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Introduction 



PART I - INTRODUCTION 

1.0 General 

Intelligent material systems and structures have been investigated by various government 
agencies and private corporations in the past decade. Intelligent material systems and 
structures are engineered systems with a significant degree of autonomy that enables 
them to maximize performance, provide adaptive functionality, and minimize life-cycle 
cost. These engineered systems are formed by incorporating highly integrated actuators 
and sensors into the structure. These components may have structural functionality, as 
well as control logic, signal conditioning and power amplification electronics. Such 
actuating, sensing, and signal processing elements are incorporated into a structure for the 
purpose of influencing its mechanical and thermal characteristics to achieve desired 
structural performance 

A wide variety of applications for intelligent structure technologies exist in aerospace, 
defense, auto, civil, and medical devices industries. These include aeroelastic, control and 
maneuver enhancement, reduction of vibrations and structure borne noise, jitter reduction 
in precision pointing systems, shape control of plates, trusses and lifting surfaces, 
isolation of offending machinery and sensitive instruments, flexible robotic arms damage 
detection, reduction of life-cycle-cost of buildings, bridges and lifelines, and sensitive 
biocompatible medical instrumentation. 

The rebuilding and enhancement of our Nation's infrastructure can greatly profit from the 
research, development, and implementation of intelligent material systems. Intelligent 
material systems can allow us to design buildings, bridges, lifelines, etc. to not only have 
a greater envelope of utility but also do so while reducing the overall life-cycle cost—it is 
precisely this objective which defines intelligent systems. Intelligent structures 
incorporate innovative material compositions and sophistication in the design and 
architecture in order to simplify construction, reduce maintenance, and decrease cost of 
the entire system. The synergy of actuators, sensors, and controls, will not only allow 
structures of the future to have increased performance and functionality, but will facilitate 
the solution of many socio-economic issues concerning the repair, enhancement and 
construction of our Nation's infrastructure. 

Several technical developments have been combined to establish the potential feasibility 
of intelligent structures. The first is a transition to laminated materials. In the past, 
structures were built from large pieces of monolithic materials which were machined, 
forged, or formed to a final structural shape, making it difficult to incorporate any active 
element inside the structure. However, in the past thirty years a transition to laminated 
material technology has occurred. Laminated materials allow for the easy incorporation 
of active elements within the build up of structural forms. 
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Exploitation of the off-diagonal terms in the material constitutive relations is a second 
trend makes the development of intelligent structures promising. The full constitutive 
relations of a material include characterizations of its mechanical, optical, 
electromagnetic, chemical, physical, and thermal properties. Researchers have focused 
on only block diagonal terms for quite sometime. For example, those interested in 
exploiting a material for its structural benefits have focused only on the mechanical 
characterization, and those interested in exploiting its electrical properties have focused 
on the electrical characterization. However, much gain can be obtained by exploiting the 
off-block diagonal terms in the constitutive relations, which for example, couple the 
mechanical and electrical properties or couple the mechanical and thermal properties. 
The characterization and exploitation of these off-diagonal material relations had led to 
many of the progress in the intelligent structure technology. 

Central to the emergence of intelligent structures is the development of information 
processing, artificial intelligence, and control disciplines. These developing technologies 
have created the enabling infrastructure based on which intelligent structures can 
develop. Control architectures and algorithms are the brains of intelligent systems. These 
are where the very intelligence comes from. The design of these architectures and 
algorithms is of utmost importance for the effective utilization of smart functions of 
intelligent structures. 

In an intelligent structure, the presence of active elements such as actuators, sensors and 
processors impact the host structure by increasing the mass and stiffness of the system 
and interfering with the load path and potentially introducing new structural 
discontinuities which must be accommodated. This introduces great challenges for 
accurate modeling of these systems. On the other hand, the complex interactions among 
sensors, actuators, the host materials, and the processors must be fully characterized 
before the technology can reach its full potential. Experimental models are powerful tools 
for characterizing these complicated interactions and showing the dynamic behavior of 
laboratory scale active systems. However, experimental models are limited by size, cost, 
time, noise, and many laboratory unknowns. It is virtually impossible to generate large 
quantities of data for full size structures. Therefore, development of a simulation 
package for design and analysis of smart structural systems would greatly enhance this 
technology. 

The present research is directed toward modeling and simulation of some of the elements 
of smart structures such as sensors, actuators and host structures. Shape Memory Alloys 
(SMA) are among candidate materials suitable for wide applications as sensors and 
actuators in smart structures. They have the unusual material property of being able to 
sustain and recover large strains (of the order of 10%) without inducing irreversible 
plastic deformation and to "remember" a previous configuration and return to it with a 
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temperature change. Their ability to achieve large strains instantaneously enables the 
design of structures capable of extremely large, recoverable deflections. In addition, 
shape memory alloys are relatively lightweight, biocompatible, easy to manufacture and 
have a high force to weight ratio [Wayman, 1980]. These characteristics of SMA make it 
an ideal candidate for shape control and frequency tuning of composite laminates. On 
the other hand, laminated composites are best suitable as host material, for smart 
structural systems. Their laminated structures provide the capability of embedding 
sensors, actuators, and the electronic circuitary in the load-bearing structure. Following 
is a summary of activities related to the technology of smart structures that was pursued 
during the course of this research. 

2.0 Shape Memory Alloys (SMA) 

Given the variety of potential uses for SMA and the high interest in developing new 
applications, the ability to accurately model and analyze structures containing SMA 
components via a finite element procedure is extremely attractive. The incorporation of 
the SMA finite element procedure into the design stages of new products could reduce 
development times and costs dramatically. Since the properties of a particular alloy can 
be easily and drastically altered in the manufacturing process, the properties of a SMA 
component for a given design can be varied systematically in the finite element analysis 
before production. This optimization procedure will enable use of shape memory alloy 
components with specifically tailored properties that will realize their full potential in 
each individual application. 

The following research work related to modeling of Shape Memory Alloys (SMA) were 
conducted during this project. 

• Development of thermomechanical constitutive relations for SMA based on 
the kinetics of solid-solid phase transformation for arbitrary paths in stress- 
temperature space. 

• Development of criteria for complete cyclic loading-unloading and partial 
loading-unloading conditions. 

• Development of numerical schemes in a finite element framework for state 
determination during phase transformation and solution of highly nonlinear 
field equations for SMA. 

• Implementation of nonlinear truss and beam elements for SMA. 
• Introduction of a 3D model based on the extension of the proposed ID 

thermomechanical model. 
• Formulation of large kinematics for pseudoelastic behavior of SMA and its 

finite element implementation. 
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• Extension of the thermomechanical model to tension-compression through 
introduction of new internal variables. 

• Numerical and algorithmic developments with respect to the finite element 
method for a multi-dimensional truss and a two-dimensional beam elements. 

• Extension of above formulation to finite kinematics elements. 

Computational aspects of solid-solid phase transformation modeling were a challenge 
during the course of this research. State determination with all possibilities in a stress- 
temperature space required design of specific numerical schemes for convergence. The 
hysteresis of phase transformation in cyclic loadings, its expansion and contraction 
during phase transformation, and the nonlinear material response within the hysteresis 
loop made the modeling phase transformation in Shape Memory Alloys much more 
complicated as compared to the modeling of other material nonlinearities such as 
plasticity. 

The details of these developments are discussed in Part II of the present report and in the 
progress reports during the course of this research. 

3.0 Multilayer Shell Theory of Laminated Composites 

In the last two decades, composites have found increasing application in many 
engineering structures. Recent advances in the technologies of manufacturing and 
materials have enhanced the current application of composite materials from being used 
as secondary structural elements to becoming primary load-carrying structural 
components. Due to the inherent inhomogeneity and anisotropy of these materials, 
analysis of composite structures imposes new challenges on engineers. 

Plate and shell structures made of laminated composite materials have often been 
modeled as an equivalent single layer using classical laminate theory (C.L.T.) 
[Christensen, 1979; Jones, 1975; Pagano, 1989 & 1973; Pipes & Pagano, 1970] in which 
thickness stress components are ignored. C.L.T. is a direct extension of classical plate 
theory in which the well-known Kirchhoff-Love kinematic hypothesis is assumed 
enforced. This theory is adequate when the thickness (to side or radius ratio) is small. 
However, laminated plates and shells made of advanced filamentary composite materials 
are susceptible to thickness effects, because their effective transverse moduli are 
significantly small compared to the effective elastic modulus along the fiber direction. 
Furthermore, the classical theory of plates, which assumes that the normals to the mid- 
plane before deformation remain straight and normal to the plane after deformation, 
under predicts deflections and over predicts natural frequencies and buckling loads. 
These discrepancies arise due to the neglect of transverse shear strains. The range of 
applicability of the C.L.T. solution has been well established for laminated flat plats 
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[Noor & Burton, 1989; Pagano, 1989; Reddy, 1993]. In order to overcome the 
deficiencies in C.L.T., refined laminate theories have been proposed [Byun & Kapania, 
1992; Noor & Burton, 1990 & 1989; Reddy, 1993, Oct and Dec 1984; Robbins, Reddy & 
Murty, 1991; Whitney & Pagano, 1970]. These are single layer theories in which the 
transverse shear stresses are taken into account. They provide improved global response 
estimates for deflections, vibration frequencies and buckling loads of moderately thick 
composites when compared to the classical laminate theory. A Mindlin type first-order 
transverse shear deformation theory (S.D.T.) was first developed by Whitney and Pagano 
[1970] for multi-layered anisotropic plates, and by Dong and Tso [1972] for multi- 
layered anisotropic shells. Both approaches (C.L.T. and S.D.T.) consider all layers as 
one equivalent single anisotropic layer, thus they can not model the warping of cross- 
sections, that is, the in-plane distortion of the deformed normal due to transverse shear 
stresses. Furthermore, the assumption of a non-deformable normal results in 
incompatible shearing stresses between adjacent layers. The later approach also requires 
the introduction of an arbitrary shear correction factor, which depends on the lamination 
parameters for obtaining accurate results. It is well established that such a theory is 
adequate to predict only the gross behavior of laminates. 

The exact analyses performed by Pagano [1989; 1973; Pipes & Pagano, 1970] on the 
composite flat plates have indicated that the in-plate distortion of the deformed normal 
depends not only on the laminate thickness, but also on the orientation and the degree of 
orthotropy of the individual layers. Therefore the hypothesis of non-deformable normals, 
while acceptable for isotropic plates and shells, is often quite unacceptable for multi- 
layered anisotropic plates and shells that have a large ratio of Young's modulus to shear 
modulus, even if they are relatively thin [F. Chang, Perez, & K.Y. Chang, 1990; Reddy, 
1993, Oct & Dec 1984]. Thus a transverse shear deformation theory which also 
accounts for the warping of the deformed normal is required for accurate prediction of 
the elastic behavior (deflections, thickness distribution of the in-plane displacements, 
natural frequencies, etc.) of multi-layered anisotropic plates and shells. 

In view of these issues we have developed a multi-director shell theory for composite 
laminates with the following attributes: 

1. The displacement field is continuous through the thickness of the multi-layer 
structure while the rotation field is layer-wise continuous (in 2-D) and can be 
discontinuous across the finite element layers through the thickness direction. This 
displacement field fulfills a priori the geometric continuity conditions between 
contiguous layers. 

2. The assumed displacement field is capable of modeling the distortion of the deformed 
normal, without increasing the order of the partial differential equations with respect 
to the first-order transverse shear deformation theory. 

3. The assumed displacement field has a 3-D feature, thereby modeling accurately the 
interlaminar conditions and predicting the 3-D edge effects, in orthotropic layers. 

1-5 



4. Like the shear deformable theory, the proposed composite shell theory provides 
flexibility in the specification of the boundary conditions. 

5. In this theory, at most, only first derivatives of displacement and rotation fields 
appear in the variational equations. The practical consequence of this fact is that only 
C° continuity of finite element functions is required, which is readily satisfied by the 
family of LaGrange elements. 

6. Development of electromechanical and thermomechanical models for simulation of 
active surfaces with sensors and actuators elements (either embedded or mounted) is 
straight forward and it is a natural extension of the theory for coupled systems. 

Considerable attention has been devoted, during the past few years to the developments 
of active structural systems with shape control capabilities [Pfaeffle, 1993], [Beauchamp, 
1992], [McLean, 1993]. These structures range from simple beams that are controlled 
with a single actuator to the more imaginative compliant fins that are controlled with a 
distributed network of actuators. In these structures, the emphasis has been placed on 
utilizing Nitinol fibers which are embedded either directly or indirectly inside the fabric 
of these multilayer structures. Generally Nitinol fibers are thermally trained to shrink and 
remain straight upon heating above their austenite phase transformation temperature. 
Restraining the fibers from shrinking, by the composite when the fibers are directly 
embedded or by end restraints when embedded indirectly results in the generation of 
large forces. By virtue of the spatial spacing between the direction of the developed 
phase recovery forces and the neutral planes, control moments are generated which are 
then used to control the shape of the structures. In this manner, the shape memory effect 
is not fully utilized to its complete potential particularly because the deflection of the 
Nitinol fibers is limited to motions along the fibers' longitudinal axes. Furthermore, the 
use of directly embedded fibers results in thermal buckling of the composites due to the 
thermal stresses induced by the activation of the Nitinol fibers. In the case of the 
indirectly embedded fibers, mechanical as well as thermal buckling are developed due to 
the generated in-plane recovery forces. In either case and before the occurrence of 
buckling, the stiffness as well as the natural frequencies of the Nitinol-reinforced 
composites is reduced considerably. 

An alternative way of controlling the shape of Nitinol-reinforced composites relies on the 
operation of Nitinol strips which are indirectly embedded inside the composites [Baz, 
1994], where a full utilization of the shape memory effect to control the shape of beams 
without compromising their structural stiffnesses or frequencies is demonstrated. 

Several biomedical applications have also resulted in innovative designs where active 
structure has experienced deformations that are an order of magnitude larger than the 
actuator material [Barrett, 1995]. 
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To develop modeling capabilities suitable for these applications, a comprehensive 
literature review was conducted on geometrically nonlinear finite element approaches and 
nonlinear solution techniques proposed in the last two decades. Shape control 
applications are mostly associated with geometrically nonlinear kinematics but small 
strain values. As a result, an element co-rotational procedure was selected along with a 
nonlinear solution technique for handling the geometric nonlinearities. 

The theoretical issues related to the implementation of the co-rotational procedure and the 
close relationship between the Updated Lagrangian formulation and the co-rotational 
procedure are discussed in Part III of this report. All the approximations made in the co- 
rotational procedure as well as the restrictions and limitations caused by them are also 
identified. 

4.0 Summary 

Part II of this report presents the constitutive modeling of shape memory alloys and its 
numerical implementation. Martensitic phase transformations are discussed. Evolution 
equations for production of austensite, and single variant/multiple variant martensite are 
presented. State determination for finite element modeling of the theory is discussed. 
Truss and beam elements of SMA for both linear and nonlinear kinematics are developed 
and a series of numerical simulations are performed. 

Part III presents the finite element formulation of geometrically nonlinear multi-layered 
shells in a co-rotational framework. Total and Updated Lagrangian formulations for the 
element co-rotation procedure are discussed. Stabilization techniques for under- 
integrated nonlinear shell elements are investigated, four-node quadrilateral and eight- 
node hexahedral elements are developed. Several simulations of flat and curved 
structures under various loadings are performed and the results are compared with 
benchmark problems to show the accuracy of the proposed theory. 

Publications and presentations associated with this work are listed below. 

1. "Finite Strain Formulation of Pseudoelastic Materials," Computer Methods in 
Applied Mechanics and Engineering, 148 (1997) 23-37. 

2. "Multi-layered Shell Formulation of Composite Laminates," International Journal for 
Numerical Methods and Engineering (in press). 

3. "Coupled Thermomechanical Simulation of Shape Memory Alloys," Smart Structures 
and Materials Conference, San Diego, March 1997. 

4. "Finite Element Implementation of Large Deformation Coupled Thermomechanical 
Response of Shape Memory Alloys." Fourth US National Congress on 
Computational Mechanics, San Francisco, August 1997. 
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5. "Thermomechanical Simulation of Expansion and Contraction of Shape Memory 
Alloy Stent," 1st International conference on Advanced Biomaterials, October 1997, 
Canada. 

1-8 



References 

1. Barrett, R., and Gross, S., "Super active shape-memory alloys composite," SPIE 
Conference, San Diego, Feb. 1995. 

2. Baz, A., Chen, T., and Ro, J., "Shape control of Nitinol-reinforced composite beams," 
SPIE 2190, 436-453, 1994. 

3. Beauchamp, C.H., Nadolink, R.H., and Dean L.M., "Shape memory alloy articulated 
(SMAART) control surfaces," Proc. of Active Materials and Adaptive Structures, ed. 
G. Knowles, IOP Publishing Ltd., Philadelphia, PA, pp. 455-460, 1992. 

4. Byun, C. and Kapania, R.K., "Prediction of interlaminar stresses in laminated plates 
using global orthogonal interpolation polynomials," AIAA Journal, 30, No 11, Nov. 
1992. 

5. Chang, Fu-Kuo, Perez, J.L., and Chang, K.Y., "Analysis of thick laminated 
composites," Journals of Composite Materials, 24, 801-822, August 1990. 

6. Christensen, R.M., Mechanics of Composite Materials, John Wiley & Sons, NY 
1979. 

7. Dong, S.B. and Tso, F.K.W., "On a laminate orthotropic shell theory including 
transverse shear deformation, "Journal of Applied Mechanics, 39, 1972. 

8. Jones, R.M., Mechanics of Composite Materials, McGraw-Hill Book Co., New York, 
1975. 

9. McLean, B.J., Capenter, B.B., Draper, J.L., and Misra, M.S., "A shape memory 
compliant control surface," Proc. of SPIE Conference on Smart Structures and 
Intelligent Systes, vol. 1917, pp. 809-818, 1993. 

10. Noor, A.K. and Burton, W.S., "Assessment of computational models for multi- 
layered composite shells," Applied Mechanics Review, 43, No. 4, 67-97, 1990. 

11. Noor, A.K. and Burton, W.S., " Assessment of shear deformation theories for multi- 
layered composite plates," Applied Mechanics Review, 42, No.l, 1-13, 1989. 

12. Pagano, N.J., Interlaminar response of composite materials, Composite Materials 
Series, Vol. 5., Elsevier, New York, NY, 1989. 

13. Pagano, N.J. and Pipes, R. B., "Some observations on the interlaminar strength of 
composite laminates," Int. J. Mech. Sei., 15, 679,1973. 

14. Pfaeffle, H.J., Lagoudas, D.C., Tadjbakhsh, LG., and Craig, K.C., "Design of flexible 
rods with embedded SMA actuators," Proc of SPIE Conference on Smart Structures 
and Intelligent Systems, vol. 1917,pp.762-773, 1993. 

15. Pipes, R.B. and Pagano, N.J., "Interlaminar stresses in composite laminates under 
uniform axial extension, " J. Comp. Materials, 4, 538-548, 1970. 

1-9 



16. Reddy, J.N., "An evaluation of equivalent-single-layer and layer-wise theories of 
composite laminates," Composite Structures, 25, 21-35, 1993. 

17. Reddy, J. N., "A simple higher-order theory for laminated composite plates," Journal 
of Applied Mechanics, 51, 745-752, December 1984. 

18. Reddy, J. N., "A refined non-linear theory of plates with transverse shear 
deformation,"/«?. J. Solids Struct, 20, 881-896, October 1984. 

19. Robbins, D.H., Reddy, J.N. and Murty, A.V.K., "On the modeling of delamination in 
thick composites," in Enhanced Analysis Techniques for Composite Materials, ed. L. 
Schwer, J. N. Reddy and A. Mai, The Winter Annual Meeting of the American Society 
of Mechanical Engineers, Atlanta, Georgia, December 1-6, 1991. 

20. Wayman, CM., "Some applications of shape-memory alloys," J. Metals, 32, 129- 
137,1980. 

21. Whitney, J. M. and Pagano, N.J., "Shear deformation in heterogeneous anisotropic 
plates,"/. App. Meek, 37, 1031, 1970. 

1-10 



Part II 

Shape Memory Alloys 
Theory and Numerical 

Implementation 



Chapter 1 

Introduction 

Part II of the report covers our research in the area of constitutive modeling of shape memory 
alloys, applications, general characteristics of martensitic transformations and a new con- 
stitutive model for solid-solid phase transformations. A new algorithm is developed for the 
thermo-mechanical constitutive model based on trial values of stress and strain. Lastly, the 
model is implemented into a multi-dimensional truss and a two-dimensional beam element. 
For each of these cases we consider both linear and finite kinematics. 

The objective of this part of the report is the formulation and implementation of a robust 
and efficient class of finite elements for the treatment of first order solid state martensitic 
transformations. A constitutive model describing the macroscopic behavior of martensitic 
transformations is developed in the setting of linear and finite kinematics. Due to its broad 
use in industry, Nickel-Titanium (NiTi) is considered for the majority of the numerical 
simulations. However, it should be noted that these developments are applicable to other 
binary and ternary alloys. 

The remainder of this chapter describes the motivation of the present work as well as a brief 
literature review of martensitic transformations from a material and numerical standpoint. 
Lastly, an overview of the subsequent chapters is outlined. 
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1.1    Motivation 

For the past several decades, researchers have been working in the area of solid-solid phase 
transformations, specifically martensitic transformations. Some alloys which undergo marten- 
sitic phase transformations have the ability to deform up to a strain of approximately 11% 
for single crystals and approximately 8% for polycrystals FUNAKUBO [1984] AND DUERIG ET.AL. 

[1990], which is an order of magnitude greater than common engineering alloys used for 
design structures such as carbon and stainless steels. These alloys are commonly referred 
to as Shape Memory Alloys (SMA). The range of strain for SMA, although moderate, can 
be "fully" recovered under either a load and/or a thermal cycle. The conditions for this 
recovery depend upon a variety of parameters, to be discuss in detail in Chapter 2. 

During the transformation process, the crystal structure of the material is altered, result- 
ing in microscopically and macroscopically measurable changes in the mechanical, thermal, 
acoustical, electrical and magnetic properties DUERIG ET.AL. [1990]. These characteristics, 
which can be designed into the material by adding alloying elements, make SMA attractive 
from an engineering standpoint. In addition to the physical changes, the alloys have other 
features which make them attractive, such as biocompatibility, high resistance to corrosion 
and fatigue, and a high force to weight ratio. 

There are a variety of SMA currently available, but few exhibit the range of motion described 
above, especially under cyclic conditions. The most common alloys used are a binary alloy 
Nickel-Titanium (NiTi) and ternary copper alloys CuZnAl and CuAlNi. The alloy which is of 
most interest for the current study is NiTi commonly referred to as Nitinol (Nickel Titanium 
Naval Ordnance Laboratory), due to its high recoverable strain, manufacturability and its 
potential in the medical industry. 

As an example of a simple engineering application for SMA, we consider the area of smart 
structures, namely active vibration control and shape control. Through a variation in the 
kinetic or thermal fields, the strain level and material properties can be altered to facilitate 
a desired response of the structure. Figure 1.1 depicts the use of these alloys or "smart 
materials" in a simple mass-spring system for vibration control. 

Figure 1.1 depicts a spring-mass system in two different temperature states. The system on 
the left is at a low temperature, T = To where the crystal structure of the spring is such 
that the stiffness is given as K = KQ. The system on the right is at a high temperature, 
T — T0 + AT, under the same state of stress. At the elevated temperature the crystal 
structure of the spring is alter such that the resulting stiffness is K = aK0. The fundamental 
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Figure 1.1: Vibration control for a spring-mass system using smart materials for a constant 
load and variable temperature. 

frequency of this simple spring-mass system is given by u> = yjKjM. We see that ratio in 
the fundamental frequency between the two states is sfa. As an example, relative changes 
in the frequency as high as a factor of 2 (i.e. a « 4) can occur for temperature variations of 
AT = 15 - 40C for NiTi, FUNAKUBO [1984]. 

As previously mentioned, the potential for SMA in the medical industry is increasing. Since 
biocompatibility is paramount for medical devices, the composition of the alloys must be 
chosen judiciously. Fortunately, one of the best biocompatible alloys in the class we are 
concerned with is NiTi. The main concern with regard to biocompatibility or toxicity is 
the surface of the instrument or device and since NiTi naturally forms an oxidized layer of 
TiC>2 on its exterior, it is a good candidate for medical applications. One such application 
is a medical device referred to as a stent, see Figure 1.2. The stent is placed within an 
artery typically after full balloon angioplasty to aid and give support to deteriorated regions. 
Traditionally, in this procedure a stainless steel stent structure is placed over the balloon 
and expanded with the balloon against the artery wall, once the balloon is deflated and 
removed the stent remains expanded. Although similar in design and construction to their 
stainless steel counterparts, the NiTi stents give the advantages of: deliverability to the 
region of choice after the angioplasty has been performed, a reduction in the pressure the 
stent exerts on the vessel wall (typically the stent is design such that the resulting stiffness of 
the in-situ stent is low), it detectability under exploratory procedures such as MRI, increased 
biocompatibility, the ability to recover its geometry in the event of a local bifurcation of the 
artery due to some external stimuli and its amenability to surface coatings for local drug 
delivery. 

Further applications are discussed in WAYMAN [1980] AND FUNAKUBO [1984], which include 
package clamps, disc seals, shut off valves, orthodontic arch wires, medical guidewires and 
catheters, eyeglass frames, orthopedic implants and more. 

The key focus of the present work is to develop a robust constitutive model, which is readily 
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Figure 1.2: NiTi medical stent. 

implemented into a numerical setting for the analysis and design of shape memory alloy 
structures. The particular avenue used to numerically solve the representative equations of 
the model problem will be the finite element method. 

1.2    Background 

The first recorded observation of a shape memory alloy was in 1932 by CHANG & READ [1951] 
for AuCd. Subsequent discoveries of various copper and iron based alloys were discovered 
shortly afterward. However in 1961 the Naval Ordnance Laboratory observed that NiTi had 
properties of a SMA, BUEHLER ET. AL. [1963]. Since that time significant work has been 
directed to the understanding of both the microscopic and macroscopic behavior of these 
alloys. 

There are a variety of approaches researchers have taken to model and understand the 
behavior of shape memory alloys. We overview some of the more outstanding areas and 
highlight their strategies. 

One approach is concerned with describing the process of the phase transformation on a 
local level. This approach has been to develop models based upon non-convex multi-well 
free energy formulations with an addition of a non-local interaction terms to account for 
interfacial energy at the phase boundary. Using a Landau-Devonshire based model FALK 

[1980] was the first to apply a multi-well free energy function to describe both stress and 
thermally induced phase transformations for martensitic transformations. Additional work 
soon followed along these lines and are discussed in FALK [1984], BALL & JAMES [1992], SUN 

& HWANG [1993AB], ABEYARATNE & KNOWLES [1993], KAFKA [1994AB], ABEYARATNE ET.AL. [1994], 
KIM & ABEYARATNE [1995], ROGERS [1996], AND PATOOR ET. AL. [1996]. MULLER k. Xu [1991] 
extended the developments above to model the characteristics of the phase transformations 
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at high temperatures, specifically pseudoelasticity. 

Utilizing arguments from thermodynamics and statistical mechanics MULLER k WILMANSKI 

[1981], ACHENBACH k MüLLER [1985] ACHENBACH [1986] AND ACHENBACH [1989] have developed 
a rate-dependent constitutive model to describe the martensitic phase transformation under 
kinetic and thermal loading. 

The significant work done in the area of micro-mechanics and statistical thermodynamics 
with respect to martensitic transformations has enabled the development of macro-structural 
models. Specifically, a phenomenological approach in which the micro-structure is accounted 
for by the introduction of internal variables into the constitutive theory. TANAKA k IWASAKAI 

[1985] AND TANAKA [1986] incorporated the earlier work on free energy functions to develop a 
rate-independent model which describes the phenomenological behavior of martensitic phase 
transformations for a one-dimensional bar under a tensile stress state. LIANG k ROGERS [1990] 
extending this work by integrating Tanaka's rate equations to develop a model in which 
evolution equations have an explicit form. BRINSON k LAMMERING [1993] incorporated the 
Tanaka model into a finite element setting with finite kinematics for a one-dimensional 
bar, again restricted to a tensile state of stress. IVSHIN k PENCE [1994AB] extended the 
constitutive theory to incorporate thermal effects under a tensile state of stress, but due to 
the complexity and parameters needed for their model (i.e. specific entropies), their model 
has not attracted attention from an implementation standpoint. A general phenomenological 
model for SMA was also developed by AURICCHIO [1995] for both tensile and compressive states 
for pseudoelasticity. 

As seen above, efforts have just recently begun in the area of computational mechanics in 
regard to general phenomenological shape memory alloys models. The numerical models 
which have been developed thus far are limited to a high temperature regimes and account 
for micro-structure production/depletion in tensile states of stress only. To overcome these 
deficiencies we have developed a one-dimensional constitutive model and algorithm which 
encompasses the fully thermomechanical regime of the phase transformation space for both 
tensile and compressive states of stress. The constitutive model is based upon the intro- 
duction of internal variables for both tensile and compressive states from which we develop 
evolution equations which capture the phenomenological behavior of the martensite phase 
transformations for all temperature and stress states. In addition, an algorithm for state 
determination is developed which relies on modified trial state variables. 
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1.3    Applications 

Shape memory alloy devices have been used commercially for over twenty years, WAYMAN 

[1980]. With the advent of shape memory alloys in the market place, products have exhibited 
enhanced functionality with respect to their ability to react and adjust to an external process 
in real time. These products have a wide range of applications. The two main areas of focus 
are: commercial and medical applications. 

There are two main mechanisms employed for the design and construction of SMA devices, 
free and constrained recovery. In some designs a combination of both is used. Free recovery 
typically consists of an initial configuration in which the specimen is crystallographically 
martensite and under the action of external stimuli is deformed into an intermediate con- 
figuration. The specimen is then heated and freely recovers the imposed deformation, at 
the new configuration the specimen is in an austenitic state. This process may be repeated 
by cooling the specimen from the austenitic state, at zero load, to form martensite, which 
is then loaded and subsequently heated. This mode of recovery is widely used in medical 
instruments for the recovery of blood clots or other inclusions within the body. Constrained 
recovery consists again of an initial configuration in which the specimen is crystallographi- 
cally martensite and under the action of external stimuli is deformed into an intermediate 
configuration. The specimen is then placed in contact with another component in the sys- 
tem. Upon heating, the specimen attempts to recover the deformation initially imposed on 
it, but the contact points restrict a full recovery. The resulting contact points firmly join 
the two parts together. This approach is widely used for couplers and clamping devices. 

1.3.1    Commercial Devices 

Commercial applications include some of the following products: brassiere underwires, an- 
tenna rods for cellular telephones, orthodontic bridge wires, temple and bridge components 
for eye glass frames, pipe couplings, coffee maker components, thermostatic mixing valves, 
active vibration and shape control of composite structures embedded with shape memory 
alloy fibers and deployment and release mechanisms in extreme conditions, such as space 
and deep sea exploration. 

The first significant application in the commercial sector were pipe couplers, WAYMAN [1980] 
employing constrained recovery to join two pipes or repair cracks in existing pipelines, 
see Figure 1.3 The process for the coupling begins initially at ambient temperature in an 
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austenitic state. The coupling is cooled below a critical value and loaded and/or deformed 
mechanically until the coupling has transformed into 100% martensite crystallographically. 
The expanded coupling is placed over the location to be joined and allowed to heat up to 
ambient temperature. During the thermal cycle a reverse phase transformation to austenite 
occurs, along with the associated strain recovery. The resulting parts are securely fasten by 
the SMA coupling. Years of service have shown remarkable reliability of these shape memory 
alloy connectors under various conditions leading to the extended use of SMA constrained 
recovery for other sealing and fastening devices. 

1 - Ctigiral Cotpling Diameter at Artlent Tö^erature 

2 - M=chanically E>£Hnd at Cool Taiperature 

- Install en Pipe at ODOI Ifenperatute 

4 - Haat Coupling to ftrtiLent T&p^rature 

Figure 1.3: Shape memory alloy pipe coupling. The process begins with the specimen at 
ambient temperature (1) and is then cooled at a constant load (typically zero) transforming 
the austenite to multiple variant martensite (2). The coupling is then expanded, transforming 
the specimen to a single variant of martensite and placed over the pipe to be joined (3). 
Lastly, the coupling is allow to heat to ambient temperature and contracts (4). 

1.3.2    Medical Devices 

The medical applications are numerous and has potential for significant growth in appli- 
cations. The predominant shape memory alloy structures used in the medical field are 
guidewires, hingeless and steerable instruments and self expanding stents. 

Guidewires are used to access the desired location in the body from an external entry point. 
Once the guidewire is in place, the device, such as a catheter, is delivered over the guidewire to 
area of interest. With its inception in 1953 (FERNALD ET. AL. [1994]), stainless steel guidewire 
have aided the surgeon in many tasks. The recent introduction of Nitinol guidewires in 
1987 (FERNALD ET AL [1994]) has gained wide acceptance due to its superior performance 
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over its stainless steel counterpart. The difference of shape memory alloy guidewire over 
typically used stainless steel is the superior performance in trackability, kink resistance, 
flexibility and torquability. These features yield a guidewire which can maneuver through 
various pathways in arteries without undergoing permanent deformation or buckling, while 
maintaining excellent controllability. 

Self-expanding stents, see Figure 1.2, are utilized for the treatment of stenosis of hollow 
organs or arteries by aiding in the support of the deteriorated region, see OZAKI [1996] AND 

SIGWART [1997] for a general review of stents and new technologies. The placement of the 
stent is described below. The stent with an initial diameter of 3 - 15mm is cooled below a 
critical temperature and placed into a delivery tube with an outside diameter of 1 - 6mm. 
The delivery tube with the stent inside is then heated to room temperature. The delivery 
tube is placed on a guidewire and brought to its desired location. Once the delivery tube is 
at the desired location, the stent is pushed out of the delivery system. The stent undergoes a 
reverse transformation (martensite to austenite) and expands to its original shape and size. 
The stents are designed such that the final configuration minimizes the contact pressure with 
the vessel wall. The placement of the stents keeps the vessel open and allows unimpeded 
blood flow. The advantage over the stainless steel stent model is its ability to expand and/or 
contract twice or more its size without the onset of permanent deformation. The ability of 
contracting the stent without permanent damage reduces the size of the delivery tube in 
which the stent is placed, which in turn avoids large incisions or surgery for the placement of 
the delivery tube and reduced trauma to tissue. These benefits result in accelerated recovery 
for the patient and reduced hospital costs. 

1.4    Overview 

Part II of this report is directed toward constitutive theory and numerical implementation 
using the finite element method of shape memory alloys. An outline of each section is briefly 
discussed below. 

In Chapter 2 we discuss the general characteristics of martensitic phase transformations 
and the associated macroscopic behavior. Chapter 3 summarizes the general theory of a 
thermomechanical continuum with the inclusion of internal variables. Constitutive models 
for shape memory alloys for linear and finite kinematics are also developed and discussed 
in Chapter 3. Numerical and algorithmic developments with respect to the finite element 
method are proposed in Chapter 4 for a multi-dimensional truss-bar and a two-dimensional 
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beam element. Several simulations are presented which show the qualitative and quantitative 
behavior of the model under various loading conditions. The development of the algorithm 
for the determination of state is also presented, along with its advantages over commonly 
used methods. 
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Chapter 2 

Martensitic Phase Transformations 

This chapter is dedicated to describing the general characteristics of martensitic phase trans- 
formations. Both mechanical and thermodynamic aspects of phase transformation classifi- 
cation and activation will be addressed. We also discuss the characteristic features of the 
shape memory effect and the pseudoelastic effect for shape memory alloys. 

2.1    General Characteristics 

Martensitic transformations, classified as first order diffusionless displacive transformations, 
consist of lattice transformations involving shearing deformation, which results from a co- 
operative motion of atoms over a small distance. This movement is such that there exists 
a one-to-one correspondence between lattice points in the parent phase (austenite) to the 
lattice points in the product phase (martensite), known as lattice correspondence. The inter- 
face between the parent and the product phases corresponds to the plane on which shearing 
occurs during the transformation. This plane is commonly referred to as the habit plane and 
during transformation is accompanied by a macroscopic change in shape. Throughout the 
transformation, the habit plane experiences no strain or rotation. These conditions lead to 
preservation of planes and lines between the parent and product phases and is thus termed 
an invariant plane which can be described by a linear transformation as shown in Figure 2.1. 

During a martensite transformation, the motion shown in Figure 2.1 represents an ideal- 
ization.   Typically, a number of martensite crystals are formed with differing habit plane 
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Figure 2.1: Martensitic transformation from a multiple variant state to single variant state. 
The solid and hatched regions represent different variants of martensite, which coalesce into 
a single variant under external stimuli. The plane or interface between the variants is called 
the habit plane. 

indices, but all crystallographically equivalent. The differing habit planes' indices are called 
variants. 

Also note from Figure 2.1 the martensitic transformation is predominantly a shearing type 
of motion, resulting in a quasi-isochoric motion. The relatively small change in volume 
(—0.1% to 0.1%) FISHER [1994] and lattice structure allows the transformation to proceed 
without incurring plastic deformation in the parent phase. Whereas, for ferrous alloys the 
volume change is typically an order of magnitude larger (although regarded as being iso- 
choric) and plastic deformation is evident in the parent phase. 

Lastly, the crystal structure of martensite is relatively less symmetric compared to the parent 
phase from which various variants of martensite occur. Due to the reduced symmetry, the 
variety of lattice correspondences between phases involved in the reverse transformation 
are restricted. A result of its ordered structure, the orientation of the parent phase is 
automatically preserved. 

2.2    Classification of Transformations 

There are two types of martensitic transformations: athermal and isothermal. For the devel- 
opment of the shape memory alloy model we only need to consider athermal transformations, 
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outlined below. 

An athermal transformation is a transformation which advances when the thermal field 
is below some critical temperature Tms

l in a stress free reference configuration. Above 
this temperature, the parent phase is stable (i.e. the material has a natural affinity to an 
austenitic state). The transformation may be non-thermoelastic or thermoelastic. If non- 
thermoelastic during the transformation, martensite micro-regions are nucleated and grow 
to their final size over a very small time interval (approximately 1/3 the elastic wave speed of 
the solid, FISCHER [1994] ). Continued cooling will not affect further growth of the martensite 
crystals. The transformation will continue by further nucleation and growth of martensite 
until in the remaining parent phase is depleted. Conversely, in thermoelastic transformations 
after the martensite micro-regions are nucleated they continue to grow at a rate proportional 
to the thermal field. Shape memory alloys are an example of thermoelastic transformations. 

Moreover, most thermoelastic transformations occur in ordered alloys since they are crys- 
tallographically reversible. Since the original orientation of the parent phase is necessarily 
selected during the transformation, alloys which undergo thermoelastic transformations also 
experience the shape memory effect, which will be discussed in the following sections. 

2.3    Activation of Transformations 

Activation of a martensitic transformation occurs due to the presence of a driving forces, 
either thermal of kinetic. To initiate a transformation, the chemical free energy difference 
between the parent and product phases must be greater than the necessary free energy 
barriers, such as transformational strain energy or interface energy, as shown in Figure 2.2. 

The temperature Tms, indicates the critical value the temperature must be reduced to, from 
the equilibrium temperature T0, in order for the forward transformation to occur. This 
reduction in temperature and subsequent value for the free energy is the necessary driving 
force for the martensite transformation. The temperature denoted by Tas indicates the 
critical temperature at which the reverse transformation will occur, if the temperature is 
increased. The forward and reverse transformation can be seen as a product wedge within 
the parent phase, as depicted in Figure 2.3, under the action of an external driving force 
either thermal or kinetic. 

1The symbol Tms denotes the critical temperature below which martensite is produced. 
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Figure 2.2: Free energy versus temperature. At T0 we see that both austenite and martensite 
can co-exist. Whereas, at lower temperatures austenite is unstable and the system has 
a natural affinity towards martensite. The opposite is true for high temperatures where 
austenite is stable and martensite is not. 

T < 0  and/or  fj > 0     (growth) T > 0   end/or  rj < 0      {daza/l 

Figure 2.3: Product wedge. The upper diagram shows the progression of the martensite 
(arrow shape figures) in the austenite matrix (solid background) under the action of external 
stimuli. Whereas, the lower diagram shows the depletion of the martensite (arrow shape 
figures) in the austenite matrix (solid background) under the action of external stimuli. 

For either the forward or reverse transformation eventually the sum of the chemical and 
non-chemical free energies approach a certain minimum value and growth is arrested and 
the transformation is complete. 

For the determination of when transformations initiate, the space parameterized by stress 
and temperature is commonly used, instead of the space parameterized by free energy and 
temperature. The stress-temperature space is referred to as the phase space and is depicted 
in Figure 2.4 for tensile states of stress . 
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Figure 2.4: Phase space diagram depicting transformation zones and their associated values 
of stress and temperature for activation. 

In Figure 2.4 the arrows indicate the directionality for an active transformation, while as
cr 

and o{r denote the critical start and finish stress of a martensite transformation and Cm 

and Ca represent of the slope of the transformation lines. The transformation temperatures, 
Tmf,Tms,Tas and Taf indicate the start and finish temperature at zero stress for martensite 
and austenite, respectively. Lastly, ay indicates the value of stress above which plastic slip 
will occur. Dependant upon the path taken within the phase space, certain characteristic 
features of the stress-strain space (a - e) will be manifested. Further discussion of various 
paths is addressed in the following sections. 

2.4    Shape Memory Effect 

If a martensite transformation is induced purely by a thermal field below a critical temper- 
ature, Taf

2, the resulting effect is called "self accommodation" or "twinning". The ensuing 
multiple variants which form tend to average the overall deformation yielding a configuration 
similar to the parent configuration. Macroscopic deformation is not observable under such 
a transformation, neglecting the thermal expansion term. 

If the martensite transformation is further induced by a kinetic field the multiple variants 
which are present will coalesce into one variant in the preferred direction of loading, in a 
process known as detwinning.   Upon removal of the kinetic field, a permanent deforma- 

2The symbol Taf denotes the critical temperature above which austenite is stable. 
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tion is retained until the specimen is heated above the critical temperature, Taf, leading 
to a recovery of the residual deformation. Note, to obtain a full reverse transformation, 
the martensite transformation must undergo a thermoelastic martensite transformation (i.e. 
crystallographically reversible) and deformation by slip must hot occur. The process of an 
initial thermal/mechanical loading followed by a thermal loading to recover the transforma- 
tion strain is typically termed the shape memory effect. The basic schematic is shown in 
Figure 2.5. 

100% Austenite 

100% Mjltiple 
\Sriant ttertgrsite 

Figure 2.5: Shape memory effect. The process begins stress free at a high temperature and 
is cooled under zero load to form martensite. The specimen is then loaded and unloaded at 
constant temperature. Last, the specimen is heat to return to its original austenitic state. 

2.5    Pseudoelastic Effect 

When the thermal field is above the critical temperature Taf and the specimen is loaded 
mechanically above a critical stress level crm/3, the austenite crystal will transform into a 
single variant martensite oriented in the direction of loading, accompanied by a macroscopic 
strain as high as 11%. The strain is recovered upon removal of the mechanical load, since 
martensite is not stable at low stress and high temperatures. Typically this type of trans- 
formation is called pseudoelasticity, since the behavior is such that the material returns to 

3 The symbol amf denotes the critical stress above which only martensite is stable. 
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its initial configuration upon removal of the loading. The basic schematic is shown in Figure 
2.6 

100% Single Variant 
tfertensite 

Figure 2.6: Pseudoelastic process begins stress free at a high temperature and is then loaded 
to a martensitic state and unloaded at constant temperature to its original austenitic state. 

For a pseudoelastic transformation to obtain a full reverse transformation the martensite 
transformation must undergo a thermoelastic martensite transformation (i.e. crystallograph- 
ically reversible) and deformation by slip must not occur. 
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Chapter 3 

One Dimensional Shape Memory 
Alloy Model 

In this chapter we develop the framework for a solid-solid phase transformation model. 
Internal variables are used to phenomenologically treat the response of the microstructure 
on a macroscopic level. 

We begin with a review of the basic equation of a continuum. Following the review, linearized 
thermoelasticity is presented in one-dimension for subsequent use. The phenomenological 
constitutive equation describing the solid-solid phase transformation behavior is presented 
and discussed. To complete the constitutive equation for the model evolution equations for 
various transformation zones within the phase space are explicitly derived. 

3.1    Continuum Mechanics 

We shall give a brief introduction to the classical theory of continuum mechanics in the 
setting of nonlinear elasticity. For a more in-depth background in the area, an excellent 
exposition on the subject of continuum mechanics is given in TRUESDELL & NOLL [1992], as 
well as in GURTIN [1981]. This section is given for completeness and is used as a framework 
for later use. 
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3.1.1    Kinematics 

Description of Motion 

Let Ko1 denote the reference configuration of a deformable bounded body ßcK3. Identify 
a material point X with its place X in the configuration K0 by 

X = K0(X) . (3.1) 

Let the place of the material point X at time t within the body B have a position vector x, 
given by 

x = x(X,t), (3-2) 

know as the material description of motion. Using (3.1) and (3.2) and assuming invertibility 
of K0, we can develop a relationship between the place of material point, x to that of the 
material point at time t as 

x = x«1(X),t) = x(X,t). (3.3) 

Thus, the material point X is mapped, upon deformation, into a spatial position x in a 
current configuration at the current time by means of a single-valued, continuously differen- 
tiable mapping function called the motion. We shall also assume that the mapping X to x 
is one-to-one and onto, hence it possesses a unique inverse for all time t, which describes the 
inverse motion 

X = x"1(x,t). (3.4) 

xIn general, the subscript zero may not correspond to t = 0 and K0 need only be an admissible configu- 
ration, not necessarily one occupied by the body. 
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A necessary and sufficient condition for the invertibility of (3.3) to exist is for the Jacobian 
determinant of the mapping from X to x not vanish in an e — neighborhood about any point 
within the body B 

J 
dx 
ax ± 0 . (3.5) 

We shall also impose the physical restriction that J > 0, ensuring that any two material 
points do not occupy the same position in space at the same time. The motion described 
in (3.3) is traditionally referred to as the Referential or Lagrangian description of motion, 
where X and t are the independent variables, while (3.4) is called the Spatial or Eulerian 
description of motion, with x and t as the independent variables. 

Deformation Gradients 

From the motion described in (3.3) we define the deformation gradient F relative to X from 
some fixed reference configuration K0 to a current configuration, nt as 

F = 1 ■ <3-6» 
We impose the following restrictions; that oo > J = det(F) > 0 to ensure that no region of 
volume about an e — neighborhood of a material point becomes zero or infinite upon defor- 
mation and the derivatives of |^ are continuous. The deformation gradient characterizes the 
transformation of a line element dX at the place X £ K0 upon deformation to a line element 
rfx at the place x e nt. Similarly, from the inverse motion (3.4) we define the gradient f 
relative to x as 

f = lbT ' (3'7) 

again with the restrictions that oo > J-1 = det(f) > 0 and the derivatives of ^- are 
continuous. 
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If we assume for convenience that the reference and current coordinate frames coincide, then 
the displacement vector u from the two coordinate frames can be expressed as 

u = x - X . (3.8) 

Thus, the deformation gradient and its inverse may be cast in terms of displacements as 

F-I+^ = I + H     and     f = I-^ = I-h, (3.9) 

where H and h are called the Lagrangian and Eulerian displacement gradients, respectfully. 
Defined as 

H = F-I     and     h = I-f = HF"1 . (3.10) 

Deformation and Strain Measures 

To introduce a deformation measure we will examine the magnitude of a differential line 
segment 

ds2 = dx • dx = (FdX) ■ (FdX) = (FN) • (FdN)dS2 , (3.11) 

ds2 

— = X2 = N • FTFN = N • CN , (3.12) 

where A is the stretch of the differential line element. Note from (3.12) that C is a second 
order, symmetric, positive definite tensor, which is a common measure of deformation in the 
reference configuration called the right Cauchy-Green deformation tensor defined as 
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C = FTF . (3.13) 

Similar arguments can be used to obtain the symmetric positive definite second order tensor 
b, which is a common measure of deformation in the current configuration called the left 
Cauchy-Green deformation tensor defined as 

b = FFT . (3.14) 

When a motion is rigid, the line segment magnitudes dS and ds are equal and thus the motion 
is distance preserving. Since the line segments dS and ds are equal for a rigid motion, the 
two deformation measures are also equal and unity (i.e. C = b = I). We would expect a 
strain measure to vanish for such a motion. Hence, we shall introduce strain measures for 
the reference and current configurations. Using the difference of the magnitudes of the line 
segments squared as our measure of strain, we obtain 

ds2 - dS2 = (C - I) dX dX = 2 E dX dX , (3.15) 

where E is known as the Green or Lagrangian strain tensor. Defined as 

E = i(C-I). (3.16) 

Similarly, we can define a strain measure in the current configuration known as the Almansi 
or Eulerian strain tensor by 

e^I-b-1) . (3.17) 
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Rotation and Stretch Tensors 

Since the deformation gradient F is non-singular by (3.5), the polar decomposition theorem 
states that there exist positive symmetric tensors U and V, and a proper orthogonal tensor 
R such that 

F = RU = VR . (3.18) 

Moreover, the right and left polar decompositions are unique. Where the tensors U and V 
are called the right and left stretch tensors respectively, while R is called the rotation tensor. 
Using (3.13), (3.14) and (3.18) we can relate the right Cauchy-Green deformation tensor C 
to the right stretch U and the left Cauchy-Green deformation tensor b to the left stretch V 
by 

C = U2     and     b = V2 . (3.19) 

We may also relate U and V by 

V = RURT . (3.20) 

Note, as a consequence of the similarity transformation of (3.20), U and V have the same 
eigenvalues. 

3.1.2    Balance Laws 

Conservation of Mass 

We assume there exists a function m(f2), termed the mass of the body Q such that 

m(ß) > 0 (3.21) 
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where m(Q) is independent of the configuration nt of the body such that 

—m(O) = 0 . (3.22) 
at 

The function m(Q) may be expressed in terms of a density function (a scalar) field p defined 
for a particular configuration as 

m(P) =  / p(x,t) dv = 0 (3.23) 
JKt 

where x is the place occupied by the material point X in the configuration Kt, t is time, 
dv is the volume element corresponding to «t and p is the mass density of the body in the 
configuration nt, assumed to be smooth and continuous. Since m(Q) is independent of the 
configuration , we may express equation (3.23) as 

/ p(x,t) dv= j  p0{X,to) dV (3.24) 
J Kt J K.0 

for an arbitrary reference configuration K0, where X is the place occupied by the material 
point X in the configuration KQ, dV is the volume element corresponding to KQ and po is the 
mass density of the body in the configuration KO. Noting that (3.24) holds for an arbitrary 
body Q, and the mass density is smooth and continuous, we may express the local form of 
(3.24) as 

Jp = Po (3.25) 

where we have used the relation dv = JdV which relates a material volume in the reference 
configuration K0 to an arbitrary configuration Kt, J given in the previous section. We may 
take the time rate of change of (3.24) to yield 
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d_ 
dt. 
-I p(x,t) dv = 0 (3.26) 
' JKt 

or locally as 

p + pdiv [v] = 0 (3.27) 

where the superposed dot indicates the material time derivative. Equations (3.24) through 
(3.27) are all different forms of the conservation of mass. 

Linear and Angular Momentum 

The balance of linear momentum is expressed as an equality between the rate of change of 
linear momentum of an arbitrary volume of the body to the resultant force acting on that 
volume or simply 

£ 
dt 

v dm=      b dm+       t da (3.28) 
Jv JV JdV 

where dm = pdv is the element of mass, da is the area element, v is the velocity, b is the 
body force per unit mass, t is the contact force per unit area, V is an arbitrary volume of 
the body B and dV is the boundary surface of V. 

Likewise, the balance of angular momentum is expressed as the balance between the rate of 
change of angular momentum for an arbitrary volume and the resultant moment of the force 
acting on that volume or 

—      x x v dm=      x x b dm+       x x t da (3.29) 
dt J-p J-p jQ-p 

where x is the position vector from the origin o. 
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Recall Cauchy's theorem: There exists a 2nd order tensor field T independent of n such that 

t(x,n) =T(x)n (3.30) 

for all a; 6 B and for arbitrary unit vectors n.  The tensor T is referred to as the Cauchy 
stress tensor. 

Substituting (3.30) into (3.28) and utilizing the divergence theorem, the continuity of p, b 
and v and assuming T is once continuously differentiable we arrive at 

div [TT] + pb = pb    in  fi x I (3.31) 

where fi is the domain under consideration, div [•] is the divergence operator with respect to 
the spatial configuration and / = [0, t] represents an interval of time. 

Substitution of (3.27), (3.30) and (3.31) into (3.29) yields symmetry of the stress tensor 

TT = T   in  fix I . (3.32) 

Upon application of Nanson's formula2, the resultant contact forces may be expressed in 
terms of the reference configuration and subsequently the local form of the balance of linear 
momentum is expressed as 

Div [P] + p0B = p0V   infix/ (3.33) 

where P is the first Piola-Kirchhoff stress, B is the body force, Div [•] is the divergence 
operator with respect to the reference configuration and V = k is the material velocity. 
While the local form of the balance of angular momentum is 

FP = PTFT    in  fix I . (3.34) 

2Nanson's formula relates the reference and current area elements via nda = JF~TNdA 
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Balance of Energy 

The balance of energy or the first law of thermodynamics is expressed as an equality between 
the rate of change of the internal energy plus the kinetic energy and the rate of working of 
the applied forces plus any heat energy entering the body 

— /   ( pe + -pv ■ v I   dv = /  (pr + pb ■ v) dv + /    (t ■ v — h) da (3.35) 
at Jv\ 2 J J-p Jdv 

where p is the current mass density, e is the specific internal energy, v is the velocity, r 
specific heat supply, b is the body force per unit mass, t is the contact force per unit area, 
h = q • n is the heat flux across the boundary surface, V is an arbitrary volume of the body 
B and dV is the boundary surface of V. 

Utilizing the conservation of mass, the balance of linear momentum, Cauchy's theorem, the 
transport theorem and the divergence theorem we obtain 

/  (T : £ - pe + pr- div [q]) dv = 0 (3.36) 
Jv 

where L is the spatial velocity gradient. 

Since (3.36) holds for an arbitrary volume V of the body B and we assume continuity of the 
arguments within the integrand, we obtain the local form for the balance of energy 

T : L - pe + pr - div [q] = 0   in Üx I (3.37) 

where the the first term above is referred to as the stress or mechanical power. An alternative 
material form for the balance of energy expressed in terms of entropy is given as 

(Trj) = -Div [Q] + R (3.38) 
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where T is the thermal field, r\ is the entropy, Q is the nominal heat flux and R is the heat 
supply. Lastly, the Clausius-Duhem form for the second law of thermodynamics is expressed 
as 

P : F + Tr) - e - ^Grad [T] ■ Q . (3.39) 

3.2    Linearized Thermoelasticity 

We consider the linearization of the kinematic quantities from the previous section; for the 
following developments see Appendix D for further discussion. Note that all the stress 
measures are equivalent for the linearized theory and we will therefore use a to represent the 
stress tensor. 

Recall the local form of the balance of linear momentum may be expressed as 

pv = div [a] + pb    in   Q, x / (3.40) 

while the balance of angular momentum leads to symmetry of the stress tensor 

a = aT    in   Q X I (3.41) 

where p > 0 is the density, v is the acceleration and b is the body force. The local form of 
the balance of energy or first law of thermodynamics may be expressed as 

pe = -div [q] + a : e + pr    in  f2 x I (3.42) 

where e is the internal energy, q is the heat flux, e is the infinitesimal strain tensor and r 
denotes the heat supply. The local form of the second law of thermodynamics is 
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pr) + div P7p > 0   in ft x / (3.43) 

where r) is the entropy and 6 is the absolute temperature. The Clausius-Duhem inequality 
is obtained by eliminating the heat source term, r, from (3.42) by substituting from (3.43) 
to obtain 

pTrj -pe + a:k    --grad [T] • q > 0    in fix/ (3.44) 
>      ^Z      ' v * ' v, con 

where T>ioc represents the local or internal dissipation and Vcon the dissipation due to heat 
conduction after TRUESDELL & NOLL [1992]. Incorporating a generic form for the internal 
energy, e = e(e, rj, £; x) we obtain the time derivative of the internal energy as 

de    .     de .     de   . ,n ... 
e=       ;£+     r) + — -t 3.45 

de drj       d£ 

where ^ represents a general set of internal variables representing the inelastic response of 
the material. Substituting (3.45) into (3.44) yields 

("-SM'-D-"!-«-!«"^-^0-     (346) 

Assuming Fourier's law for the constitutive equation for the heat flux, q = —K grad [6], the 
heat conduction dissipation is nonnegative, Vcon > 0. Noting that (3.46) is linear in rj, k 
and £, independent of their arguments and that the dissipation inequality must hold for all 
admissible processes we obtain 

<*-%• -i -d -I-*** (347) 
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We introduce an alternative form for the balance of energy for subsequent use when casting 
the balance equations into a numerical setting3. Substituting the definition for T>ioc into 
(3.42) results in 

pTr) = -div[g] + pr + Vloc   in fix/ (3.48) 

Introduce the Helmholtz free energy density 

ip = lp(e, T, £• x) = e(e, T], C, x) - Tr, (3.49) 

Substituting (3.49) into the constitutive equations (3.47) yields 

dip dip 
p71 = -dT>     a=de 

(3.50) 

Taking the time derivative of the entropy results in 

rj = 
d2ip     .       d2ip   ■       d2ip 

dedT dTdT       didT 
(3.51) 

Substituting (3.51) into (3.48) yields 

-PTM^T = -div [,] + „r + V,oc + T£| : i + T^li 
dTdT~        — L"*J " r'   ' '"" ' 'dedT 

cf = -div [q] + pr + Vloc - H 

d£dT 
(3.52) 

3 Typically, algorithms found in the literature for coupled thermomechanical problems consider the motion 
and the temperature as the independent variables. 
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where c = T-Jj^ > 0 is referred to as the heat capacity and H = T^f : k + T-Q^'i is the 
structural heating. 

Specializing the above results to a one-dimensional bar, neglecting inertia and transient 
effects, we obtain 

a,x + pb = 0 (3.53) 

-q,x + pr + Vioc -H = 0   in fix/ 

The respective boundary conditions for (3.53) are given as 

u = ü   on  Tu    and   T = T   on  TT (3.54) 

a = ö   on Tj    and   q = q   on T, 

where we have decomposed the boundary into two parts for each problem 

r = rIturff = rTur,  and  runra = rTnrq = 0 . (3.55) 

When supplemented with the proper boundary conditions (3.54), the balance laws (3.53) 
constitute a Boundary Value Problem. 

3.3    Constitutive Equation 

To complete the boundary value problem for the linearized theory of thermoelasticity we 
shall assume that the one-dimensional stress response function has the form 

a = E [s - eL (e - T) - a (T - T0)] (3.56) 

where a is the stress, E is the elastic modulus, e is the total strain, eL is the maximum 
residual strain obtained by detwinning multiple variant martensite (Bain or transformation 
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strain), £+ and £~ are the volume fractions of the positive and negative variants of the 
martensite twins ACHENBACH ET.AL. [1986] (see Figure 3.1), a is the coefficient of thermal 
expansion and T and T0 are the current and reference temperature fields respectfully. 

Figure 3.1: Variants associated with various lattice configurations. 

Remark 3.1. 

1. For any state, the simple algebraic relation holds £+ + £~ +£A = 1, where £A represents 
the volume fraction of austenite present. Note that the total martensite fraction is the 
sum of the variants f = £+ + f ~, while the absence of both £+ and £~ indicate the 
material is completely austenite. 

2. For states where £+ = £~ the material is considered to be in a self-accommodating state 
in which that material is 100% multiple variant martensite. Although its configuration 
is similar to 100% austenite with regard to the overall deformation on the crystal being 
zero, the crystal structure is not the same. 

3. For a one-dimensional state we may accurately capture the behavior of the phase 
transformation using two internal variables, namely £+ and £~. For higher dimensions, 
the underlining physics is more complicated and thus additional internal variables or 
variants should be accounted for; see BOYD & LAGOUDAS [1996A.B]. 

4. Different authors TANAKA [1986], LIANG & ROGERS. [1990], BRINSON [1993] AND BRINSON 

ET. AL. [1993] have utilized linear mixture rules for the elastic material modulus E = 
Ea + £(Em — Ea) and coefficient of thermal expansion a = aa + £(am — aa), where 
Ea, Em, aa and am are the elastic moduli and thermal coefficient of expansion for 
pure austenite and martensite. The mixture rules enhance the model by accounting 
for different material properties at each pure state. The introduction of these mixture 
rules may or may not be justifiable depending upon the particular alloy. However, the 
addition of these mixtures rules presents no difficultly in the present formulation; for 
simplicity we will assume the moduli to be constant. 
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3.4    Evolution Equations 

In the following subsections, we develop explicit expression for the evolution equations for 
various regions within the phase diagram. 

To account for both tensile and compressive behavior, we consider a mapping of the standard 
phase diagram in the tensile stress region into the compressive region. For the present work, 
the transformation parameters are denoted with either a + or a ~ representing the parameters 
in the tensile and compressive regions of stress, respectively. The ability to differentiate 
between the various transformation parameters enables the model to qualitatively capture 
the behavior observed in experimental data. 

3.4.1    Production of Austenite 

Since austenite has only one form (variant), it is sufficient to consider the evolution of 
the total martensite fraction. The positive and negative variants are assumed to evolve 
proportional to the total martensite fraction. The evolution of the total martensite fraction 
may be expressed in an integrated form as a linear interpolation between the start and finish 
transformation lines within the phase transformation region shown in Figure 3.2 

100% Austenite 

T 

j. 1 Transfonnaticn Zcne 

Figure 3.2: Admissible transformation regions for the production of austenite. The points 
'c' and 'd' denote the start and finish temperatures for the transformation, while Vas and Vaf 
are the start and finish lines for the transformation and the directionality of the evolution is 
indicated by the arrows. 

The evolution equation is expressed as follows: 
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{=&-&(£3ü- (3-57) 

The parameter £p is introduced to account for cyclic behavior within the transformation zone 
and represents the maximum value of £ for any previous loading history. The parameters Vas 

and Vaf denote the critical values of stress between which the phase transformation occurs 
at a fixed temperature, where the subscripts as and af designate stress values on modified 
(by the initial conditions) austenite start and finish lines, respectively. The starting value of 
the phase transformation is taken to be a function of the initial fractions present, while the 
finish value is taken to be constant; thus 

Vas = cras + ^—p- (aaf - aas) (3.58) 
1 - So 

Vaf = Oaf 

where £0 represents the initial fraction of martensite for the first occurrence of the trans- 
formation and aas and aaf are defined from the virgin phase transformation lines in the 
stress-temperature space as 

aas = Ca (T - Tas)    and   aaf = Ca(T - Taf) (3.59) 

and Ca is the slope of the transformation lines, assumed fixed. The evolution of the positive 
and negative variants are assumed to occur in proportion to their existence at the beginning 
of the phase transformation 

? = &£   and   r = ^£- (3.60) 
Sp Sp 

Remark 3.2. 

• To accommodate experimental data the transformation parameters (Ca, Vas, Vaf) may 
be altered to reflect differing values in tension and compression. 
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State and Internal Variables 

To complete the model for the production of austenite, explicit expressions for the state 
and internal variables are derived below. In addition, material tangents will also be derived 
in order to facilitate coding the model into a numerical setting, such as the finite element 
method where a tangent matrix is required for a solution of the global variables. 

If the phase transformation is occurring, the inelastic state and internal variables must be 
determined. Utilizing the constitutive equation (3.56) and the evolution equation for the 
production of austenite (3.57), we may solve these two linear equations for the stress and 
martensite fractions during the inelastic process: 

o = ^ (e - a* - eL[Q - £] + [bo - l}~ - ot[T - T0]) (3.61) 

4 = SP ~~ SP VaI ~ Val 

where 

whereas, during an elastic process we simply have 

K. 
(3.62) 

a = E {e - e" - eL[$ - $] ~ a[T - T0]) (3.63) 

£ = &• 

To obtain the mechanical and thermal material moduli for the inelastic case we take the 
variation of the stress response (3.61)i. If 8 is taken as the variation operator, then: 

da.      da ^     E.      E 
8a = —8e + j=8T =-8e +- 

de oT b0 bQ 
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For the case of an elastic process we simply obtain 

6a = -^Se + -£-8T = E5e - aE5T . 
de        oT 

(3.65) 

3.4.2    Production of Positive Single Variant Martensite 

For the production of positive single variant martensite it is sufficient to consider the evo- 
lution of one of the variants, namely the positive variant. The remaining negative variant 
is then evolved proportional to the positive variant martensite. The evolution of the sin- 
gle positive variant martensite fraction may be expressed in an integrated form as a linear 
interpolation within the phase transformation shown in Figure 3.3: 

100% Single Variant Martensite 

= b      |    | TransfomBtion Zone 

Figure 3.3: Admissible transformation regions for the production of positive single variant 
martensite. The point 'b' denotes the temperature below which austenite is not stable. 
The parameters VJ+ and V+j are the start and finish lines for the transformation and the 
directionality of the transformation is indicated by the arrow. 

r = i + (i (3.66) 

The parameter £+ is introduced to account for cyclic behavior within the transformation zone 
and represents the maximum value of £+ for the previous loading history. The parameters 
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V+s and V*j denote the critical values of stress between which the phase transformation 
occurs, where the subscripts ms and mf designate stress values on a modified (by the initial 
conditions) martensite start and finish lines, respectively. The starting value of the phase 
transformation is taken to be a function of the initial fractions present, while the finish value 
is taken to be constant; thus 

V+ = V+ + 5E l2_ (v+ -V+) (3 67) 
1 — Co 

Vmf = amf 

V™ = °ms + (n°)ti + [1 - U(v)]Zö ~ mmfcoVo"]) (<W - Cms) 

where £Q~ represents the initial fraction of martensite for the first occurrence of the transfor- 
mation, H(CF) is the step function defined as 

no) = {Hll (3.68) 

and ams and amf are defined from the virgin phase transformation lines in the stress- 
temperature space as 

<Jms = as
cr + Cm(T - Tms)    and    amf = o{r + Cm(T - Tms) (3.69) 

where the Macauley bracket (•) is defined by 

, .       f 0,   a < 0 ,„.., 
(a) = <    '      - (3.70) x '      \ a,   a > 0 v      ; 

and Cm is the slope of the transformation lines, assumed fixed. The evolution of the negative 
variant is assumed to occur in proportion to its existence at the beginning of the phase 
transformation: 
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l—~) $r • (3.7i) 

Remark 3.3. 

• In equation (3.67)3 the second term on the right hand side is introduced to ensure that 
only the single variant states effect the initial critical stress. 

State and Internal Variables 

The model is completed by developing expressions for the state and internal variables and 
material tangents outlined below. 

During this phase transformation, the inelastic state and internal variables must be deter- 
mined. Utilizing the constitutive equation (3.56) and the evolution equation for the produc- 
tion of positive single variant martensite (3.66), we may explicitly determine the stress and 
martensite fractions during the inelastic process as 

a = ^ Is - ep - eL + (&0 - 1)^ - a[T - T0] ) (3.72) 

e+ = i + (i-C)'       m/ 
mf ms 

where 

bo = l + eLE[\J>_+f  ]   . (3.73) 
mf        ms 

whereas, for the elastic state we simply have 
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a = E(e-e*-eL[$-$]-a[T-To]) (3.74) 

To obtain the mechanical and thermal material moduli for the inelastic case we take the 
variation of the stress response (3.72)2 

.        da.       da crn 
6°=teS£+df6T 

E r E 
—8e-\— 
bo b0 

(b0-l)^(T-Tms)-a ST (3.75) 

For the case of an elastic state we simply obtain 

Sa = ^-5e + ^-5T = ESe - aEST 
oe        oT 

(3.76) 

3.4.3    Production of Negative Single Variant Martensite 

For the production of negative single variant martensite it is sufficient to consider the evo- 
lution of one of the variants, namely the negative variant. The remaining positive variant 
is then evolved proportional to the single negative variant martensite. The evolution of the 
single negative variant martensite fraction may be expressed in an integrated form as a linear 
interpolation within the phase transformation shown in Figure 3.4. 

The evolution equation is expressed as follows 

r = i + (i-c) v. mf 

v~f - v- " mf       * ms 
(3.77) 

The parameter £p is introduced to account for cyclic behavior within the transformation zone 
and represents the maximum value of £~ for the previous loading history. The parameters 
Vms and Vmf are defined as 
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100% Single variant »örtensite 

.Ifcrtensite 
Vöriats 

= b       j-'^ } TransforrüBticn Zone 

Figure 3.4: Admissible transformation regions for the production of positive single variant 
martensite. The point 'b' denotes the temperature below which austenite is not stable. 
The parameters V+s and V+, are the start and finish lines for the transformation and the 
directionality of the transformation is indicated by the arrow. 

itertensite 

100% Siirrle Variant 

= b       {'■'"] Transfannaticn Zcne 

Figure 3.5: Admissible transformation regions for the production of negative single variant 
martensite. The parameters V~s and V~j indicate the start and finish lines for the transfor- 
mation and the direction for the production of single variant martensite is depicted by the 
arrow. 

y- = V~ + ^     ^° w rn.fi r m.ft    ' !L (v- - y-) 
1 ~ St) 

v-s = (Tms + (n(a)tö + [i - n°Mö 

(3.78) 

Vmf = amf 

min[£o > £o ]) (amf ~ crms) 
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The evolution of the positive variant is assumed to occur in proportion to its existence at 
the beginning of the phase transformation 

'i-r t = ( Mr ) £ • (3-79) 

State and Internal Variables 

The state and internal variables and material tangents are developed below to complete the 
model. 

During this phase transformation, the inelastic state and internal variables must be deter- 
mined. Utilizing the constitutive equation (3.56) and the evolution equation for the produc- 
tion of negative single variant martensite (3.77), we may explicitly determine the stress and 
martensite fractions during the inelastic process as 

a = ^(e-e? + eL + (b0-l)¥j£-a[T-T0]] (3.80) 

r = i + (i-c)'        ; r
mf       v ms 

where 

bo = 1 - eLE | 1+ß_ Jj ) (3.81) 
*m/ ms 

whereas, for the elastic state we simply have 

a = E {E - a* - eL[$ - $"] - a[T - T0}) (3.82) 

r = c • 
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To obtain the mechanical and thermal material moduli for the inelastic case we take the 
variation of the stress response (3.80)i 

So = —Se + —5T =-5e + - 
oe        oT b0        b0 

(b0-l)^f(T-Tms)-a 5T (3.83) 

3.4.4    Production of Multiple Variant Martensite 

Since multiple variant martensite has equally distributed proportions of positive and negative 
variants of martensite, from a zero initial state4, it is sufficient to consider the evolution of 
the total martensite fraction. The total positive and negative variants are then evolved 
proportional to the total martensite fraction present. The evolution of the total martensite 
fraction may be expressed in an integrated form as a linear interpolation within the phase 
transformation zone shown in Figure 3.6. 

: b       |     | Transforrraticn zone 

Figure 3.6: Admissible transformation regions for the production of multiple variant marten- 
site. The points 'a' and 'b' denote the start and finish temperatures for the phase transfor- 
mation and the direction of the evolution is depicted by the arrow. 

The evolution equation for the production of multiple variant martensite is expressed as 

£ = l + (l-&) 
T-e. mf 

"mf       "ms 
(3.84) 

4Producing multiple variant martensite from 100 % austenite. 
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The parameter £p is introduced to account for cyclic behavior within the transformation zone 
and represents the maximum value of f for the previous loading history. The parameters 9ms 

and 9mf denote the critical values of temperature between which the phase transformation 
occurs, where the subscripts ms and mf designate temperature values on modified (by the 
initial conditions) martensite start and finish lines, respectively. The starting value of the 
phase transformation is taken to be a function of the initial fractions present, while the finish 
value is taken to be constant; thus 

"ms — J-ms + ":        7~ [J-mf ~ 1ms) (3.85) 
-I - SO 

"mf — -* mf 

where £0 represents the initial fraction of martensite for the first occurrence of the transfor- 
mation and Tms and Tmf are material parameters taken from the virgin phase transformation 
lines in the stress-temperature space. 

The evolution of the positive and negative variants are assumed to occur in proportion to 
their existence at the beginning of the phase transformation 

$ + \(Z-ZP)    
and   C=$ + \(Z-tp) ■ (3-86) 

State and Internal Variables 

The model is completed by deriving expressions for the state and internal variables and 
material tangents outlined below. 

During this phase transformation, the inelastic state and internal variables must be deter- 
mined. Note that the evolution equation for the production of multiple variant martensite 
(3.84) is independent of the stress field, hence we may simply calculate the martensite fraction 
(assuming a known temperature) and substitute those results into the constitutive equation 
(3.56) as 
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* = ! + (!-&) (■£-¥-) (3-87) 
a = E(£-e

p-£L[e+-r]-a[r-To])  . 

To obtain the mechanical and thermal material moduli for the inelastic case we take the 
variation of the stress response (3.87)2 

öo = ^-6e + ^-5T = E5e - aE8T . (3.88) 
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Chapter 4 

Finite Element Developments 

This section covers the algorithmic approximation of the constitutive theory in the setting 
of the finite element method. Due to the nature of the nested elastic and inelastic regions, 
the determination of when a transformation is active becomes paramount to the model's 
implementation. This detection procedure is known as state determination. An outline of 
the algorithmic procedure is described and discussed below. 

Lastly, to examine the properties of the resulting equations the model is implemented within 
the context of line elements in the finite element method. Specifically, we numerically assess 
the behavior of a class of shape memory alloys with linear and non-linear kinematics for 
multi-dimensional truss bars and a two-dimensional beam. 

4.1    State Determination 

In this section we outline the procedure used for state determination at time tn+i using 
information from the current global iterate (-)i+i and the previous time step (•)„ for various 
phase transformations. Also note we consider that the temperature is given at time tn+\ by 
either a prescribed load history or solving the heat conduction problem. 

The phase space diagram in Figure 2.4 has lead many researcher to use existing schemes 
for state determination, such as trial state methods in classical plasticity. Unfortunately, 
classical algorithms fail to determine the correct state even for simple simulations due to 
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the wide range of trial states. As an example, during the loading portion of a pseudoelastic 
process, both elastic and inelastic states are admissible, since the inelastic region is bounded 
by two elastic regions. Simply checking the trial value of stress with the "yield function" 
and its directionality will not guarantee the correct state. 

We introduce a new algorithm which accounts for nested elastic and inelastic regimes. The 
underlining concept relies on the use of modified trial state variables and the determination 
of trial states within an admissible transformation region. The resulting trial states are 
checked for consistency with respect to the phase diagram, i.e. directionality and magnitude 
of the stress, temperature and internal variables (martensite fractions). 

4.1.1    Production of Austenite 

Consider the production of austenite with initial conditions at time tn shown in Figure 4.1 
Given a temperature increase to Tn+i we wish to determine the state for time tn+i. 

Figure 4.1: Bounds for martensite fraction in phase space. From tn we may develop an 
isofraction line on the phase diagram, below which transformations are elastic. 

For the production of austenite, we consider the state (Tn,an) on the phase diagram in 
Figure 4.2 and two critical states (Tn+i,ai) and (Tn+i,<j2) at time in+i. The pair (Tn+1,a"i) 
corresponds to a point on the iso-fraction line, while the pair (Tn+i,a2) corresponds to the 
point at which the martensite transformation is completed. From these two points we see at 
time tn+i there exist three possible regions for the solution, see Figure 4.2. 

To determine the correct trajectory for the state at £„+i, we evaluate the constitution for all 
three regions. The three possible choices are: 
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^.«2) 

Figure 4.2: Possible trajectories in stress-fraction space. We see that values of stress greater 
than <72 and less than o\ result in elastic states. 

1. (a < o\ - Elastic State) Evaluate the constitution using the previous converged value 
for the internal variables: 

a = E [e^ -ei-eL [£ - C] - a [Tn+1 - T0]) (4.1) 

2. {a 1 < a < CT2 - Production of Austenite) Simultaneously solve for the constitution and 
the evolution: 

° = T0 (^ ~ el ~ £L&n ~ CJ + ft> - 1]^ - a[TB+1 - To]) (4.2) 

£ = £*-$ Pn       ">Pn Vaf ~ Vas 

3. (a > cr2 - Elastic State) Evaluate the constitution assuming that the martensite trans- 
formation is completed: 

where 

a = E (e^ff -e*-eL [Cpx - CPJ - «[Tn+i - T0]) 

£apx = max^ & - Co™ ^r-, 0 [ 

Sapi = Sp /SpSapx 

?apx       ?p /SpSapi 

(4.3) 

(4.4) 

Remark 4.1. 
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• The fraction £apx represents the maximum amount of martensite which may be trans- 
formed into austenite for a particular temperature T and initial conditions (£o,£p)- 

For the production of austenite to occur T > Tas + (1 — £o)(Taf — Tas) and £n > £apx. If this 
criteria is met then paths 1, 2 and 3 are evaluated. The additional consistency checks on 
the directionality and magnitudes of the stress and the internal variables for each path are 
outlined below. 

Path 1 

• If a > 0 and a < aas + (1 — f„)(a0/ — aas) then admissible. 

• If a < 0 and a < —aas — (1 — £n)(<7a/ — oas) then admissible. 

Path 2 

• If a > 0, a < V+, —da+C+dT > 0 and £ < £n then admissible, where da = a—an 

and dT = Tn+i - Tn. 

• If a < 0, V~s <o, do — C~dT > 0 and £ < £n then admissible. 

Path 3 

If an > 0 and a < max[0, V^t] then admissible. 

If an < 0 and a > min[0, V~*] then admissible. 

If multiple states are admissible we select the state which is closest to the previous converged 
state via distance metric in stress space. By choosing the closest state to the previous state 
we restrict the local behavior of the local constitution from returning spurious states. The 
metric is minimized using the admissible current states and the previous converged state, i.e. 
a = min[d(crn, <7j)] where d(x,y) —\x — y\. The resulting state is returned to the element 

i 
and the residual and tangent arrays are built. 
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(Tn+1.°2> 

Figure 4.3: Bounds for martensite fraction in phase space. The parameters V+s corresponds 
to the minimum value of stress required to initiate a transformation and the arrow indicates 
the direction of the transformation. 

4.1.2    Production of Positive Single Variant Martensite 

Consider now the production of positive single variant martensite with initial conditions at 
time tn shown in Figure 4.3. Given a temperature increase to Tn+\ we wish to determine the 
state for time tn+\. 

For the production of single variant positive martensite we consider the state (Tn, an) on the 
phase diagram in Figure 4.3 and two critical states (Tn+i,ai) and (Tn+i,a2) at time tn+1. 
The pair (Tn+i,ai) corresponds to a point on the iso-fraction line, while the pair (Tn+1,cr2) 
corresponds to the point at which the martensite transformation is completed. From these 
two points we see at time tn+\ there exists three possible regions for the solution, see Figure 
4.4. 

To determine the correct trajectory for the state at tn+i we evaluate the constitution for all 
three regions. The three possible choices are: 

1. (a < <7i - Elastic State) Evaluate the constitution using the previous converged value 
for the internal variables: 

a = E (e™ -e*-eL [£ - C] - « PWi - T0]) (4.5) 
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(l.°2) 

Figure 4.4: Possible trajectories in stress-fraction space.  We observe that values of stress 
greater than cr2 and less than an result in elastic states. 

2. (CTI < a < cr2 - Production of Single Variant Martensite) Simultaneously solve for the 
constitution and the evolution: 

a = ^( e(fc+1> *£/ 
io rn+i -^-eL + (&o-i)-^-a[rn+1-r0] (4.6) 

.   a-V+, 
Pn7 I y+t _ y+ 

3. 3B (a > cr2 - Elastic State) Evaluate the constitution assuming that the martensite 
transformation is completed: 

^(^-^-^-«[Tn+i-To]) (4.7) 

For the production of positive single variant martensite to occur £+ < 1 and an > 0. If this 
criteria is met then paths 1, 2 and 3 are evaluated. The additional consistency checks on 
the directionality and magnitudes of the stress and the internal variables for each path are 
outlined below. 

Path 1 

If a < ams + £n(amf — Cms) then admissible. 

Path 2 

• If a > ams + d"(o"m/ - vms), da - C+dT > 0 and £+ > £+ then admissible. 
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Path 3 

If a > V^j then admissible. 

If multiple states are admissible we select the state which is closest to the previous converged 
state via the metric a = min[d(or

n,aj)]. The resulting state is returned to the element and 
i 

the residual and tangent arrays are built. 

4.1.3    Production of Negative Single Variant Martensite 

Consider now the production of negative single variant martensite with initial conditions at 
time tn shown in Figure 4.5. Given a temperature increase to Tn+i we wish to determine the 
state for time tn+\. 

Figure 4.5: Bounds for martensite fraction in phase space. Note for the production of single 
variant martensite to occur the stress must be greater than an and less than a2 and the 
resulting state must be evolving in the direction of the arrow. 

For the production of single variant negative martensite we consider the state (Tn, an) on the 
phase diagram in Figure 4.5 and two critical states (Tn+i,ai) and (Tn+i,a2) at time tn+\. 
The pair (Tn+i,ai) corresponds to a point on the iso-fraction line, while the pair (Tn+i,a2) 
corresponds to the point at which the martensite transformation is completed. From these 
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<rn.°n) 

u-„.°i) 
(l."2) 

Figure 4.6: Possible trajectories in stress-fraction space. We observe from the diagram that 
elastic states exist for a > an or a < o-i- For values of stress within these elastic state exist 
the possibility of a phase transformation. 

two points we see at time tn+i there exists three possible regions for the solution, see Figure 
4.6. 

To determine the correct trajectory for the state at tn+i we evaluate the constitution for all 
three regions. The three possible choices are: 

1. (a > 0\ - Elastic State) Evaluate the constitution using the previous converged value 
for the internal variables: 

o = E (e£i1} - £n - £
L [£+ - C] - CL [Tn+l - To]) (4.8) 

2. (CTI > a > 02 - Production of Single Variant Martensite) Simultaneously solve for the 
constitution and the evolution: 

E 
a = — I e, 

% 
(fc+i) el + eL + (b0-l)^-a[Tn+1-T0} (4.9) 

r = i + (i-c) 
a-V mf 

Pn> \ y-  _y- r mf       ' ms 

3. (a < cr2 - Elastic State) Evaluate the constitution assuming that the martensite trans- 
formation is completed: 

a = E (eifc+X) -el-eL-a [Tn+1 - T0}) (4.10) 

2-51 



For the production of negative single variant martensite to occur £~ < 1 and an < 0. If this 
criteria is met then paths 1, 2 and 3 are evaluated. The additional consistency checks on 
the directionality and magnitudes of the stress and the internal variables for each path are 
outlined below. 

Path 1 

Path 2 

• 

If a > -ams - £n (amf - ams) then admissible. 

If a < —crms — £n (amf — Vms), da — Ca dT < 0 and £   > £n then admissible. 

Path 3 

• If a < Vmx then admissible. 

If multiple states are admissible we select the state which is closest to the previous converged 
state via the metric a = min[rf(an, <7j)]. The resulting state is returned to the element and 

the residual and tangent arrays are built. 

4.1.4    Production of Multiple Variant Martensite 

Consider now the production of multiple variant martensite with initial conditions at time 
tn shown in Figure 4.7. Given a temperature increase to T„+1 we wish to determine the state 
for time tn+\. 

For the production of multiple variant martensite we consider the state (Tn,an) on the 
phase diagram in Figure 4.7 and two critical states (Tn+i,ai) and (Tn+1,<72) at time tn+i- 
The pairs (Tn+1,cri) and (Tn+i,cr2) corresponds to limit points between which a multiple 
variant martensite transformation occurs. From these two points we see at time tn+i there 
exists one possible region for the solution, see Figure 4.8, provided dT < 0. 

To determine the correct trajectory for the state at tn+i we evaluate the constitution and 
evolution for this region: 
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(Tn+l-Oi) 

ivJ 

(Tn+1.02) 

Figure 4.7: Bounds for martensite fraction in phase space. For the production of multiple 
variant martensite to occur V+s > a > V~s , and f < 0. 

Un.Tn) 

Un+1 .Tn+l) 

CT €   [a 1, O ; 

Figure 4.8: Possible trajectories in stress-fraction space. Note that during this transforma- 
tion the evolution is decoupled from the constitution and hence only an evaluation is required 
to determine the state and internal variables. 

• (c"2 > o > o\ - Production of Multiple Variant Martensite) Simultaneously solve for 
the constitution and the evolution: 

V "ra/ — Vms J 

° = E (ejf+f " ^P - £L[£ - C] " o[r„+i - T0]) 

(4.11) 

The resulting state is returned to the element and the residual and tangent arrays are built. 
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4.1.5    Outline of Algorithm 

The previous sections outline the various constitutive and evolution equations which need 
to be evaluated. To minimize the computational effort, we may exclude states by simple 
conditional checks with the previous state. Once a reduced set of states is determined, 
additional checks are performed to ensure that the directionality and magnitude of the 
resulting state is consistent with its location on the phase diagram. 

We now consider the various transformations which can occur and their associated consis- 
tency check. 

Production of Austenite 

For the production of austenite to occur T > Tas + (1 - £o)(Ta/ - Tas) and £n > £api must be 
met. If this criteria is met then paths 1, 2 and 3 are evaluated. The additional consistency 
checks on the directionality and magnitudes of the stress and the internal variables for each 
path are outlined below. 

Path 1: Elastic 

• If a > 0 and a > V+ then admissible. 

• If a < 0 and a < V~ then admissible. 

Path 2: Transformation 

• ]fa>0,<T<V+, -da + C+dT > 0 and £apx < £ < £„ then admissible. 

• If a < 0, V~ < a, da - C~dT > 0 and £apx < £ < £n then admissible. 

Path 3: Transformation with overshoot 

If an > 0 and a < max[0, V^] then admissible. 

If an < 0 and a > min[0, V~f] then admissible. 
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Production of Positive Single Variant Martensite 

For the production of positive single variant martensite to occur £+ < 1 and an > 0 must be 
met. If this criteria is met then paths 1, 2 and 3 are evaluated. The additional consistency 
checks on the directionality and magnitudes of the stress and the internal variables for each 
path are outlined below. 

Path 1: Elastic 

• If a < V+s then admissible. 

Path 2: Transformation 

• If a > V+s, da - C+dT > 0 and 1 > £+ > £+ then admissible. 

Path 3: Transformation with overshoot 

• If a > V*f then admissible. 

Production of Negative Single Variant Martensite 

For the production of negative single variant martensite to occur £~ < 1 and an < 0 must be 
met. If this criteria is met then paths 1, 2 and 3 are evaluated. The additional consistency 
checks on the directionality and magnitudes of the stress and the internal variables for each 
path are outlined below. 

Path 1: Elastic 

• If a > V^s then admissible. 

Path 2: Transformation 

• If a < V~s, da - C~dT < 0 and 1 > f~ > f~ then admissible. 

Path 3: Transformation with overshoot 

• If a < V~f then admissible. 
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Production of Multiple Variant Martensite 

For the production of multiple variant martensite to occur £„ < 1 must be met. If this 
criteria is met then the path ID is evaluated. The additional consistency checks on the 
directionality and magnitude of the stress temperature and the internal variables for the 
path is outlined below. 

Path 2: Transformation 

• If V-s < a < V+s, dT < 0, and 1 > £ > £„ then admissible. 

Multiple States 

Once the respective constitution and evolution equations have been evaluated and consis- 
tency checks performed the state is returned to the main driver element for the construction 
of the residual and tangent arrays described in the following sections. If multiple states 
are admissible, we select the state which is closest to the previous converged state1 and is 
implemented with a metric. The metric is minimized using the admissible current states and 
the previous converged state, i.e. a = min[d(cr7l,cri)] where d(x,y) —\x — y\. The resulting 

i 
state is returned to the element and arrays built. 

4.2    Multi-Dimensional Truss-Bar Element 

In this section we consider the formulation of a multi-dimensional bar element for both 
linear and nonlinear kinematics, see Figure 4.9 for a representation of the geometry. In 
addition to the physically nonlinear mechanical response of the material, we also consider 
the thermomechanical effects for the material. We begin with a brief outline of the basic 
notation used throughout the developments and then proceed with a description of the strain 
measure used. A variational equation for elastostatics is reviewed and the finite element 
interpolations for a line element are presented. Lastly, the finite element arrays necessary 
for implementation are developed. 

xBy choosing the closest point, we restrict the local behavior of the local constitution from returning 
spurious states. 
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Figure 4.9: Reference configuration for the bar element. 

4.2.1    Notation 

We consider an initially straight bar of length L and cross section Q,$ € K2 with smooth 
boundary dfl0 to represent a bounded reference configuration B for the continuum body. We 
admit the decomposition of the boundary into two parts: Tu C dB where the displacement 
is prescribed as u = u and I\ C dB where the traction is prescribed as os = ö subject to 

dB = Tu\jYt     and     Tunrt = 0 (4.12) 

where os is the stress directed along the axis or principal direction of the bar. For subsequent 
treatment of the variational formulation we distinguish two classes of functions, namely, the 
space admissible solutions and the space of admissible variations. 

Let U be the space of admissible displacements written as 

U={u\u€H1(L)aadu = üonTu} (4.13) 

and V be the space of admissible displacement variations written as 

V = {Su | 6u e H\L) and 8u = 0 on Tu} (4.14) 

where H1 is the Sobolev space of degree 1, consisting of functions which posses square- 
integrable first order derivative and are themselves square-integrable. 
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4.2.2    Strain Measure 

The infinitesimal increment of the strain due to a change in the length is expressed as 

des = j (4.15) 

where des is the increment in the strain directed along the principal axis of the bar, dl is 
the incremental change in length of the bar and I is the deformed length of the bar. By 
integrating the incremental strain from the initial length L to the deformed length I we 
obtain the total strain 

ss = f des = In (£) = In (^^) = ln(l + *) (4-16) 

where AL represents the change in length of the bar. The linear strain measure may be 
obtained by a series expansion of (4.16), retaining only the linear terms of the expansion. 
Expanding the last expression in (4.16) results in 

es = ln(l + e) = e-^ + j-j + --- = e + o(e2) (4.17) 

subject to — 1 < e < 1. From (4.17) the linearized strain measure becomes 

£' = ~L   = -^ (4-18) 

where us is the deformation directed along the principal axis of the member and s is a 
distance measure directed along the principal axis of the member. 
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4.2.3    Variational Formulation 

An approximate solution of the boundary value problem is constructed from a variational 
statement of the problem. The basic field equations may be included in a variational state- 
ment for the elasticity problem using a potential functional. Accordingly, we have a func- 
tional in which the displacement field, us G U is regarded as the independent variable. The 
proposed functional II : U ->• R may be expressed as 

U(us) = [ W(es) dV + Yiext{us) (4.19) 
JB 

where W(es) is a stored energy function and for conservative external loading 

Rext{us) = -     bsu dV -      au dA 
JB JVt 

(4.20) 

bs being the body force per unit volume. 

We may state the problem as: Find us eU which makes the functional U(us) stationary for 
all admissible variations Sus G V. 

The stationary point of II is obtained by setting to zero the first variation of (4.19) with 
respect to the independent field. Accordingly, 

SYi = [ ^-5es dV - f 8ubs dV - [ 8uä dA = 0    in ß (4.21) 
JB des JB JTt 

for all admissible variations 5us G V. 

We may recast the first term of (4.21) as 

ÖH-int - / ÖEs-7— Q0 ds / 5esas £l0 ds = 5esas Q0L (4.22) 
JL des JL 

which represents the internal virtual work. 
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4.2.4    Finite Element Interpolations 

To enable numerical implementation of the variational formulation a discretization with 
respect to the global variables is performed. We begin by discretizing the bar into a finite 
number of points called nodes. Connecting two nodes constitutes an element on which the 
formulation is developed. In the following the interpolations for the global variables are 
introduced. 

The selection of the displacement interpolation functions for the element must satisfy certain 
basic requirements such that the solution converges to the exact solution under certain special 
cases. 

The displacement interpolation functions must 

1. be continuous within the element, 

2. be able to capture rigid body modes, 

3. be able to capture constant strain states, 

4. ensure inter-element compatibility. 

The bar element used for the subsequent developments consists of an initially straight bar 
with two nodal points located on the boundary of the line segment. The obvious selection 
for the interpolation functions which satisfy the above criteria are 

JVi = 1 - j     and     N2 = y . (4.23) 
Li LI 

Utilizing the interpolation functions in (4.23) we may express the displacement vector u, as 
well as the position vector X for the bar as 

Ui(s) = J2NiUn     and     Xi(s) = Y^NIXn (4.24) 
i=i i=i 
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where i = 1, • • • , ndm is the dimension of the space and u and X are the nodal quantities of 
the displacement and coordinates, respectively. For further elaboration on the development 
of finite element interpolation see HUGHES [1987] OR ZIENKIEWICZ & TAYLOR [1989]. 

4.2.5    Linear Kinematic Element 

We proceed by defining the strain measure used for the formulation, develop the expression 
for the internal virtual work from which the residual equations may be expressed. Lastly, 
the resulting nonlinear residual equation is linearized to afford a solution of the nonlinear 
set of equations via Newton's method. 

Strain Measure 

Recall from the previous section the expression for the linearized strain measure is 

OU«        v"^ . Olli 5>£ («*> ds      *-i    ds 
t=i 

where Ui is the displacement in the coordinate direction i and Z; is the direction cosine in the 
ith coordinate direction defined in terms of the nodal locations as 

Y" V AY" n^m 

k=X2L_X11 = AX1     and     L2 = £ {X2i _ Xuf (426) 

Utilizing (4.26) we may express the strain in the principal direction as 

AX Am 
L     L 

(4.27) 

where summation over i is implied and Aui = u2i — uu represents the relative displacement 
in the ith coordinate direction. 
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Residual and Tangent Arrays 

Substitution of (4.27) into the expression for the internal virtual work yields 

SUint = —^—^asÜoL = 6Auiasliflo (4.28) 

or in matrix notation we have 

8Iiint = { 8uu   5u2l } |    £; | (4.29) 

where F, = <7sZ;fio is the internal force. 

To introduce one-way thermal effects2 into the formulation we introduce an additional nodal 
quantity or degree of freedom, namely temperature into (4.29) 

5Uint = {Suu   STU   8u2l   5T2l}{   _      } . (4.30) 

The vector post-multiplying the virtual displacements and temperatures in (4.30) is com- 
monly referred to as the internal load vector and is denoted as Fjnt for future developments. 

Remark 4.2. 

Recall from Chapter 3 that the stress as is in general a function of the mechanical and 
thermal state and internal variables, i.e. os = a(e,T,£). Hence, its variation with respect to 
the added degree of freedom is nonzero in general and must be considered when constructing 
the solution. 

2 The one-way coupling used throughout refers to the ability of a thermal gradient to produce mechanical 
strains, but the reverse process is uncoupled and hence not considered. 
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To facilitate a solution of the mixed boundary value problem the nonlinear equation (4.21) 
is linearized and solved by a Newton's method as a sequence of linearized problems. Hence, 
linearizing (4.21), neglecting external work terms we obtain 

d(6U) = 6es das Q0 L (4.31) 

where 

das = DMdes + DTdT (4.32) 

and DM and DT are the mechanical and thermal material moduli. Substituting (4.32) into 
(4.31) with the aid of (4.27) yields 

ndm ndm r »      , 

i=l j=l 

D 
dAuAi 

M- 
1"3 

L + A 
dTi 

fini (4.33) 

and expressed in matrix notation we have 

d(6U) 

6uu  I —hi A,JJ 

6TU   1 0 0 0 
öu2i   ( —k- hi rvtJ 

ST2i   1 0 0 0 

-/l,; 

/l,; 

dU\j 
dTij 
du2j 
dT2j 

> = 5r)   k drj (4.34) 

where 

ka = DM klj—j-     and     hi = D? U— 
Li 2 

H3 (4.35) 

The matrix post-multiplying the virtual displacements and temperatures in (4.34) is com- 
monly referred to as the tangent matrix and is denoted as k.  The terms DM and DT are 
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the tangent moduli from the previous sections depending on the state of the material. Note 
that the continuum and algorithmic tangents are the same since the evolution of the internal 
variables is treated exactly. 

4.2.6    Non-Linear Kinematic Element 

We proceed by defining the strain measure used for the formulation and then develop the 
expression for the internal virtual work from which the residual equations may be expressed. 
Lastly, the resulting nonlinear residual equation is linearized to allow solution of the nonlinear 
set of equations via Newton's method. 

Strain Measure 

Recall from the previous sections that the expression for the nonlinear strain measure is 

//£, = ln(i) (4.36) 

Variational Formulation 

The functional for the current formulation is altered such that the bounds of the integration 
are performed on the current volume. The resulting expression for the internal virtual work 
now becomes 

Snint = SesasQl = 81 as Q (4.37) 

where the constraint Cll = VLQL is assumed for the case of material inelasticity3. 
3Recall from Chapter 2 the volumetric change during a transformation is negligible. 
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Residual and Tangent Arrays 

The interpolation functions are taken to be the same as the linear model, resulting in the 
following expression for the variation of the bar length 

ndm   . 

<W = £ =p 6Aui (4-38) 
t=i 

where the square deformed length is expressed as 

ndm ndm 

l2 = Y, (A* + AUif = ^(Ao:,)2 (4.39) 
t=l i=\ 

where AX( = X2i — Xu and Aui = uii — uu. 

Substitution of (4.38) into the expression for the internal virtual work (4.37) yields 

ndm A 

5U = 5AUi J2~TaQ (4-4°) 
i=i 

and expressed in matrix notation we have 

6U = { 8uu   Su2i } {     p.) (4-41) 

where F{ = (a fi)^p- is the internal force. 

As in the previous section we introduce one-way thermal effects into the formulation by 
adding an additional nodal quantity or degree of freedom, namely temperature into (4.41) 
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-Fi 

5Ylint = { Suu   5TU   Su2i   6T2i }{_£}■ (4.42) 

The vector post-multiplying the virtual displacements and temperatures in (4.42) is com- 
monly referred to as the internal load vector and is denoted as Fint for future developments. 

To facilitate a solution of the mixed boundary value problem the nonlinear equation (4.37) 
is linearized and solved by Newton's method as a sequence of linearized problems. Hence, 
linearizing (4.37) we obtain 

d(6n) = d(5l) ostt + 5l das n + 8las du (4.43) 

where 

1  ndm ndm ..  ndm   . ndm   « 

d(si) = j y; J2 SAu< dAui - 7 E ^r6Aui E =r-dAUj        (4-44) 
i=l j=l J=1 j=l 

,. ndm   . 

i=i 

dos = DhfdEs + DrdT 

and DM and Dr are the mechanical and thermal material moduli and are unchanged from 
the linear case. Substituting (4.44) into (4.43) with the aid of (4.38) yields 

ndm ndm 

dm = "f £ SAut    iAH (i + ^ Wü^i) + ^j!l*n) Iß       (4.45) 
t=l J'=l 

and expressed in matrix notation we have 
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d(5U) = 

Suu -hi — h- -hi r duij 
STU 

► 
0 0 0 0 1    dTy 

5u2i — k- 
"•13 hi A/jj hi j   rftx2j 

ST2i J 0 0 0 0 I <Ojy 

= <5T7    fe dri (4.46) 

where 

,VS     Arc, AXJ (DM -2as)\ Ai;      fi 
^ = ly + -rY—i—r and h* = -rDT2 (4.47) 

The matrix post-multiplying the virtual displacements and temperatures in (4.46) is com- 
monly referred to as the tangent matrix and is denoted as fc. As presented it includes both 
the "material" tangent and the "geometric" tangent. 

4.2.7    Solution Procedure 

Noting that the variations or] in the previous sections are arbitrary we obtain the finite 
element residual equations 

nelm 

Fintiv) ~ Fext(V) =  A [F?nt(r,e) - F:xt(Ve)] = 0 
e=l 

(4.48) 

where Fint and Fext are the internal and external load vectors, respectively, e is an element 
within the discretization, nelm denotes the total number of elements within the discretiza- 
tion, Tje = {un Tu] is the solution vector and A is the standard finite element assembly 
operator. 

Linearizing (4.48) about an intermediate state (rji ') yields 

L[Fi int\ F^+^dVe (4.49) 
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The resulting system of equations involves the nodal solution vector at the global level 
expressed as 

where 

K{k) dr, = Ä<*> (4.50) 

nelm 

R{k) =   A   Wefc) (4-51) 
nelm 

i>{k) _    A    I"pext _ pint! (fc) 

e=l   L Je       ' 

The system (4.50) is solved and then the unknown fields are updated additively by 

vik+l) = vik) + dVe (4.52) 

The process is repeated within a particular time step tn until convergence of the (k + l)th 

iterate is obtained, the solution is then advanced to the next time step tn+i- An overview of 
the algorithmic implementation is outlined in Table 4.1 below 

4.2.8    Numerical Simulations 

We consider several simulations encompassing both isothermal and isostress loading histories 
to demonstrate the features of the model. The material under consideration is NiTi and its 
associated material parameters can be found in Table 4.2. 

Isothermal NiTi Bar Under Cyclic Loading, T < Tmf 

We consider a three element discretization of a NiTi bar of length L = 1 and initial area 
Q,o = 1- The bar is fixed against translation on the initial end (X = 0) and loaded at the 
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 Table 4.1: Solution outline for the truss-bar element  
Initialize Variables 
Loop over time, t 

Loop until convergence 
Initialize Variables 
Loop over elements 

Compute li and Axi 
Compute axial strain es 

Compute stress and moduli as, DM and DT 

Compute Ffnt and ke 

Assemble R^ and K^ 
End loop 
Solve K^du = RW 

End loop 
End loop 

Table 4.2: Material Properties for NJTJ.(BRINSQN fc LAMMERING [1993]) 
Young's Moduli Em = Ea = 67 GPa 
Critical stresses for de-twinning as

cr = 100 MPa and a{T = 170 MPa 
Martensite production temperatures Tms = 18.4 C and Tmj = 9 C 
Austenite production temperatures Tas = 34.5 C and Taj = 49 C 
Austenite production slope Ca = 13.8 MPa/C 
Martensite production slope Cm = 8 MPa/C 
Maximum transformation strain EL — 0.067 
Thermal expansion coefficient a = 6.5 //strain/C 

terminal end (X = L). The temperature of the bar is held constant at T = 5 C, which is 
below the martensite finish temperature. The initial state is assumed to be 100% multiple 
variant martensite (i.e. f J" = f^" = 0.5) and the loading and response curves are outlined in 
the figures below. 

From Figures 4.10 and 4.11 we can conclude that: 

1. The algorithm accurately determines the onset and completion of negative and positive 
martensitic phase transformations. 

2. The evolution of the positive and negative variants is continuous and smooth during 
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Figure 4.10: Loading and response curves for an isothermal NiTi bar under cyclic loading, 
T < Tmf. 

the transformations. Note, the production of one variant at the expense of the other, 
while their sum remains unity, i.e 100% martensite. 

3. Both the linear and non-linear models given similar results, since the strain level is 
moderate. 
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Figure 4.11: Time history of the internal variables for an isothermal NiTi bar under cyclic 
loading, T <Tmf. 

4. For the completion of the positive variant martensite the algorithm has a possibility 
of three choices: a) elastic unloading with £+ = £+, b) elastic loading £+ = 1 and c) 
positive single variant martensitic phase transformation. Upon computing the three 
states the algorithm determines a) is inadmissible since da > 0 and £+ = 0. The 
remaining paths are admissible with b) selected based on the distance measure of the 
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computed and previous values of stress. The algorithm continues to choose b) until 
the current time step converges. Advancing to the next time step the external loading 
continues to increase and the algorithm determines that b) is the only admissible path. 
A similar process continues throughout the remainder of the loading history. 

Isothermal NiTi Bar Under Cyclic Loading, Tas <T < Taf 

We consider a three element discretization of a NiTi bar of length L = 1 and initial area 
f20 = 1. The bar is fixed against translation on the initial end (X = 0) and loaded at the 
terminal end (X = L). The temperature of the bar is held constant at T = 41.75 C, which 
is above the austenite start temperature and below the austenite finish temperature. The 
initial state is assumed to be 50% multiple variant martensite (i.e. fo" = £<T = 0-25) and the 
loading and response curves are outlined in the figures below. 

From Figures 4.12 and 4.13 we can conclude that: 

1. The algorithm accurately determines the onset and completion of negative and positive 
martensitic phase transformations. 

2. The model predicts the termination of a austenite transformation when crossing over 
the stress axis. 

3. The evolution of the positive and negative variants is continuous and smooth during 
the transformations. Note, the production of one variant at the expense of the other. 

4. Both the linear and non-linear models given similar results, since the strain level is 
moderate. 

5. For the termination of the austenite production from a positive stress state the al- 
gorithm has a possibility of three choices: a) elastic loading with f = fn, b) elastic 
unloading £ = £apx and c) an austenitic phase transformation. Upon computing the 
three states the algorithm determines a) is inadmissible since da < 0 and £ = 0. The 
remaining paths are admissible with c) selected based on the distance measure of the 
computed and previous values of stress. The algorithm continues to choose c) until 
the current time step converges. Advancing to the next time step the external loading 
continues to decrease and the only admissible path determined from the algorithm is 
b). 
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Figure 4.12: Loading and response curves for an isothermal NiTi bar under cyclic loading, 
Tas<T< Taf. 

Isothermal NiTi Bar Under Cyclic Loading, T > Taf 

We consider a three element discretization of a NiTi bar of length L — 1 and initial area 
Q0 = 1. The bar is fixed against translation on the initial end (X = 0) and loaded at the 
terminal end (X = L). The temperature of the bar is held constant at T = 55 C, which is 
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Figure 4.13: Time history of the internal variables for an isothermal NiTi bar under cyclic 
loading, Tas <T < Taf. 

above the austenite finish temperature. The initial state is assumed to be 100% austenite 
(i.e. £o" = £Q = 0) and the loading and response curve are outlined in the figures below. 

From Figures 4.14 and 4.15 we can conclude that: 
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Figure 4.14: Loading and response curves for an isothermal NiTi bar under cyclic loading, 
T > Taf. 

1. The algorithm accurately models the pseudoelastic behavior by determining the onset 
and completion of negative and positive martensitic phase transformations. 

2. The evolution of the positive and negative variants is continuous and smooth during 
the transformations. Note, only one variant is evolved while the other remains zero, 
since only one variant can exist at temperatures greater than Taf. 
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Figure 4.15: Time history of the internal variables for an isothermal NiTi bar under cyclic 
loading, T>Taf. 

3. Both the linear and non-linear models given similar results, since the strain level is 
moderate. 

4. For both the single variant martensite and austenite productions the algorithmic be- 
havior is similar to the simulations in the previous sections. 
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5. The termination of the single variant martensite and austenite production follow from 
the previous cases. 

NiTi Bar Under Thermo-mechanical Cyclic Loading 

We consider a three element discretization of a NiTi bar of length L = 1 and initial area 
Q0 = 1. The bar is fixed against translation on the initial end (X = 0) and loaded at the 
terminal end (X = L). The temperature of the bar is initially held at 65 C; cooled to 5 C 
under zero load; then loaded and unloaded isothermally at 5 C, and lastly heated to 65 C 
under zero load. The initial state is assumed to be 100% austenite (i.e. £j~ = £ö~ = 0) and 
the loading and response curves are outlined in the figures below. 

From Figures 4.16-4.18 we can conclude that: 

1. The algorithm accurately models the shape memory effect by determining the onset 
and completion of various phase transformations. 

2. During the initial cooling process, note the strain developed is negligible (thermal ex- 
pansion effects) due to the self-accommodating state which arises during the production 
of multiple variant martensite. 

3. During the loading process the evolution of the positive variant continues to grow at 
the expense of the negative variant until the transformation is completed. 

4. Upon heating the bar we see that the residual strain goes to zero as experimental 
observation shows. 

5. Both the linear and non-linear models given similar results, since the strain level is 
moderate. 

6. The algorithmic treatment for the termination of the single variant martensite follows 
from previous sections. Whereas, for the austenite transformation the algorithm picks 
three paths: a) elastic loading with £ = £„, b) an austenitic phase transformation 
assuming a positive value for the stress and c) an austenitic phase transformation 
assuming a negative value for the stress. Upon computing the three states the algorithm 
determines a) is inadmissible since dT > 0 and £ = 0. The remaining paths are 
admissible with c) selected based on the distance measure of the computed and previous 
values of stress.   The algorithm continues to choose c) until the current time step 
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Figure 4.16: Loading and response curves for an NiTi bar under thermo-mechanical cyclic 
loading 

converges. The transformation advances until the martensite is fully depleted. After 
the martensite fraction is depleted the algorithm only chooses an elastic state. 
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Figure 4.17: Time history of the internal variables for an NiTi bar under thermo-mechanical 
cyclic loading. 

NiTi Truss-Bridge Under Cyclic Loading 

We consider a NiTi cantilever truss-bridge consisting of 53 elements shown in Figure 4.19. 
The bridge is 20 units long by 2 units deep and all elements have an initial area QQ = 1. 
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Figure 4.18: Thermo-mechanical response for an NiTi bar under thermo-mechanical cyclic 
loading. 

I 
Figure 4.19: Reference configuration for the truss-bridge. 

Four simulations are performed to demonstrate the ability of the algorithm to predict the 
behavior of a system with spatial inhomogeneities for various loading conditions 

Simulation #1 

The truss-bridge is isothermally loaded to a peak load of 156 MN and then unloaded at 
temperature of 5 C. The initial state of the material is 100% multiple variant martensite (i.e. 
£+ = f- = 0.5). The response curve is outlined in the figure below. 

Simulation #2 

The truss-bridge is isothermally loaded to a peak load of 25 MN and then unloaded at 
temperature of 41.75 C. The initial state of the material is 50% multiple variant martensite 
(i.e. £o" = Co" = 0-25). The response curve is outlined in the figure below. 
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Figure 4.21: Response curve for isothermal conditions at 41.75 C for a NiTi truss bridge. 

Simulation #3 

The truss-bridge is isothermally loaded to a peak load of 35 MN and then unloaded at 
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temperature of 55 C. The initial state of the material is 100% austenite (i.e. £Q~ = £0 

The response curve is outlined in the figure below. 
0). 
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10 

Figure 4.22: Response curve for isothermal conditions at 55 C for a NiTi truss bridge. 

Simulation #4 

The truss-bridge is isothermally loaded to a peak load of 15 MN and then unloaded at 
temperature of 5 C. The initial state of the material is 100% multiple variant martensite 
(i.e. £Q = £Q = 0.5). The truss-beam is then heated to 65 C to facilitate the recovery of the 
residual strain incurred during the mechanical loading stage. The response curve is outlined 
in the figure below. 

From Figures 4.20-4.23 we can conclude that: 

1. The algorithm accurately models the global effects demonstrated in the previous uni- 
axial cases. 

2. For temperatures below Taf we see that there exists a global evolution in the response. 
This evolution is manifested as a result of the fractions changing to different degrees 
from the initial conditions for the various bars. These oscillations reach a limit cycle 
in a few load cycles and repeatability of the response is then seen. 
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Figure 4.23: Thermo-mechanical response curve for a NiTi truss bridge. 

3. For Figure 4.23 the simulation was performed using the linear element only since some 
bars have material moduli which are negative (due to the softening effect of the trans- 
formation) resulting in an ill posed problem for the log-stretch model. An alternative 
formulation using the second Piola-Kirchhoff stress and the Green-Lagrange strain 
tensor would circumvent this problem. 

4. The difference between the linear and non-linear models is more pronounced since the 
strains are larger than previous cases especially for elements near the support. 

Summary of Numerical Simulations 

We have considered several simulations encompassing both isothermal, isostress and non- 
isostress paths to demonstrate the features of the model for NiTi. Several noteworthy char- 
acteristics are: 

1. The algorithm accurately activates the correct evolution equation for the corresponding 
state on the phase diagram. 

2. The algorithm accurately models both the pseudoelastic and shape memory effect. 
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3. The algorithm accurately determines the onset and completion of the various phase 
transformations. 

4. The inclusion of a simple plastic model posses no difficultly and accurately represents 
the behavior of the material, see VANDERMEER ET.AL. [1981] and GOVINDJEE k KASPER 

[1997]. 

4.3    Two-Dimensional Beam Element 

In this section we consider the formulation of a two-dimensional beam element, following SIMO 

ET. AL. [1984] for both linear and nonlinear kinematics; see Figure 4.24 for a representation of 
the geometry. In the following developments we regard the thermal field as prescribed such 
that no additional degrees of freedom are necessary. We begin with a brief outline of the 
basic notation used throughout and then proceed with a description of the strain measure 
used. A variational equation for elastostatics and the finite element interpolations for a line 
element are reviewed. Lastly, the finite element arrays necessary for implementation are 
developed. 

Ei'<i 
-*•    *.* 

Figure 4.24: Reference and deformed configurations for the beam element. 

4.3.1    Notation 

We consider an initially straight beam of length L and cross section fi0 £ K2 with smooth 
boundary 8Q,Q to represent a bounded reference configuration B for the continuum body. We 
admit the decomposition of the boundary into two parts: Tw C dB where the generalized 
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displacements are prescribed as w = w and TR C dB where the generalized forces are 
prescribed as R = R subject to 

dB = Tw\JTR    and     rwnrA = 0 (4.53) 

where w = [u, v, 6]T denotes the generalized displacements, two translations and a rotations, 
and R = [N, V, M]T denotes the generalized forces of the beam, a normal and shear force 
and a moment. 

For subsequent treatment of the variational formulation we distinguish two classes of func- 
tions as before, namely, the space of admissible solutions and the space of variations. 

Let U be the space of admissible generalized displacements written as 

U = {to | w e Hl{L) and w = w on Tw} (4.54) 

and V be the space of admissible displacement variations written as 

V = {6w | öw e H\L) and 5w = 0 on Tw} . (4.55) 

4.3.2    Deformation Measure 

We assume that plane sections remain plane, but not necessarily normal after deformation. 
Hence, we consider the two-dimensional motion of the centroid of the beam in the form 

Xl=Xx + u(Xl) (4.56) 

x2 = v(Xi) . 

From (4.56) we see that the motion of the line of centroids of the beam takes the form 
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XO = Xiei + x2e2 = {Xi + u(Xi)) ei + v(Xi)e2 (4.57) 

By application of (3.6) the deformation gradient of the line of centroids for the motion xo 
becomes 

dy 
F0EX = j^Ex = (1 + v!) ex + v'e2 (4.58) 

where (•)' denotes differentiation with respect to the X\ coordinate direction. The axial 
stretching normal to the deformed beam and shearing tangential to the deformed beam are 
simply the dot product between the deformation gradient of the line of centroids and the 
bases ga on the deformed configuration 

<5i = F0^i • si = (1 + u') cos(0) + v' sin(0) 

52 = F0E! ■ g2 = - (1 + v!) sin(0) + v' cos(9) 

(4.59) 

From (4.59) we see that the measures of deformation take the form 

r = AW - Ex = 
5,-1 

52 

6' 
where     F 

1 + u' 
v' 
6' 

i \ 

(4.60) 

and A is the transformation matrix between the Gaussian and spatial frames 

gi = Aei     with     A = 
cos(0)     sin(ö)   0 

-sin(ö)   cos(0)   0 
0 0       1 

(4.61) 

Note from (4.60) the linearized deformation measures becomes 
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r= < 
u' 

-e + v'   } (4.62) 
9' 

which agrees with Timoshenko beam theory, see GERE & TIMOSHENKO [1984]. 

Remark 4.3. 

If the beam is initially rotated within the reference frame an appropriate coordinate trans- 
formation is performed before the computation of the deformation measure, see SACK [1989] 
for further details. 

4.3.3    Variational Formulation 

An approximate solution of the boundary value problem is constructed from a variational 
statement of the problem. The basic field equations may be included in a variational state- 
ment for the elasticity problem using a potential functional. Accordingly, we have a func- 
tional in which the deformation vector, w G U is regarded as the independent variable. The 
proposed functional U : U —>• R may be expressed as 

U{w) = f W(r) dV + Uext(w) (4.63) 
JB 

where W(r) is a stored energy function and for conservative external loading 

IW«>) = - I b-wdV-       R-w dA (4.64) 
JB JTR 

b being the body force per unit volume. 

We may state the problem as: Find the w eU which makes the functional U(w) stationary 
for all admissible variations 5w G V. 
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The stationary point of II is obtained by setting to zero the first variation of (4.63) with 
respect to the independent field. Accordingly, 

<m r dw  r r r 
=     —-SrdV-öwbdV-      6wRdA = 0    in B (4.65) 

for all admissible variations 8w G V. 

We may recast the first term of (4.65) as 

ÖU int L dW 
dr 

■SrttdX (4.66) 

which represents the internal virtual work, where for a general singly symmetric cross section 

dW(r) 
dr 

= R 
N 
V 
M 

DMn 0 -DMQ] f Fl  1 0 GÜ 0 r2 
-DMQ 0 DMI lr, , 

> =Dr (4.67) 

where Q, Q and I are the integrated area, first moment of area and second moment of area, 
respectfully and the variation of the deformation is 

6r = 5A F + A 5¥ = 59 A ¥ + A S¥ (4.68) 

Substituting (4.68) into (4.65) yields 

m= I {seT
F

7,
 A

T
 + 6if AT

)Rdx-snext (4.69) 
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4.3.4    Finite Element Interpolations 

The selection of the generalized displacement interpolation functions for the two node initially 
straight beam element will be the same as those for the bar element in the previous sections, 
namely, 

Nx = 1 - y     and     N2 = j. (4.70) 
Li LI 

The position vector and generalized displacement vector follow as before. 

4.3.5    Linear Kinematic Element 

We proceed by defining the deformation measures used for the formulation, develop the 
expression for the internal virtual work from which the residual equations may be expressed. 
Lastly, the resulting nonlinear residual equations are linearized to afford a solution of the 
nonlinear set of equations via a Newton's method. 

Deformation Measure 

Recall the expression for the linearized deformation measure is 

v! 
r={   -9 + v'   } (4.71) 

9' 

where u is the displacement in the X\ coordinate direction, v is the displacement in the X2 

coordinate direction and 9 is the rotation about the X3 coordinate direction. 

We may express the virtual generalized deformation vector, with the aid of the interpolation 
functions and (4.71) as 
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6r 
8u' 

-59 + 6v' 
69' 

>   = 

<*U/   \ ■ N> 0 0 0 
Svi   \ 0 N'r 0 0 

Mi ) 0 0 N'I Nj 

1 0    0 " 
0 1     0 
0 0    1 
0 -1   0 

= SwT BT 

(4.72) 

where the index 7 = 1,2 is the local node number and wT = [UJ,VJ, 9i\. 

Residual and Tangent Arrays 

Substitution of (4.72) into the expression for the internal virtual work yields 

L SRM. = Sw1  I BT RQdX . (4.73) 

The vector postmultiplying the virtual generalized displacements in (4.73) is commonly re- 
ferred to as the internal load vector and is denoted as Fint for future developments. 

Remark 4.4. 

Recall from Chapter 3 that the stress and hence the resultant stresses R are in general a 
function of the mechanical and thermal state and internal variables, i.e. R = R(E,T,£). 

To facilitate a solution of the mixed boundary value problem the nonlinear equation (4.65) 
is linearized and solved by a Newton's method as a sequence of linearized problems. Hence, 
linearizing (4.65) we obtain 

d(SU) L dr 
d2W(r) 

dr2 5r (4.74) 

where for convenience define 
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^ <"»> 

and substituting (4.72) and (4.75) into (4.74) and collecting terms gives 

d(6U) = 6wT I BTBB dX . (4.76) 

The matrix postmultiplying the virtual generalized displacements in (4.76) is commonly 
referred to as the tangent matrix and is denoted as k. 

4.3.6    Non-Linear Kinematic Element 

We proceed by defining the deformation measures used for the formulation, develop the 
expression for the internal virtual work from which the residual equations may be expressed. 
Lastly, the resulting nonlinear residual equations are linearized to afford a solution of the 
nonlinear set of equations via Newton's method. 

Deformation Measure 

Recall from previous sections the expression for the nonlinear strain measure is 

6,-1 
r = A¥-Ex={      S2      }  . (4.77) 

& 

where b\ — 1, 62 and 6' are interpreted as the axial strain, shear strain and curvature, 
respectively. 

We may express the virtual generalized deformation vector with the aid of the interpolation 
functions as 
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5r) = 

6ui "j ■ N'j 0 0 0 
Svi   > 0 N'r 0 0 
69) ) 0 0 N'r JV/ 

6wTBT (4.78) 

where the index / = 1,2 is the local node number and wT = [uj, vj, 6i\. 

Residual and Tangent Arrays 

Substitution of (4.78) into the expression for the internal virtual work yields 

/ 
6Uint = öw1   /  B1 E1 RttdX (4.79) 

where 

WA -TT and     A = 
- sin(Ö)     cos(ö)     0 
-cos(0)   -sin(ö)   0 

0 0 0 
(4.80) 

The vector postmultiplying the virtual generalized displacements in (4.79) is commonly re- 
ferred to as the internal load vector and is denoted as Fint for future developments. 

To facilitate a solution of the mixed boundary value problem the nonlinear equation (4.65) 
is linearized and solved by Newton's method as a sequence of linearized problems. Hence, 
linearizing (4.65) we obtain 

d(SU) = ! 
d2W{r)        dW(r) 

L
ir an ör + 

dr 
-d(6r) dX (4.81) 

where 
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d(5r) = d(6Ä)¥ + 5Ad¥ + dA5¥ , (4.82) 

d{5A) = 89Ad6    and     A 
-cos{6)   -sin(0)   0 
sin(0)     -cos(ö)   0 

0 0 0 
(4.83) 

Substituting (4.82) and (4.83) into (4.81) and collecting terms gives 

d(ÖU) = 5wT ( I BT£TBSB dX+ f BTGB dXj dw (4.84) 

where 

G 
0 —T 

AR 

RTA   ^A  R 
(4.85) 

The matrix postmultiplying the virtual generalized displacements in (4.84) is commonly 
referred to as the tangent matrix and is denoted as k. Note the first term of (4.84) represents 
the material part of the tangent and the second term the geometric part of the tangent. 

4.3.7    Solution Procedure 

Noting that the variations Srj in the previous sections are arbitrary we obtain the finite 
element residual equations 

nelm 

Fintiv) ~ Fext(V) =  A [i?nt(r,e) - F^he)] = 0 
e=l 

(4.86) 
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where Fint and Fext are the internal and external load vectors, respectively, e is an element 
within the discretization, nelm denotes the total number of elements within the discretiza- 
tion, rje = {un vH On] is the solution vector and A is the standard finite element assembly 
operator. 

Linearizing (4.86) about an intermediate state (rfe ') yields 

mm] = F$S + fe(fc) dVe 
(4.87) 

The resulting system of equations involves the nodal solution vector at the global level 
expressed as 

K{k) dV = R (k) (4.88) 

where 

nelm 

*(*) = A [k][k) 

e=l  l   Je 

nelm 
Tj(k) _    A    [pext _ pint! 

e=l   ^ "I 

(4.89) 

intl (fc) 
e 

The system (4.88) is solved and then the unknown fields are updated additively by 

„(*+!) = „W + drie (4.90) 

The process is repeated within a particular time step tn until convergence of the (k + l)th 

iterate is obtained, the solution is then advanced to the next time step tn+i. An overview of 
the algorithmic implementation is outlined in Table 4.3 below 
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 Table 4.3: Solution outline for the beam element  
Initialize Variables 
Loop over time, t 

Loop until convergence 
Initialize Variables 
Loop over elements 

Compute Ni and N'j 
Loop over integration points along length 

Compute r 
Loop over integration points thru depth 

Compute axial strain es 

Compute stress and material moduli as and DM 

Compute Q, Q and / 
Compute and accumulate R 

End loop 
Compute Fint and k 

End loop 
Assemble R^ and X(fc) 

End loop 
Solve K^dw = RW 

End loop 
End loop 

4.3.8    Numerical Simulations 

We consider several simulations encompassing isothermal and non-isostress loading histories 
to demonstrate the features of the model. The material under consideration is NiTi and its 
associated material parameters can be found in Table 4.2 

Isothermal NiTi Beam Under Cyclic Loading, T < Tmf 

We consider a ten element discretization of a NiTi cantilever beam of length L = 20m having 
a rectangular cross section of 2m x lm. The cross section is divided into four layers, each 
of which is evaluated using a 5-pt Gauss-Lobatto quadrature rule. Standard 1-pt Gaussian 
quadrature was used along the axis of each element. The beam is fixed against translations 
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and rotations on the initial end (X = 0) and loaded via displacement control in the X2 

direction at the terminal end (X = L). The temperature of the bar is held constant at 
T = 5 C, which is below the martensite finish temperature. The initial state is assumed 
to be 100% multiple variant martensite (i.e. $ = ^ = °-5) and the loading and response 
curves are outlined in the figures below. 
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Figure 4.25: Loading and response curves for an NiTi beam under a under cyclic loading, 
T < Tmf. 
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From Figure 4.25 we can make the following observations: 

1. The algorithm accurately determines the onset and completion of negative and positive 
martensitic phase transformations for each quadrature point through the depth of the 
beam resulting in a behavior which is qualitatively correct. 

2. Although the strain levels within the beam are moderate the rotations are large and 
their effects are pronounced. 

Isothermal NiTi Beam Under Cyclic Loading, Tas <T < Taf 

We consider a ten element discretization of a NiTi cantilever beam of length L — 20m 
having a rectangular cross section of 2ra x \m. The cross section is divided into four layers, 
each of which is evaluated using a 5-pt Gauss-Lobatto quadrature rule. Standard 1-pt 
Gaussian quadrature was used along the axis of each element. The beam is fixed against 
translations and rotations on the initial end (X = 0) and loaded via displacement control in 
the X2 direction at the terminal end (X = L). The temperature of the bar is held constant 
at T = 41.75 C, which is above the austenite start temperature and below the austenite 
finish temperature. The initial state is assumed to be 50% multiple variant martensite (i.e. 
£o" = £ö~ = 0-25) and the loading and response curves are outlined in the figures below. 

From Figure 4.26 we can make the following observations: 

1. The algorithm accurately determines the onset and completion of negative and positive 
martensitic phase transformations for each quadrature point through the depth of the 
beam resulting in a behavior which is qualitatively correct. 

2. The model predicts the termination of a austenite transformation when the net reaction 
is zero. 

3. Although the strain levels within the beam are moderate the rotations are large and 
their effects are pronounced. 

Isothermal NiTi Beam Under Cyclic Loading, T > Taf 

We consider a ten element discretization of a NiTi cantilever beam of length L = 20m having 
a rectangular cross section of 2m x \m. The cross section is divided into four layers, each 
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Figure 4.26: Loading and response curves for an NiTi beam under a under cyclic loading, 
Tas<T<Taf. 

of which is evaluated using a 5-pt Gauss-Lobatto quadrature rule. Standard 1-pt Gaussian 
quadrature was used along the axis of each element. The beam is fixed against translations 
and rotations on the initial end (X = 0) and loaded via displacement control in the X2 

direction at the terminal end (X = L). The temperature of the bar is held constant at 
T = 55 C, which is above the austenite finish temperature. The initial state is assumed to 
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be 100% austenite (i.e. fo" = £0 ~ °) an(*the ^oa<^inS anc* resPonse curve are outlined in the 
figures below. 
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10 

Figure 4.27: Loading and response curves for an NiTi beam under a under cyclic loading, 
T > Taf. 

From Figure 4.27 we can make the following observations: 

1. The algorithm accurately determines the onset and completion of negative and positive 
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martensitic phase transformations for each quadrature point through the depth of the 
beam resulting in a behavior which is qualitatively correct. 

2. From the experimental data within AURICCHIO ET.AL.   [1995] the model qualitatively 
captures the essential behavior of the pseudoelastic effect. 

3. Although the strain levels within the beam are moderate the rotations are large and 
their effects are pronounced. 

NiTi Beam Under Thermo-mechanical Cyclic Loading 

We consider a ten element discretization of a NiTi cantilever beam of length L = 20m having 
a rectangular cross section of 2m x lm. The cross section is divided into two layers, each 
of which is evaluated using a 3-pt Gauss-Lobatto quadrature rule. Standard 1-pt Gaussian 
quadrature was used along the axis of each element. The beam is fixed against translations 
and rotations on the initial end (X = 0) and loaded via load control in the X2 direction at 
the terminal end (X = L). The bar is initially loaded and unloaded isothermally at 5 C, 
and lastly heated to 80 C under zero load. The initial state is assumed to be 100% multiple 
variant martensite (i.e. £Q" = fjj" = 0.5) and the loading and response curves are outlined in 
the figures below. 
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Figure 4.28: Loading and response curves for an NiTi beam under a under cyclic loading. 
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Figure 4.29: Thermo-mechanical response curves for an NiTi beam under a under cyclic 
loading. 

From Figures 4.28 and 4.29 we can conclude that: 

1. The algorithm accurately models the shape memory effect by determining the onset 
and completion of various phase transformations for each quadrature point. 

2. Upon heating the bar we see that the residual deformation goes to zero as experimental 
observation shows. 

Remark 4.5. 

The simulations were also performed using various quadrature orders and total number of 
layers. Quadrature rules greater than 3 resulted in unconverged states during the heating 
cycle, specifically during the production of austenite. Initial findings indicate that since 
the resultant force on the cross-section is zero multiple stress distribution are admissible, 
thereby making state determination indeterminate. Current work in underway to determine 
alternative schemes for the determination of the state which maximizes the dissipative energy. 
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4.3.9    Summary of Numerical Simulations 

We have considered several simulations encompassing isothermal load histories to demon- 
strate the features of the model for NiTi, in the setting of a linear and non-linear two 
dimensional beam. Several noteworthy characteristics are: 

1. The algorithm accurately activates the correct evolution equation for the corresponding 
state on the phase diagram. 

2. The algorithm accurately models both the pseudoelastic and shape memory effect. 

3. The algorithm accurately determines the onset and completion of the various phase 
transformations. 

4. Since the beam has multiple quadrature through the depth it provides a rigorous 
examination of the algorithm, due to the possibility of complex stress states. 

4.4    Summary 

In the previous sections we have consider the formulation of a thermomechanical constitutive 
model for shape memory alloys and its implementation into a multi-dimensional truss-bar and 
two-dimensional beam element. The simulations presented in this work provide a valuable 
tool for the analysis and design of shape memory devices. Some of the key features emanating 
from this work are outlined below: 

1. The development of a new constitutive model which accounts for both compressive and 
tensile states of stress and the associated variant productions is presented. 

2. We introduce a new algorithm for the determination of the state which accounts for 
nested elastic and inelastic regimes based upon the use of modified trial state variables. 

3. The ability of the model to replicate the quantitative behavior for the shape memory 
and pseudoelastic effect is presented for both truss and beam elements for linear and 
finite kinematics. 

4. The algorithm developed for state determination accurately computes onset, evolution 
and completion of the various transformations which may occur. 
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Part III 

A Nonlinear Composite Shell Theory 



1. GEOMETRICALLY NONLINEAR APPROACHES 

FOR FINITE ELEMENT ANALYSIS 

1.1 Introduction 

A general purpose finite element code having powerful and reliable geometric and mate- 

rial nonlinear capabilities is an essential tool for today's structural engineer. In this work we 

have endeavored to extend a multi-layered shear deformable composite shell theory, initially 

designed for linear analysis only, to the nonlinear regime. In the first phase of the enhance- 

ment for nonlinear analysis, a geometrically nonlinear capability for large displacements and 

rotations but small strains has been implemented. 

A comprehensive literature review was conducted on geometrically nonlinear finite ele- 

ment approaches and nonlinear solution techniques developed in the last two decades. As 

discussed in the following sections, the element co-rotational procedure was selected along 

with a nonlinear solution technique for handling the geometric nonlinearity. This co-rotational 

procedure is ideally suited to extending an existing linear finite element code to perform ge- 

ometrically nonlinear analysis. The theoretical issues related to the implementation of the 

co-rotational procedure are discussed and the close relationship between the updated La- 

grangian formulation and the co-rotational procedure is revealed. All the approximations 

made in the co-rotational procedure as well as the restrictions and limitations caused by 

them are also identified. 

1.2 Background on Total and Updated Lagrangian Formulation 

In the past two decades, significant advancements have been made in the development of 

efficient and convenient finite element theories for large deflection and inelastic response of 

complex structures. Several formulation strategies and procedures are available for accommo- 

dating large rotation capabilities. The advances made have been prompted by an improved 

understanding of the physical principles involved and the continuing advances in computer 
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technology. 

When large displacements, large rotations and even finite strain nonlinear constitutive 

relations are involved in problems, an incremental solution technique is generally required and 

either a total Lagrangian or an Eulerain coordinate system is employed to establish the finite 

element equilibrium equations. The formar coordinate system results in equilibrium equations 

in terms of the initial undeformed configuration whereas the latter coordinate system results in 

equilibrium equation with respect to the final deformed configuration. However, because the 

final deformed configuration is determined as a part of the solution, an Eulerian formulation 

reduces to an updated Lagrangian formulation, where the equilibrium state obtained for 

the previous load increment (or iteration) is employed as the reference configuration for the 

current load increment (or iteration). 

1.3 Basic Philosophy of the Co-rotational Procedure 

Unfortunately, neither the total nor the updated Lagrangian formulation can be simply 

incorporated into existing linear finite element codes. It is well known in continuum mechanics 

that the motion of a continuous medium can always be decomposed into a rigid body motion 

followed by a pure deformation. If the finite element is small enough to provide a valid 

approximation of the continuous body, then the motion of each individual finite element can 

be similarly decomposed. In particular, the motion of a flexible shell or beam finite element 

can be conceived as a finite rigid body motion followed by relatively small pure deformation. 

The latter is not involved with geometrical nonlinearities and the former is not involved in the 

constitutive equations for the element. If the rigid body motion part is eliminated from the 

total displacements, the deformational part of the motion is always a small quantity relative 

to the local element axes. Since the strain is small, the deformational displacement derivatives 

with respect to the local element coordinates (convected coordinates) must be in the same 

order of magnitude as the strains. As a result, the second order terms in the Green-Lagrange 
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strain formulation can be dropped [3] and the linear finite element theory can be adopted for 

geometrically nonlinear analysis. 

Based on this concept, Belytschko and Hsieh [4] developed a co-rotational procedure for 

nonlinear transient analysis and Wempner [5] proposed a finite rotation and small strain finite 

element theory for flexible shell elements in static analysis. In [4], each element is associated 

with a local convected coordinate system which is assumed to rotate relative to the fixed 

global coordinate system by the rigid body rotation of that element. With this convected 

coordinate system, the total displacements and rotations were easily decomposed and the 

geometrical nonlinearities caused by large rotations were treated entirely by transformations 

between the global and the convected coordinates. 

Since the co-rotaitonal procedure reported in [4,5], many elements based on this proce- 

dure have been developed for geometrically nonlinear analysis. Harrigmoe and Bergan [6] 

successfully applied the co-rotational procedure to linear flat triangular and rectangular shell 

elements for large rotation analysis. In their study, the local convected coordinate system 

was naturally defined by using the direction cosines of the mid-surface normal and one edge 

of the element. Excellent results for several typical problems involving large rotations and 

buckling and/or bifurcation points were obtained. 

1.4 Solution Techniques for Nonlinear Finite Element Equations 

The nonlinear finite element equations of motion are normally expressed as a set of non- 

linear algebraic equations containing nodal displacements and external load vectors. Among 

them, each algebraic equation states the equilibrium condition of an individual degree-of- 

freedom in the finite element model. For the case of proportional loading, the external load 

vector can always be expressed as the product of an arbitrarily defined reference external 

load vector and a scalar called the load parameter. Actually the load-displacement curves 

are determined by these N nonlinear algebraic equations about (N + 1) unknowns where N 
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is the total degrees-of-freedom of the finite element model. 

The finite element equations can be solved in various ways, for instance, by the pure 

incremental method (without equilibrium iteration), the iterative method based on 

the secant stiffness relations or the combined incremental-iterative method based 

on the Newton-Raphson scheme. The finite element stability analysis is characterized by a 

singular or ill-conditioned tangent stiffness matrix at or in the vicinity of the critical load 

point. In the full Newton-Raphson method where the stiffness matrix is modified at the 

end of each iteration, it is quite possible that the critical point may be hit exactly and as a 

result the iterative procedure break down. However, the modified Newton-Raphson method is 

better at avoiding the critical point and is therefore highly recommended in buckling analysis 

[13]. According to several researchers [12-15], and our experiences, the exact singularity in 

tangent stiffness matrix is extremely unlikely to be encountered in practical computation if the 

modified Newton-Raphson method is employed. Therefore we employ the Modified Newton 

Raphson Method together with the line-search technique to solve the resulting nonlinear 

system of equations. 
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2. ELEMENT COROTATIONAL FORMULATION 

FOR GEOMETRICALLY NONLINEAR ANALYSIS 

OF MULTILAYERED SHELLS 

In this section the theoretical formulation of the element co-rotational procedure for geo- 

metrically nonlinear analysis is presented. Following a brief introduction identifying the main 

attributes of the total and updated Lagrangian formulations, the co-rotational procedure is 

derived from the updated Lagrangian method consistently by making a series of approxima- 

tions based on the assumption of small strain. The sources of possible numerical errors and 

restrictions on the co-rotational procedure resulting from the approximations in its derivation 

are also discussed. 

To present the nonlinear finite element theory, we consider the motion of a general body in 

a stationary Cartesian coordinate system. It is assumed that the general body can experience 

large displacements and rotations, large strains, and a nonlinear constitutive response. In 

static analysis, the time variable is employed just for convenience in describing the loading 

process. It is obvious that the objective of nonlinear analysis is to evaluate the equilibrium 

positions of the complete body at a series of discrete time points 0, At, 2At, 3At.., where the 

time increment At corresponds to the load increment. In an incremental solution procedure, 

assuming that the solutions for the static and kinematic variables for all the time points from 

0 to t have been obtained, we have to develop a solution strategy to solve for the next required 

equilibrium position corresponding to time t + At. 

In the Lagrangian incremental analysis approach, we can express the equilibrium of the 

body at time t + At using the principle of virtual work. Using tensor notation, this principle 

requires that 

'  <rn+16en+1dn = /«^ (1) / 
'fit 

where <rn+i is the Cauchy stress tensor, en+i is the infinitesimal strain tensor, and the 6 
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represents variation. Both crn+1 and en+\ are referred to the configuration at time t + At. 

The external virtual work, /**\ can be expressed as 

£+1= / /i+i«tidn+ / /n+i^^r (2) 

where /*+1 and /*+1 indicate the externally applied body and surface force vectors, respec- 

tively, and du is the virtual displacement vector. fit and Tt denote the volume and surface 

corresponding to the equilibrium configuration at time t + At. 

It should be noted that the principle of virtual work presented in equation (1) is established 

in the unknown equilibrium configuration at time t + At. This is a fundamental difference 

compared with linear analysis in which it is assumed that the displacements are infinitesimally 

small so that the configuration of the body does not change. To overcome this difficulty, either 

the total Lagrangian or the updated Lagrangian formulation is usually employed. 

Remark:    In the following we will follow the notation from Marsden and Hughes [1983]. 

2.1 Toted Lagrangian Formulation 

In the total Lagrangian formulation, the principle of virtual work (1) is established with 

respect to the initial undeformed configuration at time 0. 

/. 
Sn+1 6En+1 dü0 = Fn

e+i (3) 

where En+i is the Green-Lagrange strain tensor given by 

En+1 = i(!7j,j + UJJ + UKj UK,j)n+1 (4) 

In (4), the displacement gradients Uitj with respect to the initial undeformed configuration 

at time 0 are defined as 

Ut,j = ^ (5) 

where U indicates the total displacements referred to the initial configuration and X repre- 

sents the coordinates in the initial configuration.  Sn+\ denotes the second Piola-Kirchhoff 
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stress tensor which is related to the Cauchy stress tensor by a stress transformation as follows: 

Sn+1   =   JPn+l^n+lFn+i (6) 

where J is the Jacobian of transformation and F~l is the inverse of the deformation gradient 

matrix, namely, 

F.T = ^L    ■    F-i = ^l (7) 
tu      dX1    '      lI        dxi K ] 

Because the second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor are 

energetically conjugate, they can be used as a pair in the principle of virtual work. 

Remark: It should be noted that the Cauchy stress tensor, which corresponds to the internal 

force per unit area in the final deformed configuration, represents the true stress state in the 

deformed body. However, the second Piola-Kirchhoff stress tensor, which is interpreted as 

internal force per unit area in the initial configuration, does not represent the true stress state 

in the structure and cannot be used directly in engineering design. 

Defining the displacement increments within the load step from t to t + At as follows: 

AU = Un+1 - Un (8) 

We can divide the Green-Lagrange strain increment AE = En+i - En into linear and non- 

linear parts as 

AE = El + Enl (9) 

where 

and 

E\j = i(^,j + UjtI + (UKj)n UK,J + UKj (UKM (10) 

Efj = \uKJUK,j (11) 

Remark:    The initial displacement terms (UK,i)n and (UK,j)n introduce the initial displace- 

ment effect in the elastic stiffness matrix and the internal force vector. 
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The second Piola-Kirchhoff stress tensor in equation (3) can be expressed as the summa- 

tion of the stress components at time t and a small increment as 

Sn+i = Sn + AS (12) 

Substituting (9) and (12) the principle of virtual work (3), denoting SEn+i = 6AE and 

neglecting the quadratic terms, we obtain the linearized equations of motion in incremental 

form 

/  El:C:6EldQ + f  Sn6Enldü = F™\- f  Sn6Eldü (13) 
JQ.O JQO J^O 

where the constitutive tensor C is used to relate the incremental second Piola-Kirchhoff stress 

to the linear part of the incremental Green-Lagrange strain in the first term on the left hand 

side in (13) as 

AS = C:El (14) 

Remark: It should be pointed out that because constitutive equation (14) is given in 

incremental form, is can be understood as a linearization of any general nonlinear constitutive 

relation. 

The linearized principle of virtual work presented in (13) can be employed to calculate 

an increment in the displacements for prescribed external load at t + At, which is then used 

to evaluate the approximation to the total displacements, strains and stresses corresponding 

to the time t + At. The displacement approximations corresponding to t + At are simply 

obtained by adding the calculated displacement increments to the displacements at time t. 

The strain and stress approximations are then evaluated from the displacements using the 

kinematic relation and the constitutive relation. 

After obtaining the approximate displacements, strains and stresses, we check the differ- 

ence between external virtual work and the internal virtual work evaluated from the obtained 

approximate static and kinematic variables at time t + At. Denoting the approximate val- 

ues with a superscript (i) in anticipation that an iteration will, in general, be necessary, the 
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residual due to linearization (13) is 

Residual = R^ = F™\ - I   S®i <^i+i dSl (15) 

Remark: It is important to note that the right hand side of (15) is equivalent of the right 

hand side of (13). However, in (15) the current value of stress and strain variables are 

employed. The above considerations show that the right hand side terms in (13) and (15) are 

the "out-of-balance virtual work". 

In order to reduce the out-of-balance virtual work to within a certain convergence measure, 

iterations are normally required. Denoting the iteration number by superscript (i), we have, 

for i = 1,2,3,... 

/  El™ : C: 6El
n+l dü+ f   Sn+1 6E?™ dQ = F™\ - f   S« x ÖE^dü       (16) 

Jn0 Jn0 Ja*, 

During the iterations the displacements are updated as follows 

U^!] = U& + AU^P (17) 

where AUÜ_\ in (17) indicates the displacement increment obtained from iteration i to i+ 1. 

The initial displacement in any typical step is the last converged displacement in the previous 

step and is given by 

U& = Un (18) 

2.2 Updated Lagrangian Formulation 

The updated Lagrangian formulation also can be derived from the principle of virtual work 

given in equations (1) and (2). However, in contrast to the total Lagrangian formulation, the 

updated Lagrangian method involves the principle of virtual work being established for the 

equilibrium configuration at the previous load increment at time t. 

Jc, 
-Tn+i6en+1d£l = rn+1 (19) 

a J 
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where rn+i and en+1 denote the second Piola-Kirchkoff stress tensor and the Green-Lagrange 

strain tensor measured in the updated configuration at time t, respectively. The equilibrium 

configuration at time t is then called the reference configuration for current load step. The 

updated Lagrangian formulation can therefore be visualized as a piecewise total Lagrangian 

formulation. 

In the updated Lagrangian formulation, an incremental displacement is defined with re- 

spect to the configuration at time t. The stress components can therefore be expressed as the 

sum of stress components at time t and a small increment in the same way as in (12). The 

strain components are similarly decomposed into their linear and nonlinear parts, 

£n+i = en+i + r]n+i (20) 

where the linear part is defined as 

1, , 
en+l = 2^Uid + U3,i)n+1 

and the non-linear part is defined as 

Vn+l = -K(uk,iUktj)n+l 

Remark: It is important to note that the initial displacement effect disappears in the 

updated Lagrangian formulation. Actually, it has been taken into account implicitly through 

the continuous updating of the reference configuration. 

Substituting the updated stresses and strains in (19), and introducing the linearized in- 

cremental constitutive relation 

(T = IT = c:e (21) 

and neglecting the quadratic terms, we obtain the linearized equation of motion 

/  e:c:6edü+ f <T-6rjdn = /ext - /  aöedü (22) 
JClt Jilt JSk 
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Defining the out-of-balance virtual work as 

Residual = r« = /£i - /  <r« x *£+! d^ (23) 
jQt 

We establish the Newton-Raphson iteration procedure for updated Lagrangian formulation 

as follows, 

/  e^: c: «cn+x dfi + / an+l 6r,<gp du = £?i - [ <r« 1 Äc« ^ (24) 

After each iteration, displacements are accumulated in the same way as in the total 

Lagrangian formulation (7) and the incremental second Piola-Kirchhoff stress and Green- 

Lagrangian strain tensors are evaluated which are then pushed forward to the current con- 

figuration. In order to evaluate the out-of-balance virtual work in (24), a transformation has 

to be performed to obtain the current Cauchy stress tensor as follows, 

Cn+i = -j Tn+i = — rn + ——(Fn+iASn+iFn+1) (25) 

The variation of strain tensor Se^'+l are now evaluated with respect to the latest config- 

uration as 

4 (Vu(i) + V«Wr) (26) 6e. (0 
-n+i      - 2 

and furthermore, the integration of the right hand side of (24) is carried out over the latest 

configuration £1^+1 as well. 

Substituting now the element geometry and displacement interpolations into equations 

(16) and (24) as we would do in linear analysis, we obtain the incremental-iterative procedures 

for general finite element nonlinear analysis. For total Lagrangian formulation, we have 

(Kl
n + Ä?)At7(*+1) = Fn

e*   - F%? (27) 

and for updated formulation, we have, 

(fei + fc?)Au<*+1> = f^i ~ fiti (28) 
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In both (27) and (28), the iteration matrices called the tangent stiffness matrices are on 

the left-hand side and include the elastic stiffness matrix and geometric stiffness matrix. The 

right hand side vectors are out-of-balance force vectors which represent the difference between 

the externally applied load vector and the internal force vector associated with the stresses 

in the structure. 

Remark:   It can be shown that the tangent stiffness matrices and out-of-balance force vectors 

evaluated in equations (27) and (28) are identical. (See Bathe [1994]). 

To appreciate the difficulties of implementing the Lagrangian formulations into an existing 

standard linear finite element code, it is helpful to compare (27) and (28) with standard finite 

element equations for linear analysis, say 

Kd = F 

It is readily recognized that in the Total Lagrangian formulation, although all the spatial 

derivatives and integrations are with respect to the initial undeformed configuration and the 

geometric stiffness matrix has the same form as that in linear buckling analysis, we still have 

three major difficulties: 

(1) Because of the initial displacement effect, the formulation of the elastic stiffness matrix 

Kl
n becomes much more complicated than that in the linear analysis. 

(2) The addition of the quadratic displacement derivative terms in the expression of the Green- 

Lagrange strain tensor to the linear strain-displacement relation may require significant 

changes in organization of the linear finite element code. 

(3) The evaluation of internal force vectors is computationally complicated and involves con- 

siderable coding efforts. 

In the updated Lagrangian formulation, because the continuous updating of the reference 

configuration eliminates the initial displacement effect, both the elastic stiffness matrix, kl
n 
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and the geometric stiffness matrix k™1 have the same form as that in linear analysis. Fur- 

thermore, the formulation of internal force vector is somewhat simplified as well. However, 

we still have a number of difficulties as enumerated below: 

(1) We have to deal with quadratic terms in the Green-Lagrange strain tensor. 

(2) We need to carry out a complicated transformation to establish the current Cauchy stress 

tensor. 

(3) We need to calculate the new spatial derivatives with respect to the latest obtained con- 

figurations at the end of each iteration. 

If we want to solve more general nonlinear problems, such as those involving large strains or 

nonlinear materials, the exact Lagrangian approaches must be employed to generate reliable 

finite element solutions. Fortunately, in the case of small strains, a series of approximations 

can still be made to degenerate the updated Lagrangian formulation to element co-rotational 

procedure, as explained below. 

2.3 Element Corotational Procedure 

The total and updated Lagrangian formulations discussed in previous section are so general 

that they are able to handle any kinds of nonlinearity, i.e., large displacements, large rotations, 

finite strains as well as various forms of nonlinear constitutive relations. However in the case of 

small strains, a series of approximations can be made to significantly simplify the Lagrangian 

formulations. 

Theoretically, an arbitrary motion of a general continuous medium can always be decom- 

posed into a rigid body motion followed by a pure relative deformation. In finite element 

analysis, this decomposition can be accomplished by defining a local convected coordinate 

system for each element which translates and rotates with the element, but not deform with 

the element. If the finite element is sufficiently small, the pure deformation part of displace- 

ment obtained by subtracting the rigid-body motion components from the total displacement 
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is normally small. Consequently, the linear theory can be applied. This is the key idea of the 

"Co-rotational Procedure". 

In the following, we endeavour to show the close relationship between co-rotational proce- 

dure and updated Lagrangian formulation. Prom this relationship we establish some simple 

but mathematically consistent procedures for updating element stresses and calculating in- 

ternal force vector. 

Because of the small strain assumption, the pure deformation part of the displacements is 

always a small quantity as compared to the element dimensions in the local convected coordi- 

nate system. Consequently, it is reasonable for us to make the following two approximations: 

1) The changes in element shapes are small in each individual local increment; and 

2) The displacement derivatives of the pure deformation part of the displacements with 

respect to the current configuration measured in the local convected coordinate system 

are of the same order as the small strains. Furthermore, the quadratic terms in the 

Green-Lagrange strain components are neglected. 

The second approximation was first introduced by Belytschko and Hsieh [4]. From the 

above two approximations, it follows that the linear theory can be employed in the element 

local convected coordinate system to provide geometrically nonlinear solutions to large dis- 

placements, large rotation, but small strain problems. 

Remark: Although all the motions of a continuous body can be theoretically decomposed 

into rigid-body and pure deformation components, in practical computations, the numerical 

performance of the co-rotational procedure greatly depends upon the method of construction 

of the local convected coordinate system. The more completely the rigid body motion is iso- 

lated from the total displacement field, the more accurate the finite element solution provided 

by the co-rotational procedure is. 

In order to present the corotational procedure, we refer the three sets of coordinate sys- 
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terns. They axe: 

(i) The Global Coordinate System which is the Cartesian coordinate system fixed in space. 

(ii) The Local Convected Coordinate System, 1" = [ii, 12,^3] which is associated with each 

element and undergoes rigid body rotations and translations with the element, and 

(iii) The Surface Coordinate System, Vi, which is the nodal triad associated with node iina 

structural element. During the equilibrium iteration, Vi experiences both the rigid body 

rotations and pure deformation. Obviously V. can be measured in either global or local 

convected coordinate system, as 

V = [Viti,Vit2,Vit3]   = I = [Viti,Vii2,Vi,3] 

where i denotes the node number and tilde indicates quantities measured in the local 

convected coordinate systems. 

In order for the linear finite element theory to generate sufficiently accurate results for 

nonlinear problems, the deformation part of the displacements must be kept as small as 

possible during the solution process. As a result, it is appropriate to update the reference 

configuration after the equilibrium state has been reached for each load increment. In this 

way, the displacement we are dealing with will be just the displacement increment in the 

current load step defined in equation (17). Because this concept is identical to that employed 

in the updated Lagrangian formulation, equation (28) will be an appropriate starting point 

for our derivation of the co-rotational procedure. 

It has been pointed out in the previous section that in updated Lagrangian formulation, if 

the modified Newton-Raphson iterative method is adopted, the elastic and geometric stiffness 

matrices have the same form as in linear analysis. (See Bathe [1994]). The main difficulty 

arises in the calculation of the internal force vector. The internal force vector in (28) can be 

expressed, for an individual element, as: 
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/£? =  / n  BW'HIXM (29) 

where .B^ has the same form as in ordinary linear finite element analysis, but contains the 

spatial derivatives with respect to the latest configuration obtained, i.e., £)„+!, which is not 

necessarily in equilibrium state. cr^x is the Cauchy stress tensor and is also measured in 

the latest configuration. To obtain exact Cauchy stress tensor, we have to first calculate the 

incremental Green-Lagrange strain from which the incremental second Piola-Kirchhoff stress 

tensor can be obtained, and secondly, perform the complex stress transformation as described 

in proceeding section. All variables in (29) are with respect to the global coordinate system. 

To apply the corotational procedure, it is convenient to transform equation (29) into local 

convected coordinate system, as 

Ä+? =   L  B{i)T^l<M (30) 

where the tilde indicates quantities measured in the local convected coordinate system. B^ 

represents the strain-displacement matrix in the local convected coordinate system in config- 

uration Ö-j*^. 

The Cauchy stress tensor in the latest obtained configuration can be calculated through 

the stress transformation in local convected coordinate system as follows 

Ja = T = FSFT (31) 

=►     a = -FSFT (32) 

Consequently, stress update in the current configuration can be expressed as 

crn+i =an + jFASFT (33) 

Based on the first assumption where the changes on element shapes are assumed to be 

negligible, the deformation gradient matrix in local convected coordinate system must be 
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close to an identity matrix and the change in mass density is also negligible, we have p0 = pt 

for J = 1 and the deformation gradient 

d£i ( 1    i = I 
FiI " dXj ~ 10   i±I 

Substituting (34) into (33), we get further approximation 

öVi+i = <rn + AS 

= £rn + C: AEl 

(34) 

(35) 

where because of the small strain assumption in the co-rotational framework, we drop the 

nonlinear term in the Green Lagrange strain tensor and are left with the linear strain tensor. 

Consequently, 

frH",1} = «r« + C:A#(l) 
'n+1 

T\(») = *£, + C:£(VÜ + Vu')Jl
,i1 

= *« + £:£«,#<> 

r(0 

'n+l^n+l 

. D(*)    TTAi) — ZrW _i_ n- RW   r-t jl'J (36) 

where we have used the transformation relation between the nodal degrees of freedom in the 

global and the local convected coordinate systems. Once the internal force vector is obtained 

in local convected coordinate system, a simple coordinate transformation can be performed 

to obtain the internal force vector in global coordinate system as: 

■fint(i)   _   TT fint(i) 

Jn+1    —  J     /n+1 (37) 

where the transformation matrix is obtained as 

I2 

HD 

I2 

J2 

2hl2 

2I2I3 
2hh 

raf 
ml 
ml 

nt 

n§ hrn3 

mini 

m2ri2 

m3n3 

nih 

ri2k 

2mi77i2    2riin2    hm2 + h^i    rnin2 + m2ni    ni^ + ^1 
2m2m3     2W2Ti3     ^"^3 + h^2     ™2™3 + «T-3^2     ™2^3 + «3^2 
2m3mi    2n3ni    hmi + Zim3    m^rii + rain3    n3Zi + nil3 

(38) 
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and 
/i=cos(i,ei) mi = cos(j,ei) ni=cos(fc,ei) 

12 = cos(i, e2) m2 = cos(j, e2) n2 = cos(fc, e2) 

13 = cos(i, e3) m3 = cos(j, e3) n3 = cos(fc, e3) 

The relation between the Cauchy stress tensor in the global and the local convected 

coordinate system is expressed through the standard transformation matrix as 

^ = ^(£0^1 (39) 

Remark: The above treatment to the geometric nonlinearites is element-independent and 

applicable to all finite elements. However, the definition of the local convected coordinate 

system is still element-dependentand special care has to be excercised to obtain a better 

numerical performance. Another element- dependent step is the modification of nodal tri- 

ads after each iteration. The formulations must be consistent with the kinematic relations 

employed in the element. 
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3. STABILIZATION TECHNIQUES FOR UNDERINTEGRATED 

NONLINEAR SHELL ELEMENTS 

3.1 Introduction 

In large-scale finite element analyses, a significant number of elements and large computer 

memory are required to obtain the detailed information for engineering design or process 

control. When these analyses are explicit, computational costs are mostly determined by the 

efficiency of the elements, especially for non-linear problems. In the past, full quadrature 

and selective reduced integration, were extensively used in the finite element analyses. Full 

quadrature ensures the stability and convergence of solutions. However, it is very expen- 

sive owing to the requirement of many computational operations for evaluating the element 

stiffness matrices and the internal force vectors and it also lead to volumetric locking and 

transverse shear locking in thin structure bending and incompressible problems. A remedy 

for this is to use the selective reduced integration in which the full quadrature and reduced 

quadrature are applied to different terms to form the element stiffness matrix as proposed by 

Malkus and Hughes [14] and Nagtegaal et al. [15], among others. However, it is as costly as 

full quadrature. 

Perhaps, the most efficient elements are the one-point-quadrature elements with hourglass 

control developed by Flanagan and Belytschko [16], Belytschko [17] and Belytschko et al. [18]. 

The mesh instability associated with the underintegrated elements is controlled by adding a 

stabilization to the one-point-quadrature element. The stabilization terms are developed to 

ensure the consistency of the finite element equations and its magnitude is controlled by 

a user input stabilization parameter. Liu and Belytschko [19] also developed a one-point- 

quadrature element for heat conduction problems. In this work, the stabilization parameter 

is determined by solving an eigenvalue problem. In Belytschko et al. [20] the Hu-Washizu 

variational principle is used to examine the magnitude of the stabilization parameters. More 

recently, an assumed strain stabilization of the four-node quadrilateral element and the eight- 
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node hexahedral element with one-point quadrature, where the stabilization parameters are 

not required, was proposed by Belytschko and Bindeman [20,21]. 

An alternative approach for hourglass control is proposed by Liu et al. [22] in which the 

resulting stabilization matrix requires no stabilization parameter. It is shown that the stabi- 

lization vector 7 can be obtained simply by taking the partial derivatives of the generalized 

strain vector with respect to the natural coordinates. The strain vector is therefore approx- 

imated by the combination of a constant part and other parts involving strain derivatives. 

However, shear-related locking phenomena are not taken into consideration and no three di- 

mensional result is reported in their study. Belytschko [18] established an hourglass control 

procedure by expanding the stress in a Taylor series about the element center. It is found 

that the hourglass control is suppressed by the retention of the first and second derivatives 

terms in the expansion. The detailed derivation of element matrices and numerical examples 

are, however, only for two dimensional problems. 

In this work a three-dimensional underintegrated element based on the procedures similar 

to that proposed by Liu et al. [22] are developed. Emphasis is placed on avoiding of locking 

and the removal of spurious singular modes. This element is applicable to plate and shell 

bending problems, and more importantly it is suitable for extension to elasto-plasticity. Sec- 

tion 3.2 presents the synopsis of the underintegrated four-node quadrilateral elements with 

hourglass control as developed by Belytschko et al.. The three-dimensional element suitable 

to bulk deformation and plate/shell structural analyses is developed in Section 3.3. 
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3.2 Four-node quadrilateral element 

Fig. 1.   Physical and reference configurations. 

Let us consider a four-node quadrilateral element as shown in Figure 1. The configuration 

of the element is a bi-unit square in the natural coordinate system {£,rj). The spatial coordi- 

nates x and the velocity component v in the element are approximated by linear combinations 

of nodal values and and the element shape functions. 

The gradient submatrix is given by 

Ba = 
-''a,! 

N, a,y 
(40) 

which can be evaluated at the element center as 

B«(0) = 
Na,x (0) 

Na,y (0) 

where 

ha 
ha 

bl   =   {ha}   =   2^[2/24 , y31 , 2/42 , 2/13 ]T 

&2   =   {ha}   =   2~7[Z42, Zl3, ^24, £31 ]T 

XlJ   =   Xj — Xj 
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Fig. 2.   Bending Modes. 

vu = yi-yj 

A   = 2^312/42  + £24 2/31) 

(45) 

(46) 

and / and J designate the node numbers. 

For the purpose of identifying the deformation modes of element, let us define column 

vectors 

(47) 

(48) 

(49) 

* = [1,1,1,1]T 

X  = Xi   =  [Xi, x2, £3, x4]T 

y = x2 = [yi,y2,y3,V4 

£ = [-l,l,l,-l]r 

T)   =   [-1,-1, 1,1]T 

(50) 

(51) 

(52) 

where x and y are the element nodal coordinates of the physical space; £ and 77 are element 

nodal coordinates of the biunit square: and h is the hourglass vector. In Figure 2, we show 

two bending modes: {h,0} and {0,/i} which are the deformation mode associated with no 

energy in the one-point quadrature element but resulting in a non-constant strain in the 

element. 
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The strain rate e is approximated by expanding it in a Taylor series about the element 

center up to linear terms: 

or 

e(£,v) = e(0) + e,z(0)Z + i,r,(0)v 

a=l 

(53) 

(54) 

where 

Ba (£ , 77) = Ba (0) + BaX (0) £ + Bai7? (0) 77 (55) 

The first term on the right hand side of equation (53) is the constant strain rate evaluated at 

the quadrature point, 0, and the other terms are linear strain rate terms. 

After some algebra, the explicit expressions of the first derivatives of J3o(0) with respect 

to natural coordinates, Ba^(0) and J3Q)T/(0), can be shown to be 

where 

where 

B«,C(0) = 

JW°) = 

"61 io. 

hi ,ta_ 

~h ,r\a 

hi ,r?a 

*!.€   = 

b2£ = 

bhv = 

b2,V  = 

{KvA 

{h,r,a} 

Ol27 

0117 

G227 

^217 

an 

ai2 

AA 

AA 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 
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a22 - & (65) 

The 7 in equations (58)-(65) is the stabilization vector which spans the improper null-space 

of 13(0). It is given by 

1 = h-{hTXi)bi (66) 

where i is the summation index from 1 to 2. 7 is orthogonal to the linear velocity field and 

provides the proper stabilization for the element. Belytschko and co-workers [17,20] derived 

these vectors from the requirements of consistency of the finite element equations in the sense 

that the gradients of the linear fields were evaluated correctly. 

To alleviate volumetric locking, we employ the ideas underlying selective/reduced inte- 

gration. Ba(£,r]) is decomposed into two parts as 

BaU,v) = B™ {0) + B?* (Z,V) (67) 

where ßf are the gradient submatrices due to the dilatational part of Ba; and B„ev are 

the gradient submatrices due to the deviatoric part of Ba. Here, the dilatational part of the 

gradient matrix has been underintegrated and evaluated only at one quadrature point, 0, to 

alleviate the volumetric locking. Expanding B%ev about the element center via equation (55), 

equation (67) can be written as 

Ba( £, v) = Ba(0) + B% (0) £ + Bjy (0) r, (68) 

where Ba(0) are the one-point-quadrature gradient submatrices contributed from both the 

dilatational and deviatoric parts. The other terms on the right-hand side of above equation 

are the gradient submatrices corresponding to non-constant deviatoric strain rates. It is noted 

that the resulting element using the gradient matrices as in equation (67) or (68) exhibits 

no hourglass mode if the element internal virtual work is evaluated by using a multiple- 

quadrature-point integration. 
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The element developed so far is not suitable for the thin beam or plate analysis owing 

to the so called shear locking for the bending modes. It is well known that the reduced 

integration on shear strain rates in the global coordinate system is not physically correct 

when the referential coordinate system is not aligned with the global one. Hence, a co- 

rotational coordinate system which rotates with the element is used for the derivation that 

follows. To alleviate the shear locking, the gradient submatrices for the general 2-D element 

are interpolated in the following form: 

where 

Bxx (£, v) = Bxx (0) + B*% (0) £ + B$™n (0) V 

Byy (£, v) = Byy (0) + B$% (0) £ + B^v (0) V 

Bxy{Z,r,) = Bxy(0) 

B„(t,v) = B££(0K + B%„(0)V 

B 

B 

B 

B 

xx (0)" 

yy(0) 

xy(0) 

«(0) 

= 

bj 
0 

bl 
0 

0 

0 

Bd
xx^(0)' 

Bj% (0) 

B% (0) 

= 

| ai2 7T 

1             T 
-3^12 7 

1              T 

1             T 
-3an7 

| an 7T 

1             T 
-3an7 

rjdev   1 
XX,7] \ 

rjdev   ( 
yy,v v 

B*%, ( 

0) 

0) 

o) 

= 

i< 
l 
3 
1 
3 

T 
122 7 

fl22 7T 

Ö22 7T 

1 
3 

2 
3 

1 
3 

02i7T 

»217T 

G2l7T 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

Bxx , Byy , Bxy and Bzz are the gradient submatrices corresponding to the shear strain rates 

£xx,£yy,£xy and ezz, respectively. Here, only the constant term is used for the shear strain 
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rate component such that the mode causing locking is removed. The normal strain rates keep 

all non-constant terms given in equation (68). 

Although one-point quadrature with hourglass control can be applied to the element 

developed herein, it might be not accurate enough for more advanced nonlinear constitutive 

models. Hence we follow Liu et al. [22] to use two-point quadrature where the element 

internal force vector is evaluated at the two integration points located as follows: 

Pointl:(+_L +.L) 

Point2:<-7S'-^) 

This two-point quadrature element exhibits no hourglass mode and is rank sufficient. By 

assuming that the Jacobian is a constant, one half of the area, the element internal force 

vector can be integrated as follows: 

»=i 

A ^ 

2~ fint = £?ST&)T(&) (76) 

where & denotes the natural coordinates of the integration point i and A is the element area. 

The element internal force vector can be further rearranged as 

/int        fint    .     fint f77\ 
—   J 2       "+"  Jstab K") 

where ftp1 and f^b are the internal force vector resulting from one-point quadrature and 

stabilization, respectively. They are given by 

A 
fint   _   ■"• 
J2       —   TT 

fn 61    +    fi2 b2 

T12 &1      +     T22 t>2 

and 

/int 
stab 

y/3A 

18 
(a« + 022) x (2fn - f22 - r33) 7 

(an + an) x (-fn + 2f22 - f33)7 

(78) 

(79) 
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where ai7- are given in equations (62)-(65) and 

fij   =   Tij (fj)  + Tij (f2) 

Tij   =   T^ (£0   -  Tij (&) 

(80) 

(81) 

3.3 Eight-node Hexahedral element 

1_^ 

A'#. 3.   Physical and reference configurations for 8-node element. 

Let us consider an eight-node hexahedral element as shown in Figure 3. The spatial 

coordinates and velocity in the element are approximated by linear combination of nodal 

values and shape functions as follows: 

Xi   =   Yl Na (f > */' 0 xia («en   =   8) 
a=l 

Vi = £jV««,»7,C)' 
a=l 

Na (£, 77,C)   =   g(l  + U) (1  + VaV) (1  +  CaC) 
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(83) 
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where the subscripts i and a denote coordinate component ranging from one to three and the 

element node number, ranging from one to eight, respectively. 

For the purpose of identifying the deformation modes of the element, let us define the 

gradient submatrices Ba(0) and other column vectors as 

Ba(0) = 

Na,x (0) ha 
Na,y (0) = ha 

NatZ (0) ha 

(85) 

sT = [1,1,1,1,1,1,1,1] (86) 

XT   =   [xi,X2,X3,X4,X5,Xe,X7,X8] (87) 

VT  =   [2/1,2/2, J/3, J/4, 2/5, 2/6, J/7,2/s] (88) 

[ZI,Z2,Z3,Z4,Z5,Z6,Z7,ZB] (89) 

[1,-1,1,-1,1,-1,1,-1] (90) 

[1,-1,-1,1,-1,1,1,-1]           , (91) 

[1,1,-1,-1,-1,-1,1,1] (92) 

[-1,1,-1,1,1,-1,1,-1] (93) 

[-1,1,1,-1,-1,1,1,-1] (94) 

[-1,-1,1,1,-1,-1,1,1] (95) 

CT = [-1,-1,-1,-1,1,1,1,1] (96) 

where x, y and z are the nodal coordinates and hi is the ^-hourglass vector, hi the ££- 

hourglass vector, /i3 the ryC-hourglass vector and h.4 the ^(-hourglass vector. 

The Jacobian matrix evaluated in the center of an element can be shown to be 

T z    = 

h\ = 

hZ 

hi = 

hl = 

e = 
T 

J(o) = [Ja] = g 
ex zTy e* 
■qTx    r)Ty rjTz 

CTx   cTy CTz 
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The determinant of the Jacobian matrix is denoted by Jo and the inverse of J(0) is given by 

D: 

D = [Dy] = J-1 (0) (98) 

The gradient vectors bi,b2 and b3 (which are evaluated at 0) in equation (85), can be 

shown to be 

bi = {öia} = £pn£ + D12r, + D13Q (99) 

b2 = {b2a} = i[Aji£ + D22rj + D23C] (100) 

h = {b3a} = l[D31$ + D32V + D33C] (101) 

Expanding strain rate e in Taylor series about the element center 

e (£, V, 0 = e (0) + ei€ (0) £ + e,„ (0) 77 + eiC (0) C 

+ e,e„ (o) ^ + e,„c (°) ^C + £,« (o) CC (102) 

or 

e = £)£„(£, »7, CK (103) 
a=l 

where 

J3a (£, »7, C) = Ba (0) + Ba,e (0) £ + Ba,„ (0) 77 + J3a,c (0) C 

+ Ba^ (0) £77 + B«,,* (0) VC + Ba,a (°) Ce (104) 

The first term on the right hand side of the equation (102) or (104) is the constant 

strain rates evaluated at the quadrature point, 0, and the remaining terms are the linear and 

bilinear strain rate terms. After some tedious algebra, it can be shown that the first and 

second derivatives of Ba(Q) with respect to natural coordinates are given by 

bi,e = {Nart) = I P1271 + £>1372] (105) 

b2,t = {NaM} = ^[£»2271 + £2372] (106) 
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where 

&3,£   = {Na,zt} =   g [^3271  +  -°3372] 

bi,v = {AW = - [D1171 + £>1373] 

b2,n = {Na,yv} = g [D21I1 + £>237s] 

h,n = {Na,zn} = g [£>3i7i + -D3373] 

bi,C = {Na,xc} = I [Dirt* + -D1273] 

&2,C   = {Na,y(} =   g [£>2l72  + ^>227s] 

bsX = {Na,z(} = g [-D3172 + £>327s] 

bl,tn   = {Na,xtT,}   = g[^13 74  - 

b2,tV   = {Na,yZr,}   = g [£>23 74 - 

b3,tv   = iNaMv)   = g[-D33 74  ~ 

bhvC   = {-^a,«*}   = g[-DU74  - 

&2,T,C   = {Na,ync)   = g^2l74 - 

bzM = {Na,zVc} = g [A»i74 - 

&UC   = {-^a,*«}   = g[^12 74  - 

&2,£C   = {^a,»«}   = g[^22 74 ~ 

&3,£C   = {Na,ztc}   = gp32 74  " 

iPi Xi) bi,t - {rfxi) bitV 

(pi Xi) bi£ ~ (rIxi) bi,v 

(q[xi)bitri - {p1xi)bitC 

(q^Xi)bi^ - (p2Xi)biX 

(q%Xi)bitV - (p%Xi)biX 

{Qi xi) bit ~ (rixi) bi,c 

{qlxi)bi£ - (r^Xi)biX. 

(q%Xi)bit - (r£xi)bi£ 

Pi = Dixhi + Di3h3 

qi = Dnh2 + Di2h3 

ri = Di2hx + Di3h2 
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(108) 

(109) 

(110) 

(111) 

(112) 

(113) 

(114) 

(115) 

(116) 

(117) 

(118) 

(119) 

(120) 

(121) 

(122) 

(123) 

(124) 

(125) 



The 7a in equations (105)-(122) are the stabilization vectors which span the improper null- 

space of B(0). They are given by 

7. = ha-{hlxi)bi (126) 

where i is the summation index from 1 to 3. ~fa is orthogonal to the linear displacement field 

and provide the proper stabilization for the element. 

Similar to the four-node quadrilateral element, Ba (£, 77, () is decomposed into two parts, 

dilatational part and the deviatoric part. The dilatational part of gradient matrices are 

underintegrated and evaluated at only one quadrature point, 0, to avoid volumetric locking: 

Ba & V, 0 = Bf (0) + Bdr {£, 77,0 (127) 

Expanding B*ev about the element center, equation (126) can be written as 

Ba (£, V, 0 = Ba (0) + B% (0) £ + B% (0) r? + B% (0) C 

+ Bjg, (0) £77 + ßa
d- (0) 77C + BJ& (0) Qi (128) 

where Ba (0) are the one-point-quadrature gradient submatrices contributed from both the 

dilatational and deviatoric parts. The remaining terms on the right-hand-side of the above 

equation are the gradient submatrices corresponding to non-constant deviatoric strain rates. 

It is noted that the element using the gradient matrices as in equation (127) or (128) is 

properly underintegrated and exhibits no hourglass mode if the element internal energy is 

evaluated by using the multiple-point quadrature. 

The element developed so far is not suitable to plate /shell analysis owing to the shear 

and membrane locking in thin structures. To remove shear locking, the gradient submatrices, 

corresponding to the assumed shear strain rates is written in an orthogonal co-rotational 

coordinate system rotating with the element as 

Bxx (£, 77, C) = Bxx (0) + B^ (0) £ + B£v (0) 77 + B^c (0) C 

+ BJi, (0) tn + Big« (°) VC + B*j;« (0)« (129) 
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where 

Byy (£, V: 0 = Bm (0) + B*% (0) £ + B^v (0) T, + B^ (0) C 

+ K\n (o) fr + *2zr,c (°) ^ + BAT« (o) a (130) 

B22 (£, 17,0 = B22 (0) + BS (°) £ + B17„ (0) TJ + Bjft (0) C 

+ Bl%v (0) iv + B%vC (0) r/C + B£r« (o) C£ (131) 

B«„(e,i7,C) = B,, (0) + B%( (0) C 

B^(e,^,o = Byz (o) + J5j^ (o) e 

B«(e,»7,C) = B« (0) + B^ (0) r? 

(132) 

(133) 

(134) 

BIX (0) 

Byy(0) 
Bzz (0) 

B*»(0) 
Byz(0) 
BZI (0) 

bj 0 0 

0 &2T 0 

0 0 tf 

tf bl 0 

0 bl 65" 
bl 0 

&r 

(135) 

B^(0)' 

Bjsr€ (o) 
B^ (0) 
B*% (0) 
ßS (°) 
B^ (0) 

1 
8 

0 

0 

0 

£>227f 
0 

^3372T 

|^3372T 

0 

0 

I^227lT 

-^227lT 

0 

0 

(136) 
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odev 
■Dxx,r) (0) 

v (o) yy,v v  ' 
rjdev 

B dev :,(°) 
:,(°) BXy 

BlZr, (0) 
B 

yz, 
dev yo) 

i 
8 

I^n7f 0 

-^ll7ir        0 

0 Dutf 

0 ^3373^ 

£>3373
r 0 

4^3373T 

-^3373T 

f^3373T 

0 

0 

Dull 

(137) 

BÄTc (°) 
Btl (0) 
jgdev (0) 
BSTc (0) 

§£n72
T -P2273T 0 

-^ii72
T 1^2273T 0 

1 -^ii72
T -|^2273T 0 

8 ^>2273
r Dull 0 

0 0 D221I 
0 0 Dull 

(138) 

B£to (°) 
.  iV

c  (0) yy^v v  ; 
pdev 

«S, (0) 
B^v (°) 
ßS„ (°) 

0 0 4£>3374T 

0 0 -^3374T 

1 0 0 1^3374T 

8 0 
0 

Dun! 

£>337j 
0 
0 

0 
0 
0 

(139) 

"■»^(O)" 
!Ai74T 0 0 

B^M (0) -^ii74T 0 0 
B*t:vC (o) 1 -^ii74

r 0 0 

*£:* (°) 8 0 £>ii74
T 0 

B'ytM (0) 0 0 0 

*£* (°) 0 0 ^ii74T 

(140) 
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*sr« (°) 

0 -\D22lJ 0 

0 ID221I 0 
1 0 -\D221J 0 
8 D221I 

0 
0 

0 
0 
0 

0 

D221I 
0 

(141) 

In above equations, Bxx, Byy, Bzz, Bxy, Byz and Bzx are the gradient submatrices cor- 

responding to strain rates exx,eyy,izz,exy,eyz and ezx respectively. Here, only one non- 

constant term is used for each shear strain rate component such that the modes causing 

shear locking are removed. The normal strain rates keep all non-constant terms given in 

equation (127). In ßdev(0), only those terms corresponding to a parallelpiped element are 

used for stabilization. 

For advanced nonlinear constitutive models in 3-D calculations of large deformation prob- 

lems, we propose to use a four-point- quadrature scheme instead of one-point quadrature. 

Following Belytschko et. al. [20] the element internal force vector is evaluated at the four 

integration points located as follows: 

, 1 1 1   X Point 1 : (+-=,+-=,+ -=) 
Vs     V3     Vs 

(142) 

Point2:(-7!'-7!'+7!) (143) 

Points :(_-L,+-L,_-L) (144) 

^-■^Ts'-Ts'-^ 
(145) 
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By assuming that the Jacobian is a constant, one-quarter of the element volume, the 

element internal force vector can be integrated as follows: 

4 
V 

f^Ei^fe)^^ (146) 
i=l 

where £j denotes the natural coordinates of the integration point i and V is the element 

volume. 

The element internal force vector can be rearranged in the form 

pint 
JA    + Jt stab (147) 

where f^nt and /g°*b are the internal force vectors resulting from a four-point quadrature and 

the stabilization procedure, respectively. They are given by 

/int 
4 = £ V 

i=i 

m(&)&i + Tl2(&)&2 + Tl3(6)&3 

75i(&)&i + r22(^)&2 + T23(^)&3 

T3l(&)&l + T32(6)&2 + T33(6)&3 

(148) 

and 

/int 
stab -t- 

i=l 
32 

öi(^)^r(6) + S4&)T12(&) + ff5(ei)r3i(^) 
Ö2(^)r2

d2eV(^)      +     06(&)n2&)      +     <?7(6)T23(&) 

03(^)^(6)     +     9s(Zi)T23(Zi)     +     fl9(e<)TSl(6) 

(149) 

where the superscript, dev, denotes the deviatoric part of the stress, and the other quantities 

are given by 

Si (0 = #n (»77i + £72 + 277C74) (150) 

92 (0 = #22 (£7i + C73 + 2£C74) 

93 (0   =   #33 (£72 + »773 + 2^74) 

04(0   =   #22C73 

05(0   =  #33 »773 
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06 (0 =   £>llC72 

07 (0 =   A}S£72 

08 (£) = D22t.l1 

09 (£) = £>n??7i 

(155) 

(156) 

(157) 

(158) 

It is noted that the element developed above cannot pass the patch test because with the 

one-point quadrature the element internal forces are not properly evaluated if the element is 

skewed. To remedy this drawback, Ba(0) are replaced by the uniform matrices, Ba, defined 

by Belytschko et al. [18,19]. 

Ve Ba = —        Ba(Z,V,()dV 
In* 

(159) 

where Ve is the element volume. Similarly, equation (85) is modified as 

Ba (0) = 

and the stabilization vectors are redefined as 

&2a 

bza 

(160) 

7a = ha - (hlxi)bi (161) 

which span the proper null-space. Since, the element internal force vector can be evaluated 

exactly when the element is subjected to a constant strain rate field, the use of the uniform 

gradient matrices Ba leads to a new four-quadrature-point-element which passes the patch 

test. 
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4. NUMERICAL EXAMPLES 

We now present geometrically non-linear analysis of flat and curved composite laminates 

and compare the results with the published data by various investigators. This task is per- 

formed to verify and validate the proposed model with the established benchmark problems. 

The main feature of the proposed formulation is that it can easily model the layered material 

with orthotropic material properties. Comparison is made with some of the celebrated shell 

models in the literature. 

4.1 Geometrically nonlinear bending of a narrow cantilever plate under point 

load 

The first simulation is that of a narrow cantilever isotropic plate subjected to a concen- 

trated load, and comparison is done with the shell element SHEBA by Argyris et al. [26]. 

The concentrated load is applied in equal intervals at the middle of the right boundary (see 

Fig. 4). The values of Youngs modulus E = 2.1 x 10+6 kg/cm2 and Poisson ratio v = 0.3 are 

used in this analysis. The value of applied load, P is Ax 103 kg. The applied load versus the 

displacement path (Fig. 5) of the load point in our simulation shows a close agreement with 

that given by Argyris et. al. [26]. The superposed initial and final meshes are shown in Fig. 

6 and surface stresses axx are shown in Fig. 7. 
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Nonlinear bending of thin 
cantilever isotropic plate 

»=P 

Fig. 4-   Schematic diagram of the problem. 
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Fig. 5.   Load-deflection diagram at point under the load. 
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Fig. 6.   Initial and final deformed geometry. 

3 

STRESS 1 

-1.44E+04 

1.50E+04 

Fig. 7.   Surface stress distribution for axx on the final deformed geometry. 
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4.2    Large deformation analysis of three-dimensional curvilinear beam 

This example presents large displacement response of a three-dimensional curvilinear can- 

tilever beam. The beam has a cross-sectional area of 1 in2 and lies in the X - Y plane. In the 

undeformed configuration the cantilever bend has a radius of 100 inch and an angle of 45°. 

A concentrated load is applied at one of the ends of the beam in the Z direction while the 

opposite end is kept fixed. Because of its curved geometry and the eccentricity of the applied 

load, the beam undergoes bending as well as twisting deformations. The finite element mesh 

is composed of 16 x 2 x 1 elements. Material properties used are: Young's modulus E = 107psi 

and Poisson's ratios v — 0. 

Figure 8 shows the initial and the final deflected shapes of the cantilever. The graph for tip 

deflection plotted against the load parameter can be seen in Figure 9. Results are compared 

with the beam element of Bathe and Bolourchi and 3D co-rotational element of Moita and 

Crisfield. Computed results show a very good correlation with the published results. 
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Fig. 8.   Initial and final deformed geometry. 
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Fig. 9.   Load-deflection diagram. 
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4.3    Geometrically nonlinear analysis of a clamped isotropic plate under uniform 

pressure load 

The next numerical simulation is a large deformation analysis of a fully clamped isotropic 

plate. Again we have selected this isotropic problem to benchmark our element for geomet- 

rically nonlinear analysis. Material properties are, Youngs Modulus E = 2 x 104kg/mm2 

and Poisson ratio v = 0.3. The plate is loaded by applying a uniform pressure of intensity 

q = 0.8 x 10-4 kg/mm2 (see Fig. 10). To solve this problem we generated a mesh of 8 x 8 x 2 

hybrid elements. The pseudo-time increment in the nonlinear solution strategy is At = 0.01. 

A total of 100 steps were required to apply the total load. Fig 11 presents the nonlinear 

load-deflection curve obtained at the point under the load which compares very well with the 

experiment load-deflection curve reported in Kawai et al. [24]. Figs. 12 and 13 present the 

top and bottom view of the surface stresses for the final step. 
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Fig. 10.   Schematic diagram of the problem. 
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Fig. 12.    Surface stress distribution for axx on the top surface. 
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Fig. 13.   Surface stress distribution for axx on the bottom surface. 
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4.4    Pinched cylindrical shell with free edges 

The next simulation is that of a cylindrical shell with free edges (Fig. 14), subjected 

to two opposite point loads. In this test case the shell is able to undergo finite rotations 

and thus provides a severe test for the veracity of the underlying formulation. The overall 

response represents two distinct features; an initial portion that is dominated by bending and 

is characterized by large displacement, and a later portion that is dominated by membrane 

effects that are characterized by a very stiff response. Invoking the symmetry conditions, only 

one-eighth of the shell is modeled using 16 x 8 x 2 elements (16 along the periphery, 8 along 

the length and 2 through the thickness). The depicted curves show the displacement under 

the load, as well as the horizontal displacement at the side of the shell. The final deformed 

configuration of the shell is shown in Fig. 16. 
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Fig. 14.    Initial geometry and loads. 

3-45 



T3 
ra 
o 

40 

30 

20 

   point A 
  point B 
• Jiang et. al point A 
♦ Jiang et. al point B 

2 3 

Displacement (m) 

Fig. 15.    Load-deflection diagram. 
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Fig. 16.   Final deformed geometry. 

3-46 



4.5    Pinched hemispherical shell 

The next problem is that of a pinched hemispherical shell which is a popular benchmark 

problem for linear as well as nonlinear shell analysis. The undeformed configuration of the 

shell has a 18° hole at the top and is subjected to two inward and two outward forces that 

are 90° apart. The material and geometric properties are: E = 6.825 x 107 psi, v — 0.3, 

radius R = 10 inch and thickness t = 0.04 inch. Because of the symmetry conditions that can 

be applied, only one quadrant needs to be modeled. A plot of the pinching load versus the 

deflection under the corresponding pinching load is shown in Fig. 18. Comparison is made 

with "stress resultant geometrically exact shell model of Simo et al. 25]. Figure 19 shows the 

final deformed mesh configuration without any magnification of the deformation. 

Fig. 17.   Initial geometry and loads. 
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Fig. 19.   Final deformed geometry. 
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Part IV 

Simulation of Coupled Systems 



Chapter 1 

Coupled Elastic/SMA Simulations 

This section is dedicated to numerical simulations of coupled elastic-shape memory alloy 
composite systems. The simulations depict an initial configuration is given which is then 
transformed via a thermal variation to a final configuration. Several simulations are presented 
to shown the robustness of the shape memory alloy and its capacity to be embedded within 
an elastic medium to enable a global shape changes. 
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1.1    Two-Dimensional Cantilever Beam 

The first simulation consists of a configuration with an initially curved two dimensional 
cantilever beam. The initial configuration of the beam is shown in Figure 1.1. The simulation 
is conducted with a total net reaction of the beam of zero and an initial thermal state of 
31 °C which is then heated to 54 °C. The material under consideration is NiTi and its 
associated material parameters can be found in Table 1.1. The progression of the simulation 
is shown in Figures 1.2 and 1.3. 

1 

10 
|Fgj S*M Element 

|      | Elastic Element 

Cross-Section 

Figure 1.1: Initial Configuration of the Composite Elastic/SMA Beam. 

Table 1.1: Material Properties for NJTJ.(BRINSQN &: LAMMERING [1993]) 
Young's Moduli Em = Ea = 67 GPa 
Critical stresses for de-twinning a%. = 100 MPa and o{T = 170 MPa 
Martensite production temperatures Tms = 18.4 C and Tmf = 9 C 
Austenite production temperatures Tas = 34.5 C and Taf = 49 C 
Austenite production slope Ca = 13.8 MPa/C 
Martensite production slope Cm = 8 MPa/C 
Maximum transformation strain £L = 0.067 
Thermal expansion coefficient a = 6.5 /xstrain/C  
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T = 50.50°C T = 53.75°C 

Figure 1.2: Simulation of an elastic/sma beam under a thermal cycle. 
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Figure 1.3: Trajectory of the displacement/temperature history. 
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1.2    Two-Dimensional Simply Supported Beam 

The second simulation consists of a configuration with an initially curved two dimensional 
simply supported beam. The initial configuration of the beam is shown in Figure 1.4. The 
simulation is conducted with a total net reaction of the beam of zero and an initial thermal 
state of 36.3 °C which is then heated to 50.3 °C. The material under consideration is NiTi 
and its associated material parameters can be found in Table 1.2. The progression of the 
simulation is shown in Figures 1.5 and 1.6. 

200 

g| SMA Element 

I    1 Elastic Element 

Elevation Cross-Section 

Figure 1.4: Initial Configuration of the Composite Elastic/SMA Beam. 

Table 1.2: Material Properties for NJTJ.(BRINSQN fc LAMMERING [1993]) 
Young's Moduli Em = Ea = 67 GPa 
Critical stresses for de-twinning as

CT = 100 MPa and a{r = 170 MPa 
Martensite production temperatures Tms = 18.4 C and Tmf = 9 C 
Austenite production temperatures Tas = 34.5 C and Taf = 49 C 
Austenite production slope Ca = 13.8 MPa/C 
Martensite production slope Cm = 8 MPa/C 
Maximum transformation strain EL = 0.067 
Thermal expansion coefficient a = 6.5 /ustrain/C 
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Figure 1.5: Simulation of an elastic/sma beam under a thermal cycle. 
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Figure 1.6: Trajectory of the displacement/temperature history. 
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