REPORT DOCUMENTATION PAGE			Form Approved		
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction				xisting data sources, gathering and	
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,					
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND			DATES COVER	ED	
	1995	Abstract presented A	pril 2-7, 1995		
4. TITLE AND SUBTITLE Processes: Affecting Nitro Peduction by Iron Metal: Mineralogical Consequences of			5. FUNDING N N/A	UMBERS	
Precipitation in Aqueous Carbonate Environments			10/21		
6. AUTHOR(S)					
Abinash Agrawal, P.G. Tratnyek, P. Stoffyn-Egli, and L. Liang					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER N/A		
Atlantic Geoscience Centre Dept. of Environmental Science and Engr.					
Geological Survey of Canada	logical Survey of Canada Oregon Graduate Institute				
P.O. Box 1006,	P.O. Box 1006, P.O. Box 91000				
Dartmouth, N.S. B2Y 4A2, Cana	da Portland, OR 97291-10	00 USA			
Oak Didge National Laboratory					
P.O. Box 2008					
Oak Ridge, TN 37831-6038					
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING / MONITORING AGENCY REPORT NUMBER		
SERDP 901 North Stuart St. Suite 303			IN/A		
Arlington, VA 22203					
1 million, 11 22200					
Abstract presented from the American Chemical Society Division of Environmental Chemistry at the 209th ACS National Meeting,					
Vol.35(1), Anaheim, California, pp. 720-723, 2-7 April 1995. This work was supported in part by SERDP. The United States					
Government has a royalty-free license throughout the world in all copyrightable material contained herein. All other rights are					
reserved by the copyright owner.					
12a. DISTRIBUTION / AVAILABILITY	STATEMENT ribution is unlimited			12b. DISTRIBUTION CODE Δ	
Approved for public release. dist	noulon is unimited				
13. ABSTRACT (Maximum 200 Words) In aqueous systems, zero valent iron metal is readily oxidized by many substances to ferrous iron. These reactions may be considered					
as corrosion processes in which exidation of Fe^{0} to Fe^{2+} is the anodic half-reaction. In anoxic pure aqueous media the only available					
cathodic half-reactions involve H^+ and H_20 as electron acceptors (oxidants). Rapid corrosion requires more favorable cathodic					
reactions, of which the reduction of dissolved 0_2 is certainly the most important. However, other electron acceptors offer additional					
cathodic reactions that can contribute to iron corrosion. Possible oxidants of primary interest in groundwater remediation include					
anthropogenic contaminants such as chlorinated solvents, nitro aromatic compounds, and chromate. In addition, most contaminated					
considered in any process-level interpretation of field performance. Among these solutes, carbonate is certainly one of the most					
important.	incipient of field performance	. Thirding these solution,	caroonate 15 c	stunning one of the most	
14. SUBJECT TERMS				15. NUMBER OF PAGES	
SEKDP, zero-valent, corrosion, aromatic compounds				4	
				N/A	
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIF		20. LIMITATION OF ABSTRACT	
OF REPORT	OF THIS PAGE	OF ABSTRACT		т п	
NSN 7540-01-280-5500	01101200.	01101855.	Stan	UL dard Form 298 (Rev. 2-89)	
Prescribed by ANSI Std. Z39-18 208-102					

••

•

"PREPRINTED EXTENDED ABSTRACT" Presented Before the Division of Environmental Chemistry American Chemical Society Anaheim, CA April 2-7, 1995

PROCESSES AFFECTING NITRO REDUCTION BY IRON METAL: MINERALOGICAL CONSEQUENCES OF PRECIPITATION IN AQUEOUS CARBONATE ENVIRONMENTS

Abinash Agrawal^{1,2}, Paul G. Tratnyek², Patricia Stoffyn-Egli¹ and Liyuan Liang³

¹Atlantic Geoscience Centre, Geological Survey of Canada, P.O. Box 1006, Dartmouth, N.S. B2Y 4A2, Canada

²Department of Environmental Science and Engineering, Oregon Graduate Institute, P.O. Box 91000, Portland, OR 97291-1000, USA

³Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA

In aqueous systems, zero-valent iron metal is readily oxidized by many substances to ferrous iron. These reactions may be considered as corrosion processes in which oxidation of Fe^0 to Fe^{2+} is the anodic half-reaction. In anoxic pure aqueous media the only available cathodic half-reactions involve H⁺ and H₂O as electron acceptors (oxidants). Rapid corrosion requires more favorable cathodic reactions, of which the reduction of dissolved O₂ is certainly the most important. However, other electron acceptors offer additional cathodic reactions that can contribute to iron corrosion. Possible oxidants of primary interest in groundwater remediation include anthropogenic contaminants such as chlorinated solvents, nitro aromatic compounds, and chromate. In addition, most contaminated waters contain substantial amounts of secondary solutes that are also oxidants relative to iron metal and, therefore, must be considered in any process-level interpretation of field performance. Among these solutes, carbonate is certainly one of the most important.

Carbonate may effect metal corrosion in several ways. The acceleration of metal corrosion by dissolved CO_2 is well-established largely due to studies of corrosion in the anaerobic, carbonate-rich condensates that occur during oil and gas production. This phenomenon involves adsorbed H₂CO₃ and HCO₃ species that react as oxidants to drive metal dissolution [1].

$$Fe^{0} + 2H_{2}CO_{3 (ads)} \rightleftharpoons Fe^{2+} + 2HCO_{3 (ads)} + H_{2}(g)$$
(1)

$$Fe^{0} + 2HCO_{3(ads)}^{-} \rightleftharpoons Fe^{2+} + 2CO_{3(ads)}^{2-} + H_{2}(g)$$
 (2)

Equilibration with water restores the original carbonate speciation, so the net result of equations 1 and 2 is catalysis of H_2 evolution by corrosion of iron mediated with carbonate. Decreased corrosion rates are expected when carbonate precipitation forms a protective layer on the metal surface, as it frequently does in water distribution systems [2]. Similar behavior may occur where iron is used in an effort to remediate contaminated groundwater. Although formation of FeCO₃ is

thermodynamically favored under conditions of environmental interest (Fig. 1), the kinetics of this reaction are generally slow, so the effect of carbonates on contaminant reduction by iron is likely to vary with temporal as well as chemical conditions.

In our investigations of nitro reduction by Fe^{0} [3], we have gained insight into the effects of carbonate by using an aqueous model system buffered with CO₂. Batch experiments were performed in anaerobic bicarbonate buffer medium (Carbonate_{Total}= $1.5 \times 10^{-2} M$) using 33.3 g/L Fluka iron turnings (18-20 mesh, specific surface area = $0.02 m^{2}/g$) and nitrobenzene as an organic oxidant. Preliminary handling of the Fe⁰ and mixing rate during the experiments were carefully controlled.

First-order rate constants for nitro reduction, k_{obs} , were obtained routinely and provided our first evidence for interactions between Fe⁰ and carbonate (Figs. 2-3). Values of k_{obs} declined with increased carbonate concentration (Fig. 2) and with extended exposure of the metal to a particular carbonate buffer (Fig. 3). The appearance of a gray precipitate in these batch studies (long after the nitro reduction experiments were complete) suggested that formation of microcrystalline carbonate mineral phases at the metal surface may be occurring throughout the reaction time of our experiments.

The effect of carbonate precipitation at the metal surface is being further investigated by Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). SEM of clean iron samples (Fig. 4 a-b), and those subsequently exposed to aqueous bicarbonate medium (Figure 4 c-d), has revealed the formation of a non-uniform layer on the metal surface consisting of crystalline aggregates. EDS analysis has confirmed that these aggregates are predominantly iron carbonates (FeCO₃). The formation of FeCO₃ (s) on the metal surface occurred only in bicarbonate medium, and was not observed on metal surfaces exposed to deoxygenated water for equal duration. One important variable that remains to be investigated is the effect of mixing (and, in particular, abrasion) on the development of the FeCO₃ surface film.

It can be concluded that the observed decrease in nitro reduction rate is due to accumulation of non-reactive iron carbonate aggregates that inhibit mass-transfer of reactants and products to and/or from the reactive sites on the metal surface. Further characterization of metal surface evolution in the presence of natural groundwater solutes will be necessary to reliably predict the field performance of remediation installations involving iron metal.

REFERENCES

•

- 1. Wieckowski, A., E. Ghali, M. Szlarczyk, and J. Sobkowski. 1983. The behaviour of iron electrode in CO2-saturated neutral electrolyte—I. Electrochemical study. Electrochim. Acta 28(11): 1619-1626.
- 2. Sontheimer, H., W. Kolle, and V. L. Snoeyink. 1981. The siderite model of the formation of corrosion-resistant scales. J. Am. Water Works Assoc. 73(11): 572-579.
- 3. Agrawal, A., and P. G. Tratnyek. 1994. Abiotic remediation of nitro-aromatic groundwater contaminants by zero-valent iron. 207th National Meeting. San Diego, CA. Preprint Extended Abstracts, Division of Environmental Chemistry. 34(1): 492-494.

Figure 1: Stability diagram for FeCO_{3(s)}, Fe(OH)_{2(s)}, and Fe(OH)_{3(s)} formation in a Fe-H₂O-CO₂ system; drawn for Fe_{Total} = $10^{-5} M$ and C_{Total} = $1.5 \times 10^{-2} M$. Activity corrections neglected. Below C(IV)_T/CH₄ line, all Eh-pH lines involving FeCO₃ assume constant C_{Total} = $1.5 \times 10^{-2} M$ (drawn after Pankow, 1991). Slow kinetics may not allow Fe₂O₃ and Fe₃O₄ formation in model system. The data points (measured periodically for 5 days) and arrow indicate trend in Eh-pH evolution and possible FeCO_{3(s)} formation. See Fig. 3 for effect on nitro reduction kinetics during the period.

Figure 2: Effect of $[HCO_3]$ on the rate of nitro reduction by Fe^0 in batch systems. Decrease in Fe^0 reactivity is due to formation of FeCO₃ on the metal surface.

Figure 3: Gradual decline in the rate of nitro reduction by Fe^0 (following metal incubation in a bicarbonate buffer for 5 days at $C_{Total} = 1.5 \times 10^{-2} M$). See Fig. 1 for Eh-pH variation over the experiment duration.

Figure 4: Scanning electron micrographs showing changes on the iron metal surface during exposure to a deoxygenated bicarbonate medium: (A) clean metal sample following washing in dilute HCl (10% v/v) prior to incubation in bicarbonate buffer; magnification: x700. (B) same sample as in 'A' at magnification: 2000x. (C) iron metal sample from 'A' exposed in bicarbonate buffer ($C_{total}=0.1 M$) for 18 hours; magnification: x700. (D) same sample as in 'C' at magnification: x3000. EDS analysis confirmed that the crystalline aggregates are predominantly siderite (FeCO₃).

AMERICAN CHEMICAL SOCIETY

Division of Environmental Chemistry

Chairman Gordon E. Bellen NSF International P.O. Box 130140 Ann Arbor, MI 48113-0140

Secretary Martha J. M. Wells Tennessee Technological University Box 5033 Cookeville, TN 38505

Preprints of Papers Presented at the 209th ACS National Meeting Anaheim, California April 2-7, 1995 Vol. 35 No. 1

SYMPOSIA & Organizers

F. +20 -223

General Papers M.M. Walker

Cloud and Aerosol Atmospheric Chemistry R.J. Vong

Chemistry of Herbicide Metabolites in Surface and Ground Water M.T. Meyer, E. M. Thurman

> Urban Atmospheric Chemistry D. Grosjean

Influence of Coupled Chemical-Biological Processes on Transport and Remediation of Contaminant in the Subsurface M.L. Brusseau, M.H. Conklin, R.M. Miller

Colloidal and Interfacial Phenomena in Aquatic Environments J.G. Hering, M. Elimelech

Contaminant Remediation with Zero-Valent Metals M. Reinhard, P. G. Tratnyek