
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) REPORT DATE
JUNE 1997

3. REPORT TYPE AND DATES COVERED
TECH REPORT

4. TITLE AND SUBTITLE
ASSESSING SITUATIONAL AWARENESS IN TASK FORCE XXI

6. AUTHOR(S)
E. TODD SHERRILL
DONALD R. BARR

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
OPERATIONS RESEARCH CENTER
USMA
WEST POINT, NY 10996

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Situational Awareness has become the central quest of U.S. Army force developments as the nation's ground combat arm of
decision seeks to leverage greater effectiveness on the battlefield through information technology. As the term implies,
situational awareness provides a combatant knowledge of his battlefield environment. A commander with complete
situational awareness will know with certainty, among other elements of information, the status and disposition of his own
forces as well as those of his opponent. Battlefield commanders throughout time have required some measure of situational
awareness in order to impose their will on the enemy. Army leaders hypothesize that information age technology can be
used to achieve information dominance over the enemy and that units equipped with greater situational awareness will fight
more successfully than units without the added capability.
In an effort to test this hypothesis the Army conducted an Advanced Warfighter Experiment (AWE) which began at Ft.

Hood, TX and culminated in a focused rotation at the National Training Center, Ft. Irwin, CA. Although many initiatives
in the area of information dominance were tested in the AWE, the centerpiece of the program was a test case unit
designated as Task Force Twenty-One (TF Xyd). TF XXI was a normal heavy maneuver brigade out of Ft. Hood, TX. The
Army equipped and trained TF = with the most promising prototype technology designed to provide commanders real-time
situational awareness and information dominance. TF XXI was then tested against an opposing force at the NTC in live
simulated combat.

14. SUBJECT TERMS
TASK FORCE XXI

15. NUMBER OF PAGES
72

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

DTIC QUALITY INaPECTIKD 1

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

USAPPC V1.00

ASSESSING SITUATIONAL
AWARENESS IN TASK FORCE XXI

MAJ E. Todd Sherrill
Operations Research Center

and

Professor Donald R. Barr
Department of Systems Engineering

U.S. Military Academy
West Point, NY 10996

A Technical Report
of the

Operations Research Center
United States Military Academy

Directed and Aproved by
LTC Michael L. McGinnis, Ph.D.

Director
Operations Research Center

June 1997

INTRODUCTION _ 2

THE INFORMATION GAIN MEASURE 2

EXAMPLE „.„ „ 4

APPLICATION „ _ „ 5

ESTIMATING AREA SEARCHED „ _ 8

INFORMATION GAINED THROUGH DETECTIONS 9

FRATRICIDE INDEX 12

CONTOURS OF THE FRATRICIDE INDEX ARE HYPERBOLAS 14

OBSERVATIONS 15

LEATHALITY 16

SITUATIONAL AWARENESS „ 17

FRATRICIDE 18

CONCLUSIONS 19

Appendix A. Summary output for baseline STX trials 20

Appendix B. Summary output for treatment STX trials 29

Appendix C: Documentation and explanation of code 38

REFERENCES 72

DISTRIBUTION LIST 73

INTRODUCTION

Situational Awareness has become the central quest of U.S. Army force
developments as the nation's ground combat arm of decision seeks to leverage greater
effectiveness on the battlefield through information technology. As the term implies,
situational awareness provides a combatant knowledge of his battlefield environment. A
commander with complete situational awareness will know with certainty, among other
elements of information, the status and disposition of his own forces as well as those of
his opponent. Battlefield commanders throughout time have required some measure of
situational awareness in order to impose their will on the enemy. Army leaders
hypothesize that information age technology can be used to achieve information
dominance over the enemy and that units equipped with greater situational awareness will
fight more successfully than units without the added capability.

In an effort to test this hypothesis the Army conducted an Advanced Warfighter
Experiment (AWE) which began at Ft. Hood, TX and culminated in a focused rotation at
the National Training Center, Ft Irwin, CA. Although many initiatives in the area of
information dominance were tested in the AWE, the centerpiece of the program was a test
case unit designated as Task Force Twenty-One (TF XXI). TF XXI was a normal heavy
maneuver brigade out of Ft. Hood, TX. The Army equipped and trained TF XXI with the
most promising prototype technology designed to provide commanders real-time
situational awareness and information dominance. TF XXI was then tested against an
opposing force at the NTC in live simulated combat.

Since the authors had demonstrated the utility of an information measure which
we call information gain, OPTEC asked us to attempt to apply the measure to data
generated during the AWE trials [1][2][3] [4] [6] [7]. In this paper we report our
application of the information gain measure as well as a fratricide measure which we
have termed the fratricide index. We applied these measures to data collected during TF
XXI's train-up at Ft. Hood. We specifically report on data generated during company
level training.

In order to calculate these measures we developed a data reduction tool using
Microsoft Access version 7.0 software. Access provided us the query power of an object
oriented relational data base along with the capability of structured programming.
Appendix C contains the code behind our implementation with appropriate
documentation of the objects and algorithms involved. The code is written in Visual
Basic.

THE INFORMATION GAIN MEASURE

Information gain measures the Blue forces' awareness over time of Red's
disposition. For our purposes disposition means number and location of Red combat
systems such as tanks and armored personnel carriers. Within a time interval of duration
At, say (t, t+At), the measure is a distance measure between two probability distributions

Pt and Pt+At which we refer to as the prior and posterior distributions respectively. These
distributions represent the discrete probabilities, from Blue's perspective, that a Red
vehicle is in various areas of the battlefield. Consider the case of one enemy vehicle
located somewhere on the battlefield. If the battlefield were partitioned into cells each
cell would have a certain probability of containing the Red system. The sum of the
discrete probability values over all cells would be 1.0 with those areas of greatest
likelihood having the larger values. At the beginning of the time interval (t, t+At) Blue's
uncertainty about the Red disposition is represented by the prior distribution Pt. If the
Blue force believes that the Red vehicle is equally likely to be in any one of the cells, the
prior distribution would be uniform over the cells.

When any Blue sensor scans an area of the battlefield Blue gains information
about the enemy disposition. Assuming a perfect sensor, Blue will either determine
Red's location or Blue will discover cells where Red is not located. The magnitude of the
new information depends on the operating characteristics of the Blue sensor as well as the
outcome of its scan. For example, if a particular Blue sensor has a probability of
detection (PD) of .8 then this same sensor has a .2 probability of failing to detect a target's
presence in a scanned cell. The cells searched by Blue during the interval (t, t+At) receive
updated probability assignments based on the operating characteristics of this sensor. Our
method of updating the probability distribution from Ptto Pt+At is an application of Bayes'
formula [1]. The Bayesian calculations incorporate PD and P, values in order to update to
the posterior distribution Pt+At. This posterior distribution represents Blue's new
uncertainty about Red's disposition and becomes the prior distribution for the next time
step, (t+At, t+2At).

The prior is updated to the posterior using knowledge of which cells have been
searched and the PD of the searching sensor(s). Let T(j) denote the event that there is an
enemy vehicle in cell j and let I(j) denote the event that Blue sensors report that there is
an enemy vehicle in cell j. If we assume zero false alarm rate for Blue sensors we have:

P[TG)IIG)] = 1.0;
P[T(i) I I(j)] = 0.0; where i*j;

P[T(i)\~I(j)] = —f—; (1)

and

(\-PD)Pi
P[T(j)\~ I(j)]= . p , (2)

1
~

P
DPJ

where, "~I(j)" indicates the event "search in cell; fails to detect the target. Equations (1)
and (2) apply to the situation where Blue searches and fails to detect the target during one
time interval. Equation (1) applies to a cell where Blue does not look. Equation (2)
applies to a cell where a Blue sensor looks and fails to detect. The original probability
assigned that cell (pj) is reduced but is not driven to zero unless the PD of the Blue sensor
is 1.0 The pi and pj in equations (1) and (2) above refer to these individual cell
probabilities. Since the denominators in each case are identical we treat them as a
multiplying constant. If Blue finds the target, the cell containing the target is assigned a

cell probability of 1.0. All other cells are assigned zero probability since Blue knows the
vehicle's location. See [1] for a complete development of this formulation.

As mentioned above, information gain is a measure of the distance between the
prior and posterior distributions. This distance is represented as the change in entropy
resulting from updating the prior to the posterior distribution. Shannon defined entropy
as a measure of randomness or uncertainty [5]. For our application the entropy
(uncertainty) of the posterior distribution is subtracted from the entropy of the prior
distribution. In this respect the metric captures the decrease or increase in uncertainty
concerning the location of Red systems during each time interval. This change in entropy
is information gain:

S(pf.pu + At)) = J^PO + A/)ln(/7(r + At)) -jj^ ptln(/?t) ,

where summation is over all cells for which Pt (Pt+At) is positive [1].

Example
Assume the Blue sensors are perfectly accurate (i.e., in each cell searched, PD =

1.0 and false alarm probability is zero). If Blue detects the Red vehicle in cell j, then 1.0
is assigned to cell j and zero probability is assigned to all other cells. Blue's cumulative
information gain will be at maximum value since Blue now knows all there is to know
about this Red vehicle. In the case of one vehicle located in one of 100 cells, the
maximum amount of information that could be attained is ln(100) = 4.605 [1]. If the
enemy vehicle is detected during the 1st time step, the information gain for that step
would be the maximum value and the search would be over. Likewise, the search is over
when the vehicle is detected during any time step and the information gained, for this
time step, is the maximum possible gain (4.605) minus the cumulative gain up to the time
of detection.

When Blue searches for multiple Red vehicles we simply multiply, at each time
step, the information gain for one vehicle by the number of Red vehicles. In our example,
assuming five enemy, the maximum gain would be 5*ln(100) = 23.026. When we search
a cell and find no vehicles we know that none of the five vehicles is in that cell, hence
five times the gain for an individual vehicle. If we find a vehicle during the search, the
information gain concerning that particular vehicle makes a jump in value up to In(100)
or up to one fifth the total possible gain. For those vehicles remaining undetected, the
gain generated by searching and not finding is now multiplied by four; we have found
where four vehicles are not located. Figure 1 illustrates this approach. The graph at the
right of Figure 1 represents the sum of the two plots shown in the leftmost graph.

We transform the information gain values to the scale [-1,1] so that the values
calculated over each At are relative to how much information could be known. We divide
8(pt. pu + AD) by the maximum entropy. This gives us a normalized scale and a basis for
comparison.

z
< a
o
u.
Z

1

0.9

0.8

0.7

0.6+

0.5

0.4-I-

0.3
0.2

0.1

0

1

-Undetected
.Detected

< o
o
UL
z

TIME

Figure 1. Information gain over time for one detected & four undetected vehicles is
shown in the graph on the left. Detection occurred during time period 6. The graph on
the right shows the cumulative information gain over time about all five enemy vehicles.
Values are scaled to [0,1] as discussed above.

Though the theory is rather simple, its implementation can be very challenging.
The Bayesian formulation above requires three types of data during each time step: 1)
knowledge of which areas of the battlefield (cells) Blue sensors looked in, 2) the
probability of detection (PD) for the sensors that did the respective scanning, and 3) the
prior Pt. Since information gain credits finding where the enemy is not, we need to know
at each time increment what terrain cells Blue sensors have searched regardless of the
presence or absence of enemy vehicles. Our approach to addressing these challenges is
discussed below.

APPLICATION

One of the central objectives of the AWE was to ensure participating units were
adequately trained in the use of new equipment prior to the NTC trials. Accordingly,
Task Force XXI conducted individual and collective training with the new systems at Ft.
Hood, Texas. OPTEC collected data from these training trials at Ft. Hood in order to
"shake-out" the data-collection plan and to begin to gain insight into the value of
digitization. Company Team Situational Training Exercises (STX)1 provided the first
opportunity to begin to assess the effects of digitization. The plan called for some units
to conduct STX without any of the prototype situational awareness technology (SAT).
Other units would conduct STX with SAT allowing analysts the opportunity to assess
differences. The company team STX scenario required the training unit (Blue) to conduct
an offensive operation against a defending (Red) force.

A Situational Training Exercise is an attempt to replicate combat conditions for the training unit The
force-on-force exercise is designed to stimulate planning, execution and assessment of unit combat
operations and can be orchestrated to force the execution of particular battle drills.

Our initial challenge was to determine if the data collected during Company Team
STX could be used to compute Information Gain. OPTEC provided a sample data set for
this purpose. The data set contained order of battle, Red kills (time of death for Red
Vehicles), Blue detections (time and location of Red vehicles as reported by Blue), and
location information concerning the positioning of all vehicles (Red & Blue) over time.
Table 1 shows an example of location information.

019
019
019
019
019
019

960416
960416
960416
960416
960416
960416

ä
261
261
261
261
261
261

B21T 3/C/2-8
B21T 3/C/2-8
B21T 3/C/2-8
B21T 3/C/2-8
B21T 3/C/2-8
B21T 3/C/2-8

081957
082519
082717
083012
083148

082519
082717
083012
083148
083204

083204 1083230

PK1712588
PK1777598
PK1807604
PK1779619
PK1739621
PK1731623

Table 1. Example location data for Company Team STX.

The Blue detections were composed of both Blue calls-for-artillery-fire on
suspected enemy vehicles and Blue spot reports concerning Red's disposition which Blue
conveyed over the unit command net. Table 2 shows a sample of Blue detections.

ID-IMSNI mffir^
521 260121 OCT96:14:29
53i 260121 OCT96:15:41
57! 240M7OCT96:12:47
58i 240l17OCT96:12:47

06605150
07305230
07205230
07205230

JJEMEMY4glMSQyRCS
T80 ISpot
T80
BMP
T80

Spot
Fs
Fs

Table 2. Example detection data for Company Team STX

As mentioned earlier, the information gain MOE is computed for each prior and
posterior probability distribution of Red positions over some time interval At. The key to
successfully applying the measure is to adequately represent Pt and the inherent updating
to Pt+At that must take place over a given time period. Accounting for information gain
due to detections or kills of enemy vehicles is relatively straight forward. Accounting for
information gain due to unsuccessful searching is more challenging. In order to
implement the measure we made two assumptions which we discuss below.

Equations (1) and (2) above were originally developed as a result of our efforts to
automate the information gain measure in the Janus wargame [7]. In combat simulations
the analyst has the ability to establish and view the entire battle area. In such situations it
is possible to speak in terms of individual cells of the battlefield holding some relative
probability of containing an enemy vehicle.

We cannot manage a cell-by-cell updating of probabilities in live training .
exercises such as Company STX. While units are restricted to a "maneuver sandbox,"
representing terrain cells and determining which cells were searched through time would
be logistically and computationally prohibitive. Also, the sample STX data provided by

OPTEC did not seem to support such an undertaking. Our measure, however, demands
that we know where Blue has looked during each time period.

We settled upon a boolean approach much like that employed in the board game
Battleship. In the board game the attacker begins with a uniform distribution of his
opponent's positions. As he fires salvos he receives information about his opponent's
positions in the form of a boolean variable (hit or miss). For the sake of this discussion
let's assume for a given salvo, Blue receives a "miss." The attacker has eliminated one
cell but his knowledge of his opponent is still uniformly distributed over the remaining
cells. There is greater probability that a ship is in one of the remaining cells since it was
not found in the cell just searched.

Relating the board game discussion to our Bayesian formulation, we assume that
the PD for the attacker is 1.0 and the original prior distribution is assumed to be uniform
over the set of 100 cells. Thus, recalling equation (2), the (1-PD) factor updates the
likelihood that an enemy vehicle is located in a searched cell to zero probability. In this
case, the probability that was originally represented in the searched cell is distributed
proportionally among the remaining cells. Since the remaining cells began with equal
values the Bayesian updating process will equally distribute the added probability among
these cells. The posterior distribution will, therefore, also be uniform over the smaller set
of cells remaining. In Figure 2 we show a visual representation of a uniform discrete
bivariate distribution over a battle area (the size of the Battleship grid) that has been
partially searched by Blue forces. Blue forces searched along the route illustrated in
Figure 3.

10

9

| X X X X X X 8
X X X X X X X 7

|x X 6
x jx X X 5

X |x
 1

X X 4

X |x X X 3
X x X X 2
X X X X 1

1

A B C D E F G |H I J

Figure 2. Posterior distribution of Red's likely
location following Blue's search.

Figure 3. Path searched by Blue Forces in
Figure 2.

The pi values were originally .01 since the grid has 100 cells. Notice in Figure 2
how the probability values of the searched cells have decreased to zero and the
probability values for the remaining cells have increased to .016. The smoothing in the
graph is simply a function of the graphical software and is not reflected in the calculated
probability levels.

The uniform distribution assumption enables us to keep track of searched areas
without trying to maintain a cell-by-cell accounting. If we were to partition the
battlefield area (BA) into cells of fixed size (Ac) then, given a uniform prior, the p; for
each cell would be l/(#cells in area B A). Consider a unit searching an area Z during
some At such that ZcBA. Assuming the unit's sensors have a Pp of 1.0, we are left with
posterior values p;* = l/(#cells in area (BA-Z)). Recall that information gain is simply
the change in entropy during each interval of time At. So we have:

S(pt.pu + AT)) = XP
(
'

+ *>ta(p(» + A»)) -£ ptln(pt)

= ln(# cells(BA - Z)) - ln(#cells(BA))

'#ceIls(BA-Z))
= ln

#cells(BA))

area(BA)
Since #cells(BA) = —- = k*area(BA) we can smiplify the computation of

area(Ac)

information gain to In
area{BA - Z)

This adaptation of the theory reveals that we
area(BA)

simply need to determine the amount of battlefield area Blue has searched in order to
compute the information gained through searching.

ESTIMATING AREA SEARCHED

The location data provides us ground-truth about Blue's disposition over time.
We use this information to compute movement of the Blue unit's center of mass (CM)
throughout the battle. We calculate CM at times t and t+At using the eight digit grid
coordinates of each Blue vehicle. We then compute vectors extending from CMt to
CMt+At which, taken in sequence over the duration of the operation, represent the unit's
movement throughout the battle. A unit moving forward in the offense will sweep-out
(search) a path through the area of operations. We assume that the Blue unit has searched
this swept area completely (so PD = 1.0). In order to determine the amount of area
searched we estimate the spread of the unit. This estimate is the distance (d) between the
vehicle farthest from the CM in the positive normal direction and the vehicle farthest
from the CM in the negative normal direction. We add 1500 meters to this distance to
represent the ability of these peripheral vehicles to scan beyond their physical locations.
For each time step, the area searched is the length of the movement vector (/) times the
distance of spread (d). Note the set of / values gives insight into the Blue unit's
movement rate. Figure 4 illustrates this model.

Figure 4 makes it
evident that some area
is double counted and
some area is not
counted. Since the Blue
units generally moved
in a direct route from
line of departure (LD)
to the objective area, we
felt that ignoring the
overlaps and shortfalls
would be acceptable for
our purposes.

The curve in
Figure 1 labeled
"undetected" is an
example of information
gain due to searching.
This curve shows how

the information gain measure credits the searching unit for learning where the enemy is
not located.

Are^

Figure 4. Model of Area searched during each At. Area, = d,lt
where lt is the magnitude of the movement vector and d, is the
spread of the unit normal to the direction of travel.

INFORMATION GAINED THROUGH DETECTIONS

Recall the sample detection data of Table 2. Each reported detection consists of a
detection time and an eight digit grid location of the detected Red vehicle. We use this
data and exploit the assumption of uniform distributions to calculate the information gain
due to Blue detections of Red vehicles. Naturally, Blue should gain considerably more
information from finding a vehicle than he does from finding where the vehicle is not.
The spike in gain during time period 6 of Figure 1 is representative of this difference.

Our approach to detection is essentially the same as our approach to measuring
information gain due to search. When Blue detects a Red vehicle the distribution of
Red's location from Blue's perspective is updated so that all of the probability is over the
spot on the battlefield where Red was found. Zero probability is over the rest of the
battlefield, for that vehicle. With probability 1.0 Red is somewhere within the area where
Blue detected him. The size of this area and hence the accuracy of Blue's detection
determines the magnitude of the information gained. The smaller the area the greater the
gain.

We use circular area to measure the amount of information gained due to a
detection. Blue will seldom be exactly correct in his estimate of Red's location. Let Md
be the distance between Red's actual location (eight digit grid) and the eight digit grid
where Blue reports Red to be. We credit Blue with locating Red within a radial distance

of Md which we term the radial missed distance or RMd. Blue has narrowed the search

for Red to an area of the battlefield of size rt(RMd)2.
In effect we have a qualitative measure of the Blue detection. Some detections

provide Blue with more information than others. In the sample output that we show
below, spikes of information gain reflect detections. The varying sizes of these spikes

reflect the respective accuracy of the Blue detections.

<
o
z
o

cc
o
LL

XXXIUMMMBMMMlMMmMlMMMMlMMM

'iiiiiätiriAi^AäMhäi^^A

0.5

h-1183

-1-1269

-i-251

-*-9

HIE-91

-^-Cumulative

i i 11 i i i 11 i i i 11 i i i 11

21 24 27 30 33 36 39

Time Steps of length 5 Minutes
Figure 5. Information gained about each enemy vehicle over time by a Blue
Company Team in the attack, normalized to the interval [-1,1].

Note also in Figure 5 that the spikes due to detections degrade over time. We felt
that a degradation effect was necessary to realistically model Blue's situational awareness
since information is so extremely time sensitive. If a detected Red vehicle is not killed or
re-detected we allow the size of the circular area computed at the time of detection to
expand uniformly over time. Blue's spike of certainty "melts" with each passing time
period as the size of the area possibly containing the Red vehicle grows. The rate of
degradation is determined by the likely movement rate of Red vehicles. We assume an
average movement rate of 3 kilometers per hour for Red systems since, in the STX

scenario, Red is defending.
Figure 5 also shows the cumulative information gain for Blue over all enemy

systems. Computing the total information gain occurring during a time step requires a
summation of the varied contributions to the total from each individual enemy system.
We therefore must keep account of the state of each enemy system from Blue's
perspective. The possible states are: 1) Area - Blue is searching and finding where the
vehicle is not located, 2) Detection - The vehicle has been found, 3) Degradation - The
vehicle was detected but not killed, 4) Kill - The Blue force has killed the Red vehicle.
Enemy vehicles transit from one state to another at the conclusion of a time step. The
possible transitions are depicted in Figure 6.

10

Figure 6. State transitions of enemy vehicles from Blue's perspective.

All enemy vehicles begin in the Area state. When enemy vehicles are in the Area
state, Blue information gains are determined by Blue searching and eliminating possible
locations of these enemy vehicles.

Vehicles in the Detection state have been detected by at least one Blue sensor.
Blue gains substantial information from a detection as can be seen in Figure 5.

Degradation begins in the time step immediately following the time step in which
detection occurred provided the vehicle is not detected again or killed.

When Blue kills an enemy, Blue knows all there is to know about that enemy. We
assume that this information does not decay. The dead vehicle's contribution to Blue's
situational awareness reaches and remains at maximum value. This is illustrated in
Figure 5 for vehicle 91 at time 7, vehicle 1183 at time 10, vehicle 1269 at time 13, and
vehicle 9 at time 18.

Note that it is possible to transit directly from the Area state to the Kill state. This
may seem counterintuitive. It happens when a particular vehicle is detected and killed
during the same At. Note also that a vehicle can transit from Degrade to Area. This
occurs when the spike in information gain due to detection has degraded over time to the
point that no more is known about this particular vehicle than is known about those
vehicles that are in the Area state. Likewise a vehicle can transit from Detection directly
to Area. This happens when a vehicle in the Detection state is detected again but with
such poor quality that the size of the circular area possibly containing the Red vehicle is
greater than the remaining area of the battlefield to be searched.

In this regard the information gained through searching and not finding serves as a
lower bound on degradation. Vehicle 251, in Figure 5 above, degraded down to this
lower bound after being detected by Blue with great accuracy. Vehicle 251 remained in
the Area state for the rest of the battle. Blue's only awareness of vehicle 251, after this
initial detection, was gained by finding where 251 was not located.

As Table 2 reveals, we do not know which enemy vehicle is detected when a
detection occurs. The detection data contains only the type enemy, the time of detection
(TOD), and the location reported by Blue. In order to determine the identity of the enemy
vehicle we employ the query capabilities of our data reduction tool. We query the
location table for the nearest enemy vehicle to the reported grid location within a time
window of TOD to TOD minus 5 minutes. The five minute window allows for

11

transmission time of unit spot reports and calls for artillery fire. We treat this nearest
vehicle as the detected vehicle and compute the circular area as described above.

Knowing that Blue sensors could mistakenly report Blue vehicles as enemy, we
felt it would be of interest to seek insight into the potential of such mistakes. We
developed an index to reflect the potential of fratricide for each reported detection. We
hoped that this measure would allow us to compare fratricide in baseline and treatment
trials.

FRATRICIDE INDEX

The fratricide index provides a qualitative measure of friendly spot reports
concerning enemy vehicles. As its name implies, the measure indexes the accuracy of
spot reports relative to the possibility that the reported enemy vehicle is actually a friendly
vehicle. Inputs for the measure are the reported location of an enemy vehicle (spot
report), the actual location of the enemy vehicle closest to the reported location, and the
actual location of the friendly vehicle closest to the reported location. The measure:
ranges from -1.0 to 1.0 with 1.0 signaling minimal possibility of fratricide and -L0
signaling maximum possibility of fratricide.

A graphical and mathematical
n= |f|-|rj .._ model are presented in Figure 7. In the

d ,..-•-"" \ graphical model the reported location of
/ the enemy vehicle is represented as an

artillery strike. The length r is the
distance from the reported location to
the nearest enemy vehicle at the time of
the detection. Likewise, the length/ is
the distance from the reported location

....-•"" to the nearest friendly vehicle at the time
" of detection. The time of detection is

treated as a time window of five minutes
Figure 7. Fratricide Index which begins five minutes prior to the

detection time (the time that the spot
report was received). In other words, which vehicles were closest to this reported
location within five minutes prior to the spot report? The five minute window can be
thought of as the command and control (C2) lag time of the report. The length d is the
distance between the friendly and enemy vehicles.

When/is greater than r the quality of the report is indexed between 0 and 1.0 as
shown in Figure 8. When f-r = d which is to say the reported location is either exactly
correct or safely on the far side of the red vehicle from blue's perspective, the possibility
of fratricide is low and the quality index is 1.0. See Figure 9. Figures 11 and 12 show
less favorable fratricide situations which correspond to poor report quality and negative
index values. Figure 10 represents situations in which the reported location is closer to
Blue than Red if is less than r). Figure 11 represents the greatest possibility

12

of fratricide and hence the lowest possible quality measure of-1.0. Finally, Figure 12
represents the "middle of the road case" of FI = 0.0 which occurs when/= r.

0<= n. 'ItH <=i.o
d

Figure 8. Reported location is closer to Figure 9. Reported location is either exact
Red than Blue. or safely beyond the target.

•1.0 <= Fl = <= 0
d

FT- IU±! .-,.0
d

Figure 10. Reported location is closer to Figure 11. Reported location is either
Blue than Red. directly on or dangerously behind Blue.

13

Figure 12. Reported location is equal distance from
Blue and Red.

CONTOURS OF THE
FRATRICIDE INDEX ARE

HYPERBOLAS

We believe some
insight into the fratricide index
is gained by noting that the
index takes on equal values
along hyperbolas in the plane.
By definition, a set of points H
is a hyperbola if and only if
there are two points Fi and F2
and a positive constant a such
that, for every point A e H,

1 d(A, Fi) - d(A, F2) I = 2a, & .
where d is the Euclidean distance function [8]. The points ¥x and F2 are called the foci of
the hyperbola. For our application, the foci are the locations of the Blue and Red vehicles
involved in determining the distances f, r, and d, as we shall see.

Suppose the foci are at the points (-c,0) and c,0) on the abscissa of a Cartesian
coordinate system. Let b2 = c2 - a2. The equation of the hyperbola is then given by

£1-2- = 1.
a1 b1

(4)

Now consider the defining relationship, (f - r)/d = i, for a fixed value 1, 1 e [-1,1],
of the fratricide index. This relationship can be expressed in the form of Equation (3),
with a = d-i/2. It follows that Equation (4) can be expressed in the form

y _
e 1-i2

with asymptotes given by

dl
4

y = ±.
1-i ■2

(5)

(6)

These asymptotes show limiting linear relationships between the coordinates of points
(x y) designated as the target position, that give values ± i for the fratricide index. We
note the expressions in Equations (5) and (6) are valid for i" < 1 and 1 * 0. If 1 - 0, the
hyperbola degenerates to the vertical line x = 0. If i = 1. the hyperbola degenerates to the
half-line consisting of the points on or to the right of the focus (c,0), and similarly for

We used the fratricide index to rate each detection that occurred during a
company STX. Figure 13 is an example of the distribution of the fratricide index for a
particular mission. There were eight detections in this particular mission. As Figure 13
reveals, only one detection resulted in a negative value.

14

J.

FREQUENCY

6

5-

3-

-1 -0.75 -fl.75 -0.5 -0.5 -0.25 -0.25 0 0 0.25 0.25 0.5 0.5 0.75

Range of fratricide index

Figure 13. Distribution of detections rated by fratricide index.

OBSERVATIONS

Appendix A contains summary output generated for each STX mission. The
baseline STX trials are shown first followed by the results from treatment STX trials.
Since the trials were not conducted in accordance with a complete experimental design,
we were unable to make strong statistical comparison of the results. Some of the most
notable confounding factors present in the data are unit, scenario, mission, and terrain.
The units participating in the treatment STX were not the same units that participated in
the baseline STX. The scenarios and missions of the two sets of STX were not the same.
Baseline STX were focused on deliberate attack while treatment STX were focused on
breaching operations. The trials were conducted in different terrain. Finally, the sample
size (eight baseline trials and eight treatment trials) was too small to employ the power of
statistical analysis of variance.

We did, however, observe some notable differences in the oulput from the two
data sets that merit comment. The data supporting our observations are recorded in
Table3.

15

BASELINE

% ENEMY
KILLED

63%

%ENEMY
DETECTED

142%

MEAN
FRATRICIDE
INDEX
.3075

TREATMENT I 21% 74% L2911

MEAN
MAXIMUM
TNFO GAIN
.6650
.3113

Table 3. Summary results.

LEATHALITY

Baseline trials reco^^^^

We report this result in Table 3 as a-fB^^^^**. Likewise, the

mission, and terrain factors.

Kills /Enemy
Kills/Enemy

Eight Baseline STX

Figure 14. Number of kills per number of enemy present.

Eight Treatment STX

16

Detections / Enemy Detections / Enemy

Eight Baseline STX Eight Treatment STX

Figure 15. Number of detections per number of enemy present.

SITUATIONAL AWARENESS

We investigated the cumulative information gain curves in Appendix A to
determine the maximum cumulative gain achieved by the Blue force during each mission.
As Table 3 reveals, the baseline trials produced the most favorable information gain; the
mean value over all baseline STX is greater than twice that of treatment STX. Figure 16
shows the distribution of the maximum values achieve during all missions. Baseline
units seemed to learn more about the enemy than treatment units. Again, the results could
be attributed to the scenario, mission, and terrain factors. Also, we may be seeing a
marginal return on information gain; units in baseline trials may have had more to learn
than their counterparts in treatment trials. In other words we assumed an uninformed unit
crossed the line of departure (LD) at the beginning of the battle. The technology
available to units in treatment trials may have provided these units with significant
information about the enemy's disposition prior to LD. This awareness on the part of
Blue, if it existed, is not captured in our displays of information gain. If "stronger priors"
representing Blue's more informed state about Red's disposition had been used, however,
the information gain for the treatment STX trials would have been lower than those we
report. On the other hand, the maximum entropy used to normalize information gain
would also have been smaller. The net effect on values of maximum information gain
shown in Figure 16 is difficult to assess.

17

Maximum Information Gain
Achieved

Maximum Information Gain
Achieved

1

0.8 J

0.6

0.4

0.2

0 111 rrri'i—r r~i

1

0.8.

0.6

0.4

0.2

0 lliillll TMI~I"IIII

Eight Baseline STX Eight Treatment STX

Figure 16. The maximum value of information gain in each trial.

FRATRICIDE

Mean values of the fratricide index suggest no difference in potential fratricide.
As with information and lethality measures, confounding factors are present in these
results. However, due to the relative nature of the fratricide index computations we do
not believe it to be sensitive to the factors of mission and scenario. Terrain, however, is
clearly a factor which could have influenced these outcomes.

Mean Fratricide Index Mean Fratricide Index

1
0.8
0.6
0.4
0.2

0
-0.2
-0.4
-0.6
-0.8

M■■I il i~iiiiBiii

Eight Baseline STX

1
0.8 i
0.6
0.4
0.2 1

0
-0.2
-0.4 -\
-0.6
-0.8 H

I ll I
T 1 ■ I ™ I ™ I ■ I ™ I

Eight Treatment STX

Figure 17. Average fratricide index over all detections within each trial.

18

CONCLUSIONS

We have demonstrated that the information gain measure can be computed from
digitally recorded position data such as those generated during the AWE. We see
evidence the measure behaves rationally, i.e. units that were effective at finding and
killing the enemy had better information gain curves than units that did not. Likewise,
units that were able to kill the enemy were rewarded over those that could only detect.
This is primarily due to the information degradation process in our model.

Our approach to evaluating detections gave rise to an apparently new measure of
fratricide which we have documented here for the first time. This measure may become
more applicable to analysts and warfighters as units begin to acquire digital position
tracking equipment. It is conceivable that units will perform analysis of their training
data using the ground truth that digital location information provides. Since the fratricide
index is easy to compute and understand it could provide training units with relevant
feedback concerning their detection and identification of enemy forces.

We were limited in making strong comparisons between baseline and treatment
results because of uncontrolled factors in the trials. The same units did not complete both
baseline and treatment trials. The companies of one brigade conducted the baseline trials
and the companies of another the treatment trials. Each brigade prepared their own
training plans and scenarios for STX; one brigade's companies did a deliberate attack,
the other a breach mission. Additionally, the two training events were executed on
different terrain during different seasonal conditions. We were able to comment on
differences but are not convinced that the differences are attributable to the treatments.

19

Appendix A. Summary output for baseline STX trials.

20

t^^^^p^

HI
s
E
LU >
O

LU
2
LU > o

o
LU

<

0)

I
CQ
c
"5
O
c

>

3

c
o

ffi >
s
E

i I«
I 1
I 1

t 8 8 « R *

B
8

"I
- s.

c
R £
: o

M
S a

0>

: w
o

S £

I
>.
E
o
c

LU

O
ca

LU

3
O
ja <
c

1
c
.2

o
1

I 5 s j «

HIM

X
0)

TJ
c

■D

.a

c
_o
o
d)
0)
Q

c
o

a

a»««

ml»

8
c o

o

< 8

<
II

X

S

R

<
£

■

"

"

WS
mit*»-

m

UJ
E

CC
UJ > o

UJ
E
UJ > o
s
LL
o
UJ

<

c
's
C
o

o
£
0) _>
s
E
3 o

I &

I 1
-■ I

.Sä

>.
m
c
'S
C3
c
.2

>
co
3

u ^

s
* c
i« i
x £
R S

5 O

- a o 1 25
- E
s P

3!

1 I
! E
1 *>
! £
i -5

! = 1 o
> £1
I <

3
c

1 c

T! ' HIM

immmmm&Mmmmmm£%

X
01

•D £
dl

n
u.
>.
(A
c
o
ü
a>
<u
a

3
.-5

o

$1

J

fev#!

s
C o

*
II

K

<

B

R

<

•

WLJjMHinni il iiiiiwiiii.il mi fimii |i i wijiiim IIIW^^IU ■tjwiwjM. >■><■■■.■ i

i:-.v.~--<:r:-..:vgw-..-T ■-■•*?-•■ .-i ■■■■- --...,• .:■■■ .,-.-.■ -. 1- v-.-- ■ rv.-* . .

Ill s
et
HI >
O

HI
E
HI >
O

o
HI

< c

c
<3
c
o

a

s
3
E
3 u

i | £ E £
T i 7 I '
7 * i 1 T

.ffi

I
m
c

"5
C5

£
0) >
to
3

S £ i Si

I
>.
E
o
c
HI

3

I <

8
c
5

o

% I

HUT

S
c o

^

X

II
8

X

K

<■:

<

X
0)

C

T3

(0
i»
U.
><
13
</>
c
o

o
0)

"3
Q

o
c
o

t5
Q

m e* T-

Si
■t. ■ <>, ;

a;

l!
Hi

'■■■* ;

fab''

& \

Cf ** > .

i

*g'",'ia w'g^').W»P.>W,WI

c
ai > o

I £■

s
> o
s
u. o

<

Hills
U • ! 1 1

.2

m

(0
ö
c
.2

ai >
33
JE
3

I
£
D c

UJ

je
ü
«5

UJ

s

<
c

c

'S
E
o

I S
i i !

! £

C

3
c o

N

<f:

x
a>

■D
c
e>

T3

c
o
o
01
o
D

c
o

ja

To

.* i

fe-'

ÄftTJ i'XÄH'iÄ';

- —:■:.-*•?.-,•.■'■■ ..-

c

s
c
o

s
E

i
4

■+
4
4
\

5
c o

ft
R

C

It

S

00

..... :•' '•.'.-■ ; * ;.-,«"

b. 'UJvw^-i..••..• -.•■■•••■'•

£—: ■-),', -■■■■: - •■•■t I 1 ■ •y^r—
-" - ''•' • |—v^'.cp

• —' .-, CO
i --■-••. —r •■• •'■'•• —■

©.. •-"
!•:••-co;

Appendix B. Summary output for treatment STX trials.

29

«in..!. ■ ■«■>.!■, i "VT* >'■'■"■■:*": ■" '■»".'."■l

'.'.^•:.'-.J'..-- ■'rv..-. .-... '■■■•■•'■ M ■■-".,'^i^j

a^jjs^<?i".4-^r

E

UJ > o

HI
E
UJ > o
E
o
UJ
t- <

c
8
c
o

3
E
3

£ £ E 6

0)

11
><

c

! §
! i

0) >
'£1
JO
3

§ 1 I
£ „^
TJ e
01
c o

CD >
© f

T> »- 's
«5
> c
?>£
gJI y
= "
>
8

1 c si
c ■~s~—,
<5 ■sj

CO

•fi
_->•

jo

"5 >
>.
E
0)

UJ

3

<
C

3
c

UN

U" -•-■■-■-- ^.:;;.-^*fa::^J- ••.^,

■ a
c

JE

i =
1 5

c o

o

<\

i-

K »<»S,>aä^.l.K.»t-,-,Xa^~Af»,Wr

ai
1
^-
HI > o
£"

HI
E
> o

o

<
a,

»r

I, '.'H4W

1 5 £ £ R S

1
« 1

1
1
i p •

0)

£

>.
to

re
o
c
.2

0) >
-S3

3
E
3

S = 8 ft K K

M ! 1 T T

r

t
i

X
o
■o
c

LL
>.
W
c
_o
o
a;
C>
D

c
o
"5

to
5

s
c o

,2
|c
e>

3
E
3
Ü

w
E

o
'S

4.

■^WW^m n»

UJ

UJ >
o

o
UJ

<
IX

m
c
'S
ü
c

S
0) >

S3

3

ü

s
c o

o
Ja
0) .>
s
3
E
3
ü

X
0)

•D c
e

LL

>.
XI
U)
c
o
ü
o
0)
o
o
c

£
1
D

3£?

—T~ ■ 1i lip ■■■■■ t»! :»^l>.^i^Vji !■". * -J

HI
2
c u > o

UJ
E
UJ > o
E
LL
O
UI

— '
£ <j
■D J .
ra « 1
D. 01

CO > ►. 1
o E ■

ö H *=^T '
iü5 ■

> c
- B£
l c c

O .fe \ i° '
i >
■' s
i "O t 1

«0
ä 13

C
C5 >—= 1

! w 1 1 IS-

sS

X
0)

T5
C

0)

CB
i-
IL

c o
u
©
o o

c
o

TIFTÄ-
•*?r-i

UJ
E

u > o

§5
: i

IS 3

c
"5
!£

>. m
c
'5
Ü
c
.2

£
at >

•X3 re
3

O

I i ({ i i i i

>.
E a
c

UJ
£

3
O

S3 <

<3
c

MiH

• s
» it

e o

o
£
01 ,>
re
3
E
3 o

*

X __

R ~
« £
• £

I ^
«. a
~ £

«5
«
E

m It - a
I* -

c

4

<

r*
it
c
X
t
X
X
K
X

'^;M 3£T

X
0)

"O
c
D

Ü

re
u.
>>
<A
c o
o

0) o
o
c

3

Q

m
c

"re
O
c
.2

>

5 o

• >

i *

k ■
■ '
a -
• ■

t ■
m ■

■ • * ■

* ■

~————m ■

ft
f *■ '

7 * '

A
4-

*

R «s

R £

- E

>

E
ci
c

111

13 a
ai
3 o
Si <
CO
(5
c
.2

<

D: ^^S^^^Ä'
K-
!—- k.-' .•'. ■\r v%" *v*- i."_^i-*.' ■*'.**■* *. z '."•; '..;^"""co':"
111 2t^7*4&äf«>.t:

■O
IP® =2

LU" CM
■."J'';!zr..^--.£co:^'

•.iivZ^'Ö^

...... .. « ■Alimfy*—'If.

irS;p%|! i-wv

ID z it« &ai

Uffkfefai

E
111 >
O

LU s
111 >
o
5
u.
O
LU

<

c

5
c
o

3
3
E

s
«

II _
* m
t X

* ? 1 i
* e
. K

c 1 J

M i i
0)

>.
c

"5
O
c
.S

£

>
.2
3
E
3
O

S>

I
>.
E o e

HI

u c
LU

5

re
e>
c
.2
re
E
o

S : I E £ 8

H i

■ -

is
! *

i;
> s
| R
i R
i 5
E :
i ;
t 2

i ©

i •

; -

c
5

X

•o
c
0)

>.
.Q
(/)
C
o
o
0)

MM

0)
Q

"o
c

_o
"5
JD
IT

Q

t»
♦ s

•<4 *
3 *

*<iw
"> R

j:
4 X
4
4 K
1

3
a

: -
■

i c
: i

.

.

APPENDIX C: Documentation and explanation of code.

RAW DATA

OPTEC provided raw data in five tabulated files. The scenario file (DBSCENAR)
contains vehicle type and identification for Red and Blue players as shown in Table 4.

MISSNUM

10034 011 960408234716 13 D13 1/D/1-67AR BL

MCE? -.-i PLATFORM
 ■■- ■■■■■-

M1A1

10039 011 960408234716 25 D24 2/D/3-67AR BL M1A1

10042 011 960408234716 33 D34 3/D/1-67AR OP T80

10044 011 960408234716 41 D22 2/D/3-67AR BL M1A1

10050 011 960408234716 57 1HQ137 1/C/1-67AR OP BMP

10058 011 960408234716 81 D66 1/A/1-67AR OP T80

10059 011 960408234716 83 1D12 1/D/3-67AR BL M1A1

10061 011 960408234716 89 1D23 2/D/3-67AR BL M1A1

10064 011 960408234716 99 JD66 1/D/3-67AR iBL M1A1

Table 4. Sample of scenario data provided by client.

The location file (DBLOCATN) contains the positioning information of all vehicles
during the battle. See Table 5.
K CELL MISSNUM DA' 1L*YER S_T1ME E_T1ME POSITION'

HX I004 960326 101 !B31 3/B/3-67AR 235954 000012 PK14527286

HX

HX

I004

i004

960327 101 B31 3/B/3-67AR

960327 101

001608 001623 PK14537288

B31 3/B/3-67 AR 001623 001657 PK14527285

HX I004 960327 101 B31 3/B/3-67 AR 001657 001715 PK14537288

HX I004 960327 101 B31 3/B/3-67AR 001715 001811 PK14527285

HX |004 960327 101 B3t 3/B/3-67AR 001811 001826 PK14537288

HX

HX

HX

]004

1004

I004

960327 101 B31 3/B/3-67 AR 001826 001900 PK14537286

960327 101 B31 3/B/3-67AR 001900 002013 PK14537288

960327 101 B3T 3/B/3-67AR 002013 i002027 PK14527288

HX 1004 960327 101 B31 3/B/3-67AR i 002027 1002048

Table 5. Sample of position location data provided by client

PK14527289

38

The detections file contains the time and location of Blue detections of Red vehicles. See

26MAR96:10:30
26MAR96:10:30
26MAR96:10:30
26MAR96:10:30
26MAR96:10:30
26MAR96:10:30

PK182702 iBMP
PK188708 iBMP
PK156709 IBMP
PK171699 IT80
PK168701 IT80
PK176703 JT80

Table 6. Sample of detections provided by client. |

The mission data is a simple tabulation of mission start times and end times. See Table 7.

lHpiSNl^T^9KstARliSni ̂ 3S£NC?gflM
3|26MAR96:07:48 26MAR96:10:30
6|28MAR96:08:17 28MAR96:10:33
7!29MAR96:07:54 29MAR96:10:30
8 30MAR96:07:08 30MAR96:10:30
9 02APR96:07:43 02APR96:10:35

10 04APR96:07:14 04APR96:10:30
12l09APR96:07:43 09APR96:11:00

Table 7 Sample c)f mission data provided by client.

Finally, the kill table contains the time of death and identification of Blue kills of Red
vehicles. See Table 8.

SS» Time wsm RIP BUMPERNO
008 11183 7:58:00 AM !A32
008 11269 8:14:00 AM IA21
008 i9 8:41:00 AM 1A31
008 191 7:44:00 AM !A65

Table 8. Sample kill data provided by client

DATA REDUCTION TOOL

As mentioned above we developed the data reduction and analysis tool in
Microsoft Access. The tool is driven by the user selection of a mission. Essentially, the
user selects a mission and the analysis tool does all the rest; it converts raw data to usable
formats, calculates the information gain measure, the fratricide index, etc. and makes
various reports and forms available for display and printing.

We do not discuss the user interface in this report since it is essentially a product
of standard Access routines. The bulk of this appendix documents the code behind the
interface. We show how the code accesses the raw data and produces the desired

39

products. We show the format of the output tables but do not display the reports, charts,
etc. which are essentially products of these output tables and can be easily reproduced
using the output data.

Comments in the code are shown in boldface type. In most instances queries are
developed in the code using SQL. These are relatively easy to interpret by looking
closely at the code. In some cases however we reference queries which we developed in
the Access user interface. These queries represent minor manipulations of the data from
the raw data table and we do not document their development

DATA TABLE INITIALIZATION

We initially transform the raw data tables provided by OPTEC into data tables
whose content and structure support computation of the measures. We require an enemy
kill table which list the mission number, enemy vehicle identification, time of death, and
bumper number. See Table 9 and the code that follows.

|tui2MS^JL£^iiM..;::i:l t^:fiBBaaB3!Eaa5ggEEI
008 J1183 7:58:00 AM)A32
008 11269 8:14:00 AM A21
008 ! 9 8:41:00 AM j A31
008 |91 7:44:00 AM JA65 j

Table 9. Example kill table.

This table is a subset of the kill table shown above in the raw data. The raw data kill
table contains kills for all missions. The table developed during initialization reflects
only those kills pertaining to the mission selected by the user.

'This routine clears the kill table of any data from previous runs and writes the kill
'table to represent the current mission.
'Declarations
Option Compare Database
Option Explicit

Sub BuildKillO
Dim dbs As DATABASE, tdf As TableDef, pid, MSN, ktme, postn As Field
Dim strSQL As String, qdf As QueryDef
Dim MyRecords, MySet As Recordset
Dim SQLquery As String
Dim zeroes As String
Dim miznum

'Return Database object pointing to current database.
Set dbs = CurrentDb
'Check if Kill tbl exist

40

'If a kill table already exist, then empty it
If isTable("Kül_tbl") Then

strSQL = "Delete*from Killjbl;"
Set qdf = dbs.CreateQueryDef("\ strSQL)
qdf.Execute

End If
•Retrieve the mission number form the [SPECIFY MISSION FORM] which is up
and running once the user selects "initialize data tables."
miznum = [Forms]'.[SPECIFY MISSION_frm].[msnnum]
"This is a string fixing routine to put the mission number in the correct string
format
If Len(miznum) = 2 Then
zeroes = "0"
Else
zeroes = "00"
End If
'Open kill table.
Set MyRecords = dbs.OpenRecordset("Kill_tbl")
'Populate the kill table by retrieving the vehicle ID (PID), the kill time, and bumper
number from an inner join of two queries (DatetoKill_qry and Bumper#). Since
bumper numbers are the same for the enemy on many missions we use this inner
join to select based on a like bumper number and a like date.

'Define the select query.
SQLquery = "SELECT DISTINCT DatetoKill_qry.MSSN, [Bumper#].PID,
striptime(Mid([Time],9)) AS KTime, DatetoKiU_qry.BUMPERNO FROM
DatetoKilLqry INNER JOIN [Bumper#] ON (DatetoKill_qry.BUMPERNO =
[Bumper#].BUMP) AND (DatetoKilLqry.Date = [Bumper#].Date) WHERE
(((DatetoKilLqry.MSSN) Like'" & zeroes & miznum & '"))"
'Run the query.
Set MySet = dbs.OpenRecordset(SQLquery)
'Check to see if the query produced zero records.
If Not (MySet.BOF = True) Then
'Go to the first record in the set of records returned by the query.
MySet.MoveFirst
'Loop through all records and write the fields into the kill table.

While Not (MySetEOF)
MyRecords.AddNew
MyRecordsFields(O) = MySetMSSN
MyRecords.Fields(l) = MySeLpid
MyRecords.Fields(2) = MySeLKTEME
MyRecords.Fields(3) = MySetBumperno
MyRecords.UPDATE
MySet.MoveNext
Wend

41

End If
End Sub

We also require a table of Blue vehicles. See Table 10 and the code below
bjj»IK-.ateBBrHSa—B

008
008
008
008
008
008
008
008
008
008
008
008

19
51

!53
119
205
219
235
269
1037
1117
1233

11261

A65 1/A/3-67 AR
A32 3/A/3-67 AR
A112LT Burke/SGT Trowbridge
A33 3/A/3-67 AR
A31 3/A/3-67 AR
A66 1/A/3-67 AR
A34 3/A/3-67 AR

A12 SSG Burns/PFC Parker
A36 3/A/2-8 IN
A65 3/A/2-8 IN
A31 3/A/2-8 IN
|A32 3/A/2-8 IN

Table 10. Blue identification table

ßt!AT£ORM|
M1A1
M1A1
M1A1
M1A1
M1A1
M1A1
M1A1

IM1A1
M2
M2
M2
M2

IBL
B2BG

BL
IBL
BL
BL
BL
BL

IBL
BL
BL
BL

IBL

'This routine produces a table of friendly vehicles as shown above.
Sub BuildBlueO

Dim dbs As DATABASE
Dim strSQL As String, qdf As QueryDef
Dim MyRecords, MySet As Recordset
Dim SQLquery As String
Dim zeroes As String
Dim miznum

'Return Database object pointing to current database.
Set dbs = CurrentDb
'Check if BIue_ID_tbl exist
'If table exist, then empty it
If isTable("Blue_ID_tbl") Then

strSQL = "Delete*from BlueJDJbl;"
Set qdf = dbs.CreateQueryDef("\ strSQL)
qdf .Execute

End If
'Retrieve the mission number form the [SPECIFY MISSION FORM] which is up
and running once the user selects "initialize data tables."
miznum = [Forms]! [SPECIFY MISSION_frm].[msnnum]
'This is a string fixing routine to put the mission number in the correct string
format.
If Len(miznum) = 2 Then
zeroes = "0"

42

Else
zeroes = "00"
End If
'Open BlueJD Table.
Set MyRecords = dbs.OpenRecordset("BlueJD_tbl")
'Populate the BlueJD table with the fields shown below for tanks and bradleys
from the DBSCENAR table.

'Define the select query
SQLquery = "SELECT DISTINCTROW DBSCENAR.MISSNUM, DBSCENAR.PID,
DBSCENAR.PLAYER, DBSCENAR.PLATFORM, DBSCENAR.FORCE FROM
DBSCENAR WHERE («DBSCENAR.MISSNUM)=m & zeroes & miznum & '") AND
((DBSCENAR.PLATFORM) Like "' & "MlAl" & '" Or (DBSCENAR.PLATFORM)
Like'" & "M2" & *"))"
'Run the query.
Set MySet = dbs.OpenRecordset(SQLquery)
'Check to see if the query produced zero records.
If Not (MySetBOF = True) Then
'Go to the first record in the set of records returned by the query.
MySetMoveFirst
'Loop through all records and write the fields into the Blue_ID table.

While Not (MySet.EOF)
MyRecords.AddNew
MyRecords.Fields(O) = MySetMISSNUM
MyRecords .Fields(l) = MySet.pid
MyRecords.Fields(2) = MySet-PLAYER
MyRecords.Fields(3) = MySet-PLATFORM
MyRecords.Fields(4) = MySet.FORCE
MyRecords.UPDATE
MySet.MoveNext
Wend

End If
End Sub

Likewise we require a Red identification table. See Table 11 and the code below.
PUpP IBID:;

008 191
008 1251 A11 1/A/1-67 AR T80

008 M269
008 |9
008 11183

rPLAYEBl
A65 1 /A/1 -67 AR |T80

5PLATEORM- &0RCE
iOP
!OP

A21 2/A/1-67AR |T80 iOP
A31 3/A/1-67 AR 1T80
A32 3/A/1-67 iT80

OP
OP

Table 11. Red vehicle identification table.

'This routine produces a table of Red vehicles as shown above.
Sub BuildRedO

43

Dim dbs As DATABASE
Dim strSQL As String, qdf As QueryDef
Dim MyRecords, MySet As Recordset
Dim SQLquery As String
Dim zeroes As String
Dim miznum

'Return Database object pointing to current database.
Set dbs = CurrentDb
'Check if Red_ID_tbl exist
'If table exist, then empty it
If isTable("RedJD_tbr) Then

strSQL = "Delete*from Red_ID_tbl;"
Set qdf = dbs-CreateQueryDefC*", strSQL)
qdf .Execute

End If
'Retrieve the mission number form the [SPECIFY MISSION FORM] which is up
and running once the user selects "initialize data tables."
miznum = [Forms] [[SPECIFY MISSION_frm].[msnnum]
'This is a string fixing routine to put the mission number in the correct string
format.
If Len(miznum) = 2 Then
zeroes = "0"
Else
zeroes = "00"
End If
'Open Red_ID_tbI Table.
Set MyRecords = dbs.OpenRecordset("Red_ID_tbl")

'Define the select query.
SQLquery = "SELECT DISTESCTROW DBSCENARJkflSSNUM, DBSCENAR.PID,
DBSCENAR.PLAYER, DBSCENAR.PLATFORM, DBSCENARFORCE FROM
DBSCENAR WHERE (((DBSCENAR.MISSNUM)=m & zeroes & miznum & "*) AND
((DBSCENAR.PLATFORM) Like '" & "T80" & "') AND ((DBSCENAR.FORCE) Like'"
& "OP" &"'))"
'Run the query
Set MySet = dbs.OpenRecordset(SQLquery)
'Check to see if the query produced zero records.
If Not (MySet.BOF = True) Then
'Go to the first record in the set of records returned by the query.
MySet.MoveFirst
'Loop through all records and write the fields into the Red_ID table.

While Not (MySetJEOF)
MyRecords.AddNew

44

MyRecords.Fields(0) = MySeLMBSNUM
MyRecords.Fields(l) = MySet.pid
MyRecords.Fields(2) = MySet.PLAYER
MyRecords.Fields(3) = MySet.PLATFORM
MyRecords.Fields(4) = MySet.FORCE
MyRecords.UPDATE
MySet.MoveNext
Wend

End If
End Sub

The location table is a subset of the DBLOCATN table provided by the client
We query the DBLOCATN table for records pertaining to our selected mission. See
Table 12 and the following code.

008 11037
008 11037
008 11037
008 11037
008 11037
008 11037
008 11037
008 11037

7:25:25 AM
7:25:35 AM
7:25:49 AM
7:26:05 AM
7:26:16 AM
7:27:04 AM
7:27:20 AM
7:27:46 AM

summa Hme Mä&wim
7:25:35 AM! 15046797
7:25:49 AM! 15066793
7:26:05 AM! 15056792
7:26:16 AM! 15166784
7:27:04 AM! 15206781
7:27:20 AM! 15226784
7:27:46 AM! 15246784
7:29:02 AM! 15246785

008 !1037

008 11037
008 11037
008 11037
008 11037

7:29:02 AM! 7:29:13 AM! 15256785

7:29:13 AMI 7:29:26 AM! 15266782
7:29:26 AMI 7:29:39 AMI 15286777

7:29:39 AM! 7:29:58 AM! 15336769

7:29:58 AM 7:30:11 AM! 15396760

Table 12. Sample of the location table. The table shows where vehicles were located during a time window
between start time (S_Time) and end time (EJTime).

'This routine builds the location table by taking the subset of records from
DBLOCATN pertaining to the user selected mission.
Sub BuildLocationO

Dim j, counter As Integer
Dim MyDb As DATABASE, OldRecords, NewRecords As Recordset
Dim strSQL As String, qdf As QueryDef
Dim SQLquery As String
Dim zeroes As String
Dim miznum

'Return Database object pointing to current database.
Set MyDb = DBEngine.Workspaces(0).Databases(0)

45

Set NewRecords = MyDb.OpenRecordset("Location")

'Check if Location table exist.
'If table exist, then empty it.
If isTable("Location") Then

strSQL = "Delete*from Location;"
Set qdf = MyDb.CreateQueryDefC", strSQL)
qdf.Execute

End If
•Retrieve the mission number form the [SPECIFY MISSION FORM] which is up
and running once the user selects "initialize data tables."
miznum = [Forms] [[SPECIFY MISSION_frm].[msnnum]
'This is a string fixing routine to put the mission number in the correct string
format
If Len(miznum) = 2 Then
zeroes = "0"
Else
zeroes = "00"
End If

'Open Location Table.
Set NewRecords = MyDb.OpenRecordset("Location")
'Retrieve the records that pertain to the mission selected in the SPECIFY MISSION
form from the DBLOCATN table.

'Define the select query.
SQLquery = "SELECT DISTINCTROW DBLOCATN.SITE, DBLOCATN.CELL,
DBLOCATN.MISSNUM, DBLOCATN.DATE, DBLOCATN.PID,
DBLOCATN.PLAYER, DBLOCATN.S_TTME, DBLOCATN.E_TIME,
DBLOCATN.POSrnON FROM DBLOCATN WHERE (((DBLOCATN.MISSNUM)='"
& zeroes & miznum & '"))"
'Run the query.
Set OldRecords = MyDb.OpöERecQrdset(SQLquery)
'Now convert the selected data in DBSCENARIO to usable form in Location table.
'Go to the first record in the set of records returned by the query.
OldRecords.MoveFirst
'Loop through all records and write the converted data into the fields of the location
table.
While OldRecordsJEOF = False
NewRecords.AddNew
NewRecords.Fields(0) = OldRecords-MISSNUM
NewRecordsFields(l) = OldRecords.pid
NewRecords.Fields(2) = parse_time(01dRecords.S_Time) 'converts into the right time
format
NewRecords.Fields(3) = parse_time(01dRecords.E_Time)

46

NewRecords.Fields(4) = <Xng(gridparse(01dRecords.PQSmON)) 'converts grid
coordinates to long integer format
NewRecords.UPDATE
OldRecords.MoveNext
Wend

End Sub

The FixData routine primes the data of outliers. The first part queries the data for
vehicles that have no entries in the location table. These vehicles are automatically
removed from the BlueJQD table. By observing output reports which we developed
to show individual vehicle movement we were able to spot vehicles that did not move
or moved out of sector during the battle. We hardwired the pruning of these vehicles
so that the data would be clean on subsequent runs of the particular missions.
Sub FixData()
Dim dbs As DATABASE
Dim strSQL As String, qdf As QueryDef
Dim MyRecords, MySet As Recordset
Dim SQLquery As String

Set dbs = CurrentDb
'Some of the blue vehicles do not show up in the location table (most likely due to
maintenance or lack of instrumentation.
'Edit Blue_ID_tbl of entries that have no position data. We do this because we can
not know ground truth about these vehicles' movements during the battle.
SQLquery = "SELECT DISTINCT Blue_ED_tbl.PID FROM Blue_ID_tbl LEFT JOIN
Location ON Biue_ID_tbl.PID = Location.PID WHERE (((Location.POSJTION) Is
Null))"
'Run the query.
Set MyRecords = dbs.OpenRecordset(SQLquery)
'Open blue ID table.
Set MySet = dbs.OpenRecordset(,TBlue_ID_tbr)
'Check to see if the query produced zero records.
If Not (MyRecords.BOF) Then
'Move to first record in the query record set.
MyRecords.MoveFirst
'Loop through all the Blue ID's that are not listed in the location data.
Do Until MyRecords.EOF
'Go to first entry of the Blue ID table.

MySet.MoveFirst
'Loop through all entries of the Blue ID table.

Do Until MySet.EOF
'If the vehicle ID in the Blue ID table matches one of the vehicle ID's in the query
then delete it from the Blue ID table.

47

If MySet![pid] = MyRecords![pid] Then
MySet.Delete

End If
MySet.MoveNext
Loop

MyRecords.MoveNext
Loop
MySet.Close
MyRecords.Close
End If
'Other vehicles may have entries in the location data but move way out of sector or
do not move at all. We delete these vehicles because they do not participate in the
battle and skew the computation of center of mass of the unit
'Cleanse particular vehicle entries for particular missions.
Set MySet = dbs.OpenRecordset("Blue_ID_tbl")
If Forms! [SPECIFY MISSION_frm].[msnnum] = 16 Then

MySet.MoveFirst
Do Until MySet.EOF
IfMySet![pid] = "35"Then

MySet.Delete
End If
MySet.MoveNext
Loop

Elself Forms! [SPECIFY MISSION_frm].[msnnum] = 12 Then
MySet.MoveFirst
Do Until MySet.EOF
IfMySet![pid] = "119" Then

MySet.Delete
End If
MySet.MoveNext
Loop

Elself Forms! [SPECIFY MISSION_frm].[msnnum] = 14 Then
MySet.MoveFirst
Do Until MySet.EOF
If (MySet![pid] = "241" Or MySet![pid] = "105") Then

MySet.Delete
End If
MySet.MoveNext
Loop

Elself Forms ![SPECIFY MISSION_frm].[msnnum] = 10 Then
MySet.MoveFirst
Do Until MySet.EOF
IfMySet![pid] = "79"Then

MySet.Delete
End If

48

MySetMoveNext
Loop

Elself Forms! [SPECIFY MISSIONJrm].[msnnum] = 3 Then
MySetMoveFirst
Do Until MySetEOF
If MySet![pid] = "83" Then

MySetDelete
End If
MySet.MoveNext
Loop

Elself Forms![SPECIFY MISSION_frm].[msnnum] = 6 Then
MySet.MoveFirst
Do Until MySet.EOF
IfMySet![pid] = "41"Then

MySet.Delete
End If
MySetMoveNext
Loop

Elself Forms![SPECIFY MISSION_frm].[msnnum] = 7 Then
MySet.MoveFirst
Do Until MySetEOF
IfMySet![pid] = "99"Then

MySet.Delete
End If
MySetMoveNext
Loop

Elself Forms! [SPECIFY MISSION_frm].[msnnum] = 9 Then
MySet.MoveFirst
Do Until MySetEOF
If MySet![pid] = "99" OrMySet![pid] = "105" OrMySet![pid] = "157" Or MySet![pid]

= "173" OrMySet![pid] = "1037" OrMySet![pid] = "1255" Then
MySet.Delete

End If
MySetMoveNext
Loop

Elself Forms [[SPECIFY MISSION_frm].[msnnum] = 20 Then
MySetMoveFirst
Do Until MySetEOF
If MySet![pid] = "13" Or MySet![pid] = "105" Or MySetlfpid] = "35" OrMySet![pid]

= "83" OrMySet![pid] = "1261" Then
MySet.Delete

End If
MySetMoveNext
Loop

Elself Forms! [SPECIFY MISSION_frm].[msnnum] = 8 Then

49

MySet.MoveFirst
Do Until MySet.EOF
If MySet![pid] = "37" Or MySet![pid] = "105" Or MySet![pid] = "157" Or MySet![pid]

= "83" OrMySet![pid] = "241" OrMySet![pid] = "1021" OrMySet![pid] = "1143" Then
MySet.Delete

End If
MySet.MoveNext
Loop

MySet.Close
End If

End Sub

This routine sets up the data tables needed for our computations as discussed
above. When the user selects "Initialize data tables" from the menu this routine
opens the select mission dialog box which awaits a selection from the user. Once the
user makes his/her selection the routine builds the tables listed, cleanses the
data of outliers and builds the true detections table (discussed below). The routine
then opens the Flot_frm dialog which allows the user to view the individual
movements of all Blue vehicles which are represented by vectors.
Sub Initialize()
DoCmd.OpenForm "SPECIFY MISSION_frm",,,,, acDialog
DoCmd.Hourglass True
BuildLocation
BuildKill
BuildBlue
BuildRed
FixData
TrueTable
DoCmd.OpenForm "Flot_frm",,,,, acDialog

End Sub

50

DETECTIONS / FRATRICIDE INDEX

Red:PJp
1183
251
251
251

91

I« !9

7:49:00 AM
7:12:03 AM
7:12:03 AM

16686624
16516618
16516618

7:26:05 AM! 16506599
7:55:41 AM! 17416692
8:22:14 AM! 16996640
8:25:44 AM! 17406689

178.8854
2103.449
1251.599

10
245.9675
319.5309
214.7091

mmmvmmmmA
119 7:47:51 AM
19 7:12:03 AM

19 7:13:51 AM
19 7:28:02 AM

235 7:58:08 AM

53 8:22:34 AM

53 8:27:11 AM

16536694
14446771
14776771
15736647
17146710
16896695
17246713

Tables 13a and 13b. Detection data showing the nearest Red vehicle and nearest Blue vehicle
to the detection location, the distance between these two vehicles and the resulting fratricide
index.

544.5181
911.9759
1320.984
902.1086
430.8132
326.4966
434.1659

715.8911
2574.063
2317.002
907.3588
324.4996

559.017
288.4441

0.5107379
-0.4628766

2.994623E-02
0.9831928

0.569633
1.246051E-02

0.7608294

Table 13b.

'Declarations
Option Compare Database
Option Explicit

Global NumReported As Integer

'This routine checks each reported detection in the Detect table to determine which
enemy vehicle was actually detected and the accuracy of the detection. Results are
recorded in the Detect_True table.

Sub TrueTableO
Dim MyDb As DATABASE, MySet As Recordset, SQLRedquery, SQLBluequery As
String
Dim RedQuery, BlueQuery As Recordset
Dim Tdelta As String
Dim i, counter As Integer
Dim MyTime, newtime
Dim strSQL As String, qdf As QueryDef
Dim MyLocation
Dim SQLquery As String
Dim MyRecords As Recordset

51

'Set the time increment to five minutes. This provides a time window in which the
detection is checked which helps account for transmission latency.
Tdelta = 5
'Return Database object pointing to current database.
Set MyDb = DBEngine.Workspaces(0).Databases(0)
'Open the Detect_True table for writing.
Set MySet = MyDb.OpenRecordset("Detect_True_tbl")
'Check if Detect_True_tbl exist.
'If the table already exist, then empty it
If isTable("Detect_True_tbl") Then
strSQL = "Delete*from Detect_True_tbl;"
Set qdf = MyDb.CreateQueryDefC", strSQL)
qdf.Execute
End If

'Find the records in the Detect_tbl that pertain to the mission selected in the
SPECIFY MISSION form.
SQLquery = "SELECT DISTINCTROW Detect_tbl.MSN, Detect_tbl.Time,
Detect_tbl.Enemy, Detect_tbl.Location, Detect_tbl.Source FROM Detect_tbl WHERE
(((DetecUbl.MSN)='" & [Forms]![SPECIFY MISSION_frm].[msnnum] & '"))"
'Run the query.
Set MyRecords = MyDb.OpenRecordset(SQLquery)
MyRecords.MoveLast
'Find the number of reported detections for this mission i.e. number of records in
the record set returned by the query.
NumReported = MyRecords.RecordCount
i = 0
counter = 0
'Move to the first reported detection.
MyRecords.MoveFirst
'Loop through detections until all have been checked.
While MyRecords.EOF - False

counter = counter + 1
'Set a variable to hold the time of detection.

MyTime = MyRecords.[TimeI
'Set a variable to hold the location of detection.

MyLocation = MyRecords. [Location]
'Add a new record to the Detect_True table.

MySet.AddNew
'Subtract 5 minutes from the time of detection. Call it "newtime."

newtime = DateAdd("n", -Tdelta, MyTime)

'Define a query to select the nearest red vehicle vicinity the detection location within
a time window of five minutes prior to detection up to detection time.

52

SQLRedquery = "SELECT DISTINCTROW TOP 1 Red_ID_tbl.PID,
Location.E_Time, Location.Position, distance('" & MyLocation & '".[Position]) AS
Distance FROM Red_ED_tbl INNER JOIN Location ON Red_ID_tbl.PID = Location.PID
WHERE (((Location.E_Time) Between #" & newtime & "# And #" & MyTime & "#))
ORDER BY distanceC" & MyLocation & '".[Position]);"
'Likewise find the nearest Blue vehicle for fratricide computations.

SQLBluequery = "SELECT DISTINCTROW TOP 1 BlueJD._tbl.PID,
Location.E_.Time, Location.Position, distance("' & MyLocation & '".[Position]) AS
Distance FROM Blue_ID_tbl INNER JOIN Location ON Blue_ID_tbl.PID =
Location.PJJD WHERE (((Location.E_Time) Between #" & newtime & "# And #" &
MyTime & "#)) ORDER BY distance('" & MyLocation & '".[Position]);"
'Run the two queries.

Set RedQuery = MyDb.OpenRecordset(SQLRedquery)
Set BlueQuery = MyDb.OpenRecordset(SQLBluequery)

'Check for detections that produced no enemy and report the data to the analyst in
a message box.

If (RedQuery.BOF = True) Then
MsgBox (newtime & " "& MyTime &" "& MyLocation)
End If

'Otherwise populate the Detect_True table with the following fields:
If Not (RedQuery.BOF = True) Then

MySet.Fields(0) = RedQuery.Fields(O) 'Red vehicle ID (Pid)
MySet.Fields(l) = RedQuery.Fields(l) 'Red Time of detection
MySet.Fields(2) = RedQuery.Fields(2) 'Red position
MySet.Fields(3) = RedQuery.Fields(3) 'Red missed radius (How far off was the

reported grid?)
MySet.Fieids(4) = BlueQuery.Fields(O) 'Blue Pid
MySet.Fields(5) = BlueQuery.Fields(1) 'Blue Time of detection
MySet.Fields(6) = BlueQuery.Fields(2) 'Blue position
MySet.Fields(7) = BlueQuery.Fields(3) 'Blue missed radius

'Find the distance from red vehicle to blue vehicle.
MySet.Fields(8) = Distance(RedQuery.Fields(2), BlueQuery.Fields(2))

'Compute the fratricide index. (f-r)/d where f is the distance from the nearest blue
vehicle and r is the distance from the nearest red vehicle and d is the distance
between the two vehicles.

MySet.Fields(9) = (BlueQuery.Fields(3) - RedQuery.Fields(3)) / MySet.FieIds(8)
MySet.Fields(10) = counter

MySet.UPDATE

End If
'Go to next reported detection.
MyRecords.MoveNext
Wend
DoCmd.Hourglass False
End Sub

53

t:mmmMr- t&OUntJ^BKi

-1 -0.75 i 0
-0.75 -0.5 S 0
-0.5 -0.25 i T
-0.25 0 | 0
0 0.25 I 2
0.25 0.5 I 0
0.5 0.75 j 2
0.75 1 ! 2

Table 14. Fratricide index values for the detections
during a particular mission organized by bins.

'This routine organizes the fratricide data computed in the TrueTable routine for
display as a histogram chart.
Sub FratricideO
Dim MyDb As DATABASE, MySet As Recordset, SQLquery As String
Dim i, counter As Integer
Dim strSQL As String, qdf As QueryDef
Dim MyRecords As Recordset
Dim LowerBound, UpperBound As Single

Set MyDb = DBEngine.Workspaces(0).Databases(0)
Set MySet = MyDb.OpenRecordset("Frat_tbl")

'Clear the Fratricide table.
If isTable("Frat_tbl") Then
strSQL = "Delete*from Frat_tbl;"
Set qdf = MyDb.CreateQueryDefC", strSQL)
qdf .Execute
End If
'Record column names in the frat table.
MySet.AddNew
MySet.Fields(0) = "BINS
MySet-Fields(l) = 0
MySet.UPDATE

'Initialize the bin boundaries i.e. first bin is [-l,-.75].
LowerBound = -1
UpperBound = -0.75
For i = 1 To 8
'Select the fratride entries that fall within this bin range.
SQLquery = "SELECT DISTTNCTROW Detect_True_tbl.[Frat Index] FROM
Detect_True_tbl WHERE (((Detect_True_tbl.[Frat Index]) <" & UpperBound & "And
(Detect_True_tbl.[Frat Index]) >" & LowerBound & "))"

54

'Run the query.
Set MyRecords = MyDb.OpenRecordset(SQLquery)
'If there are no fratricide index values in this range then zero is recorded in the
table.
If MyRecords.BOF Then

MySetAddNew
MySetFields(O) = LowerBound & " " & UpperBound
MySet.Fields(l) = 0
MySet.UPDATE

'Set boundaries for the next bin»
LowerBound = LowerBound + 0.25
UpperBound = UpperBound + 0.25

Else
'Go to the last record so the RecordCount function can be used.
MyRecords .MoveLast
'Prepare the fratricide table for another entry.
MySetAddNew
MySet.Fields(0) = LowerBound & " " & UpperBound
'Count the number of index values in the range of this bin.
MySet.Fields(l) = MyRecords.RecordCount
MySetUPDATE
'Set boundaries for the next bin.
LowerBound = LowerBound + 0.25
UpperBound - UpperBound + 0.25
End If
Next
'Close the Flot_frm which has remained open but invisible.
DoCmd.Close acForm, "Flot_frm", acSaveYes
End Sub

COMPUTE MOVEMENT VECTORS

With data tables established the software next computes the individual and unit
movement vectors. This is triggered by the Flot_frm dialog box which appears once the
data tables are initialized. We use the individual vehicle movement vectors to visually
check for outlier vehicles which either fail to move or move off out of the battle area
(possibly due to maintenance problems). As discussed earlier in the report, we use the
unit movement vectors to compute the area searched or swept by the attacking unit

'Declarations: Note the many global variables that this routine generates.
Option Compare Database
Option Explicit
Global Vector(), Variance(), Normal(), Areas(), CMx(), CMy(), MagnitudeQ As Double
Global MovementO As Variant

55

Global k, j As Integer
Global MaxX, MaxY, MinX, MinY As Single
Global deltaT As String

"This routine builds the movement array which is a global variable holding the
movement vectors of each Blue vehicle over time as well as all other global variables
and arrays listed above in the declarations.

Sub MovementArrayO
DoCmd.Hourglass True
Dim DistanceO, NormDistO, CumX(), CumYO, Maxlength(), Minlength() As Single
Dim MyDb As DATABASE, MyRecords, BlueQuery, PositionQuery As Recordset,
SQLquery, SQL2query As String
Dim CurrentVeh As String
Dim SumSqrDist, SumNormDist As Single
Dim Time, Length
Dim i, t, m, num, r, v As Integer
'Gets the time increment from the user who selects it from the FIot_frm dialog box.
deltaT = Forms ![Hot_frm].[deltat_txt]
Set MyDb = DBEngine.Workspaces(0).Databases(0)
Set MyRecords = MyDb.OpenRecordset("Blue_ID_tbl")

MyRecords.MoveLast
1 Count the number of Blue vehicles in the Blue ID table.
j = MyRecords.RecordCount
'Move to first vehicle in the BIue_ID table.
My Rec ords. MoveFirst
'Set a counter.
num= 1
'Find how many minutes of battle time between the start time of the battle and the
end time of the battle. Divide this value by the time step selected by the user to get
the number of such time steps (k). Start times and end times are automatically
displayed for the user in the FIot_frm dialog box.
k = Fix((DateDiff(V\ Forms ![Hot_frm].[Start Time_txt], Forms ![Flot_frm].[End
Time_txt])) / deltaT)
'Dimension the arrays to appropriate sizes based on the number of vehicles (j) and
the number of time steps (k).
ReDim Movement(l To j, k + 1), Vector(l To 2, 1 To k), Normal(l To 2, 1 To k + 1),
Magnitude^ To k + 1), Maxlength(k)T Minlength(k)
ReDim Distanced To 2, 1 To j, k), NarmDist(l To j, k)T Variance(k)
ReDim Areas(k), CumX(k), CumY(k), CMx(k), CMy(k)
'Set max and min boundaries for later comparisons to determine Max and Min
distances of vehicles from the unit center of mass.
MinX = 54000
MaxX = 0

56

MaxY = 0
MinY = 54000
'Loop through the Blue vehicles-
While MyRecords.EOF = False
'Variable holding the current vehicle's ID.

Current Veh = MyRecords.[pid]
'Variable holding the current time in the battle.

Time = Forms ![Flot_frm].[S tart Timejtxt]
'Fill the last column of the Movement array with the vehicle ID.

Movement(num, k + 1) = CurrentVeh

For i = 0 To k
'Find the location of the current vehicle for each time step. Where "time" falls
between Start time and End time.
'The variable "time" will be updated with each pass through the loop.

SQLquery = "SELECT DISTINCT Location.Position FROM Location WHERE
(((Location.PIDK" & CurrentVeh & '")AND ((Location.S_Time)<=#" & Time &
"#)AND ((Location.E_Time)>=#" &Time & "#));"

Set BlueQuery = MyDb.OpenRecordset(SQLquery)
'If the query returns no record than either the position location instrumentation was
turned off early or turned on after start time.
'We run another query to find the first reported location of the vehicle in the battle
and begin with this location (SQL2query).

If (BlueQuery.BOF) Then
If(i = 0)Then
SQL2query = "SELECT DISTINCTROW TOP 01 Location.PID,

Location.POSniON FROM Location WHERE (((Location.PED)="' & CurrentVeh & "'))"
Set PositionQuery = MyDb.OpenRecordset(SQL2query)

'If this corresponds to the first time step we set the position equal to this first
reported (known) location. Otherwise we simply use the last known position of the
vehicle ("Movement(num, i-1)").

Movement(num, i) = PositionQuery .Fields(l)
Else
Movement(num, i) = Movement(nurn, i-1)
End If
Else

'If the query does return a location we begin with this location.
Movement(num, i) = BlueQuery .Fields(O)
End If

'Since we know we are going to want to know which vehicle is farthest form the unit
center of mass in the +normal and normal directions from the CM movement vector,
we keep a running tally of the Max and Min x and y values.

MaxX = Max(MaxX, CInt(Md(Movement(num, i), 1, (Len(Movement(num, i)) -
4)))) 'in 10m units

MinX = Min(MinX, CInt(Mid(Movement(num, i), 1, (Len(Movement(num, i)) - 4))))

57

MaxY = Max(MaxY, CIat(Mid(Movement(num, i), (Len(Movement(num, i)) - 3))))
MinY = Min(MinY, CInt(Mid(Movement(num, i), (Len(Movement(num, i)) - 3))))

'Likewise we accumulate xcoord in CumX and ycoord in CumY so that we can
compute center of mass.

CumX(i) = CumX(i) + CInt(Mid(Movement(num, i), 1, (Len(Moveraent(num, i)) -
4)))

CumY(i) = CumY(i) + CInt(Mid(Moveinent(num, i), (Len(Movement(num, i)) - 3)))
'Update the time by adding another time increment to the current time.

Time = DateAdd("n", deltaT, Time)
Nexti

'Update the counter of number of which vehicle we are working on.
num = num + 1

'Get the next vehicle.
MyRecords.MoveNext

Wend
'Since we have now gone through all vehicles for this particular time step we can
compute center of mass.
'Store Center Of Mass in CMx and CMy arrays and initialize max length and min
length.
For i = 0 To k

CMx(i)=CumX(i)/j 'xcm
CMy(i) = CumY(i)/j'ycm
Maxlength(i) = 0
MinlengthO) = 54000

Nexti

'Compute and store vector values and normal vector values and fill the magnitude
array.
For v = 1 To k

Vector(l, v) = CMx(v) - CMx(v - 1) 'x coordinate difference
Vector(2, v) = CMy(v) - CMytV -1) y coordinate difference
Normal(1, v) = -Vector^ v) 'Normalx = -Vectory
Normal(2, v) = Vector(l, v) "Normaly = Vectorx

'Compute the magnitude of the unit movement vector. We start at v = 1 since we
need two points from which to determine x and y differences.

Magnitude(v) = Sqr((Normal(I, v) A 2) + (Normal(2, v) A 2)) 'in 10m units
Next v

'Determine distances from CM in the normal direction.
num=j
'Set final normal vector so length calculation do not stumble on k+1.
Normal(l, k + 1) = Normal(L, k)
Normal(2, k + 1) = Normal(2, k)
Magnitude(k +1) = Magnitude(k)

58

Tor each time step.
For t = 0 To k
Tor each vehicle.

For m = 1 To num
'X-coord of difference from vehicle to CM.

Distance(l, m, t) = (CInt(Mid(Movement(m, t), 1, (Len(Movement(m, t)) - 4))) -
CMx(t)) 'deltax in 10m units
1 Y-coord of difference from vehicle to CM.

Distanced, m, t) = (CInt(Mid(Movement(m, t), (Len(Movement(m, t)) - 3))) - CMy(t))
'deltay in 10m units

'Now project distance onto the Normal by dot product/mag(Normal)check for
maxlength and minlength and store in lengths(l,)and lengths(2,)respectively.
'Check for division by zero.

If Magnitude^ + 1) = 0 Then
Ift = 0Then
NormDist(m, t) = 0
Else
NormDist(m, t) = NormDist(m, t -1)
End If

Else
'Length is distance in the Normal direction. Compute Length and compare with
Max and Min distance from CM.

Length = ((Distance(l, m, t) * Normal(l, t + 1) + Distance(2, m, t) * Normal(2, t + 1)) /
Magnitude^ + 1))
'Store Normal Distances for use in the reports section (graphics).

NormDist(m, t) = Length
Maxlength(t) = Max(Length, Maxlength(t)) 'furtherest vehicle above CM
Minlength(t) = Min(Length, Minlength(t)) 'furtherest vehicle below CM
End If

Nextm
Nextt
'Compute Area swept during each time step.
For t = 0 To k -1
'Add 750meters to each boundary in order to account for peripheral vehicles
scanning beyond their locations.
Areas(t + 1) = (Abs(Maxlength(t) * 10) + Abs(Minlength(t) * 10) + 1500) * (Magnitude(t
+ 1) * 10)
Nextt
'Compute variance of these normal distances from the CM. This information will
be use to report on the unit's lateral deployment over time measured in standard
deviations from the CM.
For t = 0 To k
SumSqrDist = 0

59

SumNormDist = 0
For m = 1 To j
'Sum of Squared Distances
SumSqrDist = SumSqrDist + NormDist(m, t) A 2
'Sum of Distances Squared
SumNormDist = SumNormDist + NormDist(m, t)
Nextm
Variance(t) = (SumSqrDist - (SumNormDistA 2 / j)) / (j - 1)

Nextt
'User Interface: Turn off Hourglass graphic.

DoCmd.Hourglass False
'Open the Step form which allows the user to visually observe the units' movement
as represented by individual vehicle movement vectors for a user-determined
number of time steps.
DoCmd.OpenForm "Step_frm", acNormal,"","", acEdit, acNormal
'User interface: Turns off the Flot form so the user can not see it. Form is still up
and running.
Forms !Flot_frm. Visible = False

End Sub

ENTROPY AND INFO GAIN

'Declarations
Option Compare Database
Option Explicit

Global Uncertain(), Gain() As Single
Global MaxE As Single

'This routine computes the entropy concerning each enemy vehicle at every time
step, computes information gain from this data as the change in entropy for each
vehicle and stores the individual values as well as cumulative values in the
Info_Gain table. The routine also computes and stores normalized values in the
NormEntropy table.
Sub ComputeE()
DoCmd.Hourglass True
Dim MyDb As DATABASE, MyRecords, Detquery, Info, Norm As Recordset,
SQLqueryl, SQLquery2 As String
Dim i, 1, m, num, r, v, jnum, red As Integer
Dim dtime()
Dim state() As String
Dim dradiusQ As Single

60

Dim Areatot As Single
Dim starttime, oldtime, newtime, TimeStep, Rate
Dim strSQL As String, qdf As QueryDef
'Dim MaxE As Single
Dim localMaxE As Single

Set MyDb = DBEngine .Workspaces(0).Databases(0)
•Open the RedJD table.
Set MyRecords = MyDb.OpenRecordset("Red_ID_tbl")
'Open the Info_Gain table.
Set Info = MyDb.OpenRecordset("Info_Gain_tbl")
'Open the NormEntropy table.
Set Norm = MyDb.OpenRecordset("NormEntropy_tbl")

'Clear the info table.
If isTable("Info_Gain_tbl") Then
strSQL = "Delete*from Info_Gain_tbl;"
Set qdf = MyDb.CreateQueryDef("", strSQL)
qdf.Execute
End If

'Clear the NormEntropy_tbl table.
If isTable("NormEntropy_tbl") Then
strSQL = "Delete*from NormEntropy_tbl;"
Set qdf = MyDb.CreateQueryDef("", strSQL)
qdf.Execute
End If

'Find number of Red Vehicles listed in the Red_ID table using the RecordCount
function.
MyRecords .MoveLast
red = MyRecords.RecordCount
'Retrieve the start time of the battle from the Flot Form.
starttime = Forms![Flot_frm].[Start Time_txt]
'Compute the total battlefield area from the global variables MaxX and MaxY
whose values were generated in the MovementArray routine. The 500 is added for
sensor ability to scan beyond the vehicles' physical location.
Areatot = (((MaxX - MinX) * 10 + 500) * ((MaxY - MinY) * 10 + 500))
'Set the movement rate of enemy vehicles. This is used in the degradation model.
Rate = 3 'km/hr

'Compute Maximum Entropy for use in Normalization of Entropy values.
localMaxE = -Log(Areatot)
'Maximum Entropy is the number of enemy vehicles times the entropy for one
vehicle.

61

MaxE = red * localMaxE
'Dimension the arrays of appropriate size.
ReDim UncertainQ To (red + 1), 0 To k), Gain(l To (red + 1), 0 To k)
ReDim dtime(l To red)
ReDim state(l To red)
ReDim dradius(l To red)
'For all enemy vehicles:
'Initialize initial entropy Uncertain[0]to max entropy. Uncertain[l] will be entropy
after 1st time step. Initialize initial detection time at time 0. Initialize initial state as
area calculation. Initialize initial detection radius to zero for each vehicle.
For 1 = 1 To red

dtime(l) = 0
state(l) = "Area"
dradius(l) = 0

Nextl
'Loop through each time step.
For i = 0 To k
'Decrement total area by the amount swept out by the attacking unit This is from
the global array Areas which was produced in the MovementArray routine.

Areatot = Areatot - Areas(i)
'Guard against ln(0).

If (Areatot <= 0) Then
Areatot = 1#
End If

oldtime = DateAdd("n", (i - 1) * deltaT, starttime)
'Update the current time by multiplying deltaT by the number of time steps.

newtime = DateAdd("n", (i) * deltaT, starttime)
'Go to first vehicle.

MyRecords.MoveFirst
jnum = 1

'Loop through all vehicles.
While MyRecords.EOF = False

"This query checks to see if the current vehicle was detected during the current time
period. If detected more than once the query returns the most accurate detection i.e.
records are ordered by missed -distance and the query selects the first entry for the
current vehicle.

SQLqueryl = "SELECT DISTTNCTROW TOP 1 Detect_True_tbI.[Red PID],
Detect_True_tbl.[Red Time], Detect_True_tbl.[Missed Radius] FROM Detect_True_tbl
WHERE (((Detect_True_tbl.[Red PID]) Like *" & MyRecords.pid & '") AND
((Detect_True_tbl.[Red TimeD Between #" & oldtime & "# And #" & newtime & "#))
ORDER BY Detect_True_tbI,[MIssed Radius];"
'Run the query.

Set Detquery = MyDb.OpenRecordset(SQLqueryl)
'Compute the entropy based on the state of the vehicle at each time step. Store these
values in the Uncertain array.

62

Select Case state(jnum)

'If the enemy vehicle is in the "Area" state;
Case Is = "Area"
'If killed then entropy goes to zero.
If (killtime(MyRecords.pid) < newtime) Then
Uncertain(jnum, i) = 0
'Change state of vehicle to "Km."
state(jnum) = "Kill"
'If vehicle was detected.
Elself Not (Detquery.BOF) Then
'Entropy goes to log min((circular area with radius missed distance),
log(areatot)).
Uncertain(jnum, i) = -Log(Min(3.14159 * Detquery.Fields(2)A 2, Areatot))
'Store detection time and detection radius for degradation calculations.
dtime(jnum) = Detquery.Fields(l)
dradius(jnum) = Detquery.Fields(2)
'Change the state of the vehicle to "Detect"
state(jnum) = "Detect"
Else
'Remain in Area state and compute entropy based on area searched.
Uncertain(jnum, i) = -Log(Areatot)
End If

'If the enemy vehicle is in the "Detect" state:
Case Is = "Detect"
'Compute the time that has elapsed since detection in hours.
TimeStep = DateDiff("s", dtime(jnum), newtime) 160160
'If killed then entropy goes to zero.
If (killtime(MyRecords.pid) < newtime) Then
Uncertain(jnum, i) = 0
'Change state of vehicle to "Kill."
statefjnum) = "Kill"
'If vehicle was detected again.
Elself Not (Detquery.BOF) Then
'Entropy goes to log min((circular area with radius missed distance),
log(areatot)).
Uncertain(jnum, i) = -Log(Min(3.14159 * Detquery.Fields(2)A 2, Areatot))
'Store detection time and detection radius for degradation calculations.
dtime(jnum) = DetqueryFields(l)
dradius(jnum) = Detquery.FIelds(2)
'Check to see if vehicle's entropy has degraded to the point that it is as if it
were still in the "Area" state. If so then change state back to "Area."
Elself ((3.14159 * (dradiusQnom) * 2 + (Rate * 1000 * TimeStep)A 2)) >=
Areatot) Then

63

'Transition back to Area state.
Uncertain(jnum, i) = -Log(Areatot)
state(jnum) = "Area"
'Otherwise/transition to "Degrade" state and compute entropy based on
increased radius over time-
Else
UncertainGnum, i) = -Log(3.14159 * (dradius(jnum)A 2 + (Rate * 1000 *
TimeStep)A 2))
stateQnum) = "Degrade"
End If

'If the enemy vehicle is in the "Degrade" state:
Case Is = "Degrade"
'Compute the time that has elapsed since detection in hours.
TimeStep = DateDiff("s", dtime(jnum), newtime) / 60 / 60
'If killed then entropy goes to zero.
If (killtime(MyRecords.pid) < newtime) Then
UncertainQ'num, i) = 0
'Change state of vehicle to "Kill."
state(jnum) = "Kill"
'If vehicle was detected again.
Elself Not (Detquery.BOF) Then
'Entropy goes to log min((circular area with radius missed distance),
log(areatot)).
Uncertain(jnum, i) = -Log(Min(3.14159 * Detquery.Fields(2) A 2, Areatot))
'Store detection time and detection radius for degradation calculations.
dtime(jnum) = Detquery.Fields(l)
dradius(jnum) = Detquery.Fields(2)
'Change the state of the vehicle to "Detect"
state(jnum) = "Detect"
'If Detection area has degradeded to the size of remaining area.
Elself ((3.14159 * £dracfrus(Jnum) A 2 + (Rate * 1000 * TimeStep) A 2)) >=
Areatot) Then
'Transition back to Area state.
Uncertain(jnum, i) =-Log(Areatot)
state(jnum) = "Area"
'Otherwise remain in the "Degrade" state.
Else
Uncertain(jnum, i) = -Log(3.14159 * (dradius(jnum) A 2 + (Rate * 1000 *
TimeStep)A 2))
End If

Case Else
'Vehicle must be dead.

Uncertain(jnum, i) =0

64

End Select

•Add results to the Info Table.
InfoAddNew
Info.Fields(0) = i
Info.Fields(l) = newtime
Info.Fields(2) = MyRecords.pid
Info.Fields(3) = stateQnum)
Info.Fields(4) = -UncertainO'num, i)
Ifi = 0Then

"There is no information gain at time zero since it is a difference measure of
entropy.

Gain(jnum, i) = 0
Info.Fields(5) = 0
Info.Fields(9) = 0
Else

'Compute information gain and normalized information gain and cumulative
information gain. Store all in Info Table.

Info.Fields(5) = (Uncertain(jnum, i) - Uncertain(jnum, i -1))
Info.Fields(9) = (Uncertain(jnum, i) - Uncertain(jnum, i -1)) / -localMaxE
Gain(jnum, i) = Gainfjnum, i -1) + (Uncertain(jnum, i) - Uncertain(jnum, i -1))
End If
Info.Fields(6) = Gain(jnum, i)
Info.Fields(7) = -Uncertain(jnum, i) / -localMaxE
Info.Fields(8) = Gain(jnum, i) / -localMaxE
Info.UPDATE

'Accumulate Total Entropy values over all vehicles and store in Uncertain(red +l,i).
This will be used for Normalization calculations.

Uncertain(red + 1, i) = Uncertain(red + 1, i) + Uncertain(jnum, i)
'Accumulate Total Gain values over all vehicles and store in Gain(red +14). This

will be used for Normalization calculations.
Gain(red + 1, i) = Gain(red + 1, i) + Gain(jnum, i)

'Get next vehicle.
MyRecords.MoveNext
jnum = jnum+ 1
Wend

'Fill the NormEntropy Table with normalized values.
Norm.AddNew
Norm.Fields(0) = i
Norm.Fields(l) = Uncertain(red + 1, i) / MaxE
Norm.Fields(2) = Gain(red + 1, i) / -MaxE

65

Norm.UPDATE
Nexti

DoCmd.Hourglass False
End Sub

Tables 15a and 15b. Example Info table data computed by the ComputeE routine. Shows the
status of vehicle 1183 overtime.

1.433419E-02? 7.462784E-03i
2.588066E-02; 1.154646E-02
3.014336E-02I 4.262703E-03
3.273638E-02! 2.593021 E-03

0.0350665! 2.330112E-03
4.048918E-02! 5.422686E-03

0.3121762; 0.271687
0.19323841 -0.1189378

1! 0.8067616
1!

1!

Table 15b.

66

DEPLOYMENT

^BSBßMmMBmvmm HHmRMWIH
Oj 162.8941 0
1! 47.58274 2.020323
21 28.57213 3.220393
31 33.66924 8.875961
41 33.84324 11.04571
51 36.23609 4.049502
61 45.7908 2.320711
71 17.35432 1.58029

Table 16. Vehicle spread as measured by standard deviation of distance from unit
center of mass and unit speed determined by magnitude of the movement vector.

'Declarations
Option Compare Database
Option Explicit

'This routine uses the global "Variance" array to compute standard deviation of
vehicle spread about the unit center of mass in the normal vector direction. It also
uses the Magnitude Array to compute the unit's movement rate during each time
step.
Sub StdDevO
DoCmd.Hourglass True
Dim MyDb As DATABASE, MyRecords, STD As Recordset
Dim i, v As Integer
Dim strSQL As String, qdf As QueryDef

Set MyDb = DBEngine.Workspaces(0).Databases(0)
'Open the StdDev table.
Set STD = MyDb.OpenRecordset("StdDev_tbl")

'Clear the standard deviation table.
If isTable("StdDev_tbl") Then
strSQL = "Delete*from StdDevjbl;"
Set qdf = MyDb.CreateQueryDefC", strSQL)
qdf .Execute
End If
'For each time step.
For v = 0 To k
'Write a new record to the StdDev table.
STD.AddNew

STD.Fields(0) = v 'Time Step
STD.Fields(l) = Sqr(Variance(v)) 'Standard Deviation
If Not (v = 0) Then

67

'Compute the unit's rate of movement
STD.Fields(2) = ((10 * Magnitude(v)) / 1000) / (deltaT / 60)

End If
STD.UPDATE

Next v
DoCmd.Hourglass False
End Sub

SUPPORTING MINOR FUNCTIONS

'Formats the mission number for string comparison i.e. 3 becomes 003 and
'10 becomes 010.
Function mishnum(currentnumber)
If Len(currentnumber) = 2 Then
mishnum = "0" & currentnumber
Else
mishnum = "00" & currentnumber
End If
End Function

'This function computes the distance between two grid coordinates.
Function Distance(reportedloc, actualloc) As Single
Dim xreport, yreport, xactual, yactual, deltax, deltay As Long

xreport = Mid(reportedIoc, 1, (Len(reportedloc) - 4))
yreport = Mid(reportedloc, (Len(reportedloc) - 3))
xactual = Mid(actualloc, 1, (Len(actualloc) - 4))
yactual = Mid(actualloc, (Len(actualloc) - 3))
'Since grid coordinates locate down to 10 meters we multiply by 10 to get meters.
deltax = (Abs(xreport - xactual)) * 10
deltay = (Abs(yreport - yactual)) * 10

Distance = Sqr(deltax A 2 + deltay A 2)

End Function

Function GetTimeStepO As String
GetTimeStep = deltaT
End Function

'This function strips the grid zone designator from a grid. i.e. MG123456 becomes
123456.

68

Function gridparse(gridstr)
gridparse = Mid(gridstr, 3)
End Function

'Returns the Maximum of two numbers.
Function Max(numl, num2) As Single
If numl >= num2 Then
Max = numl
Else
Max = num2
End If
End Function

'Returns the Minimum of two numbers.
Function Min(numl, num2) As Single
If numl <= num2 Then
Min = numl
Else
Min = num2
End If
End Function

'Takes a six digit grid and converts to an eight digit grid. i.e. 123456 becomes
12304560.
Function parse_eight(gridstr)
Dim first, second As Integer
If (Len(gridstr) = 6) Then
first = Mid(gridstr, 1,3)
second = Mid(gridstr, 4)
first = first & "0"
second = second & "0"
parse_eight = first & second
Elself (Len(gridstr) = 8) Then
parse_eight = gridstr
Else
MsgBox (gridstr)
End If

End Function

'Converts 090500 to 09:05:00.
Function parse_time(rptime)
If Len(rptime) = 6 Then
parse_time = Mid(rptime, 1,2) & ":" & Mid(rptime, 3,2) & ":" & Mid(rptime, 5)

69

Eiself Len(rptime = 5) Then
parsejime = "0" & Mid(rptime, 1, 1) & ":" & Mid(rptime, 2, 2) & ":" & Mid(rptime, 4)
End If

End Function

Takes 03MAR96 and converts to yymmdd or 960303.
Function parsedate(dte)
Dim first, second, third As String
first = Mid(dte, 1,2)
second = Mid(dte, 3, 3)
third = Mid(dte, 6, 2)

If second = "MAR" Then
parsedate = third & "03" & first

Elself second = "APR" Then
parsedate = third & "04" & first

End If

End Function

•Converts 09:00 to 09:00:00.
Function striptime(rptime)
striptime = rptime & ":00"
End Function
End Function

'Returns the time of death of an enemy vehicle.
Function killtime(ID)
Dim MyDb As DATABASE, MyTable As Recordset

Set MyDb = DBEngine.Workspaces(0).Databases(0)
Set MyTable = MyDb.OpenRecordset("Kill_tbl", DB_OPEN_TABLE)
MyTable.INDEX = "PrimaryKey"
MyTable.Seek "=", ID

If MyTable.NoMatch Then
killtime = Null
Else
killtime = MyTable ![KTTME]
End If

MyTable.Close
MyDb. Close

End Function

70

Function GetNumReport()
GetNumReport = NumReported
End Function

'This function opens the kill table and retrieves a particular vehicle's time of death.
'This is called at each time step in the ComputeE routine to see if the vehicle has
'been killed yet
Function killtime(ID)
Dim MyDb As DATABASE, MyTable As Recordset

Set MyDb = DBEngine.Workspaces(0).Databases(0)
Set MyTable = MyDb.OpenRecordset("Kill_tbr, DB_OPEN_TABLE)
MyTable.INDEX = "PrimaryKey"
MyTable.Seek "=", ID

If MyTablcNoMatch Then
killtime = Null
Else
killtime = MyTable! [KTTME]
End If

MyTable.Close
MyDb.Close

End Function

71

REFERENCES

[1] Barr, D., and T. Sherrill. 1996. Measuring Information Gain in Tactical Operations.
Operations Research Center Technical Report, U.S. Military Academy, West Point.

[2] Barr, D. and T. Sherrill. 1995. Estimating the Operational Value of Tactical
Information. Operations Research Center Technical Report, U.S. Military Academy, West
Point.

[3] Barr, D., M. Tillman and S. Strukel. 1994. Entropy Measures of Reconnaissance.
Operations Research Center Technical Report, U.S. Military Academy, West Point.

[4] Marin, J. and D. Barr. 1997. Evaluation of Intelligent Minefields. Military Operations
Research (to appear).

[5] Shannon, C. 1948. A Mathematical Theory of Communication. The Bell System
Technical Journal 27, 379-423.

[6] Sherrill, T. and D. Barr. 1996. Exploring a Relationship Between Tactical
Intelligence and Battle Results. Military Operations Research 2, 17-33.

[7] Sherrill, T., M. Johnson, P. West, and D. Barr. 1997. Quantifying Information Gain
in Janus. Operations Research Center Technical Report, U.S. Military Academy, West
Point.

[8] Willmore, F., D. Barr and D. Voils, Analytic Geometry, a Vector Approach, Allyn
and Bacon, Inc., Boston, 1971.

72

