not allow return visits: i.e., p< = 1 and OJ* = 0 for 
all j. In this case, the second term of eq. (6) vanishes, 
and we obtain a simple, one-dimensional linear differ- 
ential equation for pi(t). It follows that the probability 
of remaining in state i decays exponentially with the 
amount of arc length traversed by x, where arc length 
is computing using the matrix gi(x). The decay pa- 
rameter, Xi, controls the typical amount of arc length 
traversed in state i; it may be viewed as an inverse 
lifetime or—to be more precise—an inverse lifelength. 
Finally, noting that arc length is a reparameterization- 
invariant quantity, we therefore observe that these dy- 
namics capture the fundamental invariance of eq. (1). 

2.3    INFERENCE 

Let aoi denote the probability that the variable s 
makes an immediate transition from the START state— 
denoted by the zero index—to state i; put another way, 
this is the probability that the first segment belongs to 
state i. Given a trajectory x(t), the Markov process 
in eq. (6) gives rise to a conditional probability distri- 
bution over possible segmentations, s(t). Consider the 
segmentation in which s(t) takes the value sk between 
times ijfe_i and tk, and let 

= jT * [ xTgSk(x)x (?) 

denote the arc length traversed in state sk. From 
eq. (6), we know that the probability of remaining in 
a particular state decays exponentially with this arc 
length. Thus, the conditional probability of this seg- 
mentation is given by: 

second product multiplies the probabilities for transi- 
tions between states sk and sk+i- The leading factors 
of XSk are included to normalize each state's duration 
model. 

There are many important quantities that can be com- 
puted from the distribution, Pr[s|x]. Of particular in- 
terest is the most probable segmentation: 

Pr[s|as] = II As -As, i,. 

k = \ 

'SfcSjt + l i (8) 

where we have used s0 and sn+i to denote the START 
and END states of the Markov process. The first prod- 
uct in eq. (8) multiplies the probabilities that each 
segment traverses exactly its observed arc length. The 

= argmax jlnPr[s|x]j . (9) 

Given a particular trajectory x(t), eq. (9) calls for a 
maximization over all piecewise constant functions of 
time, s(t). In practice, this maximization can be per- 
formed by discretizing the time axis and applying a 
dynamic programming procedure. The resulting seg- 
mentations will be optimal at some finite temporal 
resolution, At. For example, let a^t) denote the log- 
likelihood of the most probable segmentation, ending 
in state i, of the subtrajectory up to time t. Starting 
from the initial condition a,(0) = ln[a0j], we compute 

aj(t + At)    =    max|ai(<) - A.Af [iT3i(a;)i]2 

+ HXiaij](l - «0-)} . (10) 

where 5y is the discrete delta function. Also, at each 
time step, let ^(t+At) record the value of i that max- 
imizes the right hand side of eq. (10). Suppose that 
the Markov process terminates at time r. Enforcing 
the endpoint condition S*(T) = END, we find the most 
likely segmentation by back-tracking: 

**(i-At) = *..(«)(*)• (11) 

These recursions yield a segmentation that is opti- 
mal at some finite temporal resolution At. Gener- 
ally speaking, by choosing At to be sufficiently small, 
one can minimize the errors introduced by discretiza- 
tion. In practice, one would choose At to reflect the 
time scale beyond which it is not necessary to consider 
changes of state. 

Other types of inferences can also be made from the 
distribution, eq. (8). For example, one can compute 
the marginal probability that the Markov process ter- 
minates at precisely the observed time. This is done 
by summing the probabilities 

Pr [S(T) = END | x(t)]  = 

£Pr[S(t)|s(t)]x{  I if S(T) = END 
otherwise 

(12) 
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where the zero-one weighting factor selects out only 
those segmentations that terminate precisely at time r. 
Similarly, one can compute the posterior probability, 
Pr[s(*i) = i\x(t), s(r) = END], that at an earlier mo- 
ment in time, <1( the variable s was in state i. Both 
types of inferences are handled by discrctizing the time 
axis and applying a dynamic programming procedure 
similar to eqs. (10-11). In the interest of brevity, we do 
not give the details of these constructions, noting only 
that in most respects they are completely analogous 
to the ones for discrete-time hidden Markov models 
(Rabiner k Juang, 1993). 

3    LEARNING FROM EXAMPLES 

In this section, we consider how to learn Markov pro- 
cesses of the form, eq. (6). By learning, we mean how 
to estimate the parameters {A,-, ay, gi(x)} from exam- 
ples of segmented (or non-segmented) curves. Our first 
step is to assume a convenient parameterization for the 
matrices, gi{x), that compute arc lengths. We then 
show how to fit these matrices, along with the param- 
eters A; and ay, by maximum likelihood estimation. 

A variety of parameterizations can be considered for 
the matrices, gi(x). In this paper, we consider the very 
simple form: 

9i(x) = |(x - ßif Ef1 (x - Mi.)|
2 o~\ (13) 

where the parameters (ii, E; and a, are set by max- 
imum likelihood estimation. Here, E, and er, are 
positive-definite D x D square matrices, while \i{ is 
a D-dimensional vector. We also impose the deter- 
minant constraint |E,-||o-,-|i = 1; this eliminates the 
degenerate solution, gt(x) = 0, in which every tra- 
jectory is assigned zero arc length. Note that there 
remains an artificial degree of freedom associated with 
simultaneously rescaling E,- and <T,-. 

The form of eq. (13) is designed to endow each state 
with a characteristic signature. In particular, consider 
the differential arc lengths that appear in eq. (6): 

xTgi(x) x =  {x-tofZT^x \h 
■T    - 

X    <J- 

If x is close to \i{, then both the arc length and the 
corresponding probability of decay (out of state i) are 
small. Each state is therefore characterized by the 
values of x that allow it to persist. Intuitively, the pa- 
rameters /x,- can be viewed as target vectors associated 
with each state of the Markov process. Typical de- 
viations about /X; are encoded by E,- and er,-. In what 
follows, we show how to learn the parameters that best 
characterize each state. 

3.1     LABELED EXAMPLES 

Suppose we are given examples of segmented trajecto- 
ries, {xa(t),sa(t)}, where the index a runs over the 
example in the training set. As shorthand, let Sia(t) 
denote the indicator function that selects out segments 
associated with state i: 

6ia(t)  = ifsa(t) = 
otherwise. (14) 

Also, let £ia denote the total arc length traversed by 
state i in the ath example: 

ia = Jd dt 6ia(t)   xagi(xQ)xQ (15) 

In this paper we view learning as a problem in maxi- 
mum likelihood estimation. Thus we seek the param- 
eters that maximize the conditional log-likelihood: 

J2 1" Pr[*«\xQ] = - ]T XA„ + ^2 riij ln[A,ay], 
a >a ij 

(16) 
where ny is the overall number of observed transitions 
from state i to state j. The first term in eq. (16) 
measures the log-likelihood of observed segments in 
isolation, while the second measures the log-likelihood 
of observed transitions. 

Eq. (16) has a convenient form for maximum likeli- 
hood estimation. In particular, there are closed-form 
solutions for the values of A,- and ay that maximize 
this log-likelihood; they are given by: 

=    riij/m 
1 V 

7 J ^io\ 71-   *—' 

(17) 

(18) 

where n,- = ]T\ ny. In general, we cannot find closed- 
form solutions for the maximum-likelihood estimates 
of {/x^EijCr,}. However, we can update these param- 
eters in an iterative fashion that is guaranteed to in- 
crease the log-likelihood at each step. Denoting the 
updated parameters by {//,-, E,-, tr;}, we consider the 
iterative scheme (derived in the appendix): 

Ea Idt 6i° 
M, 

•T     - 
XnG: 

EJdt 6ia A,-„Afc 

•T     -1   • xa <rt    xc 

1 
2 

(19) 

-,    (20) 

f. 

J2a fdt 6ia 

«I; Aftft«f/oE~lA*r *.*;, (21) 
rv     J 'T     -1    •     1 2 0 n*    ST.      ip 
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where the constant c,- is determined by the determi- 
nant constraint |S.-||erj|i = 1 and we have introduced 
the shorthand notation, 

Aia(t) = xa(t)- ßi, (22) 

for the difference between xa(t) and its (re-estimated) 
target value in state i. Note that all the variables in 
eqs. (19-21) with the subscript a have an implicit time 
dependence. 

Some intuition for the form of these updates 
can be gained by considering the points dis- 
tributed along xa(t), as weighted by the measure 
6ia(t)[AT<Tf1x]i. The updates for \i{ and E* sim- 
ply compute the mean and covariance of this distribu- 
tion. The update for <Xj has a similar interpretation, 
though its derivation relies on the introduction of an 
auxiliary function, <2(<r,-,<r,-), as in the Expectation- 
Maximization (EM) procedure (Dempster, Laird, k 
Rubin, 1977). Note that it is important to perform 
the updates in the order shown, since (for example) 
the S-update depends on the re-estimated value of ß. 
By taking gradients of eq. (16), one can show that the 
fixed points of this iterative procedure correspond to 
stationary points of the log-likelihood. A proof sketch 
of monotonic convergence is given in the appendix. 

In the case of labeled examples, the above proce- 
dures for maximum likelihood estimation can be in- 
voked independently for each state i. One first iterates 
eqs. (19-21) to estimate the parameters that determine 
gi(x). These parameters are then used to compute 
the arc lengths, tia, that appear in eq. (15). Given 
these arc lengths, the decay parameters and transition 
probabilities follow directly from eqs. (17-18). Thus 
the problem of learning given labeled examples is rel- 
atively straightforward. 

3.2    UNLABELED EXAMPLES 

In this section we consider the problem of unsuper- 
vised learning. In this setting, the learner does not 
have access to labeled examples; the only available in- 
formation consists of the trajectories xa(t), as well as 
the fact that each process terminates at some time ra. 
The goal of unsupervised learning is to maximize the 
conditional log-likelihood, 

^lnPr[sa(ra) = END | x«(i)]; (23) 

that for each trajectory xa(t), some probable segmen- 
tation can be found that terminates at precisely the 
observed time. The marginal probabilities in eq. (23) 

are computed by summing Pr[s(t)|sn(<)] over allowed 
segmentations, as in eq. (12). 

The maximization of this log-likelihood defines a prob- 
lem in hidden variable density estimation. The hidden 
variables are the states of the Markov process. If these 
variables were known, the problem would reduce to the 
one considered in the previous section. To fill in these 
missing values, we avail ourselves of the Expectation- 
Maximization (EM) algorithm (Baum, 1972; Demp- 
ster, Laird, & Rubin, 1976). Roughly speaking, the 
EM algorithm works by converting the maximiza- 
tion of eq. (23) into a weighted version of the prob- 
lem where the segmentations, sa(t), are known. The 
weights are determined by the posterior probabilities, 
Vi[sa(t)\xa(t),sa(Ta) = END], derived from the cur- 
rent parameter estimates. 

In the interest of brevity, we do not give a detailed 
account of the full EM algorithm for MPCs. We note, 
however, that eqs. (10-11) by themselves suffice to im- 
plement a very good approximation to the full proce- 
dure. This approximation is to compute, based on 
the current parameter estimates, the optimal segmen- 
tation, s* (t), for each trajectory in the training set; 
one then re-estimates the parameters of the Markov 
process by treating the inferred segmentations, s*a(t), 
as targets. This approximation reduces the problem 
of parameter estimation to the one considered in the 
previous section. It can be viewed as a winner-take-all 
approximation to the full EM algorithm, analogous to 
the Viterbi approximation for hidden Markov models 
(Rabiner & Juang, 1993). 

Essentially the same algorithm can also be applied 
to the intermediate case of partially labeled examples. 
Suppose, for example, that the learner has access to 
labeled state sequences but not to segmented curves; 
in other words, examples are provided in the form: 

{START -v («i,?) • • ■ (*„,?) -> END}.       (24) 

The ability to handle such examples is important for 
two reasons: first, because they provide significantly 
more information than unlabeled examples, and sec- 
ond, because they are often much cheaper to generate 
than fully segmented curves. As before, we can view 
the learning problem for these examples as one in hid- 
den variable density estimation. In this case, the hid- 
den variables are not the states of the Markov process 
per se, but only the times at which they change. We 
can incorporate knowledge of the state sequence into 
the EM algorithm simply by restricting the sums over 
paths in eqs. (10) and (12) to those that pass through 
the desired sequence. 
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4    AUTOMATIC SPEECH 
RECOGNITION 

The Markov processes in this paper were conceived 
as models for automatic speech recognition (Rabiner 
k Juang, 1993). Speech recognizers take as input a 
sequence of feature vectors, each of which encodes a 
short window of speech. Acoustic feature vectors typi- 
cally have ten or more components, so that a particular 
sequence of feature vectors can be viewed as tracing 
out a multidimensional curve. The goal of a speech 
recognizer is to translate this curve into a sequence of 
words, or more generally, a sequence of sub-syllabic 
units known as phonemes. Denoting the feature vec- 
tors by xt and the phonemes by st, we can view this 
problem as the discrete-time equivalent of the segmen- 
tation problem in MPCs. 

Why consider MPCs as models of speech recognition? 
Hidden Markov models (HMMs), the current leading 
technology, are also based on probabilistic methods. 
These models manipulate joint distributions of the 
form: 

Pr[s,x]   =  HPv[st\st^}Pr[xt\st}. (25) 

Though HMMs have led to significant advances in 
speech recognition, they are handicapped by certain 
weaknesses. One of these is the poor manner in which 
they handle variations in speaking rate. Intuitively, we 
can represent these variations by nonlinear warpings of 
time. For example, consider the pair of trajectories xt 

and yt, where yt is created by the doubling operation: 

Vt 
xt/2     if i even, 
Vt-\    if* odd. 

(26) 

Both trajectories trace out the same curve, but yt does 
so at half the rate as xt. Hidden Markov models will 
not assign these trajectories the same likelihood, nor 
are they guaranteed to infer equivalent segmentations. 
This example shows that HMMs do not even approx- 
imately capture the invariances modeled by MPCs or 
other arc-length based descriptions of speech (Tishby, 
1990). 

Admittedly, the warping in eq. (26) represents a highly 
idealized picture of acoustic variability. Nevertheless, 
there is a great deal of empirical evidence that HMMs 
suffer from the inability to model variations in speak- 
ing rate (Siegler k Stern, 1995). For example, word 
error rates increase dramatically when one moves from 
scripted to spontaneous speech. Also, one generally 
observes that consonants are more frequently botched 

than vowels. The reason is that in HMMs, the contri- 
bution of particular states to the overall log-likelihood 
is in direct proportion to their duration. Thus training 
procedures designed to maximize the log-likelihood arc 
inherently biased to model long-lived phonemes (i.e., 
vowels) more accurately than short-lived ones. 

MPCs are quite different from HMMs in this respect. 
In MPCs, the contribution of each state to the log- 
likelihood is determined by its arc length. The weight- 
ing by arc length attaches a more important role to 
short-lived but non-siationary phonemes. Of course, 
one can imagine heuristics in HMMs that achieve the 
same effect, such as dividing each state's contribu- 
tion to the log-likelihood by its observed (or inferred) 
duration. Unlike such heuristics, however, the state- 
dependent metric g(x) in MPCs is learned from data; 
in particular, it is designed to reweight the speech sig- 
nal in a way that reflects the actual statistics of acous- 
tic trajectories. 

So far we have emphasized the invariance to non- 
linear warpings of time as the main difference be- 
tween MPCs and HMMs. Another important differ- 
ence, however, lies in what each tries to model. While 
MPCs attempt to model the conditional distribution 
Pr[s|a;], HMMs attempt to model the joint distribu- 
tion, Pr[s,x]. Only the former is required for speech 
recognition, yet HMMs attempt something much more 
ambitious by learning a generative model of acoustic 
trajectories. Maximum likelihood training in HMMs 
is designed to increase the likelihood of observed tra- 
jectories, Pr[x]. Unfortunately, because HMMs do not 
represent the true model of speech, maximizing this 
likelihood does not always translate into minimizing 
error rates. These issues point to yet another differ- 
ence between MPCs and HMMs. Learning in MPCs 
is directed at learning a recognition model, Pr[s|a:], as 
opposed to a synthesis model, Pr[x|s]. The direction of 
conditioning is a crucial difference between maximum 
likelihood estimation in MPCs and HMMs. 

In terms of previous work, our motivation for MPCs 
most closely resembles that of Tishby (1990), who 
stressed the importance of invariance to nonlinear 
warpings of time as a mathematical symmetry. In that 
MPCs stress the continuous nature of the speech sig- 
nal, they also bear some resemblance to so-called seg- 
mcntal acovstic models (Ostendorf, Digalakis, k Kim- 
ball, 1996) of speech. Unlike HMMs, segmental acous- 
tic models enforce the constraint that acoustic feature 
vectors within the same phonemic state trace out a 
continuous trajectory. Despite this shared emphasis 
on continuity, however, segmental models and MPCs 
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differ in fundamental respects. In particular, segmen- 
tal models incorporate the constraint of continuity by 
building a more complicated synthesis model Pr[x|s] of 
acoustic trajectories. They retain, however, the usual 
Markov assumption between states: 

Pr[st|st_i,st_2,...,st-T] = Pr[si|st_i]. (27) 

By contrast, MPCs build a recognition model Pr[s|x] 
whose very definition is conditioned on the existence 
of a continuous trajectory. Moreover, the Markov as- 
sumption in MPCs—as embodied by eq. (6)—is con- 
ditioned on the current position and tangent vector 
of the acoustic feature trajectory. This differs from 
the Markov assumption in eq. (27), which is made in- 
dependent of (or unconditioned on) the acoustic fea- 
tures. Finally, to the best of our knowledge, MPCs are 
novel in two key respects: the formulation of a warp- 
invariant probabilistic model explicitly in terms of arc 
length, and the emphasis on learning a metric g(x) for 
each hidden state of the Markov process. These ideas 
differentiate MPCs from segmental acoustic models as 
well as ordinary HMMs. 

The starting point of this work was to postulate eq. (1) 
as an invariance of random processes. Of course, 
it would be naive to expect speech signals to ex- 
hibit a strict invariance to nonlinear warpings of time. 
The acoustic realization of a phoneme does depend 
to some extent on the speaking rate, and certain 
phonemes are more likely to be stretched or short- 
ened than others. To accommodate this, one can relax 
the warping invariance in MPCs. This is most easily 
done by building models of the space-time1 trajecto- 
ries X(t) = {x(t),t} and computing generalized arc 

lengths, dL = [XTG(X)X]Ut, where X = {4,1} 
and G(X) is a space-time metric. The effect of replac- 
ing 4 by X is to allow each acoustic feature vector to 
contribute a finite amount to the overall log-likelihood 
even when |4| is zero—that is, even when it represents 
a perfectly stationary frame of speech. 

We are currently evaluating MPCs as engines for au- 
tomatic speech recognition. Naturally, we expect that 
many further elaborations will be required to surpass 
the finely tuned performance of modern recognizers. 
These may include more sophisticated parameteriza- 
tions of the metric gi(x), the use of information from 
higher order derivatives (e.g., 4 and 4), and/or tran- 
sition probabilities dij(x) that vary along the length 

■"The admixture of space and time coordinates in this 
way is an old idea from physics, originating in the theory 
of relativity (Einstein, 1924) (though in that context the 
metric is negative-definite). 

of the curve. Nevertheless, we hope that this paper 
serves to introduce the basic principles of MPCs, as 
well as to suggest an intriguing departure from tradi- 
tional methods in automatic speech recognition. 

A    REESTIMATION FORMULAS 

In this appendix we derive the reestimation formulas, 
eqs. (19-21) and show that they lead to monotonic 
increases in the log-likelihood, eq. (16). 

We begin by examining a simpler problem. Let 
{x(t)\t € [0,r]} denote a D-dimensional trajectory, 
and let $(x) > 0 denote an everywhere non-negative 
function of a;. Now consider the function: 

l{&) =   f dt   [: T   -1 • 
X    <7      X *(*(*)). (28) 

where a is a D x D positive-definite matrix. The right 
hand side of eq. (28) clearly depends on the trajectory 
x(t) and the function $(x), but for now let us regard 
both of these as fixed and consider 1(e) simply as a 
function of the matrix <r. 

Since a is positive-definite and $(x) > 0, we immedi- 
ately observe that the function £(<r) is bounded below 
by zero. Let us consider how to find the value of cr 
that minimizes t{a), subject to the determinant con- 
straint |er| = 1. Note that the matrix elements of cr~l 

appear nonlinearly in the right hand side of eq. (28); 
thus it is not possible to compute their optimal val- 
ues in closed form. As an alternative, we consider the 
auxiliary function: 

where p is a D x D positive-definite matrix like a. 
It follows directly from the definition in eq. (29) that 
l(cr) = Q(<r,<r). Somewhat less trivially, we observe 
that Q(p, p) < Q(p, (T) for all positive definite matrices 
p and a. This inequality follows from the concavity of 
the square root function, as illustrated in figure 2. 

Consider the value of p which minimizes Q(p, cr), sub- 
ject to the determinant constraint |/>| = 1. We denote 
this value by ä = min|p|=i Q(p,a). Because the ma- 
trix elements of p~x appear linearly in Q(p,cr), this 
minimization essentially reduces to computing the co- 
variance matrix of the tangent vector 4, as distributed 
along the trajectory x(t). In particular, we have: 

a oc / dt 
Jo 

XX 

T-T     _1   Mi [a;   a  Lx\2 
*(»(*)). (30) 
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Figure 2: The square root function is concave and up- 
per bounded by y/z < \[z/y/Z + y/l} for all (_ > 0. The 
bounding tangents are shown for £ = -^ and £ = 1. 

where the constant of proportionality is determined by 
the constraint \ä\ = 1. To minimize ((a) with respect 
to a, we now consider the iterative procedure where at 
each step we replace a by ä. We observe that: 

*(*)    =    Q(a,cr) 

< Q((f, a) due to concavity 

< Q(a, a) since d = min,, Q(p, a) 

=    %)> 

with equality generally holding only when ä = er. In 
other words, this iterative procedure converges mono- 
tonically to a local minimum of £(cr). 

Let us now relate the problem of minimizing (.(a) to 
the original problem of maximizing the likelihood in 
eq. (16). There we saw that for each state of the MPC, 
it was necessary to optimize the parameters {n, E, a). 
Here, for notational convenience, we have dropped the 
subscript denoting the state index of these parameters. 
Note that in terms of these parameters, maximizing 
each state's contribution to the log-likelihood is equiv- 
alent to minimizing the total arc length of its segments 
in the training set. This problem can be viewed as a 
particular instance of the one considered above, pro- 
vided that we make the identification: 

*(as)  =   {x-ß)TT,-\x- ß). (31) 

Of course, now in addition to minimizing the arc length 
with respect to a, we must also optimize the values of 
fi and E. To this end, note that eq. (31) defines a 
standard quadratic form; hence for fixed a, the values 
of fi and E that minimize eq. (28) are given simply 
by the mean and covariance matrix of the points x(t) 

along each state's segments, as weighted by the mea- 
sure [x <T-

1
X}I . Within each state, we thus obtain a 

monotonically convergent learning procedure by alter- 
nately optimizing fx and E for fixed <r, then optimizing 
a for fixed ß and E. This leads directly to the reesti- 
mation formulas in eqs. (19-21). 

Acknowledgements 

The author thanks F. Pereira, M. Rahim, and the 
anonymous reviewers for many helpful comments 
about the presentation of these ideas. 

References 

L. Baum (1972). An inequality and associated maxi- 
mization technique in statistical estimation for prob- 
abilistic functions of a markov process. In 0. Shisha, 
editor, Inequalities, 3:1-8. New York: Academic Press. 

A. Dempster, N. Laird, and D. Rubin (1977). Maxi- 
mum likelihood from incomplete data via the em al- 
gorithm. Journal of the Royal Statistical Society B, 
39:1-38. 

M. P. do Carmo (1976) Differential Geometry of 
Curves and Surfaces. Prentice Hall. 

R. 0. Duda and P. E. Hart (1973). Pattern Classifi- 
cation and Scene Analysis. New York: Wiley. 

A. Einstein (1924). The Principle of Relativity. Dover. 

M. Ostendorf, V. Digalakis, and O. Kimball (1996). 
From HMMs to segment models: a unified view of 
stochastic modeling for speech recognition. IEEE 
Transactions on Acoustics, Speech and Signal Process- 
ing, 4:360-378. 

L. Rabiner and B. Juang (1993). Fundamentals of 
Speech Recognition. Englewood Cliffs, NJ: Prentice 
Hall. 

M. A. Siegler and R. M. Stern (1995). On the effects of 
speech rate in large vocabulary speech recognition sys- 
tems. In Proceedings of the 1995 IEEE International 
Conference on Acoustics, Speech, and Signal Process- 
ing, 612-615. 

P. Simard, Y. LeCun, and J. Denker (1993). Efficient 
pattern recognition using a new transformation dis- 
tance. In Advances in Neural Information Processing 
Systems 5:50-58. San Mateo, CA: Morgan Kauffman. 

N. Tishby (1990). A dynamical system approach to 
speech processing. In Proceedings of the 1990 IEEE 
International Conference on Acoustics, Speech, and 
Signal Processing, 365-368. 



515 

Ridge Regression Learning Algorithm 
in Dual Variables 

C. Saunders, A. Gammerman and V. Vovk 
Royal Holloway, University of London 

Egham, Surrey, TW20 OEX, UK 
{craig,alex,vovk}@dcs.rhbnc.ac.uk 

Abstract 

In this paper we study a dual version of the 
Ridge Regression procedure. It allows us to 
perform non-linear regression by construct- 
ing a linear regression function in a high di- 
mensional feature space. The feature space 
representation can result in a large increase 
in the number of parameters used by the al- 
gorithm. In order to combat this "curse of 
dimensionality", the algorithm allows the use 
of kernel functions, as used in Support Vector 
methods. We also discuss a powerful family 
of kernel functions which is constructed using 
the ANOVA decomposition method from the 
kernel corresponding to splines with an infi- 
nite number of nodes. This paper introduces 
a regression estimation algorithm which is 
a combination of these two elements: the 
dual version of Ridge Regression is applied 
to the ANOVA enhancement of the infinite- 
node splines. Experimental results are then 
presented (based on the Boston Housing data 
set) which indicate the performance of this 
algorithm relative to other algorithms. 

1    INTRODUCTION 

First of all, let us formulate regression estimation prob- 
lem. Suppose we have a set of vectors1 x\,..., XT, and 
we also have a supervisor which gives us a real value 
yt, for each of the given vectors. Our problem is to 
construct a learning machine which when given a new 

set of examples, minimises some measure of discrep- 
ancy between its prediction yt and the value of yt- The 
measure of loss which we are using, average square loss 
(L), is defined by 

1   » 
L=j^2(yt-yt)2, 

1We will use subscripts to indicate a particular vector 
(e.g. xt is the tth vector), and superscripts to indicate a 
particular vector element (e.g xl is the ith element of the 
vector x). 

where yt are the supervisor's answers, yt are the pre- 
dicted values, and I is the number of vectors in the test 
set. 

Least Squares and Ridge Regression are classical sta- 
tistical algorithms which have been known for a long 
time. They have been widely used, and recently some 
papers such as Drucker et al. [2] have used regres- 
sion in conjunction with a high dimensional feature 
space. That is the original input vectors are mapped 
into some feature space, and the algorithms are then 
used to construct a linear regression function in the 
feature space, which represents a non-linear regression 
in the original input space. There is, however, a prob- 
lem encountered when using these algorithms within 
a feature space. Very often we have to deal with a 
very large number of parameters, and this leads to se- 
rious computational difficulties that can be impossible 
to overcome. In order to combat this "curse of dimen- 
sionality" problem, we describe a dual version of the 
Least Squares and Ridge Regression algorithms, which 
allows the use of kernel functions. This approach is 
closely related to Vapnik's kernel method as used in 
the Support Vector Machine. Kernel functions repre- 
sent dot products in a feature space, which allows the 
algorithms to be used in a feature space without having 
to carry out computations within that space. Kernel 
functions themselves can take many forms and partic- 
ular attention is paid to a family of kernel functions 
which are constructed using ANOVA decomposition 
(Vapnik [10]; see also Wahba [11, 12]). There are two 
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major objectives of this paper: 

1. To show how to use kernel functions to overcome 
the curse of dimensionality in the above men- 
tioned algorithms. 

2. To demonstrate how ANOVA decomposition ker- 
nels can be constructed, and evaluate their perfor- 
mance compared to polynomial and spline kernels, 
on a real world data set. 

Results from experiments performed on the well known 
Boston housing data set are then used to show that the 
Least Squares and Ridge Regression algorithms per- 
form well in comparison with some other algorithms. 
The results also show that the ANOVA kernels, which 
only consider a subset of the input parameters, can im- 
prove on results obtained on the same kernel function 
without the ANOVA technique applied. In the next 
section we present the dual form of Least Squares and 
Ridge Regression. 

2    RIDGE REGRESSION IN DUAL 
VARIABLES 

Before presenting the algorithms in dual variables, the 
original formulation of Least Squares and Ridge Re- 
gression is stated here for clarity. 

Suppose we have a training set (xi,yi),... ,{xr,yr), 
where T is the number of examples, xt are vectors 
in 1R" (n is the number of attributes) and yt € IR, 
t = 1,...,T. Our comparison class consists of the 
linear functions y = w • x, where w £ Hn. 

The Least Squares method recommends computing 
w = wo which minimizes 

T 

LT{w) = ^2{yt - w ■ xtf 
t=i 

and using WQ for labeling future examples: if a new 
example has attributes x, the predicted label is wo ■ x. 

The Ridge Regression procedure is a slight modifica- 
tion on the least squares method and replaces the ob- 
jective function LT(W) by 

aWwf + 'EiVt-w-xt)2, 
t=i 

where o is a fixed positive constant. 

We now derive a "dual version" for Ridge Regression 
(RR); since we allow a = 0, this includes Least Squares 

(LS) as a special case. In this derivation we partially 
follow Vapnik [8]. We start with re-expressing our 
problem as: minimize the expression 

aw ' + 
t=i 

under the constraints 

yt-w-xt=Zu    t=l,...,T. 

(1) 

(2) 

Introducing Lagrange multipliers at, t = 1,... ,T, we 
can replace our constrained optimization problem by 
the problem of finding the saddle point of the function 

T T 

a\H\2 + £ & + £ at (yt - w ■ xt - &).     (3) 
t=i t=\ 

In accordance with the Kuhn—Tucker theorem, there 
exist values of Lagrange multipliers a = aKT for which 
the minimum of (3) equals the minimum of (1), under 
constraints (2). To find the optimal w and £, we will do 
the following; first, minimize (3) in w and f and then 
maximize it in a. Notice that for any fixed values of 
a the minimum of (3) (in w and £) is less than or 
equal to the value of the optimization problem (1)- 
(2), and equality is attained when a = aKT. By doing 
this, we will therefore find the solution to our original 
constrained minimization problem (l)-(2). 

Differentiating (3) in w, we obtain the condition 

2aw — >J OLtxt = 0, 

i.e., 

w 
1    T 

(4) 
t=\ 

(Lagrange multipliers are usually interpreted as re- 
flecting the importance of the corresponding con- 
straints, and equation (4) shows that iu is proportional 
to the linear combination of xt, each of which is taken 
with a weight proportional to its importance.) Substi- 
tuting this into (3), we obtain 

1      T T 

— £ agat(xa-xt) + Y,tf 4a «,<=! t=l 

->     / T \      (      T \T T 

U=l t=l t=l t=l 
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T T T 1 
= ~4^ J2 asat{x8 •xt) + yj>2 $ + ]T yt<*t ~ YJ 

a<&" 
s,t=l t=\ t=l t=\ 

Differentiating (5) in £t, we obtain 

6 = ^,   t = i,...,r 

(5) 

(6) 

(i.e., the importance of the ith constraint is pro- 
portional to the corresponding residual); substitution 
into (5) gives 

T 1   T T 

-j-^2asat(x8-xt)-jYja't+Ylytat-     W 
4a s,t=l t=i t=i 

Denoting K as the T x T matrix of dot products 

and differentiating in at, we obtain the condition 

which is equivalent to 

a = 2a(K + o/)_1y. 

Recalling (4), we obtain that the prediction y given by 
the Ridge Regression procedure on the new unlabeled 
example x is 

w x= l^^"'*') 'x= -^a-k = y'{K + aI)  xfc, 

where k = (fa,..., kr)' is the vector of the dot prod- 
ucts: 

kt:=xt-x,  t = l,...,T. 

Lemma 1 RR 's prediction of the label y of a new un- 
labeled example x is 

y'(K + al)-xk, (8) 

where K is the matrix of dot products of the vectors 
XI,...,XT in the training set, 

KSit = 1C(xs,xt),  s = l,...,T, t = l,...,T, 

k is the vector of dot products of x and the vectors in 
the training set, 

kt :=K(xt,x),  t=l,...,T, 

andK.(x,x') = x-x' is simply a function which returns 
the dot product of the two vectors, x and x'. 

3    LINEAR REGRESSION IN 
FEATURE SPACE 

When JC(xi,Xj) is simply a function which returns the 
dot product of the given vectors, formula (8) corre- 
sponds to performing linear regression within the input 
space K" denned by the examples. If we want to con- 
struct a linear regression in some feature space, we first 
have to choose a mapping from the original space X 
to a higher dimensional feature space F (cj>: X -> F). 
In order to use Lemma 1 to construct the regression in 
the feature space, the function K. must now correspond 
to the dot product <j>(xi) • 4>(XJ). It is not necessary to 
know 4>(x) as long as we know K,(xi,Xj) = <j>(xi)-<t>(xj). 
The question of which functions K correspond to a dot 
product in some feature space F is answered by Mer- 
cer's theorem and addressed by Vapnik [9] in his dis- 
cussion of support vector methods. As an illustration 
of the idea, an example of a simple kernel function 
is presented here. (See Girosi [4].) Suppose there is 
a mapping function 0 which maps a two-dimensional 
vector into 6 dimensions: 

^:(»1,a2)^((x1)2
>(«2)a

>^a:1>V2a!
a
I^xV,l), 

then dot products in F take the form 

(<t>(x) ■ m) 

= (xW)2+(*2)V)2+2*y 
+2x2y2 + 2xV xV + 1 

= ((x-y) + l)2. 

One possible kernel function is therefore ((x ■ y) +1)2. 
This can be generalised into a kernel function of the 
form 

K(x,y) = ((x-y) + l)d, 

and more than 2 dimensions. 

The use of kernel functions allows us to construct a 
linear regression function in a high dimensional feature 
space (which corresponds to a non-linear regression in 
the input space) avoiding the curse of having to carry 
out computations in the high dimensional space. In 
particular, kernel functions are a way to combat the 
curse of dimensionality problems such as those faced in 
Drucker et al. [2], where a regression function was also 
constructed in a feature space, but computations were 
carried out in the high dimensional space, leading to 
huge number of parameters for non-trivial problems. 

For more information on the kernel technique, see Vap- 
nik [8, 10, 9] and Wahba [11]. 
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4    MULTIPLICATIVE KERNELS 

Before indicating how ANOVA decomposition can be 
used to form kernels, a brief description is needed of 
the family of kernels to which the ANOVA decompo- 
sition can be applied, this being the family of multi- 
plicative kernels. This refers to the set of kernels where 
the multi-dimensional case is calculated as the prod- 
uct of the one-dimensional case. That is, if the one- 
dimensional case is ^(a;1,?/'), then the n-dimensional 
case is 

n 

£n(x,y) = '[[k(xi,yi). 
i=l 

One such kernel (to which the ANOVA decomposition 
is applied here) is the spline kernel with an infinite 
number of nodes (see Vapnik [8, 10] and Kimeldorf 
and Wahba [5]). A spline approximation which has an 
infinite number of nodes can be defined on the interval 
(0, o), 0 < a < oo, as the expansion 

pa d 

f(x) = /   a{t)(x - t)d+dt + V aix\ 

where a*, i = 0,... ,d, are unknown values, and a(t) 
is an unknown function which defines the expansion. 
This can be considered as an inner product, and the 
kernel which generates splines of dimension d with an 
infinite number of nodes can be expressed as 

kd(x,y)= I (x-t)d
+(y-t)d

+dt + f]xryr. 

Note that when t > min(x, y) the function under the 
integral sign will have value zero. It is therefore suffi- 
cient only to consider the interval (0, min(a;, y)), which 
makes the formula above equivalent to 

r=0 
2d - r + 1 

x-y\ 

+5>v- 
r=0 

In particular, for the case of linear splines (d = 1) we 
have : 

i  /      \                      1.         i    .   /      v9     min(x,y)3 

ki(x,y) = 1 + xy + -\y - x|min(x,y)1 + y-^-- 

5    ANOVA DECOMPOSITION 
KERNELS 

The ANOVA decomposition kernels are inspired by 
their namesake in statistics, which analyses different 
subsets of variables. The actual decomposition can be 
adapted to form kernels (as in, e.g., Vapnik [10]) which 
involve different subsets of the attributes of the exam- 
ples up to a certain size. There are two main reasons 
for choosing to use ANOVA decomposition. Firstly, 
the different subsets which are considered may group 
together like variables, which can lead to greater pre- 
dictive power. Also, by only considering some subsets 
of the input parameters, ANOVA decomposition re- 
duces the VC dimension of the set of functions that 
you are considering, which can avoid overfitting your 
training data. 

Given a one-dimensional kernel A;, the ANOVA kernels 
are defined as follows: 

>Ci(x,y)=   J2   k(xk,yk), 
l<k<n 

>C2(x,y)=      £      k{xk\y^)k{xk\yk% 
l<*i<*2<n 

. . . , 

>Cn(x,y) = k(xk\yk>)...k(xk»,yk"). 

From Vapnik [10] the following recurrent procedure 
can be used when calculating the value of K.n(x,y). 
Let 

£'(*,») = $>(*',»'))' 
t=i 

and K.o(x,y) = 1; then 

>Cp(x,y)= £ k{xk\yk*)...k(xk',vk>), 
l<ki<k2<-<kp<n 

p B = l 

For the purposes of this paper, when using kernels pro- 
duced by ANOVA decomposition, only the order p is 
considered: 

K{x,y) =K.p(x,y). 

An alternative method of using ANOVA decomposi- 
tion would be to consider order p and all lower orders 
(as in Stitson [7]), i.e., 

v 
£(x,y) = Y^£i(x,y)- 

i=l 
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6    EXPERIMENTAL RESULTS 

Experiments were conducted on the Boston Housing 
data set2. This is a well known data set for testing 
non-linear regression methods; see, e.g., Breiman [1] 
and Saunders [6]. The data set consists of 506 cases 
in which 12 continuous variables and 1 binary vari- 
able determine the median house price in a certain 
area of Boston in thousands of dollars. The continuous 
variables represent various values pertaining to differ- 
ent locational, economic and structural features of the 
house. The prices lie between $5000 and $50,000 in 
units of $1000. Following the method used by Drucker 
et al. [2], the data set was partitioned into a train- 
ing set of 401 cases, a validation set of 80 cases and 
a test set of 25 cases. This partitioning was carried 
out randomly 100 times, in order to carry out 100 tri- 
als on the data. For each trial the Ridge Regression 
algorithm was applied using: 

• a kernel which corresponds to a spline approxima- 
tion with an infinite number of nodes, 

• the same kernel but with the ANOVA decompo- 
sition technique applied, 

• and polynomial kernels. 

For each kernel the set of parameters (the order of 
spline/degree of polynomial and the value of coeffi- 
cient a) was selected which gave the smallest error on 
the validation set, and then the error on the test set 
was measured. This experiment was then repeated us- 
ing a support vector machine (SVM), with the same 
kernels and exactly the same 100 training files (see 
Stitson [7] for full details). As an illustration of the 
number of parameters which were considered by the 
Ridge Regression Algorithm (and the SVM), consider 
the polynomial kernel which was outlined earlier, us- 
ing a degree of 5. This maps the input vectors into a 
high dimensional feature space which is equivalent to 
evaluating 135 = 371,293 different parameters. 

The results obtained from the experiments are shown 
in Table 1. The measure of error used for the tests 
was the average squared error. For each of the 100 
test files, the algorithm was run and the square of the 
difference between the predicted and actual value was 
taken. This was then averaged over the 25 test cases. 
This produces an average error for each of the 100 test 

files, and an average of these were taken, which pro- 
duces the final error which is quoted in the 3rd column 
of the table. The variance measure in the table is the 
average squared difference, between the squared error 
measured on each sample and the average squared er- 
ror. 

There are two additional results which should be noted 
here. One is from Breiman [1] using bagging with av- 
erage squared error of 11.7, and one from Drucker et 
al. [2] using Support Vector regression with polynomial 
kernels with average squared error of 7.2. The result 
obtained by Drucker et al. is slightly better than the 
one obtained here using a similar machine; this may 
be, however, due to the random selection of the train- 
ing, validation and testing sets. 

7    COMPARISONS 

In this section we will give a comparison of the results 
of this paper with the known results. 

7.1    SV MACHINES 

In this subsection we describe in more detail the con- 
nection of the approach of this paper with the Support 
Vector Machine. 

Our optimization problem (minimizing (1) under con- 
straints (2)) is essentially a special case of the following 
general optimization problem: minimize the expres- 
sion 

under the constraints 

Vt-wxt<e + G,    t=l,...,T, (10) 

wxt -yt < e + &>    t = l,...,T; (11) 

2 Available by anonymous FTP from: 
ftp://ftp.ics.uci.com/pub/ 
machine-learning-databases/housing. 

e > 0 and k G {1,2} are some constants. This opti- 
mization problem (along with a similar problem cor- 
responding to Huber's loss function) is considered in 
Vapnik [10], Chapter 11 (Vapnik, however, considers 
more general regression functions of the form w-x + b 
rather than w • x; the difference is minor because we 
can always add an extra attribute which is always 1 to 
all examples). 

Our problem (l)-(2) corresponds to the problem (9)- 
(11) with fc = 2, e = 0 and C = 1/a. Vapnik [10] gives 
a dual statement of his, and a fortiori our, problem; he 
does not reach, however, the closed-form expression (8) 
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Table 1: Experimental Results on the Boston Housing Data 

METHOD KERNEL SQUARED ERROR VARIANCE 
Ridge Regression 
Ridge Regression 
Ridge Regression 

Polynomial 
Splines 
ANOVA Splines 

10.44 
8.51 
7.69 

18.34 
11.19 
8.27 

SVM [7] 
SVM 
SVM 

Polynomial 
Splines 
Anova Splines 

8.14 
7.87 
7.72 

15.13 
12.67 
9.44 

(because he was mainly interested in positive values of 
e). 

As we mentioned before, our derivation of formula (8) 
follows [8]. The dual Ridge Regression is also known in 
traditional statistics, but statisticians usually use some 
clever matrix manipulations rather than the Lagrange 
method. Our derivation (modelled on Vapnik's) gives 
some extra insight: see, e.g., equations (4) and (6). For 
an excellent survey of connections between Support 
Vector Machine and the work done in statistics we 
refer the reader to Wahba [11, 12] and Girosi [4]. 

7.2    KRIEGING 

Formula (8) is well known in the theory of Krieging; 
in this subsection we will explain the connection for 
readers who are familiar with Krieging. Consider the 
Bayesian setting where: 

• the vector w of weights is distributed according to 
the normal distribution with mean 0 and covari- 
ance matrix ^.J; 

• yt = w-xt + et,t = 1,... ,T, where et are random 
variables distributed normally with mean 0 and 
variance 2- 

Then the optimization problem (1) under the con- 
straints (2) becomes the problem of finding the pos- 
terior mode (which, because of our normality assump- 
tion, coincides with the posterior mean) of w; there- 
fore, formula (8) gives the mean value of the random 
variable w ■ x (which is the "clean version" of the label 
y = w • x + e of the next example). Notice that the 
random variables j/i,... ,yr,w ■ x are jointly normal 
and the covariances between them are 

cov(ys,yt) = cov(w-xs + es,w-xt+et) 

and 

1 /        ^    1 

2~a^-Xt) + 2 

cov(yt,w • x) = cov(iu ■ xt + et,w ■ x) = —(xt -x). 
2a 

In accordance with the Krieging formula the best pre- 
diction for w ■ x will be 

which coincides with (8). 

8    CONCLUSIONS 

A formula for Ridge Regression (which included Least 
Squares as a special case) in dual variables was de- 
rived using the method of Lagrange multipliers. This 
was then used to perform linear regression in a feature 
space. Therefore, we once more showed how the prob- 
lem of learning in a very high dimensional space can 
be solved by using kernel functions. This allowed the 
algorithm to overcome the "curse of dimensionality" 
and run efficiently, even though a very large number 
of parameters were being considered. Experimental re- 
sults show that Ridge Regression performs well. The 
results also indicate that applying ANOVA decompo- 
sition to a kernel can achieve better results than using 
the same kernel without the technique applied. Both 
Ridge Regression and the Support Vector method gave 
a smaller error when using ANOVA splines compared 
to the other spline kernel. 

A weak part of our experimental section is that, 
though the Boston housing data is a useful benchmark, 
we have not applied our algorithm to a wider range of 
practical problems. This is what we plan to do next. 

In order to confirm that ANOVA kernels can outper- 
form kernels in their orginal form, the ANOVA de- 
composition technique should be applied to other mul- 
tiplicative kernels. The technique of applying kernel 
functions to overcome problems of high dimensional- 
ity should also be investigated futher, to see if it can 
be applied to any other algorithms which prove com- 
putationally difficult or impossible when faced with a 
large number of parameters. 
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We feel that a very interesting direction of developing 
the results of this paper would be to combine the dual 
version of Ridge Regression with the ideas of Gam- 
merman et al. [3] to obtain a measure of confidence 
for predictions output by our algorithms. We expect 
that in this case simple closed-form formulas can be 
obtained. 
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Abstract 

Production scheduling, the problem of se- 
quentially configuring a factory to meet 
forecasted demands, is a critical problem 
throughout the manufacturing industry. The 
requirement of maintaining product inven- 
tories in the face of unpredictable demand 
and stochastic factory output makes stan- 
dard scheduling models, such as job-shop, 
inadequate. Currently applied algorithms, 
such as simulated annealing and constraint 
propagation, must employ ad-hoc methods 
such as frequent replanning to cope with un- 
certainty. 

In this paper, we describe a Markov Deci- 
sion Process (MDP) formulation of produc- 
tion scheduling which captures stochasticity 
in both production and demands. The solu- 
tion to this MDP is a value function which 
can be used to generate optimal scheduling 
decisions online. A simple example illustrates 
the theoretical superiority of this approach 
over replanning-based methods. We then de- 
scribe an industrial application and two rein- 
forcement learning methods for generating an 
approximate value function on this domain. 
Our results demonstrate that in both deter- 
ministic and noisy scenarios, value function 
approximation is an effective technique. 

1    Introduction 

Production scheduling is a critical problem through- 
out the manufacturing industry. In this paper, we ar- 
gue that in order to deal with uncertainty in factory 

" Also at Schenley Park Research, Inc. 

production and demands, a Markov Decision Process 
(MDP) formulation is superior to the approaches cur- 
rently in use. Our paper is organized as follows: 

• Section 2 describes the abstract task of production 
scheduling and the sources of uncertainty which 
make the task difficult for current approaches. It 
also gives details of the particular scheduling in- 
stance we have worked on in collaboration with a 
major U.S. food manufacturer. 

• Section 3 introduces the MDP model of the 
scheduling task and its solution based on value 
functions. A simple example illustrates that in 
the presence of uncertainty, the MDP model pro- 
duces the optimal solution where both open-loop 
and closed-loop planners do not. We then discuss 
two reinforcement learning algorithms, Memory- 
based RTDP and ROUT, which are applicable for 
solving large-scale MDPs by value function ap- 
proximation. 

• Section 4 presents experimental results with 
ROUT and Memory-based RTDP on two some- 
what simplified versions of the real-world man- 
ufacturing task. The results compare favorably 
to greedy and simulated annealing algorithms 
in both noisy and (surprisingly) deterministic 
scheduling scenarios. 

• Finally, Section 5 discusses our results, related 
work, and promising future directions. 

2    Production Scheduling 

2.1    Problem Specification 

Production scheduling is the problem of deciding how 
to configure a factory sequentially to meet demands. 
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predicted inventory 

with no scheduled production 

zero inventory 

Figure 1: A demand curve for one product (see text 
for explanation) 

Figure 2: Factory layout (see text for explanation) 

We restrict our attention here to a type of produc- 
tion scheduling called "make to stock." We assume 
we have a modest number of products (2-100) and 
must produce enough of each to keep warehouse stocks 
high enough to satisfy customer requests for bulk ship- 
ments. This production model is common for most 
goods found in a supermarket. Automobile produc- 
tion, by contrast, is typically not scheduled under this 
model since cars are assembled individually with dif- 
ferent options depending on specific customer orders. 

An instance of the production scheduling problem is 
composed of five parts: 

Machines and products. This is a list of what ma- 
chines are present in the factory, and what prod- 
ucts can be made on the machines. There may 
be complex constraints such as "machine A can 
only make product 1 when machine B is not mak- 
ing product 3." A complete, legal assignment of 
products onto the set of machines is called a con- 
figuration. There is also a special "closed" con- 
figuration which represents a decision to shut the 
factory down. 

Changeover times. It generally takes a certain 
amount of time to switch the factory from one 
configuration to another. During that time, there 
is no production. The problem definition includes 
a (possibly stochastic) estimate of how long it 
takes to change each configuration to each other 
configuration. 

Production rates. Each configuration produces a 
set of products at a certain rate. There may be 
dependencies between the machines. For exam- 
ple, machine B may produce product 2 faster if 
machine A is also producing product 2. The ac- 
tual production rates in the factory may be very 
stochastic; for example, some machines may jam 
frequently, causing irregular delays on the produc- 
tion line. 

Inventory demand curves. At the time a schedule 
is created, a demand curve for each product is 
available from a corporate marketing and fore- 
casting group. As shown in Fig. 1, each curve 
starts at the left with the current inventory of 
that product. The inventory decreases over time 
as future product shipments are made and eventu- 
ally goes below zero if no new production occurs. 
To avoid penalties, the scheduler should call for 
more production before the demand curve falls be- 
low zero. These curves may also change over time 
as new information about future product demand 
becomes available. 

Schedule costs. Running a schedule generates a dol- 
lar measure of net profit or loss. This includes the 
costs of running the factory, paying the workers, 
purchasing the raw materials, and carrying inven- 
tory at the warehouse, which are all real dollar 
costs. It also includes heuristic costs such as an 
estimate of the damage done by failing to fill a 
customer request when the warehouse inventory 
goes to zero. Finally, it includes the revenue gen- 
erated from selling product to a customer. The 
final cost (or profit) of a schedule is the sum of 
all these real dollar costs, heuristic penalties, and 
revenue. 

Given this problem description, the task of production 
scheduling is to maximize expected profit by selecting 
factory configurations over a period of time. In cases 
where the production rates and demand curves are as- 
sumed deterministic, the problem reduces to finding 
the optimal open-loop schedule: that is, find a fixed 
sequence of configurations that maximizes profit.  In 
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the general stochastic case, the optimal choice of con- 
figuration at time t will depend on the outcomes of 
earlier configurations, so the optimal solution has the 
form of a closed-loop scheduling policy. 

2.2 A Real Production Scheduling Problem 

We have devoted considerable effort to optimizing the 
production scheduling of a particular U.S. factory. The 
physical layout of one production line in the factory is 
shown in Fig. 2. Raw materials enter the factory and 
are processed using a (proprietary) system that creates 
up to twelve output streams of finished products si- 
multaneously. Depending on how numerous machines 
and links between machines are configured, the rate 
of production of each of the twelve kinds of products 
varies. Production costs (caused by fuel uses, person- 
nel costs, and wasted material) also vary according to 
the factory configuration. 

Taking into account all the constraints between ma- 
chines in the factory, there are about 100,000 different 
possible configurations. Factories of this type typically 
produce on the order of $50 million to $2 billion worth 
of product annually, so the opportunities for cost sav- 
ings via improved scheduling are large. 

2.3 Conventional Solution Methods 

Production scheduling is difficult to model within the 
standard job-shop scheduling paradigm. In job-shop 
scheduling, the problem is to complete a batch of 
atomic jobs under ordering constraints and constraints 
on which machines can handle which jobs, and at 
what speeds and costs. This model cannot readily be 
adapted to handle production rate interdependencies 
among machines, the desire to keep inventory levels 
above zero at all times (rather than just completing 
jobs by their deadlines), and stochasticity of demand 
forecasts and production. 

Constraint propagation methods (e.g. [Zweben and 
Fox, 1994]) are commonly used to solve industrial 
problems. They operate by efficiently managing con- 
straints on production deadlines and machine capabil- 
ities. Solution methods tend to search by iteratively 
fixing violated constraints, applying heuristics to guide 
the fixes. Constraint propagation focuses primarily on 
generating feasible schedules, and only secondarily on 
cost optimality. This is appropriate when feasibility is 
difficult, but not as good in "make to stock" scenarios 
where feasibility is easy and cost reduction is the main 
goal. Constraint propagation will not receive further 
consideration here for that reason. 

When cost optimality is the primary scheduling objec- 
tive, global optimization techniques such as simulated 
annealing (SA) are a good option. These methods 
search a space of fully-instantiated schedules to find 
the best ones. However, neither constraint propaga- 
tion nor simulated annealing is naturally formulated 
to handle stochastic problems. They can be modified 
for nondeterminism in two ways: 

• Optimization open-loop: Search for the fixed 
schedule s which maximizes the average profit 
over several independent stochastic simulations of 
s. Here, all the computation is spent at the be- 
ginning, and the resulting best schedule is exe- 
cuted without observing actual production statis- 
tics along the way. This algorithm suffers because 
it cannot update the schedule to account for vari- 
ances in actual production. To compensate for 
this inadequacy, "replanning" methods are usu- 
ally adopted. 

• Replanning closed-loop: When possible, this 
method starts with the open-loop stochastic eval- 
uation from the previous option. For feasibility- 
based methods it must start with a deterministic 
version of the problem. In either case, it uses its 
first schedule only to make some initial scheduling 
decisions. Then, whenever the result of an action 
with a stochastic outcome is observed, it replans 
the remainder of the schedule in order to make 
new decisions. 

The closed-loop method can produce good results. 
However, it is computationally quite expensive. More- 
over, although it replans on every step, its policy does 
not take advantage of the fact that it will be able to 
replan in the future—and as we show in Section 3.2 
below, this dooms it to being unable to attain the op- 
timal profit, no matter how much computation time it 
is allowed. 

3    Production Scheduling with Value 
Functions 

This section describes a principled approach to gener- 
ating closed-loop production scheduling policies with 
reinforcement learning methods. The approach is 
based on representing the problem as an MDP and rep- 
resenting the solution as an approximate value func- 
tion. 
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3.1    Production Scheduling as an MDP 

Abstractly, a Markov Decision Process (MDP) is de- 
fined by a state space X, action set A, immediate 
reward function R(x,a), and probabilistic transition 
model P{x'\x, a). The solution to the MDP is a policy 
IT* : X -+ A which, if followed by the agent, will max- 
imize the expected long-term sum of rewards attain- 
able starting from any state x. Dynamic programming 
methods tabulate this optimal cumulative reward in 
the optimal value function V*{x), which is the unique 
solution to the Bellman equations [Bellman, 1957]: 

V*(x) = m^[R(x,a)+ V) P(x'\x,a)V*(x'))  (1) 
aeA \ ££x I 

Once V* is computed, the optimal policy n* is imme- 
diately obtained by choosing any action which instan- 
tiates the max in Eq. 1. 

The production scheduling problem is modeled very 
naturally as a Markov Decision Process, as follows: 

• The system state is defined by the current time 
t € 0...T; the current inventory of each prod- 
uct pi...pN\ and, if there are configuration- 
dependent changeover times, the current factory 
configuration. 

• The action set consists of all legal factory configu- 
rations. We assume a discrete-time model, so the 
configuration chosen at time t will run unchanged 
until time t + 1. 

• The stochastic transition function applies a simu- 
lation of the factory to compute the change in all 
inventory levels realized by running configuration 
ct for one timestep. This model handles random 
variations in production rates straightforwardly; 
it also handles changeover times by simply de- 
creasing production in proportion to the (possibly 
stochastic) downtime. The time t is incremented 
on each step, and the process terminates when 
t = T. 

• The immediate reward function is computed from 
the inventory levels, based on the demand curve 
at time t. It incorporates the revenues from pro- 
duction, penalties from late production, employee 
costs, operating costs, raw material costs, and 
changeover cost incurred during the period. On 
the final time period (transition from t — T-1 to 
T), a terminal "reward" assigns additional penal- 
ties for any outstanding unsatisfied demands. 

The MDP representation suits this problem very well, 
for two main reasons. First, in contrast to other tra- 
jectory optimization tasks (e.g., the Travelling Sales- 
man Problem), the utility of future decisions does 
not depend on the entire sequence of previous action 
choices and outcomes, but only on a relatively compact 
state description—the current time and inventory lev- 
els. Simulated annealing and other global optimization 
methods do not require this Markov property—nor can 
they exploit it. Second, the model fully represents un- 
certainty in production rates and changeover times. 
As defined here, the model also handles noise in the 
demands if that noise is time-independent, but it can- 
not account for the possibility of the demand curves 
being randomly updated in the middle of a schedule, 
since that would make the MDP transition probabili- 
ties nonstationary. 

The value function for this MDP specifies a closed- 
loop scheduling policy which makes optimal decisions 
with full foresight of the remaining uncertainty in the 
process. No method based on global optimization can 
make this claim, even if replanning is allowed, as we 
now illustrate. 

3.2    Illustrative Example 

This example illustrates how MDP solutions optimally 
solve sequential decision problems that methods based 
on replanning cannot. Suppose we are asked to sched- 
ule the production of 12 units of a single product over 
two days. On each day we can choose one of the fol- 
lowing three configurations: 

Configuration with               gets 
probability    production 

Cost 

1 0.5                   3 
0.5                  6 

$1 

2 1.0                  6 $4 
3 1.0                  9 $8 

In addition to the per-configuration costs listed in the 
table, there is an additional cost of $8 for each unit 
under 12 not produced at the end of two days. The 
following table shows the expected cost of each of the 
possible schedules. (Note that in this example, the 
expected cost of a schedule [ab] is the same when the 
sequence is reversed, [ba], so redundant schedules are 
omitted from the table.) 
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Config Config Expected Missed Total 
Sequence Cost Production Cost Cost 

1 1 $2 0.25*$48 + 0.5*$24 $26 
1 2 $5 0.5*$24 $17 
1 3 $9 $0 $9 
2 2 $8 $0 $8 
23 $12 $0 $12 
33 $16 $0 $16 

Based on these costs, a replanning-based scheduler will 
choose sequence [2 2]. It will execute configuration 2 
on the first day, and then have an opportunity to re- 
plan for day 2 based on the results of day 1. Since 
the production from configuration 2 on day 1 is de- 
terministic (6 units), the scheduler will again choose 
configuration 2 on day 2, thereby completing the 2-day 
production run with a total cost of $8. 

The replanning-based scheduler makes a suboptimal 
decision on day 1 because it doesn't "know" that it 
will be given the chance to replan after the first day's 
production is observed. By contrast, with the ability 
to exploit this knowledge, the MDP solution makes the 
correct scheduling decision of action 1 on day 1. The 
following table evaluates the choices for day 1 by show- 
ing all the possible outcomes followed by the optimal 
day 2 choice for each outcome. 

day 1 
config 

with 
prob 

units 
made 

day 2 
config 

with 
prob 

units 
made 

expected 
cost 

1 0.5 
0.5 

3 
6 

3 
2 

1.0 
1.0 

9 
6 

.5*9 + .5*5 
= $7 

2 1.0 6 2 1.0 6 = $8 
3 1.0 9 1 0.5 

0.5 
3 
6 

.5*9 + .5*9 
= $9 

By considering all the possible outcomes and the opti- 
mal decisions that will be made for each one, the MDP 
solution chooses configuration 1 on the first day and 
achieves an expected cost of 7 as compared to 8 ob- 
tained by replanning. This type of tradeoff exists in 
real factories as well. There is often a choice of how 
fast to run the production line that trades off higher 
production rates against higher unit costs. 

3.3    Value Function Approximation 

In practical scheduling problems, tabulating V*(x) 
for every possible state of the factory is completely 
intractable. Instead, we use reinforcement learning 
methods to represent V* compactly with a function 
approximator, such as global or local polynomial re- 
gression. The two methods we tested are Memory- 
based RTDP and ROUT. 

3.3.1    Memory-Based RTDP 

Memory-based RTDP is a reinforcement learning ap- 
proach that is closely related to RTDP (Real-Time 
Dynamic Programming) [Barto et al, 1995] and 
to Tesauro's application of TD(0) to the game of 
backgammon [Sutton, 1988, Tesauro, 1992]. It is also 
similar to the instance-based approach to represent- 
ing value functions used in [Peng, 1993]. Trajectories 
through the MDP model are generated repeatedly, us- 
ing the current approximation of the value function to 
guide standard Boltzmann-style exploration [Barto et 
al, 1995]. At each step of each trajectory, a one-step 
backup operation (Eq. 1) is performed and the func- 
tion approximator is updated. 

In Memory-based RTDP, the value function is repre- 
sented by a nonparametric memory-based function ap- 
proximator [Cleveland and Delvin, 1988, Moore et al, 
1995, Atkeson et al, 1995]. Memory-based learning 
simply accumulates training data points, rather than 
running a training algorithm on them. Then whenever 
a query is made, the approximator's output is com- 
puted by a weighted average or weighted polynomial 
regression over nearby points in memory. 

Achieving good performance with Memory-based 
RTDP requires an appropriate choice of the Boltz- 
mann exploration temperature and the local regression 
kernel width. These values were tuned empirically to 
obtain the results presented in Section 4. Although the 
training points generated by Memory-based RTDP's 
early trajectories are undoubtedly inaccurate samples 
of V*, we did not find it necessary to include an ex- 
plicit "forgetting" mechanism in the learning; the bad 
points are quickly overwhelmed by later, more accu- 
rate samples. 

3.3.2    ROUT 

ROUT is an active learning algorithm for value func- 
tion approximation that is specifically designed for the 
subclass of acyclic MDPs [Boyan and Moore, 1996]. 
Note that the scheduling MDP is certainly acyclic, 
since its state representation includes the time counter 
t. Using simulations of the process, ROUT repeatedly 
identifies a new state x at which (1) the function ap- 
proximator is currently in error, and (2) an accurate 
sample of V can be obtained from a 1-step backup. 
Unlike Memory-based RTDP and most other reinforce- 
ment learning methods, ROUT explicitly tries to pre- 
vent the function approximator from seeing any inac- 
curate samples of V*. 

Details of how ROUT identifies such states automat- 
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ically are given in [Boyan and Moore, 1996]. One by 
one, these useful states are accumulated into a train- 
ing set of accurate samples of V* {x). The training set 
grows backwards from the terminal states. As soon as 
the start state xo is itself added to the training set, 
ROUT declares victory, outputs its learned training 
set and learned approximation of V*, and terminates. 

If the function approximator cannot represent V* ac- 
curately, then ROUT may become stuck, repeatedly 
adding points near the terminal states and never pro- 
gressing backwards. However, if the function approx- 
imator can represent V* to within the specified tol- 
erance, then ROUT can be guaranteed to eventually 
find it. For ROUT to find V* efficiently, the func- 
tion approximator must extrapolate well from a small 
training set. 

4    Experimental Results 

We have experimented with two instances of the real- 
world production scheduling task described in Sec- 
tion 2.2. The first instance is heavily simplified so 
that the exact optimal closed-loop scheduling policy 
can be calculated tractably. The second instance is a 
more realistic model, for which only heuristic solutions 
are available. 

4.1    Simplified Scheduling Instance 

In the simplified instance, the task is to schedule 8 
weeks of production; however, configurations may be 
changed only at 2-week intervals, and only 17 config- 
uration choices are available. Of these 17, nine have 
deterministic production rates; the other eight each 
have two stochastic outcomes, producing only 1/3 of 
their usual amount with probability 0.5. With a to- 
tal of 9 x 1 + 8 x 2 = 25 outcomes possible from ev- 
ery state, there are 254 = 390,625 possible trajecto- 
ries through the space. The optimal policy can be 
computed by tabulating V*{x) at every possible in- 
termediate state x of the factory, of which there are 
1 + 25 + 252 + 253 = 16,276. The optimal policy re- 
sults in an expected cumulative reward of -S22.8M. 
By contrast, a random schedule attains a reward of 
-S923M on average! A greedy policy, which at each 
step selects a configuration to maximize only the one- 
step reward from the current state, attains —S97.9M. 

We applied ROUT to this instance, trying three 
different function approximators: 1-nearest neigh- 
bor, locally-weighted linear regression, and global 
quadratic regression. KD-trees were used to keep the 

computation efficient [Moore et al., 1997]. For the lo- 
cally weighted regression, a kernel width of 2-3 of the 
range of each input dimension in the training data was 
used. ROUT's exploration and tolerance parameters 
were tuned manually. Table 1 summarizes the results. 

When nearest-neighbor was used as the function ap- 
proximator, ROUT did not obtain sufficient general- 
ization from its training set and failed to terminate 
within a limit of several hours. However, with both 
local linear and global quadratic regression models, 
ROUT did run to completion and produced an approx- 
imate value function which significantly outperformed 
the greedy policy. Moreover, over half of the ROUT 
runs did indeed terminate with the optimal closed-loop 
scheduling policy. In these cases, ROUT's final self- 
built training set for value function approximation con- 
sisted of only about 100-150 training points—a sub- 
stantial reduction over the 16,276 required for full tab- 
ulation of V*. ROUT's total running time (w 1 hour 
on a 200 MHz Pentium Pro) was roughly half of that 
required to enumerate V* manually. 

From these preliminary results, we conclude that 
ROUT does indeed have the potential to approximate 
V* extremely well, given a suitable function approx- 
imator for the domain. However, since it runs quite 
slowly on even this simplified problem, we believe 
ROUT will not scale up to practical scheduling in- 
stances without further refinements. 

4.2    Practical Scheduling Instance 

In this section we present experimental results on a 
larger scheduling problem. In doing so, we lose the 
ability to determine the optimal policy for compari- 
son. However, it gives a better demonstration of how 
the competing methods perform on industrial-scale 
scheduling problems. The task is to schedule eight 
weeks of production at one week intervals. There are 
eight products, eight machines, and a total of 421 le- 
gal configurations to consider, including the "closed" 
configuration. 

Our experiments consider both deterministic and noisy 
versions of the problem. To build the deterministic 
version of the problem, we ran long (stochastic) sim- 
ulations for each of the 421 actions and cached the 
mean observed production rate for each. For the noisy 
versions, we could have used the noisy outcomes di- 
rectly from the stochastic simulation, but instead we 
simply added Gaussian noise to the cached, determin- 
istic production rates. This enabled our experiments 
to run significantly faster, and also allowed us to eas- 
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Algorithm 
Optimal 
Random 
Greedy 
ROUT + global quadratic 
ROUT + local linear 

Mean Profit     95% C.I. 
-22.8 

-923.2 
-97.9 
-57.0 
-45.0 

±58.7 
±15.1 
±23.5 
±16.9 

optimal runs 
1 
0 
0 

10/16 
10/16 

Table 1: Results for 4-timestep, 17-configuration stochastic scheduling problem. 

ily generate empirical results with varying amounts of 
noise. 

Table 2 shows experimental results. The computation 
times reported are on a 200 MHz Pentium Pro. The 
first section contains results for the case where the fac- 
tory output is deterministic and known. The purpose 
of the first two lines is to delimit the range of results we 
should expect from good algorithms. The "Random" 
algorithm builds a schedule by choosing 8 configura- 
tions at random, and it loses an enormous amount of 
money. Much of the cost is due to heuristic penalties 
for failing to satisfy customer demand. 

The "Planlt" algorithm, developed by Schenley Park 
Research, is the proprietary algorithm currently used 
to schedule the real factory's production. It has sev- 
eral advantages over the other algorithms in this table. 
First, it is finely tuned to schedule this factory using 
a combination of simulated annealing, linear program- 
ming, constraint propagation, and several heuristics. 
Second, it is not restricted to choosing configurations 
for pre-discretized time steps, but can choose an ar- 
bitrary number of configurations and switch between 
them at arbitrary times. Our experience with this 
scheduler leads us to believe that the average profit 
of S13.81M is very near optimal for this instance, so it 
can be considered an unattainable upper bound for the 
other results. In particular, Planlt achieves its results 
by using an average of around 13 configurations in its 
schedules while the other algorithms are restricted to 
8 fixed-sized time steps. It usually incurs no heuristic 
penalties in its schedules, so that figure is a profit in 
real dollars. 

The simulated-annealing, greedy-exploration, and 
Memory-based RTDP algorithms are run as described 
in the previous sections. The simulated annealing runs 
made use of the successful "modified Lam" adaptive 
annealing schedule [Ochotta, 1994]. Memory-based 
RTDP used kernel regression with a kernel width of 
2-5 of the range of each state variable, and used KD- 
trees for efficiency [Moore et a/., 1997]. Boltzmann 
exploration (without cooling) was used for the deter- 

ministic case, but proved unnecessary in the stochastic 
case because the noise alone caused sufficient explo- 
ration. 

The poor result from Greedy in the deterministic case 
shows that generating trajectories based solely on the 
one-step cost of configurations is not an effective way 
to search, even when compared to a randomized search 
method such as simulated annealing. The search effi- 
ciency gained by computing a value function is shown 
by the favorable Memory-based RTDP results. They 
are obtained from only 200 trajectories through the 
state space, meaning the value function at each time 
step is represented with 200 training points. All of the 
algorithms can do better with more computation time, 
but they were cut off at 10 minutes since Planlt gets 
its results in that much time. 

The second and third sections of the table show results 
with 10% and 20% noise added. The Planlt algorithm 
cannot be run in these cases since it does not handle 
stochastic outcomes; however, we still expect its re- 
sult in the deterministic case to be a reasonable upper 
bound for the other algorithms. 

Open-loop simulated annealing means that all the 
computation is spent at the beginning and the result- 
ing best schedule is executed without observing ac- 
tual production statistics along the way. This algo- 
rithm suffers because it cannot update the schedule to 
account for variances in actual production. By con- 
trast, closed-loop simulated annealing replans the rest 
of the schedule after each week of actual production 
is observed. In order to keep the total computation 
the same, the computation allotted for each week's 
decision was divided by the number of weeks (8). 
The results show that replanning does improve over 
open loop execution. We note that all the simulated- 
annealing schedulers have high variance, which can be 
a disadvantage of using that algorithm. 

Memory-based RTDP uses its computation at the be- 
ginning to compute a value function. Each run used 
400 trajectories for these results. The value function 
determines a closed-loop policy valid for any state 
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Noise level Algorithm Mean Profit    95% C.I. 

Deterministic 
(as 10 min computation) 

Random 
Planlt 
Simulated Annealing 
Greedy + Exploration 
Memory-based RTDP 

-466.35       ±59.45 
13.81         ±0.08 
5.66         ±3.68 

-1.93         ±3.21 
7.70         ±1.57 

10% Noise 
(« 45 min computation) 

Greedy (c.l.) 
Simulated Annealing (o.l.) 
Simulated Annealing (c.l.) 
Memory-based RTDP 

-17.69         ±1.94 
6.48         ±1.21 
9.03         ±1.04 

10.16        ±0.84 

20% Noise 
(« 45 min computation) 

Greedy (c.l.) 
Simulated Annealing (o.l.) 
Simulated Annealing (c.l.) 
Memory-based RTDP 

-25.92         ±1.12 
2.55         ±1.91 
2.40         ±3.95 
7.02        ±0.67 

Table 2: Results for 8-timestep, 421-configuration scheduling problem. The numbers shown represent profits in 
millions of dollars. On the noisy problems, Memory-based RTDP is statistically better than the other algorithms 

at the 95% significance level. 

reached during actual production. As discussed ear- 
lier, it not only executes closed-loop, but also makes 
its decisions "knowing" that it will be executing closed- 
loop. The results show both a favorable expected 
profit as well as smaller variance across runs. 

5    Discussion and Future Work 

We expect Memory-based RTDP to outperform sim- 
ulated annealing on a stochastic problem based on 
the intuition from Sec. 3.2, and our experimental re- 
sults show that it does. It is interesting to observe 
that Memory-based RTDP does well against simu- 
lated annealing even in the deterministic case where 
the stochastic modeling capability of MDPs is not 
needed. This provides further evidence that search 
based on value functions can improve efficiency. While 
simulated annealing is forced to try configurations at 
random, value function based methods can explicitly 
reason about which intermediate states are good and 
which actions will reach those states. 

To our knowledge, this work represents the first appli- 
cation of reinforcement learning to production schedul- 
ing with multiple products made on multiple machines. 
The scheduling of machine maintenance is discussed 
in [Mahadevan et al., 1997], and transfer line pro- 
duction scheduling is discussed in [Mahadevan and 
Theocharous, 1998].- In their task, each product or 
sub-product is produced on a single machine and each 
machine makes a local decision on whether to produce 
one of its products or go down for maintenance.   A 

reinforcement learning approach to the Space Shuttle 
scheduling problem is described by [Zhang and Diet- 
terich, 1995]. In that framework, states are complete 
schedules and actions are modification operators ap- 
plied to the schedules. Their feature representation 
introduces noise, but the underlying problem is deter- 
ministic. 

Our empirical work to date covers stochasticity only in 
production. Another large source of uncertainty in real 
problems is the inadequacy of demand forecasts. This 
can be handled heuristically within the MDP formu- 
lation described here by the addition of appropriate 
noise to the demands during simulations. However, 
it may also be possible to gain extra efficiencies by 
incorporating demands explicitly into the MDP state 
space. Further empirical work is required to answer 
that question. 

As the size of the scheduling problem increases, it 
becomes increasingly expensive to compute the value 
function accurately. However, even an inexact value 
function can be useful as the basis for a quasi-greedy 
search or "rollout" search performed online [Tesauro 
and Galperin, 1997]. We intend to test such methods 
in future work on larger scheduling problems. 
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Abstract 

Stochastic topological models, and hidden 
Markov models in particular, are a useful tool 
for robotic navigation and planning. In previ- 
ous work we have shown how weak odometric 
data can be used to improve learning topologi- 
cal models, overcoming the common problems 
of the standard Baum-Welch algorithm. Odomet- 
ric data typically contain directional information, 
which imposes two difficulties: First, the cyclic- 
ity of the data requires the use of special circular 
distributions. Second, small errors in the head- 
ing of the robot result in large displacements in 
the odometric readings it maintains. The cumu- 
lative rotational error leads to unreliable odomet- 
ric readings. In the paper we present solutions 
to these problems by using a circular distribu- 
tion and relative coordinate systems. We validate 
their effectiveness through experimental results 
from a model-learning application. 

1   INTRODUCTION 
Directional data is information consisting of magnitude 
and direction. Such data is an integral part of important ap- 
plications in various areas of computer science in general 
and artificial intelligence in particular. In computer graph- 
ics, automatic production of pen-and-ink drawings and the 
production of animation based on magnetic trackers data 
requires statistical manipulation of directional data. In cog- 
nitive science, modeling routes chosen by animals [4] re- 
quires a similar kind of statistical manipulation. In the area 
of machine learning we often use probabilistic models for 
robot movement. Most aspects of robot movement (arm 
movement as well as the whole body movement) can be 
described in terms of location and heading change, requir- 
ing the use and manipulation of directional data. 

Probabilistic models are widely used within the AI com- 
munity. Such models may allow continuous probabilities, 
as demonstrated in work on Bayesian networks [7], hid- 
den Markov models [5, 8], probabilistic clusters [2] and 
stochastic maps [19], to name a few. However, the assump- 
tion underlying all the above work is that continuous dis- 
tributions are linear — that is — distributions that assign 
density to each point on the real line so that the area un- 
der the density curve, integrated over the whole real line, is 
l.1 Such models do not take into account directional data, 
which is inherently cyclic. Under circular distributions the 
density of any point x on the real line is the same as that of 
x + kk where k is any integer and f is some real number. 

The need for circular distributions has long been realized 
by statisticians [6], but the practice of using them has not 
found its way into the computer science community and 
to the machine learning community in particular. One of 
the goals of this paper is to point out the usefulness of one 
specific circular distribution in the context of robotics, and 
provide a short tutorial on circular distributions. 

Another special aspect of directional data is its sensitiv- 
ity to errors. As most navigators, pilots and skippers have 
experienced, a small angular deviation from the original 
course causes a big displacement at the final location. This 
problem is very prominent in mobile robots, where drifts 
and drags of the wheels and disalignment of both engines 
and floors can cause a robot to face in the wrong heading 
with respect to its own odometric readings. Odometric in- 
formation is recorded by the robot along three dimensions; 
it consists of the changes along the x and the y axis as well 
as a change in the heading of the robot within a global co- 
ordinate system. In our previous work on learning topolog- 
ical models [17] we made several assumptions about the 
odometric data: 

• All odometric measures are normally distributed. 

'Most often the distribution is Gaussian. 
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• All corridors are perpendicular to each other. 

• The robot, when collecting the data, is using the per- 
pendicularity assumption, and is collecting the data 
with respect to one global coordinate system. 

This paper demonstrates the problematic aspects of these 
assumptions and introduces our solution to the problems, 
together with preliminary results that demonstrate the ef- 
fectiveness of our solution. The rest of the paper is orga- 
nized as follows: Section 2 describes our application and 
motivates the need for circular distributions in the context 
of machine learning; Section 3 presents the von Mises dis- 
tribution, which is a circular version of the normal distribu- 
tion; Section 4 discusses the problems faced due to heading 
deviations and presents our solution to the problem; Sec- 
tion 5 presents experiments and results to demonstrate the 
usefulness of our approach; Section 6 concludes the paper. 

2   LEARNING TOPOLOGICAL MODELS 

Hidden Markov models (HMMs), as well as their gener- 
alization to models for partially observable Markov deci- 
sion processes (POMDP models), are a useful tool for rep- 
resenting environments such as road networks and office 
buildings, which are typical for robot navigation and plan- 
ning[l, 14,18]. Previous work on planning with such mod- 
els typically assumed that the model is manually provided. 
Manual acquisition of these models can be very tedious 
and hard. It is desirable to learn such models automati- 
cally, both for robustness and in order to cope with new and 
changing environments. Since POMDP models are a simple 
extension of HMMs, they can, theoretically, be learned with 
a simple extension to the Baum-Welch algorithm [15] for 
learning HMMs. However, without a strong prior constraint 
on the structure of the model, the Baum-Welch algorithm 
does not perform very well: it is slow to converge, requires 
a great deal of data, and often becomes stuck in local max- 
ima. In previous work [16, 17] we demonstrated how the 
simple Baum-Welch algorithm can be enhanced with weak 
local odometric information to learn better models faster, 
under the assumption listed above. For the sake of com- 
pleteness, we briefly review the essentials of this work here. 

A robot moves through the corridors in an office environ- 
ment. Low-level software provides a level of abstraction 
that allows the robot to move through hallways from inter- 
section to intersection and turn ninety degrees to the left 
or right. At each intersection, ultrasonic data interpretation 
lets the robot observe, in each of the four cardinal direc- 
tions, whether there is an open space, a door, a wall, or 
something unknown. The robot also has encoders on its 
wheels that allow it to estimate its current pose (position 
and orientation) with respect to its pose at the previous in- 
tersection. Of course, the action and perception routines 

and the odometric measures are all subject to error. The 
learning task is to deduce a model from the recorded obser- 
vations and odometric information. 

Our learning algorithm gets as an input an experience se- 
quence E of observations and odometric readings, and pro- 
duces as output an HMM2, A, of the environment, such that 
the likelihood, Pr(E|A), is locally maximized. Formally, 
the standard HMM is defined as a tuple A = (S, O, A, B, n), 
where: 

• S = {si,..., s/v } is a finite set of N states; 

• O = Ilt=i O* 's a fin'te set °f observation vectors 
length Z; the ith element of an observation vector is 
chosen from the finite set 0*; 

• A is a stochastic transition matrix, with Atj = 
Pr(qt+i = Sj\qt = Sj); 1 < i,j < N; qt is the state 
at time t; 

• B is an array of / stochastic observation matrices, with 
Bhj,o = Pr{Vt[i] = o\qt = Sj); 1 < i < I, l<j<N, 
o € Oj-, Vt is the observation vector at time t; 

• 7T is a stochastic initial probability vector describing 
the distribution of the initial state. 

Odometric information gathered by the robot is not an in- 
herent part of the topological model, but is used by the 
learning algorithm to better identify and distinguish states. 
To facilitate the use of this information we augment the 
standard model with the odometric relation matrix: 

• R is a relation matrix, specifying for each pair of states, 
s, and Sj, the mean and variance of the D-dimensional 

metric relation between them; ßfj = ß(Rij[d]) is 
the mean of the d"1 component of the relation be- 

tween Si and Sj and (crfj)2 = a2(Rij[d]), the vari- 
ance, where 1 < d < D. Furthermore, R is geo- 
metrically consistent: for each component d, the rela- 
tion Rd(a, b) = n(Ratb[d}) must satisfy the following 
properties for all states a, b, and c: 

o Rd(a,a) =0; 
o Rd(a,b) = -Rd(b, a) (anti-symmetry); and 
o Rd{a,c) = Rd(a,b) + Rd(b,c)  (additivity); 

The odometric information recorded by the robot at time t, 
rt, consists of the change in the x and y coordinates of the 
odometric readings when moving from state qt-\ to state 
qt, as well as the change of the robot's heading, 9, between 
these states. 

An arbitrary initial model Ao is assumed. Then an expecta- 
tion maximization algorithm [3] is executed as follows: 

We discuss here HMMS rather than POMDP models. Extension 
to POMDPs is straightforward, but notationally more cumbersome. 
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a « 
<%, y.e> <i,y,e+180> 

Figure 1: Robot changes heading from state a to state b. 

• E-step: computes the state-occupation and transi- 
tion probabilities, 7t(i) = Pr(?t = Si|E,A)and 
6(», J) = Mit = Si, qt+i = Sj\E, A), respectively, 
at each time t in the sequence, given E and the current 
model A, and 

• M-step:    finds  a  new  model  A  that maximizes 

Pr(E|A,7,0- 
Introducing odometric information requires iterative up- 
dates of the odometric relations between pairs of states, in 
the relation matrix, R. The updates need to maintain the 
properties listed above, although currently the update pro- 
cedure only satisfies the first two. 

The learning task is further complicated by the special na- 
ture of the heading reading and the rotational errors ac- 
crued. The following section goes in more detail into the 
special issues of handling the heading information. The 
rest of the paper deals with resolving the problems caused 
by rotational errors. 

3   DIRECTIONAL DATA AND 
DISTRD3UTIONS 

Suppose a robot is in state o, which is in location (x, y) 
facing in direction 9, as shown in figure 1. By turning 
backwards, it transitions to state 6, and a respective change 
of heading of approximately ±180° is recorded. Thus the 
new recorded configuration of the robot is (x + ci, y +e-2, 
9 ± 180° + e3>, where ti is the error due to inaccuracy in 
both measurement and movement. In earlier work [17], 
we treated all errors — in both location (x, y) and head- 
ing (0) — as if they were normally distributed. However, 
the change in heading is different from changes in x and y, 
since angular measurements are cyclic. That is, a change 
in heading of 9° is the same as that of 9 ± 360°fc, for any 
integer fc. 

If we knew in advance, for every pair of states, the ap- 
proximate change in heading (AO) between them, we 
could have modeled it as normal with mean A0, and 
small variance a2. We could have adopted a convention, 
normalizing all angles to be within a cyclic range, e. g. 
[-180°, 180°], (similarly we may use radians), and always 
chosen to take as the angular change between two points 
7mn(|A0|,36O° - |A0|), and assigned it the correct sign. 
Such an approach of using a non-circular distribution is jus- 
tified when the estimation of a position is based only on 
readings a-priory known to be taken near this position, (see 
for example work by Thrun et al [20] and Lu et al [12]). 

However, we do not know in advance the angles between 
states. The data is a sequence of measurements recorded at 
all the states. We estimate the probabilities of the states in 
which they were recorded, and take a weighted mean of the 
measurements in order to estimate the angular change be- 
tween every two states. Thus, we are facing the following 
problem: What is the interpretation of a "mean angle"? 

As an example, suppose we want to estimate the heading 
change from state a to state b of Figure 1. We adopt the 
convention of angles being expressed between -180° and 
180°. Also, suppose that the robot recorded two measure- 
ments of angular distance from state a to state b: -169° and 
185°. The simple average between these measurements is 
an estimate of the mean heading change of 8°. Obviously 
this value does not even approximate the change of head- 
ing between the two states. The same problem arises if 
we use any other convention for expressing angles (e.g. 0° 
to 360°). The problem lies in the fact that angles that are 
about 180° away from the mean angle, indeed greatly de- 
viate from this mean, while angles that deviate about 360° 
are actually very close to it. To capture this idea, the con- 
cept of circular distribution is required. We provide a brief 
introduction to the concepts and techniques used for han- 
dling directional data. In particular we concentrate on the 
von Mises distribution — a circular version of the normal 
distribution. Further discussion can be found in the statis- 
tical literature [6,10,13]. Section 3.3 returns to show how 
the theory is applied in our model and learning algorithm. 

3.1   STATISTICS OF DIRECTIONAL DATA 

Directional data in the 2-dimensional space can be 
represented as a collection of 2-dimensional vectors, 
{(xi, 2/i>, • • • (xn, yn». on the unit circle, as shown in Fig- 
ure 2. The points can also be represented as the corre- 
sponding angles between the radii from the center of the 
unit circle and the x axis, (0i,..., 0„), respectively. The 
relationship between the two representations is: 

Xi = cos(Öi),        yi = sin(0i), (1 < i < n). 

The vector mean of the n points, (x,y), is calculated as: 

S^CMM     v_ELiMQi) _   (1) 
n n 

Using polar coordinates, we can express the mean vector in 
terms of angle, 6, and length, ä, where (except for the case 
x = y = 0): 

9 = arctan(=),       ö = (x2 + y2)» 77-/^2   ,  ^a (2) 

The angle 6 is the mean angle, while the length a is a 
measure (between 0 and 1) of how concentrated the sample 
angles are around 9. The closer 5 is to 1, the more concen- 
trated the sample is around the mean, which corresponds to 
a smaller sample variance. 
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Figure 2: Directional data represented as angles and as vectors 
on the unit circle. 

A function / is a density function of a continuous circular 
distribution if and only if: f(x) > 0 and J** f(x)dx = 1. 
A simple example of a circular distribution is the uniform 
circular distribution, whose density function is f(9) = J- 
(where 9 is measured in radians). 

One way of deriving a circular version of an unlimited lin- 
ear distribution is through "wrapping" it around a circum- 
ference of the unit circle. If x is a random variable on the 
line with probability density function f(x), the wrapped 
random variable xw = [x mod 2n] is distributed according 
to a wrapped distribution with the probability density func- 
tion: fw{9) = Y^co W + 2?rfc)- Applying this derivation 
to the normal distribution results in a circular version of 
the normal distribution, but estimating its parameters from 
sample data can be hard [6, 13]. An easier-to-estimate cir- 
cular version of the normal distribution was derived, by von 
Mises [6, 13]. We use this distribution to model the robot 
heading in this work, and it is described below. 

3.2   THE VON MISES DISTRIBUTION 

A circular random variable, 9, 0 < 9 < 2n, is said to have 
the von Mises distribution with parameters ß and it, where 
0 < ß < 2-n and k > 0, if its probability density function 
is:        u,m =   l kcos(O-ii) 

2nl0(k) 

where I0(k) is the modified Bessel function of the first kind 
and order 0: TO 

r=0 rl' 

Similar to the linear normal distribution, this is a unimodal 
distribution, symmetrical around ß. The mode is at 9 = fi 
while the antimode is at 9 = fi + n. We observe that the ra- 
tio of the density at the mode to the density at the antimode 
is e2fe, which indicates that the larger k is, the more con- 
centrated the density is about the mode. Figure 3 shows an 

Figure 3: The von Mises distribution with mode 0 and various 
k values. 

"unwrapped" plot of the von Mises distribution for various 
values of k where ß = 0. 

We now describe how to estimate the parameters ß and k 
given a set of heading samples (angles 0i,...9n) from a 
von Mises distribution [13]. We are looking for maximum 
likelihood estimates for ß and k. The likelihood function 
for the data generated by a von Mises distribution with pa- 
rameters ß and k is: 

£/.,* = A//..*(*) 
t=i (27r)"70(A;)" 

The   maximum   likelihood   estimate   for   ß,    JI,    is: 
ß = arctan(|), where y, x are as defined in equation 1. 

The maximum likelihood estimate for k is the k that solves 
the equation: 

h(k) _ 1 A 
cos(9i - ß) . (3) 

If we don't know ß and are only interested in estimating 
k with respect to the estimate Ji, by using trigonometric 
manipulation and the definition of ä (Equation 2), we can 
substitute the right hand side of equation 3 by ö and ob- 
tain that the .maximum likelihood estimate for it is k that 
satisfies:  ^ß = ö. 

However, if we do have a given ß and want to find a max- 
imum likelihood estimate for the concentration k of the 
sample data around that specified ß, we need to use as a 
maximum likelihood estimate for k, k that satisfies: 

h{k) 
Io(k) ''\ 

£«"<»<>)+(Esin(»'>) -(i>"<<' -««)] 
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The above estimation formulae agree with the intuition that 
the sample is more concentrated (fc is larger) about the sam- 
ple mean QJ) than about the true distribution mean (/i). 

The rest of the section explains how the von Mises param- 
eters are incorporated into the Hidden Markov model, and 
how the learning algorithm is adapted to learn these param- 
eters. 

3.3   HANDLING ANGULAR ODOMETRIC 
READINGS 

To model the heading difference between each pair of 
states, the relation matrix R, described in Section 2, is 3- 
dimensional, consisting of the components (x, y, 6). The 
component Ri,j{9\ represents the heading change of mov- 
ing from state Si to Sj, and is assumed to be distributed 
according to the von Mises distribution. The notation 

M» . ^=f n(Ritj[9]) represents the mean of the distribution 

for this heading change, while k°itj = k{Ri,j[9]) represents 
the concentration parameter around the mean3. The three 
constraints described before for the components of R, (ide- 
ally) hold for the 6 component as well. 

Similarly, every observed relation item, rt, in the expe- 
rience sequence E, has a heading-change component, 6, 
which records the robot's estimated change in heading be- 
tween the state at time t, qt, and the state qt+i- 

The reestimation formula for the von Mises mean parame- 
ter of the heading change between states s, and Sj is: 

pf ,■ = arctan 

/T-2 \ 

' Y^[MrtW)tt{iJ)-MrMttU,i)] 
t=o   
T-2 

\t=0 
[cos(rt[0])&(z, j) + cos(rt[0])£tü.»)] 

The fraction denotes the ratio between the expected sine 
and the expected cosine of the heading change from state 
i to state j. Since the heading change from j to i is iden- 
tical in magnitude but opposite in direction to the heading 
change from i to j, the transitions from j to i are also ac- 
cumulated - with reversed signs. By taking arctan of this 
ratio we get an estimate for the mean heading change itself. 

To reestimate the concentration parameter, we need to find 

fc;, such that: 

EL^fo^cosfotfl]-/^)] 
YtloZtiiJ) 

3In contrast, x and y are normally distributed and have their 
variance rather than concentration stored in R. 

Finding fzitj that satisfies this equation is done through the 

use of a lookup table listing values of the quotient -^|f|. 

The above reestimation formulae agree with the maximum 
likelihood estimator formulae given in Section 3.1. Their 
correctness can be proved along the lines of the proof pro- 
vided in our previous document [16]. 

4   STATE-RELATIVE COORDINATE 
SYSTEMS 

In our previous work we assumed that there is a sin- 
gle global coordinate system within which the robot op- 
erates. Moreover, we assumed that the robot collects its 
data within a perpendicular corridor framework and that 
it takes advantage of this single perpendicular framework 
while recording odometric information. This assumption 
may be troublesome in practice. The rest of the paper dis- 
cusses the potential problems, presents a method for re- 
laxing the assumptions and addressing the problems, and 
demonstrates the effectiveness of the solutions through ex- 
periments and results. 

4.1   MOTIVATION 

We tend to think about an environment as consisting of 
landmarks fixed in a global coordinate system and corri- 
dors or transitions connecting these landmarks. However, 
this view may be problematic when robots are involved. 

Conceptually, a robot has two levels in which it operates; 
the abstract level, in which it centers itself through cor- 
ridors, follows walls and avoids obstacles, and the phys- 
ical level in which motors turn the wheels as the robot 
moves. In the physical level many inaccuracies can oc- 
cur: unaligned wheels or unsynchronized motors can cause 
sidewards drift, an obstacle under a wheel can cause the 
robot to slightly rotate around itself, or uneven floors may 
cause the robot to slip in a certain direction. In addition, 
the odometric measuring instrumentation may be inaccu- 
rate in and of itself. In the abstract level, corrective actions 
are constantly executed to overcome the physical drift and 
drag. For example, if the left wheel is disaligned and drags 
the robot leftwards, a corrective action of moving to the 
right is constantly taken in the higher level to keep the robot 
centered in the corridor. 

Such phenomena greatly effect the odometry recorded by 
the robot, if it is interpreted with respect to one global 
framework. For example, consider the robot depicted in 
Figure 4. It drifts to the left -<j>° when moving from one 
state to the next, and corrects for it by moving 4>° to the 
right to maintain itself centered in the corridor, moving 
along the solid arrow.  Let us assume that states are lo- 
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Figure 4: The robot moves in a corridor along the solid arrow, 
correcting for drift in the direction of the dashed arrow. 

Figure 5: A path in a perpendicular environment, plotted based 
on odometric readings taken by the robot Ramona. 

cated along the center of the corridor, which is aligned 
with the y axis of the global coordinate system. The robot 
steps back and forth in the corridor. Whenever it reaches 
a state, its odometry reading changes by {x, y, 6) along the 
(X, Y, heading ) dimensions, respectively. As the robot 
proceeds, the deviation with respect to the x axis becomes 
more and more severe. Thus, after going through several 
transitions, the odometric changes recorded between every 
pair of states, with respect to a global coordinate system, 
become larger and larger (especially in the X dimension). 

Similar problems of inconsistent odometric changes 
recorded between pairs of states can arise along any of the 
odometric dimensions. It is especially severe when such 
inconsistencies arise with respect to the heading, since this 
can lead to confusion between the X and the Y axes, as 
well as confusion between forwards and backwards move- 
ment (when the deviation in the heading is around 90° or 
180° respectively). An example of our robot view of a per- 
fectly perpendicular office environment, based on its odo- 
metric readings within a global coordinate system, is shown 
in Figure 5. The data was collected by our robot Ramona, 
while moving along the corridors in an area of our depart- 
ment, depicted in Figure 7. 

A solution to such a situation is to model the odometric re- 
lations of moving from state Sj to state Sj using a changing 
coordinate system which is respective to state st, as op- 
posed to a global coordinate system anchored at the initial 
state. We formalize this idea and provide the update rules 
for the odometric information based on this approach in the 
rest of this section. We have implemented our solution, and 
demonstrate its effectiveness throughout Section 5. 

4.2   LEARNING ODOMETRIC RELATIONS WITH 
CHANGING COORDINATES 

As before, our experience sequence E consists of T pairs 
(Tt>Vt) of recorded odometric relations and observation 
vectors. The odometric relations are still recorded with re- 
spect to the robot's global coordinate system. However, 
when learning the relation matrix from the odometric read- 
ings, we interpret the entry Ritj in the relation matrix R, as 
encoding the information with respect to a coordinate sys- 

Figure 6: Robot in state Si, facing in the direction of the y axis. 

tem whose origin is anchored at the state sf, the y axis is 
aligned with the robot's heading in state Sj and the x axis is 
perpendicular to it. This is depicted in figure 6. The robot 
is in state s* facing in the direction pointed to by the y axis. 
Its relationship to the state Sj is described in terms of the 
coordinate system shown in the figure. Its heading in each 
state is denoted by the bold arrow. 

To support this interpretation of the relation matrix we need 
to revisit the formulation of the geometrical-consistency 
constraints stated in Section 2, as well as the update for- 
mulae used when learning the model. 

The consistency constraints have to reflect the coordi- 
nate system with respect to which the odometry is repre- 
sented. Since the heading measurement is independent of 
any specific coordinate system, only the constraints over 
the x and y components of the odometric relation need 
to be redefined.    We denote by //*'«> (a, 6) the vector 
{ß(Ra,b[x])> n{Ra,b[y]))- Let us define %b to be the trans- 
formation which maps an (xa,ya) pair represented with re- 
spect to the coordinate system of state a, to the same pair 
represented with respect to the coordinate system of state 
b, (xb, yb), (note that Tab = Tb~

1). 

More explicitly, as before, let /xe(a, b) be the mean change 
in heading from state a to state b (recall that ne(a,b) = 
-pe{b, a)). The transformation Tab is defined as follows: 

xa cos{n6(a, b)) - ya sin(//(a, 6))' 
xa sin(//(a, b)) + ya cos(/i9(a, b)) <u> 

We can now redefine the consistency constraints for the x 
and y components of the odometric relation: 
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Figure 7: Model of a prescribed path through a true hallway 
environment. 

o /u<*.w>(o,a) = (0,0>; 

o /*<*•»> (a, 6) = -Tba (/i^'^CM)) (anti-symmetry); 

o /*<*•»> (a, c) = /*<*•*/>(a,6)+T6a (p(x'V\b,c)){additivity); 

The reestimation formulae for all the parameters except for 
the x and y components of the relation matrix R, remain as 
before. However, the reestimation formulae for the x and 
y parameters are changed to reflect the relative coordinate 
systems used, pfj and n?tj are reestimated as follows: 

T-2 r      r   ,1 T-2 

5>(*.;) ...... 
t=0 

-IWQ*!]) 
T-2 

£&(U) + &0M)) 
t=0 

These reestimation rules are guaranteed to satisfy the first 
two geometrical constraints, but not the additivity con- 
straint. Their correctness can be proved along the lines of 
the correctness proofs for all other formulae [16]. 

5   EXPERIMENTS AND RESULTS 

The goal of this work is to use odometry to improve the 
learning of topological models, while using fewer iterations 
and less data. We tested our algorithm in a simple robot- 
navigation world. In earlier stages of this work, a strong 
assumption underlay our experiments: the corridors in the 
environment are all perpendicular to each other, and the 
agent was using this perpendicularity to reset its position 
while accumulating the odometric readings. Here we have 
updated the algorithm and dropped the assumption. The ex- 
periments demonstrate that the use of odometry, even with 
accumulated rotational error and without using the perpen- 
dicularity assumption, is still very beneficial. 

5.1   EXPERIMENTAL SETTING 

Our experiments use. both real robot data and simulated 
data. We ran our robot Ramona, a modified RWI B21, 
along a prescribed4 directed path in our department corri- 
dors. Low-level routines let Ramona move forward through 

4Hence, no decisions are executed by the robot, and the model 
is an HMM and not a complete POMDP. 

Figure 8: Learned topological model. 

hallways from intersection to intersection and to turn ninety 
degrees to the left or right. Ultrasonic data interpretation 
let her perceive, in three directions - front, left and right 
- whether there is an open space, a door, a wall, or some- 
thing unknown. Doors and intersections constitute states. 
When they are detected by Ramona, it stops and records its 
observations, as well as its odometric change between the 
previous and the current state. All recorded measures as 
well as the actions are, of course, subject to error. 

The path Ramona followed consists of 4 connected corri- 
dors, which include 17 states, as shown in Figure 7. Black 
dots represent the physical locations of states. Multiple 
states (depicted as numbers in the plot) associated with a 
single location correspond to different orientations of the 
robot at that location. The larger black circle, at the bottom 
left corner, represents the starting position. The observa- 
tions associated with each state are omitted for clarity. A 
projection of the odometric readings that Ramona recorded 
along the x and y dimensions, is shown in figure 5. 

To statistically evaluate our algorithm, we use a simulated 
office environment in which the robot follows a prescribed 
path. It is represented as an HMM consisting of 44 states, 
and the associated transition, observation, and odometric 
distributions. Figure 9 depicts this HMM. Arrows repre- 
sent transitions that have probability 0.2 or higher. Solid 
arrows represent the most likely transitions between the 
states. We generated 5 data sequences from the model, each 
of length 800, using Monte Carlo sampling. One of these 
sequences is depicted in Figure 10. Again, observations are 
omitted, and this is a projection of the odometry readings 
onto a global 2-dimensional coordinate system. For each 
sequence we ran our algorithm 10 times. We also ran the 
standard Baum-Welch algorithm, not using odometric in- 
formation, 10 times on each sequence. For both algorithms 
we started each run from a randomly picked initial model. 

5.2   RESULTS 

We used our algorithm to learn a topological model of the 
environment from the data gathered by Ramona. Figure 8 
shows the topology of one typical learned HMM. The bold 
circle represents the initial state. The arrows semantics is 
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Figure 9: Model of a prescribed path through the simulated 
hallway environment. Figure 10: A data sequence generated by our simulator. 

as stated before. It is clear that the learned topology corre- 
sponds well to the topology of the true environment. The 
observation distributions learned are omitted from the fig- 
ure, but they too correspond well to the walls, doors and 
openings encountered along the path, while incorporating 
the identification error resulting from noisy sensors. 

Traditionally, in simulation experiments, learned models 
are quantitatively compared to the actual model that gen- 
erated the data. Each of the models induces a probabil- 
ity distribution on strings of observations; the asymmetric 
Kullback-Leibler divergence [11] between the two distri- 
butions is a measure of how far the learned model is from 
the true model. We report our simulation results in terms 
of a sampled version of the KL divergence, as described by 
Juang and Rabiner [9]. It is based on generating sequences 
of sufficient length according to the distribution induced 
by the true model, and comparing their likelihoods accord- 
ing to the learned model with the true model likelihoods. 
We ignore the odometry information when applying the KL 
measure, thus allowing comparison between purely topo- 
logical models that are learned with and without odometry. 

Table 1 lists the KL divergence between the true and learned 
model, as well as the number of runs until convergence was 
reached, for each of the 5 simulation sequences under the 
two learning settings, averaged over 10 runs per sequence. 

The table demonstrates that the KL divergence with respect 
to the true model for models learned using odometry, is 
about 4-5 times smaller than for models learned without 
odometric data.  To check the significance of our results 

Table 1: Average results of 2 learning settings with 5 training 
sequences. 

Seq. # 1 2 3 4 5 
With       KL 1.115 1.100 1.095 1.139 1.129 
Odo     Iter# 69.7 81.8 84.3 52.4 112.9 
No          KL 5.575 4.499 4.997 4.491 5.791 

Odo     Iter # 120.4 107.5 116.2 113.3 120.6 

Figure 11: Average KL-divergence as a function of length. 

we used the simple two-sample t-test. The models learned 
using odometric information have highly statistically sig- 
nificantly (p » 0.9995) lower average KL divergence than 
the others. 

In addition, the number of iterations required for con- 
vergence when learning using odometric information is 
smaller than required when ignoring such information. 
Again, the t-test verifies the significance (p > 0.995) of 
this result. 

To examine the influence of the amount of data on the qual- 
ity of the learned models, we took one of the 5 sequences 
(Seq. #1) and used its prefixes of length 100 to 800 (the 
complete sequence), in increments of 100, as individual se- 
quences. We ran the two algorithmic settings over each of 
the 8 prefix sequences, 5 times repeatedly. We then used 
the KL-divergence as described above to evaluate each of 
the resulting models with respect to the true model. For 
each prefix length we averaged the KL-divergence over the 
5 runs. Table 2 summarizes the results of this experiment. 
It lists the mean KL-divergence over the 5 runs for each of 
the prefixes, as well as the standard deviation around this 
mean. The plot in Figure 11 depicts the KL-divergence as 
a function of the sequence length for each of the settings. 
Both the table and the plot demonstrate that, in terms of the 
KL-divergence, our algorithm, which uses odometric infor- 
mation, is robust in the face of data reduction. In contrast, 
learning without the use of odometry is much more sensi- 
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Table 2: Average results with 8 incrementally longer sequences. 

Seq. Length 800 700 600 500 400 300 200 100 

With    Mean KL 1.136 1.201 1.191 1.241 1.216 1.272 1.771 15.076 

Odo     Std. Dev. 0.091 0.083 0.131 0.082 0.036 0.085 0.510 12.884 

No      Mean KL 5.790 6.249 8.354 10.390 11.490 14.772 20.044 26.619 

Odo     Std. Dev. 0.554 0.937 0.179 0.460 0.422 1.280 0.904 0.460 

tive to reduction in the amount of data. Again, we applied 
the two-sample t-test, which verified the statistical signifi- 
cance of these results. 

6   CONCLUSIONS 

Directional information which comes up in various appli- 
cations of computer science in general and machine learn- 
ing in particular, requires special treatment. Currently most 
statistical models and applications are based on distribu- 
tions that are either discrete or continuous along the real 
line, rather than circular. It is important to be aware of the 
need for circular distributions as well as of their existence. 
Moreover, it would be useful to have widely used applica- 
tions such as Autoclass [2] support such distributions. 

A problematic aspect of directional data which manifests 
itself when learning maps and models for robot navigation 
is that of cumulative rotational errors. In the context of 
our work we have demonstrated that the use of relative co- 
ordinate systems rather than global ones supports learning 
relationship between states. The main point shown by this 
paper is that through correct treatment of directional data, 
odometric information which is weak and very noisy still 
provides a significant leverage when learning a purely topo- 
logical map. 
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Abstract 

An important and difficult prediction task 
in many domains, particularly medical deci- 
sion making, is that of prognosis. Progno- 
sis presents a unique set of problems to a 
learning system when some of the outputs 
are unknown. This paper presents a new ap- 
proach to prognostic prediction, using ideas 
from nonparametric statistics to fully utilize 
all of the available information in a neural ar- 
chitecture. The technique is applied to breast 
cancer prognosis, resulting in flexible, accu- 
rate models that may play a role in prevent- 
ing unnecessary surgeries. 

1    Introduction 

This paper applies artificial neural network classifica- 
tion to the analysis of survival or lifetime data (Lee, 
1992), in which the objective can be broadly defined 
as predicting the future time of a particular event. In 
this work we are concerned specifically with prognosis, 
that is, predicting the course of a disease. These meth- 
ods are applied to breast cancer prognosis, predict- 
ing how long after surgery we can expect the disease 
to recur. This problem has significant clinical impor- 
tance. Decisions regarding chemotherapy its intensity 
are based on the anticipated course of the cancer. For 
example, patients with favorable outlooks may forego 
chemotherapy entirely. Those with less favorable out- 
looks may undergo varying intensities of chemother- 
apy, or even bone marrow transplantation. 

Prognostic prediction does not fit comfortably into ei- 
ther of the classic learning paradigms of function ap- 
proximation or classification. While a patient can be 
classified "recur" if the disease is observed, there is 

no real cutoff point at which the patient can be con- 
sidered a non-recurrent case. The data are therefore 
censored in that we know a time to recur for only 
a subset of patients. For the others, we know only 
the time of their last check-up, or disease-free survival 
time (DFS). In particular, recurrence or survival data 
is right censored, i.e., the right endpoint (recurrence 
time) is sometimes unknown, since some patients will 
inevitably move away, change doctors, or die of un- 
related causes. Therefore, in many cases, the train- 
ing signal for the learning method is not well-defined. 
Prognosis is not viewed here as a time-series predic- 
tion problem, since the predictive features are gathered 
only once, at the time of diagnosis and/or surgery. 

Problems involving censored data are common to sev- 
eral fields. In engineering, one might be interested 
in the survival characteristics of electronic compo- 
nents, while sociologists might consider what factors 
lead to long-lasting marriages. These problems have 
traditionally been approached using statistical tech- 
niques such as Cox proportional-hazards regression 
(Cox, 1972). In recent years, there has been an in- 
creased interest in the application of machine learn- 
ing methods to prediction using censored data. Sev- 
eral groups have approached prognosis as a separation 
problem using different learning architectures, includ- 
ing backpropagation artificial neural networks (ANNs) 
(Burke, 1994; Burke et al., 1997), entropy maximiza- 
tion networks (Choong et al., 1996) and decision trees 
(Wolberg et al., 1992; Wolberg et al., 1994). This is 
done by choosing one or more endpoints and learning 
a yes/no classifier on concepts such as "patients who 
recurred in less than two years." Cases with follow- 
up time less than the cutoff are discarded from the 
training set. Ravdin and colleagues (De Laurentiis and 
Ravdin, 1994; Ravdin and Clark, 1992) use ANNs to 
generate survival curves, which plot the probability of 
disease-free survival against time. This work uses time 
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as an input variable and interprets the trained net- 
work's single output as an approximation of recurrence 
probability. The resulting formulation results in biases 
in the training data that must be corrected by repeat- 
ing or removing some of the examples. Their com- 
putational results are verified only by demonstrating 
that their predicted survival rates closely approximate 
those of the test cases. The problem has also been 
approached in an unsupervised learning fashion, using 
clustering (Bradley et al., 1997) and self-organizing 
neural networks (Schenone et al., 1993). However, 
these techniques did not directly address the problem 
of prediction using censored data. 

While this research also separates the cases into classes 
based on recurrence time, it differs from the above 
techniques in several respects. Censored cases are in- 
corporated directly into the training set, not by us- 
ing an artificial cutoff time, but rather by using the 
probability that they will recur before a certain time 
as the training signal. In this way we use all of the 
information available in the training set. Further, in- 
terpreting the outputs as probabilities lets us not only 
separate the cases into "good" and "bad" prognoses, 
but also to generate predicted survival curves for in- 
dividual patients, making the system more useful in a 
clinical setting. 

2    Neural Architecture 

The ANNs used in this work were standard feedfor- 
ward networks with one hidden layer, trained with 
backpropagation (Rumelhart et al., 1986). The hy- 
perbolic tangent activation function was used for hid- 
den and output nodes. The output layer consisted of 
ten units; the first represented the class of examples 
with recurrences at one year or less following surgery, 
the second those with recurrences between one and 
two years, etc., up to ten years1. This approach im- 
plies the existence of an extra (in our case, eleventh) 
class. These are the patients with expected disease- 
free survival of time greater than the length of the 
study (10 years). The activations of the output units 
were trained with and interpreted as the probability 
that the patient would have disease-free survival up to 
that time. These probabilities were scaled to the range 
of the hyperbolic tangent function, i.e., activation = 2 
* probability - 1. 

In order to maintain the interpretation of the out- 
puts as probabilities, the relative entropy error func- 

tion (Baum and Wilczek, 1988; Solla et al., 1988) was 
used for all non-input units. For a given example i, 
this error function is defined as 

^he available prognostic studies are approximately ten 
years in duration. 

* = E (1 + 2?) log 
1 + 2? 

♦b ■I?) log 

1 + 0* 

1-2* 

1-0? 

where 2* is the target value for output unit k and 0\ 
is its output value. Outputs of +1 and -1 correspond 
to definitely true and definitely false, respectively, with 
intermediate values again being scaled into the appro- 
priate range. 

For recurrent cases, the network was trained with val- 
ues of +1 for all outputs up to the observed recurrence 
time, and -1 thereafter. For instance, a recurrence at 
32 months would have a training vector T = {1, 1, -1, 
-1, -1, -1, -1, -1, -1, -1}. The value of the probability 
formulation is seen in the censored cases. They were 
similarly trained with values of +1 up to the observed 
disease-free survival time.   The probabilities of DFS 
for later times were computed using a variation of the 
standard Kaplan-Meier maximum likelihood approxi- 
mation to the true population survival rate (Kaplan 
and Meier, 1958). We define the risk of recurrence at 
time t > 0 as the conditional probability that a patient 
will recur at time t, given that they have not recurred 
up to time t - 1.   As an example, consider a study 
containing a total of 20 patients.   If two recurrences 
were observed in the first time interval, we would have 
risky. =0.1. Further suppose that the study has two 
censored cases in the first time interval, and two more 
recurrences in the second interval.  There are 16 pa- 
tients at risk for recurrence during interval two, with 
two recurrences, so risk2 = 0.125. The Kaplan-Meier 
estimator of the disease-free survival curve, S, tracks 
the cumulative probability of DFS for any time in the 
study, using the risks in the following fashion: 

(1 - riskt), 
t = 0 
t> 0. 

Continuing the above example, So = 1-0, Si = 0.9, 
and S2 = 0.7875. To compute appropriate training 
probabilities, we simply use the DFS time of the cen- 
sored case as the starting time, rather than time 0: 

{ St-i(l- 
0 < t < DFS{i) 

rish),   t>DFS(i). 

For an individual output node k, this training signal 
represents the example's probability of membership in 
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the class being recognized by that node, i.e., the set of 
cases that recur before the end of year k. Collectively, 
the activation values of the output units represent an 
expected survival curve for the individual case. 

If we view the network as learning a survival curve, the 
task becomes one of function approximation using in- 
complete data. The training signal is then a modified 
thermometer encoding (McCullagh and Neider, 1989), 
a relatively common encoding for ordered categorical 
outputs, with the added complication of the survival 
probabilities for censored cases. Since the effects of 
some of the input features are thought to be nonlinear 
over time, it is also instructive to view the problem 
as a sequence of highly related but distinct classifi- 
cation problems, all learned using the same internal 
representation (i.e., hidden nodes). The representa- 
tion generated in learning one group (say, those cases 
that are likely to recur before one year) contributes to 
the learning of other groups (say, those cases recurring 
between 5 and 6 years). This is a form of functional 
knowledge transfer, similar to the MTL network (Bax- 
ter, 1995; Caruana, 1995). The learning of multiple 
classes in parallel contributes to faster learning and 
more reliable predictive models. 

The above architecture facilitates three different uses 
of the resulting predictive model: 

1. The output units can be divided into groups a 
posteriori to separate good from poor prognoses. 
For a particular application, any prediction of re- 
currence at a time greater than five years might be 
considered favorable, and indicate less aggressive 
treatment. The actual outcomes of those patients 
in the good group should be significantly better 
than those in the poor group. 

2. An individualized disease-free survival curve can 
easily be generated for a particular patient by 
plotting the probabilities predicted by the vari- 
ous output units. In order for this curve to be 
reliable, the activations should be monotonically 
decreasing, or very nearly so. 

3. The expected time of recurrence can be obtained 
merely by noting the first output unit that pre- 
dicts a probability of disease-free survival of less 
than 0.5. This provides a convenient method 
of rank-ordering the cases according to expected 
outcome. 

A significant methodological issue is that of evaluating 
the learned model. As discussed earlier, this is neither 

a function approximation nor a classification problem, 
since in many cases we do not know the correct an- 
swer. Still, there is a well-defined goal: the accurate 
prediction of individual prognosis. While our training 
method seeks to minimize the relative entropy error at 
each output unit, the reporting of this error on testing 
sets would be relatively uninformative. We therefore 
evaluate the models on two criteria: the accuracy of 
the predicted recurrence rates (see Section 3.4) and the 
ability of the models to separate cases with favorable 
and unfavorable prognoses (see Section 3.3). 

3    Experimental Results 

Computational experiments were performed on two 
very different breast cancer data sets. The first 
is known as Wisconsin Prognostic Breast Cancer 
(WPBC) and is characterized by a small number of 
cases, relatively high dimensionality, very precise val- 
ues and almost no missing data. The second data set is 
from the Surveillance, Epidemiology, and End Results 
(SEER) program of the National Cancer Institute. It 
contains a large number of cases, with relatively few, 
coarsely-measured features, and a high percentage of 
missing values. Details on these data sets are given 
below. 

In both cases, the prognosis data used in this study 
consists of those malignant patients for which follow- 
up data was available, after eliminating those cases 
with distant metastasis (cancer has already spread; 
prognosis is poor) and carcinoma in situ (cancer has 
not yet invaded breast tissue; prognosis is good). We 
therefore maximize the clinical relevance of the study 
by focusing on those cases that present the most diffi- 
cult prognosis. 

Experiments reported in this section are test set results 
using either tenfold cross-validation (WPBC data) or 
a single randomized holdout test (SEER data). The 
ANNs used had three hidden units, and training was 
terminated after 1000 on-line epochs. 

3.1    Wisconsin Prognostic Breast Cancer 
Data 

In previous work (Mangasarian et al., 1995; Wolberg 
et al., 1994) the author contributed to the development 
of an image-processing software package for breast can- 
cer diagnosis, known as Xcyt, which analyzes digital 
images of cells taken from breast lumps. This program 
computes 10 different features of each cellular nuclei 
in the image:   radius, perimeter, area, compactness, 
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smoothness, size and number of concavities, symmetry, 
fractal dimension, and texture. The mean, standard 
area, and extreme values of each feature are computed 
for each image. The current application uses the 30 
nuclear features computed by Xcyt together with two 
traditional prognostic predictors: tumor size and num- 
ber of involved lymph nodes. This data set contains 
227 cases, 61 of which have recurred. An earlier ver- 
sion of this data set is available at the UCI machine 
learning repository (Merz and Murphy, 1996). 

3.2    SEER Data 

The SEER (Carter et al., 1989) data set consists of 
data on cancer survival (rather than recurrence) for 
over 38,000 women newly diagnosed with breast can- 
cer between 1977 and 1982. Each case contains the 
following information: histological grade (four discrete 
values), tumor size, tumor extent (5 discrete values), 
number of positive lymph nodes, and number of nodes 
examined. Many of these feature values are missing. 
For instance, only about 20% of the cases contain a 
value for histological grade; over 1200 of the cases con- 
tain no feature information at all. Each of the SEER 
features was encoded as a sequence of binary variables, 
with an additional binary variable representing a miss- 
ing value. 

3.3    Good vs. poor prognoses 

To be used as a clinical tool, the predictive model 
should reliably separate cases with a good prognosis 
from those with a poor prognosis. Since treatment op- 
tions are limited, this sort of stratification could be 
most helpful to the physician and the patient in de- 
termining a post-operative treatment plan. Figure 1 
stratifies the WPBC test cases into those predicted 
to recur in the first five years and those predicted to 
recur at some time greater than five years (including 
the implicit 11th class). The difference in these two 
groups is statistically significant (p < 0.001, general- 
ized Wilcoxon test). Of course, the output units could 
be grouped differently to define the relevant prognos- 
tic categories for a particular problem. Further, the 
implicit final group could also be subdivided based on 
the activation level of the last node. 

Similarly, Figure 2 shows survival probabilities for 
those cases with good and poor prognosis, in this case, 
predicted survival less than or equal to ten years and 
predicted survival greater than ten years. Again the 
difference in the two groups is statistically significant 
(p < 0.001). The difference in dividing points between 
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Figure 1: WPBC Data: Disease-free survival probabil- 
ities for those cases predicted to recur in the first five 
years (Poor, 58 cases) compared to those predicted to 
recur at some time greater than five years (Good, 169 
cases). 

the two tests is due to the difference between the mea- 
sured endpoints (recurrence in the WPBC data, death 
in the SEER data). The ratios of good to bad prog- 
noses were held nearly constant. 

Time (months) 

Figure 2: SEER Data: Survival probabilities for those 
cases predicted to die from breast cancer in the first ten 
years (Poor, 8,353 cases) compared to those predicted 
to die at some time greater than ten years (Good, 
26,192 cases). 
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In traditional breast cancer staging, postoperative 
treatment decisions are based largely or even entirely 
on whether or not the cancer has spread to the pa- 
tient's axillary lymph nodes. However, removing the 
nodes for examination leaves the arm subject to infec- 
tion and possible lymphedema (Aitken et al., 1989), 
and does not affect overall survival (Abe et al., 1995). 
In both of our test cases, the separation with this 
method represents an improvement over that achieved 
by the lymph node status feature. Further, statisti- 
cally significant separation was achieved in both data 
sets without using the lymph feature (WPBC, p = 
0.02; SEER, p < 0.001). This is further confirmation 
of a previous finding (using other analytic techniques) 
that breast cancer prognosis can be achieved without 
lymph node dissection (Wolberg et al., 1997; Wolberg 
et al., 1998). 

3.4    Predicted vs. actual group survival 

Another criterion for the validity of the learned model 
is whether the predicted recurrence rate follows that 
of the actual data. Figure 3 shows the Kaplan-Meier 
estimate of disease-free survival curve for the entire 
WPBC training set, compared with the predicted DFS 
rates accumulated from the test folds. Again, a test 
case is predicted to recur at time t if the activation of 
output node t is the first one indicating a DFS prob- 
ability of less than 0.5. The two curves are very simi- 
lar and show no significant statistical difference (p = 
0.2818, generalized Wilcoxon test (Gehan, 1965)). 

The predicted group survival for the SEER data did 
not closely match the actual survival curve. This is 
consistent with previous research (Street et al., 1996) 
using a variation of the RSA prognostic technique 
(Street et al., 1995) which also showed that the SEER 
data was unable to replicate group survival character- - 
istics. This is attributable to the coarse encoding of 
the SEER variables and the large percentage of miss- 
ing values. 

3.5    Individual prognostic prediction 

As mentioned, the activations of the output units can 
be combined to form a predicted DFS curve for an in- 
dividual patient. Figure 4 shows an example of this 
usage, in a format appropriate for a clinical setting. 
Here the probabilities of disease-free survival for a case 
from the WPBC study are compared to the cumulative 
values of all patients in the study. The output activa- 
tions were monotonically non-increasing, as was the 
case in 74% of the WPBC test examples and 87% of 
the SEER examples. The others had occasional small 
increases, with the maximum increase in any exam- 
ple corresponding to to a probability change of 0.024 
(WPBC) and 1.0 (SEER). The expected time of re- 
currence can be computed by noting where the DFS 
curve crosses a probability of 50%, in this case, be- 
tween three and four years. In fact, this patient did 
experience disease recurrence in the 44th month fol- 
lowing surgery. 
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Figure 3: WPBC Data: Kaplan-Meier estimate of true 
disease-free survival curve compared to predicted DFS 
curve. 

Figure 4: Predicted DFS curve of a single case (87-112) 
from the WPBC study compared to the overall group 
DFS curve of the training set. 
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4    Conclusions 

This paper develops a novel encoding of censored data 
in an artificial neural network architecture to provide 
a framework for prognostic prediction. In applying 
the method to breast cancer prognosis, the resulting 
models are shown to be at least as accurate as current 
methods, while providing significantly more precision 
and flexibility. Among the future directions for this 
research is a sensitivity analysis to investigate the im- 
portance of the prognostic features at different follow- 
up times. To evaluate the role of knowledge transfer, 
predictive accuracy will be compared to classification 
models that predict recurrence at a chosen cut point. 
Most importantly from a clinical perspective, our work 
in the breast cancer domain continues to focus on gen- 
erating accurate prognostic models without knowledge 
of lymph node status, in order to spare new patients 
an extra and potentially debilitating surgery. 
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Abstract 

A common task required of a dancer or ath- 
lete is to move from one prescribed body pos- 
ture to another in a manner that is consis- 
tent with a specific style. One can automate 
this task, for the purpose of computer ani- 
mations, using simple machine-learning and 
search techniques. In particular, we find ki- 
nesiologically and stylistically consistent in- 
terpolation sequences between pairs of body 
postures using graph-theoretic methods to 
learn the "grammar" of joint movements in 
a given corpus and then applying memory- 
bounded A* search to the resulting transition 
graphs — using an influence diagram that 
captures the topology of the human body in 
order to reduce the search space. 

1    INTRODUCTION 

A common task required of a dancer or athlete is to 
move from one prescribed body posture to another 
in a manner that is consistent with a specific style. 
If these postures are "far apart," as measured by 
some metric that takes into account both the kine- 
siology of the body and the style of the movement 
genre, this can be nontrivial. For the purposes of 
computer-generated animation, there are a variety of 
ways to generate movement sequences that accom- 
plish this kind of task. One can, for instance, use 
mathematical interpolation techniques like splines to 
move individual body parts from one position to an- 
other, but these kinds of methods do not address the 
problem of kinesiological illegality (e.g., that the knee 
only bends 180 degrees, or that arms cannot pass 
through ribcages). Many animation packages, such as 
Life Forms (http://fas.sfu.ca/lifeforms.html), 
use an augmented spline approach that relies on a 

* Author to whom correspondence should be sent 

table of kinematic constraints to avoid illegal move- 
ments, but this type of approach is somewhat ad hoc. 
A more-general way is to use the physics of the body: 
derive the associated differential equations — a torque 
balance for each joint, say — and solve the equivalent 
boundary-value problem. Approaches like this(Hod- 
gins et al. 1995) are extremely interesting and highly 
promising, but also very difficult; deducing the control 
equations that humans use to recover their balance af- 
ter a jump, for example, is a Ph.D. thesis-level prob- 
lem(Wooten 1998). Stylistically faithful interpolations 
would be even harder to implement; neither splines nor 
F = ma can easily capture or enforce, for instance, 
the requirement that classical ballet emphasizes po- 
sition over motion1, and developing a mathematics- 
or physics-based approach that does so would be all 
but impossible. In this paper, we propose an alter- 
native solution to this problem: a class of corpus- 
based interpolation schemes that generate a kinesiolog- 
ically and stylistically consistent movement sequence 
between two specified body positions by learning and 
then enforcing the dynamics of a particular movement 
genre. 

The primary motivation for the development of these 
methods was our work on a mathematical tech- 
nique(Bradley & Stuart 1997; 1998) that automat- 
ically creates variations on predefined motion se- 
quences — an idea that was inspired by a similar 
scheme(Dabby 1996; 1997) that uses a related proce- 
dure to generate musical variations. We use the math- 
ematics of nonlinear dynamics to shuffle a predefined 
movement sequence by "wrapping" a progression of 
special symbols representing the body positions in a 
dance piece, martial arts form, or other motion se- 
quence around a chaotic attractor. This establishes 
a symbolic dynamics that links the movement pro- 

*In ballet, body parts tend to describe piecewise-linear 
paths through space, emphasizing the positions at the junc- 
tions of those linear segments; in modern dance, on the 
other hand, the motion between the endpoints is the im- 
portant feature. 
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gression and the attractor geometry, as shown in fig- 
ure 1. By definition, trajectories from different start- 
ing points2 travel along the same attractor but in a 
different order. This property lets us use the mapping 
depicted in figure 1(d) to create a variation: we sim- 
ply follow a new trajectory around the attractor and 
invert the symbolic mapping, "playing" the body po- 
sition for each cell the trajectory enters.   Variations 
generated in this manner, whether musical or choreo- 
graphic, are both aesthetically pleasing and strikingly 
reminiscent of the original sequences.  The stretching 
and folding of the chaotic dynamics guarantee that the 
ordering of the pitches or movements in the variation 
is different from the original sequence;  at the same 
time, the fixed geometry of the attractor ensures that 
a chaotic variation of Bach's Prelude in C Major or 
of a short Balanchine ballet sequence are related to 
the original piece in a sense reminiscent of the classic 
"variation on a theme." Broadly speaking, the chaotic 
variations resemble the originals with some shuffling of 
coherent subsequences.  This is the primary source of 
the stylistic originality of the chaotic variation scheme 
— in fact, this type of subsequence shuffling is a well- 
established creative mechanism in modern choreogra- 
phy. One problem with any choreographic technique, 
automated or not, that involves subsequence reorder- 
ing, however, is that the transitions at the subsequence 
boundaries can be quite jarring.  Figure 2, for exam- 
ple, shows a short section of a chaotically generated 
variation on a short ballet adagio.   Note the abrupt 
transition between the fifth and sixth moves of the 
variation. 

The interpolation algorithms that are the topic of this 
paper can smooth these kinds of transitions in a man- 
ner that is both kinesiologically and stylistically con- 
sistent. These graph-theoretic methods "learn" the 
grammar of joint movements in a given corpus and 
then apply memory-bounded A* search — using an 
influence diagram that models the relationships of 
the joints in the human body in order to reduce the 
otherwise-intractable search space — to find an ap- 
propriate interpolation sequence between two given 
body positions. The search is complicated by the fact 
that joint positions cannot be interpolated in isolation: 
the movement patterns of the ankle, for instance, are 
strongly influenced by whether or not the foot is on 
the ground — information that is implicit in the posi- 
tions of the pelvis, knees, etc. This requires that the 
expansion of nodes in the search be context dependent 
in a somewhat unusual way. The resulting interpola- 
tion procedures, which were developed and evaluated 
in close collaboration with several expert dancers, are 
quite effective at capturing and enforcing the dynamics 
of a given group of movement sequences. 
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Figure 1: A chaotic mapping that links a short ballet, 
adagio and the chaotic Rössler attractor. A Voronoi 
diagram is used to divide the region covered by the tra- 
jectory shown in part (a) into cells, yielding the tiling 
shown in part (b). The order in which the original tra- 
jectory traverses those cells defines the temporal order 
of the cell itinerary that corresponds to that trajec- 
tory. Successive body positions from the predefined 
movement sequence (c) are mapped to successive cells 
in that itinerary, linking the structure of the movement 
sequence and the attractor geometry. A small section 
of the overall mapping is shown in part (d). 

within the basin of attraction, of course 
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Figure 2: Part of a variation on a short ballet sequence, generated using the chaotic shuffling procedure dia- 
grammed in the previous figure. Note the abrupt transition between the fifth and sixth frames. The interpolation 
schemes described in this paper can be used to smooth such transitions in a kinesiologically and stylistically con- 
sistent fashion. 

2    CORPUS-BASED 
INTERPOLATION ALGORITHMS 
FOR MOVEMENT SEQUENCES 

The interpolation schemes described in this section use 
corpora of human movement — a corpus composed of 
ten Balanchine ballets, for instance, if one is work- 
ing with dances of that particular genre3 — to select 
a movement sequence that would naturally occur be- 
tween a given pair of body postures. The basic algo- 
rithms involved are fairly straightforward, but the ap- 
plication requires some unusual tactics and variations. 
We first examine the corpus, capturing typical progres- 
sions of joint positions in a set of transition graphs. 
Then, given a pair of body postures, we use a variant 
of the A* algorithm to search these graphs for interpo- 
lation subsequences. A typical interpolation sequence 
might, for instance, first move the shoulder from its 
position in the fifth frame of figure 2 to its position 
in the sixth frame according to the rules for shoulder 
movement that are implicit in the corpus, then repeat 
for the elbow, and so on. 

Our original approach(Bradley & Stuart 1997) was 
much more coarse-grained; the atomic representational 
unit was a full body position and the patterns in the 
corpus were represented in a single graph that had 
one vertex for each observed posture. This approach 
was both impractical and unsatisfying. Firstly, it did 
not scale well with corpus size because the number of 
unique body positions is so large. Secondly, it could 
only populate interpolation sequences with verbatim 
copies of full-body positions that appeared in the cor- 
pus. The methods described in this paper, on the other 
hand, construct the body positions in the interpolation 

3The composition of the corpus will, of course, affect 
the nature of the interpolation; smoothing abrupt transi- 
tions in ballet pieces using an interpolation scheme that is 
mathematically rooted in a karate corpus will negate the 
very aesthetic resemblance that this approach strives to 
preserve. On the other hand, this might be an interesting 
source of innovation, whereby one could mathematically 
mix two or more styles. 

sequence in a joint-wise manner and on the fly. This 
scheme not only'avoids the storage problems of the 
previous approach, but also allows innovation: it can 
generate sequences that contain body positions that 
do not appear in the corpus. 

2.1    BODY POSTURE REPRESENTATION 

We represent a human body posture by specifying the 
position of each of the 23 main joints with a quater- 
nion, a standard representation in rigid-body mechan- 
ics that dates back to Hamilton(Goldstein 1980). A 
quaternion q = (r, u) consists of an axis of rotation u 
and a scalar r that specifies the angle of rotation of the 
joint about u. Thus, a body-position symbol is quite 
complicated: 23 descriptors (pelvis, right-wrist, 
etc.), 92 numbers (four for each joint), and a variety 
of information about the position and orientation of 
the center of mass. 

Joint orientations are, in reality, continuous vari- 
ables, but computational complexity requires that 
they be discretized in our algorithms. Specifically, 
each joint A can take on a finite number MA of al- 
lowed orientations4. Formally, we define Qx as the set 
of allowed orientations for joint A and then replace the 
actual orientation of the joint with the closest quater- 
nion in Qx. We can express a body position 6 as 
a discretized vector s by setting each of its compo- 
nents s\ equal to the quaternion in Qx that is closest 
to 6A: sx = r such that ||6A - r\\ < \\b\ - q\\ for all 
q,r G Qx where ||ar - y\\ is the Euclidean distance5 

between the quaternions x and y. We can find r in 
log(MA) time using K-D trees(Friedman, Bentley, & 
Finkel 1977) to represent the Qx sets. The procedure 
described in this paragraph is analogous to "snapping" 
objects to a grid in computer drawing applications. 

Deriving a successful  discretization of joint states 

4In practice, Mx < 400. 
5 One of the main advantages of quaternions is that they 

can be treated as 4-vectors in the standard norm and trans- 
formation operations. 
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was unexpectedly difficult. Simply discrctizing the 
quaternion variable values — that is, classifying all 
positions between, say, (right-wrist, 1, 1, 0, 1) 
and (right-wrist, 1, 1, 0.2, 1) as an equiva- 
lence class and representing them in the algorithms 
as a single posture — produced visibly awkward ani- 
mations. The human visual perception system appears 
to be very sensitive to small variations in quaternion 
coefficients: any change in a single coefficient seems to 
violate the "motif" of the motion. The same problem 
arose when we attempted a physically more-realistic 
discretization by transforming quaternion data to Eu- 
ler angles and then discrctizing 0, <j>, and ip instead. 
The solution on which we eventually settled uses a 
discretization library that was created by hand by an 
expert dancer. 

2.2    REPRESENTATION OF A 
MOVEMENT CORPUS 

2.2.1     Joint Transition Graphs 

A transition graph is a weighted-directed graph that 
captures the transition probabilities in a symbol se- 
quence. In general, each vertex v in such a graph rep- 
resents a symbol and each weighted edge (v, u) reflects 
the probability that the symbol associated with vertex 
u follows the symbol associated with vertex v. For the 
purposes of analyzing a human movement corpus, we 
build one transition graph for each joint, using the cor- 
pus to identify orientations that the joint assumes and 
to estimate the corresponding transition probabilities. 
Vertices in this kind of graph represent particular dis- 
cretized joint orientations, and edges correspond to the 
movement of the joint from one orientation to another. 

The transition graph construction procedure is fairly 
straightforward. We first transform every body po- 
sition in the corpus to a discretized position, as de- 
scribed in the previous section, so that a consecu- 
tive pair of body positions (a, 6), each consisting of 
23 continuous-valued quaternions, becomes the dis- 
cretized pair (s, t) where s, t each consist of 23 dis- 
cretized quaternions. We then build a transition graph 
Gx for each joint A; Gx contains Mx vertices, each of 
which corresponds to exactly one quaternion in Qx. 
For convenience, we will refer to vertices in Gx by 
the corresponding quaternions in Qx. We record the 
fact that joint A is allowed to move from a\ to 6A by 
introducing an edge in Gx from vertex s\ to vertex 
t\. We assign a weight to this edge that models the 
"unlikeliness" with which such a transition occurs in 
the corpus. This measure of unlikeliness is related to 
P(q —► r), the probability that joint A moves from the 
quaternion q G Qx to the quaternion r 6 Qx, per the 
following expression for the weight of edge (q, r) G Gx: 

9,r =   -log(P(q^r))   =   -log(P(r\q)) 

*log(C(q)) - log(C(q,r)) 
where C(q) is the number of times joint A assumed 
an orientation approximated by q and C(q,r) is the 
number of times that the ordered pair (q, r) occurred. 
Larger weights correspond to transitions that are less 
likely to occur6. 

Figure 3 shows a transition graph for the hips that 
was constructed in this fashion from a corpus of 38 
short ballet sequences totaling 1720 positions. In the 
interests of clarity, edge weights and isolated vertices 
have been omitted from this figure. The intricate pat- 
terns in these dance progressions are reflected by the 
complex topology of the graph. 

2.2.2    Coordinating Joint Movements 

A joint transition graph represents the behavior of a 
joint in isolation. This information, alone, cannot cap- 
ture the physical constraints that govern the coordi- 
nation of the joints in the body. For example, if the 
shoulder is in its resting position with the palm facing 
the thigh, the elbow can bend nearly 180 degrees, but 
if the shoulder is turned 90 degrees on its long axis 
(until the palm faces backwards), the elbow can only 
bend about five degrees before the hand collides with 
the leg. In order to construct sensible interpolation 
sequences, we need a simple and efficient model of this 
type of joint coordination. 

The most complete and general approach to this prob- 
lem would be to model the interactions between each 
joint and every other joint in the body, but doing 
so engenders a combinatorial explosion in the search 
space. There are sensible ways to reduce the complex- 
ity of the problem, however; to a first approximation, 
a joint is not influenced by every other joint in the 
body. The position of the wrist, for instance, strongly 
affects the position of the fingers but has little effect 
on the toes. We put this simplifying assumption into 
effect by using an influence diagram(01iver k Smith 
1990) that reflects the structure and physics of the hu- 
man body to explicitly represent the relationships of 
the joints to one another. As shown in figure 4(b), 
the nodes (joints) in the tree only affect the position 
of their immediate children. The pelvis is the root of 
this tree; three branches lead from this root to nodes 
corresponding to the right hip, the left hip, and the 
lower spine7. Each hip joint is the parent node to a 
knee, and so on. We assign a conditional probability 
distribution, estimated from the corpus, to every (par- 
ent,child) pair in the tree.   For every combination of 

Given this formulation, saying that two vertices are 
disconnected is synonymous with saying that two are con- 
nected by an edge with infinite weight. 

The sacrum and the five lumbar vertebrae are lumped 
together. This compromise sacrifices back suppleness for 
lowered complexity. 
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Figure 3: A transition graph that represents the move- 
ment patterns of the hips in a small corpus of 38 short 
ballet sequences. The numbers in each state identify 
the discretized position of the joint. Edge weights and 
isolated vertices have been omitted in the interests of 
clarity. 

Figure 4: An influence diagram that explicitly rep- 
resents the coordination of joints of the human body. 
Part (a) depicts the body and part (b) shows the inter- 
joint dependencies induced by gravity and topology: 
for instance, the position of the pelvis influences the 
positions of both hips hr and hi and the lumbar spine 
/, but the right and left ankles kr and kt do not di- 
rectly influence one another. Without this simplifying 
assumption, the search space for this problem is in- 
tractable. 

states that a parent A and its child y, can assume, the 
distributions estimate the probability that joint n is in 
orientation r given that joint A is in orientation q, for 
every pair of discretized of quaternions qeQ ,reQ^. 

2.3    A JOINT-WISE INTERPOLATION 
ALGORITHM 

Given a pair of discretized body postures (s, i) and 
a set of 23 transition graphs (one for each joint), we 
can use a memory-bounded A* search strategy(Win- 
ston 1992) to find an interpolation subsequence that 
moves smoothly between s and t. In general, A* finds 
a path from an initial state to a goal state by progres- 
sively generating successors of the current state in the 
search. The algorithm places successor states on a pri- 
ority queue, sorted according to a score that estimates 
the cost of finding a goal state. In the next iteration, 
the state with the best score is drawn from the priority 
queue, its successor states are computed and added to 
the queue, and the procedure is repeated until a goal 
state is found or until the queue is empty. 

In this application, the states in the A* search space 
are body states — 23-vectors of discretized quater- 
nions that represent full body positions. To generate 
successors of a body state s, we first use the transi- 
tion graphs to find successors for each joint state s\ 
independently, and then take all combinations (cross 
product) across the joints to obtain the list of body- 
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state successors. From this list, we can filter out the 
disallowed body positions using the influence diagram 
and the probability distribution of parent-child pairs. 
The successors of the joint-state sx are those vertices 
in Gx that are connected to sx by an edge directed 
away from s\. 

The score assigned to a body state u has two parts: 

1. the cost of the path from the initial state s to u 

2. an estimate of the distance between u and the goal 
state t 

The cost of the path starting at s and ending at ü is 
simply the sum of the costs of the transitions taken 
in the path. Furthermore, since each body move- 
ment is composed of a group of joint movements, we 
can compute the cost of one body-state transition by 
summing the weights over the edges traversed by the 
joints. To make this concrete, suppose we are try- 
ing to find an interpolating path between the body 
states s and t. At some point in the search, we reach 
the ^body-state u and must assign the path from s 
to u a score. If we write the path from s to u as 
s~>- u = (x1 = s,!2,..-,^-1,^ = u), we can ex- 
press the cost of such a path as 

g(s ~+ u) 

The heuristic part of the score, h(u), estimates how 
far u is from the goal state t. h(u) is calculated by 
summing the weights of the shortest paths from wA 

to t\, u\,t\ G Gx over all the joints. We obtain 
these shortest path weights using Dijkstra's single- 
source shortest path algorithm(Dijkstra 1959), imple- 
mented as described in (Cormen, Leiserson, k Rivest 
1990). The final score assigned to body-state ü is then 
/(s ~* u) = g(s^* u) + h(u). 

At the time of this writing, we have only done exten- 
sive testing on a greedy search strategy that ignores 
the cost of paths and scores nodes in the search based 
solely on the estimated distance between them and the 
goal (i.e., /(s ~f u) = h(u)). In the following section, 
we describe the implications of this strategy and sug- 
gest how different A* scoring functions are likely to 
affect the interpolation sequences. We are also work- 
ing on incorporating more information about the po- 
sition, velocity, and acceleration of the center of mass, 
so the momentum of the body is conserved as it passes 
through the interpolated sections of the movement; ac- 
complishing this will require wide-ranging adaptations 
to the basic A* algorithm and perhaps even a wholly 
different approach. Finally, we are also in the pro- 
cess of testing how different influence diagram topolo- 
gies affect the interpolation algorithm's ability to se- 
lect good postures during the search. (For example, to 

model and enforce the symmetry of the body, we could 
combine left and right counterparts into one node.) 

3    RESULTS AND EVALUATION 

The "goal" of choreography is aesthetic appeal, so 
it is difficult to analyze the results of this work us- 
ing standard scientific methods8. However, there arc 
some standard rules, procedures, and patterns in cer- 
tain dance and martial arts genres that can be used 
to evaluate the interpolation sequences generated by 
the corpus-based techniques described in the previ- 
ous sections. The evaluation described in this sec- 
tion is a highly condensed transcript of a dozen onc- 
to two-hour sessions, wherein expert dancers — pri- 
marily Professor David Capps of the Department of 
Theater and Dance at the University of Colorado, an 
accomplished dancer and choreographer whose works 
have appeared on stages around the world, and Na- 
dia Rojasadamc, a student in that department and 
the composer of the adagio used to generate the vari- 
ations shown in figures 1 and 2 —- went through the 
results frame by frame, answering and then discussing 
the following questions: 

• Does this posture transition look reasonable? 

• If so, why and how? 

• If not, why and how? What would you do instead? 
How many poses would you assume in doing so? 

In order to make this process less subjective, we arc 
developing a formal evaluation protocol, consisting of 
several subsequences and a series of scored questions 
about the flow of the movement therein, to be ad- 
ministered to groups of University of Colorado dance 
students. 

Figure 5 shows a movement sequence that the learn- 
ing and search algorithms described in the previous 
sections produced when given the task of interpolat- 
ing between the fifth and sixth frames of the ballet 
sequence in figure 2. The search strategy was a sim- 
ple greedy approach — an A* score f(s^* u) = h(v) 
that only factored in the distance to the goal — and 
the corpus included 38 short ballets. The starting and 
ending body postures (top left and top right in fig- 
ure 5, labeled \T] and J0_, respectively) are quite dif- 
ferent; note the facing of the dancer and the weight 
distribution on the feet, for example. The eight-move 
interpolation sequence computed by the interpolator 
moves between those positions in a very natural way. 
Its first move, for instance, is to lower the left leg, a 

The very notion of objective, quantifiable evaluation 
elicited much consternation and mirth — along with some 
offense — from our expert dance consultants. 
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Figure 5: An interpolation sequence computed by the corpus-based techniques described in the previous section. 
The starting and ending positions passed as input to the interpolation procedure are shown at the top left and 
top right, respectively; the eight frames below them were computed by the interpolator. 

natural strategy if one is going to change one's fac- 
ing and end up on two feet. The following move is 
a simple weight shift (frames \T\ and [b]}, in prepa- 
ration for a lift of the right leg. This lift, which is 
not strictly necessary to move from the fifth frame to 
the tenth, is an innovation that the program inserted 
because of the observed patterns in the corpus; it re- 
flects the fact that ballet dancers rarely spin with both 
feet flat on the ground. Perhaps the most interesting 
thing about this interpolation sequence, from a bal- 
letic standpoint, is the releve9 that the interpolation 
procedure inserted between frames |_6j and ] 10 |. Many 
releves appear in the corpus, but none of them are 
associated with upper body positions that resemble 
the one that appears in this sequence. Our algorithm 
has invented a physically and stylistically appropriate 
way to move the dancer between the specified posi- 
tions. The interpolation sequence in figure 5 includes 
a variety of other stylistically consistent innovations 
as well; consider, for example, the uplifted chest and 
chin in frames \T\ and [Fj — posture elements that are 
quintessential ballet style. Recall that these postures 
were not simply pasted in verbatim from the corpus; 
they were synthesized joint by joint using the transi- 
tion graphs and influence-diagram directed A* search, 
and their fit to the genre is strong evidence of the suc- 
cess of the methods described in the previous section. 

The original ballet sequence from which the snapshot 
in figure 1 was drawn contained 68 frames, and the 
chaotic shuffling scheme introduced 23 abrupt tran- 
sitions into the variation (e.g., frames 5 ~* 6 of fig- 
ure 2). In eleven of those 23 cases — including the 
one depicted in figure 5 — our interpolation scheme 
was successful in interpolating smoothly between the 

9 A releve, which consists of lifting up on one's toes, is 
a stylistically required component of a direction shift in 
ballet. 

two moves that framed the gap. The interpolation sub- 
sequences so constructed, which ranged in length from 
two to 60 frames, included a variety of stylistically con- 
sistent and often innovative sequences; among other 
things, the interpolation algorithms used releves, plies 
and fifth-position rests in highly appropriate ways — 
and all with no hard coding. From a subjective artistic 
standpoint, the results have some room for improve- 
ment; there are still five somewhat-awkward transi- 
tions in the 185 total frames of the 11 interpolation 
sequences. A less-subjective way to evaluate the suc- 
cess of this scheme is to compare the length of these 
interpolation sequences to the distance between the 
corresponding postures in the original piece, which is 
presumably a good metric for how long it would take 
a human to move from one to the other. For the most 
part, the interpolated sequences were shorter than or 
the same length10 as the number of frames separating 
the corresponding positions in the original piece, which 
indicates that the search strategies are working well, 
mpeg movies of this adagio sequence and its chaotic 
variation — both with and without interpolation— are 
available on the web11. 

This example brings out two significant failure modes 
of this approach. The algorithms cannot find interpo- 
lation subsequences between body positions that oc- 
cur in reversed temporal order — e.g., places where 
the chaotic shuffler has forced a jump backwards in 
time, inserting a move into the variation that appeared 
earlier in the original piece. Secondly, the algorithms 
sometimes introduce relatively long paths between po- 
sitions that appear very similar; in one such instance, 
where the task was a simple 90-degree rotation of the 
right shoulder around the long axis of the arm, the 

10Five were shorter (77% average), four were the same 
length, and two were somewhat (150% and 110%) longer. 

nwww. cs. Colorado. edu/~lizb/chaotic-dance .html 
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algorithm constructed an 65-move sequence that in- 
volved much leg and trunk movement. Both of these 
problems are the result of limited corpus size and 
corresponding patterns in the joint transition graphs. 
These graphs are far from being connected, so some 
joint orientations are not reachable from others. Even 
when they are connected, the search may have to wan- 
der all over the graph to find a path between two given 
vertices. In a large, rich corpus, the graphs would be 
highly connected, giving the search algorithms more 
leeway. In the existing corpora, however, the paucity 
of edges constrains them to very narrow (and long) 
search paths that can translate to stilted, idiosyncratic 
movement sequences. This is an unavoidable problem 
in this application, unfortunately; the dance world has 
not yet embraced the notion of computer animation, 
so the availability of animated dances is quite limited. 

Long, linear vertex chains like the ones at the top 
left of figure 3 are introduced into the joint transition 
graph when one animation in the corpus progresses 
through orientations that do not occur in other ani- 
mations. The directionality in these chains makes it 
impossible for the search to move "upstream," which 
is the cause of the first failure mode described in the 
previous paragraph. We could fix this problem, artifi- 
cially, by introducing reverse edges into the graphs in 
some kinesiologically and stylistically justifiable way. 
For every transition s -+ t seen in the corpus, for 
example, we could introduce an edge from t\ to s\ 
for every joint A. The implicit assumption here is 
that it is always possible to reverse the motion of a 
joint12. Thus, at the expense of destroying some of 
the accuracy with which the original approach mod- 
eled the temporal asymmetry of the genre, we could 
force the graphs to be connected. We are currently in- 
vestigating what probabilities to use on these reverse 
edges. Artificially introduced reverse transitions would 
not solve the second problem; chains — even bidi- 
rectional chains — tend to lengthen interpolated se- 
quences. One solution to this problem is to add more 
examples to the corpus to enrich its connectivity. If 
more examples are hard to come by, another (artifi- 
cial) solution is to perform a coarser discretization to 
minimize the number of possible states a joint can as- 
sume. We are currently experimenting with different 
discretization resolutions to simultaneously minimize 
the number of nodes and maximize the statistical in- 
formation content of the transition graphs. 

The greedy A* search strategy is reflected by "in- 
efficiencies" in the interpolation sequences — places 
where the dancer appears to be headed towards the 
goal state, but then moves away.   For example, one 

This makes sense for classical ballet, but not modern 
dance; motion in the former tends to be "circular" in space, 
whereas in the latter, one often moves a limb out and back 
along the same path. 

of the interpolation goals in figure 5 is to change the 
facing almost 180 degrees, from left to right. By the 
fourth frame, the dancer has turned to the right, but in 
the fifth frame s/he has turned back to the left again, 
which is part of what necessitates the rcleve sequence 

between frames [Ö] and \T\. We arc in the process 
of testing different search strategies and analyzing the 
results; instead of choosing the state that is closest to 
the goal, for instance, we arc incorporating the path 
weights up to the current point in the solution as part 
of the scoring function. This should allow the search 
algorithm to find shorter, more-direct sequences. Fi- 
nally, note that some search strategies — e.g., always 
taking the highest-probability branch — can be a sig- 
nificant source of cliche. 

In order to explore the effects of joint coordination, we 
removed the influence diagram and ran simple, unco- 
ordinated A* search to find paths between positions. 
The resulting sequences were extremely interesting. 
To the layman's eye, they look jerky and unappeal- 
ing, so we expected negative comments about them 
from the experts. However, it seems that an uncoordi- 
nated path through a classical ballet corpus is a very 
good way to generate modern dance sequences, and 
the results were inventive and appealing: "Wow! I'm 
going to use that move in my next piece!" In retro- 
spect, this makes some sense: the modern dance genre 
actively works at violating the ballet motif. 

The interpolation procedure is fairly rapid. Applying 
greedy search to the 23 abrupt-transition pairs in the 
68-frame variation, for instance, required13 280 sec- 
onds on an HP9000/735 workstation running HP-UX 
vl0.20 for a corpus containing 1720 ballet postures. A 
more-complex scoring function will obviously require 
longer run time. Preliminary runs of non-greedy A*, 
for example, required 500 seconds to perform the same 
task and yielded similar results, in terms of quality, se- 
quence length, etc. The complexity also increases with 
corpus size; the same (non-greedy A*) task on an aug- 
mented corpus of 5000 postures — the 1720 original 
frames plus 3280 non-ballet sequences — required 3620 
seconds. The chaotic shuffling procedure is also fast: 
for a 1000-position movement sequence, the chaotic 
shuffling procedure required 18 seconds on the same 
workstation, while a 9000-movc sequence required 156 
seconds. 

4    CONCLUSION 

By applying techniques from graph theory, artificial 
intelligence, and statistics to a corpus of movement 
sequences from a particular genre, the interpolation 
methods described in this paper automatically con- 
struct  interpolation  sequences  that  move from one 

This will obviously depend on the positions involved. 
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specified body posture to another in a.physically and 
stylistically coherent fashion. These tactics can be 
used to smooth abrupt transitions that result from 
subsequence reordering, a common creative mecha- 
nism in modern choreography that can be emulated 
mathematically by using chaotic dynamics to generate 
variations. 

Evaluating the results of this work is necessarily some- 
what subjective. We have shown animations of a vari- 
ety of different chaotic variations to hundreds of peo- 
ple, including dozens of dancers and martial artists, 
both with and without smoothing of the abrupt tran- 
sitions. We have also worked in depth with several ex- 
pert dancers in order to evaluate those interpolation 
sequences sensibly. The consensus is that the chaotic 
variations with smoothed transitions not only resemble 
the original pieces, but also are in some sense pleasing 
to the eye. They are both different from the origi- 
nals and faithful to the dynamics of the genre; there 
are no jarring transitions or out-of-character moves. 
This is a non-trivial accomplishment. A previous at- 
tempt to use mathematics to generate choreographic 
variations — a subsequence randomization scheme in- 
troduced by the now well-known choreographer Merce 
Cunningham in the 1960s — met with a strongly neg- 
ative reception in the dance world, primarily because 
of the awkwardness at the transition points14. 

Many of the techniques used here, as well as others on 
which we are currently working, were inspired by solu- 
tions to similar problems that arise in computational 
linguistics (e.g., learning a grammar from a corpus and 
then using it to construct meaningful sentences). For 
example, one can view the transition graphs in sec- 
tion 2.2.1 and figure 3 as first-order Markov chains, 
where a single chain represents the probabilistic be- 
havior of each joint in the body. 

The objective of this research project was to tailor 
generic strategies for a specific high-dimensional search 
problem in an unusual and demanding domain. The 
results could be extended to other domains where the 
genre of sequence is important, such as speech recog- 
nition (e.g., filling in missing parts of a signal) or text. 
Finally, the implementation of these algorithms allows 
for arbitrary body topologies, so we are by no means 
limited to human motion sequences — though one 
would, of course, have to adapt the quaternion-based 
symbol set and the influence diagram to the topology 
of the limbs and joints that are involved. 
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Abstract 

Several  researchers have proposed modeling 
temporally  abstract actions  in  reinforcement 
learning by the combination of a policy and a ter- 
mination condition, which we refer to as an op- 
tion. Value functions over options and models of 
options can be learned using methods designed 
for semi-Markov decision processes (SMDPs). 
However, all these methods require an option to 
be executed to termination. In this paper we ex- 
plore methods that learn about an option from 
small fragments of experience consistent with 
that option, even if the option itself is not exe- 
cuted. We call these methods intra-option learn- 
ing methods because they learn from experience 
within an option. Intra-option methods are some- 
times much more efficient than SMDP meth- 
ods because they can use off-policy temporal- 
difference mechanisms to learn simultaneously 
about all the options consistent with an expe- 
rience, not just the few that were actually exe- 
cuted. In this paper we present intra-option learn- 
ing methods for learning value functions over op- 
tions and for learning multi-time models of the 
consequences of options.   We present compu- 
tational examples in which these new methods 
learn much faster than SMDP methods and learn 
effectively when SMDP methods cannot learn at 
all. We also sketch a convergence proof for intra- 
option value learning. 

1   Introduction 

Learning, planning, and representing knowledge at multi- 
ple levels of temporal abstraction remain key challenges 
for AI. Recently, several researchers have begun to address 

these challenges within the framework of reinforcement 
learning and Markov decision processes (MDPs) (e.g., 
Singh, 1992a,b; Kaelbling, 1993; Lin, 1993; Dayan & Hin- 
ton, 1993; Thrun and Schwartz, 1995; Sutton, 1995; Hu- 
ber and Grupen, 1997; Kalmar, Szepesväri, and Lörincz, 
1997; Dietterich, 1998; Parr and Russell, 1998; Precup, 
Sutton, and Singh 1997, 1998a,b). This framework is ap- 
pealing because of its general goal formulation, applicabil- 
ity to stochastic environments, and ability to use sample 
or simulation models (e.g., see Sutton and Barto, 1998). 
Extensions of MDPs to semi-Markov decision processes 
(SMDPs) provide a way to model temporally abstract ac- 
tions, as we summarize in Sections 3 and 4 below. Com- 
mon to much of this recent work is the modeling of a tem- 
porally extended action as a policy (controller) and a con- 
dition for terminating, which we together refer to as an op- 
tion. Options are a flexible way of representing temporally 
extended courses of action such that they can be used inter- 
achangeably with primitive actions in existing learning and 
planning methods (Sutton, Precup, and Singh, in prepara- 
tion). 

In this paper we explore ways for learning about options 
using a class of off-policy, temporal-difference methods 
that we call intra-option learning methods. Intra-option 
methods look inside options to learn about them even 
when only a single action is taken that is consistent with 
them. Whereas SMDP methods treat options as indivisi- 
ble black boxes, intra-option methods attempt to take ad- 
vantage of their internal structure to speed learning. Intra- 
option methods were introduced by Sutton (1995), but only 
for a pure prediction case, with a single policy. 

The structure of this paper is as follows. First we introduce 
the basic notation of reinforcement learning, options and 
models of options. In Section 4 we briefly review SMDP 
methods for learning value functions over options and thus 
how to select among options. Our new results are in Sec- 
tions 5-7. Section 5 introduces an intra-option method for 
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learning value functions and sketches a proof of its con- 
vergence. Computational experiments comparing it with 
SMDP methods are presented in Section 6. Section 7 con- 
cerns methods for learning models of options, as are used 
in planning: we introduce an intra-option method and illus- 
trate its advantages in computational experiments. 

2   Reinforcement Learning (MDP) 
Framework 

In the reinforcement learning framework, a learning agent 
interacts with an environment at some discrete, lowest-level 
time scale t = 0,1,2,.... At each time step, the agent 
perceives the state of the environment, st G S, and on that 
basis chooses a primitive action, at € ASt ■ In response 
to at, the environment produces one step later a numerical 
reward, rt+i £ 3?, and a next state, st+i- We denote the 
union of the action sets by A = Uses «4*- If <S and A, 
are finite, then the environment's transition dynamics are 
modeled by one-step state-transition probabilities, and one- 
step expected rewards, 

Pa
SS'    =   Mst+i = s' \st = s,at = a}   and 

r£    =   E{rt+i \st = s,at = a}, 

for all s, s' € S and a € A (it is understood here that 
p^; _ o for a <fc As)- These two sets of quantities together 
constitute the one-step model of the environment. 

The agent's objective is to learn a policy n, which is a 
mapping from states to probabilities of taking each action, 
that maximizes the expected discounted future reward from 
each state s: 

Vn (s) = E |rt + 71-t+i + 72n+2 + ■ • •   st = s, TT} , 

where 7 G [0,1) is a discount-rate parameter. The quantity 
V* (s) is called the value of state s under policy IT, and V* 
is called the value function for policy n. The optimal value 
of a state is denoted 

V*(s) =maxr(»). 

Particularly important for learning methods is a parallel 
set of value functions for state-action pairs rather than for 
states. The value of taking action o in state s under pol- 
icy 7T, denoted Q*(s, a), is the expected discounted future 
reward starting in s, taking a, and henceforth following n: 

Qv(s,a) = E^n+i +m+i + st = s, at :a,7r|. 

This is known as the action-value function for policy IT. 

The optimal action-value function is 

Q*(s,a)=maxQ*(s,a). 

The action value functions satisfy the Bellman equations: 

Q«(s,a) =ra
s + 7£P,V E^VKW,«') (1) 

«' a' 

Q*(s,a) = r°+75]p«s'
m

£
ax<9*(s''a')- (2> 

«' 

3   Options 

We use the term options for our generalization of primitive 
actions to include temporally extended courses of action. In 
this paper, we focus on Markov options, which consist of 
three components: a policy ?r: S x A H> [0,1], a termina- 
tion condition ß : S H» [0,1], and an input set I C 5. An 
option (1,7T, ß) is available in state s if and only if s € 2. If 
the option is taken, then actions are selected according to n 
until the option terminates stochastically according to ß. In 
particular, if the option taken in state st is Markov, then the 
next action at is selected according to the probability distri- 
bution 7r(st, •). The environment then makes a transition to 
state st+i, where the option either terminates, with proba- 
bility ß(st+i), or else continues, determining at+i accord- 
ing to 7r(st+i, •). possibly terminating in st+2 according to 
ß(st+2), and so on. When the option terminates, then the 
agent has the opportunity to select another option. 

The input set and termination condition of an option to- 
gether restrict its range of application in a potentially use- 
ful way. In particular, they limit the range over which the 
option's policy needs to be defined. For example, a hand- 
crafted policy 7T for a mobile robot to dock with its battery 
charger might be defined only for states 1 in which the bat- 
tery charger is within sight. The termination condition ß 
would be defined to be 1 outside of I and when the robot 
is successfully docked. For Markov options it is natural 
to assume that all states where an option might continue 
are also states where the option might be taken (i.e., that 
{s : ß{s) < 1} C I). In this case, n needs to be defined 
only over 1 rather than over all of <S. 

Given a set of options, their input sets implicitly define a 
set of available options 08 for each state s € S. The sets 
Os are much like the sets of available actions, As. We can 
unify these two kinds of sets by noting that actions can be 
considered a special case of options. Each action a corre- 
sponds to an option that is available whenever a is avail- 
able (I = {s : a G As}), that always lasts exactly one 
step (ß(s) = 1, Vs e S), and that selects o everywhere 
(7r(s, a) = 1, Vs £ I). Thus, we can consider the agent's 
choice at each time to be entirely among options, some of 
which persist for a single time step, others which are more 
temporally extended. We refer to the former as one-step or 
primitive options and the latter as multi-step options. 
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We now consider Markov policies over options, p : S x 
O \-t [0,1], and their value functions. When initiated in 
a state st, such a policy p selects an option o e 0St ac- 
cording to probability distribution p(st, •). The option o 
is taken in st, determining actions until it terminates in 
st+k, at which point a new option is selected, according to 
f*(st+k, •)> and so on. In this way a policy over options, p, 
determines a policy over actions, or flat policy, n = f(p). 
Henceforth we use the unqualified term policy for Markov 
policies over options, which include Markov flat policies as 
a special case. 

Note, however, that f(p) is typically not Markov because 
the action taken in a state depends on which option is being 
taken at the time, not just on the state. We define the value 
of a state s under a general flat policy n as the expected 
return if the policy is started in s: 

V"(s) d= E{rt+i + -rn+2 + • • • I £(7r,M)}, 

where £(n, s, t) denotes the event of n being initiated in s 
at time t. The value of a state under a general policy (i.e., 
a policy over options) p can then be defined as the value 

of the state under the corresponding flat policy: V(s) d= 
V'<">(a). 

It is natural to also generalize the action-value function to 
an option-\&\ut function. We define Q"(s, o), the value of 
taking option o in state sei under policy n, as 

Q"{s,o)d= E{rt+1 + 7n+2 + ...   £(0p,s,t)\, 

where op, the composition of o and p, denotes the policy 
that first follows o until it terminates and then initiates p in 
the resultant state. 

Options are closely related to the actions in a special kind 
of decision problem known as a semi-Markov decision pro- 
cess, or SMDP (e.g., see Puterman, 1994). Any fixed set 
of options for a given MDP defines a new SMDP overlaid 
on the MDP. The appropriate form of model for options, 
analogous to the r£ and pa

ss, defined earlier for actions, is 
known from existing SMDP theory. For each state in which 
an option may be started, this kind of model predicts the 
state in which the option will terminate and the total reward 
received along the way. These quantities are discounted in 
a particular way. For any option o, let £(o,s, t) denote the 
event of o being taken in state s at time t. Then the reward 
part of the model of o for state s is 

r°s=E{rt+1+>yrt+2... + ik-1rt+k |f(o, «,<)},   (3) 

where t + k is the random time at which o terminates. The 

state-prediction part of the model of o for state s is 

oo 

P°..> = E V M* = h 8t+i = 8' | £(o, S, t)} 
j=0 

= E{lkSslSt+k\6(o,s,t)}, (4) 

for all s' £ S, under the same conditions, where 6SS> is an 
identity indicator, equal to 1 if s = s', and equal to 0 else. 
Thus, p°s, is a combination of the likelhood that s' is the 
state in which o terminates together with a measure of how 
delayed that outcome is relative to 7. We call this kind of 
model a multi-time model because it describes the outcome 
of an option not at a single time but at potentially many 
different times, appropriately combined. 

4   SMDP Learning Methods 

Using multi-time models of options we can write Bellman 
equations for general policies and options. For example, 
the Bellman equation for the value of option o in state sei 
under a Markov policy p is 

Q»(s,o)=r°a+J2P°ss-  E M*V)W,o').    (5) 
«' o'eo. 

The optimal value functions and optimal Bellman equa- 
tions can also be generalized to options and to policies over 
options. Of course, the conventional optimal value func- 
tions V* and Q* are not affected by the introduction of 
options; one can ultimately do just as well with primitive 
actions as one can with options. Nevertheless, it is inter- 
esting to know how well one can do with a restricted set of 
options that does not include all the actions. For example, 
one might first consider only high-level options in order to 
find an approximate solution quickly. Let us denote the re- 
stricted set of options by O and the set of all policies that 
select only from O by 11(0). Then the optimal value func- 
tion given that we can select only from Ö is 

VS(s) def 
max  V"(s) 

*»en(o) 

maxE{r + 1
kVS(s')\ 6(0, s)} 

(6) 

(7) 

where 6(0, s) denotes the event of starting the execution 
of option o in state s, k is the random numbner opf steps 
elapsing during o, s' is the resulting next state, and r is the 
cumulative discounted reward received along the way. The 
optimal option values are defined as: 

\def 
Q*0(s,o)=  max  Q^fs.o) (8) 

= E{r + ^^Qh(s',o')\6(o,s)}  (9) 
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Given a set of options, O, a corresponding optimal pol- 
icy, denoted ß*a, is any policy that achieves V£, i.e., for 
which V°(s) = V£(s) for all states s £ S. If V£ and 
models of the options are known, then optimal policies 
can be formed by choosing in any proportion among the 
maximizing options in (7). Or, if Q*0 is known, then opti- 
mal policies can be formed by choosing in each state s in 
any proportion among the options o for which Q*0{s, 6) = 
max0- Q*0(s,o'). Thus, computing approximations to VQ 

or Q*0 become the primary goals of planning and learning 
methods with options. 

The problem of finding the optimal value functions for a set 
of options can be addressed by learning methods. Because 
an MDP augmented by options forms an SMDP, we can ap- 
ply SMDP learning methods as developed by Bradtke and 
Duff (1995), Parr and Russell (1998), Parr (in preparation), 
Mahadevan et al. (1997), and McGovern, Sutton and Fagg 
(1997). In these methods, each option is viewed as an in- 
divisible, opaque unit. After the execution of option o is 
started in state s, we next jump to the state s' in which it 
terminates. Based on this experience, an estimate Q{s,o) 
of the optimal option-value function is updated. For exam- 
ple, the SMDP version of one-step Q-learning (Bradtke and 
Duff, 1995), which we call one-step SMDP Q-learning, up- 
dates after each option termination by 

Q(s,o) ^Q(s,o) + a r + 7* max Q(s', d) - Q(s, o) 
o' GC? 

where k is the number of time steps elapsing between s and 
s', r is the cumulative discounted reward over this time, and 
it is implicit that the step-size parameter a may depend ar- 
bitrarily on the states, option, and time steps. The estimate 
Q(s, o) converges to Q*0(s, 6) for all s € S and o G Ö un- 
der conditions similar to those for conventional Q-learning 
(Parr, in preparation). 

5   Intra-Option Value Learning 

One drawback to SMDP learning methods is that they need 
to execute an option to termination before they can learn 
about it. Because of this, they can only be applied to one 
option at a time—the option that is executing at that time. 
More interesting and potentially more powerful methods 
are possible by taking advantage of the structure inside 
each option. In particular, if the options are Markov and 
we are willing to look inside them, then we can use spe- 
cial temporal-difference methods to learn usefully about an 
option before the option terminates. This is the main idea 
behind intra-option methods. 

Intra-option methods are examples of off-policy learning 
methods (Sutton and Barto, 1998) in that they learn about 

the consequences of one policy while actually behaving ac- 
cording to another, potentially different policy. Intra-option 
methods can be used to learn simultaneously about many 
different options from the same experience. Moreover, they 
can learn about the values of executing options without ever 
executing those options. 

Intra-option methods for value learning are potentially 
more efficient than SMDP methods because they extract 
more training examples from the same experience. For ex- 
ample, suppose we are learning to approximate Q*0(s,o) 
and that o is Markov. Based on an execution of o from t to 
t + k, SMDP methods extract a single training example for 
Q*0(s, o). But because o is Markov, it is, in a sense, also 
initiated at each of the steps between t and t+k. The jumps 
from each intermediate st+i to st+k are also valid experi- 
ences with o, experiences that can be used to improve es- 
timates of Qb(st+i, o). Or consider an option that is very 
similar to o and which would have selected the same ac- 
tions, but which would have terminated one step later, at 
t + k + 1 rather than at t + k. Formally this is a different 
option, and formally it was not executed, yet all this experi- 
ence could be used for learning relevant to it. In fact, an op- 
tion can often learn something from experience that is only 
slightly related (occasionally selecting the same actions) to 
what would be generated by executing the option. This is 
the idea of off-policy training—to make full use of what- 
ever experience occurs in order to learn as much possible 
about all options, irrespective of their role in generating the 
experience. To make the best use of experience we would 
like an off-policy and intra-option version of Q-learning. 

It is convenient to introduce new notation for the value of a 
state-option pair given that the option is Markov and exe- 
cuting upon arrival in the state: 

Uh(s,o) = (l-ß(s))Qh(s,o) + ß(s)mixQ*0(s,o'), 

Then we can write Bellman-like equations that relate 
Qo(s, o) to expected values of 0o(«', °). wnere s> is *e 

immediate successor to s after initiating Markov option 
o= (I,n,ß) ins: 

Qo(s.o)    =     S n(s,a)E{r + ^Uh(s',o)\s,a} 
a€Aa 

J2 *(*.<*) 
a€A, 

rs° + £*C'W,o) 

where r is the immediate reward upon arrival in s'. Now 
consider learning methods based on this Bellman equa- 
tion. Suppose action at is taken in state st to produce 
next state st+i and reward rt+i, and that at was selected 
in a way consistent with the Markov policy w of an option 
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o = (1,7f, ß). That is, suppose that at was selected accord- 
ing to the distribution n(st, ■). Then the Bellman equation 
above suggests applying the off-policy one-step temporal- 
difference update: 

Q(*t,o) «- Q(8t,o)+a[{rt+i+'YU(st+uo))-Q(st,o) 

where 

U(s, o) = (1 - ß(s))Q(s, o) + ß(s) max Q(s, o') 
o'eo 

The method we call one-step intra-option Q-learning ap- 
plies this update rule to every option o consistent with every 
action taken at. 

Theorem 1 (Convergence of intra-option Q-learning) 
For any set of deterministic Markov options O, one-step 
intra-option Q-learning converges w.p.l to the optimal 
Q-values, Q*0, for every option, regardless of what options 
are executed during learning, provided every primitive 
action gets executed in every state infinitely often. 

Proof: (Sketch) On experiencing (s, a, r, s'), for every op- 
tion o that picks action a in state s, intra-option Q-learning 
performs the following update: 

Q(s, o) «- Q(s, o) + a(s, o)[r + jU(s', o) - Q(s, o)]. 

Let a be the action selection by deterministic Markov op- 
tion o = (l,n,ß). Our result follows directly from Theo- 
rem 1 of Jaakkola et al. (1994) and the observation that the 
expected value of the update operator r + jU(s', o) yields 
a contraction, as shown below: 

\E{r + 1U(s',o)}-Q*0(s,0)\ 

= K + Y,Pass'u(s'>°)-Qh(s,o)\ 
8' 

= K + £p^tV,°) - r.» - Y,Pass'Uh(s',o)\ 

< \Y,Pass>[(l-ß(s'MQ(s',o)-Q*0(s',o)) 

+ ß(s')(maxQ(s',o') - maxQ*0{s\o'))] | 

< £tfs-max|<?(s>'V%(s'V')| 
8    ,0 

8' 

< 7max|Q(S")0")-Q^'V')| 

6   Illustrations of Intra-Option Value 
Learning 

As an illustration of intra-option value-learning, we used 
the gridworld environment shown in Figure 1. The cells of 

4 stochastic 
primitive actions 

■ right 

8 multi-step options 
(to each room's 2 hallways) 

Figure 1: The rooms example is a gridworld environment 
with stochastic cell-to-cell actions and room-to-room hall- 
way options. Two of the hallway options are suggested by 
the arrows labeled oi and o2. The label G indicates the 
location used as a goal. 

the grid correspond to the states of the environment. From 
any state the agent can perform one of four actions, up, 
down, left or right, which have a stochastic effect. 
With probability 2/3, the actions cause the agent to move 
one cell in the corresponding direction, and with probabil- 
ity 1/3, the agent moves instead in one of the other three di- 
rections, each with 1/9 probability. If the movement would 
take the agent into a wall, then the agent remains in the 
same cell. There are small negative rewards for each ac- 
tion, with means uniformly distributed between 0 and -1. 
The rewards are also perturbed by gaussian noise with stan- 
dard deviation 0.1. The environment also has a goal state, 
labeled "G". A complete trip from a random start state to 
the goal state is called an episode. When the agent enters 
"G", it gets a reward of 1 and the episode ends. In all the 
experiments the discount parameter was 7 = 0.9 and all 
the initial value estimates were 0. 

In each of the four rooms we provide two built-in hallway 
options designed to take the agent from anywhere within 
the room to one of the two hallway cells leading out of 
the room. The policies underlying the options follow the 
shortest expected path to the hallway. 

For the first experiment, we applied the intra-option method 
in this environment without selecting the hallway options. 
In each episode, the agent started at a random state in the 
environment and thereafter selected primitive actions ran- 
domly, with equal probability. On every transition, the up- 
date (5) was applied first to the primitive action taken, then 
to any of the hallway options that were consistent with it. 
The hallway options were updated in clockwise order, start- 
ing from any hallways that faced up from the current state. 
The value of the step-size parameter was a = 0.01. 

This is a case in which SMDP methods would not be able to 
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Figure 2: The learning of option values by intra-option 
methods without ever selecting the options. The value of 
the greedy policy goes to the optimal value (upper panel) 
as the learned values approach the correct values (as shown 
for one state, in the lower panel). 

learn anything about the hallway options, because these op- 
tions are never executed. However, the intra-option method 
learned the values of these actions effectively, as shown in 
Figure 2. The upper panel shows the value of the greedy 
policy learned by the intra-option method, averaged over 2 
and over 30 repetitions of the whole experiment. The lower 
panel shows the correct and learned values for the two hall- 
way options that apply in the state marked * in Figure 1. 
Similar convergence to the true values was observed for all 
the other states and options. 

So far we have illustrated the effectiveness of intra-option 
learning in a context in which SMDP methods do not ap- 
ply. How do intra-option methods compare to SMDP meth- 
ods when both are applicable? In order to investigate this 
question, we used the "same environment, but now we al- 
lowed the agent to choose among the hallway options as 
well as the primitive actions, which were treated as one- 
step options.   In this case, SMDP methods can be ap- 
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Figure 3: Comparison of SMDP, intra-option and macro Q- 
learning. Intra-option methods converge faster to the cor- 
rect values. 

plied, since all the options are actually executed. We ex- 
perimented with two SMDP methods: one-step SMDP Q- 
learning (Bradtke and Duff, 1995) and a hierarchical form 
of Q-learning called macro Q-learning (McGovern, Sutton 
and Fagg, 1997). The difference between the two methods 
is that, when taking a multi-step option, SMDP Q-learning 
only updates the value of that option, whereas macro Q- 
learning also updates the values of the one-step options (ac- 
tions) that were taken along the way. 

In this experiment, options were selected not at random, but 
in an e-greedy way dependent on the current option-value 
estimates. That is, given the current estimates Q(s, o), let 
o* = argmaxo€o, Q(s,o) denote the best valued action 
(with ties broken randomly). Then the policy used to select 
options was 

fi(s, 6) 
ifo = o* 
otherwise, 

for all s £ S and o G O. The probability of a random 
action, e, was set at 0.1 in all cases. For each algorithm, 
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we tried step-size values of a 
picked the best one. 

l   l   l 
S> 4'8- and ie and then 

Figure 3 shows two measures of the performance of the 
learning algorithms. The upper panel shows the average 
absolute error in the estimates of Q*0 for the hallway op- 
tions, averaged over the input sets I, the eight hallway 
options, and 30 repetitions of the whole experiment. The 
intra-option method showed significantly faster learning 
than any of the SMDP methods. The lower panel shows the 
quality of the policy executed by each method, measured 
as the average reward over the state space. The intra-option 
method was also the fastest to learn by this measure. 

7   Intra-Option Model Learning 

In this section, we consider intra-option methods for learn- 
ing multi-time models of options, r° and p°s,, given knowl- 
edge of the option (i.e., of its IT, ß, and I). Such models are 
used in planning methods (e.g., Precup, Sutton, and Singh, 
1997, 1998a,b). 

The most straightforward approach to learning the model 
of an option is to execute the option to termination many 
times in each state s, recording the resultant next states 
s', cumulative discounted rewards r, and elapsed times k. 
These outcomes can then be averaged to approximate the 
expected values for r°8 and p°ss, given by (3) and (4). For 
example, an incremental learning rule for this could update 
its estimates f° and p°x, for all x 6 S, after each execution 
of o in state s, by 

P°sX 

=   r, 

=     Psx 

+ a[r - f° and (10) 

(11) 

where the step-size parameter, a, may be constant or may 
depend on the state, option, and time. For example, if a is 1 
divided by the number of times that o has been experienced 
in s, then these updates maintain the estimates as sample 
averages of the experienced outcomes. However the aver- 
aging is done, we call these SMDP model-learning meth- 
ods because, like SMDP value-learning methods, they are 
based on jumping from initiation to termination of each op- 
tion, ignoring what might happen along the way. In the spe- 
cial case in which o is a primitive action, note that SMDP 
model-learning methods reduce exactly to those used to 
learn conventional one-step models of actions. 

Now let us consider intra-option methods for model learn- 
ing. The idea is to use Bellman equations for the model, 
just as we used the Bellman equations in the case of learn- 
ing value functions. The correct model of a Markov option 

o - (1,7T, ß) is related to itself by 

r°s=Y, *(*.o)^r + 7(l-/?(Ä'))r,0,} (12) 
a€As 

= E *"(«>a) 
a€A, 

ras+J2PsAl-ß(s')K (13) 

where r and s' are the reward and next state given that ac- 
tion a is taken in state s, and 

P«= £ tf(*.o)7ä{(l - ß(s'M,x +ß(s')6,t} 
aeA 

= £ «(*>a) £rf.' (1 - ßVM; + ßW,'z 
aeA, B' 

for all s,x £ S. How can we turn these Bellman equations 
into update rules for learning the model? First consider that 
action at is taken in st and that the way it was selected is 
consistent with o = (l,ir,ß), that is, that at was selected 
with the distribution n(st, •). Then the Bellman equations 
above suggest the temporal-difference update rules 

K <" f°s, + « [rt+i + 7(1 - ß(st+i)Kl+, - r°s]  (14) 

and 

P°.,x <" K* + «[7(1 - ß(st+i))p°t+lX + 
-yß(st+i)6Sl+,x -p°tX], (15) 

where p°ss, and f° are the estimates of p°s, and r°, re- 
spectively, and a is a positive step-size parameter. The 
method we call one-step intra-option model learning ap- 
plies these updates to every option consistent with every 
action taken. Of course, this is just the simplest intra-option 
model-learning method. Others may be possible using el- 
igibility traces and standard tricks for off-policy learning 
(see Sutton, 1995; Sutton and Barto, 1998). 

Intra-option methods for model learning have advantages 
over SMDP methods similar to those we saw earlier for 
value-learning methods. As an illustration, consider the ap- 
plication of SMDP and intra-option model-learning meth- 
ods to the rooms example. We assume that the eight hall- 
way options are given as before, but now we assume that 
their models are not given and must be learned. Experience 
is generated by selecting randomly in each state among the 
two possible options and four possible actions, with no goal 
state. In the SMDP model-learning method, equations (10) 
and (11) were applied whenever an option was selected, 
whereas, in the intra-option model-learning method, equa- 
tions (14) and (15) were applied on every step to all options 
that were consistent with the action taken on that step. In 
this example, all options are deterministic, so consistency 
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Figure 4: Learning curves for model learning by SMDP 
and intra-option methods. 

with the action selected means simply that the option would 
have selected that action. 

For the SMDP method, the step-size parameter was varied 
so that the model estimates were sample averages, which 
should give fastest learning. The results of this method 
are labeled "SMDP 1/t" on the graphs. We also looked 
at results using a fixed learning rate. In this case and 
for the intra-option method we tried step-size values of 
a = |, |, |, and i, and picked the best value for each 
method. Figure 4 shows the learning curves for all three 
methods, using the best a values, when a fixed alpha was 
used. The upper panel shows the average and maximum ab- 
solute error in the reward predictions, and the lower panel 
shows the average absolute error and the maximum abso- 
lute error in the transition predictions, averaged over the 
eight options and over 30 independent runs. The intra- 
option method approached the correct values more rapidly 
than the SMDP methods. 

8   Closing 

The theoretical and empirical results presented in this pa- 
per suggest that intra-option methods provide an efficient 
way for taking advantage of the structure inside an option. 
Intra-option methods use experience with a single action 
to update the value or model for all the options that are 
consistent with that action. In this way they make much 
more efficient use of the experience than SMDP methods, 
which treat options as indivisible units. In the future, we 
plan to extend these algorithms for the case of non-Markov 
options, and to combine them with eligibility traces. 
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Abstract 

This paper presents an innovative application of 
the  Disciple   Learning   Agent   Shell   to   the 
building of an educational agent that generates 
history tests for middle school students, to assist 
in the assessment of their understanding and use 
of higher-order thinking skills. Disciple has been 
taught by an educator to generate and answer 
basic test questions and to explain the answers. 
From its interaction with the educational expert, 
Disciple has learned general rules that allow it to 
generate a large number of new test questions fcr 
students, together with hints, answers, and exp- 
lanations of the answers. As a result, it can guide 
the students during their practice of higher-order 
thinking skills as they would be directly guided 
by the educator. It can also be used by the edu- 
cator to generate a different exam for each student 
in the class. Disciple has been experimentally 
evaluated by history experts, students and tea- 
chers, with very promising results. The work on 
developing this educational agent illustrates an 
integration   of machine   learning,   knowledge 
acquisition, problem solving and intelligent tu- 
toring systems in the context of computer-based 
assessment involving multimedia documents. 

1    INTRODUCTION 
For several years we have been developing the Disciple 
approach for building intelligent agents. The defining 
feature of the Disciple approach to building agents is that 
a person teaches the agent how to perform domain-specific 
tasks, by giving the agent examples and explanations, as 
well as supervising and correcting its behavior. The 
current version of the Disciple approach is implemented m 
the Disciple Learning Agent Shell, and is presented in 
(Tecuci, 1998). We define a learning agent shell as 
consisting of a learning engine and an inference engine 
that support a representation formalism in which a 
knowledge base can be encoded, as well as a methodology 
for building the knowledge base. 

The central goal of the Disciple approach is to facilitate 
the agent building process by the use of synergism at 

three different levels. First, there is synergism between 
different  learning  methods   employed  by   the   agent 
(Michalski    and    Tecuci,     1994).    By     integrating 
complementary  learning methods  (such  as   inductive 
learning   from   examples,   explanation-based   learning, 
learning by analogy, learning by experimentation), the 
Disciple agent is able to learn from the human expert in 
situations in which no single strategy learning method 
would be sufficient. Second, there is synergism between 
expert's teaching of the agent and the agent's learning 
from  the  expert  (Tecuci  and  Kodratoff,   1995).   For 
instance, the expert may select representative examples to 
teach the agent, may provide explanations, and may 
answer agent's questions. The agent, on the other hand, 
will learn general rules that are difficult to be defined by 
the expert, and will consistently integrate them into its 
knowledge base. Third, there is synergism between the 
expert and the agent in solving a problem. They form a 
team in which the agent solves the more routine but labor 
intensive parts of the problem and the expert solves the 
more creative parts. In the process, the agent learns from 
the expert, gradually evolving toward an  "intelligent" 
agent (Mitchell et al., 1985). We claim that the Disciple 
approach significantly reduces the involvement of the 
knowledge  engineer  in  the  process   of building   an 
intelligent agent, most of the work being done directly by 
the domain expert. In this respect, the work on Disciple is 
part of a long term vision where personal computer users 
will  no  longer be simply   consumers  of ready-made 
software, as they are today, but also developers of their 
own software assistants. 

This paper is organized as follows. The next section 
presents the developed test generation agent. Then, 
sections 3, 4 and 5 describe the process of building the 
agent. Section 6 describes the results of the experiments 
performed with the developed agent. Finally, the paper 
presents the conclusions of this work. 

2   A TEST GENERATION AGENT 
We have developed an agent that generates history tests to 
assist in the assessment of students' understanding and 
use of higher-order thinking skills. Examples of specific 
higher-order thinking skills are: evaluation of historical 
sources for relevance, credibility, consistency, ambiguity, 
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bias, and fact vs. opinion; analyzing them for content, 
meaning and point of view; and synthesizing arguments in 
the form of conclusions, claims and assertions (Bloom 
1956; Beyer, 1987, 1988). 

To motivate the middle school students, for which this 
agent was developed, and to provide an element of game 
playing, the agent employs a journalist metaphor, asking 
the students to assume the role of a novice journalist. 
Figure 1, for instance, shows a test question generated by 
the agent. The student is asked to imagine that he or she 
is a reporter and has been assigned the task to write an 
article for Christian Recorder during the Civil War period 
on plantations. The student has to analyze the historical 
source "Slave Quarters" in order to determine whether it 
is relevant to this task.  In the situation illustrated in 
Figure 1 the student answered correctly. Therefore, the 
agent confirmed the answer and provided an explanation 
for it, as indicated in the lower right pane of the window. 
The student could have requested a hint to answer the 
question and would have received the following one: "To 
determine if the source is relevant to your task investigate 
if it illustrates some component of a plantation, check 
when it was created and when Christian Recorder was 
issued." In general, there may be several reasons why a 
source is relevant to a task. By pushing the More button, 
the   student   can  receive  the  hints   and   explanations 
corresponding to these additional reasons. 

|23lf Relevant Test Question 

Another example of a test question is shown in Figure 2. 
The student is given a task, a historical source and three 
possible reasons why the source is relevant to the task. He 
or she has to investigate the source and decide which 
reason(s) account for the fact that the source is relevant to 
the task. The student is instructed to check the box next 
to the correct reason(s). 

The agent has two modes of operation: final exam mode 
and self-assessment mode. In the final exam mode, the 
agent generates  an  exam  consisting  of a  set  of test 
questions of different levels of difficulty. The student has 
to answer one test question at a time and, after each 
question, he or she receives the correct answer and an 
explanation of the answer. In the self-assessment mode, 
the student chooses the type of test question to solve, and 
will receive, on request, feedback in the form of hints to 
answer the question, the correct answer, and some or all 
the explanations of the answer. The test questions are 
generated such that all students interacting with the agent 
are likely to receive different tests even if they follow 
exactly the same interaction pattern. Moreover, the agent 
builds and maintains a simple student model and uses it 
in the process of test generation. For instance, to the 
extent possible, the agent tries to generate test questions 
that   involve   historical   sources   that   have   not   been 
investigated by the student, or historical sources that were 
not used in previous tests for that student. 

HHE3I 
.File" ."Help.,,, 

Applying What YouVe Learned About Relevance      «««on 1 
«*! '» Mrfjfrr for 'ChristianRecorder« ilurl^«ieCMIV^|»ridl(l8ß1-1865)andyDuhaw 
ta^awignadtowrtteand^^ *"" ■" 

Prats on tin Background button on the left to 1r«BStloatath«resoitfc«.ry«j think that the 
2gJ^M«eV?*tnenpre8»(mthereLW/Wbuttoa Otherwise, press on the 
HWELßWNTbutton. -il- '■?,:::■  ST- .■■■•: 

Next 

Exit   ( 

Background "Slave Quarters' 
:;^e^he:Sb|rca;|s..relevant The source Is 

relevant to your task because M 
Illustrates slave housing which was a 
component of a plantation, "Slave 
Quarters' was created during the pre 
CMI War period (1700-1860) which was 
before the CM War period (1861-1865) 

iand^iri&l^ Issued 
during the CMI War period (1861-1865). 

HotRetevantK|     -- :JJ&* :;fr     Explanation!        Mora   | 

Figure 1: A test question, answer and explanation generated by the agent' 

Picture reproduced from LC-USZ62-67818, Library of Congress, Prints & Photographs Division, Civil War Photographs 
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Question 7 
File    Help 

Applying What You've Learned About Relevance 
you have been assigned to wrltB an article for adults on the slave trade that supports the abolitionist 
perspective. 

Press on the Background button on the left to Investigate the source. Place a check next to the 
explanation that Is a reason why this source is relevant to your task. 

Next 

Exit 
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A. The source is relevant to jour task because It Illustrate* a 
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(190O-1840) and "Save Auction" was oraatad duringthe P" 
Civil War pariod (1700-1860 J which was before the post Civil 
War period (1S00.1940). 

B. Tha souroa is ralevar« to your task baoausa it illustrates a 
slavetrader wNoh was a component ofthe slavetrade, It is 
appropriatator adults and'Slave Auction'supports the 

abolitionist perspective 

C  Tha souroa Is relevant to »our task because it Identifies 
components of tha auctioning of slaves and 'Slave Auction' 
was created during thepre Civil war pariod (1700-1860)and 
'Harpers Weekly* was Issued during pre Ovil War period 
(17OO-1BS0J. 

Evaluate My Answer 

Figure 2: Another test question 

The next sections present the process of building this 
agent: building the agent's ontology (Gruber, 1993), 
teaching the agent how to generate test questions, and 
building the test generation engine. 

3   BUILDING THE AGENT'S ONTOLOGY 

The agent's ontology contains descriptions of historical 
concepts (such as "plantation"), historical sources (such 
as "Slave Quarters" in Figure 1), and templates fir 
reporter tasks (such as "You are a writer for PUBLICATION 
during HISTORICAL-PERIOD and you have been assigned to 
write and illustrate a feature article on SLAVERY-TOPIC"). 
Using these descriptions and templates, the agent 
communicates with the students through a stylized natural 
language, as illustrated in Figure 1 and Figure 2. 

The ontology building process starts with choosing a 
module in a history curriculum (such as Slavery in 
America) for which the agent will generate test questions. 
Then the educator identifies a set of historical concepts 
that are appropriate and necessary to be learned by the 
students. The educator also identifies a set of historical 
sources that can enhance the student's understanding of 
these concepts and will be used in test questions. All 
these concepts and historical sources are represented by 

the history educator in the knowledge base, by using the 
various interfaces of Disciple. One is the Source Viewer 
that displays the historical sources. Another is the 
Concept Editor that is used to describe the historical 
sources. The historical sources have to be defined in terms 
of features that are necessary for applying the higher-order 
thinking skills of relevance, credibility, etc. For instance, 
a source is relevant to some topic if it identifies, 
illustrates or explains the topic or some of its 
components. Let us consider the historical source 
'Contented Slaves and Masters', from the bottom of 
Figure 3. This source is defined as being a LITHOGRAPH 
that ILLUSTRATES the concepts SLAVE-DANCE, MALE- 
SLAVE,    FEMALE-SLAVE,    and    SLAVE-MASTER.     Other 
information has also to be represented, such as the 
audience for which this source is appropriate and when it 
was created. The concepts from the knowledge base are 
hierarchically organized in a semantic network (Quillian, 
1968; Lenat and Guha, 1990) that can be inspected with 
the Concept Browser. For instance, SLAVE-DANCE was 
defined as being a type of SLAVE-RECREATION which, in 
turn, was a SLAVE-LIFE-ASPECT. This initial knowledge 
base of the agent was assumed to be incomplete and even 
possibly partially incorrect, needing to be improved 
during the next stages of the agent's development. 

! Picture reproduced from LC-USZ62-15398, Library of Congress, Prints & Photographs Division, Civil War Photographs 
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4   TEACHING THE AGENT 
A basic relevancy test question consists of judging the 
relevancy of a historical source to a given reporter's task. 
To teach the agent to generate and answer such questions, 
the educator gives it an example consisting of a task and ä 
historical source relevant to that task, as shown in Figure 
3. Starting from this example, the agent has learned the 
relevancy rule in Figure 4, where the condition specifies a 
general reporter task and the conclusion specifies a source 
relevant to that task. The condition also incorporates the 
explanation of why the source is relevant to the task. 
Associated with the rule are the natural language 
templates corresponding to its task, explanation and con- 
clusion. They are automatically created from the natural 
language descriptions of the elements in the rule. One 
should notice that each rule corresponds to a certain type 
of task (WRITE-DURING-PERIOD, in this case). Other types 
of tasks are WRITE-ON-TOPIC, WRITE-FOR-AUDIENCE, and 
WRITE-FOR-OCCASION. Therefore, for each type of reporter 
task there will be a family of related relevancy rules. The 
rules corresponding to the other evaluation criteria, such 
as credibility, accuracy, or bias, will have a similar form. 

Current Example B 
If you ara a wrltar FOR Southam 
llluslratad Nawa DURING tha Civil War 
partod (1M1 - 1»eS) and you hava baan 
■aalgnad to wrtla and lllualrata a faatura 
■rtkla on alava curtura, than tha 
HISTORICAL SOURCE Contantad Slavaa 
and Maatara* la ralavant. 

Figure 3: Initial example given by the educator3 

IF 
?Wl IS WRITE-DURING-PERIOD, FOR ?S1, DURING ^PI   ON ^2 
?S1 IS PUBLICATION, ISSUED-DURING ?PI 
?PI IS HISTORICAL-PERIOD 
?S2 IS SLAVERY-TOPIC 
?S3 IS SOURCE, ILLUSTRATES ?S4, CREATED-DURING 'P2 
?S4 IS HISTORICAL-CONCEPT, COMPONENT-OF 'S2 
?P2 IS HISTORICAL-PERIOD, BEFORE ?P1 

THEN 
RELEVANT HIST-SOURCE ?S3 

Task Description: You are a writer for ?S1 during ?P1 and you have been 
assigned to write and illustrate a feature article on ?S2 

Explanation: ?S3 illustrates ?S4 which was a component  of ?S2,  ?S3 was 
created during 7P2 which was before ?P1 and ?S1 was issued during ?P1. 

Operation Description: ?S3 is relevant 

Figure 4: A relevancy rule 

4.1 RULE LEARNING 

The rule learning method of Disciple is schematically 
represented in Figure 5. As Explanation-based Learning 
(DeJong and Mooney, 1986; Mitchell, Keller, Kedar- 
Cabelli, 1986), it consists of two phases, explanation and 
generalization. However, in the explanation phase the 
agent is not building a proof tree, and the generalization is 
not a deductive one. 

User-guided 
Explanation 

.Expert. 

i 

Knowledge 
Base 

Analogy-based 
Generalization 

Plauilbl«   Hypottv 
Lower Exact 
Bound Condition 

~mf. 

3 Picture reproduced from LC-USZ62-89745, Library of Congress 

Figure 5: The rule learning method of Disciple 

In the explanation phase, the educator helps the agent to 
understand why the example in Figure 3 is correct (that 
is, why the source is relevant to the given task). The 
explanation of the example has a form that is similar to 
the one given by a teacher to   a student:   the  source 
"Contended Slaves and Masters" is relevant to the given 
task (see Figure 3) because it illustrates a slave dance 
which was a component of slave culture, and it  was 
created during the pre Civil War period which was before 
the Civil War period. Each of these phrases corresponds 
to a path in the agent's ontology, as shown in Figure 6. 
However, rather than giving an explanation to the agent, 
the educator guides it to propose explanations and then 
selects the correct ones. For instance, the educator may 
point to the most relevant objects from the input example 
and may specify the types of explanations to be generated 
by the agent (e.g. a correlation between two objects or a 
property of an object). The agent uses such guidance and 
specific heuristics to propose plausible explanations to the 
educator who has to select the correct ones. A particularly 
useful heuristic is to propose explanations of an example 
by analogy with the  explanations of other examples. 
Notice that the above explanation is similar to a part of 
the explanation from the test question in Figure 1. This 
illustrates a significant benefit to be derived from using 
the Disciple approach to build educational agents. That 
is, the kind of explanations that the agent gives to the 
students are similar to the explanations that the agent 
itself has received from the educator. Therefore, the agent 
acts as an indirect communication medium between the 
educator and the students. 

In the generalization phase (see  Figure  5),  the  agent 
performs an analogy-based generalization of the example 
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ILLUSTRATE! 

SLAVE-DANCE 

^ COMPONENT-OF 

CONTENTED-SLAVES-AND-MASTERS 

CREATED-DURING^___^ 

PRE-CIVIL-WAR 

CIVIL-WAR -* 'BEFORE  

SLAVE-CULTURE 

Figure 6: The explanation of the example in Figure 3 

and its explanation into a plausible version space (PVS) 

rule. A PVS rule is an IF-THEN rule with two conditions, a 
plausible upper bound condition that is likely to be more 
general than the exact condition, and a plausible lower 
bound condition that is likely to be less general than the 
exact condition. The generalization process is illustrated 
in Figure 7. The initial example is the internal represen- 
tation of the example in Figure 3. Also, the explanation is 
the one from Figure 6. First, the explanation is genera- 
lized to an analogy criterion by preserving the object 
features (such as ILLUSTRATES and CREATED-DURING) and 
by generalizing the objects to more general concepts (e.g. 
generalizing SLAVE-DANCE to HISTORICAL-CONCEPT). To 
determine how to generalize an object, Disciple analyzes 
all the features from the example and the explanation that 
are connected to that object. Each such feature is defined 
in Disciple's ontology by a domain (that specifies the set 
of all the objects from the application domain that may 
have that feature) and a range (that specifies all the 
possible values of that feature). The domains and the 
ranges of these features restrict the generalizations of the 
objects. For instance, in the explanation from Figure 7, 
SLAVE-DANCE has the feature COMPONENT-OF and appears 
as value of the feature ILLUSTRATES. Therefore, the most 
general generalization of SLAVE-DANCE is the intersection 
of the domain of COMPONENT-OF  and  the  range  of 
ILLUSTRATES, which is HISTORICAL-CONCEPT. 

The  analogy criterion and the example are  used to 
generate the plausible upper bound condition of the rule, 
while the explanation and the example are  used  to 
generate the plausible lower bound condition of the rule. 

analogy criterion 
HISTORICAL-CONCEPT 

■* COMPONENT-OF 
ILLUSTRATES -^ 

SOl/RCE SLAVERY-TOPIC 

CREATED-DURING«^^. 

HISTORICAL-PERIOD 

^.BEFOR? 
HISTORICAL-CONCEPT 

Plausible Upper Bound IF 
»Wl   IS WRITE-DURING-PERIOD. FOR »SI, 

DURING ?PI,ON »S2 

»SI      IS MEDIA 

»PI     E HISTORICAL-PERIOD 

IS SLAVERY-TOPIC ?S2 

«S3 

explanation 
SLAVE-DANCE 

ILLUSTRATE^ COMPONENT-OF 

CONTENTED-SLAVES-AND-MASTERS    SLAVE-CULTURE 

•Wl.trnmimr. 
PRE-CjVIL-WAR 

CWL-WAR-^EFORE J 

IS SOURCE. 
ILLUSTRATES »S4, CREATED-DURING »P2 

IS HISTORICAL-CONCEPT. 

COMPONENT-OF »S2 

B HISTORICAL-PERIOD, BEFORE »PI 

Plausible Lower Bound IF 
»wl 

Initial example 
the task is 
WRITE-DURING-PERIOD 

FOR        SOUTHERN-ILLUSTRATED-NEWS 

DURING CTVII-WAR 
ON SLAVE-CULTURE 

Then 
RELEVANT 

HIST-SOURCE CONTENTED-SLAVES-AND-MASTERS 

IS WRITE-DURING-PERIOD. FOR  tSI. 

DURING »PI. ON »S2 

»SI      IS SOUTHERN-ILLUSTRATED-NEWS 

»PI     IS CIVIL-WAR 

»S2     IS SLAVE-CULTURE 

»S3     IS CONTENTED-SLAVES-AND-MASTERS. 

ILLUSTRATES »S4, CREATED-DURING »P2 

?S4 IS SLAVE-DANCE, COMPONENT-OF »S2 

»P2    IS PRE-CIVIL-WAR, BEFORE »PI 

THEN 
RELEVANT    HIST-SOURCE »S3 

4.2 RULE REFINEMENT 

The representation of the PVS rule in the right hand side of 
Figure 5 shows the most likely relation between the 
plausible lower bound, the plausible upper bound and the 
hypothetical exact condition of the rule. Notice that there 
are instances of the plausible upper bound that are not 
instances of the hypothetical exact condition of the rule. 
This means that the learned rule in Figure 7 covers also 
some negative examples. Also, there are instances of the 
hypothetical exact condition that are not instances of the 
plausible upper bound. This means that the plausible 
upper bound does not cover all the positive examples of 
the rule. Both of these situations are a consequence of the 
fact that the explanation of the initial example might be 
incomplete, and are consistent with  what one would 
expect from an agent performing analogical reasoning. To 
improve this rule, the agent will use the rule refinement 
method represented schematically in Figure 8. The agent 
will use the learned rule to generate examples similar with 
the one in Figure 3. Each such example is covered by the 
plausible upper bound and is not covered by the plausible 
lower bound of the rule. The example is shown to the 
educator who is asked to accept it as correct or to reject it, 
thus characterizing it as a positive or a negative example 
of the rule. A correct example is used to generalize the 
plausible lower bound of the rule's condition through 
empirical induction. An incorrect example is used to elicit 
additional explanations from the educator and to specialize 
both bounds, or only the upper bound. 

Figure 9 shows an example generated by the agent, by 
analogy with the initial example in Figure 3. The agent's 
analogical reasoning is represented in Figure 10. The 
explanation from the left hand side indicates why the 
initial example is correct. The expression from its right 
side is similar with this explanation because both of them 
are less general than the analogy criterion from the top cf 
Figure 10. Therefore, one may infer by analogy that the 
similar explanation from the right hand side of Figure 10 
explains an example (the generated example from the right 
hand side of Figure 10 and from Figure 9) that is similar 
to  the  initial   example.   Nevertheless,   the   generated 
example is incorrect and was rejected by the educator. 

Knowledge 
Base 

Learning by Analogy 
and Experimentation 

Learning from Examples 

„„„,„ Fieure 8: The rule refinement method of Disciple 
Figure 7: Generation of initial plausible version space rule riSure °- 
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D ; Current Example 

If you are a writer FOR World Wide Web 
DURING the Civil War period 
(1861 -1865) and you have been 

assigned to write and Illustrate a feature 
article on negative master slave 
relationships, then the HISTORICAL 

SOURCE 'Fugitive Slaves' Is relevant. 

Figure 9: An example generated by the agent4 

In such a case the agent needed to understand why this 
example, which was generated by analogy with a correct 
example, is wrong. By comparing the two examples, the 
educator and the agent were able to find out that the 
generated example is wrong because the WORLD-WIDE- 
WEB was not issued during the CIVIL-WAR period. On the 
contrary, the initial example was correct because 
SOUTHERN-ILLUSTRATED-NEWS was issued during the 
CIVIL-WAR period. This explanation is used to specialize 
both bounds of the version space. This process will 
continue until either the two bounds of the rule become 
identical or until no further examples can be generated that 
are not already covered by the plausible lower bound. The 
final rule is the one from Figure 4. This training phase 
continued until 54 relevancy rules were learned. 

analogy criterion 
HISTOpiCAl-CONCEFT 

ILLUSTRATES^ COMPONENT-OF 

SOURCE SLAVERY-TOPIC 

HISTORICAL-PERIOD 

SLAVE-DANCE 

ILLUSTRATES^ COMPONENT-OF 

CONTENTED-SLAVES-AND-MASTERS    SLAVE-CULTURE 
CREATED-DURING 

CIVIL-WAR ■ 

PRE-CML-WAR 
^BEFORE 

Initial »xampfi s_t 

ILLUSTRATE: 

fUCniVE-SLAvTs 

CREATED-DURING 

CML-WAR ■ 

SLAVE-RESISTANCE 
COMPONENT-OF 

NEGAWE-MASTEP-SLAVE- 
. RELATIONSHIP 

PRE-CML-WAP 

'BEFORE 

Ihe tojk h 
WRITE-DURING-PEROD 

FOR        SOUTHERN-ILLUSTRATED-NEWS 
DURING CIVIL-WAR 
ON SLAVE-CULTURE 

Then 
RELEVANT 

HLST-SOURCE CONTENTED-SLAVES-AND-MASTERS. 

i 'generated example 
If the laik « 

wRrre-DURiNG-PEROD re/ecreo 
FOR        WORLD-WIDE-WEB 
DURING CIVIL-WAR 
ON NEGATIVE-MASTER-SLAVE-PELATDHSHIP 

Then 
RELEVANT 

.     HIST-SOURCE FUGITIVE-SLAVES  

Explanation: faHun »xplanahon: 
SOUTHERN-ILLUSTRATED-NEWS ISSUED- DURING CIVIL-WAR net fwORLD-WIDE WEB ISSUED-OURING CM-WAP) 

Figure 10: Analogical reasoning in Disciple 

5    THE TEST GENERATION ENGINE 
One of the agent's requirements was that it generates not 
only test questions, but also feedback for right and wrong 
answers, hints to help the student in solving the tests, as 
well as explanations of the solutions. Moreover, agent's 
messages needed to be expressed in a natural language 
form. Although the rules learned by the agent contain 
almost all the necessary information to achieve these 
goals, some small adjustments were necessary. In the case 
of the rule in Figure 4, the educator needed to define the 
templates for the Hint, Right Answer and Wrong Answer, 
shown in Figure 11. The Hint in Figure 11 is the part of 
the Explanation in Figure 4 that refers only to the 
variables used in the formulation of the test question. The 
Right Answer in Figure 11 is generated from the 
Operation Description and the Explanation in Figure 4, 
and the Wrong Answer is a fixed text. 

Hint: To determine if this source is relevant to your task investigate if it 
illustrates some component of ?S2, check when was it created, and when 'SI 
was issued 

Right Answer: The source ?S3 is relevant to your task because it illustrates 
?S4 which was a component of ?S2, ?S3 was created during ?P2 which was 
before ?P1 and ?S1 was issued during ?P|. 

Wrong Answer: Investigate this source further and analyze the hints and 
explanations to improve your understanding of relevance You may consider 
reviewing the material on relevance  Then continue testing yourself 

4 Picture reproduced from LC-USZ622-14828, Library of Congress 

Figure 11: Additional templates for the rule in Figure 4 

The learned rules can be used to generate different types of 
tests. In the current version of the agent we have chosen to 
develop a test generation engine that can generate the 
following four classes of test questions: 
•IF RELEVANT: Show the student a writing assignment 
and ask whether a particular historical source is relevant 
to that assignment; 

•WHICH RELEVANT: Show the student a writing 
assignment and three historical sources and ask the 
student to identify the relevant one; 

•WHICH IRRELEVANT: Show the student a writing 
assignment and three historical sources and ask the 
student to identify the irrelevant one; and 

•WHY RELEVANT: Show the student a writing assign- 
ment, a source and three possible reasons why the source 
is relevant, and ask the student to select the right reason. 

Similar questions could be generated for other evaluation 
skill such as IF CREDIBLE or WHY CREDIBLE test questions. 

To generate an IF RELEVANT test question with a relevant 
source, the agent simply needs to generate an example of a 
relevancy rule. This rule example will contain a task T 
and a source S relevant to it, together with one hint and 
one explanation that will indicate one reason why S is 
relevant to T. However, if the student requires all the 
possible reasons for why the source S is relevant to T, 
then the agent will need to find all the examples 
containing the source S and the task T of all the relevancy 
rules from the family of rules corresponding to T. 
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To generate an IF RELEVANT test question with an 
irrelevant source, the agent has first to generate a valid 
task T by finding an example of a relevancy rule R. Then 
it has to find a historical source S such that the task T 
and the source S are not part of an example of any rule 
from the family of rules corresponding to the task T. 

The methods for generating WHICH RELEVANT and WHICH 
IRRELEVANT test questions are based on the methods fix 
generating IF RELEVANT test questions. 

For an WHY RELEVANT test question an example Ei of a 
relevancy rule Ri is generated. This example provides a 
correct task description T, a source S relevant to T, and a 
correct explanation EX, of why the source S is relevant to 
T. Then the agent chooses another rule that is not from 
the family of the relevancy rules corresponding to T. This 
rule could be from another family of relevancy rules, or 
could be a rule corresponding to another evaluation skill, 
for instance credibility or accuracy. Let us suppose that 
the agent chooses a credibility rule R2. It then generates 
an example E2 of R2, based on E, (that is, E2 and Et share 
as many parts as possible, including the source S). The 
agent also generates an explanation EX2 of why S is 
credible. While this explanation is correct, it has nothing 
to do with why S is relevant to T. Then, the agent 
repeats this process to find another explanation that is true 
but explains something else, not why S is relevant to T. 

It should be noticed that, when the agent has to choose an 
element from a set, the choice is done at random. Thus, 
its behavior is different from one execution to another. 

6   EXPERIMENTAL RESULTS 
The ontology of the test generation agent includes the 
description of 252 historical concepts, 80 historical 
sources, and 6 publications. The knowledge base also 
contains 54 relevancy rules grouped in four families, each 
family corresponding to one type of reporter task. These 
rules have been learned from an average of 2.17 
explanations (standard deviation 0.91) and 5.4 examples 
(standard deviation 1.37). 

There are 40,930 instances of the 54 relevancy rules in the 
knowledge base. Each such instance corresponds to an IF 
RELEVANT test question where the source is relevant. In 

principle, for each such test question the agent can 
generate several IF RELEVANT test questions where the 
source is not relevant, as well as several WHY RELEVANT, 
WHICH RELEVANT and WHICH IRRELEVANT test 
questions. Therefore, the agent can generate more than 10 
different test questions. 

We have performed four types of experiments with the test 
generation agent. The first experiment tested the 
correctness of the knowledge base, as judged by the 
domain expert who developed the agent. This was 
intended to clarify how well the developed agent 
represents the expertise of the teaching expert. The second 
experiment tested the correctness of the knowledge base, 
as judged by a domain expert who was not involved in its 
development. This was intended to test the generality of 
the agent, given that assessing relevance is, to a certain 
extent, a subjective judgment. The third and the fourth 
experiments tested the quality of the test generation agent, 
as judged by students and by teachers. 

The results of the first two experiments are summarized in 
Table 1. To test the predictive accuracy of the knowledge 
base, 406 IF RELEVANT test questions were randomly 
generated by the agent and answered by the developing 
expert. We have performed a similar experiment with a 
domain expert who was not involved in the development 
of the agent. This independent expert has answered 
another 401 randomly generated IF RELEVANT test 
questions. These experiments have revealed a much 
higher predictive accuracy in the case of IF RELEVANT test 
questions where the source was relevant. This was 
96.53% in the case of the developing expert and 95.45% 
in the case of the independent expert. The predictive 
accuracy in the case of irrelevant sources was only 81.86% 
in the case of the developing expert and 76.35% in the 
case of the independent expert. To confirm these results 
we have conducted an additional experiment with the 
independent expert, who was shown other 1,326 IF 
RELEVANT test questions where all the sources were 
relevant (for a total of 1,524 such questions). In this case 
the predictive accuracy of the agent was 96.19%. 

We have analyzed in detail each case where both the 
developing expert and the independent expert agreed that 
the agent failed to recognize that a source was relevant or 

Table 1: Evaluation results 

Reviewer 
Total number 
of reviewed 

questions 

Number of 
IF questions with 
relevant sources 

Number of 
IF questions with 
irrelevant sources 

Time spent 
to review all 
the questions 

Accuracy on 
IF questions with 
relevant sources 

Accuracy on 
IF questions with 
irrelevant sources 

Total 
accuracy 

Developing 
expert 

406 202 204 5 hours 96.53% 81.86% 89.16% 

Independent 
expert 401 198 203 10 hours 

over 2 days 
95.45% 76.35% 85.76% 

Independent 
expert 1,524 198+1,326 

" 

22 hours for 
1,326 questions 96.19% - 
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I feel that I understand more about 
'judging relevance' than I knew before 

The agent provided feedback that helped 
me understand slavery better 

The agent's test questions 
were understandable 

I prefer the agent's questions over my 
usual test questions 

The agent was easy to use 

I found the agent to be a useful tool in      „ 
the classroom 

I would like to see more software like 
the agent used in my classes 

mean=2.00 

mean=2.71 

(st.dev.=1 

• » mean=2.76 

-►  mean =2.10 

-►mean =2 

(st.dev.=1.!7) 

09) 

(st.dev.=1 

95       (st.c|ev.=1.61) 

.29        (st.dqv.=1.11) 

-►  mean: 

12 3 4 
Very Strongly     Strongly Agree Indifferent 

Agree Agree 

Figure 12: Student survey results 

=p.14 (st.dev.=1 

(st.Jlev.=1.37) 

24) 

30) 

5 6 7 
Disagree Strongly     Very Strongly 

Disagree        Disagree 

irrelevant to a certain task. In most cases it was concluded 
that the representation of the source was incomplete. This 
analysis suggested that the representation of the sources 
should be guided by the following principle which, if 
followed, would have avoided many of the agent's errors: 
Any historical source must be completely described in 
terms of the concepts from the knowledge base. This 
means that if the knowledge base contains a certain 
historical concept, then any historical source referring to 
that concept should contain the concept in the description 
of its content. Operationally, this simply means that if the 
expert decides to describe a new source in terms of some 
new concept C, then the expert has to review again the 
descriptions of each source S from the knowledge base, ff 
the experts decides that S refers to C, then she or he has 
to include C in the representation of S. This does not 
mean, however, that the contents of the historical sources 
have to be completely described (a task that would be 
very hard, especially for pictures). 

There were several cases where the two experts disagreed 
themselves, mainly because the independent expert had a 
broader interpretation of some general terms (such as slave 
culture, activities related to slavery, cruelty of slavery, and 
master slave relationships) than the developer of the 
knowledge base. However, the independent expert agreed 
that someone else could have a more restricted 
interpretation of those terms, and, in such a case, the 
answers of the agent could be considered correct. There 
were also 5 cases where the independent expert disagreed 
with the agent and then, upon further analysis of the test 
questions, agreed with the agent. 

Table 1 indicates also the evaluation time because, unlike 
the automatic learning systems, the interactive learning 
systems require significant time from domain experts, and 
this factor should be taken into consideration when 
developing such systems. First of all, one could notice 
that it took twice as long to the independent expert to 

analyze 401 test questions than it took to the developing 
expert. This is because the independent expert was not 
familiar with any of the 80 historical sources used in the 
questions, and he had to analyze each of them in detail in 
order to answer the questions. However, once the 
independent expert became familiar with the sources, he 
answered the new 1,326 test questions much faster. 

We have also conducted an experiment with a class of 21 
students from the 8th grade at The Bridges Academy in 
Washington D.C. The students were first given a lecture 
on relevance and then were asked to answer 25 test 
questions that were dynamically generated by the agent. 
Students were also asked to investigate the hints and the 
explanations. To record their impressions, they were 
asked to respond to a set of 18 survey questions with one 
of the following phrases: very strongly agree, strongly 
agree, agree, indifferent, disagree, strongly disagree, and 
very strongly disagree. Figure 12 presents the results 
from 7 of the most informative survey questions. 

Finally, a user group experiment was conducted with 8 
teachers at The Public School 330 in the Bronx, New 
York City. This group of teachers had the opportunity to 
review the performance of the agent and was then asked to 
complete a questionnaire. Several of the most informative 
questions and a summary of the teacher's responses are 
presented in Figure 13. 

7    CONCLUSIONS 

In this paper we have presented an innovative application 
of the Disciple Shell to the building of a test generation 
agent. We have provided experimental evidence that the 
process of teaching the agent is natural and efficient, and 
that it results in a knowledge base of good quality and in 
a useful educational agent. Since the agent is taught by 
the educator through examples and explanations, and then 
it is able to provide similar examples and explanations to 
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The questions generated by the agent help 
students learn about how to judge relevance 

The language of the questions was under- 
standable and appropriate for JH students 

My students will learn about slavery from 
the agent 

The agent assist students in assessing their 
own skill level 

The test results from the agent provide 
useful information for grading students 

I think my students would find the agent 
beneficial 

I found the agent to be a useful tool in 
the classroom 

** . 

• ► mean=2.3l    (st.dev.=0. ^4) 

< - 

• ►mean=3.13 

in=2.00     (st.jtev.=0.63) 

■►   mean=2 

► mean=2. 

mean=2.25 

mean=2.38 

50    (st.dev. 

33     (st.dev.= 

(st.dev.=0.71) 

(st.dev.=0.5I) 

(st.dev.=0.9f) 

).76) 

'.62) 

1 2 3 4 5 6 7 
Very Strongly Strongly Agree Indifferent Disagree Strongly Very Strongly 

Agree Agree Disagree Disagree 

Figure 13: Teacher survey results 

the students, it could be considered as being a preliminary 
example of a new type of educational agent that can be 
taught by an educator to teach the students (Hamburger 
and Tecuci, 1998). From the point of view of the artificial 
intelligence research, this work shows an integration of 
machine learning and knowledge acquisition with 
problem solving and intelligent-tutoring systems. From 
the point of view of the education research, it shows an 
automated computer-based approach to the assessment of 
higher-orderthinking skills, as well as an assessment that 
involves multimedia documents. Future work involves 
further development of the agent and its experimental use 
in the classroom. We are also continuing the development 
of the Disciple approach and are applying it to other 
challenging problems, such as building a statistical ana- 
lysis assessment and support agent, and an agent who has 
to find the best way of working around various damages 
to an infrastructure, such as a damaged bridge or tunnel. 
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Abstract 

Many systems that learn from examples express 
the learned concept as a disjunction. Those 
disjuncts that cover only a few examples are 
referred to as small disjuncts. The problem with 
small disjuncts is that they have a much higher 
error rate than large disjuncts but are necessary to 
achieve a high level of predictive accuracy. This 
paper investigates the effect of noise on small 
disjuncts. In particular, we show that when noise 
is added to two real-world domains, a significant, 
and disproportionate number of the total errors 
are contributed by the small disjuncts; thus, in 
the presence of noise, it is the small disjuncts that 
are primarily responsible for the poor predictive 
accuracy of the learned concept. 

1   INTRODUCTION 

Systems that learn from examples often express the 
learned concept as a disjunction. The coverage, or size, 
of each disjunct is defined as the number of training 
examples that it correctly classifies (Hohe, Acker & 
Porter, 1989). Small disjuncts are those disjuncts that 
cover only a few training examples. Although small 
disjuncts may individually cover only a small fraction of 
the training examples, collectively they can cover a 
significant percentage of the training examples. The 
problem with small disjuncts is that they have a higher 
error rate than large disjuncts but cannot be eliminated 
without greatly reducing the predictive accuracy of the 
learned concept. 

Early work on small disjuncts investigated a variety of 
issues, including ways of improving predictive accuracy 
by eliminating some small disjuncts (Holte, et al., 1989; 
Quinlan, 1991). Danyluk and Provost (1993) highlighted 
the role of small disjuncts in learning from noisy data 
when   they   speculated   that in the   telecommunication 
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domain they were studying, learning from noisy data was 
hard due to a difficulty distinguishing between systematic 
noise and "true" exceptional cases in the training data. 
True exceptions and small disjuncts, although similar 
entities which are sometimes used interchangeably, differ 
in one important way—true exceptions are defined 
relative to the "true" (i.e., correct) concept whereas small 
disjuncts are defined relative to a learned concept. Weiss 
(1995) investigated the interaction of noise on true 
exceptions by using artificial datasets and demonstrated 
that this interaction results in error prone small disjuncts 
in the learned concept. In this paper we focus on small 
disjuncts rather than "true exceptions" because for the 
real world domains we use, the "correct" concept 
definition is not known, and hence it is not possible to 
measure the true exceptions. 

This paper extends previous work by examining the 
effect of noise on small disjuncts using real-world 
datasets and assessing the impact of this effect on the 
overall learning process. In particular, we show that 
when noise is added to these datasets, then the concept 
learned from this data exhibits the problem with noise 
and small disjuncts: that is, the small disjuncts contribute 
a disproportionate, and significant, number of the total 
errors (relative to the number of examples they cover) but 
still cannot be eliminated without adversely affecting the 
accuracy of the learned concept. Thus, we show that the 
small disjuncts are primarily responsible for learning 
being difficult in the presence of noise. 

2   DESCRIPTION OF EXPERIMENTS 

This section describes the learning program, problem 
domains and experimental methodology we used to 
conduct our experiments. 

2.1     THE LEARNER 

All of the experiments described in this paper use C4.5, a 
program for inducing decision trees from preclassified 
training examples (Quinlan, 1993). C4.5 was chosen 
because  it is a popular tool  for learning disjunctive 
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concepts and because we were able to modify it, without 
too much difficulty, to collect statistics relating to 
disjunct size. For the majority of experiments, C4.5 was 
run in one of the following two configurations: 

— with its default parameters and pruning strategy, and 

— with its default parameters but without any pruning 
and with the -ml option to disable the default 
stopping criterion. 

The -m option stops a node from being split during the 
tree-building process if the resulting node covers fewer 
than the specified number of examples (1 in this case). 
Thus, in the second configuration, C4.5 will build a 
decision tree that correctly classifies all training examples 
if the examples are consistent. 

2.2     THE PROBLEM DOMAINS 

This paper uses the KPa7KR chess endgame (Shapiro, 
1987) and Wisconsin breast cancer (Wolberg, 1990) 
datasets, which were obtained from the UCI repository of 
machine learning databases (Murz & Murphy, 1998). 
These datasets were selected because C4.5 was able to 
attain high levels of predictive accuracy on them; we 
wanted to come as close to learning the correct target 
concept as possible prior to the introduction of artificial 
noise. The KPa7KR dataset contains 3196 examples with 
36 attributes, where each example represents a board 
position and has the class value "won" or "nowin". The 
Wisconsin breast cancer dataset contains 699 examples 
with nine attributes, with each example having the value 
"benign" or "malignant". The class distribution is 
approximately equal for the chess endgame domain and is 
2:1 in favor of the benign class for the breast cancer 
domain. The results for the breast cancer domain closely 
parallel those for the chess domain and therefore in most 
cases we only display the results for the chess domain (all 
results are for the chess domain unless noted otherwise). 

2.3     EXPERIMENTAL METHODOLOGY 

For each experiment seven independent runs were 
performed and the results averaged together. For each 
run, 200 examples were randomly selected and placed 
into the training set while the remaining examples were 
placed into the test set. Unless stated otherwise, all 
measurements are based on the performance of the test 
set. Varying levels of randomly generated class noise are 
used in the experiments. The examples are considered 
initially noise-free. A noise level of n% means that with 
probability n/100 the class value is randomly selected 
from the remaining alternatives. This means that when 
50% class noise is applied to a domain with two classes, 
there is no information-provided by the class variable. 

For the experiments performed in this paper, coverage is 
defined in terms of the number of test examples correctly 
classified, since we felt that this would yield a more fair 
measure of the true coverage of each disjunct (just as 
measuring accuracy on the test set yields a more fair 

measure). However, we do not believe this decision to be 
critical. For each graph presented in this paper, coverage 
is displayed on a logarithmic scale, so the behavior of the 
small disjuncts can be easily identified. 

3   THE PROBLEM WITH SMALL 
DISJUNCTS 

Although the focus of this paper is on the problem with 
noise and small disjuncts, this section will first show that 
the chess endgame and breast cancer domains exhibit the 
problem with small disjuncts. Figures 1 and 2 show the 
results of running C4.5 on the chess endgame and 
Wisconsin breast cancer domains, respectively, without 
any artificial noise applied to the datasets. For these 
figures, and for all figures in this paper with coverage on 
the x-axis, the value of each curve at coverage n is based 
on the collective performance of all the disjuncts with 
coverage less than or equal to n. Thus, the curves labeled 
"Examples" and "Errors" in Figures 1 and 2 show the 
percentage of total examples and errors, respectively, 
covered by these disjuncts (i.e., with size < n) when the 
learned concept is applied to the test set. The error rate 
curve shows the error rate of the disjuncts with size < n. 
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Figure 1: The Effect of Disjunct Size (Chess Domain) 
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Figure 2: The Effect of Disjunct Size (Cancer Domain) 

An example will help clarify the meanings of these 
curves and demonstrate that small disjuncts are "error 
prone". In Figure 1, the curves for errors and error rate 
intersect at coverage 40. The curves tell us that the 
disjuncts with size < 40 collectively have an error rate of 
50% and collectively cover 50% of the total errors, but 
only cover 5% of the total examples. This clearly 
demonstrates that small disjuncts are error prone (i.e., 
they cover a disproportionate number of errors). The 
error rate for the learner as a whole can be found by 
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looking at the error rate when 100% of the errors and 
examples have been covered; we see from this that the 
overall error rate for the chess endgame domain is 5% 
and the overall error rate for the breast cancer domain is 
6%. The error rate curve also shows that small disjuncts 
have a higher error rate than large disjuncts, since the 
error rate decreases (for both domains) as larger disjuncts 
are included in the error rate calculations. 

Figures 1 and 2 show that most examples are covered by 
the larger disjuncts, but the smaller disjuncts nonetheless 
cover a large percentage of the examples. This is more 
evident for the breast cancer domain, but even for the 
chess endgame domain disjuncts of size < 100 are much 
more error prone than the larger disjuncts and cover about 
20% of the total examples. These results are consistent 
with those described by Holte and colleagues (1989). In 
addition, since the small disjuncts cover too many 
examples to be simply dropped from the learned concept 
without significantly impacting the accuracy of the 
concept, these results also demonstrate that these domains 
exhibit the problem with small disjuncts. 

4   THE PROBLEM WITH NOISE AND 
SMALL DISJUNCTS 

This section will show that for the chess and breast 
cancer domains, noise results in small disjuncts being 
mainly responsible for the errors in the learned concept. 
For these experiments, no pruning is done unless 
specified and class noise is applied to both the training 
and test sets. 

Figure 3 shows what happens to the error rate as the noise 
rate is varied (recall that for coverage of n, the 
"collective" error rate is based on all disjuncts with size 
<n). The figure shows that the addition of 5% class noise 
causes the error rate for small disjuncts to increase, but 
from that point on it decreases as more noise is added. 
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Figure 3: Effect of Noise on Error Rate 

To make it easier to see the degree to which errors are 
concentrated toward the small disjuncts, we will use a 
statistic called the error factor, first introduced by Weiss 
(1995). The error factor is defined as: 

The error factor is a function of coverage and is 
essentially the "Errors" curve divided by the "Examples" 
curve. For example, the error factor at coverage 40 in 
Figure 1 is 10 (50%/5%), which indicates that disjuncts 
with size < 40 contribute 10 times more errors than 
expected if coverage had no effect on error rate. 

Figure 4, which plots the error factor versus coverage, 
shows the effect of noise on small disjuncts even more 
clearly than Figure 3, since error factor is a relative 
measure which takes into account the different overall 
error rates resulting from learning with the different 
levels of class noise. Figure 4 shows that as the amount 
of noise increases the error factor for small disjuncts 
decreases. This indicates that as the noise level increases 
either the percentage of errors contributed by the small 
disjuncts decreases and/or the percentage of examples 
covered by the small disjuncts increases. 
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Figure 4: Effect of Noise on Error Factor 

Noise added to the training data will undoubtably affect 
the concept that is learned and will therefore affect the 
small disjuncts in the learned concept. Figure 5 addresses 
this by showing how various noise levels affect the 
number of examples covered by the small disjuncts. 
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Figure 5: Effect of Noise on Distribution of Cases 

Figure 5 shows that as more noise is added to the data, 
the number of examples covered by small disjuncts 
increases dramatically. For example, disjuncts of 
size < 100 cover 3 times as many examples when the 
noise level increases from no noise to 10% noise. Figure 
5 confirms what we and others had suspected—that noisy 
data will cause a learner to form "erroneous" small 
disjuncts. 



The Problem with Noise and Small Disjuncts 577 

Figure 6 shows how the distribution of errors changes as 
noise is applied to the domain. It shows that when the 
noise level is less than 20%, small disjuncts with size < 
30 account for an even greater percentage of the total 
errors than when there was no noise. Thus, we now have 
an explanation of why the error factor in Figure 4 
decreased as additional noise was introduced—it was 
because the number of examples covered by the small 
disjuncts increased at a faster rate than the number of 
errors contributed by these disjuncts. Note that once the 
noise level reaches 30%, then disjuncts with coverage < 
30 no longer cover a disproportionate number of the 
errors they cover half of the errors but also cover almost 
half of the total examples.   The breast cancer domain 
exhibits similar trends. 

in such cases a very aggressive overfitting avoidance 
strategy is needed to adequately learn the correct concept. 

Coverage 

Figure 6: Effect of Noise on Distribution of Errors 

We can summarize the results from Figures 3-6 as 
follows: in the presence of noise, small disjuncts have a 
higher error rate than large disjuncts and cover a 
significant number of the total cases and total errors. As 
a consequence, small disjuncts contribute a 
disproportionate and very significant number of the 
errors. All of this holds true until very high levels of 
noise are applied, at which point the impact of noise on 
the large disjuncts becomes important relative to the 
impact of noise on small disjuncts—at which point small 
disjuncts can no longer be blamed for the poor 
performance of the learned concept. 

Since overfitting avoidance strategies such as pruning are 
more likely to eliminate small disjuncts than large 
disjuncts, it is interesting to see how these strategies will 
affect the error rate and how this can be related to the role 
of small disjuncts. Figure 7 shows how pruning affects 
the overall error rate. Since it is not possible to predict 
random class noise, the optimal error rate will equal the 
noise rate. This figure shows that the default pruning 
strategy improves the error rate in the presence of class 
noise and improves it the most when the noise rate is 
between 10% and 20%. This is explained by the fact that 
in this range the small disjuncts have very high error rates 
(Figure 3) and contribute a very large percentage of the 
total errors (Figure 6). The strategy which uses C4.5's 
-m20 option to prevent nodes from being formed when 
fewer than 20 examples are covered also improves the 
error rate, except when there is no noise. This strategy 
also outperforms the default pruning strategy when there 
are very high levels of noise (e.g., 30%), indicating that 
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Figure 7: Effect of Pruning on Overall Error Rate 

5  UNDERSTANDING THE EFFECT OF 
NOISE ON SMALL DISJUNCTS 

In the experiments described in the previous section, the 
training and tests sets were generated from the same 
distribution. While this is the most realistic scenario, 
when one is trying to understand the effect of noise on 
learning, noise is frequently only applied to either the 
training or test set. 

5.1     THE EFFECT ON TRAINING 

Noise applied only to the training set tests the ability to 
learn the "correct" concept in the presence of noise 
(Quinlan, 1986). That is, by limiting the noise to the 
training set, we can evaluate the sensitivity of the learner 
to noise. We can accomplish this evaluation, even 
without knowing the "correct" concept, by using the 
noise-free test data to approximate the correct concept. 

As shown earlier, noise in the training set introduces 
additional "erroneous" small disjuncts into the learned 
concept. Experiments identical to those described earlier 
were repeated with the artificial noise restricted to the 
training set. Graphs corresponding to those shown in 
Figures 3-6 were generated. The results indicated that 
under these circumstances small disjuncts have an even 
more significant impact on learning and, in particular, 
contribute a greater percentage of the errors than when 
noise was applied to both the training and test sets. 

5.2     THE EFFECT ON TESTING 

It is also meaningful to study the effect of noise on the 
test set. This situation corresponds to the scenario in 
which the training data is "cleaned up", perhaps by using 
more costly measurement equipment, in the hope of 
achieving improved predictive accuracy. Experiments in 
which the noise was limited to the test set were run and 
the results showed that, relative to the case where noise 

1 However, if systematic noise is applied to the test set, better predictive 
accuracy may be obtained by leaving the noise in the training set. 
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was applied to both the training and test sets, the small 
disjuncts had much less of a negative impact on learning. 

5.3     DISCUSSION 

The results described in the previous two subsections can 
be explained by examining how noise affects small 
disjuncts. First of all, noise in the training set will 
influence the concept that is learned but noise in the test 
set cannot. Since small disjuncts are based on the learned 
concept, we can conclude that noise in the test set cannot 
cause small disjuncts to be formed. Futhermore, noise in 
the test set will tend to affect all disjuncts equally (Weiss, 
1995). This explains why the effect of noise on small 
disjuncts is less dramatic when noise is applied to both 
the training and test sets than when it is limited to the 
training set—in the former case noise in the test set 
reduces the relative difference in error rates between the 
small and large disjuncts. When noise is applied to only 
the test set, the effect is greatly diminished, and would 
disappear completely if the learner were able to learn the 
correct concept prior to the introduction of artificial noise. 
For a more in depth description about how noise affects 
small disjuncts, refer to Weiss (1995). 

6   CONCLUSION 

This paper investigated the effect of noise on small 
disjuncts and how this effect impacts the overall learning 
process. For both the KPa7KR chess end-game domain 
and the Wisconsin breast cancer domain, the 
experimental results in this paper show that small 
disjuncts are responsible for learning being difficult. 
Only at very high levels of class noise do the large 
disjuncts contribute a relatively large percentage of the 
total errors. This paper also showed some trends and 
effects that we feel are likely to hold for learning in 
general and not just for the two domains used in this 
paper. In particular, we feel that 1) noise tends to 
decrease the number of large disjuncts and increase the 
number of small disjuncts in the learned concept, 2) 
relatively low levels of noise will increase the percentage 
of errors contributed by small disjuncts, but this effect 
will diminish as higher levels of noise are applied, and 3) 
noise in the test set has an equalizing effect which 
decreases the impact of the small disjuncts on learning. 

We believe these results are important because they 
provide some insight into how noise affects learning and 
how the effect of noise manifests itself in the learned 
concept. Given the prevalence of noise in real-world 
problem domains, such an understanding is critical. This 
work also provides additional justification for overfitting 
avoidance strategies and hopefully provides some 
additional insights into why these strategies work, how 
they can be improved and the limitations of such 
strategies. 
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