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Representation in Skilled Mental Arithmetic 

Thesis directed by Professor Lyle E. Bourne Jr. 

Two experiments were performed to investigate the nature of skilled 

arithmetic performance.  In Experiment 1, college subjects were trained 

extensively on a set of simple multiplication (e.g., = 4x9) and division 

problems (e.g., 56 = _ x 8). They were then tested on each prob 

lern seen at practice, and on three altered versions of each practice problem; a 

change in operand order v (e.g., = 4 x 9 at practice, = 9 x 4 at test), a change 

in operation (e.g., = 4 x 9 at practice, 36 = _ x 9 at test), and change in both 

operand order and operation (e.g., 4 x 9 at practice, 36 = _ x 4 at test). In 

Experiment 2, both multiplication and division problems were again presented 

at practice and test. In addition, half of the problems had the symbol "x", and 

half had the symbol 'V. On the immediate and delayed tests, subjects again 

solved four versions of each practice problem; the actual practice problem, a 

problem with the symbol reversed, a problem with the operation reversed, and 

a problem with both symbol and operation reversed. Results from both 

experiments showed: (1) improvement in reaction time with practice follows a 

power law for all tested problem types, (2) across practice, division is more 

difficult than multiplication, and problems with the symbol "+" are more 

difficult than problems with the symbol "x", regardless of the actual arithmetic 

operation required, (3) transfer of learning is substantial across changes in 

symbol, and across a change in operand order for multiplication, but is at best 

minimal across all other changes that were tested, (4) there is good to excellent 



retention of RT improvements gained through practice.  The above results 

should be relevant in evaluating present and future models of skilled 

arithmetic performance.   The finding that improvement in RT with practice 

follows a power law provides an important constraint for arithmetic learning 

models. Further, the test results differentiate between two sharply contrasting 

hypotheses of arithmetic fact representation; an abstract representation 

hypothesis, according to which representation is totally independent of 

perceptual characteristics of the problems, and a specific representation 

hypothesis, according to which represtation is totally dependent on the 

perceptual characteristics of the problem. 
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CHAPTER 1 

INTRODUCTION 

Fundamental to any mental calculation is the skill of simple arithmetic, that 

is, the ability to quickly and accurately determine the answers to problems like 4x7 

= ?.   In recent years, there has been increasing interest in the cognitive processes 

underlying this skill in both children and adults (e.g., Ashcraft, 1985, 1987; Campbell, 

1985,1987a b and c, 1991; Campbell & Graham, 1985; Fendrich, Healy, & Bourne, in 

press; Koshmider & Ashcraft, 1991; McCloskey, Hartley, & Sokol, 1991; Miller & 

Paraedes, 1990; Miller, Pertmutter, & Keating, 1984; Siegler, 1988; Zbordoff & Logan, 

1990). A basic finding of this research is that, while children often use explicit, 

consciously mediated counting algorithms, especially while they are first acquiring 

the skill (e.g., children often solve 3 x 7 by adding 7 + 7 + 7), there is a transition 

toward retrieval of arithmetic facts directly from memory as skill improves (e.g., 

Siegler, 1988).  By adulthood, performance on most single-digit operand problems 

appears to reflect direct retrieval from memory.  Several phenomena in adult 

mental multiplication performance have provided insight into details of the 

processes that underlie retrieval of these arithmetic facts.  For example, under 

speeded conditions, typically 70 to 90% of errors that college students make are table- 

related; that is, they are answers to problems that share an operand with the 

problem being solved (e.g., Campbell & Graham, 1985; Graham, 1987; Sokol, 

McCloskey, Cohen, and Aliminosa, 1991).   Thus, 21 (the answer to 3 x 7) is a 

frequent error to 4 x 7. In contrast, table-unrelated error are relatively infrequent 

(e.g., 30, the answer to 5 x 6, is a relatively infrequent error to 4 x 7). A second robust 

error pattern is that most errors are close in magnitude to the correct answer 

(Campbell & Graham, 1985; Graham, 1987; Miller et al., 1984). For example, 32 is a 

relatively frequent error to 4 x 9, while 12 is relatively infrequent. These error 

patterns suggest that representations for multiple problems that share operands 



and/or have answers of similar magnitude become active whenever a problem is 

being solved, and that these representations interfere with one another during the 

retrieval process.  „. 

A host of studies exploring priming effects in mental multiplication provide 

converging evidence in support of this conclusion (e.g., Campbell, 1987 b, 1991; 

Koshmider & Ashcraft, 1991; Winkelman & Schmidt, 1974). For example, Campbell 

(1991) presented a two-digit number that is a valid multiplication answer (e.g., 24) as 

a prime for 200 ms, and then presented a multiplication problem to be solved. He 

found that RT is slower and error rates are higher when the prime is table-related to 

the problems than when it is table-unrelated. 

The convergent theme in recent theoretical accounts of these interference 

effects (see Anderson, Spoehr, & Bennett, in press; Campbell & Oliphant, in press, 

McCloskey & Lindemann, in press) is that retrieval of arithemtic facts reflects a 

process interactive-activation and competition, similar to that proposed by 

Rumelhart and McClelland (1982).  According to this account, when an arithmetic 

problem is being solved by the skilled performer, multiple problem representations 

become active to the extent that they are in some way similar (e.g., share an 

operand) with the problem, and these active representations then compete until one 

representation (usually the correct one) reaches a high enough level of activation to 

be selected as the answer. 

Further support for this general account of skilled arithmetic performance 

comes from a recent investigation of practice and transfer by Campbell (1987a). He 

pretested college subjects on a set of simple multiplication problems, trained them 

for several sessions on a subset of these problems, and then tested them again on all 

problems. Campbell (1987 a) found that response time (RT) improved considerably 

(by several hundred milliseconds) across practice. Also, on the post training test, 

subjects performed worse (had significantly longer RTs and a higher error rate) on 
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unpracticed problems than they had on these same problems at pretest. Further, 

most errors to unpracticed problems on the post training test were answers to 

problems seen at practice. The finding that practice does not transfer positively 

across problems within multiplication constitutes important converging evidence 

for the basic theoretical assumption that skilled arithmetic performance reflects 

retrieval of individual facts from memory, rather than the execution of more 

general procedures as is reflected in children's performance.  Further, the finding 

that practice actually transfers negatively to new problems is consistent with the 

assumption that representations for multiple facts compete for activation during the 

retrieval process (i.e., the problems on which the subject's practiced would compete 

more strongly after practice, thus slowing RT for unpracticed problems). 

In another practice /transfer study, Fendrich, Healy, and Bourne (in press) 

trained college students for three one-hour sessions on simple multiplication 

problems (e.g., 6x8) and then tested them on these same problems, on operand 

order reverses of these problems (e.g., 8 x 6), and on new problems that were not 

seen during practice. Like Campbell (1987a) they found that RT improved 

considerably across practice sessions. Also, they found that learning transfered 

positively, although not completely, to operand order reversed problems. The 

Fendrich et al. (in press) study establishes a useful qualifier to the Campbell (1987a) 

findings; while practice does not transfer positively across problems involving 

different operands, there is positive transfer to problems related by operand reversal. 

Both the Campbell (1987a) and the Fendrich (in press) studies demonstrate 

the value of a practice/transfer experimental approach to exploring basic issues of 

representation in mental arithmetic.   As others have pointed out (e.g., Campbell, 

1991), research to date on mental arithmetic has focused on outlining the basic 

processes involved in arithmetic fact retrieval (see the various investigations into 

interference effects cited above). Now that these processes are relatively well 
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understood, researchers might profit from shifting the emphasis toward gaining a 

better understanding the details of the representations on which these processes 

operate. The current studies employ a practice/transfer approach in an effort to 

make progress in this direction. In the first phase of both experiments, college 

students were given 3 sessions of practice on simple multiplication and division 

problems. Across Experiments 1 and 2, four types of problems were presented at 

practice; multiplication problems with symbol "x" (e.g., = 4x7), multiplication 

problems with symbol "+" (e.g., _ + 6 = 9), division problems with symbol "x" (e.g., 

35 = _ x 5), and division problems with symbol 'V, (e.g., 48 + _ = 6). The primary 

purposes of practice in these experiments was to provide data on skill acquisition 

and to permit evaluation of performance across various altered problems in a 

subsequent transfer phase of the experiment. In both the Campbell (1987a) and the 

Fendrich et al. (in press) studies, average RTs for multiplication problems 

demonstrated a more of less constant speed-up from session to session of practice. 

In the current studies, improvement in RT will be evaluated on a trial to trial basis, 

allowing more precise estimates of speed-up with practice. More specifically, the 

practice data will provide a test of the applicability of the power law of practice 

(Newell & Rosenbloom, 1981) in the domains of mental multiplication and 

division. The power law had previously been demonstrated to hold for mental 

addition (Crossman, 19early), but to date has not been applied to multiplication or 

division skill. The practice data will further be used to establish the relative 

difficulty of multiplication and division problems, and of problems with the symbol 

"x" and the symbol V. 

In the second, test phase of the experiments, subjects were tested on each of 

the exact problems seen at practice, as well as on several altered versions of each of 

the practice problems. For example, in Experiment 1, the altered versions at test 

included a reversal of operands (e.g., _ = 4 x 7 at practice, _ = 7 x 4 at test), a change 
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in operation (e.g., = 4 x 7 at practice, 28 = _ x 7 at test), and a change in both 

operand order and operation (e.g., = 4 x 7 at practice, 28 = _ x 4 at test). 

How will practice on one version of a problem, such as " = 4 x 7", impact 

performance on the various altered versions presented at test, such as those in the 

example above? The Fendrich et al. (in press) study suggests significant positive 

transfer across operand order. It is less clear, however, whether there will be 

positive transfer across a change in operation, or across a change in both operation 

and operand order.  Although Campbell (1987a) showed no positive transfer 

(indeed, negative transfer) across problems within multiplication that have 

different operands, it is not at all clear whether this result can be used to predict 

transfer across operation, because there may be dependencies in memory for 

corresponding problems in two operations (e.g., = 4x7 and 28 = _ x 7) that would 

not be present when considering two problems within the same operation (e.g., 3x7 

and 6 x 8). 

To generate hypotheses about the relative amount of transfer that will be 

obtained across the various test conditions, one must speculate on the detailed 

characteristics of the representation(s) that are formed/strengthened with practice. 

One straightforward possibility is that arithmetic problems are represented in 

memory in an essentially abstract form, and that practice causes a strengthening of 

an association between an abstract representation for the problem, and an abstract 

representation for the answer. According to this model, which will be refered to 

straight-forwardly the abstract representations model, only the mathematically 

essential characteristics of arithmetic problems are represented in memory, i.e., the 

specific sensory details of the contexts in which the problems are solved are assumed 

not to be a part of the representation. It follows from this model that there should 

be a unique representation in memory for each of the three mathematically unique 

problems that make up a number relation in arithmetic, where number relation 
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refers to a triplet of numbers that are tied together by arithmetic operations. For 

example, (4,7,28) constitutes a number relation in multiplication/division.  There 

are three mathematically distinct ways of presenting any number relation as an 

arithmetic problem. For the example above, these'are, (4,7,x) = 28, (4,28,+) = 7, and 

(7,28,+) = 4, where the order and perceptual characteristics of the symbols in 

parentheses is unimportant.  According to the abstract representations model, there 

should be unique representations in memory for each of these mathematically 

unique problems. 

The abstract representation model makes clear predictions with respect to the 

current experiments.  First, there should be excellent performance on any problems 

at test that are mathematically equivalent to the corresponding problems presented 

at practice. Thus, for example, the model predicts complete transfer of learning 

across a simple change in operand order. The previous findings of positive transfer 

across operand order (Fendrich et. al, in press) is thus basically consistent with this 

simple model, although, strictly speaking, the model would predict equivalent 

performance on the practiced and unpracticed operand orders, whereas Fendrich et. 

al (in press) found significantly longer RTs for the unpracticed operand order. The 

model could be modified, however, to account for this finding by assuming that 

access to the abstract underlying representation becomes faster with practice on a 

specific format (e.g., the practiced operand order), and thus, at test, there is an 

advantage for the practiced format. An elaboration of the model along these lines is 

discussed in the following paragraph. In contrast to the prediction of good transfer 

across operand order, the abstract representations model would predict no transfer 

to problems at test that are mathematically unique from the corresponding 

problems at practice. Thus, for example, practice on = 4x7 would not be expected 

to transfer to 28 = _ x 7, or to 28 = _ x 4. 
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The abstract representations model fits naturally within a framework for 

number processing and arithmetic proposed by McCloskey, Caramazza, & Basili 

(1985; see also McQoskey, in press; Sokol, Goodman-Schulman, & McCloskey, 1989). 

Briefly, this model holds that skilled arithmetic performance involves the operation 

of three distinct and sequentially processing systems: (1) an encoding system, which 

translates the input from format specific representations to an abstract numerical 

representation, (2) a calculational system that operates on the abstract 

representations of the problem and generates an answer, and (3) a response system 

that converts the abstract representation of the answer into an appropriate code for 

the required mode of output (e.g., a motor program for entering the answer on a key 

pad). The calculational system is in turn composed of two sub-systeiris, a fact 

retrieval sub-system, which contains arithmetic facts, and a procedural sub-system, 

which stores procedures and algorithms such as the repeated adding algorithm that 

children often use to solve multiplication problems.  According to the abstract 

representations model, the sub-system from which arithmetic facts are retrieved 

should contain three seperate facts for each number relation.  Again, for the number 

relation (4,7,28), these facts would be (4,7,x) = 28, (4,28,+) =7, and (7,28,+) =4.   The 

encoding system in the McCloskey et al. (1985) model provides a potential locus for 

the increase in RT across a change in operand order in multiplication found in the 

Fendrich et al (in press) study; with practice, the encoding system might simply 

become more efficient at encoding the practiced operand order. 

The abstract representations model ignores the possibility that representations 

that form with practice will incorporate the perceptual characteristics of the specific 

formats in which the problems are presented. In the current experiments, subjects 

first saw the problems on the computer screen without the answer (e.g.," = 4 x 

7"), and then, after they responded, the answer (which was the correst on the vast 

majority of trials), appeared on the screen with the problem (e.g., "28 = 4 x 7"). 
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Repeated experience with these problems might result in a very specific sensory- 

based representation, "28 = 4 x 7", forming in memory. This specific representations 

model predicts that relative performance in the various conditions at test will be 

determined by the extent to which the test problem reinstates exactly the specific 

representation formed with practice. Thus, for example, practice on " = 4 x 7" 

would be predicted to transfer better to "28 = _ x 7" than to either "_ = 7 x 4", or "28 

= _ x 4", because "28 = _ x 7" would be a closer match to the specific representation, 

"28 = 4 x 7", that formed with practice. 

The specific representation model maps closely onto the recent network- 

interference model of arithmetic fact representation set forth by Campbell and 

Oliphant (in press; see also Campbell & Graham, 1985). A central assumption of the 

network-interference model that is most relevant to the present discussion is that 

representations of arithmetic facts reflect the perceptual characteristics of the 

format(s) in which the problem has been encountered (see also Campbell & Clark, 

1988). Thus, if a problem is presented visually in the form " = 4 x 7", a physical 

code for that specific visual format forms in memory (e.g., "28 = 4 x 7"). Practice on 

any problem that corresponds to this visual format (i.e., _ = 4 x 7, 28 = _ x 7, 28 = 4 x 

_ ) strengthens the overall "unitized" representation, "28 = 4 x 7".  Thus, practice on 

any problem corresponding to a given unitized representation will transfer 

positively to other problems corresponding to the same unitized representation, 

and poorly to any other problem, as is demonstrated for the example problem "_ = 

4 x 7" in the previous paragraph. 

It is important to note that both the abstract representations model and the 

specific representations model are in principle with the interative-activation and 

competition retrieval processes which are assumed to underlie the interference 

effects that have been the focus of attention in the mental arithmetic literature to 

date. Under the abstract representations model, for example, there would have to be 
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a mapping of the perceived stimulus item (e.g., " = 4 x 7") onto the the 

appropriate abstract representation, e.g., (4,7,x). If this mapping is sensitive to the 

combinatorial nature of arithmetic, then additional representations that share an 

operand with the correct representation would also receive some activation.   Each 

of the activated representations would then compete in an interactive-activation 

retrieval process, resulting in the table-related error and priming effects as outlined 

earlier.  A very similar scenario would account for the same interference effects 

under the specific representations model. For the problem, " = 4 x 7", the specific 

representation, "28 = 4 x 7", would become active, as well as other representations 

that have a common operand with " = 4 x 7".  Each of these active representations 

would then compete for activation. Other types of interference effects, such as the 

effect of magnitude similarity, could similarly be incorporated into either system of 

representation.  In sum, the issues of representation being explored in these studies 

can be considered to be essentially orthogonal to the issue of how to account for the 

vast majority of the priming and related interference effects that have been explored 

in the literature to date (but see Campbell, 1990, for a priming effect which may be 

more consistent with the specific representations model). 

In both Experiments 1 and 2, subjects were tested both immediately after 

practice, and after a one month delay. In the study by Fendrich, et. al (in press), there 

was good retention over a 1 month interval of improvements in multiplication RT 

gained through practice. One additional goal of the present experiments was to 

replicate this finding, and to generalize it to division problems and to problems with 

the symbol "+". 
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CHAPTER 2 

EXPERIMENT 1 

Subjects received practice for four sessions on a set of simple multiplication 

and division problems, and were then tested on each of the practice problems, and 

also on problems representing a change in operand order, a change in operation, 

and a change in both operand order and operation. Table 1 shows an example of a 

multiplication and division problem at practice, and each of the corresponding 

conditions at test. 

According the the abstract representations hypothesis, performance should be 

good whenever the test problem is mathematically equivalent to the corresponding 

practice problem.  This includes problems in the no-change conditions for both 

multiplication and division, and problems in the operand order condition for 

multiplication.  Performance should be relatively poor when the test problem is 

mathematically unique from the corresponding practice problem.  This includes 

problems in each of the remaining conditions; the operation and operation plus 

operand order conditions for multiplication, and the operand order, operation, and 

operation plus operand order conditions for division. 

In contrast, the specific representations model predicts that performance will 

be best when the sensory-specific representation of the number relation as a whole 

that was acquired during practice is reinstated at test. Thus, performance in the no- 

change and operation change conditions for both multiplication and division 

should be relatively good, and performance in the operand order and operand order 

plus operation change conditions for both multiplication and division should be 

relatively poor . 
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Method 

Subjects 

Twelve subjects from an introductory psychology course received credit for 

participating in the experiment. 

Apparatus and Materials 

Subjects were tested on Zenith Data Systems personal computers, 

programmed with the Micro Experimental Language (MEL) software (Schneider, 

1988). 

Four problem sets were constructed to allow counterbalancing across operand 

order and operation, and to control for possible effects of ascending-descending 

operand order, and problem difficulty. An example practice set (practice set 1) is 

shown in Table 2.  The practice sets were constructed in the following manner. 

Excluding squares problems (e.g., 4 x 4), there are 72 problems between 1=1x1, and 

81 = 9 x 9. These problems were divided into two subsets of 36 problems (practice 

sets 1 and 2), such that problems differing only in operand order were in different 

practice sets (i.e., 3x2 and 2x3 were in different practice sets). Within each of these 

two practice sets, 18 of the problems were multiplication problems, and 18 of the 

problems were division problems. Half of the problems of both operations 

(multiplication and division) had ascending operand order (e.g., = 3x6), and half 

had descending operand order (e.g., = 7x4).     The multiplication and division 

problems in each practice set were also roughly equated on problem difficulty. 

Practice sets 3 and 4 were then constructed by simply reversing the operation of each 

of the problems in practice sets 1 and 2 (i.e., if  = 4x5 was a problem in practice 

set 1, that problem became 20 = x 5 in problem set 3). In sum, four practice sets 

were created such that there was exactly one problem from each number relation in 

each set (i.e., sets 1, 2, 3 and 4 contained  = 2x3, = 3x2, 6= x3, and 6 =  

x 2, respectively). Each one of these four sets was then used equally often across the 
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twelve subjects during training. The immediate and delayed tests consisted of all 

144 problems that made up the four practice sets. 

Procedure 

Each subject was tested for four sessions. Each session lasted about 40 

minutes. The first three sessions were held on Monday, Wednesday, and Friday of 

one week, and the fourth session was held on Friday approximately one month 

later.   During practice, each subject was exposed to 40 blocks of problems; 15 in both 

the first and second sessions, and 10 in the third session. Each block contained one 

instance of each of the 36 problems in a given subject's practice set. The order in 

which problems were presented was randomly determined for each block of practice 

and for each subject. Problems were presented one at a time, centered on the 

computer screen. As each problem appeared on the screen, the subject typed the 

answer using the numeric keypad and then pressed the "enter" key.  As the subject 

typed the answer, it appeared on the computer screen, replacing the underlined 

spaces. Subjects were told to answer each problem as quickly and accurately as 

possible. If the subject entered the correct answer, a "correct answer" notice was 

displayed below the problem for 1 second. If the subject entered an incorrect answer, 

an "incorrect answer" notice, and the correct answer, was displayed for 1.5 seconds. 

The screen was then blank for 1 second, and then the next problem was displayed. 

After each block of 36 trials, a message was displayed on the screen requesting 

subjects to press the "enter" key to begin the next block. There was no limit on the 

time subjects were allowed before proceeding to the next block. 

The immediate test was given at the end the third session, following the last 

practice block. Eight blocks of 36 problems were presented in exactly the same 

fashion as the practice problems. Across the first four blocks, each of the 144 

problems which made up the four practice sets was presented once. Each of these 

problems was presented a second time across the final four blocks. Each block of 36 
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problems contained nine problems from each of the four practice sets, with each 

block having an equal number of multiplication and division problems, and an 

equal number of problems with ascending and descending operand orders. Subject 

to the constraints above, the order of presentation of blocks and the order of 

problem presentation within each block was determined randomly. There was no 

direct indication to the subjects that the eight immediate test blocks were any 

different from the practice blocks. The delayed test was structured in exactly the 

same way as the immediate test, except that each of the 144 problems was presented 

four times across 16 blocks of 36 problems. 

Results 

Problems with single-digit products (e.g., = 4 x 2; 9 = _ x 9) were analyzed 

separately from problems with double-digit products (e.g., = 4 x 7; 56 = _ x 8). 

This seperation was motivated by previous findings suggesting that most 

multiplication problems with single-digit products are solved by rules (e.g., if a 

multiplication problem has 1 as one of the operands, the answer is the other 

operand) rather than by retrieval of facts from memory (e.g., McCloskey, Aliminosa, 

& Sokol, in press; Sokol, et al., 1991). The primary RT analyses were performed 

using the initiate RT (interval between the onset of the problem on the computer 

screen, and the pressing of the first digit of the answer). Previous research shows 

initiate RT to be highly correlated with both total RT (interval between the onset of 

the problem, and the pressing of the 'Enter' key), and with RT patterns produced 

through use of a voice key (A. F. Healy, personal communication, Feburary 4, 1992). 

Trials on which errors were made were excluded from all RT analyses. 

Practice 

The error rate for multiplication problems with single-digit products was .9%, 

1.5%, and .8% in Sessions 1, 2, and 3, respectively. The same values for division 
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problems with single-digit products were 2.1%, 1.1%, and 2.2%. For multiplication 

problems with double-digit products, the error rates were 4.0%, 3.7%, and 2.9%, in 

sessions 1, 2, and 3, respectively. For division problems, these values were 3.5%, 

2.8%, and 2.8%. 

The power law of practice predicts an essentially linear decrease in log RT as a 

function of log block (see Newell & Rosenbloom, 1981). That the practice data 

strongly conform to this prediction can be seen in Figure 1, which shows log RT for 

correct problems plotted by log block and operation (multiplication or division). 

Figure 1 a shows results for problems with single-digit products, and Figure 1 b 

shows the results for problems with double-digit products. In these figures, data are 

collapsed across subjects and problems. Thus, for problems with single-digit 

products, each data point represents up to 60 observation, and for problems with 

double-digit products, each data point represents up to 156 observations.   An 

analysis of covariance (ANCOVA) was performed to confirm the effects of practice 

(the improvement in log RT as a function of log block), and operation (the 

advantage of multiplication over division) suggested in Figure 1.  Preliminary 

analyses included the counterbalanced practice sets as a between subjects variable, 

log block as a continuous within subjects variable, and operation (multiplication or 

division) as a categorical within subjects variable. The results of these analyses 

showed no significant main effects or interactions involving the counterbalanced 

practice sets.   Thus, the results reported below are from analyses collapsing across 

practice sets. 

In the analysis for problems with single-digit products, the overall r2 was .83. 

The effect of log block was strongly significant, F(l, 11) = 212.59, p < .01, MSe=.0493, 

confirming that practice was effective in improving log RT. The effect of operation 

was also significant both at the beginning of practice, F(l, 11) = 50.4, p < 

.001,MSe=.0613, and at the end of practice, F(l, 11) = 7.8, p < .02, MSe=.1247, showing 
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that, throughout practice, multiplication problems were easier than division 

problems.  The advantage for multiplication over division (in anti-log RT) was 245 

ms at the beginning of practice, and 37 milliseconds at the end of practice. The 

interaction between log block and operation was also significant, F(l,ll) = 19.5, p < 

.01, MSe=.0551, indicating that the proportional difference in RT (or, equivalently, 

the interval difference in log RT) between division and multiplication decreased 

with practice. 

In the analysis of problems with double-digit products, the overall r2 was .90. 

The improvement in log RT with practice was again strongly significant, F(l,ll) = 

242.6, p<.01, MSe = .0828, as was the advantage for multiplication over division, 

both at the beginning of practice, F(l,ll) = 56.6, p < .01, MSe = .0494, and at the end of 

practice, F(l,ll) = 39.1, p < .01, MSe = .1711. The anti-log RT advantage for 

multiplication was 341 ms at the beginning of practice, and 109 ms at the end of 

practice. The interaction between operation and log block was again significant, 

F(l,ll) = 5.75, p < .05, MSe = .0308. 

In both of the above analyses, improvement in RT with practice reflects not 

only improvement in time to encode and retrieve the answer, but also 

improvement in time to execute the motor program to enter the answer on the key 

pad. Thus, strictly speaking, it is not possible to infer from the above analyses that 

practice resulted in a speed-up in the fact retrieval component of the task. Rather, 

the results could reflect speed-up in motor response. Secondary analyses on the 

second digit entry RT (the latency between pressing the first digit of the answer and 

pressing the second digit for multiplication problems), however, argue strongly 

against this possibility.  There was only a 45 anti-log ms improvement (from 188 ms 

to 143 ms) in second digit entry RT from the beginning to the end of practice, and 

the course of speed-up followed a power law. This speed-up is minor compared to 

the 580 ms overall improvement in the initiate RT for problems with double-digit 
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answers.  Assuming  that the motor response component of the initiate RT is 

similar to the second digit entry RT in terms of both overall magnitude, and the 

course of speed-up with practice, the speed-up in initiate RT would appear to reflect 

mostly improvement in time to encode and retrieve the answer from memory.  It 

should be noted that second digit entry RT may not in fact be a reasonable 

approximation of the motor component of the intitiate RT.  It is, however, the best 

estimate availabe in the present experiments.  Further research would be necessary 

to provide more precise estimates of the speed-up in fact retrieval with practice. 

Immediate and Delayed Tests 

Data from both the immediate and delayed tests were analyzed separately for 

problems single-digit products and problems with double-digit products. Also, 

because patterns of performance across test conditions were different for 

multiplication and division problems, analyses were performed separately for these 

two classes of problems. Preliminary analyses showed no effects of the 

counterbalanced practice sets. Thus, all analyses reported below are collapsed across 

this variable. 

Multiplication. The error percentages on problems with single-digit products 

was uniformly low, averaging 3.2%. The error percentages on problems with 

double-digit products at the immediate test were 1.3%, 3.2%, 11.2%, and 11.5% for 

the no-change, operand order, operation, and operand order plus operation test 

conditions, respectively.   Comparable values at the delayed test were 4.3%, 3.5%, 

8.8%, and 8.0%. 

The anti-log of the mean log initiate RT (averaged across subjects and 

correctly solved problems) is plotted in Figure 2 by test (immediate and delayed), 

block within test, and test condition (no-change, operand order, operation, and 

operation plus operand order). Figure 2 a shows the results for problems with 

single-digit products, and Figure 2 b shows the results for problems with double- 
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digit products.   Table 3 shows a specific example of each practice condition for the 

sample double-digit test problem = 4x7. Also shown in Figure 2 are the 

multiplication RTs „extrapolated from the power law equations from practice, 

included to allow comparision of these RTs with the actual performance on no- 

change problems at the immediate test. 

Inspection of Figure 2 (a and b) shows that performance was poorer in the No- 

change conditions than in the Extrapolated conditions.  A 2 (condition; extrapolated 

vs. no-change) x 2 (block; 1 or 2) within subjects alalysis of variance (Anova) was 

performed seperately for problems with single-digit and double-digit products in an 

effort to investigate the reliability of this effect. For problems with single-digit 

products, the effect of Condition was reliable, F(l,ll) = 18.4, Mse = .00204, p = .0013. 

There was no reliable effect of Block, F(l,ll) = .21, Mse = .000949, p = .6578, nor was 

there an interaction between condition and block, F(l,ll) = .07, Mse = .000988, n.s. 

For problems with double-digit products, Condition was again relaible, F(l,ll) = 20.3, 

Mse = .00114, p = .0009, but there was no effect of Block, F(l,ll) = .3, Mse = .00073 n.s., 

and no interaction, F(l,ll) = .58, Mse = .000726, n.s. These results confirm similar 

increases in RT from practice to test reported by Campbell (1987). One account for 

this effect is that exposure to problems in the various transfer conditions causes 

activation of problem representations that were not activated during practice.  These 

newly active representations may then compete in the retrieval process, slowing 

retrieval times for practiced problems (see Campbell, 1987). 

Additional analyses were performed comparing performance among the 

various  test conditions (no-change, operand-order, operation, and operand order 

plus operation). Separately for both the immediate and the delayed test data, and for 

problems with single-digit and double-digit products, a 2 (operation, same or 

different) x 2 (operand order, same or different) within subjects ANOVA was 

performed on the log initiate RT. The unit of analysis was the log initiate RT 
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averaged across blocks and correctly solved problems. For problems with single- 

digit products on the immediate test, the main effect of operation was reliable, 

F(l,ll) = 7.89, p < J32, MSe = .01448, indicating much poorer performance in the 

operation and operation plus operand order conditions. Neither the main effect of 

operand order, F(l,ll) = .19, MSe = .00796, nor the interaction between operation and 

operand order, F(l,ll) = 1.27, MSe = .00582, were reliable. On the delayed test, there 

was again an effect of operation F(l,ll) = 5.78, p < .05, MSe = .00336, but there were 

no reliable effects due to either operand-order, F(l,ll) = 1.04, MSe = .00327, or the 

interaction between operaion and operand-order, F(l,ll) = .001, MSe = .0022. 

In the analysis of problems with double-digit products on the immediate test, 

there was a main effect of operation, F(l,ll) = 35.1, p < .001, MSe = .0882, as well as 

operand-order, F(l, 11) = 5.34, p < .05, MSe = .01736. The interaction was not 

significant, F(l,ll) = .96, MSe = .01163. A more focused analysis showed no effect of 

operand order given a change in operation, F(l,ll) = 1.32, MSe = .0149, indicating 

that the main effect of operand order can be attributed to the difference between the 

no-change and operand order change conditions. Analysis of the delayed test data 

again revealed an overall increase in log RT with a change in operation, F(l,ll) = 

23.16. p < .01, MSe = .03095, and also with a change in operand order, F(l,ll) = 4.94, p 

< .05, Mse = .00762. There was no interaction, F(l,ll) = .1, MSe = .00778. As with the 

immediate test, there was no significant effect of operand order given a change in 

operation, F(l,ll) = 1.36, Mse = .01009. 

It is important to consider the effect that improvement in motor response 

time may have had on relative levels of performance in the various test conditions. 

Because the sequence of digits corresponding to the answers to problems in the no- 

change and operand order change conditions were entered on the keypad during 

practice, and in most cases the sequence corresponding to the answers to operation 

and operation plus operand order change problems were not, some of the RT 
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advantage for no-change and operand order change problems at test might be 

attributable to faster execution of the the motor response for these problems. To 

investigate this possibility, supplementary analyses were performed on a subset of 

double-digit problems that allow control for speed-up in motor RT with practice. 

Specifically, three pairs of problems used across the practice sets share the same 

product (2x6 and 3 x 4; 2 x 9 and 3 x 6; 3 x 8 and 4 x 6). The practice sets were 

constructed such that one member from each pair was presented as a multiplication 

problem in each set uring practice, and the other member was presented as a 

division problem. Thus, when the member of each pair that was presented as a 

division problem at practice was presented as a multiplication problem (in either 

operand order) at test, the subject was already experienced at executing the motor 

response for the answer. Analyses limited to these problem pairs again showed a 

strong main effect of operation, F(l,ll) = 12.5 , p < .01, MSe = .2898, and F(l,ll) = 8.17 

(p < .05, MSe = .0437), on the immediate and delayed tests, respectively. 

To investigate retention of skill across the various test conditions, pairwize 

comparisons of the last block of the immediate test and the first block of the delayed 

test were performed for each test condition (no-change, operand order, operation, 

and operation plus operand order).   There were no relaible differences obtained 

from these comparisions for problems with single-digit products.  For problems 

with double-digit products, performance in the no-change condition was reliably 

better on the last block of posttest than on the first block of retention, F(l,ll) = 5.94, 

Mse = .001398, p = .033. There were no reliable differences for the remaining 

conditions; operand order, F(l,ll) = 2.73, Mse = .00362, n.s., operation, F(l,ll) = 5.2, 

Mse = .001569, n.s., operation plus operand order, F(l,ll) = .001, Mse = .001343, n.s. 

Division. The error percentages for problems with single-digit products on 

both the immediate and delayed tests was uniformly low, averaging 2.1%. The error 

percentages for problems with double-digit products on the immediate test were 
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2.2%, 10.5%, 10.8%, and 9.2%, in the no-change, operand order, operation, and 

operand order plus operation change conditions, respectively. The same values at 

the delayed test were 3.4%, 7.6%, 9.3%, and 8.0%. 

The anti-log of the mean log initiate RT for correctly solved division 

problems is shown in Figure 3.  Each of the four test conditions is shown, as well as 

the predicted RT for problems in the no-change condition extrapolating from the 

power law fits for the practice data. Figure 3 a shows results for problems with 

single-digit products, and Figure 3 b shows results for problems with double-digit 

products. Table 4 shows a specific example of each test condition for the sample test 

problem 28 = _ x 7. 

Within subjects ANOVAs (performed seperately for problems with single- 

digit and double-digit products) showed a reliably faster RT for the extrapolated 

condition over the no-change copndition both for problems with single-digit 

products, F(l,ll) = 15.7, Mse = .0020466, p = .0022, and for problems with double-digit 

products, F(l,ll) = .0036, Mse = .00194, p = .0036. There were no significant effects of 

block, nor were there relaible interactions between condition and block. 

Addional analyses were performed to evaluate performance in the various 

test conditions.  For problems with single-digit products on the immediate test, 

there was an effect of both operation, F(l,ll) = 4.54, P = .057, MSe = .0177, and 

operand order, F(l,ll) = 32.87, p > .01, MSe = .0143. The interaction was not reliable, 

F(l,ll) = 2.85, MSe = .0049. On the delayed test, the was no effect of operation F(l,ll) 

= 1.5, MSe = .0116, but there was a significant effect of operand order F(l,ll) = 32.6, p 

< .01, MSe = .00417, and a reliable interaction, F(l,ll) = 22.1, p < .01, MSe = .00609. 

For problems with double-digit products on the immediate test, there was a 

main effect of both operation, F(l,ll) = 45.8, p < .01, MSe = .0254, and operand-order, 

F(l,ll) = 24.9, p < .01, MSe = .02879, and there was a reliable interaction, F(l,ll) = 19.2, 

p < .01, MSe = .0243. Post hoc analyses showed no significant differences among the 
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operand order, operation, and operand order plus operation conditions; operation 

versus operation plus operand order, F(l,ll) = .37, MSe = .0361, operand order 

versus operation plus operand order, F(l,ll) = 2.95, MSe = .0264, or operand order 

versus operation, F(l,ll) = 1.09, MSe = .0247. In sum, these results reflect the pattern 

in Figure 3 b which shows performance in the no-change condition to be 

substantially better than performance in each of the other conditions.  On the 

delayed test, both of the main effects and the interaction were again reliable; 

operation, F(l,ll) = 17.4, p < .01, MSe = .0276, operand order, F(l,ll) = 56.2, p < .01, 

MSe = .003568, and the interaction , F(l,ll) = 18.7, p < .01, MSe = .00714. There were 

again no significant differences among the operand order, operation, and operand 

order plus operation conditions; operation versus operation plus operand order, 

F(,ll) = .73, MSe = .00461, operand order versus operation plus operand order, F(l,ll) 

= 2.48, MSe = .0216, or operand order versus operation, F(l,ll) = 2.0, MSe = .0149. 

As with multiplication problems, pairwize comparisons of the last block of 

the immediate test and the first block of the delayed test were performed on 

problems in each test condition (no-change, operand order, operation, and operation 

plus operand order) in order to investigate the relative retention of skill in the 

various test conditions.  There were no reliable differences for problems with single- 

digit products. For problems with double-digit products, there was better 

performance on the last block of immediate test than on the first block of delayed 

test in the no-change condition, F(l,ll) = 3.8, Mse = .00297, p = .077. There were no 

other reliable differences; operand order, F(l,ll) = 2.46, Mse = .01136 n.s., operation, 

F(l,ll) = .35, Mse = .01156, n.s., and operation plus operand order, F(l,ll) = 1.39, Mse 

= .00467, n.s. 

Discussion 

Practice 
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For all problems, there was substantial improvement in RT with practice, and 

the course of speed-up was well described by a power law. The good power law fit 

does not, however^ rule out other possible learning laws (e.g., the exponential 

function).  In Appendix A, a more general form of the power law (including free 

parameters allowing for non-zero asymptotic RT, and previous learning experience) 

will be compared directly with an exponential function in an attempt to establish 

the validity of the power law in the domain of arithmetic in a more rigorous 

fashion. 

There was an RT advantage for multiplication over division which was 

significant both at the beginning and at the end of practice. This advantage for 

multiplication could be related to one or more of the following factors: (a) in formal 

education and/or in everyday life, multiplication may be performed more 

frequently than division, and thus the answers may be more quickly accessed, (b) 

division may be mediated by knowledge of the corresponding multiplication 

problems, and (c) multiplication facts may be more efficiently encoded and/or 

retrieved from a generic underlying memory structure in which both multiplication 

and division facts are stored.  The data do not allow descrimination among these 

possibilities. 

One further alternative is examined in Experiment 2.  The advantage for 

multiplication may simply reflect the fact that the symbol "x" was used for both 

multiplication and division problems in Experiment 1;  because the "x" symbol 

directly implies multiplication, its presence may have facilitated performance on 

multiplication problems, and/or interfered with performance on division problems. 

Clearly, this factor will need to be investigated before any other hypotheses (such as 

those outlined above) can be seriously considered. Such an investigation is one 

purpose of Experiment 2, where symbol ("x" and "-*-") will be manipulated 

orthogonally to operation (multiplication and division). 
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Immediate and Delayed Tests 

Consistent with the abstract representations hypothesis, performance on both 

the immediate test -and the delayed test was relatively good in the no-change 

conditions for both multiplication and division, and also in the operand order 

condition for multiplication.  There was relatively poor performance in each of the 

remaining conditions. This pattern was especially for problems with double-digit 

products. The predictions of the specific representations model, in contrast, are 

inconsistent with the obtained results. This model predicts that, for both 

multiplication and division, performance should be better in the no-change and 

operation change conditions, and relatively poor in the operand order and 

operation plus operand order condition. The results are in clear contradiction to 

this strong prediction of the specific represnetations model. 

There was, however, was some evidence suggesting second order effects 

which are consistent with the specific representations model.  For both 

multiplication and division problems, there was a trend (although not statistically 

significant) toward better performance in the operation change condition than in 

the operation plus operand order change condition. This is not predicted by the 

abstract representations model, but it is consistent with the possibility that specific 

representations such as those proposed by Campbell and Oliphant (in press) are 

exerting a small second order effect. 

A second order influence of sensory-specific representations also provides 

one possible account for the reliable RT advantage for the no-change condition over 

the operand order condition for multiplication. There are also, however, other 

possible accounts for the RT differences between these conditions. First, as discussed 

earlier, the abstract representations model, considered within the framework of the 

McCloskey, et al. (1985) framework for number processing, can account for this effect 

under the assumption that, while a single abstract represetation mediates fact 
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retrieval for both operand orders, the practiced operand order can be encoded more 

quickly. 

Two additional possibilities are not directly consistent with either the abstract 

represetations or the specific represntations model. First, the practiced operand 

order may serve as a canonical case at test, such that subjects mentally transpose the 

problem into the practiced operand order (through some unspecified process) before 

retrieving the answer. The time required to execute this transposing process could 

then account for the increased RT in the operand order change test conditions. 

Second, different operand orders may in fact access partially overlapping (i.e., 

distributed) representations in memory.  Clearly, differentiating among these 

possible accounts is a complex issue and will require additional research. 

The strong similarity of the results on the immediate and delayed tests 

indicates that the improvement of skill with practice was stable across the long term 

(1 month). There was only a slight increase in RT for no-change problems (for both 

multiplication and division) across the retention interval, indicating good retention 

of the skill acquired during practice.  For problems in the other conditions 

conditions, there was no reliable increase in RT over the interval. 

The finding of good retention replicates results of Fendrich et al. (in press) for 

multiplication, and also extends their general finding to division.  These results are 

generally consistent with the procedural reinstatement account of long term 

retention proposed by Healy, Fendrich, Crutcher, Wittman, Gesi, Ericsson, and 

Bourne (in press). According to this account, performance will be best after a 

retention interval when procedures developed during learning are reinstated at test. 

Procedures developed during practice can be viewed as being most completely 

reinstated for the no-change problems in this experiment, and indeed performance 

on the delayed test is best for these problems. 
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CHAPTER 3 

EXPERIMENT 2 

One limitation of Experiment 1 is that all problems included the symbol "x", 

regardless of whether the actual mathematical operation required was 

multiplication or division.  Thus, there was no way to assess the influence that 

symbols for different operations might have on the retrieval process.  In Experiment 

2, the effect of symbol was explored by testing subjects on problems requiring the 

operation of multiplication, but having the symbol for either multiplication or 

division (e.g. = 4x7 and + 4 = 7), and on problems requiring the operation of 

division, but again having the symbol for either multiplication or division (e.g., 21 = 

_ x 4, 21 ■*- _ = 4). Performance was then evaluated on the practice problems 

themselves, and across a change in symbol, a change in operation, and a change in 

both symbol and operation (see Table 5). 

As previously discussed, one interpretation of the operation effect at practice 

in Experiment 1 is that multiplication is fundamentally easier than division.  If this 

interpretation is correct, then multiplication should be easier than division 

throughout practice in Experiment 2, regardless of the symbol employed (x or +). 

Alternatively, performance may depend intimately on the consistency between the 

mathematical operation required, and the symbol employed.  According to this 

consistency hypothesis, performance on consistent problems (e.g., = 4x7 and 40 -s- 

_ = 8) should be better than performance on inconsistent problems (e.g., +7 = 4; 

40 = _ x 8).  The orthognonal manipulation of symbol and operation in this 

experiment allows for an investigation of this possibility. 

The test conditions in this experiment also provide an opportunity to 

replicate and extend the findings from the immediate and delayed tests in 

Experiment 1. Based on the abstract representations model, which was supported by 

the Experiment 1 results, there should be relatively good performance in the no- 



change and symbol change conditions for both multiplication and division, because 

the problems in these conditions are mathematically equivalent to the 

corresponding problems seen at practice. There should be relatively poor 

performance in the operation and operation plus" symbol conditions for both 

multiplication and division, because these problems are mathematically unique 

from the problems seen at practice. 

The specific representations model, on the other hand, predicts good 

performance in the no-change and operation change conditions for both 

multiplication and division problems, and relatively poor performance in the 

symbol change and operation plus symbol change conditions for both multiplication 

and division. 

Method 

Subjects 

Twelve subjects from an introductory psychology course received credit for 

participating in the experiment. 

Apparatus Materials and Procedure 

Subjects were tested on Zenith Data Systems personal computers, 

programmed in the MEL (Schneider, 1988). 

The materials and procedure for Experiment 2 was the same as that for 

Experiment 1, with the following exceptions. First, on half of the multiplication and 

division problems, the symbol was "x", and on the other half the symbol was "+". 

Thus, an example practice set in this experiment can be derived from table 2 by 

swithing the symbol to "+ "for half of the multiplication and half of the division 

problems. This manipulation yielded four problem types at practice; multiplication 

problems with symbol "x", multiplication problems with symbol "■*■", division 

problems with symbol "x", and division problems with symbol "•*■".  On the 

immediate and delayed tests, each problem was presented again exactly as it was at 
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practice (the no-change condition), with a change in symbol, with a change in 

operation, and with a change in both operation and symbol (see Table 5 for an 

example of each of-the four problem types at practice, and an example of each of the 

corresponding conditions at test). 

Results 

Practice 

To simplify and facilitate discussion, problems with single-digit and double- 

digit products were collapsed together for the analyses of practice data. Preliminary 

analyses showed overall faster RTs and lower error rates for problems with single- 

digit products.  Beyond this, there were no relevant differences between the two 

classes of problems. 

As with Experiment 1, the overall error percentages dropped slightly from 

Session 1 to Session 3 (from 5.0% for Session 1 to 2.1% for Session 3). Averaged 

across sessions, the error percentages for the four problem types were: 

multiplication problems with symbol "x", 3.1%, multiplication problems with 

symbol "V, 3.9%, division problems with symbol "x", 2.4%, and division problems 

with symbol "+", 4.7%. 

In Figure 4, the log RT (averaged across subjects and correctly solved 

problems) is plotted as a function of log block and problem type, with least squares 

regression curves fit to each problem type. Unlike Experiment 1 practice analyses, 

the counterbalanced practice sets were involved in several significant two and three- 

way interactions. Thus, the analyses reported below are from an ANCOVA with 

practice set as a between subjects factor, and log block, operation, and symbol as 

within subjects factors.   In ANCOVA models, effects involving continuous 

variables can be summarized with a single significance test. The effects involving 

only categorical variables, however, must be evaluated at specified levels of the 

continuous variable.  Accordingly, the results of the ANCOVA will be divided into 



three parts for discussion:  (a) effects involving the continuous variable (log block), 

(b) effects involving variables other than log block at the beginning (first block) of 

practice, and (c) the effects involving variables other than log block at the end (last 

block) of practice. 

There was a strong main effect of log block, F(l,ll) = 133.6, p < .01, MSe = 

.1796, reflecting an overall improvement in log RT with practice. There was also an 

interaction of log block and symbol, F(l,ll) = 43.3, p < .01, MSe = .0666. Both of the 

above effects, however, were qualified by a three way interaction among log block, 

symbol, and operation, F(l„l) = 21.8, p < .01, MSe = .0477. The three-way interaction 

is clearly shown in Figure 4. Three of the four problem types exhibit essentially the 

same slope, while the slope of the fourth problem type (multiplication with symbol 

"-S-") was much steeper.  This steeper learning curve for multiplication problems 

with symbol "V (e.g., +6 = 7) likely reflects the relative unfamiliarity of this 

format for presenting arithmetic problems. It may have taken subjects several 

blocks of practice to realize that these problems are mathematically equivalent to 

more tradition formats for multiplication problems, such as the multiplication with 

symbol "x" (e.g., = 4x7) problems in this experiment. 

Several effects not involving log block were significant at the beginning of 

practice. First, the main effects of both operation F(l,ll) = 9.33, p < .02, MSe = .0795, 

and symbol, F(l,ll) = 72.8, p < .01, .0999 were significant. These main effects were 

qualified, however, by an interaction between operation and symbol, F(l,ll) = 14.9, p 

< .01, MSe = .1545. This interaction again reflects the exceptionally poor 

performance at the beginning of practice on multiplication problems with symbol 

"-S-".  Because of the poor performance in this condition, there was no clear overall 

advantage for either multiplication or division problems at the beginning of 

practice. For both multiplication and division problems, however, problems with 



the symbol "x" were responded to more rapidly than problems with the symbol "-*■", 

as reflected in the strongly significant main effect of symbol. 

There were -three interactions involving the counterbalanced practice sets at 

the beginning of practice; practice set x operation, F(l,ll) = 5.8, P < .05, MSe = .0795, 

practice set x symbol, F(l,ll) = 7.6, p < .01, MSe = .0999, and practice set x operation x 

symbol, F(l,ll) = 14.9, p < .01, MSe = .1544. These interactions reflect varying 

relative difficulty of the four problem types across the practice sets. Recall that 

practice sets in the present experiment were derived from the practice sets in 

Experiment 1 by simply switching the symbol from "x" to "-*•" on half of the 

multiplication and half of the division problems.    The interactions involving 

practice set likely reflect failure to equate the four problem types with respect to 

problem difficulty when deriving the new problem sets.  The nonsignificant main 

effect of practice set, F(l,ll) = 2.9, MSe = .398, is consistent with this account, because 

switching the symbol on half the problems within each practice set would not be 

expected to affect the overall relative difficulty of the four practice sets. 

At the end of practice/The main effects of operation, F(l,ll) = 7.7, p < .05, MSe 

= .2598, and symbol, F(l,ll) = 7.1, P < .05, MSe = .2034, persisted at the end of practice. 

The interaction between operation and symbol, which was significant at the 

beginning of practice, was no longer significant at the end of practice, F(l,ll) = 1.1, 

MSe = .0477.  Because there was no interaction, the main effect of operation shows 

that multiplication problems were solved more quickly than division problems at 

the end of practice, regardless of symbol. As with the beginning of practice, 

performance was better on problems with the symbol "x" than on problems with 

symbol V, regardless of operation.  Each of the interactions involving practice set 

that were significant at the beginning of practice were again significant (or nearly so) 

at the end of practice; practice set x operation, F(l,ll) = 3.3, p = .077, MSe = .2598, 



practice set x symbol, F(l,ll) = 4.6, P < .05, MSe = 1.49, and practice set x operation x 

symbol, F(l,ll) = 4.71, P < .05, MSe = .2182. 

Immediate and Delayed Tests 

The error rate for probvlems with single-digit products was uniformly low, 

averaging 2.1%.  For problems with doulbe-digit products, the overall error 

percentages on the immediate test for same operation conditions (the no-change 

and symbol conditions) and different operation conditions (the operation and 

operation plus symbol conditions) were 5.9% and 13.5%, respectively.  These same 

values on the delayed test were 6.3% and 9.2%. 

Preliminary analyses showed no notable differences in test performance 

across the four problems types, and thus the data were collapsed across problems 

type in all analyses reported below. Preliminary analyses did show, however, 

substantial differences in the RT results for problems with double-digit and single- 

digit products, and thus problems falling into these two classes were analyzed 

separately.   The anti-log of the mean log initiate RT (averaged across problems and 

subjects) is plotted in Figure 5 by test (immediate or delayed), and test condition (no- 

change, symbol change, operation change, or symbol plus operation change). Figure 

5 a shows results for problems with single-digit products, and Figure 5 b shows 

results for problems with double-digit products. Also shown in Figure 5 are the 

expected RTs in the no-change conditions on the immediate test extrapolating from 

the power law equations which were fit to the practice data. 

ANOVAs comparing the Extrapolated and No-change conditions (see the 

Results section in Experiment 1 for details) revealed reliable RT advantage for the 

extrapolated condition both for problems with single-digit products, F(l,ll) = 8.9, 

Mse = .02348, p = .012, and for problems with dublee-digit products, F(l,ll) = 8.15, 

Mse = .00736, p = .016. There were no reliable effects involving Block, or the 

interaction between Condition and Block. 
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Separately for the immediate and the delayed test, an ANOVA with one 

between subjects factor (practice set) and two within subjects factors (operation, same 

or different, and symbol, same or different) was performed on the log initiate RT. 

This preliminary ANOVA showed no main effect or interactions involving the 

counter-balanced practice sets. The data were therefore collapsed across practice set 

and analyzed on the two within subjects variables only. For problems with single- 

digit products on the immediate test, the main effect of operation was significant, 

F(l,ll) = 6.3, P < .05, MSe = .0188, although there was no effect of symbol, F(l,ll) = 

1.76, MSe = .0324. This effect was qualified by an interaction between operation and 

symbol, F(ll,l) = 5.99, p < .05, MSe = .0348. On the delayed test there were no 

significant differences between the conditions. 

For problems with double-digit products on the immediate test, there was an 

effect of both operation, F(ll,l) = 127.2, p < .01, MSe = .0249, and symbol, F(ll,l) = 

18.8, p < .01, MSe = .00671. There was no reliable interaction F(l,ll) = 3.27, MSe = 

.008. On the delayed test, there was again an effect of operation, F(l,ll) = 59.7, p , .01, 

MSe = .0139, there was a trend toward a significant effect of symbol, F(l,ll) = 2.65, p = 

.13, MSe = .00982, and there was no interaction, F(l,ll) = 1.03, MSe = .0036. 

In Experiment 1, there was a trend toward an RT advantage for the operation 

condition over the operation plus operand order condition, suggesting that specific, 

sensory based representations may be exerting a second order influence on the 

retrieval processes.  The analogous comparison in this experiment is between the 

operation condition and the operation plus symbol condition for problems with 

double-digit products. Collapsing across the immediate and delayed tests, the RT 

advantage for operation condition over the operation plus symbol condition (43 ms) 

was marginally significant, F(l,ll) = 4.09, MSe = .01059, p = .0 

Pairwize comparisons between the last block of the immediate test and the 

first block of the delayed test for each test condition showed no reliable differences 
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for problems with single-digit products. For problems with double-digit produts, 

performance was reliably better in the no-change condition on the last block o the 

immediate test than on the first block of the delayed test, F(l,ll) = 20.0, Mse = .00166, 

p = .0009. There were no other reliable diferences; symbol, F(l,ll) = 2.07, Mse = 

.00234 n.s., operation, F(l,ll) = .50, Mse = .00147 n.s., operation plus symbol, F(l,ll) = 

1.32, Mse = .00131, n.s. 

Discussion 

Practice 

As with Experiment 1, the course of improvement in RT with practice was 

shown to follow closely a simple power law. The practice results also replicate the 

operation effect (the RT advantage for multiplication over division) found in 

Experiment 1, and further demonstrate that this effect in Experiment 1 was not an 

artifact of the use of the "x" symbol for both multiplication and division problems; 

by the end of practice, multiplication problems were being solved more quickly than 

division problems regardless whether the symbol employed was "x" or "-*-".  This 

finding was true despite the fact the performance on multiplication problems with 

symbol "+" was the worst of all problems types at the beginning of practice. The fact 

that performance in this condition was better than performance in the two division 

condition conditions by the end of practice attests to the robustness of the operation 

effect. 

The consistency hypothesis (the hypotheses that performance will be best on 

problems in which the symbol is consistent with the operation) was, in contrast, 

clearly refuted by these results. To the contrary, there was an unexpected symbol 

effect, such that, by the end of practice, problems with the symbol "x" were 

uniformly easier than problems with the symbol 'V, regardless of whether the 

actual operation is multiplication or division. 
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The various mechanisms which might underlie both the operation and 

symbol effects will be discussed in detail in the General Discussion. 

Immediate and Delayed Tests 

The results for problems with double-digit products are most relevant to the 

theoretical issues concerning representation of arithemtic facts, and are most 

consistent with the results from Experiment 1.  Therefore, the immediately 

following discussion will be limited to these problems, with discussion of results for 

problems with single-digit products delayed to a later point. 

As expected, for both multiplication and division problems there was 

relatively good performance in no-change and symbol test conditions, and relatively 

poor performance in operation, and operation plus symbol test conditions.  Both of 

these results converge on the results of Experiment 1, and provide further support 

for the specific representations model.  However, as with Experiment 1, there was 

also some evidence of a second-order effect which is consistent with the specific 

representations model; there was a strong trend toward better performance in the 

operation test condition than in the operation plus symbol test condition.  The 

analogous trend in Experiment 1 for both multiplication and division problems was 

toward better performance in the operation condition than in the operation plus 

operand order condition. It may be difficult to account for these recurring trends 

without assuming that sensory-specific representations of the sort specified by 

Campbell and Oliphant (in press) are exerting a second-order influence of the 

retrieval process. Additional research will be needed, however, to confirm these 

effects. 

The test results for problems with single-digit products were very different 

from those for problems with double-digit products. For these problems, the largest 

gap in RT was between the no-change condition and all other conditions. This 

contrasts sharply with the multiplication problems with single-digit products in 
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Experiment 1, where the largest gap in performance was between the same 

operation conditions and the different operation conditions.  It is unclear why a 

change in symbol (Experiment 2) and a change in operand order (Experiment 1) for 

multiplication should have essentially the same effect on performance for problems 

with double-digit products, but a very different effect on performance for problems 

with single-digit products. In order to make sense of this finding, it is likely that 

more detailed analyses of subsets of problems with single-digit products would have 

to be undertaken. Three distinct subsets of these problems in these experiments are: 

(1) N x 1 = N, (2) 1 x N = N, and (3) 2 x 3 = 6,3 x 2 = 6,2 x 4 = 8, and 4 x 2 = 8. The 

patterns of performance at test might be very different for these three subsets of 

problems.   Limitations in statistical power, however, prevent meaningful analyses 

of these subsets to be undertaken with the current data. 

The difficulty in interpreting results for problems with single-digit products 

should not detract from the theoretical inferences that can be made 

about representation based on the results for problems with double-digit products. 

Recall that N x 1 and 1 x N problems, which constitute the majority of problems 

with single-digit products in this experiment, are believed to be solved using rules 

rather than retrieval of answers from memory. Both the abstract and specific 

representations models are models of representation of arithmetic facts in memory, 

and thus may not be applicable to these problems. 
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CHAPTER 4 

GENERAL DISCUSSION 

The results of these experiments provide new data on several aspects of 

skilled mental arithmetic performance.  First, the course of improvement in RT 

with practice was shown to follow closely a power law for all tested problems types. 

A more detailed investigation of the capacity of the power law, relative to the 

exponential family of functions, to fit the practice data is described in Appendix A. 

Second, the relative difficulty of multiplication and division problems presented in 

a variety of formats was documented. One robust finding across both experiments 

was an operation effect, such that multiplication problems were solved more 

quickly than division problems.  There are at least three possible explanations for 

the operation effect.  First, division performance may be mediated by multiplication 

knowledge. That is, if subjects come into the study with well developed 

multiplication skill, but relatively poor division skill, they may attempt to solve the 

division problems by matching each division problem with the corresponding 

multiplication problem of the same number relation.   For example, subjects might 

solve 42 = _ x 7 by accessing pre-existing knowledge of 6 x 7 = . This process might 

involve random (or perhaps some form of systematic) accessing of multiplication 

problems for which 7 is one of the operands, until a match is found with the correct 

product, 42. This mediation of division responses by way of multiplication might 

simply become more efficient or automatized with practice.  Since solving division 

by way of multiplication would always take more time than simply solving a 

multiplication problem, we would expect to find poorer performance on division 

than multiplication regardless of the amount of practice. This hypothesis may 

indeed approximate a strategy used for division at the beginning of practice, 

however, given the strong evidence in the arithmetic literature that skilled 

multiplication and addition involves direct retrieval from memory, it would be 
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unparsimonious to assume that the highly analogous domain of skilled division 

represents an exception (additional evidence that post-practice division performance 

dominantly reflects fact retrieval is discussed in Appendix B, where error patterns 

on the immediate and delayed test are explored in detail). 

A second possible explanation for the operation effect draws on the same 

frequency mechanism often proposed as an explanation for the problem-size effect 

(e.g., Campbell & Graham, 1985). According to this account, multiplication 

performance is better at the beginning of practice simply because subjects have been 

exposed to multiplication more frequently.   Because multiplication and division 

problems were presented with equal frequently during practice, this advantage 

would be expected to decrease with practice, but might not completely disappear. 

Still a third possibility is that division facts are more difficult to store and/or 

retrieve from memory. This could be the case, for example, because all division 

answers are answers to more than one problem (e.g., 24 = 3_ x 8,12 = 3 x 4, 27 = 3 x 9), 

whereas most multiplication answers are answers to only one problem.  From a 

memory network perspective (see Anderson, 1990), the multiple problems 

associated with each division answer may result in a sort of reverse spreading 

activation effect, such that, when the correct answer receives activation, this 

activation in turn partially "drains" back to the other associated problem 

representations, thus increasing the time necessary for the correct answer to reach 

some activation threshold.  This account, however, ignores the fact that while there 

would be more reverse spreading activation for division problems, there would be 

more forward spreading activation for multiplication problems.  This would be the 

case because each of the operands of a multiplication problems is associated with 

many answers. In contrast, for division, the presented operand is also associated 

with many answers, but the product is typically only associated with one answer. 

Thus, in order for the reverse spreading activation to yield longer RTs for division, 
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it would have to have a strong enough influence to override the greater amount of 

forward spreading activation for multiplication. Clearly this, and the other 

proposed accounts of the operation effect, are largely speculative. More research is 

needed to address this issue. 

A symbol effect (the findings that problems with symbol "x" were solved 

faster than problems with symbol "+", regardless of the arithmetic operation being 

performed) was also found in Experiment 2. This effect may be explainable through 

a frequency account assuming that the "x" symbol is used more frequency than the 

"-5-" symbol, as typically seems to be the case in format educational contexts. The "+" 

symbol is typically used during initial learning of division in order to differentiate 

division from the other operations.  When students begin learning algebra, 

however, this symbol becomes essentially redundant with the "x" symbol, and thus 

is no longer needed. Further, where an explicit division symbol is used in high 

school and college mathematics courses, it is often the "/" symbol rather than the 

"+" symbol. Thus, for the typical college student, the symbol "x" may actually be at 

least as strongly associated with division as is the symbol "+". 

A frequency account for the symbol effect is essentially the same frequency 

hypothesis as proposed by previous researchers to explain the problem-size effect, 

and also proposed in this paper as one possible account for the operation effect. 

Unlike these other effects, it is unclear what mechanisms other than frequency 

might plausibly underlie the symbol effect. The frequency hypothesis, then, appears 

to have the unique capacity to account for the problem-size effect, the operation 

effect, and the symbol effect, and should perhaps for this reason be considered the 

most promising account for each of these phenomena. 

The test results for problems with double-digit products across both 

experiments generally support the abstract representations model.  Indeed, this 

model, placed in the context of the more general model of number processing 
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developed by McCloskey et al. (1985), can account for every statistically significant 

finding in the test data for problems with double-digit products. More specifically, 

the abstract representations model predicts that, whenever the problem presented at 

test is mathematically equivalent to the corresponding problem presented at 

practice, there will be significant positive transafer of learning.  When the version of 

the problem at test, however, is mathematically unique from the corresponding 

problems at practice, there will be no transfer. This simple model accounts for the 

majority of the findings in both experiments.  The only additional reliable finding 

was that of a slight increase in RT across a change in operand order (Experiment 1; 

see also Fendrich et al., in press) and across a change in symbol (Experiment 2). 

Within the context of the McCloskey et al. (1985) model of number processing, the 

increased RT in these conditions can be accounted for by longer encoding time for 

the novel operand order (see the Discussion for Experiment 1). 

Future Directions 

Despite the evidence supporting the abstract representations model, there are 

reasons to suspect that this simple model may not be entirely adequate. First, 

although the slightly poorer performance in the operand order condition for 

multiplication (Experiment 1), and the symbol condition (Experiment 2) relative to 

the no-change conditions can be accounted for as an encoding effect, there is no 

evidence to support directly this account over other potential accounts such as a 

transformation into the practiced operand order at test, or the existence of more 

specific, partially overlapping, or distributed, representations in memory.  Both of 

these alternative accounts represent potential challenges to the the abstract 

representations model, and one aim of future work in this area should be to 

differentiate among these accounts.  One prospective experiment in this direction 

would involve training subjects extensively on problems presented in one format 

(e.g., "six times nine equals ?"), and then testing them on both operand orders of the 
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same problems presented in a different format (e.g., "6x9 = ?", and "9x6 = ?"). This 

manipulation should equate performance on the two operand orders at test with 

respect to encoding, as conceptualized under the framework of the McCloskey et al. 

(1985) model. Any differences in RT at test would thus be attributable to processing 

in the retrieval network itself, or, perhaps, to utilization of a canonical form of 

representation that develops with practice. 

There was also some evidence from both experiments that the type of 

representation assumed in the specific representations model does develop with 

practice, and does exert some secondary influences on the retrieval process. This 

was suggested by the trend toward better performance across a change in operation 

than across either a change in both operation and operand order (Experiment 1), or 

across a change in both operation and symbol (Experiment 2). Other than sensory 

specific representations of the type proposed by Campbell & Oliphant (in press), it is 

difficult to conceive of what factors might underlie these differences.  None of these 

effects, however, reached the .05 significance level, and further studies with more 

statistical power will have to be conducted to confirm these patterns. 

An additional issue which has not been addressed is whether there was any 

positive transfer to the test conditions in which the problems presented at test were 

mathematically unique from the corresponding problems presented at practice (i.e., 

the operation change conditions for all experiments, and also the operand order 

change condition for division in Experiment 1).  While it is clear that performance 

in these conditions was much worse than performance in the mathematically 

equivalent test conditions, it is less clear whether performance in these conditions 

was at all facilitated (or perhaps worsened) by practice. As a very rough index of this, 

RT for multiplication problems in the worst multiplication condition (the operation 

plus operand order condition) on the first block of the immediate test in Experiment 

1 was roughly equivalent to RT for multiplication on the firsat block of practice.  For 
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division in Experiment 1, RT in the worst test condition (again, the operation plus 

operand order condition) on the first block of the immediate test was about 150 ms 

slower than RT on the first block of practice. This suggests no transfer, or at best 

minimal transfer of learning to these test conditions, a finding generally consistent 

with the abstract representations model. To address this issue more rigorously, 

however, an additional control is needed in which some problems are not seen 

during practice in any form. These problems could then be presented as both 

multiplication and division problems at test, and serve as a baseline along which to 

evaluate performance in each of the test conditions. 

Conclusion 

Some of the most exciting recent work in mental arithmetic has been the 

development of several computational models (e.g., Anderson, et al., in press; 

Campbell & Oliphant, in press; McCloskey & Lindemann, in press) intended to 

account for the well established performance phenomena, such as the finding that 

most errors are table-related and close in magnitude to the correct answer. One 

consequence of efforts to develop such models is that detailed assumptions of 

representation, which in earlier verbal descriptions of models (e.g., Campbell & 

Graham, 1985) were vague or entirely ignored, must be made explicit. These explicit 

assumptions about representation promise to make these and future models of 

arithmetic performance more testable than earlier models, and investigations of 

practice and transfer should prove valuable in this respect. As a case in point, the 

current studies appear to refute the basic assumptions about representation in one of 

the new computational models, the Campbell & Oliphant (in press), model.  Instead, 

the results can be accounted for, to a first-order approximation, by the abstract 

representations model proposed in the introduction of this paper.  The follow-up 

research outlined above, and other investigations into practice and transfer, should 
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be instrumental in further elaborating, qualifying, or perhaps ultimately rejecting 

this model. 
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APPENDIX A 

SUPPLEMENTARY ANALYSIS: 

WHICH LAW OF LEARNING IS MOST POWERFUL? 

In preceding analyses, it was demonstrated that a simple power law (that is, a 

power law assuming no previous learning and a value of zero for asymptotic RT, 

see Newell & Rosenbloom, 1981) provides a good fit to the practice data for all 

problem types in both Experiment 1 and Experiment 2. The good fits to the simple 

power law, however, do not show that this family of functions is better than other 

families that could be applied to the data. Specifically, the exponential family could 

conceivably fit the data as well as, or better than, the power law. To test this, a three 

parameter exponential function having the form, RT = A+B*EXP(-D*block), and a 

four parameter power law function having the form, RT = A+B*(block + C)**(-D), 

were fit to the practice data for problems with double-digit products in Experiment 1 

(separately for multiplication and division) using the Gauss-Newton nonlinear 

regression technique. In both of the equations above, the parameter A represents 

the asymptotic RT (the RT that would be predicted with infinite practice), B 

represents the total amount of improvement in RT that would be predicted with 

infinite practice, and C describes the rate of learning. The parameter D in the power 

law equation allows previous learning experience to be estimated (see Newell and 

Rosenbloom, 1981, for a more detailed discussion of exponential and power law 

functions).  The best fitting parameter estimates from the regression analyses 

employing these models, and the corresponding r2 values, are shown in Table 6 for 

both multiplication and division problems.  Two results from Table 6 indicate that 

the power law provides a better fit to the data than does the exponential law. First, 

the r2 is larger (although not overwhelmingly so) for the power law for both 

multiplication and division problems.   This larger r2 value must be weighted 

against the fact that the power law function has one more free parameter than does 
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the exponential function.  This additional parameter, however, allowed the power 

law function to account for substantially more variance than could be accounted for 

by the exponential functions; the associated F values were; F(l,36) = 30.0, for 

multiplication, and F(l,36) = 34.6, for division.  A second factor supporting the 

power law is that, for both multiplication and division, several of the RT values 

actually observed were smaller than the asymptotes predicted by the exponential 

equation.  For multiplication, 8 of the 9 observed mean RTs in the last 9 blocks of 

practice were smaller than the asymptote of 655 ms predicted by the best fitting 

exponential function. For division, 8 observed RTs (including 7 of the last 9) were 

smaller than the predicted asymptote of 764 ms. In contrast, the asymptotes 

predicted by the power law function were well below the minimum RT value in the 

data (by 300 to 400 ms). The clearly invalid asymptotes predicted by the exponential 

function speak against that function as a candidate law of learning in skilled 

arithmetic. 

Some additional evidence in favor of the power law is provided by visual 

inspection of the plots of the optimal fits for the exponential and power law 

functions. This approach is complicated somewhat by the fact that there is no 

transformation space in which the three parameter exponential function or the four 

parameter power law function plot linearly.  It is desirable to have linear plots 

because systematic deviations of the data from the predicted function are easier to 

spot when the predicted function is linear. Fortunately, a two parameter version of 

the exponential function of the form RT = B*EXP(-D*block), when restated in 

logarithmic form, log(RT) = log(B) - Deblock), does plot linearly. Also, a two 

parameter version of the power law function of the form RT = B*block**(-D), when 

restated in logarithmic form, log(RT) = log(B) - D*log(block), plots linearly. The 

exponential function, then, can be made to plot linearly when A, the parameter for 

the asymptote, is zero. Similarly, the power law function can be made to plot 



linearly when both the parameter for A, and the parameter for previous learning, C, 

are zero. Thus, by simply subtracting the best fitting value for A from the RT data, 

adding the value for D (in the case of the power law fit) to the independent variable 

(block), and making the appropriate log transformations, the data can be plotted in a 

form such that the best fitting exponential and power law functions correspond to 

simple linear regression curves. 

Figure 6 shows the practice data, with the asymptotic RT predicted by the 

exponential function subtracted, plotted in exponential space. Figure 6 a shows 

multiplication problems, and Figure 6 b shows division problems.  The best fitting 

two parameter exponential functions are also shown.  For both multiplication and 

division, the observed values are first slightly higher than the values predictions by 

the best fitting exponential function, then slightly lower, and then perhaps slightly 

higher again. This is exactly the pattern of deviations that Newell and Rosenbloom 

(1981) showed to be characteristic of data which follow a power law, when plotted in 

exponential space.   Compare these results with the data (with the appropriate 

values for the asymptotes subtracted) plotted in the best fitting power law space, as 

shown in Figure 7 a (multiplication) and b (division). Here, there is clearly less 

systematic deviation from the predicted linear function. 

One complication which was encountered in plotting the best fitting 

exponential function in linear form should be noted.  Because the asymptotes 

predicted by the exponential function for both multiplication and division problems 

were actually larger than some of the observed data points, subtracting the value for 

the asymptotes from the data resulted in negative RT values in some cases. 

Negative RT values are undefined in the log transformation spaces that were used 

in the plots. Thus, to allow the data to be plotted in a log scale, the actual value for 

the parameter A that was subtracted from the data was 100 ms smaller than the 

smallest observed RT for multiplication and division, respectively.  A consequence 
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of this is that the spaces in which the multiplication and division data are plotted in 

Figure 6 are not actually the best fitting exponential spaces. They can be considered 

approximations to the most reasonable space, however, for at least three reasons. 

First, as discussed, the best fitting exponential space predicts an asymptotic RT which 

is larger than some of the observed RTs, which must clearly be incorrect. Second, by 

subtracting from the data the value of the smallest RT minus 100 ms, an implicit 

assumption is being made that, with infinite practice, RT will improve by no more 

than 100 ms over the best observed performance over 40 blocks of practice. If 

anything, this is likely to be an underestimate of the asymptotic RT.  Finally, 

additional plots of the data for which the value subtracted as the asymptote was the 

value of the smallest observation minus 10 ms also showed essentially the same 

pattern of deviation as shown in Figure 6 a and b. 

Discussion 

While not overwhelming, the evidence above clearly points toward the 

generalized power law over the exponential function as a law of speed-up with 

practice in skilled mental arithmetic.  This finding replicates many findings 

supporting the power law for tasks other than arithmetic (see Newell & 

Rosenbloom, 1981). A unique aspect of these analyses is that they involve data from 

what can be thought of as a retraining task. Presumably, many years preceding these 

experiments, subjects learned multiplication and division skill to a relatively high 

level of proficiency. The current findings thus extend the applicability of the power 

law into contexts where additional practice is given on a previously well learned 

skill. It is worth noting, however, that the estimated value for the parameter C (the 

amount of previous learning) was zero for both multiplication and division (the 

value of C was constrained in the model fitting process so that it could not be less 

than zero).  This result is odd considering that these simple arithmetic problems 

were likely solved by subjects several hundred (perhaps several thousand) times 



preceding the experiment. There are, however, at least three factors that might 

account for this anomaly.  First, the improvement in initiate RT (the RT value used 

in these analyses) partly reflects improvement in motor response RT.  It is 

reasonable to assume that the amount of previous learning for this component of 

the task is minimal, perhaps zero. As was previously shown, however, only a 

modest proportion of the overall speed-up in initiate RT can be attributed to motor 

response speed-up (see Chapter 2). Thus, there would appear to be other factors 

underlying the prediction of zero previous learning.  Another possibility is that a 

significant amount of improvement in RT reflects improvement that is specific to 

idiosyncratic aspects of the task environment (e.g., getting familiar with the 

computer display, overcoming nervousness, etc.).  Again, the amount of previous 

learning for these factors could plausibly be zero. Finally, if a significant amount of 

the learning which occurred during practice was actually relearning of a partially 

forgotten skill, and if relearning is faster than initial learning, then the rate of speed- 

up in the early portion of the learning curve would be artificially high, and this 

would attenuate the estimate for C, the amount of previous learning.  Further 

empirical work would be needed to differentiate among the above possibilities. 

The above results also have some direct relevance for modeling efforts in 

skilled arithmetic.  Most of the models developed to date (e.g., Campbell & Oliphant, 

in press; McCloskey et al., in press) focus on performance, and do not directly 

address issues of practice. It is pervasively true in these models, however, that 

practice is assumed to strengthen connections among relevant representations. 

Ultimately, these and any future models will need to incorporate detailed learning 

algorithms which explicitly define the rate at which connections are strengthened 

with practice, and the impact that this stregthening of connections has on RT.  The 

demonstrations of power law speed-up with practice in these experiments provide a 

useful empirical constraint for efforts to develop such models. 
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APPENDIX B 

SUPPLEMENTARY ANALYSIS: 

CONFUSION ERRORS AT TEST IN EXPERIMENT 1 

Campbell (1987a) pretested college subjects on single-digit multiplication 

problems (2x2 to 9x9), gave the subjects extended practice on a subset of these 

problems, and then tested them again on all problems. Among the findings were 

that RT to unpracticed problems at posttest was slower (the error rate higher) than 

for these same problems at pretest. Also, errors made on unpracticed problems at 

test were predominantly answers to problems seen at practice. This result can be 

taken as support for the claim that skilled multiplication reflects retrieval of facts 

from a memory network in which multiple problem representations' become active 

on each retrieval attempt. When a problem receives extended practice, the 

associations among the representations corresponding to that problem become 

stronger.  Because of this fact, the practiced problems create even more interference 

than usual (i.e., than would have been the case without practice) when unpracticed 

problems are encountered at post test.  This increased interference results in slower 

RTs and increased errors on unpracticed problems at post test relative to pretest. 

Further, the errors to unpracticed problems at post test would be expected to be 

predominantly answers to problems seen at practice.  In this chapter, similar error 

analyses on the Experiment 1 immediate and delayed test data are reported in an 

effort to: (a) replicate the basic effect (which will be termed the practice error effect) 

for multiplication found in the Campbell (1987a) study, (b) evaluate whether an 

analogous effect can be found for skilled division, and (c) establish whether these 

effects are stable across significant delays between practice and test. 

In the Campbell (1987a) study, the practice error effect was computed by 

comparing the percentage of errors on unpracticed problems at post test that were 

answers to practiced problems, and comparing this with the percentage of errors that 
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would be expected by chance to be answers to practice problems. Campbell (1987a) 

found that 65% of errors were answers to practiced problems, whereas only 28% of 

errors were answers to other unpracticed problems. Because of the approach 

Campbell used to calculate the practice error effect, the percentage above reflects a 

combined effect across table-related, table-unrelated, and miscellaneous errors 

(errors that are not valid multiplication answers, e.g., 17). An even larger effect 

might be obtained if analyses were limited to table-related errors, because 

representations for all table-related problems are believed compete most strongly 

with one another (see Campbell and Graham, 1985), and table-related errors to 

unpracticed problems may thus be more likely than either table-unrelated or 

miscellaneous errors to reflect enhanced interference from the practice (i.e., answers 

to table-related practice problems may be most likely to intrude as errors at test). 

This is the approach taken in the present analyses. As will become clear later, an 

additional advantage of this approach is that it allows an effect analogous to the 

multiplication practice error effect to be computed for division errors. 

Multiplication Errors 

Error analyses on both the immediate and delayed test results were restricted 

to the operation change and the operation plus operand order change conditions for 

two reasons.  First, there were relatively few errors in the no-change and operand 

order change conditions, making meaningful analysis of these conditions difficult. 

Second, operation and operation plus operand order conditions provide the most 

promising data for eliciting the practice error effect, because these problems were not 

seen as multiplication problems during practice. Thus the correct answers to these 

problems were not strengthened with practice, making these problems relatively 

more susceptible to interference from problems that were seen at practice. In other 

words, problems in these conditions are most analogous to the unpracticed 

problems in the Campbell (1987a) study. 



The majority of errors (69%) were table-related, replicating findings from 

several earlier studies (e.g., Campbell & Graham, 1985). Of primary interest was 

whether table-related errors are more likely to be answers to problems in a given 

subject's practice set than would be expected by chance. The chance rate was 

determined for each error by summing the number of table-related problems that 

were in the subject's practice set and dividing this value by the total number of 

table-related problems across all practice sets (recall that all problems from all 

practice sets were seen by each subject at test). Operand order was ignored in these 

calculations. The results, aggregated across the operation and the operation plus 

operand order test conditions, are shown on the left side of Figure 8. On the 

immediate test, 91% (40 of 44) of the table-related errors were answers to problems in 

the subject's practice sets, this compared with the 54% that would be expected by 

chance. In order to analyze the significance of this effect, it was necessary to adjust 

for non-independence caused by occurrence of the same error for a given subject in 

both blocks of the immediate test. This was done by simply removing the 

redundant errors that occurred in block two (there were 5 of these) from the 

analysis.  Even in this conservative test, the effect was highly significant, chiA2(l, N 

= 39) = 20.1, p < .001. Analysis of errors at retention yielded analogous results. Of 

the 74 table-related errors across the four blocks at retention, 58 (78.4%) of them were 

answers to problems in the subject's practice sets, compared to 55% as would be 

expected by chance. With the 12 redundant errors removed, this effect was also 

significant, chiA2(l, N=39) = 9.34, p < .01. 

Division Errors 

Errors in all test conditions except the no-change condition were analyzed for 

division.  As with multiplication, there were few errors in the no-change condition, 

making meaningful analyses of this condition difficult.  In contrast to 

multiplication, however, there was a large number of errors in the operand order 
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change condition, and this condition was thus included in the analyses.  Problems 

were divided into two groups for analysis. The first group included problems for 

which the practice error effect could be mediated by way of either the product or the 

presented operand.^  This includes all problems in the operand order test condition. 

For example, if 21 = _ x 3 was seen seen during practice, the operand order test 

condition for this problem would be 21 = _ x 7.  According to some arithemtic 

models (e.g., Campbell & Graham, 1985), an association should have been 

strengthened during practice linking the 21 and the 7 (the answer to 21 = _ x 3), and 

this might result in 7 being a frequent mistake on 21 = _ x 7 test. Thus, errors to 

problems in this test condition may be product mediated.   Also, the 7 may have 

formed associations with answers to other division problems involving 7 that were 

seen at practice (e.g., 63 = _ x 7), and these answers (e.g., 9) might also be frequent 

errors to 21 = _ x 7.   Thus, in this group, there may be both product mediated and 

operand mediated interference from practice problems. 

The second grouping for this analysis consists of all remaining errors to 

problems in the operation and operation plus operand order test conditions.  For 

this group, interference from practice problems could only be operand-mediated, 

since the product of problems in these test conditions was not seen in the context of 

any problem at test. 

This separation of division errors into two groups was motivated by the 

possibility that interference from practice could occur by way of both the product and 

the presented operand for group 1 problems, but could occur only by way of the 

presented operand for group 2 problems. This could result in differences in the 

magnitude of the practice error effect for these two groups of problems. 

There were 51 and 85 errors that fell in the first group on the immediate and 

delayed test, respectively.   On the immediate test, 34, or 67%, of these errors were 

answers to problems in the subjects' practice sets.   Nineteen of these errors were 



traceable to the subject's practice sets by way of the product (i.e., 19 of the errors were 

answers to the reversed operand order problem seen during practice), an 15 of the 

errors were traceable by way of the presented operand (i.e., 15 of the errors were 

answers to problems seen during practice that had the presented operand). This 

value of 67% compares to the 28% that would be expected by chance for this group 

(see Figure 8).  After eliminating the 6 redundant errors, 28 of the 44 remaining 

errors were answers to problems in the subjects' practice sets. This was significantly 

greater that chance expectation, chiA2(l, N=44) = 27.7, p < .01.   On the delayed test, 58 

of 85 errors (68%) were answers to problems in the subjects' practice sets.   Thirty- 

one of the these errors were traceable by way of the product, and 27 of them were 

traceable by way of the presented operand. After adjustment for redundancy (11 

instances), this proved significantly different from chance (chance rate on the 

delayed test was also .28), chiA2 (1, N = 74) = 46.5, p < .001. 

For the second group of error instances (see Figure 8), only the presented 

operand could be responsible for a practice error effect.   On the immediate test, 9 of 

46 (20%) of these errors were answers to problems in the subjects' practice sets 

having the presented operand. The chance rate for these problems was .23. A chi 

square analysis showed no significant difference chiA2 (1, N=46) = .306, n.s.   On the 

delayed test, there were 70 errors, 11 of them answers to problems in the subjects' 

practice sets having the presented operand. The chance rate for these problems was 

.20. Again, there was no significant difference, ChiA2 (1, N=70) = .736, n.s. 

Discussion 

The practice error effect previously found for multiplication (Campbell, 

1987a) was replicated in these analyses. Indeed, by limiting analyses to errors that 

were table-related, the effect was even more pronounced that the found by Campbell 

(1987a). Results for Group 1 division problems (where errors could be either 

product or operand mediatied) also showed a strong practice error effect on both the 
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immediate and delayed tests. There was no evidence of a practice error effect, 

however, for Group 2 division problems (where the practice error effect could be 

only operand mediated).  It would not have been surprising to find a smaller effect 

for Group 2 problems than for Group 1 problems, sbecause only the presented 

operand could contribute to the effect for Group 2 problems. However, the finding 

of absolute no practice error effect for Group 2 problems is somewhat odd 

considering therelatively strong effect found for Group 1 problems.  A possible 

explanation for this finding is that there is a greater role played by the product 

(relative to the presented operand) in division fact retrieval.  This greater influence 

of the product could be related to the fact that a given product was seen in at most 

one division problem during practice.  In contrast, each operand was seen in many 

multiplication and divisions problems during practice.  Because of this difference, 

the product was a deterministic, rather than a probabilistic, predictor of the answer. 

Thus, at test, the product may have had strong enough associations to answers with 

which it was paired at practice for these answers to intrude as errors. In contrast, 

associations formed during practice between the presented operand and answers 

may have been too weak to elicit a detectable practice error effect. This account, 

however, is inconsistent with the fact that a large portion of the practice error effect 

for Group 1 problems involves operand mediated errors. This account is also 

inconsistent with the findings of a strong practice error effect for multiplication 

problems.  An alternative and perhaps more likely account for the null practice 

error effect for Group 2 problems is that for these problems, the product was never 

seen as an input element during practice. Thus, at test, the novel product could 

have signaled to the subject a novel problem, allowing the subject to suppress any 

answers that were associated with the presented operand during practice, and 

producing the null practice error effect for Group 2 problems.  Further investigation 
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of the practice error effect for division would be necessary to differentiate between 

the explanations proposed above. 

The finding of a practice error effect for Group 1 division problems provides 

one of the first direct sources of evidence for interference effects in skilled division 

analogous to the well established interference effects for skilled multiplication (see 

also Campbell, 1985). A second new finding in these analyses is that the practice 

error effect is stable across an interval of one month, indicating that the effect cannot 

be accounted for by some form of short-term priming, but rather reflects stable long- 

term changes to the memory structure resulting from practice. 

ISome problems in the operation transfer conditions were also potentially 
subject to interference by way of the product and the presented operand, and thus 
fall under the first group: There are three pairs of number relations used in the 
study for which the product is the same for both pairs: (2,9,18) and (3,6,18); (3,4,12) 
and (2,6,12); and (3,8,24) and (4,6,24). One number relation from each pair was 
presented as a multiplication problem at practice, and the other as a division 
problem. For example, in one practice set, 18 = _ x 3 and = 9x2 were presented. 
Thus, in the operation transfer condition for division for subjects having that 
practice set, 18 = _ x 2 would be presented. The 6 is a potential product mediated 
answer here due to the associations that may have formed between 18 and 6 during 
practice.  Thus, errors to these problems were included in the group 1, rather than 
the group 2, analysis. 
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Table 1 

Examples of a multiplication and a division problem at practice and the 
corresponding test conditions in Experiment 1 

Test Condition 

No change      Operand- Operation Operation 
Practice order & Op-order 

_ = 4x7 _ = 4x7        _ = 7x4 28 = _x7 28 = _x4 

48=x6 48=x6 48=x8 =8x6 =6x8 



Table 2 

A sample practice set (practice set 1) used in Experiment 1 

Multiplication Division 

_ = 6x9 . 36 = _ x 4 
_ = 7x9 27 = _x9 
_ = 4x8 48 = _ x 8 
__ = 8x7 42 = _x7 
_ = 8 x 9 28 = _ x 4 
_ = 7 x 5 40 = _x8 
_ = 6x5 45 = _ x 9 
_ = 2x8 21=_x7 
_ = 5x4 14 = _ x 7 
_ = 3x5 10=_x5 
_ = 3x4 12 = _x2 
_ = 6x3 18 = _x9 
_ = 8x3 24 = _x6 
_ = 4x2 6=_x2 
_ = 1 x6 8 = _x8 
_ = 9xl 7 = _xl 
_ = lx4 3 = _xl 
=5x1 2= xl 



Table 3 

the immediate and delayed tests in Experiment 1 

Practice Imm. /delayed tests Test condition 

_ = 4x7 _ = 4 x7 no-change 

_ = 7x4 _ = 4 x7 operand-order 

28 = _x7 _ = 4x7 operation 

28 = _x4 _ = 4x7 operand-order & 
operation 

Table 4 

Test conditions for an example division problem on 
the immediate and delayed tests in Experiment 1 

Practice Imm./delayed tests Test condition 

28 = _x7 28 = _x7 no-change 

28 = _x4 28 = _x7 operand-order 

_ = 4x7 28 = _x7 operation 

_ = 7x4 28 = _x7 operand-order & 
operation 



Table 5 

Examples of each of the four problem types seen at practice and the 
corresponding test conditions in Experiment 2. 

Test Condition 

No change      Symbol Operation Operation 
Practice & Symbol 

_ = 4x7 _ = 4x7 _ + 4 = 7 28 = _x7 28 + _ = 7 

_ + 9 = 5 _ + 9 = 5 _ = 9x5 45 + _ = 5 45 = _ x 6 

48 = _x6 48 = _x6 48 -*- _ = 6 _ = 8x6 _ + 8 = 6 

18-    =3 18 +    =3 18=   x3 +6 = 3 x6 = 3 

Note: From top to bottom, the four types of problems at practice^ represented above are 
multiplication with symbol "x", multiplication with symbol "+", division with symbol "X", 
and division with symbol "+•". 



Table 6 

Parameters for optimal exponential and power law fits to the practice data for 
multiplication and division problems with double-digit products in 
Experiment 1 

Exponential Power law 
RT=A+B*e(D*block) RT=A+B*(block+C)D 

Problem type             A B D r2 A B C D \ r2 

Multiplication      655 567 -.14 .89 296 951 0 -.28   .94 

Division                764 770 -.13 .91 123 1453 \ 0 -.23/ .96 

Note: RT in milliseconds. 



Figure Captions 

Figure 1.   Log RT plotted as a function of log block and operation 

(multiplication or division).  Figure 1 a shows problems with single-digit 

products, and Figure 1 b shows problems with double-digit products. 

Figure 2. Anti log RT (averaged across subjects and correctly solved problems) 

for multiplication problems on the immediate and delayed tests plotted as a 

function of test condition, (no change = no change from practice to test; 

operand order = operand order change from practice to test; operation = 

operation change from practice to test; operation & op ord = operation plus 

operand order change from practice to test.) Figure 2 a shows problems with 

single-digit products, and Figure 2 b shows problems with double-digit 

products. 

Figure 3. Anti log RT (averaged across subjects and correctly solved problems) 

for division problems on the immediate and delayed tests plotted as a 

function of test condition,  (no-change = no-change from practice to test- 

operand order = operand order change from practice to test; operation = 

operation change from practice to test; operation plus op ord = operation plus 

operand order change from practice to test.) Figure 3 a shows problems with 

single-digit products, and Figure 3 b shows problems with double-digit 

products. 

Figure 4. Log RT for all correctly solved problems plotted as a function of log 

block and problem type,  (multiplication (x) = multiplication problems with 

symbol "x"; multiplication (+) = multiplication problems with symbol 'V; 

division (x) = division problems with symbol "x"; division (+) = division 

problems with symbol "+".) 



Figure 5. Anti log RT (averaged across subjects, problem type, and correctly 

solved problems) on the immediate and delayed tests plotted as a function of 

test condition. ( no-change = no-change from practice to test; symbol = symbol 

change from practice to test; operation = operation change from practice to 

test; and operation & symbol = operation plus symbol change from practice to 

test. Figure 5 a shows problems with single-digit products, and Figure 5 b 

shows problems with double-digit products. 

Figure 6. Best fitting exponential functions to the practice data for problems 

with double-digit products in Experiment 1. Figure 6 a shows the results for 

multiplication problems, and Figure 6 b shows the results for division 

problems. 

Figure 7. Best fitting generalized power law functions to the practice data for 

problems with double-digit products in Experiment 1. Figure 7 a shows the 

results for multiplication problems, and Figure 7 b shows the results for 

division problems. 

Figure 8. Proportion of table-related errors on the immediate and delayed test 

that were the answers to problems in the subject's practice set compared to the 

proportion expected by chance.  (Mult imm = multiplication problems on the 

immediate test; Mult delay = multiplication problems on the delayed test; Div 

imm Gp 1 = group 1 division problems on the immediate test; Div delay Gp 1 

= group 1 division problems on the delayed test; Div Gp 2 = group 2 division 

problems on the immediate test; Div delay Gp 2 = group 2 division problems 

on the delayed test.) 
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