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ABSTRACT 

Laser radar for vibration analysis represents a military application to 
develop a target identification system in the future. The problem addressed 
is how to analyze the vibrations of a target illuminated by the laser radar to 
achieve a positive identification. 

This thesis develops a computer-based data acquisition and analysis 
system for improving the laser radar capability. Specifically, a review is 
made of the C02 laser radar, coherent detection, and data acquisition 
software and signal processing. 

These aspects form the basis for a laser radar system, using Lab View 
software for data acquisition and signal analysis, which is capable of 
detecting vibrations from a stationary target. The laser radar was able to 
detect the frequencies of vibration of a test target. All the data can be 
recorded by the system. 

The laser radar presented could be used for further development and 
production of a target identification system. 
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I.  INTRODUCTION 

The military application of a laser radar system as a vibration sensor has gained 
importance recently because its high resolution information can be used in the target 
identification process. 

Vibrational signature identification of both aircraft and ground vehicles has the 
potential for combat identification. The laser radar is capable of higher accuracy and 
greater sensitivity to internal vibrations than other systems. 

In this project a computer-based instrument is added to an existing laser radar system. 
Specifically, the project covers the application of a data acquisition (DAQ) system, which 
processes and analyzes the analog signal coming from a C02 laser radar, and displays the 
results in a virtual instrument panel. LabView is the software chosen for this research, 
because it combines high-speed operation, power spectrum diagnostics, and collection of 
data. Using the appropriate interface hardware, users can configure a broad range of 
programmable instruments, with data acquisition, recording and data analysis capability. 

The hardware interface chosen is a National Instruments PC-516 plug-in board, which 
improved the computer processing capabilities, making the laser radar platform more 
portable and better for data acquisition applications. The PC-516 was programmed using 
the data acquisition driver software (NI-DAQ) provided. 





II. LASER RADAR 

A. CONFIGURATION 

The laser radar has the capability to measure a laboratory target's vibrations, and it is 
the signal generator for the DAQ system. This thesis covers the combination of the laser 
radar and the processing computational unit. 

The radar is a 10 W, 10.6 um wavelength, C02 laser- based system, which detects and 
measures frequencies and amplitudes of a controlled vibration laboratory target, in the 
frequency range of 1 Hz - 20 kHz. The nominal frequency for this experiment was 400 
Hz. 

This device has better angular, range and velocity resolution than the traditional RF 
radars because of the shorter wavelengths used. The vibration detecting process requires 
measuring the relative phase between two electromagnetic waves of the same frequency 
and polarization. In this case, the reference (local oscillator) wave travels a fixed 
distance, while the other travels to the target. When the latter returns, it is combined with 
the first, and the resulting signal is a function of the relative phase of the two waves, 
which changes as the target vibrates. 

The relative phase is inversely proportional to the wavelength, and smaller 
wavelengths are the best for small distance resolution. This process is called "homodyne" 
coherent detection. Adding a small frequency shift to one of the waves gives to the device 
the "offset homodyne" configuration that lets it detect small amplitude vibrations of 
stationary targets. 

The signal obtained is sent to a signal-processing unit. In our laser radar the frequency 
of the target beam is shifted, in addition to the vibration frequency shift, by an acousto- 
optic modulator at 30 MHz. The radar filters and amplifies the signal from the detector 
before signal processing. 

Detector BS 
Processor «—Q# 

Laser 
DC 

ii Frequency 
jsri Shifter Telescope 

Fig. 1 Offset homodyne configuration of the laser radar (Day, 1997). 

The radar is mounted on a TMC optical breadboard to attenuate vibrations and to 
optimize optical system performance. 

The IntraAction acousto-optic modulator (AOM) imposes a 30 MHz frequency shift 
on the laser beam and is driven by a 30W-30MHz IntraAction modulator driver power 
supply. The AOM provides an emergency cutoff in case of overheat. 



The optical system is made of zinc selenide lenses. The optics transmits as much laser 
light as possible. The transmitter optical efficiency is 21 %, and the optical receiving 
efficiency is 52 %.The optical alignment is very critical. 

The target is a retroreflector configuration, bonded to a ThorLabs piezoelectric 
actuator that allows 17.4 urn of displacement when driven by a 150V signal given by a 
ThorLabs single channel piezoelectric driver. 

The detection system consists of a room temperature semiconductor HgCdTe detector, 
a high frequency amplifier, and electronics circuitry. The detector has an effective 
photoconductive gain that depends on the bias voltage applied and the detector area. The 
specific detectivity (D*) of the detector is equal to 6.7x106 cnWHz/W at room 
temperature. 

The responsivity of the detector is 100 mV/W with a +10V bias voltage applied. A 
Melles Griot high frequency amplifier model 13AMP007 is used to amplify the signal 
from the detector. The electronics circuitry consists of a series of filters added to limit the 
frequency response of the radar system. An amplitude limiter and frequency 
discriminator convert the FM portion of the signal into an AM voltage signal. The target 
signal is then analyzed in a virtual spectrum analyzer. 



B. LASER RADAR EQUATION 

The laser radar equation is based on the physics of the system. This equation expands 
upon the carrier-to-noise ratio (CNR) of the detector, including the effects of the 
components of the system. All of these effects can be added to the detector CNR equation 
to describe a CNR for the system. The CNR is used to determine how much incoming 
signal is needed to be distinguishable from the noise in the detector. The CNR is the 
equivalent to the microwave radar definition of signal-to-noise ratio (SNR). The 
parameters that affect the laser radar performance are: detector parameters, components 
parameters, light beam fluctuations to the target, reflection off the target, return to the 
detector, noise, atmospheric turbulence and attenuation. 

The CNR laser radar equation depends on the detector quantum efficiency, the 
transmit and receive path optics transmission efficiencies, the Gaussian spot size at the 
transmitting aperture of the laser radar, the atmospheric attenuation coefficient, the target 
reflectivity and radius, light frequency, the range to the target and the electronic 
bandwidth. For laser radar the CNR is defined as (Harney, 1993): 

CNR = 
t|D sT sR FTe -2<xR / 

hfB R2 

2\ -4jiw0
2rT

2 

1-e >LR2 

CNR = Carrier - to - noise ratio, 

r|D    =  Detector quantum efficiency, 

sT,sR = Transmit (receive) paths optics efficiency, 

PT =   Incident power on taget, 

a =   Atmospheric attenuation coefficient, 

R =   Range to the target, 

h =   Planck's constant, 

f =   Frequency of light, 

p =   Target reflectivity, 

w0 = Gaussian spot size, 

r, =   Target radius, 

X =   Wavelength of light, 

B =   Electronic bandwidth. 

There are two relevant limiting cases of this equation 



1. Short Range: resolved target (Harney,1993) 

Tjd £T£RrTe 
CNR = 

hß 

In this case the target is larger than the laser spot size at the target's range. 

2. Long Range: unresolved target (Harney,1993) 

CNR = 
T]D 8T£R rT 

-2aR 

hß 

2        4\ An   prT  w( 

In this case the target is smaller than the laser spot size at the target's range.The 
maximum theoretical range applying the resolved target equation is 6.5 km, given the 
parameters of the current laser radar system. The target reflectivity was assumed to be 
about 0.1. 



C. VIBRATION DETECTION 

1. Superposition and Interference 

The relative phase difference between two added light beams determines if the 
interference is constructive or destructive. In this case we are adding two laser beams at 
the detector, the reference or local oscillator beam and the returned shifted from the target 
beam. 

The two electromagnetic fields with phases ^ and <|)2 are (Scruby,1990): 

Ex = is10cos(2;rvH-$), 

E2 = E20cos(2nvt+<f>2). 

The total field is: 

The detector respond s to the changes in intensity of light I, which is proportional to 
the average of the square of the total electrical field (Scruby,1990): 

2 
■'T   • I   a   yJET 

The total intensity of light at the detector is (Scruby,1990): 

IT=Ix+I2+2{IxI2ycos(<l>x-<f>2). 

In our case the phase of the second beam is constant and equal to zero, because the 
reference beam travels a known fixed distance. The phase of the beam that travels a 
distance d to the target is proportional to the number of wavelengths on the total path 
distance D: 

,     o   D     .   d 
q>, = 2TC— = An—, 

d = R = Distance or range to the target, 
D=   Total distance the light beam has to travel 

to the target and back. 



The target is at normal incidence, and sinusoidally vibrating with amplitude a and 
frequency ft, then the phase is: 

<f>x=4a-sm(2af,t). 
A 

Then we have a relation between the distance, vibration amplitude and frequency of 
the target and the phase of the target beam. In this case the total intensity is: 

IT = /, +I2 + 2(7,12y cos{4a^sm(2af,t)}. 
A 

The target vibrations produce variations in the total intensity, that is, the displacement 
of the target modulates the amplitude of the detected signal at target's vibration 
frequency. If the frequency of the light beam directed to the target is shifted, using an 
acousto-optics modulator (AOM) at 30 MHz, the intensity is modulated as function of the 
amplitude and frequency of the vibration, like a frequency modulated signal. If the 
amplitude of the target's vibration is small it fits into a narrow band frequency 
modulation. 

The light beams used are coherent, parallel and coincident to let the interference at the 
detector occur. The coincidence let both light beams reach the same place at the detector, 
out of parallelism just by no more than a very small angle, creating interference across the 
whole detector. The optics system and the correct alignment permit this task to be 
accomplished effectively. 

2. Frequency Shifting 

The frequency of the beam directed to the target is shifted by a convenient frequency. 
The phase of the beam shifted and reflected from the target is: 

<(>, = 27tfs t + 47T— sin(27if, t), 

fs =   Frequency shift caused by the modulator. 

Therefore, the total intensity is: 

- a 
IT=I1+I2+ 2(IX I2y cos(2a fst + 4a-sin(2af,t)). 

A 

a 
The modulation index = 4a—. 

Then the total intensity is going to vary with time, centered at the shift frequency. This 
is similar to a frequency-modulated signal, when this inequality holds: 



a 
27tfst     >     A7T-Sm{27tf,t). 

A 

3. Intensity Frequency Modulation 

The amplitude of the target vibration is small. This means that, to lowest order, the 
frequency spectrum of the resulting spectrum consists primarily of the target vibration 
frequency and a single pair of side bands at that frequency plus or minus the shift 
frequency. This is called narrow band FM (Scruby,1990). 

4. Angular Alignment 

To measure the interference of the two beams at the detector, they must be coherent, 
coincident, and as parallel as possible. To have maximum efficiency, the beam width 
must be less than half the fringe spacing. Then, the maximum angle is: 

ID; 
Dd =   Beam width. 

It was found experimentally that the maximum parallel angle is less than 5.3 mrad.The 
spacing of the fringes over detector is: 

S = 
2sin(-£) 

2 

A 

ß' 
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Fig.2 Frequency shifting and vibration detection of the laser radar (Hamey,1993). 

In case of target motion fm would be the Doppler shift. 



Fig. 3 The laser radar 
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D. C02 LASER 

1. Laser Process: Excitation and Emission 

The Synrad model G-48-1-28 (W) is a stable oscillator that amplifies coherent light, 
at 10.6 urn wavelength (frequency 28.3xl012 Hz), in continuous wave (CW) mode up to 
10W. 

The excitation of the laser begins by the transfer of electrical energy to the N2 

pumping medium. The RF power supply converts the DC power into a 1000 Vpk RF 
power, at a frequency of 45 MHz. The oscillating electric field transfers the energy 
through electronic ionization, gas heating and vibration excitation to the plasma, that 
contains C02, N2, He and others inert gases (Synrad Inc.,1996). The initial gas mixture 
is typically 67% He, 13% N2, 13% C02, and about 7% Xe. The operating gas mixture 
also contains CO, O, and 03, the latter two converting back to 02 when the plasma shut 
off. 

The first two processes produce free electrons, maintaining the discharge, and 
accelerate them. These fast electrons collide elastic and inelastically with the neutral 
molecules of the gas mixture, exciting vibration and rotation states. Vibrational energy is 
preferentially transferred from N2 to one specific vibration of C02.C02 molecules have 
three vibrational modes, and changing from one to another, can release energy by 
spontaneous emission of a photon. The vibrational transition from 001 state to 100 state 
produces the 10.6 urn lasing wavelength. 

During the stimulated emission, an incoming photon stimulates the excited C02 

molecule to give off a second photon and drop to a lower energy level. The stimulated 
photon has the same direction, frequency, phase and polarization as the inducing photon, 
producing coherent light. As the photons travel in the lasing medium they stimulate other 
C02 excited molecules producing photon emission and intensity gain, the amount 
depending on frequency and distance. 

The laser radiation is then amplified using feedback in a gain medium sandwiched 
between two mirrors. The gain must overcome the losses in the medium, in order to 
oscillate and amplify. As the amplification increases the C02 molecules drop to the lower 
state. This decreases the number of molecules available for amplification. Eventually gain 
reaches the saturation point, and the laser is in equilibrium. The frequency width of the 
Synrad laser due to the line shape effect is 375 MHz (Synrad Inc., 1996). Thermal 
expansion of the laser resonator can cause a wavelength shift from 10.6 urn to 10.57 urn 
or 10.63 urn, by forcing a different rotational line to undergo oscillation and 
amplification. 

The Synrad laser has mode purity for the lowest mode TEM00 of 98 %, and the full 
angle divergence of the beam at the exit aperture is 4 mrad. 

The 10.5 % maximum efficiency power output of the Synrad laser is obtained when 
the voltage input is between 21 and 24 V, giving the corresponding power output values 
10.6 and 12.6 W. However, the maximum power out produced is 14.5 W at 28.4 V input, 
but the efficiency is only 9.5 %. 
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As the photons travel across the lasing medium they may find other C02 molecules 
in excited state, which will again produce stimulated emission photons, improving the 
gain produced over the length of the cavity, as in the following equation 
(Verdeyen,1995): 

dz 

X2 

A2177—3- g(v) 
§2 N2-^N, 
gi 

0     20v-,    -■< .   Iv=Y(v)Iv» 
87m 

A21 =    Spontaneous emission coefficient, 

X    =    Wavelength of emitted radiation, 

N„N2 = Number per unit volume of C02 molecules in corresponding energy level, 

g(v) = Lineshape function, 

y(v) = Gain coefficient, 

g,,g2 = Degeneracy factor, 

n   = Index of refraction, 

Iv   = Intensity at a frequency v. 

For net gain to occur, both terms in brackets in the latter equation must be positive. 
Then for laser gain, it follows that there is a population inversion requirement, as in the 
following equation (Verdeyen,1995): 

'  # 1       Si ' 

2. Feedback, Oscillation and Amplification Process 

In order to achieve a large gain, a long column of lasing medium would be required. 
This requirement can be circumvented by repeatedly feeding the radiation back through 
the same medium. The C02 gain medium is placed between two mirrors, and the gain 
obtained will depend of the length of the cavity (Verdeyen,1995): 

G0=e", 

1 =   Length of the cavity. 

The threshold of oscillation depends of the reflectance of the mirrors 
(Verdeyen,1995): 

R^e^^l, 

R15R2 =   Reflectance of mirrors. 

When the gain reaches the saturation point, the pumping process is exactly balanced 
by the emission process, and the laser goes to steady-state. 

12 



To achieve usable gain, the mirror cavity must resonant at the laser frequency, with 
the following conditions (Harney, 1996): 

0<gI(g2<l, 

gi=l > 
ri 

g2=l--, 

r]5r2   mirrors' radii of curvature. 

This Synrad laser has a stable configuration with g,g2 = 0.886. 
The distance between mirrors to let the oscillation occur must be (Wilson, 1989): 

T       
X 

L = p-, 

L = optical pathlength, 

X = wavelength, 

p = axial mode of the cavity. 

And the cavity mode frequency separation must be (Wilson, 1989): 

Av = ^, 
2L 

c = speed of light. 

3.   Gaussian Beams and Hermite-Gaussian Mode Patterns 

The intensity of the beam pattern when it exits the cavity is stronger in the center. 
Any mode of a laser represents a self-reproducing field which does not change shape 
from pass to pass between the mirrors. The beam shapes satisfying this fundamental 
requirement are the Hermite-Gaussian modes. The simplest transverse electromagnetic 
mode has a Gaussian intensity profile. The size of the laser cavity and the exit aperture 
control these modes (Siegman,1986). The Synrad laser has 98% of the energy in TEM00. 
The diameter or spot size will depend of the distance traveled (Harney, 1996): 

w2 (z) = w0 l + (-)2 

z„ 
= w0

2
+ieV, 

0    = Divergence angle, 

w0 = Beam waist. 
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4.   Safety 

To prevent exposure to direct or scattered invisible laser radiation, the device 
provides indication and control of the radiation presence and warnings of the potential 
hazard. Safety glasses were used to reduce the risk of eye damage, and firebricks were 
used as external beam-blocks. 

The equipment has panel controls and indicators, internal safety circuit elements, 
input/output interfaces, a keyswitch, a remote interlock on/off circuit, and a laser aperture 
shutter switch, a fault internal electronics and 60 degrees over temperature output signal, 
and the device has a 5-second delay between power and the onset of lasing. 

5.   Technology and Operation 

The beam shape is square at the laser output aperture, but it changes to approximately 
circular at a range of 1 m. The laser beam diverges due to diffraction at a full angle of 4 
mrad, with the beam waist at the exit aperture. This laser uses a RF excitation method to 
stabilize the discharge. The RF drive frequency is 45 MHz to match the resonant 
frequency of the plasma tube. The Power control is continuous, fixed at +5VDC in this 
case, to cause the laser to operate in a CW mode (100% duty cycle). 

The laser consists of a RF excited plasma tube with an adjustable mirror on each end, 
mounted together with the RF drive assembly in a single aluminum chassis. The plasma 
emission is formed only in the 4.8 mm2 bore region. 

The optical resonator consists of 3 m radius of curvature total reflector and a flat 
ZnSe output coupler with reflectivity of 95%. The 4.8 mm bore, and the mirror curvature, 
limits the output beam to TEM00 modes, when the mirrors are aligned. 

The DC power supply used provides 28 V for operation of the laser. Laser current is 
about 8 A. Typical efficiency of C02 laser plasma tubes operating at TEM oo mode is 10 
to 12%. At the 10 W laser power output level a considerable amount of heat (200 W) 
must be removed, applying air cooling in this case, using a cooling fans system. This 
system delivers 500 ftVmin of air. 

14 



E. OPTICS 

The primary purpose of the optical system is to split the beam to produce the 
reference and the beam that is going to the target, and then recombine the first one with 
the returning beam from the target. During the optical path to and from the target the 
beam is first expanded and collimated. The returned beam is focused. The optical system 
consists of a number of Melles Griot lenses, beamsplitters and mirrors. 

1. Lenses 

Attenuation is wavelength and material dependent. The lenses used were chosen for 
minimum attenuation of the intensity of the light. 

a. Beam Expander 

This sub-system expands the laser light beam to the size of the target, after the 
acousto-optic modulation. It consists of: 

(1) One ZnSe negative plano-concave lens, focal length -50mm, 25mm 
diameter, to cause the small beam spot to diverge. 

(2) One ZnSe positive plano-convex lens, focal length +150mm, 25mm 
diameter. It is used to recollimate the beam and direct the expanded light spot to the 
retroreflector vibrational target. 

b. Beam Collector 

This directs both the reference and the target beam spots at the detector. It 
consists of: one ZnSe positive plano-convex lens, focal length +254mm, 25mm diameter. 
It is used to collect the coincident final spot on to the detector area. 

2. Plate Beamsplitters 

Beamsplitters separate the incident beam into two beams whose paths are 90 degrees 
apart, one portion of the beam is transmitted, and the other one is reflected. The beam 
splitting percentage (what fraction is reflected) is a function of polarization. The 
beamsplitter set consists of: 

Two plate beamsplitters whose nominal reflectance/transmittance ratio is 50/50. 
Their diameters are 25mm. They are used before the acousto-optic modulation to produce 
the reference beam and after the acousto-optic modulation to direct the modulated beam 
to the target, and then to the next sub-system, described below. 

One plate beamsplitter whose nominal R/T ratio is 90/10, and whose diameter is 
25mm. This directs both the reference and the shifted beam to the beam collector 
described above, which finally directs both beams to the detector. 

15 



3. Mirrors 

The optical system has one flat Si mirror, to direct the reference beam into the path of 
the target returned beam. 

Laser 

Mirror 
~99%R 

//  x  

Beam 

Beam 
Splitter, 
98% R 

«M- 

Jj\ Detector 

Beam 

Vibrating 
Target 

Splitter      AOM       Beam Expander 
53% R       ~85%      Splitter 

53% R 

Optical Transmitting Efficiency = (0.53)(0.85)(1 - 0.53) = .21 or 21% 

Optical Receiving Efficiency = (0.53)(0.98) = .52 or 52% 

Fig.4 Optics sub-system configuration of the laser radar system. 
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F. ACOUSTO-OPTIC SHIFT 

The acousto-optic modulator (AOM) shifts the frequency of the transmitted light in 
the laser radar, producing a frequency shift between the target return and the reference. 
For this project an IntraAction Corp infrared AOM/Frequency Shifter, model AGM- 
406B1 was used. It works at 10.6 um wavelength. It is comprised of a germanium 
optical single crystal, and produces an optical frequency shift in the range of+/- (30 to 50 
MHz). 

1. Acousto-optic Effect 

When the germanium medium is subjected to compressive and refractive acoustic 
pressure waves, its refractive index will change as result of the mechanical strain. The 
amount of change is proportional to the square root of the total acoustic power applied 
(Wilson, 1989). For this case the Ge crystal is transparent to the incident 10.6 urn incident 
light, which is going to be affected by the change of the material's index of refraction. 
The areas of low pressure and low refractive index will allow the light to pass through 
faster. High-pressure areas will slow the incident light down (Wilson, 1989). 

If the incident light crosses the medium in a direction perpendicular to the acoustic 
waves, a modulated optical wave front will result. A standing acoustic wave in the 
medium will create a diffraction grating with a ruling spacing determined by the acoustic 
wavelength. We use the crystal in a travelling wave configuration 

2. The Bragg Regime 

In this case the medium is thick, in order to modulate the frequency of the incident 
light. In this regime the diffraction is complete and the acoustic field acts like a 
succession of planes of traveling mirrors. These traveling acoustic wave fronts reflect the 
incident light. Under appropriate conditions, the light that is reflected off of successive 
traveling mirrors arrives in phase at the new reflected wavefront. For this to occur, the 
path differences between the successive reflections off of the travelling mirrors must be 
an integer number of wavelengths. To accomplish this condition the incident light must 
have a specific Bragg angle (Wilson, 1989): 

a       . _i fmX 

2A 
m =    Order of diffraction, 

A =   Acoustic wavelength, 

X =    Wavelength of the incident light. 

An acoustic damper at the end of the AOM allows acoustic waves to travel only in 
one direction across the medium. Incident light that is reflected off of these planes is 
going to be Doppler shifted (Wilson, 1989): 

17 



Av = ±2nmVasiny 
X 

Va =   Acoustic velocity, 
nm =   Refractive index of medium. 

Then the modulation shift or acoustic wave frequency is: 

A 

The signs mean that the frequency can be up or down-shifted, depending on the 
orientation of the AOM, or the direction of the traveling acoustic waves. 

An IntraAction Corp. RF Modulator Driver model GE-3030 drives the piezoelectric 
acoustic wave generator of the AOM. This power source provides the acoustic signal at a 
frequency of 30 MHz. The maximum power intensity of the reflected light is dependent 
on the diffraction efficiency, which is 85% in this case. 

18 



G. TARGET 

The configuration of this laboratory target allows us to control its frequency and 
amplitude of vibration. The target consists of an optical retroreflector mirror bonded to a 
vibrating piezoelectric actuator. The bond between the retroreflector and the piezoelectric 
actuator frequently broke due to vibrational fatigue and required rebonding with epoxy 
adhesive. 

1. Retroreflector 

An Edmund Scientific broadband Al-Si02 retroreflector model C43652 was used. It 
produces no polarization rotation in the IR input beam, and has a parallelism of 1 arcsec, 
good thermal stability, and a mass of 32 grams. 

The retroreflector is constructed of three optically flat, front-surface mirrors 
assembled into a corner cube. This geometry results in a reflected optical beam which is 
precisely parallel to the incident beam independent of reflector orientation. 

2. Piezoelectric Actuator 

The piezoelectric actuator is a ThorLabs actuator PE4. Its mass is 4.8 grams, and it 
allows a maximum of 17.4 urn displacement when driven by a ThorLabs low noise single 
channel piezo driver model MDT691. 

The resonant frequency of the actuator is affected by the resonant frequency of the 
total piezoelectric target configuration. The resultant resonant frequency is 18KHz. The 
fastest response time of the system is 18.5 usec. The maximum frequency achieved 
without damaging the actuator is related to the actuator limiting strength and the 
maximum vibration amplitude. For a 1 urn minimum amplitude displacement the 
maximum frequency is 4,600 Hz. For 17.4 urn maximum amplitude the minimum 
frequency is 1,100 Hz. 

The actuator's capacitance limits the target bandwidth. Because the sinusoidal signal 
generator that creates the sinusoidal displacement is not electrically matched to the 
actuator, the drive signal goes through the ThorLabs amplifier model MDT691, which 
supplies the 60 mA required for the actuator. 

The amplifier allows the target to receive up to 150V, resulting in 17.4 urn maximum 
displacement, at a maximum frequency of 143 Hz. At the smaller amplitude of 1 urn the 
maximum achieved target vibration frequency is 2,485 Hz. 
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H. DETECTOR 

The detector houses a 1 mm2 HgCdTe room temperature photoconductive element 
with an antireflection coated germanium window. It has 60 degree field of view, 
detectivity of 6.1xl010 cm/wVHz at lKHz, and peak wavelength 10.6 um. The detector 
noise level is 3 nV/VHz. 

The incident laser light photon energy raises electrons into the conduction band of the 
detector. The minimum required photon energy to do this is related to the wavelength and 
the energy band gap of the detector (Wilson, 1989): 

Eg = Energy band gap. 

When photons of the right wavelengths strike the detector, its conductivity increases. 
The detector noise level is due to the fluctuations in the generation and recombination 
rates of electron-hole pairs, and the thermal generation noise that occurs at the room 
temperature. 

The noise equivalent power (NEP), is a measure of detector noise. It is the applied 
signal power which produces a signal voltage just equal to the rms noise voltage, as 
represented in the following equation(Wilson,1989): 

D* 
Ad =   Detector area, 

Af =   Frequency bandwidth. 

The detectivity (D*) is another parameter characterizing the relationship between 
signal-to-noise ratio and applied signal power. It depends on the detector area and the 
frequency bandwidth, as in the following equation (Schlessinger,1995): 

D._{AdAfj(v; 

P =   Incident power, 

V 
— =   Voltage signal -to-noise ratio. 

n 

The detector responsivity (R) measures the ratio of the detector output versus the 
incident optical power. In this case it is equal to 100 mV/W. The carrier-to-noise ratio 
(CNR) determines how much incoming signal is needed to achieve detection at a level 
greater than the detector noise. It depends of the detector quantum efficiency (the ability 
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to convert photons into current). The CNR is also affected by the local oscillator beam 
noise. For heterodyne detection (Jelalian, 1992): 

QsTD  _ ^D  "LO "signal 

WB(PL0+Psig„a1+PBK) + EKPnoise' 

r|D = Detector quantum efficiency, 

B = Electronic bandwidth, 

Psignai = Received signal power, 

PL0 = Local oscillator power. 

If the reference beam is very strong, it will dominate the noise terms, simplifying the 
equation: 

CNR = ^D     s'gnal 
hfB 

I.   SIGNAL PROCESSING ELECTRONICS 

The electronics circuitry takes the signal coming from the detector, and transforms it 
into an amplitude-modulated voltage. This will be further processed by the signal 
analyzer system, which displays the resultant signal in the frequency domain. 

To accomplish this, the detector signal is amplified and transformed into a voltage 
signal using a Melles Griot high frequency amplifier model 13AMP007. It provides a 
transimpedance gain of 6,250 V/A over a frequency range of 4 kHz to 400 MHz, and the 
operating bias voltage needed by the detector. 

To restrict the frequency range and to reduce the noise, after the amplifier the signal 
is passed through a limiter and a frequency discriminator circuit, with high, low and band 
pass filters between them. 

1.   Filters 

Low pass filters Mini-Circuit SLP-50: -3dB passband from 0 tO 50 MHz. High pass 
filters Mini-Circuit SHP-25: -3dB attenuation point of 25 MHz. Band pass filters Mini- 
Circuit SBP-30: centered at 30 MHz with elliptical response 3 dB bandwidth of 10 MHz. 
Together each set of three filters eliminates all noise outside of a passband from 25 MHz 
to 35 MHz. 
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2.   Limiter Miteq Model LCPM-30/10-70B 

The input signal can fluctuate wildly in amplitude. To help to stabilize the 
fluctuations in signal amplitude, which cause variations that the frequency discriminator 
which can translate into distorted frequency readings, a limiter is used. The limiter also 
acts as an amplifier: signal inputs ranging from -65 to 5 dBm are amplified by the limiter 
to a constant 10.74 dBm. The frequency range is centered on 30 MHz with bandwidth of 

20.9 MHz. 

3  Frequency discriminator Miteq model FMDM-30/6-8B 
The frequency discriminator converts frequency modulation in the signal into simple 

amplitude modulation. 
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Fig.5 Signal processing electronic circuitry of the detector sub-system. 
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III.      DATA ACQUISITION 

The data acquisition process has three elements: data acquisition, data analysis, and 
data presentation. The data acquisition is obtained using a plug-in device, the data 
analysis transforms the data into meaningful information, using the programs available, 
and the data presentation tool allows effective communication with the system, using a 
graphical user interface. 

A. VIRTUAL INSTRUMENT 

The addition of a virtual instrument (VI) to the laser radar hardware, a virtual 
spectrum signal analyzer, was the main task of this project, permitting the performance of 
the laser radar to be increased. This requires interface hardware, the DAQ card PC-516, 
and functional software Lab View; it makes the use of the previously employed real 
instrument unnecessary. With the VI, the expansion of the project is functional and 
flexible, because the instrumentation system can be upgraded or changed entirely in 
software. The high-performance virtual instrument allows the computer display to present 
the measurements, providing processing and data memory. 

The Lab View software is an important piece in the system, providing the tools to 
design virtual instruments, and make use of all the possible applications. VI libraries are 
available, making the development time shorter. The code is easy to learn and self- 
helping, with many troubleshooting utilities (Johnson, 1994). In addition to signal 
processing and display, Lab View also provides the signal source for the laser radar. 

The system functionality was defined by the performance of the computations on the 
data. The Lab View software is a graphical programming language that interacts with 
Windows 95. 

Fig.6 The Virtual Benchtop spectrum analyzer as seen on the computer display. 
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The ready-to-run instrument is named as a Spectrum Analyzer VirtualBench 
Instrument. The VI spectrum analyzer is a digital sampling instrument that uses fast 
Fourier transform (FFT) techniques to analyze low frequency signals in the vibration 
field. 

The VI Spectrum Analyzer application has three components: acquisition and control, 
data analysis, and data presentation. 

The VirtualBench instrument permits the acquisition and saving of waveform data to 
computer memories and disks, and has a post-report and printing generation capability. 
With this it's possible to print the waveforms and the settings of the instrument at any 
time. 

The characteristics of the virtual instrument are summarized as follows: 
Bandwidth: DC to 20 kHz, 
Sampling rate: 51.2 ksamples/sec, 
Dynamic range: 93 dB with alias protection, 
Precision: 16-bit ADC with sampling, 
Amplitude flatness: +/- 0.025 dB, 
Analog input: Up to 2 channels, 
Analog output: One precision A/O, 
Frequency resolution 1: 850-line (0.025 dB bandwidth), 
Frequency resolution 2: 920-line (3 dB bandwidth), 
Cursors: Delta-t and Delta-y measurements, 
Measures:  Total  harmonic  distortion  (THD),  harmonic  contents,  frequency 
response, power spectrum, amplitude spectrum, coherence, and cross spectrum. 
Record lengths: Up to 2,048 points, 
Trigger modes: Analog and digital, 
Waveforms can be saved to computer memory or disks, 
Capacity to print hard copies of waveforms and settings. 

This virtual instrument measures total harmonic distortion, harmonic content, 
frequency response, impulse response, power spectrum, amplitude spectrum, coherence, 
and cross power spectrum. Built-in windowing functions include Hanning, Flat top, 
Hamming, Blackman-Harris, Blackman, and Exact Blackman to reduce the effects of 

aliasing. 
The virtual instrument display functions as a low frequency oscilloscope to view 

signals in the time and frequency domains simultaneously. It displays two different traces 
at the same time. The upper trace is the time domain waveform graph of the signal, 
expressed in volts versus seconds. The lower trace is the frequency domain or power 
spectrum of the signal, expressed in dBm versus frequency. Cursors facilitate extraction 
of key control system performance parameters, such as overshoot, rise time, settling time, 

and delay time. 
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Fig.7 VI spectrum analyzer showing the target vibrating frequency peak at 400 Hz. 

B. HARDWARE 

The plug-in board National Instruments PC-516 represents the brain of the VI. It has 
analog, digital and timing I/Os, programmable channels, sampling and conversion modes, 
separate gain for each channel, delayed, analog, and digital triggering. 

1.   Characteristics 

Fast instrumentation implementation and performance, 
Plug and play device, 
Transfers data to and from the computer memory, 
8 to 16-bit resolution, 
Sampling rates up to 1 MHz, 
Analog-to-digital (A/D) and digital-to-analog (D/A) conversions, 
Digital I/O, 
Advanced counter/timers operations: 03, 
Portable interfaces: PC cards for portable computers, 
High performance, 
Fast settling time, 
High accuracy, 
Multiboard synchronization, 
Shielded I/O connectors, 
Portability: 4.25x4.3 in., 
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Operating temperature: 0 to 70 °C. 

Instrumentation 
Amplifier 

PC/PCMCIA 
i/o 

Channel 
Interface 

SI 2-Word 
FIFO 

Input 
Multiplexer 

Scanning Counter 

A/D Timing 
BacoNv 

MSM82C54 

Interrupt 
Interf 

CLK -cl -2> 
OUT -cl ,.Z>- 

From A/D FIFO 

Digital 
I/O 

-5-*- 

-1-12 V      ] 
i    To Analog Circuit              A 

 §^ *• S.I V   "f -S.I V DO-DC 
Converter 

-12 V 

L"R> Analog Circuit 

0.75 A Resettable Fuse 

Fig.8 National Instruments PC-516 data acquisition card block diagram. 

2. Multifunction I/O 

The PC-516 is a plug-and-play compatible, analog input, digital I/O, and counter/timer 
board for PC-compatible computers. It has a 16-bit, successive-approximation ADC with 
eight single-ended analog inputs or four differential inputs, a 4-bit TTL-compatible 
digital input port, a 4-bit TTL-compatible digital output port, and two user-available 16- 
bit counter/timer channels for counting and timing I/O, and frequency measurements. The 
card is configured and calibrated entirely by software (National Instruments, DAQ, PC- 
516 User Manual, 1996). 

The input circuitry has input overvoltage protection of +/- 25 V powered on or 
powered off, and the voltage input range is +/- 5 V. The ADC performs 20 us 
conversions with single-channel and multichannel, aggregates acquisition sampling rates 
up to 50 kS/s. Continuous data acquisition mode was used. 

The most important application that it has is signal analysis. Implementation of that 
application is the purpose of this thesis project. The device is connected to the laser radar 
through a connector built by the student. 

3. Card Software 

The card was provided with the NI-DAQ National Instruments DAQ driver, that 
manages all functions of the hardware, and lets an application be started without having 
to program the card. The LabView application software can also be use to program the 
hardware. Both programs have extensive libraries for data acquisition, instrument control, 
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data analysis, and graphical data presentation (National Instruments, DAQ, PC-516 User 
manual, 1996). The software supports the following operations: 

Analog input (A/D conversion), 
Buffered data acquisition (high-speed A/D conversion), 
Analog output (D/A conversion), 
Waveform generation, 
Digital I/O, 
Counter/timer operations, 
Self-calibration, 
Messaging, 
Acquiring data to extended memory. 

4. Cabling 

For the purpose of this project no cable termination accessory was used. The signal 
input and output wires are attached to a handmade terminal, and there is no connector 
block. 

To connect the card a standard 30-conductor ribbon cable was used with a polarized, 
30 pin, insulation displacement, male ribbon cable header connector at one end. 
According to the pin assignment for the connector the appropriate analog input channel 
(ACH1) was connected to the signal, coming from the radar, and the analog input ground 
(AIGND) was connected to the radar ground. 

5. Configuration 

Taking into account measures to prevent electrostatic discharge damage to the board, 
it was installed by the student in a 16-bit expansion slot in the PC, following the 
instructions from the user manual. Two types of configuration were performed on the 
board: bus-related and data acquisition-related. The first one includes setting the I/O 
address. The second one includes analog input mode, digital I/O configuration, and 
counter configuration (National Instruments, DAQ, PC-516 User manual, 1996). 

The analog input mode was the referenced single-ended (RSE) input. RSE input 
means that all input signals are referenced to a common ground point that is also tied to 
the device analog input ground. This configuration is useful for measuring floating signal 
sources, and can monitor eight different analog input channels. 

Single-ended connections are those in which all PC-516 device analog input signals 
are referenced to a common ground. The input signal is tied to the positive input of the 
instrumentation amplifier that is referenced to their common ground point. To make this 
connection, the input signal met these criteria: 

• The input signal is high level (greater than 1 V), 
• Leads connecting the signal to the PC-516 device are less than 15 ft. long, 
• All inputs signals share a common reference signal (at the source). 
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A ground-referenced signal source is connected to the building system ground, like the 
laser radar device that is being used. The difference in ground potential between two 
instruments connected to the same building power system is typically between 1 and 100 
mV, and because of this, the ground-induced.noise is negligible. 
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Fig.9 Analog input and data acquisition circuitry block diagram. 

The principal components of the device are: 

• Bus interface circuitry, 
• Analog input circuitry, 
• Digital I/O circuitry, 
• Timing I/O circuitry. 

The data acquisition functions are executed by the analog input circuitry and some of 
the timing I/O circuitry. The internal data and control buses interconnect the component^ 
A data acquisition operation refers to the process of obtaining a series of successive A/D 
conversions at a carefully timed interval. This interval is called the sample interval. 

During single-channel data acquisition, a control register selects the analog input 
channel before data acquisition starts. These multiplexer settings remain constant during 
the entire data acquisition process; therefore, all A/D conversion data is read from a 

single channel. 
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C. SOFTWARE 

1.   Lab View 

Lab View is graphical programming software. This software permits instrumentation, 
data analysis, simulation, control, and measurement, in this case, a vibration analysis 
application (National Instruments, Lab View, User manual, 1996). 

One of the features of this software is that, it can be adapted to different operator skill 
levels. Performance of the system is improved by integrating the application software, 
with the device driver software and hardware. 

Lab View is the medium for integrating the virtual instrument into a standard 
computer, and gives the capability of data acquisition, data analysis and data presentation. 
For this thesis research, the measure and virtual Bench library adds easy-to-use non- 
programming solutions for data acquisition, which results in the virtual spectrum 
analyzer. A LabView program has three principal elements: 

• The application, 
• The measurement program, and 
• The instrument driver. 
This instrument driver can be called from the block diagram available for the virtual 

instrument. 

2. NI-DAQ Data Acquisition Software 

The DAQ hardware needs the NI-DAQ driver software. This software directly 
programs the registers of the hardware, managing operation and integration with the PC 
(National Instruments, DAQ, User manual, 1996). This software is an easy-to-understand 
interface. It has three important functions to control the hardware: analog I/O, digital I/O, 
and timing I/O. 

The software can perform the following tasks: 
• Acquires data at specified sampling rates, 
• Acquires data in the background while processing, 
• Uses programmed I/O, interrupts, and direct memory access (DMA) to transfer 

data, 
• Streams data to and from disk, 
• Performs several functions simultaneously, 
• Integrates more than one DAQ board, 
• Integrates with signal conditioning equipment. 

With NI-DAQ software, it's possible to use and reuse the buffer continuously. As 
interrupts and DMA operations place data from the board into the buffer, the LabView 
application program pulls data out of the buffer for processing, saving to disk or 
upgrading screen graphics. When the buffer is full, the interrupt or DMA operation 
reinitializes its address pointer to the beginning of the buffer. In this way, continuous data 
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collection and processing can be sustained indefinitely, provided that the aforementioned 
maximum data sampling rate is not exceeded. 

Fig.10 Virtual spectrum analyzer front panel as seen on the computer screen. 

Fig.l 1 Virtual spectrum analyzer block diagram showing the sub-VI components. 
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Fig. 12 The data acquisition system is related to NI-DAQ and the DAQ Devices. 
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IV.      EXPERIMENTAL SET UP 

This section covers the set up of the laboratory, laser radar and computer-based 
measuring equipment. To begin this project the first thing that I did was to establish the 
main task to do: add a computer-based data acquisition and analysis system to improve 
the analog signal processing capability of the laser radar already designed and constructed 
(Day, 1997). 

The second thing was to obtain the required laser hazard evaluation and certification 
for class IV standard laser operation, from the NPS laser system safety officer, with the 
previous medical eye examination, and verification of the properly safety measures, to 
avoid any hazardous effect. 

The third thing was to set up the computer, install the DAQ card and the software, 
connection of the computer to the laser radar, and familiarization with the software 
application. 

The fourth thing was to set up and check the laser radar hardware and familiarization 
with its operational settings and emergency shut off procedure, including verification of 
the interlock switch. That includes verification of all electrical connections and power 
supplies. 

A. LASER RADAR SET UP AND OPERATING PROCEDURES 

The next thing to do was to verify the laser radar operational settings as follow: 

1. To power the laser a 28 VDC power supply is used, in conjunction with a 5 V 
voltage source to control the lasing action. 

2. Pre-operation: laser key switch off, power supplies off. 

3. Stand-by: laser power supply on, laser key switch on, and control power supply 
off. 

4. Operational: laser on (28 VDC, 5.36 Amp), control power supply on, air cooling 
system on. 

5. Steady state: AOM water cooling system on, AOM power supply on, detector 
amplifier (+8V bias voltage) and electronic circuitry on, target signal generator 
and power supply on, computer on, virtual instrument running and real instrument 
on. 

Once the laser radar is in steady state operation, the next thing to do was to check the 
correct optical alignment of the system, including the verification of the proper 
functioning of the AOM providing the frequency shift to the laser beam, and the correct 
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direction of the shifted and the unshifted beam from the AOM. A spatial filter, to avoid 
propagation outside the system, must correctly block the latter one. 

The optical alignment of the system was the next critical step. It was accomplished by 
observing the output beams, using special IR beam probes, and their required UV lamp. It 
is necessary to adjust the optical system components to get the maximum intensity of the 
beam at the detector, adjusting first the local oscillator beam and then the returned beam 
from the target. The goal in aligning the reference and the target beam was to make them 
as parallel as possible and coincident, in order to obtain the correct interference at the 
detector. It was difficult to know exactly when the beam pointed directly into the detector 
element. To remedy this, the design of the detector mount was modified by the student, 
making it possible to move the detector in three dimensions to exactly adjust the position 
of the detector element at certain location to obtain the best heterodyne signal. 
Adjustments were always necessary at the start of each day's work. 

The next step was to verify the laser power arriving at the detector and the target, 
using the available portable power meters. After the optical alignment, it was necessary to 
verify the retroreflector target performance, adjusting it to the desired vibrational 
frequency. The next step was to verify the proper work of the detector amplifier (at +8V 
bias voltage) and the electronic circuitry. The analog electronics were repackaged by the 
student to make them less dependent on borrowed power supplies and more portable. 

The last step was to verify the proper work of the virtual instrument on the computer, 
and the real instrument. Both were connected to the output signal from the laser radar, to 
have the spectral response from both displayed at the same time. Familiarization with the 
data acquisition software was needed, including a tutorial course done by the student and 
the reading of the manuals and bibliography available (National Instruments, Labview 

user manual, 1996). -A. 
To obtain the frequency spectrum data records, it was necessary to print from the real 

instrument, for comparison with the data obtained from the virtual instrument. 
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V.       OBSERVATIONS AND RESULTS 

After all modifications and alignments to the laser radar were completed, a number of 
measurements were made to verify the performance of the new data acquisition and 
processing system. In the course of this verification a number of things were observed 
and several kinds of data were recorded. These are summarized below. 

The laser radar is still able to detect vibrations from the target under laboratory 
conditions. The target vibrational frequency and amplitude were varied and the laser radar 
output was recorded. During the observations the target frequencies were 360, 380, 400, 
420, and 440 Hz, making it possible to distinguish a shift of the vibration peak. The 
vibration amplitude in the target was changed between 40 nm to 1.7 um. 

One of the interesting things during the experiment was the concern about the effect of 
the 60 Hz power line frequency interference and noise inside the resultant spectrum, and 
because of this, a sequence of tests was made. 

First to all, the spectrum was measured while the system was totally off. For this case 
the 60 Hz pattern was observed with its respective harmonics, as shown in Fig 13. After 
this, the laser, detector and the electronics were turned on, leaving the AOM and target 
off. The result is that a big noise signature was detected inside the real time spectral 
response, as shown in the Fig. 14. 

. The next step was to add the AOM, and the result was that the 60 cycle pattern was 
still present in the spectrum. To reduce the noise, it was found to be necessary to average 
the signal response, as shown in Fig. 15. Both the real and the virtual instrument have the 
capability of averaging the signal. 

When the target finally was turned on, vibrating at 400 Hz and 1.74 urn amplitude, a 
very big peak response was observed at the target frequency, as shown in Fig. 16. For this, 
case the signal was sampled at 50 ksamples/s and averaged 249 times. The 400 Hz peak 
is approximately 10 dB over the noise. There are other frequency responses that appear as 
well. Spikes also occur centered on the 400 Hz signal. These side bands appear 
intermittently throughout the duration of the experiment. Side bands of 60 Hz also 
appeared intermittently as well. Turning the target off makes the 400 Hz peak vanish. 

There was an intermittent jump in. the power spectrum occurring throughout the 
experiment. It was found that this jump is eliminated when the laser is off. This was 
observed with both real and virtual instruments. No source of this jump has been 
identified. 

The spectral target responses at 360, 380, 400, 420 and 440 Hz, are shown in Fig. 17. 
Note the shift of the vibration peak from one frame to the next. 
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Fig. 13 Spectrum from the real and virtual instrument showing the 60 Hz pattern when 
the system is off. 
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Fig. 14 Real time spectral response having laser, detector and electronic circuitry on. 
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VI.      CONCLUSIONS 

Based on the limited measurements made with the modified system the following 
conclusions can be drawn: 

The laser radar system is able to detect the vibrational frequencies in the target, 
given the output frequency spectrum on the computer, using a virtual instrument. The 
use of sample averaging signal processing was necessary to better discern the signal 
from the noise. 

The optical alignment is a critical requisite to achieve a good signal response. 
Adjustment errors were always present, affecting the intensity of the beam at the 
detector. The optical system influences the range of the laser radar system. Much of 
the laser energy is lost in the beamsplitting process and wasted (producing hot spots 
on the fire bricks). 

When the target vibration amplitude is increased, harmonics of the 400 Hz 
vibrating frequency appear in the spectrum. The estimation of the vibrational 
amplitude can be done depending of the appearance the respective harmonic. 

The electronics circuitry improves the system CNR. The SNR is related to the 
target vibrational amplitude, and this relation can help in the process of target 
classification and identification. The power spectrum has a frequent and unexplained 
jump between -90 dB and -30 dB. The rise and fall of the power spectrum affect the 
SNR-to-vibrational amplitude target relation, making the analysis complex. 

The stability of the target, a retroreflector bonded to a piezo electric actuator was a 
continuous problem, because it breaks frequently. The sensitivity of the detector was 
reduced motivated the addressing of errors in the optical alignment and hardware 
components, like the post-amplifier and the applied bias voltage. The mount to 
support the detector was modified to let it to have 3D movement. 

The virtual instrument permits averaging of the signal, with low noise capabilities, 
and improving the carrier-to-noise ratio. To compare with the real instrument some of 
the data was printed using the traditional plotter and printer. 

We fully expect that the vibrational signature can be used to identify some kinds 
of vehicles and aircraft. The ability to detect and identify targets is the principal area 
for further exploration and development of the laser radar system. 
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VII. RECOMENDATIONS 

The following changes to the system can result in improved performance: 
• Increase the sensitivity using a liquid nitrogen cooled HgCdTe detector. 
• Modify the optics to have better optical transmitting and receiving efficiency. 
• Improve the detection range of the system by reducing the electronic bandwidth. 
• Improve the analysis process of the signal using the software available. 
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