
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

SOFTWARE METRICS:
A CASE ANALYSIS OF THE U.S. ARMY

BRADLEY FIGHTING VEHICLE A3 PROGRAM

by

James S. Romero

June 1998

Principal Advisor:
Associate Advisor:

David F. Matthews
Mark E. Nissen

Approved for public release; distribution is unlimited,

jyjlC QUALTTT INSPECTED I

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Wanty 2. REPORT DATE

June 1998
3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE SOFTWARE METRICS: A CASE ANALYSIS OF THE
U.S. ARMY BRADLEY FIGHTING VEHICLE A3 PROGRAM

6. AUTHOR(S)

Romero, James S.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Software development efforts have become the highest-risk element of modern program management. One way

that we can mitigate this risk is through the use of metrics. Software metrics can give us insight about the progress,
quality, and expected completion of a software development effort. In earlier software development efforts, programming
was viewed as a "black art" and, consequently, software metrics were not commonly used. Today, it is generally accepted
that a software development effort should be properly planned and that software metrics should be used to control the
project. Program managers are no longer concerned about whether or not to use metrics, but are more concerned with
which metrics to use and whether or not the ones chosen will be effective. The Bradley Fighting Vehicle A3 Program
provides valuable insight into the use of metrics. A principal finding of this research is that implementing an effective
metrics program is extremely difficult, especially when the contractor is not experienced in developing software-intensive
systems. Because this situation often exists, future and current program managers must assess their own knowledge of
software development and plan to mitigate the effects of other factors they cannot influence. They must educate
themselves on software issues and metrics and solicit assistance from independent agencies that specialize in software
development.
14. SUBJECT TERMS
Software Development, Software Metrics, Bradley Fighting Vehicle A3, MICOM Software

Engineering Directorate (SED)

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFI-CATION
OF ABSTRACT

Unclassified

15. NUMBER OF
PAGES

80

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

SOFTWARE METRICS: A CASE ANALYSIS OF THE U.S. ARMY
BRADLEY FIGHTING VEHICLE A3 PROGRAM

James S. Romero
Captain, United States Army

B.S., United States Military Academy, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
June 1998

Author:

Approved by:
David F. Matthews, Principal Advisor

Mark E. Nissen, Associate Advisor

-*

CiJ
Reuben T. Harris, Chairman

Department of Systems Management

m

IV

ABSTRACT

Software development efforts have become the highest-risk element of modern

program management. One way that we can mitigate this risk is through the use of

metrics. Software metrics can give us insight about the progress, quality, and expected

completion of a software development effort. In earlier software development efforts,

programming was viewed as a "black art" and, consequently, software metrics were not

commonly used. Today, it is generally accepted that a software development effort

should be properly planned and that software metrics should be used to control the

project. Program managers are no longer concerned about whether or not to use metrics,

but are more concerned with which metrics to use and whether or not the ones chosen

will be effective. The Bradley Fighting Vehicle A3 Program provides valuable insight

into the use of metrics. A principal finding of this research is that implementing an

effective metrics program is extremely difficult, especially when the contractor is not

experienced in developing software-intensive systems. Because this situation often

exists, future and current program managers must assess their own knowledge of software

development and plan to mitigate the effects of other factors they cannot influence. They

must educate themselves on software issues and metrics and solicit assistance from

independent agencies that specialize in software development.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PURPOSE 1

B. BACKGROUND 1

C. RESEARCH QUESTIONS 3

1. Primary Research Question: 3

2. Secondary Research Questions: 3

D. SCOPE OFTHESIS 4

E. METHODOLOGY 4

F. ORGANIZATION 5

G. BENEFITS OF STUDY 6

II. THE BRADLEY FIGHTING VEHICLE 7

A. INTRODUCTION 7

B. DESCRIPTION 7

C. THE ROLE OF THE BRADLEY 7

D. THE BRADLEY VARIANTS (AO - A2 ODS) 8

1. Bradley AO 8

2. Bradley Al 8

3. Bradley A2 9

4. Bradley A2 ODS 10

E. THE BRADLEY A3 11

1. Command and Control 12

2. Lethality 13

3. Survivability 14

4. Mobility 15

5. Sustainability 15

F. CHAPTER SUMMARY 15

Vll

III. SOFTWARE METRICS 17

A. WHAT ARE METRICS? 17

B. HISTORY AND EVOLUTION OF METRICS 17

C. TYPES OF METRICS 20

1. Size 21

2. Quality 22

3. Complexity 23

4. Requirements 25

5. Effort 25

6. Productivity 27

7. Cost and Schedule 27

8. Scrap and Rework 29

9. Support 30

D. DoD POLICIES ON SOFTWARE METRICS -PAST AND PRESENT 31

E. CHAPTER SUMMARY 34

IV. SOFTWARE METRICS AND THE BRADLEY A3 PROGRAM 37

A. INTRODUCTION 37

B. BRADLEY A3 METRICS-PAST AND PRESENT 37

C. ANALYSIS OF KEY SOFTWARE METRICS ISSUES 43

1. The Purpose of the Metrics 43

2. Implementing an Integrated Metrics Program 46

3. Choosing Metrics and Ensuring Their Effectiveness 47

D. GENERALIZED LESSONS LEARNED 51

1. Hire the Experts 51

2. Focus Metrics on Managing the Program 51

3. Implement Only the Most Useful Metrics 52

4. Make the Software Developer Responsible for Metrics 52

5. Tailor Your Metrics (Mgmt Level, Stage, and Presentation) 52

6. Get Educated on Software Development and Metrics 53

7. Cooperative Relationships Foster Success 53

vin

V. CONCLUSIONS AND RECOMMENDATIONS 55

A. CONCLUSIONS 55

B. RECOMMENDATIONS 56

C. ANSWERS TO RESEARCH QUESTIONS 58

D. RECOMMENDATIONS FOR FURTHER STUDY 61

LIST OF REFERENCES 63

INITIAL DISTRIBUTION LIST 67

IX

LIST OF FIGURES

Figure 2-1. Bradley Fighting Vehicle M2A2 9

Figure 2-2. Bradley Fighting Vehicle M2A3 12

Figure 3-1. Comparison of Function Points and SLOC 23

Figure 3-2. Example Metrics for Quality 24

Figure 3-3. Software Productivity Factors 27

Figure 4-1. Software Development Progress 40

Figure 4-2. Test Progress 41

Figure 4-3. High Urgency PCR Closeout 42

Figure 4-4. Status of Targeted PCRs 43

XI

I. INTRODUCTION

A. PURPOSE

The purpose of this thesis is to study software metrics from the program

manager's perspective. To accomplish this I focus on the application of metrics in the

software development effort for the M2A3 variant of the Bradley Fighting Vehicle.

Specifically, I analyze the effectiveness of software metrics in this program and the

reasons for their effectiveness. This analysis also illustrates lessons learned during this

software development with respect to metrics. The objective of this thesis is to discuss

and generalize from these lessons learned, thereby informing and benefiting future

program managers of software-intensive systems.

B. BACKGROUND

One of the primary strengths of the United States Armed Forces is advanced

technology. This was never illustrated more clearly than when our forces dominated the

battlefield during the Gulf War. There are many varied technologies that contribute to the

effectiveness of our weapon systems; however, software can be viewed as a common

thread. Today, our fighter aircraft would not fly and our venerable Ml Tank and M2

Bradley Fighting Vehicle would not "hit the side of a barn" without software. As we

continue to modernize our force we are increasing our use of software to include systems

which were traditionally viewed as being too simple to need it. An example of this is the

Land Warrior Project where a fully-integrated combat system is being developed for the

fighting soldier. This software-intensive system will include a heads-up monocular

display which will incorporate navigation including graphical maps and global

positioning system, communications, individual weapon fire control, and night vision

capabilities.

As we increase use of software in the Department of Defense (DoD) we are also

increasing our expectations concerning what software can accomplish. We expect

software to increase the capabilities of our weapon systems, to make them more flexible,

and to allow us to upgrade their capabilities in the future. This increase in expectations

has caused the size and complexity of our software to increase dramatically. As size and

complexity increase, the challenges associated with software program management grow

exponentially. In fact, poor management is cited as the primary cause of failures in

software-intensive systems [Ref. 32, Ch. 1, p. 18]. While expectations increase and

program management becomes more difficult, software technology continues to evolve.

New software languages, which support tools and development methods, are constantly

changing, making previously valid software practices and experience obsolete. For

example, we are using 4th and 5th generation languages that are very powerful compared

to earlier generation languages. One line of code in a 4th generation language can

generate hundreds of lines of code in machine or assembly language, and mixing early-

generation re-used code with modern languages and methods is difficult [Ref. 31].

The growing size, complexity, and managerial challenge associated with software,

along with DoD's increased expectations, have made software development efforts the

highest-risk element of modern program management. One way that we can mitigate this

risk and better manage software development efforts is through the use of metrics. In

fact, it would be very difficult, at best, to properly manage any development effort

without the use of some type of metric. Software metrics can give us insight about the

progress, quality, and expected completion of a software development effort.

In earlier software development efforts, programming was viewed as a "black art"

and, consequently, software metrics were not commonly used. Today, it is generally

accepted that a software development effort should be properly planned and that software

metrics should be used to control the project. Program managers are no longer concerned

about whether or not to use metrics but are more concerned with which metrics to use and

whether or not the ones chosen will be effective. This question can best be answered by

studying past uses of software metrics.

C. RESEARCH QUESTIONS

1. Primary Research Question:

What steps can a program manager take to ensure that the right software metrics

are chosen and that the chosen metrics are effective?

2. Secondary Research Questions:

a. What are software metrics and what are they used for?

b. What is the Army policy on software metrics?

c. What software metrics are used in the Bradley A3 software

development?

d. In what ways are the Bradley A3 software metrics effective in

measuring program progress?

e. What lessons can be learned from the use of software metrics in the

Bradley A3 program?

f. How can these lessons learned be generalized to guide and support

other program managers?

D. SCOPE OF THESIS

This research uses the case of the Bradley A3 program to address issues

concerning software metrics from a program manager's perspective. The software

metrics used in the Bradley A3 program are analyzed based on their effectiveness in

providing usable insight into the software development effort of this software-intensive

weapon system.

E. METHODOLOGY

In order to provide a better understanding of the Bradley weapon system and the

issues involved with software metrics, this research paper first provides a general

overview of both the Bradley Fighting Vehicle and Software Metrics. In order to

accomplish this I utilized the following resources:

• Department of Defense Publications

• Books, Periodicals, Journals, and electronic resources available at the Naval
Postgraduate School (NPS) Library

• Internet web-sites pertaining to the Bradley Fighting Vehicle or software
development

• Interviews with systems management faculty at NPS

Then, I conduct an analysis of the software metrics applied in the case of the

Bradley A3 Program. In addition to the resources listed above I attained program

information from the Bradley A3 Program Office and United Defense Limited

Partnership (UDLP), the primary contractor. Also, Government and contractor personnel

with key roles in the Bradley A3 software development effort were interviewed. The end

result of this case analysis is a group of lessons learned in applying software metrics in a

software-intensive weapon system.

F. ORGANIZATION

In Chapter II, I provide an overview of the Bradley Fighting Vehicle. This

includes a description of the vehicle and its role on the battlefield. Also, I describe the

variants of the Bradley Fighting Vehicle and their differences with special emphasis on

the A3 model. I conclude the chapter with a chapter summary.

In Chapter m, I provide an overview of software metrics. I begin by discussing

what software metrics are and how they have evolved. Then I give examples of software

metrics used. I then discuss the DoD policy on software metrics and conclude with a

chapter summary.

In Chapter IV, I discuss how software metrics were applied in the Bradley A3

program. This includes a discussion of which software metrics were used and an analysis

of how effective they were. Then I discuss the lessons that can be learned from this

application of software metrics and how they can be generalized so that they will be

useful to a program manager of any software-intensive program.

Chapter V is the last chapter of this thesis. I summarize the findings of this

research and the answers to my research questions. Then I conclude with

recommendations for further study.

G. BENEFITS OF STUDY

This research is the first at NPS addressing software metrics. The results of this

research will provide valuable insight into the complexity of managing software-intensive

weapon systems. Specifically, the lessons learned from the use of software metrics in the

case of the Bradley A3 will make students at NPS and other future program/project

managers in DoD more aware of how to apply software metrics to maximize their

effectiveness.

II. THE BRADLEY FIGHTING VEHICLE

A. INTRODUCTION

The purpose of this chapter is to provide an overview of the Bradley Fighting

Vehicle. I will first provide a vehicle description and discuss the role of the Bradley on

the battlefield. Then I will describe the Bradley variants and their differences with special

emphasis on the Bradley A3. I will conclude the chapter with a chapter summary.

B. DESCRIPTION

The Bradley Fighting Vehicle is a lightly-armored, fully-tracked vehicle that has a

three-man crew and can carry six additional soldiers. It has a turret which provides fire

control for the 25mm main gun, the TOW (Tube-launched, Optically-tracked, Wire-

guided) missile, and the 7.62 mm coaxial machine gun. The 25mm main gun is the

model 242 Bushmaster Chain Gun made by McDonnell Douglas Helicopter Company. It

can fire in single-shot and multiple-shot modes and has dual-feed which allows the

gunner to select from two different types of ammunition (typically HE-High Explosive

and AP-Armor Piercing). The hull and turret of the Bradley are constructed of welded

ballistic aluminum and have additional steel armor plates in the later models. The

Bradley weighs approximately 67,000 pounds (combat loaded) and can travel 38 MPH on

roads and 4 MPH in water. [Ref. 3, 14, 36]

C. THE ROLE OF THE BRADLEY

The Bradley Fighting Vehicle System includes two vehicles, the M2 Infantry

Fighting Vehicle and the M3 Cavalry Fighting Vehicle.

The role of the Bradley M2 Infantry Fighting Vehicle is twofold. First of all, the

Bradley provides the infantryman with additional firepower to destroy or suppress enemy

tanks, vehicles, and troops. Secondly, the Bradley provides the infantryman with cross-

country mobility to critical locations on the battlefield while protecting him from artillery

and small arms threats. The Bradley M3 Cavalry Fighting Vehicle performs cavalry scout

missions and carries three crew members plus two scouts [Ref. 3].

D. THE BRADLEY VARIANTS (AO - A2 ODS)

There are four Bradley Variants in existence today. They are the AO, Al, A2 and

A2 ODS (Operation Desert Storm). In this section I will briefly describe each of the

variants and the new features that each one introduced.

1. Bradley AO

The First Bradley Fighting Vehicle AO was fielded in 1982 as a replacement for

the Ml 13 Armored Personnel Carrier. It represented a vast improvement in capability

since the M113's only armament was a .50 cal machine gun with no fire control and the

Ml 13 could not keep up with the Ml Tank in any terrain. This initial Bradley was armed

with the 25mm cannon and the basic TOW missile. A total of 2,300 AO Bradleys were

produced from 1982 to 1986 [Ref. 3]. Out of the 2,300 A0 Bradleys produced, 510 were

upgraded to A2 Bradleys. There are currently 1,744 A0 Bradleys in the Army inventory.

[Ref. 34]

2. Bradley Al

In 1986 the Bradley Fighting Vehicle Al was fielded. This new Bradley was

equipped to fire the more lethal TOW 2 missile and was equipped with the final drives

used on the Multiple-Launch-Rocket-System (MLRS) which are more reliable. Also,

vehicle and soldier survivability was improved with the addition of a revised fire

suppression system and a gas particulate filter unit for use in chemically contaminated

areas. Lastly, the equipment stowage in the vehicle was revised. A total of 1,371 Al

Bradleys were produced from 1986 to 1988 [Ref. 36]. All of these vehicles have been

upgraded to A2 and A2 ODS Bradleys [Ref. 34].

3. Bradley A2

Fig. 2-1, Bradley Fighting Vehicle M2A2 During Desert Storm [Ref. 3]

In 1988 the Bradley Fighting Vehicle A2 was fielded. The A2 Bradley

survivability was significantly better that that of previous Bradleys through the addition

of steel armor plates on the exterior of the hull and turret. These steel plates provided

armor protection against munitions 30mm and smaller. Additionally, spall liners were

added to the interior of the vehicle to reduce shrapnel in the event that a round penetrates

the vehicle. This vehicle was also configured so that reactive armor tiles could easily be

installed on the exterior of the hull and turret. To maintain the previous mobility

capabilities of the Bradley, despite the additional weight of the armor steel plates and

spall liners, a more powerful 600 horsepower engine and improved transmission were

also included in the A2 Bradley. Lastly, the ammunition storage inside the vehicle was

revised. Since 1988 3,107 new A2 Bradleys were produced and 1,356 Al Bradleys and

510 A0 Bradleys were upgraded for a total of total of 4,973 A2 Bradleys [Ref. 36]. Of

these 4,973 A2 Bradleys, 1,433 are being upgraded to A2 ODS Bradleys and 1,602 will

be upgraded to A3 Bradleys, leaving 1,886 A2 Bradleys in the future Army inventory

[Ref. 34].

4. Bradley A2 ODS

As with all major conflicts that the U.S. military is involved in, Operation Desert

Storm was a catalyst for the emergence of new weapon systems and the rapid infusion of

technology into existing systems. The Bradley Fighting Vehicle was one of the weapon

systems which benefited from wartime-induced improvements through the introduction of

the A2 ODS Bradley. The improvements on the A2 ODS Bradley are modular

installations to increase specific capabilites and are not electronically integrated into the

basic A2 Bradley configuration. Therefore, the improvements mentioned below can be

added to existing A2 Bradleys as needed. The A2 ODS Bradley, which has not yet been

fielded, includes a laser range finder that greatly improves the gunners' ability to get a

10

first round hit on target. It also includes a Global Positioning System / Position

Navigation (GPS/POS NAV) system for navigation and a thermal viewer for the driver

which increases nighttime mobility and safety. Lastly, the A2 ODS Bradley incorporates

a combat identification system designed to decrease fratricide due to poor vehicle

identification and a counter-missile device which is designed to electronically jam an

incoming anti-tank missile. There will be 1,433 A2 Bradleys upgraded to the A2 ODS

Bradley configuration [Ref. 34 and 36].

E. THE BRADLEY A3

The Bradley A3 represents a leap in technology when compared to its

predecessors. It uses the same chassis and turret as the Bradley A2 and has the same

general appearance, however, the similarities end there. The foundation for most of the

improvements in the Bradley A3 is in the electronic design. The electronics in the older

Bradleys are analog and are not integrated while the electronics in the Bradley A3 are

digital and are fully-integrated through the use of two central processors and two 1553B

Data Buses [Ref. 34]. These two processors and data buses not only provide the key to

digital integration but also provide the system with redundancy which increases the

survivability and reliability of the system. This electronic "backbone" allows the use of

software to integrate new technologies and enhance the overall effectiveness of the

Bradley A3 [Ref. 11,22,39].

11

Fig. 2-2, Bradley Fighting Vehicle M2A3 [Ref. 9]

The Bradley A3 has numerous new capabilities. I will describe each of the

Bradleys' major improvements by category (Command and Control, Lethality,

Survivability, Mobility, and Sustainability).

1. Command and Control

There are many new technologies in the Bradley A3 which significantly increase

the situational awareness of the vehicle commander and the dismount leader. The

commander will have a flat panel display that depicts maps, operational graphics, and

other tactical information. This tactical display will allow the commander to constantly

be aware of the tactical situation without having to be distracted by large, unwieldy paper

12

maps. The Bradley A3 will also have a position/navigation (Pos/Nav) system with

inertial navigation and Precision Lightweight GPS Receiver (PLGR) capabilities. The

inertial navigation component of this Pos/Nav system provides constant location accuracy

when the PLGR is not tracking sufficient satellites. This system is fully integrated with

the commander's tactical display and the drivers' Pos/Nav display. In the Bradley A3, the

commander now has his own independent viewer with 2nd Generation Forward Looking

Infrared Radar (FLIR) and Day TV. This independent viewer allows the commander to

scan a different area than the gunner, resulting in increased situational awareness at the

full range of the optics. To increase the situational awareness of the dismounts, the

Bradley has a squad tactical display inside the vehicle. This squad tactical display allows

the dismounts to view the commanders' tactical display or whatever the gunner or

commander are viewing through their respective optics. This display will also decrease

the disorientation that the dismounts typically experience when exiting an enclosed

mechanized vehicle [Ref. 8, 38, 39].

2. Lethality

The lethality improvements to the Bradley A3 are all part of the Improved Bradley

Acquisition System (IBAS). Unlike the fire control on the previous Bradleys, the IBAS

system has an integrated Laser Rangefinder so the gunner does not have to estimate range

when shooting a target. The IBAS system also has Automatic Target Superelevation and

Lead that use range, tracking, and ammunition ballistic data to automatically adjust the

sight reticle for the ammunition being used and the range and motion of the target. These

features decrease engagement time and vastly increase the probability of a first shot

13

hitting the target. The BAS system also includes the Commanders' Independent Viewer

(CIV) which was mentioned in the previous section. The CIV not only increases

situational awareness but also increases the lethality of the weapon system. With the

addition of the CIV, the Bradley crew can track two targets, to include tracking a second

target while the first one is being engaged. Once the first target has been destroyed, the

turret can be adjusted to engage the second target (being tracked with the CIV) with the

flip of a switch. These Auto Dual Target Tracking and Auto Gun Target Adjustment

features can be used with the 25mm main gun or the TOW missiles for each engagement.

Lastly, the gunners' and commanders' viewers both use 2nd Generation FLIR that has

greater resolution and clarity than night vision viewers on previous Bradleys. This

improvement will improve the crews' ability to detect targets and correctly identify them,

resulting in increased lethality and decreased probability of fratricide [Ref. 8, 38, 39].

3. Survivability

The Bradley A3 has two major improvements with respect to survivability. The

first improvement is additional roof armor that improves protection against fragments

from artillery rounds bursting above the vehicle. The second improvement is the addition

of Gas Paniculate Filter Unit (GPFU) and ventilation face pieces for the dismount

element, which were previously only available for the vehicle crew. The GPFU and

ventilation face pieces increase the soldiers' survivability when in an area contaminated

by chemical weapons or nuclear fallout [Ref. 8, 38, 39].

14

4. Mobility

Like the A2 ODS variant of the Bradley, the A3 is equipped with the more

powerful 600 horsepower engine and improved transmission. The Bradley A3 mobility is

also improved through the addition of the all-weather drivers' viewer enhancer. This

improvement is most evident when driving the vehicle during hours of darkness or other

times of limited visibility (smoke, dust, or fog) [Ref. 8, 38, 39].

5. Sustainability

The sustainability of the Bradley A3 is improved through the integration of Built-

in-Test (BIT) diagnostics. Since the entire weapon system is integrated through the

1553B Data Buses it is possible to get feedback on how each subsystem is operating.

This diagnostic system conducts several diagnostic tests during regular startup and

operation of the system and also provides the option to manually initiate a specific test.

Previous Bradleys had separate test equipment that was bulky, difficult to use, and could

not consistently isolate an electronic fault. Also, using this separate test equipment

involved disconnecting and reconnecting several multi-pin cables that are delicate and

easily damaged. Because the BIT diagnostics on the Bradley A3 are embedded in the

vehicle, it will be easier to use and will decrease mechanic-induced faults [Ref. 8, 38, 39].

F. CHAPTER SUMMARY

Bradleys A0 through A2 ODS have provided us with capabilities which far

surpass those of the Ml 13 it replaced. These capabilities were validated by the

overwhelming success of Bradley units in Desert Storm. However, it is also evident that

the Bradley A3 will raise these capabilities to another level. The Bradley A3 has

15

capitalized on the strengths of previous Bradleys through the addition of key technologies

that provide the system with enhanced capabilities. These enhanced capabilities, when

combined into a fully-integrated digital system, will make the Bradley A3 the most

capable mechanized vehicle ever produced. This increase in capabilities, however, has

caused a phenomenal increase in the complexity of producing the weapon system. Every

key technology added is dependent on software to operate as intended. Then, an even

greater amount of software is required to combine each of these technologies into a fully-

integrated system. The Bradley A3 is clearly a software-intensive system and, as a result,

the success of the software development effort is closely related to the success of the

overall system. This relationship between software and program success illustrates the

importance of properly managing the software development effort through the use of

software metrics.

16

III. SOFTWARE METRICS

A. WHAT ARE METRICS?

Software metrics are the combination of a specific measurement and its

relationship to an established standard or index. Specifically:

A software measurement is a quantifiable dimension, attribute, or amount
of any aspect of a software program, product, or process. It is the raw data
which identify various elements of the software process and product.
Metrics are computed from measures. They are quantifiable indices used
to compare software products, processes, or projects or to predict their
outcomes. [Ref. 32, Ch. 8, p. 3]

Without measurement and metrics it would be impossible to truly manage software

development. In other words "If you ain't measurin,' you ain't managin' — you're only

along for the ride (downhill)!" [Ref. 32, Ch. 8, p. 2]. Measurement and metrics allow the

manager to assess the status of his program to determine if it is in trouble, in need of

corrective action, or process improvement [Ref. 32, Ch. 8, p. 1].

B. HISTORY AND EVOLUTION OF METRICS

Galileo (1564-1642) once said, "What is not measurable make measurable" [Ref.

19, p. 6]. This statement seems especially relevant to the field of software metrics.

Through the use of software metrics, we have essentially measured what was once viewed

as something you could not measure. Although the belief that software could be

measured has only taken hold in the last decade, the field of software metrics is not a

recent development. As early as 1968, R. J. Rubey and R. D. Hartwick published a paper

on metrics titled "Quantitative Measurement of Program Quality" in Proceedings of the

ACM National Conference [Ref. 10, p. 16]. Despite this early attention to the idea of

17

measuring program characteristics, programming was still viewed as a "black art". This

view of programming was widely accepted for many years but the drawbacks of this view

did not go unnoticed. Managers of software development efforts felt out of control since

"You can't manage what you can't measure!" [Ref. 15, p. 3]. Also, the Department of

Defense, which funded a large portion of early software development, was not

comfortable with this total lack of control. As the use of computers and software

increased, many began to question the view that programming was a "black art" and did

not agree with the assumption that it was impossible to control software development

efforts. Then, as the costs associated with software development began to increase [Ref.

5, p. 486], many began to ask: "Is it possible to identify or define indices of merit that can

support quantitative comparisons and evaluations of software and of the processes

associated with its design, development, use, maintenance, and evolution?" [Ref. 27,

Preface]. By the mid-70s more attention was being given to the ideas of software metrics.

It became evident to many that software measurement and metrics had the potential to

make software development "concepts more visible and therefore more understandable

and controllable" [Ref. 19, pp. 6-7]. Also, the number of articles and books written on

the subject of software metrics increased dramatically. People began to change their view

of software development as a "black art" and began to see that it had the potential to

become more of a science. At the same time, the field of software engineering was in its

early stages and gave birth to the idea that software could be designed in an organized and

methodical manner. These changes would cause the use of software metrics to increase

even more. However, by the early 80s, software metrics still were not widely-accepted

18

and those attempting to use them found that they were not always effective. In 1981, a

Department of the Navy-funded research group concluded that there was "a great need for

quantitative software measures, both for management and technical reasons, and that

adequate measurement techniques did not exist" [Ref. 27, Preface]. One reason why the

software industry was slow to embrace the use software metrics was that implementing a

software metrics program required considerable effort and additional cost. Also,

implementing a software metrics program did not guarantee that the metrics would tell

the managers or customers what they were trying to find out about the project. There was

no guarantee of success since software developers were still trying to understand some of

the techniques of measuring software necessary for metrics to be effective. At the same

time, the field of software development was moving quickly and new languages were

continually being developed, making previously effective metrics less effective or

obsolete. Finally, by the late 80s and early 90s the use of software metrics was generally

accepted as a critical tool in the effective management of software projects. Capers

Jones, a well-respected authority in the field of software metrics, makes this point in

1991.

Measurement is the key to progress in software...Now that accurate
measurements and metrics are available, it can be asserted that software
engineering is ready to take its place beside the older engineering
disciplines as a true profession, rather than an art or craft as it has been for
so long. [Ref. 32, Ch. 8, p. 3]

Today, despite the industry-wide acceptance of the use of metrics, implementing them

continues to be a significant challenge. Software projects continue to have problems and

in some cases fail. This is especially evident by the number of General Accounting

Office reports outlining the software problems experienced by defense related programs

19

in recent years. Norman E. Fenton and Shari L. Pfleeger identify some common

problems with software projects in their 1997 book Software Metrics: A Rigorous and

Practical Approach:

It is difficult to imagine electrical, mechanical, and civil engineering
without a central role for measurement. Indeed, science and engineering
can be neither effective nor practical without measurement. But
measurement has been considered a luxury in software engineering. For
most development projects:

-We fail to set measurable targets for our software products.

-We fail to understand and quantify the component costs of software
projects.

-We do not quantify or predict the quality of the products we produce.

-We allow anecdotal evidence to convince us to try yet another
revolutionary new development technology, without doing a carefully
controlled study to determine if the technology is efficient and effective
[Ref. 19, p. 10]

Many of the problems software projects face may be due to larger planning issues;

however, the proper use of metrics is almost always a common thread. Either metrics are

not used at all or they are improperly used. A fundamental problem is that, without the

proper use of metrics, a manager cannot predict cost or schedule or tell when ongoing

software development is in trouble.

C. TYPES OF METRICS

Because software is developed for a wide variety of applications and is written in

many different software languages, it is important to recognize that there are no "one size

fits all" metrics. Software development program managers should be given the flexibility

to determine which metrics are most useful for each specific project. Also, "quality, not

quantity, should be the guiding factor in selecting metrics" [Ref. 32, Ch. 8, p. 27]. Since

20

every software development effort has its distinct characteristics, the variety of different

metrics that could be used is seemingly infinite. In order to provide the background

necessary for a basic understanding of metrics, only a few metric types will be discussed.

I have chosen nine metric types that are fairly easy to understand and which address

typical management issues for software development:

1. Size
2. Quality
3. Complexity
4. Requirements
5. Effort
6. Productivity
7. Cost and Schedule
8. Scrap and Rework
9. Support

In the following sections I briefly explain each of these metric types and give examples

for each type.

1. Size

When discussing software, typically size metrics are the first type of metrics that

come to mind. This is largely because the Source Lines of Code (SLOC) size metric was

very popular when the use of metrics first began. The primary advantages of the SLOC

metric are that it is relatively easy to measure and it is useful for cost/schedule models.

The primary disadvantage of the SLOC metric is that it is difficult to estimate the total

number of SLOC using requirement statements. Estimates for SLOC prior to

development are typically done through analogy; comparing the current project with a

similar past project. The accuracy of the estimate will be directly related to the similarity

of the two projects. In DoD, where we keep systems for long periods of time, the two

21

projects being compared may not be similar enough to result in an accurate estimate.

Also, the SLOC size metric can be difficult to use when mixing languages (in the current

development or when estimating through analogy) since different languages can require

varying SLOC to deliver the same functionality. Although SLOC is still being used,

many software projects have switched to the use of Function Points as a size metric.

Function Points are the weighted sums of five different factors that relate to user

requirements: External Inputs, External Outputs, External Inquiries, External Files

(interfaces to other systems), and Internal Files [Ref. 1, p. 639-640]. As the definition

implies, the function points of a software project can be estimated using the software

requirement statements. Another advantage of the function points metric is that it can be

easily applied to higher level languages. Also, once estimates for function points are

calculated, they can be used to estimate SLOC, which can then be used for cost/schedule

models as mentioned earlier. The main disadvantage of the function points metric is that

there are not extensive databases on the use of function points. Therefore, it is not

possible to estimate project size through analogy using the function points metric [Ref.

32, Ch. 8, p. 36]. A side-by-side comparison of SLOC and Function Points is illustrated

in Figure 3-1 on the following page.

2. Quality

Software metrics for quality can be defined in two ways: qualitatively and

quantitatively. Many define software quality in terms of user satisfaction. This definition

of quality can also be interpreted in many different ways. For example, you can measure

the software in terms of user satisfaction for different attributes such as performance,

22

FUNCTION POINTS SOURCE LINES-OF-CODE

Specification-based Analogy-based

Language independent Language dependent

User-oriented Design-oriented

Variations a function of
counting conventions

Variations a function of
languages

Expandable to source
lines-of-co de

Convertable to function
points

Fig. 3-1, Comparison of Function Points and SLOC [Ref. 32, Ch. 8, p. 33]

supportability, or operating cost. One can also measure software quality in terms of

defects in the code. Again, this category can be broken down further into types of defects

with respect to specifications, reliability, or survivability. [Ref. 32, Ch. 8, pp. 28-30]

Figure 3-2 on the following page gives more examples of quantitative and qualitative

metrics for quality.

3. Complexity

The complexity metric is relevant to software development because it is closely

related to design errors and defects. Factors contributing to the complexity of software

projects are size, interfaces among modules, and structure. The metrics for software size

were already discussed. Common measures for interfaces among modules are "fan-in",

the number of modules invoking a given application, and "fan-out", the number of

modules invoked by a given application. Structure is simply the number of paths within a

module. Some metrics use a combination of attributes, such as size, interface, structure,

or other measures, to determine complexity while other metrics focus on only one

software attribute. For example, the well-known McCabe's Cyclomatic Complexity

23

SOFTWARE
QUALITY
FACTOR DEFINITION CANDIDATE METRIC

Correctness Extent to which the software
conforms to specifications
and standards

Defects/
VLOC

Efficiency Relative extent to which a
resource is utilized (i.e.,
storage, space, processing
time, communication time)

Actual Re sourseUtilization

Allocated Re sourseUtilization

Expandability Relative effort to increase
software capability or
performance by enhancing
current functions or by
adding new functions or
data

EjfortToExpand

EffortToDevelop

Flexibility Ease of effort for changing
software missions,
functions, or data to satisfy
other requirements

(0.05)[AvgLaborDaysToChange]

Integrity Extent to which the software
will perform without failure
due to unauthorized access
to the code or data

Defects/
VLOC

Interoperability Relative effort to couple the
software of one system to
the software of another

EffortTo Couple

EffortToDevelop

Maintainability Ease of effort for locating
and fixing a software failure
within a specified time
period

(0.\)[AvgLaborDaysToFix]

Portability Relative effort to transport
the software for use in
another environment
(hardware configuration,
and/or software system
environment)

EffortTo Transport

EffortToDevelop

Reliability Extent to which the software
will perform without any
failures within a specified
time period

Defects/
/LOC

Reusability Relative effort to convert a
software component for use
in another application

EffortToConvert

EffortToDevelop

Survivability Extent to which the software
will perform and support
critical functions without
failure within a specified
time period when a portion
of the system is inoperable

Defects/
/LOC

Usability Relative effort for using
software (training and
operation, e.g.,
familiarization, input
preparation, execution,
output interpretation)

LaborDaysTo Use

LaborYearsToDevelop

Verifiability Relative effort to verify the
specified software operation
and performance

EffortToVerify §

EffortToDevelop II

Fig. 3-2, Example Metrics for Quality [Ref. 32, Ch. 8, p. 30]

24

Metric focuses specifically on the number of linearly independent paths (structure)

through a program [Ref. 19, p. 293, 357]. Complexity metrics are typically collected

through the use of automated tools: other programs designed to measure complexity

attributes [Ref. 32, Ch. 8, pp. 38-39].

4. Requirements

A requirements metric is the number of requirements for a specific software

project. The number of requirements is an important metric since many software projects

have had problems or failed due to undefined, unclear, changing, or increasing

requirements ("requirements creep"). If a requirements baseline is not established and

monitored, then requirements will evolve simultaneously as the software is being

developed, making previous efforts obsolete. Also, if requirements are not clarified early,

then many unexpected implicit requirements will be discovered late in the development

and cause problems. By tracking requirements metrics, the manager has visibility of both

the existing requirements (explicit and implicit) and any deviations from the requirements

baseline [Ref. 32, Ch. 8, p. 40].

5. Effort

An effort metric is the amount of effort required for a specific software

development. An example measure used for effort is the total man-months required to

complete the project. Past software development programs have observed that there is

not a linear relationship between the effort and size of a project. In other words, you

cannot assume that a project twice the size of a similar project will require twice the man-

months to complete. Also, you cannot assume that by doubling the number of

25

programmers assigned to a project you can complete the project in half the time. In most

cases, as the project size increases or the duration allowed decreases, there is an

exponential increase in effort required [Ref. 32, Ch. 8, p. 41]. The phenomenon I just

described was best explained by Frederick P. Brooks in his popular book "The Mythical

Man-Month"; he attributed it to:

Sequential Tasks - Many tasks in software development, such as
debugging, must be completed in sequence. You cannot assign additional
people to future tasks.

Training - The training required increases when more programmers are
involved. Also, development progress actually slows down if
programmers are diverted to bring other programmers "up to speed" on the
current development.

Intercommunication - When more programmers are involved in a
development effort, more pairwise intercommunication is required. In
some cases, when too many programmers are assigned to a project (usually
to save time), the effort of communication quickly dominates the
individual effort on the development. [Ref. 7, pp. 44-52]

Typically, the effort required for a given project is estimated and then compared to

effort expended. Estimates for effort are usually calculated based on decomposition (sum

of the efforts for lower-level activities) or by using a model. Developers may also

estimate using analogy (comparison to a past project) or expert opinion, however, these

methods are not preferred. The effort, cost, and schedule metrics are closely related since

the accuracy of the effort metric will have a direct impact on cost and schedule. In

recognition of this relationship, some developers may group effort/cost as one metric.

[Ref. 19, p. 435]

26

6. Productivity

Productivity metrics attempt to answer the question of how much actual software

you get for a specific amount of effort expended. The most common measure used is the

number of SLOC or Function Points per staff month [Ref. 19, p. 408]. The idea is that by

knowing the productivity of a project you are more able to maximize it and more

accurately estimate cost and schedule. Some of the common factors affecting

productivity are in Figure 3-3. Items with larger numbers have a greater impact on

productivity.

Language experience
Schedule constraint

Database size
Virtual machine experience

Turnaround time
Virtual machine volatility

Storage constraint
Applications experience

Software tools
Timing constraints

Requirements volatility
Required reliability

M odern programm in g p ract ice s
Product complexity

Personnel capability
Number of source lines developed

Fig. 3-3, Software Productivity Factors [Ref. 32, Ch. 8, p. 30]

7. Cost and Schedule

Cost and Schedule are probably the aspects of a software project that managers

and customers are most interested in since they are measures that have traditionally been

used for all types of projects. Also, cost and schedule help define the scope of a project

and allow managers to track two very important resources: money and time. Although

27

size has the greatest impact on cost and schedule, there are other resources to consider,

such as:

Human resources - "The most significant resource of software
development" (Boehm 81). Skills and experience can vary widely from
person to person.

Hardware resources - Development platform, that is, the computers used
to write code. Also, compilers for specific software languages.

Software resources - Special software tools used to develop or test the
software code being developed.

Reusable resources - Existing software modules which will be integrated
into the current software development. [Ref. 32, Ch. 8, p. 45-46]

The actual measures for cost and schedule of a project are determined based on estimates.

Because of the importance of these estimates, program managers typically use an

estimation methodology which they feel best suits their project. Here is a brief overview

of some commonly used estimation methods.

Analogies - Cost and Schedule are determined base on data from similar
past projects.

Expert Opinion - Cost and Schedule are determined based on input from
personnel with much experience on similar projects.

Parametric - Cost and Schedule are determined based on automated
parametric modeling tools which establish a relationship between "cost
drivers" (independent variables) and the cost and schedule of the project
(dependent variable).

Engineering Build - Cost and Schedule are determined based on the sum
of the estimated effort to complete each of the lower level tasks which
constitute the entire project.

Cost Performance Report Analysis - Cost and Schedule are determined
based on current progress within the project.

Cost Estimating Relationships - Cost and Schedule are determined based
on a relationship between and independent variable, such as size, and the
cost and schedule (dependent variable) of the project. Unlike Parametric

28

estimates only one independent variable is used and the process is not
automated. [Ref. 32, Ch. 8, pp. 47-48]

8. Scrap and Rework

There has never been a programmer who could write "perfect" code. There will

always be errors and defects when developing software. Many of these errors and defects

will have to be fixed for the software to function properly. In most cases, fixing "bad"

code will constitute a large portion of the overall development effort. Some early data

suggest that code rework costs account for about 40% of all development expenditures.

Unfortunately, there are no existing models to estimate the amount of scrap and rework a

project will experience [Ref. 32, Ch. 8, p. 49]. Therefore, the program manager should

reduce the risks associated with scrap and rework by:

• Using procedures to identify defects as early as possible;

• Examining the root causes of defects and introducing process
improvements to reduce or eliminate future defects; and

• Developing incentives that reward contractors/developers for early and
comprehensive defect detection and removal.

• Keeping track of the costs associated with scrap and rework to provide
incentive for the software developer to emphasize proper planning,
design, and other defect preventive measures. [Ref. 32, Ch. 8, pp. 48-
49]

In addition to taking measures to reduce the risk of scrap and rework it is helpful

to measure them as the development progresses. This will help minimize scrap and

rework by bringing more attention to them. Also, having these measures will allow the

developer to formulated parametric estimates (comparison based on project attributes) of

scrap and rework for future phases of development and for future projects. Once the

29

developer has credible estimates, he will have useful scrap and rework metrics. [Ref. 32,

Ch. 8, pp. 48-49]

9. Support

It has been determined that Post Deployment Software Support (PDSS) is a major

contributor to the life-cycle cost of defense related software-intensive systems. This is

because these software-intensive systems are continually upgraded to either fix existing

problems or add new capabilities. By building a system with high software supportability

we can decrease the life-cycle cost of the system and ensure that we can easily take

advantage of the flexibility which software offers. Here are some of the metrics which

can help a manager focus on software supportability:

Memory size - This metric tracks spare memory over time. The spare
memory percentage should not go below the specification requirement.

Input/output - This metric tracks the amount of spare I/O capacity as a
function of time. The capacity should not go below the specification
requirement.

Throughput - This metric tracks the amount of throughput capacity as a
function of time. The capacity should not go below specification
requirements.

Average module size - This metric tracks the average module size as a
function of time. The module size should not exceed the specification
requirement.

Module complexity - This metric tracks the average complexity figure
over time. The average complexity should not exceed the specification
requirement.

Error rate - This metric tracks the number of errors compared to number of
errors corrected over time. The difference between the two is the number
of errors still open over time. This metric can be used as a value for tested
software reliability in the environment for which it was designed.

30

Supportability - This metric tracks the average time required to correct a
deficiency over time. The measure should either remain constant or the
average time should decrease. A decreasing average time indicates
supportability improvement.

Lines-of-code changed - This metric tracks the average lines-of-code
changed per deficiency corrected when measured over time. The number
should remain constant to show the complexity is not increasing and that
ease of change is not being degraded. [Ref. 32, Ch. 8, pp. 50-51].

D. DOD POLICIES ON SOFTWARE METRICS - PAST AND PRESENT

The first DoD acquisition policies on the use of software metrics were in DoD

regulations 5000.3-M-l and 5000.3-M-3 dated 1986. These regulations specifically

outlined items that the Test and Evaluation Master Plan (TEMP) should address with

respect to software development [Ref. 2]. One of these items was to collect software

metrics to evaluate software test results. Despite the existence of these policies, software

metrics were not commonly used. There was a general lack of focus on software

management issues within software-intensive programs which resulted in a long line of

problem-plagued programs. The Defense Science Board Task Force and the Army's

Software Test and Evaluation Panel (STEP) confirmed this lack of focus in 1987 and

1990 respectively [Ref. 2]. In conjunction with their findings, the STEP made a number

of recommendations to the Army on how to fix the software problem. One of these

recommendations was that the Army enforce a specific set of software metrics. In

response to the STEP recommendations, the Army created DA Pamphlet 73-1; "Army

Software Test and Evaluation Guidelines" dated 1992 [Ref. 2]. This pamphlet mandated

that all programs with software-intensive systems use 12 specific metrics.

1. COST - Tracks software expenditures ($ spent vs. $ allocated).

31

2. SCHEDULE - Tracks progress vs. schedule (event/deliverable
progress).

3. COMPUTER RESOURCE UTILIZATION - Tracks planned vs. actual
size (% resource capacity utilized).

4. SOFTWARE ENGINEERING ENVIRONMENT - Rates developer's
environment (developer's resources and software development process
maturity).

5. REQUIREMENTS TRACEABUJTY - Tracks requirements to code
(% requirements traced to design, code, and test).

6. REQUIREMENTS STABILITY - Tracks changes to requirements
(user/developer requirements changes and effects).

7. COMPLEXITY - Assesses code quality.

8. BREADTH OF TESTING - Tracks testing of requirements (%
functions/requirements demonstrated).

9. DEPTH OF TESTING - Tracks testing of code (degree of testing).

10. FAULT PROFILES - Tracks open vs. closed anomalies (total faults,
total number of faults resolved, and the amount of time faults are
open).

11. RELIABILITY - Monitors potential downtime (software's contribution
to mission failure).

12. DESIGN STABILITY - Tracks design changes and effects (changes to
design, % design completion).

These metrics came to be known as the Army "STEP metrics". Specific guidance in DA

Pamphlet 73-1 dictated that the 12 metrics would be defined by 242 specific data

elements that would be reported in a specific format [Ref. 2]. Because of the rigid nature

of these requirements, they were subject to much criticism within the acquisition

community, especially among program managers who thought the policy was

unnecessarily restrictive. With the onset of acquisition reform initiated by Secretary of

Defense Perry, the requirements set forth by DA Pamphlet 73-1 were relaxed somewhat

32

in 1994. Program managers of software-intensive systems were still required to report the

12 "STEP metrics", however, they were given the flexibility to determine which data

elements would define the 12 metrics. Although this new policy was less restrictive than

the previous one, many acquisition reform advocates felt that program managers should

have more flexibility to decide what metrics were most relevant for their program [Ref.

2]. Then, in March 1996 a new set of acquisition reform initiatives was set forth by the

new DoD 5000 series. The DoD 5000.2 Regulation shifted the focus from a specific set

of metrics to six management issues.

1. Schedule and Progress - regarding completion of program milestones,
significant events, and individual work items.

2. Growth and Stability - regarding stability of required functionality or
capability and the volume of software delivered to provide required
capability.

3. Funding and Personnel Resources - regarding the balance between
work to be performed and resources assigned and used.

4. Product Quality - regarding the ability of delivered product to support
the user's need without failure, and problems and errors discovered
during testing that result in the need for rework.

5. Software Development Performance - regarding the developer's
productivity capabilities relative to program needs.

6. Technical Adequacy - regarding software reuse and use of approved
standard data elements, and compliance with the DoD Joint Technical
Architecture (JTA). [Ref. 17, App. V]

This change of focus was further solidified in September 1996 by a memo issued by the

Army Director of Information Systems for Command, Control, Communications, and

Computers (DISC4) and in December 1996 by a new DA Pamphlet 73-7 which

superceded DA Pamphlet 73-1. Program Managers were now free to select those metrics

33

which they felt were most appropriate for their weapon system. However, DA Pamphlet

73-7 suggests 14 "Army Metrics" (12 "STEP" metrics plus 2 new ones) which could

easily be used to fulfill the requirement to keep track of the six management issues. The

policy I have just described is the policy which remains in force today with the exception

that an additional management issue was added to the 5000.2 Regulation in March 1998:

Program Success - regarding achievement of performance measures that are linked to

strategic goals and objectives [Ref. 17, App. V].

E. CHAPTER SUMMARY

As software development has evolved, software metrics have become the primary

tool available to control and manage software projects. However, the acceptance of

metrics was slow to take place since software developers and others were slow to change

their view of software development. Finally, after many years and many failed software

development efforts, software development has come to be viewed as a science and the

use of metrics has become widespread [Ref. 19, pp. 6-7, Ref. 24, p. 5]. Despite the

acceptance of software metrics, developers still face substantial challenges when using

them. They must decide what they want to know about their project, which metrics will

provide that information, and how to best implement the metrics chosen. Also, as with

any measure, there are shortcomings to the use of particular metrics, so software

developers are continually challenged to improve their measurements and metrics.

Since the Department of Defense funded many early software development

efforts, it played a major part in the development of software metrics. As with many DoD

policies, the policies on software metrics have seemed to follow cyclical patterns from

34

little to strict control. Initially, software requirements existed only to support testing.

Then, a specific set of metrics, which consisted of specific data elements, was required.

Finally, program managers today can choose the metrics they feel are most appropriate as

long as the metrics provide insight to specific management issues.

Although software metrics are accepted among software developers and the

Department of Defense, software-intensive programs have continued to have problems

with their software development efforts. This would lead us to believe that we can still

benefit from the study of software metrics. As Norman E. Fenton stated "where we can

already measure, we should be making our measurements better" [Ref. 19, p. 6].

35

36

IV. SOFTWARE METRICS AND THE BRADLEY A3 PROGRAM

A. INTRODUCTION

This chapter provides a discussion and analysis of how software metrics were

applied in the Bradley A3 program. First, a description of the past and present metrics

will be provided. Then, the focus will shift to program management-level issues relevant

to the application of software metrics. The three primary issues addressed in this chapter

are: 1) The Purpose of Metrics, 2) Implementing an Integrated Metrics Program, and 3)

Which Metrics to Use. These issues were derived based on interviews with key personnel

and program information attained from both the Bradley A3 Program Office and UDLP.

The Bradley A3 Program is discussed and analyzed with respect to each of these issues.

The chapter concludes with generalized lessons learned, which are relevant to any

software-intensive program.

B. BRADLEY A3 METRICS - PAST AND PRESENT

Before software development had begun on the Bradley A3, the program manager

recognized that the contractor had little experience developing real-time, embedded

software systems. To alleviate the risk to the program, he solicited the help of the U. S.

Army Missile Command (MICOM, now Aviation and Missile Command, AMCOM)

Software Engineering Directorate (SED, now Battlefield Automation Directorate, BAD).

The SED role would be to assist the contractor and program management office with all

issues involved in managing software development for the Bradley A3. This would

37

include both advising the two organizations on all software-related issues and direct

involvement with respect to software metrics. [Ref. 13, 22]

When software development began on the Bradley A3, the twelve Army STEP

metrics were collected. As mentioned earlier, these twelve STEP metrics were mandated

by Army policy and were also included in the Statement of Work (SOW) for the Bradley

A3. The STEP metrics were collected by the Software Quality Assurance (SQA)

organization within UDLP and were briefed during quarterly program reviews. Neither

the contractor's software managers nor the government program manager understood or

used these metrics. Also, there was very little involvement by the software developers

within UDLP in collecting the metrics. Each time these metrics were briefed, the

audience struggled to gain some meaning from them. The reliability and fault profile

metrics consistently confused the audience. As a result, these metrics, although still

collected in accordance with the mandate and SOW, were no longer briefed. [Ref. 12, 13,

22]

Other metrics, however, proved to be more useful. Despite the Government's

primary focus on the STEP metrics, UDLP had been keeping data and estimates for

Source-Lines-Of-Code (SLOC). This data would prove the value of metrics as the

program approached the software development for the Low-Rate-Initial-Production

(LRIP). . Using the data and estimates for SLOC, SQA was able to calculate a crude

metric for productivity. They used this metric to determine that the first major software

build (version 1.0) would not be completed until twelve months after the scheduled LRIP

In-Progress Review (IPR) date. Based on this information and advice from SED, the

38

program manager decided to focus the software development effort on only those items

that were critical for LRIP. The result was that the software was released (Renamed

version 1.0.1) in time to support LRIP requirements, not twelve months late. [Ref. 12, 13,

22]

As the program office began briefing software metrics to the office of the

Assistant Secretary of the Army for Research, Development, and Acquisition (SARDA),

the focus shifted from the STEP metrics to a new set of metrics. These metrics were:

Problem/Change Request (PCR) Status (priority and age)
Test coverage (Breadth and Depth)
Productivity
Fault Profile [Ref. 12, 13,41]

These metrics were established by the program manager based on discussions with

SARDA executives and were typically presented on 3-D bar charts which showed a

considerable level of detail. The entire packet consisted of 35 slides. Although these

metrics provided a lot of detail, they yielded little information which was useful to the

program manager or the SARDA executives. Also, because of the level of detail in the

charts, many questions were raised during briefings. The result was that much time was

spent explaining what certain charts were attempting to depict about the program. After

using these metrics for a year, the program manager decided it was time to revise them.

He had become frustrated by their shortcomings and saw the need for metrics which

could better predict the software development status. [Ref. 12,13, 22]

The intent for the new metrics was to answer two fundamental questions that all

program managers are interested in: 1) What is the status of my program? and 2) Are

there any trends indicating that trouble lies ahead? In conjunction with the contractor,

39

SED and the program manager settled on three metrics which would best answer the

questions above. The three metrics, which are still being used today, are:

Software Development Progress
Test Progress
High Urgency Problem/Change Report (PCR) Closeout [Ref. 12,13,41]

The Software Development metric consists of the number of software tasks complete

versus the number of software tasks scheduled. A sample chart of this metric is depicted

in Figure 4-1 below:

A3 ao S/W Development Schedule Performance

OJ 1 . . , , ,
3

1*.

i s
1 1

CD 00

1
CO

1
CO s
£3

CO

I
09 s
si

CO

S

-Panned

-Conpleted

g> gj o
ON.«

S S s

Fig. 4-1, Software Development Progress [Ref. 41]

Although this schedule metrics is very simple, it has provided the program

manager with an accurate measure of progress [Ref. 12, 13, 22].

The Test Progress Metric consists of the number of testing tasks complete versus

the number of testing tasks scheduled. A sample chart of this metric is depicted in Figure

4-2 on the following page:

40

1/25/98

Fig. 4-2, Test Progress [Ref. 41]

The Test Progress Metric is another schedule metric but with a different perspective. The

use of this metric reflects the program manager's recognition that there is more than one

important aspect of program status with respect to progress. The actual software

development (code writing) is the obvious indicator of program status, but unexpectedly

slow progress in testing could just as easily cause schedule slips in the program.

The High Urgency Problem/Change Report (PCR) Closeout metric consists of the

number of high urgency PCRs cancelled or closed versus the number of high urgency

PCRs to be fixed in the current software build projected (based on resource constraints).

High urgency PCRs are the most critical to fix since they are usually related to safety or

mission-essential capabilities. A sample chart of this metric is depicted in Figure 4-3 on

the following page.

41

R3.0 UDLP SW PCRs

E
Ü

S

Jan 11998 Jan 151993 Feb 11998 Feb 151998

Date

Marl 1998 Mar 261998 April 11998

Fig. 4-3, High Urgency PCR Closeout [Ref. 41]

Note that the projected progress line on this metric is straight. In the future, historical

data will be used to project the monthly rate of progress [Ref. 12, 13, 22].

In addition to the high priority PCR metric, the program manager is also briefed

on the status of targeted PCRs. This chart depicts the current status of all PCRs that will

be fixed in the current build. The targeted PCRs consist of key high and medium-urgency

PCRs which must be fixed to meet project milestones for the entire Bradley A3 system

[Ref. 12, 13,22]. A sample of this chart is depicted in Figure 4-4 on the following page.

The PCR metric and status charts depicted above are important to the program

manager for two reasons. First, they give the program manager insight into the quality of

the software being developed. Second, they give the program manager insight into the

software developer's ability to meet schedule requirements. This includes the

42

Closed
17%

UDLP SW

SCCB/
" ' 2%

Validation
20%

Implementation
26%

Cancel
20%

Analysis
15%

Fig. 4-4, Status of Targeted PCRs [Ref. 41]

consideration that focusing effort on fixing PCRs will have an impact on the contractor's

ability to make progress on new software code.

The metrics I have described above have been very useful in enabling the program

manager to stay informed on the status and trends of the software development.

However, these are not the only metrics used in the software development effort for the

Bradley A3. There are several other metrics which the UDLP software manager uses to

ensure that every aspect of the software development effort is on track. [Ref. 12, 13, 22]

C. ANALYSIS OF KEY SOFTWARE METRICS ISSUES

1. The Purpose of the Metrics

The purpose of metrics in the Bradley A3 software development became an over-

arching issue that the contractor and the program manager struggled with. This struggle

began early in development when the STEP metrics were being used. These metrics did

43

not help the software manager or the program manager manage the program and did not

have a meaningful purpose other than meeting the Army and SOW requirements.

The Army policy mandating the use of specific STEP metrics and component data

elements caused the contractor and the program manager in the Bradley A3 program to

focus on metrics as a requirement to be met. This is expected with any policy that tells an

organization how to do something instead of telling them what they really want them to

accomplish. This is analogous to our use of military specifications and standards where

we would tell the contractor exactly what to build and, after he built it, we would realize

that the product did not meet our needs. The Army policy makers' intent was to improve

software acquisition management. However, the STEP policy did not focus on improving

software management. Instead, it focused on collecting certain metrics and data

elements. The assumption was that these metrics would provide the right insight into

software programs and, as a result, improve software acquisition management. However,

as the Bradley A3 Program has experienced, this assumption did not always hold true.

The program and software managers never had to ask themselves what they wanted to

know about the program with respect to software. The Army had dictated what aspects of

the software development they would keep track of, so that is what they did. Finally,

after realizing that the STEP metrics were not telling him anything useful about the

program, the program manager changed the metrics. The new metrics were an

improvement over the STEP metrics, however, SARDA executives had much influence

on what they would consist of. Because of this, the focus was still somewhat on

collecting specific metrics versus using metrics which would tell the program manager

44

what he needed to know about the program. Finally, after once again realizing that this

set of metrics was not very useful, the program manager decided to change the metrics

again. This time the program manager, with the help of SED, decided on the final set of

metrics which are used today. [Ref. 12,13, 22]

In addition to the problems with the Army policy on metrics, the contractor's

limited experience with embedded software contributed to the lack of meaningful purpose

for metrics. Since UDLP had never undertaken a software development of this scale, they

had not used metrics enough to understand how important metrics would be to the

program success. Also, they did not have an understanding of the valuable insights that

metrics could provide so that the managers could effectively manage the software

development. The result was that UDLP initially did not focus on their metrics program.

It was viewed as a requirement to be met, not as an essential part of software

management. [Ref. 12, 13, 22]

As with the contractor, the program manager also had limited experience with

software development. It would be difficult for anyone with limited experience to

understand the complexity of the software development and the-importance of software

metrics. Also, a manager with limited exposure to programs that had used metrics

effectively would more easily lose confidence in metrics. This was especially relevant

during the early software development for the Bradley A3 because of the difficulties

discussed above. As with the contractor, the result of the program manager's limited

experience was that the purpose of the software metrics was not focused on managing the

program, but was seen as requirement to be met.

45

2. Implementing an Integrated Metrics Program

The implementation of the metrics program in the Bradley A3 development could

best be described as a learning process. The contractor, having had little experience with

software metrics, was not quite sure how to implement a metrics program. More

importantly, they did not understand the utility of implementing an effective program.

The result was that the metrics were not very useful until later in the development effort.

Early in the software development for the Bradley A3, the metrics program was

not an integrated part of the software development. When UDLP began the software

development, they had their Software Quality Assurance (SQA) organization collect the

data for the STEP metrics. By doing this, they had essentially separated the development

effort from the metrics program. The software developers were responsible only for the

development, not for the metrics which were supposed to be tracking the development.

The separation between the software development and metrics is a clear indicator that the

metrics were not being used as a management tool by the contractor. As mentioned in the

previous section, the requirement for metrics was being met, but they were not assisting

the managers (Government and contractor) in managing the program. The effectiveness

of metrics is based on the extent that they provide useful information to the managers so

that they can better manage the development effort. Because of the separation between

software development and metrics during implementation, the early metrics used in the

Bradley A3 program were not effective [Ref. 12, 13, 22].

As the software development for the Bradley A3 progressed, the integration of the

metrics program improved and the metrics became more useful. One of the driving

46

factors behind this improvement was the involvement of the MICOM SED. They played

a key role in improving the use of metrics. First of all, through their interaction with the

contractor, they were able to provide advice on the use of metrics and how to ensure that

they were being used effectively. Through their expertise in software, they had a better

vision of the insights metrics could provide the managers. The SED also provided a great

deal of assistance to the program management office. They conducted a software

manager's "short course" to educate the program management office on software-related

issues, including metrics. The SED also provided the program manager with valuable

advice on the use and implementation of software metrics. By patiently working with the

contractor and by assisting them during implementation, the SED was able to help the

metrics program become integrated with the software development.

3. Choosing Metrics and Ensuring Their Effectiveness

This section will focus on choosing the right metrics and methods for increasing

their effectiveness. First, an analysis of the metrics used on the Bradley A3 Program will

be provided. This will be followed by a discussion and analysis of how the Bradley A3

Program increased the effectiveness of their metrics by using two different sets of metrics

tailored for the software management and program management levels. Then a

discussion and analysis of the importance of metrics presentation will be provided. The

section will close with a brief discussion and analysis of cost as a factor for choosing

metrics.

As mentioned in previous sections, early in the Bradley A3 Program, the STEP

metrics were not providing the software manager and program manager with useful

47

information for managing the program. Under the Army's STEP metric policy, choosing

which metrics to use was not much of a consideration. Later, when the Army mandate for

STEP metrics was removed and the PM had decided to change the metrics, choosing the

right metrics became a relevant issue. Not being forced to use a specific set of metrics

was a step in the right direction. While under the Army STEP metric policy, the

contractor and program manager had begun to realize that metrics are not "one size fits

all." The STEP metrics were not providing the program manager with right information

that he needed to effectively manage the program. One of the main drawbacks of the

STEP metrics was that they provided the program manager with too much detailed data

and not enough useful information. The next set of metrics were chosen based on input

from SARDA executives. These metrics were somewhat more useful to the program

manager since they focused on broader management issues more appropriate to the

program manager. However, like the STEP metrics, so much detail was provided that it

was easy to become distracted by difficult to understand metrics and lose sight of the

more important issues. One of the underlying problems with both the STEP metrics and

this second set of metrics, was that they were not created by the manager to support the

manager. They were created by those external to the program management office, in one

case the Army, and in the other case SARDA executives. Finally, unrestrained by

external influence, the program manager was able to independently decide what he

wanted to know about the program. This is the first step toward choosing the right

metrics for a particular project. Because of his broad perspective of the program, the

program manager decided that he wanted to know about the status of the program and any

48

"~1

trends indicating future trouble. This was the first time that questions about the program

preceded the formulation of metrics to be used. Given the program manager's questions,

SED and the program manager decided that the three metrics below were most

appropriate:

Software Development Progress
Test Progress
High Urgency Problem/Change Report (PCR) Closeout [Ref. 41]

Because these metrics were chosen specifically to answer the program manager's

concerns about the program, they ended up being very effective.

The three metrics above are distinctly different than the metrics used by the

software manager. This makes a great deal of sense since the software manager's

perspective is very different than that of the program manager. The software manager

will want to know detailed information about different aspects of the development while

the program manager is more concerned about overall trends. Also, the software manager

has a much deeper understanding of software development and metrics, so he is more

likely to understand detailed metrics than a program manager. The disadvantage of the

program manager using only a few, very broad, metrics is that he may lose visibility on

obscure information which may indicate a problem in development. There are several

things the program manager can do to overcome this shortcoming. First, he can establish

a relationship of trust and cooperation with the contractor so that the contractor's software

manager will "raise the red flag" when he becomes aware of a potential problem that is

not reflected in the program manager's metrics. Second, the program manager can get

educated on software development and metrics to the extent that he will be more aware of

49

software issues and the areas of the development that are most likely to cause problems.

Last, the program manager can solicit the help of organizations external to the contractor

with expertise in software development and metrics. This will provide the program

manager with an independent set of experts to help him oversee the software

development effort at a more detailed level without being overwhelmed by data he doesn't

understand.

The presentation of the metrics chosen is also critical to their effectiveness. Even

if the metrics answer the questions posed by the manager, they will not be useful if the

manager cannot understand the way they are being presented. "The measurements must

be presented in a way that tells both the customer and developer how the project is doing"

[Ref. 19, p. 19]. Note the simplicity of the sample charts in Section B. These charts

clearly depict the trends for each of the metrics and can be understood with very little

explanation.

Another factor to consider when choosing software metrics is what you can

afford. Like all reporting requirements imposed on a contractor, the collection of

software metrics is not free. This is especially true in a cost type contract such as the one

in place with UDLP. The program management office was fully aware of this issue when

choosing metrics for the Bradley A3 program. They have decided to use only those

metrics which are necessary to effectively manage the program. This would be the wisest

decision for any program given the competition for limited resources in today's

acquisition environment.

50

D. GENERALIZED LESSONS LEARNED

The following lessons learned were derived from the research conducted in this

case analysis of the Bradley A3 metrics. However, they have been generalized for

application to any software-intensive program.

1. Hire the Experts

The program manager of any software-intensive program should solicit the help of

an independent agency to assist in overseeing software development. For example, it is

seldom the case that the program manager has enough experience with software to fully

understand all the issues involved with software development. Also, in many cases, the

contractor is not very experienced in software development either. Having support from

an agency with extensive experience in software development will mitigate the risk

associated with having an inexperienced contractor. This is especially the case with

complex, real-time, embedded systems.

2. Focus Metrics on Managing the Program

Having metrics which focus on the purpose of managing the software

development effort is critical to metrics effectiveness. For example, metrics will not be

effective if they are collected simply to meet a requirement or to appease an agency

external to the development program. By ensuring that the purpose of the metrics is to

fulfill the need to manage the software development, you will be providing the foundation

for useful insight into the development.

51

3. Implement Only the Most Useful Metrics

The program manager should only implement the most useful metrics which are

absolutely required to manage the program. For example, he must resist the temptation to

try to know every detail of the software development. This is especially true in today's

acquisition environment where there is great competition for limited resources. We

simply cannot afford the luxury of unlimited information with respect to software

development.

4. Make the Software Developer Responsible for Metrics

To ensure that metrics are effective, they must be fully-integrated with the

software development effort. One way that the program manager and contractor can

promote this integration is by ensuring that the software developer is also responsible for

metrics. By being responsible for metrics, the software developer will not view metric

collection and tracking as separate functions that do not matter. Ideally, the software

developer will embrace the use of metrics and the information they provide managers at

all levels.

5. Tailor Your Metrics (Management Level, Stage, and Presentation)

Metrics will be most effective if they are tailored to the specific application.

Tailoring can take on many forms. First, metrics can be tailored for the specific level of

management. For example, metrics that the program manager uses should be broad and

depict general trends, while those that the software manager uses should be more detailed.

Second, metrics should also be tailored for each stage of the development. For example,

early in the software development it would make sense to focus on a requirements metric,

52

while later in the development it would make more sense to focus on a design stability

metric. Last, the metrics presentation should be tailored for the specific audience. This is

important since the effectiveness of a metric is based on the information it provides to the

managers. A metric that is presented poorly or not understood will not be effective.

6. Get Educated on Software Development and Metrics

When managing any software-intensive system it is vital that the program

managers have at least a general understanding of software-related issues. There are few

opportunities for formal training and there is rarely excess time in any duty position.

Therefore, getting educated on software development becomes a matter of personal

development. There are organizations, such as the Software Program Manager's Network

[Ref. 31] or the Army Software Metrics Program [Ref. 2] that can answer a wide variety

of questions and recommend specific books or journals. Knowing more about software

and metrics will help the program manager deal with the challenges associated with

managing a software-intensive program. Also, it is much better to have that knowledge

before becoming the program manager or before the software development begins.

Although it is possible to learn much about software while managing its development,

knowing more prior to the development will allow the program manager to take full

advantage of that knowledge.

7. Cooperative Relationships Foster Success

When developing any system, having cooperative relationships with the contractor

and other agencies involved greatly increases the probability of overcoming problems

during development. Having a contentious "you vs. me" relationship will only exacerbate

53

the effect of problems during development. This has been observed in many defense-

related programs. When a cooperative relationship exists, the contractor is not afraid to

inform the program manager of a problem. Also, with a cooperative relationship, the

response to a problem is more likely to focus on solving the problem, versus the

contentious relationship, where the focus shifts on who's fault it is. This positive

response to problems in cooperative relationships allows all parties involved to combine

their respective resources and find appropriate solutions. Lastly, the effects of having

cooperative relationships are multiplied when developing complex, software-intensive

systems.

54

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This research shows that, based on lessons learned from the Bradley A3 program,

the most significant software metrics issues for a program manager are: focusing metrics

on the purpose of managing the program, and choosing the best set of metrics to use.

Software metrics were first created in hopes that software development could be

controlled and managed. As software development has evolved, developers have gained

a better understanding of metrics and proven that metrics are valuable management tools.

Using metrics with a focus on anything other than managing the program would result in

a lack of clear direction for the metrics program. Without without a clear understanding

of why you are using metrics, it is unlikely that the metrics program will be successful.

Metrics cannot be used simply to fulfil a requirement and then expect that they will assist

the manager in managing the development. In short, if managers want metrics to provide

them with insight about software development, they must not lose sight of the original

purpose of metrics: management.

Once the purpose of metrics is focused on managing the program, the next step is

to choose which metrics to use. As with the purpose of a metrics program, choosing

which metrics to use should be motivated by the needs of the manager. Using certain

metrics because they are mandatory or because someone external to the program

recommends them, will decrease the likelihood that the metrics will provide useful

information. In most cases, using metrics because of external influence will cause the

55

program to expend resources gathering data which does not apply to the present effort and

fail to gather data which could translate into useful information. Also, the metrics that

the program manager uses do not need to be the same as those that the software manager

uses. Because of their different levels of management, their information needs are

different; therefore, the metrics they use should be different. Ideally, the original source

of any metric should be in the form of a question. As the manager plans, he will have

questions based on information he has identified that he will need to effectively manage

the program. Then, specific metrics should be chosen to answer those questions.

B. RECOMMENDATIONS

There are many factors which influence the success of software metrics. Since

program managers cannot influence every one of these factors, it would seem logical to

influence those which he can and minimize the negative impact of the others.

The first factor, which the program manager has direct control over, is getting

educated on software development and metrics. This would be the best way to prepare

for managing a software-intensive system since it will have a direct impact on the

program. As a key decision-maker, the program manager is in a position to influence the

success of the development, including the use of metrics. As mentioned earlier, poor

management has been cited as the primary cause of failures in software-intensive systems

[Ref. 32, Ch. 1, p. 18]. The best way that we can prevent poor management from being

the cause of failures in the future, is by getting educated today. A program manager who

is more knowledgeable on software issues and metrics will be more capable at managing

software-intensive systems. Since he will already have a good knowledge base about

56

software and metrics, he will be able to focus more on managing the program. He will

have a better understanding of areas or phases of the development that may be more likely

to encounter problems and will be better equipped to ask the right questions about these

areas before undetected problems get out of control. Also, the informed program

manager, based on his knowledge of metrics, will better understand the insight that they

can give him in managing the program. With this understanding, he will see the need for

effective metrics and will be more capable of choosing the right ones.

The second factor that the program manager has some control over is minimizing

the impact of a contractor who is not experienced at developing software-intensive

systems. This research has shown that the best way a program manager can accomplish

this is by soliciting the help of an independent agency. This independent agency can

assist the program manager in overseeing the contractor and assist the contractor in

increasing his development capabilities. It is difficult for any organization to develop

new capabilities without any assistance, especially if they are trying to utilize this new

capability as it is being established. This is the case when we expect a contractor to attain

the capability to develop software-intensive systems while actually developing one. This

situation creates a great deal of risk for a program. By hiring an independent agency we

can effectively mitigate this risk.

57

C. ANSWERS TO RESEARCH QUESTIONS

1. What are software metrics and what are they used for?

Software metrics are the combination of a specific measurement and its

relationship to an established standard or index. Specifically:

A software measurement is a quantifiable dimension, attribute, or amount
of any aspect of a software program, product, or process. It is the raw data
which identify various elements of the software process and product.
Metrics are computed from measures. They are quantifiable indices used
to compare software products, processes, or projects or to predict their
outcomes. [Ref. 32, Ch. 8, p. 3]

Software metrics are used by program and software managers to manage software

development. Measurement and metrics allow the manager to assess the status of his

program to determine if it is in trouble, in need of corrective action, or requires process

improvement [Ref. 32, Ch. 8, p. 1]. See section EL A. for more detail.

2. What is the Army policy on software metrics?

The Army policy on software metrics was changed in March 1996 by DoD 5000.2

Regulation, which shifted the focus from a specific set of metrics to six management

issues. The regulation stated that program managers should implement metrics which

address theses six management issues:

1. Schedule and Progress - regarding completion of program milestones,
significant events, and individual work items.

2. Growth and Stability - regarding stability of required functionality or
capability and the volume of software delivered to provide required
capability.

3. Funding and Personnel Resources - regarding the balance between
work to be performed and resources assigned and used.

58

4. Product Quality - regarding the ability of delivered product to support
the user's need without failure, and problems and errors discovered
during testing that result in the need for rework.

5. Software Development Performance - regarding the developer's
productivity capabilities relative to program needs.

6. Technical Adequacy - regarding software reuse and use of approved
standard data elements, and compliance with the DoD Joint Technical
Architecture (JTA). [Ref. 17, App. V]

The policy I have just described is the policy which remains in force today with the

exception that an additional management issue was added to the 5000.2 Regulation in

March 1998: Program Success - regarding achievement of performance measures that are

linked to strategic goals and objectives [Ref. 17, App. V]. See Section UJ.D. for a

detailed description of past Army policies on software metrics.

3. What software metrics are used in the Bradley A3 software development?

Currently, the Bradley A3 software development (program management level) uses these

three metrics:

Software Development Progress
Test Progress
High Urgency Problem/Change Report (PCR) Closeout [Ref. 12, 13,41]

For more charts and description of these metrics see Section IV.B.

4. In what ways are the Bradley A3 software metrics effective in measuring

program progress?

The Bradley A3 software metrics are effective because they provide the program

manager with the information he needs to manage the program. In this case, the program

manager decided that he needed to be informed about the overall software development

progress, the test progress, and high urgency PCR closeouts. These three metrics allow

59

the program manager to assess the status of his program to determine if it is in trouble, in

need of corrective action, or process improvement [Ref. 32, Ch. 8, p. 1]. Also, they are

presented in an easily-understandable format. See Sections IV.B. and IV.C. for more

detail.

5. What lessons can be learned from the use of software metrics in the

Bradley A3 program?

The following lessons learned were derived from the research conducted in this

case analysis of the Bradley A3 metrics. However, they have been generalized for

application to any software-intensive program.

1. Hire the Experts - The program manager of any software-intensive program

should solicit the help of an independent agency to assist in overseeing

software development.

2. Focus Metrics on Managing the Program - Having metrics which focus on the

purpose of managing the software development effort is critical to metrics

effectiveness.

3. Implement Only the Most Useful Metrics - The program manager should only

implement the most useful metrics which are absolutely required to manage

the program.

4. Make the Software Developer Responsible for Metrics - To ensure that

metrics are effective, they must be fully-integrated with the software

development effort. One way that the program manager and contractor can

60

promote this integration is by ensuring that the software developer is also

responsible for metrics.

5. Tailor Your Metrics (Management Level, Stage, and Presentation) - Metrics

will be most effective if they are tailored to the specific application, such as

management level, stage of development, and presentation.

6. Get Educated on Software Development and Metrics - When managing any

software-intensive system it is vital that the program managers have at least a

general understanding of software-related issues.

7. Cooperative Relationships Foster Success - When developing any system,

having cooperative relationships with the contractor and other agencies

involved greatly increases the probability of overcoming problems during

development.

See Sections IV.D. for more detail.

6. How can these lessons learned be generalized to guide and support other

program managers?

See answer to question 5 above or Section IV.D.

D. RECOMMENDATIONS FOR FURTHER STUDY

1. Software Metrics in Other Software-Intensive Systems

Research the use of software metrics in other software-intensive systems.

Determine how metrics were use and the extent of their effectiveness. Develop a set of

lessons learned based on an analysis of the specific case.

61

2. Program Manager Knowledge of Software Metrics

Conduct a survey of the knowledge base of program managers who manage

software-intensive systems with respect to software related issues, including metrics.

Analyze the results of the survey and any correlation to the program managers' self-

assessed ability to manage their programs. Make recommendations for methods to

improve or sustain the existing knowledge base.

3. Software Agencies

Investigate the variety of agencies available to assist program managers of

software-intensive programs in managing their programs. Include an analysis of the

extent of services that each agency can provide and their role in past or existing programs.

62

LIST OF REFERENCES

1. Albrecht, Allan J. and Gaffney, John E. Jr., "Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science Validation", IEEE
Transactions on Software Engineering, November 1983

2. Army Software Metrics Program Website, www.armv.mil/swmetrics

3. Army Technology - The Website for Defence Industries - Army,
www.army-technology.com/projects/bradley/

4. Boehm, Barry W., Software Engineering Economics, Prentice Hall, Englewood
Cliffs, NJ, 1981

5. Booch, Grady, Object-Oriented Analysis and Design, Addison Wesley Longman, Inc.,
Menlo Park, CA, 1994

6. Booch, Grady, Software Engineering With Ada, Benjamin/Cummings Publishing
Inc., Menlo Park, CA, 1987

7. Brooks, Frederick P. Jr., "The Mythical Man-Month", Datamation, December 1974

8. Bradley A3 Product Manager, Test and Evaluation Master Plan, Bradley Fighting
Vehicle Systems Project Office, June 1995

9. Bradley A3 Product Manager Website, Bradley Fighting Vehicle Systems Project
Office, www.pmbradley.com\A3\A3.htm

10. Conte, S. D., Dunsmore, H. E., and Shen, V. Y., Software Engineering Metrics and
Models, The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1986

11. Curnmings, Terry, MAJ (USA), Deputy Product Manager Bradley A3, Bradley
Fighting Vehicle Systems Project Office, Personal Interview, 28 April 1998

12. Dalrymple, Edgar, Bradley Support Team, U.S. Army Aviation and Missile
Command (AMCOM) Software Engineering Directorate, Personal Notes - Metrics
Use on Bradley A3

13. Dalrymple, Edgar, Bradley Support Team, U.S. Army Aviation and Missile
Command (AMCOM) Software Engineering Directorate, Telephone Interviews, 15
April 1998,18 May 1998, and 29 May 1998

14. Defense Daily Network - The Network for Aerospace and Defense,
www.defensedaily.com/progprof/army/bradley.html

63

15. DeMarco, Tom, Controlling Software Projects - Management, Measurement, &
Estimation, Yourden Press, New York, NY, 1982

16. Department of Defense, Department of Defense Directive fPoDD) 5000.1 Defense
Acquisition. Washington, D.C., GPO, 15 March 1996

17. Department of Defense, Department of Defense Regulation 5000.2-R Mandatory
Procedures for Major Defense Acquisition Programs (MDAPs) and Major Automated
Information Systems (MAIS) Acquisition Programs. Washington, D.C., GPO, 15
March 1996 (Change 3, March 1998)

18. Department of Defense, Military Standard (MJL-STD-498) Software Development
and Documentation. Washington, D.C., GPO, 5 December 1994

19.Fenton, Norman E. and Pfleeger, Shari L., Software Metrics: A Rigorous and
Practical Approach. 2nd Edition. International Thomson Computer Press, London,
UK, 1997

20. Frew, Frank, U.S. Army Aviation and Missile Command (AMCOM) Software
Engineering Directorate, Telephone Interviews, 15 April 1998 and 18 May 1998

21. Grady, Robert B., Practical Software Metrics for Project Management and Process
Improvement. PTR Prentice-Hall Inc., Englewood Cliffs, NJ, 1992

22. Johnson, Ted, LTC (USA), Product Manager Bradley A3, Bradley Fighting Vehicle
Systems Project Office, Telephone Interview 21 April 1998, Personal Interview 28
April 1998

23. Jones, Capers, Patterns of Software System Failure and Success. International
Thomson Computer Press, London, UK, 1996

24. Jones, Capers, Programming Productivity. McGraw Hill Inc., New York, NY, 1986

25. Liao, Chong K, Project Engineer Bradley A3, Bradley Fighting Vehicle Systems
Project Office, Personal Interview, 28 April 1998

26. Parametric Cost Estimating Initiative Steering Committee, "Parametric Cost
Estimating Handbook", Department of the Navy, Washington, D.C., GPO, Fall 1995

27. Perils, Alan, Sayward, Frederick, and Shaw, Mary, Software Metrics: An Analysis
and Evaluation. MIT Press, Cambridge, MA, 1981

28. Reifer, Donald J., Software Management. IEEE Computer Society Press, Los
Alamitos, CA, 1993

64

29. Rodgers, Kenneth P., "Embedded Software Development: A Case Analysis of the
U.S. Army Bradley Fighting Vehicle A3 Program", Master's Thesis, Naval
Postgraduate School, Monterey, CA, June 1996

30. Software Engineering Institute, "Technical Report CMU/SEI-92-TR-19, Software
Measurement for DoD Systems: Recommendations for Initial Core Measures",
Carnegie Mellon University, Pittsburgh, Pennsylvania, September 1992

31. Software Program Manager's Network, The Program Manager's Guide to Software
Acquisition Best Practices, Version 2.0, Department of Defense, Washington D.C.,
GPO, April 1997

32. Software Technology Support Center, Guidelines for Successful Acquisition
Management of Software-Intensive Systems, Version 2.0, Department of the Air
Force, Hill AFB, Utah, June 1996

33. Stutzke, Richard D., "Software Estimating Technology: A Survey", Crosstalk, May
1996

34. Tacaks, Steve, ex-Chief, Systems Support, Ground Systems Division, United
Defense, Limited Partnership, Telephone Interview, 21 May 1998

35. Tacaks, Steve, ex-Chief, Systems Support, Ground Systems Division, United
Defense, Limited Partnership, Presentation, Naval Postgraduate School Systems
Management Department, Monterey, CA, 14 August 98

36. Task Force Eagle and U.S. Army 1st Armored Division Website,
www.tfeagle.army.mil/photos/Bradley.htm

37. Training and Doctrine Command (TRADOC) Systems Manager - Bradley Fighting
Vehicle, "Bradley Program Overview, www.benning.army.mil/fbhome/tsm-
b/bpo.htm, 20 May 1997

38. Training and Doctrine Command (TRADOC) Systems Manager - Bradley Fighting
Vehicle, Fighting Vehicle Systems, Operational Requirements Document (ORD),
M2/M3A3 Bradley, Ft. Benning, GA, 1993

39. United Defense, Limited Partnership, Ground Systems Division, Production
Readiness Review Briefing, UDLP, Ground Systems Division, San Jose, CA, 3
March 1997

40. United Defense, Limited Partnership, Ground Systems Division, Software
Development Plan (SDP), UDLP, Ground Systems Division, Santa Clara, CA,
February 1996

65

41. United Defense, Limited Partnership, Ground Systems Division, Software Metrics
Documentation. UDLP, Ground Systems Division, Santa Clara, CA, Jan 97 - Apr 98

42. United Defense, Limited Partnership, Ground Systems Division, Systems Engineering
Management Plan fSEMPl UDLP, Ground Systems Division, Santa Clara, CA,
December 1995

66

INITIAL DISTRIBUTION LIST

1. Defense Information Technical Center,
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-5101

2. Dudley Knox Library *■
411 Dyer Road
Naval Postgraduate School
Monterey, CA 93943-5101

3. Defense Logistics Studies Information Center '. 1
U.S. Army Logistics Management Center
Fort Lee, VA 23801-6043

4. OASA(RDA) 1
AT7N: SARD-ZAC
103 Army Pentagon
Washington, DC 20310-0103

5. Prof David V. Lamm (Code SM/Lt) 4
Naval Postgraduate School
Monterey, CA 93943-5103

6. David F. Matthews, Col (Ret) (Code SM/Md) 2
Naval Postgraduate School
Monterey, CA 93943-5103

7. Prof Mark E. Nissen (Code SM/Ni) 1
Naval Postgraduate School
Monterey, CA 93943-5103

8. CPT James S. Romero '. 2
3610 Hartsock Lane
Colorado Springs, CO 80917

67

