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ABSTRACT 

First-order solutions indicate that a forced Keplerian trajectory (FKT) 

obtained by thrust-drag cancellation is as fuel-efficient as a Hohmann transfer. 

Further analysis has shown that the FKT is not Mayer-optimal. Therefore there 

must exist another trajectory that matches or exceeds the efficiency of the 

Hohmann transfer. The application of this result to the fuel-optimal orbit 

maintenance problem implies that periodic reboosts must be more efficient than an 

FKT profile. This research begins with the formulation of an optimal periodic 

cofllröl (OPC) problem to determine the minimum fuel-reboost strategy. The 

problem is numerically solved by a spectral collocation method. The optimization 

code is further modified to increase accuracy and reduce sensitivity to initial 

guesses. The results of this effort identified a trajectory for a sample satellite that 

was 3.5% more efficient than an ideal impulsive Hohmann transfer over the same 

period of time. From the optimal code, a maximum thruster size is also 

identifiable for a set of initial conditions. The optimal trajectory can save as much 

as 10% of the propellant budget when compared to finite-burn Hohmann transfers. 
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I.        INTRODUCTION 

The boundary of the Earth's atmosphere extends well into the operating area of low- 

Earth-orbiting satellites. As a vehicle circles the Earth at over seven kilometers per 

second, the few molecules that exist in the upper layers of the atmosphere are continually 

striking the vehicle's surface. Over time, these collisions decrease the orbital energy of the 

spacecraft, lowering its orbital altitude to an area rilled with higher concentrations of 

molecules. This perturbing force is called atmospheric drag and is a large factor in 

determining the lifetime of any low-Earth-orbiting satellite. While the density of the 

atmosphere at altitudes where these satellites operate, 200 km to 500 km above the 

Earth's surface, is low (~10"u kg/m3), the velocity of the spacecraft is very high (~8 km/s). 

These two factors combine to produce a fairly significant drag force that operates in 

opposition to the velocity vector. A satellite that fails to counter these effects will 

continue to lose its orbital altitude, spiraling towards the Earth until it burns-up during 

reentry. To avoid this situation, mission lifetimes are extended by maneuvers that reboost 

the satellite to its original altitude periodically to prevent destructive atmospheric heating. 

This reboost maneuver is the largest source of propellant consumption for many low- 

Earth-orbiting vehicles and mission lifetime depends directly on the amount of fuel a 

spacecraft can carry for reboost. This thesis examines this process and attempts to 

maximize the satellite fuel efficiency by determining the optimal reboost trajectory through 

the use of optimal periodic control. 

As a spacecraft circles the Earth, drag continually removes energy from the orbit. This 

causes an instantaneous reduction of the vehicle's orbital velocity. The change in velocity 

alters the original orbital shape, increasing the eccentricity. In a sense, the satellite enters 

into a "steeper" orbit that in turn increases the orbital velocity. This is known as the drag 

paradox, where the removal of orbital energy causes a satellite to travel faster. Since drag 

is higher at greater densities and velocities, the perturbing force of drag increases. The 

result is that the satellite follows a spiral path, which increases in velocity as the altitude 

decreases. Eventually drag will grow until significant atmospheric heating begins to 

occur. The reboost maneuver avoids a premature end to the satellite's lifetime by 



reboosting it to a higher altitude, a region of reduced drag. Figure 1.1 shows this 

trajectory pattern and orbit transfer process. 

DRAG INDUCED SPIRAL AND 
REBOOST MANEUVER 

ORBIT 

Figure 1-1 

The most common type of orbital transfer, mainly in terms of mission planning, is the 

Hohmann transfer. This maneuver begins with the satellite in a circular orbit at its lowest 

desired height. To reboost the vehicle, an impulsive burn is made which places the 

satellite into an elliptical transfer orbit. This transfer orbit has two important geometric 

properties. First, the perigee of this orbit is located at the position of the initial impulsive 

burn and secondly, the apogee of the orbit has an altitude that is equal to the desired final 

altitude. When the satellite reaches apogee, another impulsive burn is made to circularize 

the final orbit. 

Previous work has examined the Hohmann transfer against other trajectories [Ref. 

1,2]. Using first order estimates of different trajectories, optimal control theory states that 

the Hohmann transfer is not the most fuel-efficient solution [Ref. 3,4]. Thus there must 

exist a trajectory that maintains the satellite in a desired orbital band but with less 

consumed propellant. The previous thesis efforts at the Naval Postgraduate School have 



examined several orbital transfer methods but did not surpass the efficiency of the 

Hohmann transfer. This effort takes a more rigorous approach in searching for the 

optimal solution to the orbit maintenance problem Optimal periodic control (OPC) theory 

is applied to the system, which is governed by a set of equations of motion. Numerically 

solving the OPC problem gives a solution and a trajectory that can be adequately 

compared to the Hohmann transfer. 

Instead of guessing a trajectory first and then comparing its performance against the 

Hohmann, this method mathematically derives an optimal trajectory that then can be 

compared.   The goals of this thesis are twofold. First, this thesis will analyze the orbital 

transfer by numerically solving the OPC problem. Second, the thesis will identify a 

trajectory that is more fuel-efficient than currently used orbital transfer techniques. 

Launch Vehicle Cost 

Space Shuttle $ 9,100 

Atlas $ 13,900 

Delta $ 15,300 

Figure 1-2 

The question becomes why is this method and research necessary and important. 

Conventional wisdom suggests that this problem has been solved. However, optimal 

control theory has demonstrated in many instances that the most intuitive solution is not 

necessarily the optimal solution. For example, to say that the shortest distance between 

two points is a straight line is not always true when one adds additional complexities or 

constraints, such as if the points are located on the surface of the Earth, to the system. 

Monetarily, this question should be examined in detail. Figure 1-2 shows the cost of 

raising a single kilogram of material into low-Earth orbit. Any savings at all over 

conventional transfer methods would soon add up to hundreds of thousands of dollars or 

more over the life of the spacecraft. The possibility of savings alone justifies this 

examination of optimal control theory applied to this problem. 



Optimal control centers on the formulation and minimization of a cost function, in this 

case a function that describes the propellant expended. However, orbital motion is cyclic 

in nature. This means that the motion is periodic and repeats over a given time period. 

For many processes, periodic controls are more efficient than steady state operations. 

Acknowledging that fact, the problem then requires the examination of a further 

specialization of optimal control, namely, optimal periodic control. This process adds the 

complexity of periodic states and controls that allow a better description and 

representation of the periodic process. Through the use of numerical techniques, the 

optimal periodic control problem can be solved, creating a time history of states and 

controls that minimize the system's cost function. 

The first step in examining this system and the orbit maintenance solution begins with 

the equations of motion, which are normalized for properly scaled numerical methods. 

Within the equations of motion, the state and control variables are identified. Boundary 

conditions are then determined with some of the conditions being a set of periodic 

functions. A spectral collocation method is used to numerically solve the optimal periodic 

control problem. This method seeks polynomial approximations for the states and 

controls in terms of their values at certain points or nodes. These nodes are called the 

Legendre-Gauss-Lobatto (LGL) points and are located at the roots of the first derivative 

of an n^-degree Legendre polynomial. The performance measure for the periodic process 

is approximated by the creation of a cost function and referenced to a steady state 

solution. Through the use of the collocation method, the OPC problem is converted to a 

nonlinear programming problem that is solved using existing routines. The full 

optimization code is then optimized for quicker performance with more reliable results by 

introducing period constraints and eliminating certain variables. An example is tracked 

throughout the thesis to highlight the different aspects of the implementation of the OPC 

and the associated code for the orbit maintenance problem. Finally, the results of the 

optimization code are compared with existing trajectories and any fuel savings are noted. 



H.       ORBITAL MOTION AND OPTIMAL CONTROL 

A.       OPTIMAL CONTROL THEORY 

For any problem that has an infinite number of solutions, further means must be used 

in order to choose the solution that maximizes the performance of the system at the lowest 

cost. The method designed to do this is called optimal control. The use of optimal 

control begins with a system that is described by a set of state variables, which describe its 

various physical limitations. Inputs into this system are called controls, which perturb the 

states within the system constraints over the time history of the problem. The 

performance of a set of controls versus another possible solution set is compared by a cost 

function that is minimized or maximized by the optimal control algorithm.   The control 

set that minimizes the cost function is the optimal solution. Classical linear control 

systems generally relied upon "trial and error" processes that used numerous iterative 

techniques to determine the optimum set of controls. However, modern day problems 

require system dynamics that are too complex with many different performance criteria to 

be met, and classical methods are insufficient to solve these types of problems. The 

complexity of the problem is increased by another magnitude when periodicity is added. 

In the optimal periodic control problem, the states, controls, and perhaps most importantly 

the boundary functions can all be periodic. Orbital motion is a periodic problem. A 

spacecraft starts from a certain location, in this case defined by its velocity, radius, and 

flight path angle. After a time period that is either given or formulated by the control 

problem, the spacecraft must return to its original states. The process begins again 

continuing in a cyclic manner. The performance criterion used for this type of problem is 

the amount of fuel required over the problem's period, t. 



B.       EQUATIONS OF MOTION 

To first attack the optimal control problem the equations of motion for orbital flight 

must be obtained in order to mathematically model the physical system. The objective of 

the modeling process is to create the simplest mathematical description of the system to 

predict its response to any given input. The states are governed by a system of first order 

differential equations. 

In inertial space (N): 
Nf = v 
and (1) 

A    F 
#v = — 

m 

To find a differential expression for the radius, state r, the derivation begins by examining 

the radius in terms of its local body coordinates. 

f = A (2) 

Taking the derivative and noting that B2 = 0, equation (2) becomes: 

*r = fB2 (3) 

To transform the expression into the inertial coordinate system the transportation theorem 

is used and equation (3) becomes: 



Nf=Bf+Na>Bxf=ü (4) 

Simplifying: 

v = rB2+r6B^ (ß) 

From Figure 2.1 another expression for v can be obtained. 

v = v-cosfy)^ + v-sin(y)B2 (6) 

Since the expressions for v, equations (5) and (6), are equal, the individual components 

along each body axis are also equal. An expression for r can now be determined. 

r = v-sin(y) (7) 

The derivation for v follows the same general procedure as above but is worth some 

examination. The vector v is defined in its own local coordinate system, frame A from 

Figure 2.1.  A, is the unit vector in the direction of the velocity vector while A2 is in the 

normal direction. Taking the derivative in the A frame: 

Av = vA1 (8) 

Using the transportation theorem to put v in terms of the inertial coordinate system, 

equation (8) becomes: 

Nv=vA1+
No)A xv (9) 

From equation (1) and the summation of forces from Figure 2.1: 

-    F    Tcos(a)-D   3           .          3                              Tsin(a)   - 
»v=- = A1-g-sin(r)-Al-g.cos(r)-A2+ 

[-^-A2 (10) 
m m m 

Equations (9) and (10) combine to give an expression for v. 

.    Tcos(a)-D v = ~ -gsin(r) (11) 

The above expressions for r and v are two of the five states needed to adequately 

describe orbital motion. The other states are derived in a similar manner. The full set of 

equations of motion become: 

f-vsin(y) (7) 

.    T-cos(a)-D v = -gsin(y) (11) 



.    fv2     )  cos(r)    T-sin(a) 
Y = \—-g\- +  (12) V r      J      v m-v 

-T 
m = — (13) 

0 = --cos(y) (14) 

C.       NORMALIZATION 

The optimal periodic control problem is not solvable by analytical means and must be 

solved numerically. A numerical nonlinear code is used to solve for the states and controls 

and determine the best solution. The size of the physical constants involved with the 

problem of orbital motion varies greatly. For example, the typical atmospheric density at 

the altitudes in question lies approximately in the 10"'3 kg/m3 range while the orbital 

velocity at the same altitudes is around 105 m/s. The numerical disparity between these 

two numbers poses significant computational difficulty for any code. Equation (11) which 

is the first order differential of the velocity includes the drag term, D, which includes 

atmospheric density. To better control the scaling of the physical constants, non- 

dimensional units are derived through the process of normalization. 

For practical reasons, all numerical calculations are based upon reference values taken 

at a specific value in space. One of the popular ways of normalization in orbital motion is 

the creation of the canonical unit system. For Earth based systems, canonical units are 

referenced with large measurable Earth constants. One distance unit (DU) is equal to the 

radius of the Earth (6378 km). A velocity unit (VU) is defined as the orbital velocity of an 

imaginary object that circles the Earth at a distance of one DU, or simply at the surface of 

the Earth. A time unit (TU) is the amount of time it takes the same object to travel one 

radian about the orbit's center. The gravitational parameter, //, turns out to be one 

DU3/TU2 or simply have a numerical value of one. 

While canonical units are convenient in describing earth systems, a slight modification 

of the reference values decreases the level of numerical complexity for this problem. The 



distance unit is referenced to the altitude where the satellite operates instead of the Earth's 

surface. 

f=y~ (15) 

Numerically the code uses an altitude of 300 km for the basis of all radius calculations. In 

this case, rref becomes approximately 6678 km. When the vehicle is at an altitude of 300 

km above the Earth's surface the value of F is one. 

Dividing the numerical value by the orbital velocity at the vehicle's reference altitude 

normalizes the velocity parameter. 

_     v        v 
* = —= "f= (16) 

Vref 

]rref 

Similarly mass and time can be normalized. 

m 
m =  (17) 

™Tef 

t=j- where fre/=^ = ^ (18) Kef Vnf I   U 

The first order differential equation for the radius can now be fully described with non- 

dimensional units. Equations (15) through (18) combine to allow the following derivation: 

Substituting the reference values: 

r = — = vsin(r) (7) 

$r       KefVref    _       .     .    . 
-if = -J-^-v-sin(r) (19) 
al 'ref 

r-\-v-sin(y) (20) 

The structure of the first order differential does not change due to normalization, rather 

the numerical values must be reinterpreted as normalized values. The normalization of the 

differential velocity follows the same procedure but requires an extra referencing of thrust 

and drag. 



j_ _dv _dv   Kf 

dt    dt  v 
(21) 

«/ 

Breaking equation (11) into two parts: 

v = - (-g-sin(yj) V 
v. 

where   Ac = 
T-cos(a)-D 

(22) 

m 

The term ./4s is the acceleration due to the system forces along the tangent of the orbit. 

Substituting in for the gravitational acceleration, g: 

-t 
v = - "f 

V 
— ■sin(y) + A, 

«/ 
r2 r2 

V 
(23) 

«/ 

Realizing that g = — 

v = -g-sin(y) + as 

*„/      T ■ cos(a) - 
s ~ VrtfTn^           m 

-D 

(24) 

(25) 

(26) 

Equation (26) would be sufficient in normalizing the velocity differential with thrust and 

drag expressed as values normalized by the centrifugal force. 

T .   =- D 
T = 

V J 

and   D = (27) 

However this form would make the relationship between thrust and drag difficult to 

visualize. Instead, thrust and drag are divided by the value of drag that the vehicle would 

experience at the reference altitude. When the vehicle is at the reference altitude the value 

of the normalized drag would be one while the value of thrust would be in terms of the 

drag force. A normalized thrust value of 10 would allow the spacecraft to have a 

thrusting force ten times the force of drag. 

10 



D 
and  D = 

D. 
(28) 

(29) 

ref ^ref 

The value for Z)re/is defined by the formula for atmospheric drag. 

Dref = 2Pr4V2CDA 

The variable /vis the density at the reference altitude, CD is the drag Coefficient, and A is 

the cross sectional area of the vehicle along the velocity vector. Using this method of 

referencing thrust and drag equation (26) becomes: 

V 
Vref™ref 

D 
T -cos(a)-D 

ref m 
(30) 

Looking at only the coefficient of the above equation: 

KefDref rref^ref t„fD„f      r„fD„f     (rrefpref\ (c,A 

Vrefmref 
Vref2mref J m 

(31) 

A final variable is introduced, the ballistic coefficient of the spacecraft, B. The ballistic 

coefficient is a function of the vehicle's mass and cross sectional area and is represented by 

the following equation: 

m 
B = 

CdA 
(32) 

To normalize the ballistic coefficient an arbitrary reference coefficient was chosen and is 

shown below: 

B 
B 

rrefPref 
(33) 

Using equations (31) through (33) the following can be shown: 

VrefWref B 
(34) 

Finally, the full non-dimensional form of the velocity differential is determined by 

combining equation (24) with the above expression. 

T cos(a)-D 
v = -g-sin(y) + - 

mB 
(35) 

11 



At this point all of the variables have been normalized and the remainder of the non- 

dimensionalized equations of motion are listed below. 

f = v-sin(y) (20) 

-      -    - f  \    Tcos(g)-D 
v = -g-sin(r) + ==  (36) 

^   (v2    _\  cos(r)    T-sin(a) 

*if (38) 

0=^-cos(r) (39) 
r 

12 



HL      ORBIT RAISING MANEUVERS 

A.       THE LOW EARTH ATMOSPHERE 

While drag is considered mainly for air-breathing systems, it is the principal non- 

gravitational force that affects all objects in low-Earth-orbit. While the density of the 

atmosphere at orbital altitudes is about 10'11 times smaller than at the surface of the Earth, 

orbital velocities are approximately 7700 m/s. Recalling equation (29) for A^, the 

magnitude of the drag force is proportional to the square of the velocity. 

Environment 

Density 
2.62* 10-12 

Altitude - 400 km 

P = Poe 

-(r-rj 
scale height 

Circular 
Orbital 
Velocity 

7669 m/s 

Altitude - 300 km 

7726 m/s 
1.87*10-" 

1 
D^-pAv^C D 

Cr 

Figure 3-1 

Figure 3-1 shows the various inputs into the drag equation for the some typical low- 

Earth orbit altitudes. The variables combine to make drag a small force that continually 

acts to perturb the original orbit. By dissipating energy, drag causes the orbit to shrink. 

As the orbit altitude decreases atmospheric density increases. This increases the net drag 

force, which increases the rate of orbital energy dissipation. In the determination of 

orbital motion that includes drag, it is important to model the force of drag upon the 

vehicle at different altitudes. To accurately describe drag, one must choose a fairly 

13 



accurate density model. The Earth's thermosphere, which begins above 90 km in altitude, 

is the region of the atmosphere that absorbs extreme ultraviolet radiation. The 

temperatures of the molecules within this region vary widely between day and night due to 

different levels of UV absorption. Increases in temperature create an increase in 

atmospheric density. Other disturbances such as geomagnetic activity and solar cycle can 

vary density values on an hourly basis. Complex models have been used to describe the 

variations in density, the two most popular being the Jacchia and the Mass Spectrometer 

Incoherent Scatter (MSIS) models. Numerically, both of the models are complex and 

approximate atmospheric densities as a function of time and position. To avoid the 

complexity during implementation of the optimal periodic control problem, a simpler 

density model was chosen. The main reason for stripping away higher-order terms and 

variables in the atmospheric density model is to study the problem at the fundamental 

level. The easiest choice for an atmospheric model would be to assume a constant density 

model. When looking at orbit reboost problems the difference between upper and lower 

orbital altitudes is usually fairly small on the order of 10-50 km. The density change 

between 10 km is less than 20 percent and provides a first guess into the interaction of 

drag and optimal thrust control. While this difference may seem significant, larger 

variations occur at the transition between night and day at orbital altitudes. 

The next step in adding complexity is to assume an exponential function of altitude for 

the densities. The advantage of this model is that density closely follows the nominal 

measured results. The equation for the exponential density model is shown below. 

-(r-Td (40) p = p0e   h 

The atmosphere is broken into separate bands with reference values given at a specific 

value taken from the MSIS model. For example, the density at 300 km is 1.87e-l 1 kg/m3 

with the scale height, h, having a value 50.3 km. All altitudes between 275 km to 325 km 

are referenced to the values at r = 300km. A simple MATLAB function called density, 

included in Appendix 1, shows the atmospheric density determined as a function of orbital 

altitude. Figure 3.2 shows the output of the function (solid line) with the 'X's 

representing the MSIS values at the given orbital altitude. The exponential model was 

used in the formulation of the optimal periodic control problem.   The function density is 

14 



Density Model 

150 200 250 300 350 400 
Orbital Altitude (km) 

Figure 3-2 

called during the numerical iterations to accurately define the atmospheric density at the 

local altitude. The exponential model, while increasing the complexity of the dynamical 

model, is a fairly good approximation of the density as a function of altitude. 

B. ORBIT-RAISING MANEUVERS 

With the environment and physical laws that govern the motion of the spacecraft, the 

next step in understanding the orbit maintenance problem is to discuss orbit-raising 

techniques. Simply put, orbit maintenance is the process that maintains the satellite in a 

specific region of space during the lifetime of the satellite. As stated earlier, drag is the 

largest non-gravitational force that affects a spacecraft, specifically in terms of its orbital 

altitude. The lower altitude limit represents the lowest altitude to which an orbit can 

decay. Any further loss of altitude would signify a larger force of drag, jeopardizing the 

continued motion around the Earth. The upper altitude limit is the maximum altitude at 

which the spacecraft can operate effectively and safely. Reasons for this limit may include 

the maintaining of earth observation resolution or reduce the risk of high altitude 

radiation. Obviously of the two limits, the lower limit is the most critical due to the 

15 



immediate threat to the spacecraft's lifetime. In formulating the optimal control problem 

two methods were examined to use the limits as constraints. The first type is the upper 

bound unconstrained problem. Here the satellite begins at the lower most limit and forced 

to remain above the minimum altitude. The second type includes an upper bound on the 

altitude. The difference between the two altitudes is called the orbital band. 

Figure 3-3 shows the different types of orbital transfers. The high-energy transfer is 

Hgh Energy tfohmann Tansfer 

low Chemical Thrust      Bectrie Ropukion 

Figure 3-3 

the minimum time transfer but uses large amounts of propellant. The second is the most 

common method of orbit altitude maintenance and is called the Hohmann maneuver, 

designed to keep the spacecraft within the orbital band. As the vehicle approaches the 

lower altitude due to drag-induced decay, the first of two thruster burns is applied to the 

spacecraft to reboost it to the top of its band. After the first burn the vehicle travels 

approximately along an elliptical transfer orbit which has an apogee equal to the upper 

altitude limit. As it approaches apogee a second burn is made circularizing the orbit at the 

upper altitude. After the satellite's orbit is decayed by drag the process is repeated. The 
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amount of fuel required to accomplish these bums over time is called the propellant 

budget and directly determines the length of time a satellite will be able to maintain 

operational status. Figure 3-4 shows the typical Hohmann trajectory. The path was 

determined by a first order differential solver included in Appendix B called orbprop. 

This program takes the equations of motion with an initial condition and propagates the 

equations over a fixed period of time. During the orbital propagation an exponential 
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Figure 3-4 

density model is used. The actual thrusting logic sequence comes from a separate 

program called hoh that is included in Appendix C. All of the Hohmann thruster burns are 

impulsive maneuvers, meaning that the burns occur instantaneously with infinite force. 

The ideal Hohmann neglects gravity and drag loss terms. For real-world applications, a 

margin must be added to the required propellant mass to account for these losses. 

Depending on the size of the orbital reboost thruster, between five to ten percent 

additional propellant may be added to the mass budget. 
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The final two transfers of Figure 3-3 are also important to mention. First the chemical 

transfer is a real world application of the Hohmann transfer. Since impulsive burns are 

infeasible, the transfer burns are broken into distinct parts. As the satellite approaches 

perigee a finite burn is accomplished, placing the satellite into an elliptical transfer orbit. 

The apogee of this burn is less than the desired final altitude. The satellite then makes an 

additional burn at the following perigee, placing it into another elliptical orbit with a higher 

eccentricity. The process is continued until the apogee height of the transfer orbit is equal 

to the desired altitude. The total amount of burns nearly approximates the Av required by 

the Hohmann transfers.   The final burn from Figure 3-3 is the low thrust electrical 

propulsion transfer. Here the thrust of the electric engine is low and therefore causes a 

trajectory that spirals from the lower altitude until the higher altitude is reached. This 

trajectory resembles the opposite of the drag induced decay spiral. 

The next maneuver to analyze is called forced Keplerian trajectories (FKT). An FKT 

is simply a thrust drag cancellation process. The thrusters are fired in opposition of the 

drag force. This requires that the thruster act in a continuous mode with the ability to 

change its thrusting force depending on the periodic variations of the local atmospheric 

density or velocity and altitude for an elliptical orbit. The trajectory would eliminate any 

altitude loss due to drag. If the orbit were circular the resultant trajectory of an FKT 

maneuver would remain circular at the original altitude. Comparing this trajectory and 

propellant requirement versus a Hohmann transfer requires an additional distinction. Since 

the satellite in a Hohmann maneuver travels from the top of the orbital band to the bottom 

one must account for the variations of the drag force. Thus to cover the entire orbital 

band, three different FKT maneuvers were considered. The first, labeled the low-FKT, 

maintains the satellite at the bottom of the band. The mid-FKT maintains an altitude at the 

center of the band while a high-FKT keeps the satellite at the top of the band. The same 

propagation code, orbprop, tabulated the propellant used to counteract drag at the three 

different altitudes. These values were then compared to the fuel requirements of the 

Hohmann maneuver and shown in Figure 3-5. 
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Figure 3-5 

The ideal Hohmann is closely approximated to the mid-FKT. To keep a vehicle fixed at 

the lower altitude limit requires the most fuel of the four cases. The force of drag is the 

greatest while at the lower altitude. The orbital velocity is higher and the atmospheric 

density is also higher. Thus the necessary propellant to counteract the higher force must 

be higher than altitudes where drag is less. A common sense rule of thumb leads one to 

suggest that to decrease the amount of fuel for orbital maintenance, the satellite must be 

maintained at a higher altitude. Unfortunately, this reasoning may not be amenable with 

the vehicle's mission and requirements. 

If there are no state constraints, Ross, et. al [Ref. 3,4], have shown that the FKT is not 

the fuel optimal solution. This was accomplished by considering the totality of extremal 

arcs. Ignoring the special case when the maximum available thrust equals drag, the FKT is 

not a singular arc and thus not fuel optimal [Ref. 3,4]. Since the Hohmann transfer does 

not do better than the mid-FKT the periodic Hohmann reboost cannot be the fuel optimal 

solution as well. Thus there must exist some other trajectory that is more fuel-efficient. If 
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one considers the drag loss, burn times and orbital positioning some savings of fuel can be 

made. To determine this fuel-efficient trajectory optimal periodic control theory is 

explored. 
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IV.      OPTIMAL PERIODIC CONTROL 

A.       PROBLEM FORMULATION 

Orbital motion in its simplest form is a cyclic process. Any orbital body subject to no 

perturbations will travel along a trajectory in a periodic manner with the orbit defined by a 

specific set of states and period. Periodicity is a further specialization of optimal control 

theory where the states and controls are cyclic and their values repeat over an optimal 

period. However before the periodic nature of the theory is examined, the general 

formulation of the optimal control problem must be established. In differential form of 

optimal control, the following represents the state and control equations. 

*(t) = f(x(t),u(t), t)   t e 9?+ = [0, oo) 
(41) 

u(t) = 

Here the normalized states are represented by the equations (20) and (36)-(39). The 

controls considered in this problem are thrust, T, and the thruster angle, a. This 

representation develops a simple mathematical form that adequately predicts the response 

of any system. The history of control inputs from [to, //] is called the control history, u(-), 

while the state values over the same time interval is the system's trajectory. The trajectory 

and the control history must satisfy all of the system state and control constraints in order 

to be classified as admissible. The constraints reduce the range of values that can be 

assumed by the state and control variables. In the case of orbital motion several obvious 

constraints exist. The state equations are constrained in that the mass can never be 

negative or using a lower altitude limit places an inequality constraint upon the radius. 

The controls are constrained as well: Thrust is bounded below by zero, the force when not 

firing, and bounded above by a maximum, derived by the physical limitations of the motor. 

The next characteristic of the optimal control problem is the need for a performance 

measure. Optimal control is defined as the process which minimizes a given performance 

criterion. In general the performance measure can be written as the following: 
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J = h(x(tf),tf) + \g(u(t),x(t),t)dt (42) 
'o 

For orbit maintenance the main performance measure is to rninimize the amount of 

propellant expended. For periodic control the performance measure becomes an average 

cost measure. Under the framework of optimal periodic control theory and the specific 

problem, the performance criteria, or cost function, is simply the average amount of 

propellant required over an optimal period, r. The h portion of equation (42), can be 

eliminated through the use of judicious referencing of the state values. The periodic 

performance equation becomes: 

J = -}g(u(t),x(0,Odt, (43) 
To 

The functional g is dependent on functions containing the controls and the states. To 

create a fuel-optimal orbit maintenance profile, one examines the minimization of the 

propellant required over a given period. The representation of the cost function begins 

with the following equation. 

J=m(o)-m(r) ^ 
T 

Neglecting any pressure differences in the nozzle exhaust, an equation for the average 

thrust becomes: 

T = mve= (m(o) - m(r)) • r • v, (45) 

Putting the cost function in terms of an integral as in equation (43): 

JP 
= -\^-dt (46) 

*"0Ve 

Substituting in the non-dimensional variables the periodic cost function becomes: 

J^-l^dt (47) 
rJ

0veB 

The added specialization of optimal control theory is the periodic behavior of the 

states and controls. Called optimal periodic control (OPC), the significance of this theory 

lies in its boundary conditions. In standard OPC theory, all the states are periodic. This 

results in periodic costates as well as a transversality condition, in terms of the 
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Hamiltonian, from which the optimal period may be determined. One of the goals of 

periodic control is to identify the optimal period in order to gain the most efficient system. 

However in the case of orbital motion and maintenance, the problem formulation requires 

that some of the states are not periodic. For the orbit problem, the radius, velocity, and 

flight path angle (f) are all periodic values while mass and the position angle theta are 

aperiodic. For instance mass is a state that begins at a certain value and decreases until it is 

zero. Angular position, 0, is also not necessarily periodic. Since some of the values are 

aperiodic while others are periodic it is difficult to apply the füll optimal periodic control 

theory. Instead the problem is solved by a numerical method that is discussed further in a 

following section. An advantage of using this method is that the initial conditions along 

with the fuel-optimal trajectory are obtained. The nonlinear code is given a set of initial 

guesses for the states and controls and then is free to change the value of the variables 

assuming they are not manually fixed as a constraint. The initial conditions determined by 

the optimal code are those which minimize the cost function. 

The period, represented by x, can either be determined by the optimal code as a free 

variable or fixed. 

r(0) = r(t)   f(0) = f(r)   v(0) = v(r) 

m(0) = l    9(0) = 0 (48) 

™(*) - free  Q (T) = free 

Equation (48) shows the boundary conditions for the case where the initial radius, velocity 

and flight path angle are all free. Variations of the boundary condition set will be 

explained with each individual case. 

A further modification was made to the cost function in order to help quantify any 

efficiency gained by the numerical code. If one assumes a low FKT trajectory, specifically 

a satellite that uses a thrust drag cancellation profile at the altitude of its lower limit, the 

cost function for this trajectory is written below. 

T o veB 

Since the trajectory is an FKT, thrust is equal to drag. Recalling equation (28), thrust is 

referenced in terms of drag at a specific reference altitude. 
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-     T —     D 
T = ——   and   D=—— (28) 

Using this fact, an FKT trajectory would have a value T =1. Equation (49) becomes: 

1 ?   1 1 
*/^=7J7W^=7¥ (50) 

r o ve/j        veif 

Using equation (50) as a reference one can then divide the cost function obtained in 

equation (47) to have a referenced performance measure. 

J,      lr- 
J = -^ = -lTdt (51) 

J FKT        X ° 

This referenced cost function is very relevant when the radius is constrained to never drop 

below the lower altitude limit. A cost function with a value of one would equal the 

performance of the low-FKT. A cost function less then one would mean that the optimal 

trajectory would be more efficient than a low-FKT. In other words, the aim of the code is 

to determine a J less than one. 

B.       NUMERICAL METHOD 

Traditionally, optimal control problems are solved using shooting methods that require 

the formulation of costate equations obtained from first order necessary optimality 

conditions. There exist no widely accepted methods and extensive theoretical results for 

determining the necessary conditions for a partially periodic problem. Therefore the 

emphasis of this thesis is to solve the optimal periodic control problem directly. A spectral 

collocation method is used to numerically solve the OPC problem for the proposed states 

and controls. The spectral collocation method used here has already been successfully 

applied to solve a class of linear and nonlinear optimal control problems with state and 

control constraints [Ref. 5,6]. 

The premise of this method is to discretize the nonlinear control problem at specific 

points or nodes and convert it into a system of nonlinear algebraic equations with 

unknown as the values of the states and controls at the nodes. The resulting nonlinear 

program can be solved by existing routines. In order to create orthogonal polynomial 
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approximations for the control and state equations a spectral collation method is employed 

to determine the values of these functions at the Legendre-Gauss-Lobatto (LGL) points. 

These points are used as the collocation points and Lagrange polynomials are used as 

orthogonal trial functions. 

Given any function F(t) that exists over an interval from [0,x] a time transformation 

must be used to convert it into the interval [-1,1], where the Legendre-Gauss-Lobatto 

points he. 

where (52) 
te[0,r\-   Fe[-l,l] 

Using (43) and (52) the performance function becomes: 

1 i 
J = -ig(x(t),u(i)J)di (53) 

And the periodic boundary conditions change to: 

x(-\) = x(\) (54) 

Let LN( F) represent the Legendre polynomial of order N. These polynomials are 

determined by the following recursive expression: 

(i + \)LM ft) - (2i + \)JLt (t) + iLw (t) = 0 

where L0(t) = l,Ll(I) = I, (55) 

and     i = l,2,...,N 

Existing numerical codes were used to determine the location of the zeros that give the 

time interval between the nodes. The F i, where i = 0,1...N, are defined as Fo = -1, FN = 

1, and F k equal to the zeros of Lk (i). The next step is to construct the polynomial 

approximations by first defining the Lagrange polynomials in terms of LN( F )s. 

^/F) 1 (i\-\)LN(i) 
^NiN^L^—T^T- (56) 

It can be shown that: 
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J.,-, I1 if i=J\ 

Using the above relations, one can now build the polynomial approximation of the 

following form: 

(57) 

N /I • N 

*/W=X*,f',Mf'^      i = l,2,...,m 

u,"(t)=I,xl(tJMJ(t)f     i = \,2,...,p 
;=0 

(58) 

(59) 

By differentiating equation (58) and introducing the differentiation matrix Djk we get the 

following expression: 
AT 

I. 
*=0 

xl
N(tj)=2ZDJkxi(tk) 

The differentiation matrix Djk is defined as follows: 

DA = 

LN(tj)       1 

LN(h)  tj-h 
-N(N + l) 

4 
N(N + \) 

4 
0 

j*k 

j = k = 0 

j = k = N 

otherwise 

Placing the equations (59) and (60) in vector form: 

xN(t)=iak4>k(t) 

uN(t)=2Zbk<f>k(i) 
k=0 

x»(i)=iDJkak 
k=0 

where 
ak=[axk,a2k,...amk] 
bk=[bu,b2k,...bpk] 

(60) 

(61) 

(62) 

The coefficients ak and bk are yet to be determined but it should be noted that: 

ak=x»(tk) 
bk=u»(tk) (63) 
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The next step in the approximation process is to discretize the cost function integral. It 

can be shown that the cost function can be rewritten in the following form. 

JN =\ig(ak,bk,ik)wk (64) 

Where the term wt are the weights given at each node and are defined as: 

W'=^)W (65) 

The state equations are discretized by substitution and collocation at the LGL nodes, tk. 

The equations are then converted into the following series of algebraic equations in terms 

of the vectors a, and bj. 

where     dk = ^D^j (66) 

and        k = 0,...,N 

Similarly the system constraints can be approximated in the same manner. 

g(x(t),u(t))^0 
(67) 

Bk=g(x»(ik),u»(tkj)<0, 

C.       NONLINEAR PROGRAMMING CODE 

The next section will describe the various computer codes that were built in order to 

solve the optimal control problem directly. Each program represents a single or series of 

functions. When used in conjunction with each other the result is a series of commands 

which solves the optimal periodic control problem, checks the values against a differential 

solver, compares the results against different trajectories and finally records the data. All 

the codes are programmed in MATLAB and it is assumed that the reader has a 

background in the MATLAB language. 
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1.        Orbprop - Appendix B 

Mentioned in the previous section, orbprop is a first order differential equation 

solver which propagates the equations of motion given a set of initial conditions. Figure 

4.1 shows the declarations for the five states. 

% States 
%        x(l) = radius 

x(2) = velocity 
x(3) = angle gamma 
x(4) = mass 
x(5) = angle theta 

% 
% 
% 
% 

Figure 4-1 

Orbprop is a function that is called by other functions. The program requires that initial 

conditions be given for each of the states and time. The program then takes a profile for 

the controls, thrust and thruster angle, and chooses time steps in order to begin 

propagating the values. The profile for the controls depends on which program calls 

orbprop into action. For instance, the results from the optimal code can be transferred 

into a time control history that this program can use to propagate the states. Other cases 

include setting the thrust, denoted by Tp in Figure 4-2, to equal drag for the FKT 

trajectory while another trajectory would call for thrust to equal zero allowing orbital 

decay in a "free fall" manner. Figure 4-2 is an excerpt from the program that shows the 

differential equations of motion. Tp and alphap represent the interpolated values of the 

thrust and thruster angle respectively. Since the propagator uses different time steps than 

the location of the LGL points, interpolation is required to define the controls at these new 

points. 
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As = (Tp*cos(alphap)-D)/(x(4)*B); 
An = Tp*sin(alphap)/(x(4)*B); 

ddot(l) = x(2)*sin(x(3)); 
ddot(2) = -g*sin(x(3))+As; 
ddot(3) = (x(2)A2/x(l)-g)*(cos(x(3))/x(2))+An/x(2); 
ddot(4) = -abs(Tp)/(ve*B); 
ddot(5) = x(2)*(cos(x(3))/x(l)); 

Figure 4-2 

The expressions for As and An in the figure represent the only terms in which the controls 

affect the equations of motion. The five "ddot" expressions are the normalized equations 

of motion derived earlier (equations (20),(36)-(39)). 

2.        Orbopt- Appendix D 

This program is the macro program that controls the flow of the optimal periodic 

control problem. It begins with a series of variable declarations that give the problem 

physical meaning and definition. The next step calculates the normalized ballistic 

coefficient. This term is the only term that relates to the actual spacecraft being modeled. 

Its mass, area, and coefficient of drag are all contained within this single term. A very 

large value for the ballistic coefficient means that the spacecraft is either very massive and 

thus not greatly affected by drag or that the spacecraft is small and drag resistant. Low 

values of B would suggest that the spacecraft is very susceptible to drag due to its small 

mass and/or large surface area. 

The next section of this program initializes the vector that contains all of the states and 

controls, named "aop". Figure 4-3 calls a MATLAB program included in the 

Optimization Toolbox called constr.    This function finds the constrained minimum of a 

function of several variables. 

aop=constr('orbcrit',aop,options,vlb,vub); 

Figure 4-3 
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This command calls the function file called orbcrit, which is discussed in the following 

section. The options are a set of choices the user can alter to customize the minimization 

process including setting the minimization tolerances, number of iterations, etc. The "vlb" 

and "vub" are the optional lower and upper bounds. In most cases these were not used, 

instead all altitude constraints were entered in as inequality constraint equations. After the 

r=aop(l:n); 
v = aop(n+l:2*n); 
gamma = aop(2*n+l:3*n); 
mass = aop(3*n+l:4*n); 
T = aop(4*n+l:5*n); 
alpha = aop(5*n+l:6*n); 
theta = aop(6*n+l:7*n); 

Figure 4-4 

successful completion of the optimization routine the vector "aop" was defined into all of 

the states and controls shown in Figure 4-4. During this final declaration the variables 

represent the optimal states and controls which minimize the given cost function. These 

variables will later be compared to different trajectories in order to measure the 

effectiveness of the minimization code. 

3.        Orbcrit - Appendix E 

This program is the center of the spectral collocation method. The code begins 

with the creation of the cost function. Figure 4-5 contains a section of orbcrit that 

fori=l:n 
fh(i)=aop(4*n+i); 

end; 
costfh= l/(2)*sum(w.*fiV); 

Figure 4-5 

pertains to the creation of the cost function. The vector "fh" is given the control history 

values of the thrust and is then summed in the "costfh" expression. Recalling equation 

(51), the derived expression for the reference cost function; 
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J = -rA- = -\Tdt (51) 

The cost function is simply the sum of the weighted values of the thrust. 

The next part in the orbcrit code is the creation of the state constraint equations 

Figure 4.6 shows the five state constraint equations. 

% Radius 
g(i)= (2/tau)*sum(Dn(i,:). *aop(l :n))-aop(n+i)*sin(aop(2*n+i)); 
% Velocity 
g(i+n)= (2/tau)*sum(Dn(i,:). *aop(n+l :2*n))+(G(i)*sin(aop(2*n+i)))-Ast; 
% Gamma 
g(i+2*n)= (2/tau)*sum(Dn(i,:). *aop(2*n+l :3 *n)); 
g(i+2*n)=g(i+2*n)-(((aop(n+i)^2)/aop(i))-G(i))5|:(cos(aop(2*n+i))/aop(i+n)); 
g(i+2*n)= g(i+2*n> Ant/aop(n+i); 
%Mass 
g(i+3*n)=(2/tau)*sum(Dn(i,:).*aop(3*n+l:4*n))+(aop(4*n+i)/(ve*B)); 
% Theta 
g(i+4*n) = (2/tau)*sum(Dn(i,:).*aop(6*n+l :7*n))-aop(n+i)/aop(i)*cos(aop(2*n+i))); 

Figure 4-6 

Before discussing Figure 4-6 in detail a brief explanation is required concerning the 

way in which constraints are implemented for the optimization routine. All constraints are 

referenced to zero. For example, to place a constraint on the initial radius the first element 

of the radius vector is modified. 

r(t9) = l (68) 

Recalling that the computer code uses the vector "aop" to represent the states and 

controls and that radius occupies the first n terms (where n equals the number of LGL 

points) of the "aop" matrix, equation (68) can be referenced to zero and put in the correct 

form. 

aop(\)-\ = 0 (69) 

The process for inequality constraints is similar. In order to place an upper bound on the 

amount of thrust a given engine can produce, the following expression would be used. 

T<5 (70) 
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Figure 4-5 shows the part of the "aop" matrix that relates to thrust. Equation (70) 

becomes: 

aop(4 * n + i) - 5 < 0     where i = 1..n (71) 

Equation (71) prevents any terms within the time history of thrust to be above 5 

normalized units of thrust. 

Figure 4-6 uses the format required by MATLAB and creates 5n equality constraints 

for the five states. Taking the first equation, the radius state equation, allows closer 

examination of the constraint construction. Recalling equations (66) and (20): 

Ak=lf(x»(tk),u»(tk))-dk=0, 

where     dk = ^D^j 
j=0 

(66) 

and k = 0,...,N 

f = v-sin(y) (20) 

Substituting equation (20) defined at the individual time steps, &, into equation (66) the 

constraint equation becomes: 

4* =-i.Dklr(tl)-v(tk)sm(r(tk)) = 0 
x 1=0 

(72) 

From Figure 4-4 the expressions for the states can be substituted in equation (72) to 

transform the equation in terms of the "aop" vector. 

2 f 
AU=-'E Du aop(7; - aopf« + k) ■ sin( aop(2n + k)) = 0 (73) 

T 1=0 

The first term, (2/tau)*sum(Dn(i,:)), follows the spectral collection method where "Dn" is 

the differentiation matrix governed by equation (61) shown below. 

' LN(t})       i 

A* = 

LN(tk)  tj-tk 

-N(N + l) 

4 
N(N + \) 

4 
0 

j*k 

j = k = 0 (61) 

j = k = N 

otherwise 
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The values of the radius are continually iterated as the program is called repeatedly by the 

constr MATLAB function. The other four state constraint equations all are the same 

format, each containing the equation of motion for the particular state. 

The next two sections of orbcrit define the physical constraints and periodicity of the 

orbit maintenance problem. The remaining equality constraints are shown in Figure 4-7. 

Periodic Constraints 
g(5*n+l) = aop(l)-aop(n); r 
g(5*n+4) = aop(n+l)-aop(2*n); V 

g(5*n+2) = aop(2*n+l)-aop(3*n); y 
Aperiodic Constraints 

g(5*n+5) = aop(3*n+l)-l; m 
g(5*n+3) = aop(6*n+l); e 

Figure 4-7 

Only the final two expressions from Figure 4-7 are given fixed values. One of the equality 

constraints pertains to the initial value of the angle theta, which is set to zero. Mass is 

initially set to one through the last equality constraint of Figure 4-7. The other three 

equality expressions allow radius, velocity, and gamma to be periodic variables; the initial 

value of the state is equal to its final value. First is a series of inequality constraints shown 

in Figure 4-8. 

g(i+5*n+5) = - aop(4*n+i); 
g(6*n+5+i) = aop(4*n+i)-5; 

Figure 4-8 

In the most basic formulation of the problem, the only inequality constraint considered 

was the upper and lower bound of the thrust. While most modern day thrusters are either 

full on or full off, thrust was modeled as an engine capable of a full range of throttling 

values, ranging from off, a value of 0, to full on, in this case a value of 5. 

Soon after the code was initially tested a new constraint was added to the Ksiin-Figure 

4-8. This constraint forced the initial value (and hence its final value) of orbital radius to 

be a predefined location in space, normally at the reference altitude. The reason for this 
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constraint can best be explained as follows. The cost function, as noted before, relies on 

the amount of thrust used over the optimal period. Intuitively, the amount of drag at 

higher altitudes is less than the force of drag at lower altitudes. In an attempt to lower the 

cost function the code tries to force the radius, initial and final to be as high as possible. 

Given enough computing power and an infinite number of minimization iterations the 

radius should be infinity where the atmospheric density is zero, allowing the spacecraft to 

orbit the Earth indefinitely at no cost.   Thus to study the effectiveness of this code with a 

physically feasible problem, the radius was set to an initial value. Consequently, since the 

radius is a periodic variable the final value was also set to equal the initial altitude. 

4.        Other Programs - Appendices F and Beyond 

A series of additional programs used to study aspects of the fuel-optimal problem 

are included in the appendices. Several of these programs deal directly with the spectral 

collocation method. The code diffm creates the differentiation matrix required by the 

collocation method and that is used in the program orbcrit. The programs lobatto, mxt, 

mxtj, and tqr, written by Professor Bill Gragg of the Naval Postgraduate School, 

computes the abscissa and weights for the n-point LGL quadrature problem. 

Variations of the orbcrit and orbopt programs are included. During the course of this 

thesis, modifications to the constraint set or initial state and control guess created a series 

of modified programs. The different programs will be discussed in the following sections, 

which discuss several aspects of the fuel-optimal trajectories. 

The final group of programs is the programs that use the orbprop code and are used to 

compare the trajectories derived by the optimization process versus steady state 

propagated trajectories. 
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V.   DISCUSSION OF RESULTS 

A. INTRODUCTION 

While attempting to find a fuel-optimal orbit maintenance trajectory was the main goal 

of this research, a secondary goal was to test the implementation of the spectral 

collocation method through the use of non-linear programming to directly solve the 

optimal periodic control (OPC) problem. The first step was to build a framework that 

contained the computer codes required to solve this type of problem in accordance with 

the OPC theory. The most basic codes were discussed in the previous chapter. To test 

the series of programs, the most general case of the fuel-optimal problem was attempted. 

The results were used to identify several trends. Using these conclusions, the general 

programs were modified by either changing the system constraints, boundary conditions, 

or reducing the number of free variables. As a result of these modifications, the orbit 

maintenance problem was studied more realistically by defining physical limits and 

constraints of current day systems. For example, the codes were modified to include an 

upper altitude limit. This constraint causes the trajectory to be restricted within an orbital 

band. Satellites that possess limited communications ability or those that depended on 

imagery resolution are examples of an altitude-limited platform. Each of the special cases 

examined are discussed in detail in following sections. 

B. THE FREE CASE 

The most general problem formulation allows defining the satellites physical 

characteristics, an initial altitude, and a set of initial guesses for the state and control 

histories. The bulk of the satellite's characteristics is included in the equation for the 

normalized ballistic coefficient. 

B=rr 
B   ^ (33) 

^refPref 

Recalling equation (32): 
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B = 
m 

(32) 

Using equations (32) and (33) the value of the normalized ballistic coefficient is shown 

below: 

B =       *"" (74) 

The reference altitude and density are predefined values and are mutually dependent. The 

spacecraft physical properties are included in the following ratio. 

m 
Physical Characteristics = 

CdA 
(75) 

In order to highlight the effects of drag a satellite with a low ratio of mass to area is 

desired. The reason behind this idea is that a difference in propellant usage under varying 

drag conditions is a small quantity. By increasing the losses due to drag the value of one 

trajectory can be more easily identified against another. For purposes of this work, a 

generic satellite was created that leveraged the fact that drag was the major non- 

conservative perturbing force. 

Generic Spacecraft 

Physical Characteristics 

Spacecraft Area 500 m2 

Spacecraft Mass 3000 kg 

Maximum Thrust 3.5 N(f =5.0) 

Altitude 300 km 

Density 1.87*10-" kg/m3 

Coefficient of Drag 2.35 

Figure 5-J 

These values are for a theoretical spacecraft but are reasonable for certain kind of 

platforms, such as space-based radars, large antenna platforms, or inflatables. Figure 5-2 
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shows the normalized ballistic coefficient for several different systems assuming a 

reference altitude of 300 km. 

Ballistic Coefficient 

Generic Spacecraft 4.09*104 

ISS-DACT6 1.26*106 

Space Telescope 4.72*105 

Landsat-1 4.04* 105 

Echo-1 (comms) 8.24* 102 

Figure 5-2 

The other characteristic of the generic spacecraft is a measure of the effectiveness of 

its control, or simply the size of its orbital maintenance thruster. Defined in the 

normalization section, thrust is placed in terms of the force of drag at the reference 

altitude. Recalling equation (29): 

D«=\p«v*CDA (29) 

Using the values for the generic spacecraft, DTef would equal approximately 0.7 N. 

Current orbit maintenance thrusters have thrusts ranging from under 1 N to over 400 N.5 

In normalized terms a thrust equal to one would be 0.7 N. The thruster modeled in the 

generic spacecraft has a maximum of 5 or about 3.5 N available. Other thruster sizes were 

examined and the results will be discussed in following sections. 

For the free case, the thruster was allowed to fire in any direction relative to the 

instantaneous satellite velocity vector. The only other constraint placed upon the system 

was that the initial altitude was fixed to the reference altitude of 300 km. Since the 

spectral collocation method requires the user to input a series of initial guesses, a series of 

initial values were placed into the "aop" vector. Unfortunately, initial guesses do have 

some influence on the results obtained from the optimal control problem. Thus after 

judicious experimentation the initial guesses were made as given in figure 5-3. 
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Initial guesses for the Optimization Code 

Physical Value Normalized Value 

Radius 6678 km 1 

Velocity 7769 m/s 1 

Mass 3000 kg 1 

Gamma 1.1 radians 1.1 

Thrust 3.5 N 5.0 

Tau 720 minutes 50 TU 

All Others 0 0 

Figure 5-v-3 

With all the information entered into the code, the optimal control program, orbopt is 

run within MATLAB. The code is run primarily on an Intel Pentium processor operating 

at 233 MHz. Total run time for this case was approximately 2 hours. The constr.m code 

in MATLAB takes the initial guesses and calculates the given cost function. It then 

creates a set of gradient information and chooses new values for the controls and states 

and recalculates the cost function. If the cost function is lower than the previous value, 

the next iteration occurs. The process continues until all of the state and control 

tolerances are met with the minimum cost function. 

The results are tabulated by a program called orbres, included in the appendix, and 

then plotted by the program orbconv. Figure 5-4 shows the resulting plots for 4 of the 5 

states versus time, which is proportional to the fifth state the angle theta. 

Figure 5-4 shows several points worthy of notice. The spacecraft is boosted to a 

higher altitude and then allowed to decay to the original altitude. The flight path angle, 
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gamma, is very small with a maximum of 0.00028 radians (0.016 degrees) indicating that 
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Figure 5-5 

39 



the orbit is nearly circular throughout the transfer. Mass is expended rapidly during the 

first few orbits and then is constant throughout the coast/decay portion. Figure 5-5 shows 

a plot of the two controls of the spacecraft, the thrust and the thruster angle, a. 

The majority of all thrust is accomplished in the first 3 orbits of the spacecraft 

(approximately 20 radians) with an additional burn at the end of the period. The 

important point to notice is that the thrust profile is not a finite-Hohmann transfer burn. 

The optimal thrust curve dips and peaks meaning that it is not a bang-bang solution. 

In addition, unlike a Hohmann transfer, the optimal trajectory allows the thruster angle, 

measured in the variable alpha, to change. The value of alpha range form -0.1436 to 

0.3854 radians while the thruster is firing. Figure 5-6 shows graphically the variation of 

alpha during the transfer burn. 

This range of thruster cant angles is a normal departure from current orbital transfer 

Variation of Alpha 
Thrust Vectoj>^ 

Velocity Vector    ^^C-£ 

Thrust Vector     x^ 

Figure 5-6 

maneuvers, which use burns in the direction of the velocity vector only. However when 

the thruster is off, (i.e. T = 0), the thruster angle wanders between its upper and lower 

limits. This example used ± 180° as the bounds for this value. The angle at which the 

thruster points is only crucial during engine firing. Figure 5-5 shows the wandering of 

alpha during the decay portion of the simulation. Alpha returns to the neighborhood of 

zero during the small thruster firing at the end of the run. 

The final burn is also an important characteristic of the trajectory. Recall that three of 

the states; radius, velocity, and gamma, are periodic. The initial values must equal the 
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final values. As the satellite decays, it approaches the initial altitude and velocity. 

However its angle gamma, measured between the velocity vector to a line tangential to the 

radius vector, is negative or tending to point slightly towards the Earth. The final burn is a 

correction to the angle gamma. The burn rotates the velocity vector to match its original 

direction. 

The next result of this simulation is to examine the cost function. In actuality, the cost 

function is a ratio between the fuel required for the optimal trajectory and the fuel required 

for an FKT profile at the starting altitude. Equation (51) shows the ratio mathematically. 

J.      1T - 
J = -£- = -\Tdt (51) 

FKT       ^ " 

Any cost function that is less than one means that the trajectory used less fuel than the 

FKT trajectory. For the case just considered, the cost function equals 0.784. This means 

that the optimal trajectory uses 22% less fuel than a trajectory that would follow a thrust- 

drag cancellation path at the original altitude. Taking a closer look at the physical 

characteristics of the trajectories helps explain the large difference in fuel. A satellite that 

is at a higher altitude than another will experience lower drag. The lower the drag, the 

less the fuel expended to keep the vehicle flying. Density and orbital velocity decrease 

with increasing orbital altitude. Acknowledging this physical characteristic, a first guess 

on trajectory design would be to boost the satellite as high as possible and let it decay to 

its original altitude. The optimal trajectory resembles that concept. Figure 5-3 shows the 

radius increasing to a maximum after 3 orbits and then decay towards the original altitude. 

Thus with this is mind one can examine the trajectory more closely and determine during 

which parts of the flight path might hold savings over traditional orbit maneuvers. The 

main difference lies in the initial burn and will be explored further in following sections. 

The next parameter to examine from the simulation results is the value for the optimal 

period, T. The value of tau for this example is approximately 110 normalized time units, 

or just over one day. In a perfect simulation, one would expect that the optimal period 

would mean that the satellite must follow the trajectory repeatedly for the lowest fuel orbit 

maintenance consumption. This idea that the period is a definable value is taken from 

optimal periodic control theory and its application to air-breathing platforms. For 
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atmospheric flight, periodic controls generate trajectories that are lower in cost than 

steady state continuous control. It is a reasonable assumption that this would also hold for 

atmospheric space flight. However there exists a major difference between the two 

regimes. Thruster performance in low Earth orbit is nearly independent of orbital altitude 

while air-breathing engine performance relies heavily on atmospheric density, oxygen 

content and temperature. Drag forces are lowered with higher altitudes in the atmosphere 

but as altitude increases, engine performance decreases. At orbital altitudes the benefit of 

higher altitudes and lower drag is not offset by a decrease in engine performance. Thus 

there is no optimal point in space for the minimum trajectory. This suggests that the 

optimum altitude to fly would numerically be at infinity. 

Examining the optimal tau from this example one asks why is there an optimal period 

at all. If the optimal orbital altitude were infinity in order to achieve the fuel-optimal 

trajectory the satellite would need to be boosted to an infinite altitude and allowed to 

decay for an infinite time. In actuality, the amount that the satellite can be boosted is 

limited by the amount of propellant mass the satellite carries. The generic spacecraft is a 

3000 kg vehicle with perhaps 40 percent propellant mass. With 1200 kg of propellant the 

spacecraft would optimally be boosted as high as possible. The resulting period for the 

single burn and subsequent decay would be on the order of years up to infinity. 

Unfortunately the computer with its associated non-linear programming code has a 

difficult time modeling infinity. The program runs in an iterative method beginning with 

the initial guesses and recalculating the cost function after the gradients have been 

computed. The initial guess for the generic satellite example was 50 time units. The code 

increased tau to 112 time units. The code increases the period in order to lower the cost 

function since a longer period allows for a higher boost and subsequent decay. 
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However to prove that this value is the optimal period for this spacecraft and altitude, 

the code should be able to reproduce the same states and controls given a different set of 

initial guesses. For a second run the code was given the same initial conditions as the 

original example excluding the value of tau which was set at a value of 112 time units, the 

original example's optimal tau. The simulation took just over 2 hours to run and gave a 

new optimal tau of 5513 time units, about 56 days. Thus one can conclude that the 

original example did not give the optimal tau. 

The cost function for this second run is 0.1801, or in terms of propellant, 18% of the 
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fuel required for an FKT trajectory at the original altitude over the determined period. 

Again the code boosts the spacecraft to a high altitude and then allows a decay to the 

original height. In the second run the maximum altitude was approximately 1.023 distance 

units (6831 km) or about 154 km above the original altitude. The first run maximum 

altitude change was approximately 23 km. The larger altitude change allows a lower cost 

function over a longer period. Figure 5-7 shows the altitude profile for the second run. 

One of the problems with the second run is the number of LGL points compared with the 

length of the simulation For both runs the minimization program used 24 LGL points. At 

each of the points the states and controls are known but in the second example only 24 

known points are spread out over 5500 time units. The simple correction for this would 

be to increase the number of nodes. However this method has difficulties with high values 
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of "n". The higher complexity and larger matrices have the opposite desired effect. 

Computing inaccuracies and matrix scaling problems occur. These problems will be 

discussed more folly in following sections. The lack of detailed representation in the states 

and controls is one of the reasons the two graphs for the radius versus theta are different 

between the two runs. Even with the differences, both graphs imply that the trajectory 

with the minimum cost requires an initial boost to a higher altitude followed by a coast 

period towards the original altitude. Figure 5-8 shows the thrust versus theta for the 
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Figure 5-8 

second run. The two graphs for the thrust are more similar. The initial thrusts are large 

with two discernable peaks. While the second run has more thruster activity after the 

initial boost, the thrust is usually small when compared to the initial bums. 

Numerically the program iterates upon the initial guess and continues until the 

constraints on the state and control variables are within given tolerances and when the set 

of perturbing gradients are below a given value. When guesses are sufficiently away from 

the optimum values these tolerances may be satisfied at points of local minimums. Figure 

5-9 is an attempt to visualize this conclusion and does not represent the actual plot of the 

system's space. 
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MANY LOCAL MINIMUMS 

Local Minimum 

Global Minimum 

Figure 5-9 

Numerically the code approaches the local minimum close to the initial guess. If the 

gradients are small enough the cost function on either side of the minimum is higher. If 

the minimum is a local minimum then the code focuses on that location ignoring the 

possibility of a global minimum location. 

If the procedure were to be repeated with the substitution of 5513 time units entered 

for the initial period the result would be an optimal period of several magnitudes higher. 

Given enough computing time and power the code would approach infinity as new states 

and controls are determined to produce a trajectory that would send a spacecraft as high 

as possible in a single burn to escape the effects of atmospheric drag. The next step in the 

search for the fuel-optimal trajectories is to fix the orbit maintenance period. When the 

value of tau is free the code tends to look towards infinity. The reasonable approach is 

then to look at fixed periods of time to determine if the manner in which burns are 

accomplished can lead to a one solution that is better than another. This type of analysis 

can be extended to many different missions that are used today. For example, the 

International Space Station (ISS) has an orbit maintenance plan that calls for the station to 

be at a specific altitude in order to rendezvous with the Space Shuttle at specific dates. 

The ISS planners calculate how high the station is to be reboosted dependant on the time 

between rendezvous. The next section will examine the optimal trajectories for a given 

fixed orbit maintenance period. 
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C.       FIXED TAU 

This section takes a look at the results of the optimization code when a fixed value for 

the orbital maintenance period is used. In actuality, this section will deal with the 

numerical accuracy and effectiveness of minimization by the non-linear programming 

code. Recall that the second run of the previous section had a very low cost function but 

the plot for the radius did not have a smooth first burn but allowed numerous interior 

burns and decays. The following table shows the masses and periods of the first two runs. 

Check 

Program First Run Second Run 

Period 3014.3 112.6 5513.4 

Propellant 

Used 0.0311 0.0057 0.0637 

Figure 5-10 

The column labeled "Check program" is another code that estimates the fuel required for a 

continuous burn to the desired altitude followed by the time to decay to the original 

altitude. The numbers shown in this column in figure 5-10 reflect a burn to the same 

maximum altitude of the second run. This program will be further explained in the 

following sections where the optimality of the trajectories is discussed. Using the values 

in figure 5-10, a propellant consumption versus time plot is included in figure 5-11. The 

periods for the three different trajectory calculations are different; therefore, by extending 

the overall comparison period by extrapolation, a clearer picture of which trajectory is the 

most efficient is obtained. 
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To determine the difference over time each of the different trajectories were repeated. For 

example when the trajectory of the first run reached a radius equal to the original altitude 

the cycle was repeated. The difference in propellant consumption between the first and 

second runs shows the value of boosting to a higher altitude. Fuel consumption is 

dramatically reduced by a large reboost assuming the spacecraft does not have to be at a 

given altitude at frequent intervals. The small difference between the second run and the 

check program is harder to explain. The check program completes a constant burn at 

maximum thrust up to an altitude equal to the maximum of the second run, a radius of 

1.023 distance units. Mentioned earlier, the second run is not a smooth burn and uses 

burns during the time normally associated with the decay period. A function that would 

have contained a single burn to a higher altitude would even result in a lower cost 

function. For example if the spacecraft would have been boosted an additional 15 km 

(1.025 distance units) the mass used would have been 0.0336 units with a period of 

4261.6 TU. This period approaches the period of the second run with lower propellant 

consumption. Figure 5-12 shows the comparison with a higher altitude boost. 

The high boost (radius = 1.025 DU) is clearly the trajectory that would possess the lowest 

cost function. The question becomes as to why did the optimum code not give an 

47 



optimum trajectory. The answer lies in the complexity and size of the vectors involved 

Propellant Consumption 
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Figure 5-12 

with the spectral collocation method, namely, the creation of the state and control matrices 

and the number of system constraints. 

A method to test the optimality of the non-linear code is to run the simulation for a 

fixed period equal to the period of the free case and compare the results and cost 

functions. The first run of the free section will be used as the benchmark against which to 

compare the fixed period simulations. The first run used the full equations of motion and 

all of the system constraints and gave a very smooth trajectory with a low cost function. 

The optimal period was 112.6 TU with a cost function of 0.7837. It will soon be obvious 

that this run is a very unique run in that the combination of guesses for the states, controls, 

and initial period all allowed the code to iterate to a near optimal solution. In 

experimentation with the code these "good" runs were very infrequent with problems 

ranging from matrix scaling problems to solutions that would seem to settle in a local 

minimum vice the global minimum. In any type of numerical study, reproducibility of 

results is a key tenet of success. The following runs show the ways the original optimal 

code was modified in order to reproduce the results of the original run. 
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The first step in this process is to fix the period at the optimal value obtained form the 

first run. The codes orbopt and orbcrit were modified and renamed tfopt and tfcrit, 

included in the appendix. The main difference in the programs was the removal of x from 

the "aop" matrix. 

aop(7*n+l) =150;      from orboptm 
tau = aop(7*n+l); 

becomes 

tau= 112.6 

Figure 5-13 

The change to the orbcrit program is similar. Figure 5-14 shows the four states as a 

result from the period fixed case. The plot of the radius in the top left corner of Figure 5- 

Radius vs Time Velocity vs Time 
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Figure 5-14 

14 is very important. Initially the code allows the radius to fall below the initial altitude of 

300 km. The general rule of thumb established in previous sections is that fuel 

consumption will decrease with high altitudes. Conversely, one would expect that lower 

altitudes require more propellant given the same period.   This is exactly the case for this 
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run. The cost function for the fixed period case is 0.8559 or 9.2% worse than the original 

run. Figure 5-15 shows the controls for this trajectory. 
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Figure 5-15 

The main difference between the control plots in the two runs is the position of the main 

thruster activity. In the original run the majority of the thrusting action occurred within 

the first 20 time units. Figure 5-15 shows that the main reboost thrusting is not begun 

until approximately 20 TU.   The initial thrust spike at time 10 is the reboost maneuver 

that takes the spacecraft that has descended below the original altitude back to its initial 

height. The final burn is approximately equal to the original run and is required to match 

the initial and final conditions for the periodic states. The controls for the alpha are fairly 

analogous to the original run's thrust angles. When thrusters are firing the thruster angles 

are in the neighborhood of zero, meaning that thrust is usually directed towards the 

velocity vector. 

The results from the fixed period run were disappointing in terms of result 

reproducibility. The next step was to reduce the number of variables in the non-linear 

code further to reduce the numerical complexity of the system. The next simplification 
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affected the angle theta within the equations of motion. Recalling equations (20) and 

(36)-(39): 

r = v • sin(y) 

T - cos(a) - D 
v = -g • sin(y) + 

mB 

r = [y-g 

^    -T 
m=—= 

v.B 

_\  cos(y)    T-sin(a) 
v m-v-B 

(20) 

(36) 

(37) 

(38) 

9 = — -cos(v) 
r 

(39) 

The equation for 9 , equation (39), determines the differential change of theta over time. 

This value is not used in any of the other equation of motions and is completely 

independent of all of the other states. Thus the removal of theta form the system of 

equations would not effect the other states. The loss of theta from the results does pose 

some minor problems in analyzing the data but since the values of gamma are very small, 

on the order of 10"4 radians, the angle theta can be approximated by the simulation time. 

The error in this approximation is significantly less than 1% with an orbit maintenance 

period of approximately 100. This error only changes the angular position of the 

spacecraft at any given time and does not effect the magnitude of the orbital radius. The 

codes tfopt and tfcrit were modified as shown in figure 5-16 and renamed notopt and 

Changes to orbopt: 
Removed - aop(6*n+l :7*n) = zeros(n,l); 
Reduction in the number of constraints - 

options(13)=5*n+6 to =4*n+5; 

Changes to orbcrit: 
Removed the theta equation of motion - 

g(i+4*n) = (2/tau)*sum(Dn(i,:).* 
aop(6*n+l :7*n))-(aop(n+i)/aop(i)* 
cos(aop(2*n+i))); 

Removed constraint - 2(5*n+3") = aoD(6*n+l): 

Figure 5-16 
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notcrit, both included in the appendix. The effect of these changes reduces the size of the 

"aop" vector by removing "n" quantities. The removal of constraints also reduces the size 

of the matrices used by MATLAB. The results reflect the changes with a more optimal 

run. Figure 5-17 shows the states of the no theta run. 

1.004 

1.002 

Radius vs Time 

150 

1.0005 

150 

0.996 

0.994 

Velocity vs Time 

150 

150 

Figure 5-17 

Figure 5-17 shows plots that are very similar to the original run. The radius is only 

significantly different in the first few time units. Here the radius is allowed to follow and 

descend slightly below the original altitude for a very short period. The plot for gamma is 

consistent with earlier results with a slight increase in the angle of the velocity vector to 

the orbit tangential during the thruster firing. Figure 5-18 shows the controls for this run. 
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Figure 5-18 

Excepting the delay with which the thrust starts its initial burn, the no theta control 

profiles are nearly identical to the original run. The initial thrust occurs with two distinct 

maximums and then approaches zero for the duration of the decay period. The final thrust 

is the characteristic final burn to match initial conditions. The angle alpha is nearly zero 

for the duration of the thruster burns and wanders freely between positive and negative pi 

when the thruster is off. The cost function for the no theta run is 0.7945, which is only a 

1.4% reduction in optimality from the original run. 

The final simplification of the computer code involves the angle alpha. Each of the 

above cases shows that alpha hovers around zero whenever a thruster is fired. The logical 

procedure would then be to assume that the alpha is zero always. Physically this would 

mean that the thruster is constrained to fire in the direction of the velocity vector only. 

This assumption is commonly used in real world orbit reboost planning and execution. 

The removal of alpha allows the equations of motion to be dependent upon only one 

control. Every time alpha appeared in the equations of motion it was included within a 

trigonometric expression. Since alpha plays a bigger role while the thrusters are firing and 

the values were around zero, the trigonometric values of these regions were nearly one or 

zero depending on the trigonometric function. The programs notopt and notcrit were 
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exchanged for noaopt and noacrit, which both included substituting in all instances of 

alpha with the value zero. In all of the problems alpha was represented by the portion of 

the "aop" defined as "aop(5*n+i)". Figure 5-19 shows the two lines of code in notcrit, 

which contain the alpha term. 

Ast = (aop(4*n+i)*cos(aop(5*n+i))-D(i))/(aop(3*n+i)*B); 
Ant = aop(4*n+i)*sin(aop(5*n-4))/(aop(3*n+i)*B); 

The expressions are replaced by 

Ast = (aop(4*n+i)*l)-D(i))/(aop(3*n+i)*B); 
Ant = 0; 

Figure 5-19 

The size of the "aop" vector is also reduced by "n" terms in the noaopt file. The first 

noticeable difference between the no alpha run and the original run is the length of 

required computing time. The trimmed code and reduced matrices complete the 

optimization task in less than one half hour while the original code required over 2 hours 

to finish. The results are shown below. Figure 5-20 shows the states of the system. 

Radius vs Time 
1.004 

1.002 

Velocity vs Time 

0 50 100 

x •] Q*      Gamma vs Time 

150 150 

150 

0.996 

0.994 
50 100 150 

Figure 5-20 
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These graphs closely resemble the plots earlier shown for the original run. The cost 

functions are nearly identical with the no alpha case 0.03% more efficient that the original 

problem. The controls are shown in Figure 5-21. 
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Figure 5-21 

While the plot of alpha should be obvious, the plot of the thrust versus the time is almost 

identical to the thrust plot in Figure 5-4. 

The series of modifications to the program produced a code that minimized the effects 

to the states yet modeled the system with a high degree of accuracy. Figure 5-22 shows a 

summary of the cost functions for each of the different modification steps. 

Method 

Cost 

Function 

Full Equations of Motion 0.7837 

Fixed Period 0.8559 

No Theta 0.7945 

No Alpha and No Theta 0.7834 

Figure 5-22 
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The initial and final orbits of the optimal code are nearly circular with very small 

values for the flight path angle. The size of y(0) and y(t) are equal and are on the order of 

10"6 radians. The values of the initial and final velocity also differ slightly from the 

reference value of one, usually in the sixth decimal place. The significance of these 

differences lies in the fact that the optimal initial conditions require the optimal initial orbit 

to be slightly elliptical. The no alpha program allows the optimization code have a high 

degree of reproducibility with fewer errors or warnings given by MATLAB. Another note 

concerning the no alpha code is warranted. The plots displaying the controls of the 

program do show a curve for alpha, which is always zero for the no alpha code. The 

control history of the no alpha optimization code is used in the same first order propagator 

that the full optimization code uses. Displaying the control history of alpha reminds the 

viewer that the no alpha optimization code was used. The code also allows the tolerances 

for the constraints and states to be very small which in turn helps prevent the code from 

settling in a local minimum without a full series of iterations. 

D.       BAND FIXED SIMULATIONS 

The next type of trajectory to examine is the case where the spacecraft is bounded by 

an upper altitude limit. Following the rule of thumb previously established, a spacecraft 

subjected to this one constraint would follow a trajectory that would maintain the orbital 

altitude at the upper limit. This would be a thrust-drag cancellation profile and labeled 

earlier as the high FKT profile. Any flight below the upper limit would require more 

propellant. While appearing trivial the impact of the preceding statement is significant in 

that a satellite that possesses a maximum limit can not orbit the Earth with a trajectory that 

uses less propellant than a high FKT. To illustrate these statements the code was modified 

to make the initial altitude the upper limit as well. This modification forces the code to 

optimize be either following a trajectory that goes below the initial altitude or follow an 

FKT. Figure 5-23 shows the states for the results from the FKT case. 
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Figure 5-23 

While there may appear from the plot alone, that there are large oscillations in the 

radius during the beginning and end of the period, in actuality the peak of these 

oscillations has a magnitude of 1.0000001 or 10"7 deviation from the state. The 10"7 is the 

tolerance the optimal code uses in verifying the validity of its states. Thus neglecting these 

small numerical oscillations the radius follows an FKT profile. Figure 5-24 shows the 

controls for the FKT case. 

Once again neglecting the numerical inaccuracies at the very ends of the simulation the 
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Figure 5-24 
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value of the thrust is a constant one. Since thrust is defined in terms of drag, a thrust 

value of one means that thrust equals drag. The satellite flies an FKT profile. 

However very few satellites today have the capability to follow a thrust-drag 

cancellation profile. Continuous or long duration burn thrusters are only beginning to be 

seen with the advent of electric propulsion systems. So most mission planners use the 

orbital band for planning the orbit maintenance schedule for a vehicle. To look at this type 

of mission the program first fixes the initial altitude and since the radius is periodic the 

final radius is also defined. The next parameter to examine is the period t. If x were free, 

the satellite would boost from its lower altitude to its upper limit and then begin a high 

FKT for an infinitely long time. Since this defeats the purpose of the mission planner a tau 

needs to be chosen. The optimal code is given a fixed tau as in the earlier examples and 

fixes the initial altitude at an initial height. The only additional parameter is a value for the 

width of the orbital band, labeled "band" in the program noaopt.   Figure 5-25 shows the 

g(i+6*n+5) = aop(i)-(l+band); 

Figure 5-25 
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Figure 5-26 

additional inequality constraint added to the noacrit program to bound the upper altitude. 
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The first run was with the same period as before, 112.6 time units. The band was 

entered in as 0.001 DU or about 6.7 km. The initial altitude remained at 300 km and the 

generic spacecraft was the vehicle modeled.   The no alpha code was used due to its 

numerical reliability and shorter computational time. The states for the first run are shown 

in Figure 5-26. 

The graph for the radius in the upper left shows the spacecraft follow a direct path to 

the high altitude limit, then begin an FKT trajectory, followed by decay to its original 

altitude. This combination of regimes can also be seen in the mass plot. Initially the rate 

of propellant use is large during the initial burn. The slope of the mass curve changes 

when then spacecraft reaches its upper altitude limit to a lower rate, consistent with a 

thrust-drag cancellation burn. The next change in the mass' slope occurs when the slope 

becomes zero, during the decay phase when propellant is not used. The final change in the 

graph's slope is due to the final burn required to match the initial conditions. Figure 5-27 

shows the controls for this case. 
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120 

Figure 5-27 

The thrust begins with a large initial burn with a gradual taper to a thrust 

approximately with the value of one. The thrust ends with the characteristic final burn. 

Numerous runs were made to examine to verify that the type of profile seen in the 

above example was consistent with varying orbital bandwidths and orbit maintenance 

periods. One should note that the constraint placed on the maximum radius was not 
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always used. If the band was sufficiently high or the period fairly short the satellite never 

made it to the point where it began an FKT profile. Instead the plots were similar to the 

plots shown in the fixed tau cases when the radius was free and unbounded. Whether or 

not a spacecraft's radius was constrained depended on the period of the case. If the boost 

time and decay time filled the entire period without boosting the satellite to the constraint 

height an unbounded trajectory was the result. For completeness another example is 

shown. In this case the band is 0.005 distance units, just over 33 km. The period is 400 

time units. Figure 5-28 shows the states of this run. 
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Figure 5-28 

Figure 5-29 shows the controls of this example. Both figures resemble the state and 

control figures from the previous example. It is a reasonable conclusion that this is the 

shape of the optimal trajectory given the noted system constraints. 
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VI.    ANALYSIS OF OPTIMALITY 

A. OPTIMALITY TEST CODES 

Previous sections have examined the optimal periodic problem, the numerical method 

and the implementation of the non-linear problem. This chapter is devoted to using the 

developed tools and examines their performance for varying different parameters. A 

measure of the performance is to analyze the optimality of the different solutions by 

comparing them to conventional maneuvers. A series of programs use the orbprop 

propagator to develop trajectories that simulate maneuvers that are compared with the 

results of the optimal code. The first of these is called hoh and models the Hohmann 

transfer. This program is given an orbital bandwidth. It then calculates the change in 

velocity required to travel from a circular orbit at the lower altitude to another circular 

orbit at the higher altitude. The Hohmann maneuver uses impulsive burns, meaning that 

the burns are instantaneous. To model this a velocity change is added directly to the 

vehicle when it reaches the bottom of the orbital band. At the same time the velocity is 

added, the mass used in the impulsive burn is subtracted from the vehicle weight. Figure 

6-1 shows the lines of code which control the additions of velocity and subtractions of 

mass. 

First Impulsive Burn 
vfa = (l/xx(k,l))A0.5; %Lower Circular Velocity 
vtxa = (2/xx(k,l)-l/atx)A0.5; %Transfer Velocity at A 
dv = abs(vtxa-vfa); vn = xx(k,2)+dv; 
mf = xx(k,4)*exp(-dv/ve); %New Mass After Burn 

Second Impulsive Burn 
vtxb = (((2/(r+band))-(l/atx)))A0.5; %Transfer Velocity at B 
vfb = (l/Or+band))^; %Ffigher Circular Velocity 
dvb = abs(vfb-vtxb); 
mf = xp(z,4)*exp(-dvb/ve); %Final Mass after Transfer 
vn = dvb + xp(z,2); %Velocity addition 

Figure 6-1 
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The Hohmann program propagates the orbit over the given period. When the radius falls 

below the lower altitude limit, the Hohmann routine transfers the vehicle to the upper 

altitude. The mass and time of the Hohmann burns are recorded and then written to a data 

file for further use. 

The programs bchk and check are very similar and simulate a continuous burn type 

trajectory. The program check is given a maximum value of thrust. At the start of the 

simulation the vehicle is placed into a maximum tangential burn which continues until the 

vehicle breaks the top of the altitude band. The five physical states are then interpolated 

to give a specific time the spacecraft crossed the altitude upper limit. The next part of the 

program calculates the decay time from the top of the band to the lower limit. The times 

are added together to form a final period. The values for the mass and times for the one 

tangential burn method are recorded for latter comparison. The program bchk operates in 

much the same manner with a minor exception. Here the program is given the entire 

period of interest beforehand. For example to compare the bchk trajectory versus the 

optimal code the same optimal time period t would be used. The program calculates the 

thrusting boost time and the decay time. The burn time and decay time are added and 
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Figure 6-2 

subtracted from the given period. The time remaining is filled with a high FKT at the 
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upper altitude limit. The trajectory resembles the band-limited trajectories included in the 

last chapter. Here also the values of the masses and times are recorded for comparison. 

Figure 6-2 shows the differences in the mass plots of the four different trajectory 

programs. The two check programs require considerably more fuel than the Hohmann 

and Optimal trajectories. The codes are meant to mimic a real world continuous thrust to 

the upper altitude limit. The trajectories are very costly in terms of propellant due to the 

fact of the burn required to circularize the orbit to the upper altitude limit. There are two 

reasons that this needs to be accomplished. The first is that the upper circular orbit is the 

same final orbit after the Hohmann transfer. The second reason is that the angle gamma is 

a positive number, meaning that the velocity vector is above the local horizontal. After 

the thruster is turned off the spacecraft would travel beyond the upper altitude constraint 

in an elliptical orbit. Figure 6-3 is a diagram showing the necessary change of velocity 

required to circularize the final orbit at the upper altitude limit. 

Transfer ^^^    \.  Required 
Orbit ^^^^ >^elocity 
Velocity 

Figure 6-3 

For low values of thrust, where T = 1 to 5 normalized thrust units, the required Av is fairly 

small. When thrust increases, y increases lengthening the required velocity change vector. 

Thruster sizes that approximate instantaneous burns require a large second burn to 

circularize the final orbit. The thruster size used in figure 6-2 for the check and bchk 

programs was set at 20 normalized thrust units. All four programs will be examined later 

to measure each trajectory's optimality. 

B.       VARIATION OF PARAMETERS 

The true test for the code is its ability to vary the initial guesses, control boundaries, 

numerical method parameters and deliver reliable and accurate results. This is especially 
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crucial for optimal control problems that are very sensitive to initial values and 

effectiveness of the controls. In the previous chapters different values and equations were 

tested to achieve good results.   Throughout these examples, thrust has been constrained 

to never go above a certain value. In this case thrust has been constrained with a value of 

5 normalized units. Physically the value of thrust changes with the location and physical 

attributes of the spacecraft. For example for the generic spacecraft at 300 km altitude, 

one normalized unit of thrust equals 0.7 N while the same normalized unit for the ISS at 

the same altitude is 2.9N. The engine planned for the ISS is 1 ION or just over 37 
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Figure 5-19 

normalized units at the reference altitude. Therefore it is beneficial to study the effects of 

increased thrust constraints and eventually the unconstrained thrust case. 

Recalling Figure 5-19, the controls of the generic satellite given a fixed tau of 112.6 

TU, the plot for the thrust shows the smooth continuous thrust history with the initial 

thrust defined by two characteristic peaks with a maximums around 5.0. Note that the 

reason the graphs appear to slightly break the upper thrust constraint are due to the fact 

that the plots represent an interpolation of the values taken from the values of the controls 

determined by the optimization code at the LGL points. In attempting to smooth the 

curve the interpolation routine will go above the stated constraints. However the shape of 

the curve is still a good approximation of the behavior of the system. With this thrust 

constraint the cost function for the given period was 0.7834. The propellant consumed 
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during the simulation was approximately 0.0057 normalized units or in physical terms just 

under 17 kgs. 

Thrust was then increased to a value of 10 thrust units. This must be done in two 

places within the computer code. First in the noaopt code the initial thrust vector was set 

to 10 units. In the noacrit code the inequality constraint containing "aop(4*n+i)" was 

given a maximum limit of 10. Figure 6-4 shows the control history of the new simulation. 

This figure shows another smooth function for the thrust but with a single peaked initial 
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burn. The final burns at the end of the simulation are about the same for both cases and 

do not reach the maximum thrust value. The cost function for this case is 0.7688, a 2% 

reduction in fuel consumption. In terms of physical mass of fuel saved by having a higher 

limit of thrust, it represents 0.3 kg of savings. This may not seem like a substantial 

amount but recall that the period for this case is slightly longer than a single day. 

Increasing the motor size from 3.5 N to 7 N would save the spacecraft approximately 100 

kg of propellant needed for orbit maintenance over the course of a year. The reason for 

the fuel savings is that the larger motor is able to boost the satellite to a slightly higher 

orbit with the period constraint. The 5 thrust unit case boosted the satellite to a 

normalized altitude of 1.0034 DU while the 10 thrust unit case boosted it to 1.0036 DU. 

This change in altitude difference was enough to reduce the cost function ever so slightly. 
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The shorter burn time to reach the higher altitude allows longer decay times. The basic 

shape of the trajectory is very similar to the earlier case. Figure 6-5 shows the states for 

the 10 thrust unit example. 
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Figure 6-5 

The states have the same shape as those of the lower thrust case, so the addition of thrust 

does not alter the trajectories significantly. 

Since the thrust history was constrained at the maximum thrust limit during the last 

simulation, another run is necessary with higher thrust levels. The next simulation used a 

maximum available thrust of 25 thrust units (14 N). The ultimate goal of raising the thrust 

constraint is to find a case where the maximum thrust does not reach the constraint; in this 

sense, the thrust would be unbounded. An easy option would be to set the thrust limit at a 

very high number in the hundreds or thousand. Unfortunately the code sees the large 

range of available thrusts as an added complexity for the system, leading to non-smooth 

and non-optimal solutions. Thus an incremental approach to raising the altitude limit is 

desired. The controls for this run are included in figure 6-6. 

The controls from the T=10 and T=25 examples are very similar. The most significant 

point of figure 6-6 is that maximum thrust is 14.3 thrust units. This is the first case where 

the thrust did not reach the maximum constraint with an optimal trajectory. The cost 

function of this run is 0.7620. This cost function is a 3% reduction over the original thrust 
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constrained case. To confirm that this solution is not a numerical accident another case 

with a different thrust constraint (T=20) was run. It is important to determine that the 

optimal thrust profile is not a function of the location of the thrust constraint or initial 
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Figure 6-6 

guesses for the thrust history. The cost function of this second run was also 0.7620. All 

of the states were the same with minor fluctuations in the thrust history in the 5th decimal 

place. 

Figure 6-7 shows the controls for the T=20 run. 
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The thrust functions are identical between the two runs. The states are included in 

Figure 6-8. 
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The states shown in Figure 6-8 represent the optimal solution given the generic spacecraft, 

starting at the reference altitude and given a certain period. This procedure can be 

repeated for any variations of the given information. However, the states shown in Figure 

6-8 represent the optimal paths for this unique situation. To develop other situation only 

requires changing the conditions under which noaopt and its associated codes run. For 

example a different set of curves can be determined if the satellite was to have a two and a 

half day orbit maintenance period. 

The next step is to check the results of the optimal code against the Hohmann 

trajectories given the same system constraints. One of the tenets from the beginning of the 

study was to identify a trajectory that was as good or slightly better than an ideal 

Hohmann trajectory. Figure 6-9 shows the mass consumption of various profiles including 

the optimal code run with Tmax = 20, the Hohmann transfer and several FKTs. 
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The FKT paths represent, from the top to bottom in Figure 6-9, the low-band, mid-band, 
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Figure 6-9 

and high-band trajectories. As noted earlier the high-band FKT will always be the 

trajectory with the lowest fuel consumption but the figure assumes that the satellite begins 

the simulation at the top of the band, neglecting the boost maneuver needed to reach the 

top of the band. The straight stair-step like solid line represents the mass consumption of 

the Hohmann transfer. The line with the plus signs represents the mass consumption of 

the optimal trajectory. Notice that optimal code shows lower propellant use. In order to 

highlight these differences the graphing periods are increased to show savings over longer 

periods of time. Figure 6-10 shows the extended mass consumption comparison for the 

constrained thrust example. 
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Figure 6-10 

The uppermost line shows the propellant consumption for the two check programs. In 

this instance both programs show the same trajectory. This is because the time to decay 

from the top of the band is greater than the given orbit maintenance period. When the 

decay time is subtracted from the given period the result is a negative number. The bchk 

code considers this value zero; in other words the time that the satellite follows a high- 

band FKT is zero. The next two lines are very close together but a difference is 

discernable. The higher of the two lower lines is the propellant use of the Hohmann 

trajectory. The optimal trajectory has the lowest rate of fuel use of the four trajectories. 

In order to highlight the differences between the optimal and Hohmann trajectories a 

trendline is extended from each set of points. Figure 6-11 shows the trendlines for a 

period of approximately 150 days. 
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Figure 6-11 

This graph shows that one of the goals of this project has been met. There exists a 

trajectory that is more fuel-efficient than a Hohmann transfer. While the difference 

between the two is small one must remember that the Hohmann transfer was modeled as 

an ideal maneuver. The burns are instantaneous with infinite thrust. This assumption 

neglects losses, mainly drag loss, which the optimal control code considers automatically. 

The easiest way to show the effect of drag loss is to start with Newton's equation of 

motion with the assumption that mass changes are small. 

Fnet=ma (76) 

Assuming constant acceleration equation (76) becomes: 

m 

F.=T-D 

(77) 

(78) 

Thus the required Av can be related to the total impulse through equation (77). Recalling 

a form of the rocket equation, 
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mp = m0 

-A/ 

(79) 

For a real motor: 

Assuming constant thrust: 

m =-y- (80) 

mp m = -f- (81) 
At 

Here At is the burn time of the thruster. Combining equations (80) and (81) gives an 

expression for total impulse in terms of propellant mass. 

mp FAt = —y- (82) 
oo   sp 

Assuming that drag works in opposition to thrust, equation (82) can be rewritten. 

TAt-DAt = -^- (83) 
oo  sp 

The DAt term from equation (83) is the portion of the total impulse lost to drag. Since the 

total impulse must remain the same for a given change in velocity, the drag impulse must 

be made up by the thrust impulse. This either requires a larger thruster or a longer burn 

time. For example, assume that a total impulse of 200 units is needed. With a thruster 

with a normalized thrust of 2, or twice the force of drag, the spacecraft would need a 

thruster firing of 100 time units to accomplish the maneuver if there were no drag. With 

drag, the net force is equal to one unit and requires a burn time of two hundred time units. 

The extra time required for the maneuver determines the amount of propellant required. 

The addition of drag uses twice as much propellant, or in other words the drag loss of this 

example is approximately 50%. With larger thrusters the drag loss is decreased. However 

even for a motor that has a rating of 15 normalized units, the optimal thruster example 

determined previously, nearly 7% more propellant is required by considering drag. Figure 

6-12 modifies the Hohmann propellant consumption of figure 6-11 by adding a 6.67% 

increase in the amount of fuel required. 
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Figure 6-12 
Figure 6-13 is included in order to show numerical values for the fuel savings of the 

optimal code. 

Mass 

Expended 

Percent 

Savings 

Launch 

Cost 

Savings 

Optimal Code 644.3 kg - - 

Ideal Hohmann 667.0 kg 3.5% -$250,000 

Hohmann with 

Drag Loss 711.5 kg 

10.4% -$740,000 

Figure 6-13 

The sampling point for Figure 6-13 was at approximately 45 days of orbit maintenance 

operations. The thruster size was set at the maximum of the optimal code, 15 normalized 

thrust units. The 3.5% savings the optimal trajectory has over the impulsive Hohmann by 

itself is a significant improvement over the life of the satellite. When drag effects are taken 

into consideration the savings improve dramatically. The general rule remains that the 

smaller the orbital maintenance thruster the greater the savings of the optimal code 
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compared to the finite-burn Hohmann transfer. The above example shows that 10.4% 

savings in propellant can be achieved when the size of the motor equals 15 thrust units 

(10.5 N). The efficiency of the Hohmann transfer can be improved by increasing the size 

of the orbit transfer engine, which decreases the burn time. However even at the 

maximum limit, an infinite thruster, the Hohmann transfer is still 3.5% less efficient. 

When monetary terms are used to describe the potential savings the differences 

become more evident. Looking at Figure 6-13, the savings between the Hohmann and the 

optimal code is 23.3 kg of fuel. Using an average launch cost to LEO this comes to 

approximately $256,000. When drag losses are considered, the difference increases to 

67.2 kg, or in terms of dollars $740,000. The generic satellite used in the example is a 

high drag vehicle that operates at a fairly low altitude.  However, savings occur with 

other spacecraft as well. For example, the mass/area ratio was changed to model the ISS 

during a late stage in construction. Figure 6-14 shows the physical characteristics of the 

ISS example. 

ISS Characteristics 

Orbital Altitude 300 km 

Mass 408,420 kg 

Area 2200 m2 

Drag Coefficient 2.35 

Figure 6-14 

One rather large difference between the future ISS operations and the optimal code is 

that the length of time between rendezvous for the ISS is much longer than the period 

entered into the optimal code. The main reason for this is that long periods create some 

numerical instability for the optimal code without extensive gradient information. The 

example though does highlight some of the benefits of an optimal trajectory for shorter 

time periods versus the mission planned with Hohmann type transfers. All that was 

changed from the generic satellite to the space station example were the constants for 
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mass and area, included in the beginning of the noaopt program. A maximum thrust of 20 

was placed as the initial guess for the code, which for the ISS is approximately 57.7 N. 

The period of the optimal code was fixed at 112.6, the same period as previous examples. 
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Figure 6-15 

Figure 6-15 shows the states for this example. 

The plots for the states are nearly identical in shape to the states of the generic satellite. 

The difference lies in the values of the states. The ISS is much more massive than the 

generic vehicle and has a normalized ballistic coefficient two order of magnitudes larger. 

Figure 6-16 shows the controls for this run. 
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Again Figure 6-16 does not possess any large deviations from earlier plots. One 

interesting point to notice is that the maximum thrust for this case is just over 10 units (or 

about 30 N). For this case and period the optimal thruster is much smaller than the 

thruster currently being planned for the ISS, by approximately a factor of four. Figure 6- 

17 compares the Hohmann transfer fuel consumption versus the optimal trajectory. 
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Figure 6-17 

The optimal code is the hash-marked line that increases smoothly as the vehicle undergoes 

its transfer burn and then is constant during the following decay. The figure also shows 

two different Hohmann transfer plots. The solid stair-step line is the mass consumption of 

the Hohmann transfer when the transfer uses the same size orbital band as the optimal 

code. The dashed stair step line is a Hohmann transfer where the period of the transfer is 

the same as the period of the optimal code. The straight lines are the three different FKT 

profiles. Since the band in this case is very narrow (about 1.5 km) there is little difference 

between the high-band to low-band FKT. The fixed tau Hohmann transfer nearly matches 

the optimal fuel efficiency until the final circularizing burn at the end of the period. At 

first glance Figure 6-17 suggests that the fixed band Hohmann transfer uses less propellant 
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than the optimal code. However, the period of the fixed band Hohmann transfer is shorter 

than the optimal trajectory. In order to examine the difference between the two orbit 

transfers the values of each are linearly extrapolated over a period of 150 days. This 

highlights long-term divergence between the two methods. 
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Figure 6-18 

Figure 6-18 shows that again the optimal transfer is a more efficient maneuver than an 

impulsive Hohmann transfer. For the maximum thruster, of 10 units, drag losses would 

increase the consumption of propellant by the Hohmann transfer by over 10%. In terms of 

actual propellant, a sample at the 50-day mark would show that the optimal trajectory 

used 4252.9 kg of fuel for orbit maintenance while the Hohmann transfer would use 

4337.2 kg. The savings in this case are approximately 2% over the ideal Hohmann, drag 

loss may increase that number to 13%. The optimal code would save about 600 kg per 
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year over the ideal Hohmann transfer, a savings of 6.6 million dollar per year in launch 

weight costs alone. 

This example shows the usefulness of the code as well as the ease with which different 

spacecraft can be modeled. While a lower drag vehicle like the ISS has slightly less 

savings over the ideal Hohmann than a higher drag vehicle, the savings are present and 

significant over a long period of time. Further analysis is necessary to vary the parameters 

and understand the "physics" of the optimal trajectory. 
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VII.   CONCLUSION 

The work succeeded in accomplishing the stated goals. Quantitatively, the rule of 

thumb is that the optimal trajectory is slightly better than the impulsive Hohmann (~ 3%) 

and significantly better than the finite-bum Hohmann (up to ~ 10%). The savings are at 

least equal to drag loss "elimination." Beyond the physical numbers, the crucial part of the 

thesis was to explore the orbit maintenance problem in depth and use optimal periodic 

control (OPC) theory as a tool to locate the fuel-optimal solution. The many simulations 

that were described were a very small portion of the learning and experimentation that 

went into attacking this process. The work began with general optimal control theory, 

later specialized by periodicity, the equations of motion for two-dimensional orbital travel, 

and a good numerical method. Examining the results of the preliminary simulations reveal 

some numerical instabilities in the optimization code which led to further examination of 

the equations in order to improve the reproducibility and accuracy of the results. With this 

accomplished, the optimal results could then be compared with various other trajectories 

in order to measure the optimal trajectory's fuel efficiency. The different controls and 

boundary conditions were modified in order to search for the most fuel-optimal trajectory. 

The amount of information from these simulations is enormous. The optimal 

trajectory would represent a large departure from current orbit maintenance procedures. 

The first difference would manifest itself in the design process. Mission planners 

determine the periodicity of the orbit maintenance routine by either fixing an orbital band 

in which the satellite operates or by specifying specific times the spacecraft is to be at the 

lower altitude limit. With this information, the operating altitude, and the satellite's 

physical characteristics the optimal code can be run with varying thrust levels. By 

examining the control histories a maximum thrust can be determined. This is an absolute 

limit for the given conditions. Excess performance in the engine would not increase fuel 

efficiency. This limit gives designers an upper limit on the size of the needed thruster, 

creating possible savings of platform cost and weight. 

Then there is the trajectory itself. A true departure from the Hohmann transfer, the 

optimal code calls for a smooth continuous throttle burn that transfers the vehicle to the 

top of the orbital band.   The only requirement for the burn would be that since the burn 
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occurs over a larger period of time, it should be performed as an autonomous maneuver or 

be continually linked to the control of a ground station. Most current engines are 

normally bang-bang only. This trajectory gives enough justification by its savings to 

develop throttlable motors or develop chattering techniques which can model bang-bang 

engines as a varying thrust engine. 

But with all good research there are new questions that can be addressed and studied. 

First the complexity of the atmospheric model can be increased. Diurnal effects may be 

able to increase the savings of trajectories. One of the strengths of this method is that 

modifying the atmospheric model only requires modification of the density function that is 

independent from the optimization code.   Another area of future research is identifying 

more robust optimization codes and routines.   A good portion of this work was spent in 

determining ways in which to increase the numerical accuracy of the results while also 

reducing the computer run time. New methods for numerical approximations may be 

highly productive and more accurate interpolation schemes may have a large benefit. The 

code is not limited to Earth bound operations. Simply by changing the constants 

throughout the programs and the density model, this method could be applied to any other 

planetary body. 

The biggest strength of the program is its flexibility and applicability to different 

models. The normalization method made it very easy to modify the spacecraft 

characteristics or the size of the thrusters. In terms of physical characteristics, spacecraft 

are modeled by their mass to cross-sectional area ratios. This is what makes the ISS the 

same as the Hubble Space Telescope but different from an inflatable. The ability to run 

the code for different situations is an important aspect of the project's success. 

Optimal control has long broken preconceptions about certain topics. The problem of 

orbit maintenance may be the latest example. In every primary orbital mechanics textbook 

there is a section on the Hohmann transfer that states that it is the most efficient transfer 

between circular orbits, which it is for many cases. But when complexities are added to 

the system, such as the addition of atmospheric drag, these statements do not hold true. It 

is the goal of every research project to question all the answers and push the boundaries of 

learning and understanding out a little further. 
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APPENDICES 
Appendix A - Density, m 

% Program density.m 
% Karl Jensen - May 13,1998 

function rho = density(x); 
rt = x* (6378+300); 

if it >= 6753 
rref = 6778; h=58.2; 
rhoref = 2.62e-12; 

elseif rt >= 6703 
rref= 6728; h =54.8; 
rhoref = 6.66e-12; 

elseif rt >= 6653 
rref = 6678; h=50.3; 
rhoref =1.87e-ll; 

elseif rt >= 6603 
rref= 6628; h =44.8; 
rhoref=5.97e-ll; 

else rref= 6578; h= 37.5; 
rhoref =2.41e-10; 

end; 
rhon = rhorePexp(-l*(rt-rref)/h); 
rho = rhon/1.87e-ll; 

Appendix B - Orbprop.m (First Order Propagator) 

% First Order Propagator 
% Karl Jensen - May 1,1998 

function ddot = orbprop(t,x) 

global T alpha tau n band xt 
global xt 
% First Order Differential Equation Solver 

% States 
% x(l) = r 
% x(2) = v 
% x(3) = gamma 
% x(4) = mass 
% x(5) = theta 
mO = 408420; a=2200; 
%m0 = 3000;a=1000; 
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mO=3000;a=500; 
isp = 300; gn = 9.81; cd = 2.35; 
rok = 6378+300; rhoO = 1.87*10A(-11); rho =1; 
vO = sqrt((3.986005*10A5)/rok)*1000; rO = rok * 1000; 

t 
B = 2 * mO / (rO*rhoO*cd*a); 
ve = isp*gn/vO; 

rho = density(x(l)); 
g=l/(x(l)A2); 
D = rho*(x(2)A2); 
if(n>5) 

% I assume lower limit of the run = 0; 
taut = (2*t-tau)/tau; 
t 
Tp = interpl(xt,T,taut/spline'); 
ifTp<0 

Tp = 0; 
end; 
alphap = interpl(xt,alpha,taut,'spline'); 

end; 
if(n=l) 

end; 
if(n=2) 

end; 
if(n=3) 

Tp = D; alphap = 0; 

Tp = 0; alphap = 0; 

Tp = 20; alphap = 0; 

end; 

As = (Tp*cos(alphap)-D)/(x(4)*B); 
An = Tp*sin(alphap)/(x(4)*B); 

ddot(l) = x(2)*sin(x(3)); 
ddot(2) = -g*sin(x(3))+As; % 5 Equations of Motion 
ddot(3) = (x(2)A2/x(l)-g)*(cos(x(3))/x(2))+An/x(2); 
ddot(4) = -abs(Tp)/(ve*B); 
ddot(5) = x(2)*(cos(x(3))/x(l)); 
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APPENDIX C - HOH.M (HOHMANN TRANSFERS) 

% Drag Code - Karl Jensen - Orbital Mechanics November 26,1996 
global T 
global band n tau ve 

mu=l; 
%band= 1.000147536-1; 
m0 = 408420; a=2200; 
%m0 = 3000;a=500; 
%m0=3000;a=10000; 
isp = 300; gn = 9.81; cd = 2.35; 
rok = 6378+300; rhoO = 1.87*10A(-11); rho =l;radref =rok; 
v0 = sqrt((3.986005*10A5)/rok)*1000; r0 = rok * 1000; 

ve = isp*gn/v0; 

% t,x are for Constant Thrust - Lower FKT 
% tt, xx are for Free Fall 
% tl, xl are mid band FKT values 

v=l; 
gm=0; 
m=l; 
theta = 0; 

p = 2*pi*(rA3/mu)A0.5; 
tp = tau/(2*pi)*p; 

% Constant Thrust 
xo=[r v gm m theta]; 
to = 0; 
tf=tp; 
tol=l.e-9; 
n=l 
[t,x] = ode45(,orbprop',to,tf,xo,tol:,0); 

figure(l); 
orient tall; 
subplot(2,2,l),plot(t/p,x(:,l)>,);xlabel(,Orbits');title(,Radius versus Orbit');ylabelCRadius 
(m)'); 
subplot(2,2,2),plot(t/p,x(:,2),'b,);xlabel(,Orbits,);title(,Velocity versus 
Orbit');ylabelCVelocity (m/s)'); 
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subplot(2,2,3),plot(t/p,x(:,3)*360/(2*pi),,b,);xlabel(,Ort)its,);title(,GammaversusOrbit,); 
ylabel('gamma (deg)'); 
subplot(2,2,4),plot(t/p,x(:,4),'b')pdabel(,Orbits');title(,Mass versus Orbit');ylabelCMass 
(kg)'); 

% Free Fall 
n = 2 
sp = 5*p; 
[tt,xx] = ode45(,orbprop',to,sp,xo,tol,0); 

temp = xx;temp2 = tt; 

figure(2); 
orient tall; 
subplot(2,2,l),plot(tt/p,xx(:,l),'b,);xlabel(,Orbits');title(,Radius versus Orbit');ylabelCRadius 
(m)'); 
subplot(2,2,2),plot(tt/p,xx(: ,2),'b,);xlabel(,Orbits');title(,Velocity versus Orbit"); 
ylabel('Velocity (m/s)'); 
subplot(2,2,3),plot(tt/p,xx(:,3)*360/(2*pi),,b,);xlabel(,Orbits');title(,Gamma versus Orbit'); 
ylabel('gamma (deg)'); 
subplot(2,2,4),plot(tt/p,xx(: ,4),*b')pdabel('Orbits,);title(,Mass versus Orbit');ylabelCMass 
(kg)'); 

% Middle Band FKT 
n=l; 
mid = r + band/2; lv = (mu/mid)A.5; 
xo = [mid lv gm m theta] 
[tl,xl] = ode45(,orbprop',to,tf3xoM0); 

% High Band FKT 
n=l; 
higher = r + band; hv = (mu/higher)A.5; 
xo = [higher hv gm m theta] 
[th,xh] = ode45('orbprop',to,tf,xo,tol,0); 

%Part Three - Hohmann Runs 

flag=l;n = 2;c=l; 

while flag 
k = c; 
while (xx(k,l)>(r)) & flag 

k = k+l; 
ifk>=size(tt,l) 
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flag = 0; 
end: 

end; 
if(c< = 1) & flag 

burnvec = xx(k-l:k,:); burnt = tt(k-l:k); 
int = interpl(buravec(:,l)3burat,l); 
invec = interpl(buravec(:,l),burnvec,l); 
xx(k,:) = delvee(invec); tt(k) = int; 

end; 
if flag 

end; 
end 

dr = pi*(cd*a/(mO*xx(k,4)))*rhoO*(radrePlOOO*xx(k,l))A2; 
drn = dr/(radref*1000); 
atx = (l+r+band+0)/2; 
vfa = (l/xx(k,l))A0.5; 
vtxa = (2/xx(k,l)-l/atx)A0.5; 
dv = abs(vtxa-vfa); vn = xx(k,2)+dv; 
mf = xx(k,4)*exp(-dv/ve); 
n=2; txorb = [xx(k,l) vn xx(k,3) mf theta]; 
tf=tt(k) + pi*(atxA3)A0.5; 
[tx,xp] = ode45('orbprop',tt(k),tf,txorb,tol,0); 
z = size(tx,l); 
vtxb = (((2/(r+band))-(l/atx)))A0.5; 
vfb = (l/(r+band))A0.5; 
dvb = abs(vfb-vtxb); 
mf = xp(z,4)*exp(-dvb/ve); 
vn = dvb + xp(z,2); 
to = tf;tf=tp; 
orb = [xp(z,l) vn xp(z,3) mf xp(z,5)]; 
ovr = 6*(band+0.005)/(drn); 
if (tf-to) > ovr 

tf = to + ovr; 
end; 
[tq,xq] = ode45('orbprop',to,tf,orb,tol,0); 
ff = [5 1]; 
if ff = size(xq) 

xq=xq'; 
end; 
st = [tt(l:k);tx;tq]; 
sx=[xx(l:k,:);xp;xq]; 
tt = st; 
xx = sx; 
c = k+z; 
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figure(3); 
xx=temp;tt=temp2; 
orient tall; 
subplot(2,2, 1 ),plot(st/p,sx(:, 1 ),V); 
xlabel(*Orbits');title('Radius versus Orbit');ylabelCRadius (m)*); 
subplot(2,2,2),plot(st/p,sx(:,2),V);xlabel('Orbits'); 
title('Velocity versus Orbit');ylabel('Velocity (m/s)'); 
subplot(2,253),plot(st/p3sx(:J3)*360/(2*pi),,b,); 
xlabelCOrbits^titleCGamma versusOrbit');ylabel('gamma (deg)'); 
subplot(2^4),plot(st/p,sx(:,4),V);xlabel(,Orbits'); 
titleCMass versus Orbit'^ylabelCMass (kg)'); 
sxl =sx;stl=st; 

figure(4); 
orient tall; 
subplot(2,2,1 ),plot(st/p,sx(:, 1 ),V); 
xlabelCOrbits^titleCRadius versus Orbit');ylabelCRadius (m)'); 
subplot(2,2,2),plot(st/p,sx(:,2),*b,);xlabel('Orbits*); 
title('Velocity versus Orbit');ylabel('Velocity (m/s)'); 
subplot(2,2,3),plot(st/p,sx(:,3)*360/(2*pi),*b'); 
xlabelCOrbits^titleCGamma versusOrbit');ylabel('gamma (deg)1); 
subplot&^Xplottst/p^xC^^ixlabelCOrbits'); 
titleCMass versus Orbit');ylabelCMass (kg)'); 

figure(5) 
plot(st l/p,m-sxl (: ,4),'b',t/p,m-x(: ,4),'m--',tl/p,m-xl(: ,4),'m: ',th/p,m-xh(: ,4),'m- 
.');titleCPropellant Comparison'); 
xkbel('Orbits');ylabel('NormalizedMass'); 
hold; 
%plot(stl/p,m-sxl(:,4),'r'); 
hold off; 
k=size(xl(:,4)); mid = m-xl(k,4) 
k=size(xh(:,4)); high = m-xh(k,4) 
k=size(x(:,4)); low = m-x(k,4) 

hohfliel = m-sxl(:,4);lowfuel = m-x(:,4); 
midfiiel = m-xl(:,4);highfuel = m-xh(:,4); 
hohtime = stl; 
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Appendix D - Orboptm 

% This routine calculates the minimum of the cost function given by 
% the function crit. 
clear; 
tic; 

global n 
global Dn x w 
global B ve rho aop aref 

n=24; % The number of lobatto points. 

%m0 = 408420; a=2200; 
mO = 3000; a =500; 
%m0=3000;a=10000; 
isp = 300; gn = 9.81; cd = 2.35; 
rok = 6378+300; rhoO = 1.87*10A(-11); rho =1; 
vO = sqrt((3.986005*10A5)/rok)*1000; rO = rok * 1000; 

B = 2 * mO / (r0*rho0*a*cd); 

ve = isp*gn/v0; 

Tguess = 5.0; 
|Pn,x,w]=cüffm(n); 

aop(l:n)= ones(n,l); 
aop(n+l:2*n) = ones(n,l); 
aop(2*n+l:3*n) = l.l*ones(n,l); 
aop(3*n+l:4*n) = ones(n,l); 
aop(4*n+l:5*n) = Tguess*ones(n,l); 
aop(5*n+l:6*n) = 0*ones(n,l); 
aop(6*n+l:7*n) = zeros(n,l); 
aop(7*n+l)=112; 
taup=aop(7*n+l); 
options( 13)=5 *n+6; 
options(14) = 400*(7*n+l); 
options^lO^^^/oS 
options(3)=10A(-5);%5 
options^lO^-SX^oS 
options(l)=l; 
%options(18)=l; 
options(16) = 10A(-6);%7 
vub=[]; 
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vlb=[ ]; 

aop=constr('dorbcrit',aop,options,vlb,vub); 

% a is for the state and b is for the control. 
rp=aop(l:n); 
vp = aop(n+l:2*n); 
gammap = aop(2*n+l:3*n); 
massp = aop(3*n+l:4*n); 
Tp = aop(4*n+l:5*n); 
alphap = aop(5*n+l:6*n); 
thetap = aop(6*n+l:7*n); 
tau = aop(7*n+l); 

toe; 

tic; 
orbres; 
orbconv; 

toe; 

Appendix E - Orbcritm 

function [costfh,g]=dorbcrit(aop); 

%% This function calculates the cost function that is to be minimized 
%% and the state constraints. 

global nx wDn; 
global B ve rho aref; 
% global costfh; 

% Set up the cost function. 
fori=l:n 

fh(i)=aop(4*n+i); 
end; 
costm= ^♦sum^m'); 
tau = aop(7*n+l); 

% Set up the state constraints. 
fori=l:n 
rt = aop(i)*(6378+300); 

if rt >= 6728 
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rref = 6778; h=58.2; 
rhoref=2.62e-12; 

elseif rt >= 6628 
iref= 6678; h =50.3; 
rhoref=1.87e-ll; 

else rref = 6528; h= 37.5; 
rhoref=2.41e-10; 

end; 
rhon = rhoref*exp(-l*(rt-rref)/h); 
rho = rhon/1.87e-ll; 

G(i)=l/(aop(ir2); 
D(i) = rho*(aop(n+i)A2); 
Ast = (aop(4*n+i)*cos(aop(5*n+i))-D(i))/(aop(3*n+i)*B); 
Ant = aop(4*n+i)*sin(aop(5*n+i))/(aop(3*n+i)*B); 
V(i) = ve; 

% Theta 
g(i+4*n) = (2/tau)*sum(Dn(i,:).*aop(6*n+l :7*n))-(aop(n+i)/aop(i)*cos(aop(2*n+i))); 
%Mass 
g(i+3*n)=(2/tau)*sum(Dn(i,:).*aop(3*n+l:4*n))+(aop(4*n+i)/(ve*B)); 
% Gamma 
g(i+2*n)= (2/tau)*sum(Dn(i,:).*aop(2*n+l :3 *n)); 
g(i+2*n)=g(i+2*n)-(((aop(n+i)A2)/aop(i))-G(i))*(cos(aop(2*n+i))/aop(i+n)); 
g(i+2*n)= g(i+2*n)- Ant/aop(n+i); 

% Radius 
g(i)= (2/tau)*sum(Dn(i,:). *aop(l :n))-aop(n+i)*sin(aop(2*n+i)); 
% Velocity 
g(i+n)=(2/tau)*sum(Dn(i,:).*aop(n+l:2*n))+(G(i)*sin(aop(2*n+i)))-Ast; 

g(i+5*n+6) = - aop(4*n+i); 
g(8*n+6+i) = aop(4*n+i)-5.0; 
% g(i+9*n+6) = l-aop(i); 
%g(i+7*n+5) = aop(i)-l; 
g(i+6*n+6) = aop(5*n+i)-pi; 
g(i+7*n+6) = -pi-aop(5*n+i); 
end; 

g(5*n+l) = aop(l)-aop(n); 
g(5*n+2) = aop(2*n+l)-aop(3*n); 
g(5*n+3) = aop(6*n+l); 
g(5*n+4) = aop(n+l)-aop(2*n); 
g(5*n+5) = aop(3*n+l)-l; 
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g(5*n+6) = aop(l)-l; 

Appendix F - Orbconv.m 

% Conversion from AOPs to Functions of Time 

global aop n 
global T alpha tau 
global band xt 

rO = aop(l); vO = aop(n+l); gmO = aop(2*n+l); 
mO = aop(3*n+l); thO = aop(6*n+l); 

T = aop(4*n+l:5*n); 
alpha = aop(5*n+l:6*n); 

tau = aop(7*n+l); 
xt=x; 

xo=[rO vO gmO mO thO]; 
to = 0; 
tf = tau; 
tol=l.e-9; 

[t,x] = ode45('orbprop',to,tf,xo,tol,l); 

nl = size(t); 
rr(l) = aop(l); rr(nl(l,l)) = aop(n); 
vr(l) = aop(l+n); vr(nl(l,l)) = aop(2*n); 
gmr(l) = aop(l+n*2); gmr(nl(l,l)) = aop(3*n); 
massr(l) = aop(l+3*n); massr(nl(l,l)) = aop(4*n); 
thrustr(l) = aop(l+n*4); thrustr(nl(l,l)) = aop(5*n); 
alphar(l) = aop(l+5*n); alphar(n 1(1,1)) = aop(6*n); 
thetar(l) = aop(l+6*n); thetar(nl(l,l)) = aop(7*n); 
fork = 2:(nl-l) 

taut = (2*t(k)-tau)/tau; 
k 
rr(k) = interpl(xt,aop(l :n),taut5'spline'); 
vr(k) = interpl(xt,aop(n+l:2*n),taut,lspline'); 
gmr(k) = interpl(xt,aop(2*n+l:3*n),taut,lspline'); 
massr(k) = interpl(xt,aop(3*n+l:4*n),tautJ'spline'); 
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if massr(k) > massr(k-l) 
massr(k)=massr(k-1); 

end; 
thrustr(k) = interpl(xt,aop(4*n+l:5*n),taut,'splinel); 

if thrustr(k) < 0 
thrustr(k) = 0; 

end; 

alphar(k) = mterpl^alpha^taut/spline'); 
thetar(k) = interpl(xt,aop(6*n+l:7*n),taut,'spline'); 

end; 

figure(l) 
erad = x(:,l)'-rr; evel = x(:,2)'-vr;emass = x(:,4)'-massr; 
subplot(23l,l)Jplot(t,(x(:Jl)

,-rT)J'b
,,t,(x(:,2),-vr);r'); 

titleCRadius Error (Blue) Velocity Error (red)'); 
si%lot(2>l^),irtot(Ux(:,3),-gim-)XUx(:,4),-massr),V); 
title('Gamma Error(Blue) Mass Error(Red)'); 

figure(2) 

subplot(2,2,l),plot(t,rr,,r');title(,Radius vs Time'); 
subplot(2,2,2),plot(t,w/r');title('Velocity vs Time'); 
subplot(2,2,3),plot(t,gmr,,r,);title('Gamma vs Time'); 
subplot(2,2,4),plot(t,massr/r');title('Mass vs Time'); 

figure(3) 
subplot(2,l,l),plot(t,thrustr,,r');title(,Thrust vs Time'); 
subplot^J^Xplot^alphar/r^titleCAlpha vs Time'); 

band = max(rr)-min(rr); 
rprop = x(:,l); vprop =x(:,2); gmprop = x(:,3);mprop =x(:,4); 
thprop = x(:,5); 

Appendix G - Orbres.m 

global aop costfh 
[costfh,g]=dorbcrit(aop) 

costfh 

r=aop(l:n) 
v = aop(n+l :2*n) 
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gamma = aop(2*n+l:3*n) 
mass = aop(3*n+l:4*n) 
T = aop(4*n+l:5*n) 
alpha = aop(5*n+l:6*n) 
theta = aop(6*n+l:7*n) 
tau = aop(7*n+l) 
y = (tau/2)*(x+l); 

Appendix H - Lobatto.m 

% here are the files for lobatto points. 

% [x w]=lobatto(n) n= number of points. 

function [x,w] = lobatto(n,a,b) 

% [x w] = lobatto(n) or [x w] = lobatto(n,alpha,beta): 
% 
% Computes abscissa and weights for the n-point Gauss-Jacobi-Lobatto 
% quadrature formula using the method of Gene H. Golub, Some modified 
% matrix eigenvalue problems, SIAM Rev. 15 (1973) 318-334. Another early 
% algorithm for this is by David Galant, An implementation of Christof fers 
% formula in the theory of orthogonal polynomials, Math. Comp. 25 (1971) 
% 111-113. All such algorithms should be "reviewed", in light of recent 
% improvements in tqr and Cholesky LR algorithms. But, this algorithm 
% "ain't bad". 

%    Copyright (c) 23 August 1997 by Bill Gragg. All rights reserved. 

%    lobatto calls mxt, mxtj and tqr. 

%    begin lobatto 

ifnargin<2 
a = 0;  b = 0; 

end 
m = 2A(a + b + l)*beta(a+l,b+l); us = a = b; 
n = n-1; [a b] = mxtj(n,a,b] ;   T = mxt(a,b) 
I = eye(n); e = zeros(n,l); e(n) = = i; 
c = (T + I)\e; c = c(n); d = (T -I)\e; 
d = d(n); e = c - d;            i : = (c + d)/e; 
d = sqrt(2/e); a(n+l) = c; b(n) = = d; 
[x u] = tqr(a,b); u = u'; w = m:| >uA2; 
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%        "Purify" formulas in the ultraspherical case, 
if us 

x = (x - flipud(x))/2;  w = (w + flipud(w))/2; 
end 

%    end lobatto 

Appendix I - Diffm.m 

function [Dn,x,w]=Diff(n); 
% This function calculates the differentiation matrix Dn that is 
% obtained by differentiating the Legendre Polynomials at the legendre- 
%Lobatto points. It's zero on the main diagonal except at l=k=l, where 
% Dn(l,l)= n(n+l)/4; and at l=k=n; where Dn(n,n)=-n(n+l)/4. 
% n= no of Lobatto points. For the other points 1 (~=)k, we have 
% Dn(l,k)= Ln(xl)/Ln(xk)*(l/xl-xk). 

[x w]=lobatto(n); 
x=sort(x); 
% initialize Dn 
Dn=zeros(n); 
Dn(l,l)=-(n-l)*n/4; 
Dn(n,n)=n*(n-l)/4; 

% Calculate the legendre polynomials at xi. 
p=0*eye(n); 
for i=l:n; s=x(i); p(i,l)=l; p(i,2)=s; 
for j=2:n-l; p(ij+l)=((2*j-l)*s*p(ij)-(j-l)*p(ij-l))/j; end; end; 

% Fill out the rest of matrix Dn. 
for 1=1 :n; for k=l:n; 
ifl~=k, 
Dn(l,k)=p(l3n)/(p(k,n)*(xa)-x(k))); 
end; 
end;end; 

Appendix J - Tfopt.m 
% This routine calculates the minimum of the cost function given by 
% the function crit. 
clear; 
tic; 
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global n 
global Dnxw 
global B ve rho aop aref 

n=24; % The number of lobatto points. 

%m0 = 408420; a=2200; 
m0 = 3000; a =500; 
%m0=3000;a=10000; 
isp = 300; gn = 9.81; cd = 2.35; 
rok = 6378+300; rhoO = 1.87*10A(-11); rho =1; 
v0 = sqrt((3.986005*10A5)/rok)*1000; r0 = rok * 1000; 

B = 2 * m0 / (r0*rho0*a*cd); 

ve = isp*gn/v0; 

Tguess = 5.0; 
[Dn,x,w]=difrhi(n); 

%%% the true solutions, u is the control and z is the state variable. 
y=(x+l)/2; 

aop(l:n)=ones(n,l); 
aop(n+l:2*n) = ones(n,l); 
aop(2*n+l:3*n) = l.l*ones(n,l); 
aop(3*n+l:4*n) = ones(n,l); 
aop(4*n+l:5*n) = Tguess*ones(n,l); 
aop(5*n+l:6*n) = 0*ones(n,l); 
aop(6*n+l:7*n) = zeros(n,l); 
aop(7*n+l)=112; 
taup=aop(7*n+l); 
options(13)=5*n+7; 
options(14) = 400*(7*n+l); 
options(4)=10A(-4);%5 
options(3)=10A(-5);%5 
options(2)=10A(-5);%5 
options(l)=l; 
%options(18)=l; 
options(16) = 10A(-6);%7 
vub=[ ]; 
vlb=[ ]; 
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aop=constr(tfcrit',aop,options,vlb,vub); 

% a is for the state and b is for the control. 
rp=aop(l:n); 
vp = aop(n+l:2*n); 
gammap = aop(2*n+l:3*n); 
massp = aop(3*n+l:4*n); 
Tp = aop(4*n+l:5*n); 
alphap = aop(5*n+l:6*n); 
thetap = aop(6*n+l:7*n); 
tau = aop(7*n+l); 

toe; 

tic; 
orbres; 
orbconv; 

Appendix K -Tfcritm 

function [costfh,g]=tfcrit(aop); 

%% This function calculates the cost function that is to be minimized 
%% and the state constraints. 

global nx wDn; 
global B ve rho aref; 
% global costfh; 

% Set up the cost function. 
fori=l:n 

fh(i)=aop(4*n+i); 
end; 
costfh= l/(2)*sum(w.*fh'); 
tau = aop(7*n+l); 

% Set up the state constraints. 
fori=l:n 
rt = aop(i)*(6378+300); 

if rt >= 6728 
rref = 6778; h=58.2; 
rhoref = 2.62e-12; 

elseif rt >= 6628 
rref= 6678; h =50.3; 
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rhoref=1.87e-ll; 
else rref = 6528; h= 37.5; 

rhoref=2.41e-10; 
end; 

rhon = rhoref*exp(-l*(rt-rref)/h); 
rho = rhon/1.87e-ll; 

G(i)=l/(aopCi)A2); 
D(i) = rho*(aop(n+i)A2); 
Ast = (aop(4*n+i)*cos(aop(5*n+i))-D(i))/(aop(3*n+i)*B); 
Ant = aop(4*n+i)*sin(aop(5*n+i))/(aop(3*n+i)*B); 
V(i) = ve; 

% Theta 
g(i+4*n) = (2/tau)*sum(Dn(i,:).*aop(6*n+l :7*n))-(aop(n+i)/aop(i)*cos(aop(2*n+i))); 
%Mass 
g(i+3*n)=(2/tau)*sum(Dn(i5:).*aop(3*n+l:4*n))+(aop(4*n+i)/(ve*B)); 
% Gamma 
g(i+2*n)=(2/tau)*sum(Dn(i,:).*aop(2*n+l:3*n)); 
g(i+2*n)=g(i+2*n)-(((aop(n+i)A2)/aop(i))-G(i))*(cos(aop(2*n+i))/aop(i+n)); 
g(i+2*n)= g(i+2*n)- Ant/aop(n+i); 

% Radius 
g(i)= (2/tau)*sum(Dn(i,:).*aop(l :n))-aop(n+i)*sin(aop(2*n+i)); 
% Velocity 
g(i+n)=(2/tau)*sum(Dn(i,:).*aop(n+l:2*n))+(G(i)*sin(aop(2*n+i)))-Ast; 

g(i+5*n+7) = - aop(4*n+i); 
g(8*n+7+i) = aop(4*n+i)-5.0; 
% g(i+9*n+7) = l-aop(i); 
%g(i+7*n+7) = aop(i)-l; 
g(i+6*n+7) = aop(5*n+i)-pi; 
g(i+7*n+7) = -pi-aop(5*n+i); 
end; 

g(5*n+l) = aop(l)-aop(n); 
g(5*n+2) = aop(2*n+l)-aop(3*n); 
g(5*n+3) = aop(6*n+l); 
g(5*n+4) = aop(n+l)-aop(2*n); 
g(5*n+5) = aop(3*n+l)-l; 
g(5*n+6) = aop(l)-l; 
g(5*n+7) = aop(7*n+l)-l 12; 

g=g'; 
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Appendix L - Notoptm 

% This routine calculates the minimum of the cost function given by 
% the function crit. 
clear; 
tic; 

global n 
global Dnxw 
global B ve rho aop aref 

n=24; % The number of lobatto points. 

%m0 = 408420; a=2200; 
m0 = 3000;a=500; 
%m0=3000;a=10000; 
isp = 300; gn = 9.81; cd = 2.35; 
rok = 6378+300; rhoO = 1.87* 10^-11); rho =1; 
vO = sqrt((3.986005*10A5)/rok)*1000; rO = rok * 1000; 

B = 2 * mO / (r0*rho0*a*cd); 

ve = isp*gn/v0; 

Tguess = 25.0; 
[Dn,x,w]=diffm(n); 

aop(l:n)= ones(n,l); 
aop(n+l:2*n) = ones(n,l); 
aop(2*n+l:3*n) = l.l*ones(n,l); 
aop(3*n+l:4*n) = ones(n,l); 
aop(4*n+l:5*n) = Tguess*ones(n,l); 
aop(5*n+l:6*n) = 0*ones(n,l); 

taup=112.6; 
options(13)=4*n+5; 
options(14) = 400*(7*n+l); 
options(4)=10A(-6);%5 
options(3)=10A(-8);%5 
options(2)=10A(-8);%5 
options(l)=l; 
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%options(18)=l; 
options(16) = 10A(-7);%7 
vub=[]; 
vlb=[ ]; 

aop=constr('notcritl,aop,options,vlb,vub); 

% a is for the state and b is for the control. 
rp=aop(l:n); 
vp = aop(n+l:2*n); 
gammap = aop(2*n+l:3*n); 
massp = aop(3*n+l:4*n); 
Tp = aop(4*n+l:5*n); 
alphap = aop(5*n+l:6*n); 

tau = 112.6; 

toe; 

tic; 
notres; 
notconv; 

toe; 

Appendix M - Notcritm 

function [costfh3g]=notcrit(aop); 

%% This function calculates the cost function that is to be minimized 
%% and the state constraints. 

global nx wDn; 
global B ve rho aref; 
% global costfh; 

% Set up the cost function. 
fori=l:n 
fh(i)=aop(4*n+i); 

end; 
costfh= l/(2)*sum(w.*fh'); 
tau =112.6; 

% Set up the state constraints. 
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fori=l:n 
rho = density(aop(i)); 

G(i)=l/(aop(ir2); 
D(i) = rho*(aop(n+i)A2); 
Ast = (aop(4*n+i)*cos(aop(5*n+i))-D(i))/(aop(3*n+i)*B); 
Ant = aop(4*n+i)*sin(aop(5*n+i))/(aop(3*n+i)*B); 
V(i) = ve; 

% Theta 

%Mass 
g(i+3*n)=(2/tau)*sum(Dn(i,:).*aop(3*n+l:4*n))+(aop(4*n+i)/(ve*B)); 
% Gamma 
g(i+2*n)=(2/tau)*sum(Dn(i,:).*aop(2*n+l:3*n)); 
g(i+2*n)=g(i+2*n)-(((aop(n+i)A2)/aop(i))-G(i))*(cos(aop(2*n+i))/aop(i+ii)); 
g(i+2*n)= g(i+2*n> Ant/aop(n+i); 

% Radius 
g(i)= (2/tau)*sum(Dn(i,:). *aop(l :n))-aop(n+i)*sin(aop(2*n-H)); 
% Velocity 
g(i+n)= (2/tau)*sum(Dn(i,:). *aop(n+l :2*n))+(G(i)*sin(aop(2*n+i)))-Ast; 

g(i+4*n+5) = - aop(4*n+i); 
g(5*n+5+i) = aop(4*n-H)-5.0; 
g(i+6*n+5) = aop(5*n+i)-pi; 
g(i+7*n+5) = -pi-aop(5*n+i); 
end; 

g(4*n+l) = aop(l)-aop(n); 
g(4*n+2) = aop(2*n+l)-aop(3*n); 
g(4*n+3) = aop(n+l)-aop(2*n); 
g(4*n+4) = aop(3*n+l)-l; 
g(4*n+5) = aop(l)-l; 

g=g'; 

Appendix N - Noaoptm 

% This routine calculates the minimum of the cost function given by 
% the function crit. 
clear; 
tic; 
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global n rhom vm 
global Dnxw 
global B ve rho aop aref band 
global tg ag taup 

n=24; % The number of lobatto points. 
band = 0.01; 
rhom = density(l+band/2); 
vm= sqrt(l/(l+band/2)); 

m0 = 408420; a=2200; 
m0 = 3000; a =500; 
%m0=3000;a=10000; 
isp = 300; gn = 9.8067; cd = 2.35; 
rok = 6378+300; rhoO = 1.87*10A(-11); rho =1; 
v0 = sqrt((3.986005*10A5)/rok)*1000; r0 = rok * 1000; 

B = 2 * m0 / (rO*rhoO*a*cd); 

ve = isp*gn/vO; 

Tguess = 20; 
[Dn,x,w]=diffin(n); 

aop(l:n)= ones(n,l); 
aop(n+l:2*n) = ones(n,l); 
aop(2*n+l:3*n) = .5*ones(n,l); 
aop(3*n+l:4*n) = ones(n,l); 
aop(4*n+l:5*n) = Tguess*ones(n,l); 
%aop(4*n+8:5*n) = ones(length(aop(4*n+8:5*n)),l); 

taup=112.6; 
options(13)=4*n+5; 
options(H) = 400*(7*n+l); 
options(4)=10A(-7);%5 
options(3)=10A(-8);%5 
options(2)=10A(-9);%5 
options(l)=l; 
%options(18)=l; 
options(16)=10A(-8);%7 
vub=[]; 
vlb=[ ]; 

aop=constr('noacrit',aop,options,vlb,vub); 
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% a is for the state and b is for the control. 
rp=aop(l:n); 
vp = aop(n+l:2*n); 
gammap = aop(2*n+l:3*n); 
massp = aop(3*n+l:4*n); 
Tp = aop(4*n+l:5*n); 

tau = taup; 

toe; 

tic; 
noares; 
noaconv; 

toe; 

Appendix O - Noacritm 

function [costfh,g]=noacrit(aop); 

%% This function calculates the cost function that is to be minimized 
%% and the state constraints. 

global nx wDnband; 
global B ve rho aref; 
global rhom vm taup; 
% global costfh; 

% Set up the cost function. 
i=l:n; 
% fh=aop(4*n+i)/(rhom*vmA2); 

fh=aop(4*n+i); 
costfh= l/(2)*sum(w.*fh*); 
tau =112.6; 

% Set up the state constraints. 
fori=l:n 

rho = density(aop(i)); 

G(i)=l/(aop(ir2); 
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D(i) = rho*(aop(n+i)A2); 
Ast = (aop(4*n+i)*l-D(i))/(aop(3*n+i)*B); 
Ant = aop(4*n+i)*0/(aop(3*n+i)*B); 
V(i) = ve; 

% Theta 

%Mass 
g(i+3*n)=(2/tau)*sum(Dn(i,:).*aop(3*n+l:4*n))+(aop(4*n+i)/(ve*B)); 
% Gamma 
g(i+2*n)= (2/tau)*sum(Dn(i,:). *aop(2*n+l :3 *n)); 
g(i+2*n)=g(i+2*n)-(((aop(n+i)A2)/aop(i))-G(i))*(cos(aop(2*n+i))/aop(i+n)); 
g(i+2*n)= g(i+2*n)- Ant/aop(n+i); 

% Radius 
g(i)= (2/tau)*sum(Dn(i,:).*aop(l :n))-aop(n+i)*sin(aop(2*n+i)); 
% Velocity 
g(i+n)=(2/tau)*sum(Dn(i,:).*aop(n+l:2*n))+(G(i)*sin(aop(2*n+i)))-Ast; 

g(i+4*n+5) = - aop(4*n+i); 
g(5*n+5+i) = aop(4*n+i)-20.0; 
g(i+6*n+5) = aop(i)-(l+band); 

end; 

g(4*n+l) = aop(l)-aop(n); 
g(4*n+2) = aop(2*n+l)-aop(3*n); 
g(4*n+3) = aop(n+l)-aop(2*n); 
g(4*n+4) = aop(3*n+l)-l; 
g(4*n+5) = aop(l)-l; 

r=g'; 

Appendix P - Tqr.m 

%     Total flops (scalar case, see csgn): TBC 

%     Problem. 
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% 
% 
% 

1. Compare this function experimentally with csgn. Compare with regard 
to both execution time and numerical stability. Is matlab computing 
sign correctly? 

% 
% 
% 
% 

function [lam,U] = tqr(a,b,U) 

[lam u] = tqr(a,b) or [lam U] = tqr(a,b,U): 

0 

'o 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

[lam u] = tqr(a,b): 

The column lam contains the eigenvalues of the Hermitian tridiagonal 
matrix T = mxt(a,b) computed by one version of the (real symmetric) tqr 
algorithm with Wilkinson's shift. The column u contains the first 
elements of the eigenvectors of T normalized to be nonnegative and such 
that the eigenvectors are unit vectors. In practice this is an 0(nA2) 
process. If u is omitted only the eigenvalues are computed. The 
computed eigenvalues are real and are sorted to be nonincreasing. 

[lamU]=tqr(a,b,U): 

This replaces the input U by UV with V a matrix of orthonormal eigen- 
vectors of T. If the input U is I the output U is V. If the input U is 
unitary with AU = UT then the output U is unitary with AU = UD and D 
diag(lam). 

If the input U is e(l)' the output U is u\ If the input U is 
[e(l)'; e(n)'] the output U is [u'; v'] with v the column of last 
elements of the normalized eigenvectors. If the subdiagonal elements of 
T are all nonzero then the elements of v alternate in sign, at least 
mathematically. 

%    Copyright (c) 2 February 1991 by Bill Gragg. All rights reserved. 
%    Revised 15 July 1994. 

% tqr calls sgn. 

%    begin tqr 

%       Ensure that T is Hermitian and shift b down one unit. 
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a = real(a);  n = length(a);  b = [0;b(:)];  b = b(l:n); 

%       Initialize U if required and execute a diagonal unitary similarity 
%       transformation to make T have nonnegative subdiagonal elements. 

if nargout > 1 

if nargin < 3 
U = zeros(l,n);  U(l)=l; 

end 

u = sgn(b);  u = cumprod(u);  U = U*diag(u); 

end 

b = abs(b); 

%       Scale the matrix up by a power of two to give nearly the widest 
%       possible exponent range. 

scale = norm([a; b*sqrt(2)]);   scale = 2A( 1024 - ceil(log2(scale))); 
a = a*scale; b = b*scale; 

format compact % Temporary statements 
maxscale = max(abs([a; b]));   % for display. 

%       "Do tqr". 

form = n:-l:l 

% disp(m)    % Temporary display statement. 

% Compute the mth eigenvalue. 

for its = 0:10*n    % its is the iteration index. 

% Split the matrix if possible. This is also the termination 
% test. 

fork = m:-l:l 

ifk> 1 

tol = abs(a(k-l)) + abs(a(k)); 
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if toi + b(k) == toi 
b(k) = 0; break 

end 

end 

end 

ifk = m 

% 
% 
% 

% 
% 
% 
% 

break    %b(m) = 0. a(m) is an eigenvalue. 

else 

if its = 10*n 
error('tqr iteration did not terminate in lOn steps!') 

end 

Compute Wilkinson's shift w as a perturbation of the 
Rayleigh shift r = a(m). As the algorithm converges 
c = b(m) --> 0. 

r = a(m);   c = b(m);   d = (r - a(m-l))/2;   s = abs(d); 

ifc<s 
s = c/s;  t = 1 +sqrt(l + s*s);  t = c*s/t;  %t<c; 

else 
s = s/c;  t = s + sqrt(l + s*s);  t = c/t;    %t<c; 

end 

ifd>0 
w = r +1; 

else 
w = r -1; 

end 

Take a step of the tqr algorithm. There are many ways to 
implement the inner loop. We recently found the fastest 
known stable form in terms of flops. The form given here 
is elegant. 

c=l;   s = 0;  p = w-a(k);  t = p; 

forj = k:m-l 
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% Compute the two by two reflector stably and update b(j). 

oldc = c;  oldt = t;  q = b(j+l);  u = abs(p); 

ifq<u 
v = q/u;     r = sqrt(l + v*v);  b(j) = u*r*s; 
u = sgn(p);  c = u/r; s = v/r; 

else 
v = p/q;     r = sqrt(l + v*v);  b(j) = q*r*s; 
u=l;       c = v/r; s = u/r; 

end 

% Update p, t, a(j), and U(:,j:j+1) if required. 

p = c*(w - a(j+l)) - s*q*oldc;  t = c*p; 
a(j) = a(j+l) +1 - oldt; 

if nargout > 1 
i=j:j+l;  U(:,i) = U(:,i)*[-cs;sc]; 

end 

end 

% Update b(m), a(m), and U(:,m) if required. 

b(m) = abs(p)*s;   a(m) = w -1;   c = sgn(p); 

% disp(b(m)/maxscale)    % Temporary display statement. 

if nargout > 1 
U(:,m) = -U(:,m)*c; 

end 

end 

end 

%       pause(3)    % Temporary pause statement. 

end 

%       Sort and prepare the output. 

[a p] = sort(-a);  lam = - a/scale; 

110 



if nargout > 1 

U = U(:,p);  u = U(l,:)'; 

if nargin < 3 
u = abs(u);  U = u1; 

else 
u = sgn(u);  U = U*diag(u'); 

end 

end 

%    end tqr 

Appendix Q - Mxtm 

% Problems. 

% 1. Relate T = mxt(a,b), with [a b] = mxtj(n,l/2), with the negative second 
%   difference matrix S = mxt(c,d), with [c d] = mxs(n). 

function T = mxt(a,b,c) 

% T = mxt(a,b,c) or T = mxt(a,b): 
% 
% T = mxt(a,b,c) is the TRDDIAGONAL MATRIX with diagonal elements a(l :n), 
% subdiagonal elements b(l :n-l) and superdiagonal elements c(l:n-l). 
% 

% T = mxt(a,b) is the HERMITIAN tridiagonal matrix with diagonal elements 
% real(a(l:n)) and subdiagonal elements b(l :n-l). 
% Copyright (c) 1 December 1990 by Bill Gragg. All rights reserved. 
% Revised 21 November 1992. 
% mxt calls no extrinsic functions. 
% begin mxt 

if nargin < 3 
a = real(a);  c = b'; 

end 

n = length(a);  b = b(l:n-l);  c = c(l:n-l);  z = zeros(n-l,l); 

if n < 500 

B = diag(b); B = [z'0;Bz];   C = diag(c);   C = [zC;0z']; 
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T = diag(a);  T = T + B + C; 

else 

T = zeros(n); 

fork=l:n-l 
T(k,k) = a(k);   T(k+l,k) = b(k);   T(k,k+1) = c(k); 

end 

T(n,n) = a(n); 

end 

%    endmxt 

Appendix R - Mxtj.m 

function [a,b] = mxtj(n,alpha,beta) 

% [a b] = mxtj(n,alpha,beta), [a b] = mxtj(n,alpha), [a b] = mxtj(n), 
%    T = mxtj(n,alpha,beta),     T = mxtj(n,alpha) or  T = mxtj(n): 
% 
% mxtj(n,alpha,beta): T = mxt(a,b) is the Jacobi matrix whose characteristic 
% polynomial p is (a nonzero scalar multiple of) the nth JACOBI polynomial. 
% The eigenvalues of T are the abscissas of the nth order Gauss-Christoffel 
% quadrature formula for the weight function ((1 - t)Aalpha)((l + t)Abeta) on 
% the interval - 1 < t < 1. The Gauss-Christoffel weights are m(0) times the 
% squares of the first elements of the normalized eigenvectors of T, where 
% m(0) = b(0)A2 = B(alpha + l,beta + l^alpha + beta -1) is the total mass. 
% B is the beta function. The weight function is positive and integrable if 
% alpha + 1 > 0 and beta + 1 > 0. 
% 
% mxtj(n,alpha) takes beta = alpha, p is the nth ULTRASPHERICAL polynomial, 
% with weight function (1 - tA2)Aalpha on the interval -1 < t < 1. Special 
% cases are the CHEBYSHEV polynomial of the FIRST KIND, with alpha = -1/2, 
% and of the SECOND KIND, with alpha = 1/2. 
% 
% mxtj(n) takes alpha = beta = 0. p is the nth LEGENDRE polynomial, with 
% weight function w(t) = 1 on the interval - 1 < t < 1. The quadrature 
% formula here is originally due to Gauss. Christoffel generalized Gauss' 
% formula to a wide class of weight functions. Because of this the Gauss- 
% Christoffel weights are usually called Christoffel numbers. 
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% Copyright (c) 2 February 1991 by Bill Gragg. All rights reserved. 

% mxtj calls mxt. 

% begin mxtj 
ifnargin<2 alpha = 0; end;   ifnarginO beta = alpha; end 
a = alpha;  b = beta;   c = a + b;   d = b-a; 
s(l) = d/(c + 2);  t(l) = (a + l)*(b + l)/(c + 2)A2/(c + 3); 
ifn>2 

d = c*d; 
n = (2:n)';  m = 2*n;  mm = m-l;  mp = m+l; 
s(n) = d./(c + m)./(c + (m - 2)); 
t(n) = n.*(a + n).*(b + n).*(c + n)./(c + mm)./((c + m).A2)./(c + mp); 

end 
a = s(:);  b = 2*sqrt(t(:)); 
ifnargout<2 a = mxt(a,b); end 

% end mxtj 
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