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Abstract 

This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number 
of labeled training documents with a large pool of unlabeled documents. This is significant because in many 
important text classification problems obtaining classification labels is expensive, while large quantities of 
unlabeled documents are readily available. We present a theoretical argument showing that, under common 
assumptions, unlabeled data contain information about the target function. We then introduce an algorithm 
for learning from labeled and unlabeled text, based on the combination of Expectation-Maximization with 
a naive Bayes classifier. The algorithm first trains a classifier using the available labeled documents, and 
probabilistically labels the unlabeled documents. It then trains a new classifier using the labels for all the 
documents, and iterates. Experimental results, obtained using text from three different real-world tasks, 
show that the use of unlabeled data reduces classification error by up to 30%. 

This research has been supported in part by the DARPA HPKB program under research contract F30602-97-1- 
0215. 
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1.     Introduction 

Consider the problem of training a computer to automatically classify text documents. Given the growing 
volume of online text available through the World Wide Web, Internet news feeds, electronic mail, and digital 
libraries, this problem is of great practical significance. There are statistical text learning algorithms that 
can be trained to approximately classify documents, given a sufficient set of labeled training examples. These 
text classification algorithms have been used to automatically catalog news articles [Lewis and Gale, 1994; 
Joachims, 1997b] and web pages [Craven et al., 1998], automatically learn the reading interests of users 
[Pazzani et al., 1996; Lang, 1995], and automatically sort electronic mail [Lewis and Knowles, 1997]. 

One key difficulty with these current algorithms, and the issue addressed by this paper, is that they require 
a large, often prohibitive, number of labeled training examples to learn accurately. Take, for example, the 
task of learning which newsgroup articles are of interest to a person reading UseNet news, as examined by 
Lang [Lang, 1995]. After reading and classifying about 1000 articles, precision of the learned classifier was 
about 50% for the top 10% of documents ranked by the classifier. As a practical user of such a filtering 
system, one would obviously prefer learning algorithms that can provide accurate classifications after hand- 
labeling only a few dozen articles, rather than thousands. 

In this paper we describe an algorithm that learns to classify text documents more accurately by using 
unlabeled documents to augment the available labeled training examples. In our example, the labeled docu- 
ments might be just 10 articles that have been read and judged by the user as interesting or not. Our learning 
algorithm can make use of the vast multitude of unlabeled articles available on UseNet to augment these 
10 labeled examples. In many text domains, especially those involving online sources, collecting unlabeled 
examples is trivial; it is the labeling that is expensive. 

We present experimental results showing that this unlabeled data can boost learning accuracy in three 
text classification domains: newsgroup articles, web pages, and newswire articles. For example, to identify 
the source newsgroup for a UseNet article with 70% classification accuracy, our algorithm takes advantage of 
10,000 unlabeled examples and requires only 300 labeled examples; on the other hand, a traditional learner 
requires 1000 labeled examples to achieve the same accuracy. Thus, in this task, the technique reduces the 
need for labeled training examples by a factor of three. 

Why do unlabeled examples boost learning accuracy? In brief, they provide information about the joint 
probability distribution over words within the documents. Suppose, for example, that using only the labeled 
data we determine that documents containing the word "learn" tend to belong to the positive class. If we 
use this fact to estimate the classification of the many unlabeled documents, we might find that the word 
"teach" occurs frequently in the unlabeled examples that are now believed to belong to the positive class. 
Thus the co-occurrence of the words "learn" and "teach" over the large set of unlabeled training data can 
provide useful information to construct a more accurate classifier that considers both "learn" and "teach" 
as indicators of positive examples. 

The specific approach we describe here is based on a combination of two well-known learning algorithms: 
the naive Bayes classifier [Lewis and Ringuette, 1994] and the Expectation Maximization (EM) algorithm 
[Dempster et al, 1977]. The naive Bayes algorithm is one of a class of statistical text classifiers that 
uses word frequencies as features. Other examples include TFIDF/Rocchio [Salton, 1991; Rocchio, 1971], 
regression models [Yang and Chute, 1993], k-nearest-neighbor [Yang and Pederson, 1997] and Support Vector 
Machines [Joachims, 1997b]. EM is a class of iterative algorithms for maximum likelihood estimation in 
problems with incomplete data. The result of combining these two is an algorithm that extends conventional 
text learning algorithms by using EM to dynamically derive pseudo-labels for unlabeled documents during 
learning, thereby providing a way to incorporate unlabeled data into supervised learning. Previous supervised 
algorithms for learning to classify from text do not incorporate unlabeled data. 

A similar approach was used by Miller and Uyar [Miller and Uyar, 1997] for non-text data sources. We 
adapt this approach for the naive Bayes text classifier and conduct a thorough empirical analysis. We also 
show theoretically that unlabeled data carries information useful for improving parameter estimation under 



certain restrictive conditions, and survey results that show that this consequently improves classification. 

In the following sections, we provide sufficient conditions under which the use of unlabeled data can 
be expected to improve classification accuracy. We present the probabilistic setting for naive Bayes, and 
its combination with the Expectation Maximization algorithm. We empirically demonstrate significantly 
improved performance on three text data sets. Finally, we discuss directions for future research. We argue 
that these results are of significant practical importance, since in many text learning domains (such as the 
Web), unlabeled data is available almost for free, whereas labeling the data can be truly expensive. 

2.     The Probabilistic Framework 

To ground the theoretical aspects of our work, and to provide a setting for our algorithm, this section presents 
a probabilistic framework for characterizing the nature of documents and classifiers. We will then use this to 
introduce the classifier and show that unlabeled data can be used to improve classification. The framework 
follows commonly used assumptions [Lewis and Ringuette, 1994; Domingos and Pazzani, 1997] about the 
data—(1) that our text is produced by a mixture model, and (2) that there is a one-to-one correspondence 
between mixture components and classes. 

In this setting, every document di is generated according to a probability distribution given by a mix- 
ture model, which is parameterized by 0. The mixture model consists of mixture components c,- £ C = 
{ci, ...,C|c|}. Each component is parameterized by a disjoint subset of 6. Thus a document, di, is created 
by first selecting a component according to the priors, P(CJ\0), then, second, having the mixture component 
generate a document according to its own parameters, with distribution P(d,|cj;0). We can characterize the 
likelihood of a document with a sum of total probability over all mixture components: 

|C| 

P(di\e) = Y,ncj\O)ndi\cj;0). (1) 
J'=l 

Each document has a class label. We assume that there is a one-to-one correspondence between classes 
and mixture model components, and thus use Cj to indicate both the jth mixture component and the jth 
class.1 The class label of document rf, is written j/,-, and if document rf, was generated by mixture component 
Cj we say j/,- = Cj. This class label may or may not be known for a given document. 

3.     Proof of the Value of Unlabeled Data 

In this section we show that, given this setting, documents with unknown class labels are useful for learning 
concept classes. 'Learning concept classes' in this setting is equivalent to estimating parameters of an 
unknown mixture model that produced the given training documents. First, we will provide a sufficient 
condition under which unlabeled documents can be used to estimate 6, and thus to improve the classification 
accuracy. We argue that this condition is fulfilled in the context of our high-dimensional mixture models. 
Without loss of generality, we will assume in this section the classification task is binary, that is \C\ — 2. 

For unlabeled data to carry information about the parameters 0, it is sufficient that 

1. the learning task is not degenerate, that is, 

'This assumption will be relaxed in Section 6 by making this a one-to-many correspondence. Other work [Li and Yamanishi, 
1997] relaxes this assumption in a many-to-one fashion. 



3di,Cj,e,e'.   P(D = di\C = Cj-9)    #    V{D = di\C = Cj-6') 

A P(C=Cj\9)    ?    P(C = cj\0'). (2) 

where D is a random variable over documents and C is a random variable over all classes, with events 
inC. 

2. 0 < \Vl\ < oo, where \Vl\ is the number of labeled training documents. 

The first assumption excludes tasks where learning is impossible, even given training data with class labels, 
for the reason that all parameterizations 9 yield equivalent results. In this case knowledge of the parameters 
would not help aid the prediction of future data. The second assumption excludes cases where no labeled data 
is available, in which case unlabeled data cannot improve the classification accuracy. It also excludes cases 
where the labeled data is sufficient to estimate all parameters 0. It is easy to show that high-dimensional 
mixture models with unknown parameters meet the first condition, i.e., they are non-degenerate. 

To show that knowledge about an unlabeled documents carries information about the parameters 6, we 
need to demonstrate the conditional dependence of 6 on D. That is: 

P(9\D) ? P(9). (3) 

If this conjecture holds, a direct implication is that unlabeled data contain information about the parameters 
of 6. In this way, unlabeled data could help in supervised learning. 

We provide a proof by contradiction. For this, we temporarily assume that 9 and D are independent. 
By negating Equation 3, and applying Bayes' rule, we write: 

W;    P(D\9) = P(D). (4) 

One direct conclusion of this equation is that any two parameterizations, 9 and 9', provide the same class 
probabilities for any sample. By substitution from Equation 1 this gives: 

\c\ \c\ 
J2 ndi\C = Cj;9)P{C = CJ\9) = £ P(d,-|C = cy, 9>)P(C = Cj\9'). (5) 
3 = 1 3=1 

From here, it is a straightforward exercise to construct a document d,- and two parameterizations to generate 
a contradiction, making use of the non-degeneracy assumption above. Our assumption of non-degeneracy 
requires that for some document the individual terms in Equation 5 must differ for some 9 and 9'; we can 
construct one for which the total probability of the document also differs for 9 and 9'. Thus, our assumption 
of conditional independence is contradicted, and parameterizations must be conditionally dependent on the 
documents. This signifies that unlabeled data indeed contain information about parameters of the generative 
model. For this knowledge to aid classification, we have to exclude the two extreme cases: \T>1\ = 0 and 
\T>1\ = oo. If there is no labeled data, unlabeled data cannot improve classification, as shown in [Castelli and 
Cover, 1995]. If there is infinite amounts of labeled data, all parameters 9 can be recovered with probability 
1 from the labeled data and the resulting classifier is Bayes-optimal [McLachlan and Basford, 1988]; thus, 
further unlabeled data cannot improve the classification accuracy. 

Note that our argument does not immediately motivate an algorithm for extracting the information from 
the unlabeled data. Additionally, it not show that better parameter estimation will yield better classification. 
The following sections describe one way that is guaranteed to improve our parameter estimates. Section 7 
contains a survey of related work that ties improvements in parameter estimates and increases in available 
training data to improvements in classification. 



4.    Naive Bayes for Text Classification 

In this section, we present the naive Bayes classifier—a well-known, probabilistic algorithm for classifying 
text that is a special case of a mixture model. This algorithm forms the foundation upon which we will 
later incorporate unlabeled data. We continue the use of the two assumptions for data generation: that the 
documents are produced according to a mixture model, and that there is a one-to-one correspondence between 
classes and mixture components. Thus, the motivational result from the previous section still holds—that 
unlabeled documents can be beneficial. Naive Bayes makes the additional assumption that the probability 
of seeing a word in a document is independent of its context and its position [Lewis and Ringuette, 1994; 
Domingos and Pazzani, 1997]. 

The learning task is to use a set of training documents in order to form estimates for the parameters 
of the generative model. Naive Bayes forms Bayes optimal estimates of these parameters, then uses the 
estimated model to classify new documents. 

The Generative Model 

We now describe the full generative model for documents that will be used for learning text classifiers. 
It is a specialization of a mixture model, presented in Section 2. Document rf, is considered to be an ordered 
list of word events. We write Wd,k for the word in position A* of document rf,-, where the subscript of w 
indicates an index into the vocabulary V = (u>i, «'2. • • •, u'|v|)- When a document is generated and after a 
mixture component is selected, a document length is chosen independently of the component. (Note this 
assumes that document length is independent of class.2) Then, the selected mixture component generates a 
sequence words of the specified length. Thus, we can expand the second term from Equation 1, and express 
the probability of a document given a mixture component as the probability of the document's length and 
the product of the probabilities of the individual word events in the sequence. Note that, in this general 
setting, the probability of a word event must be conditioned on the words that precede it. 

\d,\ 

P(d,-|cj;0) = P((dn,di2,...,diM)\cj;6) = P(\d,\) ]J P(dik\cj;e;diq,q < k). (6) 
fc=i 

Next we make the standard naive Bayes assumption: that the words of a document are generated 
independently of context, that is, independently of the other words in the same document given the class 
label. We further assume that the probability of a word is independent of its position within the document; 
thus, for example, the probability of seeing the word "dog" in the first position of a document is the same 
as seeing it in any other position. We can express these assumptions as: 

P(dik\cj;0;dig,g < k) = P(wd<k\Cj;0). (7) 

Combining these last two equations gives the complete naive Bayes expression for the probability of a 
document given its class: 

\d,\ 

P(di\cj-J) = P(\di\)l[P(wdJcj-e). (8) 
fc=i 

2Previous naive Bayes formalizations do not include this document length effect. In the most general case, document length 
should be modeled and parameterized. 



The parameters of an individual mixture component are the collection of word probabilities, such that 
Owt\cj = ¥{wt\cj-,6), where t = {1,..., |V|} and J2t?(wt\cj;6) = 1. Since we assume that for all classes, 
document length is uniformly distributed, it does not need to be parameterized. The only other parameters 
specified in the model are the class priors 6Cj, which indicate the probabilities of selecting the different 
mixture components. 

Training and Using a Classifier 

Given these underlying assumptions of how the data is produced, the task of learning a text classifier 
consists of forming an estimate of 6 by using a set of data and their associated class labels. The estimate of 0 
is written 9. With labeled training documents, V — {d\,..., d\v\}, we can calculate Bayes optimal estimates 
for the parameters of the model that generated these documents. To calculate the probability of a word given 
a class, 9w,\Cj, simply count the fraction of times that word occurs in the data for that class, and augment 
this fraction with Bayes optimal smoothing that primes the count for each word with a "pseudo-occurrence" 
of one [Vapnik, 1982]. This smoothing is sometimes referred to as the Laplacean prior, and is necessary to 
prevent probability zero probabilities for infrequently occurring words. These word probability estimates 
9wt\cj are: 

K,„=p(»,ic^) =   ^as^^w 
imi:!=liE!ätf(».,*)PM*) 

where N(wt,di) is the count of the number of times word wt occurs in document d,- and where P(cj|d;) = 
{0,1} given by the class label. The class prior probabilities, §Cj, are estimated in the same fashion of 
counting, without smoothing, by 

9c* ~  fD\ • (10) 

Given estimates of these parameters calculated from the training documents, it is possible to turn the 
generative model up-side-down and calculate the probability that a particular mixture component generated a 
given document. We formulate this by an application of Bayes rule, and then substitutions using Equations 1 
and 8. 

PfcM = Efc«*Jsi) (11) 
r\di\o) 

Y}riincr\ö)Y[^Ln^k\cr-e) 

Note that since document lengths are class independent, the document length terms from Equation 1 cancel 
and do not appear. 

If the task is to classify a test document di into a single class, simply select the class with the highest 
posterior probability, argmaxj P(cj|ds;0). 

Note that our four assumptions about the generation of text documents (mixture model, one-to-one corre- 
spondence between mixture components and classes, word independence, and document length distribution) 
are all violated in practice. Documents often fall into overlapping categories. Words within a document 
are not independent of each other—grammar and topicality ensure this. Despite these violations, empiri- 
cally, the Naive Bayes classifier does a good job of classifying text documents [Lewis and Ringuette, 1994; 



Craven et al., 1998; Yang and Pederson, 1997; Joachims, 1997a]. This paradox is explained by the fact that 
classification estimation is only a function of the sign (in binary cases) of the function estimation; the func- 
tion approximation can still be poor while classification accuracy remains high [Domingos and Pazzani, 1997; 
Friedman, 1997]. 

The above formulation of naive Bayes assumes a generative model that accounts for the number of times 
a word appears in a document. This is equivalent to a multinomial event model (without the factorial terms 
that account for event ordering) [McCallum and Nigam. 1998a]. This formulation has been used by numerous 
practitioners of naive Bayes text classification [Lewis and Gale, 1994; Kalt and Croft, 1996; Joachims, 1997a; 
Li and Yamanishi, 1997; Mitchell, 1997; McCallum et al., 1998]. However, there is another formulation of 
naive Bayes text classification that instead assumes a generative model and document representation where 
each word in the vocabulary is a binary feature, and is modeled by a Bernoulli trial [Robertson and Sparck- 
Jones, 1976; Lewis, 1992; Kalt and Croft, 1996; Larkey and Croft, 1996; Koller and Sahami, 1997]. Empirical 
comparisons show that the multinomial formulation yields higher-accuracy classifiers [McCallum and Nigam, 
1998a]. 

5.    Using EM to Incorporate Unlabeled Data 

When naive Bayes is given just a small set of labeled training data, classification accuracy will suffer because 
variance in the parameter estimates of the generative model will be high. However, by augmenting this small 
set with a large set of unlabeled data and combining the two sets with EM, we can improve our parameter 
estimates. 

EM concurrently generates probabilistically-assigned labels for the unlabeled documents, and a more 
probable model with smaller parameter variance that predicts these same probabilistic labels. 

This section describes how to use EM within the probabilistic framework of the previous section. This is a 
special case of the more general missing values formulation, as presented by [Ghahramani and Jordan, 1994]. 
While the theory of why EM works is not particularly simple, the resulting algorithm is very straightforward. 
Our algorithm is outlined in Table 1. 

We are given a set of training documents V and the task is to build a classifier of the form in the previous 
section. However, unlike previously, in this section we assume that only some subset of the documents rf; G V1 

come with class labels j/,- G C, and for the rest of the documents, in subset Vu, the class labels are unknown. 
Thus we have a disjoint partitioning of I>, such that T> = T>' \JVU. 

Consider the probability of all the training data, V. The probability of all the data is simply the 
product over all the documents, because each document is independent of the others, given the model. From 
Equation 1, the probability of all the data is: 

|T>"|   \C\ 

nm = n£pNö)pw<*0) (12) 

*l[P{cj = Vi\0)P(di\cj = vr,0). 
1=1 

For the unlabeled documents, we use a direct application of Equation 1. For the labeled documents, we 
are given the generative component by the label t/, and thus do not need to sum over all class components. 

Again, learning a classifier corresponds to calculating a maximum likelihood estimate of 6—finding the 
parameterization that is most likely given our training data:  argmaxP(#|I)).   By Bayes' rule, P(6\I>) = 

6 



- Build an initial classifier by estimating 0 from the labeled documents only (Equations 9 and 10). 

- Loop while classifier parameters change: 

- Use the current classifier to probabilistically label the unlabeled documents (Equation 11). 

- Recalculate the classifier parameters 0 given the probabilistically assigned labels (Equations 9 
and 10). 

Table 1: The Algorithm. 

V(T>\d)¥(9)l~P(D). P(X>) is a constant; maximum likelihood estimation assumes that P(0) is a constant, so 
taking the log, we define r] = log(P(0)/P(Z>)). Maximizing the log likelihood is the same as maximizing the 
likelihood. Using Equation 13 and Bayes rule, we write the log likelihood, 1{0\V) = log{?(9\V)), as: 

\v\     id 
1{0\V)    =   fj + ^log^P^WPKIc^ö) (13) 

»=i      j=i 

\v'\ 
+ ^log(P(Cj- = !fc|0)P(d,-|Ci = m;ö)). 

i=l 

Because the first line of this equation has a log of sums, it is not computable in closed-form. However, 
if we knew all the class labels, as in T>', then we could avoid this. If we had access to the class labels 
represented as the matrix of binary indicator variables z, z; = (z;i,..., £,|c|), where Z{j = 1 iff yi = Cj else 
Z{j = 0, then we could express this complete log likelihood of the parameters, lc(0\V,z), without a log of 
sums: 

\v\ id 
lc(0\V,z) = f7 + ££zo-log(P(cJ-|l?)P(d^0i)). (14) 

«=i j=i 

This formulation of the log likelihood is readily computable in closed-form. Dempster [Dempster et al., 
1977] uses this insight in the Expectation Maximization algorithm, which finds a loca] maximum likelihood 
0 by an iterative procedure that recomputes the expected value of z and the maximum likelihood param- 
eterization given z. Note that for the labeled documents z; is already known. It must be estimated for 
the unlabeled documents. If we denote the expected value of z at iteration k, by Q^k\ we can find a local 
maximum for 1{0\T>) by iterating the following two steps: 

• E-step: Set Q^ = E[z\V;9^}. 

• M-step: Set ö(fe+1) = argmax* P(0\V;Q^). 

In practice, the E-step corresponds to calculating probabilistic labels P(cj\di;0) for every document by 
using the current estimate of 0 and Equation 11. The M-step corresponds to calculating a new maximum 
likelihood estimate for 0 given the current estimates for P(cjld,-;0) using Equations 9 and 10. See Table 1 
for an outline of our algorithm. 

EM finds the 0 that locally maximizes the probability of all the data, both the labeled and the unlabeled. 



6.    Experimental Results 

In this section, we give empirical evidence that using the algorithm in Table 1 with labeled and unlabeled 
documents outperforms naive Bayes, which does not on its own use unlabeled documents. We present exper- 
imental results with three different text corpora from the domains of UseNet news articles (20 Newsgroups), 
web pages (WebKB), and newswire articles (Reuters).3 

Datasets and Protocol 

The 20 Newsgroups data set [Joachims, 1997a], collected by Ken Lang, consists of 20,017 articles divided 
almost evenly among 20 different UseNet discussion groups. When words from a stoplist of common short 
words are removed, there are 62,258 unique words that occur more than once. Many of the categories fall 
into confusable clusters; for example, five of them are comp.* discussion groups, and three of them discuss 
religion. When tokenizing this data, we skip the UseNet headers (thereby discarding the subject line); 
tokens are formed from contiguous alphabetic characters, which are left unstemmed. Best performance was 
obtained with no feature selection, and by normalizing word counts by document length. Accuracy results 
are reported as averages of ten test/train splits, with 20% of the documents randomly selected for placement 
in the test set. 

The WebKB data set [Craven et al, 1998] contains 8145 web pages gathered from university computer 
science departments. For four departments, all web pages were included; additionally, there are many pages 
from an assortment of other universities. The pages are divided into seven categories: student, faculty, staff, 
course, project, department and other. In this paper, we use the four most populous non-other categories: 
student, faculty, course and project, all together containing 4199 pages. We did not use stemming or a stoplist; 
we found that using a stoplist actually hurt performance because, for example, "my" is the fourth-ranked 
word by information gain, and is an excellent indicator of a student homepage. As done previously [Craven 
et al., 1998], we use only the 2000 most informative words, as measured by average mutual information 
with the class variable. This feature selection method is commonly used for text [Yang and Pederson, 1997; 
Koller and Sahami, 1997; Joachims, 1997a]. Accuracy results presented below are an average of twenty 
test/train splits, again randomly holding out 20% of the documents for testing. 

The 'ModApte' train/test split of the Reuters 21578 Distribution 1.0 data set consists of 12902 articles 
and 90 topic categories from the Reuters newswire. Following several other studies [Joachims, 1997b; Liere 
and Tadepalli, 1997] we use the 10 most populous classes and build binary classifiers for each class. We 
use all the words inside the <TEXT> tags, including the title and the dateline, except that we remove the 
REUTER and &# tags that occur at the top and bottom of every document. We use a stoplist, but do not 
stem. Vocabulary selection, when used, is again performed with average mutual information with the class 
variable. In the standard ModApte split, there are 3299 documents in the test set and 9603 in the training 
set. Results are reported as average results of ten randomly selected training sets. The complete ModApte 
test set is used to calculate precision-recall breakeven points, a standard information retrieval measure for 
binary classification. 

In experiments with EM, the initial 0 was estimated using only the labeled data, and EM iterations 
progressed from there, as in Table 1. All experiments were performed with eight EM iterations; significant 
changes occur in the first few iterations. We never found classification accuracy to improve beyond the 
eighth iteration. 

Results 

Figure 1 shows the effect of using EM with unlabeled data in the 20 Newsgroups data set. The vertical axis 

3All   three   of   these   data   sets   are   available   on   the   Internet.        See   http://www.cs.cmu.edu/~textlearning   and 
http://www.research.att.com/~lewis. 
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Figure 1: Classification accuracy on the 20 Newsgroups data set, both with and without 10000 unlabeled 
documents. The narrow error bars on each data point are twice the standard error. With small amounts of 
training data, using EM yields more accurate classifiers. In the limit, the two methods converge. 

0    1000 3000 5000 7000 9000 
Number of Unlabeled Documents 

Figure 2: The effect of varying the number of unlabeled data. Classification accuracy is shown on the 20 
Newsgroups data set with 400 labeled documents, and varying amounts of unlabeled data. More unlabeled 
data helps. 

indicates classifier accuracy on test sets, and the horizontal axis indicates the amount of labeled data used in 
training. We vary the amount of labeled training data, and compare the classification accuracy of traditional 
naive Bayes (no unlabeled data) with an EM learner that has access to 10000 unlabeled documents. EM 
performs significantly better. For example, with 400 labeled documents (20 documents per class), naive 
Bayes reaches 59% accuracy, while EM achieves 70%. Note here that EM performs well even with a very 
small number of labeled documents; with only 20 documents (a single labeled document per class), naive 
Bayes gets 19%, EM 39%. As expected, when there is a lot of labeled data, and the naive Bayes learning 
curve has reached a plateau, the learner is already saturated, and having unlabeled data does not help. 
In Figure 2 we hold the number of labeled documents constant at 400, and vary the number of unlabeled 
documents in the horizontal axis. Naturally, more unlabeled data helps. 

These results demonstrate that EM finds a model with more probable parameter estimates, and that 
these improved estimates reduce classification accuracy and the need for labeled training examples. For 
example, to get 75% classification accuracy, EM requires 1000 labeled examples, while naive Bayes requires 
2000 labeled examples to achieve the same accuracy. 

To gain some intuition about why EM works, we present a detailed trace of one example. Table 2 provides 
a window into the evolution of the classifier over the course of EM iterations for this example. Based on the 
WebKB data set, each column shows the ordered list of words that the model believes are most "predictive" 



Iteration 0 Iteration 1 Iteration 2 
intelligence DD D 
DD D DD 
artificial lecture lecture 
understanding cc cc 
DD\\ D* DD.DD 
dist DD.DD due 
identical handout D* 
rus due homework 
arrange problem assignment 
games set handout 
dartmouth tay set 
natural DDam hw 
cognitive yurttas exam 
logic homework problem 
proving kfoury DDam 
prolog sec postscript 
knowledge postscript solution 
human exam quiz 
representation solution chapter 
field assaf ascii 

Table 2: Lists of the words most predictive of the course class in the WebKB data set, as they change over 
iterations of EM for a specific example. By the second iteration of EM, many common course-related word 
have high weights. The symbol D indicates an arbitrary digit. 

of the course class. Word are judged to be "predictive" using a weighted log likelihood ratio.4 At Iteration 
0, the parameters were estimated from a randomly-chosen single labeled document per class. Notice that, 
the course document seems to be about a specific Artificial Intelligence course at Dartmouth. After two EM 
iterations with 2500 unlabeled documents, we see that EM has used the unlabeled data to find words that 
are more generally indicative of courses. The classifier corresponding to the first column gets 50% accuracy; 
by the eighth iteration, the classifier achieves 71% accuracy. 

The graph in Figure 3 shows the benefits of 2500 unlabeled documents on the WebKB data set. Again, 
EM improves accuracy significantly, especially when the amount of labeled data is small. When there are 12 
labeled documents (three per class), traditional naive Bayes attains 50% accuracy, while EM reaches 64%. 
When there is a lot of labeled data however, EM hurts performance slightly. With 280 labeled documents, 
naive Bayes obtains 82% accuracy, and EM gets 78%. 

Varying the Weight of the Unlabeled Data 

We hypothesize that the reason EM hurts performance here is that the data does not fit the assumptions 
of our model as well as 20 Newsgroups—that is, the mixture components that best explain the unlabeled 
data do not correspond as well to the class labels. In other words, EM places strong assumptions about 
the generative process for the documents and optimizes the parameters subject to those assumptions and 

4The weighted log likelihood ratio used to rank the words in Figure 2 is: 

P(u't|cj)log _P( 

P( 
(15) 

which can be understood in information-theoretic terms as word wt 's contribution to the average inefficiency of encoding words 
from class CJ using a code that is optimal for the distribution of words in -ic,; the sum of this quantity over all words is the 
Kullback-Leibler divergence between the distribution of words in c3 and the distribution of words in -\CJ [Cover and Thomas, 
1991]. 

10 



100% 

90% 

60% 

70% 

60% 

50% 

40% 

30% 

20% 

10% 

0% 

2500 unlabeled documents   
No unlabeled documents   

5 10 20 50 100 200 
Number of Labeled Documents 

Figure 3: Classification accuracy on the WebKB data set, both with and without 2500 unlabeled documents, 
averaged over 20 trials per data point. With small amounts of labeled documents, EM helps, but in the 
limit, it degrades performance slightly, indicating a misfit between the data and the assumed generative 
model. 

120 labeled documents - 
80 labeled documents - 

0.1       0.2       0.3       0.4       0.S       0.6       0.7       0.8       0.0 
Probability Mass Assigned to Unlabeled Documents 

Figure 4: The effects of varying the relative importance of the labeled and unlabeled documents on the 
WebKB data for two different amounts of labeled data. By using cross-validation, automatic selection picks 
the near-optimal values of a indicated with the cross and the diamond. Note the magnified vertical scale. 

all the data. If the assumptions do not hold for the data, the optimization may no longer be beneficial 
for classification. When EM has very little labeled training data, parameter estimation is so desperate for 
guidance that EM still helps in spite of the somewhat violated assumptions; however, when there is enough 
labeled training data that the labeled data alone is already sufficient for good parameter estimation, the 
estimates can be modestly thrown off by EM's inclusion of the unlabeled data. It is not surprising that 
the unlabeled data can throw off parameter estimation when one considers that the number of unlabeled 
documents is always much greater than the number of labeled documents (e.g. 2500 versus 280), and thus, 
even at the points in Figure 3 with the largest amounts of labeled data, the great majority of the probability 
mass used in the M-step to estimate the classifier parameters actually comes from the unlabeled data. 

This insight suggests a simple fix. We can add a learning parameter that varies the relative contributions 
of the labeled and unlabeled data to parameter estimation in the M-step. In our implementation this 
parameter is embodied by a factor, a, that reduces the weight of unlabeled documents in the estimation 
°f 6wt\cj in Equation 9. In essence we can make each unlabeled document count as only a fraction, a, 
of a document, thus correctly balancing the "mass" of the labeled and unlabeled documents to optimize 
performance. We can build models for varying values of a and choose the best one using leave-one-out cross- 
validation on the training data to tune this parameter after EM has iterated to convergence. Empirically, 
cross-validation picks the optimal value most of the time, and a near-optimal value otherwise. 

Figure 4 plots classification accuracy while varying a in the horizontal axis, and does so for two different 
amounts of labeled training data.   The bottom curve is obtained using 80 labeled documents—a vertical 
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Figure 5: Classification accuracy on the WebKB data set, with a optimization selected by cross-validation 
compared to using no unlabeled data. Note that accuracy using unlabeled data now does not degrade with 
large amounts of labeled data, as in Figure 3, and still maintains the large benefits for small training sets. 

slice in Figure 3 at the point where the naive Bayes and EM curves cross. The top curve is obtained using 
120 labeled documents—a slice after the crossover. First, note the magnified vertical scale to facilitate 
interpretation of this data. Second, (remembering that the right-most point corresponds to EM with the 
weighting used to generate Figure 3, and the left-most to regular naive Bayes), note that the best-performing 
values of a are somewhere between the extremes. A paired t-test indicates that both of these maxima are 
statistically significantly higher than either end point (p < 0.01). Third, note that we can select optimal or 
near-optimal values automatically using cross-validation. These plots show performance on the held-out test 
set; the values of a are selected by leave-one-out cross-validation are indicated by the diamond and cross 
on the bottom and top curves respectively. The trend across all amounts of labeled data is that with more 
labeled data, the unlabeled data gets less weight. 

Figure 5 compares the performance of naive Bayes against EM with a tuned by cross-validation. Unlike 
Figure 3 with a fixed a, here EM strictly dominates naive Bayes. This indicates that we can automatically 
avoid degradation in accuracy when using EM and still preserve benefits seen with a small training set. 

Multiple Mixture Components per Class 

Faced with data that does not fit the assumptions of our model, the a-tuning approach described above 
addresses this problem by allowing the model to incrementally ignore the unlabeled data. Another, more 
direct approach is to change the model so that it more naturally fits the data. Above, we hypothesized that 
the data violates our assumption that there is a one-to-one correspondence between mixture components 
and classes, and that the mixture model components found by EM do not correspond well to the class 
labels. Flexibility can be added to the mapping between mixture components and class labels by allowing 
multiple mixture components per class, and we expect this to improve performance when data for each class 
is actually multi-modal. 

With an eye towards testing this hypothesis, we applied EM to the Reuters corpus. Since the documents in 
this data set can have multiple class labels, each category is traditionally evaluated with a binary classifier. 
Thus, the negative class covers 89 distinct categories, and we expected this task to strongly violate the 
assumption that all the data for the negative class is generated by a single mixture component. For these 
experiments, we randomly selected ten positively labeled documents, 40 negatively labeled documents, and 
7000 unlabeled documents. This uneven labeling is justified because in all of the binary Reuters classification 
tasks the negative class is much more frequent than the positive class. 

The left column of Table 3 shows average precision-recall breakeven points for 10 trials of each experiment, 
for naive Bayes. These numbers are presented at the best vocabulary size for each task, indicated in 
parentheses. Classifiers for different categories performed best with widely varying vocabulary sizes. This 
variance of optimal vocabulary size is unsurprising. As previously noted [Joachims, 1997a], categories like 
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Category    NB 1 EM 1 EM 5 EM 20 EM 40 Diff 
acq 
corn 
crude 
earn 
grain 
interest 
money-fx 
ship 
trade 
wheat 

75.9 (19371) 
40.5 (100) 
60.7 (19371) 
92.6 (19371) 
51.7 (2000) 
52.0 (2000) 
57.7 (3000) 
58.1 (19371) 
56.8 (19371) 
48.9 (2000) 

39.5 (19371) 
21.1 (100) 
27.8 (100) 
90.2 (2000) 
21.0 (100) 
25.9 (100) 
28.8 (100) 
9.3 (100) 
34.7 (100) 
13.0 (100) 

87.2 
36.6 
55.3 
95.0 
54.0 
42.0 
46.2 
40.1 
49.0 
38.5 

(19371) 
(100) 
(100) 
(19371) 
(100) 
(100) 
(100) 
(300) 
(100) 
(100) 

88.4 (5000) 
39.8 (100) 
63.9 (100) 
95.3 (19371) 
54.6 (100) 
48.6 (100) 
54.7 (500) 
46.5 (500) 
54.3 (100) 
42.1 (100) 

88.9 (5000) + 13.0 
39.1 (200) -0.7 
66.6 (500) +5.9 
95.2 (19371) +2.7 
55.8 (1000) +4.1 
50.3 (500) -1.7 
59.7 (500) +2.0 
55.0 (500) -3.1 
57.0 (1000) +0.2 
44.2 (1000) -4.7 

Table 3: Precision-Recall breakeven points showing performance of binary classifiers on Reuters with tra- 
ditional naive Bayes, EM with one mixture component per class, and EM with varying multi-component 
models for the negative class. The best multi-component model is noted in bold, and the difference in per- 
formance between it and naive Bayes is noted in the rightmost column. Results are shown on the optimal 
vocabulary size, indicated in parentheses. Note that performance is poor with a single component per class 
for EM because the data-model fit is poor. When a more natural multi-component model is used for the 
negative class, EM improves upon naive Bayes. 

"wheat" and "corn" are known for a strong correspondence between words and categories, while categories 
like "acq" are known for a more subtle class definition. The categories with narrow definitions require 
small vocabularies for best classification, while those with a broader definition require a large vocabulary to 
capture the category. 

The second column of Table 3 shows the results of performing EM on the data with a single negative 
centroid, as in previous experiments. As expected, the fit between the assumed model and the Reuters data 
is poor, and the results using EM are dramatically worse than simple naive Bayes. Because the negative 
class is truly multi-modal, fitting a single naive Bayes class with EM to the data does not accurately capture 
its distribution. However, by choosing an appropriate multi-component model with which to run EM, we 
can get results that do improve upon naive Bayes. 

The remainder of Table 3 shows the effects of using different multi-component models in conjunction with 
EM. The negative class is modeled with five, 20 or 40 negative centroids. When initializing these centroids for 
running EM, they are initialized with randomly assigned negative documents. The best performer is noted 
in bold, and the difference between it and naive Bayes is noted in the difference column. A paired t-test on 
each trial over all categories shows that the improvement in average breakeven point from 59.5% to 61.3% is 
statistically significant (p < 0.0001). Note that in most cases, EM does best with 40 components, confirming 
our hypothesis that a more complex multi-component model more accurately represents the Reuters data. 

These results indicate that correct model selection is crucial for EM with data sets that are not naturally 
modeled with a small number of generative components. When the data is accurately modeled, gains from 
using EM are readily seen. One obvious question is how to select the best model representation. Cheeseman 
and Stutz [Cheeseman and Stutz, 1996] investigate this for clustering tasks with no labeled data, and 
explicitly compare the probability of the data for different models, and select the best match, with a prior 
that prefers smaller models. For classification tasks, it may be more beneficial to select this with a more 
appropriate classification-oriented criteria. Consider that if the number of components equals the number of 
examples, the data can be modeled perfectly. However, this will have poor generalization. One possibility 
then is to use leave-one-out cross-validation in the same manner as with tuning a. 
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7.     Survey of Related Theoretical Work 

The previous section provides empirical evidence that the use of unlabeled data in conjunction with labeled 
data can help improve classification accuracy. This is built upon theoretical work showing that use of 
unlabeled data can improve parameter estimates. Here, we provide a link between the two, and survey 
the literature on convergence and error bounds describing the degree to which labeled and unlabeled data 
improve classification. 

This section assumes a high-dimensional mixture model, of which naive Bayes is one special case. Recall 
that 6 is used to denote the parameters of the mixture model. We will use »7? to denote the number of 
different words (each of which induces a parameter in each mixture component). In certain asymptotic 
cases, the relative value of unlabeled data in learning classification is well-understood. 

• No unlabeled data. First consider the efficiency of estimating 9 from a pool of labeled data only, V1. 
According to [Devroye et al., 1996], estimating 9 using the maximum likelihood estimator is subject 
to the following error bound: 

P(\9-9\>e)    <   2me-lI,V/2 (16) 

Here 9D\C and 9c are the maximum likelihood estimates for 9. From this it follows that the parameter 
estimation error \9 - 6\ converges to zero at the rate 0(1/A/|X

)
'|). 

• Infinite unlabeled data. If infinite amounts of unlabeled data are available, however, the parameters 
of the mixture components 9 can be recovered from the unlabeled data [McLachlan and Basford, 1988], 
but not the assignment of mixture components to classes. Thus, the estimation problem reduces to the 
problem of learning a permutation matrix, which assigns labels to the different mixture components. 
Without any labeled data, this permutation cannot be found, and thus, although the parameters are 
known, classification error is not reduced from random guessing. As shown in [Castelli and Cover, 
1995], with infinite unlabeled data, the classification error approaches the Bayes optimal solution at an 
exponential rate in the number of labeled examples given. Thus, if infinite amounts of unlabeled data 
are available, the convergence rate of learning from labeled data is changed by an exponential factor. 

• Trade-off. As shown in [Castelli and Cover, 1996], labeled data can be exponentially more valuable 
than unlabeled data in reducing the probability of classification error by non-degenerate Bayesian 
classifiers. Their analysis investigates a restricted estimation problem, in which the individual mixture 
components are known, but two things aren't: the a priori likelihood of each mixture component, and 
the assignment of mixture components to class labels. In such a situation, the classification error is 
essentially dominated by the number of unlabeled documents; unless the number of unlabeled data 
grows faster than an exponential function in the number of labeled documents, in which case the 
classification error is essentially determined by the number of labeled samples. This result, however, 
assumes that the parameters of the individual mixture components are known; little is known for the 
more general case, where unlabeled data can be used to estimate those. 

Shahshahani and Landgrebe [Shahshahani and Landgrebe, 1994] investigates the utility of unlabeled 
data in supervised learning, with quite different results. They analyze the convergence rate under the 
assumption that unbiased estimators are available for 9, for both the labeled and the unlabeled data. Their 
bounds, which are based on Fisher information gain, show a linear (instead of exponential) value of labeled 
vs. unlabeled data. Unfortunately, their analysis assumes that unlabeled data alone is sufficient to estimate 
both parameter vectors; thus, they assume that the target concept can be recovered without any target 
labels. This assumption is unrealistic. As shown in [Castelli and Cover, 1995], unlabeled data does not 
improve the classification results in the absence of labeled data. Shahshahani and Landgrebe's analysis also 
does not investigate the classification error. 
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Unfortunately, all these results rest on two restrictive assumptions, both of which are usually violated in 
text classification domains. First, they are asymptotic, i.e., they characterize the importance of labeled and 
unlabeled documents in the limit. Little is known for the non-asymptotic case. Second, they assume that 
the underlying mixture model is correct, that is, there exists a parameter 9 so that P(D\9) is identical to 
the distribution that generated the data has been generated. Unfortunately, if this assumption is violated, 
estimators such as the maximum likelihood estimator may generate poor results. As shown in [Devroye et al., 
1996], under such conditions the maximum likelihood estimator can easily fail to minimize the classification 
error on the training set. 

8.    Related Work 

Two other studies have used EM to combine labeled and unlabeled data for classification [Miller and Uyar, 
1997; Shahshahani and Landgrebe, 1994]. Instead of naive Bayes, Shahshahani and Landgrebe use a mixture 
of Gaussians; Miller and Uyar use Mixtures of Experts. They demonstrate experimental results on non-text 
data sets with up to 40 features. In contrast, our textual data sets have three orders of magnitude more 
features. 

Our work is an example of applying EM to fill in missing values—the missing values are the class labels 
of the unlabeled training examples. Ghahramani and Jordan have used EM with mixture models to fill in 
missing values [Ghahramani and Jordan, 1994]. The emphasis of their work was on missing feature values, 
where we focus on augmenting a very small but complete set of labeled data. 

The AutoClass project [Cheeseman and Stutz, 1996; Hanson et al, 1991] investigated the combination of 
the EM algorithm with an underlying model of a naive Bayes classifier. The emphasis of their research was 
the discovery of novel clusterings for unsupervised learning over unlabeled data. AutoClass has not been 
applied to text or classification. 

Many approaches to reducing the need for labeled training examples have used active learning, in which 
an algorithm iteratively selects an unlabeled example, asks a human labeler for its classification, and rebuilds 
its classifier. Approaches differ in their methods for selecting the unlabeled example to request a label. Three 
such examples are relevance sampling and uncertainty sampling [Lewis and Gale, 1994; Lewis, 1995], and a 
"Query By Committee" approach [Liere and Tadepalli, 1997]. 

Several other statistical text classifiers have been used by others in a variety of domains [Yang and 
Pederson, 1997; Joachims, 1997b; Cohen and Singer, 1997] However, naive Bayes has a strong probabilistic 
foundation for EM, and is more efficient for large data sets. The thrust of this paper is to straightforwardly 
demonstrate the value of unlabeled data; a similar approach could apply unlabeled data to more complex 
classifiers. 

9.     Summary and Conclusions 

This paper has explored the question of when and how unlabeled data may be used to supplement scarce 
labeled data in machine learning problems, especially when learning to classify text documents. This is 
an important question in text learning, because of the high cost of hand-labeling data and because of the 
availability of huge volumes of unlabeled data. In this paper we have presented a theoretical model, an 
algorithm, and experimental results that show significant improvements from using unlabeled documents for 
training classifiers in three real-world text classification tasks. 

Our theoretical model characterizes a setting in which unlabeled data can be used to boost the accuracy 
of learned classifiers: when the probability distribution that generates documents can be described as a 
mixture distribution, and where the mixture components correspond to the class labels. These conditions 
fit exactly the model used by the naive Bayes classifier. 
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However, the complexity of natural language text will not soon be completely captured by statistical 
models. It is interesting then, to consider the sensitivity of a classifier's model to data that is inconsistent 
with that model. When the data is inconsistent with the assumptions of the model, our method for adjusting 
the weight of the contribution of unlabeled data, (as presented in our results on WebKB), prevents the 
unlabeled data from hurting classification accuracy. With our results on Reuters, we study ways to improve 
the model so that it better matches the assumptions about mixture models and the correspondence between 
components and classes. The results show improved classification accuracy, and suggest exploring the use 
of even more complex mixture models that better correspond to textual data distributions. 

We believe that our algorithm and others using unlabeled data require a closer match between the data 
and the model than those with only labeled data; if the intended target concept and model differ too much 
with the actual distribution of the data, then the use of unlabeled data will hurt instead of help. We intend 
to make a closer theoretical and empirical study on the tradeoffs between the use of unlabeled data and the 
inherent model inadequacies for several text learning algorithms. 

We also see several other interesting directions for future work with unlabeled data. Two other learning 
task formulations could also benefit from using EM: (1) an active learning approach that uses an explicit 
model of unlabeled data could incorporate EM iterations at every stage to improve its classification, and 
to better select for which data to request class labels from a labeler [McCallum and Nigam, 1998b]; (2) an 
incremental learning algorithm that re-trains throughout the testing phase could use the unlabeled test data 
received early in the testing phase in order to improve performance on the later test data. 

Other problem domains share some similarities with text domains, and also have abundant unlabeled data 
with limited, expensive labeled data. Robotics, vision, and information extraction are three such domains. 
Applying the techniques in this paper could improve classification in these areas as well. 
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