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Abstract 1 
Three aspects of wave propagation in a random medium are considered. The first is the 

scattering of a plane compressional wave by a spherical inhomogeneity of specified radius. This 

result is then averaged over a Rayleigh distribution of sphere radii. As a second topic, the 

scattering by a medium in which an elastic parameter varies randomly is considered. When the 

randomness is assumed to be described by a Gaussian correlation function, it is found that the 

frequency and angular dependence of the scattering is the same as that obtained in the previous 

calculation with the Rayleigh distribution when the average diameter of the spheres is set equal to; 

the correlation distance appealing in the random medium. 

The third topic considered is the effect of the randomness on the focusing of the wave. The 

total incident sound field may be viewed as being composed of a sum of a coherent field reflected 

from an object of interest and an incoherent field resulting from the scattering due to 

inhomogeneities in the surrounding medium. The fluctuations in the imaging of the incoherent 

field can be decreased by increasing the size of the receiving system and this dependence on 

receiver size is determined for a square receiver. It is found that most of the advantage to 

increasing receiver size will have been achieved when the receiver has been increased to a size 

equal to about twice the correlation length of the fluctuations in the incident field. 

A. SCATTERING BY A SPHERICAL INHOMOGENEITY WITH AVERAGING OVER A RAYLEIGH 

DISTRIBUTION OF SCATTERING RADII 

The sound pressure field scattered by a spherical inhomogeneity in a solid medium is 

examined. The wave motion is described by a standard theoretical model used in geophysical 

prospecting'1) in which shear waves are ignored. As is well known, the angular distribution of a 

scattered field is sharply peaked when the circumference of the scatterer is greater than the 



wavelength of the incident wave. When the average scattering produced by an assemblage of 

scatterers of different radii is considered, however, the variation in the average field can be 

expected to be smoothed out. For wavelengths larger than or comparable to the circumference, 

there is little angular dependence and hence little effect due to averaging. The averaging is 

performed here with respect to a Rayleigh distribution. In the second pan of this report it is shown 

that the average intensity scattered by a random medium with a Gaussian correlation function has 

the same dependence on frequency and scattering angle as that obtained for the spherical scatterers 

when the correlation length is set equal to the rms diameter of the spheres. 

A. 1      The Theoretical Model- 

As noted above, we use a simple model in which shear waves are ignored and only 

compressional waves are considered. The governing equations are taken to be 

where P(r,t) and £(r,t) are the sound pressure and elastic displacement in the medium, 

respectively. The parameter p is the density of the medium and in order to keep the analytical 

model as simple as possible, is assumed to be a constant. The bulk modulus B is written in the 

form B = Bo - 5B where Bo is the constant background modulus and the scattering 

inhomogeneity is taken to be 

SBn    ,    r <a 
(2) 

,    r > a 

where 5Bo is a constant. 

The wave equation that now follows from Eq.(l) has the form(2) 

r-p-P.^ = 0 (3) 
B dt2 

Confining attention to a wave at a single frequency (0 by writing P(r,t) = p(r)e-iwt, we find that 



Eq.(3) has the form 

SBn vvfe)>=-fe)2^ Bo 

where Co2 = Bo/po • 

The scattered field due to an incident plane wave pinc. = poeik#r is given by 

(4) 

2 SB, 
*|r-r'| 

p   =p-Pinc=e^\   d\'—, 7Ar') Fsc    F    Fmc- Bn 
iv 4dr-r'r 

(5) 

where the integration is performed over the spherical volume of the scatterer. At distances that are 

a number of wavelengths away from the scattering volume, the expression for the scattered field 

reduces to 

k2 5Bn eh 

4TI Bn 

- J   dVe-^'p(r') (6); 

where ks is in the direction in which the scattering is observed and has a magnitude equal to k = 

co/c0 - For weak inhomogenieties, one may expect the field within the scatterer to be nearly equal 

to the incident field and thus set p(r') = pinc. = poeik*r' in the integrand of Eq.(6). The scattered 

field is then 

p^=e_6B^e*' 
A,     4TC B, 

ikr 

-f   d3r'e-K' 
r   Jv (7) 

where K = ks - k . The integral is now readily evaluated and yields 

Esc. 

Po 

iir 
2 8B0 e*' 

Bn    r 
?3 Ji(Ka) 

Ka 
(8) 

where ji(x) is a spherical Bessel function given by ji(x) = sin x/x2 - cos x/x and K = 

2ksin (6/2) in which 9 is the scattering angle, i.e., the angle between ks and k . Polar plots of 

this result for various values of ka are shown in Fig. 1.  As expected, side lobes in the scattered 



field do not appear until  ka = 2TC/A,   becomes greater than unity.   Since interest in the present 

project is confined to low frequencies, plots of higher ka values have not been considered. 

A.2   Averaging over a Rayleigh distribution of scattering radii 

As seen from Fig. 1, the angular dependence of the scattered wave becomes quite 

pronounced when ka > 1 . The net effect of the scattering due to an assemblage of scatterers of 

different sizes should be a smearing out of these sharp peaks. When the radii are assumed to vary 

according to a Rayleigh distribution, defined by 

fR{a) = ^e-a2l2al (9) 
a0 

where ao  is the rms size of the scatterers, we obtain the average of the scattered field given in 

Eq.(8) in the form 

\PoLyU ° °Ö 
Jkr 

PM 

(10) 

2 5Bn e 
= k 

B()    r 

where 

I = -K["' dae~aZ nal c? )x(Ka) nn 

When ji is written in terms of an ordinary cylindrical Bessel function as ji(x) = (7i/2x)^2j3/2(x), 

the integral in Eq.(ll) takes on a standard tabulated form(3) and yields the much smoother 

distribution 

2  B0   kr 

which is shown in Fig. 2. Since 0 < 0 < n , no sidelobes are generated by the term sin (9/2) in 

this result. For ka < 1 , the averaging is seen to produce little effect while for larger ka values 

the peaks are smoothed out. 



Note that the squared magnitude of the scattered field is given by 

fss.) 
k Po I Ravi. 

f 5TD   V 
®0 

V 5o y (*r 
^T(to0)%-4^sin(e/2,)2 (13) 

In the next section it will be shown that this same dependence on wave number k and scattering 

angle 0 is obtained for the scattering by a random medium when the randomness is described by a 

Gaussian correlation function. 

B. SCATTERING BY RANDOM FLUCTUATIONS IN THE B ULK MODULUS 

We now consider the scattering per unit volume due to random fluctuations in the bulk 

modulus of the medium.   Returning to Eq. (4) and replacing  5B0/B0   by a randomly varying 

function f(r), Eq. (5) is replaced by 

P,t=^V/(r<)^^(r<) ' (1) 

where the integration is now over the entire random medium. Again using the far field assumption 

r » r', we have 

2      ihr k1 e 
p0     4K 

e—\v dV/(r>-*"' (2) 

The scattered energy is proportional to pSc(i")*pSc(r) =lpsc(r)l
2. We now treat the scattered wave 

as a random variable and form a statistical average that is proportional to the scattered energy by 

considering 

Psc ]£_)' 1 
4TZ 

lj/r'J/Yy^'-r">(/*(r')/(r")) (3) 

Setting <f*(r')f(r")> = |i(lr' - r"l), i. e., assuming that the correlation of fluctuations in the 

random variation is isotropic and homogeneous, we can introduce the coordinates R = (r' + r")/2 

and p - (r1 - r") to obtain 



(H2) 
v47ly 

^J/vKMW) (4) 

where V is the total volume of the scattering region. Carrying out the integration over angles, we 

obtain the scattering per unit volume in the form 

(5) 
f /.2 Y 

Vpi y4Kj 

4K Y^r pdpfi{p)sinKp 
rKJ° 

The remaining integral may now be evaluated for various assumed forms for the correlation 

function |i(p) . For the Gaussian form |IG(P) = |ioexp(-p2/L2) , we findW 

i (6) 

Vpl        \6^KÜ (kr) 

This result is seen to have the same wave number and angular- dependence as that obtained for the. 

square of the Rayleigh distribution of spherical scatterers, and given in Eq.(13) of the previous 

section, when we set    L = 2a0, i.e., set the correlation length equal to the rms diameter of the 

spherical scatterers. 
To give some indication of the sensitivity of these results to the assumed form of the 

correlation function, we summarize the results for the scattering distributions obtained from the 

con-elation functions M-E(P) = Hoexp(-p/L) and Hs(p) = Jiosech (p/L) . Graphs of these 

expressions are shown in Fig. 3. The corresponding scattering distributions are found to be(5) 

<W!)E _ 1 
-(kL)6 

Vpl        2TZÜ (kr)'"        [(KLf + l\ 

(7) 

I),-**2 i {KLf^ümsc^{Tk) 
Vpl        32L3 0)-v     '       \KL 

Graphs of the KL dependence of these expressions, as well as that for the Gaussian, i.e., fo(k) = 

exp[-(KL/2)]2, fE(k)= [(KL)2 + l]-2 and fs(k) = sech2 (rcKL/2) sinh (7tKL/2)/(jcKL/2) , are 

shown in Fig. 4.   As expected, the sharper cutoff for the Gaussian  UGIP)   is reflected in a wider 



spectrum for the transform folk). The negligible difference between the curves for fE and l's is 

of some interest in its own right since it shows that, at least in the present analysis, the much 

maligned cusp at the origin displayed by the exponential correlation function has little effect on the 

results. 

The procedure adopted here, of assuming a form for the correlation function and then 

calculating the scattered field, is analogous to that of assuming a form for a refractive index or a 

scattering potential in deterministic scattering. The reverse procedure, i.e., that of using the 

scattering data to determine the form of the refractive index or potential (or correlation function) 

that gives rise to the scattering, is referred to as an inverse scattering problem and is a much more 

difficult consideration. For problems in deterministic scattering, it is now known that to be 

successful in such an endeavor one must know much more about the scattering data than is usually 

available. In particular, one must know either the angular distribution of the scattering at all angles 

at some one frequency or know the scattering at some one angle at all frequencies. It is usually 

impracticle to obtain such information. In addition, the exact form of the refractive index or 

scattering potential may depend critically on the scattering data, i.e., significant changes in the 

predicted form of the refractive index, potential or correlation function may result from small • 

changes in the scattering data. Finally since the data collected may be expected to contain 

experimental error, it is usually impossible to determine any "correct" source of the scattering. 

Fortunately, scattering by random inhomogeneities is usually not extremely sensitive to the form of 

the correlation function and so a choice of convenience, frequently the Gaussian, is usually made. 

C. THE INFLUENCE OF FLUCTUATIONS ON THE DIFFRACTION IMAGE OF  A  FOCUSING 

SYSTEM 

The sound field incident upon the focusing system consists of a coherent part due to 

scattering by the object of interest and an incoherent part due to scattering by inhomogeneities in 

the medium. When the amplitude of the incoherent field becomes comparable to that of the 

coherent field, the image can be assumed to be no longer detectable.(6). We now consider the 

imaging of both coherent and incoherent fields. 

The field in the focal plane is given in the Kirchoff approximation by(7-8) 

P(p,/)=^j </y—L(p>(p-,o) ID 
2mJS r 
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where  L(p')  is the effect of the focusing device which in the optical case would be a lense.  The 

relation between r, p', p and f is shown in Fig. 5. 

For f»p, p' we obtain 

= / + (/r-2p.p' + p'2)/2/ 

The term involving p'2 is usually referred to as the Fresnel correction. Employing the 

customary procedure of retaining all terms of (2) in the phase in (1) but setting r = f in the 

amplitude, which is less sensitive to small corrections, we have 

P(PJ) = j~ ^P^\s d2P e-**"^1 '^(PXP'.O) (3) 

If only the first term in the phase of the integrand were now retained, we would have the 

far field (Fraunhoffer) approximation while if the second term in the phase of the integrand is 

retained we have the Fresnel approximation. The effect of the lense is to cancel out this second 

term and yield the Fraunhoffer image in the focal plane (9). We thus set(iO) ; 

L{p') = e-*p"'2f 

(4) 

and obtain 

p{pJ) ^/(/V/2/,i ^
2
P
V

'
W/

MP',ü) (5) 

The field in the focal plane, p(p,f) , has now been expressed as an integral over the field in the 

plane of the receiver p(p,0). 

The field in the receiver plane, p(p,0), may be considered to be composed of a coherent 

part that represents the information of interest and a random part that is due to scattering by 

inhomogeneities in the medium. As in Section B, we treat the randomness of the pressure wave by 

calculating lp(p,f)|2 , a quantity proportional to the intensity of the wave, and then introduce a 

correlation function to describe the fluctuations that are now associated with the sound field at the 

receiver rather than with fluctuations in the properties of the medium. 

From (5) we have 



(\pfaff) = Tb~Ss d2p1s dVe-^W^-p-Ü (6) 

where, following the procedure used in part B, we have set 

4\p'-p"\) = {p*(p'.0)p(p'\0)) (7) 

As noted in Section B, this choice for a correlation function implies an assumption that the 

fluctuating quantity, here the sound field, is both homogeneous and isotropic. 

The coherent field. The above result is immediately specialized to the case of a coherent 

field by setting |i(|p'-p"|) = po2 where po2 is proportional to the intensity of the incident wave. 

In this limit there is no coupling between p' and p" and we have 

Pcch{?J)\ 

{PokA/2KfY     A 
( = -Uf d2p'e-*pm('''J 

A' Ji 
, A = Area of Receiver 

kpallf 

sm(kxh/2f) 

kxhllf 

,  circular receiver, A = 7ia 

sm{kyhl2f) 

kyh/2f 

(8) 

, square receiver, A = h" 

where Ji refers to the Bessel function of first order. Both of these expressions have a form that 

peaks at unity at the center of the receiver. The results for the two geometries are compared in Fig. 

6 in which <lpcoh'2Vpc2' with pc = pokA/27rf, is plotted as a function of distance from the center 

for both a circular and a square receiver. The square case is considered because, as summarized 

below, it is possible to obtain a simple complete description of the incoherent field for this 

geometry(u). 

For the circular receiver, we first set   k = 2n/X   and write the argument of the Bessel 

function as 

kpa    „   a a p 
-
J
— = 2K-—— 
/ A/A (9) 
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The choices X = 0.3 meter (which follows from a sound velocity of 300 meters/sec. and a 

frequency of 1000 Hz.) as well as a = 0.5 meter and f = 1 meter, have been used. The result is 

given by the curve marked "1" in Fig. 6. 

For the square receiver we consider distance from the center along a diagonal x = y 

indicated by curve "2" in Fig. 6, as well as along a coordinate line (y = 0, 0 < x < h/2). The 

latter curve is indicated by "3" in Fig. 6. (Since on the diagonal a radial distance R from the 

center corresponds to a value of x equal to R cos rc/4 = RA/2, for the graph marked "2" x has 

been replaced by xW2 to account for this scaling.) As expected, near the center curves 2 and 3 

yield equal values for the coherent field intensity. The correspondence between circular and square 

receivers is also found to be quite close as should also be expected. For numerical values in the 

rectangular case we have used h/2 = 0.5 meter with the other parameters remaining the same as for 

the circular case. 

Incoherent field. Here we must make a choice for the correlation function. As noted 

above, the choice is a balance between physical realism and analytical tractability and the Gaussian 

is frequently chosen. We adopt this form here and set 

/i(|p'-p1) = ^-|p'-p'f/L: ,       <10> 

where pp2 is proportional to the mean square intensity of the fluctuating field and L is the 

correlation length, i.e. the distance over which the fluctuations in the field display some coherence. 

We are thus introducing a new length into the considerations and can examine results as a function 

of the ratio of the receiver size, a or h, to the correlation length L. For arbitrary ratios of 

receiver size to correlation length it is found that the results can be obtained in a simple, readily 

interpretable form only for the rectangular receiver. For the circular case it appears that only the 

large receiver limit a/L—>°° can be treated in this manner02). The results are of considerable 

interest since they show that the fluctuations in the image are diminished by increasing the receiver 

size until it is about twice the correlation length L. This result is analogous to the optical effect that 

the twinkling of stars appears greater to the naked eye than to a larger optical receiver. 

For the square case we write 

p • (p' - p") = x{x' - x") + y( / - /') dU 
and express (6) in the form 

{KA^ff) = P?[^J M{hlL,Yx)M(h/L,yy) (12) 
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where 

M(h/L,yx)^j'2 ^12 We-**''-^-'-?'* (13) 

and 2yx = kxL/f. The factor M(h/L,yy) has the same form as M(h/L,yx) except that x is 

replaced by y . These quantities have been defined so that they reduce to unity at the center of a 

very large receiver, i.e., M(°o,0) = 1. (It should be noted that results for a rectangular receiver 

may be obtained by merely modifying the limits on the integral for either M(h/L,yx) or 

M(h/L,yy). 

The details of the integration are summarized in Appendix A. One obtains 

M{h/L,rx) = 2{if{^P-Q) (14) 

where 

in which 

P = \Jne-/lRe{F(h/L,yx)} 

Q = \[l-e-{,"L)2 cos(2yxÄ/L)] + |V^_r< lm{F(h/L,yx)} (15) 

•     F{h/L,yx) = erf{J: + iyx)-erf{iYx) (16) 

and 

erf(z) = -t\Z dte-'2 

(17) 

Results of the same form occur for the y  dependence with yy = kyL/2f being used in place of 

Yx- 

To obtain some understanding of this result, we now examine various special cases.  It is 

convenient to use the coefficient in (12) as a reference value and set 
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„2  _ 
PR = 

(pFkh2^ 
2%f 

(18) 

so that 

Pmcch{?j)\ 

Pi 
M(h/L,yx)M(h/L,yy) (19) 

1) Field at the center of the receiver (x = y = 0) as a function of h/L In this case, yx 

= yy = 0 and from (19) we have 

,|2\ (hcoh(ojf 
P'R 

= [M(h/L,0)f (20) 

The results in (14) to (16) yield 

M{hlL,0) = 4n{- Mi- 
e-

{h!L}' -l 
(21) 

as obtained by Chernovd3). A graph of (20) is shown as the solid curve in Fig. 7. A graph of 

exp[-(h/L)2] has been included for comparison. The fluctuations are seen to attain their maximum 

value in the limit of small receiver size to correlation length (h/L « 1) and to decrease rapidly as 

h/L increases until a ratio of h/L equal to about two is obtained, after which they decrease more 

slowly. As noted above, this decrease in the effect of fluctuations is well known in astronomical 

observations where the scintillation of stars is found to be much larger to the naked eye than when 
observed with large optical receivers. 

2) Noncentral points To examine the corresponding situation at various non central 

receiver locations, we write pincoh(p,f) = Pincoh(x,y,f) and consider, in Fig. 8, the value of 

< IPincoh(x,x,f)l2 >/PR
2
,  i.e. the field at locations along the diagonal  x = y, for  x = 0.1h, 0.3h 

and 0.5h. 

In obtaining these results we have had to make a choice for the parameters involved in the 

definition of 2yx = kxL/f. Setting k = 27C/X, we first write 

2^^A (22) 
X f hL 

27, 
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The choices X = .3 meters and f = 0.2 meters have again been used as well as L= 0.1 meter. 

No attempt at a thorough parameter study has been made at this stage. Although the result in Fig. 

8 predicts a more rapid decrease in the fluctuations as one moves away from the center, there is 

probably no advantage to be gained from this decrease since the coherent field itself falls off as 

one moves away from the center (cf. Fig. 6). 

3) Spatial Dependence for fixed h/L We first consider the case of large receiver to 

con-elation length ratio (h/L » 1). This limius easily treated by merely setting h/L = «> in the 

upper limit of the integrals that define P and Q as given in Appendix A. We then obtain 

M(h/L,y)~^e-?2 ,        h/L» y (= Y,7y) ^ 

and find 

^PincohiwfJ) _ KL
2 

P'R 

e-(kLlf)2(x2+y2) ^4) 

This result has the same functional form as that given by IshimaruO4) for the large circular receiver 

with x2 + y2 = r2. As noted by ChernovU3>, far from the edge of the receiver, where shape 

effects should be negligible, results for both square and circular receivers can be expected to be 

quite similar. 

For h/L =1,2 and 4 and field points on the diagonal (i.e., y = x), we obtain the results 

shown in Fig. 9. The decrease in the magnitude of pincoh associated with increasing values of 

h/L is consistent with the earlier results for dependence of fluctuations on receiver size shown in 

Fig. 7. 
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Appendix A    Evaluation of   M(h/L,yx) 

From (12) of Section C we have 

M*/t/.) 4c «c *-«---->'«'-■->■"■        (/U) 

Consider this integral as being taken over a square of area h2 in an x'-x" plane. Separating 

variables in the integrand by introducing u = (x' - x") and v = (x' + x")/2, a transformation for 

which dx'dx" = dudv, we integrate over the same area in the u-v plane by evaluating 

h'M(hf L,yx) = f  du P'2  dve-^'M"'* + f du f^""2  dve^'^'^ (A 2) 
V ' x>       J_A J-(/i+u)/2 JO J-(h-u)/2 K^-^-l 

The area is shown in Fig. 10 where two examples of the area strips that are summed in this 

integration process are indicated. When the v integration is carried out we find 

M(h/L^) = 2(±f(j;P-Q) {A3) 

where 

P = jo   d&S cos2^ = ReU    d&'q e2'K\ 

Q = J^e" ^cos2tf = Rej^^'V'*} (A-4) 

with  t, = u/L  and 2y = kxL/f. These integrals may be expressed in terms of the complex error 

function. The results are given in (14) - (17). 

For h/L » 1, we replace the upper limit on each integral in (A.4) by °° and have 

P = f dt;e~'2 cos2}^ = \-4Ke~y2 

1-^-f. 
1       , (A.5) 

2 

Since P is multiplied by h/L in (A.3), the contribution from Q is negligible unless y»l. 
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