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Introduction: 

This is the final technical report on AFOSR AASERT Grant F49620-95-1- 

0402 (June 1, 1995 through May 31, 1998, $116,936) entitled "Noise 

Characterization of Devices for Optical Computing". There is also a core Grant 

F49620-95-1-0140 (January 15, 1995 through May 31, 1998, $418,671) under 

the direction of Drs. Walkup and Krile. The final report on the core grant is 

being submitted as a separate report. 

Objectives: 

The major objective of the research effort is to investigate the noise 

characteristics of advanced optical sources, spatial light modulators, and other 

devices which are candidates for applications in optical computers.  Obtaining 

good noise models will enable investigators to predict system performance, 

including mean square errors, bit error rates, and other performance measures. 

Overview of the Effort: 

In the past three years we have made progress in two main areas: 

developed and refined a Volterra Series-based nonlinear model for optical 

devices, and additional measurements on real optical spatial light modulators. 

Measurements of the noise characteristics of a Hughes Liquid Crystal Light 

Valve were reported at the SPIE 1996 Annual Meeting in Denver in August, 

1996. Our modeling strategy will enable us to determine linear and nonlinear 

operating characteristics, as well as models for noise and crosstalk, of devices 

useful for applications in optical computing and communication systems.   A 

number of pieces of measurement equipment were acquired and have been 

used in the experiments on various spatial light modulators and optical sources. 



Summary of Accomplishments:. 

See the section "Noise Characterization of Devices for Optical 

Computing" which follows. This summarizes the accomplishments during the 

three year grant period. Also see the paper preprints in the Appendix. 

Noise Characterization of Devices for Optical Computing 

Abstract 

Our approach to the noise characterization of optical devices is to first 

model the device as a nonlinear, multiple-input, single-output system.  This 

system model serves as a basis for characterizing the signal and noise 

performance of the optical device.  Here we review our accomplishments in this 

study.  We report discoveries made since prior progress reports and outline 

future publication and research plans. 

Accomplishments 

We view the optical devices as "black box" systems where the inputs and 

outputs are related to each other by an explicit mathematical operation.  The 

first model we investigated for optical devices was a multiple-input Taylor 

Series expansion about an operating point.  This model is described in 

previous reports and in a paper presented to the SPIE 1996 Conference on 

Materials, Devices, and Systems for Optoelectronic Processing entitled 

"Multiport Model of a Liquid Crystal Light Valve." That paper was included as 

an appendix to a previous report.  In addition we describe in that paper a noise 

immune measurement technique using sinusoidal stimulation and synchronous 

detection with a lock-in amplifier.  We performed several preliminary 

experiments using a Hughes 4050 liquid crystal light valve to confirm the 



feasibility of this approach to characterizing optical devices. The results of 

these experiments are shown in the SPIE Conference paper mentioned above. 

From these experiments we have drawn several conclusions.  The first 

conclusion is that the nonlinear multiport network approach to optical devices is 

reasonable.  We observed the multiple port effects and nonlinear effects we 

anticipated by applying the Taylor Series expansion model.  In addition, for the 

Hughes liquid crystal light valve, we observed that a second order nonlinear 

approximation accounts for the majority of the nonlinear effects. 

The Taylor Series is limited in that it only describes the steady state 

sinusoidal response of a system at a single frequency.  To model the complete 

response of a nonlinear system it is necessary to use a Volterra Series, which 

has been described as a "Taylor Series with memory" and has the same 

convergence properties as a Taylor Series.  The Volterra Series is a 

generalization of the approach used in linear system analysis that uses a 

summation of nonlinear impulse responses to approximate the response of a 

nonlinear system to an arbitrary input.  The mathematical expression of the 

Volterra Series is detailed in our paper accepted for publication in a special 

issue of Applied Optics on spatial light modulators entitled "Volterra Series 

Modeling of Spatial Light Modulators."  This paper is scheduled for publication 

in November.  A pre-print of this paper is included as an appendix to this report. 

Since the Volterra series is a generalization and extension of 

conventional linear systems analysis, it takes a form analogous to linear 

systems analysis.  The nonlinear system is described by a sum of the outputs of 

N nonlinear elements, also known as Volterra kernels.   Each of the nonlinear 

elements is defined by a nonlinear impulse response.  The output of each 



nonlinear element is determined by a multi-dimensional convolution integral. 

The first-order Volterra kernel is simply the response of a linear time invariant 

system defined by the conventional convolution integral.  The second-order 

term is defined by a two-dimensional convolution integral, and the nth term is 

defined by an n-dimensional convolution integral.   Weakly nonlinear devices 

may be adequately represented by Volterra series of low order.  Based on our 

observations in preliminary experiments we have limited ourselves to a second 

order Volterra Series. 

Just as in linear time invariant systems, these nonlinear impulse 

response functions may be transformed into multidimensional nonlinear transfer 

functions.  A nonlinear system may be approximated by a set of nonlinear 

transfer functions that corresponds to the set of Volterra kernels.  Measurement 

of the set of transfer functions describes the nonlinear system and provides a 

tool to analyze the signal and noise performance of the optical device and 

examine nonlinear effects.   In addition, after an accurate estimation of the 

transfer function has been measured, the transfer function may be transformed 

to find the nonlinear impulse responses. 

We investigated different experimental methods of measuring the transfer 

functions of optical devices using a second order Volterra Series model.  A 

method using sinusoidal inputs and synchronous detection is detailed in the 

Applied Optics paper mentioned above.  We show there that the nonlinear 

transfer functions may be directly measured using this technique.   A second 

method we investigated involves using random broad-band signals as inputs to 

a discrete time Volterra series model. 



We outlined a discrete-time Volterra series model in a previous report. 

The discrete-time model is an extension of discrete-time linear system models. 

The system may also be described by formulating the current output as a 

function of past outputs as well as current and past inputs. This is the approach 

commonly used in discrete linear systems.  This method when applied to 

nonlinear systems has been called the NARMAX model (for Nonlinear 

AutoRegressive Moving Average with exogenous inputs).  This formulation is 

also detailed in a previous report. The advantage of the NARMAX model is a 

reduction in the number of parameters required to describe the system.  The 

system parameters may be estimated through a method involving a Gram- 

Schmidt orthogonalization of the actual input and output data.  This method is 

outlined in a previous report and was shown as a poster presentation at the 

1997 OSA Annual Meeting in Long Beach CA.  Once the discrete-time model 

has been estimated, the continuous-time nonlinear transfer functions may be 

calculated. 

Discoveries 

There is no universally applicable method to modeling nonlinear 

systems.  Each model is typically system specific, and must be tailored to the 

characteristics of each system.  Consequently an a priori knowledge of a 

specific nonlinear system is very useful in determining the appropriate 

mathematical model for that system and the measurement technique that may 

better measure the system parameters.  We have investigated the type of model 

we would expect to find for a liquid crystal light valve.  We have found this 

device to be essentially a mixer.  In like manner an a priori knowledge of the 

characteristics of nonlinear systems is useful in matching the models to 
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measured nonlinear system characteristics. We investigated the form of a 

general nonlinear system using a linear-nonlinear-linear block approach. By 

comparing anticipated nonlinear transfer functions with actual measurements, 

the form of the nonlinear transfer function may be deduced. 

We have applied these findings to the measurement of the nonlinear 

transfer functions of a liquid crystal light valve. The results of these 

measurements are shown in the Applied Optics paper mentioned above and 

appended to this report.  This paper includes measured nonlinear transfer 

functions where they are easily made. The measurements are used to 

determined the form of the two-dimensional nonlinear transfer functions, and an 

estimated function is calculated based on measured data.  We show in this 

paper how the Volterra series approach may be applied to a typical optical 

device, and the results that may be obtained. 

We have investigated the noise transformation properties of nonlinear 

systems. The results are outlined in a paper presented to the 1998 SPIE 

Annual International Symposium on Aerospace/Defense Sensing, Simulation 

and Controls entitled "Noise characterization of a liquid crystal light valve using 

a multiple-port Volterra series model." This study shows how the power spectral 

density of the output of a nonlinear system is related to the power spectral 

density of the inputs to the nonlinear system.  We find that the nonlinear transfer 

functions are used in calculating the spectral power density of the system 

output.  This connects our modeling and parameter measurement techniques 

directly to the analysis of the noise characteristics of the device under study.  If 

the inputs to a nonlinear system are independent, we have calculated the 



power spectral density of the total system to be the sum of the power spectral 

densities of each of the nonlinear transfer functions used in the system model. 

We have made preliminary noise measurements of a liquid crystal light 

valve using random signal inputs.  We have noted how the noise propagates 

from each of the inputs to the output. These measurements are outlined in the 

SPIE paper mentioned above.  These measurements show the susceptibility of 

noise in the output signal to noise in each of the input signals. 

Our research will make the connection between the modeling and 

parameter measurement techniques and the noise characterization of the 

optical devices.   We plan to use the measured nonlinear transfer functions to 

calculated the anticipated noise characteristics of optical devices and compare 

the theoretical predictions with measured results.  These experiments and 

calculations will be presented in a paper in preparation for publication in 

Applied Optics or Optical Engineering and in a doctoral dissertation. 
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Light Valve" in preparation for publication in either Applied Optics or Optical 
Engineering. 

Ph.D. dissertation in preparation: 

S.M. Storrs , "Noise Characterization Of Devices For Optical Computing," 
Texas Tech University, 1998. 
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Interactions/Transitions: 

Conferences/Seminars/Briefinas 

1. Presented invited colloquium entitled "Performance Enhancement in Optical 
Computing", Penn State University, State College, PA, September, 1995 (J.F. 
Walkup). 

2. Participated in Phoenix, AZ Workshop(March 27-28, 1996) on Data- 
Encoding for Page-Oriented Optical Memories (Drs. Walkup, Krile, and 
graduate student Jin Choi). Dogan Timucin (NASA Ames) presented a paper 
based on previous Texas Tech AFOSR-funded work relating to statistical 
models for optical 3-plane processors. 
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multiplexing and spectrum spreading techniques", April, 1996 (T.F. Krile and 
J.Y. Choi). 

4. Attended SPIE Aerosense '96. Orlando, FL, and presented paper entitled 
"Application of Multiple Error Correcting Binary BCH Codes to Optical Matrix- 
Vector Multipliers" (T.F. Krile). 

5. Attended SPIE Annual Meeting, Denver, CO and presented paper entitled 
"Multiport Model of a Liquid Crystal Light Valve", August, 1996 (J.F. Walkup and 
M. Storrs). 

6. Participated in panel discussion on Future Directions for Optical Signal 
Processing and Computing,   SPIE Annual Meeting, Denver, CO, August, 1996 
(J.F. Walkup). 

7. Attended OSA Annual Meeting, Rochester, NY, October, 1996 (J.F. Walkup 
and T.F. Krile). 

8. Presented paper entitled "Noise Modeling of a Photon Echo Memory in the 
Frequency Domain" at the 1996 LEOS meeting in Boston, MA, Nov. 1996 (Jin 
Choi). 

9. Attended  Gordon Research Conference on Optical Signal Processing and 
Holography, June, 1997 (J.F. Walkup). Presented poster paper on "Laser Noise 
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10. Attended 1997 SPIE Annual Technical Symposium, San Diego, CA, July, 
1997 (J.F. Walkup and T.F. Krile).  Dr. Walkup received SPIE Fellow award. 

11. Presentation to the Amarillo TX Section of the IEEE entitled 
"Mathematical Models of Optical Devices," September 18, 1997(S.M. Storrs). 
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12. Presented paper "Hologram Multiplexing in Bacteriorhodopsin," OSA 
Annual Meeting, Long Beach, CA, October 1997 (A.S. Bablumian, T.F. Krile, 
DJ. Mehrl, J.F. Walkup). 

13. Presented paper "Noise Characteristics of a Photon Echo Memory," OSA 
Annual Meeting, Long Beach, CA, October 1997 (J.Y. Choi, J.F. Walkup.T.F. 
Krile, and D.J. Mehrl). 

14. Presented paper "Applications of Bacteriorhodopsin for Optical Data 
Storage and Processing,"(invited), LEOS '97, San Francisco, CA, November 
1997(A. S.Bablumian, D.J. Mehrl, T.F. Krile, J.F. Walkup). 

15. Plan to present paper "Holographic Multiplexing in a Multilayer Recording 
Medium", SPIE Vol. 3468. SPIE Annual Meeting, San Diego, CA, July, 1998 
(A.S. Bablumian, T.F. Krile, D.J. Mehrl and J.F. Walkup). 

16. Plan to present paper "Bit Error Rates for a Photon-echo Memory," SPIE 
Vol. 3468. SPIE Annual Meeting, San Diego, CA, July, 1998 (J.Y. Choi, J.F. 
Walkup, T.F. Krile and D.J. Mehrl). 

17. Plan to present paper "Volterra Series Model and Output Statistics of a 
Liquid Crystal Light Valve " at OSA Annual Meeting, Baltimore, MD, October, 
1998 (S.M. Storrs, D. J. Mehrl, T.F. Krile and J.F. Walkup). 

Lab Visits and Interaction 

1. Visited SRI International for meetings with members of Dr. Ravinder Kachru's 
group in Molecular Physics Laboratory, February, 1997 (Drs. J.F. Walkup and 
D.J. Mehrl, Ph.D. student J.Y. Choi). Also visited NASA Ames for discussions 
related to research on holographic data storage in Bacteriorhodopsin. 

2. Interacted with Dr. Henryk Temkin, Maddox Chair Professor at Texas Tech 
University on noise modelling for optical sources and devices (1997-98). 

Transitions 

Dr. Temkin, Dr. Kachru and other researchers are interested in our noise 
models, and actively collaborated with us. Further collaboration is anticipated in 
future years. 

New Discoveries, Inventions or Patents:   No inventions or patents during 
this funding period. See following writeups for details on results obtained. 
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Honors/Awards: 

John F. Walkup: Fellow of IEEE, Optical Society of America, and SPIE. P.W. 
Horn Professor of Electrical Engineering at Texas Tech University. 

Thomas F. Krile: Fellow of Optical Soc. of America. Various teaching and 
research awards from Texas Tech University. 

David J. Mehrl: Various teaching and research awards from Texas Tech 
University. 



APPENDIX 

"Volterra Series Modeling of Spatial Light Modulators" (to appear in Applied 
Optics-Information Processing, Special issue on spatial light modulators, 
Novermber, 1998). 

"Noise characterization of a liquid crystal light valve using a multiple-port 
Volterra series model" (to appear in Proceedings of SPIE Vol. 3388. 1998). 



Volterra Series Modeling of Spatial Light Modulators 

Mark Storrs, David J. Mehrl, John F. Walkup, and Thomas F. Krile 

Optical Systems Laboratory 
Department of Electrical Engineering 

Texas Tech University 

Telephone: (806) 742-3575 
Fax: (806)742-1245 

E-mail: nmstorrs@juno.com 

ABSTRACT 

We present a multiple-input, single-output, weakly nonlinear model of spatial 

light modulators using a second-order Volterra series and describe an experimental 

method to measure the nonlinear transfer functions using sinusoidal perturbation and 

synchronous detection with a lock-in amplifier. We also present an application of this 

method to a liquid crystal light valve. 

OCIS codes: 230.3720, 230.6120. 



1. INTRODUCTION 

Optical information processing and optical computing systems, while benefiting 

from high computational speed and a high degree of parallelism, have often suffered from 

a lack of accuracy. In some applications a lack of accuracy may be tolerated, however 

progress in optical computing requires an improvement in accuracy [1]. Accuracy may 

be improved by developing better models of optical devices, including spatial light 

modulators. These device models can then be used in the design of optical information 

processing and computing systems to optimize the systems for accuracy. This paper 

presents an explicit mathematical model of spatial light modulators and presents an 

experimental method to measure the model parameters. The approach we adopt views 

the spatial light modulator as a "black box" that may be adequately described by a 

mathematical transformation that relates the inputs to the outputs. This is an approach 

often used in communications and control applications and is well suited for systems 

analysis. It is common to convert implicitly described building blocks into explicitly 

described equivalents when forming them into systems. In applying this approach to 

optical systems and devices, we recognize that these devices often have multiple inputs 

and are in many cases nonlinear. We demonstrate this approach by applying it to a liquid 

crystal light valve. 

2. SPATIAL LIGHT MODULATOR MODEL 

Consider the general, multiple-input, multiple-output system shown in Figure 1. 

The iV-inputs and M-outputs are denoted by the vectors x(t) and y(f). They are related by 

the nonlinear transformation T[-]; 



x(0 = 

*i(0 
x2(t) 

-%(0J 

y(0 
y2(0 

y(0 = T[x(0] (i) 

Since this transformation is nonlinear, it is unlikely that it may be expressed exactly in a 

closed form. Because of this we seek a series approximation of the nonlinear 

transformation. Consider the general N-input, single output, multiple port system shown 

as a block-diagram in Figure 2.   The multiple inputs to the system (generally all a 

function of time) are x„ x2, — , xN connected to ports Pj, P2, — , P^ respectively. The 

single output y is measured at port ?N+ v We assume the relationship between the inputs 

and the outputs may be approximated by a power series in terms of the input variables' x„ 

x2, — , xN. This is expressed as a Taylor series [2] expansion about an operating point as 

follows: 

CO OO oo     ^> /n+/n + •■■+tn   rr \ 

Z'V-1 V~>  0 A^IO' ■"■20»""' XNo) 

La-Zu dx   'dx  2 — dx   " 
m,=0 m =0     m=0 UXl     UX2 UXN 

\Xl   *10/   ' V*2   X20'      '" \XN  XN0J 

/«,! m2\ — mN\ 
(2) 

where x10, x20, ... , xm are the operating (bias) points. For a given operating point, the 

partial derivatives may be evaluated to a constant for each choice of indices so that the 

series may be represented by 

co oo oo 

X*i, x2>-, XN) = YJ    Z-Zfl, y »V       , »v 

X (Xj xl0)   (x2 x20)   •■■ (xN xm) (3) 



where the constants are expressed by 

O   '    2 "ß^x 10^20'"'^NO/ 
a mf m2,..., mv      ~^_ m, a„ m, (4) 

""   etc,*1cbc/1' - etc/" w,! iwj! - m„! 

These coefficients define the nonlinear transformation and are functions of the operating 

point (x,0, x20, - jcm). If we assume these coefficients are scalar, we are in effect 

modeling the nonlinear system as a memoryless nonlinear system where the output is 

dependent only on the value of the inputs at each instant. This assumption is too 

restrictive and certainly will not lead to an accurate model of the system. Consequently 

we must allow the coefficients to be complex valued. In doing this we recognize that the 

nonlinear transformation has memory. To incorporate memory into the model, we 

consider the nonlinear transfer function (Volterra Series). 

3 NONLINEAR TRANSFER FUNCTION MODEL OF SPATIAL LIGHT 

MODULATORS 

Nonlinear systems with memory may be formulated in a manner that is analogous 

to that of linear time invariant systems. In fact linear systems are a special case of a class 

of problems that may be described as "generalized Fock spaces" [3]. These are Hubert 

Spaces with "problem-dependent" weighted inner products and include the Volterra 

series. In this framework, linear and nonlinear theory can be unified. This formulation, 

using the Volterra series, allows one to determine the output of a nonlinear system given 

arbitrary inputs using convolution techniques [4] and Laplace transform techniques [5]. 

The Volterra Series is a generalization of the Taylor series [6,7], and has been called a 



"Taylor series with memory" [8]. A Volterra series expansion can be shown to exist for a 

large class of time invariant [9] nonlinear systems. 

The single-input, single-output Volterra description of a time-invariant nonlinear 

system is depicted as a block diagram in Figure 3. This system can be extended to 

multiple-input multiple-output [10] as well as multiple-input single-output cases. Each of 

the blocks in the system is defined by the nonlinear impulse response Ä„(r„^,-rn ), also 

known as the nth order Volterra kernel, where 1 < n < N. For weakly nonlinear systems, 

a small value of N is sufficient to describe the system. The output of the system is the 

sum of the nonlinear elements [6] 

N 

y(t) = Hy„(t), (5) 
n=l 

where the output of the nonlinear elements is determined by the convolution integrals 

oo 

— oo 

oo 

y2(t) =  (( h2(
x\>h) x(f ~ ri) x(f ~ h) dt\ dTi» (7) 

— 00 

and in general, 

oo 

y,(0 = jj -/ te.vO 
— TO 

x x(t - Ti) x(t - T2) — x(t - rn) dxx dr2 — drn. (8) 



We recognize y,(0 as the response of a linear time invariant system defined by the 

conventional convolution integral. The second term of the Volterra series, y2(t), is 

defined by a two-dimensional convolution integral, and the nth term is defined by an n- 

dimensional convolution integral. 

The Volterra kernels possess the properties of symmetry, causality and stability 

[6]. The Volterra kernels are symmetric with respect to the variables of integration xx, z» 

— , r„ so that for the second-order kernel 

/z2(r„r2) = /z2(r2,zi). (9) 

If an unsymmetrical kernel is derived for a system, there is a process to transform it into a 

unique symmetric kernel [6]. To describe a causal system each of the Volterra kernels 

must satisfy the condition 

/Z„(T„^,-r„) = 0      for any ^<0, i=\,-,n. (10) 

The bounded input stability of the nonlinear operator is guaranteed if 

oo 

If '"J"   ' *»(*»'V" % ) I dz\ dr2 - dr„< CO. (11) 
— CO 

Weakly nonlinear systems may be adequately represented by a truncated Volterra system. 

Figure 4 shows a second-order, three-input, single-output Volterra system. This model 

includes a first-order component for each input [h^t), h2(r), h3(r)], a second-order 

component of each input [h^r^), h21(Tx,r2), h^r^rj] and a second-order cross-term for 



each pair of inputs [/J1201:,r2), h23(rx,T2), Ä31(rj,£,)]. The system output is the summation of 

these components. The output of the cross-term components is given by 

00 

yn{t) = JJ hn(rvh) xi(* - *i) «zC- Ti) dTi dri • <12) 
— 00 

The cross-term, second-order, Volterra kernels may also be made symmetric with respect 

to Tj and %. 

Just as in linear time invariant systems, these nonlinear impulse response 

functions can be Fourier transformed into multidimensional transfer functions as follows 

[6,11]: 

oo 

H\Wi) = j hi(Ti) exP HWi rj dzx, (13) 
— CO 

00 

H2(fi>fi ) = JJ h2(Tx,T2) exp [-j2n (fa, +f2r2)] dxx d^ , (14) 
— 00 

and in general 

00 

#„(/„/2,-/„) = Jf -J K(rx,r2,-tn) 
— 00 

x exp [-7271 (fax +fa2 + -/„%)] dxx dx2 - drn.   (15) 

The existence of these transforms is guaranteed for stable Volterra kernels. Because the 

Volterra kernel is symmetric with respect to rx, r2, — , r„, the kernel transform is also 

symmetric with respect to fx,f2, — f„ [6] so that in the second-order case 



H2(fl,f2) = H2(f2,f1). (16) 

Since the Volterra kernel A„(zi, v \)is real> me complex conjugate of the second-order 

transfer function is 

H2*(fvf2)=H2(-fl,-f2). (17) 

Combining the symmetry and complex conjugate properties of the second-order transfer 

function reveals [12] 

H*{f,-f)=H2(-f,f)=HU-/) . (18) 

This demonstrates that H2( -f,f) is a real valued even function with a phase of zero for 

all/ We also observe that the time domain Volterra impulse response may be found with 

the inverse transform 

oo 

AtfW'.)=// -/ H„{fx,f2,-f„) 
— oo 

x exp [j2n (/,r, +f2r± + -f„r„)] dxx dr2 - dxn .    (19) 

For multiple input systems, such as shown in Figure 4, the cross-term transfer function is 

given by 

oo 

Hnifvfi) = JJ M^) exP \rfln (/i*i +f2r2)] dzx dt,, (20) 
-oo 

which shares the symmetry properties of the single-term, second-order nonlinear transfer 

functions. 



4. MEASURING MODEL PARAMETERS 

Several methods of experimentally measuring Volterra kernels and nonlinear 

transfer functions have been suggested. These have been based on both random input 

signals and sinusoidal input signals. The measurements have resulted in both the time 

and frequency domain parameters. Lee and Schetzen [13] describe a method using 

Gaussian random inputs and time-domain correlation techniques. French and Butz [14] 

describe a method using random inputs and frequency domain FFT techniques. Others 

use discrete-time models of nonlinear systems [15] and use random inputs and 

orthogonalization techniques [16] to estimate the nonlinear system parameters. Here we 

describe a frequency domain measurement method using sinusoidal inputs to directly 

measure the nonlinear transfer functions using synchronous detection. The nonlinear 

transfer functions may be used in noise analysis and may be transformed to time-domain 

Volterra kernels to determine the system output to arbitrary inputs. 

Applying Eq. 19 to Eq. 8 with a change of variables, we find 

CO 

y£0=fj -/ Hn{fx,f1---fn)X{f,)QxV{ßnfxt)X{f2)^{j2nfy) 
— CO 

x - X(/„)exp(y27t/„0 dfx df2 - dfn, (21) 

where X(f) is the spectrum of the input signal. When the input signal is sinusoidal, that 

is when 

X(0=^COS(2TI/00, (22) 



where A is the amplitude of the sinusoid and^ is the frequency, the spectrum of the input 

signal is 

X{f) =\ [S(f-fQ) + S(f+f0)], (23) 

where £(•) is the Dirac delta function. Applying this input signal to the Volterra system 

described above, the first term in the series is 

yx(t) = J HU)\ [8{fx -f0) + 5{fx +/0)] exp(./27r/;0 dfx. (24) 
— oo 

Carrying out the integration reveals 

yi(t) =jHU) expO-27t/00 +|Hx( -f0) exp( -jlnfy) . (25) 

Applying the symmetry relationship from Eq. 18 we find 

yi(t) =|HU) exp(y27t/00 + f tf,*(/o) exp( -j2nf0t) . (26) 

By expressing the complex quantity Hx(fQ) in exponential form 

Hl(f0)=\HU)\ew(M), (27) 

and then converting the expression to sinusoidal form we recognize the output of the first 

term of the Volterra series to take the familiar form of a linear system excited by a 

sinusoid 

yi(t) = ä\HU)\ cos(27t/0r + 4). (28) 

With a single sinusoidal input, the second term of the Volterra series is 



A A 

y2(t) = jj H2(fx,f2) 2 [5{fx -/o) + S(Jx +/o)l 2 ^ ~/o) + *</2 +/o)l 
— 00 

x tx^(ß%fxf)QX^{ß%f2t)dfxdf2, (29) 

Carrying out the multiplication and integration reveals 

A2 

y$) = -^H2(foJo) exp(y2ix/00 cxp(j2nfy) 

+ -jH2(-f0,-f0) exp(-/27i/0f) exp(-y27t/0r) 

+ -^H2(-f0,f0) expfrjlnfy) exp(j2nf0t) 

+ ^ J5T2(/0,-/0) expUlnfj) vqtflnfy) . (30) 

Applying the symmetry relationships and converting to sinusoidal form leads to the 

expression 

A2 A2 

y2(t) = T \H2(f0,f0)\ cos(2n2f0t + &) + y |fT2(/0-/0)l . (31) 

We note that this results in a dc signal component and a component at twice the 

frequency of the sinusoidal stimulation. The total output of a truncated second-order 

Volterra system stimulated by a sinusoid is 

XO=l^,(/o)Ucos(27i/0r + ^) 

+ y I J5T2(/0,/0) I cos(27t 2fy +&) + Y \H2(fo-fo) I • (32) 



We observe that the signal contains a sinusoidal component at the frequency of 

the input sinusoid and a sinusoidal component at twice the frequency of the input 

sinusoid. Furthermore the magnitude of the component at the frequency of the input 

signal is proportional to the first-order transfer function and the magnitude of the 

component at twice the frequency of the input signal is proportional to the second-order 

transfer function. This result suggests that we can experimentally measure the first and 

second-order characteristics of a weakly nonlinear device by stimulating the device with a 

sinusoid of known amplitude and frequency, then observing the output with a dual- 

channel lock-in amplifier. This approach can be applied to optical devices by impressing 

a sinusoidal perturbation upon one of the inputs. Figure 5 demonstrates a three-input, 

single-output system with a sinusoidal perturbation applied to one of the inputs and the 

output measured by a lock-in amplifier. When the lock-in amplifier is referenced to the 

frequency of the sinusoidal stimulation we measure a quantity proportional to the 

magnitude of the first-order Volterra transfer function. A dual-channel lock-in amplifier 

allows us to directly measure the phase of the Volterra transfer function. When the lock- 

in amplifier is referenced to twice the frequency of the sinusoidal stimulation (a feature 

commonly available with lock-in amplifiers) we measure the magnitude and phase of the 

second-order Volterra transfer function. With a single sinusoid we can measure the 

second-order Volterra transfer function only along the line/J =f2. To measure the transfer 

function across the entire frequency plane we must apply a sum of two sinusoids at 

differing frequencies 

x(f) = Acos(2nf10 f) + Bcos(2iif201) (33) 



• 

The spectrum of this input signal is 

X(f) =f [*(/-/„) + S(f+fl0)] + \ [S(f-f20) + S(f+f20)].                   (34) 

The output of the second-order term is 

CO 

yl2(f) = jj HM,ß 
— 00 

i [S(f-fio) + S(f+fl0)) + \ [S(f-f20)+ S(f+f20)) 

X \ P(/-/o) + S(f+fl0)] +f [S(f-f20) + S(f+f20)] 

X exp(y27t/;0 exp(7'27t/20 dfxdf2. (35) 

Carrying out the multiplication and integration, then applying the symmetry rules and 

converting to sinusoidal form reveals 

yn(t) = y \Hn(Jwfw)I cos(27t2fl0t + <f,l0) + \ \Hu(fl0,f10)\ 

+ AB\Hu(fl0,f20)\ cos[27t (/10 +f20)t + <f>l2\ 

+ AB | H2(fw-f20) | COS[2TX (/10 -f20 )t + <f>n] 

+ y \Hn{f20,f20)\ cos(2%2f20t + <f>1^+-£ \Hu(f20,f20)\ (36) 

We observe that the complete second-order Volterra transfer function may be measured 

by perturbing an input with a sum of two sinusoids and referencing the lock-in amplifier 

to the sum (or difference) of those frequencies. This measurement is demonstrated in 

Figure 6. The total output of a second-order system with an input of the sum of two 

sinusoids as described is 



y(t)=A I#,(.4)I cos(2nfl0t+fr) + B \H,(f2())\ cos(2nf20t+fa 

A1 A2 

+ 2" \HMM\ cos(2n2fJ+</>w) + -^ \Hu(fl0,fl0)\ 

+ AB\Hu(Jwf»)I COS[2TI(/10 +f20)t + ^J 

+ ^|^2(^0,-/20)l cos[27t(^0-/20)r + «y 

■»■»2 ? 

+ y l^n(/2o,/2o)l COS(2TT2/2(/+ ^0) + T |#n(/20,/20)l.      (37) 

By judicious selection of the two frequencies fw andf20, each of the signal components 

will exist at distinct frequencies and the first and second-order Volterra transfer functions 

may be measured by a lock-in amplifier. Ideally, the two frequencies should be 

incomensurate, however in practice it is sufficient that they be judiciously chosen so as to 

assure reasonable mutual separation of all frequency terms [17, 18]. In addition, because 

of the symmetry relationships, it is only necessary to measure data points in only one- 

fourth of the frequency plane. To measure the cross-term transfer functions we apply a 

stimulation of two sinusoids 

xx(f) = Acos^lnf^f) and x2(f) = Bcos(2nf20f) . (38) 

The output of the cross-term is 

yn(t) = ß Hn(fx,f2)\ [5{fx -/io) + S(fx +/„)] f [S(f2 -/*) + 6{f2 +/M)] 
— oo 

x exp(727i/j0 exp(y27c/20 dfxdf2. (39) 

Carrying out the multiplication and integration reveals 



AB 
yn(t) = -^-Hn(fi0,f2Q) exp(jlTtfi0t) exp(ßnf20t) 

AB + -^Hni-fw~fw) exp(-y27t/;00 exp(-j2nf2(;) 

AB 
+ -^-Hn(-flQ,f20) exp(-j7nfi0t) exp(/27t/20r) 

AB 
+ -j-Hn(fio-fio) exp(y-27i/;o0 exp^^O . (40) 

Applying the symmetry relationships and using exponential forms leads to 

ATI 

y 12(f) = ~2   \Hn(fio>fio)\ cosl2n(fio+f2o)t + T\T\ 

+^ \Hn(fw,f20) I cos[27z(fw-f20)t+<P12]. (41) 

We note that the signal contains a component at the sum of the input sinusoid frequencies 

and at the difference of the input sinusoid frequencies. The magnitude and phase of the 

cross-term Volterra transfer function can be measured by referencing the lock-in 

amplifier to either the sum of the frequencies or the difference of the frequencies. This is 

demonstrated in Figure 7. We note that in all of these measurements we may determine 

the magnitude and phase of the transfer function. 

5. LIQUID CRYSTAL LIGHT VALVE MODEL 

The multiple port approach is well suited to describe a liquid crystal light valve 

(LCLV) spatial light modulator, which is by nature a nonlinear multiple port device. A 

functional diagram of a Hughes 4050 LCLV is shown in Figure 8 [19]. The device has 

three inputs; the write light, the read light and a 5 kHz AC drive signal.   The liquid 



crystal light valve is an optically addressed spatial light modulator that operates by 

spatially modulating the polarization state of the read light. Amplitude modulation is 

achieved by using a polarization analyzer [20]. 

With no write light present, the majority of the voltage from the AC drive signal 

drops across the photosensor and there is virtually no voltage impressed across the liquid 

crystal layer. The liquid crystals are aligned to undergo a 45 degree twist between the 

alignment layers. Linearly polarized incident light on the read side of the device will 

experience a 45 degree polarization rotation between the front alignment layer and the 

dielectric mirror. Upon reflection the light experiences a reverse 45 degree polarization 

rotation and exits the device in the same polarization state as the incident light. A 

polarization analyzer oriented at 90 degrees to the incident light will block the reflected 

light. 

If the write side of the device is illuminated (with coherent or incoherent light) the 

photosensor becomes conductive with a spatial pattern dependent upon the spatial 

intensity distribution of the write light. Where the photosensor is conductive, a voltage is 

impressed across the liquid crystal layer. This voltage causes the liquid crystal molecules 

to tilt in the direction of the electrodes. The degree of tilt is dependent on the voltage 

across the liquid crystal, which in turn is dependent upon the intensity of the write light. 

The linearly polarized incident light is now transformed into elliptically polarized light 

with the degree of ellipticity dependent upon the tilt of the liquid crystal molecule. The 

reflected light now has a polarization component parallel to the orientation of the 

polarization analyzer that will be passed. The intensity of the light passed by the 

polarization analyzer is thus dependent on the intensity of the write light. 



This spatial light modulator may be viewed as a multiple port network as 

illustrated in Figure 9. The input ports of the system are identified as follows: 

Port 1: Write beam intensity (mW/cm), 

Port 2: Read beam intensity (mW/cm2), 

Port 3: AC Drive (volts), 

and the output port is identified: 

Port 4: Photodetector current (mA). 

A model of the LCLV spatial light modulator is presented in the truncated Volterra model 

shown in Figure 4.    This model is truncated to the second-order and is posited to 

approximate the operation of this spatial light modulator. The output is the sum of all of 

these contributions. 

A preliminary experimental setup to perform the lock-in amplifier measurement is 

shown in Figure 10. An argon ion laser beam is first conditioned by a laser intensity 

stabilizer then enters the experimental setup at the upper left corner. A beam splitter is 

positioned to divide the beam into a write beam and a read beam. An acousto-optic (AO) 

cell is positioned in each of the beams to provide intensity modulation of the beams. The 

write and read beams are expanded and passed through a 3mm iris to achieve a beam 

cross section of relatively constant intensity. A pair of polarizers is positioned in both the 

write and read beams to provide control over the intensity of the beams and to ensure 

linear polarization of the read beam. A beamspliter is positioned in both the write and 

read beams to allow measurement of the inputs to the LCLV with photodiodes. Lenses 

are positioned to image the iris aperture onto the LCLV write and read surfaces.   A 



crossed polarizer is positioned to provide intensity modulation of the read beam which is 

then trained onto a photodiode. 

Preliminary measurements are first made with unmodulated write and read beam. 

The static gain of the LCLV is shown in Figure 11. The gain shown here is the ratio of 

the output beam intensity passed through the crossed polarizer to the intensity of the write 

beam. The device shows a monotonically increasing range of operation at low write 

beam intensity and saturation effects at higher write beam intensity. We note that near 

the midpoint of the monotonically increasing range it is quite reasonable to posit that the 

operation of the LCLV may be approximated by a second-order system. The output 

beam intensity is modulated by the 5 kHz AC drive signal. The first-order modulation is 

shown in Figure 12 and the second-order modulation is shown in Figure 13. These 

curves are a function of write light intensity, and represent the output power residing at 

the AC drive frequency (and second harmonic) as a fraction of the read beam intensity. 

The light modulation mechanism producing these effects is the "wobble" of the liquid 

crystal molecules in response to the AC drive signal. This "wobble" produces a temporal 

modulation of the polarization state of the reflected light, which is seen in a temporal 

modulation of the intensity of the light passed by the polarization analyzer. Since the 

liquid crystal is an induced dipole, the molecules tilt with both halves of the AC cycle, 

producing a modulation of the read light at twice the AC drive signal frequency. We note 

that at some levels of write beam intensity the second-order effects are more significant 

than the first-order effects. At the midpoint of the monotonically increasing range of the 

static operating curve (0.0005 mW/cmA2), the first-order gain is approximately 20x10"6 



(that is approximately -47 dB), and the second-order gain is approximately 100x10 (that 

is approximately -40 dB). 

To measure the remaining transfer functions, we set the write beam intensity at 

about the midpoint of the monotonically increasing range, approximately 0.005 mW/cm . 

Modulation of the read beam showed a flat wideband first-order response shown in 

Figure 14. The value shown in Figure 14 is the ratio of the output beam intensity (as 

passed through the beam splitter and crossed polarizer) to the read beam intensity. The 

LCLV shows a negligible second-order response to read beam modulation. These results 

indicate a negligible interaction between the read beam and liquid crystal molecules. 

The response to write beam modulation is very different. The first-order write 

beam response is shown in Figure 15 and the second-order response is shown in Figure 

16. Measured data is shown in the dark line superimposed upon an estimated transfer 

function. The data points were measured by modulating the write beam with a sinusoid 

whose amplitude is approximately 10% of the dc value of the write beam, and observing 

the output beam intensity with a lock-in amplifier. The first-order response was 

measured by referencing the lock-in amplifier to the frequency of write beam modulation. 

The frequency of modulation was swept from 1 Hz to 1 kHz. The first-order curve is 

approximately that of a single pole lowpass filter with a cutoff frequency of about 6 Hz. 

The second-order response was measured by referencing the lock-in amplifier to twice 

the frequency of write beam modulation. The second-order curve is approximately that 

of a second-order single pole lowpass filter with a cutoff frequency of 3 Hz. We note that 

the second-order transfer function is two-dimensional and this measurement only detects 



data points along the line/ =f2. Since the response curve drops at 20 dB per decade (as 

opposed to 40 dB per decade), the second-term may be modeled as a squaring operation 

followed by a low-pass filter [12]. The complete second-order transfer function can be 

shown to take the form 

HM'ß-nUtä), (42> 

where H(f) represents the low-pass filter transfer function. Using the estimated transfer 

function curve shown in Figure 16. the estimated complete second-order transfer function 

is shown in Figure 17. 

In lieu of direct measurement of the second-order cross-term transfer functions, 

they may be approximated from a knowledge of the LCLV operation. Since the output 

beam intensity is directly scaled by the read beam intensity, the modulated output beam 

intensity is also directly scaled by the read beam intensity. In effect this produces a 

multiplication operation between the write beam and the read beam. The second-order 

cross-term transfer function can be shown to take the form 

Hn(fl,f2) = Hy(fl)H2(f2). («) 

Applying this relationship to the transfer functions shown in Figures 14 and 15, and 

making the function symmetrical with respect to /, and f2, results in the second-order 

transfer function shown in Figure 18. The same relationship will hold between the AC 

drive and the two optical beams. The second order transfer function H23 will be the same 

form as Figure 15, scaled by H3 (-47 dB in this case) and shifted to a base frequency of 5 



kHz. The second order transfer function Hn will be the same form as Figure 14, scaled 

and shifted in a similar manner. 

6. CONCLUSIONS 

The Volterra series appears to be a viable model for spatial light modulators that 

allows experimental measurement of the model parameters. The measurement method 

directly determines the nonlinear transfer functions. These transfer functions are 

applicable to noise analysis of the spatial light modulator and may be transformed to 

determine the response of the device to arbitrary inputs. 
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FIGURE CAPTIONS 

Figure 1: General multiple-input, multiple-output system. 

Figure 2: General multiple-input, single output system. 

Figure 3: Single-input, single-output Volterra system. 

Figure 4: Second-order, three-input, single-output Volterra system. 

Figure 5: Synchronous measurement of 1st Order Volterra transfer function. 

Figure 6: Synchronous measurement of 2nd Order Volterra transfer function. 

Figure 7: Synchronous measurement of 2nd Order cross-term Volterra transfer function. 

Figure 8: Liquid Crystal Light Valve (LCLV). 

Figure 9: LCLV Spatial Light Modulator with ports identified. 

Figure 10: LCLV experimental setup. 

Figure 11: LCLV Static Gain. 

Figure 12: LCLV AC Drive 1st Order Transfer Function (H3). 

Figure 13: LCLV AC Drive 2nd Order Transfer Function (H33). 

Figure 14: LCLV Read Beam 1st Order Transfer Function (H2). 

Figure 15: LCLV Write Beam 1st Order Transfer Function (Hx). 

Figure 16: LCLV Write Beam 2nd Order Transfer Function (Hn ). 

Figure 17: Estimated LCLV Complete Write Beam 2nd Order Transfer Function (Hn). 

Figure 18: Estimated LCLV Write Beam-Read Beam 2nd Order Transfer Function (Hn). 
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ABSTRACT 

We present a multiple-input, single-output, weakly nonlinear model of a liquid crystal light valve using a second-order 
Volterra series and describe an experimental method to measure the nonlinear transfer functions using sinusoidal 
perturbation and synchronous detection with a lock-in amplifier. Experimentally measured and estimated nonlinear transfer 
functions are presented. We next discuss the response of the liquid crystal light valve to random inputs and present 
experimental noise measurements. 

Keywords: Spatial Light Modulator, Liquid Crystal Light Valve, Volterra Series, Nonlinear Models. 

1. INTRODUCTION 

Optical information processing and optical computing systems, while benefiting from high computational speed and a high 
degree of parallelism, have often suffered from a lack of accuracy. In some applications a lack of accuracy may be tolerated, 
however progress in optical computing requires an improvement in accuracy1. Accuracy may be improved by developing 
better models of optical devices, then using these models to optimize system design. Developing accurate models of optical 
devices is complicated by the multiple-port nature of these devices and the nonlinear characteristics they exhibit. We 
approach this need for improved device models by developing a multiple-port Volterra series model of optical devices. This 
paper presents an explicit mathematical model of a liquid crystal light valve (LCLV) that views the LCLV as a "black box" 
that may be adequately described by a mathematical transformation that relates the inputs to the outputs. In applying this 
approach we recognize that the LCLV is a multiple-input, single-output nonlinear device. We measure the parameters of this 
model by sinusoidal perturbation with synchronous detection techniques. Optical information processing has suffered from 
inadequate noise models of the components that comprise optical information processing systems. We next consider the 
LCLV with random inputs and present the relationship between input and output power spectral density. 

2. VOLTERRA SERIES MODEL 

In the model we posit for the liquid crystal light valve, the inputs and the output are related by a nonlinear transformation. It 
is unlikely that this transformation may be expressed exactly in a closed form. Because of this we seek a series 
approximation of the nonlinear transformation. For static devices a Taylor series expansion about an operating point may be 
sufficient. This in effect models the device as a memoryless nonlinear system where the output is dependent only on the 
value of the inputs at each instant. This is too restrictive and certainly will not lead to an accurate model of the LCLV. 
Consequently we must consider models that incorporate memory. To incorporate memory into the model, we consider the 
nonlinear transfer function (Volterra Series). 

Nonlinear systems with memory may be formulated in a manner that is analogous to that of linear time invariant systems. In 
fact linear systems are a special case of a class of problems that may be described as "generalized Fock spaces"2. These are 
Hilbert Spaces with "problem-dependent" weighted inner products and include the Volterra series. In this framework, linear 
and nonlinear theory can be unified. This formulation, using the Volterra series, allows one to determine the output of a 
nonlinear system given arbitrary inputs using convolution techniques3 and Laplace transform techniques4. The Volterra 
Series is a generalization of the Taylor series,5,6 and has been called a "Taylor series with memory"7. A Volterra series 
expansion can be shown to exist for a large class of time invariant8 nonlinear systems. 



The three-input, single-output, second-order Volterra description of a LCLV is depicted as a block diagram in Figure 1. The 
inputs are identified Xj(0, x2(t) and x3(/). Each of the blocks in the system is defined by a nonlinear impulse response, also 
known as the Volterra kernel. This model includes a first-order component for each input [hx(r), h2(f), h3(r)], a second-order 
component of each input [hn{rx,v^, /^(r^), A33(r,,^)] and a second-order cross-term for each pair of inputs [h^r^), 

*23(*i»^)» *3i(*i>*2)]- The 0UtPut of each of these components is denoted ymn(t). The system output, y(t) is the summation of 
these components. 
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Figure 1: Block diagram of a Volterra series model of a spatial light modulator. 

The output of each of the components in the system is defined by convolution integrals.   The output of the first order 
component is given by 

JiCO = J" A,(ii) xx(t - TX) dzx . 0) 

We recognize this as the conventional convolution integral describing the output of a linear, time-invariant system. As with 
linear systems, the nonlinear impulse response for causal system must be zero for any arguments less than zero. The output 
of the second-order order component is given by the two-dimensional convolution integral 

yn(t) = JJ An(*i,*2)xx(t- r,)xx(t- ^) dxx d^ . (2) 

The second-order Volterra kernel is symmetric with respect to rx and ^ such that h^z^) = /»„(TJ,^). If an unsymmetrical 
kernel is derived for a system, there is a process to determine the equivalent symmetrical kernel. In addition the bounded 
input stability of Volterra kernels is assured if the kernels are absolutely integrable. The output of the second-order cross 
terms is given by 

yl2(t) = jf hn(.Tvh) *i(' - r\) xi({ ~ *2> dT\ dTi > (3) 

which shares the symmetry properties of the second-order, single-input kernel. Just as in linear time invariant systems, these 
nonlinear impulse response functions can be Fourier transformed into multidimensional transfer functions5,9: The existence 
of these transforms is assured for stable Volterra kernels. The first-order, transfer function is given by the conventional 
Fourier transform of the first-order Volterra kernel as follows: 



H\(fi) = J Ai(Ti) exP BWi rJ rfri (4) 

The second-order, nonlinear transfer function is given by the two-dimensional Fourier transform 
GO 

H\\U\*fi )= JJ hu («i»^) exP B2* (/iri +M)] A ^ • (5) 

Because the second-order Volterra kernel hn (r,,^) is symmetric with respect to r, and ^, the transfer function is symmetric 
with respect to/j and^ , such that Hn(fx,f2 ) = Hn(f2,fx ). Since the Volterra kernel /»„(r,,^) is real, the complex 
conjugate of the second-order transfer function is Hn*(fvf2 ) = Hn( -fv -f2 ). Combining the symmetry and complex 
conjugate properties of the second-order transfer function reveals10 Hn*(f, -f ) = Hn( -f,f) = Hu(f, -f ). This 
demonstrates that Hn(-f,f) is a real valued even function with a phase of zero for all/ The second-order, cross-term 
transfer function is given by 

Hn(fvf2) = JJ hn (TvTz) exP l-fi-71 (/i «i +/2r2)] rfri rfz2 (6) 

This transfer function shares the symmetry and conjugate properties of the single-input second-order transfer function. 

This model may be applied to a LCLV by first identifying the input and output ports. A functional diagram of a Hughes 
4050 LCLV is shown in Figure 2. The device has three inputs; the write light (x,), the read light (x2) and a 5 kHz AC drive 
signal (x3). The LCLV is an optically addressed spatial light modulator that operates by spatially modulating the polarization 
state of the read light. Amplitude modulation is achieved by using a polarization analyzer11. This provides a single output 
(y). When the write side of the device is illuminated (with coherent or incoherent light) the photosensor becomes conductive 
with a spatial pattern dependent upon the spatial intensity distribution of the write light. Where the photosensor is 
conductive, a voltage is impressed across the liquid crystal layer. This voltage causes the liquid crystal molecules to tilt in 
the direction of the electrodes. The degree of tilt is dependent on the voltage across the liquid crystal, which in turn is 
dependent upon the intensity of the write light. Linearly polarized incident light on the read side of the device will be 
transformed into elliptically polarized light with the degree of ellipticity dependent upon the tilt of the liquid crystal 
molecule. The reflected light now has a polarization component parallel to the orientation of the polarization analyzer that 
will be passed. The intensity of the light passed by the polarization analyzer is thus dependent on the intensity of the write 
light. 
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Figure 2: Liquid Crystal Light Valve (LCLV). 



3. MEASUREMENT OF NONLINEAR TRANSFER FUNCTIONS 

We use a frequency domain measurement method using sinusoidal inputs to directly measure the nonlinear transfer functions 
using synchronous detection with a lock-in amplifier. When an input to the system is sinusoidally modulated at frequency/ 
the output of the system will contain components at frequency/and harmonics of/ Provided the system is weakly 
nonlinear, the higher harmonics do not contribute greatly to the output signal. Each of the frequency components will be 
proportional to the various nonlinear transfer functions in the Volterra series12. The first-order transfer functions will reside 
at the fundamental frequency. The second-order transfer functions will reside at twice the fundamental frequency. 
Measuring the second-order cross-term transfer functions requires that two inputs be modulated at differing frequencies. The 
transfer function will reside at the sum (or difference) of the two input frequencies. These frequency components may be 
measured with a dual-phase lock-in amplifier by simply referencing the lock-in amplifier to the desired frequency. The 
phase angle as well as the magnitude of the nonlinear transfer function may be measured using this process. The nonlinear 
transfer functions that may be measured by this method are summarized in Table 1. 

Table 1: Measurement of Nonlinear Transfer Functions. 

lst-Order 2nd-Order 2nd-Order Cross-Term 

NTF Frequency NTF Frequency NTF Frequency 

Write Beam Frequency: fw 

Read Beam Frequency: fK 

AC Drive Frequency: fAC 
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With a single sinusoid we can measure the second-order Volterra transfer function only along the line/, =f2. To measure the 
transfer function across the entire frequency plane we must apply a sum of two sinusoids at differing frequencies. The 
complete second-order Volterra transfer function may be measured by perturbing an input with a sum of two sinusoids and 
referencing the lock-in amplifier to the sum (or difference) of those frequencies. By judicious selection of the frequencies 
fw, fR and fAC each of the signal components will exist at distinct frequencies Ideally, the frequencies should be 
incomensurate, however in practice it is sufficient that they be judiciously chosen so as to assure reasonable mutual 
separation of all frequency terms. In addition, because of the symmetry relationships, it is only necessary to measure data 
points in only one-fourth of the frequency plane. 

An experimental setup to perform the lock-in amplifier measurement is shown in Figure 3. An argon ion laser beam is first 
conditioned by a laser intensity stabilizer then enters the experimental setup at the upper left corner. A beam splitter is 
positioned to divide the beam into a write beam and a read beam. An acousto-optic (AO) cell is positioned in each of the 
beams to provide intensity modulation of the beams. The write and read beams are expanded and passed through a 3mm iris 
to achieve a beam cross section of relatively constant intensity. A pair of polarizers is positioned in both the write and read 
beams to provide control over the intensity of the beams and to ensure linear polarization of the read beam. A beamspliter is 
positioned in both the write and read beams to allow measurement of the inputs to the LCLV with photodiodes. Lenses are 
positioned to image the iris aperture onto the LCLV write and read surfaces. A crossed polarizer is positioned to provide 
intensity modulation of the read beam, which is then trained onto a photodiode. 

Preliminary measurements were made with unmodulated write and read beam. The static gain of the LCLV is shown in 
Figure 4. The device shows a monotonically increasing range of operation at low write beam intensity and saturation effects 
at higher write beam intensity. We note that near the midpoint of the monotonically increasing range it is quite reasonable to 
posit that the operation of the LCLV may be approximated by a second-order system. The output beam intensity is 
modulated by the 5 kHz AC drive signal. The first-order modulation is shown in Figure 5 and the second-order modulation 
is shown in Figure 6. These curves represent the output power residing at the AC drive frequency (and second harmonic) as 
a fraction of the read beam intensity. The light modulation mechanism producing these effects is the "wobble" of the liquid 
crystal molecules in response to the AC drive signal. This "wobble" produces a temporal modulation of the polarization state 
of the reflected light, which is seen in a temporal modulation of the intensity of the light passed by the polarization analyzer. 
Since the liquid crystal is an induced dipole, the molecules tilt with both halves of the AC cycle, producing a modulation of 
the read light at twice the AC drive signal frequency. We note that at some levels of write beam intensity the second-order 
effects are more significant than the first-order effects. 
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Figure 3: Experimental setup to measure LCLV model parameters. 
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Figure 6: LCLV AC Drive 2nd Order Transfer Function (H33). 

To measure the remaining transfer functions, we set the write beam intensity at about the midpoint of the monotonically 
increasing range, approximately 0.005 mW/cm2. Modulation of the read beam showed a flat wideband first-order response 
shown in Figure 7. The LCLV shows a negligible second-order response to read beam modulation. These results indicate a 
negligible interaction between the read beam and liquid crystal molecules. The response to write beam modulation is very 
different. The first-order write beam response is shown in Figure 8 and the second-order response is shown in Figure 9. 
Measured data is shown in the dark line superimposed upon an estimated transfer function. The first-order curve is 
approximately that of a single pole lowpass filter with a cutoff frequency of about 6 Hz. The second-order curve is 
approximately that of a second-order single pole lowpass filter with a cutoff frequency of 3 Hz. We note that the second- 
order transfer function is two-dimensional and this measurement only detects data points along the line/, =f2 . Since the 
response curve drops at 20 dB per decade (as opposed to 40 dB per decade), the second-term may be modeled as a squaring 
operation followed by a low-pass filter. The complete second-order transfer function can be shown to take the form 

Hn{fx,f2) = HUx+f2), (7) 

where H(f) represents the low-pass filter transfer function. Using the estimated transfer function curve shown in Figure 9. 
the estimated complete second-order transfer function is shown in Figure 10. In lieu of direct measurement of the second- 
order cross-term transfer functions, they may be approximated from our knowledge of the LCLV operation. Since the output 
beam intensity is directly scaled by the read beam intensity, the modulated output beam intensity is also directly scaled by the 
read beam intensity. In effect this produces a multiplication operation between the write beam and the read beam. The 
second-order cross-term transfer function can be shown to take the form 

Hn{fx,f2) = HxUJH2(f2). (8) 

Applying this relationship to the transfer functions shown in Figures 8 and 9, and making the function symmetrical with 
respect to/j and^, results in the second-order transfer function shown in Figure 11. The same relationship will hold between 
the AC drive and the two optical beams. The second order transfer function Z/23 will be the same form as Figure 9, scaled by 
H3 (-47 dB in this case) and shifted to a base frequency of 5 kHz. The second order transfer function Hn will be the same 
form as Figure 14, scaled and shifted in a similar manner. 

4. NOISE CHARACTERIZATION 

Our interests in noise characterization are both the noise transformation characteristics of the LCLV and the noise generation 
characteristics of the LCLV. The experimental setup show in Figure 3 was used in these measurements. Preliminary noise 
measurements were made by modulating the write and read beam with a random noise source. The write beam, read beam, 
AC drive and output beam signals were sampled with an A/D converter at 50000 samples per second and were stored for 
analysis. Signal-to-noise ratios were calculated for the write beam, read beam and output beam signals. The results of these 
measurements are shown in Table 2. Four different experiments are reflected in these results, each shows different aspects of 
the noise characteristics of the LCLV. 
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Figure 8: LCLV Write Beam 1st Order Transfer Function (//j). 

In the first experiment we impressed no noise signal upon the write beam or the read beam. The beams did bear laser noise 
and noise from extraneous sources, such as vibration. The write beam displays a very high signal-to-noise ratio and the read 
beam a moderately high signal-to-noise ratio. We note that the output beam has a reduced signal-to-noise ratio, indicating 
noise generation within the LCLV. The source of the noise is the 5 kHz and 10 kHz modulation due to the AC drive signal. 

The second experiment was conducted with a random signal source modulating the write beam and the read beam 
unmodulated. A portion of the write beam time signal and power spectral density is shown in Figure 12. The signal has 
significant frequency components to 1 kHz. The write beam has a low signal-to-noise ration and the read beams shows a 
very high signal-to-noise ratio. The output beam shows increased noise levels, but still demonstrates a high signal-to-noise 
ratio. This is attributed to the lowpass filtering characteristic (see Figure 8) applied to the write beam. A great part of the 
noise present in the output beam is again attributed to the AC drive. 
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Figure 10: Estimated LCLV Complete Write Beam 2nd Order Transfer Function (Hn). 

In the third experiment the read beam was modulated with a random noise source and the write beam was unmodulated. A 
portion of the read beam time signal and power spectral density is shown in Figure 13. The signal has significant frequency 
components to higher than 3 kHz. The read beam has a low signal-to-noise ratio and the read beam shows a very high signal 
to noise ratio. Interestingly the output beam shows a small improvement in signal-to-noise ratio. This indicates lowpass 
filtering of the read beam. Our measurements shown in Figure 6 indicate a flat response from 1 Hz to 1 kHz. Apparently the 
transfer function attenuates higher frequencies. The improvement in signal-to-noise ratio is attributed to the attenuation of 
high frequencies. This effect is more significant than the noise generated by the AC drive signal. 

The fourth experiment was conducted with both the write beam and the read beam modulated by a random noise source. 
Both the read and the write beam show a low signal-to-noise ratio. The output beam shows an improved signal-to-noise ratio 
similar to that shown in the third experiment. Again this demonstrates the lowpass filtering of the write beam and the 
attenuation of higher frequencies of the read beam. 
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Table 2: Preliminary LCLV Noise Measurement. 

Experiment Description Write Beam SNR Read Beam SNR Output Beam SNR 

1. No Write or Read beam modulation 159 73 60 

2. Write beam modulated 20 293 210 

3. Read beam modulated 503 16 19 

4. Write and Read beam modulated 17 16 19 

The Volterra series model may be used to analyze the propagation of noise through the LCLV. By the nature of optical 
devices, we must consider random inputs about a dc value. In the following discussion the dc component has been 
subtracted from the inputs xl and x2, and also from the output >>. We recall the Volterra series model is the sum of the various 
Volterra kernels as shown in Figure 1. The power spectral density of the first-order kernels is well know and is given by 

*..,(/) = »I2^ (9) 

For a zero-mean input the output of the first order kernels is also zero-mean. This is not true of the second-order kernels. 
The zero-mean power spectral density may be defined by subtracting the non-zero response to a zero-mean random input.10 

The power spectral density of the second-order kernel then takes the form 

S.yn ,„(/) = 2/ I #„(/„/-/,)12 5Vi(/, )SVi(/-/,) #, • (10) 

The second-order cross-term kernels can be shown to have a similar zero-mean power spectral density that incorporates two 
inputs as follows: 

S>^f) = / ' Än(/i./-/i) 12 sx^A) *%(/-/!) dA (11) 

From these results, the power spectral density of each of the Volterra kernels may be determined provided we know the 
power spectral density of each of the inputs (either random or sinusoidal) and the magnitude squared of each of the nonlinear 
transfer functions. To determine the power spectral density of the total Volterra system we first determine the 
autocorrelation of the system output. This is given by 
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RJir) = Ebit)y(t+T)].. yy 
(12) 

where y(t) is the sum of the linear, second-order and second-order cross terms E[-] is the expectation operator.  Explicitly 
showing these sums reveals 

RyjA = E{|>,(0 +y„(0 + - +y3M x [y^+t) +yu(.t+t) + - +y3l(t+$\} (13) 

Carrying out the multiplication results in eighty-one terms, most of which result in zero contribution. In determining this we 
assume that the inputs statistically independent, zero-mean, wide sense stationary and ergotic. Those that remain and 
contribute to the autocorrelation are included in 

The spectral power density of the output is simply the Fourier transform of the autocorrelation and is given by 

SJA=syi,p+s,u,uu+sya,uM+syi,2u+sv__ v..(z)+5, 
Each of these terms is defined in Eq. 9, 10 or 11. 

M+Sv_vM+Sy<T)+S(T). >w 

(14) 

(15) 

The power spectral density of a LCLV excited by random inputs in the write and read beams is shown in Figure 14. The 
inputs are shown in Figures 12 and 13. Qualitatively , the output appears to have similar time and spectral properties as the 
read beam. This indicates that the dominant term in the Volterra series is the first-order read beam term [H2(f)]. Since the 
read beam contained frequencies up to 3 kHz and above, the contribution of the AC drive signal, detected at 5 kHz and 10 
kHz is minimal. 
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Figure 13: Write Beam Time Signal and Power Spectral Density. 

5. CONCLUSIONS 

The Volterra series is capable of representing weakly nonlinear, multiple-input, single-output systems. The Volterra kernels 
may be measured through straightforward techniques. The measured quantities are directly applicable to the spectral 
analysis and noise characterization of the nonlinear device. The Volterra series is a reasonable model for the LCLV and 
provides a tool to analyze the noise properties of the device. 
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