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PULSED REFLECTION AND TRANSMISSION 
FOR A DISPERSIVE HALF SPACE 

1. INTRODUCTION 

This report investigates the one-dimensional (1-D) propagation of normally incident, pulsed, 
electromagnetic plane waves on a half space that is isotropic, spatially homogeneous, and dispersive. 
The dispersive nature of the medium is characterized by a singly resonant Lorentz model of the 
refractive index. Results of previous studies of propagation at optical frequencies are extended to 
include propagation at nonoptical frequencies through media for which a Lorentz representation 
is applicable. In the work of Sommerfeld [1], Brillouin [2,3], and Oughstun and Sherman [4-8], 
the signal is specified on the medium's boundary, and propagation is analyzed inside the Lorentz 
medium for a constant transmission coefficient of unity. Consequently, these formulations account 
neither for reflection from the boundary nor for the frequency dependence of the transmission 
coeflicient. The need for a more general formulation that includes frequency-dependent reflection 
and transmission coefficients is justified by rigorous and plausibility arguments. Not only does the 
approach delineated herein include reflection, but it also provides the framework for addressing 
sources that are external to the medium. Further, the ability to determine the reflected field has 
the advantage of providing a diagnostic capability for learning about the medium through the 
behavior of the reflected signal. The motivation for this study stems from a desire to apply the 
uniform asymptotic methodology of Oughstun and Sherman to propagation at radio frequencies. 
Specifically, one would like to apply the uniform asymptotic approach to two radar problems: 
(1) transionospheric propagation at frequencies between 10 MHz and 3 GHz and (2) low-altitude 
propagation above the sea surface for frequencies between 10 MHz and 100 GHz. Of course, 
the relations among the physical parameters that describe these media are different from their 
relationships at optical frequencies. A byproduct of this analysis is its applicability to transmission 
of short-pulse signals by ultrawideband (UWB) radars [9], a recent area of active research [10-14]. 

In Section 2, the problem is stated, and the reflected and transmitted fields in the frequency 
domain for an arbitrary pulsed plane wave are given. Integral expressions of the corresponding 
temporal fields are obtained in a straightforward manner by taking the inverse transform of the 
frequency-domain fields; and the geometry, associated with the transforms and with the analytical 
model for the refractive index n of a singly resonant Lorentz medium, is discussed. In the Lorentz 
model of the medium, the resonance frequency u>o is assumed to exceed the absorption frequency 
S. The remainder of the report addresses the evaluation of the reflected and transmitted fields for 
an incident pulsed plane wave that is a sine function with a finite number of cycles. 

An exact expression for the reflected field is obtained in Section 3. This expression is then 
reformulated to provide more numerically tractable results, which are evaluated for Brillouin's 
choice of the Lorentz medium parameters for several values of the sine function's carrier frequency 
uc.   These results are used to obtain a physical understanding of the impact of the dispersive 
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medium on the reflected field. In particular, one observes the origin of the broadening of the 
reflected field. Moreover, the authors demonstrate that the reflected field is significant and should 
not be ignored, even at optical frequencies for certain ranges of wc and w0. In addition, the early- 
time and high-frequency fields are derived and compared, and the high-frequency field is shown to 
be a generalization of an earlier result by Colby [15]. 

In Section 4, the time-domain transmitted field is treated under the uniform asymptotic 
methodology developed in Ref. 4 for evaluating the solution in the far field. In this approach, 
the observation points are taken sufficiently far into the Lorentz medium to guarantee the asymp- 
totic representation of the field. As mentioned earlier, this analysis generalizes optical formulations 
of propagation relative to a Lorentz medium to electromagnetic propagation through that medium 
by including a frequency-dependent transmission coefficient. Hence the extension is applicable in 
situations where the frequency dependence of the transmission coefficient is important, such as 
propagation at microwave and millimeter-wave frequencies, propagation involving ultrawideband 
signals, or optical propagation for certain ranges of the physical parameters. The advantage of 
Oughstun and Sherman's methodology is that it partitions the inversion integral into three basic 
components, which are handled separately. The components roughly correspond to contributions 
from saddle points far from the origin (Sommerfeld precursor), from saddle points close to the 
origin (Brillouin precursor), and from poles of the inversion integrand (main signal). The impact of 
the frequency-dependent transmission coefficient is demonstrated through detailed analysis of the 
Sommerfeld precursor and a heuristic discussion of the main signal. Since the objective here is to 
establish the credibility of including the transmission coefficient for propagation through a Lorentz 
medium, complete treatments of the Brillouin precursor and the main signal are not undertaken. 

Since the transmitted field depends crucially on the behavior of the saddle points of the in- 
version integral's generalized phase, the eighth-degree polynomial [4,8] of which the saddle points 
are roots is corrected. Although the polynomial has errors that lead to incorrect values for the 
saddle points, no errors are found in any calculations involving the saddle points in Refs. 4 and 8. 
Moreover, for Brillouin's values of the physical parameters, the contributions of the distant saddle 
points to the transmitted field are determined, the effect of including the transmission coefficient is 
discussed, and aspects of the transmitted field are compared to the reflected field. In particular, the 
peak value of the reflected field is shown to be 21% of the incident field's amplitude, and the com- 
ponent of the transmitted field associated with the poles of the inversion integral (main signal) is 
heuristically argued to be 79% of the field obtained when the transmission coefficient is unity. The 
purpose of this example is to demonstrate that the reflection and transmission coefficients should 
not be ignored. Lastly, the Appendix presents detailed investigations of the refractive index, re- 
flection coefficient, and transmission coefficient over the complex plane. In addition to analytical 
arguments, two-dimensional (2-D) and three-dimensional (3-D) graphs are used to characterize the 
behavior of each quantity. 

2. DERIVATION OF FIELDS IN TIME AND FREQUENCY DOMAINS 

A pulsed plane wave E\z,t), traveling in the positive z direction in free space (z < 0), is 
normally incident on the dispersive half space (z > 0) at observation time t = 0 (Fig. 1). The fields 
in both half spaces satisfy Maxwell's equations 

dEy dHx ,        8HX      dDy m 

dz dt oz        at 
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Let Ey(z,u), Dy(z,u), and Hx(z,u>) be the complex Fourier transforms of Ey(z,t), Dy(z,t), and 
Hx(z,t), respectively, for the complex variable a>. If G represents any of the temporal functions 
and G is the associated Fourier transform, the complex Fourier transform pair is 

1    f+°° 
G(t)e,twdt G{t) = I G(u)t 

Jc 
—«tu; du. (2) 

The contour C is the horizontal line in the complex u plane that runs from -oo + iato +00 + ia. 
The real constant a is chosen so that all of the integrand's singularities lie below the line and so 
that e~atG(t) is absolutely integrable for all of the fields. The existence of the transform pair is 
guaranteed for any positive a satisfying these conditions. 

$ 

FREE SPACE (z<0) 
[Ho, eol 

DISPERSIVE MEDIUM <c>0! 

Fig. 1 - Geometry and specified coordinate frame for a pulsed plane wave Ey(z,t) in free space 
{z < 0) that depends only on its propagation direction z and is normally incident on the 

dispersive medium at Z = 0. The positive X direction points into the paper, and the dispersive 
medium occupies the half space Z > 0. Free space is characterized by the permittivity €0 and 
permeability /Xo, and the dispersive medium is defined by the free-space permeability flQ and the 
frequency-dependent relative permittivity er(u). The quantity n is the dispersive medium's 
refractive index. 

Transforming Eqs. (1) and substituting Dy(z,u>) = €(u)Ey(z,u) yield the one dimensional 
Helmholtz equation in the Fourier domain for the electric field, 

d2E 
dz* 

± + k2Ey = 0, 

where k2{u) = fj,0e(u})u>2. The magnetic field is related to the electric field through 

i   dEv Hx = 
//QW OZ 

The permittivity and wave number are given by 

z<0, 

z>0, 
£(«) 

_   f€0, 

I eo«r(w), 
k(w 

_ r *„(w), 
)   I fc(«) = 

z<0, 

k(u) = k0(cj)n(u),   z > 0, 

(3) 

(4) 

(5) 
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where c = l/^/Jiä^ö is the speed of light in free space, k0{u>) = w/c is the free-space wave number, 
eo is the permittivity of free space, er (- n

2) is the permittivity of the dispersive medium, and n 
is the refractive index of the dispersive medium. 

The analytical model for the refractive index of a singly resonant Lorentz medium is [16] 

n(u) 
b2 

w2 — UQ + 2iSu> 

1/2 (u-(j,+){u-u'_)Y/2 

(u — OJ+)(U -u;_)J (6) 

The quantities 6, a;o, and 6 are positive real numbers and represent the plasma frequency, resonance 
frequency, and damping constant of the medium, respectively. Since 6 < u>o, the branch points u>'+, 
u'_, u+, and o;_ lie in the lower half of the complex w-plane along the line, Im[u>] = —6, and are 
given by 

iS, u+ = V wo - P 

P - iS, 

u'+ = \Ju\ - 82 - iS, 

u'_ = —yu2 — S2 — i6, 

where Re[u>] = u/, Im[u;] = u>", and u\ = u>l + b2 (Fig. 2). 

(7) 

tö = Cü' + ltd" 

CD - M'^<    / \    v3 ~ "'+ 

Ö) - Ö) \         \ 

-W,                -do 
/ü)-Cö_ 

-*>o -0), 

PV ff r\ P\ 

E*    /»n 
ca_ 
k    _ 

-/6 

B+ Vi\ -*♦ 

E_   co'_ CD+ S_ 0)'+ 
/t_ 

Fig. 2 - Cut complex plane associated with the Lorentz model of the refractive index n for 
6 < Wo i where 6 and U>o are the attenuation and resonance frequencies, respectively, of the model. 
The four vectors, {u — U)'_,U) — U-,U — U)+,U — U+}, represent the vectors from the 

branch points {L>'_,U-,U+,U'+} of n to an arbitrary point U (= u/ + iuj") in the complex plane. 
The magnitudes and angles corresponding to these vectors are {p',r',r,p} and {a',rp',ip,a}, 

respectively. The branch cuts are the horizontal line segments along u = —i8 that connect u+ to 

W+ and U. too;: 

In the following, the superscripts i, r, and t are used to denote the incident, reflected, and 
transmitted fields, respectively. This investigation assumes that the incident field is an arbitrary 
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pulsed plane wave with leading edge that first reaches the dispersive medium's boundary (z = 0) 
at time t = 0. For z < 0 and t > 0, 

Ey(z,u) = fry(z,u>) + fy(z,U), (8a) 

Hx(z,u) = Hi(z,e>) + HZ(z,U), (8b) 
Ei(z,u;) = A(u>)eik°M\ (8c) 

£J(z,u) = A{u)R{u)e-ik^)\ (8d) 

ffi(^) = -^l4(u)e'^^, (8e) 

J%(z,w) = M^A(u,)J2(w)e-ifc°<")*; (8f) 

and for z > 0 and t > 0, 

£y(*,w) = £*(*,«) = A(o;)T(W)eifco^)n(w)^, (9a) 

#*(*,«) = H*X(Z,CJ) = -^^n(«)A(u)r(u)e**8<ü,>B<','>*. (9b) 
fiov 

The reflection (Ä) and transmission (T) coefficients are given by the usual expressions, and the 
function A is the complex Fourier transform of £*((),*). Thus 

1    f+°° 
AM=KJ     W)c*to<f*' (10a) 

,  .      1 - n(w) ä(W)=M4^ (iob) 

Inverting Eqs. (8(d)), (8(f)), (9(a)), and (9(b)) yields 

Er
y(z, t)=  f A(u;)R(U)e-i^t+^)) du, (Ha) 

El(z,t) =  f A^YT^^'MM^-i«/»] ^ (nb) 

Hr
x(z,t) = — I A(«)Ä(w)e-^*+(*/e)) <L;, (lie) 

#£(*,*) = —- / n(w)A(w)r(Wy"^*/c)IB<wMc*/*)J du. (lid) /A)C yc v        / 

These expressions differ from the usual optical solutions in two respects. First, Brillouin, Sommer- 
feld, and Oughstun specify the incident field on the planar boundary and ignore the reflected field. 
With the inclusion of the reflected fields, Eqs. (11) are applicable to a wider range of problems, 
that is, to any electromagnetic propagation problems for which the Lorentz representation of the 
refractive index is valid. The second difference arises from including the transmission coefficient T 
in the pertinent integrands. In optical formulations, T corresponds to unity, its limiting value as 
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u approaches infinity. That T can vary over the range of integration for nonoptical signals may 
substantially affect the value of the integrals in Eqs. (11(b)) and (11(d)). The extent to which the 
inclusion of the transmission coefficient affects the fields is partially answered. Moreover, Eqs. (11) 
simplify to the optical solutions as the frequency of the incident field approaches optical frequencies. 

Because the square root associated with the index of refraction introduces four branch points 
and the exponents of the transmitted fields (Eqs. (11(b)) and (11(d))) have at least three saddle 
points, the evaluations of the integrals in Eqs. (11) are nontrivial endeavors. The difficulty in 
determining the reflected fields is a consequence of having to evaluate integrals along branch cuts. 
Saddle points are not issues for the reflected fields since neither integrand has saddle points. On 
the other hand, the integrands associated with the transmitted fields possess three or four saddle 
points. The number and locations of the saddle points are not affected by the inclusion of R and 
T and vary with position z of the observation point in the dispersive medium and time t of the 
observation. The spatiotemporal behavior of the saddle points and their impact on the asymptotic 
representation of the transmitted field are treated at length in Refs. [4,6,7,8]. 

Obtaining the time-domain fields in Eqs. (11) requires a more detailed specification of the 
incident field Ey. Of particular interest are modulated sinusoids, M(t - (z/c)) sm(uc(t - (z/c))), at 
carrier frequency uc. The modulation function M is zero for t < z/c. Rather than treat an entire 
class of modulation functions, the reflected and transmitted fields are evaluated specifically for the 
rectangularly modulated sine. Consequently, 

Ey{z,t) = s^c(t-^]\u(t-^-u(t-^-T0) (12) 

The duration T0 of the modulation is a positive integer multiple of the sine function's period 
(T0 = 2nir/uc for n = 1,2,...), and U is the unit step function 

™-{l 
forr<0, 
for T > 0. 

A( 

Substituting Eq. (12) into Eq. (10a) and taking the complex Fourier transform yield 

J-e^S(u;)-^S(u),   u?±u>c, 
±tn 
2u>c ' 

where 

U — U)c       <JJ + w, 
5(«) = — ?— • (15) 

3. EVALUATION OF REFLECTED FIELD 

In this section, the integral for the reflected field ET
y is investigated, and an exact representation 

of El is obtained. Defining i = t+ (z/c) and substituting Eq. (14) into Eq. (11(a)) yield 

v 

where 

ErJz,t) = e(z,i-To)-e(z,t), (16) 

1       roo-t-ta 
{Z,T) = ±- I e-iuTR(oj)S(u)du. 

47T J-oo+ia 
(17) 
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Although the function A is analytic in the complex plane, Eq. (14) permits Er
y to be written as the 

difference of two contour integrals that have simple poles at ±uc on the real axis. Observe that the 
argument of each integrand's exponent has no saddle points. 

For r < 0, the contour C\ is closed from above by the semicircle CFU (Fig. 3) to ensure that the 
limit of the integral along CFU goes to zero as F approaches +oo, which is equivalent to invoking 
causality. Since the interior of contour Ci+Cm has no poles, the Cauchy Integral Theorem implies 
that 

e(z, T) =   lim 
F-++00 4*JCl 

e-i"TR(u)S(u)dL> = 0. (18) 

Fig. 3 - Closed Jordan contour C\ + CFU, oriented in the counterclockwise direction, for e(z, r) 

when r < 0 consists of the line segment C\ and the semicircle CFU- The line segment goes 

from —F + ia to F + ia, and the semicircle has radius F and center at u = ia. 

Thus far, the branch points of n(w) have not played a role; however, they are crucial in 
determining e(z,r) for r > 0, which is now treated. The associated branch cuts are selected so that 
contour Cx is closed from below, thereby guaranteeing the convergence of the inverse transform. In 
particular, the branch cuts are taken to be the horizontal line segments connecting w+ to u'+ and 
o?_ to u'_. The branch is specified by making the restrictions 

U-OJ'+ =peia, 

oj — u+ = re'^, 

u-u'_ =p'eia', 

—IT < a < ir, 

0 < i> < 2?r, 

-7T < a' < JT, 

0 < V' < 2TT. 

(19a) 

(19b) 

(19c) 

(19d) 

As indicated by Fig. 2, the angles a, ^, a', and ^ are measured positively in the counterclockwise 
direction from the positive w-axis. Table 1 gives values of these angles on the line u = -iS. The 
"+" and "-" subscripts of locations A, B, C, D, and E denote the top and bottom, respectively, of 
this line over the indicated regions. Under these restrictions, the refractive index and the reflection 
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coefficient may be rewritten as 

„(w) = y^Ze«(«+«'-V-^')/2 = \n^)\ei«t\<^\^ 

!_££! ,       -2v/^sin(°+°'^-V>') 

Tf 

R(u) =  Li l_ j !_ :  

1 + # + 2v/|gcos(0+o1'-*-*')       1 + £ + 2v/^cos(S±H^^l)' 

(20a) 

(20b) 

where arg is the argument. See the Appendix for detailed analyses of n and Ä. The choice of 
parameters in Eqs. (19) guarantees that n is analytic in the cut plane. In particular, observe that 
n(A+) = n(A-), n(C+) = n(C_), and n(E+) = n(E-). 

Table 1 - Values along the line u = —iS in the complex plane of the argument of the refractive 
index n and of the angles a, ip, a', ip', measured from this line to line segments connecting the point 
u to the branch points u'+, u+, u'_, u+, respectively. The letters A,B,C,D,E indicate the disjoint 
line segments that comprise this line as illustrated in Fig. 2, and the + (—) subscripts denote the 
top (bottom) of each segment. 

Angle Value A+ A- 5+ B. c+ c. D+ D. E+ £_ 
a 0 0 ■K — IT TT — IT w — IT ■K — 7T 

i> 0 2TT 0 2TT ■K ■K w ■K 7T 7T 

a' 0 0 0 0 0 0 0 0 7T — 7T 

,&' 0 2TT 0 2TT 0 2TT 7T ■K ■K 7T 

arg[ra] 0 -2TT TT/2 -5TT/2 0 -2TT -T/2 -3JT/2 0 -2TT 

The contour C\ is converted to a Jordan contour Cj by adjoining several contours (Fig. 4): 
CT = CFL + En=i £"• Applying Cauchy's residue theorem and letting F —> +oo and £ -» 0+ 
simultaneously give 

e(z,r) = -2;ri[Res(-u;c) + Res(wc)] - — [/B+ + IB. + JD+ + ID.], 

where Res(wp) is the residue of the integrand at uv and 

7B+=elim   /   R(u)e-iuTS{u)du, 

IB- =  Um   /   R(u)e-iuTS(u) du, 
£-°+ Jc3 

ID, =  lim   /   R(u)e~iuTS(u)du, 

ID. =  lim   /    ÄfwJe-^Sfu) du. 

(21) 

(22a) 

(22b) 

(22c) 

(22d) 
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F + ia 

Fig. 4 - Closed Jordan contour CFL + J2n=1 Cn, oriented in the clockwise direction, for e(z, r) 

when r > 0 consists of five horizontal line segments {d,C3, C5,C9,Cn}, four vertical line 

segments {C2,C7,Cs,C13}, four circles {C4,C6,Cio,Ci2} of radius £, and one semicircle 
CFL of radius F. The four circles are centered about the branch points {u>l,W_,w+,u/}, 

the horizontal line segments are the tops and bottoms of the two branch cuts, and the Semicircle 
is centered at U = ia. 

To obtain an expression for e(z, r), the four line integrals in Eqs. (22) must be evaluated, and 
the two residues must be obtained. Before evaluating the line integrals, define two more quantities: 

U)2 = \A>o2-*2 and w3 = V^2-*2- (23) 

Since u\ = u$ + b2, o>3 > u>2. 

Along the top of the right cut, which corresponds to the region B+ in Fig. 2, parameterize C5 

as: u - r + w+ = r■ + u2 - iS with magnitude r running from o>3 - w2 - e to e. The remaining 
magnitudes of Eqs. (19) are 

p = u>3 - u2 - r, 

r' = r + 2u>2, 

p' = u3+u2 + r. 

From Table 1, a = -K and V = a' = ^' = 0. Consequently, Eqs. (20) become 

ra(u>) = i 

(24) 

(k>3 + a>2 + r)(aj3 - o>2 - r)11/2 

r(r + 2o/2) 

R(u) = "v/7'(r + ^2) ~ eV^3 + o;2 + r)(q;3 - u2 - r) 
yjr\r + 2w2) + V(w3 + w2 + r)(u;3 - w2 - r)' 

(25a) 

(25b) 

After substituting Eq. (25(b)) into Eq. (22(a)) and taking the limit, one obtains Eq. (26(a)) as the 
expression for IB+.  The integral for IB_ is gotten by the same parameterization.  On the other 
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hand, along the left cut use the parameterization: u = — r' + w_ = —r' — u>2 — iS with r' running 
from e to W3 — W2 — £• Consequently, 

U>3— U>2 

UI3—102 

jB+ = _e-<«+&*)r f 
Jo 

IB_ = c-<*+i"*)T / e-,r 

./o 
/. 0)3—0/2 

/z5+ = c-(5-*-a)T   / e.Vr 

•A) 

1 

r + u>2 — u;c — iS     r + W2 + uc — i6 

1 1 

r + u>2 — (jJc — i6     r + LJ2 + uic — iS 

1 1 

fO>3— 0)2 

r + u>2 + wc + i<5     r + u>2 — vc + M>m 

1 1 

r + U2 + wc + iS     r + U2 — uc + iS 

R(u) dr, (26a) 

R*(u) dr, (26b) 

R*(u)dr, (26c) 

Ä(w) dr. (26d) 

Observe that ID+ = [JB+]* and ID_ = [lB-]*- Therefore, IB+ + JB_ + //>+ + ID. = 2Re{/B+ + 
-^B_}) so that the field is expressed in terms of integrals along the right branch cut only. After 
some algebra, 

IB+ + IB. + ID+ + ID. = Re I ^e^s+i^T I 
U3—W2 

r + u>2 — wc — iS 

— ; rr   Jr(r + 2u;2)(62 - r(r + 2u2)) dr. \ 
T + U2 +uc-t6] V '*> >i      J 

(27) 

It remains to calculate the residues at ±wc. First, 

Res(wc) = i-Ä(u,c)c-""«T. (28) 

Since n(-w) = [n(w*)] , Ä(—wc) = [#(<*;*)]*, which implies that Res(-wc) = -[Res(wc)]*. Com- 
bining this result with Eq. (28) yields 

-27Tz'[Res(-u;c) + Res(u;c)] = cos(wcr)Im[Ä(u;c)] - sin(wcr)Re[Ä(a;c)] (29) 

as the contribution of the poles to e(z,r). 

Equation (18) and the substitution of Eqs. (27) and (29) into Eq. (21) imply that 

e{z, r) = ( cos(o;cr)Im[i2(a;c)] — sin(a;cr)Re[Ä(a;c)] 

1 1 -iH^^'L U13—U2 

r + ÜJ2 — wc — iS      r + u>2 + wc — i6 

x y]r{r + 2w2)(62 - r(r + 2u2)) dr\ J U(r). 

(30) 

To perform numerical computations, it is desirable to recast this expression. After more algebra, 
one obtains 

e(z,r) = I cos(ü->cr)Im[Ä(a;c)] - sin(wcr)Re[Ä(wc)] 

2 
(31) 

„-ST 

TT62 sin(w2T)/1(r) - cos(w2 T)/2(T)     U(T), 
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where 

h{r) = J ^(r^rir + 2o;2)(62 - r(r + 2wj))]      dr, 

fU3~"2 r 11/2 
h(T) = j N2(r,T) [r(r + 2w2)(62 - r(r + 2u2))       dr, 

j^(r r) = ^[fr + ^f - "l - P\ cos(rr) + 4wcS(r + u2) sin(rr) 
l(r + w2 - o;c)2 + 6*\ [(r + u>2 + wc)2 + *J] ' 

j^/r TN _ 4u>e£(r + a>2) cos(rr) - 2uic[(r + u2f - u\ - P] sin(rr) 
l(r + w2 - u,c)2 + «2j [(r + u>2 + Wc)2 + «2] ' 

(32a) 

(32b) 

(32c) 

(32d) 

Evaluation of the real and imaginary parts of R(ue) are obtained from substituting the Mowing 
expressions into Eq. (20(b)): 

w=w. 

(W2-a;2)2+4^2 1/4 

(«2-wg)2+4ü;2*2j      ' 

' jr-arctan (^^-),   0 < wc < w3 

Wc = Uz 

arCtan(z^)' <"3<«c, 

a'I = arctan, 

•K — arctan (zÄ")>    0<u;c<u,2 

U>c = 0>2 

arctan(;^)> "2<u;c, 

2 ' 

^l=Wc=arctan(-i_). 

(33a) 

(33b) 

(33c) 

(33d) 

(33e) 

Finally, substituting Eq. (31) in Eq. (16) yields the following computationally useful, exact expres- 
sion for the reflected field, 

Er
y(z,t) = |Ä(«c)|sin(«ct - aig[Ä(wc)]) [u{t) - U{t-T0) 

+ ^{e~Sil(i)s™(^-v(i))U(i) 

■°>J(< - To) sin(u,2(£- T0) - p(t-T0))U{i-T0)\,      (34) 
_ e-8(t-T0) 

where 

'(r) = \/[/i(r)]2 + [/2(r)]
2       and       v(r) = arctan (hQ) . 

\h(r)J 
(35) 

Note that the field in the right side of Eq. (34) consists of contributions from the poles (first 
term) and the branch cuts (second term).   The contribution from the poles has duration equal 
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to the incident pulse's duration, whereas the contribution from the branch cuts lasts indefinitely, 
albeit they exponentially dampen out. At a point z < 0, one does not observe the signal until 
the observation time t exceeds —z/c, which is the time it takes the signal to reach the observation 
point after reflection from the boundary (z = 0) of the dispersive medium. Then it is observed 
for a time To, after which it rapidly diminishes to a negligible value for t > To + (—z/c). As one 
may deduce from the second term in Eq. (34) and the derivation preceding it, although the field 
diminishes exponentially as e~St and e~s^~T°\ it does not vanish identically for t > To + (-z/c). 
The contribution for t > To + (—z/c) arises only from the integrals along the branch cuts. If 
no branches were present, the reflected field would have the same duration as the incident field. 
Consequently, it is the presence of the branch-cut integrals that is directly responsible for broadening 
the time extent of the reflected field. The decay rate of the branch-cut contribution increases as 
the absorption coefficient S increases, and the magnitude decreases as the square of the plasma 
frequency b increases. 

The periodicity (To = 2nn/uc) of the sine function allows one to express the pole contribution 
in terms of the window function over [0,To]. Further note that the pole contributions result in 
a replica of the incident signal, which has a delay in phase as a result of the reflection from 
the medium's boundary and which has a magnitude that depends on the behavior of R as a 
function of uc relative to 6. According to Eq. (20b), the phase delay, the argument of the reflection 
coefficient, is negligible when the imaginary part of R(u>c) is nearly zero or equivalently when 
sin[(a + a' — ty — i>')/2] = 0. On consulting the figures in the next subsection, one can deduce 
that this occurs in at least two situations, when wc <C min{uo,6,b} or when uc >> max{u>o,#,b}. If 
uc has the same order of magnitude as the dispersive medium's parameters, Im[Ä(u;c)] cannot be 
approximated by zero. 

Similarly, the two components of the branch-cut contributions are expressed in Eq. (34) as 
exponentially damped sinusoids with nonzero time-dependent phases. Although the contributions 
from the branch cuts are expressible individually as modulated sines, the two step functions cannot 
be combined to get a window function (as the pole contributions are) because 2w/u2 is not neces- 
sarily an integer multiple of To. The first exponential term depends on £ and most affects the field 
just after t exceeds —z/c, whereas the impact of the second exponential term is not felt until t is 
greater than or equal to To + (—z/c). The preceding conclusions are illustrated by the following 
example. 

3.1 Example of Reflected Field 

In this section, the time histories of the reflected field, corresponding to eight choices of the 
incident field's carrier frequency uc at observation point z = —10~5 m are plotted for Brillouin's 
choice [17] of the Lorentz medium parameters: wo = 4.0 x 1016s_1, b2 = 20.0 x 1032s~2, and 
6 = 0.28 X 1016s-1. Moreover, the incident field is taken as a single cycle of the sine function; that 
is, Ey has duration 2-K/UC (n = 1). Note that this signal is a short-pulse ultrawideband signal [18]. 
As Eq. (34) and the discussion following it indicate, Ey depends on the value of OJC relative to the 
parametric frequencies UQ, b, and S. In particular, the behavior of A(u>c), as uc varies along the real 
line, is crucial to the behavior of Ey. Consequently, the behavior of R versus u>c is briefly discussed 
before addressing Ey. 

Figure 5 plots various aspects of R(uc). The horizontal axis is uc divided by wo! thus unity 
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corresponds to uc = u0. To gain additional perspective, note that ux = 6 X 1016s-1 u2 = 
3.9902 x lO^s"1, W3 = 5.9935 x lO^s"1, w± = (±3.9902 - 0.28t) x lO^s"1, and u'± = (±5.9935 - 
0.28i) x 1016s 1, which are associated respectively with the complex numbers 1.5, 0.9975, 1.4984, 
±0.9975 - 0.07i, and ±1.4984 - 0.07z in the figures. The phase of R(ue) is -180° in the limit as 
wc -»■ 0+, is strictly monotonically increasing, and asymptotically approaches 0° as wc increases 
above 2w0. In fact, for uc in (0,0.8w0] or [1.8Wö,OO), |arg[Ä(wc)]| < 10°. Consequently, the small- 
angle approximations to the sine and cosine of the argument of R(uc) are fairly accurate for this 
range of ue. The magnitude of R(ue) is 0.2 at uc = 0, rises to its peak at uc = 1.3w0, and falls 
rapidly to 0. Therefore, the magnitude of the contributions from the poles of the reflected field will 
be greatest for uc near 1.3w0. Although the pole contributions are maximized at u = 1.3w0, the 
reflected signal with greatest energy appears at the resonance of the medium. 

!    \ Äe[Ä(coc)] 

i   V 

1.0T 

T"0 

S-0.8 

Normalized Carrier Frequency 

(a) 

-t- 
2 3 4 

Normalized Carrier Frequency 

(b) 

5    m° 

Normalized Carrier Frequency 

(c) 

Fig. 5 - Behavior of the reflection coefficient R associated with a single-resonance Lorentz medium vs 

carrier frequency Uc: (a) real (light curve) and imaginary (dark curve) parts of R, (b) magnitude of R, 

and (c) argument of R. The Lorentz medium is defined by U0 = 4.0 X 1016s_1, b2 = 20.0 X 1032s-2 

and 6 = 0.28 Xl016s_1. 

To observe the distortions to the incident field that are caused by the dispersive half space, Er 

is compared to the reflected field that is obtained when the boundary is perfectly conducting. In 
that case, R(u) is identically equal to -1, the transmitted field is zero, and the expression for the 
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reflected field is 
-[U{i)-U(i-To)]sm(uj), (36) 

which is what one intuitively expects. Equation (36) and Er
y are compared graphically in Fig. 6 

for eight values of u>c, where the horizontal axes are normalized time 0 = ct/\z\, a dimensionless 
quantity. Since the reflected fields are not observed until t > \z\/c, nonzero values do not occur until 
6 > 1. The choices of u?c, the associated evaluations of the reflection coefficient, and other pertinent 
parameters are provided in Table 2. For example, the first column of Table 2 permits one to identify 
u>c with the abscissa of Fig. 6 and the value of R(OJC). Also, since the reflected field for the perfectly 
conducting boundary is nonzero when 1 < 6 < 1 + cT0|z|_1, columns three and four give the 
duration and right endpoint, respectively, of this field. The smallest values (0.0001u>0,0.01u;o,0.1wo) 
are chosen to represent the behavior of Ey for uc < u>0, while 0.25w0 is chosen because it is a value 
that Oughstun and Sherman use in much of their work. The next largest value (u>0) is chosen to 
see the impact at the dispersive medium's resonance frequency. The sixth (1.26366u>0) and seventh 
(■y/l3/8o;o) values of wc are of interest because they are the locations of the minimum of Im[R(uc)] 
and the zero of Re[A(u;c)], respectively. The remaining choice of wc is selected to represent the 
behavior of ET

y for large values of the carrier frequency. 

Table 2 - Choices of angular carrier frequency uc of the single-cycle-sine incident field 
for which the reflected field Er

y is plotted in Fig. 7, as well as related evaluations. 
Column 1 identifies the normalized frequency uc/uo with wc; columns 3 and 4, resp., 
are the normalized duration and the normalized right endpoint of the support of ET

y 

when the boundary is perfectly conducting; and columns 5 and 6 are evaluations of 
the real and imaginary parts of the reflection coefficient Ä at wc. 

wc/w0 (rad/s) 
cT0/\z\ l + (cTo/|z|) Re[Ä(we)] Im[Ä(wc)] 

0.0001 4 X 1012 47.09129 48.09129 -0.200000 -0.000002 

0 .01 4 X 1014 0.47091 1.47091 -0.200013 -0.000187 

0.1 4 X 1015 0.04709 1.04709 -0.201324 -0.001893 

0.25 1016 0.01884 1.01884 -0.208582 -0.005098 

1 4 X 1016 0.00471 1.00471 -0.552437 -0.276488 

1.26366 5.05464 x 1016 0.00373 1.00373 -0.032778 -0.755325 

(13/8)1/2 5.09902 x 1016 0.00369 1.00369 0.000000 -0.754425 

10 4 x 1017 0.00047 1.00047 0.003176 -0.000045 
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Fig. 6 - Comparison of the reflected field when the medium's boundary is perfectly conducting (light curve) and the 
reflected field from the Lorentz medium at Z = -10~5 m with OJ0 = 4.0 X 1016s-1, b2 = 20.0 X 1032s~2, 
and 6 = 0.28 X 1016s-1 (dark curve) for eight values of the carrier frequency Wc: (a) 0.0001u>o, (b) O.OlWo, (c) 
O.lwo, (d) 0.25w0, (e) U0, (f) 1.26366o;o, (g) y/WßujQ, and (h) lOwo. The horizontal axes are normalized time 
6 = Ct/\z\. 
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After studying Fig. 6, Table 2, and Eqs. (34) and (36), one deduces several facts about the 
overall behavior of Ey as wc varies. Initially, for very small wc, Ey is nearly a replica of the 
undistorted reflected field, scaled by a factor of 0.2. Generally, as uc increases, the duration To of 
the undistorted signal decreases, and the distorted field steadily broadens, so that eventually it is 
many times wider than the undistorted pulse. Concurrently, the maximum value of the distorted 
pulse increases from 0.2 to a peak of roughly 0.5 at the medium's resonance frequency (u>c = too) and 
then decreases to zero. As the carrier frequency increases, one also observes leading-edge distortion 
and damped oscillatory behavior in the field's trailing edge. Further, for very large u>c, a steep 
leading edge is followed by many zero crossings. 

More specifically, for very small values of u>c (0.0001a>o,0.01ü;o,0.1u;o), the pulse widths of Ey 

and the undistorted field are nearly the same, except for some negligible ringing in the trailing 
edge. As uc increases to 0.1CJ0, pulse broadening and trailing-edge ripple are more pronounced, 
and leading-edge distortion becomes discernible. All three effects increase as u>c approaches the 
medium's resonance frequency (wo), where the signal attains its largest excursion (0.5) from zero. 
Moreover, Ey consists roughly of three cycles with a duration of approximately thrice the undis- 
torted signal's pulse width. As u>c increases above wo, the pulse broadening and trailing-edge ringing 
are greater, but the maximum value decreases to zero. Even though 1.26366u»o and ^/l3/8o;o cor- 
respond to special values of u>c relative to R(uc), the behaviors of Ey for these values are similar to 
that for wo- The behavior of Ey for large OJC is typified by uc = 10o>o- Since the undistorted pulse 
for this value of the carrier has an amplitude that exceeds the peak of Ey by at least fifty times 
and occurs within the first "half cycle" of Ey (Table 2), the undistorted signal is not plotted. 

Lastly, for u>c < 3o;0, the maximum value of Ey is a significant fraction (exceeds 0.2) of the 
amplitude of the undistorted reflected field. Clearly, a nontrivial amount of the incident field's en- 
ergy resides in the reflected field for these values of uc. Hence, the reflected field should be included 
in any Lorentz formulation where the carrier frequency is less than three times the medium's res- 
onance frequency, regardless of what portion of the electromagnetic spectrum is being considered. 
In particular, Oughstun's choice (0.25o>o) of uc falls in this range of frequencies. Moreover, because 
the reflected field is not negligible, it may be used as a diagnostic for the dispersive medium. 

3.2 Early-Time Field Behavior 

The early-time behavior of the reflected field at observation point —z corresponds to t slightly 
greater than —z/c. Consequently, the reflected field is analyzed for —z/c < t < —z/c + te (0 < 
* < te)i where te is a small positive number less than To. Hence in Eq. (34), U(i - To) = 0 for 
0 < i < te, and the early-time reflected field is 

Er
yiet(z,t) =   sin(wet)Re[Ä(wc)] - cos(o;c*)lm[Ä(uc)] 

sin (u2i)Xi (t) - cos (u2i)l2 (t) . (37) 

Alternatively, when closed-form solutions are unavailable, one resorts to high-frequency approx- 
imations of various quantities to obtain analytical expressions. The remainder of the subsection is 
spent on deriving a high-frequency representation of Ey. Begin with Eq. (16) and recast it as 

/oo+ta roo+ia 

Q(u)R(u)Ä(u-L;c)e-iuidu- / Q(u)R(u)Ä(u+ ue)e-iuidu,      (38) 
-oo-H'a J — oo+ia 
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where 

Q(u) = ±(ei»T°-l)       and 
4*- -        —       A^ = - u 

(39) 

-U)   — Because ]n(w*)]* = n(-w), it Mows from Eqs. (10b) and (39) that £•(«*) = R(-u), i(- 
Wc).= _^*(w - wc), ^ 0*(w*) = Q(-w). In the second integral of Eq. (38), make the change of 
variable r\ - u>* and apply the preceding properties to get 

(40) 

The reflected field is now ready for approximate analysis. The Laurent series, 

n(u) = 

R(u)       b2 

~ 4 

*-7 (3 + 5 + 3)+*-<«-> 

U3 — U- T        A     -\ ; 1 ; h RFI{W      ) 
W3    '      W4      ' 0>5 ' W6 

.62 

— i- <*3        fl3^e       Q5 + a>3U2
c    ,   ^e(a5 + a3^e)   ,   D     ,   _«.' 

w4   '    u5 u6 ' w7 

are obtained after several applications of the binomial series for large u, where 

Pi = 1, 

V2 = w0
2 - 4tf2 + ±b2, 

<fz = <*$ - 12S2u2 + \b2u2 - Zb262 + h* + K>6\ 

ipi = 6, 

<4 - 282 + i>2=2sL2-262 + ±b2\ 

fc = f (K4 - 32*2u,0
2 + 362u;2 + ^ , 

a2 = <pu 

V     2 
<*4 = V2 + T^l' 

a5 = 2^2 + &Vi^i, 

ae = ¥53 + j f 2<£i<?2 + — <pf - 4^2 ) , 

( 
O7 = 2V>3 + &    I (,01-02 + V>l¥>2 + 

362 .    2\ 

(41) 

(42) 

(43) 

The functions Rnl, Rn2, RF1, and RF2 represent the remainders of series, and their arguments 
indicate the lowest-order terms in the remainders. The high-frequency representation for n(w), as 
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a Laurent series, effectively eliminates the branch points as singularities. As will be seen shortly, 
this greatly simplifies evaluation of the integrals in Eq. (40). 

Since each integral in Eq. (40) has the same general form, consider 

/ 

oo+t'a R(u) 

i+ia 2ff(« - Wc) 

Recall from the discussion regarding Eq. (18) that C\ is the finite version of the path C in the 
preceding integral. By closing C\ with a semicircle of radius F from above and by letting F —► oo, 
the path integral is zero for r < 0. For positive r, the Jordan contour is simply C\ + CFL, where 
CFL is the semicircle of radius F that connects the ends of C\ from below (Fig. 7). According to 
the Cauchy Integral Formula,19 

lim    / 1_^ dw = ^(-i)"+1rn. 

Substituting the high-frequency representation of R(u)(u — wc)
-1 given by Eq. (42), integrating 

term by term, and applying the Cauchy Integral Formulas yield 

(•oo+ta /•°°+,a       R(u 

J-oo+ia 27r(w - 

62 

'-—e-iUTdw = U(T)- 
Vc) 4 

Q2^e    3 _ Q3^c    4 _ Vc(aj + C2^)    5       ^c(fl5 + a^l)   6 

3!  T        4!  T 5! T + 6! T 

+ Ri(r7) + i a2   2     13  3     "4 + a2w*   4     a5 + a3u^   5 

2! 3!T 4! 
r* + 

5! 
-r5 + R2(Tb) (44) 

where J?i and R2 are the series' remainders for the real and imaginary parts, respectively. 

■F + ia 

Fig. 7 - Closed Jordan contour C\ + CFLI oriented in the clockwise 

direction, consists of the line segment C\ and the semicircle CFL- 

The line segment goes from — F + ia to JP + ia, and the semicircle 

has radius F and center at U) = Id. 
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Setting r equal to i - T0 and i in Eq. (44), substituting those expressions into Eq. (40)  and 
using Eqs. (43) lead to 

Ery,Hf(z,t) = U(i-Tof- 
4 |(t--^-^({-^-|^-^4+^)((--r0)= 
+ 2<5we 

6! (2u;0
2 - 4S2 + b2 + w») (i - To)6 + Ax ((* - To)7) 

-U(t) 
b2 

CT3 ^ ja _ 

3! 4! 

2Su 

2£fa>c ~.        U! JCU -i(^4+^) 
+ ^(2fa,2-4*2 + &2

+fa,^ + Äl(f) (45) 

a high-frequency representation of Er
y. This result is obtained by assuming that \u\ is large enough 

to ensure the convergence of the series used to obtain £(«)(« - wc)
_1- At the very least, |w| > 

max{u;c,fa;o,<$,&}. Moreover, when |w| is large enough, 0 < i < t£ and U(i - T0) = 0 Thus for 
0<i<te, 

+ ^ (2c,2 - 4*2 + ft2 + fa,2) f» + Äl (f)], 

In the limit as the attenuation factor S goes to zero, Eq. (46) reduces to 

E'>-^> '> = 7 ["IP +1 ("8 + 7 +•*) ' + * C)] • 
which is Colby's result when his parameter 6 is evaluated at zero.20 

(46) 

(47) 

To compare Eqs. (37) and (46), BriUouin's choice of parameters for a Lorentz medium are used 
(wo = 4.0 x lO^s"1, b2 = 20.0 x 1032s"2, S = 0.28 x lO^s"1), and the frequency uc of the incident 
field is 10 s . As Fig. 8 illustrates, at an observation point that is 10~5 meters to the left of the 
dispersive medium's boundary, E^et (lower curve) and Er

y>hf (upper curve) agree extremely weU for 
1 < 0 < 1.0013. Both signals are not observed until 33.36'femtoseconds (fs) after the incident field 
encounters the medium. For the first 43.36 attoseconds (as) after their initial observation, they are 
visually indistinguishable. At that point, they start separating rapidly because the high-frequency 
approximation is no longer valid. 
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b2 = 20.0 X 1032s-2, and S = 0.28 X lO^s"1. 
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4. EVALUATION OF TRANSMITTED FIELD 

Since a closed-form evaluation of the inversion integral in Eq. (11(b)) is unlikely, one must 
resort either to numerical evaluation of the inversion integral or to an asymptotic approximation of 
it. In this report, the latter approach is taken for observation points that are sufficiently far from 
the dispersive medium's boundary to ensure the validity of asymptotically representing the fields. 
The inversion integral, a Generalized Laplace Integral [21,22], is treated with existing uniform 
asymptotic methods. Detailed discussions of uniform asymptotic techniques are found in Refs. 
23-27. 

Details of the methodology for obtaining a uniform asymptotic expansion of the transmitted 
field for a constant (unity) transmission coefficient are found in Refs. 4 and 6-8. The purpose of 
this section is to show how inclusion of a frequency-dependent transmission coefficient impacts the 
transmitted field. 

4.1 Inclusion of Transmission Coefficient in Transmitted Field 

In the notation of Oughstun, Eq. (11(b)) becomes 

foo+ia 

-oo+i 

where the dimensionless parameter 6 = ct/z can be viewed as normalized time and 

<f>{u,6) = iu[n(w)-6]. 

/oo+ta 

-oo+ia 
(48) 

(49) 

The symbols £ and A are used for the fields when they depend on 9 instead of time t. Although 
the right side of Eq. (48) is similar to the equations given in Ref. 28, it differs in two ways: (1) the 
missing factor of 2n, which comes from the difference in the definitions of the Fourier transform, 
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and (2) the inclusion of the transmission coefficient T{u). The saddle points of Eq. (48) are the 
critical points of the generalized phase (f>, which are the roots of 

n(u) + ure'(ü) -0 = 0. (50) 

When 9 < 1 (t < z/c), one can show that £*(££) = 0 by closing C\ with a semicircle from 
above. Thus at a fixed observation point z within the dispersive medium, no signal is observed until 
the leading edge of the incident field traverses the distance z. When 9 > 1, it is well-known that 
the inversion integral can be evaluated by closing C\ so that the resulting Jordan contour Cj(9) 
passes through the saddle points via the subcontour P{9) = PN(0) + PD(0) [29,30] and so that the 
integrals over subcontours other than C and P{9) go to zero via some limiting process. 

To evaluate the integral representation of E\, first observe that the Fourier transform M of an 
arbitrary modulation function M is related to A (Eq. (10(a))) by 

A(v) = - ~ M(u + uc) - M(u - uc) (51) 

The difference between the ü of Oughstun and Sherman and M arises from the 2TT variance in the 
definitions of the Fourier transform; that is, 2irM = ü. Substituting Eq. (51) into Eq. (48) yields 

£$&e)=~T\ T{u)M{u + wc)ec ««■"•) du - \ T(u)M(u - uc)e^^ du 
*•    \.J — oo+ta J—oo+ia 

■   (52) 

Because M is zero for t < 0 and is real-valued for t > 0, M satisfies M(-u) = [M(u*)]*. Conse- 
quently, <f>*(u*,9) = 4>{-u, 6), T*(u*) = T(-u), and M(-(u - uc)*) = [M(u - uc)]\ which imply 
that the first integral in Eq. (52) is the complex conjugate of the second integral. Hence, 

[•      roo+ia 

— / T(u)ü(u - uc)eW»M du 
** J-oo+ia 

(53) 

which is Eq. (1.11) of Ref. 7 and Eq. (7.2.1) of Ref. 8 with T(u) = 1. 

To this point, the results are general. When M is the window function defined by Eq. (12), 

eiuT° - 1 
ü(u) = 

tu 

and 

et
y(z,9) = A(z,e,o)-A(z,e,To), 

where 

cT0 9Ta = B        and       A{z, 9, T0) = -—Re 
2TT 

.-"do r+ia   T(u) ei<Ku<eTo) ^ 
J-oo+ia & — Uc 

(54) 

(55) 

•     (56) 

To determine the transmitted field, one need only derive A(z,0,To) and take the limit as T0 

approaches zero to obtain A(z,0,O). For A(z,9,T0), apply Cauchy's residue theorem to obtain the 
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decomposition of Oughstun and Sherman, 

«4M,r0) = -^Re 
2x 

U(6TQ) 

2TT 

U(0TO) 

2lt 

,-«'wcT0 

Re 

Re 

JF 'PNW U  — Ur 

-2irie~iUcT° ^Residues enclosed by Cj(0) 

= As(z,6,To) + AB(z,e,T0) + Ac(z,0,To), (57) 

where the first, second, and third terms following the first equal sign correspond to As, AB, and 
Ac, respectively. 

Note that A(z,0, To) and A(z, 9,0) are zero for 9 < 1 and 9 < cTo/z, respectively, and that each 
is basically the integral along P{9) plus contributions from poles of the transmission coefficient T 
and the Fourier-transformed modulation function M that lie inside Cj(9). The Generalized Laplace 
Integrals in Eq. (57) are evaluated with uniform asymptotic expansions relative to the secondary 
parameter 9 as z increases without bound [23,25,26]. 

The methodology of Oughstun and Sherman [31], which combines uniform asymptotic results 
from five sources [27,32-35], is followed to get a uniform asymptotic representation of £L Denning 
Aj(z,9) = Aj(z,6,0) - Aj(z,6,T0) for j in {S,B,C} implies 

4(2,8) = As(z, 6) + AB(z, 9) + Ac(z, 6). (58) 

The contributions As (Sommerfeld's precursor field), Aß (Brillouin's precursor field), and Ac 
(main signal) depend respectively on the behavior of the distant saddle points, on the behavior of 
the near saddle points, and on the location of the poles of T{u))M(u — uc) relative to path P(0). 
Since the refractive index is bounded away from -1, T has no poles and is bounded. Hence, the 
pole contributions come solely from M, whose only pole is located at uc. 

4.2 Saddle Points of <j> 

As mentioned earlier, the saddle points of Eq. (48) are the roots of Eq. (50). After substituting 
Eq. (6) into Eq. (50), eliminating the square root, and manipulating the resulting equation, one 
obtains the following eighth-degree polynomial in u>, 

0 = [e2 - l]w8 + [86i(92 - l)]w7 - [4(6S2 + u>2){92 - 1) + b262}u* 

- [26i{{\2u>l + 362 + 1662)(92 - 1) + 2b2)]u5 

+ [(6w$ + 4862u2
0 + 2b2u2

0 + 12b2S2 + 1664)(92 - 1) + b2(u292 - 1262) + \6b262]u* 

+ [46i((6u>4
0 + Zb2u2

0 + 8S2u2 + 2b262)(92 - 1) - 62(2u,2 + Z62) + b2(2u>2 + 3S2))]u3 

- [yg(4w$ + 362a;2 + 24S2u2 + 12b262)(92 - 1) 

- b2(u4 + 2062u2 + 9b262) + 8b262(2u2
0 + b2)]u2 

- [2Siu2{(4u2 + 3b2){u2(92 - 1) - b2) + 2b2(u2 + b2))]u 

+ [ufa2 + b2)(u>2(92-l)-b2)], (59) 
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that must be solved to obtain the saddle points. It turns out that Eq. (50) has exactly four saddle 
points. Consequently, the squaring operation that leads to Eq. (59) introduces four extraneous 
roots. The saddle points are symmetric with respect to the imaginary axis in the complex u plane 
and fall naturally into two categories, those that are near the origin (uN1 and um) and those that 
are far from the origin {U>D\ and um)- 

To place the following brief discussion in context, a few of the salient features of the dynamical 
behavior (0 dependence) of the saddle points [36] are first summarized. The near saddle points lie 
along the imaginary axis for 0 = 1, with um being the upper one. As 9 increases, they approach 
each other on the imaginary axis until they coalesce to a second-order saddle point at 0X. As 9 
continues to increase beyond 9U the near saddle points symmetrically separate with increasing 
distance between them. In the limit as 9 -+ oo, they approach the branch points w±. On the 
other hand, the distant saddle points always He in the lower half of the complex plane. Moreover 
they are located at ±oo - 26i when 6 = 1 and move towards the branch cut as 0 increases, with 
Mme^ooOJDi = w'+ and lim«-^ uD2 = u>'_. 

On comparing Eq. (59) with Eq. (4.2.5) in Ref. 4 and Eq. (6.2.5) in Ref. 8, one observes 
discrepancies m the coefficients of u1, w2, w3, w4, and w5. To ascertain the impact of the difference 
between the two polynomials, the saddle points of both polynomials are calculated for BriUouin's 
choice of Lorentz parameters (w0 = 4.0 x 1016/s, b2 = 20.0 x 1032/s2, S = 0.28 x 1016/s). These 
values, computed independently with Mathematica and MATLAB, are provided in Tables 3 and 
4. Although the roots are computed to 12 decimal places, the tabulated entries are rounded to 3 
decimal places to conserve space. The values of 0 at which the roots are determined are chosen 
so that the computed values may be compared with values that are visually estimated from Fies 
6.15, 6.16, and 6.17 of Ref. 8. ' 6 • 
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Table 3 - Distant saddle points UDI, roots from two 
distinct eighth-degree polynomials, vs normalized time 
6. Column 2 is calculated with Eq. (66). Column 3 is 
calculated with Eq. (6.2.5) of Oughstun and Sherman.* 

e uD1 • 10"16 

(rad/s) 
uD1 • 10"16 

(rad/s) 

1.000 oo - 0.560* oo - 1.120t 
1.009 34.245 - 0.541t 34.264 - 1.062t 

1.010 32.580 - 0.539t' 32.600 - 1.056t 
1.015 26.971 - 0.530z 26.993 - 1.029t 

1.020 23.667 - 0.522* 23.690 - 1.005* 
1.025 21.437 - 0.515z 21.460 -0.983* 
1.030 19.807 - 0.508t 19.830 - 0.962t 
1.040 17.548 - 0.496t 17.571 - 0.926t 
1.050 16.032 - 0.486z' 16.054 - 0.895t 
1.100 12.389 - 0.449t 12.406 - 0.787* 
1.150 10.849 - 0.427t 10.863 - 0.719t' 
1.200 9.960 - 0.411*' 9.971 - 0.672t 
1.250 9.369 - 0.399t' 9.378 - 0.636t 
1.300 8.940 - 0.389t 8.948 - 0.608t 
1.400 8.353 - 0.375*' 8.359 - 0.565t 
1.500 7.964 - 0.365t 7.968 - 0.534t 

1.502735905 7.955 - 0.364t 7.959 - 0.533t' 
1.510 7.932 - 0.364t 7.936 - 0.531t 
1.520 7.901 - 0.363t' 7.905 - 0.529t 
1.530 7.871 - 0.362t 7.874 - 0.526t' 
1.540 7.842 - 0.361t 7.845 - 0.524t 
1.550 7.814 - 0.360t' 7.817 - 0.521t 
1.600 7.684 - 0.356t 7.686 - 0.510i 
1.700 7.471 - 0.350t 7.473 - 0.490t' 
1.800 7.303 - 0.345t 7.304 - 0.474t 
1.900 7.166 - 0.340t 7.167 - 0.460t' 
2.000 7.053 - 0.336t 7.053 - 0.448t 
2.500 6.690 - 0.322t 6.688 - 0.405t 
3.000 6.493 - 0.313t' 6.491 - 0.378t 
4.000 6.290 - 0.302t' 6.287 - 0.346t 
5.000 6.190 - 0.295*' 6.187-0.327* 

10.000 6.046 - 0.285t 6.045 - 0.294* 
20.000 6.007 - 0.281t 6.007 - 0.284t" 

100.000 5.994 - 0.280t' 5.994 - 0.280*' 
1000.000 5.993 - 0.280* 5.994 - 0.280* 

CO 5.993 - 0.280t 5.993 - 0.280t' 

aK.E. Oughstun and G.C. Sherman, Electromagnetic Pulse Propa- 
gation in Causal Dielectrics (Springer-Verlag, Berlin, 1994), Ch. 6, 

p. 208. 
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Table 4 - Near saddle points {um,wm}, roots from two distinct eighth-degree polynomials, versus 
normalized time 6. Columns 2 and 4 are calculated with Eq. (66). Columns 3 and 5 are calculated 
with Eq. (6.2.5) of Oughstun and Sherman.* 

e «ATI • 10"16 

(rad/s) 
um • 10"16 

(rad/s) 
OJN2 • 10-16 

(rad/s) 
uN2 • 10-16 

(rad/s) 
1.000 4.474 * 5.080 *' -4.461* -3.924* 
1.009 4.297 * 4.854 * -4.322* -3.814* 
1.010 4.278 *' 4.831 * -4.307* -3.802* 
1.015 4.189 * 4.720 *' -4.236* -3.745* 
1.020 4.105 i 4.616 * -4.168* -3.690* 
1.025 4.024 * 4.518 *' -4.102* -3.636* 
1.030 3.948 *' 4.426 *' -4.039* -3.584* 
1.040 3.805 * 4.255 * -3.920* -3.485* 
1.050 3.673 * 4.100 * -3.809* -3.391* 
1.100 3.127 * 3.474 *' -3.335* -2.981* 
1.150 2.695 *' 2.995 *' -2.948* -2.635* 
1.200 2.326 i 2.592 * -2.610* -2.326* 
1.250 1.992 * 2.234 * -2.300* -2.038* 
1.300 1.677 * 1.900 * -2.003* -1.758* 
1.400 1.040 *' 1.230 *' -1.393* -1.171* 
1.500 0.000 i 0.000 - 0.000 * -0.373* -0.000* 
1.503b 0.000 - 0.187* 0.186 - 0.001* 0.000 - 0.187* 0.186 - 0.001* 
1.510 0.302 - 0.187* 0.355 - 0.003* 0.302 + 0.187* 0.355 + 0.003* 
1.520 0.463 - 0.188* 0.499 - 0.005* 0.463 + 0.188* 0.499 + 0.005* 
1.530 0.579 - 0.189* 0.608 - 0.007* 0.579 + 0.189* 0.608 + 0.007* 
1.540 0.673 - 0.190* 0.698 - 0.010* 0.673 + 0.190* 0.698 + 0.010* 
1.550 0.754 - 0.191* 0.776 - 0.012*' 0.754 + 0.191* 0.776 + 0.012* 
1.600 1.054 - 0.194*' 1.069 - 0.023* 1.054 + 0.194* 1.069 + 0.023* 
1.700 1.432 - 0.200* 1.442 - 0.041* 1.432 + 0.200*' 1.442 + 0.041* 
1.800 1.685 - 0.205* 1.693 - 0.056* 1.685 + 0.205* 1.693 + 0.056* 
1.900 1.875 - 0.209* 1.882 - 0.068* 1.875 + 0.209* 1.882 + 0.068* 
2.000 2.026 - 0.213* 2.031 - 0.079* 2.026 + 0.213* 2.031 + 0.079* 
2.500 2.490 - 0.225*' 2.493 - 0.116* 2.490 + 0.225* 2.493 + 0.116* 
3.000 2.742 - 0.233* 2.745 - 0.139* 2.742 + 0.233* 2.745 + 0.139* 
4.000 3.025 - 0.242* 3.027 - 0.166* 3.025 + 0.242* 3.027 + 0.166* 
5.000 3.186 - 0.248* 3.187 - 0.183* 3.186 + 0.248* 3.187 + 0.183* 

10.000 3.510 - 0.260* 3.511 - 0.219* 3.510 + 0.260* 3.511 + 0.219* 
20.000 3.694 - 0.267*' 3.695 - 0.241* 3.694 + 0.267* 3.695 + 0.241* 

100.000 3.890 - 0.275* 3.890 - 0.266* 3.890 + 0.275* 3.890 + 0.266* 
1000.000 3.969 - 0.279* 3.969 - 0.277* 3.969 + 0.279* 3.969 + 0.277* 

00 3.990 - 0.280*' 3.990 - 0.280* 3.990 + 0.280* 3.990 + 0.280* 

aK.E. Oughstun and G.C. Sherman, Electromagnetic Pulse Propagation in Causal Dielectrics 
(Springer-Verlag, Berlin, 1994), Ch. 6, p. 208. 

1.502735905 is rounded to conserve space. 
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The values calculated with Eq. (49) (column 2 of Table 3, columns 2 and 4 of Table 4) do 
not match those calculated with Eq. (6.2.5) of Ref. 8 (column 3 of Table 3, columns 3 and 5 of 
Table 4). Specifically, the imaginary parts of the distant saddle points differ considerably. Until 9 
exceeds 2, the imaginary parts are separated by at least 0.1. In fact, the greatest disparity occurs 
near 0 = 1, where apparently the roots of Oughstun's polynomial approach oo - 1.1200i = oo — 46i. 
This value is estimated by determining the roots for 1 < 6 < 1.009. Clearly, this disagrees with 
the theoretically predicted value of oo - 26i; whereas from Eq. (59), the limiting value of CJDI 

as 6 —► 1+ is in agreement with the theoretical prediction. Similarly, for the near saddle points 
(OJJVI and WJV2)5 the difference between the roots is largest at 6 = 1 and gradually diminishes 
as 0 increases. As Oughstun and Sherman note, u>£>i —*■ OJ'+ = (5.9935 — 0.2800i) x 1016 and 
um —> v+ = (3.9902 — 0.2800i) x 1016 as 6 approaches infinity. In addition, the critical value 6i, 
where the near saddle points change from pure imaginary to being symmetrically located on either 
side of the imaginary axis, is 1.502735905 to eight decimal places. 

Although the numerical evaluations of the roots via Eq. (59) differ from roots that are computed 
with the eighth-degree polynomial of Oughstun and Sherman, they do match the figures on pages 
236-238 of Ref. 8. Consequently, the authors suspect that in calculating the "exact" roots for their 
figures, Oughstun and Sherman applied Newton's method to an equation other than the polynomial 
given by Eq. (6.2.5). 

4.3 Contributions from Distant Saddle Points 

In this section, a uniform asymptotic approximation of As(z,0) is obtained by following the 
derivations in Ref. 7 and Section 7.2 of Ref. 8. From Theorem 5.4 of Ref. 8, a restatement of a 
theorem in Ref. 27, a uniform asymptotic expansion of As(z,9, To) to first order is 

.4sM,To) = -^?^Re 
2TT 

17(0To)Re 

JPr>(6) V-Uc 

(60a) 

e-izß(6To) [2a(0ro)e-"*]" 7o(*ToM*<*(*r.)) 

+ 2a(0To)e-t'?7l(0To)./t,+i H«r,)) (60b) 

where Jv and Jv+\ are Bessel functions, 
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a(eT0) = YC [<K^DI , eTo) - <f>(uD2, eTo)], 

ß(eT0 ) = Yc [ft"™' ho ) + #WJ», ÖTo )], 

(61a) 

(61b) 

(61c) 

7o(0To) = 2 | 5(wöi(öT0) - 0JC) 
1 nl+i' 

+ r(wD2(ÖTo)-Wc) 

2«(^To)J 

-1 

T{uD1(eTo)) 4ca3(öTo) 

ii+i' 

Tl(ÖT0) 

2a(0To) 

v(wm(6To) - L)c) 

T{u>D2(6To)) 

i<f>u,u,(wm(0To),0To) 

-4ca3(gTo) 2 

i<f>uu{uD2{QTo),0To) 
(61d) 

4a(öro) ^ 

-t5(wz>2(ÖT0)-wc) 

1+y 

-1 

L2a(öTo)J r(«z>i(0TD)) 
4ca3(0To) 

_ 2 

2a(0To) 
T(wD2(ÖTo)) 

i<t>uu{uDx{0To),0To) 

'>^0)J    J ^a;w(wD2(ÖTo) 
(61e) 

The subscript CJW of <£ denotes the second partial derivative of <j> with respect to u, and v is a 
real number such that T{u)/{u - wc) = u<x^g{u) and £ has a convergent Laurent series about 
u = 0. For the window function of Eq. (12), v = 0. The function i; corresponds to ü in Eqs. 
(7.2.13-15) of Ref. 8. When one sets T(uDj(6To)) = 1 and identifies a and ß with a/c and ß/c of 
Ref. 8, Eqs. (60) and (61) reduce to Eqs. (7.2.11-15) of Ref. 8. The reason for this slight difference 
in nomenclature is that Oughstun and Sherman normalize the a and ß of Theorem 5.4 [8] with 
division by c. Regardless, the final results are equivalent when the transmission coefficient is unity. 

The approach taken in Section 7.2 of Ref. 8 approximates the expressions in Eqs. (61) directly; 
however, Theorem 5.4 actually provides some asymptotic approximations for a, ß, and the radical 
in Eqs. (61). Before proceeding, the authors believe that Eqs. (5.4.10-12) of Ref. 8 and Eqs. (3.4.10- 
12) of Ref. 4 are not quite correct as a consequence of errors in some works of Handelsman and 
Bleistein [37]. These errors have been corrected on page 390 of Ref. 25 and result in the following 
modifications to expressions that occur in pertinent works of Oughstun and Sherman, 

a(0) = 2[-ai(0)(6 - I)]* + 0{i$ - l)i), 

W = ao(0) + O((0-1)), 

4a3(fl) 

>(2)(a;±,0) 
= 4k(0)| 1+ <?((*-!)*) 

(62a) 

(62b) 

(62c) 

As Eqs. (61) indicate, one derives an approximation to As(z,6,T0) by developing accurate 
estimates of the distant saddle points and generalized phase. According to the so-called second 
approximation to the distant saddle points [38,39], 

umiho) = WTO) ~ iS[l + r,(0To)], (63a) 

"D2(0TO ) = -£(0TO) - iS [1 + v(#T0)], (63b) 

XU,0)±iutl-V--£--, (63c) 
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where 

£(*To) = 

v(oTo) = r2(ÖTo) 

w0 - 0   + 4 -l 
Jo 

b2 

27+ el -1 
-*0 

(64a) 

(64b) 

Substituting Eqs. (63) and (64) into Eqs. (60) and (61) leads to more general versions of 
7o, 7i, and As in Eqs. (7.2.13-15) of Ref. 8. In hindsight, one can obtain these generalizations by 
replacing «(0;^+ -uc) and ü(usp- -uc) of Ref. 8 with v{u£>i -UC)T(UDI) and V(L>D2 -UC)T(UD2), 

respectively. Let TR, 7J, UR, and nj be the real and imaginary parts of the transmission coefficient 
(T = TR + iTi) and the refractive index (n = UR + tn/); then by Eq. (20a), 

TR(u>) = 

Tz(u>) = 

2(1 + nÄ(w)) 
l + v/^cos^^) 

(1 + nH(w))2 + n2 (w)      1 + ££i + 2<Vf£ cos («•*»'-*-*') ' 

,    , r>,/pp' ~;-n (a+a'—il>-i>'\ 
-2n i{w) _ ~2V7^sinV        2        ) 

(1 + nÄ(u>))2 + n](u) ~ 1 + ££i + 2 /^Z cos /a+q'-^-^'j' 

62r2(*To)fl + *2r2(«To)[l-l?2(«To)] 
»»H(WKI,2(ÖT0)) = 1 - 

ni(ü>Dl,2(eT0)) = 

1 + ^2-e-2(ÖTo)[l + T)(6To)]2} [l + *2r2(*To)[l " r)(OT0)f 

T2^2r3(ÖT0)r?(ÖTo) 

2[l + *2f-2(»To)[l + WTo)]2] [l + ^2«e-2(ÖT0)[l - T](6To)]'' 

(65a) 

(65b) 

(65c) 

(65d) 

The dependencies of the right sides of Eqs. (65(a) and (b)) on u are not shown explicitly but are 
specified by Eqs. (19). In comparing Eqs. (65(a) and (b)) and Eq. (20(b)), note that the imaginary 
parts of T(u>) and R(u>) are equal and that T(u) - R(u) = Re[T(u>) - Ä(w)] = 1. Moreover, the 
approximations for UR at UD\{6T0) and U>D2(QT0) 

are equal; however the minus and plus signs in 
Eq. (65(d)) correspond to nj evaluated at u>£u(0xo) and UD2(6T0)> respectively. 
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Finally, by substituting Eqs. (63) and (65) into Eqs. (60) and (61), one obtains 

As(z,e,T0) = u(eTo) tt°To) 
lb 0To - 1 + 

62 i 

_£i 

X e 

x 

^0-i][i+,(^0)i+^f,(9To;-^v%)^ 

rÄ(^i(«To))[f *K(»To) - «c][l - iK^To)] + WT0)[1 + ^To)] 

K(«To)-«e]2+^[l + 1/(«To)]2 

rj(^i?l(gT.)) [g(gTo)K(gr0) ~ Uc] - !**[! - y2(9To)]] 

TR(">m(0To))[%S[t(eTo) + o;e][l - r](6To)] + 6((0To)[l + n(6To)]} 
+ [f(ÖTo) + a;c]2 + ^[i + ^To)]2 

r/("Pi(gr.))[g(gT,)K(gr0) +fa>e] - f*2[l - 7?2(gT0)]] ^ + 

x/.(^[«* ft2 1 
1 + ']) 2 WT0) + *

2
[1-»K«TO)]

2 

/ril(^x(ÖT0))[^T0)[^To) -We] - f*2[l - T?2^)]] 
+ V [^To)-WcP+^[l + 7?(öTo)]2 

TI(O>DI(9TQ))[%8[{(0TO) - fa,e][l - 7?(gTo)] + 6t(0To)[l + r,{9To)] 

JHWDI^TQ))[g(flT,)[f (fro) + we] - f j)2[l - ^(flTo)]] 

[^T0) + Wc]2+^[l+7?(öTo)P 

rj(^i(gr,))[|^K(gr,) + we][l - iy(gTo)] + gflgr„)[l + v(6To)]] 

[^To) + Wc]2+^2[l + ^To)]2 + 

X/i( *WTo) 
»To ~ 1 + 

62 

2e(ÖTo) + Ä2[l-7?(öTo)32 (66) 

In the limit as TR -+ 1 and T/ -» 0, .4sCM,Zb) reduces to Eq. (7.2.24) of Ref. 8. The effect of T 
on As is negligible because T = 1 for the extremely high frequencies associated with this precursor. 

4.4 Example of Transmitted Field 

The contributions As{z,0) to the transmitted field from the distant saddle points {wm,um} 
are evaluated and plotted for the observation point at z = 10"5m in the Lorentz medium, for 
Brillouin's values of the physical constants (u>0 = 4.0 x 1016s_1, b2 = 20.0 x 1032s-2, S = 0.28 x 
1016s_1), and for an incident plane wave that consists of a single cycle of the sine at angular carrier 
frequency wc = lO^s"1. With this choice of parameters, the medium is highly absorptive about 
wo, and uc (T0 = 2ir/u>c) is below the medium's absorption band, ((w2, - tf2)1/2,^ - tf2)1/2). 
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The results for As are then compared to the contributions given by Eq. (7.2.24) of Ref. 8, where 
Oughstun and Sherman's representation of the Sommerfeld precursor is designated Ago{z, 9). 

Graphs of As(z, 9,0) and As(z, 9, T0) versus normalized time 9 are shown in Figs. 9(a) and (b), 
respectively. As one expects from Eqs. (49), (56), and (60), As(z,9,T0) is As(z,9,0) delayed by 
cTo/z = 0.0188365. On inspection, the plot of As(z,9,0) looks like Fig. 6 of Ref. 8. By substituting 
To = 0 in Eq. (66) and by manipulating Eqs. (63-66), one can argue that the envelope of As(z,9,0) 
in Fig. 9(a) behaves like 

±(9 - 1)e-(^/^)[«-2(»2+i)(s-i)+(2«2)-1(«+i)2(e-i)2]. (67a) 

Note that the exponent has linear and quadratic terms in (6 - 1). For 9 near 1, the exponent is 
dominated by the linear term, and Eq. (67a) becomes 

±(0 - l)e-V'sW-l\ (67b) 

which is proportional to the Gaussian probability density function with parameters 2 and c/(2zS) 
[40]. On the other hand, when 8 is large, the envelope behaves like the Rayleigh probability density 

±(0-l)e-l'Bn2<M9-»\ (67c) 

Recall that As(z, 9) = As(z, 8,0) — As(z,8,To). When this difference is plotted, one observes 
two slightly overlapped signal packets (Fig. 9(c)), which correspond to the intervals 1 < 9 <cT0fz 
and 9 > cT0/z. In the first packet (1 < 9 < cT0/z), As(z,8) = As{z,8,Q) since As(z,9,T0) = 0. 
Moreover, at 9 = cT0/z, the magnitude of As{z,9) has decreased roughly to one tenth of its 
maximum value. When 6 > cTo/z, the contribution from As(z,8,0) decreases as 8 increases. 
However, until As(z,8,0) becomes negligible near 8 = 1.04, the trailing edge of the first packet 
interferes with the leading edge of the second packet, thereby, producing the uneven behavior of 
the second packet's envelope. On comparing Fig. 9(c) to the first part of the bottom frame of Fig. 
15 in Ref. 7, the curves appear to be very similar. To ascertain the degree of similarity between 
As and Aso, the difference As(z,8)-Aso(z,9) is plotted in Fig. 9(d). As the figure indicates, the 
absolute difference is always less than 0.000004. Thus the graph of As is visually indistinguishable 
from Aso- The reason for this lies in the behavior of T(u>in(9)). According to Table Al of the 
Appendix, 

1 ^TRiujxtf)) < 1.02       and       0 < 7/(0^(0)) < 0.00062, (68) 

for 1 < 9 < 1.05, which implies that TR — 1 and Tj = 0 at values of 6 for which the Sommerfeld 
precursor is significant. On the other hand, the decay of the exponential factor completely domi- 
nates the contribution from the variations in T(LJDI(9)) when 9 exceeds 1.05 since T is bounded. 
Hence choosing T(UDL(9)) = 1 in Eq. (66) has a negligible effect, and the small excursions of the 
transmission coefficient from unity at optical frequencies for Brillouin's constants have little impact 
on ^5. This analysis merely validates the tacit assumption that T = 1 at optical frequencies for the 
Sommerfeld precursor. Of course, one expects the impact of T(u>) on As to be different, perhaps 
more significant, over other frequency regimes like millimeter waves or microwaves. 
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Fig. 9 - Sommerfeld precursor and associated functions versus normalized time 9 at Z = -10~5 m in the Lorentz 

medium with W0 = 4.0 X lO^s"1, b2 = 20.0 X 1032s-2, and 6 = 0.28 X lO1^"1: (a) AS(zt0,0), (b) 
AS(Z, 6, T0), (c) As(z, 6) = As(z, 6, 0) - AS(z, 6, T0), and (d) AS(z, 0) - ASO(z, 9). The incident pulsed 
field is a single-cycle sine at Uc = 1016s   X with T0 = 2TT/UC, and Aso is AS evaluated at TR(u) = 1 and 
rr(w) = 0. 

As stated in the introduction, the lengthy endeavor of deriving AB and Ac for all eventualities 
is not addressed. However, some comments are made regarding the impact of the transmission 
coefficient on AB and Ac. By Eqs. (57) and (58), the inclusion of T(u) affects the amplitudes of 
AB and Ac and not their durations. By extrapolating from Figs. 8 and 10 of Ref. 7, one deduces 
that the supports/peak magnitudes [41] of AB and Ac are approximately 1.43 < 6 < 1.62/0.12 and 
1.44 < 0 < 1.70/0.005, respectively. Further, by Fig. A2 and some calculations, As is negligible 
for 9 > 1.08. Consequently, the transmitted field has a significant nonzero value for 9 in [1,1.08], 
[1.43,1.62], or [1.44,1.70]. Although further observations on AB and Ac can be made only after 
detailed study, one more conclusion regarding Ac can be drawn. Since T{uc) = 0.7914 - 0.0051i 
is a multiplicative factor in the residue 

T(wc)e(^c>^w<='^o) (69) 

of Ac and since T(wc) differs substantially from unity, the inclusion of T{uc) in evaluating Ac will 
result in a 21% decrease in the main signal's amplitude as computed by Ref. 7. 
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To compare As to Ey, consider Fig. 6(d), which depicts ET
y at an equal distance from the 

dispersive medium. The reflected field is essentially nonzero for 0 in [1,1.03] and has a peak value 
of 0.21016 at 6 = 1.0142, which is significant relative to the derived and expected components 
of Ey. According to Table 2, this corresponds nicely to the value of |Re[Ä(u;c)]|. Furthermore, 
|Re[Ä(u;c)]| is consistent with the predicted 21% percent decrement of Ac- Intuitively, one expects 
this because T(uc) - R(u>c) = 1. The comparison between the expected strengths and durations of 
Ey and Ey in this example provides a compelling argument for including the frequency dependence 
of the reflection and transmission coefficients in formulating this propagation problem, even for 
fields at optical frequencies. 

5. SUMMARY AND CONCLUSIONS 

This report generalizes the formulations of Sommerfeld, Brillouin, and Oughstun and Sherman 
for one-dimensional propagation of pulsed fields at optical frequencies in a medium for which the 
Lorentz model is valid and for which the Lorentz absorption frequency S is less than its resonance 
frequency wo- The generalizations are: (1) providing a formulation that is applicable to frequencies 
for which the Lorentz model of the medium is appropriate; (2) accomodating a pulsed source outside 
the Lorentz medium instead of specifying the field on the medium's boundary; (3) accounting for 
reflection from the medium; and (4) including a frequency-dependent transmission coefficient in the 
transmitted field. Specifically, results are obtained for the case when the source is a rectangularly 
modulated sine function at angular carrier frequency LJC and when the duration To of the source 
is a positive integer multiple of 2ir/u>c. Moreover, results on the reflected and transmitted fields 
are obtained for Brillouin's choice of Lorentz parameters (uo,S,b). This example demonstrates 
the necessity of including the transmission and reflection coefficients for this class of propagation 
problems. 

An exact expression for the time-domain reflected field, that is amenable to physical inter- 
pretation and numerical evaluation, is derived. When time t = 0 is designated as the instant 
the incident field reaches the medium's boundary, the reflected field is first observed at a point a 
distance \z\ from this boundary at time \z\/c. The field consists of two components: (1) a sine 
function, |J?(wc)|sin(a;cf — arg[Ä(a>c)]), which comes from the pole contributions to the inversion 
integral and has the same duration To as the incident field (R is the reflection coefficient); and (2) 
two exponentially damped sinusoidal terms, which come from the branch-cut contributions, with 
time-dependent phases that broaden the incident pulse and cause ringing in the trailing edge. The 
behavior of the reflected field changes with the value of wc relative to uo- As wc increases, the field 
evolves from a reduced, negative replica of the incident field for wc < wo/10 to a much broader field 
with an increasingly distorted leading edge and a damped trailing edge having a greater number 
of zero crossings at the higher carrier frequencies. For uc < 3a>o, the reflected field's amplitude is 
significant, even for optical frequencies. In addition, early-time and high-frequency fields are de- 
veloped, and they are shown to be in excellent agreement over a short time for a particular optical 
example. The high-frequency field extends Colby's result by including the attenuation factor 6, 
which also adds higher-order temporal terms. The inclusion of these terms improves the accuracy 
of Colby's result. 

By following the methodology of Oughstun and Sherman, the time-domain transmitted fields 
are expressed as the sum of three components: the Sommerfeld precursor, the Brillouin precursor, 
and the main signal. Rather than derive uniform asymptotic representations of all three compo- 
nents of the transmitted field, a uniform asymptotic approximation of the Sommerfeld precursor is 
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developed to illustrate the impact of the transmission coefficient on the field. Moreover, the Som- 
merfeld precursor is shown to reduce to the results of Oughstun and Sherman when the transmission 
coefficient is unity. 

The derived theoretical results are made more concrete by applying them for Brillouin's choice 
of the Lorentz medium's parameters and for Oughstun's choice of carrier frequency. Specifically, the 
reflected field and Sommerfeld precursor are obtained at distance \z\ from the medium's boundary. 
When the incident pulsed field is a single cycle of the sine function (T0 = 2r/ue), neither field is 
observed until t exceeds \z\c~1. The Sommerfeld precursor has a significant value for \z\c~1 <t< 
\z\c~1 +4T0 and consists of two slightly overlapped wave packets. The envelope of each packet has 
a leading edge that resembles the Gamma probability density function, has a trailing edge similar 
to the Rayleigh density function, and bounds a highly oscillatory field. The transmission coefficient 
has a negligible effect on the Sommerfeld precursor because it consists of extremely high frequencies; 
however, a heuristic analysis implies that its impact on the main signal is significant. In contrast^ 
the reflected field is a distorted version of the negative of the incident field and has an amplitude 
that is 21% of the incident field's amplitude and is roughly 250 times the peak of the Sommerfeld 
precursor's envelope. Further, the reflected field's support essentially is \z\c~1 < t < \z\c~1 + 1.5T0, 
which is 37.5% of the precursor's support. Given these facts, one is drawn to the conclusion- 
accurate analyses of problems involving propagation of a pulsed field that is externally incident on 
a Lorentz medium require frequency-dependent reflection and transmission coefficients. 
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Appendix 

As evidenced in the Sections 2 through 4, the reflected and transmitted fields depend critically 
on n, R, and T. This appendix presents the behavior of each quantity throughout the cut complex 
plane (Fig. 2). Since the reflection and transmission coefficients are functions of the index of 
refraction, n is treated first. 

The index of refraction is specified by Eqs. (6), (7), (19), and (20(a)). With u = u' + iu", 

[(fa,* + q,3)2 + (u," + Sf] [(fa/ - utf + (u" + 8f] 

[(«' + w2)2 + («" + Sf] [(«' - u2f + («" + 8f] 
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(A3) 

One obtains the arguments a' and ty' by replacing u' — uz and u' — w2 with u' + u>3 and w' + u2 in 
the expressions for a and V, respectively. The representations for \n\ and (a + a' -ip- il>')/2, given 
by Eqs. (A1)-(A3), are equivalent to the magnitude and argument of n in Eq. (6.1.14) of Ref. 8. 

In the remainder of the Appendix, the horizontal (real) axis of each plot is normalized with a 
division by u>0; that is, u0 corresponds to unity. Moreover, all figures are graphed for u>c = 1016rad/s 
and for Brillouin's values of w0, b, and 8. Consequently, wc, 6, 8, w2, and w3 correspond to 0.25, 
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1.118, 0.07, 0.9975, and 1.4984, respectively. In addition, the branch points (u>'_, w_, u+, and u'+) 
are located approximately at -1.4984 - 0.07i, -0.9975 - 0.07i, 0.9975 - 0.07i, and 1.4984 - 0.07i. 
Although specific values of the physical parameters are chosen, the analysis is independent of these 
values, and the figures typify the behaviors of n, R, and T for any choice of u>c, u0, b, and S under 
the constraint 6 < u>o- 

Even though n(u) is discontinuous across the branch cuts, setting u" = -i6 in Eq. (Al) implies 
that |n(o;)| approaches 0 as w —► u'± and approaches +oo asw-> u±. Further, one can argue that 
|n(w)| has well-defined limits as u> approaches each point of the branch cuts. In particular, 

lim    \n(w)\ 
j—*a—i6 

ru;? - a2 

a2 - uk 
(A4) 

for a in [-«3,-^2] or [^2,^3]. Consequently, \n(u>)\ can be made continuous for u in the complex 
plane except at u±, where the limits exist but are not finite. Both the 3-D (Fig. Al(a)) and cross- 
sectional (Fig. A2(a)) depictions illustrate the pronounced spikes at w± and the dips to zero at 
u>'±. In the 3-D graph, the flat part of each peak is indicative of magnitude clipping at the value 2. 
Figure Al(a) provides a further illuminating glimpse of the behavior of |ra(u;)| near the branch cuts 
by showing the cross section that is slightly above the cuts at u" = -0.0699o>0. Clearly, away from 
the branch cuts, \n{u)\ is approximately unity. Specifically, for |o>| > 4wo, the calculated values of 
\n\ are within 0.01 of 1. 

In Figs. Al(b) and A2(b), plots of the argument (a + a' - ip - ip')/2 of n indicate a jump 
discontinuity at each point along the line through the branch points (u>" = -6). In particular, as 
u" approaches -6 from above, arg[n(u>)] approaches 0 for u/ in the intervals (-00,^3), (-u>2,w2), 
and (u>3,+oo), approaches -7r/2 for u' in [-w3, -u>2], and approaches 7r/2 for u/ in [a^,^]. As u>" 
approaches —6 from below, arg[n] approaches -2n for u/ in (-00,w3), (—u)2,u>2), and (u>3,+oo), 
approaches -3TT/2 for w' in [-w3, -W2], and approaches -5TT/2 for u' in [w2,a;3]. These graphical 
observations are consistent with the entries of Table 1. Despite the discontinuous behavior of arg[n] 
along OJ" = —iS, e*argtnl/2 is continuous at each point of this line that is not on the cuts. Of course, 
one expects a difference between the values on the top and bottom of the cuts. With the choice of 
branch given by Eqs. (22), eUr^nV2 is +i (-i) for the top of the right (left) cut and is -i (+i) for 
the bottom of the right (left) cut. As u" moves away from —6, arg[n] lies in (-§, f) and approaches 
0 for w" > -S, and argfn] lies in (-^y1,-^) and approaches -2n for u" < -S. One consequence 
of the preceding discussion is that cos[(a + a' - V> - ip')/2] > 0 for all u in the complex plane and 
is zero along the branch cuts. Geometric arguments of these observations are readily obtained. 

Since cos[(a + a' - ip - ip')/2) > 0, the real part UR of n is nonnegative. In fact, nn > 0 except 
at co'±, and one can rigorously argue that the limiting value is 0 as u approaches either branch 
point. The plots for nR (Figs. Al(c) and A2(c)) and |n| (Figs. (Al(a) and A2(a)) are very similar, 
except that UR appears to have steeper slopes near the infinite discontinuities associated with the 
other branch points u>±. As \u>\ increases without bound, UR approaches unity. For |w| > 4u>0, 
|rc.R -1| < .01. On the other hand, nj is approximately zero for u away from the branch cuts (Figs. 
Al(d) and A2(d)), and |n/| < .01 for |w| > 4UQ. Moreover, the infinite discontinuities of \n\ at u± 
also appear in n/. Since Fig. Al(d) is clipped, the peaks in Fig. A2(d) give an indication of the 
discontinuities. 

Similar to Figs. Al and A2, Figs. A3 and A4 exhibit in three dimensions and in two dimensions 
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four aspects (\T\, arg[T], Re[T], Imp1]) of the transmission coefficient. According to Eq. (65), 

2 |T(W)| = 

arg[T(w)] = arctan 

</l + |n(«)|* + 2|n(«)| cos(arg[n(w)])' 

->HI sin(arg[n(q>)]) 

1 + |ra(w)| cos(arg[n(w)]) 

(A5) 

(A6) 

for u not along the branch cuts. 

By Table 1, arg[n] takes on the values =fz, =%*, =f, and § along the tops and bottoms of 
the cuts, which implies that cos(arg[n(w)]) = 0 on the cuts. Further, |n(w)| is given by Eq. (A4) 
on the cuts. Hence, \T{u)\ is well-defined and continuous over the complex plane with 

|7(«)l = 2* 
a2 — u. 
w|-w| 

along the branch cuts. Letting a —» u-i and a —*■ u$ imply 

Urn  |r(w)| = 2       and lim  |r(«)| = 0. 

(A7) 

(A8) 

Figures A3(a) and A4(a) indicate that \T\ has maxima and minima at the branch points w'± and 
w±, respectively, and quickly approaches unity for u away from the branch cuts. 

Also because cos(arg[a>]) is nonegative in the complex plane and is zero on the cuts, the 
denominator in Eq. (A6) is positive. Thus -f < arg[T(«)] < f, and arg[T(u)] = 0 when u lies 
along the line u = -i6 minus the branch cuts. Along the cuts, 

arg[T(u;)] = < 

Arctan 

Arctan 

Ya2-" 

Y°2-' 

Top Right & Bottom Left Cuts 

Bottom Right & Top Left Cuts. 

(A9) 

Clearly, the argument of T is discontinuous along each cut, except at u = u'± (a = ±u3) where 
arg[T(w)] = 0. This discontinuous behavior directly reflects the discontinuities of arg[n(w)] along 
the cuts. Equation (A9) also implies that arg[T(w)] -* -f as u ± u± along the top right and 
bottom left cuts and that axg[r(w)] -» f as u ± u± along the bottom right and top left cuts. The 
■K jumps in the argument of T at w± are borne out by the sharp inner edges of the two fin-like 
structures in Figs. A3(b) and A4(b). 

From Eqs. (65) and Figs. A3(c) and A4(c), one can deduce that the real part TR of T(u) is 
continuous in the cut plane, that TR can be made continuous along the cuts by defining it with 
Eq. (A7) at those points, that 0 < TR(u>) < 2, and that the maximum (minimum) value 2(0) of TR 

occurs at u'± (u±). Phenomena that are clearly visible in both figures include a ridge above each 
cut, peaks about u>'±, valleys about w±, and a leveling off to the limiting value of 1 as a; moves 
away from the branch cuts. 
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On the other hand, the presence of the sine function makes Ti discontinuous along the branch 
cuts, except at points where the limiting value of Ti is 0. Analytically, one can show that |Tj(w)| < 1 
off the cuts and that 

C -^2-^%/(a2 _ u2) (w2 _ a2)?      Bottom Right & Top Left Cuts 
TT(U) = l "*  "2      ,  (A10) iV   '     \ __,!_,^/(a2 _ «|)(w| - a2),   Top Right & Bottom Left Cuts. 

Since |T/| < 1 for u not on the branch cuts and |T/| = 1 only at a = ±[(ul +wf )/2]J/2 along the top 
and bottom of each cut, clearly -1 < Ti(u) < 1 for all w, ±[{u\ + wD/2]1/2 - i* are maxima along 
the bottom right and top left cuts, and ±[{u\ + w^)/2]1/'2 - iS are minima along the top right and 
bottom left cuts. This behavior is apparent in Fig. A4(d), where the dark curve approximates the 
bottom of the cuts [w"/wo = -0.0701 or u" = -1.00145] and the light curve approximates the top 
of the cuts [w"/u>o = -0.0699 or u" = -0.99865]. As u> moves away from the cuts, T/ approaches 
unity. 

According to Eqs. (20), n(w) also determines the behavior of the reflection coefficient (R = 
RR + iRi). Figures (A5) and (A6) provide 3-D and cross-sectional graphs of three of the four 
aspects of Ä(w). Plots of Ri are omitted since Ä/ = 7/ (see Figs. A3(d) and A4(d)). By Eq. (A4), 

\R(u)\ = 
1 + \n(u)\2 - 2|n(«)| cos(arg[n(w)]) 

1 + |n(w)|2 + 2|n(w)| cos(arg[n(o;)]) 
(All) 

which reduces to unity as u approaches the top or bottom of either cut. Therefore, setting |Ä| = 1 
on the cuts insures that \R\ is continuous over the complex plane. Since cos(arg[n(o;)]) = 0, if and 
only if, a; is on a side of one of the cuts, |Ä| attains its maximum value of 1 only on the cuts. As |w| 
increases, \n\ ->■ 1 and arg[n] -*■ 0 or -2ir (Fig. Al(b) and Table 1). Consequently, the numerator 
in Eq. (All), hence |Ä|, approaches 0 through positive values. These characteristics are discernible 
in Figs. A5(a) and A6(a). 

The argument of R, 

-2|n(w)|sin(arg[n(w)]) 
arg[Ä(u;)] = arctan 

i-K«)l2 (A12) 

has discontinuities not only along the branch cuts from the discontinuities of arg[ra(u;)] but also along 
the imaginary axis (u>' = 0) stemming from the definition in Eq. (A12). This latter discontinuity is 
manifested as the wall-like structure in Fig. A5(b), which corresponds to a 2n jump. Unfortunately, 
the jump discontinuities along the cuts are hidden by the surface. To perceive them, look at the 
cross-sectional curves on either side of the line u>" = —6 (Fig. A6(b)). The light curve and the 
dark curve correspond to u" = -0.99866 and u" = -1.00145, respectively. As u -* w+ on the top 
and bottom of the right cut, arg[Ä(u;)] ->• —it and 7r, respectively; while arg[Ä(w)] -»■ ir and -ir as 
u) —»• — w+ on the top and bottom of the right cut. 

The real part RR of the reflection coefficient is 

p (L,S = 
l - N")l2  (Au) 

R{   }      l + |n(W)|2 + 2|n(W)|cos(arg[n(W)])" k       ; 
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Since cos(arg[n(w)]) > 0, |ÄÄ| < 1, with equality occurring at the branch points. Specifically, 
RR(U'±) = 1 and £(w±) = -1. Moreover, RR has removable discontinuities along the cuts; that is, 
RR is definable along the cuts by taking 

RR(u) = RR(a - iS) =        ~ ^2 ~ ^3 ,A14) 
U3 — U>2 

for a in [-w3, -u>2] or [w2,w3]. Thus the arcs in Figs. A5(c) and A6(c) connecting the values of RR 
at u>'_ and w_ are segments of a parabola. 

Of special interest is the behavior of T(u(0)) because of its role in determining the Sommerfeld 
precursor As with Eq. (66). Recall that TR and 7> are the factors in this equation and are evaluated 
at the distant saddle point um, which itself depends on 0. Table Al provides values of TR and 
Ti at the um and um of Tables 3 and 4. The evaluations at the near saddle points uNl are 
included for completeness. As 6 increases from 1 to 20, TR(um(0)) monotonically increases, while 
TI{OJD1(0)) is a negligible, positive number for each value of 0. In fact, Ti never exceeds 0.014. In 
the two limiting situations, 0 -* 1+ and 0 -» +00, the limiting values of Ti{uDl{0)) are 1 and 2, 
respectively. These limits are obtained from Eqs. (65), Eqs. (19), and Fig. 2 by noting that 

£m+ cos[(a + a' - V - V')/2] = 1, (A15a) 

elmi+sin[(a + a'-^-V/)/2] = 0, (A15b) 

v PP' 
teh 7? = h (Al5c) 0-*i+ rr 

PP 
Ä^ = °- (A15d) 
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Table Al - Transmission Coefficients Evaluated at the Distant 
(WDI(0)) and Near (um(0)) Saddle Points, Where 0 is Normal- 
ized Time 

e T(uDl{9)) T(u>m(6)) 
1.000 1.0000 - O.OOOOOt 0.8958 - 0.00000t' 

1.009 1.0044 - 0.00007i 0.8921 - 0.00000t 

1.010 1.0048 - 0.00008t 0.8917 - O.OOOOOt 

1.015 1.0071 - 0.00014t 0.8897 - O.OOOOOi 

1.020 1.0094 - 0.00020t 0.8879 - O.OOOOOt 

1.025 1.0115 - 0.00027t 0.8861 - 0.00000t 

1.030 1.0136 - 0.00034t 0.8843 - 0.00000t 

1.040 1.0177 - 0.00048t 0.8810 - 0.00000t 

1.050 1.0216 - 0.00062z 0.8779 - 0.00000i 

1.100 1.0392 - 0.00129t 0.8643 - 0.00000t' 

1.150 1.0546 - 0.00190t 0.8531 - O.OOOOOt 

1.200 1.0685 - 0.00246t 0.8434 - 0.00000i 

1.250 1.0813 - 0.00296t' 0.8348 - 0.00000t 

1.300 1.0933 - 0.00343t 0.8269 - 0.00000t 

1.400 1.1154 -0.00429t 0.8129 - 0.00000t 

1.500 1.1356 - 0.00505t' 0.8000 - 0.00000t 

1.502735905 1.1361 - 0.00507t 0.7994 - 0.00000t 

1.510 1.1375 - 0.00512t 0.7986 - 0.00047t 

1.520 1.1395 - 0.00519t' 0.7976 - 0.00073t 

1.530 1.1414 - 0.00526t 0.7966 - 0.00091t 

1.540 1.1433 - 0.00533i 0.7955 - 0.00106t 

1.550 1.1452 - 0.00540* 0.7945 - 0.00119t 

1.600 1.1544 - 0.00574* 0.7896 - 0.00168t 

1.700 1.1720 - 0.00638i 0.7805 - 0.00231t 

1.800 1.1887 - 0.00696t' 0.7722 - 0.00276t 

1.900 1.2046 - 0.00751t 0.7646-0.00311t 

2.000 1.2197 - 0.00801t 0.7574 - 0.00340t 

2.500 1.2872 - 0.01002t 0.7278 - 0.00435t 

3.000 1.3441-0.01140t 0.7047 - 0.00493* 

4.000 1.4359 - 0.01284* 0.6694 - 0.00562t 

5.000 1.5068 - 0.01323t 0.6426 - 0.00602t' 

10.000 1.7023 - 0.01094t 0.5618 - 0.00677i 

20.000 1.8362 - 0.00688i 0.4845 - 0.00692t 

100.000 1.9647 - 0.00162t' 0.3261 - 0.00591t 

1000.000 1.9964 - 0.00016t 0.1689 - 0.00355t 

oo 2.0000 - O.OOOOOt 0.0000 - 0.00000t 
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Fig. Al - Refractive index n over the cut complex plane for a singly resonant Lorentz medium with Wo = 4.0 X 
1016s-\ b2 = 20.0 X 1032s-2, and 8 = 0.28 X 1016.-1: (a) |n(w)|, (b) arg[n(w)], (c) Re[n(w)]f and (d) 
Im[n(u;)]. The real (a/) and imaginary (w") axes are normalized by UQ. 
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Fig. A2 - Cross-sectional views of the refractive index n for a singly resonant Lorentz medium with UQ = 4.0 X 

1016s-\ b2 = 20.0 X 1032s-2, and 6 = 0.28 x lO^s"1: (a) |n(w)| along w" = -0.0699w0, (b) arg[n(w)] 

along u" = -0.0699a;o (light curve) and a;" = -0.0701w0 (dark curve), (c) Re[n(w)] along u" = -0.0699a;o, 

and (d) Im[n(w)] along U>" = -0.0699u;o (light curve) and u" = -0.0701w0 (dark curve). The real (a/) and 

imaginary (u>") axes are normalized by U)Q. 
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arg[T(®)] 

(c) (d) 

Fig. A3 - Transmission coefficient T over the cut complex plane for a singly resonant Lorentz medium with U>o = 
4.0 X 1016s-\ b2 = 20.0 X 1032s-2, and S = 0.28 X lO^s"1: (a) |T(u>)|, (b) axg[T(w)], (c) Re[T(w)], and 
(d) Im[T(w)]. The real (u/) and imaginary (u>") axes are normalized by WQ. 
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Fig. A4 - Cross-sectional views of the transmission coefficient T for a singly resonant Lorentz medium with Wo = 
4.0 X 1016s-\ b2 = 20.0 X 1032s-2, and 6 = 0.28 X lO^s"1: (a) \T(u)\ along u" = -0.0699a;o, (b) 
arg[T(w)] along u" = -0.0699w0 (light curve) and U>" = -0.0701w0 (dark curve), (c) Re[T(u>)] along 

u" = -0.0699wo, and (d) Im[T(w)] along u" = -0.0699CJ0 (light curve) and U>" = -0.0701u;o (dark curve). 
The real (w;) and imaginary (u?") axes are normalized by UQ. 
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Re[R(o>)] 

arg[R(a)] 

Fig. A5 - Reflection coefficient R over the cut complex plane for a singly resonant Lorentz medium with Wo = 

4.0 X 1016s-\ b2 = 20.0 X 1032s-2, and 6 = 0.28 X lO^s"1: (a) \R(u)\, (b) arg[Ä(w)], (c) Re[Ä(w)], and 
(d) Im[.ß(a>)]. The real (a/) and imaginary (u>") axes are normalized by U?o- 
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Fig. A6 - Cross-sectional views of the reflection coefficient R for a singly resonant Lorentz medium with Wo = 

4.0 X 1016s-\ b2 = 20.0 X 1032s-2, and 6 = 0.28 X 1016s_1: (a) |Ä(w)| along w" = -0.0699u;o, (b) 

arg[Ä(w)] along u" = -0.0699w0 (light curve) and u" = -0.0701a;o (dark curve), (c) Re[Ä(w)] along 

u" - -0.0699w0, and (d) lm[R(v)] along L>" = -0.0699w0 (light curve) and u" = -0.0701w0 (dark curve). 
The real (a; ) and imaginary (a>  ) axes are normalized by UJQ. 


