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Abstract 

Spatial data appear in numerous applications, such as GIS [8, 9, 18], multimedia [6] and even traditional 

databases. Most of the analysis has focused on point data, typically using the uniformity assumption, 

or, more accurately, a fractal distribution [5]. However, no results exist for non-point spatial data, like 

2-d regions (e.g., islands), 3-d volumes (e.g., physical objects in the real world) etc. 

This is exactly the problem we solve in this paper. Based on experimental evidence that real areas 

and volumes follow a "power law", that we named REGAL (REGion Area Law), we show (a) the 

theoretical implications of our model and its connection with the ubiquitous fractals and (b) the first of 

its practical uses, namely the selectivity estimation for range queries. Experiments on a variety of real 

datasets (islands, lakes, human-inhabited areas) show that our method is extremely accurate, enjoying a 

maximum relative error ranging from 1 to 5%, versus 30-70% of a naive model that uses the uniformity 

assumption. 



1    Introduction 

Spatial data appear in numerous applications, such as GIS [8, 9, 18], multimedia [6] and spatiotemporal 

databases [19]. Statistical modeling of real data involves the concise description of a dataset with a 

few parameters (e.g., total count, area, etc.), so that we can obtain accurate estimates. Such a concise 

description is useful for at least three settings: 

• selectivity for range queries, k nearest neighbor queries, spatial joins etc. 

• analysis of spatial access methods (SAM). For example, how many nodes will an R-tree or quadtree 

require to store the data, how many such nodes a query will touch, etc. 

• generation of pseudo-random, but realistic, spatial datasets, that can stress-test SAMs, whenever 

real data are not available. For example, for scale-up studies, or for studies on high dimensionalities 

[2], where we want to control the statistics, to do, e.g., sensitivity analysis. 

Most of the analysis efforts have focused on point data, typically using the uniformity assumption, 

or, more accurately, a fractal distribution [5]. In fact, for point data, these two numbers (the count and 

the fractal dimension of a dataset) are sufficient to accurately estimate selectivities for range queries, 

spatial joins and nearest neighbor queries, as we describe in the survey section. 

However, no results exist for non-point spatial data, like 2-d regions (islands, lakes, vegetation 

patches) and 3-d volumes (physical objects in the real world). We shall refer to such data that have non- 

zero d-dimensional volume as region data, although the upcoming discussion holds for any dimensionality 

of the address space. Thus, the problem we focus on is the following: We are given a real set of region 

data (normalized on the unit d-dimensional hypercube); what is the smallest number of parameters that 

we need to describe it? 

For point data, the count and the fractal dimension are enough. However, for region data, it is 

not even clear what we mean by fractal dimension: c?-dimensional region objects have fractal dimension 

equal to d. Maybe we want the fractal dimension of the centers of our region data? Or maybe something 

else? 

We answer all these questions in the rest of the paper, developing a realistic statistical model for 

region data, and showing how to use it to compute the selectivity of range queries. Its maximum relative 

error ranges from 1 to 5%, versus 30-70% of the naive model, based on the uniformity assumption. 

The paper is organized as follows: Section 2 gives a brief description of previous work on the topic. In 

Section 3 we develop our model and we show how it can be used to estimate selectivity of window queries 

on regions datasets in the d-dimensional space. Section 4 provides a large collection of experimental 

results on real region data (collection of islands, lakes, urban areas, etc.). Section 5 presents the 

relationship existing between our model and the fractal theory, exploit it to provide a realistic random 



region generator and suggest some directions for a practitioner for an effective application of our model. 

Finally, Section 6 contains concluding remarks and future work. 

2 Survey 

The main topic within the spatial database field which is related to our present work is query opti- 

mization, and, more specifically, selectivity estimation of range (or window) queries, which are the most 

popular spatial access operation [15, 13]. In the database community, there is a mounting evidence 

that query optimization is becoming more and more important with the advent of spatial databases 

consisting of petabytes of data and, in the near future, of huge spatiotemporal databases [4]. 

In [11, 15], an analytical formula to compute selectivity for a window query as a function of the 

underlying data morphology and distribution is given. To apply such a formula when these parameters 

are unknown, one typically makes the uniformity and independence assumption on them. Unfortunately, 

these assumptions do not hold for real datasets and generally lead to pessimistic results [3]. Recently, the 

introduction of the concept of fractal dimension has allowed to better describe the statistical properties 

of the data themselves and to precisely analyze space and time performances of spatial data structures 

used to store them. Using the fractal dimension, we can accurately estimate the performance of R-tree 

for range queries [5], the selectivity of spatial joins [1] and the performance of nearest-neighbor queries 

[16]. However, all these works focus on point data only. Therefore, to the best of our knowledge, this is 

the first attempt to model accurately region datasets. 

3 Proposed method 

In this section, we first give the problem definition and we show a naive solution. After, we give the 

proposed solution, for d = 2 dimensions and for arbitrary d. Table 1 gives a list of symbols used 

throughout this section. 

3.1    Problem definition 

Let us rigorously state the problem we are concerned with. For the sake of clarity, let us first focus on 

the 2-dimensional space. Later, all the results will be extended to the (/-dimensional space. 

PROBLEM: selectivity of rectangles 

Given: 

• A set of similar rectangles (i.e., having a fixed given aspect ratio p between width and height) 

ft = {/i,r2, ...,rN} embedded in U - [0,1] X [0.1]. 



Symbol Definition 

n Dataset of rectangles 

N Total number of rectangles of ft 

A Total area of ft 

W Total width of ft 

H Total height of ft 

P Fixed ratio between width and height of rectangles in ft 

"max Area of the largest rectangle in ft 

"'msx Width of the biggest rectangle in ft 

"max Height of the largest rectangle in ft 

B Patchiness exponent 

C(a) Number of regions having area at least a 

Cw(w) Number of regions having width at least w 

CH(h) Number of regions having height at least h 

q= {qx,...,qd) Query window of sides <ft,..., gy 

Sel(ft, q) Avg. selectivity for range queries of sides <?i,..., <jy 

U Image space 

Table 1: Symbol table 

• The total area A of ft. 

• A qx X qy window query q. 

Find the selectivity Sel(ft, q) in ft of the window query q, that is, the number of rectangles in ft 

intersecting q. 

The formula in [11, 15] gives the selectivity when we know the width W{ and the height hi of every 

rectangle. Hence 

N 

Sei (ft, q) = ^(<fc + Wi)(qy + hi (1) 
i=i 

which can also be written 

Sel(ft, q) = A + qx-H + qy-W + qx-qyN (2) 

where W and H are the total width and height extent of ft. The question is to estimate the selectivity 

with much less information. 



3.2    Naive solution 

The major problem is the following: what assumption should we make about rectangle sizes distribution? 

Is it Gaussian? Is it bimodal? Clearly, the most straightforward assumption is to assume that sizes 

are uniform. In this case, being rectangles similar with aspect ratio p, we can merely conclude that the 

expected width of a rectangle in H is Jp ■ jr, while its expected height is J- • jr. Therefore, since 

H'=^.|.A.  and   77 = ^1.f N 

it follows from (2) that the expected selectivity is 

Sel{K, q) = A+ L • J- + qy ■ J~p\ ■ ^7^N + qr ■ qy ■ N. (3) 

3.3    Proposed solution: the REGAL law 

However, real region datasets do not obey the uniformity assumption. Rather, it turns out that the 

complementary cumulative distribution function1 (CCDF) of the areas of the regions obeys the following 

hyperbolic power law: 

REGion Area Law (REGAL): The number of regions C(a) of area greater than or equal to a 

follows the hyperbolic power law 

C(a) = A- • a-"     k,B>0.   a> 0. (4) 

Korcak was the first to observe such a law, for the Aegean Islands (he suggested B « 0.5) [12]. The 

exponent B is also called the patchiness exponent. Recent measurements on 2-d region datasets from 

diverse applications suggest that usually a similar power law holds [10], with B in the range [0.5,0.9]. In 

Section 5, we show that the power law (4) is related to fractals. Given that fractals appear surprisingly 

often in nature, we expect that the majority of real region datasets will obey (4). Moreover, as a 

consequence of the inherent self-similarity of real region datasets, the minimum bounding rectangles 

(MBRs) of the regions are expected to follow the same law as well. 

Under the realistic assumption that rectangles in TZ obey to (4), we now show that we can compute 

much more accurate estimates on the selectivity if we are given the patchiness exponent B. Notice that 

the uniformity assumption is unable to use this extra information. We prove the following: 

'Remember that the cumulative distribution function of f(r) : 5R —¥ 9? is defined as F(r) =   f'    f(t)dt, while the 

complementary cumulative distribution function is defined as F(r) = f  ^ f(t)dt. 



Theorem 1 Given a set TZ = {ri, r2,..., ryv} o/ rectangles embedded in U whose areas obey to the 

REGAL law, having a fixed given aspect ratio p between width and height, a total area A and a patchiness 

exponent B, the selectivity of a rectangular window query q is 

Sel(TZ, q) = A+(qx-yß+qy-y/p)-JA- 
NV~Ti)-l 

TV' -*)_! + qx-qy-N. (5) 

Proof. We start with (2). We need to estimate the sum of widths W and the sum of heights H. By 

assumption, C(a) obeys to the REGAL law (4). Hence, from the initial condition 1 = C(amax) = &-a~fx, 

where amax is the (unknown) area of the largest rectangle, it follows that 

C(a) = agax-a-B. 

We need to estimate amax. From the inverse relation, we have 

1 
a(C) 

B _J_ 
C = örnax - C    B 

Therefore, if a,- denotes the area of the i-th rectangle of 71, it follows 

A = 

from which it follows 

/ j ai ~ ttmax   /      ' 

i=l Jl 

C  B dC' = an 

i\iN 

J i 

iv(i-i) - 

a       -A . x      B 
"max — -ri /,     u 

iV(1_s) - 1 
(6) 

Let now Cw{w) and Cn(h) denote the number of regions in TZ having width and height at least w 

and h, respectively. Since the rectangles in TZ are similar, we have a = -w2 and a = ph2. Then, from 

(4), Cw{w) obeys the following power law 

Cw{w) = (p-ar 
B . W-2B 

and analogously for Cjj(h) 

Denoting with 

CH(h) = 
B 

max \ t-2B • hr 

(7) 

(8) 

»max = \/p -ÖE 
1- 

\/>'A"iv(^ 
B 

(9) 



the width of the largest rectangle, and with 

"max — 
P   ~\ 

l.A—L 
P KK

1
-B) - 1 

its height, (7, 8) can be written 

Cw(w) = u>™x-u 25      „,.-2B 
max 

and 

2B       u-2B 
max cH{h) = hZx.h 

Hence, from the inverse relations we have 

w(C'w) = ( —fir-Cw ,2B "max    *~'\v 

and 

max / 

Therefore, if «;,- (hi) denotes the width (height) of the ?'-th rectangle of TZ, it follows 

N^-^s) - i A rN   —L W = £ u>t- « Wmax /    CM-2B rfCV = U'n 
1 - J- 1       2£ 

«'„ 
1-Ä 

and similarly 

(10) 

fill 

H = Y^hxK femax /   <y* rfCw = h 

Therefore, from (2, 9, 10, 11, 12) the thesis follows. 

Ar(1_2ö) _ i 
max ' " j • 

1 _ 2B 
(12) 

D 

Observation 1:    Notice that for 5 = 1, by applying De 1'HospitaPs rule, (6) still holds, and more 

precisely we have: 

1 - i- 
amax = lim A B A 

In Ar 

Similarly, for B = 1/2, (11, 12) still hold, and we have: 

N{
1
~2B)   -   1 

W  =   lim   irmav ; = trmaY • In Ar 
max „ i 

B-M/2 1        J 
2B 

and analogously, # = hmax • In A7. 



Observation 2: Equation (6) establishes a relationship between amax and A, once N is given. This 

means that we can provide an accurate estimation of Sei(11, q) even if amax is given instead of A. Notice 

that in this scenario, using the uniformity assumption, we can merely conclude that A = amax-N, which 

most likely will heavily overestimate Sel(lZ,q). 

As we show next, the above theorem will provide a good estimation for window selectivity on real 

region datasets. 

3.4    Generalization to the (/-dimensional space 

The above result can be extended to the d-dimensional space. In such a case, the problem is as follows: 

we are given a set H = {rx, r2,..., rN} of d-dimensional similar (i.e., having a fixed given aspect ratio 

Pij between the i-th and the j'-th side) hyper-rectangles embedded in U = [0, l]d, their total volume 

V and their patchiness exponent B. Let the CCDF of the volumes of the hyper-rectangles follows the 

power law 

C(v) = k-v~B 

Then, the selectivity of a rectangular window query q = (qx,.. .,qd) is 

{u,...,ij}62{1 d}\{0,{l,...,d}} \        L ~  d-B        j       i=\ 

where 2^'-^ denotes the power set2 of {1,..., d} and 

x- - d 

\ 

d 

3 = 1 \ 
"max ' J__^ fi,j 

1-i d 

"•^ifn-n^ 
is the i-th. side of the largest object having volume umax- 

The above formula can be proved by analogy from the 2-dimensional case and is here omitted. 

The above expression can be simplified when working on set of hyper-cubic objects. In such a case, 

setting £max the side of the largest region, we have 

Sel(lZ,q) = V+ £ ^■■..■^r^x.(
N{l~Ul-1)+l[ql.N 

{i1,...,ij}62{1.-.d}\{0,{l,...,d}} \       l       d-B       J       *=1 

where 
2Remember that, gives a set 5, the power set of S, denoted as 25, is defined as the set of all subsets of S, including the 

empty set and S itself. If S is finite, the cardinality of 2s is 2|s|. 



= ^ 1-i 

The above expression, for square window queries of side q. further simplifies to 

Sel(TZ, q) = V + J2 y • 9J • xi£ ■ I      i_i=L      ]+</■ N. 

4    Experiments on real datasets 

To assess experimentally the accuracy of our analysis, we have used three different region datasets, that 

is: 

• The Scandinavian Lakes (LAKES), available at http://mapweb.parc.xerox.com/map/nogrid 

(Xerox PARC Map Viewer) and consisting of 810 lakes. 

• The Indonesia Archipelago (ISLANDS), available at http: //mapweb. pare. xerox. com/map/nogrid, 

and consisting of 470 islands. 

• A population density map of Europe (REGIONS). This map has been created starting from a 

population density map from a World Atlas. Each grid cell is turned to black if it has density 

above a threshold, namely 30 inhabitants/Km2. It consists of 757 regions. 

We also used three additional datasets: the Aegean Islands (51 islands) and the Japan Archipelago 

(186 islands), both available at http://mapweb.parc.xerox.com/map/nogrid, and a map of Italy 

agricultural plains (228 regions), created starting from a geographic map from a World Atlas and 

turning to black a grid cell whenever it is at most 50 meters above the sea level. We do not give details 

about these datasets since the results were similar. 

In the following subsections we present results for: (a) verifying that the MBRs of the regions obey 

to the REGAL law (4); (b) verifying the accuracy of our formula (5) as compared to the formula derived 

using a uniformity assumption (3). 

4.1    Verifying the REGAL law 

All the datasets were stored using 1024 x 1024 bitmaps, as shown in Figure la-c. Preliminary, we have 

identified all the regions and their MBRs in each dataset. Then, we have computed all the relevant 

features needed for checking our results. These data are summarized in Table 2. Note that to estimate 

B, we have computed the CCDF of the MBRs area for each dataset and we have interpolated the plotted 



Dataset TV A B ? 
LAKES 810 75,910 0.85 1.13 

ISLANDS 470 136,893 0.60 1.98 

REGIONS 757 190,526 0.70 0.53 

Table 2: Datasets features. 

points with a straight line using the classic least-square method. Note also that p has been computed 

by averaging over all the MBRs' aspect ratios. 

Figure le-f shows in a log-log diagram the obtained results, along with the regression line, whose 

negated slope is the patchiness exponent B. It is impressive that the MBRs of all three datasets, even 

if their characteristics are so different, obey almost perfectly to (4). 

4.2    Accuracy of our selectivity estimation 

To ascertain the accuracy of our formula (5) as compared to the formula derived used a uniformity 

assumption (3), for each dataset we have initially computed the real selectivity3 using (1). After, we 

applied (3,5), for query windows of width 2\ i = 0,... 10 and having three different aspect ratios: 1:1 

(square), 1:2 and 2:1. Figure 2 shows the relative error of our approach, as compared to that of the 

uniformity model, for the LAKES, ISLANDS and REGIONS dataset, respectively. Note that, for each 

dataset, our approach is usually within 1% to the reality, and never exceeds a 5% of relative error. 

On the other hand, the uniformity model can give up to 70% relative error. Note also that the ratio 

between the relative error of the uniformity model and the proposed model is enormous: in particular, 

for 1:2 window queries on the REGIONS dataset, it is 44 in the average (i.e., the proposed model is 

44 times more precise!). Finally, following the recommendations from statistics, we have also computed 

the geometric average of relative errors, for each dataset and for each different window aspect ratio, 

summarized in Table 3. Even in this case, the ratio between the two models is huge: in particular, for 

1:2 window queries on the REGIONS dataset, it has a peak of 30. 

5    Discussion 

In this section, we first discuss the relationship existing between the patchiness exponent and the fractal 

dimension, and we exploit it to provide a realistic random region generator and a fast estimation of B. 

After, we suggest directions to a practitioner to fully exploit our method application. 

3 Of course, all the computations have been normalized to the 1024 x 1024 image space. 
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Figure 1: Used datasets: (a) LAKES; (b) ISLANDS; (c) REGIONS, together with their patchineas 

plots: log(count) vs log(area) for (d) LAKES; (e) ISLANDS; (f) REGIONS. 

5.1     Fractals, patchiness and random region generators 

Power laws go hand-in-hand with self-similarity and fractals [17] and (5) is no exception. Let's see why 

this is the case, and how we can use fractals to our advantage. First, a quick introduction to fractals is 

necessary. 

Preliminaries: A fractal is a set of points that are exactly or statistically self similar. Exact fractals 

are generated recursively, by a "generator", applied recursively to an "initiator'*. Figure 3 gives an 

example of a famous fractal, the "Koch snowflake". Figure 3a gives a (unit) line segment (the initiator); 

Figure 3b gives the generator, consisting of Nr = 4 smaller segments, each of size r = 1/3. Figure 3c 

shows the replacement of each of the segments of 3b with a miniature replica of the generator. Re- 

peating the process to infinity, we obtain the "Koch curve". Notice that it has infinite length, that is 

lim„_>.oc,(4/3)n. Gluing 3 such curves together, we obtain the Koch snowflake (Figure 3d). 

The (Hausdorff) fractal dimension Du for a strictly self-similar fractal is defined as 

10 



Geometrie average relative error (%) 

Ratio 1:1 1:2 2:1 

Dataset REGAL UNIF REGAL UNIF REGAL UNIF 

LAKES 

ISLANDS 

REGIONS 

0.92 

0.58 

0.78 

8.30 

15.66 

12.63 

1.08 

1.77 

0.51 

8.63 

14.52 

15.44 

0.82 

0.69 

1.85 

8.43 

17.68 

10.70 

Table 3: Geometrie average relative error (%) in estimating Sel(U, q) of the proposed method (REGAL) 

as compared to the uniform model (UNIF), for each dataset and for each aspect ratio of the query 

window. 

DH 

logiVr 
(13) 

log(l/r) 

and gives a measure of the "roughness" of the fractal. For a straight line, we have DH = 1; for the Koch 

snowflake, we have DH = log4/log3, slightly higher than 1, that is, it is more rugged than a straight 

line. One of the most rugged curves is the Hubert curve, with fractal dimension DH = 2 [14], hence it 

is a space-filling curve [7]. 

cr-fractals:    However, fractals like the Koch snowflake consist of a single region. For generating multiple 

regions, we make use of the so-called a-fractals. Figure 4 gives a possible cr-fractal generator, together 

with the resulting regions after 2 iterations on the sides of the square with side smax. 

It turns out that the following theorem holds: 

Theorem 2 (Mandelbrot) For a a-fractal in a d-dimensional space, we have 

B 
d 

where B is the patchiness exponent of the regions (d-dimensional volumes) and DH is the fractal dimen- 

sion of their boundaries. 

Proof. See [14]. D 

Given the inherent self-similarity in real datasets, the above relationship holds for real datasets too. 

Our experiments on diverse region datasets as well as previous studies [10, 14] confirm that the law 

strongly holds for lakes, archipelagoes, vegetative ecosystems, urban areas and many others, as shown 

in Table 4. 

11 
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Figure 2: LAKES, ISLANDS and REGIONS (from top to down) datasets: percent relative error vs 

query window width, for square, 1:2 and 2:1 window queries (from left to right). Proposed method 

("x") and uniformity model ("□"). 

In conclusion, the theory of «r-fractals is extremely suitable for the study of real regions datasets. 

The reasons are the following: 

1. It leads to regions that obey the power law (4) with some patchiness exponent. As we illustrated, 

several diverse real datasets obey this law. 

2. It provides an easy, recursive algorithm to generate self-similar, realistic region datasets. All we 

have to do is to choose some values of Nr and r, such that log Nr/ log r — B/d, choose an iterator 

with that Nr and r, and apply it recursively as many times as needed. 

3. It provides useful theorems (like for instance, Theorem 2) which link the patchiness exponent B 

with the fractal dimension Du of the boundary of a set of regions. This is important, because 

we can tap the literature of fractals, where the fractal dimension of several datasets is mentioned 

(e.g., see appendix in [14, 17]) to obtain an accurate estimation of B. 

12 



(a) (b) (c) 

Figure 3: Koch snowflake: (a) initiator; (b) generator; (c) second iteration; (d) relative Koch snowflake. 

u 
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Df log 8 1.19 .D. 
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n 

Figure 4: The region generator (left) and the synthetic dataset after two steps of generation (right). 

5.2    Directions for a practitioner: fast estimation of B 

The final question is: how can a practitioner benefit of our analysis? We have solid answers to this 

question. In fact, up to now, assuming safely that N and A are given in advance, to estimate selectivity 

for range queries making use of developed formulas [11, 15], one was required to compute the total width 

and length extent of the MBRs of the objects. This can be done in two ways: either applying image 

processing algorithm to the representing bitmap for extracting the regions and compute their MBRs, 

or, alternatively, by scanning the entire database storing the data. Both approaches are time expensive. 

On the contrary, the patchiness exponent B and the ratio p can be computed quickly. Concerning 

p, a robust solution is to average the aspect ratios over a small number of regions. Concerning B, we 

suggest two possible fast ways to compute it, both of them based on sampling. The first makes use of 

the representing bitmap, while the second works on the database storing the data: 

1. Focus on a subwindow of size t X t of the bitmap, extract the boundaries of the objects contained 

in it and apply the 0(tlogt) time algorithm [1] to compute their fractal dimension DJJ- Assuming 

that regions are self-similar (and then subwindows of the bitmap are similar to the whole) and 

applying Theorem 2, we can conclude that B = DR/2 is a good approximation for the real B of 

13 



Dataset D„ B Du - IB 

LAKES 1.78 0.85 0.08 

ISLANDS 1.23 0.60 0.03 

REGIONS 1.48 0.70 0.08 

Aegean Island 1.08 0.52 0.04 

Japan archipelago 1.19 0.59 0.01 

Italy plains 1.32 0.63 0.06 

Whole Earth [14] 1.2 0.6 0 

Cypress vegetation [10] 0.62 1.23 0.01 

Table 4: Connection between DH and B for real datasets: above the line, our own experiments (LAKES, 

ISLANDS, REGIONS, Aegean Islands, Japan Archipelago and Italy agricultural plains). Below the line, 

data drawn out from [14, 10], resp. 

all the map. 

2. Focus on a subwindow of the bitmap, retrieve from the database all the objects contained in it 

and compute the CCDF of their areas. Then, plot the obtained points in a log-log diagram and 

interpolate them with a straight line using the classic least-square method. The negated slope of 

such a line corresponds to the patchiness exponent of the subset of objects. Once again, assuming 

that regions are self-similar, we can be confident that such exponent is representative for the whole 

dataset. 

Finally, if both approaches are not practicable, we can easily obtain an accurate lower bound on the 

selectivity by setting B = 0.5 and an accurate upper bound by setting B = 0.9, since B is experimentally 

known to range over the interval [0.5,0.9]. 

Therefore we conclude that our analysis is suitable in practice and contributes to the solution to the 

problem of query performance evaluation in real spatial databases. 

6    Conclusions 

The main contribution of this paper is the accurate modeling of real region datasets, such as archipela- 

goes, areas of vegetation, city regions, plain maps, hydro-graphic systems and many others. We showed 

that very few measures are needed (the total count of objects, the total volume, the average aspect 

ratios among the sides of an object and the patchiness exponent), to achieve extremely accurate results. 

Our experiments on diverse,  real datasets, showed that our approach achieves selectivity estimates 
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within 1-5% for the maximum relative error, against 30-70% of a naive model that uses the uniformity 

assumption. 

We also pinpointed the connection between the patchiness exponent B and fractals, and specifically 

the cr-fractals. The immediate benefits are (a) a fast method to estimate B and (b) a simple method 

to generate realistic region data. 

Promising future directions include the use of cr-fractals to study selectivities of additional query 

types (nearest neighbor etc.) and to analyze SAMs on real region data. 
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