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ORDINAL OPTIMIZATION OF 
COMMUNICATION NETWORK PERFORMANCE: 
A New Look Based on Use of the Connection Machine 

1   INTRODUCTION 

Optimization problems in communication networks can be very difficult because accurate 
analytical models are often either unavailable or too complex to be evaluated within realistic 
time constraints. Although in some cases models of reasonable complexity may be available to 
evaluate system performance under a given set of parameters, the optimization process typically 
involves the evaluation of system performance under many different sets of system parameters 
(or, equivalently, for different control policies). The goal here is to find the control policy that 
provides the best performance. Thus the size of problems that can be addressed by analytical 
and numerical techniques is generally severely limited. 

Because of the unavailability of suitable analytical techniques for a wide variety of 
performance evaluation and optimization problems in communication networks and other 
examples of discrete-event dynamic systems (DEDS), simulation is the primary method for their 
solution. In addition, simulation may reveal important conceptual aspects of a problem that 
cannot be identified a priori. However, although in many cases simulation can provide a good 
estimate of system performance, it can also be extremely time consuming, and therefore 
expensive. This is especially true when the optimization process requires the evaluation of 
system performance for a large number of policies, as we noted above. 

Recent research in the area of DEDS has resulted in the development of a number of 
approaches that greatly improve the efficiency of the simulation process. For example, the 
Standard Clock (SC) technique1 [3, 4, 5] "parallelizes" simulation by passing a common event 
stream to a large number of problem instances, each of which updates its state subject to its 
unique control policy. To determine the optimal control policy, performance would be evaluated 
for a (possibly) exhaustive set of control parameters. However, the accurate performance 
evaluation of a large number of policies remains a daunting task, even with the improvement in 
simulation efficiency provided by SC techniques, because long simulations are generally needed 
to provide accurate estimates of system performance. 

1 Although the basic SC technique is applicable only to systems with exponential interevent times, a number of 
techniques have been developed to incorporate non-exponential techniques as well. For example, in [1,2] we 
showed how SC techniques can be applied to integrated voice/data networks with fixed-length data packets. 

Manuscript approved April 7, 1998. 



Recently, Ho et al. [6] suggested that, in many applications involving DEDS, the goal of 
finding the optimal solution could be relaxed to that of finding a sufficiently "good" solution. 
This approach has been termed "ordinal optimization," where ordinal refers to the determination 
of policies that perform relatively well compared to other candidate policies, without necessarily 
obtaining accurate estimates of the performance values associated with these policies. Examples 
of ordinal-optimization approaches include the use of short simulation runs, crude analytical 
models, or simplified simulation models. When carefully formulated, one or more of these 
approaches may be able to provide good estimates of the ranking of performance under a large 
number of alternative sets of control parameters, even though the estimates of actual system 
performance may be highly inaccurate. The improvement in efficiency (reduction in computer 
time) can be several orders of magnitude if one is satisfied with finding a good solution, rather 
than the (typically elusive) optimal solution. 

In earlier studies [1, 2] we demonstrated the improvement in efficiency that can be 
achieved by using the SC approach for the simulation of several examples of DEDS, including 
integrated voice/data wireless networks. Most importantly, we demonstrated the effectiveness of 
the combined use of SC and ordinal-optimization techniques for the solution of admission- 
control problems. Although the SC approach is ideally suited to parallel machines, our studies in 
[1, 2] demonstrated that considerable improvement in efficiency can also be achieved on 
sequential computers. 

In the present report we discuss the use of SC and ordinal-optimization techniques on the 
Thinking Machines Corp. Connection Machine CM-5E, which is a parallel machine. To make 
this report self-contained, we provide background discussions of SC simulation, the voice 
admission-control problem in circuit-switched wireless networks, and ordinal optimization. We 
demonstrate that the SC simulation technique has excellent scalability properties on the CM-5E, 
a crucial property that has enabled the evaluation of considerably larger problems than those that 
could be addressed by conventional sequential machines. The capability to rapidly examine a 
large number of control policies permits much more-thorough examination of the state space 
than is possible with sequential machines; our evaluation of admission-control policies in high 
capacity networks has helped to confirm our conjecture that voice-call blocking probability is a 
unimodal function of threshold admission-control policies. The examination of larger problems 
on the CM-5E has also helped refine our conjecture on "network self regulation" [7, 8] and on 
the capability of simple control policies to perform well [1,2]. The scaling capability is also 
essential in extending our work to broadband networks. Moreover, the use of the CM-5E has 
provided us with substantial insights on network behavior that have influenced the formulation 
of our algorithms and our methods. 

1.1    Outline of the Report 

In Section 2 we review the principles of Standard Clock simulation, and discuss its 
implementation on sequential and parallel machines. In Section 3 we review the admission- 
control problem in circuit-switched multihop networks, and discuss the product-form solution 
that characterizes equilibrium system performance. This is the primary problem that we have 
approached by means of SC and ordinal-optimization techniques. In Section 4 we show how the 



SC simulation model can be applied to circuit-switched multihop networks, thereby permitting 
the simultaneous generation of a large number of sample paths that are driven by the same event 
sequence. 

In Section 5 we discuss the evaluation of circuit-switched wireless networks for an 
example that is sufficiently small to be evaluated by numerical techniques. We remark that the 
network appears to be "self-regulating" in the sense that little improvement is achieved by 
imposing active admission-control, as compared to the uncontrolled system in which all calls are 
accepted provided that sufficient network resources are available. In Section 6 we address the 
question of self-regulation in more detail, first for small examples evaluated on sequential 
computers, and then for considerably larger examples for which the CM-5E was needed. 

In Section 7 we review the principles of ordinal optimization, and we present results for 
relatively small problems (eight transceivers per node) obtained on sequential machines. Then, 
in Section 8 we address considerably larger problems (up to 4000 transceivers per node) for 
which the CM-5E was used. Finally, in Section 9 we present a summary and conclusions drawn 
from this research. 

2 THE STANDARD CLOCK APPROACH TO SIMULATION 

We begin by reviewing the principles of SC simulation [3, 4, 5], which permits the 
simultaneous evaluation of system performance under a large number of control policies. In 
Section 2.1 we discuss SC implementation on sequential machines, and in Section 2.2 we discuss 
the case of parallel machines. 

2.1 Standard Clock Simulation on Sequential Machines 

The principles of SC simulation on sequential machines and the performance 
improvement that can be achieved, as compared to Brute Force simulation, were discussed in [1, 
2]. In this section we summarize the major aspects of the SC methodology as implemented on 
sequential machines. 

We use the M/M/l/K queue paradigm to explain the SC technique. An M/M/l/K queue 
is a single-server queue with finite buffer capacity K (including the packet in service), Poisson 
arrival process at rate X, and exponentially distributed service of expected duration 1/p.. We use 
the following notation to describe the state of the queueing system: 

x  = the number of packets in the system, 

n(x) = the steady-state probability that there are x packets in the system. 

The discrete parameter K in the M/M/l/K queue makes this system a particularly good 
candidate for SC simulation, which works equally well for continuous or discrete variables. 
Using SC techniques, we have simulated system performance for many values of K 
simultaneously. Typically, in traditional simulations of M/M/l/K queues, an event calendar is 
used to schedule events (i.e., arrivals and departures) that are generated by using a distinct 



distribution for each event type. By contrast, in SC simulations a single sequence of random 
numbers is generated from an exponential distribution with parameter A = X + \l. Each of the 
variates in this sequence represents a generic interevent time. The type of event associated with 
each interevent time is determined by drawing an independent random number U from a uniform 
distribution on the interval [0,1]; the event is an arrival if U < A/A, otherwise it is a departure. 
Generation of events at this rate A, which is referred to as the maximal rate, is an example of the 
well-known technique of uniformization [9]. A "ratio yardstick" showing the event-type 
determination process is shown in Fig. 2.1.2 

f/ = random(0,l) 

Ay VA I t      % I 
 arrival  departure 

Fig. 2.1 — Ratio yardstick for the M/M/l/K simulations 

Thus two random numbers must be generated to produce each event; one to specify the 
timing of the next event, and the other to specify its type. It is possible that an event determined 
in this manner turns out to be infeasible (e.g., a departure from an empty system). The interevent 
time of such a "fictitious" event is used to update the system time as if the event were "real" and 
did in fact occur, but no state change occurs (the fictitious event is discarded). 

The improved efficiency of the SC method is achieved by using the resulting sequence of 
(interevent time, event type) pairs, known as the clock sequence, to simultaneously generate 
sample paths for a number of structurally similar, but parametrically different, systems. In 
particular, a single clock sequence can be used to generate N sample paths in parallel for N 
M/M/l/K queues, each with a different value of K. 

Figure 2.2 shows a simplified comparison of SC and conventional, or Brute-Force (BF), 
simulation for the case of 100 sample paths (N = 100) and a simulation duration of 1000 events, 
where a sequential machine is used in both cases. The program structure is shown as nested "Do 
loops." In BF simulation the "Do 100 sample paths" is the outer loop, and within this loop the 
"Do 1,000 events" loop actually constructs each of the sample paths. With this loop structure, 
100,000 events and 100,000 state updates are required. In contrast, with SC simulation the order 
of the "Do loops" is reversed. As a consequence of this reordering, the "Generate Event" 
procedure is outside the inner loop, and each event generated is passed to all 100 sample paths. 
Thus, with SC simulation only 1,000 events need to be generated, although we still have to 
perform the 100,000 state updates as in the BF case. 

7 2 The ratio yardstick is easily extended to complex examples with many different types of events. As in the present 
example, events are generated at the maximal rate (which is the sum of all exponential interevent rates in the 
system), and each event corresponds to a region on the yardstick, the width of which is equal to the probability of 
the corresponding event. The event type is determined by the region into which a random number (drawn from a 
uniform distribution on [0,1]) falls. The computational effort involved in determining the event type by means of 
the alias method [10] is independent of the number of event types, thus making this method suitable for complex 
systems. 



Do for 100 
sample paths 

(a) BF (b) SC 

Fig. 2.2 — A comparison of program structure in BF and SC simulations 

In the M/M/l/K example, arrival events are always feasible for all values of K; however, 
an arrival when the buffer is full (i.e., when x = K) does not lead to a change of state because that 
arrival is blocked and rejected. Similarly, a fictitious event (e.g., a departure when JC = 0 in this 
system) leaves the state unchanged. Thus a different trajectory may be produced in each of these 
experiments, even though the clock sequence (and thus each event) is the same for all. Since 
each element of the clock sequence is used N times, the number of events that must be generated 
is reduced by a factor of N. This reduction has a dramatic effect on the overall simulation time 
because the generation of events is considerably more time consuming than the consequent 
updating of system state, as our simulation timing results showed in [1, 2]. Typically, in our 
studies of the parallel simulation of up to 10,000 sample paths (i.e., K was varied from 10 to 
10,000 in steps of 1), simulation was sped up by a factor of between 3 and 5, depending on the 
machine being used. The effect of this speedup is further enhanced by the ordinal optimization 
techniques that are discussed in Sections 7 and 8; the correlation introduced into sample paths 
that are driven by the same event sequence permits a relatively accurate ranking of policies (from 
best to worst) on the basis of relatively short simulation runs. 

Unfortunately, the speedup achieved by using the same event sequence for all /V sample 
paths can be reduced by the occurrence of fictitious events; thus, additional events must be 
generated to observe the specified number of real events. However, in [1, 2] we demonstrated 
that significant speedup can be obtained even when the fraction of fictitious events is high. 
Another limitation of this approach is that it is normally restricted to systems with exponentially 
distributed interarrival times, although it has recently been shown that some deterministic events 
[11] or other nonexponentially distributed events [12] can also be incorporated into the model 
and, in fact, we demonstrated in [1, 2] how fixed-length data packets can be incorporated into SC 
simulation models.3 

3 The data-packet departure events are deterministic, when conditioned on the data-packet arrival times and on the 
voice state. 



2.2 Standard Clock Simulation on Parallel Machines 

Although the example presented in Section 2.1 is based on the use of a sequential 
machine to perform SC simulation, it can readily be seen that the SC technique is extremely well 
suited for implementation on parallel machines such as the Connection Machine CM-5E. As is 
shown in Fig. 2.3, the connection machine front end generates the events, each of which is 
passed to all of the parallel processors, each of which is responsible for the updating of one or 
more sample paths. Each of the 256 nodes on NRL's CM-5E consists of four vector units, each 
of which in turn consist of 8 virtual processors. Thus the CM-5E provides 8192 virtual 
processors, which operate in parallel on the data generated by the front end. Each of the virtual 
processors can be programmed to generate m sample paths, thereby resulting in the parallel 
generation of 8192 m sample paths, each of which is driven by the same sequence of events. 

Virtual Processor 

256 nodes =>  1024 vector units => 8192 virtual processors 

=>  8192 • m sample paths simulated simultaneously 

Fig. 2.3 — Standard Clock Simulation on the CM-5E 

The CM-5E can be programmed as either a Single-Instruction Multiple Data (SIMD) or a 
Multiple-Instruction Multiple Data (MIMD) machine. Our approach, as described above, has 
been to exploit the "data-parallelism" offered by the C* programming language, which amounts 
to using the machine as a SIMD one. A speedup of approximately 100 has been observed, as 
compared to a Sparc-10 workstation. 

An alternative approach, in which the CM-5E is used as a MIMD machine, would 
involve "message passing," which essentially uses each of the 256 processors as a standalone 
machine. The CM-5E provides a very fast communication channel between the machines. Use 
of this MIMD approach would reduce the dependence on the front end (actually, it probably 
virtually eliminates the front end, or more precisely, it treats the front end as just another 
processor) as compared with our SIMD approach. Our impression is that such an approach 
would fail to exploit the vector units, and would tend to be bound by communication overhead. 



2.2.1 Algorithmic Insights Gained from use of the CM-5E 

In [1, 2] we discussed the application of SC and ordinal-optimization techniques to 
integrated voice/data networks. In our integrated network model, voice traffic performance is 
independent of data traffic because data uses the time-varying residual capacity not being used 
by voice. The objective is to choose the voice admission-control policy that minimizes data- 
packet delay, subject to a constraint on voice-traffic blocking probability. Most of the work 
discussed in [1, 2] was based on the use of sequential machines, although we have done some 
studies of integrated networks on the CM-5E as well. These studies revealed a bottleneck that 
resulted from the processing of deterministic events, as described below. 

In an integrated voice/data network with fixed length data packets, voice-call arrivals and 
departures and data-packet arrivals are stochastic exponentially distributed events, which are 
easily incorporated in the Standard Clock paradigm. However, because the data packets are of 
fixed length, the time required to transmit a packet is fixed; hence, the data-packet departure 
events are deterministic (given the stochastic events in the system). In the "Direct-Processing" 
approach we developed for handling the deterministic data-packet departures [1, 2], before 
processing the next stochastic event, each vector unit (where, loosely speaking, a vector unit 
corresponds to a particular voice admission-control policy) must have completely processed all 
of the data-packet departure events in its deterministic event queue. Thus, all processors 
experience the delay associated with the processing time of the vector unit with the longest 
deterministic event queue. In the "Improved-Processing" approach, we take advantage of the 
constant data-service rate between voice events, and the PASTA (Poisson Arrivals See Time 
Averages) theorem [13], [14] to periodically reconstruct the data departure sequence at 
convenient times in the simulation (see [1,2] for details). We found that this algorithmic change 
gave about an order of magnitude speedup on both the CM-5E and on sequential machines. 

3   ADMISSION CONTROL IN CIRCUIT-SWITCHED MULTIHOP NETWORKS 

In this section we describe the problem of admission control in circuit-switched multihop 
communication networks. The use of standard clock simulation and ordinal optimization have 
been powerful tools for the solution of this problem, and the use of the CM-5E has significantly 
enhanced the size of problems that can be addressed, while providing added insight into the 
properties of good solutions. 

The requirement of low-variance, short delay for voice service in communication 
networks motivates the customary approach of establishing circuit-switched paths (i.e., either 
true circuits or virtual circuits) between communicating nodes for the duration of each voice call. 
Because the source and the destination nodes in a wireless network are not generally within 
direct communication range, relaying over multihop paths may be required. We assume that 
unless voice calls are accepted for immediate transmission (in practical terms, this may mean 
within several hundred ms of their arrival), they are "blocked" and lost from the system, a mode 
of operation generally referred to as "blocked calls cleared." Appropriate performance measures 
for this mode of operation include blocking probability and throughput. 



Network performance can be improved by administering controls in the form of call- 
admission policies, as well as by routing and by link-activation scheduling [15, 16]. These are 
complex, interdependent problems that must be addressed jointly to determine the form of 
overall "optimal" network operation. Although we recognize the interdependence of these 
problems, our focus in this report is on the voice-call admission-control problem. We eliminate 
the need to solve the routing problem by assuming, as is customarily done, that fixed multihop 
paths between source-destination pairs are used. Similarly, we eliminate the need to address the 
link-activation scheduling problem by assuming the use of channelization in the frequency 
domain (by means of frequency-division multiple access—FDMA). 

Although a great deal of attention has been paid to the modeling and performance 
evaluation of circuit-switched voice in communication networks [17, 18], relatively little has 
been done until recently in the area of optimal voice-call admission control in wireless circuit- 
switched networks. An uncontrolled mode of operation is typically assumed, in which all voice 
calls are admitted as long as sufficient network resources (e.g., link bandwidth) are available. In 
a controlled system, it may be advantageous to block a call even though resources are currently 
available because the acceptance of a particular call now may result in the blockage of several 
other future calls (or perhaps a call of higher precedence) that could otherwise have been 
accepted. Thus it may be possible to improve performance by administering "active" admission 
control for voice traffic. 

In [7, 8] we showed how the recently introduced methodology of multiple-service, 
multiple-resource (MSMR) modeling, in conjunction with the use of "coordinate-convex" 
policies [19, 20], can be used to study voice admission control in radio environments. Search 
techniques were developed to speed up the determination of optimal admission-control policies. 
Although these approaches are considerably more efficient than exhaustive search, they are 
computationally intensive, thus limiting the size of problems that can be studied. In [1, 2] we 
developed ordinal-optimization techniques, used in conjunction with Standard Clock simulation 
techniques. Using this approach, nearly optimal solutions can be determined rapidly, thus 
greatly extending the size of the admission-control problems that can be studied. In the present 
report we demonstrate how the size of problems that can be studied can be extended 
considerably further by using a parallel computer, namely the Thinking Machines Corp. 
Connection Machine CM-5E. 

3.1    The Circuit-Switched Model 

We consider a wireless network in which FDMA is used to provide contention-free 
channel access to a multihop circuit over a predetermined path between the source and 
destination nodes throughout the duration of each accepted voice call. Network topology can be 
described in terms of the communication resources available at each node and the connectivities 
between nodes. To illustrate our problem formulation, we consider the simple seven-node star- 
network example shown in Fig. 3.1. Nodes 2 - 7 are each connected to only node 1, thus 
necessitating the use of node 1 as a relay in all multihop circuits. We consider three source- 
destination pairs [(2,5), (3,6), and (4,7)], which correspond to circuits 1, 2, and 3, respectively. 



The state of the system is defined to be x = {*„ x,, x3}, where xi is the number of calls currently 
active over circuit j. 

/ \circuit 1 

^Fcircuit 2 ^A 

6 5 

Fig. 3.1 — A simple 3-circuit network 

An uncontrolled system operates in a mode known as "complete sharing," in which a 
voice call is accepted as long as there are sufficient resources at all nodes along the multihop 
path; if node / has Ti transceivers, it can support up to Tt simultaneous calls.4 We refer to the 
limits imposed by the values of T,. as the "capacity constraints." For example, if each of the 
nodes in the network of Fig. 3.1 has five transceivers, the resulting uncontrolled system state 
space Q. is as shown in Fig. 3.2. Equivalently, the capacity constraints expressed as inequalities 
describe the system state space: 

JC, < 5; x, < 5; x, < 5;   (i.e., no more than 5 calls may be accepted on any circuit) 

xx + x2 +x3 < 5. (the hub, node 1, can handle no more than 5 calls) 

In general, a vector description of circuit; in terms of the nodes it traverses is given by 

Cj = {cjVcß,cß, ...,cjN}, (3.1) 

where 

fl, if circuit; traverses node i 
J      [0, otherwise 

and N is the number of nodes in the network. For example, circuit 1 in Fig. 3.1 is represented as 

c, = {1,1,0,0,1,0,0}. 

4 Other models are certainly possible. For example, if traffic is one way, rather than interactive, the source node 
would not have to dedicate a receiver to support the call. Similarly, receive-only nodes would not need transmitters. 
The approach presented here can be modified straightforwardly to accommodate variations such as these. The 
implicit assumption that the number of transmitters and receivers at a node are equal, which lets us describe the node 
in terms of a single parameter 7;, is used here because of convenience of notation, and can easily be relaxed. 



Now we can express the capacity constraints as 

Y^XjCji^Ti, i = l,---,N 
7=1 

(3.3) 

where J is the number of circuits in the network. 

Fig. 3.2 — The admissible state space Q. for the network of Fig. 3.1 

A similar equation can be written for wired networks, in which case cjt would take on the 
value of 1 if and only if circuit j traverses link (rather than node) /. The capacity constraints 
would be again written in terms of Tt, which would be now interpreted as the number of calls that 
can be supported by link i. Some of the differences between wireless and wired networks, and 
their impact on network operation and performance evaluation, are discussed in [7, 8] and [21, 
22, 23]. 

In this report we do not address the protocol issues that are associated with call setup, 
such as the control messages that must be exchanged to disseminate the network state to all 
nodes. Our focus is on the development of a mathematical system model that demonstrates the 
performance improvement that can be achieved through the use of admission control. 

3.2    Control Policy 

Our ultimate goal is to achieve optimal network performance by exercising an admission- 
control policy on call requests. In our studies of voice-only networks we use the criterion of 
blocking probability; for integrated networks it is customary to use the weighted sum of blocking 
probability and expected data-packet delay, or simply data-packet delay subject to a maximum 
allowable blocking probability. In practice, the true optimal solution is usually elusive, and we 
must settle for a good suboptimal solution. 

10 



We assume that a central controller makes the decisions on whether or not to accept calls 
based on perfect knowledge of the number of calls of each type that are currently in progress 
(i.e., the system state x), and hence on the set of resources that are available for new calls. The 
transceivers needed to establish a circuit are acquired simultaneously when the call arrives, and 
are released simultaneously when the call is completed. Calls are blocked when one or more 
nodes along the path do not have a transceiver available, or when a decision is made not to 
accept a call despite the availability of transceivers. Blocked calls are lost from the system. 
These assumptions, coupled with use of the class of coordinate-convex admission-control 
policies discussed below, lead to a mathematically tractable description of system performance. 

In [20], admission-control policies are divided into five classes: complete sharing, 
complete partitioning, trunk reservations, coordinate convex, and dynamic programming. 
Complete sharing is the simplest form of admission control because no active control is used, 
i.e., voice calls are admitted as long as resources are available at all nodes along the path. 
Complete partitioning, under which fixed amounts of resources are allocated a priori exclusively 
to particular call types, is the most restrictive form of control; it may provide the least efficient 
use of network resources, but it easily provides a guaranteed level of service to each call class. 
Trunk reservations provide a compromise between complete sharing and complete partitioning; 
all primary routed calls are accepted (provided that resources are available), but alternate-routed 
calls are accepted only if some threshold level of resources are available. Coordinate-convex 
and dynamic-programming control policies, which are discussed below, both use a modified 
form of complete sharing within a state space that is a restriction (a subspace) of the uncontrolled 
state space. In this report, we focus on the class of coordinate-convex control policies because 
they provide a form of intelligent resource sharing without the complexity of dynamic 
programming. 

The capacity constraints limit the state space Q in which x is allowed to take values. We 
assume that the state space is coordinate convex [24], i.e., in a system with J circuits, if x is an 
admissible state (x e Q) and *,. > 1, thenx' = (x,, xv ..., xr\, ..., *,) must also be an admissible 
state (x' e Q). This condition implies the very reasonable property that at the completion of a 
call, the resources it used are immediately available to serve other calls, and that call durations 
are independent of the system state. We consider policies that retain the coordinate convexity of 
the state space. Under such policies, a new call is admitted with probability 1 if the state to be 
entered is in the admissible region; otherwise, it is blocked. The objective is to determine the 
coordinate-convex set Q* that provides the optimal value of the specified performance index. 
Thus, a coordinate-convex policy is specified in terms of the set of admissible states in a discrete 
state space. The control policy is effectively a further restriction of the (already coordinate- 
convex) admissible state space defined by the capacity constraints (Eq. (1)). 

To obtain a truly optimal admission-control policy, it would be necessary to use dynamic- 
programming techniques. Whereas a coordinate-convex policy is fully specified by the set of 
admissible states, dynamic programming requires not only the specification of the set of 
admissible states but also the specification of the transitions between states that are permitted. In 
dynamic programming solutions, some transitions are not permitted (e.g., some calls are not 
accepted) even though permitting them would bring the system to an admissible state (a state that 
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can be reached by means of a different path). The product-form solution does not apply when 
the state space is not coordinate convex or when not all transitions to admissible states are 
permitted. Thus, Markovian decision techniques are needed to evaluate system performance 
under a large number of alternative dynamic-programming policies. Nevertheless, although the 
optimal policy is not necessarily a coordinate-convex one, Jordan and Varaiya have provided 
examples in which the best coordinate-convex policy performs almost as well as dynamic- 
programming solutions [20]. A crucial advantage of coordinate-convex policies is that they are 
easy to implement. Furthermore, because their product-form solution is easier to evaluate than a 
dynamic-programming solution, it is possible to solve much larger problems if we consider only 
coordinate-convex policies. 

For notational purposes, we subdivide the control policy into a set of "threshold 
controls," and a set of "linear-combination controls." Thresholds restrict the number of calls that 
will be admitted to the individual circuits, and can be expressed as 

Xj < Xj = threshold on circuit;, 1 < j < J. (3.4) 

The linear-combination controls are restrictions on the sums of the number of calls of 
various types, i.e., 

^OLjjXj^Yf = threshold on the weighted total number of calls of types e Sj,      (3.5) 
JeSi 

for suitable subsets S, of the set of all call types, as we discuss later in this section. The 
coefficients au are included in Eq. (3) to permit different weights for different call types. 
Although not all coordinate-convex policies can be described by Eqs. (2) and (3), this description 
is sufficiently rich since empirical evidence has shown that even the class of threshold policies 
alone provides solutions that are very nearly optimal, if not exactly optimal, in the class of 
coordinate-convex policies. 

Although it is generally necessary to evaluate all coordinate-convex policies—that is, all 
combinations of threshold values, all S,'& that represent linear combinations of the circuits with 
all values of Y,, and all appropriate values of al} —to discover and verify the optimal one, we use 
a,j = 1 throughout this report. This simplification is required because of the complexity of the 
problem for even small networks. Since the parameters we wish to optimize are the boundaries 
of the state space (which, in fact, correspond to the chosen control policy), the dimensionality of 
the problem is equal to the number of control policy constraint equations. Consideration of 
values of a,, other than 1 would cause the dimensionality to explode. The use of atj = 1 is also 
partially justified by the theoretical results of Foschini and Gopinath [25], and Jordan and 
Varaiya [20], and by our empirical observations that indicate that control policies using only a/y 

= 1 are very nearly, if not actually, optimal, as mentioned above. 

An important question that arises in performance evaluation is how to organize the 
description of the different coordinate-convex regions. The individual thresholds must be 
examined, and the sets S, must be determined. We find the sets S, by examining, for each node, 
subsets of the set of circuits that intersect that node. For example, if three call types (a, b, and c) 
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pass through a node, it is sometimes beneficial to limit the pairwise sums xa + xb, xa + xc, anaVor 
xh + xc. To limit the size of the state space that must be searched, we do not consider linear- 
combination controls that lower the bounds imposed by the capacity constraints of Eq. (1). For 
example, in the network of Fig. 3.1, the only location that circuits intersect is at node 1 where all 
three circuits cross. The corresponding capacity constraint is xx + x2 + x, < T{. We do not 
consider linear-combination controls that impose a value less than Tx on the sum of all three call 
types. Doing so would be equivalent to removing transceivers from the node (without relocating 
them to other nodes). Therefore, in our example, in addition to the capacity constraints of Eq. 
(1) and the threshold constraints of Eq. (2), we consider the following three linear-combination 

controls: 

jc,+jc2<r„ '    x,+x3<F2, x2 + x3<Yr 

3.3   The Solution and Performance Measures 

We assume that the generation process for a call of type./ (i.e., a call that uses circuit;') is 
Poisson with rate A,., and that its duration is exponentially distributed with mean 1/u.,.; the 
corresponding offered load is py. = X/\ir Furthermore, control is centralized, and the resources 
needed to support a circuit are acquired simultaneously when the call arrives and are released 
simultaneously when the call is completed. Calls are blocked when one or more nodes along the 
path do not have a transceiver available or when a decision is made not to accept a call, as is 
discussed below. Blocked calls are assumed to be lost from the system. 

Under these conditions, in conjunction with the use of coordinate-convex policies, it has 
been shown [19, 20] that the Markov chain describing the system state is time-reversible and has 
the product-form stationary distribution 

J    xj 

M*) = *n(0)II^? (3-6) 

where JUn(0) is the normalization constant given by 

rcQ(0) 

x        X 

J   oX.l 

xeQ y=l -V 

(3.7) 

Although the assumption of exponential call durations is not necessary for the product-form 
solution to apply (a Poisson arrival process and general service time distribution is sufficient 
[26]), we prefer to make this assumption in order to maintain a Markovian state space structure 
that can be used for dynamic analysis [21, 22, 23], and which permits the use of Standard Clock 
simulation techniques. It is convenient to define an index quantity associated with any given 
subset Q.' of the state space by 
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xeQ.' 7=1 Xr 

Then the connection between the admissible state space Q and the crucial quantity rcn(0) is 
provided by the relation G(Q.) = {nn(0)}~\ 

The control policy is defined by the specification of the admissible state space Q.. For 
any such state space, it is straightforward (though time consuming) to evaluate nQ(0), which in 
turn permits the evaluation of performance measures such as throughput and blocking 
probability. In state x the total number of active calls is 

We define throughput I\Q) to be simply the expected number of active calls averaged 

over the system state: 

r(o)=X{y(*)*Q(*)}. (3-10) 
xeQ 

Our throughput metric is somewhat different from the usually defined one, which is the number 
of completed calls per unit time. We have found our metric to be useful because it is closely 
related to the notion of "residual capacity" [1], which is a measure of the resources available for 
data in integrated voice/data networks after voice traffic has claimed its required resources. If all 
call types have the same expected length, or alternatively if the throughputs of each call type are 
weighted in proportion to their expected length, our definition simply "scales" uniformly the 
usual metric. 

Blocking probability Pb(Ci) is the ratio of the expected number of blocked calls per unit 
time to the expected total number of call arrivals per unit time: 

i>A-(ß) i ii(xJ+1) *«)Vow 
Pb(Q.) = ^—j = £ü°i=! _ , (3.11) 

7=1 y=i 

where P,-(P) is the fraction of type-y calls that are blocked, and l(-) is the indicator function, 
which is 1 if the argument is true and 0 otherwise. 

3.4    Computational Issues in Evaluating the Solution 

Knowledge that the equilibrium distribution na(x) satisfies the product-form distribution 
greatly simplifies the evaluation of system performance. Since the distribution is known to 
within the normalization constant 7Cn(0), there is no need to solve the balance equations 
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associated with the Markov chain that describes our system. However, the evaluation of 7Cn(0) is 
computationally intensive because it requires the evaluation and summation of a large number of 
terms of the form YlP? /xjL (Computational issues associated with loss networks are addressed 
in [27]). Considerable effort has been exerted in developing efficient procedures for calculating 
the normalization constant (see e.g., [28]), but such methods are generally problem specific and 
of little help to our problem. 

Our goal is to restrict the admissible state space to a coordinate-convex region such that 
the desired performance measure is optimized. The direct approach is to compute Kn(0) and the 
performance index for all possible coordinate-convex regions. We have developed a recursive 
procedure to accelerate the evaluation of a large number of different admission-control policies, 
and a descent-search method to minimize the number of policies that must be evaluated in 
searching for the optimal one; both of these, which are discussed in [7, 8], are directly applicable 
to either cost criterion. 

We have not quantified the computation time associated with these procedures, and we 
acknowledge that even with these enhancements the problem quickly becomes intractable. Our 
methods simply extend somewhat the range of problems that can be evaluated. By contrast, the 
ordinal optimization approach [1,6], which is discussed in Sections 7 and 8, offers a method to 
extend significantly the size of problem that can be evaluated. The idea behind ordinal 
optimization, and a principle that underlies many optimization problems, is that a good 
suboptimal solution frequently provides a level of performance acceptably close to the true 
optimum. Therefore, it may be possible to reduce the complexity by making simplifying 
assumptions, or by solving a less complex but "ordinally related" problem. 

3.4.1  Use of the CM-5E to Obtain the Product-Form Solution 

The difficulty in determining the optimal admission-control policy stems both from the 
number of policies that have to be evaluated and compared, as well as from the complexity of the 
performance evaluation under any individual policy. The complexity of both aspects of this 
problem increases rapidly with increasing problem size (i.e., number of circuits and number of 
transceivers per node). 

The need to compute a large number of normalization constants simultaneously (i.e., one 
for each control policy that is being evaluated), each of which requires a calculation of 
considerable complexity, suggests the potential applicability of the CM-5E. To exploit the 
massively parallel nature of this machine, we distributed the policies over the virtual processors 
(VP's). For example, we can assign the computation of one normalization constant to each VP 
(easily extended to several policies/normalization constants per VP). Under this method, the 
front end sequentially calculates UP?/xj] f°r everY state x m the uncontrolled system, and 
distributes each of the results to all of the policies (which correspond to VP's). Each VP then 
sums the terms associated with the states in the admissible region associated with its admission- 
control policy. Ideally this approach would allow N policies to be evaluated in the time it takes 
to calculate the product-form solution once, where N is the number of VP's. We don't have 
precise timing estimates, but we seem to be getting near that performance.   However, even 
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calculating the product-form solution once can become infeasible because of the explosion of the 
state space. For the network example to be shown in Fig. 5.2, the largest number of transceivers 
per node that can reasonably be handled by the CM-5E is 40. 

Therefore we have tried an alternative approach in which the evaluation of an individual 
normalization constant is distributed over the VP's. Under this method, each VP calculates 
YlpXjj /xj\ for one state x (or, more generally, for several states). To determine the normalization 
constant (and hence the desired equilibrium distribution) for the given policy, the VP's return 
their un-normalized computations of the state probability (i.e., Yip]' /*,-!) to the front end, which 
sums appropriate sets of these values and calculates appropriate ratios. Thus, the inherent 
parallelism in the most complex part of the computation, namely the evaluation of YlPjJ /xj'- for 

each state, is exploited by distributing the calculations over the set of CM-5E processors. This 
approach works, and is very fast. However, the requirement to store the value of UP*7'Ar for 

every state x requires excessive memory for large problems (even on NRL's CM-5E, which has 
(or had at the time these computations were performed) the largest memory in the world). By 
contrast, the computation of the complete normalization constant on a VP does not require much 
storage because the individual terms in the summation are simply summed and written over. 
Thus, in our original method the efficiency is limited by the need to recalculate the quantity 
Y\pXjJ /XJ\ for many states x = {x,,..., xy}, whereas in the alternative method memory constraints 
are the dominant consideration. 

One possible approach for the approximation of normalization constants in large product- 
form network problems is the use of Monte-Carlo summation with importance sampling [29]. 
We have not used this approach yet, but we expect to do so in the future. Instead, we have used 
SC simulation techniques to evaluate a large number of admission-control policies in parallel. In 
the next section we discuss our SC simulation model of circuit-switched networks. 

4    SC SIMULATION OF CIRCUIT-SWITCHED VOICE-ONLY NETWORKS 

We have used SC techniques to evaluate the performance of a circuit-switched network 
under a number of different admission-control policies. The availability of the exact solutions 
obtained in [8, 30] has allowed us to validate the results of our simulations. The discrete 
parameters of interest in this case are the circuit thresholds Xyand the linear-combination controls 
Y,. The events that must be generated are arrivals and departures. Arrivals to circuit j are 
denoted by a-, and occur at rate X). The departure rate for each active call on circuit j is uj ; 
thus, if there are Xj active calls on circuit j, the departure rate for calls of type j is xyuj . This 
situation is translated to events in the simulation as follows. We define X^to be the maximum 
value X. can have over the entire set of policies. Clearly, Xj cannot be greater than the number of 
transceivers at any node along the path defined by circuit/, thus 

Xjmax=  min (7-). (4.1) 

Because there may be up to Xjmax active calls on circuit;, we must consider Xjmax different 
departure events dJn (n - 1, ..., Xjinax) for circuit;, namely 
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dn => feasible departure from circuit j if x} > n, otherwise fictitious event. (4.2) 

Following the usual technique used in uniformization [9], the maximal rate of this system is 

A=^(Xj+Xjmaxiij). (4.3) 
7=1 

Figure 4.1 shows the ratio yardstick for a network with five circuit types, where the 
maximum threshold on each circuit is three. This ratio yardstick corresponds to operation of the 
network at the maximal rate, and it can generate all events that are needed for the simulation of 
systems with control policies in which the circuit thresholds do not exceed 3. In our example Xvj 
= uj = 1, which implies that all events are equally likely. All arrival events in this system are 
real, and the corresponding calls are accepted as long as their acceptance does not violate any of 
the capacity constraints or any of the threshold or linear-combination control values. However, 
departure events are fictitious if an insufficient number of calls of that type are currently active, 
as discussed above. For example, referring again to Fig. 4.1, an event of type dl3 will be 
fictitious (and hence ignored, although time will be updated) if there are less than three calls of 
type 1 currently active. 

In [1, 2] we discussed the possibility of using "custom" ratio yardsticks, which are 
constructed to conform with the particular parameters of each sample path, resulting in the 
generation of fewer fictitious events. Despite their potential advantages, we have found in our 
SC simulations that the added burden of maintaining and accessing separate custom yardsticks 
for every sample path outweighs the reduction in the number of fictitious events provided by 
their use [31]. Furthermore, it was demonstrated in [32] and [33] that the use of custom 
yardsticks decreases the correlation among the sample paths, thus necessitating considerably 
longer simulation runs to achieve comparable ordinal comparisons. 

-arrivals - 

Ratio Yardstick based on Maximal Rates; 
Threshold on all circuits = 3; J 

A = 20; h = U.< = 1 (=> all events equally likely) j 
 1 ►{ 

i departures ^ 

ai a2 a3 a4 as dn di2 di: d2i d22 d23 d31 d32 d3: d4i d42 d4: dsi d52 ds] 

Fig. 4.1 — Ratio yardsticks showing event sets for the circuit-switched network 

4.1    Sequential Machine Simulation Timing Results 

We have performed both Brute Force (BF) and SC simulations of this network model to 
obtain timing results. Performance results presented in [34] and [31] show that when more than 
2,000 sample paths are simulated, the SC method is approximately 2.5 times faster than the BF 
approach on a sequential machine. Despite the 17.5-fold increase in the size of the event set for 
the circuit-switched voice model as compared to the M/M/l/K queueing model (there are 35 
events in the voice model as opposed to 2 in the M/M/l/K model), the time per call for the event- 
generation and state-updating functions is approximately the same as that in the M/M/l/K 
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simulations.5 Based on results presented in [1, 2], we have found that the time per call to the 
state-update and the event-generation functions is relatively insensitive to the size and 
complexity of the problem. Thus, the SC approach should scale reasonably well, provided that 
sufficient memory is available. 

Our timing results for simulations of an integrated voice/data network, which were also 
presented in [1, 2], suggest that the SC method scales well with increasing problem complexity. 
The integrated network is considerably more complex than the voice-only network. In addition 
to the 35 voice-event types, there are ten types of data-arrival events and their corresponding 
deterministic data-departure events (with data events occurring at a considerably higher rate than 
voice events). Despite this added complexity, the time required to simulate the integrated 
network is only slightly larger than that for the voice-only network. This further confirms the 
above observations on scalability. 

4.2   CM-5E Simulation Timing Results 

We have not performed the extensive timing tests on the CM-5E that we did on 
sequential platforms. However, we have observed that the time required to perform SC 
simulations on the CM-5E is virtually independent of problem size for up to two policies per 
virtual processor (i.e., for up to 16,384 policies). For problem sizes of about 2,000 policies, we 
have seen on the CM-5E two orders of magnitude speedup over the time required on sequential 
machines. 

Two measures that have been proposed to characterize the "speedup" achieved by 
parallel computing are Amdahl's Law and Gustafson's scaled speedup [35]. Both measures are 
functions of a quantity denoted by ß, which is the ratio of the time required for the serial (front 
end) portion of the computation to the total time (serial + parallel) required for the computation. 
Amdahl's Law assumes that both the serial and the parallel portions of the computation scale up 
with the number of processors, whereas Gustafson's scaled speedup assumes that the time 
required for the serial portion is fixed and scaling only effects the parallel portion. The 
Gustafson model best fits our SC simulations of M events, because the serial portion of the 
computation is the time required to generate M events, and is independent of the number of 
sample paths. The Gustafson scaled speedup measure is given by 

S=ß + /i(l-ß) (4.4) 

where n is the number of processors. 

Using timing results from our Brute Force simulations of circuit-switched voice networks 
[[31], Table 3], we obtain an estimate of ß - 0.6958 (= (get_event + random + log)/ 
(get_event + random + log + update) = 13.3/19.1143). Using this quantity in the 
Gustafson scaled speedup measure with n = 256 processors on the CM-5E provides a predicted 
speedup of 78.567, which is commensurate with our casual timing observations. The use of n = 

5 This is not surprising, because a well-known property of the alias method is that the time needed to generate an 
event is independent of the number of event types. 
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8192 in the above expression, corresponding to the total number of virtual processors on the CM- 
5E, results in a predicted speedup of 2492. We have not observed speedup values in this range, 
but neither have we fully exploited the capabilities of the CM-5E by loading the VP's 
sufficiently to cause the parallel computation time to dominate total simulation time. As 
mentioned above, we have found that total simulation time is virtually independent of the 
number of sample paths for up to 16,384 sample paths. This suggests that greater speedup is 
possible when simulating larger numbers of sample paths. 

5    NUMERICAL EVALUATION OF NETWORK PERFORMANCE 

Most of the numerical examples presented in this report are based on the sample network 
shown in Fig. 5.1, in which links are shown connecting all nodes that are within communication 
range of each other. Figure 5.2 shows five circuits superimposed on this network graph; a call 
on one of these circuits requires the use of one transceiver at every node along the corresponding 

path. 

T 6~ 8 

Fig. 5.1 — An example ten-node multihop network 
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Fig. 5.2 — Five circuits superimposed on the network of Fig. 5.1 

By examining Fig. 5.2, we can expand the capacity constraints Eq. (1) as follows: 

{7}},    y = l,-,5,       i = l,-,10 

(capacity constraint from node 1) 

X: < min 
is node ie circuit^' 

x, + x2 < r. 
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xl + x3 + x5 < T5 (capacity constraint from node 5) (5.1) 

xl + x4 + x5 < T1 (capacity constraint from node 7) 

The control policy, which is expressed in terms of the variables X- and Y, whose values are to be 
optimized, is obtained from the capacity constraints and is written as 

x. < X- (thresholds) 

xl + x3< y,    xl+x5< y3   x3 + x5< YA   (linear-combination controls from node 5)       (5.2) 

xi +x4< Y2    x4 + x5< Y5 (linear-combination controls from node 7) 

We consider an example in which the loads of all circuits are equal (i.e., py = p, / = 1, ..., 
5), and eight transceivers are allocated to each node (i.e., Tl = 8, / = 1, ..., 10). The maximum 
number of calls permitted on any one circuit is arbitrarily restricted to six (X} < 6).6 We 
introduce the following notation: 

Qx       = the best control policy for the system controlled by adjusting only the thresholds, 
Q.*       - the "optimal"7 policy (using both thresholds and linear-combination controls). 
Tn       = the throughput of the uncontrolled system, 
Tx        = the throughput of the system under policy Q.x, 
T*       = the throughput of the fully controlled (using both thresholds and linear-combination 

controls) system under policy Q.*, 
Ph(Q)  = the blocking probability of the uncontrolled system, 
Ph(Q.x) = the blocking probability of the system controlled by adjusting only the thresholds, 
P,/n*) = the blocking probability of the fully controlled system, 

The threshold policy Qxis simply the set of threshold values {X,, ...,X5} that produces 
the maximum value of throughput among the class of policies in which only the thresholds can 
be controlled. The "optimal" policy O* is the set of X/s and Y/s {Xp ..., X5,Y{, ..., Y5] that 
produce the maximum value of throughput among the class of policies in which both thresholds 
and linear-combination controls can be adjusted. In Table 5.1 we list all of the above quantities 
as a function of the offered load p, along with the percentage improvement in performance that is 
observed as compared with the performance of the uncontrolled system. The optimal policies 
listed in the table were obtained by performing an exhaustive search over all subspaces defined 
by the thresholds and linear-combination controls of Eq. (7). This search was facilitated by our 
recursive technique for computing the normalization constants and the corresponding blocking 
probabilities associated with each candidate subspace [7, 8]. Elements of Q* that are different 
from those corresponding elements of Qxare shown in bold.8 

6
 Setting Xj < 7, prevents circuit j from acquiring all of the resources at node /'. In addition to providing a degree of 

fairness, doing so also reduces the complexity of the problem by reducing the size of the admissible state space. 
7 These policies may not be the true optimal coordinate-convex policies, since our search is limited to the class of 
policies defined by thresholds and linear-combination controls, which is a subset of all coordinate-convex policies 
(sec Section 2.1). Therefore, we cannot be certain that any solution we find is truly optimal in this class. However, 
wc conjecture that these solutions are close to the true optimal because the use of a descent search has not found any 
better solutions. This constitutes sufficient evidence provided that blocking probability is actually a unimodal 
function of the boundaries of the stale space as discussed in Section 3.2. 
8 Let us clarify the use of bold entries for the values of Y,. For all values of p, Y{ = Y2 = K, = Ys = 8. Thus these four 
linear-combination control values are at the "uncontrolled" value, which is equal to the number of transceivers at 
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Table 5.1 — Optimal control po licies for the network of Fig. 5.2 with T{= 8 and X.} < 6. 

p Tn 
{%gain}t {%gain}t 

Pb(P) 
{%gain}t {%gain}t 

Qx n* 

2.5 10.1807 10.1811 
{0.0040} 

10.1811 
{0.0042} 

0.18555 0.185512 
{0.0175} 

0.185511 
{0.0183} 

{5,6,6,6,6} {5,6,6,6,6, 
8,8,7,8,8} 

3.5 12.0336 12.07499 
{0.3438} 

12.07667 
{0.3578} 

0.31237 0.310001 
{0.7568} 

0.309905 
{0.7876} 

{2,6,6,6,5} {3,6,6,6,5, 
8,8,5,8,8} 

4.5 13.2986 13.48778 
{1.4222} 

13.50657 
{1.5635} 

0.40895 0.400543 
{2.0555} 

0.399708 
{2.2598} 

{2,6,6,6,3} {2,6,6,6,4, 
8,8,4,8,8} 

5.5 14.2267 14.57842 
{2.4721} 

14.62406 
{2.7929} 

0.48267 0.469876 
{2.6497} 

0.468216 
{2.9935} 

{1,6,6,6,2} {2,6,6,6,3, 
8,8,3,8,8} 

6.5 14.9364 15.45569 
{3.4768} 

15.51528 
{3.8757} 

0.54042 0.524440 
{2.9568} 

0.522607 
{3.2960} 

{1,6,6,6,2} {2,6,6,6,2, 
8,8,2,8,8} 

7.5 15.4950 16.13004 
{4.0985} 

16.23304 
{4.7632} 

0.58680 0.569865 
{2.8860} 

0.567119 
{3.3541} 

{1,6,6,6,1} {2,6,6,6,2, 
8,8,2,8,8} 

8.5 15.9449 16.68042 
{4.6127} 

16.77403 
{5.1997} 

0.62483 0.607519 
{2.7697} 

0.605317 
{3.1222} 

{1,6,6,6,1} {2,6,6,6,2, 
8,8,2,8,8} 

10 16.4753 17.28274 
{4.9006} 

17.36501 
{5.4000} 

0.67049 0.654345 
{2.4084} 

0.652700 
{2.6537} 

{1,6,6,6,1} {2,6,6,6,2, 
8,8,2,8,8} 

15 17.5489 18.34001 
{4.5078} 

18.39848 
{4.8420} 

0.76601 0.755467 
{1.3770} 

0.754687 
{1.4787} 

{1,6,6,6,1} {2,6,6,6,2, 
8,8,2,8,8} 

t All gains are relative to the uncontrolled system. 

The results show that at low network loads (for p less than 2.5 in this network), it is best 
to accept all calls as long as transceivers are available, i.e., the optimal policy is to administer no 
control. As p is increased, calls of type 1 are the first to have their threshold reduced. This is 
intuitively satisfying because circuit 1 shares at least one node with each of the other circuits. 
Calls of type 5 are the next to have their threshold reduced. This is because they interfere with 
calls of type 3 and 4. Calls of type 2, 3, and 4 never have their thresholds reduced because (after 
type 1 and type 5 calls have been eliminated) they do not share resources with any other type of 
call. We see that incorporation of the linear-combination controls permits the increase of some 
of the threshold values. For example, with p = 3.5 the threshold X, can be increased from 2 to 3 
by administering the policy Q*, in which the linear-combination control (*, + x5 <) Y3 is set at 5. 
Thus the maximum number of type-1 calls is increased, but the sum of the number of type-1 and 
type-5 calls that can be simultaneously active is reduced from 7 to 5 under Q*. In this example, 
use of Q* resulted in a slight improvement over the performance obtained by using Q.x. 

Although operation at blocking levels as high as those considered here may be 
unrealistic, our results are informative because they demonstrate a range of loading where the 
use of admission control can provide improved performance.   For example, in the network 

each node; hence these entries are not bold since they do not differ from those of the threshold-only policy D.x. On 
the other hand, K, is always less than the number of transceivers at node 5, but this entry is bold only when it is 
different from the summation (X, + Ay in the D.x solution. 
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studied here, the only way to reduce the blocking probability to a value less than 0.18 (which 
would typically be an unacceptably high value) is to lower the offered load to a value of p that is 
less than 2.5. However, when p < 2.5 the optimal admission-control policy is the uncontrolled 
policy. Thus, the network appears to be "self-regulating" in the sense that the uncontrolled 
policy provides optimal performance throughout a wide range of desirable performance values. 
Furthermore, at higher offered loads the degree of improvement that can be obtained by means of 
admission control is quite small; in terms of throughput it is at most 5.4%, and in terms of 
blocking probability it is at most 3.35%. We discuss this self-regulation phenomenon further in 
Section 6, where we explain this inability to obtain significant performance gains. 

Our observations raise a fundamental question: Is the improvement obtained by 
administering control worth the effort invested in performing a search over many candidate 
policies, each of which requires the evaluation of the normalization constant associated with the 
product-form solution? This question cannot be answered on the basis of a single isolated 
example. Many of the examples presented in this report were motivated by the desire to find a 
case where the use of an admission-control policy has a substantial impact on the network 
performance. 

5.1    Variations on the Admission Control Problem 

By using overall blocking probability as our performance measure, we implicitly assume 
that all call types have equal importance. In some applications, it may be appropriate to 
associate with each call type a "weight," which reflects the revenue returned for providing the 
service, or the cost (e.g., lost revenue) of failing to provide the service. For example, certain 
circuits may be weighted more heavily if they carry traffic of higher priority. In [7, 8] we 
discuss the performance improvement that can be achieved by means of admission control when 
unequal weights are applied to the circuits. 

In [7, 8] we observed that the choice of routes has a significant impact on system 
performance. In fact, the choice of path sets to reduce congestion can be more effective than 
admission control in reducing blocking probability. However, we also observed that the 
application of admission control does improve further the performance obtained by choice of 
good paths alone. 

6    NETWORK SELF-REGULATION 

In [7, 8] we examined "multi-cross networks," a class of networks that we believe 
provide insight into the reasons we have not observed significant performance improvement 
through the use of admission-control policies. In this section we first review our observations on 
network self-regulation, originally made in [7, 8] for the network example discussed in Section 
5. We then discuss network performance as the number of transceivers per node is increased to 
values as large as 4000. Analytical results were obtained on the Connection Machine CM-5E for 
as many as 40 transceivers per node. Standard Clock simulation on the CM-5E was used for 
examples with a larger number of transceivers. 
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6.1   Multi-Cross Networks and Network Self-Regulation 

In an attempt to determine the reason that such a small degree of performance 
improvement was achieved through the use of admission control, we have examined the network 
configuration of Fig. 6.1, which we refer to as a "multi-cross network." The horizontal circuit c0 

intersects each of the remaining N circuits, c,, ..., cN. Circuits c, through cN are mutually disjoint 
and share resources only with circuit c0. The network of Fig. 5.2, which has served as the 
primary testing ground for our admission-control studies, is similar to the multi-cross network 
since circuits c2, c3, and c4 are mutually disjoint and share resources only with circuit c, at one 
node. However, it differs in that circuit c5 intersects with circuit c, at two nodes, and with 
circuits c3 and c4at one node each. Nevertheless, it is reasonable to expect that an examination of 
multi-cross networks should be able to provide some degree of insight into the operation of 
more-complex networks. 

%   i  ci 
<D 0 Q 

k 
i ■ ■ 

* 1 
N 

T     T     T t 
Fig. 6.1 — An example of a multi-cross network 

Intuitively, it can be seen that at high offered loads or for high values of N (the number of 
mutually disjoint circuits intersecting circuit c0), optimal admission control will restrict the 
number of calls allowed on circuit c0, ultimately not admitting any calls on this circuit. Intuition 
might also suggest that the performance gain obtained by administering such control would 
continue to grow with N. Here, as throughout this report, we do not address the issue of fairness; 
the performance measure is defined simply in terms of overall average blocking probability. 

We have examined these hypotheses by applying our descent-search method to a series of 
multi-cross networks with increasing N and fixed utilization rates and capacities. In these 
studies, we have set the node capacity Tt = circuit capacity = 6, p0= 14, and p, through pN= 1. 
These parameters correspond to a very heavily loaded network. We shall see that although the 
optimal admission-control policy is quite different from the uncontrolled policy, there is little 
difference in performance at heavy loads. At low levels of offered load, the optimal policy is the 
uncontrolled policy, in which all calls are admitted as long as resources are available to support 
them; thus the network is naturally self-regulating. 

Since at most only two circuits intersect at any node, there are no linear-combination 
controls to adjust. Thus, the descent search attempts to find the optimal value of the N + 1 circuit 
thresholds. The results for N = 1, ..., 9 are shown in terms of blocking probability in Fig. 6.2 
and in terms of performance gain in Fig. 6.3. In the example of Section 5, when equally 
weighted services are competing for a single set of resources (e.g., in a multi-cross network with 
N = 1) the best strategy is to administer no control—all calls are accepted as long as resources 
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are available to serve them. Thus, in Figs. 6.2 and 6.3 the optimal policy and the uncontrolled 
policy are the same when N = 1. However, at the high utilization rates assumed in this example, 
the optimal policy for N> 1 is Q* = {0,6,6,...}. Despite the fact that the optimal policy results 
in the rejection of all calls on circuit 0, the performance difference between the optimal and 
uncontrolled systems is relatively small, and decreases as TV increases (for N > 3). 
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Fig. 6.2 — Blocking probability in multi-cross network vs N 

Fig. 6.3 — Throughput and blocking probability gains vs /V 

At lower network loads the optimal policy would admit some calls on circuit c0 at lower 
values of N, but for sufficiently large N the optimal policy will block all calls on c0.   (For 
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example, with p0= 5 and p„ ..., pN = 1, the optimal policy is the uncontrolled one when N< 3; 
when N =5, Q* = {5, 6, 6, 6, 6}; when N = 7, Q* = {4, 6, 6, ...}; when /V = 11, Q* = {3, 6, 6, 

In the uncontrolled network, the circuit blocking probability on c0, PM(Q), increases with 
Was shown in Fig. 6.2; as it approaches 1.0, the circuit blocking probability on circuits c,, ..., cN, 
denoted by PM(Q), approaches the minimum blocking probability PW(Q*), which is achieved by 
using the optimal control policy Q.*. The uncontrolled overall blocking probability Pb(Q) 
approaches Pb(Q*), the value obtained by applying the optimal policy. Thus, in the uncontrolled 
network as N increases there is increased likelihood that the resources needed to complete a call 
on circuit c0 will be seized by one of the N multi-cross circuits, and calls on c0 will have reduced 
access to the network while calls on the crossing circuits (c,,..., cN) will see improved access. In 
a general network setting with equally weighted calls, this self-regulation phenomenon will tend 
to admit more calls on the circuits that compete with the fewest other circuits, and reject more 
calls on the circuits that must compete with many other circuits for resources. Our studies have 
shown that the best form of admission control is to restrict the access of those circuits that 
interfere with many other circuits. Thus the application of admission control and the result of 
self-regulation achieve nearly the same network performance. We therefore conclude that 
network performance generally can be improved by administering control, but the gain relative 
to the uncontrolled system is limited by the network's natural self-regulation. These results 
apply to the case in which all call types are of equal importance or generate equal revenues. In 
[7, 8] we demonstrated that considerable improvement in system performance can be achieved in 
systems different weights are applied to calls of different types. 

Although this example corresponds to a case of extremely heavy loading, the conclusions 
we have drawn on self-regulation apply more generally to wireless fixed-route circuit-switched 
networks as well. At sufficiently low traffic levels, the optimal policy admits some calls of type 
0 if the value of N is also sufficiently small. However, as in the heavy-traffic example, the 
optimal threshold value for c0 is reduced to 0 for sufficiently large N, and the performance of the 
uncontrolled system again approaches that of the optimally controlled one as N approaches ~. 

Our observations on self-regulation apply to wireless circuit-switched fixed-route 
networks with coordinate-convex admission-control policies, and it is unclear whether they can 
be generalized to other classes of networks. In particular, a crucial aspect of wireless networks is 
that the transceivers are not a priori allocated to particular links, thus permitting the almost 
complete sharing of transceivers (to the extent permitted by the coordinate-convex policy) 
among call types. In wired networks, considerable sharing is also possible, although the fact that 
links are permanently established may have an impact on the degree of improvement that can be 
achieved by admission control. Also, the use of alternate routing schemes may have significant 
impact in either wireless or wired applications. Further study is needed to determine whether, 
and to what degree, self-regulation is a widely shared property in such systems. 
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6.2   Self regulation in high-capacity networks 

The availability of the Connection Machine CM-5E has provided us the capability to 
examine considerably larger examples than the one discussed in Section 5. Our focus has again 
been on the network of Fig. 5.2, where we have investigated performance as the communication 
capacity (transceivers per node) is increased from 4 to values as high as 4000. In all cases, we 
set the maximum number of calls per circuit at Nc = 3/4 Nr (where each node has N, 
transceivers), and for values of N, as large as 500 we performed an exhaustive search of the 
threshold policies {X„ Nc, Nc, NC,X5}; XVX5 = 0, ..., Nc (i.e., we have varied the threshold on 
circuits 1 and 5 while holding the thresholds on circuits 2-4 constant at their maximum value).9 

Thus the exhaustive search requires the examination of (Nc + l)
2 policies in our examples. 

Where feasible (i.e., Nt < 40) the exact blocking probability was calculated via the 
product-form solution. The performance under one control policy was computed on each virtual 
processor, as discussed in Section 3.4.1. For Nt> 40, the product-form solution is prohibitively 
complex, even on a high performance computer such as the CM-5E. Therefore, SC simulations 
on the CM-5E were used to estimate the blocking probability. The baseline simulations were 106 

events (i.e., total events including fictitious ones) in duration, which corresponds to 
approximately 85,000 voice arrivals per circuit. 
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Fig. 6.4 — Blocking probability and performance gain vs N, for p = (9/l6)N, 

Figure 6.4(a) shows blocking probability as a function of the number of transceivers per 
node for an offered load of pv

y. = p = (9/l6)N„ j = 1, ..., 5, and Fig. 6.4(b) shows the 
corresponding percentage gain (i.e., the percentage reduction in blocking probability when the 

9 In Section 5 we noted that the optimal values of thresholds X2, X„ and X4 for this problem arc all equal to their 
maximum value when considering networks with up to 8 transceivers per node; thus we conjecture that it is 
sufficient to vary only X, and X5 in networks with a larger number of nodes as well. 
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optimal admission-control policy is compared to the uncontrolled admission-control policy) 
when the optimal threshold admission-control policy is compared to the uncontrolled system. 
We see from Fig. 6.4(a) that blocking probability decreases significantly as the number of 
transceivers increases. This is apparently because of the increased statistical multiplexing 
capabilities that are provided by a large number of transceivers. We also see that the percentage 
gain in performance increases as the number of transceivers increases. Thus, the degree of self- 
regulation is apparently less in high-capacity systems than in low-capacity systems. The smaller 
systems are more characteristic of wireless networks, in which the number of transceivers is 
normally relatively small. The larger systems are more characteristic of high-speed networks. 
Thus it appears that network self-regulation may be more pronounced in smaller wireless 
systems than in large high-speed systems. 

Figures 6.5(a) and (b) show similar results for the case of p^ = p = Nt, j = 1, ..., 5. 
Blocking probability is, of course, higher than in the previous example because the offered load 
is higher. We see that the difference in performance between the uncontrolled and optimally 
controlled systems is somewhat less than for the previous example. 
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Blocking probability and performance gain vs N, for p = N, 

v Finally, Figs. 6.6(a) and (b) show similar results for the case of pv
y = p = 2 N,,j = 1,..., 5. 

Blocking probability is further increased, and the improvement achievable by means of 
admission control is further decreased. 

Fig. 6.7(a) is a three-dimensional view of the blocking probability surface as X, and X5 

are varied from values of 0 to 75 for the case of 100 transceivers per node. The Ph values are 
based on a simulation of 106 events. Although the simulation is relatively short (and hence the 
Pb values are relatively inaccurate), the figure shows a smooth surface with a well defined basin 
of low blocking probability. The minimum blocking probability value is 0.28341 with X, = 23, 

27 



75) 
(b). 

20, and the maximum Pb= 0.40217 with X, = X5 = 0. The uncontrolled system (X, = X5 = 
has a blocking probability of 0.31294. The same data is shown in contour form in Fig. 6.7 
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Fig. 6.7 (b) — Contour plot of blocking probability vs thresholds X„ X5; 
N,= 100, 106-event simulation 

6.3   Observations on Self-Regulation 

Our earlier studies of admission control suggested that networks may exhibit a form of 
self-regulation in the sense that the uncontrolled system provides nearly optimal performance 
over a wide range of desirable performance values. These observations were based on the study 
of relatively small systems, such as the network of Fig. 5.2 with up to 8 transceivers per node. 
The study of the same network but with up to 4000 transceivers per node, made possible by the 
use of the CM-5E, has offered further insight into the self-regulation property of networks. 

We have observed that blocking probability decreases significantly as the number of 
transceivers increases (when the offered load is maintained at a constant percentage of N). This 
behavior can be attributed to the increased statistical multiplexing capabilities that are provided 
by a large number of transceivers. We have also observed that systems with a large number of 
transceivers can benefit considerably more from admission control than systems with a small 
number of transceivers. For example, for the case of p = (9/16)W# the percentage gain (reduction 
in blocking probability) achievable through admission control increased from approximately 1% 
to nearly 16% as the number of transceivers was increased from 4 to 4000. We have shown that 
the degree of improvement achievable by admission control decreases as the offered load 
increases further. Our studies have concentrated on relatively high offered loads (for which 
blocking probabilities are unrealistically high). Typically, operation would be at lower offered 
loads (for which blocking probabilities would be much lower), for which little improvement is 
obtained by using admission control; thus the network is essentially self-regulating for such 
loads. Thus, the most interesting region (the region in which the greatest gain may be achieved 
by active admission control) is probably near that shown in Fig. 6.4, i.e., for the case of p = 
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(9/l6)Nr  Even for this case, an improvement of 10% is achievable only when the number of 
transceivers per node is greater than 100. 

Our conclusion from these studies is that some degree of self-regulation does, in fact, 
exhibit itself, although the degree of self-regulation decreases as the number of transceivers per 
node increases. For networks with dimensions characteristic of wireless systems (Nt < 10), little 
improvement is achieved by means of admission control. By contrast, larger systems (whose 
dimensions approach those of high-speed networks) do exhibit a higher degree of improvement 
when active admission control is applied; however, the improvement hasn't been greater than 
16% in our examples. In view of the relatively small improvement that can be achieved by 
means of admission control, and because of the difficulty in evaluating system performance in all 
but relatively small examples, it may be appropriate in many applications to operate in an 
uncontrolled mode of operation. 

7   ORDINAL OPTIMIZATION: Background and Results Obtained on Sequential 

Machines 

Ordinal optimization [6] is the determination of control policies that perform relatively 
well compared to other candidate policies, without necessarily obtaining accurate estimates of 
the performance values associated with these policies. The motivation underlying ordinal 
optimization is that finding the optimal solution (or control policy) is often too costly or time 
consuming, although a suboptimal solution (that may be found quite easily) may provide 
sufficiently good performance. 

In the literature, several different approaches have been considered for ordinal 
optimization. In the original paper on this subject [6], short simulation runs were used in 
conjunction with SC techniques to obtain an approximate ranking of control policies, and it was 
observed that many of the high-performance policies also perform well over the long run. It was 
also observed that, when the search space is too large to be examined exhaustively, acceptable 
performance can be obtained by examination of a randomly chosen subset of policies. The 
principles of order statistics [36] suggest that if a sufficient number of such randomly chosen 
policies are examined, some good ones will be encountered; these good policies can then be 
examined in greater detail. One way to do so is to perform a longer simulation run for each of 
these. 

Other approaches to ordinal optimization have also been proposed for different types of 
problems. For example, the simulation time in systems with rare events can be prohibitive if 
standard brute-force techniques are used. However, the use of a surrogate design problem, in 
which the events of interest are not so rare, can speed up the simulation considerably while 
providing good ordinal rankings of control policies [37, 38]. For example, the policy that 
optimizes system performance based on the minimization of the probability of buffer overflow 
for a relatively small buffer size (a not-so-rare event) may also minimize the probability of buffer 
overflow for larger buffer sizes (which may be rare events), a property referred to as "ordinal 
equivalence" [37]. The first use of ordinal optimization in conjunction with SC techniques on a 
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single-instruction, multiple-data (SIMD) machine was demonstrated in [39], where a reduction in 
simulation time of several orders of magnitude was achieved. 

In [1, 2] we implemented ordinal optimization in three different ways. In the first we 
used relatively short simulation runs (as in [6]) to obtain a ranking of a number of policies in 
terms of voice-call blocking probability. We found that, although the measured performance 
may not be very accurate, the ranking of policies is relatively immune to the effects of 
"estimation noise." Our second approach, which we used for data-packet delay, was the use of 
crude analytical models that capture the crucial aspects of system behavior. Again, remarkably 
accurate policy rankings were achieved (in this case without using simulation at all), despite the 
fact that the performance estimates are poor. Our third approach, again for data-packet delay, 
was the use of imprecise simulation models that, like the crude analytical models, incorporate the 
salient features of the communication model. Before addressing the results of our new studies on 
the CM-5E, we first review some of the ordinal-optimization results that were presented in [1, 2]. 

7.1    Performance Evaluation and Ordinal Optimization 

We performed SC simulations of the network shown in Fig. 5.2 by using the model 
discussed in Section 4. Eight transceivers are assumed present at each node in the network. 
Recall from Section 3.2 that a policy for this network can be written as Q. = {X,, ..., X5, Yx, ..., 
Y5}. We have simultaneously evaluated the 120 different control policies {Xv 6, 6, 6, X5, 8, 8, F3, 
8, 8}, where X„ X5 = 0,...6; F3 = 0,...,8; F3 < X, + X5; Xx < F3; and Z5< F3. We have used 
various values of XVj=X\ uj =\iv,j= 1, •••, 5, all of which are subject to Xv/\iv =pv = 4.0. 
To assess the effectiveness of our simulation techniques, we have evaluated the accuracy of the 
simulation-based values of the desired performance measures, as well as the accuracy of the 
corresponding ordinal rankings of the policies. 

7.1.1 Evaluation of Voice-Call Blocking Probability 

In Fig. 7.1(a) we show the exact and simulated voice-call blocking probability associated 
with the 120 control policies. The exact results are determined numerically from the product- 
form solution, and simulated results are based on runs of 104 and 106 voice-arrival events. Figure 
7.1(b) is an expanded view of the same curves, which permits a more-detailed comparison of the 
results. As noted earlier, the results for blocking probability are independent of data-traffic 
parameters in integrated voice/data networks; in fact, they do not depend on the individual values 
of Xvj and uj, but only on the ratios pj = ^/uj • The horizontal axis is simply the ordering 
from the best (minimum blocking probability) policy to the worst, based on the exact model; thus 
blocking probability is a monotonically nondecreasing function of the horizontal axis. It is 
apparent from the closeness of the curves in Figs. 7.1(a) and 7.1(b) that the results of the longer 
simulation are extremely accurate; the simulation error is never more than 0.2%. It is also 
apparent that the shorter simulation is not long enough to predict blocking probability accurately. 
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7.1.2 Ordinal Ranking of Policies 

In Fig. 7.2 we compare ordinal rankings of the voice-call blocking probability obtained 
from two SC simulations to the exact rankings. For these studies we used Xf= 4, and \iv= 1. The 
two SC simulations differed only in their durations, which were based on 104 and 106 voice-call 
arrivals. The ordinal ranking of the simulation results shows remarkable agreement with the 
exact ordinal ranking (ideally the curve would be a straight line with unit slope). For long 
simulations this is not surprising; however, it is remarkable that the short simulation placed eight 
of the top ten policies in the top ten positions.10 This agreement is achieved despite the 
insensitivity of blocking probability to the policy used. For example, as the policies are 
examined from the best to the 80th (in a total of 120), the blocking probability increases by only 
a small amount, i.e., from 0.358 to 0.365. 

7.2    Observations on the Use of Ordinal Optimization 

The results of this section provide evidence of the potential value of ordinal-optimization 
methods. When we are interested in optimizing performance, the ordinal ranking of the different 
policies (i.e., the ranking from best to worst) is much more informative than the actual measure 
of performance under a given policy. In examples of integrated networks presented in [1, 2] it 
was shown that a crude analytical model that provides extremely inaccurate estimates of delay 
does very well in selecting the best control policies with respect to data-packet delay. For 
example, although the time constants associated with voice (Xvj and uj) have a major impact on 
data-packet delay, they only minimally affect the policy ranking.   We feel that it is especially 

10 In [40] we discussed the use of the Spearman rank correlation coefficient [41] to provide a quantitative measure 
of the accuracy of ordinal rankings, and we presented plots demonstrating the improvement of this parameter (whose 
value is equal to 1.0 for an exact ordering) as the duration of the simulation increases. 
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significant that simple analytical models, such as the M/D/l queue can provide highly accurate 
rankings. 
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pig 7.2 — Blocking probability found in SC simulations compared to the exact value, pv= 4 

The remarkable similarity of the delay rankings obtained by using the different models 
may have interesting, and possibly far-reaching, implications in the study of optimization 
methods. These results suggest that accurate ordinal rankings can be obtained even when highly 
inaccurate models (in the sense of predicting actual performance values) are used. The principal 
requirement here appears to be the identification of the key aspects of the model that affect 
relative performance. In our examples the residual capacity available for data is of primary 
importance, whereas the time constants associated with voice traffic and the availability of 
receivers at destination nodes are relatively unimportant. Thus, simulation under one set of 
parameters provides a good indication of relative performance under other parameter sets (for the 
same values of utilization pj ).u Moreover, the accuracy of the rankings obtained by using the 
analytical approximation suggests that simulation may actually be unnecessary to determine the 
best policy or best set of policies. However, simulation will still be necessary to evaluate the 
system performance under these policies. 

8    ORDINAL OPTIMIZATION IN LARGE NETWORK EXAMPLES 

The availability of the Connection Machine CM-5E has permitted us to extend our study 
of Standard Clock ordinal optimization techniques to problems that are of dramatically larger 
size than those that could be addressed on sequential machines. Whereas with sequential 
machines our study of admission control in the network of Fig. 5.2 was limited to the case of 
eight transceivers per node, we have extended our study to network examples with as many as 

11 We have observed that this is true provided that the expected voice-call duration is greater than or equal to ten 
times the data-packet length. 
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4000 transceivers per node when using the CM-5E. The implementation of SC simulation on the 
CM-5E was discussed in Section 2.2. 

In our first example, we consider a system in which the performance levels of 141,376 
policies are compared. The computational burden of such an exhaustive search makes this 
approach impractical for many real-world examples. However, the results of this search (which 
will be presented shortly) have drawn us to the conclusion that such exhaustive search is 
generally not necessary, and that good policies can be found by carefully chosen non-exhaustive 
search methods. Furthermore, policies that perform quite well can usually be found on the basis 
of short simulation runs, as in the case of the smaller examples studied in Section 7. Thus, 
satisfactory performance can be achieved without the use of the CM-5E or other high- 
performance computer systems. 

We have observed that the ordinal rankings obtained in this exhaustive search are not as 
accurate as those obtained in the SC simulation of smaller systems. However, we have also 
observed that many policies provide nearly identical performance; thus, even large errors in the 
ranking among policies that perform almost equally well do not impact adversely on the ability 
to determine nearly optimal policies. Indeed, our goal is to identify any policy whose 
performance is close to that of the optimal policy. In this section we examine in detail the 
structure of good admission-control policies, and address the issue of extrapolating conclusions 
from small systems to large ones. In summary, our basic conclusion is that good policies can be 
obtained on the basis of short simulations and with a far less than exhaustive search of all control 
policies. 

8.1    Performance Evaluation via Parallel Simulation 

Because of the huge number of possible admission-control policies in systems with a 
large number of transceivers, we have limited our search to the class of threshold-only policies, 
i.e., we do not consider the linear-combination controls discussed in Section 3.2. In Section 5 we 
studied the network of Fig. 5.2 for the case of Ti = 8 transceivers at each node. Exhaustive 
search of all policies showed that little improvement was achieved when linear-combination 
controls were included. Furthermore, it was observed that the thresholds on circuits 2, 3, and 4 
were never reduced, i.e., (for a specified uniform offered load) the best policy was obtained by 
adjusting the thresholds on only circuits 1 and/or 5. We conjecture that similar behavior is 
exhibited by larger systems as well, although we have not been able to verify this assertion 
because of the computational requirements needed to do so. Thus, it appears sufficient to 
examine policies for which the thresholds X2, X3, and X4 are kept at their maximum permissible 
value (which we arbitrarily set to 75% of the number of transceivers, i.e., Nc = 0.75 x N,, as 
discussed in Section 5), while the thresholds X, and X5 are varied. 

We consider the network of Fig. 5.2 with N, = 500 transceivers per node; thus Nc = 375, 
and the number of policies to be examined in an exhaustive search of threshold policies (where 
X, and X5 are varied while X2, X3, and X4 are kept constant at 375) is 3762 = 141,376. The offered 
load on each of the five circuits is also expressed as a fraction of the quantity Nr In this 
example, p, = p2 = - = p5 = (9/16) xiV, = 281.25. A two-step simulation study was performed as 
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follows. First, a SC simulation based on 106 events was performed on the CM-5E for all 141,376 
policies. A SC simulation based on 108 events was then run on an HP workstation for the 1000 
best policies obtained in the exhaustive search of step 1. 

It is of interest to compare the rankings achieved on the basis of short (106 events) 
simulation runs with those achieved on the basis of long (108 events) simulation runs. We 
introduce the term "K short-best policies" to refer to the K policies with lowest blocking 
probability determined on the basis of the simulation of 106 events. We also introduce the term 
"K long-best policies" to refer to the K policies with lowest blocking probability among the 1000 
policies that were simulated for 108 events (i.e., the 1000 "short-best" policies found in a 
simulation of 106 events), as discussed above. 

Figure 8.1 shows the voice occupancy distribution (i.e., the distribution of the 
instantaneous total number of active voice calls of any type) under the uncontrolled system, and 
under the 6 "short-best" policies12 for simulations of duration 200,000 events, 106 events, and 108 

events. Note that the distributions of the six best policies are virtually indistinguishable, even 
after only a 200,000-event simulation, but their distribution is quite different from that of the 
uncontrolled policy. Note that, on the average, a "good" admission control policy can improve 
the number of accepted calls by approximately 10% as compared to the uncontrolled system. 

8.2 Quality of Ordinal Rankings 

We now consider the accuracy of the ordinal rankings associated with the 500 "short- 
best" admission-control policies out of the 141,376 that were simulated. Figure 8.2(a) shows the 
blocking probability associated with these policies. Note that, although the 500 policies in the 
sample were chosen on the basis of rankings after a 106-event simulation, the horizontal axis 
shows the rankings of these policies after a 108-event simulation, which are assumed to be closer 
to the true rankings.13 The performance estimates after the 108-event simulation are assumed to 
be essentially equal to the "exact" values of blocking probability. We see that the simulation that 
is based on 84.5 x 106 events produces estimates of blocking probability that are within 0.01% of 
the "exact" values, and the shorter simulation (i.e., the one based on 106 events) produces 
estimates that are accurate to within about 0.2% of the exact values. 

Ordinal rankings of the 500 "short-best" policies are shown in Fig. 8.2(b), from which it 
can be seen that the 84.5xl06-event simulation produces highly accurate rankings (which is not 
surprising since the duration of the simulation is 84.5% of the longer one), whereas the 106-event 
simulation produces rankings that appear to be nearly randomly dispersed among the 500 
policies. The poor quality of rankings obtained in the shorter simulation is a result of the relative 
insensitivity of blocking probability with respect to the chosen policy from within this set of 
policies. Since Pb varies by less than 0.0005 over this set of policies, it is not surprising that the 
rankings given by the short simulation are inaccurate. In fact, any of these 500 policies may be 
considered to provide acceptable performance since they all provide a blocking probability that 

12 For simulations of all three durations, these are the six "short-best" policies, i.e., the best six policies based on the 
10 -event simulation. 
13 These are the "true" rankings among only the set of the 500 "short-best" policies. 
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is within 0.2% of the minimum possible value. This behavior seems to suggest that the absolute 
ranking of policies should not necessarily be our goal. In problems for which many policies 
provide similar performance it may be sufficient to find policies that provide performance that is 
sufficiently close to the optimal. 
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Fig. 8.1 — Voice occupancy distribution with increasingly longer simulations 
(N, = 500, Nc = 375, "short-best" 6 policies based on 106-event simulation exhaustive search) 

An important question is whether a 106-event simulation is sufficiently long to find the 
best policy, or at least to find a policy whose performance is sufficiently close to that of the best 
policy. In other words, we would like to determine whether significantly better policies were 
overlooked by the shorter simulation. To address this question, we now consider a 108-event 
simulation of the 1000 "short-best" policies determined by the 106-event simulation, i.e., in 
addition to the 500 "short-best" policies considered before, we now consider the next 500 best 
policies as well. 
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Fig. 8.2 — Blocking probability and rank vs results of 108-event simulation 

The question is how many of the policies in the 500 "short best" remain in the 500 "long 
best" when the 1000 "short-best" policies are simulated in a run of 108 events.14 The vertical 
axis of Fig. 8.3(a) indicates how many of the 500 "short-best" policies are among the set of X 
"long-best" policies, where X is the value on the horizontal axis. For example, 335 of the 500 
"short-best" policies continue to be among the 500 "long-best" ones. Figure 8.3(b) shows an 
expanded view of the 50 "short-best" (of the 1000) policies. We see that 32 of the 500 "short- 
best" are among the 50 "long-best." In fact, all top five of the 1000 "long-best" are also in the 
500 "short best." 

Fig. 8.4(a) shows that the performance improvement obtained by using any of the 500 
"short-best" policies is approximately 13% as compared to that of the uncontrolled system. Both 
the rankings and the performance improvement are based on simulations of 108 events. Fig. 
8.4(b) shows the performance improvement achieved by the same set of policies, except that they 
are ordered based on the rankings obtained in the shorter simulation. We observe that despite the 
inaccuracy of the ranking given by the 106-event simulation, the "long-worst" (i.e., of the 500 
"best" policies the true worst are those with performance gain less that 12.94%) policies do show 
at the bottom half of the ranking. 

14 As noted earlier, the "short-best" policy refers to the policy that produces the minimum value of blocking 
probability in a run of 106 events, and "long best" refers to rankings (among only the 1000 "short-best" policies) 
obtained in the 108-event simulation. 
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simulation) of 1000 "short-best" policies 

5    10   15   20   25   30   35   40   45   50 
1000 best policies (IM sim) ranked by 100M sim 

(b) 

-o 
ID 

*- 
c 
o 
o 
c 
3 

^ 

13.08 

13.06 

13.04 

13.02 

13 

12.98 

12.96 

12.94 

12.92 

12.9 

\ 
• ^~**~L 

■ 

• 
^*~ v. 

• 

: 

• 
■ 

• 
•■ 11 ■ i ■ ■ 111! 

0    50   100 150 200 250 300 350 400 450 500 
Policies ranked on 100M event simulation 

(a) 

0    50  100 150 200 250 300 350 400 450 500 
Policies ranked on IM event simulation 

(b) 

Fig. 8.4 — Performance gain of "short-best" 500 policies 

8.3 Policies Determined by Ordinal Optimization 

We now shift our attention to the optimal policies determined by ordinal optimization, 
rather than to the performance of these policies. We noted earlier that in our network example 
the admission-control thresholds X2, X3, and X4 should be kept at their maximum permitted 
values, while a search is conducted for the optimal values of X, and X5.   Figure 8.5 shows the 
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optimal values of X, and X5 (normalized with respect to the number of transceivers per node) as a 
function of the number of transceivers per node for an offered load of p , = ••• = p5 = (9/l6)N,; the 
maximum permissible value for each of the thresholds is equal to 3/4 of the number of 
transceivers at each node, i.e., Nc = 0.75 x Nr The cases of the 106- and 108-event simulations 
are shown in Figs. 8.5(a) and (b), respectively. For up to 200 transceivers at each node, the 
optimal thresholds determined in the shorter runs are close to those determined in the longer 
runs.15 However, there are significant differences in the optimal threshold values for the case of 
500 transceivers per node. This behavior might seem to cast doubt on the quality of the ordinal 
rankings produced by short simulations. However, we shall show that useful ordinal 
optimization results can be obtained when the observed performance is interpreted properly. 
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(a) 106-event simulation of JV, = 500 (b) 108-event simulation of Nt = 500 

Fig. 8.5 — Optimal values of X, and X5 and their average value vs N, for p = (9/l6)N, 

Figure 8.6(a) extends the domain of Fig. 8.5(a) by including results for 350 transceivers 
per node as well as for 1000, 2000, and 4000 (again, for the case of a 106-event simulation). At 
first, these results may seem discouraging because the optimal threshold fractions change 
drastically as the number of transceivers changes; in fact the normalized optimal value of X, is 
zero for the case of N, = 350, and as high as 0.45 for N, = 500. It seems as though the 
(normalized) optimal policy is very sensitive to the number of transceivers per node. However, 
an interesting pattern emerges when we look at the value of (X, + X5)/2Nr Figure 8.6(b) shows 
that the optimal value of this ratio is nearly constant for systems with more than about 40 
transceivers per node. 

15 Analytical solutions are used for Nt < 40, so these results are identical in the two figures. 
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Fig. 8.6 — Optimal values of X, and X5 and their average value vs N, for p = (9/16)N, 

Figures 8.7 and 8.8 show similar results for the case of more-heavily loaded networks 
with p = N, and p = 2Nt, respectively. We see that, except for cases involving a very small 
number of transceivers per node, the value of the average of the optimal values of the normalized 
sum of thresholds X, and X5 is virtually constant as the number of transceivers changes. 
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8.4 An Interpretation of the Optimal Policies 

In an attempt to understand the apparent sensitivity of the optimal values of X, and X5 to 
AT, we considered several alternative explanations. For example, the simplest interpretation of 
the above figures is that (normalized) system behavior actually changes drastically as the number 
of transceivers per node increases. If that were the case, a policy optimized for a given value of 
N, (with thresholds normalized to the value of N,) would be expected to perform poorly for other 
values of Nr However, the fact that the optimal value of the sum (X, + X5) remains essentially 
constant for N, greater than about 10 suggests that it may be helpful to examine this sum rather 
than the individual values of X, and Xy Perhaps it is sufficient to pick (almost) any (X„ X5) pair 
with the appropriate sum. 

In an attempt to evaluate this conjecture, we have examined the behavior of the 
normalized sum (Xl + X5)/Nc as a function of policy ranking. In all cases, the maximum number 
of calls permitted on any circuit is Nc = 0.75 TV,, where all nodes have the same number (TV,) of 
transceivers. Analytical results (based on the numerical evaluation of the product-form solution) 
are presented in Section 8.4.1 for the case of TV, = 40 transceivers per node, which is the largest 
system that we have been able to evaluate numerically by means of the product-form solution. 
In Section 8.4.2 simulation results (based on a simulation of duration 106 events) are presented 
for N, = 100, 500, and 1000. 

8.4.1 Analytical Results: N, = 40 

For N, = 40, we set Nc = 30. Figure 8.9 shows the case of p = NJA = 10, which 
corresponds to a relatively lightly loaded system. Two quantities are plotted vs policy rank 
(based on Ph), namely (X, + X5)/Nc and Ph. There are a total of 312 = 961 policies, all of which 
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are represented in this figure. The minimum value of blocking probability is Pb = 0.013982, 
which is obtained for 48 sets of (X,, X5) thresholds, including the uncontrolled case of (30,30). 
Actually the policies (24, 25), (25, 24), and (>25, >25) all provide the same blocking probability 
(to within 10"6). The fact that each of the best 48 policies has the rank of 1 explains the gap in 
the left part of the curve in Fig. 8.9. In this example, any policy with (X, + X5)/Nc > 1.8 will 
provide optimal performance (again, to within 10"6). 

2^- 

200        400        600        800        1000 
Policy ranked on Pb 

Fig. 8.9 — Normalized value of (X, + X5) vs policy ranking: Analytical result 
(N, = 40, Nc = 30, p = 10) 

Figure 8.10 shows the case of p = (9/16)W, = 22.5. Two policies, namely (X„ X5) = (8,9) 
and (9,8) (hence X, + X5 = 17 and (X, + Xs)/Nc = 0.5666), result in the minimum value of blocking 
probability, which is Ph = 0.309405. The next best solutions, (10,7) and (7,10) (again (X, + X5) = 
17) result in Ph = 0.30944. Typically, however, Ph is not symmetrical in X, and X5. As shown in 
Table 8.1 there are 18 policies for which the value of (X, + X5)/Nc is equal to 0.5666, including 
the five best policies. However, we also see that (X, + X5) = 17 for the 378th policy, thus 
indicating that the value of (X,+ X5)/Nc is not sufficient to predict the ordinal ranking of the 
solution. On the other hand, the ratio of Ph for this 378th policy to that of the best policy is 
1.049, indicating that little is lost by not picking the best of the policies with (X, + X5) = 17. 

Actually, there is little variation in Ph over the best approximately 900 policies. In this 
example, the uncontrolled system (for which X, = X5 = 30) results in a blocking probability of Ph 

= 0.330224, which corresponds to a rank of 815 (actually 72 policies are tied for this rank) out of 
the total of 961 policies. The fact that the uncontrolled policy provides a blocking probability 
only 1.067 times that of the best policy suggests that some degree of self-regulation is present 
here. Returning to the question of how well the value of (X, + X5)/Nc can predict the quality of 
the solution we make the following observation. Use of the criterion that (X, + X5)/Nt. = 0.5666, 
coupled with the requirement that the solution be nearly symmetrical, does produce a nearly 
optimal solution. 
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Fig. 8.10 — Normalized value of (X, + X5) vs policy ranking: Analytical result 
(N, = 40, Nc = 30, p = 22.5) 

Table 8.1 — Admission-Control Po hcies Correspondir igtoA,+A5 = 1 
(N, = 40,NC = : 30, p = 22.5) 

X,             x, rank Ph 

8                     9 1 0.309405 
9                     8 2 0.309405 
10                    7 3 0.30944 
7                    10 4 0.30944 
6                    11 5 0.309513 
5                    12 7 0.309627 
4                     13 12 0.309791 
3                     14 20 0.310013 
2                     15 24 0.310307 
11                    6 26 0.310341 

1                   16 38 0.310689 
0                    17 49 0.311179 
12                    5 69 0.3118 
13                     4 133 0.313692 
14                    3 192 0.315956 
15                     2 248 0.31855 
16                     1 312 0.321439 
17                     0 378 0.324595 

uncontrolled: 30               30 815 0.330224 
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We demonstrate in Section 8.4.2 that the optimal value of (X, + X5)/Nc in network 
examples with a much larger number of transceivers per node (and the same normalized offered 
load) is almost identical to that observed for the current example with N, = 40; such behavior is 
indicated by Figs. 8.6(b), 8.7(b), and 8.8(b). This behavior suggests that optimal admission- 
control policies tend to scale almost linearly with Nt (for a sufficiently large initial value of Nr 

which seems to decrease as the offered load increases). Thus, nearly optimal solutions for large 
systems can be obtained by scaling the solutions obtained for considerably smaller systems.16 

Certainly, additional study is needed before definitive conclusions can be made in this regard. 
However, the results obtained here seem to indicate that simple heuristics may indeed provide 
nearly optimal admission-control policies. 

Figure 8.11 shows the case of p = N, = 40. In this example, the 11 best policies (and no 
others) are all characterized by (X, + X5) = 10 (hence (X, + XJIN,. = 0.3333), as shown in Table 
8.2. We also see that, among these policies, the more-symmetrical ones perform slightly better. 
Thus, although use of the optimal value of (X,+ X5) does not guarantee the optimal solution 
(since there are several policies of this type), all of these policies perform extremely well, and no 
policy with a different value of (X, + X5) performs better than any of them. Here, the 
uncontrolled policy has Ph = 0.566237 (as in the case of p = 22.5, 1.067 times that of the best 
policy) and a rank of 849 (actually tied with 107 policies, so only six are worse). 

200        400        600 
Policy ranked on Pb 

T—IT 

800        1000 

Fig. 8.11 Normalized value of (X, + X5) vs policy ranking: Analytical result 
(N, = 40, Nc = 30, p = 40) 

16 However, we showed in Section 6.2 that system performance (e.g., blocking probability) improves as the number 
of transceivers increases (for a constant normalized offered load) because of the increased statistical multiplexing 
capability offered by a large number of transceivers. 
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Table 8.2 — Admission-Control Policies Corresponding to X, + X5 = 10 
(/V, = 40,/Yc = 30,p=40) 

X< Rank 
5 
4 
6 
3 
7 
2 
8 
1 
9 
0 
10 

uncontrolled: 30 

5 1 0.530928 
6 2 0.530936 
4 3 0.530936 
7 4 0.530959 
3 5 0.530959 
8 6 0.530997 
2 7 0.530997 
9 8 0.531051 
1 9 0.531051 
10 10 0.531122 
0 11 0.531122 

30 849 0.566237 

8.4.2 Simulation Results 

The examination of systems with N, > 40 requires simulation, which was performed on 
the CM-5E by using Standard Clock techniques. In this subsection we examine the behavior of 
the quantity (X, + X5)/Nc for systems with N, = 500 and 1000 transceivers per node. 

In Fig. 8.12 we plot the blocking probability and the normalized sum (X, + Xs)/Nc for the 
1000 "short-best" policies (i.e., based on a 106-event simulation) of the case of TV, = 500 
transceivers per node. The offered load on each circuit is p = (9/l6)N, = 281.25, and the 
maximum number of calls of any single type permitted to be active simultaneously is Nc - 
J5(N) = 375. Because of the large number of admission-control policies to be considered (3762 

= 141,376) we examined only every ninth policy (hence a total of 15,708).17 Figure 8.12 shows 
that the blocking probability is virtually constant over this range of policies; the slope is 5.53 x 
10"7. Therefore, any of the best 1000 policies provides essentially the same level of performance. 
Also, the normalized sum (X, + X5)/Nc does not vary significantly over the set of 1000 best 
policies. Its value for the best policy is 0.568, which is almost the same as that observed for the 
analytical/numerical solution of 0.5666 for Nt = 40. 

For this example, since we actually performed an exhaustive search of all 141,376 
policies as well as a "uniform" sampling of every ninth policy, we have been able to verify that 
none of the omitted policies actually provided significantly lower blocking probability than the 
best of these 1,000 policies. 

17 Consider the set policies to be described by a 376 x 376 array, and sample every ninth policy, starting from (0,0), 
with wraparound at the end of each row. Thus the sequence of policies examined was (XI,X5) = (0,0), (0,9), 
(0,18),...(0,369), (1,2), (1,11), ... 
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Fig. 8.12 — Normalized value of (X, + Xs) vs policy ranking: 106-event simulation, 1000 best policies sampled 
every 9th policy (N, = 500, Nc = 375, p = (9/\6)N, = 281.25) 

The reason that the uniform sampling of policies works well in this example is that there 
is little sensitivity of the blocking probability with respect to the admission-control thresholds. 
Thus, "neighboring" policies (i.e., policies obtained by increasing or decreasing X, and/or X5 by a 
small number) have nearly identical performance. In addition, "simulation noise" (especially in 
shorter simulations) can perturb the policy rankings significantly, even though the actual 
difference in performance is small. Thus, rankings can be poor, even though performance is 
good. The large number of possible policies creates a "finely quantized" control-policy space; 
thus, an incremental change in threshold of one call has a much smaller effect on system 
performance for the case of Nc = 375 than it does for the case of NC=S. A question for future 
study is the level of denseness of the sampling that is needed to avoid missing significantly better 
solutions. 

Figure 8.13 shows the results of a longer (108-event) simulation of the same example 
shown in Fig. 8.12. This simulation was carried out for only the 1000 policies that were 
identified as the 1000 "short best" in the 106-event simulation (the horizontal axis is based on the 
rankings produced by the longer simulation). Results are similar to those for the shorter 
simulation, except that the values of the normalized sum (X, + X5)/Nc are confined to a somewhat 
narrower band, apparently because of the reduced variance of performance estimates that result 
from the longer simulation. The six best solutions (as well as many others) have (X, + X5) = 212 
(hence (X, + Xs)/Nc = 0.5653). 
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Fig. 8.13 — Normalized value of (X, + X5) vs policy ranking: 108-event simulation of 1000 best policies 
found in 106-event simulation (N, = 500, Nc = 375, p = (9/l6)N, = 281.25) 

Figure 8.14 shows similar results for the case of a heavier offered load, namely p = Nt = 
500. The duration of the simulation is 106 events, and again every ninth policy is sampled. For 
this increased offered load, there is a greater sensitivity of blocking probability to the admission- 
control policy. Most interesting, perhaps, is the "V-shape" defined by the scatter plot of the 
normalized sum (X,+ X5)/Nc. The 43 best policies are all characterized by (X, + X5) = 126, and 
the simulated value of Ph ranges from .501995 to .502618 over this set of 43 policies. The 
corresponding value of (X, + X5)/Nc is 0.336, which is nearly identical to the value of 0.333 
obtained for the case of N, = 40. Performance degrades as (X, + X5) is either increased or 
decreased. In fact, any policy with (X, + X5)/Nc close to its optimal value will provide nearly 
optimal performance. 

Similar behavior is observed for the case of Nt = 1000 transmitters per node (in which we 
sample every 77th policy), as shown in Figs. 8.15 and 8.16. Again, as the offered load increases, 
the blocking probability becomes more sensitive to the choice of policy and the spread of the "V- 
shaped" curve increases. For the case of p = (9/16)/Y, it is clear that the optimal solution is 
provided when the normalized sum (X, + X5)/Nc is about 0.57, which is the same value that 
produced optimal performance for N, = 500. Also, for the case of p = N, the optimal value of the 
normalized sum is 0.335, which is equal to that for the case of N, = 500. The curves for N, = 
1000 are, in fact, quite similar to those produced for N, = 500. 
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Fig. 8.14 — Normalized value of (X, + X5) vs policy ranking: 106-event simulation, sampled every 9th policy 
(N, = 500, Nc = 375, p=N, = 375) 
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Fig. 8.15 — Normalized value of (X, + Xs) vs policy ranking: 106-event simulation, sampled every 77th policy 
(N, = 1000, Nc = 750, p = (9/16)/V, = 562.5) 
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Fjo 8 16 — Normalized value of (X, + X5) vs policy ranking: 106-event simulation, sampled every 77th policy 
(N, = 1000, Nc = 750, p = N, = 1000) 

Our conclusion from these curves is that, when the system is severely overloaded (e.g., p 
> Nt), there appears to be a unique value of (X, + X5)/Nc that provides optimal performance. At 
lower levels of offered load, it appears that some policies with (X, + X5)/Nc equal to the value that 
produces the optimal solution may not be among the top few policies. However, in such cases, 
there is little difference in performance among the several hundred or so best policies, and, in 
fact, even the uncontrolled policy provides close to optimal performance. Thus admission 
control is needed only when the system is very heavily loaded. 

9   SUMMARY AND CONCLUSIONS 

The motivation underlying ordinal optimization is that it is often appropriate to "soften" 
the goal of determining the truly optimal solution (a process that may be unacceptably costly or 
time consuming), and replace it with the objective of determining a policy that performs 
"sufficiently well." In earlier studies we demonstrated the power of ordinal optimization 
techniques, used in conjunction with Standard Clock (SC) simulation techniques, to rapidly 
determine nearly optimal solutions to complex network-control problems. These techniques can 
potentially save several orders of magnitude of computer processing expense, because the 
correlation among sample paths (i.e., different policies) introduced by the SC method permits the 
determination of highly accurate policy rankings after short simulation runs. Our earlier studies 
were based on the use of sequential machines. In this report we have discussed our extension of 
ordinal optimization techniques to the massively parallel Thinking Machines Corp. Connection 
Machine CM-5E. 
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The SC simulation technique is ideally suited to parallel processing, and the use of the 
CM-5E has permitted the study of considerably larger problems than were possible on sequential 
machines. For example, whereas our studies on sequential machines were typically limited to 
networking examples with up to Nt = 8 transceivers per node, the use of the CM-5E has 
permitted the study of examples with up to 4,000 transceivers per node, thus permitting the study 
of examples with the dimensions of high-speed networks. Additionally, the CM-5E has been 
used for the analytical evaluation of product-form solutions that were too complex for sequential 
machines. By studying large problems such as these, we have been able to improve our 
understanding of the ordinal optimization methodology. 

In our networking problems, as the number of transceivers per node Nt increases, the 
search for the truly optimal admission-control policy becomes more difficult for several reasons: 
(1) the number of candidate policies that must be examined increases; (2) the number of policies 
that provide nearly optimal performance also increases; and (3) the complexity of performance 
evaluation for each of them increases as well. For our example network of Fig. 5.2, the largest 
value of N, that can be handled numerically on the CM-5E is approximately Nr = 40; SC 
simulation has been used for values of JV, as large as 4000. 

We have studied the effect of increasing the value of Nn while maintaining a constant 
normalized network load. Our earlier studies (for values of N, as high as 8) had shown that our 
network examples tended to be self-regulating, in the sense that the use of the optimal threshold 
admission-control policy provides little improvement over the performance of the uncontrolled 
system, in which calls are accepted as long as resources are available. However, our studies on 
the CM-5E have shown that as N, increases the degree of improvement that is achieved through 
admission control increases, especially at moderate network loads, but less so at low loads and 
high loads (see Section 6.2). Thus, admission control is potentially more effective in high- 
capacity networks than in low-capacity networks such as wireless networks. It is also interesting 
that the blocking probability decreases as N, increases, apparently because of the increased 
statistical multiplexing capabilities that are provided by a large number of transceivers. This 
effect also appears to be most significant at moderate network loads. 

We have also observed that nearly optimal solutions for networks with a large number of 
transceivers at each node can be obtained by scaling the solutions obtained for the same example 
but with a smaller number of transceivers (and the same normalized load), thereby reducing 
significantly the computational burden. This is true even though the blocking probabilities of the 
small example may be significantly different from those of the large example, as just discussed. 
Thus, the small example can be used to pick tentative solutions (admission-control policies), and 
an accurate performance evaluation of the larger example can be obtained by performing a 
simulation of a policy based on the scaling of the best (or several best) policies obtained for the 
small system. 

We have observed that the quality of ordinal policy rankings for large values of Nr, 
obtained on the basis of relatively short simulations, is not good. This behavior is in marked 
contrast to the remarkably accurate rankings obtained in earlier studies for small values of Nt. 
The deterioration of the quality of rankings can be attributed to the finer quantization of the 
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specification of the admission-control policy that is possible for large values of iV,. For example, 
for JV, = 1000 a change in threshold value of 1 corresponds to only a 0.1% change as a fraction of 
N,, whereas for N, = 8 such a change corresponds to 12.5%. As a consequence of this fine 
quantization, there is little difference in performance between neighboring policies, and, in fact, 
many policies provide nearly identical performance. Therefore, "simulation noise" can produce 
significant deviations in the observed policy rankings. Hence, the quality of rankings observed 
for large values of Nt is not as good as that observed for smaller values of Nr 

The difficulties associated with large values of Nt are apparent in our examination of the 
properties of the admission-control policies determined by ordinal optimization (see Section 8.3). 
The optimal values of the admission-control thresholds X, and X5 seemed to vary dramatically as 
either N, was varied (suggesting poor scalability properties) or as the length of the simulation 
was changed (suggesting that short simulation runs could not provide a good choice of control 
policy). However, it was realized that similar performance was obtained for many different 
values of these threshold parameters, and that the value of the sum X, + X5 (one of the linear- 
combination controls) is of greater significance to system performance than either value 
individually. All of the best solutions (for sufficiently large values of Nt — moderate values 
such as 10 were typically large enough) were characterized by the same value of this sum, and 
the best value of this sum increased in direct proportion to Nr However, the use of the correct 
sum alone was not sufficient to guarantee optimal performance; in our problem it was helpful to 
add the additional constraint that the solution be close to symmetrical, i.e., X, and X5 should have 
similar values. Further research is needed to reach a better understanding of the role of linear- 
combination controls in problems like these. However, at this point it is conjectured that their 
use may be very helpful. 

In view of the insensitivity of system performance to the admission-control parameters 
when N, is large, it is necessary to emphasize that the goal of ordinal optimization should not 
necessarily be to find an accurate ranking of policies, but rather to find a policy that provides 
nearly optimal performance. In particular, we have shown in Section 8.4.2 that it is possible to 
sample the policy space uniformly without significant loss of accuracy, in the sense that no 
policies providing significantly better performance were missed. Future research is needed to 
determine how fine a sampling of the policy space is needed to avoid the loss of good solutions. 
The approach of sampling the policy space, rather than performing an exhaustive search, is 
certainly not a new one. In fact, the original study of ordinal optimization [6] discusses the 
likelihood of finding good solutions when a very large policy space is randomly sampled, an 
approach that makes use of concepts from order statistics [36]. 

In conclusion, the CM-5E, which is ideally suited to SC simulation, has made it possible 
to investigate the ordinal optimization properties of very large network examples that could not 
be studied with conventional sequential machines. For example, this study has provided insight 
into the use of ordinal optimization in finely quantized systems by illustrating the effectiveness 
of sampling the solution space, thereby reducing greatly the number of alternative solutions that 
must be simulated. We have also shown that in such problems, although it is more difficult to 
determine the true best policies on the basis of short simulation runs, it is still possible to rapidly 
determine policies that provide nearly optimal performance.   We have demonstrated that our 
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solutions are scalable in the number of transceivers, thus permitting the determination of optimal 
policies for a problem with many transceivers on the basis of the solution for a much smaller 
problem; further research is needed to determine whether such observations are applicable to a 
broader class of problems. The computational saving achieved using these approaches may 
actually permit the solution of large problems without the need for high-performance computing 
resources. We have also examined the self-regulation properties of some network examples, and 
have shown that as the number of transceivers per node increases, more benefit can be achieved 
from admission control; thus, these results suggest that networks tend to become less self- 
regulating as the number of transceivers per node increases. 

In the end, it is perhaps ironic that the use of the CM-5E, which was motivated by the 
need to study larger-size network examples, confirmed that excellent solutions for such problems 
can indeed be obtained without the use of high-performance computing resources. Nevertheless, 
the use of the CM-5E was crucial to demonstrating that this was indeed the case. 
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