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EFFICIENT ENCODING AND RENDERING OF TIME-VARYING VOLUME DATA* 

KWAN-LIU MA+, DIANN SMITHt, MING-YUN SHfflt, AND HEN-WEI SHEN* 

Abstract. Visualization of time-varying volumetric data sets, which may be obtained from numerical 

simulations or sensing instruments, provides scientists insights into the detailed dynamics of the phenomenon 

under study. This paper describes a coherent solution based on quantization, coupled with octree and dif- 

ference encoding for visualizing time-varying volumetric data. Quantization is used to attain voxel-level 

compression and may have a significant influence on the performance of the subsequent encoding and visual- 

ization steps. Octree encoding is used for spatial domain compression, and difference encoding for temporal 

domain compression. In essence, neighboring voxels may be fused into macro voxels if they have similar 

values, and subtrees at consecutive time steps may be merged if they are identical. 

The software rendering process is tailored according to the tree structures and the volume visualization 

process. With the tree representation, selective rendering may be performed very efficiently. Additionally, 

the I/O costs are reduced. With these combined savings, a higher level of user interactivity is achieved. We 

have studied a variety of time-varying volume datasets, performed encoding based on data statistics, and 

optimized the rendering calculations wherever possible. Preliminary tests on workstations have shown in 

many cases tremendous reduction by as high as 90% in both storage space and inter-frame delay. 

Key words, time-varying data, data compression, hierarchical data structures, volume rendering, inter- 

active visualization, distributed computing, scientific visualization 

Subject classification. Computer Science 

1. Introduction. The ability to study time-varying phenomena helps scientists understand complex 

problems. The size of time-varying datasets not only demands excessive storage space but also presents 

difficult problems for both data analysis and visualization. For example, a single-variable time-varying vol- 

ume dataset consisting of one hundred time steps each of which stores 256x256x256 floating point numbers 

requires over 6.4 gigabytes of storage space. 

Ideally, visualizing time-varying data should be done while data is being generated, so that users receive 

immediate feedback on the subject under study, and so the visualization results can be stored rather than 

the much larger raw data. Rowlan [14] and Ma [9] demonstrate such tracking capability using direct volume 

rendering on a massively parallel computer. Some visualization software systems [4, 12] can support runtime 

tracking of three-dimensional numerical simulations and they may be operated in a distributed computing 

environment. However, runtime tracking is not always possible and desirable for certain applications. For 

example, one may want to explore the data set from different perspectives; or, the amount of computation 

power required for real-time rendering or a special visualization technique may not be readily available. As 

a result, postprocessing of pre-calculated data remains an important requirement. 
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FlG. 1. Overall Encoding and Rendering Process. 

Several techniques have been developed for visualizing time-varying data as a postprocess. Lane [6] 

developed a particle tracer for three-dimensional time-dependent flow data. Max and Becker [11] apply 

textures for visualizing both steady and unsteady flow fields. Silver and Wang [17] present a volume based 

feature tracking algorithm to help visualize and analyze large time-varying data sets. More recently, Jaswal 

demonstrates distributed real-time visualization of time-varying data using a CAVE [5]. He identifies I/O 

as the single most constraining factor in the level of interactivity and suggests performing various types of 

filtering to reduce the amount of data sent and rendered. 

While parallel volume rendering algorithms are available for interactive visualization of large volume 

data, visualizing time-varying data on a parallel computer requires reading large files continuously or period- 

ically throughout the course of the visualization process. Chiueh and Ma [1] developed a parallel pipelined 

renderer for time-varying volume data by partitioning processors into groups to render multiple volumes 

concurrently. In this way, the overall rendering time may be greatly reduced because the pipelined render- 

ing tasks are overlapped with the I/O required to load each volume into a group of processors; moreover, 

parallelization overhead may be reduced as a result of partitioning the processors. They demonstrated that 

the ideal partitioning number leading to optimal performance can be determined. 

This paper presents a strategy integrating compression and rendering techniques to achieve flexible and 

efficient rendering of time-varying volume data. Although volume data compression has been studied by 

many researchers [2, 18, 3], very few have considered the additional dimension of time-varying data. With 

our strategy, compression is achieved using scalar quantization along with an octree and difference encoding. 

By exploiting spatial and temporal coherence in the data, neighboring voxels may be fused into macro voxels 

if they have similar values, and two subtrees at consecutive time steps may be merged if they are identical. 

A ray-casting volume renderer was restructured to efficiently render the encoded data. With the tree 

representation it is possible to perform selective rendering, and when appropriate to distribute both the 



data and rendering calculations to multiple workstations to achieve desirable interaction.  Figure 1 shows 

the overall encoding and rendering process. 

Five time-varying volume datasets were used for our study. We show how each dataset may be encoded 

according to data statistics or user's knowledge to achieve better space and rendering efficiency. We also 

discuss how to eliminate or hide various overheads introduced by using the tree representation. Preliminary 

tests show that in general the amount of savings we can obtain in storage space as well as in rendering time 

justifies our approach. 

2. Related Work. The previous work most closely related to ours is the thorough study done by 

Wilhelms and Van Gelder [20] on the design of hierarchical data structures for controlled compression and 

volume rendering. They extend octrees and a branch-on-need (BON) subdivision strategy [19] to handle 

multi-dimensional data. The basis of their work is a hierarchical data model which is well described in their 

paper. The resulting multi-dimensional tree stores a model of the data and evaluation information about the 

error of the model as well as importance of the data to control compression rate and image quality. They 

also propose eight evaluation metrics for performing selective traversal and visualization of the encoded data. 

Among the nine datasets used for their study, seven are three-dimensional data and two are time-varying 

data. 

Another closely related work is the ray-cast rendering strategy introduced by Shen and Johnson [16] 

which they call differential volume rendering. By exploiting the data coherency between consecutive time 

steps, they are able to reduce not only the rendering time but also the storage space by 90% or more for 

their two test data sets which are highly temporally correlated and contain spatially coherent byte data. 

Differential volume rendering is potentially parallelizable and a caching technique [10] may be integrated 

into the Tenderer to avoid recalculations for visualizing irregular data. 

Although we also use octree encoding and error evaluation for selective traversal, our main focus is on 

time-varying volume data (i.e. four-dimensional data.) While Wilhelms and Van Gelder's model treats all 

dimensions the same way, we apply difference encoding to the time domain. We especially pay attention 

to the quantization step and investigate how quantization may assist subsequent compression and rendering 

steps, and influence the visualization results. We develop a rendering strategy favoring a tree representation 

of the time-varying data. Examination of the encoded data identifies partial images built from subtrees 

which have not changed and therefore may be reused in the following time steps. Finally, in contrast to [16], 

we use datasets with distinct properties which are not all highly spatially and temporally coherent in order 

to perform a more general study. 

3. Compression. Data compression continues to be an important research topic because of its rele- 

vance to multimedia and web applications. Many compression techniques have been well studied and may 

be applied to new applications according to data characteristics and certain requirements. There are loss- 

less and lossy compression methods. Popular compression techniques include huffman coding, scalar/vector 

quantization, differential encoding, subband coding, and transform coding [15]. 

Frequently, scientists demand lossless methods to preserve the accuracy of their original results. However, 

when performing data visualization, limited by the display technology and the implementation of rendering 

algorithms, degradation in image quality cannot be totally avoided. The questions are then: how lossy can 

the compressed data be to generate the highest possible accuracy in the visualization results with the given 

rendering and display technology; and how can the errors due to compression be quantified in the data and 

the resulting visualization? 

Volume data generally come with 8-, 16-, or 32-bit voxels. Most volume renderer implementations use 



table lookup for color and opacity mapping. Color values are represented by red, green, and blue components, 

each of which is an 8-bit value. The color table thus typically consists of 256 entries of RGB values. For 

voxels represented with more than eight bits, quantization must be done which results in lossy compression. 

How quantization is done determines what in the data can be visualized. 

3.1. Quantization. Quantization is the simplest lossy compression method. The idea of quantization 

is to use a limited number of bits to represent a much large number of distinct raw data values. The class of 

datasets we consider are typically generated from numerical simulations and quantization of the data results 

in a compression ratio of 4 : 1 by representing 32-bit data with only 8 bits. Quantization is a well studied 

area. However, the impact of data quantization to volume rendering has not been carefully studied. 

There are uniform, non-uniform and adaptive quantizers designed according to the characteristics of the 

source data. For the simplest case, that is uniform quantization of uniformly distributed source data values 

x, the quantization error may be measured as the mean squared error, which is 

(3.1) ^ = E/        {x-2-±tff{x)dx 
-1)4, l 

where M is the number of quantization levels, <f> = (xmax - xmin)/M and f(x) the probability density function 

which is  ^—— for uniformly distributed source data. While the general principle of quantization is to 

reduce this data distortion error, for visualization tasks, an even more important criterion is to preserve and 

enhance particular features in the data. Data values outside the range of interest and the corresponding 

distortion error can be ignored. With a given number of quantization levels, enhancement can be achieved 

by allocating more levels to a particular range of the source data values. While most Tenderers use uniform 

quantization by default, non-uniform and adaptive quantization can more effectively minimize distortion 

error and enhance data for detecting features. For volume rendering to also include an error measure for the 

importance of data values, Equation 3.1 becomes 

(3.2) a2 = Y, I        (* - ±^<t>?f{x)a{x)dx 
-1)4 

where f(x) characterizes a general source data distribution and a{x) is the importance function which in 

this case is the opacity transfer function provided by the user. 

For example, a simple non-uniform quantizer may use a logarithmic function for source data values 

spreading in a wide dynamic range. A more elaborate quantizer may take source data statistics (e.g. the 

probability density function) into consideration and set quantization levels adaptively. Figure 2 plots the 

minimum and maximum values for each time step of two datasets. The left one shows values of a turbulence 

flow data set that consists of 81 time steps. Such a data set must be quantized with care; otherwise, many 

important features in later time steps would become invisible due to the extremely wide dynamic range. 

The other data set shown on the right behaves very differently so it can be quantized in a straightforward 

manner. 

3.2. Octree Encoding. After quantizing, each time step of the quantized data is then organized 

hierarchically in its spatial domain using octree encoding. Octrees are a family of data structures that 

represents spatial data using recursive subdivision. They have wide application to many graphics and 

visualization problems for faster searching, data packing, and algorithmic optimization. Levoy [8] used a 

binary octree to skip transparent voxels for efficient volume ray casting. Laur and Hanrahan [7] implemented 
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FIG. 2. Left: maximum and minimum values at each time step of a data set from the study of the generation and evolution 

of turbulent structures in shear flows. Early time steps contain values in a very large dynamic range which makes quantization 

more difficult. Right: maximum and minimum values at each time step of a data set from the study of coherent turbulent vortex 

structures.  This data set has a small dynamic range and the distribution of values is quite uniform which makes quantization 

straightforward. 

a hierarchical splatting Tenderer using octrees. Wilhelms and Van Gelder [19] used octrees with a branch- 

on-need (BON) strategy for faster isosurface generation, and later extended their octrees and BON strategy 

for k dimensions [20] of volume data for controlled compression and rendering, as we described previously 

in Section 2. 

We use octree encoding to control compression, rendering, and image quality of time-varying volume 

data. With octree encoding, immediate neighboring voxels with identical values may be fused to form a 

macro voxel. This fusing process is performed recursively either in a top-down or a bottom-up manner 

until no more voxels or macro voxels can be merged. For an iV-time-step volume dataset, the results are 

N octrees. The amount of compression that can be achieved with octree encoding is data dependent. A 

data set containing many large, coherent structures usually can be effectively compressed. However, for 8-bit 

data, we found that further fusing of voxels based on some error tolerance produced images generally not 

acceptable for visualization. Some error control issues are discussed in [7, 20] 

Our octree encoding uses a bottom-up algorithm which only visits each data value one time and avoids 

recalculating evaluation data and is therefore more computationally efficient. According to our test results, 

the bottom-up method is about two times faster than the top-down method. The space overhead of the 

octree encoding is generally acceptable as long as many large macro voxels are created. The maximum 

overhead is only about ^ where v is the total number of voxels in the data and b is the number of bytes 

used to store information about each internal tree node. Using a linear octree, it could take as few as 1 bit 

for each node to indicate if it is a leaf node or not. We could also store values which characterize the data 

such as the minimum, maximum and mean data values. This could be used to optimize rendering. 

3.3. Difference Encoding. Like video and speech data, time-varying volume data are highly corre- 

lated from time step to time step. Difference encoding uses this fact to predict each sample based on its 

past, and to encode and transmit the differences between the prediction and the sample value. Our further 

compression is built around this premise. In essence, each individualy octree encoded volume may be par- 
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FIG. 3.  Merging Encoded Trees.   Trees at consecutive time steps contain identical subtrees so the second time step only 

stores a pointer to the first time step for that subtree (red). 

tially merged with the one in the previous time step using difference encoding. The merging is incremental 

over the time dimension. Figure 3 shows how a subtree which has not changed may be represented by the 

one from the previous time step to save storage space. 

The most interesting use of the tree structure is that when animating in the temporal domain we can 

waive the rendering of a subtree that has been rendered in previous time step. The image corresponding 

to the subtree is retrieved from the previous time step and composited into the final image of the current 

time step. The associativity of the over operation [13] for compositing which is also the basis of many 

parallel volume rendering algorithm guarantees the correctness of the composited results. The details of the 

rendering step will be described in Section 4. 

3.4. Optimization. For quantization, the choice of bit allocation can significantly affect not only the 

subsequent encoding results but also the visualization results. That is, a particular quantization may result 

in more voxel fusing and thus higher compression and rendering rates. After seeing the corresponding 

visualization, the scientist may determine that quantization needs to be redone to emphasize a particular 

range of data. Consequently, the octree and difference encoding must also be redone. Since data exploration 

is an inherently iterative process, we should keep the cost of quantization and subsequent encoding as low 

as possible. 

When the data for each time-step is very large, I/O cost can be significant and overlapping encoding 

and I/O should be implemented. We have also mentioned that certain algorithmic advantages such as using 

bottom-up tree construction can make a difference in the overall cost. Finally since most of the calculations 

for each time step can be performed independently of other steps, multiple time-step data may be encoded 

concurrently by using a cluster of workstations. 

4. Rendering. The compression scheme leads naturally to a rendering strategy in which only modified 

data are rendered. We have implemented a ray casting volume renderer, tvvd-renderer, which takes as input 

a sequence of trees, renders the first tree completely and then in subsequent timesteps renders only the 

modified subtrees. This requires that partial images representing the unmodified data must be retained and 

composited together with the partial images created from the modified data to create the final image at each 



time step. We do this by creating a compositing tree. The compositing tree is a pointer based octree which 

has the same structure as the compressed octree. Each leaf of the compositing tree contains a partial image 

rendered directly from the data represented by the corresponding leaf in the compressed tree. Each interior 

node contains a partial image which is the composite of all of its children's images. At each time step, 

modified subtrees in the compressed octree are identified. A new compositing branch is created to represent 

the data and spliced into the compositing tree, replacing the old branch. The image at the top of the new 

branch is composited with its siblings and all of the ancestors are recomposited to reflect the changes. The 

image at the root of the tree is the complete image. 

Rendering only the modified data accounts for the largest savings in the time domain. Much less data 

(i.e. only the difference between consecutive time steps) is rendered as a result of tree merging which produces 

the most significant amount of savings in rendering cost. In addition, the time to read the encoded data is 

reduced in proportion to the compression rate. 

However, rendering from the tree structure instead of directly the volume data incurs certain overhead. 

To offset this overhead, we use several optimizations, some of which have been discussed in [8]. First, we 

implemented front-to-back rendering to promote early ray termination. This optimization has been typically 

implemented for general ray-casting volume rendering, though the result is highly data and transfer function 

dependent. To reduce excessive matrix multiplication operations, we cache the coordinates of each ray in 

the object space. We also take advantage of the information provided by the octree structure to advance 

past transparent space without rendering. 

Additionally, when an octant representing a subvolume has a constant value everywhere in its domain, 

the rendering of the corresponding subvolume can be, though not waived, highly optimized. Discretizing the 

volume rendering integral equation, the accumulated color value up to n sample points on a ray is represented 

as: 

n i — 1 

(4.1) C = Y,C(i)a(i)l[(l-a(j)) 
i=l j=l 

For a constant subvolume, since all sample points have an identical data value and therefore identical color 

and opacity values, the formulation for compositing can then be simplified to: 

n i—1 

i=l j=l 

n 

(4.2) =^Ca(l-a)*-1 

t=i 

With this derivation, we only need to know the number of samples that should be collected along a ray. The 

calculations of the sample coordinates and trilinear interpolation of the sample values along each ray can 

be completely avoided. The resulting saving is tremendous for a data set containing many large, coherent 

structures. 

In the octree, each leaf represents a uniform block of data which can be rendered efficiently as discussed 

above. However, the boundaries between the uniform blocks must be rendered more carefully. To avoid the 

overhead of traversing the tree to obtain boundary values, the data is initially uncompressed and the octree 

information is used as a map into the volume data. 
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FIG. 4. Rendering data at various resolution in various space, (a) regular rendering, (b) rendering at lower resolution in 

image space, (c) rendering at slightly lower resolution in the data domain which produces about 40% saving in storage space 

and 10% in rendering time, (d) rendering at much lower resolution in the data domain which produces about 90% saving in 

storage space and 30% in rendering time. 

Because of opacity accumulation fine details at the front parts of the volume often obscure the back. 

This means that when doing front-to-back rendering, subtrees which represent the back portion of the data 

may not be completely sampled. As an approximation, we do not re-render the subtrees which have not 

changed between time steps. 

We can also improve performance by rendering data at different resolutions in different areas of the 

spatial domain. Figure 4 displays visualization results generated based on this strategy. Image (a) is a 

regular rendering result. Image (b) shows the result of skipping pixels in image space and the blocky pattern 

hampers normal perception of the image content. Images (c) and (d) show results from various degrees of 

coarsening in the spatial domain. Coarsening was done by fusing voxels with high tolerance values. Image 

(c) and (d) are the results of treating a block of voxels identically if the difference between the maximum and 

minimum voxel values is under some user-specified tolerance. The resulting savings in both storage space 

and rendering time are quite dramatic. We achieve 40% saving for (c) and 90% for (d) in storage space. 

Image (c) is almost visually indistinguishable from Image (a). Image (d) is less visually appealing but it is 

good for previewing of the data. 

The rendering optimization is based on a fixed viewing position. Changing the viewing position requires 

that the entire tree be rerendered creating a new compositing tree. To allow the viewer to move randomly 

through the temporal domain of the data, a complete tree could be saved at regular intervals. 



TABLE 1 

Five Test Datasets. 

dataset time steps spatial resolution 

Turbutlent Vortex Flow 100 1283float 

Thermal Convection 101 1283float 

Turbulent Jets 150 1283float 

Turbulent Shear Flow 81 1283float 

Heart Modeling 100 1283byte 

5. Test Results. Five datasets were used for our study. Table 1 lists the name and size of each 

dataset. The vortex flow dataset was obtained from pseudo-spectral simulations of coherent turbulent vortex 

structures. The second dataset derived from a parallel three-dimensional thermal convective model and it 

represents the normalized temperature distribution in a closed environment when one side of the volume is 

heated by a constant heat source. The turbulent jets dataset was generated from the modeling of naturally 

developing and forced jets with rectangular cross-section and different inlet conditions. The turbulent shear 

flow dataset was obtained from a study of the generation and evolution of turbulent structures in shear 

flows. The heart dataset was obtained from simulating the electrical impulse conduction in the heart using 

an anatomically accurate cellular automation model. The purpose of including the heart dataset is to 

compare with previous results [16]. The data consist of the state histories of all the elements in the model 

over the duration of the simulation. 

Figure 5 presents histograms generated from first four of the five datasets. In each plot, x axis is data 

value and y axis is the number of voxels. These plots showing the distribution of data values help the 

following discussions. Figure 6 shows one selected frame from each corresponding dataset in Figure 5. Note 

that the use of different transfer functions would lead to very different visualization results. For example, 

the vortex image here looks quite different from the one in Figure 4. 

Table 2 summarizes the encoded results due to different quantizations. The percentage of savings shown 

here is relative to the quantized data, not the raw data. The vortex dataset does not include every time step 

of the simulation. In addition, the data values spread across the spatial domain quite uniformly. Uniform 

quantization brings out most features in the data. However, there is very little temporal and spatial coherence 

in the dataset and consequently the compression rate is low. Enhancing a subset of the data values such as 

the high values with non-uniform quantization increases the compression rate. 

In contrast, uniform quantization does not work very well for the thermal dataset to discern fine fea- 

tures in the data. Two nonuniform quantizations focusing on different ranges of values lead to very different 

compression performances. We have also experimented with an adaptive quantization method which de- 

composes the spatial domain into subdomains and performs local quantization first to encourge voxel fusing 

based on local data statistics. We believe this approach will work well for some datasets, though no dramatic 

improvement on compression rates were obtained for our test datasets. For the shear flow dataset, although 

the second nonuniform quantization method only achieves 40% saving, it helps bring out the most relevant 

structures in the data. Finally, the jets dataset is best encoded with the uniform quantization which not 

only gives the highest compression rates but also brings out most features in the data. 

We found that the quantization error as calculated by Equation 2 is less than 1% for all of our datasets. 

The corresponding computational cost for encoding is acceptable. For the test datasets, it takes on average 

about 0.5 seconds per time step to quantize and 3-5 seconds to perform octree-difference encoding on a 
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TABLE 2 

Compression rates derived from different quantizations. 

Dataset 

Quantization 

Method 

Compression 

Percentage 

Vortex 

Uniform 18 

NonUniform I 71 

Adaptive 19 

Thermal 

Uniform 43 

NonUniform I 28 

NonUniform II 98 

Adaptive 50 

Shear 

Uniform 91 

NonUniform I -7 

NonUniform II 40 

Jets Uniform 98 

SUN Ultra Sparc. For a dataset containing 100 time steps, it takes about 5-10 minutes to encode the whole 

dataset. 

As expected, in many cases the rendering rate for a time-varying sequence can be greatly improved by 

using the compressed data. All of the timings presented are for an image size of 128x128. In this section, 

when we talk of rendering times, we are referring to the total cost of processing one image. That includes 

the time to read the data, to uncompress the data values when necessary, to calculate the gradient, update 

the compositing tree, render and composite. 

The heart and turbulent jet flow datasets achieved the highest compression rate and the highest increase 

in rendering rate. For the turbulent jet flow dataset, the twd-renderer renders the first image in 2.65 seconds 

and the subsequent images at an average of 0.55 seconds, which represents an increase of 80% in the rendering 

rate between the first and consecutive images and an 88% increase in the overall rendering rate. For the 

heart dataset, we saw a 93% increase in the overall rendering rate. 

Figure 7 shows three renderings of the turbulent jet flow dataset. The baseline renderer renders the full 

dataset from the volume data at each time step. The twd-renderer uses all of the optimizations discussed in 

Section 4. The twd-renderer without octree optimizations uses the encoded data and builds the compositing 

tree, however it renders transparent space and uniform space as if they were nonuniform. Due to the transfer 

functions used, the turbulent jet flow dataset has large regions of transparent space and also large blocks 

of non-transparent uniform space. This is the best case for octree optimization, but the figure shows that 

while some of the speedup is a result of using the octree optimizations, the majority of the speedup occurs 

because of the tree merging. 

While the rendering rate increases dramatically when the compression rate is high, it is dependent upon 

the number of large blocks (4096 voxels or larger) which can be compressed. When a single voxel changes, 

the surrounding voxels are re-rendered. Thus, compression resulting from merging 1 voxel blocks or 8-voxel 

blocks is not useful at all in the rendering. Compression resulting from merging 64- and 512-voxel blocks has 

some effect, but the types of datasets which have many small matching blocks and few large matching blocks 

typically require more overhead to use the octree than can be gained by using the compression information. 

An example of this is the turbulent shear dataset. Figure 8 shows the rendering times for this dataset 

11 
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using two different forms of quantization. Figure 9 shows the number of large matching blocks at each time 

step. Notice that at time step 30 in the uniform quantization method, the number of 32768-voxel blocks 

increases and there is an immediate response in the rendering time. The compression using the nonuniform 

quantization method is the result of a large number of small matching blocks, not a small number of large 

matching blocks. The Tenderer is not able to take advantage of the compression and the rendering rate is 

consistently higher. Generally, if the data are compressed by less than 50%, unless many large subtrees 

were merged, little rendering performance gain can be obtained. This is consistent with the results reported 

in [16]. 

Quantization can be used effectively to focus on different features in the data and can affect the number 

of matching blocks at each time step. By choosing the area of interest carefully, a scientist is able to control 

not only the level of feature enhancement but also the compression and rendering times of the data. The 

thermal convection dataset has interesting features which can be emphasized by nonuniform quantization. 

Figure 10 shows the effects of different methods of quantization on the rendering time. 

The vortex dataset can also be compressed well with non-uniform quantization, but the compression re- 

sults from many small voxel blocks and not any larger blocks. Therefore, although the dataset is compressed, 

the rendering time increases. 

The core rendering code for our baseline volume renderer is the same as that used for the twd-renderer. 

It is a very basic renderer with few optimizations. Replacing the core code with a more optimized renderer 

will increase the rendering rate of both Tenderers. The twd-renderer can be configured to stop at any depth 

in the tree and render immediately. The minimum number of nodes which may be rendered is an 8-voxel 

block. Increasing the minimum number of nodes decreases the overhead associated with the octree but also 

decreases the number of matching blocks which do not have to be rerendered. The optimizations which we 

have incorporated into the octree renderer such as moving past transparent blocks without rendering and 

using front to back rendering to encourage early termination of rays are highly dependent upon the opacity 

maps. Using different opacity maps can dramatically change the rendering times. Rendering at 256x256 

required approximately two to three times as long. For larger image size or higher interaction, the tree 

branches can be distributed to multiple processors to be rendered. 

6. Conclusions. Visualization of time-varying data will continue to be important and challenging. We 

have investigated how time-varying volume data may be organized to facilitate direct volume rendering and 

demonstrated some promising results. In general, the selection of encoding and rendering strategies should 

depend very much on data resolution, statistics and visualization requirements. 

We found that in many cases the amount of savings in storage space and rendering time can be tremen- 

dous while the resulting visualization results stay visually indistinguishable from high-resolution ones. This 

suggests that unless the display resolution and visualization requirements are high, we should take advan- 

tage of compression and multiresolution rendering to increase visualization efficiency. The savings in storage 

space also reduces the I/O required by the renderer. With large datasets over long intervals of time, this 

reduction can be a significant part of the overall savings. 

Our goal is to increase the users interaction with the data. This requires that the images be presented 

to the user as rapidly as possible. Although we do not see large savings when the cost of quantization and 

rendering are combined, by preprocessing we can achieve near interactive viewing rates. 

Future work includes the development of application-specific techniques and taking the grid structures 

(curvilinear, unstructured, etc.) into consideration. We will investigate how the order of encoding calcu- 

lations would impact the overall compression and rendering performance.   In addition, we will study the 
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characteristics of time-varying computational fluid dynamics datasets and continue developing appropriate 

compression and rendering methods. 
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