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ABSTRACT 

Large Static and Dynamic Deformation of Beams: 

The Inverse Problem. (August 1996) 

Matilda Wilson McVay, B.S., Colorado School of Mines; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. John L. Junkins 

The primary objective of this study is to establish a methodology for validating a 

dynamical model of a flexible two beam system undergoing large deformations. 

This dissertation presents a systematic approach for using a series of experiments to 

estimate mathematical model parameters and correct them to match the measured response. 

The study of any dynamical system has a natural partition between the kinetic energy terms 

and the potential energy terms. By using this natural partition to design a sequence of 

experiments, it is shown that the number of unknown parameters affecting the system 

response for any given experiment is greatly reduced. First, a set of static deformations are 

used to determine beam parameters such as the stiffness coefficients and allow modeling of 

nonlinear effects. Then, free response experiments are used to determine some motion 

parameters such as the mass per unit length of each beam and the parameters associated 

with natural environmental forces such as friction effects. This separation of static and free 

response measurements allows the recovery of model parameters without being corrupted 

by other forced system model errors such as joint dynamics and motor modeling which are 

present in a full dynamic response. A set of dynamic forced response experiments are used 

to determine motor parameters which model the inputs to the structure. Appropriate 

statistical estimation methods are utilized to forward propagate a priori and measurement 

covariance estimates through the sequence of nonlinear estimation processes. 



IV 

Before the parameters can be updated, a novel mathematical model of the system is 

developed and verified based on an arc length approach to beam deflections. This model 

accounts for large deformation affects such as foreshortening and is used in the static 

analysis. A nonlinear finite element model is developed to allow modeling of the free 

vibration and forced vibration response. This model also allows large deformations of the 

beam system by defining the deformation of a point in terms of an axial displacement and a 

transverse displacement. Although it is a computationally intensive program, it yields 

accurate results and is well suited to the estimation of parameters affecting the dynamic 

motion. 
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CHAPTER I 

INTRODUCTION 

1.1 Motivation 

Most of the parameters involved in a mathematical model of a dynamical system 

can be naturally grouped into three major subsets. The first logical subset would include 

parameters affecting the storage of potential energy which can be estimated from a family 

of static measurements on the system displacements. The second subset would include 

inertia type parameters which affect the free response of the system to prescribed initial 

conditions. These could be found by deforming the structure to a measured static shape 

and releasing the constraining force and measuring the free response of the system. The 

third subset would contain the actuator model parameters which could be found from a set 

of forced response experiments. This parameterization reduces the number of poorly 

known parameters to be determined from each identification experiment and typically 

improves observability. For high dimensioned nonlinear systems, the approach would 

seem likely to greatly enhance convergence. These qualitative ideas are the basis for the 

methodology studied in this dissertation. 

These ideas are studied in the context of large deformations of a two beam system 

that is similar to the flexible manipulator arm developed at the United States Air Force 

(USAF) Phillips Laboratory called the Planar Articulating Controls Experiment (PACE)1. 

This structure, illustrated in Figure 1, consists of two flexible beams connected to each 

other by an elbow joint and mounted to an air bearing table by a shoulder hub. The 

primary beam material properties and the tip and elbow mass properties are listed in Table 

1. The structure is constrained to move horizontally along a polished granite table. Air 

bearings are used to greatly reduce the friction forces between the table and the support 

This dissertation follows the style and format of the AIAA Journal of Guidance, Control 
and Dynamics. 



plates. PACE is designed to experimentally test control theories and validate nonlinear 

structural modeling techniques. A similar structure is being developed in the Dynamics 

and Controls Laboratory of the Aerospace Engineering Department at Texas A&M 

University. 

Figure 1. Planar Articulating Controls Experimental test article 

Table 1. Material properties for PACE 
Beam 1 Beam 2 

L=0.776 m L=0.714m 
— 

EI=11.413 N-m2 EI=11.275 N-m2 

p =0.532 kg/m p =0.530 kg/m 

Elbow mass=4.280 kg Tipmass=1.038kg 

Elbow inertia=122.982E-4 kg-m2 Tip inertia=15.244E-4 kg-m2 



1.2 Dissertation Outline 

This dissertation begins in Chapter II with a review of the literature for the 

modeling of large deformations, with a specific focus on two beam systems. The next 

three chapters correspond to three divisions of the system identification process into the 

static, free vibration, and forced response analysis. Each chapter is divided into two main 

sections. The first section develops the mathematical model for simulating the response 

and the second section develops the parameter estimation technique. Some highlights of 

each chapter are discussed. Chapter HI develops a new approach to the nonlinear static 

beam flexure problem. This model is used in estimating the beam parameters that affect the 

potential energy by using a series of simple static experiments designed to deform the 

system using a wire constraint force. An unusual application of the implicit function 

theorem is used in this recovery process. Chapter IV develops and validates a nonlinear 

finite element model for the dynamic analysis of the system. This model is used to 

estimate the parameters contributing to the free response of the system upon release of the 

force applied by the wire. Chapter V develops the additions to the mathematical model for 

including a motor in the dynamic response and recovers the motor parameters. A method 

is presented for propagating the estimated parameters and associated errors forward 

through each level of parameter estimation. Finally, Chapter VI presents the conclusions 

of the system modeling and parameter estimation technique studied in this dissertation. 



CHAPTER II 

LITERATURE REVIEW 

As a specific example, this research considers the PACE flexible multibody 

configuration shown in Figure 1. We are interested in the "forward" problem of 

mathematical modeling such systems, and the "inverse" problem of estimating model 

parameters from response measurements. 

Kwak and Meirovitch2 employ Lagrange's equations in terms of general 

quasicoordinates to develop models for multibody systems. In this approach, the equations 

of motion for each individual flexible body are derived in terms of quasicoordinates. A 

recursive kinematic description of the velocity vector of a point in each body in a 

multibody chain is expressed in terms of the velocity vector of the preceding body in the 

chain. The set of equations are assembled globally using the kinematical relationships and 

the redundant coordinates are eliminated. The resulting equations consist of nonlinear 

ordinary differential equations describing translations and rotations and partial differential 

equations describing elastic motions. The elastic displacements are discretized using a 

finite element method to approximate the solution of partial differential equations using a 

finite system of ordinary differential equations. Kwak and Meirovitch developed a 

perturbation approach to control this high order nonlinear system. The perturbation 

approach assumes the rigid body motions are large compared to the elastic motions 

allowing the problem to be separated into two parts. The problem is divided into a low 

dimensional set of nonlinear zero order equations for rigid body motion and first order 

linear equations of high dimensionality for elastic motions. 

A similar structure to PACE is studied by Meirovitch and Lim3. It consists of two 

hinge connected flexible arms with one end mounted on a rigid platform and the other rigid 

end holding a payload. The equations of motion for this system are derived using the 

standard Lagrange's equations. The partial differential equations describing the elastic 



motions are discretized using a Ritz type approach using shape functions called quasi- 

comparison functions. Quasi-comparison functions are linear combinations of admissible 

functions and in this case are linear combinations of clamped-free and clamped-clamped 

shape functions. Essentially the same perturbation approach is used to separate the 

problem into a zero order problem for rigid body maneuvering and a first order problem for 

the control of elastic motion. The elastic motions are assumed to be small in this study as 

well. 

The large deformation of beams has been studied extensively by D.H. Hodges for 

use in rotorcraft applications. In one study, Hinnant and Hodges4 modeled a constitutive 

nonlinear effect on static deformations. They analyzed actual experimental data for a 

cantilever beam undergoing large deformations. One part of the experiment consisted of 

measuring the static deformation of a uniform cantilever beam with a mass attached to the 

tip. The static behavior of the beam is sensitive to the value of the stiffness coefficient and 

the classical linear model gave incorrect results. When the beam deformations are large, 

the linear theory is typically too soft. To account for material nonlinear effects, a simple 

nonlinear planar elastic model is used which introduced a large deformation material 

nonlinearity coefficient a. The strain energy with this model is: 

U = ^E(I2X? +I4axr4/2) (1) 

where K is the planar curvature of the beam and I2 and I4 are area moments of inertia for 

flatwise transverse deflection: 

I2=bt3/12 (2) 

I4=bts/B0 (3) 



In another study published by Hodges5 the curvature of beams undergoing large 

deformations is examined. He developed a formulation which accounted for the effective 

shortening of a beam due to transverse deflections. Figure 2 shows the foreshortening 

effect where the distance JC is to a point on the beam before deformation and the distance x 

is the same point after deformation. 

Figure 2. Foreshortening due to transverse displacement 

The expression for curvature he derived is: 

K- 

d2w 

dx2 

1- 
dwY 

ydx j 

(4) 

This formula is exact for an elastic beam undergoing a planar deflection with small axial 

strain compared to unity and is valid for any size deformation. 

Monasa and Lewis6 also studied the large deformation behavior of beams.  They 

included the geometric nonlinear effect due to the curvature of the beam but used a 
n 

different expression for curvature which is frequently found in some calculus texts : 



d2w 

K= 

1 + 

dxL 

ydx j 

(5) 

The coefficient of the. nonlinear term in Eq. (5) is of opposite sign and the denominator is 

of higher order than the terms in Eq. (4). This difference is due to the fact that in the 

formulation of Eq. (5), x is defined as the distance along the deformed curve whereas in Eq. 

(4), JC is measured along the original position of the beam. The curvature formula, Eq. (5), 

must be corrected when applied to the physical beam curvature for the shortened value of x 

due to the deflection w. The authors used an iterative process to adjust the deflection w 

and the u change in x. First they assumed small loads and no shortening and solved for the 

deflection w using Eq. (5) and the moment curvature relationship and corrected the change 

u using the arc length formula. The calculations are repeated until the solution converged 

on u. Then the loads are gradually increased and the iterative process repeated for each 

step until the final load is reached. The curvature formula caused a further problem during 

the Runge-Kutta integration of Eq. (5) and the moment curvature expression. The limits of 

integration over the beam, XJ and Xf+j, are functions of the beam deformation and 

unknown. 

Reddy and Singh8 used the same definition of curvature (Eq. 5) in their study of 

large deflection and free vibration behaviors of elastic beams. It does not appear they 

accounted for the foreshortened value of x in their solution. They compared two finite 

element solutions of the differential equations of motion and solved a number of beam 

problems with various boundary conditions. They used a conventional finite element 

method which used cubic interpolating functions to approximate axial displacement, 

transverse displacement and slope. They also use a finite element method called a mixed 

method which is based on including the bending moment with the deflections u and w as 

the dependent variables.   By using the bending moment as a variable, the order of the 



differential equation is reduced and therefore linear polynomials could be used to 

approximate the transverse deflection instead of cubic polynomials. They compared the 

results of their methods to several analytic and numeric solutions of single beams with 

various boundary conditions. 

Epstein and Murray9 defined the deformation of a beam using two variables, axial 

displacement u and transverse displacement w. They derived the following expression for 

the physical curvature of the beam which is used for large deformations and axial strains: 

(     du 

l      dx 

(j2\    / . A d*w 

ydx     j 

dw 

dx 

d u 

ydx 
(6) 

They developed the equations of motion for the beam deformation using the principle of 

virtual work. They discretized the displacements u and w using a finite element approach 

with cubic interpolating functions. They verified their formulation worked for large 

deformations by computing the displacements from a thin cantilever strip bent by a 

moment into a complete circle and comparing the results to the exact solution. They only 

developed the equations for the static deformation of the beam. 

Several methods for solving static and dynamic responses with large deformations 

of single beams has been discussed with various ways of accounting for geometric 

(foreshortening) and constitutive nonlinear effects. The modeling of two beam systems 

have typically not included these effects. A new approach is developed in this dissertation 

to model large deformation and nonlinear effects on a flexible two beam system and this 

model is used to recover some of the beam parameters. This methodology can be 

generalized for use in other studies based upon these developments. 

First an alternative approach for solving large static deformations of beams is 

developed. This approach accounts for the foreshortening of beams in a manner consistent 



with the exact curvature relationships of Hodges Eq. (4) and Epstein and Murray Eq. (6). 

However, this approach leads to a new nonlinear differential equation model and an 

associated method for solving the resulting two point boundary value problem. Next a 

nonlinear finite element model is developed for solving the free vibration and dynamic 

response of the beam system. The beam parameters affecting the deformation shapes are 

recovered separately for the static, free response and dynamic response of the system. 
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CHAPTER III 

NONLINEAR STATIC ANALYSIS 

The static analysis of beam deformation would be the first logical step in isolating 

beam properties. Beam parameters such as the stiffness coefficient and parameterization of 

the material nonlinear effects can be recovered. A mathematical model of the system must 

be developed before an algorithm can be posed for recovering the beam parameters. For 

the static analysis, a new approach for solving large beam deformations is developed. 

3.1 Model Development - Arc Length Approach 

A novel coordinate system is used to develop the equation of motion for an elastic 

beam undergoing transverse vibration. This approach is designed to accommodate 

geometric nonlinearities associated with large deformations. In the conventional analysis 

the deformation is expressed by defining the transverse displacement at a point x by w(x,t) 

and u(x,t) shown in Figure 2. In the approach of this dissertation, arc length s is used as the 

independent distance coordinate and the slope angle ^(s.t) is used as the instantaneous 

generalized coordinate shown in Figure 3. 

Figure 3. Transverse displacement in arc length coordinates 
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The arc length is the distance measured along the instantaneous deformation curve 

from the origin and ^(sj) is the angle of the local tangent vector |,. The vector r(s,t) is 

the inertial position of a typical mass element. A tangent and normal vector is defined at 

each point along the curve. Figure 4 shows the free body diagram for a beam element of 

length ds. 

M(s,t) 

Q(s,t) 

Q(S,t)+ *ys 
JdS 

<?M(s,t) , 
M{s,t) + zr-^ds 

as 

< ► 
ds 

n 

■>£* 

Figure 4. Element freebody diagram 

The normal force equation of motion for this element is 

Q(s,t) +—-£—& 
dlr_{s,t)  „ 

- Q(s,t) = m(s)ds —2— ■ e (7) 

and the moment equation of motion is 

M(s,t)+      ^   Jds -M(s,t) + Q(s,t) +—^— ds 
<?lx$>(s,t) 

ds = I(s) ^—ds (8) 

In the statics case, Eq. (7) can be reduced to 
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^M = 0 (9) 
0S 

and by ignoring second order terms and rotatory inertia I(s), Eq. (8) can be reduced to the 

familiar result 

Q(M) = -^ do) 

The bending moment can be related to the curvature of the beam by the Euler Bernoulli 

constitutive model 

M(s, t) = EI(s) ——-    where ß is the local radius of curvature (11) 
ßs,t) 

From calculus7, the curvature at a point on a curve is the derivative of the tangent angle 

m{s,t) with respect to the arc length s. For the statics case, the angle is denoted as ¥($) and 

the curvature is the reciprocal of ß. 

I_^(£) (12) 
ß      ds 

In the developments that follow, no small deformation approximations are used. This 

exact curvature formula is combined with Eq. (9) - Eq. (11) to yield the elegantly simple, 

exact differential equation for the static deformation of an Euler Bernoulli beam 

d_ 
ds \ ds       J 

= 0 (13) 

The (x,y) shape of the beam is obtained by solving the exact geometric differential 

equations 
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^• = sinOF(5)) (14) 
as 

dx(s) 

ds 
= cosOF(s)) (15) 

The choice of Y as the dependent variable and s as the independent variable has 

two advantages. The first is the "foreshortening" of the beam is automatically and exactly 

accounted for. This allows large deformations without having to introduce approximate 

corrections in the length of the beam, and furthermore, simplifies the numerical integration 

since the arc length is varied between zero and the length of the beam regardless of the 

projected x direction length. The second advantage is that it allows the Euler Bernoulli 

based development to extend over much larger geometrically nonlinear deformations since 

the curvature of the beam is not approximated. 

The behavior of any beam will exhibit some material nonlinearity. A 

representative nonlinear term is included in the governing differential equation to illustrate 

how such constitutive nonlinearities are accounted for. The form of the nonlinear term 

adopted is consistent with the model proposed by Hinnant and Hodges . The bending 

moment that corresponds to the potential energy term in Eq. (1) is 

M = EI—+C 
as 

f<W^ 

ds 
(16) 
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Using this definition of the moment M and Eq. (9) and Eq. (10), the static equilibrium 

equation becomes 

?3vr/ ^11/1^2x1/1 d3W    rW 
El—r + 6C—- 

ds3 äs 

d_^¥ 

\ds   J 

fw\2 ^ 
+ 3C 

ds 

d3x¥ 

ds3 
= 0 (17) 

This cubic nonlinear effect    corresponds to a 'hard' (00) or 'soft' (C<0) nonlinear 

stiffening with large deformations. 

3.1.1 Model Validation 

During the 1970's, Dowell, Traybar and Hodges10 performed a series of 

experiments at Princeton University on the large deformation of a cantilevered beam with a 

mass attached to the tip. They were primarily interested in helicopter rotor blade stability, 

and carried out several experiments on a cantilever beam by rotating the beam root at 

various angles with respect to the beam principal axis and varying the tip weight. They 

compared their results to the Hodges and Dowell11 nonlinear theory of rotor blade 

dynamics, and presented some results for pitch angles of 90 degrees which corresponds to 

planar deflection. The arc length approach can be checked against the transverse deflection 

results. Figure 5 shows tip deflections recovered using the present arc length approach 

along with those predicted by the Hodges and Dowell theory; and the deflections obtained 

experimentally. 



15 

0 > 
CO c 
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2.00 —i 

0.00 — 

c 
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-6.00 — 

-8.00 

Arclength approach 
Hodges-Dowell Theory 

/\     Princeton Experiment 

0.00 4.00 8.00 12.00 
Distance along beam (in) 

16.00 20.00 

Figure 5. Comparison of cantilever beam deflections from tip weights 

Unfortunately Dowell, Traybar and Hodges did not report results of beams at a 90 degree 

pitch angle for larger tip loads, so we cannot compare against their data for larger 

deflections. 

However, published "exact" results are available for large deformation of cantilever 

beams for the special case of a pure moment applied to the free end. Figure 6 shows the 

displacement profile of the beam subjected to different moments from the arc length 

approach and from the exact solution9. These solutions allow the beam to be deformed to a 

complete circle. 



16 

10.00 —i 

8.00 — 

- Exact solution 
A     Arclength solution 

o.o 
M=62.832 

0.00 2.00 4.00 6.00 8.00 
Distance along beam (in) 

10.00 

Figure 6. Deflection of cantilever beam due to tip moment 

The arc length approach for small and large deformations due to end moments is in very 

good agreement both with available independent experiments and with the pure moment 

exact solutions from reference 9. 

3.1.2 Application to Two Beam Model 

The arc length approach is applied to a two beam system similar to the PACE 

structure in Figure 1. The geometry of this two beam system is illustrated in Figure 7. The 

PACE structure is simplified in that the shoulder hub, elbow connection and tip masses are 

treated as point masses. In this discussion, the shoulder hub is locked and the elbow angle 

is constrained to be zero (in the 'elbow locked' configuration). The arc length of the first 
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beam is measured from the shoulder hub and the first beam's tangent angle ^(s) is 

measured relative to a horizontal. For the second beam, the arc length is measured from 

the elbow connection of the two beams and the tangent angle ¥2(5) is measured relative to 

a vector tangent to the tip of beam 1 (vector has angle ^1(^1) relative to the horizontal). 

The choice of these coordinates simplifies the equation development of beam 2 and also 

permits automatic matching of the displacements and slopes at the connections of the two 

beams (for a "locked' elbow with zero elbow angle). This choice of coordinates allows the 

Euler Bernoulli beam theory to apply over large deformations. Notice that the angle x¥2(s) 

is measured relative to the tip of the first beams' tangent vector, whose elevation angle is 

^liLi) and is not measured relative to the horizontal. 

i 

L2 1 I J^2(S) 

"ij 
s2/ / y 

'     /     M 
/       /     MS 

•       S     Mr 

VLl) 

*\ 

1 

Figure 7. Two beam configuration 

The static equilibrium equations are derived for each beam and differential equations for 

the coordinates x and y are included since they are needed in the enforcement of a boundary 

condition: 
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EL 
äs,3 

+ 6G <WM) 
dsi ds? 

\2 

+ 3C, 
dV&i)}2 d^isO 

ds 1    J ds-r1 
= 0 (18a) 

ds-\ 
= sinC^xC^i)) (18b) 

dxi(s{) 

ds-t 
= 008(^(50) (18c) 

Beam 2 

El, 
ddV2M 

ds2
3 + 6C- 

<W2(s2) 
dsi 

rd2V2(s2) 

ds2
2 

A2 

+ 3C, 
cW2(s2) 

K    ds2    J 

\1 j3 

ds?3 
= 0 (19a) 

dy2{s2) 
dso 

= sin(^2(52)) (19b) 

dx2(s2) 

ds2 
= cos(^2(52)) (19c) 

There are a total of ten boundary conditions that the solution of the above tenth 

order system of differential equations must satisfy. Six boundary conditions apply at the 

origin of each beam (s = 0) where the angle ^(s) and the coordinates x(0), y(0) must equal 

zero. Two boundary conditions apply at the elbow connection of the beams where the 

bending moments must be equal Eq. (20) and the shear forces must be equal Eq. (21). 



19 

EL + C 
'dV^LO)3     rj  ^2(0) , r 1^2(0)Y 

= ti2——    +c2 ds 1    J dSn ds 
(20) 

2   ; 

£/i 
^i(A) 

ds,2 + 3C, 
^l(^l) 

V    *l    J 

^2 J2 rf^Zl)     „r d'V2(0) 
ds,2 = EIn 

dso 
- + 3Co 

/cT¥2(d))2 d2x¥2(Q) 

V   ds2    J dso2 
(21) 

Two final boundary conditions must be enforced at the tip of the beam system depending 

on how the boundary forces are applied. The wire constraint experiment provides the final 

two boundary conditions needed to solve for the beam deformation shape. 

3.1.3 Wire Constraint Experiment 

A nonlinear static deformation experiment has been conceived to simplify testing of 

the two beam system and allow recovery of beam properties which contribute to the 

potential energy of the system. The idea of the experiment is to attach a wire to the tip of 

the beam system and measure the force required to deform the beam. A series of 

experiments with different measured tensions in the wire would yield a family of measured 

deformation shapes from which beam parameters such as the stiffness coefficients could be 

recovered. In most cases, only the tip and elbow deflections need to be measured for 

estimating the static parameters. The use of a wire with negligible bending stiffness has 

several advantages. From the beam standpoint, the wire provides a point force but no 

moment which acts on the tip of the beam. Along the wire, this one dimensional force can 

be measured anywhere using a load cell. The unit that holds the load cell and the end of 
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the wire would be attached to the tip of the beam and to the horizontal table using suction 

cups or electromagnets. This would also allow the beam to be released quickly without 

interfering with the free response of the beam. Once release occurs, the wire could be 

removed quickly allowing a free vibration of the two beam system and the recovery of 

some dynamic properties. Thus, the release mechanism serves two functions: (i) 

measurement of static deformation forces and (ii) a release mechanism for free dynamic 

response experiments.   A prototype mechanism which measures the static tip force and 
12 permits easy release of the wire has been designed and tested by I. Romero  . 

Radial Wire Constraint 

One proposed experiment uses the wire to connect the tip of the beam to the 

shoulder hub. The wire would attach to a slip collar around the shoulder hub and only the 

magnitude of the force would be measured. A series of experiments with different wire 

lengths and corresponding required forces would be used to recover the parameters. For 

this static experiment, the two beam system must satisfy the geometric constraint due to the 

fixed length of the wire. This fixed wire length has an associated radial constraint force 

(wire tension) required for the beam deformation. Figure 8 illustrates the geometry of the 

wire length constraint for the special case that the opposite end of the wire with the 

measurement load cell is attached to the shoulder joint. This "bow" setup is but one of an 

infinite number of choices. 
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xt 

Figure 8. Radial wire constraint 

The following equations define the geometric constraint 

r2,v2_r   2=0 (22a) 

where 

and 

xt = xn + xt2 cosC^i {Lx)) - yt2 sinC^i (Z-i)) 

yt = ttl + xt2 sin(^!(Ii)) + yt2 cos^Zi)) 

(22b) 

(22c) 

The radial wire provides the final two boundary conditions; the geometric constraint 

Eq. (22a) - Eq. (22c) must be satisfied and the bending moment at the tip of the second 

beam must be zero. 
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generated by simply deforming the beam with different wire tensions. Applying a directed 

force would be more difficult to implement experimentally since the shoulder hub must be 

constrained and the alignment of the force would have to be done carefully. For this 

experiment, the final two boundary conditions would require the shear force in the wire to 

match the shear force in the beam 

Fsh = FwsmC¥2(L2) + ^l(Ll)) = EI2     ^2     +3C2 

d2V2(L2)    ^(W2(L2))
2 d2V2(L2) 

ds*) dS' 2 (27) 

and the bending moment at the tip is zero, Eq. (23). 

3.1.4 Boundary Value Problem 

Satisfying the set of equilibrium equations Eq. (18a) - Eq. (19c) is a nonlinear two- 

point boundary value problem where some initial conditions are unknown. An algorithm 

for the solution of this boundary value problem is established as follows. The first beam 

differential equations Eq. (18a) - Eq. (18c) are integrated using the Runge Kutta technique 

along the length of the beam, then the second beam equations Eq. (19a) - Eq. (19c) are 

integrated. A second order Newton's method is used to iteratively adjust approximate 

initial conditions to match the boundary conditions. The initial conditions are summarized 

below 

Initial Conditions - Beam 1 

T!(0) = 0 (28a) 

^l(O) 
dsi 

= unknown (28b) 
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■ unknown (28c) 
ds 2 

yi(0) = 0 (28d) 

xj(0) = 0 (28e) 

Initial Conditions - Beam 2 

¥2(0) = 0 (29a) 

^2(0) 
dso 

d¥2
2(0) 

ds2
2 

unknown (29b) 

= unknown (29c) 

v2(0) = 0 (29d) 

x2(0) = 0 (29e) 

In order to determine the unknown initial conditions (^'(O) ,vF1"(0),vF2'(0) ,VF2"(0)) using 

Newton's method, the derivatives of the boundary conditions [Eq. (20), Eq. (21), Eq (22), 

Eq. (23)] with respect to these parameters are taken. The four boundary equations are 

rewritten so that all the terms are collected on one side and then the equations are 

represented by the variables Tu T2, T3, T4. The derivatives of these boundary conditions 

are taken with respect to the initial conditions and the results are rearranged and written in 

matrix form to solve for approximate initial boundary condition corrections as 
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ATfCO) 

AYflO) 

ATf(O) 

^1 

<?r2 

^¥{(0) 

^Yf(O) 
<?r4 

^1 
^"(0) 

^¥{'(0) 
^r3 

^{'(O) 
<?r4 

^1 
^i(O) 

^r2 

^i(O) 
^r3 

<?r4 

^¥f(0)    ^¥{'(0)    ^(0) 

^   1 -i 

^i'(O) 
<?r2 ro-rn 

^Pi'(O) o-r2 
>?r3 o-r3 

^i'(O) 
<?r4 

o-r4 

^Pf(O). « 

(30) 

The new values of the initial conditions are determined and the numerical solution of the 

equilibrium equations is repeated until the unknown initial conditions have converged. In 

the derivatives of these boundary conditions, the sensitivity of the solution variables, Q¥^ 

yP2) with respect to the unknown initial conditions are contained. For example, one of the 

terms needed in Eq (30) is 

<?TA 

^2(0) 
= EI2 ~ZJ~~Z7 + 3C2^ 2 (^2) 

^^2(0) ^2(0) 
(31) 

The sensitivities of the solution variables with respect to the initial conditions (like 

<7Y\{L{)I ^2(0)) must be numerically integrated. This is done using a state 

transition matrix approach. One can write Eq. (18a) - Eq. (18c) in first order form using 

the vector z(s) [where z(s)T ={^1(5), ¥{(?), ^{'(s), yi(s), Xl(s)}] and by defining the 

derivative equations as the vectorf{z(s)) so that 

dz(s) 

ds 
= f(<s)) (32) 
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By manipulating this equation, the following differential equation is developed which 

governs the spatial evolution of the "transition matrix" (partial derivatives of z(s) with 

respect to z(0)): 

d_ 
ds 

'dz{s)~ 

<?z(0) 
= 

<9z(s) 

<%(s) 
(33) 

The initial (s=0) condition for this matrix of equations is the identity matrix and these 

equations can be numerically integrated simultaneous with Eq. (18a) - Eq. (18c) over the 

arc length to yield the sensitivities to ^'(O) and ^"(O). The same approach can be taken 

for the second beam equations [Eq. (19a) - Eq. (19c)] using the analogous state vector w(s) 

and defining the derivative equations as the vector g(w(s)) 

dw(s) 
ds = girtß)) (34) 

Manipulation of this equation yields 

d 
ds 

{9w(s) 

_^w(0)_ 
= 

fgirts)) 
dw(s) 

dw(s) 
_^v(0)_ 

(35) 

The initial condition of this set of equations is the identity matrix and the equations are 

numerically integrated along the beam length. Values for the terms #z(Li)/#z(0) and 

dw{L2)l ^TW(O) are used in the derivatives of the boundary equations (in terms like 

Eq. (31)), and the changes to the unknown initial conditions are calculated. 
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3.1.5 Simulations 

Radial Wire Constraint 

The deformation of the two beam system with beam properties from the PACE 

model is studied for various lengths of the wire constraint and values of the nonlinear 

coefficients C\ and C2. The iterative solution process outlined in the previous section 

converges very rapidly and without any numerical singularities for wire lengths ranging 

from 98% to 42% of the total beams length. Obviously the traditional Euler Bernoulli 

beam theory would not apply to some of these large deformations but it does show the 

robustness of the solution technique. Figure 9 shows the deformation of four cases with 

different wire constraints. 

1.20 — LW=1.3 
rw=-66.0 

c 
E 
Ü 

a 
W 

0.80 

0.40 

0.00 

0.40 0.80 
X distance (m) 

,w=1.4 
Fw=-46.5 

Figure 9. Effect of wire constraint length 
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The force in the wire increases dramatically with successively smaller wire lengths. Figure 

10 shows the change in deformation shape for a given length of wire with increases in the 

nonlinear coefficients. These results are for positive C's which correspond to beam 

stiffening. 

c 
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0 o 

J2 
Q. 
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> 

1.20 

0.80 

0.40 
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1.20 

Figure 10. Effect of material nonlinearity 

The first increase in the coefficients of the nonlinear terms results in the largest change in 

the deformation shape of the system. Larger increases in the coefficients slightly change 

the deformation shape but the effects of the increases are mainly felt in the wire force 
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calculations which involves higher derivatives of the angle x¥2(s). Table 2 shows the trend 

of larger increases in the wire force and smaller effects on the systems tip location. 

Table 2. Material nonlinearity results 
Coefficient C\, C2 Force in wire Tip x location Tip y location 

0 (No nonlinearity) 33.3 .506 1.197 

1,1 37.6 .573 1.167 

5,5 53.3 .643 1.130 

10,10 72.1 .668 1.115 

20,20 109.3 .686 1.104 

30,30 145.3 .693 1.100 

Directed Force 

In this experiment, the force on the tip of the system is directed perpendicular to the 

undeformed axis (the y direction shown in Figure 8). This force will be referred to as a 

transverse force. The deformation of the two beam system with beam properties from the 

PACE model is studied for different values of wire forces. To be consistent with the initial 

deformation shape used in the dynamic analysis, the nonlinear coefficients are set to zero. 

This removes the constitutive nonlinearity from the model but leaves the geometric 

nonlinearity due to the trigonometric functions involved in the solution. The deformation 

shapes for four wire tensions are shown in Figure 11. 
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Figure 11. Deformation shapes for series of transverse forces 

The solution of the boundary value problem quickly recovers the unknown initial 

conditions and the deformation shapes for the different force boundary conditions. 

3.2 Static Parameter Estimation 

If the beam properties are uncertain, the parameters affecting the static deformation 

shape can be recovered using measurements from two or more experiments. The effective 

stiffness and nonlinear coefficients for each beam are some of the parameters that may not 

be well known. 
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3.2.1 Least Squares Estimation 

A least squares analysis is used to recover the best fit parameters for the arc length 

models represented by Eqs. (18a) - (18c) and Eqs. (19a) - (19c). This is a nonlinear 
1 -2 

estimation problem and the least square differential correction technique is used to 

successively approximate the parameters. The error between the measured values and 

those predicted by the model using the updated parameters are minimized 

* = Ymeas ~ ^model (Pn +1) (36) 

The parameter vector;? represents the variables to be recovered. Measurements at different 

time intervals are represented by the vector Ymeas. The model values cannot be written as 

explicit functions of the parameters since determining the model values involves the 

numerical solution of the differential arc length equations. The values from the nonlinear 

model for a given set of parameters can be calculated and a new set of parameters can be 

approximated using a first order Taylor series expansion 

Ymodei(pn+i) = Ymodel(pn) + n(pn+i-Pn)   ,   where   Q 
<?{ 

<?P 
(37) 

This is substituted into the error expression giving 

e = Ymeas-Ymodel(Pn)-n(pn+1-pn) (38) 

The sum square of the error is minimized and the new approximation for the parameter/? is 

solved 

Pn+\=Pn +(nT0)~lnTCfmeas-¥model(Pn)) (39) 
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Each column of the sensitivity matrix Q. represents the derivative of the corresponding 

measurements with respect to one parameter. The rows of the matrix represent the values 

of the gradients at each measurement time. 

This estimation procedure is complicated by the fact that the governing equations 

are nonlinear differential equations and further complicated by the fact any trial solution 

requires solution of a two point boundary value problem. In order to establish the needed 

sensitivities, we introduce a novel method for differentiating an implicit function . 

Implicit Function Theorem 

. The differential equations must first be solved for the initial values of ¥ for a given 

set of parameters/» and then repeated for updated values of the parameters until the method 

converges. A more subtle question arises, what is the sensitivity of the solution (^'(O), 

¥l"(0), ^'(O), ^2"(°) ) of tne boundary value problem with respect to a parameter pi 

Therefore the boundary value problem must be solved for each iteration of the parameters. 

In order to calculate the changes in the parameters using the least squares method, the 

derivatives of the measurements (such as xt) with respect to the parameters must be 

calculated. To fill this derivative matrix, the equations defining the measurements 

(Eq. (22b) for xt) must be differentiated with respect to the parameters p. These derivative 

equations contain terms such as dx^Li)/ dp, S^^Zj)/ dp which must be determined and 

integrated along the arc length. Again a state transition approach is taken but in this case 

we are concerned with the model parameters p instead of the initial conditions z(0). The 

governing differential equations for the first beam Eq. (18a) - Eq. (18c) can be written 

j-(z(s))= f(z,p) (40) 

and by manipulation, we can derive a differential equation for the needed partial 

derivatives: 
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d_ 

ds 

' dz{s) 
= 

~ 0Z + (41) 

Similarly the governing equations for the second beam Eq. (19a) - Eq. (19c) can be written 

and 

ds 

d_ 

ds 

(w(s))=g(w,p) (42) 

#w(s) 

<?p \ 
= 

£g_ 
dp 

(43) 

# 

To integrate these matrix differential equations to compute the derivatives (dx\(L\)ldp, 

d^imydp , etc), the initial conditions dz(0)/dp and dw(0)/8p must first be determined. 

The main difficulty lies in determining d^^Oydp, ö^i"(0)% d^(G)ldp and d^\0)ldp 

which are the initial conditions of these sensitivity matrices in Eq. (41) (dz(0)/dp) and Eq. 

(43) (dw(0)/dp). The initial values ^i'(O), ^"(O), T2'(0) and ¥2"(0) must first be 

determined to match the boundary conditions as specified in section 3.1.4 (using the 

differential equations Eq. (18a) - Eq(19c)). Then the initial conditions for the state 

transition matrices Eq. (41) and Eq.(43) can be determined. To find the initial conditions 

for d¥i(0)/dp, d^iXOydp, dy¥2'(0)/dp and dY2"(0)/dp we will apply the implicit function 

theorem to the boundary condition equations. The boundary condition equations [Eq. (20), 

Eq. (21), Eq. (22) and Eq. (23)] can be written as functions of the initial conditions and the 

parameters p 

TlC¥l\0),'¥l"(0),^2'^)^2"(0),EIl,Kl,El2,K2) = 0 (44) 

T2C¥l'(0),Wl"(0),^2'(0),xi'2,,(0),EIl,Kl,El2,K2) = 0 (45) 

r3(yl\0),V1''(0),¥2'(0),y2''(0),EI1,KhEI2,K2) = 0 (46) 
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r4(y1\0),yl"(0),y2'(0),y2''(0),EIl,Kl,EI2,K2) = 0 (47) 

We can treat the initial conditions ^'(O), ^"(O), Y2'(0), ¥2"(0) as the dependent 

variables and the parameters p as the independent variables. The implicit function theorem 

is used to determine derivatives of these functions. This is an unusual application of the 

theorem since the variables in the boundary condition equations are obtained from a 

solution of a two point boundary value differential equation. Using the derivative of an 

implicit function7, the partial derivatives of the functions with respect to each parameters- 

is 

*r\     <r,   ^V(Q)     ^    ^"(Q)     ^   ^2'(Q)     <r,    ^2"(Q)_Q 

4?, +^'(0)     fat    
+^F1"(0)     4>,     +^F2'(0)     ^     +^F2"(0)     4>,- 

(48) 

^r2     <?r2   ^F,'(Q)     ^r2    ^"(Q)     ^r2   ^F2'(Q)     ^r2    ^2"(Q)_0 

47,. + ^'(0)     fa    + ^F,"(0)     4?,-     + ^P2'(0)     4>,- ^2"(0)     ^, 

(49) 

£H ^3        ^l'(O) ^3 ^l"(0) ^3        ^2'(0) ^3 ^2"(Q)_0 

4,,. + ^F,'(0)   4),   + ^,"(0)    fa   + ^V(O)   fa   + ^2H(0)    ^- 

(50) 

J£r1     ^r4   ^'(Q)     ^r4   ^"(Q)     ^r4   ^2'(Q)     ^   ^"(Q) _0 

47,. + ^-(0)   4>,   + ^"(0)   4>,   + ^'(0)   4>,      ^2"(0)    4>,- 

(51) 
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The implicit and explicit derivatives are computed and inserted into this set of equations 

which are used to solve for <?¥{(0) I fa, JVftQ) I fa , 0*i (0) / fa, ^'(0) / fa . 

These are needed along with other initial conditions to integrate the sensitivity matrices 

Eq. (41) and Eq. (43) over the arc lengths s. After this integration, the recovered 

derivatives such as dxi(L{)/dEIi are used in computing the measurement equation 

derivatives. 

The computation of the derivatives in the sensitivity matrix can now be carried out 

knowing the partials of the first and second beam variables from the process outlined 

above. With this derivative matrix we can compute the needed corrections to the 

parameters p using Eq. (39). This whole process must be repeated until the parameters p 

are recovered which yield the measurement values for each test. As will be evident in the 

numerical studies, the domain of practical convergence is usually large, tolerating up to 

40% errors in the starting estimates. 

Radial Wire Constraint 

The radial wire experiment permits us to estimate the effective stiffness and 

nonlinear coefficients (p = EIh Ch EI2, C2) using as few as two experiments with different 

wire lengths. There are two independent measurements taken during each test. In this 

development, the force in the constraining wire and the global x location of the tip of the 

second beam are assumed to be measured. Any x or y measurement would also work, but 

xt is chosen for experimental simplicity. For this determined system, the sensitivity matrix 

for the two experiment case is 
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Q = 
&t b 

&, w 

ML 

ckt 

&t 
a 

cEI2 

ckf 

&, w cF, w 

3C\ tEh 

ek> a 

cC\ 0EI2 <&2 

cF, a 
w 

äct 

mx     sc\     oEh    ^2 
& w 

<£ 2   . 

(52) 

( where: superscripta denotes data from the 1st test, and b denotes data from the 2nd test) 

The derivatives of the equations for*, [Eq. (22b)] and theFw [Eq.(26)] equations are taken 

with respect to the parameters. The partials of the first and second beam variables 

contained in those equations are determined from the process outlined in the previous 

section. These derivatives are used to populate the sensitivity matrix and the changes to the 

beam parameters/? are determined using the least squares method. 

Measurement Errors 

Often the measurements in Ymeas are made with unequal precision and 

approximate weighting should be included in the parameter updating. The reciprocal of the 

error variance is the conventional "optimal" choice for the weight and is qualitatively 

correct since a measurement with a small error would have a large weight and one with a 

large error would have a very small weight. The error variance, c? is approximated in 

practice as the square of the standard deviation, representing the theoretical squared sums 

of the differences between a large number of measurements and the mean value. The least 

squares function of the residual error including a positive definite weight matrix W 

becomes 

J = 2 \*meas ~ ^model (Pn +1)]   Wpmeas ~ ^model (Pn +1)J (53) 
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where W = 

1 

0 

0 

1 

0       0 

0 

0 

i 
4 meas. 

Substituting in for Ymode! (pn +1) and minimizing the function J, the parameter update 

becomes 

Jmr^-lnT pn+\ =pn +(^1wnyin1w(Ymeas-Ymodei(Pn)) (54) 

The measurement errors are mapped through the estimation algorithm into 

associated errors in the estimated parameters. This relationship is developed in reference 

13. The covariance matrix of the parameters is related to the variance matrix of the 

measurements by the following 

ES=(Q.TWQ)   = fiX ap2 °pl 

T\2 °pl °p2     ' 

°^2 

• % °pl °p# 

• T2# ap2 °p# 

%\ °p# °pl ^2 °p# °p2     ■ <%# 

(55) 

The diagonal elements of the error covariance matrix gives an indication of how accurately 

the parameters are estimated. Each of the 'true' parameters should be typically contained 

within three times the standard deviation aB of the recovered parameter.   The  r. 's are 

measures of correlation of the estimation errors. 
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Directed Force 

The directed force experiment recovers the effective stiffness coefficients 

(p = EIh EI2) using a number of measurements. In this development, the global y location 

of the tip of the second beam is assumed to be measured. The y measurement is chosen 

since the stiffness coefficients clearly have a large affect on this variable. A number of 

measurements are used to over determine the parameters. The sensitivity matrix for this 

problem becomes 

Q = 

dEIx 

*yt 
2 

JEIY 

*yt 
3 

<?EIX 

4tN 

<?yt 
l 

<?EI2 

0yt 
2 

<?EI2 

*yt 
3 

<?EI2 

<?y\N 

(56) 

<?EIX        dEIx 

(where the superscript number refers to the measurement number from 1 to N) 

The derivatives of the equation for y, [Eq. (22c)] are taken with respect to both stiffness 

parameters. The partials of the first and second beam variables contained in those equations 

are determined from the implicit differentiation process outlined previously. These 

derivatives are used in the sensitivity matrix and changes to the beam parameters p are 

determined using the least squares method. 

The parameter estimation method for the directed force experiment is enhanced to 

include measurement errors and their associated variance in the least squares determination 

of the parameters. A weight matrix is included in the parameter updating and reflects the 

uncertainties in the measurements. The parameters recovered have associated error 

variances which indicates how well the experiment determines the parameters. 
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3.2.2 Results - Static Deformation Parameters 

The approach for estimation of parameters affecting the static deformation of the 

beam system is tested using a computer simulation of measured data for two types of 

experiments. 

Radial Wire Constraint 

We first consider the determined case, a radial wire experiment to determine the 

static potential energy parameters, assuming the system measurements are accurate. This 

proposed experiment uses a wire to connect the tip of the beam to the shoulder hub which 

provides a geometric constraint on the solution. To generate simulated measurements, the 

two beam forward solution using the arc length approach is computed for two different 

wire lengths and a given set of 'true' parameters. The deformation shapes of the two wire 

lengths, Lw=1.4 and Lw=1.3, are shown in Figure 9. The resulting values of xt and Fw are 

used as measurements in the inverse solution to see if the program can recover the 'true' 

values given poor starting estimates. An approximation of the true model is constructed by 

increasing the parameter errors from 8% to 11% and is used to start the parameter 

estimation process. Table 3 summarizes the input and recovered values of the parameters. 

The program converges rapidly to the values in the last column which are virtually 

identical to the 'true' values. The calculated values of xt and Fw are matched exactly with 

the input measured values. 

Table 3. Parameter recovery for wire constraint 
Parameters True Values Input Values Converged Values 

Eh 11.413 10.400 11.415 

C\ 5.000 4.550 5.000 

EI2 
11.275 10.175 11.276 

c2 
20.000 17.800 19.991 
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The parameter recovery method based on this series of static measurements converges 

rapidly to the known set of parameter values. The parameter C2 is less well observable, 

however, and the true measurement case suggest larger deformations and redundant 

measurements will be needed to accurately estimate C2. 

Directed Force 

This experiment recovers the effective stiffness coefficients for each beam when the 

system is subjected to a transverse force boundary condition. Here we ignore the terms 

containing Ci, C2 and estimate only Eli, EI2. The static parameters are recovered when the 

system is statically deformed in a manner consistent with the initial conditions usedin the 

dynamic analysis. The measurements of yt are simulated by computing the forward 

solution using the arc length approach for four values of the transverse force F and a given 

set of 'true' parameters. This family of static deformation shapes is shown in Figure 11. 

Redundant measurements were used to allow the overdetermination of the parameters. 

Estimates of the stiffness coefficients are used to start the parameter recovery program and 

the results are shown in Table 4. 

Ta ble 4. Parameter recovery for directed force 
Parameters True Values Input Values Converged Values 

Eli 11.413 10.750 11.413 

EI2 
11.275 10.500 11.275 

The values of the parameters are converged after five iterations and are identical to the 

'true' values. 

Physical measurements of  yt will have some uncertainties associated with the 

values and this can be reflected in the error variance of the measurements. To reflect this 
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in the simulated measurements, errors are introduced using a Gaussian random number 

generator and an associated standard deviation a. For each measurement, an error is 

created from a random number belonging to a distribution having zero mean and the 

specified standard deviation a. These simulated measurement errors are added to the 

'true' values of the measurable quantities which are then used in the parameter recovery 

program. The weighted least squares function is used to minimize the errors and the 

parameters are determined using Eq. (54). The 'true' measurements of y, have values 

ranging from 0.276332 to 0.597325. The standard deviations for the errors in these 

simulated measurements are input to the program and range from .0008 to .0011. The 

parameter recovery program is started with initial estimates of the stiffness coefficients and 

Table 5 shows the recovered parameters when measurement uncertainties are included. 

Table 5. Parameter recovery for directed force 
with measurement errors 

Eli EI2 

True values 11.413 11.275 

Initial estimate 10.750 10.500 

Recovered values 11.410 10.987 

The stiffness coefficient recovered for the first beam is virtually identical to the 

uncorrupted 'true' value and has a small variance. However, the stiffness coefficient 

recovered for the second beam is not as well determined in the presence of measurement 

errors and differs by 3% to the 'true' value. The recovered parameters have associated 

error covariances as defined by Eq. (55). Small values indicate the parameters are well 

determined. The covariance matrix for these parameters are 

.004497    -.047864" 
Es = -.047864    .549850 
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As expected, the stiffness coefficient for the second beam has a large standard deviation 

( a = V35 = .7) which indicates it is not as well determined as the first beams value. We 

note the converged estimate differs from the true value of EI2 by = 0.28 which is well 

within one sigma, so there is good consistency between the actual estimation error and the 

uncertainty estimate. The difference in the ability to estimate the first beam's stiffness 

coefficient better than the second beam's stiffness coefficient is due to the storage of 

potential energy in a cantilever beam system. When the system is subjected to a tip force, 

the portion of the system closest to the clamped boundary condition deforms the most (has 

the largest curvature and bending moment) and the parameters most affecting that response 

will most easily be recovered. The information on the estimated parameters and their 

associated covariance matrix can be "carried forward" and used in the recovery of 

parameters affecting the dynamic motion. 
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CHAPTER IV 

NONLINEAR FREE VIBRATION ANALYSIS 

4.1 Model Development 

A mathematical model for predicting the dynamic motion of the two beam system is 

developed for use in estimating the parameters affecting the free vibration response of the 

system. A nonlinear finite element model is developed due to difficulties encountered in 

the arc length approach. 

4.1.1 Arc Length Approach 

The arc length approach can not be easily extended to the dynamic analysis due to 

the fact that certain integrals arise which complicate the structure of the kinetic energy and 

the equations which result. This can be seen by looking at the dynamic equation of motion 

m{s)ds—-r-en +EI     ^     = 0 (57) 

where the global acceleration is 

£(s,t) = x(s,t)i_+y(s,t)l (58) 

and the unit normal is 

en = -sin¥(s,0L + cosTfoOJ (59) 

The global x(s,t) mdy(s,t) are related to the slope angle T(s,t) by 
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5 

**^ =cosx¥(s,t) x(s,t) = x(0,t) + ]cosV(o;t)d<T (60) 
& 0 

5 

^lJ,f)=siny(j,0 X*»0 = J'(0,0 + Jsin,P(o;0</o- (61) 

If the second time derivatives of jcfr# and >>&# in Eqs. (60) and (61) are taken, we see the 

transcendental integration of the unknown angle Y(s,t) over space will include terms with 

the first two time derivatives of Yfot). This unknown angle T(s,t) is also contained within 

trigonometric functions. The resulting x andy accelerations are dotted with the unit normal 

and then integrated over space s again to form the kinetic energy. This leads to a very 

complicated and non-standard integro-differential equation form for the equation of 

motion. The double spatial integrals and trigonometric functions in the kinetic energy 

greatly complicates any approximation of Y(s,t) and the resulting solution process. 

4.1.2 Finite Element Approach 

Principle of Virtual Work 

A method due to Epstein Murray9 is paraphrased in this section. They developed a 

novel nonlinear formulation which is applied to problems involving large deformations of 

elastic beams. Their formulation is developed using the principle of virtual work and 

implemented using a finite element discretization of the beam displacements. The 

deformation of a beam is defined using two variables, axial displacement u, and transverse 

displacement w. Normal sections of the beam are assumed to remain plane undistorted and 

normal to the beam axis after deformation. In the equations that follow the symbol 

()'denotes an s derivative. The position vector to a point on the axis of the beam is 

illustrated in Figure 12. 
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Figure 12. Finite element variables 

The position vector to a point on the axis of the beam after deformation is given by 

r = (s + u)i +wj (62) 

where s is the position to the point before deformation (arclength measured along the 

undeformed beam). In Cartesian coordinates the position of the deformed point is, 

x = (s+u), and y = w. The position of a general point not originally on the beam axis after 

deformation is given by 

R = r+ ae_n 
(63) 
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The two dimensional Green's strain tensor is defined using derivatives of the position 

vector R. The only nonzero component of the strain tensor is derived in terms of the axial 

strain e and curvature K and the distance off the neutral axis a 

s= (1 - red)2 

I     V   2 

It is assumed that normal sections remain plane and undistorted after the deformation of the 

beam. The internal virtual work (TVW) is defined by the following volume integral 

WW = \\aSedAdl '(65) 
I A 

where s is the 2-D Green Strain measure, a is stress associated with s and / is the length 

of the beam axis after deformation. The variation of the strain component s is taken and 

substituted into the above equation. The integral over the deformed length is converted to 

the integral over the original length using the definition of axial strain. After further 

algebraic manipulations, the terms are grouped into stress resultants and the following 

constitutive equations are used 

Modified internal force = EAe (66) 

Internal moment = EIcz (67) 

The final result is 

WW = ] (EAe Se + EIC x&z)fl (68) 
0 

The Green Strain measure of the axis is given by 
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e = \(eret-i-i) (69) 

where et is the tangent vector along the beam axis after deformation and i is the base 

vector along the undeformed beam axis. The tangent vector equals the derivative of the 

position vector given in Eq. (62). This derivative is taken and the axial strain e is written 

in terms of the displacements 

e = u'+^(u'2+w'2) ^(70) 

The Green Strain measure is also used to develop the relationship between the deformed 

length and the undeformed length 

dl=s/2e + lds (71) 

The modified curvature % is developed using the derivative of the normal vector en and 

can be written in terms of the displacements u, w and their derivatives 

X= w"(l +u')-w'u" (72) 

It is assumed that either end of the beam can be subjected to an external force T and S and 

a moment M. The external virtual work (EVW) expression for these boundary conditions 

would be 

EVWends ={TSu + SS«+ MMff^ (73) 
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where the angle Y = tan"1 -^— and its variation is  ^F = -[(l + u')ä»'~ w' <5u'\ 

This is the same angle as the slope angle *F discussed in the static analysis.  For small 

strains the denominator (2e+l) is taken equal to 1. 

Finite Element Discretization 

A set of algebraic equations for Eq. (68) and Eq. (73) is developed using the finite 

element method of dividing the beam into elements and describing the displacement 

coordinates u and w in terms of shape functions and nodal (endpoint) displacements. For 

each element the displacements are 

u(s,t) = Ydfi(s)ui(t) 
i=l 

i=7 

(74) 

(75) 

The shape functions chosen are the cubic polynomial functions. 

*-'-*$+$ 

f2=h 

f3=3 

f4=h 

V 

^ 

\nj k + 

5 

j 

ri)2-^3 

\> ij 

f r \2    f \*\ 's)     i v* 

* + 

v v \nj 

(76a) 

(76b) 

(76c) 

(76d) 
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where h is the length of the Ith element. The beam elements, nodal displacements and the 

numbering scheme for u and w are illustrated in Figure 13. 

Node Node Node Node 
0 1 2 N 

" 

element 1 element 2 
V element N 

u0 = = U! Ul = u3 u2=U5 
UN = U2N+1 

u'o=U2 u'1 = U4 u'2=U6 
UN = U2N+2 

Wo =Wi Wi =W3 w2=W5 WN = W2N+1 

w'o = =w2 w{ = = W4 w'2 = =w6 WN = W2N+2 

Figure 13. Element, node and displacement numbering 

The displacement discretizations are used in the equations for the strain measure e, Eq. (70) 

and the curvature jp, Eq. (72) and their first variations. This is substituted into the 

expressions for IVW, Eq. (68) and EVW, Eq. (73). The resulting equations are 

IVW= Hhj{Nj Äty/-1)+/ + Njk(w2(I-l)+j&v2(I-l)+k +U2(l-l)+j^2(I-l)+k)+ 
7=1 

U2(I-l)+k#W2{I-iy+j + W2(I-\)+j<5U2(I_l)+k)x{Mjk -Mkj J} 

(77) 

where 

Nj = EA \(I-l)+kFjk +2\W2(I-l)+kW2(I-l)+m+U2(I-l)+kU2(I-l)+m)Fjkm 

N*l = Eä\ U2(I-l)+mF'jkm +-f2(/-l)+#2(/-l)+« +U2(I-l)+mU2(I-l)+n)Fjknmj 

M* = El]^2{I-\)+kF"jk + ^2(I-l)+kU2(I-l)+mFjkmn -^2(I-l)+kU2(I-l)+mFjmk\ 

M*l = EI\W2(I-l)+mFjmk + W2(I-l)+mU2(I-l)+nFjmkn ~ ^2(I-l)+mU2(I-l)+nFjnmk\ 
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The upper case subscript / represents the element number. The lower case subscripts/, k, 

m, and n appearing as indices in two adjacent terms represent summations for each index 

from 1-4. For example the term ^2(/-l)+Ä(J-l)+KFjmibz represents the summation of 

16 terms with m=l,4 and n=l,4. The F terms represent integral evaluations of the shape 

functions first and second derivatives. For example 

Fjmkn = I f'jf'mfkfn^        where    ? = ^ ■ 
0 

The external virtual work expression is brought to the algebraic form 

N -,1 
EVW= ^{xIÖU1I+x+YIm1I+l+MI^ + V1I+^W11+1-W1I+1ÖU1I+1^ (78) 

7=0 

where 7/ and Xi represent the transverse force and longitudinal force respectively at node 

/, and Mi represents the moment at node /. The equilibrium equations are determined by 

assuming all but one variation of the nodal coordinates vanish. There are two contributions 

from adjacent elements for each nodal equilibrium equation. There are four coordinates at 

each node so four equations are generated at each node. The following four equations 

apply at each node 

8W2m+1: 

h m + l 
**_ ** + 

m 

Ml + N]{W2m + j + [My - Mß )U2m + j_ 

M3+NßW2(m-l) + j +{MlrMß)U2{m-\) + j. 

(79) 

= Ym 
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8W2m+2: 

Tn + 1 

"m 

*       ** **        ** 
M2 + tf/2 ^2m + 7 + [M2j ~ Mj2 )U2m + j 

K+N*-4W2(m-l) + j+{M4j-M*j4)U2(m-l) + j_ = ^m( 

(80) 
\ + U. 2m + 2, 

8U2m+l 

A W + l 

** ** ** 
* 1 + Njl U2m + j + [Mjl ~ M\j )W2m + j 

h m 
** ** **N 

Ar3+^3t/2(W-l) + y+lMy3-M37r2(m-l) + y. = z 7W 

(81) 

5U2 ,m+2 

Wl ^2 + Nj2 U2m + y + K'2 ~ M2; J^2m + j + 

m 
** **        * * 

N4 + Nj4 U2{m _l) + j+ [Mj4 - M4j )W2{m _l) + j 

(82) 

= -MmW2m + 2 

The subscript m in the above expressions represents a node number from 0 to N. The 

equations generated are nonlinear due to the multiplication of the U and W variables. 

Therefore a conventional linear stiffness matrix cannot be formed. The equations for all 

the nodes can be grouped in vector form 

{NLT(qj)={Q{qj\ 

where   qT = {WhW2,UhU2,W3,W4,U3,U4, ,W2N+hW2N+2 ,U2N+hU2N+2} 

(83) 

The virtual work done by the internal forces are nonlinear terms and are denoted simply by 

the NLT vector. The Q vector represents the nonconservative work vector. The only 

solution approach known for integrating this nonlinear system is direct numerical 

integration. We adopt a 4th order Runge Kutta integration scheme to solve for the nodal 

forces and moments given a shape q.  Since the usual problem is to find the static shape 
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given a force distribution, a Newton's method is used to solve for the roots of the set of 

nonlinear equations. 

Let   b(q) = {NLT(q)}-{Q(q)} (84) 

then a Taylor series expansion about the nth iteration qn is 

*1 (?)«+!= *!(«)« + ■ 

h(<l)n+l=b2(<l)n + 

Ob 

db2 

o\ 
( V ^2 

^4AT 
(q4Nn+i-44N„) 

hN (sOn+l = *4JV(#)H + 
^>4JV 

<%1 ^%4iV 
(«Wi-^n^ ^77  («4^+1-«4^«) (85) 

This requires first order derivatives of each nonlinear equation with respect to each variable 

in q. The derivatives of the equations with respect to these variables can be grouped to 

form the Jacobian matrix. The Jacobian matrix is straightforward to program but is a 

computationally time consuming task due to all the summations in the multiplication of the 

coordinates. 

Hamilton's Formulation 

The equations of motion are formulated using Hamilton's principle for ease of 

introducing the kinetic energy terms and allowing the conservation of energy to be verified. 

Hamilton's principle divides the energy into a potential energy V, a kinetic energy T, and a 

nonconservative work term Wnc. 

h h 
j %T-V)dt + \ <Wncdt = 0 

h h 

(86) 
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The potential energy function due to the strain energy of axial deformation and 

transverse deflection is 

V = -\{EAe2+EIc~i2ys (87) 

The variation of the potential function is consistent with the variation of internal virtual 

work developed in Eq. (77). The resulting nodal equations Eqs.(79) - (82) can be directly 

imported to this development. 

The kinetic energy expression can be derived using the position vector 

Since the components are in inertial coordinates, the velocity is simply 

^ /*. 
r = ui_ + wj 

The kinetic energy expression is 

T = j\p(ü2
+w2)is 

20 

(89) 

(90) 

where p is the mass/length of the beam. The variation of the kinetic energy is 
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8T = -lp[ü8u + wSw]ds (91) 
0 

Discretizing the variables u and w using the same finite element shape functions in Eqs. 

(76a) - (76d) yields 

N / 

ST-Ytl P 
/=1. V 

Ü2(i-i)+jFjk #/2(J-l)+)t + ^2(7-1)+; Fjk W2y-i)+k 
(92) 

Again the lower case subscripts represent summations from 1-4 so the group expressions 

for U and W represents the sum of 16 terms. The FJk term represents the integral 

evaluations of the shape functions listed in Eq. (76) 

Fjk=jfjfkd$       where   ? = (93) 

The dynamic equations of motion are devloped from the kinetic energy variations assuming 

all but one of the node variations vanish. There are four equations generated for each node 

and in each equation there is a contribution term from each element adjoining the node. 

5W2m+i :    hm+1p[w2m+jFjl] + hmp[w2(m_l)+jFj3] (94) 

5U2m+l :     hm+iP^2m+jFjl\+hmPp2(m-l)+jFj3\ (95) 

5W2m+2 :    hm+l/^W2m+jFj2\ + hmp[w2{m_l)+jFJ4] (96) 

8U2m+2 :    hm+l p\ü2m+jFj2J + hmpp2(m-l)+jFj4J (97) 
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The lower case subscript./ represents a summation index from 1-4 and m represents a node 

number from 0 to N. An element mass matrix can be constructed by writing these 

expressions in matrix form and a global mass matrix is developed by combining the 

element matrices. Any point masses can be added to the appropriate location in the mass 

matrix. Combining these results with the potential energy results, the dynamic equations of 

motion are 

[M]l + {NLT(q)}={Q(g,q)} (98) 

For this nonlinear system, the only solution approach known is some form of direct 

numerical integration. Numerical integration is most conveniently done in terms of first 

order equations, which requires Eq. (98) be rewritten in state space form. 

let v= 
1*2. 

£1 
141 

then v = 
*2 

v-2 
[M]-l{Q{q_,q)-NLT{q)) 

(99) 

A 4th order Runge Kutta integration scheme is used to solve for the shape and velocity over 

time. 

Friction Forces 

The nonconservative forces and moments are included in the generalized force 

vector Q. Only friction forces are included as non-conservative forces in this study. The 

generalized force is developed for the sliding friction between a mass at a point on the 

beam system and the supporting surface. The variation of the nonconservative work is 



56 

SWnc = Ffr ■ Sr_ (100) 

and the friction force is 

F_tr=- //Nsign (r t) where   N = mass ■ gravity (101) 

The variation and time derivative of r is taken from Eq. (89). The nonconservative work 

becomes 

SWnc = - //Nsign(upt) Supt - jiN sign(wpt J Swpt (102) 

and the coefficients of the variations are added to the generalized force vector Q at the 

appropriate locations. 

Constrained Boundary Conditions 

Constraint equations are introduced to impose boundary conditions and to allow the 

coordinates associated with a fixed support to be removed from the solution process. For a 

clamped boundary condition, the w, w' and u coordinates are constrained to be zero. The 

constraints are written in matrix form 

10   0   0   0   0       0 
0   10   0   0   0       0 
0   0   10   0   0       0 

to- 
(103) 

Let the matrix on the left hand side be represented be C. Lagrange multipliers are 

introduced and used to multiply the constraint variations. This allows the constraints to be 

included in the equations of motion as 
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[M]l + {NLT(q)}= {Q(q_,q)}+CTA (104) 

The Lagrange multipliers X are determined by differentiating the constraint equation, 

substituting in the equation of motion for q and solving for X 

JL= CM-1C\ lCM-l{NLT(q)-Q(q_,q)} (105) 

The expression for X is now substituted into Eq. (104) and the revised equations of motion 

become 

[M] q + {NLT(q)} = {Q{q_,q)}+ CT [cM~lc\X CM~l {NLT(q) - Q(q,q)}    (106) 

The state space form of this differential equation becomes 

-fe}-6) 
and 

(107) / = v = *1 

1^2. [M]- {&£,£) - NLT(q_)}\l - CT{cM-lCT)~l CM~l 

The Runge Kutta 4th order integration technique is used to solve these equations for the 

displacement shape over time. The computer code developed for the forward solution of 

the nonlinear finite element model is listed in reference 14. 

4.1.3 Model Validation 

Several methods are used to validate the nonlinear finite element model.  These include 

matching the static deformation shapes obtained from the arc length model, matching 
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results   from  classical  linear  models  with  small  deformations,   and  checking  the 

conservation of energy. 

Verification Using the Arc Length Approach 

The equilibrium shapes obtained from the finite element approach and the arc 

length approach are compared for two loading conditions. The first comparison is for the 

cantilever beam system acted on by a moment at the free end. This example was used in 

Figure 6 for comparing the arc length approach to the exact solution. Figure 14 shows the 

finite element solution using four elements and the arc length solution for various 

moments. 

8.00 

Arclength Solution 
a       Finite Element Solution 

0.00 2.00 4.00 6.00 
X distance (in) 

8.00 10.00 

Figure 14. Comparison of deflections due to tip moment 
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The finite element approach agrees well with the arc length solution for even larger 

deformations caused by a pure bending moment. For a static's problem with a pure 

bending moment, the two methods are theoretically equivalent to within the finite element 

discretization and convergence errors. If the number of elements is increased to eight, the 

finite element method results are graphically identical to the arc length results for these 

bending moments. This indicates rapid convergence of the spatial discretization 

approximation to the arc length solution of Chapter III. 

The second validation comparison makes use of the two beam PACE system with 

beam properties listed in Table 1. This system is subjected to an external force acting on 

the free end. The force has transverse and longitudinal components. The prototype 

mechanism designed by I. Romero allows the static tip force to be directed anywhere 

within the plane of the beam. The finite element approach is applied to a variety of loading 

configurations. For the loading condition above the buckling force, there are two solution 

shapes obtained from the finite element model depending on the initial conditions used to 

start the nonlinear iteration. This lack of uniqueness occurs only above the critical buckling 

load. This is demonstrated in Figure 15. The lines labeled a and b illustrate the two 

solutions obtained for the same transverse and longitudinal forces. The net force applied on 

line b is an axial compressive type force, where the net force on line a is more of a 

transverse compressive force. They are not mirror images of each other because of the 

effects of the axial versus transverse loading. The lines a and a' do represent mirror 

images where the longitudinal force is the same and the transverse forces are of opposite 

sign. Line b' is the other nonlinear solution corresponding to the same loading as line a'. 

It is a mirror image of line b. The critical buckling load is calculated to be 12.7 N. and the 

loads represented in Figure 15 have a longitudinal force of-15 N and a transverse force of 

+.9 N or -.9 N. 
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o.oo 0.40 0.80 
X distance (m) 

1.20 

Figure 15. Finite element solutions for tip force 

It is difficult to compare the shapes obtained from a force boundary condition on the finite 

element model to the arc length results since the arc length modeling approach of 

Chapter III does not include the effects of axial deformation. Therefore the models are 

compared in Figure 16 for small transverse loading configurations. It is expected that the 

two nonlinear solutions will converge toward each other and the classical Euler Bernoulli 

analytical solution for small deformations. 
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Figure 16. Comparison of methods for tip loading 

The three methods agree well for small transverse loading but as expected, the axial effects 

become increasingly significant for larger deformations and the methods start to diverge. 

Static Verification for Linear Systems 

The nonlinear finite element model is checked to make sure it recovers the classical 

results of a beam undergoing axial deformation.  The equilibrium equation for a linearly 

elastic bar is 

du MAE 
dx\      dx 

(108) 

If the bar is cantilevered on one end and subjected to an axial load p on the other, the 

analytical solution is 
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u(x) = 
AE 

(109) 

The axial strain du/dx is determined and compared to the results of the finite element 

solution for various forces. The results are listed in Table 6. 

Table 6. Axial strain comparison 
Axial Force Strain - Finite El Strain - Analytic 

-5 -.364500e-06 -.364500e-06 

-12 -.874800e-06 -.874799e-06 

-15 -1.093501e-06 -1.093499e-06 

-20 -1.458002e-06 -1.457999e-06 

The axial strain produced from the nonlinear finite element model matches the analytical 

solution for various compressive loads. 

The nonlinear finite element model is also checked against the analytical solution 

for a beam with a transverse load. The equilibrium equation for the transverse deflection 

of an Euler Bernoulli beam is 

2 (       *2\ 

dxA 
El 

dx: 
= 0 (110) 

The analytical solution for a cantilever beam of length L subjected to a tip force F is 
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y(x) = ^(3L-x) (HD 

The two beam PACE system is subjected to various tip forces and the tip deflections are 

shown in Figure 16. Both the finite element and arc length methods agree with the 

analytical solution for small loads but as expected do not agree with it for larger 

deformations since the Euler Bernoulli beam does not include foreshortening effects. 

Linear Finite Element Dynamic Solution 

A linear finite element model is constructed for the PACE two beam system. The 

mathematical model is developed using the strain energy and kinetic energy of a>eam 

undergoing axial and transverse vibration15. The potential energy function includes terms 

for the strain energy due to axial motion w and the bending energy due to a transverse 

deflection u of an Euler Bernoulli beam 

V = ^\(EA(uf+El(w")2)ds (112) 
0 

The kinetic energy due to axial and transverse displacements is 

T = -\pA{ü2
+w2)dS (113) 

0 

The beam is divided into elements and the displacement coordinates u and w are 

approximated using the element end displacements and shape functions. The cubic 

polynomial shape functions listed in Eqs. (76a) - (76d) and the four endpoint coordinates in 

Eq. (74) are used for the transverse displacement w. The following coordinate 

approximation and two linear shape functions are used for the axial displacement u 
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i=l 

(114) 

f2(s) = h 

The element mass and stiffness matrices are constructed using the element approximations 

in the potential and kinetic energy expressions and evaluating the integrals of the shape 

functions. The element matrices are combined to give the global mass and stiffness 

matrices and Lagrange's equations are used to derive the following equation of motion 

Mq + Kq = Q(q,q) (115) 

The analysis of this linear model is used to help verify the nonlinear model and used to 

give several insights to the expected behavior. The natural frequencies and mode shapes 

are determined for this system assuming a free vibration response. For the PACE two 

beam system with eight elements, there are 24 natural frequencies. Table 7 lists some of 

the natural frequencies of interest. 

Tab! e 7. Linear model natural frequencies 
Transverse 2.4288 rad/s Axial 16251.27 rad/s 

frequencies 11.0030 rad/s frequencies 27798.63 rad/s 

102.7105 rad/s 40387.25 rad/s 

... .... 

7011.423 rad/s 95707.21 rad/s 
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The lower frequencies correspond to transverse vibration and the first three have periods of 

2.6 seconds, 0.57 seconds and 0.061 seconds. The higher frequencies correspond to axial 

vibrations and the periods range from 3.87e-04 seconds to 0.657e-04 seconds. The mode 

shapes <D=[<|>i, <k... <M and frequencies co, are used to transform the coordinates q to modal 

coordinates y\ and uncouple the linear model equations. 

Let      q(t) = <D tfa) (116) 

then the analytical solution becomes 

q(t) = ®q(0)cos(&t) (117) 

The equations are solved analytically for a free vibration problem starting from an initial 

deformation shape and the results are compared to the nonlinear finite element solution. A 

numerical solution of Eq. (115) is also determined and used to check the Runge Kutta 

integration algorithm. The shape used for the initial deformation corresponds to the static 

transverse load of F=8 shown in Figure 16 for the nonlinear finite element solution is. 

This shape is used instead of the static solution to Eq. (115) since the same starting shape is 

needed to compare the free vibration response. Table 8 compares the tip transverse 

deflections over the time period 2.6 seconds for the three methods. 

r rable 8. Transverse tip deflections at given time intervals 
Time Analytical-Linear FE Integration-Linear FE Nonlinear FE 

.1 sec .6037445 m .6037453 m .6046646 m 

.2 sec .5405400 m .5405403 m .5424933 m 

1.0 sec -.4671448 m -.4671460 m -.4792404 m 

2.0 sec .0799039 m .0799040 m .0957824 m 

2.6 sec .6083068 m .6083096 m .6071464 m 
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The numerical solution compares closely with the analytical solution. The nonlinear finite 

element solution agrees with both linear solutions to within small errors in the third digit. 

This comparison is shown graphically in Figure 17. 
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Figure 17. Free vibration comparison of methods 

The nonlinear finite element method closely matches the transverse deflections of the 

linear finite element model. This graph does not reflect the axial displacements of the tip 

which the nonlinear model accounts for. The linear finite element model does not have the 

coupling between the transverse and axial motions. It is of significance, however, to note 
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that accurate numerical solutions require Runge Kutta time steps which are a fraction of the 

shortest period participating in the response. 

Conservation of Energy 

A check of the conservation of energy for the system is another way to verify that 

the results of the dynamic model are logical. The sum of the potential and kinetic energy 

over time should be constant in the absence of nonconservative forces. If there are 

nonconservative forces, the change in the energy over time should equal the work done by 

these forces16. The potential energy expression for the nonlinear model is listed in Eq. 

(87), and the expressions for axial strain and curvature are listed in Eq. (70) and Eq. (72). 

The finite element discretizations are introduced at this level and the potential energy is 

written as 

U2(I -l)+j U2(I -1)+k F'jk + 

-^F'jkmn(U2(I-l)+jU2(I-l)+kU2(I-l)+mU2(I-l)+n 

+ 2f/2(/-l)+;f/2(/-l)+A:^2(/-l)+m^2(/-l)+n 

+ ^(/-l)+y^2(/-l)+A:^2(/-l)+/«^2(/-l)+«) 

+ U2(I-l)+jF'jkm (U2(I-l)+kU2(I-l)+m +W2(I-l)+kW2(I-l)+m) 

'W2(I-i)+jW2(I-i)+kF"jk+W2(I-l)+jW2(I-l)+kU2(I-l)+mF"jkm 

+ W2(I-l)+jW2(I-l)+kU2(I-l)+mU2(I-l)+n(F"jkmn+F"mnjk ) 

-2(^2(7-1)+jU2(I-l)+kW2(I-l)+mF"kmj 

+ W2^-\)+jU2^-\)+kW2{I-\)+mU2{I-\)+nF"kmjn ) 

1   N 

z 7=1 

EA 

+ EI 

(118) 

where the expressions for Ffj^ are combinations of shape function derivatives evaluated 

over the integral 0 to 1, and the lower case indices represent summations from 1 to 4. The 

determination of the kinetic energy is simpler since the mass matrix is already determined. 
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T = ^iTMq (119) 

The dissipative work done by nonconservative forces is 

Wnc=\l_-idt (120) 
0 

and taking the time derivative, the power (work rate) equation becomes 

Wnc=F-r (121) 

This equation can be numerically integrated over time along with the displacement 

variables. Friction forces are included in the finite element model and that force is 

described in Eq. (101). The derivative of the nonconservative work for a friction force at 

location pt is 

Wnc = - //N\uptsign(üpt) + Wptsign(wpt)) (122) 

During the dynamic motion, the numerical value of this work should equal the change in 

the total energy of the system. This work integral computed energy change is used to 

check the instantaneous energy in all of the simulation results. 

4.1.4 Model Refinement 

Time Step Analysis 

The integration time step chosen for the Runge Kutta numerical solution is based 

on an analysis of a similar linear problem.   The linear problem is derived by taking the 
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dynamic nonlinear model in Eq. (98), separating out a linear stiffness matrix operating on 

the displacement variables and grouping the remaining terms in a nonlinear vector. 

Mq+Kq + NLT(q) = Q(q_,q) (123) 

The nonlinear vector NLT is neglected in the linear analysis. The resulting linear model is 

qualitatively similar to the linear model used in the dynamic verification Eq. (115). The 

difference between the models is due to using the cubic shape functions in Eqs. (76a - 76d) 

for both variables u and w in Eq.(123). The natural frequencies and mode shapes are 

determined using the following open loop eigenvalue problem 

K£ = a#M£ (124) 

The mode shapes are normalized using the mass matrix 

<f>TM<f>.=\       z = l,2,....» O25) 
-i      —i 

and 

K£ = a>f       1 = 1,2,....» (126) 
-i     —i 

The frequencies are determined for an 8 element linear model of the two beam PACE 

system. The lowest frequency is 2.42882 rad/s and the highest computed frequency is 

180075.56 rad/s which correspond to the periods 2.587 seconds, and 0.3489e-04 seconds 

respectively. Although the higher computed frequencies are poorly converged in the finite 

element analysis, their small participation in the solution will lead to numerical stability 

problems if ignored altogether. A time step of .le-04, which is one third of the shortest 

period, allows a stable integration of the nonlinear finite element model to proceed. 

Significantly larger time steps cause the motion to diverge due to numerical instability 

typical of stiff differential equations. The time step must be small enough to track the high 
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frequency dynamics for stability of the numerical method. When accurately integrated, the 

higher frequencies and mode shapes do not have a large affect on the dynamic response as 

are seen graphically in the results. The lowest frequency corresponds to a period of 2.587 

seconds. Unfortunately for a stable integration over the largest period a large number of 

integration steps are required. This motivated a search for an order reduction method to 

eliminate the high frequency coordinates. 

Number of Elements 

The total number of elements used in the nonlinear finite element method is based 

on an analysis of the linear model analogous to the preceding section and based on a 

convergence study of the nonlinear initial deformation. The natural frequencies for the 

similar linear PACE model are determined for three cases of different element numbers 

and are grouped according to transverse w modes or longitudinal u modes. Table 9 and 

Table 10 lists some of the frequencies that can be compared for different numbers of 

elements used in the linear model. 

Table 9. Natural frequencies for w modes 
4 elements 8 elements 16 elements 

2.42882 2.42882 2.42882 

11.0030 11.0030 11.0030 

103.234 102.710 102.675 

165.081 163.049 162.889 

419.539 373.378 371.689 

586.853 472.479 469.017 
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Table 10. Natural frequencies for u modes 
4 elements 8 elements 16 elements 

1711.09 1705.61 1702.87 

4784.38 4732.07 4706.50 

21120.4 20952.8 20854.1 

24195.5 23665.4 23440.9 

42434.9 41691.0 41465.0 

The lower frequencies of the 8 element model agree closely with the 16 element 

frequencies and the higher frequencies agree within 1% or less. The frequencies for the 4 

element model are not converged as well with the 16 element frequencies and the 

differences range from 0% to 25%. The differences between the frequencies are more 

pronounced for the transverse modes. 

The effect of the number of elements on the initial nonlinear deformation shape is 

analyzed. The nonlinear static deformation shape is solved using Eq. (83) for two different 

tip loading conditions. Table 11 lists the tip displacement variables for different numbers 

of elements due to a moment applied at the tip. 

Ta ble 11. Beam d eflection for tip moment = 18. 0 
# Elements wtip W'tip Utip U'tip 

4 1.0772644 .7176522 -1.027003 -1.696657 

8 1.0777037 .7018290 -1.043144 -1.712356 

16 1.0776955 .7017399 -1.043231 -1.712428 

.32 1.0776949 .7017383 -1.043232 -1.712429 
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The 8 element model agrees well with the 16 element model. The values of the 

displacements for the 8 element model agree to within 4 digits of the higher element 

models. Another deformation shape is analyzed for models with different numbers of 

elements. In this case a static transverse force is applied to the beam tip. The resulting tip 

displacements are shown in Table 12. 

Table 12. Beam deflection for transverse tip force = 8.0 
# Elements Wtip w'tip Utip U'tip 

4 .620976 .610819 -.167227 -.208298 

8 .627036 .611709 -.169576 -.208926 

16 .628348 .612011 -.170073 -.209151 

32 .628433 .612040 -.170106 -.209172 

The displacements for all the different element models agree to within 2 digits. The 

biggest improvement appears to be between increasing from 4 elements to 8 elements. For 

the 8 element model the values of the w and u coordinates are within .0003 to.0014 of the 

coordinate values for the 32 element model. 

Based on the results of the linear frequencies and the static deformation shapes, the 

8 element model is chosen for the simulation study and parameter recovery method. 

Modal Truncation 

For the 8 element nonlinear model, a small time step is needed for the stability of 

the integration method. In an effort to allow larger time steps, an attempt is made to 

truncate the finite element model. This order reduction is motivated by a conventional 

method used for linear problems. The most common order reduction method for structural 

dynamics is the modal truncation technique. The linear finite element model is 

transformed to modal coordinates and the high frequency low amplitude modes which do 
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not contribute significantly to the dynamics are partitioned out. Skelton's17 idea of a modal 

cost function is used to rank the modes' relative importance to the dynamic solution 

depending, in essence, on the fractional distribution of the system energy among the 

modes. The mode shapes and frequencies obtained in Eq. (124) are used for a coordinate 

transformation similar to the one in Eq. (116). The modal coordinate nonlinear equation 

assumes the transformed structure below 

M"rpK?j+ <DT{NLT(® ?)} = $ rß 

where    M = 0TMO = l (127) 

and       K = ®TK® = diag(a?i,02>----a?l) 

The first order form of Eq. (127) is integrated in time using a subset of the modal 

coordinates. The solution is then transformed back to spatial coordinates. The cost 

function used to rank the modal coordinates is the contribution of each modal coordinate to 

the energy of the linear system. The nonlinear model is used to solve for the dynamic 

response but the linear form of the energy is used for ranking the modal contributions. The 

kinetic and potential energy in modal coordinates is 

h 
E = \[TJ

J'M TJ+ rj1£ rjjdt (128) 

'i 

The transverse modes dominate the kinetic energy contributions and the axial modes 

dominate the potential energy contributions. The first mode #1 with a frequency of 

2.4288 rad/s is the largest contributor to the kinetic energy and mode #15 with a frequency 

of 4732.06 rad/s is the largest contributor to the potential energy of the model. Using 

Skelton's modal cost idea, fifteen modes are chosen to be the subset of coordinates which 

represent most of the dynamic motion. These modes are listed below 
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®Tr = [tl> fa' fa' fa' fa' fao> fas> 0\9> faO' fab fal' fa?» fa*' fa5' fa%\ (129) 

The last mode included in the subset has a frequency of 115665.15 rad/s and period of 

.000054 sec. Truncating above this mode would only allow the integration time step to be 

doubled from .00001 sec to .00002 sec. The solution to a free vibration case is compared 

for the truncated model and the full order model for a time interval of .65 sec. The initial 

deformation shape is due to the transverse tip force of 8 N. A comparison of the beam 

deformation shapes for the truncated model and the full order model is shown in Figure 18. 

The shapes at two times are compared. 
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Figure 18. Beam shapes for truncated and full order models 
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The displacements for the truncated model are found to be significantly different than the 

displacements of the full order model. In comparing the output, the differences between 

the models are contained in the nonlinear vector term NLT($r\). The small differences in 

the modal coordinates are summed many times and multiplied by large constants, EAi, 

EA2. The modal truncation is tested for neglecting only one mode, #8, which is the lowest 

contributor for the transverse deflection. The displacements obtained after one quarter 

cycle agree to within 6 digits to the displacements of the full order model. The 

displacements at node 2 and node 3 are slightly different (agree to 4 digits) than the full 

order model. Neglecting mode #8 appears to have a very small affect on the motion-of the 

beam system and appears to affect the middle of beam 1. Other transverse deflection 

modes which have a small cost contribution can be neglected, however this does not allow 

a larger time step since these frequencies are much smaller than the axial mode 

frequencies. Modal truncation is tested for neglecting the three highest axial modes, #31, 

#32, #33. The highest frequency remaining in the model is 142621.9 rad/s and the time 

step is increased to .000015. The displacements obtained after one quarter cycle agree only 

to within 1 digit to the displacements of the full order model. The increase in the time step 

does not justify the truncation of the highest modes since the results are not in very good 

agreement, especially since our analysis indicates the full order model is needed as a 

reference to confidently truncate any modes. Thus, unfortunately, modal truncation does 

not appear attractive as a means to enhance the solution efficiency or accuracy for this 

particular nonlinear finite element model. 

Rotational Inertia 

The contributions to the kinetic energy of the rotational motion of the beams and 

the tip and elbow masses are analyzed to see if the rotational inertia should be included in 

the model. The rotational kinetic energy for a body is 

T = \vT{I]V (130) 
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where W = [(l + u')w' - w'w'J and /is the mass moment of inertia about the center of mass. 

The moment of inertia about the z axis for a beam of differential cross section dx and 

thickness a is 

h =J^pa2dx (131) 

For the PACE system, the thickness of each beam is .00315976 m. The moment of inertia 

for the differential cross section is computed to be 4.426E-07 kg-m. This value is'small 

and the angular velocity is typically 1.85 s"1. Therefore the rotational inertia for the beams 

are not included. The inertias for the elbow and tip masses are 122.98E-04 kg-m and 

15.244E-04 kg-m2 respectively. The angular velocity is substituted into Eq. (130) and the 

first variation is taken. The results are added to the nonlinear finite element equations for 

du' and 8w' at the elbow and tip node locations. The 8u' and 8w' equations can be written 

in matrix form 

(l + w')2      -w'(l + «') 
-w'(l + «0 w'2 

w'l      f2ii'(w'(l + «')-w'ii')l 
■ + / 

K'J      |2w'(w'(l + K')-w'ii')J 
(132) 

The first nonlinear matrix part of the above equation is added to the mass matrix and the 

second nonlinear vector is added to the NLT vector. The free vibration of the finite 

element model is integrated over half a cycle using the initial condition due to a tip 

transverse force of 8 N. The velocities of the elbow and tip angles range from -.23 s"1 to - 

1.85 s"1 over half the cycle. The rotational kinetic energy is small due to these small 

velocities and the small moments of inertia The tip transverse deflections are compared in 

Figure 19 for the model including rotary inertia and without it. 
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Figure 19. Rotational inertia effects 

The deflections of the beam model including rotational inertia effects follows almost 

exactly the deformation history of the beam model without these effects. The rotational 

motion caused by a free vibration of the PACE two beam system does not significantly 

affect the results. Furthermore including the rotational kinetic energy complicates the 

model since it results in a nonconstant and nonlinear mass matrix. Therefore the rotational 

dynamics of the tip and elbow masses are not included in the model. 

4.1.5 Simulations 

A free vibration analysis is presented for the nonlinear finite element model of the 

PACE two beam system. This is the base solution for the parameter recovery method. The 
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deformation shape associated with a tip force of 8 N is used as the initial condition. Each 

beam is divided into four elements, giving a total of eight elements. The equation of 

motion, Eq. (106), for the system is integrated in time using a Runge Kutta scheme. The 

system is studied with the tip mass and elbow mass values listed in Table 1 and includes 

sliding friction effects. The values for the coefficient of kinetic friction between metal and 

metal surfaces range from 0.11 to 0.45.18 For the PACE two beam system, the supporting 

surface is an air bearing table and the values of the friction coefficients will be significantly 

less. A friction coefficient of (ie=0.01 is used for the elbow mass and u,=0.02 is used for 

the tip mass. Figure 20 and Figure 21 show the time history of the wtip and utip deflections 

over a cycle. 
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Figure 20. Tip transverse deflection over a period 
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Figure 21. Tip longitudinal deflection over a period 

The period for the nonlinear model of 2.6 seconds is shown in the transverse tip deflections 

and corresponds to the lowest period for the similar linear problem. The damping shown 

in the tip deflection is due to the work done by friction. Figure 22 shows the whole 

deformation shape of the two beam system for one quarter of a cycle. 
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Figure 22. Beam profiles for 1/4 period 

An energy balance is done at each time step to verify the change in the system's potential 

and kinetic energy equals the work done by the friction forces. The initial energy of the 

system is 2.25257 N-m. Table 13 summarizes the energy check. 



Table 13. Energy balance for a period 

Time A Energy Work 

0.1 -.00821430 -.00821428 

0.5 -.17588910 -.17588908 

1.0 -.44118282 -.44118282 

1.5 -.54355840 -.54355839 

2.0 -.76443096 -.76443094 

2.6 -.94819115 -.94819112 

The change in energy differs negligibly from the work done by the friction forces and 

verifies the programming of the friction forces is consistent in the model. 

The finite element model is also integrated over time without the friction forces to 

ensure the energy of the system is constant. The potential energy is largest at the highest 

and lowest transverse deflection shapes while the kinetic energy is largest when the beam 

passes through the axis where the transverse deflection is zero. The value of the total 

energy is constant and agrees to within 9 digits over time to the initial value of 

2.25257295 N-m. These tests verify the nonlinear finite element model is correct from a 

conservation of energy perspective and provides a basis for confidence that the formulation 

is valid and correctly programmed. 

4.2 Free Vibration Parameter Estimation 

The beam parameters affecting the free response characteristics of the system are 

recovered using a set of measurements. There are several parameters that may not be well 

known such as the friction coefficients or the mass per unit length of each beam. 
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4.2.1 Least Squares Estimation 

The least squares analysis developed for the inverse static analysis is used to 

recover the best fit parameters for the free response motion. The free vibration parameters 

are represented by a vector/?. Measurements at different time intervals are represented by 

the vector Ymeas. The least square differential correction formula for updating the 

parameters is repeated below 

dY 
Pn+l =Pn+ (nTty~lnTCorneas ~ ^model (Pn)) where    Q = ~^ (133) 

The sensitivity matrix will obviously change since the nonlinear model and the parameters 

are different for the free response solution. The sensitivity matrix is developed using the 

parametric differentiation technique 13. 

The first order form of the nonlinear finite element model given in Eq. (107) is 

v = f(t,v,p) (134) 

The time derivative of the sensitivity matrix becomes 

^(0 i-[QM=f 0P 
£L+-£L»!ä. (iss) 
dp     dv(t)   dp 

This matrix has both an explicit and implicit dependence on the parameters p since the 

displacement and velocity variables v depend on p. This differential equation is integrated 

simultaneously with the solution to Eq. (107). The entire sensitivity matrix is integrated 

but only a portion is used in Eq. (133) for the variables in v that correspond to the variables 

that are measured. 
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The derivatives in Eq. (135) depend on the parameters chosen for recovery and are 

described in the following section for friction coefficients and mass density parameters. 

For the case where the nonconservative force vector Q is only dependent on friction forces, 

Eq. (107) becomes 

/ = !> = ■ 

y-i. 

v-2 

[MY1 I-CT(CM~1CT) 1CM~1 {Q-NLT(q)} 
(136) 

The implicit derivative matrix df/dv can be decomposed into four sub-matrices. The first 

(1,1) sub-matrix is a zero matrix and the second (1,2) sub-matrix is the identity matrix. The 

fourth (2,2) sub-matrix is also a zero matrix since there is no velocity dependence in the Q 

or NLT vectors. The third (2,1) sub-matrix consists of the derivative of the NLT vector with 

respect to each variable (the Jacobian matrix discussed earlier) and multiplied by [M]~ 

and the factor CMULTI where CMULTI= \c7'(CM''CTY CM^ -i}.   Calculation of 

the Jacobian matrix is a time consuming operation due to all the nonlinear summation 

terms in the model. For the parameter recovery program, the Jacobian must be calculated 

at each time step and the whole solution repeated each time the parameters are updated. 

This translates into a large amount of computer time depending on how long a time period 

is covered by the measurements. The implicit derivative matrix is summarized below 

0 I 

[M]~1[CMULTI] 
dNLT 

0 
(137) 

The explicit derivative matrix df/dp is different, depending on the type of parameter 

involved in the differentiation. For the friction coefficient parameters the explicit 

derivative matrix is 
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[MT1 

{0} 

[CMULTI]\ dQ\ 

[ M 
(138) 

The derivative dQ/d\i for friction forces is a vector of zeros with the value - Nsign(q) at 

the appropriate locations. The explicit dependence of the model / on the mass density 

parameters is in the mass matrix. The following identity is needed in the derivative 

J_ 
dp 

[M-iy~M-1 £M_ 
dp 

M' (139) 

After several algebraic steps the explicit derivative matrix for the mass density parameters 

becomes 

£L 
dp 

{o} 

[M]~l[CMULTI] 
dp 

[CMULTI]{NLT(q)-Q) 
(140) 

All these implicit and explicit derivatives are combined and inserted into Eq. (135). 

A set of parameters is used in the simultaneous numerical solutions of Eq. (107) 

and Eq. (135). The parameters are then updated using Eq. (133). The numerical solution 

and updating process is repeated until the changes in the parameters are small  . 

Measurement Errors 

Physical measurements of the tip locations over time will have some uncertainty or 

error variance associated with them. These errors are included in the parameter updating 

process for the free response motion using the weighted least squares approach developed 

in the inverse static analysis. The weight matrix will consist of the inverse error variance 
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associated with each measurement. The formula for updating the parameters is repeated 

below 

pn+l = pn + (QrfTQ)-1nrFT(Ymefl5 - Ymodel (pn)) (141) 

The sensitivity matrix for the nonlinear finite element model variables is developed in the 

preceding section. The numerical solutions of the nonlinear finite element model and the 

derivative matrices are repeated with the updated parameters until the changes in the 

parameters are small. 

A priori Estimates 

Some of the parameters may be known within a certain confidence level and this 

can be reflected in a priori estimates and errors of these estimates. The uncertainties 

associated with these a priori estimates are used to limit the changes to the parameters so 

unreasonable values don't result. These uncertainties are incorporated using a covariance 

matrix. The a priori estimates can be treated as an additional measurement equation. 

{Papriori -Pn} = \f\{Pn+l ~Pn} + ^priori (142) 

The equation for the a priori error is combined with the error expression for the 

measurements in Eq. (141) yielding 

etot = i 
^meas     ^model \Pn) 

Papriori ~ Pn 

Q 

I {pn+l-Pn} (143) 

The variance matrix for the a priori estimates is assumed here to have the diagonal 

(uncorrelated) structure. 
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1 

A 

r = 

est pi 

0 

0 

1 

°estpl 

0 

0 

i 
°£stp# 

(144) 

where aest p\ is the estimated standard deviation of the a priori estimate of parameter 1, 

etc.   The overall weight matrix is made by combining the variance matrix W of the 

~w 0" 
0 r measurements and the variance matrix T of the a priori estimates: A = 

The least squares function of the error is minimized giving the update equation for the 

parameter vector/? 

*meas ~ ^ model \Pn ) 

-v rapnori     Fn 
where   A = 

Q 

I 
(145) 

The covariance matrix for the estimated parameters p including a priori information is 

£,=(ArAA)-\ " 

A set of parameters is used in the numerical solutions of Eq. (107) and Eq. (135). 

The parameters are updated using Eq. (145) and the numerical solution is repeated until the 

parameters are converged. The variance of each parameter is taken from the diagonal of 

matrix Efr and is used to decide how well the parameter is determined. 

Parameter Uncertainties 

The estimated parameters recovered in the static analysis can be brought forward 

along with their associated uncertainties and combined with the recovery of parameters 
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affecting the free vibration response. This will allow adjustments to be made to the 

statically determined parameters if they are not determined well. If the previously 

determined parameters are well converged, this new recovery program will maintain these 

values while allowing other parameters to be changed. The parameters and uncertainties 

recovered from the free vibration analysis are optimistic since the values of the static 

parameters were assumed to be known. The free vibration parameters can be further 

adjusted using this combined analysis. This will be achieved by using an approach similar 

to the one taken in the parameter recovery method with a priori estimates. The parameters 

recovered  by  the   static   deformation  analysis  will  be  represented  by  the   vector 

ps =(EII,EI2). The parameters recovered by the free vibration analysis will be 

represented by the vector pß. = (//e, //,, p\, p-A.  The statically determined parameters 

can be treated as an additional measurement ps and an additional error equation is 

developed. 

{ps-Ps} = il]{APs} + es (146) 

This equation is combined with the error expression for the free vibration measurements 

(similar to Eq. (38)) yielding 

etot = 
^meas      * model \P)\ 

Ps-Ps J 
\afr a; 

0 I 
\APJr 
[APs. 

(147) 

The sensitivity matrix, Qs which is the derivatives of the measurement variables with 

respect to the static parameters must be computed for the nonlinear finite element model 

and included in the solution process. 
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An overall weight matrix is made by combining the variance matrix W of the free vibration 

measurements and the covariance matrix Es of the static parameters: A = 
w 0" 

0 Es_ 

The weighted least squares minimization yields an update for the parameters 

\&Pfr 
[APs  . 

-1 = (AJAA)"'AiA T * J ^meas    ^ model (P) \ where  A = 
Ps~Ps 

\afr n/ 
_ 0 i _ 

(148) 

This will allow further updates to the static and free vibration parameters to account Tor all 

the parameter uncertainties in a free vibration experiment. 

4.2.2 Results - Free Vibration Parameters 

The set of measurements used to recover beam properties are simulated using the 

numerical solution of the nonlinear finite element model described in Eq. (107). The free 

vibration response is computed for a set of 'true' parameters. The response is due to an 

initial deformation shape caused by a tip transverse force of 8 N. To illustrate robustness, 

we consider a relatively short time interval transient solution. Of course longer time 

intervals would yield greater precision in the estimated parameters. The tip deflections 

over one period of the dominant linear mode are shown in Figure 20 and in Figure 21. The 

tip Wf and Uf locations are chosen as the measured variables at selected time intervals over 

the period of the beam deflection. 

A subset of the dynamic parameters is chosen to illustrate the recovery method. 

This subset consists of the friction coefficients of the elbow and tip masses and the mass 

densities of the beams pß. = {jue,/it,pi,P2)-    The 'true' mass densities are listed in 

Table 1 and the 'true' friction coefficients are pe=0.01 and |^=0.02. The calculations of the 

tip location u^ and Wf at five selected time intervals are input to the parameter recovery 
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program giving a total of 10 measurements. The sensitivity matrix Q. is a 4x10 matrix as 

follows 

Q = 

dw9(t{)        d\V9(ti)       dWgjti)       dWgjti) 

<?Pe 
du9(t{) 

<?Pe 
dw9(t2) 

<?Pe 

<?Pe 

#Pt 

du9(t2) 
<?jUt 

<?u9(t5)      <?u9(t5) 

^u9{t{) 

dP\ 
^w9(f2) 

#P\ 
^u9(t2) 

dp\ 

dpi 
du9{t{) 

dPl 
^w9(t2) 

dPl 
^u9(t2) 

dpi 

du9(t$)      du9{t$) 

dP\ dPl 

Estimates for the mass densities of the beams and the friction coefficient are used to 

start the program. The numerical solutions of Eq. (107) and Eq. (135) are solved for the 

time intervals specified and the parameters are updated using Eq. (133). This is repeated 

until the changes in the parameters are small. Table 14 summarizes the true and recovered 

values of the parameters assuming there are no errors in the measurements. 

Table 14. Parameter recovery for perfect measurements 
Melbow MtiP Pi P2 

True values 0.010 0.02 .5320 .5300 

Starting estimate 0.015 0.01 .5603 .5437 

Values after 1 iter. 0.010 0.02 .5297 .5300 

Values after 3 iter. 0.010 0.02 .5320 .5300 

The program rapidly converges to the true parameter values. Other numerical experiments 

indicate a large domain of attraction, with very reliable and practical convergence.   The 
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parameters associated with the second beam system are recovered more rapidly than those 

in the first beam system, due to the larger kinetic energy effects at the tip of the system. 

Measurement Errors 

The simulated measurements from the free response using the 'true' parameters 

have errors introduced using a Gaussian random number generator. For each measurement, 

an error is created from a random number with zero mean and an associated standard 

deviation a. The errors are added to the 'true' measurements which are then used to 

determine the best fit parameters in the model. 

The tip locations wt and ut at nine selected time intervals that span one quarter of 

the deformation cycle are used for a total of 18 measurements. The standard deviations 

used in the errors of these measurements range from 0.0015 to 0.0006 for the w and u 

coordinates. The larger the standard deviation value the less weight is given to that 

measurement in the program and the less it affects the recovered parameters. Table 15 

summarizes the results of the recovered values of the parameters. 

Table 15. Parameter recovery over 1/4 cycle with measurement errors 

l^elbow "tip Pi P2. 

True values 0.0100 0.0200 0.5320 0.5300 

Initial estimate 0.0150 0.0100 0.5603 0.5437 

Recovered values 0.0109 0.0232 0.1289 0.4993 

Recovered a 0.0039 0.0115 0.4099 0.1634 

The recovered values of the friction coefficients are seen to be within 16% of the true 

values and within one estimated standard deviation of the parameters. The mass densities 

are significantly different than the true values and have correspondingly larger standard 

deviations indicating they are not well determined by these measurements. These relatively 
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larger errors indicate poor observability and suggest a longer time interval experiment, or a 

new experiment in which these parameters play a more important role. A longer time 

interval of measurements is used to better estimate the mass densities. Measurements of the 

wt and ut variables for eighteen time intervals over one half of the deformation cycle are 

used giving a total of 36 measurements. Again the standard deviations of the 

measurements range from .0015 to .0006. Table 16 summarizes the parameters and the 

associated errors recovered for this case. 

Table 16. Parameter recovery i over 1/2 cycle with measurement errors  - 
f^elbow Htip Pi P2 

True values 0.0100 0.0200 0.5320 0.5300 

Initial estimate 0.0150 0.0100 0.5603 0.5437 

Recovered values 0.0084 0.0220 0.4677 0.5360 

Recovered a 0.0020 0.0026 0.1199 0.0843 

The values for the friction coefficients estimated are much closer to the true values than the 

coefficients recovered for the quarter cycle measurements. The small error variance of 

these parameters indicate they are fairly well determined. The recovered value of the first 

beam's mass density is worse than the initial estimate and this estimated value is outside 

the commonly accepted density range of standard aluminum beams19. The estimated 

standard deviation of this parameter is consistently large compared to the value of the 

parameter, so at least the estimation process "knows it doesn't know". This indicates the 

recovery of the beam 1 density parameter cannot be trusted. The recovered value of the 

second beam's mass density is close to the true value and is an improvement over the 

estimated value. However, it still has an associated standard deviation that is large which 

would indicate the value of the parameter is not well determined suggesting that this 

convergence is fortuitous.    Therefore, the densities of the beams are weakly observable 
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and there is little confidence in these recovered parameter values.   On the other hand, the 

other parameters can be estimated from a very short transient response. 

The mass densities of the beams are clearly difficult to recover in the presence of 

measurement errors. This is because they do not have a large effect on the free response 

behavior of the system in this particular experiment. Table 17 lists the tip locations solved 

at various times using the recovered parameter values listed in Table 16. The measured tip 

locations input to the model and the tip locations obtained using the true parameters are 

included in this table for comparison. 

Table 17. Effects of parameter values on tip transverse deflections 
Time wt - measured wt - true parameters wt - rec. parameters 

0.1 .604670 .605715 .605819 

0.5 .256023 .255165 .255321 

1.0 -.413409 -.413560 -.413387 

1.3 -.550037 -.550117 -.550549 

The tip deflections using the recovered parameter values are closer to the deflections 

predicted by the true parameter values than the measured values. This is due to the effect 

of the number of measurements on the relationship between the variance of the parameters 

and the variance of the measurements. This improvement is seen even with the unlikely 

values of the beam mass densities used as part of the parameters. Again, the apparent 

paradox simply reflects the truth that the beam densities have such a small effect on the 

free response of the system over this relatively short transient motion. If there were no 

external forces, we can easily show that the mass densities would not be uniquely 

determined, so the observability is also linked to the smallness of the friction force. 
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A priori Estimates 

The starting estimates of the parameters can be known within a certain tolerance 

and this information can be used to limit the changes in the parameters. As was pointed 

out in the last section, the value of the first beam mass density recovered is below the 

known density range for aluminum beams having that shape. A priori information can be 

used to limit the estimates of low observability parameters to be consistent with an a priori 

estimate's uncertainty. 

The tip locations for eleven time intervals over one quarter cycle of the period are 

input for a total of 22 measurements to the parameter recovery program. The standard 

deviations used for the measurements range from 0.0015 to 0.0006. A priori estimates of 

the parameters are used as the starting values in the program. The a priori variance values 

of the beam mass densities and friction parameters will have negligible impact on 

observable parameters, but will serve to hold poorly estimated parameters to the 

neighborhood of the a priori estimates (consistent with a priori estimates). The converged 

covariance matrix will correctly reflect the total information content of both the a priori 

information and the measurements. 

The numerical solution of Eq. (107) and Eq. (135) are computed to the final time 

period and Eq. (145) is used to update the parameters. This recovery process is repeated 

until the change in the parameter values is small. Table 18 summarizes the parameters 

recovered and the converged parameters' standard deviations. 
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Table 18. Parameter recovery with a priori information 
H^lbow M-tip Pi P2 

True values 0.0100 0.0200 0.5320 0.5300 

a priori estimate 0.0150 0.0100 0.5603 0.5437 

a priori a 0.0075 0.0150 0.0532 0.0530 

Recovered values 0.0081 0.0203 0.5486 0.5557 

Recovered a 0.0019 0.0042 0.0526 0.0481 

Including the a priori variance matrix stabilized the poorly observed densities and 

indirectly the tip mass friction coefficient. The recovered value of jj,tip is closer to the true 

value than the recovered value of ut;p with only the effect of measurement errors included. 

The value recovered for the elbow mass friction coefficient was not significantly affected. 

The a priori variance values did limit the change in the beam mass densities and kept the 

recovered parameters closer to the a priori as well as the true values. The standard 

deviations of the recovered mass densities are smaller compared to those obtained using 

only measurement errors but they remain comparable to their a priori values. This 

indicates a large range of densities can be obtained and still be consistent with the 

measured motion. 

Since the mass densities are difficult parameters to estimate, they are removed from 

the parameter estimation and only the friction coefficients are estimated using the a priori 

covariance matrix. The standard deviations of the friction coefficients allows large 

changes of the a priori values. Measurements of the tip u and w locations are taken for six 

time intervals and similar measurement errors are used as listed in the last section. Table 

19 lists the recovered friction parameters and their associated errors. 
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Table 19. Friction coefficient recovery with a priori information 

J^elbow Mtip 

True values 0.0100 0.0200 

a priori estimate 0.0150 0.0100 

a priori G 0.0080 0.0120 

Recovered values 0.0093 0.0202 

Recovered a 0.0042 0.0036 

The values recovered for the friction coefficients using the a priori variance matrix are 

close to the true values and well within one standard deviation of the true values. The 

a priori standard deviations of the friction coefficients are doubled to allow greater 

changes to the parameter values and the parameter recovery program is repeated. These 

results are shown in Table 20. 

Table 20. Friction coefficient recovery with larger a priori variance 

Melbow Mtip 

True values 0.0100 0.0200 

a priori estimate 0.0150 0.0100 

a priori a 0.0160 0.0240 

Recovered values 0.0067 0.0224 

Recovered a 0.0049 0.0041 

The recovered friction coefficient values are not as close to the true values as those 

recovered for the more limiting variance matrix. They are within one standard deviation of 

the true values. A more reasonable process would be to repeat this experiment with a 

distribution of estimates with the a priori statistics. This would allow one to confirm the 
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truth that the estimation process is statistically consistent. However, any given experiment 

may look contrived because it is merely a sample from a distribution of possibilities. 

The recovered friction coefficients are used in the program to determine the free 

response deformation shapes of the beam system. The tip transverse deflections are 

compared to the deflections obtained using the true coefficients and compared to the 

measured data used for input to the parameter recovery program. This comparison is 

summarized in Table 21. 

Table 21. Effects of a priori determined friction parameters 
Time wt - measured wt - true parameters wt - rec. parameters 

0.1 .606013 .605715 .605723 

0.2 .546752 .546841 .546847 

0.3 .463057 .464102 .464035 

0.4 .368208 .367896 .367637 

The beam deformation shapes using the recovered parameters agree well with the 

deformation shapes using the true values. There is 3 to 4 digit accuracy between the tip 

values. The friction coefficients are fairly well-determined parameters and we have the 

means to accommodate consistently any a priori information available. 
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CHAPTER V 

NONLINEAR FORCED VIBRATION ANALYSIS 

5.1 Development 

Including motor effects in the modeling of the PACE two beam system is the last 

step in the sequential system identification process. Additions to the nonlinear finite 

element model are made to reflect the dynamics of a motor attached to the structure. 

5.1.1 Motor Modeling 

The motor operation and characteristics needed for this computer simulation are 

taken from hardware commonly used in the Dynamics and Controls Laboratory of the 

Aerospace Engineering Department at Texas A&M University2. A reaction wheel motor is 

placed on the tip of the structure to suppress end effector vibration. A torque is applied on 

the tip of the structure by accelerating the reaction wheel with a DC motor. The torque of 

the motor is a function of the voltage sent to the motor by the power amplifier21. Since the 

power amplifier can be operated in current or voltage mode, we assume the power 

amplifier is operated in the current mode which avoids including the dynamics of the motor 

in the simulation. This is because our motor has a near linear torque/current relationship. 

The power amplifier uses an internal control law to adjust the voltage supplied to the motor 

to follow the desired current. The time constant of the power amplifier is sufficiently short 

(= 10"3 s) that the response time is neglected in this study. A Maxon DC motor outfitted 

with a reaction wheel is sent a current which is used to apply a commanded control torque. 

T = Kti (149) 

where Kt is the torque constant of the motor and equals 0.03891 N-m/amp.   The linear 

torque/current relationship is accurate to less than 1% over a bandwidth from 0 to 30 Hz 
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assuming saturation conditions are not encountered.    A control law to suppress end 

vibration is chosen and is a linear feedback damper of the form 

T = -gi> tip (150) 

where g is the gain and *¥tip is the angular velocity of the beam tip. 

For the nonlinear finite element model, the torque is included in the nonconservative work 

term 

SWnc=TSVtip (151) 

Using the coordinate system established in Figure 12, the variation of the tip angle is 

&¥tip = (l +u'tip jSw'tip - w'tip Su'tip j (152) 

and the velocity is 

%p = [(l + "tip Y'tip ~ w'tipü'üp J (153) 

Combining Eqs. (150) - (153) gives the following expression for the nonconservative work 

<Wnc =- g[jl + u'tip ) w'tip ~ (l + "tip)wtip ", 

+g\ (i+"kp y'tipw'tip - {w'tip) "k 

s™'tip 
(154) 

öu'tip 
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The terms associated with     Sw'tip  and     Su'tipzxe included in the Q vector and the 

numerical solution of Eq. (107) is used to determine the system displacements over time. 

5.1.2 Model Validation 

An energy balance is done at each time step to ensure the change in the energy of 

the system equals the work done by the motor torque and the friction forces. The work 

done by the motor torque is 

Wnc=\T—^-dt (155) 

Taking the time derivative gives 

W=TV=-gV2 (156) 

This equation is combined with the work equation for friction forces Eq. (122) and the 

result is numerically integrated over time along with the displacement variables. At each 

time step, the numerical value of this work should equal the change in the total energy of 

the system. This check indicates the motor torque has been correctly included in the finite 

element model. 

5.1.3 Simulations 

The nonlinear finite element model is integrated forward in time including the 

effects of a tip motor. The control gain g for the feedback control law must be chosen and 

can be determined by several methods. For example, the finite element model can be 

linearized and control design methods e.g. a pole placement, quadratic regulator, etc. can 

be used, or the gain can be chosen by trial and error to give the desired damping. For this 

study, the trial and error method is used since it is simpler and the main focus of this 
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research is the recovery of model parameters and not on control design. Several gain 

values are used in the nonlinear finite element model and the resulting deformation shapes 

compared. Figure 23 and Figure 24 show the tip w and u displacements for different values 

of g. 
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Figure 23. Effect of gain values on tip transverse displacements 
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Figure 24. Effect of gain values on tip longitudinal displacements 

The higher control gain of 2.0 has the largest reductions in the tip deflections and brings 

the beam to rest quickly. However the torque needed to suppress the vibrations is large and 

beyond the operating bounds of a Maxon motor. The smaller control gain damps out the 

tip motions and generates torques within the bounds of the motor. The highest torque this 

gain requires is .35 N-m which corresponds to 49 oz-in. A plot of the tip displacements 

and the torque history for the control gain of 0.2 is shown in Figure 25. 
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Figure 25. Control and tip displacements for control gain of 0.2 

An energy balance is performed at each integration step and the change in the total energy 

of the system equals the change in the work done by the motor torque and the friction 

forces. These values match to eight digits. The initial energy of the system is 

2.2525729 N-m and after one period the energy change (and work done) equals 

1.2967753 N-m. 

5.2 Forced Vibration Parameter Estimation 

The parameters affecting a forced response are related to the motor used on the 

system. The parameter recovered in this analysis is the ratio of the motor torque constant. 

If the torque constant is not well known, the torque generated by the motor is incorrect and 
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the effects on the recovered deformation shapes are used to recover the correct torque 

constant, Kt. If the torque constant is incorrect, Kt, the current sent to the motor is 

incorrectly computed as 

i(0 = (157) 

The torque applied to the structure is not the desired torque, but an altered value related to 

the ratio of the true and estimated torque constants. 

Kt 
f=r[- g*¥)   where   r = -J- 

Kt 
(158) 

This equation for the torque is used in the development of the nonconservative work done 

by the motor. 

SWnc =-rg (l + u'tip j w'tip - (l + u'tipy'tipü'til 

(l + u'tjp jw'tip™tip ~ (™'tip ) ük 

Swl tip 

+ rg 
(159) 

ät'tip 

The   Sw'tip and Su'üp terms are included in the Q vector in the nonlinear finite element 

model represented by Eq. (107). 

5.2.1 Least Squares Estimation 

The least square procedure outlined in Chapter IV for the estimation of static 

parameters is used to estimate the motor torque constant ratio. The true torque constant is 

then estimated by a simple multiplication between r and the estimated torque constant. 
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To test these ideas, a set of 'true' measurements of the tip ut and wt deflections is 

simulated by integrating the differential equation in Eq. (107) including the motor model 

from Eq. (159) and a known value of the torque constant ratio. The recovery of the 

parameter r is started by estimating a value of r and integrating in time to the last 

measurement interval. The parameter value is updated using the sensitivity matrix and the 

difference between the measured and model tip deflections as developed previously. 

J^-ur rn+l=rn+(ßla)  '^Cimeas-^modelirn)) (160) 

The only real change in this parameter estimation process is in the calculation of the 

sensitivity matrix Q. In this case the sensitivity matrix is composed of one column since 

only one parameter is being recovered in this discussion. The rows are derivatives of the 

variables utip and wtlp with respect to r and evaluated at the measurement times. The 

sensitivity matrix is integrated in time to get the derivatives at the measurement times. The 

general form of the differential equation for the sensitivity matrix is the same as in 

Eq. (135). However, the implicit derivatives are different since including motor effects 

causes a dependence on the tip slopes and velocities in the Q vector. The implicit 

derivative matrix becomes 

0 I 

[M]~1[CMULTI] 
dNLT     <?Q 

[MYl[CMULTI] 
t?v2_ 

(161) 

Since Q only depends on w'tip, u'tip, w'tip, and ü'tip, the derivative matrices dQI dv are 

sparse matrices with few entrees. The explicit derivative matrix df I dp is also different 

for the parameter r. It becomes 
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{0} 

[CMULTl]^^ 
(162) 

These derivative matrices are used in Eq. (135) for integrating the sensitivity matrix over 

time. The sensitivity matrix and the derivatives included in this matrix are checked via 

finite difference calculations at each time step and there is good agreement between them. 

This verifies the correct development and placement of the derivatives used in the 

integration of the sensitivity matrix. An estimate of the motor torque constant is used in 

the simultaneous numerical solutions of Eq. (107) and Eq. (135) with Eq. (159) used for 

the motor model. The parameters are then updated using Eq. (160). The numerical 

solution and updating process is repeated until the changes in the parameters are small. 

Measurement Errors 

The parameter recovery of the motor torque constant ratio can be altered to include 

the uncertainties in the measurement values. The same process is followed as the one used 

in the recovery of the static parameters. A weight matrix is included in the least square 

minimization function and the weights used are the reciprocal of the error variances for 

each measurement. The same parameter update formula is developed but the different 

sensitivity matrix is used in the equation as discussed in the previous section. 

rn+1=rn +(ClTWQ)-1QTW(Ymeas-Ymodel(rn)) (163) 

The measurement errors are mapped into the error in the recovered motor parameter using 

Er = \QTWnj    = a^.. The error variance of the motor torque constant ratio reflects on 

how well determined this parameter is. 
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Parameter Uncertainties 

The estimated parameters and uncertainties from the previous static and free 

vibration analysis can be carried forward and combined with the recovery of parameters 

affecting the forced response. Measurement information is brought forward for a final level 

of parameter updating. This new recovery program will take advantage of well converged 

parameters and allow further adjustments to be made for ill converged parameters. The 

parameters are grouped by the recovery method used. The statically determined parameters 

are   ps = \EIl,EI2),     the parameters recovered by the free vibration analysis  are 

Pfr = (/£> MJ P\> Pi)> an(i the parameters recovered by the forced response are pf = (r) 

The previously determined parameters are treated as additional measurements 

| Ps-Ps 

[Pfr-Pfr 

"I 

0 

0" 

I *Pfr\ "fir 
(164) 

This equation is combined with the forced vibration measurement error expression yielding 

etot ~ 

*-meas      * model \P) 

Ps-Ps 

Pfr~ Pfr 

> — 

Q.f n, Q/ Apf 

Apfi. 

0 i 0 

0 0 I 

(165) 

An overall weight matrix is made by combining the variance matrix W of the forced 

vibration measurements and the covariance matrix Es of the static parameters and the 

covariance matrix Eß. of the free vibration parameters: 

A = 
w 0 0 

0 Es 
0 

0 0 Efr_ 

The weighted least squares minimization yields an update for the parameters 
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Aps |> = (ArAA)_1ArA 
APfr 

'meas     * model \P) 

Ps-Ps 

Pfr-Pfr 

>    where  A = 
"Q/ Qs Qfr 

0 I 0 
_ 0 0 I 

(166) 

This combined parameter update allows the measurements and covariance estimates for all 

the parameters to influence the final determination of the static, free vibration, and forced 

vibration model parameters. 

5.2.2 Results - Forced Vibration Parameters 

A set of 'true' measurements of the tip locations are simulated by integrating the 

nonlinear finite element model Eq. (107) using a known value of the torque constant ratio 

in Eq. (159). Any known value of the torque constant ratio can be used and a value of 

r = 1 is chosen since simulated measurements are available from previous work. The 

values of wt and ut are taken at five time intervals over one quarter cycle for a total often 

measurements. The starting estimate of the parameter is made by decreasing the torque 

constant ratio by 20%. The nonlinear finite element model is integrated to the 

measurement times and the resulting model values are used in Eq. (160) to update r. Table 

22 summarizes the results of the recovered torque constant ratio! 

Table 22. Recovery of torque constant ratio 
True value 1.0000 

Starting Estimate 0.8000 

Value after 1 iteration 0.9872 

Converged value 0.9999 
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The ratio recovered after one iteration is very close to the true value and is essentially the 

same after two iterations. The 'true' torque constant is recovered quickly and accurately 

when measurement errors are neglected. 

Measurement Errors 

Errors are introduced into the simulated measurements using a Gaussian random 

number generator and an associated standard deviation for each value. These standard 

deviations range from 0.0008 to 0.0020 for the wt and ut measurements. The parameter 

recovery program is repeated using the weighted measurements. Table 23 shows the 

resulting torque constant ratio recovered. 

Table 23. Recovery of ratio with measurement errors 
True values 1.0000 

Initial estimate 0.8000 

Recovered value 0.9567 

Recovered a 0.0514 

The torque constant ratio is recovered after two iterations and is within 4% of the true 

value. The standard deviation for this parameter is small and indicates this ratio is well 

determined. 
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CHAPTER VI 

CONCLUSIONS 

In this dissertation, several nonlinear static and dynamical models for large 

deformations of flexible body chains have been investigated. A novel formulation is 

introduced for nonlinear beam static deformations using arc length as the independent 

spatial variable. This formulation is validated by comparison to several published 

solutions and experiments. For transient dynamic response, a geometrically exact finite 

element model is developed from a static model proposed by Epstein and Murray. 

The focus of this dissertation is the development of a three step approach to system 

identification: 

1. A series of static deformation experiments are used to recover the parameters 

affecting the potential energy stored by the beams. 

2. The beam system is released from the statically deformed position and free 

response measurements are used to recover the inertia type parameters. 

3. A forced response experiment is used to recover actuator model parameters. 

Measurement and a priori covariance estimates can be propagated through the 

sequence of parameter recoveries. 

Based on the results of this approach, the following conclusions are drawn. 

1. The beam parameters affecting the potential energy of the system can be quickly 

and accurately recovered using the arc length model and a family of 

deformation shapes from two types of static experiments. The stiffness 

coefficients are well determined in the presence of measurement errors for 

appropriately designed experiments. The stiffness coefficient of the first beam 

is better determined since the portion of the system closest to the clamped 

boundary condition deforms the most and parameters affecting that response are 

more easily estimated. 
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2. The beam parameters affecting the free response of the system can be recovered 

using a nonlinear finite element model and the observed motion due to the 

release of the constraining wire from the static experiment. The coefficients of 

the friction forces between the tip and elbow masses and the supporting table 

are well determined with and without the presence of measurement errors. The 

mass density per unit length for each beam can be determined assuming perfect 

measurements but are difficult to recover in the presence of measurement errors 

unless large external (e.g. friction) forces are present. The mass densities do not 

have a large affect on the free, lightly damped motion of the system and are 

difficult parameters to determine. The parameters in the second beam are better 

estimated than the parameters in the first beam for this clamped/free system due 

to larger dynamic motion at the tip of the system. 

3. The motor parameters affecting the forced response of the system can be 

recovered using the nonlinear finite element model and the measured response 

over a short transient. For the cases studied, motor torque constants are well 

determined in the presence of realistic measurement errors. 

4. The sequential process permits the dimensionality of the estimation process to 

be increased as more information is available thus enhancing convergence in 

high-dimensional parameter estimation processes. 

Several difficulties were encountered and I suggest the following issues for further 

investigation: 

1. The arc length approach works well for the nonlinear static analysis but cannot 

be easily extended to the dynamic analysis under general modeling 

assumptions. The nonlinear finite element model could be used to recover the 

potential energy parameters for model consistency in bringing forward the 

recovered parameters and their associated uncertainties. 

2. The nonlinear finite element model works well for simulating the dynamic 

response and recovering the free and forced vibration parameters. However, a 

small time step must be used for the stability of the numerical integration which 
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leads to a large amount of computer time for tracking the motion over a long 

time period. Optimization of the computer code and variable time steps could 

be used to shorten the amount of computer time needed. Some new method is 

needed to do order reduction for this class of problems. 

3. A method for carrying forward the parameter estimates and uncertainties in the 

sequence of parameter recovery experiments has been developed. Simulation 

studies of this process at each step needs to be further investigated. 
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