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ABSTRACT 

As we approach the new millennium, robots are playing an increasingly important 

role in our everyday lives. Robotics has evolved in industrial and military applications, 

and unmanned space exploration promises the continued development of ever-more- 

complex robots. Over the past few decades, research has focused on the development of 

autonomous mobile robots - robots that can move about without human supervision. 

This brings with it several problems, however, specifically the problem of localization. 

How can the robot determine its own position and orientation relative to the environment 

around it? 

Various methods of localization in mobile robots have been explored. Most of 

these methods, however, assume some a priori knowledge of the environment, or that the 

robot will have access to navigation beacons or Global Positioning Satellites. In this 

thesis, the foundations for feature-based localization are explored. An algorithm 

involving the Hough transform of range data and a neural network is developed, which 

enables the robot to find an unspecified number of wall-like features in its vicinity and 

determine the range and orientation of these walls relative to itself. Computation times 

are shown to be quite reasonable, and the algorithm is applied in both simulated and real- 

world indoor environments. 
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I.        INTRODUCTION 

Twelve years ago, the number four reactor at Chernobyl became unstable, and the 

worst nuclear accident in history became a reality. The concrete encasement built around 

the facility is beginning to show signs of structural failure, yet the site is still so 

radioactive that people cannot work inside. But "Pioneer," a thousand-pound robot 

designed by RedZone, was designed to enter the hazardous area, and take readings and 

images to help scientists assess the load bearing performance of the walls. [Refs. 1, 2] 

This scenario demonstrates one of the reasons that robots have begun to appear in 

almost every facet of our lives, often emerging as a popular alternative to human labor. 

Robots are able to enter hazardous areas and perform tasks in environments where 

humans would be placed in unacceptable danger. If the robot becomes a casualty, only a 

financial loss is suffered. This makes them ideally suited to enter areas like Chernobyl, 

and other environments as well. For 80 days, "Sojourner" was able to send information 

to NASA about the surface of the planet Mars. It would have been difficult to sustain a 

human exploration team for this length of time in a radiation environment where 

temperatures range from -13.3 to 54.4 degrees Celsius [Ref. 3]. The risks of such a 

mission would have been extraordinary. NASA was able to use robots on this primary 

exploration, thereby reducing risk for a planned human exploration in the future. 

Clearly, the inherent suitability of robots in hazardous environments offers many 

potential military applications for mobile robots. Some potential military applications 

have recently been explored at the Naval Postgraduate School, including a navigation 

system for an outdoor robot [Ref. 4], and battlefield surveillance [Ref. 5]. Applications 

involving the cooperation of multiple robots are also being explored [Refs. 5, 6]. A 

rugged platform has been used in development for possible applications in searching for 

mines and unexploded ordnance [Ref. 7]. The Defense Advanced Research Projects 

Agency (DARPA) supports research in distributed robotics for military applications [Ref. 

8]. 

In addition to reducing risk to human life, robots offer other advantages. The 

human mind has a limited attention span. Humans are prone to boredom and fatigue. 

Robots are immune to boredom and fatigue (as long as power supplies are maintained). 



Thus, robots are better suited than humans to perform repetitive or tedious tasks. 

Searching an area is a prime example. The accuracy of the search inherently depends on 

the searcher's level of concentration, but concentration will degrade as a human searcher 

becomes fatigued and bored. A robot can perform the same task with uniform accuracy, 

and can continue the search for days or weeks without taking a break. Robots are also 

ideally suited for tasks such as sentry duty or security patrols, since these tasks involve 

alertness during a repetitive behavior. 

Given the proper array of sensors, the potential applications for robots is 

boundless. But clearly the need is greatest for intelligent, mobile machines; especially 

those which can work in concert and adapt to dynamic environments. But sensors alone 

do not enable a robot to react to its environment. The information from these sensors 

must be processed in clever ways. Some degree of on-board intelligence is crucial to this 

processing. 

Some robots are hard-mounted, while others have mobility. For those which have 

mobility, it becomes a challenge to enable the robot to move about unsupervised and 

unassisted. Such robots are often called autonomous mobile robots. Controlling the 

robot's movement with a joystick or other interface is common practice today, but this 

does not represent the ideal solution. It would be better if the robot could autonomously 

navigate itself. But this brings several issues with it, not the least of which is localization. 

A.       THE LOCALIZATION ISSUE 

One very important issue associated with the operation of an autonomous mobile 

robot is localization. Specifically, localization is the process of defining the real-time 

position and orientation of the robot with respect to a given coordinate system. Usually, 

this coordinate system is some representation of the real world. Localization is 

important; the robot must know where it is in order to navigate to a new location. The 

robot must have a point of reference if it is to explore an area. 

When operating in outdoor environments (on earth),the availability of Global 

Positioning Satellites (GPS) makes the localization problem a relatively simple one to 



solve, but by no means is GPS a universal solution. A robot that operates in an indoor 

environment is often unable to receive GPS signals. Even certain outdoor environments 

near buildings or dense vegetation may leave the robot without simultaneous connections 

to four satellites. If the robot is to complete its task outside of Earth's atmosphere (the 

surface of Mars, for example), GPS offers no assistance whatsoever. Even in applications 

where GPS is available, the accuracy of the commercially available signal may not be 

sufficient for some applications. 

Dead reckoning is probably the simplest and most common method of self- 

localization in mobile robots. Generally, some type of odometer is used to count wheel 

rotations or measure distance traveled or velocity. Given the initial placement, and 

velocity as a function of time, the robot computes its present location by integrating its 

velocity function. The nature of integration, however, implies that imperfections in the 

odometry readings will accumulate over time. Thus, the longer a robot moves about in a 

particular environment, the less accurate its localization will be. This is the prime 

disadvantage of dead reckoning. In the case of wheeled robots, wheel slippage is a 

common cause of dead reckoning errors. Dead reckoning is not a viable means of 

localization for long term mobility, unless some means exists to check for and correct 

cumulative errors. 

Beacon tracking is another way to enable localization, and early work at the Naval 

Postgraduate School focused on beacon tracking robots [Ref. 9, page 14]. A number of 

beacons are placed somewhere in the robot's vicinity at known locations. The beacons 

transmit signals, which are received and then interpreted by the robot. Either through 

triangularization or some other method, the robot determines its position relative to these 

known locations. This method becomes unfeasible if the environment cannot be 

equipped with beacons. The surface of Mars, or a battlefield, for example, cannot be 

equipped with navigation beacons prior to the deployment of the robot. 

To enable an autonomous mobile robot to operate in a given environment over an 

extended period of time, without assuming the availability of GPS satellites or navigation 

beacons, it is clearly necessary to correct the dead-reckoning errors that accumulate over 

time. One general approach to correcting dead-reckoning errors is to provide the robot 



with the ability to recognize physical features or landmarks in its environment as it moves 

about, and to calibrate itself with respect to these features when it arrives at the 

previously traveled area again. This method is commonly referred to as feature-based 

localization, and it is very similar to the method that humans use. 

This thesis explores the foundations for such a method. I have chosen to limit the 

investigation to the very specific (and simple) case of an autonomous mobile robot 

equipped with time-of-flight sonar range sensors, restricted to an indoor environment. 

The features that the robot learns to recognize will be walls. It is my hope that if the 

foundations can be established in this simplified case, they can later be modified and 

applied to more complex scenarios. 

B.       GOALS OF THE THESIS 

In this thesis, an algorithm is to be developed which enables a robot to recognize 

an undetermined number of wall-like features in its environment. The algorithm will 

determine the number of walls, as well as the range to and orientation of these walls 

relative to the robot. 

The objective is to develop an algorithm which allows the robot to automatically 

determine the range to and orientation of any suitable walls, without a priori knowledge 

of the environment. The algorithm must be tested and shown to perform reasonably well 

in real indoor environments. 

It should be noted that this thesis is intended to demonstrate the concept of 

feature-based localization. To facilitate the concept demonstration, data are processed 

off-line. In practice, the same algorithm should be run in the high-level control of the 

robot itself. Running the algorithm on the robot would prevent close analysis of the 

performance of the algorithm, however, so this step is left for future research. 



C.       THESIS OUTLINE 

The remainder of this thesis deals with the introduction and investigation of an 

algorithm for finding an undetermined number of walls in an autonomous mobile robot's 

environment. Some background information on the robotic system used for testing is 

clearly necessary, as well as some information on the Hough transform and competitive 

neural networks. 

Chapter II gives a system overview of the mobile robot used in this experiment; 

the NOMAD SCOUT. This robot is a product of Nomadic Technologies, Inc. 

In Chapter HI the problem is presented in more detail. Related projects are 

discussed in the literature survey. A solution involving the Hough transform and a 

competitive neural network is proposed. 

Since the reader may not be familiar with the Hough transform, an introduction is 

provided in Chapter IV. The grid-based approach to extracting data from the Hough 

domain is discussed. The key elements of the Hough domain are pointed out, and solved 

for explicitly. 

An introduction to competitive neural networks is provided in Chapter V. The 

Kohonen neural network is introduced, and several modifications are made to it. It is 

shown how such a network may be applied to find an unspecified number of clusters in a 

given pattern space. A demonstration of clustering in a two-dimensional pattern space is 

provided, and the time required to conduct the clustering is shown to be adequate. 

The specific implementation of the proposed approach is discussed in Chapter VI. 

The implementation is discussed in several stages. The Hough transformation is 

implemented in an unconventional manner, yielding clusters of points in the Hough 

domain which represent groups of curve intersections. These clusters are then classified 

by the network of Chapter V, and each cluster is represented by an exemplar vector. 

These exemplar vectors are taken to be representations of the walls near the robot. 

The results of the algorithm applied to both simulated and real-world sonar returns 

are given in Chapter VE. Several scenarios are discussed in detail. The results show the 

algorithm to perform adequately for the chosen application. 



In Chapter Vm, the implications and potential applications of the proposed 

algorithm are discussed. Additionally, potentials for future work are identified and 

discussed. 

The code used to implement the proposed algorithm is included in the appendices 

to this document. Appendices A, B, and C are the implementation of the algorithm itself, 

while appendix D is the code used to gather the sonar data. 



II.       SYSTEM OVERVIEW 

Several groups are pursuing research relating to autonomous mobile robots at the 

Naval Postgraduate School. The school has purchased a number of robots from a nearby 

supplier to facilitate this research. Nomadic Technologies, Inc., located in Mountain 

View, CA, is the producer of several models of autonomous mobile robots. 

The school has purchased one NOMAD 200 ™ mobile robot, and four NOMAD 

SCOUT ™ robots, with several more Scout robots planned for the near future. These 

platforms are, for the most part, code-compatible [Ref. 10]. The algorithm outlined in 

this thesis was tested in real conditions on the Scout platform. This Chapter is intended 

to give the reader some familiarity with the platform, and provide a technical context for 

comparisons. 

Only those aspects of the platform which pertain to the thesis are explained in this 

Chapter. A complete description of the Scout platform can be found in References [10 

and 11]. 

Off-line processing of the range data gathered by the robot was conducted on a 

computer, using MATLAB ™ version 4.2 (b), a software package by Mathworks, Inc. A 

brief description of the computer platform and the software package is included to 

provide further technical context for comparisons. 

A.       SYSTEM OVERVIEW: NOMAD SCOUT™ 

The Scout is an autonomous mobile robot system, equipped with a variety of 

sensors. 16 independent ultrasonic time-of-flight sonar sensors are included in the 

package for range-finding, effective over 6 to 255 inches. 16 independent tactile switches 

are located about the circumference of the robot. An odometry sensor is included to 

facilitate dead reckoning. The control system is hierarchical. The majority of the "low- 

level" or "housekeeping" control functions, including the sensing and communications, 

are performed by an on-board Motorola MC68332 multiprocessor. Motor control is 

conducted by a TMS320C14 DSP chip. "High-level" controls can be administered either 

by a laptop computer mounted on top of the robot, or a remote Linux or Unix workstation 



connected to the robot via a radio modem. The Scout is powered by two 12 Volt, 17 

Ampere Hour lead-acid batteries, which can power the robot for up to 20 hours of normal 

operation when fully charged. [Refs. 10, 11]. 

Most applications conducted at the Naval Postgraduate School are administered 

from a Unix workstation via a wireless modem. In this particular application, a Unix 

workstation was connected to the robot via wireless modem only to gather range data 

from the sonar sensors. The data was then saved in ASCII format, and subsequently 

processed off-line. Hardware and software platforms used in this off-line processing are 

described later in this chapter. 

1.        Mechanical Description 

The newest version of the Scout is shown in Figure 1. Without its batteries, the 

Scout weighs 23 kilograms. It is 34 centimeters tall, and 38 centimeters in diameter. 

[Ref. 11] 

Figure 1. Nomad Scout II (from Ref. [12]) 

The platform can travel with a maximum velocity of 1.0 meter per second, and 

can accelerate at up to 2 meters per second squared. The ground clearance is 3.5 

centimeters. The Scout is a 2 degree-of-freedom robot with 2 wheel differential drive at 

the geometric center of the robot. [Refs. 10, 11] 



2. Odometry 

The Scout is able to keep a running, real-time integral of its current position in 

world coordinates. It assumes its startup position to be the origin, unless the origin is 

reset during operation. The x axis extends from the center of the robot to the forward 

direction (the direction the robot is facing). The y axis extends from the center of the 

robot to the robot's left. The robot also tracks its orientation, given relative to the x axis, 

such that counter-clockwise is a positive angle. 

The odometric encoder has finite resolution. The translational movements 

(relative to the x and y axes) are measured by 167 counts per centimeter, and returned at 

one tenth of an inch resolution. Orientation is measured with 45 counts per degree, and 

returned with one tenth of a degree resolution. [Refs. 10,11] 

3. The Sensus 200 ™ Sonar Ranging System 

Sensus 200™ is the trademark name given to the time-of-flight sonar ranging 

system installed on the Scout by its creators at Nomadic Technologies. It consists of 16 

independent channels equally dispersed about the circumference of the robot. The 

separation of the center axes of adjacent sonar channels is 22.5 degrees. The sensors used 

are standard Polaroid transducers, driven by a Polaroid 6500 ranging board. Each 

transducer has an independent beam width of 25 degrees, so there is some overlap. [Ref. 

13] 

The system is a time-of-flight ranging sensor, based on the return time of an 

ultrasonic acoustic signal. At the initiation of each read cycle, each transducer 

sequentially transmits a pulse at 49.4 kHz, and the time required for an echo to be 

received is measured. The transducers have a tendency to ring after transmitting, so the 

echo receivers must be blanked for a certain amount of time. This results in a minimum 

distance of about 6 inches. If no echo return is detected, the next read cycle is initiated, 

resulting in a maximum distance of 255 inches. [Ref. 13] 

Under ideal operating conditions, the sensor array would be expected to return 

accurate range findings over 6 to 255 inches, and do so with 1 percent accuracy over the 



entire range [Ref. 10]. In practice, however, the performance of the time-of-flight sonar 

operating alone is less reliable. This is due primarily to the non-ideal propagation 

characteristics of acoustic signals. Echo returns tend to be accurate only when they are 

reflected by a nearly orthogonal surface. Signals may be reflected by more than one 

surface before returning to the echo receiver, resulting in a range finding that is higher 

than the true value. The material construction of the reflective surface may also tend to 

damp acoustic signals, giving (in the worst case) a maximum range finding when in fact 

the surface is much closer. There are a number of ways to improve the reliability of the 

range data, and some of these will be discussed in Chapter VIE. 

B. COMPUTER AND SOFTWARE 

As stated earlier, the range data were simply collected by the robot, and processed 

off-line in order to demonstrate the concept of feature-based localization in a meaningful 

way. The data were ported in ASCII format to a Gateway 2000 ™ P5-75 system. The 

processor is a first generation Intel™ Pentium ™, with 75 MHz clock speed. 32 

megabytes of random access memory are installed in the system. The operating system 

used is Microsoft™ Windows 95 ™. 

Data were processed using original programs written for the Mathworks software 

program MATLAB™, version 4.2 (b). No other programs were running when data 

analysis was conducted. 

C. CHAPTER SUMMARY 

In this chapter, a brief overview of the Nomad Scout robotic platform was 

provided. A brief description of the platform used to process data off-line was also given. 

The next chapter will introduce the problem of localization in further detail, and outline 

the proposed approach. 

10 



III.     PROBLEM STATEMENT AND PROPOSED APPROACH 

This chapter begins by defining the problem to be solved. Next, related literature 

is surveyed and summarized. Finally, the proposed solution to the problem is outlined, 

and broken into steps. These steps are then further detailed in the following chapters. 

A.       PROBLEM DEFINITION 

As stated in Chapter I, this thesis investigates the problem of feature-based 

localization of an autonomous mobile robot. Localization is the process of ascertaining 

the real time position and orientation of the robot relative to a world coordinate system. 

Localization becomes an important issue, because a robot cannot possibly navigate or 

explore in an environment without accurate localization. 

Many researchers have studied the problem of localization, and literature is widely 

available. Some of these methods assume the a priori availability of a world map. Others 

use beacons in the environment that can be recognized by the appropriate sensors 

installed on the robot, but this approach is not always feasible. Global Positioning 

Satellites can be used in some situations, but not all. 

Dead reckoning is a very common feature, found on many mobile robots. It is 

insufficient, because odometric errors accumulate over time. Experience with mobile 

robots at the Naval Postgraduate School shows that substantial errors can accumulate in 

as little as 30 minutes, as shown in Figure 2. The figure shows the results of a Scout 

robot used to map an indoor environment. The actual indoor environment is a laboratory 

at the Naval Postgraduate School; in reality the walls should be nearly orthogonal or 

parallel to one another. The odd corridor at the top of the map reflects odometric errors 

which have accumulated in only 31 minutes. Clearly the need arises for some means to 

identify and correct cumulative odometric errors. 
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Figure 2. Dead reckoning error 

If the robot could identify features in its environment, then it would be possible to 

correct these cumulative errors. A robot could identify features near it at startup, before 

any errors have occurred. Then, after it has moved about for a period of time, it would 

return to this location and look once again for those features. If the features appear in a 

slightly different location or orientation during this second sample, then the difference 

must be due to cumulative dead reckoning error. The robot simply calibrates its x and y 

position and orientation to compensate for the difference. 
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This is a difficult problem, and this thesis does not attempt to solve it in its 

entirety. Rather, the problem is simplified with certain assumptions, in the expectation 

that fundamental concepts explored herein can be extended to more complex scenarios. 

First, we assume that the robot is indoors. Second, we assume that the features to be 

recognized are nearly straight lines; in other words, walls. Finally, we assume that the 

robot is equipped with some type of ranging sensor; in our case we are using an ultrasonic 

sonar array. The specific platform used to gather range data and explore the concept of 

feature-based localization is the Nomad Scout mobile robot described in Chapter II. 

Armed with these assumptions, the next step is to define an achievable objective. 

The intent is only to demonstrate the feasibility of the concept of feature-based 

localization. Hence, the problem becomes one of enabling the robot to search for and 

find an undetermined number of walls in its vicinity, and uniquely and accurately 

determine the position and orientation of these walls relative to itself. This process must 

be conducted without a priori knowledge of the environment, and the results must be 

based entirely on the range data from the sonar array. If this can be done, we have 

accomplished the goal of demonstrating a means for correcting cumulative dead 

reckoning errors. We simply conduct the search twice; once at startup at which time any 

nearby walls are identified and stored in memory. After the robot has moved about the 

room and accumulated some dead reckoning error, we send the robot back to the dead 

reckoning origin, facing in the direction of the dead reckoning x axis. The features 

(walls) will appear in the second search with a slightly different position and orientation, 

and the difference reflects the cumulative error due to dead reckoning. Corrections are 

made to the robot's dead reckoning localization until the features appear in their original 

position and orientation. 

Finally, we note that any straight wall can be uniquely described from any point 

near the wall using only two parameters, as shown in Figure 3. If this "point" is the 

center of the robot, then the first parameter is the shortest distance to the wall; in other 

words, the distance from the center of the robot to the wall along a line orthogonal to the 

wall. The second parameter is the orientation of the wall; in other words, the counter- 

clockwise angle from the forward direction of the robot to the orthogonal line. 
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Figure 3. Parameters used to describe a wall 

B.       LITERATURE SURVEY 

In 1962, Hough developed a means for representing complex arrangements in the 

Cartesian domain by parameters [Ref. 14]. In many cases, the complex arrangements 

were transformed to much simpler arrangements. The parameters used were the 

traditional polar axes, radius and counter-clockwise angle from the x axis. This 

transformation by parameterization became known as the Hough transform. 

Throughout the 1960s and 1970s, competitive neural networks were developed by 

many researchers, including Stephen Grossberg, Cristoph von der Malsburg, and Tuevo 

Kohonen, among others [Ref. 15]. In particular, Kohonen introduced a simplified version 

of the INSTAR learning rule to be used with competitive networks. This simplified rule is 

often referred to as the Kohonen learning rule [Refs.15, 16]. 

In 1972, Duda and Hart suggested a means for using the Hough transform to 

detect lines in pictures [Ref. 17]. The paper has become a standard reference, not only for 

researchers studying localization of sonar-equipped mobile robots, but also for those 

studying robot vision and image processing. The method proposed by Duda and Hart for 

extracting key information from the Hough domain is outlined in Chapter IV. Alternative 

methods using neural networks inspired by Kohonen have since been presented [Ref. 18]. 

A team of researchers in Sweden have recently begun to experiment with the 

Hough transform as a feature-recognition tool in a mobile robot [Refs. 19, 20,21]. In this 

case, the Hough transform is modified slightly; range findings at certain values are 
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weighted more heavily than others. The "Range Weighted Hough Transform" (RWHT) 

is applied inside the feedback loop of a mobile robot to assist in localization with 

documented results. 

Variations on the Hough transform have also been used to find shapes other than 

straight lines. The methodology originally proposed by Duda and Hart has been modified 

and used to detect curves using a Fourier parameterization [Ref. 22]. By combining the 

Hough transform with a neural network, a complete shape recognition system has been 

proposed [Ref. 23]. 

Previous work at the Naval Postgraduate School explored localization techniques 

for a Nomad 200 mobile robot using the Hough transform of ultrasonic sonar range 

findings [Ref. 24]. The proposed algorithm was successful in finding the longest wall 

and determining the range and orientation of this wall. The method used for analysis of 

the Hough domain was very similar to that proposed by Duda and Hart. 

At the Naval Research Laboratory in Washington, D. C, a group of scientists 

have been investigating the feasibility of simultaneous localization and exploration. In 

general, it is necessary to have accurate localization in order to facilitate exploration. At 

the same time, most methods of localization assume some a priori knowledge of the 

environment. This apparent contradiction is elegantly addressed through the use of 

evidence grids. The concept is to divide the environment into small grid squares, and 

look for evidence that a particular square may or may not be occupied. [Refs. 25, 26] 

The Hough transform has proven to be a very versatile tool, and has been put to 

many other applications in recent years. A three dimensional imaging system using laser 

generated ultra short x-ray pulses was developed in 1997 [Ref. 27]. A non-invasive iris 

recognition system employing the Hough transform was developed in 1996 [Ref. 28]. 

C.       PROPOSED APPROACH 

The Nomad Scout mobile robot is equipped with an ultrasonic sonar array. This 

enables the robot to take range findings in all directions, and develop a two-dimensional 

view of the world in terms of the range returns. We will take the center of the robot at 
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startup to be the origin of a Cartesian plane, as in Figure 4. The x axis is taken to be the 

initial forward-looking direction of the robot. The y axis is taken to be the direction 90 

degrees counter-clockwise from the robot. This coordinate frame is commonly called the 

robot coordinate frame, as opposed to the world coordinate frame, in which the origin 

and axes are fixed with respect to the world. 

yaxis 

Sonar 
Transducers 

xaxis 

TOP VIEW 

Figure 4. Cartesian representation of world coordinate system 

Note that at startup, the world coordinate system and the robot coordinate system 

are the same. This will not likely be the case when the robot returns to this location a 

second time for new readings, as some dead reckoning error will have accrued. In each 

instance, the robot will determine the range and bearing to any nearby walls in terms of 

robot coordinates. If the algorithm is able to provide reliable findings for the ranges and 

bearings of these walls, then any substantial difference must be due to the dead reckoning 

errors resulting from wheel slippage and other factors. 

Each range finding from one of the sonar transducers can be regarded as a point in 

the Cartesian plane, uniquely described by an (x, y) pair. The proposed algorithm will be 

broken into the following four steps: 
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1) The range data returned from the Sensus 200 system will be converted to 

(x, y) pairs representing the Cartesian points (in robot coordinates) where the 

echo occurred. 

2) These (x, v) coordinates will be parameterized using Hough parameters. 

3) Regions in the Hough domain where curves tend to intersect each other must 

be represented by clusters of points. 

4) A competitive neural network will be employed to identify clusters and 

represent them by a single point. 

D.       CHAPTER SUMMARY 

In this chapter, the problem of localization in mobile robots was discussed and 

defined. Some of the past and present research in related topics was discussed. A means 

for implementing feature-based recognition was proposed and broken into steps. The 

following two chapters will introduce the tools necessary to complete the steps outlined 

in this chapter. 
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IV.      THE HOUGH TRANSFORM 

The Hough transform was filed as a U.S. patent in 1962 [Ref. 14], and has since 

been introduced into more standard technical literature by numerous sources. It has also 

been called the point-to-curve transformation [Refs. 17, 29], since the method entails 

mapping each point in the Cartesian space into a curve in the parameter space. We begin 

this chapter by introducing the fundamentals of parameterization, and then discuss 

specifically the Hough parameterization. 

A.       FUNDAMENTAL PARAMETRIC REPRESENTATION 

To demonstrate the concept of parameterization, we begin with a simple example. 

It is one of the fundamental concepts of algebra that a straight line in the Cartesian plane 

can be uniquely and completely described by two parameters only; the slope of the line 

and the y-intercept. The parameterization is already familiar to the reader as: 

y = m0x+b0 (1) 

where m0 is the slope of the line and b0 is the y-intercept. In this case, the parameters are 

m0 andfc0. 

If this line is plotted in the m-b parameter plane, it is transformed into a single 

point. Further, it can be seen that for any point (x0 ,y0), the set of all lines through 

(x0, y0) will be transformed into a straight line in the m-b parameter plane (see Figure 5 

(a)). This is not so surprising since the transformation equation (Equation 2) 

demonstrates a clearly linear relationship between m and b when xo and yo are held 

constant. 

b = -x0m+y0 (2) 

It can also be seen that if several points in the Cartesian plane lie on a line, then 

these points will be transformed in the m-b parameter plane as lines which all intersect at 

a single (m,b) point (see Figure 5 (b)). Not surprisingly, the (m,b) coordinates of this 

intersection point are exactly the slope and y-intercept of the original line through the 

points in the x-y coordinate plane. 
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Figure 5. Point - Line transformations (after Reference [24]). (a) A point in the 
Cartesian plane is transformed to a line in the parameter plane, (b) A line in the 

Cartesian plane is transformed to a point in the parameter plane. 

One drawback in this particular parameterization is that a singularity exists. The 

independent variable in the m-b parameter plane is the slope, which is unbounded. When 

a line in the Cartesian plane is parallel to the y-axis, the slope becomes infinite. 

B. POINT-CURVE TRANSFORMATION 

As described by Hough [Ref. 14], and later by Duda and Hart [17], another set of 

parameters can be used to transform the Cartesian plane into the 6-p plane. The line 

described earlier by Equation 1 could also be described by 

p0 = x cos 60 + y sin 00 (3) 

where p0 is the shortest distance from the origin to the line, and 0O is the angle of the 

normal to the line through the origin (see Figure 6). In this case as well, a straight line in 

the Cartesian plane is uniquely and completely described by just two parameters, 0 and p, 

but in this new parameterization the singularity problem incurred in the m-b 

parameterization has been eliminated. Since both parameters used to describe the line are 
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defined by the normal to the line through the origin, this parameterization is called the 

normal parameterization. 

Line given by: 
y = m0 x + b0        or 

p0 = xcosö 0+ ysinö 0 

Figure 6. Normal parameterization of a line 

The normal parameterization demonstrates some interesting properties when the 

transformation is plotted, as shown in Figure 7. 

r 

(a) 

63 92 0j 

yA  p0 = xcosd 0+ysinO 0 

;> 

(b) 

Figure 7. Point-curve transformations (after Reference [24]). (a) A point in the 
Cartesian plane is transformed to a curve in the normal parameter plane, (b) A line in 

the Cartesian plane is transformed to a point in the normal parameter plane. 

Equation 3 serves as the transformation equation, where the independent variable 

6 varies over the range (-K,%). For any given point (x0 ,y0) in the Cartesian plane, the set 

of all lines passing through (x0, y0) transforms into a sinusoidal curve in the (0, p) 
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parameter plane (see Figure 7 (a)). For this reason, the transformation resulting from 

normal parameterization is sometimes called the point-curve transformation. The curve 

resulting from the transformation of (x0 ,y0) is given by 

p0 = x0 cos 6 + y0 sin 6 (4) 

From Figure 7 (b) it can also be seen that collinear points in the Cartesian plane 

will each be transformed into curves, and that these curves will have a single point of 

intersection in the (6,p) parameter plane. Furthermore, the (9,p) coordinates of this 

intersection point are precisely the normal parameters; 6 is the angle of the normal and p 

is the shortest distance from the origin to the line (i. e. the length of the normal). 

The Hough transform uses the normal parameterization and point-curve 

transformation described. The centerpiece the Hough transform and the shape 

recognition algorithm proposed by Duda and Hart [Ref. 17] is that a line in the Cartesian 

plane will be transformed to a single point. The task of recognizing a line has now been 

reduced to the task of finding a point. 

C.        HOUGH TRANSFORM TECHNIQUES 

Given that lines in the Cartesian plane can be reduced to points in the Hough 

domain, the challenge comes in finding the points where curves intersect in the Hough 

domain. Particularly challenging is the task of automating this process so that a computer 

or robot can find these points without human assistance. The reader should bear in mind 

that if the data in the Cartesian plane represent nearly anything in the real, physical world, 

they will not be completely collinear; small non-linearities will exist. Therefore, the 

curves will intersect at "almost" the same point. 

1.        Resolution Grids: The Duda and Hart Technique 

One possible method for extracting these key intersection points in the Hough 

domain is to divide the Hough domain into grid squares. A count would be kept of the 

number of curves that pass through each square in the grid. The square with the most 
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curves passing through it must contain an intersection or group of intersections in a small 

neighborhood. The original line in the Cartesian plane can then be approximated by the 

(0, p) pair at the center of the grid square. If more accuracy is required in the 

approximation, simply reduce the size of the grid square. 

This is the concept behind the method proposed by Duda and Hart [Ref. 17]. 

Assuming it would be tedious and inefficient to analyze the Hough domain explicitly to 

find the precise intersections, Duda and Hart proposed dividing the Hough domain into a 

two-dimensional grid. The grid resolution would be based upon how much noise or 

'scatter' existed in the Cartesian domain. Each cell in the grid represents a (0,p) region 

where transformations of almost collinear points will nearly intersect. Each cell in the 

Hough domain is systematically analyzed to determine the set of curves that pass through 

it. Finally, the set of the corresponding coordinate points in the Cartesian plane must 

constitute an approximate line, approximately defined by the (0,p) coordinates of the 

cell in the Hough domain. The general procedure is outlined in Table 1. Previous work 

at the Naval Postgraduate School on mobile robot localization employed this technique 

[Ref. 24]. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

For a given point, generate a 6-p curve plotted on the 
parameter plane grid. 

Note the cells that the curve crosses. 

Repeat Steps 1 and 2 for every point. 

Count the number of crossings in each cell. 

Recover the points whose curves contributed to the total 
of each cell. 

Estimate a line for each set of points. 

Table 1. Steps for Duda and Hart technique (After Ref. [24]). 

Although this technique is quite popular, especially among image processing 

researchers, it is included in this thesis for information only. It will not be used in this 

thesis. Rather, intersections will be solved for explicitly and then clusters will be grouped 

by an unsupervised neural network. 
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2.        Explicitly Solving for Intersections 

It is desired to explicitly express the (0,p) point where two curves intersect in 

terms of the original points in the Cartesian domain from which the curves were 

transformed. 

As stated earlier, a point (x0 ,y0) in the Cartesian domain will be transformed in 

the Hough parameter domain to a sinusoidal curve. That curve was given earlier in 

Equation 4 as: 

p0 =*0 cos0 + yo sin0 

Assume there are two curves pi and p2 in the Hough domain which are the 

transforms of two points in the Cartesian domain O^y,) and (x2,y2) respectively. The 

curves are given by the transformation equations 

Pi =*! cosö + y, sinö 

p2 = x2 cos 9 + y2 sin 6 

It is a fundamental fact of geometry that any two points in the Cartesian domain are 

collinear, so it stands to reason that curves px and p2 must intersect. Let (6, p) be the 

point in the Hough domain where the two curves intersect. 

At the particular value of 6 where the two curves intersect, we must have the 

condition that pi = p2. By substituting the transformation equations, we have 

PJ = xY cos0 + y, sin6 = x2 cos0 + y2 sin6 = p2 

or, equivalently, (JC2 - x2 ) cos 6 + (y, - y2) sin 6 = 0. 

Dividing both sides of the equation by the cosine of 6 gives 

/ \    / /sin^T h-^ + U-y^—J = o 

Finally, collecting like terms and re-arranging, we arrive at an explicit value for 

the particular value of 6 where the two curves intersect, in terms of the Cartesian 

coordinates: 

{y^-yi)   (yi-y2) 
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8 = arctan 
1 1 

, for^ *y 

or, equivalently, ' (5) 

0 = Y fory,=y2 

Equation 5 gives an expression for 8 which is a function only of the coordinates of 

the original points in the Cartesian domain. Once 8 is known, Equation 4 can be used to 

solve for the corresponding p: 

p = x1 cos0+Vj sin8 = x2 cos8 + y2 sin0 (6) 

Hence, given any pair of points (xi, v,) and (x2 ,y2) in the Cartesian domain, the 

precise locations of their intersections in the Hough parameter domain can be solved for 

by Equations 5 and 6. This is significant, because it implies that it is not necessary to 

analyze the entire curve in order to isolate the interesting points on the curve. This will 

substantially reduce processing time of the proposed algorithm. 

It is important to note that the inverse tangent function will yield two possible 

values for 8, separated by % radians. Each 8 will yield a different value for r when used 

in Equation 6; which differ by a factor of (-1). This implies that the Hough domain is 

symmetric; i.e., (^j,) and (x2,y2) will transform into curves which intersect at two 

places in the Hough domain. Due to the symmetry, however, knowledge of only one 

(8,p) pair is sufficient. 

If multiple coordinates are transformed, and their curve intersections solved for 

explicitly, it can be expected that multiple points in the Hough domain will be at the 

(0,p) corresponding to a line in the Cartesian plane. In a real environment where noise 

exists, it can be expected that "clusters" of points will be congregated near the (0,p) 

corresponding to a line in the Cartesian plane. If explicit solution is used, some means 

must be used to cluster these data points in the Hough domain and interpret a meaningful 

result. It also must be noted that the number of clusters in the Hough domain will not be 

known a priori. Clustering of data into an unspecified number of groups using neural 

networks is the subject of Chapter 5 of this thesis. 
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D.       CHAPTER SUMMARY 

In this chapter, the concept of the Hough transform was introduced. The 

resolution grid method for its implementation was presented and discussed briefly. A set 

of equations for finding the key intersections in the Hough domain explicitly were 

derived. Explicitly solving for intersections in the Hough domain will result in noisy 

groups of points when lines in the Cartesian plane are not perfectly collinear. This will 

almost certainly be the case for real sonar data. The following chapter presents a means 

for clustering these data and representing them with exemplar vectors. 
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V.       NEURAL DATA CLUSTERING 

In this chapter it will be shown how a neural network may be used to classify 

clusters of data in two dimensions. Although many methods exist to cluster data, a 

variation of the competitive "winner-take-all" neural network has been chosen for this 

application because of its simplicity and inherent resistance to noise. To begin with, an 

introduction to the "winner-take-all" competitive network is discussed. Next, that 

network is modified slightly from its traditional form to enable data representation in 

cases where the number of clusters is not known beforehand. Finally, the network is 

tested on some sample clusters in two dimensions and computation times are measured. 

The proposed network is demonstrated in terms of a generic two dimensional 

pattern space. Later, in Chapter 6, the network will be applied in the specific two 

dimensional pattern space of the Hough domain. 

A.       "WINNER-TAKE-ALL" COMPETITIVE NETWORKS 

Competitive networks are examples of unsupervised learning networks. 

Unsupervised learning implies that the network is presented a set of training data, but is 

not given a corresponding set of target outputs for each input. Rather, the network 

organizes the training patterns into classes on its own. 

The "winner-take-all" learning rule, also referred to in some texts as the Kohonen 

learning rule [Ref. 30], differs from most other learning rules in that it cannot be 

explained or implemented in terms of a single neuron. Networks employing this learning 

rule will be an array, or layer, of neurons with massive interconnections as shown in 

Figure 8. The output nodes (neurons) compete, and the one with the maximum response 

is allowed to fire. When weights are updated, only the weights of the winning neuron 

will be changed; all others will remain the same. 

Learning in this type of network is based on the clustering of input data to group 

similar inputs and separate dissimilar ones. Similarity in this case becomes synonymous 

with dot product; normalized vectors which are very similar will have a dot product of 

nearly one. Inputs in the pattern space 9t" are compared to (i.e. dotted with) p weight 
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vectors, also in 9?". The highest dot product wins the competition. Hence, the Kohonen 

network classifies input vectors into one of the p categories specified by the weight 

vectors. 

'n' neurons (inputs) 

Figure 8. Kohonen, or "winner-take-all" network. (Highlighted weights are updated.) 

Assume an input vector x in the pattern space Si". Let x be a normal vector, i.e., 

a vector with length equal to 1. The first stage of the computation is the competition. A 

set of p random weight vectors normalized in 9T is initially created, denoted by the 

weight matrix W. The output vector y is determined by the product of the weight matrix 

with the input vector x. 

y = W« x (7) 
pxl      Pxn   nxl 

The largest element in y represents the output of the winning neuron, denoted yc. 

Note that since the input vector and the weight vectors are normalized, yc will have a 

maximum value of 1. The weights of the winning neuron (the c^ row of W) are then 

updated by 

w;™ = w:+a(x-<a) where 0 < a < 1 

and re-normalized. 
"new 

^new _ . " c 

W 
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The process is then repeated for the next input vector x. The equations above may 

be generalized for the J<~ iteration as a function of input vector x\ and are given in 

Equations 8, 9, and 10: 

y*=W*«X* (8) 
pxl Pxn       nXl 

w*+!=w*+a(x-wf) (9) 

w*+1 

w*+1=7r^-ir (10) *      C A.    Jt + l V ' 

The learning rate, a, is often chosen to be a constant. However it may, also be 

chosen to vary with k, depending on the designer's needs. Relatively high values of a 

will make the weights converge to the clusters they represent more quickly, but they will 

also cause "outlying" points to have a greater effect. Small values will make the network 

more resistant to noisy data, but the network will also take longer to converge. 

After each of the input vectors has been presented to the network once, the first 

epoch has been completed. Each of the data will have been grouped into one of the p 

clusters, and the weight vectors representing those clusters will have moved toward those 

collective points. Further epochs may be necessary if those weights have not converged 

to an accurate representation of the points. Generally, some test is implemented to check 

whether the total change in weight values is small enough during an epoch and, if it is, the 

network is assumed to have converged. 

B.        NORMALIZATION PROCEDURE 

As stated earlier, it is important that the input vectors, and the weight vectors, be 

normalized, else the dot product comparison in Equation 8 will be inconsistent and less 

meaningful. It is equally important that the original vector must be recoverable from the 

normalized vector. A particular strategy for accomplishing this normalization is outlined 

below. This procedure is modified somewhat from the procedure found in Reference 31. 

The strategy for this normalization procedure is to represent data in n dimensions 

by equivalent normalized vectors in (n+1) dimensions. The data in the original n 
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dimensions will each be scaled independently to make them approximately the same 

range, and the last dimension will be added in order to make the length of the new vector 

exactly equal to one. 

Assume a data vector V in 9t" which represents the data to be input to the 

competitive network, but is not normalized. 

V = (v,    v2    v3...vj 

If possible, scale each element in V by dividing it by a constant slightly larger than 

the maximum value it takes on in any of the vectors in the data set. For example, if v{ 

represents an angle in radians, divide it by n. If v2 represents a range finding from a sonar 

transducer, then divide it by the maximum detectable range of the transducer. Thus create 

a new vector V whose elements are each less than or equal to one in magnitude 

f      v, V, V, V.       ^ 
V' = '1 "2 "3 

(Vl   >V2   >V3   ...V„   J max(vj)    max(v2)    max(v3) max(vn) 

Second, choose a value N which is slightly greater than the maximum length of 

V'. If the first step was conducted properly, then N will be the square root of n. 

Third, add a new entry d to the vector. 

V" = [d,vx ,v2 ,v3 ...v„ j 

Fourth, set the new element d to a convenient value. 

d = p2-\Wf) 
Finally, divide the vector V" by N to get a new vector V'" whose length is 

identically 1. 

V" y'"__  
N 

The value of d has been constructed to be exactly as long as necessary to make the 

length of the vector V" in 9tn+1 equal to one. This normalization procedure has the 

advantage that the original vector is easily derived from V" by ignoring the element d, 
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and multiplying the remaining elements by N and by their respective maximum values. 

The five steps used for the normalization procedure are summarized in Table 2. 

Step 1 Start with data vector V = (vt    v2     v3... vn ). 

Step 2 

V' = 

Independently scale each of the element 

(        Vl                        V2                        V3                                   Vn 

.s: 

/   /      ,     , 
= (v, ,v2 ,v3 . 

•'.') ^max(Vj)    max(v2)    max(v3)    '"   maxO,,), 

Step 3 Choose a constant equal to the maximum length; N — \n 

Step 4 
Add an element: \" = id,vl ,v2 ,V3 ...vn j where d = TJ(N

2
 -||V'|2) 

Step 5 V" 
Divide the new vector by the maximum length; V    — 

N 

Table 2. Steps for normalization of data vectors 

C.       ADDING A CONTROL MECHANISM TO THE NETWORK 

One of the primary drawbacks of the competitive network outlined above is that it 

classifies inputs into one of p outputs, where p is the number of neurons in the 

competitive layer. Hence, it is necessary to know beforehand the number of clusters the 

network is looking for. This burdensome requirement can be alleviated by adding a 

control mechanism to dynamically adjust p after each epoch. 

The first epoch should be conducted with a value ofp that is much higher than the 

expected number of clusters in the pattern space. At the end of the epoch, a series of tests 

are conducted: 

1. If any neuron has weight values identical to the weights it had at the beginning 

of the epoch, then none of the data were classified by it. The neuron is 

eliminated. 

2. If any two weight vectors are similar, i.e. if their dot product exceeds some 

maximum value NNJOL, then the two neurons are combined and a new random 

weight vector is created. 
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3.   (Test for convergence) If no weight vectors were eliminated and no weight 

vectors were combined during the last two consecutive epochs, then assume 

that the network has converged. Otherwise, conduct another epoch. 

Without the modification of this added control mechanism, this particular network 

is commonly referred to as a competitive network. Taking the competition one step 

further, these neurons now compete for survival. Losing neurons are eliminated, and in 

the end only those neurons which consistently won competitions survive. In this sense, 

the network might be called a "Survival of the Fittest" network. 

D. DATA CLUSTERING USING THE CUSTOMIZED NETWORK 

The Kohonen network described in this chapter, along with the modifications 

described regarding normalization and control of the parameter/?, were implemented and 

included as Appendix B. The four coordinates {(0.2,0.2),(0.2,0.8),(0.8,0.2),(o.8,0.8)} 

were used to create the clusters of data shown in Figure 9. 

400 Noisy Input Vectors in 2-D Pattern Space 

0.2 0.4 0.6 0.8 
X coordinate 

Figure 9. Test vectors for neural network clustering 
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A human can easily inspect Figure 9 and come to the conclusion that there are 

exactly 4 clusters of data, approximately given by the coordinates: 

{(0.2,0.2), (0.2,0.8), (0.8,0.2), (0.8,0.8)} 

The challenge is to devise a network that can perform these tasks without human 

assistance. The objective will be for the network to determine that there are exactly 4 

clusters of data, and that these clusters are represented by exemplar vectors which are 

reasonably close to these coordinates. 

The points were presented to the network, and an initial value of p = 30 was 

chosen. Figure 10 shows the initial placement of the random weight vectors in the 2 

dimensional representation. Recall that the true weights are actually 3 dimensional due to 

the normalization process. What is plotted is actually the two-dimensional representation 

of these weights prior to the normalization procedure. 
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Figure 10. Initial placement of random weights 

The data vectors were presented to the network, as implemented in Appendix B, 

and a learning rate of a = 0.5 was defined. A tolerance of NNJOL = 0.98 was defined for 
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the dot product similarity test of weight vectors. In a reasonable time, the network was 

able to determine that there were in fact 4 clusters of data, and converged to represent 

these 4 clusters by the 4 exemplar vectors shown in Table 3. As can be seen, these 

exemplar vectors are reasonably close to the coordinates from which these noisy data 

samples were derived. 

X coordinate 0.2044 0.7940 0.2036 0.7954 

Y coordinate 0.7982 0.2028 0.2099 0.7962 

Table 3. Exemplar vectors chosen by neural network 

The exemplar vectors chosen by the network are illustrated in Figure 11. When 

compared with the original data in Figure 9, the results appear to be quite consistent with 

what a human might have done. 

Results of Neural Network Clustering Algorithm 
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Figure 11. Results of neural network clustering 

The network produced these exemplar vectors in 3.46 seconds. While the 

network is obviously not as fast as a human, these results are acceptable for the 

application chosen of finding clusters in the Hough domain in order to determine the 

location and orientation of walls near the robot. 
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E.       CHAPTER SUMMARY 

In this chapter the very common "winner-take-all" or "Kohonen" neural network 

was introduced. It was shown that this network can be used to cluster data, but is only 

useful when the number of clusters is known a priori. Modifications were made to this 

network to allow the number of neurons to vary from one epoch to the next, by 

eliminating neurons which do not win competitions. The result is an unsupervised 

network which clusters data without a priori knowledge of the number of clusters. 

The following chapter will draw on the tools introduced in this chapter and 

Chapter IV. Specifically, the way in which the issue of localization might be addressed 

using these tools is outlined in detail. 
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VI.      IMPLEMENTATION 

This chapter serves to tie together concepts covered earlier in this thesis, 

discussing the fashion in which the Hough transform (covered in Chapter IV), and the 

neural network (covered in Chapter V) may be used to process sonar data from the 

robotic system (covered in Chapter II) to solve the problem of localization (covered in 

Chapter HI). As outlined earlier, the proposed solution consists of 4 basic parts: 

1) The range data returned from the Sensus 200 system are converted to (x, v) 

pairs representing the Cartesian points (in robot coordinates) where the echo 

occurred. 

2) These (x, y) coordinates will be parameterized using Hough parameters. 

3) Regions in the Hough domain where curves tend to intersect each other must 

be represented by clusters of points. 

4) A competitive neural network will be employed to identify clusters and 

represent them by a single point. 

The implementation of these steps was done in three function programs written 

for MATLAB, and will be covered in detail in this chapter. Steps 2 and 3 will be 

combined into a single function by selectively and explicitly solving for intersections in 

the Hough domain. 

The three programs should be taken as an overall system as illustrated in Figure 

12, The inputs consist of range data from the sonar system, and the outputs are \G, p) 

pairs representing the distance and orientation of nearby walls. 

Sonar Data                                                    (6, p) pair 
Input                                                            °utPut 

T 

Wall Finding Algorithm 

Convert data to 
(x,y) coordinates 

w Find intersections 
in Hough domain 

Find clusters in 
Hough domain 1   w  ^ 

Figure 12. Overall wall finding algorithm 
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A.  CONVERTING SONAR DATA TO X-Y COORDINATES 

The code used to gather range data with the Nomad Scout is included in Appendix 

D. Originally, the code was intended to also be used with other Nomadic robots, so a 5- 

column output was desired. Column 4 is a function of the "Turret Angle" and is not used 

with the Nomad Scout, but is used with other Nomadic robots at the Naval Postgraduate 

School. 

The robot was programmed to cycle through each of the 16 sonar transducers, 

then rotate 7.5° counter-clockwise and cycle through each of the 16 transducers again, 

then rotate 7.5° counter-clockwise and cycle through each of the 16 transducers a third 

time. This results (ideally) in 48 range findings equally dispersed about the robot. 

As noted earlier, the robot is able to track its dead reckoning position and 

orientation. At startup, the robot marks its current position as the origin and the direction 

of sonar (1) as the x axis. This becomes the world coordinate frame. As it navigates, it 

tracks its position relative to these initial settings. Since it was desired to process the data 

off-line in order to demonstrate the concept, data were written to an ASCII file in the 

five-column format shown in Table 4. The net result will be a matrix of data with 48 

rows (the total number of sonar range findings gathered) and 5 columns. The first 16 

rows will be the range findings of sonar transducers 1 through 16 (in that order) at the 

initial orientation. The next 16 rows will be the range findings at the 7.5° counter- 

clockwise offset, and the final 16 rows will be the range findings at a 15° counter- 

clockwise offset. 

Column 1 Column 2 Column 3 Column 4 Column 5 

(Dead Reckoning 
X Coordinate in 
inches) times 10 

(Dead Reckoning 
Y Coordinate in 
inches) times 10 

(Dead reckoning 
orientation of robot 
relative to X-axis 
in degrees) times 

10 

Not used with 
Scout robot. 

Range return of r* 
sonar transducer in 

inches 

Table 4. Data format of range findings 

Once the data are gathered and collected in this matrix form, it is a fairly 

straightforward mathematical process to represent the range findings as (x, y) pairs in the 
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world coordinate system relative to the origin and x-axis defined at startup. The 

implementation is included in Appendix C. 

First, unreliable data in the matrix must be discarded. The maximum range 

finding of the sonar transducers is 255 inches. Among researchers at the Naval 

Postgraduate School, however, experience has shown that data can be unreliable even at 

much smaller ranges. For this application, we choose to rely only on range findings that 

are less than 110 inches. Any row whose entry in column 5 exceeds 110 is simply 

discarded. Similarly, range data less than 17 inches are also considered unreliable. Any 

row whose entry in column 5 is less than 17 is discarded. 

Next, for each range finding, the robot must know its own (x,y) position in the 

world coordinate system. This will be the location of the center of the robot, relative to 

the startup origin, as tracked by dead-reckoning. This particular application envisions the 

robot taking these readings at or near the world coordinate origin. Other applications 

would require minor revisions to the code in the appendices. Units are chosen to be 

inches. Ideally, since the robot is simply rotating to take the 48 returns, these two values 

should be identical for all 48 returns. In reality, however, each set of 16 returns will be 

taken from a slightly different (x,y) position. This is due to the fact that the Scout is not 

a truly holonomic system; its wheels must move in order for the robot to rotate. 

ColumnX 
%robot — 7Z (11) 

_ Column! 
Yrobot  = 77j (12) 

Third, the robot's orientation for each range finding must be known. This value 

should be identical for each set of 16 returns, since the robot is stationary when these 

returns are taken. Units are chosen to be radians. 

"robot ~ 

(Columnh\( n ^ 

180 j 
(13) 

10 

It follows from geometry that the x coordinate of the range finding should be the x 

coordinate of the robot, plus the quantity of the range times the cosine of the angle of the 
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range finding. It is important to include the angular offset of each transducer in the 

computation. The angle between transducers is 22.5°, as shown in Figure 13. 

\ 225°= 0.39 radians 

xaxis 

Figure 13. Angular relationship of transducers 

It is also important to remember that the range finding is relative to the transducer, 

not the center of the robot. Hence, the radius of the robot must be added to this value. 

This value was measured in the laboratory to be approximately 7.2 inches. The v 

coordinate can be similarly calculated. The (x, y) location of the sonar return from a 

transducer is given by Equations (14) and (15): 

Y       — v       i 
return        -"■ robot 

(Columns      "\     (n (225)7T     ^ 
———+R cos 6rnhnt +- — (/) 

^     10 )     \ robot       180        y 

Y      =Y     + return robot 

f ColumnS      \     ( 
+R sin 

V 10 

180 

(22J5)7z; 
robot 180 

A 
U) 

(14) 

(15) 

where, R is the radius of the robot (7.2 inches for a Nomad Scout) andy' is the index of the 

individual transducer (l < j < 16). 

As a final step, the resulting data points are sorted in counterclockwise order 

starting with the point closest to the x-axis (see Figure 14). 
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(x,y) locations of 
Sonar Returns 

Once (x,y) representations of Sonar Returns 
are computed, sort the data in counter-clockwise > 
order, beginning with the one closest to the x-axis. 

Figure 14. Cartesian data are sorted counter-clockwise 

B.   REDUCED HOUGH TRANSFORM OF SONAR RETURNS 

Each of the (x,y) pairs resulting from the conversion of the range data can be 

transformed under the Hough parameters to a curve. However, it is not necessary to 

know the entire curve in order to find walls near the robot. Walls in the world (Cartesian) 

coordinate system will be transformed to points in the Hough domain; specifically, points 

where curves intersect. Hence, it is only necessary to find those points in the Hough 

domain where the curves representing the transformed sonar data intersect. 

Further, it is not possible that the return from transducer 1, for example, will 

return an echo from the same straight-line wall as transducer 9. These transducers are 

facing in opposite directions. Hence, we can reduce the time required to find 

intersections in the Hough domain by checking each curve for intersections with the 

transformed curves of its four closest neighbors; two clockwise and two counter- 

clockwise. These four intersection points will only be included if they are all within a 

reasonably small neighborhood of one another. The implementation in MATLAB version 

4.2 (b) of this reduced representation in the Hough domain is included with this thesis as 

Appendix A. 

In Chapter IV it was shown that for any two points in the Cartesian domain, the 

intersection of their curves in the Hough domain was given by Equations 5 and 6: 
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8 = arctan 2      *1 
, fory, *y2 

(5) 

6 = K for yl = y2 

p = Xj cosö + ^i sin0 = ;c2 cos0 + y2 sin0 (6) 

Once the (x,y) coordinates of the sonar returns are determined, and these data are sorted 

as illustrated in Figure 14, we apply the following steps to determine clusters of key 

intersections in the Hough domain: 

1) For each (x,y) point, find the (ö,p) locations in the Hough domain where its 

transformed curve intersects the curves of its 2 nearest clockwise and 2 nearest 

counterclockwise neighbors. 

2) Check to see if these four (d, p) points are within a reasonably small 

neighborhood of one another. Appropriate values to select for this test will be 

covered in the Chapter 7. 

3) If they are, then "tag" all four (0,p) points for presentation to the clustering 

algorithm, and move on to the next (x,y) point. If not, then simply move on 

to the next (x,y) point. 

4) Finally, note the symmetry in the Hough domain. Include only (0,p) points 

where p is positive. In fact, only points where p is greater that the radius of 

the robot plus the minimum trusted range of the transducers need to be 

included. 

For example, assume the points in the Cartesian domain are arranged as shown in 

Figure 15. When transformed to the Hough domain, these points become the curves 

shown in Figure 16. The reduced Hough transform of these points become groups of 

points near the key intersections, as shown in Figure 17. Since there is no noise in this 

case, the points are grouped very tightly around the key intersections; there are actually 56 

points. 
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Since this process differs markedly from the conventional "Hough transform," it 

will be called the "Reduced Hough transform" in this thesis. The \8,p) domain where 

these clusters of points exist will be referred to as the "Reduced Hough domain." 

Points in Cartesian Domain 

x ca 

Figure 15. Test points in the Cartesian domain 

Transformed Curves in Hough Domain 
15rr 

Q- 0 

-1 0 1 

9 in radians 

Figure 16. Test points transformed to curves in the Hough domain 
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15 
Reduced Hough Domain; 56 points total 
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«a. 0 
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-5 - 
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-15 
-3-2-1 0 1 2 3 

8 in radians 

Figure 17. Test points transformed to clusters in the reduced Hough domain 

At the conclusion of this portion of the algorithm, the result should be clusters of 

isolated points in the Hough domain, concentrated in regions where multiple (d,p) 

curves tend to come very close to intersecting. 

C.       FINDING CLUSTERS IN THE HOUGH DOMAIN 

The "Survival of the Fittest" network presented in Chapter 5 is the method chosen 

to group the data into clusters and represent them by exemplar vectors. Each (0,p) point 

is treated as an input vector in 9?2. During the normalization process, 6 is divided by its 

maximum value (n radians), and p is divided by the maximum trusted range of the 

transducers (110 inches). 

In Figure 18, the network was presented with the 56 points from the previous 

example. The number of neurons, p, was initially set to a value of 30. The figure shows 
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that the network found exactly 2 clusters of points. Further, it represented these two 

clusters with reasonably accurate exemplar vectors. 

15 

10 

o.   0 

-10 . 

-15 U 

Network Results; Computation Time = 0.88 seconds 

2 clusters found at: 

0.7854 

4.2426 

2.3562 

2.8284 

o        Results of Network Clustering 

*       Original Presentation Data 

-10 12 3 

8 in radians 

Figure 18. Results of network clustering in the reduced Hough domain 

D. CHAPTER SUMMARY 

In this chapter, the proposed algorithm for feature based localization in a mobile 

robot was discussed in detail, drawing on concepts introduced in earlier chapters. In the 

next chapter, the results of this algorithm applied in both simulated and actual indoor 

environments are presented. 
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Vn.    EXPERIMENTAL RESULTS 

In this chapter the proposed algorithm (which is described in Chapter 6) is applied 

to sets of data and quantitative results are measured. Initially, simple tests are performed 

to determine whether the algorithm performs suitably under ideal conditions. Further 

modeling is then conducted with a simulated robot in order to demonstrate compatibility 

of the algorithm with the Scout platform. Finally, an actual Scout is used to take sonar 

readings from a real world indoor environment, and those readings are analyzed to find 

walls. 

If the algorithm is to prove useful for the task of localization in an autonomous 

mobile robot, then the output(s) of the algorithm must be consistent for range data taken 

at the same location. The output need not be an accurate representation of the nearby 

walls (although this will be helpful if future research applies this algorithm to other 

tasks). It is necessary that the algorithm consistently identify the same number of walls, 

and at the same range and orientation, when presented with range data gathered at the 

same location. Consistency must be within: 

• 1 inch (excellent) to 3 inches (adequate) for range to the wall, and 

• 1 degree (excellent) to 3 degrees (adequate) for orientation of the wall. 

Additionally, the algorithm must produce results in a reasonable amount of time. 

For this application, we consider 5 seconds to be an adequate goal. If the network is able 

to produce consistent results in less than 5 seconds, then it is suitable for localization of 

the mobile robot. 

A.       SIMPLE TESTS 

Two simple tests were conducted to determine whether the algorithm was 

performing as expected under ideal conditions. The first of these simulates sonar findings 

under noise-free conditions. The second is intended to demonstrate that the algorithm 

does not require nearby walls to be perpendicular in order to find them. Walls may be 

placed at arbitrary angles to one another, and the performance of the algorithm is 

independent of these angles. The neural network learning rate was set to 0.5 for these 
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tests, and the Hough domain tolerances were set to 10 degrees and 10 inches. The 

relevance of these parameters will be discussed later in this Chapter. We do not yet test 

for consistency in the results, as these are simulated returns and free of noise. Rather, 

these two tests are simply intended to verify that the algorithm behaves in the anticipated 

manner. 

1.        A Simulated Corner 

For the initial testing, an artificial 48 by 5 return matrix was devised which would 

simulate the returns of a nearby comer under ideal conditions. The matrix represents 

those returns that would arise from the setup shown in Figure 19, under absolutely ideal 

conditions (with no noise whatsoever). The robot is envisioned to be 50 inches from one 

wall, and 40 inches from another. The orientations of these walls are -45° and -135°, 

respectively. The robot is envisioned to perform 3 cycles of readings so that 48 returns 

will result; each return separated by 7.5°. Under noiseless conditions, the value of the 

returns was computed, and a matrix was created from these returns to imitate the output 

generated by the Scout executing the program in Appendix D. 

Figure 19. Simple test # 1: A simulated corner 

The simulated returns are plotted in two dimensions in Figure 20, and the returns 

which fall within the trusted range (less than 110 inches but more than 17 inches) have 
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been circled. Note that the robot's perspective of its environment is only two 

dimensional. 

Robot two-dimensional view of world 

Sonar Retur 
Trusted Reli 

rns 
urnsi 

Figure 20. Simple test # 1: Robot's view of the world 

The returns were converted to (x, y) points, and these points then transformed to 

the Hough domain. For the sake of clarity, the complete Hough transform of these points 

is shown in Figure 21 (a), although this was not used. The collection of intersection 

points shown in Figure 21 (b) was presented to the neural network for classification. The 

network was able to determine exactly two clusters of data, and represented those clusters 

by the exemplar vectors shown in Table 5. 

e -45.0000 -134.9999 

p 49.9999 40.0000 

Table 5. Simple test # 1: Exemplar vectors 
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(a) Hough Transform of Trusted Returns 
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(b) Hough Plane Reduced to 92 points, Exemplars Found 
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Figure 21. Simple test # 1: Hough domain representation of simulated sonar returns (a) 
Hough transform of all trusted returns (b) Reduced Hough transform and exemplars 

found during clustering. 

If the algorithm is performing properly, then the exemplar vectors chosen by the 

network (see Table 5) should be reasonably accurate descriptions of the nearby walls. 

Figure 22 shows the walls chosen by the network superimposed over the original sonar 

returns. By inspection, the chosen vectors seem to coincide with the simulated walls. 

Additionally, the time required for the network to determine the range and orientation of 

these two walls falls well within the standard established of 5 seconds. From this test it 

appears that the algorithm is behaving as expected, and further investigation is warranted. 
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Sonar Returns and Detected Walls; Processing Time = 1.27 seconds 

Sonar Returns 
Trusted Returns 

■ Detected Walls 

Figure 22. Simple test # 1: Simulated sonar returns and detected walls 

2.        A Case In Which Walls Are Not Orthogonal 

The proposed algorithm has the property that it is independent of the orientation 

of the walls with respect to one another. Walls may be at arbitrary angles to one another, 

and the performance of the algorithm is independent of these angles. To demonstrate this 

a second test is performed, in which the walls near the robot are not perpendicular to one 

another. The scenario is constructed as shown in Figure 23, with the walls given by the 

ranges and orientations shown. 
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P 

90.0°" 

45.0" 

LJ 

18.43° 

42.69" 

Figure 23. Simple test # 2: Non-orthogonal walls 

Again, these data were simulated. A 48 by 5 matrix was designed to imitate the 

returns that would have occurred if the robot were in this environment, and ideal 

operating conditions were present so that sonar returns were free of noise (See Figure 24 

(a)). The data were then presented to the algorithm, and exactly three walls were detected 

and represented by the exemplar vectors shown in Table 6. When compared to the true 

locations of these simulated walls given in Figure 23, the results appear to be acceptable 

even when the walls are not perpendicular. 

e 18.4348 89.9998 161.5652 

p 43.1655 45.0000 43.1656 

Table 6. Simple test # 2: Exemplar vectors 

These results are illustrated in Figure 24. The detected walls are shown 

superimposed on the sonar data which form the robot's two-dimensional view of the 

world. The walls seem to have been placed in approximately the same place where a 

human viewing the data would have placed them. The network was able to accomplish 

this in less than two seconds, which is acceptable for this application. 
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Robot two-dimensional view of world 

G- 
% 
* 
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+ Sonar Returns 
o Trusted Returns 

(a) 

Sonar Returns and Detected Walls 
Processing Time = 1.54 seconds 

+    Sonar Returns 
o    Trusted Returns 

— Detected Walls 

(b) 

Figure 24. Simple test #2: Simulated sonar returns and detected walls (a) Robot's two 
dimensional view of the world, (b) Detected walls superimposed on sonar range data. 

This scenario demonstrates that nearby walls need not be orthogonal for the 

algorithm to function properly. In this scenario, walls which intersected at arbitrary 

angles were properly identified, and subsequently represented by accurate exemplar 

vectors. It also further supports the conclusion that the algorithm appears to be 

functioning properly. 

B. SIMULATED ROBOT TESTING 

Nomadic Technologies has developed a program called NSERVER™, which can 

be used to simulate its robots for the purpose of testing and developing programs. The 

program allows the designer to build complex environments easily, and simulate the 
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behavior of the robot in these environments. While the program does not completely 

simulate the non-ideal acoustic properties that affect the sonar transducers, the program 

does enable the algorithm to be tested in more complex scenarios in order to find cases 

where it may not work. Additionally, these tests verify the code used to gather the sonar 

data prior to implementation on the Scout. The program used to gather sonar data was 

run in several locations in the virtual environment shown in Figure 25, and the data 

analyzed to find walls. 

Figure 25. Virtual environment used for simulations 

All of the simulation scenarios run in this virtual environment were conducted by 

the network using a constant learning rate of 0.5 in the neural network, and Hough 

domain tolerances of 10 degrees and 10 inches. These parameters are not ideal for noisy 

environments; adjustment of these and other parameters to optimize performance of the 

algorithm will be discussed later in this chapter. 

Again, these data are noise-free. The results are not yet analyzed for consistency. 

Rather, we conduct these simulations to determine if there are scenarios in which the 

algorithm is unable to determine the correct number of walls, or produces grossly 
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inaccurate exemplar vectors. Also, we compare the detected walls to the sonar returns to 

verify that they generally coincide. 

1. Corner of a Virtual Room 

The first set of data was gathered after placing the virtual robot in the lower right 

corner of the map, facing generally toward the doorway, as shown in Figure 26. The 

direction the robot is facing is denoted by a white tick mark on the robot. Once placed, 

the program is able to provide the x and y positions of the robot on the map coordinate 

system, as well as the turret angle. Since the Nserver simulation program runs in map 

coordinates, and for this application it is desired to receive the data in robot coordinates, 

these values were simply noted at the time the robot was placed and subtracted from the 

appropriate columns in the 48 by 5 matrix before presentation of the data to the wall- 

finding algorithm. 

« 

Figure 26. Simulation # 1: Problem setup 

Once the data were collected, and adjusted to make the robot's position and 

orientation the origin and x axis, the matrix was presented to the algorithm and 

computation time was measured. In less than one second, the network determined that 

there were exactly two walls in the vicinity. It chose two exemplar vectors to represent 
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these walls, which are given in Table 7. Figure 27 shows the detected walls 

superimposed over the sonar returns. The detected walls differ by nearly 90 degrees, an 

indicator that the results are fairly accurate. Additionally, the walls appear to coincide 

with the sonar returns within an acceptable margin. The results from this first location 

would seem to indicate that the algorithm can handle this scenario reasonably well. 

Sonar Returns and Detected Walls; Processing Time = 0.93 seconds 

~   Sonar Returns 
o   Trusted Returns 
— Detected Walls 

Figure 27. Simulation # 1: Sonar returns and detected walls 

6 -130.6130 -41.3164 

P 54.4090 71.9664 

Table 7. Simulation # 1: Exemplar vectors 
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2. A Corridor 

In the second test, the robot was placed in a corridor as shown in Figure 28. The 

sonar range findings were processed in the same manner as the previous scenario. In this 

case, we expect the network to choose exemplar vectors which are nearly parallel to one 

another. We also expect to find that the walls, when superimposed on the sonar range 

findings, will coincide with the plotted range findings. 

ft 

m 

Figure 28. Simulation # 2: Problem setup 

The exemplar vectors chosen by the network are shown in Table 8. In this case, 

the network shows a slightly greater error than in the previous example, the chosen 

exemplars are nearly 2 degrees from being parallel. This result seems marginally 

acceptable, but is also partially due to the parameters chosen for the network. 

Performance may be expected to differ when learning rate and tolerance parameters are 

adjusted. 

e -88.4958 90.5513 

p 26.4250 34.0822 

Table 8. Simulation # 2: Exemplar vectors 
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The walls chosen by the network are illustrated in Figure 29, superimposed on the 

range data. The walls appear to coincide with the sonar data at points near the robot. The 

algorithm appears to work in a corridor scenario, though it is identified that accuracy 

might be improved if parameters are adjusted. 

Sonar Returns and Detected Walls; Processing Time = 1.43 seconds 

+   Sonar Returns 
o   Trusted Returns 
— Detected Walls 

G- 

Figure 29. Simulation # 2: Sonar returns and detected walls 

The computation time, as shown in Figure 29, is greater that shown for the 

previous scenario. This is primarily due to the fact that the two dominant clusters in the 

Hough domain were each comprised of a greater number of points, and loosely grouped. 

This implies that the neural network will take longer to cycle through a single epoch and, 

therefore, will likely take longer to converge. The computation time is still quite 

acceptable, well within the 5 second benchmark established. 
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3.        Walls Which Are Not Orthogonal 

For the next test, the robot is placed in the upper-left corner of the map, facing 

generally toward the corridor of the last example, as shown in Figure 30. As in the 

previous examples, the exemplar vectors representing the walls are shown in Table 9, and 

are illustrated along with the sonar returns in Figure 31. 

Figure 30. Simulation #3: Problem setup 

e 72.6986 -61.4646 -153.1804 

p 61.2021 98.7628 42.0435 

Table 9. Simulation # 3: Exemplar vectors 

The network has again determined the correct number of walls in its vicinity. The 

walls which are orthogonal in the map were chosen to be represented by exemplars which 

are within 2 degrees of being orthogonal. This despite the fact that one of the walls was 

very near the maximum trusted range of 110 inches. From Figure 31 it is apparent that 

the exemplar vectors chosen by the network are reasonable representations of the actual 

walls. The time required to process the data is also acceptable. 

59 



Sonar Returns and Detected Walls; Processing Time = 1.21 seconds 

+   Sonar Returns 
o   Trusted Returns 
— Detected Walls 

Figure 31. Simulation # 3: Sonar returns and detected walls 

4. Short Walls: A Partial Failure 

Another test was conducted to determine if the network could recognize and 

identify very short walls. For this test, the robot was placed in the upper-right corner of 

the map, facing generally toward the doorway, as shown in Figure 32. The wall to the left 

of and slightly behind the robot is short, and it is was questioned whether there would be 

enough echo returns from this wall for the algorithm to recognize it. 

Data were collected and presented to the network in the same fashion as in the 

previous scenarios. The exemplar vectors chosen by the network are shown in Table 10. 

In this case, the network incorrectly determined that there were two walls in its vicinity. 

These walls are shown, plotted along with the sonar returns in Figure 33; it is clear that 

the short wall in question was in fact neglected by the network. 
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Figure 32. Simulation # 4: Problem setup 

e -155.8561 71.8601 

p 63.6093 53.9698 

Table 10. Simulation # 4: Exemplar vectors 

Sonar Returns and Detected Walls; Processing Time = 1.32 seconds 

Sonar 
Truste o   Trusted Returns! 
Detected Walls 

Figure 33. Simulation # 4: Sonar returns and detected walls 
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5.        Near A Doorway: Total Failure 

For any given system, it is as important to know the points of failure as success. 

A final simulation was conducted to determine how the network would react to a 

discontinuity in the wall. For this test, the robot was placed very close to an open 

doorway. If the robot was relatively far away from the doorway, the opening was simply 

ignored and a single wall was recognized. The robot was gradually moved toward the 

doorway until it was very close, as shown in Figure 34. In this configuration, very few 

echoes are returned from the wall containing the open door, and the clusters in the Hough 

domain become insubstantial. The neural network is unable to cluster the points, and 

failure occurs. In this configuration, the network did not determine any walls at all. 

Figure 34. Simulation # 5: Problem setup 

C.       PROCESSING REAL WORLD SONAR DATA 

Although new problems arose when the algorithm was applied to noisy sonar data 

collected in the real world, the overall performance remained high. Neural networks are 

often chosen for many applications because of their ability to perform well under noisy 

conditions. By checking for intersections within a neighborhood in the Hough domain, 
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we have also equipped that portion of the algorithm to handle a certain amount of noise. 

The result is an algorithm that performs nearly as well with noisy, real-world data as it 

does with ideal, simulated data. 

1.        Tuning Algorithm Parameters To Deal With Noise 

When noise is present in the data, the result is inconsistency in the output of the 

algorithm. This problem is overcome by adjusting various parameters in the system. For 

example, a high learning rate in the neural network is likely to yield inconsistent results 

since the order of the data presented to that stage is randomized. Dropping the learning 

rate will improve the consistency of the algorithm, but dropping it too far will prevent the 

weights from converging to the clusters. Likewise, the p and 0 tolerances used to find 

intersections within a neighborhood in the Hough domain must be increased if the cluster 

sizes are too small, and decreased if they tend to be loosely grouped. The number of 

neurons used in the network could also be adjusted to affect the performance of the 

algorithm, as well as the minimum and maximum trusted range returns. By trial and 

error, the values summarized in Table 11 have been found to yield consistent and accurate 

results with real-world data. 

Symbol Meaning Recommended 
Value 

a Constant Learning Rate used to update 
neurons in competitive network 

0.04 < a < 0.1 

#roL 1st Tolerance used to determine if 
intersections in the Hough Domain are 

within small neighborhoods 

8 degrees 

PTOL 2nd Tolerance used to determine if 
intersections in the Hough Domain are 

within small neighborhoods 

6 inches 

P Number of neurons initially used in 
competitive network 

30 

NNTOL Similarity tolerance used to determine 
whether neurons should be combined. 

0.99 

RMAX> RMIN Range over which sonar range returns 
should be considered reliable 

17 to 110 inches 

Table 11. Recommended parameters in algorithm 
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2.        Real World Corner in a Cluttered Room 

For the initial real-world test, the robot was placed near a corner in a somewhat 

cluttered room. Precise measurements from the robot center to the walls were not 

possible, but were also unnecessary since only consistency of the outputs is needed. One 

wall was in front of the robot at an orientation between 0 and 5 degrees, and at a range 

between 45 and 47 inches. The other wall was to the robot's left, at an orientation 

between 90 and 95 degrees, and at a range between 52 and 54 inches. 

Three sets of 16 sonar readings were taken and presented to the network. The 

sonar returns were converted to (x, y) points, and those points converted to clusters in the 

Hough domain. The representation of the sonar returns in the Hough domain is 

illustrated in Figure 35. It is difficult even for a human to determine intersections from 

the noisy curves shown in Figure 35 (a). The task becomes somewhat easier when these 

curves are reduced to the clusters shown in Figure 35 (b), but even in this case the 

outlying data can be misleading. 

(a) Hough Transform of Trusted Returns 

-10 12 
theta in radians 

(b) Hough Plane Reduced to 20 points, Exemplars Found 
100 

S   50 

-1 0 1 
theta in radians 

Figure 35. Hough domain representaion of sonar returns gathered in a real world 
corner (a) Complete curves in the Hough domain (b) Clusters in the reduced Hough 

domain 
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As shown in Figure 35 (b), the size of clusters in the Hough domain is much 

smaller when the sonar data are noisy. As will be seen, however, 20 points are more than 

enough for the competitive network to develop a consistent set of exemplar vectors. 

The data points were presented to the algorithm ten times. In each case, the 

network (using the values given in Table 11) was able to discern exactly two walls. The 

resulting exemplar vectors from each presentation are shown in Table 12. 

Wall 1 

e P 

91.2420 52.7264 

91.0209 52.0958 

91.4327 52.7328 

90.9269 52.8511 

90.4485 52.7219 

90.9137 53.0297 

90.5053 53.2157 

90.8307 52.9908 

91.4669 52.2954 

91.1774 52.6492 

Wall 2 

e P 

3.7852 46.6659 

3.6753 46.6624 

3.6506 46.6627 

3.5926 46.6478 

3.7589 46.6653 

3.5883 46.6550 

3.4605 46.6503 

3.7865 46.6538 

3.6721 46.6636 

3.3600 46.6289 

Table 12. Summary of algorithm output for sonar input gathered in real world corner 

The consistency of the algorithm output is evident. The values reported for the 

orientation of walls range just over 1 degree over 10 samples. The values reported for the 

range to that wall range slightly more than an inch. 

The consistency of the outputs is far more important for the chosen application 

than their accuracy. Localization will be addressed by having the robot find range and 

bearing to nearby walls at startup, and storing those values in memory. After the robot 

has moved about and accumulated some dead reckoning error, the robot will return to 

what it believes is its startup position, and take those ranges and bearings again. The 

dead reckoning error is taken to be the difference between the two samples. This 

application relies on the notion that range and bearing findings of nearby walls will be 
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consistent if taken from the same position. Since it is apparent that they will be 

consistent within approximately 1 degree and 1 inch, we may safely rely on this algorithm 

to correct dead reckoning errors. 

The walls represented by the final set of exemplar vectors is shown in Figure 36, 

plotted along with the sonar returns taken from the robot's location. Although accuracy is 

not necessary for the chosen application, the lines appear to be fairly accurate descriptions 

of the sonar data collected. Finally, we note that the time required for the algorithm to 

develop a set of exemplar vectors is 1.21 seconds, which is well within acceptable limits. 

Sonar Returns and Detected Walls; Processing Time = 1.21 seconds 

+   Sonar Returns 
o   Trusted Returns 
— Detected Walls 

(jSQBCOC 
W O^ 

S G- 

0 
© 

Figure 36. Sonar returns and detected walls in a real world corner 
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3.        Real World Corridor in a Cluttered Room 

For the final test, a "corridor" was constructed out of one wall in the laboratory, 

and scraps of cardboard taped to a countertop. No attempt was made to "smooth" the 

edges of the cardboard in the constructed wall. The laboratory wall also had an 

outcropping approximately 12 inches wide, jutting out approximately 6 inches into the 

room. The environment also included tables and other objects which served to obfuscate 

the two dimensional representation; these were intentionally left in place. 

Note that for the application chosen, a corridor is not a suitable startup location. 

One would choose to startup the robot in a location where features are distinguishable; 

range and orientation to walls would ideally be identical for any location down the length 

of the corridor. This test is included for the sake of future research, which possibly could 

focus on mapping applications. 

The robot gathered a set of sonar returns in the environment described. These 

returns are shown in Figure 37, with those returns which fell within the trusted range 

circled. When these data were presented to the algorithm, the two walls given by the 

exemplar vectors in the first row of Table 13 were found in less than a second. These 

results are plotted in Figure 37 along with the sonar returns. It is apparent that the walls 

chosen by the network are not parallel, indicating some inaccuracy in the algorithm. As 

stated earlier, however, consistency is more important than accuracy for this application. 

The data were presented to the network ten times, resulting in the exemplar vectors 

shown in Table 13. The consistency of the algorithm in this case is acceptable, and could 

possibly be improved further by dropping the learning rate and the maximum trusted 

range of the sonar returns. Accuracy could also be improved by dropping the maximum 

trusted range, and adjusting other parameters in the network as necessary. Accuracy is 

also greatly affected by the fact that the original range data are not entirely reliable, due to 

the non-ideal propagation characteristics of the acoustic signals. 
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Sonar Returns and Detected Walls; Processing Time = 0.94 seconds 

r   Sonar Returns 
o  Trusted Returns 
— Detected Walls 

reP0O3D%^^- 

Figure 37. Sonar returns and detected walls in a real world corridor 

Walll 

e P 

-95.3346 36.3839 

-95.8529 36.2059 

-95.0802 36.7434 

-95.6678 36.3207 

-96.0574 35.9895 

-95.8502 36.4556 

-95.9314 36.3096 

-95.8041 36.1182 

-95.5950 36.4792 

-96.1437 36.1192 

Wall 2 

e P 

88.0275 49.0765 

87.8375 48.7080 

87.7925 47.3405 

89.0607 47.5971 

88.8116 47.8388 

87.2968 48.2417 

87.3118 48.5150 

88.0200 48.6663 

89.7279 48.1172 

87.0519 49.3283 

Table 13. Summary of algorithm output for sonar input gathered in real world corridor 
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D.       CHAPTER SUMMARY 

In this chapter the results of testing the algorithm in both real and simulated 

indoor environments were presented. The algorithm was shown to perform adequately 

for the chosen task, although some improvement in accuracy must be achieved if the 

algorithm is to be applied for mapping in future research. The following chapter will 

discuss some of the directions this future research might take. 
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VIII.   DISCUSSION 

A. IMPLICATIONS 

It is evident that, given a set of sonar echo returns from a Nomad Scout robot, the 

algorithm proposed in this thesis is able to determine the range to and orientation of an 

unspecified number of walls in the vicinity of the robot. The algorithm is able to produce 

results that are acceptably consistent, and can do so within an acceptable amount of time. 

The immediate implication is that a robot may be commanded to determine the 

location of any nearby walls at startup. After some dead reckoning error has accrued, the 

robot may be commanded to return to the world coordinate origin, specified at startup. 

The location of nearby walls can again be determined. Any difference in the range or 

orientation of nearby walls can be presumed due primarily to dead reckoning error. The 

dead reckoning track may then be adjusted, and navigation of the robot may resume. 

B. FUTURE WORK 

The most pressing requirement is the implementation of the proven algorithm in 

C. so that it may be run in the robot's high-level control system. A more thorough 

analysis of the parameters specified in Table 11 should also be conducted to ensure that 

the parameters used are optimum. 

The consistency of the algorithm could possibly be improved even further by 

dropping the learning rate, and adjusting the test for convergence of the neural network as 

necessary. In this case, it may be necessary to conduct more than 48 range findings. If 

the range data become redundant at more than 48 range findings, then the robot might be 

moved during the process. 48 samples may be taken at one location, and 48 more at 

another location. A thorough analysis should be conducted to determine the optimum 

number of samples to take, and the optimum parameters to use throughout the algorithm. 

This leads directly to the concept of continuous localization. Since the process 

takes only a few seconds, there is no reason it could not be set to run in the high level 
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control every 30 seconds or so. Minor modifications of the code included in the 

appendices would be necessary to enable the algorithm to run even when the robot is far 

away from the world coordinate origin. Prior to the cycle, the dead-reckoning position of 

the robot would be noted. The x and y coordinates would simply be subtracted from 

columns 1 and 2, respectively. The steering angle from the dead reckoning track would 

be similarly noted, and subtracted from columns 3 and 4. In this fashion, the algorithm 

could be run at any arbitrary position and orientation in the world coordinate system. 

Since the algorithm is able to place walls relative to itself, and localization 

provides the robot with its own location and orientation in the world, it follows that 

mapping applications might be explored. Mapping requires the algorithm outputs to be 

not only consistent, but accurate as well. This thesis has investigated only the consistency 

of the outputs, as the chosen application only requires this. The outputs do appear to have 

some accuracy, however. A thorough investigation of the accuracy should be pursued. 

It is likely that the algorithm can only be as accurate as the sonar range data that 

are fed into it, although the Gaussian nature of the noise might dispute this claim. The 

accuracy of the Sensus 200 system might be improved by combining it with a time-of- 

flight laser [Refs. 25, 26]. Another method could entail weighting the range data 

according to reliability prior to or during the Hough transform [Refs. 20, 21]. Other 

methods could entail fusing the sensor data from the Sensus 200 with information from 

some other sensor system, or with range data provided by a second robot [Ref. 5]. 

Mapping would also require the algorithm to provide some information about the 

length of the wall found. It may be possible to keep track of which transducer the points 

in the Hough domain resulted from. This information would continue to be tracked 

during the clustering process. When the neural network converges and the output vectors 

are given, it would also be possible to specify which transducers produced data which 

resulted in each wall. In this fashion, some information about the length of the wall is 

provided; although the accuracy of this information will suffer substantially as the robot's 

range from the wall increases. 

The suitability of this algorithm for other robotic platforms is another area that 

might be explored. Adaptation of the concept for platforms equipped with ranging 
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sensors other than ultrasonic sonar may be possible. It is also feasible that the code could 

be adapted to robots with alternative mobility, such as legged robots. For a robot with the 

proper array of sensors, it is even feasible to expand this concept to recognize features in 

3 dimensions rather than 2. 

Several researchers have explored the Hough transformations Cartesian shapes 

other than straight lines [Refs. 17, 22, 23]. It may be possible to modify the algorithm of 

this thesis to enable the robot to recognize features more complex than the straight walls 

covered in this thesis. This could eventually lead to a feature-based recognition system 

that works outdoors as well as indoors. Such a system would be particularly useful in 

underwater and space exploration scenarios, as well as cases where a land-based outdoor 

robot does not have access to 4 GPS satellites simultaneously or the accuracy of GPS is 

insufficient. If the robot were enabled to recognize complex features in 3 dimensions, the 

applications would be without bound. 

The algorithm presented in this thesis is a demonstration of concept, not a finished 

product. It is intended to open to the door for follow-on projects, which will build on the 

fundamentals covered in this document, and bring about an enhanced degree of 

practicality. 
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APPENDIX A. HOÜGHRED.M 

function Points = houghred(X,Y,RTol,ThetaTol,MinRad) 

% HOUGHRED points = houghred(X,Y,RTol,ThetaTol, MinRad) 
% 
% 

% 
% 
% 

% 
% 
% 
% 
% 
% 

% 

Returns only the key data elements of the Hough Transform 
as a 2 x ? matrix, where each column is a key point 
in the Hough domain. —> [Theta (Radians); 

Radius (same units as X,Y)] 

Hough domain is symmetric.  This function returns all 
points in the R > 0 half of the plane, Theta is allowed 
to range from -pi to pi. 

X and Y must be row vectors of equal length representing 
cartesian points.  R and theta will be those points where 
Hough curves intersect near other intersections. 

Possibly colinear points should be located close to each 
other in X and Y indices (Last is adj to the first) in 
the indexing of X and Y.  Helpful to sample ctr clockwise 
or clockwise. 

RTol, ThetaTol optional parameters; define how close an 
intersection must be to other intersections in order to 
be included.  Default RTol is 5, Default ThetaTol is 
5*pi/180 radians (5 degrees). 

MinRad is an optional parameter; intersections in Hough 
domain with R < MinRad will not be included.  Default 
value is zero. 

if exist('MinRad') == 0 
MinRad = 0; 

end 

% assign default 'MinRad' value 
% same units as X and Y 

if exist('RTol') == 
tol = 5; 

end 

0 % assign default 'RTol' value 
% same units as X and Y 

if exist('ThetaTol') == 0 
tol = 5*pi/180; 

end 

N = length(X); 

index = [N-1,N,1:N,1,2]; 

PointsCount = 0; 
Points = [0;0]; 

% assign default 'ThetaTol' value 
% radians 

% X and Y must be equal lengths 

% used later to make first and 
% last indices neighbors. 

% Initial values 

for c = 1:N 

% For each X,Y data point, find the Theta,R point where it 
% intersects its left two and right two neighbors.  If the 
% two intersections on the left are close to one another 
% (within tolerance) then include them both.  If the two 
% intersections on the right are close to one another (within 
% tolerance) then include them both.  For 1st data point, 

left neighbors are the last two points.  For last data % 
% point, the first two indices are its right neighbors. 

% Find the theta values of the intersections 
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L2Th = atan2(X(index(c))-X(c),Y(c)-Y(index(c))); 
LITh = atan2(X(index(c+1))-X(c),Y(c)-Y(index(c+1))) 
RITh = atan2(X(index(c+3))-X(c),Y(c)-Y(index(c+3))) 
R2Th = atan2(X(index(c+4))-X(c),Y(c)-Y(index(c+4))) 

% If the points are colinear, then LITh should approximately 
% equal L2Th and R2Th should approximately equal RITh.  Also, 
% Left theta's should be approximately pi radians away from 
% Right theta's.  Check to see if this is true. 

Theta_check = 0; 
R_check =     0; 
if sqrt((L2Th - LlTh)Ä2) < ThetaTol 

if sqrt((R2Th - RITh)^2) < ThetaTol 
if sqrt((sqrt((L2Th - R2Th)~2) 

Theta_check = 1; 
end 

end 
end 

% Only compute R values if thetas were in the same neighborhood. 

if Theta_check == 1 

pi)Ä2) < ThetaTol 

L2R = X(c)*cos(L2Th) + 
L1R = X(c)*cos(LlTh) + 
R2R = X(c)*cos(R2Th) + 
R1R = X(c)*cos(R'lTh) + 

Y(c)*sin(L2Th) 
Y(c)*sin(LlTh) 
Y(c)*sin(R2Th) 
Y(c)*sin(RlTh) 

% Should have approximately equal R values on the left and 
% approximately equal on the right.  Left R values should be 
% approximately -1 * Right R values. 

if sqrt((L2R - L1R)A2) < RTol 
if sqrt((R2R - R1R)^2) < RTol 

if sqrt(((-1*L2R) - R2R)~2) < 
R_check = 1; 

end 
end 

end 
end 

if Theta_check == 1 
if R_check == 1 

PointsCount = PointsCount + 4; 
Points(l,PointsCount-3) = L2Th 
Points(2,PointsCount-3) = L2R; 
Points(l,PointsCount-2) = LITh 
Points(2,PointsCount-2) = L1R; 
Points(l,PointsCount-l) = RITh 
Points(2,PointsCount-1) = R1R; 
Points(1,PointsCount) = R2Th 
Points(2,PointsCount) = R2R; 

end 
end 

RTol 

end 

% Hough domain is symmetric.  We deal only w/ -pi < theta < pi 
% and R > 0.  Points with R < 0 must be shifted. 

% all points w/ R<0 must be shifted to upper half of plane 
% and shifted by pi radians 

for c = l:size(Points,2) % for each point 
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if Points(2,c) < 0 
if Points(l,c) < 0 

Points(l,c) = Points(l,c) + pi; 
Points(2,c) = Points(2,c)*(-l); 

else 
Points(l,c) = Points(l,c) - pi; 
Points(2,c) = Points(2,c)*(-1); 

end 
end 

end 

if R < 0 
% if Theta < 0 

% Add pi to theta 
% Mult R by -1 

% Theta >= 0 
% Subtract pi from theta 
% Mult R by -1 

% Lastly, ignore any points with R < MinRad 

for c = 1:size(Points,2) 
if Points(2,c) < MinRad 

Points(:,c) = [NaN;NaN]; 
end 

end 

% set points w/ R < MinRad 
% equal to NaN 

includes = find(Points(1,:)); 
Points = Points(:,includes); 

% Throw out all the NaN's 
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APPENDIX B. NNCLUST.M 

function exemplars = nnclust(X_in,Y_in,range,p,alpha,toi) 

%NNCLUST Function to find an unspecified # of clusters in 
% 2 Dimensions.  For thesis. 
% 
% E = nnclust(X,Y,range,p) returns an 2 x n matrix, where 
% n is the # of clusters found, and each row is an exemplar 
% vector representing the approximate center of the cluster. 
% 
% X & Y are row vectors of equal length, and each X,Y 
% pair is a data point to be analyzed.  Required. 
% 
% range = [Xmin,Xmax,Ymin,Ymax] is the range over which data 
% should be expected to appear.  Default is max & min values. 
% 
% p is the number of neurons to use, should be approximately 
% 10 times the number of clusters expected. Default = 30. 
% 
% alpha is learning rate, a vector the same length as X and Y. 
% default is 0.5 
% 
% tol is an optional parameter between 0 and 1 specifying how 
% similar vectors should be before they are combined into a 
% single vector.  1 is identical, 0 is orthogonal.  Default 
% value is 0.999 (Dot-product similarity) 

rand('seed1,sum(100*clock));   % Sets new value for rand seed each time 

% DEFINITION OF DEFAULT VALUES FOR PARAMETERS 

if exist('range') == 0 
range = [min(X_in),max(X_in),min(Y_in),max(Y_in)]; 

end 

if exist('p') == 0 
p = 30; 

end 

if exist('alpha') == 0 
alpha = 0 .5*ones (size(X_in) ) ,- 

end 

if exist('tol') == 0 
tol = 0.999; 

end 

% NORMALIZATION PROCESS — First, restrict analysis to the unit square 

X_norm = max({-l*range(l),range(2)]); 
Y_norm = max([-l*range(3),range(4)]); 

X = X_in/X_norm;  % -1<X<1 
Y = Y_in/Y_norm;  % -1<Y<1 

Nsq =2;   % Max length of any vector is sqrt(2). 

% Now add a third dimension (unit sphere) so each input has length 1 

Input = [X; 
Y; 
sqrt(Nsq - (X.~2 + Y.A2))]'/sqrt(Nsq); 
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% WEIGHT INITIALIZATION 

Xr = ( (range(2)-range(1))*rand(l,p)+range(1))/X_norm; 
Yr = ( (range(4)-range(3) ) *rand(l,p)+range(3))/Y_norm; 

% Weights must also be on unit sphere, over same range as data. 

W = [Xr; 
Yr; 
sqrt(Nsq - (Xr.A2 + Yr."2))]/sqrt(Nsq); 

% W is now a 3 x p matrix, each column is a random vector uniformly 
% distributed over the same portion of the unit sphere as the 
% data to be clustered. 

consecutive  =0; % initial values 
convergence  = 0; 
presentations = 0; 

while convergence == 0 

Ticker = zeros(1,size(W,2));   % initial value 

for i = 1:length(X) 
S = Input(i,:)*W; 
[useless,c] = max(S); 

% c is the neuron that won. 
% If there was a tie, the vector with the 
% lowest index won. 

Ticker(c) = Ticker(c) + 1; 

% UPDATE WEIGHTS (Must retain normalization, so need to adjust 
% the third dimension 

W(:,c) =W(:,c) + alpha(i)*(Input(i,:)' -W(:,c)); 
W(:,c) = W(:,c)/sqrt(W(l,c)A2 + W(2,c)A2 + W(3,c)A2); 

end  % end for loop 

% DELETE UNUSED NEURONS (WEIGHTS) 

[useless,keepers] = find(Ticker>0); 
possibles = W(:»keepers); 
Ticker = Ticker(keepers); 
delete_counter = size(W,2)-size(possibles,2) ; 

% COMBINE SIMILAR VECTORS INTO ONE AND CREATE A NEW RANDOM WEIGHT 
combine_counter = 0; 
for i = 1:size(possibles,2)-1 

[Y,sim] = max(diag(possibles'*possibles,i)); 
if Y > tol 

combine_counter = combine_counter + 1; 
tempi = Ticker(sim)*possibles(: ,sim) ; 
temp2 = Ticker(sim+i)*possibles(:,sim+i) ; 
temp3 = Ticker(sim)+Ticker(sim+i); 
possibles(:,sim) = (tempi + temp2)/temp3; 
xnew = ((range(2)-range(l))*rand(l,1)+range(l))/X_norm; 
ynew = ((range(4)-range(3))*rand(1,1)+range(3))/Y_norm; 
possibles(:,sim+i) = [xnew; 

ynew; 
sqrt(Nsq-(xnewA2 + ynewA2))]/sqrt(Nsq); 

end  % end if statement 
end  % end for loop 
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% Check to see if we've converged yet... 

presentations = presentations + sum(Ticker) ; 
if presentations > 200 

presentations 
if (delete_counter + combine_counter == 0) 

% Minimum 200 

% If no weights were 
% deleted or 
% combined above 
% for two epochs 
% in a row assume 
% convergence. 

consecutive = consecutive + 1; 
if consecutive > 1 

convergence = 1; 
end % end if statement 

else 
consecutive = 0; 

end % end if/else 
end  % end if statement 

W = possibles; % Go back thru with any surviving weights 
end % end while statement 

% Discard small clusters (less than # of data points / # of weights). 

[useless, keepers] = find(Ticker> (length (X_in) /p) ) ; 

% Put output back in the 2-D form that the input was in. 

exemplars = [W(l, keepers)*X_norm; 
W(2,keepers)*Y_norm]*sqrt(Nsg); 
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APPENDIX C. FINDWALL.M 

function walls = findwall(FileName) 

%FINDWALL walls = findwall('filename.dat') 
% 
% Specific application for thesis.  'filename.dat' is the 
% name of a file containing range findings from a NOMAD 
% SCOUT robot.  Format should be a 'dat' file (ASCII). 
% data must be arranged in 5 columns as shown below, and 
% number of rows should be an integer multiple of 16. 
% Function assumes sonar hardware configuration is NOMAD 
% default: i.e. 16 sonars equally spaced about circum- 
% ference, range findings taken counter clockwise. 
% 
% Finds range and bearing to the closest point 
% of any significant walls near the robot, in robot 
% coordinates. 
% 
% Output is a 2 x ? matrix; each column represents a 
% Theta,R pair indicating the presence of a wall.  The top 
% row is Theta in degrees, the bottom row is R in inches. 
% 
% For code simplicity sake, this version requires the file 
% name extension to be EXACTLY ".dat". 
%  
% DATA FORMAT:  Col 1 = X-position of robot times 10 
% Col 2 = Y-position of robot times 10 
% Col 3 = Steering Angle in degrees times 10 
% Col 4 = Turret Angle in degrees times 10 
% Col 5 = range return of ith sonar in inches 
%  

eval(['load ',FileName]);   % Load Data 
input = eval(FileName(l:size(FileName,2)-4));% Name it 'input' 

% Useful Constants- 

RobotRadius = 7.185; % inches — Nomad Scout 
shift = 0 :22.5:(360-22.5);  % angle of ea sonar relative to T-angle 
HTolR =6; % Tol for Hough reduction - radius (in) 
HTolTh = 8*pi/180; % Tol for Hough reduction - Theta (rad) 
p = 30; % # of neurons to start with in NN 
NNTol = 0.99; % Similarity tolerance for NN 
ConstLR =0.05; % Learning Rate for NN (if constant) 
max_trusted = 110; % Largest sonar return to be trusted 
min_trusted =17; % Smallest sonar return to be trusted 

% SORT & CONDITION THE INPUTS- 

% We don't need steering angle AND turret angle if we're working with 
% a scout; Col # 4 is meaningless.  So we'll turn column 4 into the 
% ACTUAL angle of each range finding relative to turret angle. 
% 16 Sonars are equally spaced 22.5 degrees apart, or as defined in 
% the variable 'shift' above.  NOTE: if the number of rows in the 
% input file is not an integer multiple of the number of sonars 
% defined in 'shift' (default 16), an error message will result. 

for c = 1:size(input,1)/length(shift) 
input((16*(c-l)+l):16*c,4)=input((16*(c-l)+l):16*c,3)/10+shift'; 

end 

% Now, go back through the column 3 we created, and make sure all 
% angles are between 0 and 3 60. 
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for c = 1:size(input,1) 
if input(c,4)<0 

input(c,4) = input(c,4)+360; 
elseif input(c,4)>= 360 

input(c,4) = input(c,4)-3 60; 
end 

end 

% Finally, sort the entire set of range findings counter-clockwise 

[useless_vector,I] = sort (input (:, 4) ) ,- 
input = input(I,:); 
clear useless_vector 

% Ignore range findings too small or too big 

in = input; 

for row = l:size(in,l) 
if in(row,5) > max_trusted 

in(row,5) = NaN; 
elseif in(row,5) < min_trusted 

in(row,5) = NaN; 
end 

end 

I = find-(in(:,5) ) ; 
in = in(I, :) ; 

% GET X,Y LOCATIONS OF ALL SONAR RETURNS TRUSTED  

XY = zeros(2,size(in,1)); 
for c = l:size(in,l) 

Xrobot = in(c,l)/10; 
Yrobot = in(c,2)/10; 
range = RobotRadius + in(c,5); 
angle = in(c,4)*pi/180; 
X = Xrobot + range*cos(angle) ; 
Y = Yrobot + range*sin(angle); 
XY(:,c) = [X;YJ; 

end 

% TAKE REDUCED HOUGH TRANSFORM OF X,Y PAIRS- 

cl_rad = houghred(XY(l, :) ,XY(2, :) ,HTolR, HTo.lTh,RobotRadius+min_trusted) ; 
cl_deg = [cl_rad(l,:)*180/pi; 

cl_rad(2,:)] ; 

[Y,I] = sort(rand(l,size(cl_deg,2)));      % Put the points in rand 
cl = cl_deg(:,I); % order for presentation 

% FIND THE CLUSTERS IN HOUGH DOMAIN- 

range = [-180,180,RobotRadius+min_trusted,max_trusted]; 
alphal = ConstLR*ones(size(cl,2)) ; 
walls = nnclust(cl(l,:),cl(2,:),range,p,alphal,NNTol); 
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APPENDIX D. GATHER.C 

* 
* PROGRAM: gather.c 
* 
* PURPOSE: To collect sonar data for later off-line processing 
* to locate walls.  Modified for Scout 

/*** Include Files ***/ 

# inelüde "Nc1ient.h" 
#include <stdio.h> 
♦include <stdlib.h> 
tinelüde <math.h> 

/***  Conversion MACROS courtesy of Nomadic Inc  ***/ 

#define RIGHT(trans, steer)  (trans + (int)((float)steer*368.61/3600.0)) 
tdefine LEFT(trans, steer)   (trans - (int)((float)steer*368.61/3600.0)) 

#define scout_vm(trans, steer)   vm(RIGHT(trans, steer), LEFT(trans, 
steer), 0) 
#define scout_pr(trans, steer)   pr(RIGHT(trans, steer), LEFT(trans, 
steer), 0) 

/*** Function Prototypes ***/ 

void GetSensorData(void); 

/*** Global Variables ***/ 

long SonarRange[16];      /* Array of sonar readings (inches) */ 
long IRRange[16];        /* Array of infrared readings (no units) */ 
long robot_config[4];     /* Array - robot configuration */ 

/*** Main Program ***/ 

main (unsigned int arge, char** argv) 
{ 

int i, j, index; 
int order[16] ; 
FILE *fp; 

/* Connect to Nserver. The parameter passed must always be 1. */ 
SERV_TCP_PORT = 7020; 
connect_robot(1, MODEL_SCOUT, "scoutl.ece.nps.navy.mil", 4001); 

/* Initialize Smask and send to robot. Smask is a large array that 
controls which data the robot returns back to the server. This 
function tells the robot to give us everything. */ 

init_mask(); 

/* Configure timeout (given in seconds) . This is how long the robot 
will keep moving if you become disconnected. Set this low if there 
are walls nearby. */ 

conf_tm(l); 
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/* Sonar setup. As you look at robot from top, Sonar 0 is the one 
in the direction the robot is facing. Then they number counter 
clockwise up to 15.  */ 

for (i = 0; i < 16; i++) 
order[i] = i; 

conf_sn(15,order) ; 

fp = fopen( "range.dat", "w"),- 

/* Guts of the program. To make robot rotate 7.5 degrees, the 
command is scout_vm(0,75).  The direction will be counter 
clockwise as you view the robot from the top.  Need to 
GetSensorData, rotate, GetSensorData again, rotate again, 
GetSensorData a third time, then return to original state.*/ 

GetSensorData(); 

for (j=0; j<16; j++) 
fprintf(fp, "%8d %8d %8d %8d %8d \n", 

robot_config[0],robot_config[l],robot_config[2], 
robot_config[3],SonarRange[j]) ; 

scout_vm(0,75); 

sleep(5); 

GetSensorData(); 

for (j=0; j<16; j++) 
fprintf(fp, "%8d %8d %8d %8d %8d  \n", 

robot_config[0],robot_config[l],robot_config[2], 
robot_config[3],SonarRange[ j ] ) ; 

scout_vm(0,75); 

sleep(5); 

GetSensorData(); 

for (j=0; j<16; j++) 
fprintf(fp, "%8d %8d %8d %8d %8d  \n", 

robot_config[0],robot_config[l],robot_config[2], 
robot_config[3] , SonarRange [ j ] ) ,- 

scout_vm(0,-150) ; 

fclose(fp); 

/* Disconnect. */ 
disconnect_robot(1) ; 

/* GetSensorData(). Read in sensor data and load into arrays. */ 
void GetSensorData (void) 
{ 

int i ; 

/* Read all sensors and load data into State array. */ 
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gs () ; 

/* Read State array data and put readings into individual arrays. */ 
for (i =0; i < 16; i++) 

/* Sonar ranges are given in inches, and can be between 6 and 
255, inclusive. */ 

SonarRange[i] = State[17+i]; 

/* IR readings are between 0 and 15, inclusive. This value is 
inversely proportional to the light reflected by the detected 
object, and is thus proportional to the distance of the 
object. Due to the many environmental variables effecting the 
reflectance of infrared light, distances cannot be accurately 
ascribed to the IR readings. */ 

IRRange[i] = State[1+i]; 
} 

for (i =0; i < 4; i++) 
robot_config[i] = State[34+i]; 
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