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ABSTRACT 

Fibrous and laminated composites have become an important class of ma- 

terials that is increasingly being used in engineering structures. However, unlike 

the common engineering materials, characterizing the fracture behavior of fibrous 

composites is a difficult task. In this work we have adopted a numerical approach 

to study the effects of bridging and shielding fibers on reduction in Stress Intensity 

Factor (SIF) at the crack tip. This report presents a finite element formulation of 

elasticity to model elastic fracture in composites with long aligned fibers. We have 

employed B-ba.x type approach which is applicable to compressible as well as nearly 

incompressible material systems. The variational foundation of the formulation is 

based on a modified Hu-Washizu variational principle. The crack is assumed to 

grow in a self-similar manner and an energy approach is undertaken to evaluate 

the stress intensity factor at the crack tip. A perfect bond is assumed between the 

fiber and the matrix to account for the interaction of the two phases. The effects of 

strong intact bridging fibers, fiber ahead of the crack tip, and that of temperature 

variation on the reduction in stress intensity factor at the crack tip have been inves- 

tigated. Various numerical results are presented to show fiber-fiber and fiber-crack 

interaction. 

one QUALITY INSPECTED I 
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SIGNIFICANT FINDINGS 

We have adopted a novel computational approach to investigate the bridging 

and the shielding mechanism and their effect on the stress field at crack tip without 

any other dissipative mechanisms. The following main points can be drawn from 

the results of the present numerical studies. 

1. The effect of the bridging fibers on SIF is much larger than that of the 

fibers ahead of the crack tip. 

2. The area around the crack tip where the fibers strongly influence the stress 

intensity factor extends to about three fibers ahead of the crack and five fibers in 

the wake of the crack. 

3. As for the effect of the modulus of elasticity of the fibers on SIF, the 

results indicate that for values greater than Ef/Em = 15 the effect is relatively 

small. Making fibers too strong with respect to the matrix (beyond a certain limit) 

may not help in reducing the stress intensity factor at the crack tip. 

4. We have also studied the inter-phase stress fields around the reinforcing 

fibers that show steep gradients normal to the interface. It is seen that stronger 

fibers have a larger zone of influence and can potentially effect the stresses around 

the neighboring fibers. The present study also confirms that homogenization of the 

composite system cannot predict the discrete stress distribution at crack tip and 

fiber-matrix interfaces, and thus can lead to erroneous conclusions. 

5. The effects of temperature change have also been studied in the presence 

of a bridging fiber. These preliminary results indicate that thermal gradients can 

result in a redistribution of the stress field and thus can have pronounced effect on 

the stress field at the crack tip. It also shows the importance of a coupled thermo- 

mechanical theory for possible elasto-plastic yielding of the matrix material at the 

tip of the crack. Such "elasto-plastic deformation would considerably alter the stress 

field in a localized zone in the viscinity of the crack. 

n 
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1. Introduction 

Composite materials, e.g., metal, ceramic and polymer reinforced with long 

aligned fibers have shown significant promise in the design of advanced aerospace 

systems. Their high strength to weight ratio and the flexibility to tailor make 

these materials with performance that is superior to their constituent materials 

are the main attributes. However, unlike the common engineering materials, the 

fracture behavior of composites has not been well understood. Thus, understanding 

strength and fracture behavior of these materials has been the subject of intense 

investigation in the past several years. Because of the fact that the microstructures 

of real, commercially available composite materials are very complex and often 

difficult to characterize, it has been difficult to reveal basic mechanisms as well 

as elementary events that lead to fracture and failure in these advanced material 

systems. As a result, the lack of a rigorous failure criteria in composites made of 

advanced fibrous materials has ebbed away the confidence in using these materials 

in critical applications. Furthermore, it has resulted in high material qualification 

costs and overdesign weight penalties. 

Mechanistic investigations have shown that several processes accompany fracture 

of composites. From a physical view point, some of them are related to microme- 

chanics, while others to macromechanics, thus involving a wide range of scales. A 

complete characterization in space and time of these processes has often been a 

formidable experimental task. From an analytical viewpoint it is a non-smooth 

problem, involving various controlling parameters with associated spatial and tem- 

poral scales. 

Among the various mechanisms with a significant contribution to fracture resis- 

tance of composites, crack bridging by intact fibers is considered to be very impor- 

tant. This is demonstrated by the large number of research works that have been 
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reported in the literature. Most of these works are dedicated to deriving analytical 

expressions for the stresses at the crack tip or toughness for cracks that exhibit 

steady or non-steady growth. However, experimental studies to attest these models 

have not received the same level of attention. This is perhaps due to the highly 

complex interactions between the various events and the difficulty to isolate their 

interactions. 

Another mechanism that is also important in the increased fracture resistance of 

composites is an interaction of the crack and the fibers ahead of the crack. Studies 

on the interaction effects have also been reported albeit to a lesser extent. The 

essentially three dimensional problem that ensues renders an analytical solution 

very difficult. Thus simplifying assumptions are adopted for particular cases [1,2]. 

A more common approach has been to study the interaction between a crack and 

inclusion [3] or crack near or on a bi-material interface [4 - 6] using two dimensional 

configurations to derive solutions for the stress and strain fields as well as for the 

stress intensity factors. These solutions offer valuable insights in the interaction 

effects but their applicability to a fibrous composite system may be limited due to 

various length scales involved in the vicinity of a crack tip (Fig. 1). 

To investigate some of the effects of fiber spacing and fiber type on strength 

and fracture, Botsis and co-workers [7 - 10] carried out research on composites with 

controlled fiber spacing. The results of these studies have shown that strength and 

fracture correlate well with fiber spacing. This approach offers certain advantages. 

By controlling the fiber architecture, the properties of the constituent materials 

and the interface, different types of behaviours can be simulated experimentally. 

Thus some of the pertinent parameters (fiber size, spacing, interface, etc.,) affect- 

ing strength, crack growth and debond evolution can be identified and thoroughly 

characterized. Results from such studies can be an important supplement to efforts 

2 
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Fi#. i.   Merging micro- and macro-mechanics 

aimed at characterizing the response of composites particularly when a continuum 

approximation of the reinforcement is not realistic (Fig. 1). Such cases may arise 

when studying: (a) crack initiation, (b) driving forces of relatively short cracks, 

(c) the area around the tip of a long crack, (d) criteria for fracture, etc. More- 

over, fiber spacing reflects the structure of the composite and is an intermediate 

scale since it is larger than the scales involved in fiber debonding, fracture and pull 

out. It is smaller, however, than the macro scales that arise in macrocracking and 

damage zones. Using this intermediate length scale within a continuum mechanics 

framework, a set of constitutive equations can be developed that incorporate this 

parameter which reflects the reinforcement better than volume average parameters. 

The present work is aimed at investigating the effects of bridging fibers and fibers 
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in the path of the crack on the stress field and stress intensity factor. Emphasis is 

placed on a detailed stress analysis within a zone around the crack tip in an effort 

to establish its boundaries, (see Fig. 1). Outside this zone homogenization theories 

may be employed that consider the composite as an orthotropic material. At the 

boundary of this zone, appropriate conditions need to be imposed to consistently 

"glue" the two domains. Emphasis in this report is primarily numerical and rather 

practical in nature. We incorporate the inherent inhomogeneity and anisotropy in 

our framework at the variational level and look at material mismatch, interphase 

boundaries, interaction c#the interface boundaries with each other and also with 

high stresses at the crack tip. These aforementioned issues render the ensuing 

problem 'non-smooth' in the classical sense and necessitate the solution method 

to be numerical in nature and founded on sound mathematical footings. We have 

employed the finite element method because it is based on variational principles and 

is a powerful numerical technique that offers a unified approach to such multiphase 

problems. 

The report is divided into three main sections as follows: Section 2 presents 

the variational form of the problem. Section 3 develops the finite element formu- 

lation of the proposed model. Section 4 gives an account of the evaluation of the 

stress intensity factor. A detailed set of numerical simulations employing a carefully 

designed fiber architecture to uniaxial tension is presented in Section 5. 



2. The Variational Framework 

The insitu strength of a fibrous composite is not only a function of the prop- 

erties of each of its constituent materials, it also depends on the various energy 

dissipation mechanisms that lead to matrix cracking and/or inelastic deformations, 

fiber debonding, slipping, and their ultimate fracture. Some of these mechanisms 

such as elasto-plastic deformations, damage and cracking in the matrix and necking 

and fracture in the bridging fibers can successfully be addressed at the constitutive 

level. However, fiber debonding and pull-out that leads to strong discontinuities in 

the displacement field is related to the interphase kinematics, and an appropriate 

way to handle them is to incorporate them in the variational framework. Our ob- 

jective here is to develop a variationally sound approach that can be used to derive 

an energy based criteria for crack propagation and arrest in fibrous composites in 

the presence of one or more of the above mentioned mechanisms. Furthermore, an 

energy based approach for crack propagation and arrest can readily be extended to 

the nonlinear regime of material and geometric response. A general framework for 

such problems is provided by the Hu- Washizu variational principle which considers 

displacements, strains and stresses as the independent field variables. 

Let tt C TZnsd be a bounded open set with piecewise smooth boundary T, nsd > 

2 denotes the number of spatial dimensions. Let Tj represent the fiber-matrix 

interface with uf and um be the displacement fields at the interface of the fibers 

and the matrix. We can write an energy functional for the hybrid system as 

n(e,<r,n,A):=i f e:c:edtt+ f a-[Vsu - e}dSl+ ! X{um-uf)dT-Ue^{u) 
2 Jn JQ JTI 

(1) 

where u, a and e are the unknown displacement, stress and strain fields, respec- 

tively, and A is a Lagrange multiplier. next('") represents the external work on the 

composite system. The first term in (1) is the stored energy function, the second 
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term is a Lagrange multiplier (er) enforcement of the strain-displacement relations 

(e = Vs'it), and the third term is a Lagrange multiplier enforcement of the con- 

tinuity of displacement field at the fiber matrix interface and corresponds to the 

interface energy. The Lagrange multiplier A can be interpreted as a force quantity 

required to prevent relative displacement at the interface boundary. In the present 

work, we assume a perfect bond between the fiber and the matrix and thus pre- 

clude any debonding or pull out of fibers. Consequently the third term becomes 

identically zero leading to the following 3-field energy functional. 

n(e,<7,ti) :=\ [ £:c:ed£l+ [ a ■ [Vs« - e] du - Uext (u) (2) 
2 Jn Ja 

We also want to develop a general framework that can encompass the compress- 

ible as well as slightly compressible or nearly- incompressible material systems. 

For example, metal matrix composites normally show a compressible elastic and 

isochoric (volume preserving) inelastic response while polymer based composites 

show a volume preserving or incompressible behavior even at small strains. It is 

well known that Galerkin approximation to incompressible or nearly-incompressible 

elasticity leads to eroneous results (Hughes [11]),e.g., mesh locking phenomenon, 

pressure oscillations, checker-board modes, to name a few. In the last two decades 

extensive research efforts have been directed to this issue and there are some well 

established techniques that can quite successfully handle the incompressible range 

of the response spectrum ( Hughes [12, 13], Nagtegaal et. al. [14], Simo et. al. [15]) 

We assume the strain field to be divided into deviatoric and volumetric compo- 

nents 

e(u, if) : = dev [Vsw] H ipl 

= Vsu + — [<p- divu] 1 (3) 
nscL 

where it : Q. —► lZnsd is the displacement field, cp : Q, —► 71 is the spherical part of 

e and is regarded as an independent field, and dev[-] := (•) — ^-tr(-)l represents 
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the deviatoric part of the indicated argument. The stress field which is compatible 

with the assumed strain field can be expressed as 

a(u, </?, p) = dev [De(u, ip)] + pi (4) 

where D represents the material constitutive matrix and p: Q, —► V, is an indepen- 

dent function which is to be interpreted as the hydrostatic pressure. By substitut- 

ing (3) and (4) into the 3- field functional (2), we obtain the modified functional 

TL(u,ip,p) 

Ü(u, ip,p) = - / e(u, ip) : c: E(U, <p)dQ + / p(divu - ip)dQ - Uext(u)     (5) 
* Jti Jo. 

We denote the variations in volumetric strain ip and pressure p by V and q, 

respectively, all of which are only required to be square integrable, i.e. L2(fl) over 

the domain. As no boundary conditions are applied on stresses or strains, the 

admissible spaces of solutions and corresponding spaces of variations coincide, i.e., 

V := {<p\<p E [L2(ß)]}, and V := {p\p G [L2(Q)}}. 

The boundary of domain tt, denoted by T, is assumed to be piecewise smooth. 

We further assume that T is decomposed into two non-overlapping subregions Tg 

and Th, where Tg is the portion of the boundary with prescribed displacement 

field g, and Th is the portion of the boundary with prescribed tractions h. The 

admissible spaces for the displacement field and its variations are 

S = {u eH\tt), u: n-+nn°d;u = gonTg} (6) 

V = {u> G H%(Sl), UJ : Ü -> nn°d} (7) 

where S is the space of trial displacements and V is the associated space of weighting 

functions, respectively. Hl(Q.) denotes the space of square-integrable functions 

along with their generalized derivatives defined over Q, and HQ(Q,) is the subset of 

Hl(Q.) whose members satisfy zero essential boundary conditions. 
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The minimization problem consists of finding the stationary point of (5) and 

satisfying the prescribed boundary conditions which are assumed to take the form 

u = g   \/x e Tg (8) 

a ■ n = h   Mx e Th (9) 

where n denotes the unit outward normal to boundary T. 

The stationarity conditions associated with (5) yield the variational form of the 

problem. For the case of small strains and static loads, and assuming the fibrous 

composite to occupy a region Q, in TZVsd, the formal statement of the variational form 

may be expressed as: Given f : Cl —► Kn'd, g : Tg —► Tln^-1, h:Th —► ft"'"-1, 

find (u,<p,p) eS xV x? such that for all (u,ip,q) eV x V x V 

(W dev[De(w, ip)\ + pi) = (w, /) + (w, h)r    VueV (10) 

(q, divw -(p) = 0 Vg G L2(ft) (11) 

(V>, -P + |tr[De(u, v»)]) =0 V^ e L2(n) (12) 

where (■,•) denotes the Z/2^) inner product, and (-,-)r represents the L2(T) inner 

product. 



3. Finite Element Framework. 

We now introduce the finite-dimensional approximations for displacements, 

strains and stresses as Sh C S, Vh C V, Vh C V and Vh C V, respectively. 

The discrete displacement field and its variation are continuous globally, while the 

discrete stress and strain fields are assumed to be discontinuous across element 

boundaries. As a result of this discontinuous approximations, the discrete versions 

of (11) and (12) can be written over domain of an individual element Qe as 

(g
e,divue-^e)ne=0 (13) 

(r,-pe + ltr[De(u,<p)})ne=0 (14) 

Consequently, the stress and strain fields can be eliminated at the element level, 

leading to a modified displacement type formulation. With this end, we design 

discrete projection operator for the strain and pressure fields 

<ph = PT(x)a.e (15) 

/ = PT(x)ße (16) 

where PT(x) = (71(03), ••• ,~/ne(x)}, is a set of n€ prescribed functions and ae, 

ße G IZ71' are ne local element parameters corresponding to strains and stresses, 

respectively. 

We define the discrete divergence operator as 

divue = beV (17) 

where be = lTBe, and Be is the usual strain-displacement matrix composed of 

derivatives of shape functions. 

We also define a mean operator over element domain as 

He f   P(x)P{x)TdQ (18) 



and assume that He is invertible (this condition is ensured if the ne functions 

7i,---)7ne in P(x) are independent). Since any qh e Vh is discontinuous across 

element boundaries, equation (13) implies 

ife = PT(x)He~1 f   P{x)diYuedf} (19) 

for e = 1,2, • • •, nei. Inserting (17) into (19) we finally obtain 

ipe = PT{x)He~l f   P{x)bedQde (20) 

Thus, the effect of the interpolations (15) and (16) is to define a modified discrete 

divergence operator by expression (20), and is expressed as ipe = divne. 

Similarly substituting interpolations (15) and (16) in (14), we obtain 

pe = PT{x)He~1 [   P(x)\tv{De(ue,ipe)}dü (21) 

Also by inserting (20) into the definition of the assumed strain field (3), we 

obtain the corresponding discrete version. Now substituting the discrete version of 

the assumed strain field together with expressions (20)and (21) in equation (10), 

we get a displacement version of the discrete variational form. It thus leads to an 

algebraic system of equations where the primary variable is the displacment field 

alone. 

10 



4. Evaluation of Stress Intensity Factor 

Let nstrain be the strain energy in equation (2). We evaluate this strain energy 

for two configurations of the specimen, i.e., for two different crack lengths l\, I2 

(h > h)- From the two crack lengths and the calculated strain energies, the energy 

release rate for mode I crack growth is calculated as 

TTStrain       TTStrain 
G = n2     -n, 

h — n 

where Ilfrain and n|tram are the calculated strain energies at crack lengths l\ and 

I2, respectively. Using linear elastic fracture mechanics, the stress intensity factor 

for mode I crack is then computed as 

E 
K = \l ^G    (plane strain) (23) 

K = VEG (plane stress) (24) 

where E and v are the Young's modulus and Poisson's ratio of the matrix respec- 

tively. 
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5. Numerical Examples 

In this section, we present various numerical experiments on 2-D plane strain 

specimens with straight fibers aligned along the loading direction. We study the in- 

teraction between the stress field around the crack tip and the inter-phase stress field 

that exists at the fiber-matrix interface. As it was pointed out in the introduction, 

the rows of fibers are replaced by layers of effective material. Furthermore, these 

numerical siumlations also represent a through-the-thickness transverse crack in a 

thick multilayered composite. Figure 2 shows the specimen geometry with a trans- 

verse notch and reinforcing fibers. Invoking symmetry in the geometry and loading, 

and assuming the crack to grow in a self-similar fashion, we have discretized only 

half of the specimen. The height (H) of the discrete specimen is one-half that of its 

width, i.e., H = W/2. The crack length is one third the specimen width, I = W/3. 

All reinforcing layers have a constant diameter d = 1/30. Figure 3 shows a typical 

finite element mesh with one fiber in the path of the crack. We have assumed a 

perfect bond between fiber and matrix in the present simulations. The ratio of 

Young's Modulus for the various fibers with respect to the matrix Ef/Em is 5, 15, 

25, and 35. The Poisson's ratio for the reinforcement and matrix is Vf = vm = 0.3. 

In our numerical simulations, we are controlling the fiber spacing in the trans- 

verse direction to investigate the inter-relation between the interaction of crack and 

reinforcement and crack bridging. 

12 
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5.1 Shielding Effect: Proximity of fiber and reduction in SIF 

Reinforcing fibers in the path of a crack play an important role in increasing 

the strength of a composite. This increase in strength is because of the interaction 

between the high stress at crack tip and the high stress gradients at fiber-matrix 

interface. This first test case investigates effect of proximity of a fiber ahead of the 

crack on the reduction in SIF. The specimen is loaded by applying 2% strain at 

the displacement boundary. In this test case we have considered only one layer of 

fibers that lie in the path of the crack. The distance 8 between the reinforcement 

and the crack tip is varied (in multiples of the diameter of the fiber) between range 

d < 6 < lOd. The results are normalized with respect to the SIF obtained from 

homogeneous isotropic specimen subjected to same loading conditions. As can be 

seen in Fig. 4, bringing the fiber close to the crack reduces SIF at the crack tip. 

Furthermore, a stronger fiber results in a greater reduction in SIF as compared to 

a less stiff fiber because of the stiff inter-phase stress boundary. It is also worth 

noticing that after a distance of lOd, the effect of the reinforcement on Kf has 

diminished considerably for all four cases of Ef/Em. 

14 
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Fig. 4.    Single fiber test. Effect of fiber proximity on reduction in K. 
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5.2 Effect of number of shielding fibers on reduction in SIF 

This test case investigates the effect of number of fibers in the path of a crack 

on the reduction in SIF. The results of the simulations are shown in Fig. 5. The 

first reinforcing fiber is one diameter away from crack tip, i.e., 8 — d. The center-to- 

center distance between the subsequent fibers is 2d, i.e., A = 2d. Normalization is 

performed with respect to the homogeneous isotropic specimen with crack of same 

dimension. The data in Fig. 5 shows that the first fiber has the greatest effect on 

Kf. The second fiber also has some effect but the third and fourth fibers have a 

considerably smaller influence on Kf. For the cases of Ef/Em = 5 and 15 the third 

and fourth fiber have practically no effect. To examine any fiber-fiber interaction 

on the results of Fig. 5 we performed simulations of each fiber separately at their 

respective locations. The result of the simulations showed that, for the parameters 

of geometry and elastic constants, linear superposition can be used for the overall 

effect on Kf. To investigate the effect of Ef/Em on Kf, the data in Fig. 5 are 

plotted as a function of Ef/Em in Fig. 6. As seen in Fig. 6, the trend of the 

dependence is very similar and independent of the number of fibers. Apparently 

the first two fibers have the greatest effect on the total stress intensity factor. The 

addition of a third and fourth fibers have practically no effect. 
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5.3 Spatial distribution of stress field 

We first investigate the spatial distribution of an in the path ahead of the crack. 

Figure 7-a shows the zoomed view of crack tip singularity in the homogeneous 

specimen. Here comparison is done with the analytical expressions. We know that 

unlike the analytical expression, numerical methods always give a finite value at 

crack tip. In the present case, the numerical method does capture the high gradient 

at crack tip. As our next step, we investigate the reduction in the intensity of 

stress at crack tip due to reinforcing fibers in the path of ahead of crack. Figure 

7-b represents this reduction in crack tip stresses due to two shielding fibers. We 

can clearly see the drop in value by three folds. Furthermore, we can see the stress 

gradients across the width of the fibers as well. We have plotted a zoomed view of 

the region between crack tip and the fibers in Fig. 7-c which shows the steep stress 

gradients at the fiber matrix interfaces. We have also plotted ln(l/r) singularity 

along the two sides of adjacent fibers. Although we are not able to exactly catch the 

singularity, we certainly capture the extremely steep gradients in the stress field. 

This test case also validates the robustness of the formulation being used here for 

such "mathematically non-smooth" problems. 
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Fig. 7c.    Zoomed view of fiber-matrix singularities. 

To gain further insight on the stress distribution around the crack tip in the 

presence of the reinforcement we carried out two sets of simulations. In the first 

one we started with the specimen without reinforcement. Then we added a fiber at 

distance d from the crack tip and two more fibers at distances d from the first one 

and each other. We have not considered a fourth fiber because its effect on Kf was 

negligible (Fig. 5). We have loaded the specimen by applying 2% strain. 
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Fig. 8a.    Effect of number of fibers on stress field - Homogeneous specimen. 
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Fig. 8b.    Effect of number of fibers on stress field - Fiber-matrix Ef/Em = 15. 
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Figure 8 shows selective contours of the an stress field, which are markedly 

different from that of the specimen without reinforcing fibers. We can also see the 

stress contours inside the fibers and extremely high stress gradients (sharp boundary 

layers) at the interface of the two materials. The iso-stress lines indicate that stress 

in the fibers at equal distances from the crack path depends on its proximity from 

the crack tip; the closest fiber being under the most stress. In this simulation 

Ef/Em ratio is kept constant and equal to 15. 
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Fig. 9b.   Effect of Ef/Em on stress field - Ef/Em = 25. 
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In the second simulation, we examined the effects of Ef/Em on the stress fields 

an around the crack tip in the presence of three fibers. Figure 9 presents the spatial 

stress distribution an for Ef/Em equal to 5 and 25, while keeping the number of 

fibers fixed equal to 3. As can be seen, the inter-phase stress boundary layers of 

stronger fibers e.g., Fig. 9-b have a larger zone of influence as compared to that of 

the weaker fibers, i.e., Fig. 9-a. Furthermore, interaction of the inter-phase stress 

boundaries can be seen in these figures. 

24 



5.4 Effect of a bridging fiber 

In this numerical simulation we introduce an intact fiber in the bridging zone 

in addition to one reinforcing fiber in the path ahead of the crack tip (see Fig. 10). 

The motivation for this case study originates from the need to examine the relative 

effects of a bridging fiber and a fiber ahead of the crack tip on the stress intensity 

factor. To examine the contribution of a bridging fiber we vary the distance A 

between the fiber and the crack tip in terms of multiples of fiber diameter d with 

d < A < 6d. A schematic of the fiber location is shown in Figure 10. The results 

of the simulations are shown in Fig. 11. Note that the reduction in normalized SIF 

is inversely proportional to fiber proximity in the wake of the crack. Normalization 

here is done with respect to homogeneous isotropic specimen with a crack of same 

dimension. Comparing Fig. 4 and Fig. 11 for Ef/Em= 5 and 8 = d, we see 

that a fiber in the wake of crack reduces the normalized SIF to 3% of its values as 

compared to the one ahead of crack tip which reduces it down to approximately 

87%. Consequently, for given Ef/Em ratio and given 6 from the crack tip, a bridging 

fiber is much more effective as compared to its counterpart ahead of the crack tip 

at the same distance. 
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Fig. 10.   Schematic diagram of the problem. 

The normalized force in the bridging fiber (at the crack face) as a function of 

Ef/Em ratio for various A values is plotted in Fig. 12. Here normalization in each 

case of A is done by dividing the force for various Ef/Em ratios by their correspond- 

ing value of force for Ef/Em. = 5. It can be seen that for a given fiber crack-tip 

distance A, the stronger fibers carry more stress and shift the concentration of stress 

away from crack tip, thus resulting in considerable reduction in SIF. 
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5.5 Effects of the number of fibers in the bridging zone 

To examine the reduction in SIF due to the number of fibers in the bridging zone 

and stress level along the crack path, we carried out simulations with three fibers 

ahead of the crack tip and adding one fiber at a time in the bridging zone. We have 

taken only three fibers along the crack path because the effects of additional fibers 

reduces the SIF insignificantly (Fig. 5). Loading is the same as in the previous 

tests. The distance of the first fiber, ahead of the crack tip is one diameter, i.e., 

6 = d, and the surface-to-surface interfiber distance is two diameters, i.e., A = 2d. 

The distance of the first bridging fiber from crack tip is Id, i.e., A = d. The fibers 

in the bridging zone are added at distances of 2d (center-to-center). 

0.22 

12 3 4 5 

Number of brigding fibers 

Fig. 13.    Effect of number of bridging fibers on reduction in K. 

Figure 13 shows the evolution of the normalized SIF as a function of the number 

of fibers in the bridging zone for the case when Ef/Em = 25. The numerical 

data clearly demonstrates that the additional fibers further decrease the SIF at the 
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crack tip. However, the contribution of the first fibers is noticeably larger than 

that of other fibers. Moreover, the influence starts diminishing substantially after 

the fifth fiber. The effects of the ratio Ef/Em on the SIF are displayed in Fig. 

14. It is interesting to notice that the effects of Ef/Em diminish rapidly and after 

Ef/Em = 15 any further increase in Ef/Em does not influence the SIF. 

o 

UM 

Fig. 14.    Effect of relative strength of the fiber-matrix system on reduction in K. 
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Fig. 15b.    Stress distribution for fiber-matrix system - Ef/Em = 25. 
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In this work we have also studied the normal stress (along line x = 0, see e.g. 

Fig. 10) ahead of the crack and in the bridging zone. The data of these simulations 

are shown in Fig. 15 for Ef/Em = 15 (a) and Ef/Em = 25 (b). Notice here that 

the stress in the fibers ahead of the crack tip is approximately the same in all three 

fibers, and about the same level as that given by the rule of mixtures. As for the 

stresses in the fibers in the bridging zone, there seems to be an small increase of the 

stress except for the fiber located the furthest from the crack tip. This fiber suffers 

the largest stress but contributes the least on the SIF. 

Figure 16 shows the evolution of an on the fibers in the bridging zone. It is 

interesting to notice that a cut-off length where the stress on the fibers equals that 

given by the rule of mixtures decays very quickly as we approach the crack tip. 

Furthermore, it can be seen that the computed stress field does not exhibit any 

spurious oscillations or checker board modes even under extremely high gradients. 

This simulation makes it precise that in order to study fibrous composites, the 

numerical method should be based on sound variational foundations because we 

inevitably have to use energy based criteria for crack propagation in these materials. 

Furthermore, it should also be able to capture the stresses as accurately as possible 

and should have the capacity to model steep gradients in stress fields. 
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5.6 Effect of uniform thermal stresses 

Many practical applications of fibrous composites are under extreme thermal en- 

vironments. Consequently, it seems appropriate to investigate the effects of thermal 

stresses on the stress field at crack tip in the matrix. 

Temperature effects can be incorporated in the variational framework if the 

distribution of change in temperature AT(x) is known. 

AT(x) = T{x) - To(aj) 

where T(x) is the current spatial distribution of temperature and TQ{X) is the 

reference temperature distribution for zero thermal stresses in the composite. Let 

eth be the pointwise thermal gradient vector defined as 

-th K(axAT   ayAT   0)' 

where K is 1 for plane stress and (1 + v) for plane strain. ax and ay are the 

coefficients of thermal expansion in x and y directions, respectively. Stresses are 

related to thermal strains via constitutive relation a = c : (e — eth). The effect 

of temperature can be accounted for at the variational level by replacing the first 

integral in equation (2) with a modified strain energy term written as 

Strain        = \   [   {* ~ Sth)  : C :  (e - 6th)  dtl 
1 Jo. 

= I f [(e : c : e) + (eth : c : eth) - 2 (e : c : eth)] du (25) 
2 Ja. 

where the first term in (25) is the usual strain energy and identical to the first 

integral in (2) while the remaining two terms incorporate the temperature effects. 

The present simulation considers the thermal stresses that arise because of a 

change in the temperature of the fiber matrix system. In these simulations we 

load the specimen by applying a specified force at the boundary. The ratio of 

thermal coefficient for fiber and matrix etf/am = 10-1 and is assumed to be constant 
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over the range of temperature considered. The specimen consists of one bridging 

fiber at 6 = 2d and no fibers in the path ahead of the crack. Figure 17 shows 

a linear reduction in SIF for various Ef/Em ratios. We have also plotted the 

normalized force at the fiber tip (Fig. 18) where normalization is done with respect 

to zero temperature case. It can be observed that there is a corresponding linear 

increase in force in the fiber. This simulation points out that a variable coefficient of 

thermal expansion can play an important role in the analysis of bimaterial specimen. 

Consequently, a fully coupled thermo-mechanical theory that would evaluate the 

spatial distribution of thermal gradients and consequently effect the resultant stress 

field pointwise would be more appropriate for the analysis of fibrous composite 

systems. 
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