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AFiT/DS/ENG/98-09 Abstract 

The problem of tracking control in the face of high amplitude dynamic reference signals, hard 

state and control constraints, and open-loop unstable plants is investigated. The stated problem is 

addressed using a nonlinear dual-loop controller architecture. The inner-loop contains the controlled 

process which consists of the bare plant and a predetermined linear control law that provides good 

small signal performance in the absence of saturation. The controlled process is augmented with 

an outer supervisory loop which contains a nonlinear reference signal governor. The purpose of the 

reference signal governor is to modify the exogenous reference signal so that the controlled process 

state and control constraints are not violated. The proposed methodology is based on a discrete 

time formulation. In contrast to current reference signal governor methods a BIBO stable system 

is obtained without restricting the modified reference signal to statically admissible values. This 

allows more aggressive control concepts which improve tracking performance. An arbitrarily close 

approximation to the controlled process' maximal statically admissible set is characterized with a 

finite set of linear inequalities. These linear inequalities are exploited by the on-line reference signal 

governor to restrict the controlled process state to a positively invariant set without restricting the 

modified reference signal to statically admissible values. The linear inequalities are generated from 

a set of vertices using a new computationally efficient recursive convex hull algorithm. 

The nonlinear dual-loop controller architecture is also applied to the discrete time constrained 

regulator problem. In this case the outer-loop nonlinearity acts as a reference signal generator. By 

synthetically generating non-zero modified reference signals, when required, the volume of the 

controlled process' maximal statically admissible set is dramatically increased. This improves the 

robustness of the controlled process with respect to external disturbances, and alleviates the trade- 

off between small signal performance and the size of the positively invariant set. 

xv 



HIGH AMPLITUDE TRACKING CONTROL 

Chapter 1 - Introduction 

1.1  Overview 

Real world dynamical control systems are generally subject to hard nonlinearities. For exam- 

ple, aircraft control'surface actuators are subject to hard displacement and rate constraints. These 

physical constraints translate into hard state (actuator rate) and control (actuator displacement) con- 

straints on linear system models of the physical systems. While state and control constraints are 

most often due to actuator displacement and rate limits, they can also result from physical limits on 

other system parameters as well. Linear system models cannot account for hard state and control 

constraints. As a result, linear controller design methodologies often produce feedback controllers 

which generate infeasible or inadmissible control signals for relatively small state and reference sig- 

nal perturbations. This in turn can lead to windup of dynamic compensation, degraded closed-loop 

system performance, and even unstable closed-loop system responses. This problem is exacerbated 

by high gain controllers, high amplitude dynamic reference signals, and open-loop unstable plants. 

Optimal and robust control methodologies often lead to high gain controllers. This is espe- 

cially true when tight tracking specifications are coupled with robustness requirements, viz., robust 

performance requirements [27]. In the absence of state and control constraints these high gain con- 

trollers result in closed-loop systems with admirable performance and robustness characteristics. 

However, due to high transmission loop gains, even small perturbations may result in infeasible 

control signals. Then, actual implementation of these controllers requires significant post-design 

ad hoc modifications. As a result, small signal performance is degraded, and closed-loop system 

stability is generally difficult or impossible to guarantee. Actuator saturation is not limited to high- 



gain feedback control systems. Even low-gain tracking control systems may experience periods of 

saturation during slewing operations. Thus, high amplitude dynamic reference signals may also re- 

sult in saturation. 

Most investigations have focused on open-loop stable plants subject to actuator displacement 

constraints. In these cases conditions can be devised to obtain global stability in the face of ac- 

tuator saturation and windup [23]. However, open-loop unstable plants require feedback control 

for closed-loop system stability. In this case, violation of hard control and state constraints opens 

the feedback loop. This in turn results in open-loop operation of the plant, and an unstable control 

system response. While the effects of constraint violation are magnified in the case of open-loop 

unstable plants, it is important to note that even control systems with open-loop stable plants can 

produce unstable system responses in the presence of state and/or control constraint violations. 

State and control signal saturations may be categorized as either transient or steady state in na- 

ture. Transient saturations are those state and control constraint violations that occur in the course of 

a system's transient response to a disturbance or exogenous input, and result from initial large errors 

or overshoots associated with underdamped systems. Steady state saturations are those constraint 

violations associated with inadmissible equilibrium points. An equilibrium point is inadmissible if 

it can not be maintained without violation of a system's state and/or control constraints. Thus, a 

constant exogenous reference signal that attempts to drive a system to an inadmissible equilibrium 

point will result in steady state saturation. In this case, the exogenous reference signal is said to 

be statically inadmissible. It is important to note that transient saturations can occur even when the 

initial system state, final system state, and exogenous reference signal are all statically admissible. 

Saturation effects mitigation is a current research topic, and a large body of literature exists 

which addresses this problem. However, with a few notable exceptions, little work has been ac- 

complished which is applicable to the problem of high amplitude dynamic reference signal tracking 



control in the face of hard state and control constraints and open-loop unstable plants. Moreover, 

methods that do address the stated problem generally limit the exogenous reference signal to stat- 

ically admissible values to obtain BIBO stability guarantees. The concepts of static admissibility 

and positively invariant sets play important roles in these methodologies, and in the methodology 

proposed here. 

Important results of this research include the development of a reference signal governor which 

produces a BIBO stable closed-loop system, but does not restrict the modified reference signal to 

statically admissible values. Also, a method to reduce on-line computational burden is developed. 

The reference governor system architecture is also applied to the constrained regulator problem. 

This novel approach can substantially increase the size of the statically admissible set of initial 

states, for a given control law, without degrading small signal performance. 

1.2 Previous Work 

Mitigation of state and control constraint violation effects is an active research area, and nu- 

merous controller design and modification methodologies exist which address linear time invariant 

(LTI) systems with state and / or control constraints. Both linear and nonlinear feedback control 

law methodologies have been proposed. Linear control law paradigms are generally limited to the 

constrained regulator and set point control problems. Even then, linear control laws provide very 

conservative results since small signal performance must be sacrificed to insure constraint viola- 

tion is avoided for large initial disturbances [7]. Nonlinear control laws have been obtained by em- 

bedding the stated problem in an optimal control paradigm [2], [7], [13], [15], [25]. However, the 

resulting bang-bang controllers are impractical to implement, and are overly sensitive to modeling 

errors [11]. Thus, many ad hoc constraint effects mitigation methodologies have been developed. 



Constraint effects mitigation methodologies may be classified as either those that allow constraint 

violation, or saturation, to occur, and those that avoid constraint violation completely. 

1.2.1   Performance Enhancement Methods 

Those constraint effects mitigation methods that allow saturation are referred to here as per- 

formance enhancement techniques. These methods improve closed-loop system performance by 

reducing the number and duration of periods of saturation. Performance enhancement methods are 

generally limited to systems with open-loop unstable plants. In these cases conditions can be de- 

vised, using the generalized Nyquist criterion developed in [23], so that global BIBO stability is 

guaranteed.. 

Anti-windup methods may be the largest class of performance enhancement schemes. Windup 

refers to growth of the controller states during periods of actuator saturation. During periods of 

actuator saturation the controller states are driven by the error signal while the constrained control 

signal remains constant. Thus, the error signal ceases to have an impact on the plant input. Moreover, 

when the error signal is removed, or changes sign, a period of time is required for the controller 

states to decay, or unwind. Many anti-windup methods are based on the concept of conditional 

or intelligent integration [1], [12], [14]. Often these methods involve feeding back the difference 

between the actual and commanded control signal. 

The purpose of anti-windup and other ad hoc methods is to improve closed-loop system per- 

formance by reducing the number and duration of actuator saturations. Since they do not prevent 

constraint violations completely these methods are not applicable to control systems with open-loop 

unstable plants. Constraint violation in this case will result in an unstable system response. Thus, 

constraint avoidance methods must be considered. 



1.2.2   Constraint Avoidance Methods 

A Linear programing approach to constraint avoidance is proposed in [6] and [22]. A Linear 

Programing methodology is used to translate actuator constraints into constraints on the exogenous 

reference signal. Then a nonlinear reference signal governor generates a modified reference signal 

based on the state of the controlled process and the exogenous reference signal. This results in 

a dual-loop controller architecture with an the inner linear feedback loop and an outer nonlinear 

supervisory loop, Fig. 1. 

X 

x 

DISCRETE TIME CONTROLLED PROCESS 

Linear 
Controller 

Discrete Time 
Plant (A,B,C,D) ■*■ x 

Figure 1. Dual-loop tracking controller architecture 

In [17], [18], [19], and [21] the constrained tracking control problem is addressed using ref- 

erence signal extrapolation and a receding horizon optimal control methodology. Polynomial ex- 

trapolation and interpolation is used to obtain the predicted reference signal over the optimization 

horizon. Then, within each Receding Horizon Window (RHW), the predicted reference signal vec- 

tor, r, is known, so that the LQ optimal control methodology may be applied to each of the finite 

horizon control problems. The resulting finite horizon LQ optimal control problem is solved within 

each RHW In this way the indefinite horizon control problem is broken up into an open ended se- 



quence of finite horizon control problems of length N. Where N is the number of samples within 

each RHW. 

In [17] it is also shown that the optimal control vector, u* = [u*,u*,... ,u*N_1], obtained 

within each RHW is a linear function of the predicted reference vector, f = [ri, fi-, ■ ■ ■, rjv], and the 

initial plant state, x0. This allows transformation of the actuator constraints into reference vector 

constraints. Moreover, the predicted reference vector may be written in terms of r\, the current 

pilot demanded reference signal, so the actuator constraints can be transformed into constraints 

on r\. Note that r\ is the actual pilot demanded reference signal, not a predicted value. Now, if 

r\ violates any of the transformed constraints it may be optimally scaled such that the modified 

reference signal, r[, satisfies all constraints. By optimally scaled, we mean that r[ is chosen so that 

|ri — r[ | is minimized subject to the transformed actuator constraints. If r\ satisfies all constraints 

then clearly r[ =r\. Thus, small signal operation is not sacrificed. 

In accordance with the receding horizon modus operandi, v\ (or r[) is the only reference value 

actually tracked, and u0 is the only control which is actually applied to the system within each 

RHW Thus, many of the constraints on r\ are induced by constraints on subsequent elements of 

the predicted reference vector, (7*2,7*3,..., f^) which are not realized. Since enforcement of these 

"down-stream" constraints may lead to an overly conservative scaling of rx, in [17] feasibility 

criteria are proposed which do not necessarily include all down-stream constraints. The resulting 

control law depends on the reference vector prediction and feasible reference vector determination 

methods as well as the selection of feasibility criteria. In particular, BIBO stability is only guaranteed 

under certain conditions, one of which is that the modified reference signal be limited to statically 

admissible values. 

The concepts of static admissibility and positive invariance play central roles in many con- 

straint avoidance techniques.   In [4], [26], [5], [3], and [10] the constrained regulator problem 



is addressed using the concept of positively invariant sets. In these investigations both quadratic 

and non-quadratic Lyapunov functions are used to obtain a state feedback matrix, kx, for which a 

predetermined set of initial states, X0 C 3ftn, is contained in a set, W C !Rn, which is admissible and 

positively invariant with respect to the closed-loop system. While this method does avoid constraint 

violation for all initial states in W, it is overly conservative in that for a given kx and W determined 

in this manner, larger positively invariant sets generally exist. This is because the existence of a Lya- 

punov function is a sufficient but not necessary condition for asymptotic stability. More importantly, 

these methods provide conservative results because only linear control laws are considered. Thus, a 

trade-off must be made between the size of W and small signal performance [7]. In the sequel this 

inherent trade-off is alleviated by implementing a non-linear dual-loop controller architecture. 

In [8] and [9] maximal output admissible sets are characterized for discrete-time systems sub- 

ject to state and control constraints.. Under appropriate conditions maximal output admissible sets 

may be characterized by a finite number of inequality constraints. Moreover, if the constraint set 

is polyhedral, then the inequalities are linear, and the maximal output admissible set may be deter- 

mined by solving a set of Linear Programming problems [8]. In [9] the concept of maximal output 

admissible sets is applied to the development of a discrete time reference governor (DTRG). The 

DTRG is a low-pass filter with a variable bandwidth parameter, A € [0, 1], which generates a mod- 

ified reference signal to avoid saturation of state and control constraints. A dual-loop controller 

architecture is used, as in Fig. 1, which consists of a linear inner feedback controller loop, and an 

outer nonlinear supervisory loop. At each time increment, t, the modified reference signal, r (t), is 

chosen such that it is statically admissible. While the DTRG control concept eliminates saturation 

and results in a BIBO stable closed-loop system, it is somewhat conservative in that it also restricts 

the modified reference signal to statically admissible values. However, there are certainly cases 

where a reference input that is not statically admissible over a finite time interval would not neces- 



sarily result in saturation. Thus, achievable tracking performance is sacrificed to insure constraint 

violation does not occur. 

The results of [8] and [9] play an important role in the methodology developed here. More- 

over, the DTRG methodology is a valid benchmark since it exploits the augmented system's maxi- 

mal output admissible set, and the on-line algorithm is computationally efficient. Because of their 

importance to this work, the relevant results of [8] and [9] are presented in detail in Chapter 2. 

1.2.3   Invariance Based Constraint Avoidance 

In [17] it is shown that a sufficient condition for constraint avoidance and BIBO stability is 

that the constrained control system state vector be restricted to an admissible positively invariant 

set. In particular, Miller shows that it is not necessary to explicitly restrict the exogenous reference 

signal to statically admissible values to obtain a BIBO stable closed-loop system. The construction 

of admissible invariant sets is a crucial step in the design of tracking control laws. Our insights 

into the critical role played by the above mentioned invariant sets lets us focus on design for track- 

ing performance, while at the same time guaranteeing the BIBO stability of the control system. 

Miller demonstrates the application of admissible positively invariant sets to saturation avoidance 

and BIBO stability enforcement with the following scalar example. 

The scalar constrained control system given by 

x   =   ax + bu,        x(0) = x0, (1) 

u   =   kxx + krr ,     — 1 < u < 1 (2) 

is considered. Combining (1) and (2) gives, 

x = ac\x + bkrr ,    ac\ = a + bkx (3) 

Now, choose kr such that tracking is enforced, viz., 

k  ----k 
0 



Then, 

x = ad(x-r), (4) 

and 

u = kxx — r (5) 
o 

The dual-loop controller architecture of Fig. 1 is implemented using a static nonlinearity, N, 

whose synthesis is outlined here. Unlike the DTRG constraint avoidance method, the controlled 

process state is restricted to an admissible positively invariant set without restricting the modified 

reference signal to statically admissible values. The flexibility afforded by this less conservative 

and more general approach makes it possible to consider two separate tracking control concepts. 

The first tracking control concept, outlined in [17], is min \r — r'\ subject to the control con- 
r' 

straints. The second control concept for the selection of r', outlined in [16], attempts to drive x to 

r as quickly as possible, subject to the control constraints. 

Control Concept 1: Chose r' suchthat \r — r'\ is minimized subject to the control constraints. 

Assuming kx < 0, a^ < 0, and b > 0 results in the explicit (nonlinear) control law 

r'(x,r) = < 

r ,     ^x + -*- < r < y^x - -*- 

M±x-A- 
aci           aci  ' 

r > hJ^x - -*- 

ac, X ^ acl   ' 
r<bJ^x + ±. 

(6) 

and substituting (6) into (4) results in the closed-loop system 

f acl(x - r),     y^x + -*- < r < ^x - -*- c'v ''       dot aci   —      —   act aci 

ax + b, r> y^x - -L m X — < 

ax-b , r < y^x + ' —   aci act 

bKx + _b_ 
«cl Ccl 

The saturation avoidance control law (6) does not guarantee BIBO stability in the case of an open- 

loop unstable plant. However, we can obtain the desired BIBO stability through an additional in- 

variance requirement. 

A bounded set Xj C X = {x : x E 9ft} is invariant with respect to the system given by (1), 

(2), and (7) if and only if on the boundary of Xi, xx < 0. Thus, if we can characterize a bounded 

9 



invariant set 

Xi = ix G K : 3 r< s.t. -l<u = kxx- ^V < 1 and  3 xx < o| 

then, by restricting xtox e Xj,we can guarantee BIBO stability. First, consider the case of an open- 

loop unstable plant, a > 0. For ^*-x + -^- < r < ^x - — we have r' — r, and a; = aci(x - r). 1 r del o.ci  —      —  a0i aci ' «v / 

Hence, r < x results in x < 0, and r > a; results in a; > 0. Second, for r > —x —— we have 

x = ax + b. In this case x > — | results in x > 0, and x < —£ results in x < 0. Finally, for 

r < y^x + ^-we have a; = ax - b. Therefore, x > \ results in x > 0, and x < - results in 

x < 0. This is summarized in Fig. 2 where the directions of the arrows represent the sign of x in 

the Cartesian product space, V, defined by 

V = {v G K2 : v = [r,x]T , r,x € 3ft} 

From Figure 2 and the above discussion it is clear that saturation avoidance requires that 

(kxx(t) - 1) b < < (fc^a(t) + 1) b 

«d — — aci 

In addition, if the control law allows |x| > £ the system will diverge due to the constraint on the 

control signal, u. Thus, saturation avoidance alone will not result in a BIBO stable system. To 

obtain BIBO stability we must restrict x to the set 

Xj = jxesft: |x|<-| 

Also, if the system ever achieves either of the valid equilibrium points v = [±| , ±|]    it becomes 

"stuck". Thus, in addition to control law (6), we must limit x such that 

x£Xf = \xeU:—+E<x<--e\ (8) 
L a a       J 

then saturation will be avoided, and the system output will be bounded. Hence, the control law (6) 

is modified as follows. 
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b 

> X 

Figure 2. Cartesian product space, V, with arrows indicating the sign of the derivative of x 
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r'(x,r) 

r>    t* + £;<r<!&*-£;,-l+e<*<i-> 

(9) 
r> ^x--^ ,x<±-e 

^x + ±,    r<!g*x + JL   x>-k+e aot aol  ' —   aci       '   act   '      —      a   ' 

Now, under the explicit (nonlinear) control law (9), x € Xj is enforced, the system will not become 

"stuck" at x = ±|, and saturation avoidance plus invariance in a bounded subset of the state space 

yields the BIBO stability guarantee. 

A similar analysis for the case of an open-loop stable plant, a < 0, shows that the saturation 

avoidance set is Xj = 5R1. Hence, the simpler control law (6) yields global BIBO stability in this 

case. 

Control Concept 2: Chose r' so as to either maximize or minimize x, based on the sign of 

r—x, and subject to the control constraints; thus, maximizing the instantaneous reduction in tracking 

error. Also, if r = x then minimize x2, subject to the control constraints in eq. (2). Thus, 
If r > x then   max (x) 

r' 
If r < x then   min (x) 

r' 
If r = x then   min (x2) 

From (4) and the assumption that ac; < 0, this results in 
If r > x then max r' 
If r < x then min r' 
If r = x then min (x — r')2 

bkx b ,      bkx b 
subject to         x -\ <r < x  

aci        acl Qcl        a-cl 
(10) 

Hence, the explicit control law is finally obtained 

bk. 

-X 

 X + ± 

r,    r = x. 

r > x 

r < x 

-ka<X<-a a —      — a 
bK 

bkx 

X -£-,     r = x, x<-± 

r = x, x > ^ 

and substituting (11) into (4) results in the "closed-loop" system, 
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ax + b,    r > x 

ax — b,    r < x 

x= <   0,    r = x, -£<*<£ (12) 

ax + &,    r = x, x < — £ 

ax — b,    r = x, x > | 

If the open-loop system is stable, viz., a < 0, then control law (11) results in a globally BIBO 

stable closed-loop system. However, if the open-loop system is unstable, a > 0, then, as before, we 

must restrict x such that x e Xj, where Xi is given by (8). In this case, control law (11) is modified 

as follows. 
(  hj^x_±_      r>xx<k_£ 

aci aci  > >       — a 

f*x+-t,    r<x,x>-±+e dd aci   ' '       —       a 

rl = <   r,    r = z, -£+£<a;<f-e (13) 

-f+£,    r<a;, x'<-^+e 

Now, x e Xi is enforced, the system will not become "stuck" at x = ±|, and BIBO stability is 

achieved. 

Notice that while it is necessary to enforce x € Xi for the above control laws when the open- 

loop plant is unstable, neither (9) or (13) require that r' be statically admissible, viz., \r'\ > f is 

allowed when x € int(Xi). This is in contrast to Gilbert's DTRG, and the globally BIBO stable 

LQT controller constructed in [9] and [17], which restrict the feasible reference signal to statically 

admissible values. By relaxing the requirement that the modified reference signal be statically ad- 

missible, tracking performance is enhanced. 

In [17] simulation results are presented that show control concept 1 provides only a slight 

improvement in tracking performance over that obtained with the DTRG. This is because control 

concept 1 does not focus on driving the system as hard as possible. Rather, with control concept 1 

the focus is on generating a modified reference signal that is as close to the exogenous reference 

signal as possible. On the other hand, as shown in [16], control concept 2 does drive the system 
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as hard as possible, and provides substantially improved tracking performance over that obtained 

with the DTRG. Presentation of additional simulation results comparing the performance of control 

concept 2 to that of the DTRG is deferred until Chapter 2 so that first the results of [8] and [9] may 

be summarized. 

1.2.4   Summary 

Constraint mitigation methodologies may be broadly classified as either performance enhance- 

ment or constraint avoidance methods. Performance enhancement methods attempt to reduce the 

number and duration of saturations, but do not fully avoid saturation. Although saturation is allowed 

with these methods, in many cases conditions can be determined, based on the generalized Nyquist 

criterion developed in [23], such that the closed-loop system is globally BIBO stable. Since con- 

straint violation is not fully prevented, performance improvement methods do not perform well in 

the case of open-loop unstable plants. 

In the case of open-loop unstable plants, many saturation effects mitigation methods focus on 

saturation avoidance. Statically admissible and positively invariant sets play central roles in these 

method. A common technique is to use a dual-loop controller architecture with an outer loop ref- 

erence signal governor. The reference signal governor is a nonlinear element that modifies the ex- 

ogenous reference signal so that the controlled process state is restricted to an admissible positively 

invariant set. For a simple scalar tracking control system, it is relatively easy to restrict the con- 

trolled process state to an admissible positively invariant set without restricting the modified ref- 

erence signal to statically admissible values. However, higher dimension problems present a much 

more difficult task. To date, to obtain a guaranteed BIBO stable closed-loop system using these 

methods, the modified reference signal must be restricted to statically admissible values. This sac- 

rifices achievable tracking performance. 
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1.3 Problem Statement 

The problem of tracking control in the face of high amplitude dynamic reference signals, hard 

state and control constraints, and open-loop unstable plants is investigated. Hard state and control 

constraints normally arise from plants with actuator dynamics and actuator displacement and rate 

constraints. This is certainly true in the case of manual flight control. Hard constraints may also arise 

from other sources as well. For example, other system components may have physical limitations 

which should not be exceeded. 

The objectives here are to maintain small signal performance, emphasize tracking performance, 

and to obtain a BIBO stable closed-loop system regardless of the exogenous reference signal. At 

the same time, the modified reference signal should not be restricted to statically admissible values, 

and the largest possible set of stable initial states should be allowed. 

1.4 Approach 

The stated problem is addressed using a nonlinear dual-loop controller architecture, Fig. ??. 

The controlled process of Fig. ?? consists of the bare plant and a predetermined linear control law 

that provides good small signal performance in the absence of saturation. The controlled process is 

augmented with an outer supervisory loop which contains the nonlinear reference signal governor, 

N. The purpose of the reference signal governor is to modify the exogenous reference signal,r, so 

that the controlled process state and control constraints are not violated. 

For the stated problem, the state space may be divided into two distinct regions. One region, 

Xi C üRn, is the set of initial states that is positively invariant with respect to the controlled process. 

This set consists of all initial states for which there exists a reference signal, possibly time varying, 

such that the resultant state trajectory remains in Xi for all time. Here it is assumed that n is the 

dimension of the controlled process state vector. The second region, 9ftn - Xj, consists of all initial 
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states for which an unbounded system response ensues regardless of the reference signal. Clearly, 

to obtain a BIBO stable closed-loop system the controlled process state must be restricted to Xi. 

Unfortunately, Xj is not necessarily convex, and is not easily characterized for higher order 

systems. Thus, characterizations of positively invariant subsets of Xi are sought. One such subset 

is the maximal statically admissible set, Xs C Xi, which is the set of all initial states for which 

there exists a constant reference signal such that the ensuing state trajectory remains in Xs for all 

time. In [9] a dual-loop controller architecture is used to restricted the controlled process state to 

an arbitrarily close approximation of Xs. However, this methodology also restricts the modified 

reference signal to statically admissible values. 

Here the objective is to restrict the controlled process state to Xs without unnecessarily restrict- 

ing the modified reference signal to statically admissible values. Then, aggressive control strategies 

may be implemented which have the potential for improved tracking performance. Thus, a dual- 

loop nonlinear control law is developed that allows statically inadmissible reference signals, when 

x € int(Xs). The dual-loop nonlinear control law provides improved tracking performance over 

that achievable with linear control laws, and a BIBO stable closed-loop system. Moreover, on-line 

implementation is practical. 

1.5  Scope and Assumptions 

The methodology proposed here is a model-based approach, and is concerned with discrete- 

time systems with point-wise in-time state and control constraints. Thus, appropriate equivalent dis- 

crete time (EDT) systems are developed for continuous time systems. State and control constraints 

are represented by a single set inclusion, viz., 

yc(t) = Ccx{t) + Dcu{t) e Y C 5RP 
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where yc(t) G 5RP is the constrained quantity, and Y, a polytope that contains the origin, is the 

constraint set. Open-loop unstable plants are assumed, but the controlled process, consisting of the 

bare plant and inner loop linear control law, is assumed to be asymptotically stable in the absence 

of saturation. Let the controlled process and its constraint be represented by 

x(t + l) = Adx(t) + Bdr\t) 

and 

yc(t) = CCclx(t) + DCclr\t) Gfcf 

then, the pair (Aci, CCcl) is assumed to be observable. 

The above assumptions are nonrestrictive and are generally satisfied by tracking control sys- 

tems that are subject to actuator displacement and rate constraints. 

1.6  Organization 

The formal problem formulation and several pertinent definitions are presented in Chapter 2. 

Also, the results of [8] and [9] are summarized, and a discrete time reference governor is devel- 

oped for the scalar system of Section 1.2.3. In Chapter 3 an arbitrarily close approximation to the 

set, Xs, is characterized with a finite set of linear inequalities. A recursive convex hull algorithm 

is developed which generates the desired linear inequalities. The method is then demonstrated with 

a second-order example. Chapter 4 is devoted to developing explicit reference signal governor al- 

gorithms which are also demonstrated with several second-order examples. The proposed method- 

ology is applied to a fourth-order flight control problem in Chapter 5. The nonlinear dual-loop 

controller architecture is applied to the constrained regulator problem in Chapter 6, and conclusions 

and recommendations are presented in Chapter 7. 

17 



1.7  Summary 

The literature contains numerous constraint effects mitigation methodologies. Many of these 

methods may be classified as anti-windup or performance improvement methods. In these cases sat- 

uration is not completely avoided and the objective is to improve system performance by decreasing 

the number and duration of periods of saturation. Since anti-windup and performance improvement 

methods do not prevent constraint violation completely, they do not perform well in the case of 

open-loop unstable plants. 

In the case of open-loop unstable plants constraint avoidance methods must be considered. 

Lyapunov functions may be used to obtain linear control laws that provide local stability for the 

constrained regulator control problem. However, a trade-off exists between the size of the set of 

stable initial states, and closed-loop system performance. Also, this methodology is not applicable 

to the constrained tracking control problem. On the other hand, Bang-Bang controllers obtained 

from solution of optimal control problem formulations are generally not practical to implement. 

Thus, several recent research efforts have attacked the constrained tracking control problem 

using a dual-loop controller architecture. In these investigations a linear inner loop control law is 

implemented which provides good small signal tracking performance and stability in the absence 

of constraint violation. Then the controlled process is augmented with a nonlinear outer loop which 

contains a referenced signal governor. The reference signal governor prevents constraint violation 

by generating a modified reference signal which depends on the exogenous reference signal and the 

controlled process state. 

A common characteristic of current reference governor methods is that to obtain a BIBO sta- 

ble closed-loop system, the modified reference signal is restricted to statically admissible values. 

However, This is not strictly necessary. As shown in [17], it is sufficient to restrict the controlled 

process state vector to a positively invariant set to obtain a BIBO stable closed-loop system. 

18 



Chapter 2 - Static Admissibility and Invariance Concepts 

2.1 Overview 

The concepts of static admissibility and positive invariance are developed in this chapter. A 

precise statement of the problem and several important definitions are provided to aid the discus- 

sion. The results of [8] and [9] are reviewed and a DTRG is developed for the scalar example of 

Section 1.2.3. The performance of the DTRG is compared to that of the invariance based saturation 

avoidance method, eq. (13), developed in Section 1.2.3. 

2.2 Problem formulation and Definitions 

Consider the tracking control problem and prespecified linear control law 

x(t + 1)   =   Ax(t) + Bu(t),   x(t) G &n , u(t) e K1 

u(t)   =   kxx(t) + krr'(t) , r(t) E 3?1 

y(t)   =   Cx(t) + Dr'(t) , y(t) £ 3?1 (14) 

where the open-loop dynamics matrix, A, may have one or more eigenvalues outside the unit cir- 

cle. Assume there exist hard point-wise in-time constraints on both the state and control variables, 

including linear combinations of them. It is convenient to express these constraints in terms of a 

constrained output, yc. This is accomplished by making the appropriate choices of matrices Cc and 

Dc, and constraint set Y C 5RP, viz., 

yc(t) = Ccx(t) + Dcu(t) e Y (15) 

The ensuing closed-loop system and output constraint are given by 

ar(t + l)    =   Aclx(t) + Bclr'(t) 

y(t)   =   Cdx(t) + Ddrf(t) 
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yc(t)   =   CCclx(t) + DCc/(t)£YcW (16) 

where, Ad = A + Bkx, Bd = Bkr, Cd = C + Dkx, Dd = Dkr, CCcl = Cc + Dckx, and 

Ucci   — U^Ky. 

The constrained tracking control system of eq. (16) is representative of a large class of prac- 

tical problems. In particular, tracking control systems subject to actuator displacement and rate 

constraints are accommodated. Also, while eq. (14) includes a state feedback control law, the con- 

trolled process of eq. (16) may result from any prespecified LTI control law that satisfies certain 

nonrestrictive assumptions; viz., 

1. Ad is asymptotically stable. 

2. The pair (Ad, CCcl) is observable. 

3. 0 € int(Y). 

4. Y is polyhedral; viz., 

Y = {yceW:fi(yc)<0,   i = l,2,...,s} (17) 

where the s functionals, fo : 3?p —> 3?, are linear or affine in yc, with fi(0) < 0. 

The concepts of positive invariance and static admissibility play important roles in the pro- 

posed nonlinear controller synthesis methodology. With this in mind, the following definitions are 

provided to facilitate our discussion here. 

Definition 1. Admissible State; At time increment, t, the state vector x(t), is admissible with re- 
spect to the controlled process ofeq. (16) if there exists a reference signal, r'(t), such that constraint 
violation does not occur at time t, that is, such thatyc(t) — CCclx(t) + DCclr'(t) € Y. 

Obviously, the admissibility of x(t) is dependant on the existence of a special reference signal, 

viz., a feasible reference signal. 
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Definition 2. Feasible Reference Signal: Given the admissible state vector x(t), at time incre- 
ment, t, the reference signal, r'(t), is feasible if it does not result in constraint violation at time t. 
That is, r'(t) is feasible ifyc(t) = CCclx(t) + DCclr'(t) E Y 

For a given admissible system state, x(t), r'(t) may only be feasible at time, t, but not at 

time (t + 1). That is, given x(t) and a feasible r'(i), if r'(t + 1) = r'(t) it may transpire that 

yc(t + 1) = CCalx(t + 1) + r'(t + 1) ^ Y. This brings up the concepts of admissible and statically 

admissible reference signals. 

Definition3. Admissible Reference Signal: Let X C 9ft"', be a set of state vectors that are 
admissible with respect to the controlled process ofeq. (16). Given the state vector x{t) E X, the 
reference signal, r', is admissible with respect to X at time, t, if it results inx(t + l) E X. 

Notice that the admissibility of r' is dependent on both the set, X, and the state, x (t) E X. In 

particular, although r' may be admissible with respect to X for a given state, x\(t) E X, it is not 

necessarily admissible with respect to X for some other state, X2(t) E X. Moreover, although r' is 

admissible with respect to X at time, t, for a given x(t) E X, r' is not necessarily admissible with 

respect to X at time, (£ + 1), given the ensuing x(t + l) E X. This requires the concept of statically 

admissible reference signals. 

Definition 4. Statically Admissible Reference Signal: Let X C 3?", be a set of state vectors that 
are admissible with respect to the controlled process ofeq. (16). Given an admissible state vector 
x(t) E X, the constant reference signal, r', is statically admissible with respect to X if it results in 
X(T) E X for all T > t. 

A particular reference signal may be statically admissible with respect to X for one element 

of X and not for another. Also, note that for a given x(t) E X the set of statically admissible 

reference signals is a subset of the set of admissible reference signals.  If a particular reference 

signal is statically admissible for a given x(t) E X, then the ensuing equilibrium point must be an 

element of X. Clearly, if the equilibrium point, xss, associated with a particular constant reference 

signal, r0, is admissible with respect to the system ofeq. (16), then there exists an admissible set 

of states, X, and an initial state, x{0) E X, for which r0 is statically admissible. Thus, the set of 
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reference signals that are statically admissible with respect to the system of eq. (16) are those that 

result in an admissible equilibrium point. 

Definition 5. Statically Admissible Reference Signal Set: The set of statically admissible ref- 
erence signals, Rs, for the controlled process defined by eq. (16), is the set of constant reference 
signals for which the associated equilibrium point is admissible. That is, 

Rs = {/ e 3?1 : H0r' G Y} (18) 
where H0 = CCcl (J - Ad)    Bd + D, Ccf 

The next several definitions deal with the concepts of positively invariant and statically admis- 

sible sets. These concepts are central to the constraint avoidance methodology developed in Chapter 

4.   . 

Definition 6. Positively Invariant Set: Given a reference signal, r' (possibly non-constant), the 
set Xri C 3ft™ is positively invariant with respect to the controlled process of eq. (16) if for each 
x0 G Xrr, x(t) G Xr,for allt G Z+ = {0,1,2,...}. 

Definition 7. Maximal Positively Invariant Set: The maximal positively invariant set of initial 
states, Xj, for the controlledprocess definedby eq. (16), is the union of all positively invariant sets. 
That is, Xi = (J   Xr>. 

In other words, the maximal positively invariant set of initial states for the controlled process 

defined by eq. (16), is the set of all initial states for which there exists a reference signal (not 

necessarily constant) such that x(t) e X for all t G Z+. Unfortunately, Xi is generally not convex, 

and thus is difficult or impossible to characterize. However, convex positively invariant subsets of 

Xi do exist. One of these is the maximal statically admissible set. 

Definition 8. Statically Admissible State: A state vector, x, is statically admissible with respect 
to the system ofeq. (16) if there exists a statically admissible reference signal, r' G Rs, such that 
yc(t) GYfor allt e Z+. 

If x(0) is statically admissible with respect to the controlled process ofeq. (16), then there 

exists a statically admissible (constant) reference signal, r', and a positively invariant set, Xr>, such 

that x(t) G Xri for all t G Z+. Not only is Xr> a positively invariant set, but in this case it is also 
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a statically admissible set since the given reference signal is statically admissible (constant). In the 

future, a statically admissible set will be denoted by Xr><s. 

Definition 9. Statically Admissible State Set: Given a statically admissible reference signal, 
r G Rs, the set, Xr',s C 9£" is statically admissible with respect to the controlled process ofeq 
(16) if for each x(0) G Xrt>a, yc(t) G Y for all t G Z+. 

For a given x(0) G X and r' G Rs, it is not necessary that x(t) G X for all t G Z+, but 

only that yc(t) G Y for all t G Z+. However, if X is the set of ah statically admissible states, then 

for each combination of x(0) G X and r' G Rs that results in yc(i) G y for all t G Z+, it must 

transpire that x(t) G X for all t G Z+. 

Definition 10. Maximal Statically Admissible State Set: The maximal statically admissible set 
of states, Xs, for the controlled process defined by eq. (16), is the union of all statically admissible 
state sets. That is, Xs = \J   Xr*!S. 

r'€Ra 

Clearly, The maximal statically admissible set of states for the controlled process defined by 

eq. (16) is the set of ah initial states for which there exists a statically admissible constant reference 

signal such that the ensuing trajectory does not violate the system's state and control constraints for 

all time. That is, 

Xs = {x G *Rn : 3 r' G Rs B yc(t) EY\/teZ+) 

It is important to note that Xs is positively invariant since, if x (0) G Xs, there exists a constant sta- 

tically admissible reference input, r G Rs, such that x(t) e Xs for all t e Z+. It is also important 

to note that Xs c Xi. With the above assumptions on the closed-loop system and constraint set, 

Xs is convex; viz., a polytope. However, Xi is generally not convex. This will be demonstrated 

with a two dimensional problem in Chapter 3. 
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2.3 Maximal Output Admissible Sets 

In [8] and [9] the concepts of static admissibility and positively invariant sets are employed 

to develop reference governors for discrete-time systems. Since the results of [8] and [9] play an 

important role in the proposed methodology, a summary of these results is presented here. 

Initially, the regulation problem is exclusively analyzed, and the construction of the maximal 

statically admissible set is presented. The LTI discrete-time system 

x(t + l) = Ax(t)+Bu(t), x(0) = x e W1 ,u(t) G3T\ t = 0,1,2,... (=Z+) (19) 

is considered, and the prespecified, "small signal" linear state feedback control law is 

u(t) = kxx(t) . 

Also, assume there are constraints on both the state and control vectors, including linear combina- 

tions of them. Thus, actuator rate constraints are accommodated. Now, with appropriate choices of 

matrices Cc and Dc, and constraint set Y, these rather general constraints are represented as 

yc(t) = Ccx{t) + Dcu(t) EYcW (20) 

Let Ad = A + Bkx and CCcl =CC + Dckx. Then, (19) and (20) become 

x(t +1)   =   Adx(t) ,   x(0) =x,   t€Z+ 

yc(t)   =   CCclx(t)eYcW (21) 

Hence, the saturation avoidance problem has been transformed into a feasibility problem concerning 

an unforced LTI discrete-time system with an output constraint. In [8] the maximal output admissible 

set associated with system (21) is defined as the set of all initial states xeR" such that the unforced 

closed-loop linear system's response does not violate the system output constraints for all t G Z+. 

Thus, the maximal output admissible set is the largest set of initial states, x G IRn, that is positively 

invariant with respect to system (21). Evidently, the maximal output admissible set, 

Ooo(Ad,CCcl,Y) = {xeMn: CCclAdx £Y   V t G Z+} (22) 
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Example 1. The output constraint set Y = {0}. Then the maximal output admissible set is the 

subspace of unobservable states that corresponds to the pair (Aci,CCcl), viz., 

Ooo = (N(CCcl))Acl ; 

this is the largest subspace contained in the null space of the matrix CCcl which is invariant under 

Ad- 

Example 2. The set Y is a cone, as in the situation where we have one-sided control constraints, 

e.g., 0 < u(t) - in which case Cc = 0, Dc = I, CCcl — kx and the cone Y = 9?+ (= nonnegative 

orthant in *Rm). Then 

OOo(Ad,CCe„Y) = {0} 

iff 

1. The pair (Ad, S) is observable, where the n-column matrix S is such that Sx = 0 implies that 

CCclx € Y, and 

2. Ad does not have an eigenvector v which corresponds to a nonnegative eigenvalue of Ac\ such 

that Cc^u EY; 

for a proof see e.g., [20]. □ 

We are interested in the case where the constraint set Y is a polyhedron, viz., 

Y = {yeW:fi(y)<0,   i = l,2,...,s} (23) 

i.e., the s functions fi(y), fi : üftp —* 9? are linear or affine in y, with /j(0) < 0. Obviously 

Ooo(Ad,CCcnY) = {xeWl:fi(CCclA
t
dx)<0,   i = 1,2,... ,s, and t E Z+) (24) 

Although Y is a polyhedron, eqs. (22) and (24) each represent an infinite number of constraints. 

However, if there exists a finite t* G Z+ for each inequality in (24) for which the constraints as- 

sociated with the ith inequality constraint are inactive for t > t*, then Ooo (Aci, CCcl, Y) is char- 

acterized by a finite number (< st*) of inequality constraints, where t* =max t*. In this case, 
l<i<s 
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Ooo (Ad, CCci, Y) is said to be finitely determined - and determination of whether a particular initial 

state vector, x, is an element of Ooo (Ad, CCcl, Y) involves evaluation of a finite set of linear inequal- 

ities. Moreover, it may transpire that the constraints associated with one or more of the inequalities, 

fi, that define Y are inactive for all t € Z+. Thus, let S* denote the set of inequality constraints 

that are active for some t 6 Z+, viz., S* C {1,2,... s}. Then, Ooo(Ad, CCcl, Y) may be written as 

OooiAd, CCcl, Y) = {x € W : fi(CCclAdx) < 0, t = 0,1,..., t* , and i G S*} (25) 

In the discrete time case under consideration, sufficient conditions for the existence of a finite 

t*, viz., sufficient conditions for the finite determination of Ooo, are (i) Ad is asymptotically stable, 

(ü) 0 £ int(Y), (iii) Y is bounded, and (iv) the pair (Ad, CCcl) is observable. If conditions (i - iv) 

are satisfied, and Y is a polytope, then t* may be obtained using the following algorithm from [8]. 

Gilbet's Algorithm 

1. Sett = 0. 

2. Solve the following Linear Programs for i = 1, • • ■ s : 

max(Ji(x))   =   max ft (C^A^x) 
xGütn icfcia*1 

subject to the constraints fj (CCclAdx J    <   0, j = 1, • • •, s and k = 0,...,t. 

Let J* be the maximum value of Ji(x). Lf J* < Ofor i = 1, • • •, s, then stop and set t* = t. 

Otherwise, continue with step 3. 

3. Replace t by t + 1 andreturn to step 2. 

4. After t* has been determined in steps 1-3, then S* and each t* may be obtained. Let 

J*t   =   max fi^A^x) 

such that fj (CCclAdx)    <   0, j = 1, • • •, s and k = 0,..., t*. 

Then, for each i e {1, • • •, s} determine t* € Z+ so that J*t < Ofor t>t* and J*t > Ofor 
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t < t\. If J*it < 0 for all t = 0,---,t*, then i (£ S*. 

The above algorithm is easily implemented using any of the many existing Linear Program- 

ming packages. 

2.3.1   Discrete Time Reference Governor 

The concept of maximal output admissible sets is only applicable to unforced systems. Thus, 

it is not directly applicable to the tracking problem without some modification. In [9] the concept 

of maximal output admissible sets is adapted for use with the tracking control problem by using 

a nonlinear element in the DTRG which has first-order dynamics, viz., a first-order lag filter with 

a variable bandwidth parameter A € [0, 1] is used to prefilter the exogenous reference signal, r. 

The controlled process state vector is then augmented with the prefilter state, viz., the modified 

reference signal, r', and a set of constraints is developed which characterizes the maximal statically 

admissible set for the augmented system. The DTRG then scales the reference signal's increments 

so that the augmented system's constraints are not violated. By choosing a modified reference signal 

such that the discrete-time system's state update satisfies these constraints, both saturation avoidance 

and BIBO stability are enforced; the latter also requires that the maximal statically admissible set 

be bounded. The end result is an augmented system whose exogenous input can be turned off by 

setting A = 0. 

Thus, consider the tracking control problem 

x(t + 1)    =   Ax(t) + Bu(t),   x{t) € W1 ,  u{t) e *ftm 

u(t)    =   kxx(t) + krr(t), (26) 

with state and control constraints 

yc{t) = Ccx(t) + Dcu(t) GYCW (27) 
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and where the control constraint set Y is given by (23). The ensuing closed-loop system is 

x(t + l)   =   Adx(t) + Bdr(t) 

yc{t)   =   CCclx(t) + DCclr(t)eYcW (28) 

where, as before, Aci = A + Bkx, Bci = Bkr, CCcl = CCcl + Dckx, and DCcl = Dckr. To 

transform this problem into one which allows use of the concept of maximal output admissible sets, 

the exogenous reference signal, r, is prefiltered by the first-order lag filter given by 

r'(t +1) = r'(t) + A(r(i), xg(t)) (r(t) - r\t)) (29) 

where A(r(i), xg(t)) G [0, 1]; and in eq. (28), r(t) is replaced by the filter's output, r'(t) (the 

modified reference signal). Then, the augmented state vector is 

G3in+1 

and the augmented system dynamics and the output constraints are given by 

xg(t + l)   =   Agxg(t) + Bg\(r(t),xg(t))(r(t)-[I   0]xg(t)) 

yc(t)   =   Cgxg(t)eYcW 

where, 

r 
x 

(30) 

(31) 

A0 
I      0 

Bd   Aci B9 = 
I 
0 Cfl   —    [    "^Cei CCcl     J 

From eq. (29) notice that if X(r(t), xg(t)) — 1 the exogenous reference signal, r(t), is passed 

through unmodified, but with a one time-step delay. More importantly, if A(r(t), xg(t)) = 0 the 

current modified reference signal, r'(t), remains unchanged, and (31) becomes an unforced system 

with output constraints. Thus, if at time t = rand for all "initial states" xg(r) E Ooo(Ag,Cg,Y)v/e 

can choose X(r(r),xg(r)) such that the updated state xg{r + l) E Ooo(Ag,Cg,Y), it is possible to 

guarantee that the controlled system's state and control constraints will not be violated in the future. 

Moreover, assume that Ooo(Ag, Cg,Y) is bounded. Then because A = 0 is always an option, and 

because the new reference signal is chosen such that it does not remove the state of the controlled 
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process from the compact set of statically admissible states, the BIBO stability of tracking control 

systems which employ the DTRG is guaranteed. 

Now, the maximal output admissible set for the augmented system is concerned with the ho- 

mogeneous system (X(k) = 0), and is defined as 

Ooo(Ag,Cg,Y) = {xg e K2 : fiiCgA^Xg) <0,t = 0,...,t*,ieS*} (32) 

where the constraints, fi(CgAgxg) < 0, are inactive for t > t* and i £ S*. Unfortunately, Ag is 

only Lyapunov stable: application of the concept of maximal output admissible sets to the tracking 

control problem, results in an augmented dynamics matrix which is only Lyapunov stable and thus, 

000(Aff,Cfl,Y') is generally not finitely determined. The reason Ooo{Ag,Cg,Y) is not finitely 

determined stems from the fact that the unforced response of a Lyapunov stable linear system does 

not decay to the origin, unlike that of an asymptotically stable linear system. In fact, the unforced 

response of the Lyapunov stable linear system does converge to an a priori unknown equilibrium 

point. In general, the equilibrium point will not be reached in a finite number of time intervals, and 

thus, t* cannot be bounded. However, if we somehow know that the unforced system given by (31) 

will converge to an equilibrium point xg e int (Ooo(Ag, Cg,Y)), then we need only consider the 

transient response for a finite number of time-steps, until the peak-to-peak magnitude of constrained 

quantity oscillations decay sufficiently. Toward this end, let Rs C 5Rm denote the set of reference 

signals that are statically admissible with respect to the controlled process (28), see Definition 1 

in Section 2.2. Now, if r' is restricted to a set, R£
s C int(Rs), then we are assured that xgaa € 

int(Ooo(Ag,Cg,Y)). Then, as long as constraint violation does not occur during the transient 

response, xg(t) G int (Ooo(Ag, Cg,Y)) for all t E Z+. 

Now, given e > 0, define Y{e) CY by 

*"00 = {V ■ fj(.Vc) <-e,    j = 1, • • •, s} 
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Also, e is chosen so that 0 < e < min {—/3-(0) : j = 1, • • ■, s} to insure Y"(e) contains the origin. 

Recall that 

■Ho = CCcl (I - Ac{)~~ Bd + DCcl. 

Then, to restrict r' to the set 

Re
s = {rf C 3?m : H0r' G Y(e)} C int(Äs) 

append the additional constraints 

fj([ H0   0]xg)<-e,j = l,---s (33) 

to those that define Ooo(Ag, Cg,Y). Denoting int (Ooo(Ag, Cg,Y)) by O^ we have 

Olo    =    {xgeW+m:fi(CgA
t

gxg)<0,t = 0,---,t*,i£S*, 

and /■,-([#„   0]xg)<-e,j = l,---,s}. (34) 

Now, O^o is characterized by a finite set of inequality constraints, and the algorithm of Section 2.3 

may be used to determine t* and S*. 

On-line implementation of the DTRG is practical since the upper limit imposed on 

A(r(i), xg(t)) e [0, 1] by each inequality, so that xg(t + 1) € O^, is given by a simple alge- 

braic formula. Thus, if xg(0) € O^,, and at each time-step we choose X(r(t), xg(t)) € [0, 1] such 

that it satisfies the minimum of the upper limits imposed by all inequality constraints in (34), then 

xg{t) e Olc for all teZ+. 

Note that 0%^ is composed of two sets of constraints. The first set, f^CgA^Xg) < 0, t = 

0,..., £*, i 6 S*, deals with saturations during the transient response, and the second set, fj([Ho, 

0]xg) < —e, j = 1, • • •, s, deals with steady state saturations by limiting the modified reference 

signal to statically admissible values. Also, since Y is a polytope that contains the origin, 0%^ is 

likewise a polytope that contains the origin. Thus, an equivalent expression for O^ is 

0lo = {xgG^n+1:TgXg<ßg} (35) 
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where Tg is an ( s+ £)  (*! + 1)) x (n + m) matrix, and /?   is an ( s+ £)  (** + 1) ) vector. 

This representation will be useful in the sequel. 

The linear inequalities, Tgxg < ßg, represent a finite set of half-spaces in 3ftn+1 whose inter- 

section is O^, C Kn+1. Exploiting these inequalities in the constraint avoidance strategy neces- 

sarily results in limiting both the controlled system state vector and the modified exogenous input 

vector, r', to statically admissible values. This sacrifices potential tracking performance since there 

are certainly cases where a statically inadmissible reference input, over a finite time interval, would 

not result in saturation. To illustrate this, the performance of the DTRG is compared to that of con- 

trol law (13) for the scalar system of Section 1.2.3. 

2.3.1.1   Scalar Example 

Application of the DTRG constraint mitigation scheme to the scalar system of Section 1.2.3 

requires development of an equivalent discrete-time system. With a — 2, b = 1, kx = —3, kr = 

1, and a sampling interval of T = 0.001 sec, the equivalent discrete-time controlled process and 

constraint are 

x(t + l)    =   adx(t) + bdr'(t) (36) 

yc(t)   =   u(t) = cCclx(t) + dCc/(t)eYcM (37) 

Y   =   {yc e & :fi(Vc)< 0,i = l,2} (38) 

where ad = 0.999, bd = 9.995 x 10~4, cCcl = kx = -3, dCcl = kr = 1, r'(t) is the feasible 

reference signal, /i(yc) = yc - 1, and f2(yc) = -yc-l. 

The reference governor is 

r'(t + 1) = r(t) + X(t) [r(t) - r'(t)] . (39) 
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Combining the closed-loop system and reference governor dynamics results in the augmented two 

dimensional system 

xg(t + l)   =   Agxg(t) + BgX(t)(r(t)-[l    0]xg(t)) 

yc(t)   =   Cgxg(t)eY 

where the augmented state 

xg{t)   = 

(40) 

B9 = 
1 
0 

Ag   = 

r'{t) 
x(t) 

1 0 
9.995 x 10"4   0.999 

Cg = [1, -3] 

Now, the maximal output admissible set for the augmented system is concerned with the ho- 

mogeneous system (A(i) = 0), and is defined as 

Ooo = {xg € K2 : MCgAlxg) <0,t = 0,...,t*,ieS*} (41) 

where the constraints, f^CgA^Xg) < 0, are inactive for t > t* and i £ S* C {1,2}. Since the aug- 

mented system is only Lyapunov stable t* may be unbounded, so a finitely determined approxima- 

tion, O^o, to the maximal output admissible set is needed. Let Y(e) = {y : fi(y) < —e, i = 1,2} 

where e = 0.05. Then, the additional constraints are added 

fi{[H0   0]xg)<-s,j = l,---s (42) 

where 

H0 = dc + cc (1 - ad)-
1 bd = -2. (43) 

Then, O^ is given by 

Olo   =   {xge^:fi(CgA
t

gxg)<0,t = 0,...,t*,iGS*, 

fj([H0    0]xg) <-0.05, j = 1,2}. (44) 

The LP of Section 2.3 is used to determine t* and S*. In this case t\ = t\ = 0, and S* = {1, 2}. 

This should be expected because the controlled process of eqs. (36) and (37) is a stable first- 

order (over damped) system. Thus, the inequalities that are concerned with transient saturations, 
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(fi(CgAgxg) < 0, i = 0,..., **, i G S*), need only consider the initial error, r'(t) — x(t), at each 

time step. Now, (44) becomes 

O^   =   {xg€&:fi(Cgxg)<0,i = l,2, 

fi ([H0, 0] xg) < -0.05, j = 1,2}. (45) 

In this case implementation of the DTRG is made easier by expressing O^ in terms of eq. (35); viz., 

Oe
OQ = {xgetii:Tgxg<ßg} (46) 

where, 
l -3 1 1 

rff = 
-l 

2 
3 
0 and ß  = 

1 
0.95 

-2 0 0.95 
Notice that the first two inequalities are concerned with transient response saturations and insure 

that at each time step r'(t) is chosen so that —1 < yc(t) = u(t) < 1. The second two inequalities 

are concerned with steady state response saturations and restrict r'(t) to Re
s; viz., 

- 0.475 < r < 0.475. (47) 

Now, assuming xg(0) G O^, the DTRG restricts xg to O^ for all t E Z+ by choosing 

\(t) e [0, 1] in eq. (39) so that xg(t +1) € O^. Combining eqs. (40) and (46), this translates into 

KWgBg (r(t) - /(*)) <ßa- rgAgxg(t). 

Thus, the DTRG is implemented by choosing 

X(t) = min{ai(t), a2(t), a3(i), a4(i)} 

where, for each i = 1, 2, 3, 4, oti(t) is given by 

r i , if9i(t) < o 

(48) 

(49) 

(50) 

and 6(f) and <&(£) are given by 

e(t) = 02® 

ö4(t) 

= rpBs(r(t)-/(*)), 
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and 
Mt) 

*(*) — ßo — FgAgXg(t). Mt) 
Mt) 
Mt) 

The performance of the DTRG is compared to that of control concept 2 (eq. (13) of Section 

1.2.3). Recall that eq. (13) restricts x such that 

b b 
--+e<x<--e, (51) 

a a 

but, unlike the DTRG, does not otherwise restrict the modified reference signal. Here, a value of 

e = 0.5 is used in eq. (13). Figures 3, 4, and 5 show system responses to a statically admissible 

exogenous pulse input for both the DTRG and control concept 2. Control concept 2 clearly provides 

improved tracking of the pulse input over that obtained with the DTRG. Figs. 4 and 5 show that 

control concept 2 generates statically inadmissible modified reference signals, and drives the control 

signal to its limits whenever r(t)—x(t) ^ Oandeq. (51) is satisfied. Also, Fig. 5 shows that control 

concept 2 behaves very much like a Bang-Bang controller. 

Figures 6, 7, and 8 show system responses to a statically inadmissible pulse input. While the 

statically inadmissible input can not be tracked by either control law, the response of the system 

using control law (13) is again much faster than that obtained using the DTRG. Figures 6 and 7 

show that while control law (13) restricts the system state so that |x| < £ — e = 0.45, it does allow 

statically inadmissible modified reference signals. This results in improved tracking performance 

as well as a BIBO stable closed-loop system. 

2.3.2   Output Admissible Sets Versus Statically Admissible Sets 

In the case of the tracking control problem the maximal output admissible set is concerned 

with the unforced (A = 0) augmented system, and may be defined as the set of all initial augmented 

states, xg(0) 
r' 

x(0) 
such that x{t) G Xs and yc(t) G Y for all t e Z+. Here x(t) and 

yc(t) are the controlled process state and output constraint trajectories resulting from the initial 
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Figure 3. State response to a statically admissible pulse. 
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Figure 4. Modified reference signal response to a statically admissible pulse. 
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Figure 5. Control signal response to a statically admissible pulse. 
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Figure 6. State response to a statically inadmissible pulse. 
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Figure 7. Modified reference signal response to a statically inadmissible pulse. 
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condition, xg(0) = ,„s . From this definition of Ooo(Ag,Cg,Y) it is clear that if xg(0) € 

Ooo(Ag,Cg,Y), then x(0) E Xs and r' e Rs. Also, from the definition of Xs we have that 

x(0) E Xs if and only if there exists a constant reference signal, r'0 € Rs, such that xg(0) = 

x(0) E Ooo(Ag, Cg,Y). Thus, every XQ e Xs C 9ftn may be obtained from the lower partition 

of a corresponding xgo € Ooo(Ag,Cg,Y) c üftn+m. Moreover, the set, Xs, is the projection of 

Ooo(Ag, Cg, Y) onto the subspace r' = 0. 

Similarly, an e approximation to Xs, X
e

s C Xs, may be obtained by projecting the set O^ C 

Ooo onto the r' = 0 subspace. It also turns out that Xf is positively invariant with respect to the 

controlled process. This is proven in Chapter 4. 

2.4  Summary 

A mathematical formulation of the constrained tracking control problem was presented, and 

precise definitions concerning the concepts of static admissibility and positive invariance were pro- 

vided. The results of [8] and [9]; viz., the concept of maximal output admissible sets and the devel- 

opment of a discrete time reference governor, were summarized in this chapter. While the DTRG 

constraint avoidance methodology results in a BIBO stable closed-loop system, it is somewhat con- 

servative in that it restricts the modified reference signal to statically admissible values. This was 

demonstrated by comparing the performance of the DTRG to that of control law (13) for the scalar 

system of Section 1.2.3. 

Finally, it was noted that the maximal statically admissible set, Xs C 3?n, is the projection of 

the maximal output admissible set, Ooo C üftn+m, onto the r = 0 subspace. Similarly, X£
s C Xs is 

the projection of O^ C Ooo onto the r = 0 subspace. This fact will be exploited in Chapter 3 to 

obtain a finite set of linear inequalities that characterize Xf C Xs. 
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Chapter 3 - Projection of Polytopes onto a Subspace 

3.1  Overview 

In this Chapter an algorithm is presented which projects the linear inequality constraints, eq. 

(35), onto the üft" subspace to obtain a finite set of inequality constraints that characterize the set, 

Xf C 3Rn. The set, Xf, is given by 

Xe
s = {x G 9fT : Yex < ß£) C WT (52) 

where re is an N x n matrix, and ß£ € $lN. First, the set of extremal points, or vertices, of Xf are 

determined using a series of Linear Programs. Then the desired linear inequality constraints of eq. 

(52) are generated with a recursive convex hull algorithm. 

The number of linear inequalities contained in eq. (52) can grow quite large as the dimension of 

the controlled process increases. However, it generally transpires that the boundary of Xf, d (Xf), 

has segments that contain many closely spaced vertices. This suggests that a subset of Xf could be 

characterized with significantly fewer linear inequalities by performing the convex hull algorithm 

on a reduced set of vertices. The set 

Xf = {x € Kn : Tsx < ßs} c Xf (53) 

is obtained by performing the recursive convex hull algorithm using a set V' C V. Given V, 

V' may be obtained by requiring that all elements be a specified Euclidean distance, d, from each 

other. Increasing the distance, d, reduces the number of vertices included in V', the number of 

inequality constraints required to characterize Xs
s, and the on-line computational burden of the on- 

line reference signal governor algorithm. The trade off is a slight reduction in the volume of Xf 

over that of Xf. This loss of volume may degrade closed-loop system performance. However, a 

substantial savings in on-line computational burden is generally realized with little or no loss in 

closed-loop system performance. 
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3.2 Projection of the Vertices 

Determination of the vertices of Xf is accomplished using a series of Linear Programs. The 

LPs project those extremal points of 0%^ that correspond to extremal points of X£
s onto the !ftn 

subspace. While the procedure presented here is easily extended to the multi-input case, r € 5ft1 is 

assumed in the following. 

Express O^ in terms of eq. (35), and assume Tg = 

T r9i = 7, 9n ^9i 

T 

T 

la :(n+l) 

is an M x (n + 1) matrix. Let 

. Then, extremal points, or ; where, 7J = [ 7Si2   79i3 

vertices, of the polytope, Xf, may be obtained by solving the Linear Programs 

max cf xg       such that Tgxg < ßg,   i = l,2,...,M (54) 
Xg 

where 

Cases where cf = 0 are ignored. There are generally s of these cases which arise from the con- 

straints that limit r' to statically admissible values. Each cf produces an extremal vector, x*. = 

r* 1 
*    . Moreover, x* is the projection of x*. e 3?n+1 onto the 5ft™ subspace. Also, several cf Xi   J 

may produce the same extremal point. Thus, the Linear Program (54) generally generates K < M 

unique vertices. 

Important properties of the set of unique vertices, V = {x*, ..., x*K} = {v\, ..., VK}, ob- 

tained from the solution of the Linear Program (54) include the following: 

1.     ViEco(V)   Vi = l,...,Ä"; 

2.      Each hyperplane that supports Xg contains at least n vertices from V; 

3.      Each Vi € V is contained in at least n of the hyperplanes that support Xf 
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Property 1 follows from the fact that LP (54) generates extremal points of Xf. This simplifies 

the convex hull algorithm since it is not necessary to determine which vertices are interior points 

and which are extremal points. Property 2 follows from the fact that hyperplanes are co-dimension 

1 objects, and are uniquely defined by n vertices. This property leads to n equations to determine 

the n elements of each row of Te. Finally, Property 3 follows from the fact that X£
s is bounded; viz., 

a polytope. Of course, in problems where n > 3 a particular vertex may be contained in more than 

n supporting hyperplanes. 

3.3 Recursive Convex Hull Algorithm 

A recursive algorithm is developed that constructs XI, or Xf, given the set of vertices, V, or 

V. First, some brief comments concerning notation and definitions are made to aid in the following 

discussion. For a thorough presentation of relevant definitions and concepts concerning polyhedral 

sets see Chapter 3 of [24]. 

The convex hull of a finite set of points in Ed is a convex polytope. Moreover, a polyhedral 

set in Ed is the intersection of a finite set of closed half-spaces. Thus, the linear inequalities of 

eq. (52) may be obtained by constructing the convex hull of V. A convex polytope is described by 

means of its boundary, which consists of faces. Each face of a convex polytope is a convex set 

itself. A k — face denotes a A;—dimensional face, that is a face whose affine hull has dimension 

k. If a polytope is d—dimensional, its (d — l)-faces are called facets, its (d — 2)-faces are called 

subfacets, its 1-faces are called edges, and its 0-faces are vertices. Note, that the affine hull of a 

facet is a hyperplane. A d—polytope is called a simplex if it is the convex hull of (d + 1) affinely 

independent points. Moreover, a d—polytope is called simplicial if each of its facets is a simplex. 

Finally, the convex hull of a finite set of points in general position is a simplicial polytope. 
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The following algorithm constructs XI in a simplicial manner. That is, XI is constructed such 

that each facet is a simplex. An initial n—simplex is formed from (n + 1) elements of V. Then 

additional vertices are incorporated one at a time. As each new vertex is added, one or more facets 

are invalidated, and new facets are constructed to form a new simplicial n—tope. The algorithm 

terminates after all vertices are incorporated. The elements of V are not necessarily in general 

position, and thus X% is not necessarily a simplicial polytope. However, this does not preclude 

the use of a simplicial construction method. If the elements of V are not in general position there 

may be cases where the affine hulls of two or more facets are the same. That is, facets that are 

not simplexes are partitioned into two or more facets that are simplexes. This, in turn,will result in 

redundant inequalities in eq. (52). Redundant inequalities are easily eliminated after the algorithm 

terminates. There may also be cases where a new vertex, Vj, is contained in an existing facet. In 

this case no facets are invalidated by the addition of u,-, and Vj may be discarded. 

Now, let fi be a facet of the n—dimensional simplicial polytope, Xg. Then the (n—1) —dimensional 

affine hull of/j is a hyperplane, and is denoted by hi. Since the origin is in the interior of Xe
8, hi 

is uniquely defined by the triple, (jf, Vi,bi), where jf is a linear functional, and the ith row of Te, 

Vi € V is one of the n vertices contained in hi, and bi is an arbitrary, non-zero, scalar. Since bi must 

be chosen such that jf (0) < bi, then 

6*>0   Vi = l,...,JV 

Also, note that 

~/Jv<bi   Vue V. (55) 

This is due to the convexity of Xf. From the preceding discussion it is apparent that associated 

with each facet, fi, is a hyperplane, hi, and a linear inequality, or half-space. Of course it is the set 

of linear inequalities that we seek. The linear functionals, jf, are always constructed so that the 
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normal is outward pointing. This insures that the resulting closed half-space is on the correct side 

of the hyperplane. 

Now, if the n vertices, v^,.. .,i>,n, contained in hi are known, and 6j is chosen such that bi = 1, 

then jj G üßn is given by 

7?=[1   •••   1][^    •••   vin ]-' (56) 

and the desired linear inequality is given by 

-rJx < 1. (57) 

The problem then, is to determine the number of facets that make up co(V), and which n vertices 

are contained in each facet. The following recursive convex hull algorithm solves this problem. 

First, an initial (n + 1)—simplex is constructed from an initial set of (n + 1) vertices from V. 

The simplex is constructed using eq. (56) and the (n + 1) unique combinations of n out of (n + 1) 

vertices. Moreover, the initial (n + 1) vertices are chosen so that the resultant simplex, denoted by 

Xn+i C X%, contains the origin. This is accomplished by insuring that each of the initial n + 1 

inequalities, 

-yfx < 1,    i = l,...n + l (58) 

is satisfied for each of the initial (n +1) vertices. If an initial inequality is not satisfied for all n +1 

initial vertices, the origin is not an interior point of X^+l. It is not strictly necessary to insure the 

origin is an interior point of the initial simplex. However, if the origin is not an interior point, then 

there will be cases where eq. (57) is changed to 

-<y[x < -1 

to insure the normal is outward pointing. Also, each new linear inequality generated during subse- 

quent passes of the algorithm must be tested using a vertex contained in another existing hyperplane 

to insure the normal is outward pointing. This additional processing is avoided if the initial simplex 
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contains the origin. Also, an initial set of (n + 1) vertices is easily found with an automated search 

routine. Figure 9 shows an example of the initial tetrahedron formed for a third-order problem. 

Now, we have the initial convex subset of Xf, 

K+i = {xeun-. rn+1x < ßn+1} c xi 

where Tn+1 G $n+1)Xn and/?n+1 e 3ftn+1. 

Given X^+1, additional vertices from V are incorporated one at a time until all vertices are in- 

cluded. This is accomplished by first determining which of the existing inequalities are not satisfied 

for the new vertex. Since half-spaces defined by failed inequalities do not contain the new vertex, 

and X§ is convex, all failed inequalities, and their associated hyperplanes and facets, are invalid. 

Thus, these inequalities are eliminated. Next, the vertices contained in failed hyperplanes are used 

together with the new vertex to generate new hyperplanes and associated linear inequalities. Notice 

that the focus here is on half-spaces and hyperplanes, and not on faces of the polytope. 

Determining which inequalities are not satisfied for a new vertex is accomplished as follows. 

Assume k vertices from V have been incorporated to obtain 

Tk = 

and the convex set 

7fc! 

T 
eWxn,   ßkeW, 

Xl = {xzW: Tkx < ßk} C XI 

Let vk+i denote the new vertex. On the first pass k = p = n + 1. Also, recall that all elements of 

ßk are 1. Now, compute 

Cfe : 

and note that if 

7jfc>fc+l 

7fc>fc+i 

Cfej 

3 K„ 

Cfa -1 > o, (59) 
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Figure 9. Initial tetrahedron for a problem in E3. 
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then the linear inequality, ^\x < 1, is not satisfied, and is therefore invalid. If v^+i is contained in 

an existing facet, then no linear inequalities will be invalidated. In this case, v^+i may be discarded. 

Ifufc+i is contained in an existing hyperplane, but not the associated facet, then one or more linear 

inequalities will fail, and the ensuing convex polytope will contain two or more facets that have the 

same affine hull. That is, two or more hyperplanes and their associated linear inequalities will be 

identical. The above situations only occur if the elements of V are not in general position. Also, if 

the set of vertices is reduced appropriately these events generally will not occur. 

Figure 10 shows an example in E2. Here, the addition of v$ results in the elimination of the 

hyperplane associated with vertices vi and i^.Two new hyperplanes are generated; one containing 

vertices v\ and v±, and one containing vertices v<i and v±. Notice that in the two dimensional case 

the addition of a new vertex results in the elimination of one hyperplane, and the creation of two 

new hyperplanes. Moreover, it is readily apparent which vertices are contained in each of the new 

hyperplanes. 

This is not the case for problems with n > 3. In general, for n > 3, adding a new vertex 

may invalidate several existing inequalities. A three dimensional example is shown in Figure 11. 

In this example, the addition of ^8 invalidates the linear inequalities associated with the three facets 

/i> h> and fa, and their associated hyperplanes. Now, it may not be immediately clear how many 

new facets / hyperplanes should be created, and which vertices feature together in each new facet / 

hyperplane. 

This issue is resolved by noting the following. Failed facets are contiguous. This is due to the 

convexity of Xf.. Also, the intersection of two facets contains (n — 1) vertices and is a subfacet of 

Xf.. Not only does a subfacet contain (n — 1) vertices, but its affine hull is also contained in exactly 

two supporting hyperplanes, and has co-dimension two, whereas hyperplanes have co-dimension 

one. Finally, subfacets contained in failed facets may be categorized as either "failed" subfacets or 
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Figure 10. Incorporation of Vk+i for an E2 arrangement. 

V8 

Figure 11. Invalidation of multiple hyperplanes for a problem in E3. 
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"valid" subfacets. Failed subfacets are those subfacets that are contained in the intersection of two 

failed facets. Valid subfacets are those subfacets that are contained in the intersections of failed and 

valid facets. 

Now it transpires that failed subfacets lie in the shadow of the supporting cone of Vk+i, and 

do not feature in c0(Xf.+1). Valid subfacets, on the other hand, do not lie in the shadow of the 

supporting cone of ffc+i, and are each contained in exactly one new facet. Also, each new facet 

contains exactly one valid subfacet. This situation follows from the convexity of Xf., the fact that 

each vertex is contained in c0(Xf.+l), and the fact that valid subfacets are contained in existing 

facets that were not invalidated by Ufc+i- Thus, the number of new facets, and hyperplanes, is equal 

to the number of valid subfacets, and the n — 1 vertices from each valid subfacet are combined with 

Vfc+i to obtain a new hyperplane using eq. (56). 

Figure 12 shows the situation after Vk+i = v8 is incorporated in the example of Fig. 11. While 

three facets / hyperplanes have been eliminated, five new facets / hyperplanes have been created. 

Moreover, the failed subfacets, e23 and 634, do not feature in Co(X|+1), while the valid subfacets, 

ei2> ei3, e24> ^35, and 645, are each contained in exactly one new facet / hyperplane. Also, each new 

facet / hyperplane contains exactly one valid subfacet. 

Since V does not contain interior points, but only vertices of Xe
s, the convex hull algorithm 

need not consider this case. However, the above algorithm easily handles sets that include interior 

points. As the algorithm progresses, if a new point, Vk+i, is interior to the existing polytope, XjF, 

then no linear inequalities will fail, and the point is discarded. An interior point may also be in- 

corporated into XI during a particular pass. Then, during a subsequent pass this point will not be 

contained in any valid subfacet, and again is discarded. 
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Figure 12. Incorporation of vs for the Es example. 
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The recursive convex hull algorithm is now described for the general n-dimensional problem. 

Given the set of unique vertices, V, obtained from the Linear Program (54), perform the following 

procedure: 

1. Generate the linear inequalities that define X^+1 using eq. (56) and n + 1 initial vertices. 

Choose the first n + 1 vertices so that 0 £ int(X^+1). Make a list of vertices included in each 

facet. 

2. Set k = n + 1. That is, X% = X^+1. 

3. Select any remaining v E V and set Vk+i = v. 

4. Use eq. (59) to determine invalid inequalities and hyperplanes. If no linear inequalities are 

invalidated, discard vj.+i and select the next element of V. 

5. Delete failed inequalities from the set of inequalities that define Xf. 

6. Identify failed and valid subfacets from the set of failed facets / hyperplanes. First, generate 

a list of the n — 1 vertices contained in each of the n subfacets of each failed facet. This list 

is generated from the n combinations of n — 1 out of n vertices contained in each facet. A 

subfacet, identified by the n — 1 vertices it contains, fails if it is contained in two failed facets. 

7. Generate a new facet / hyperplane for each valid subfacet, using eq. (56), by combining the 

n — 1 vertices of each valid subfacet with Vk+i- New linear inequalities follow immediately 

from the new hyperplanes. 

8. Combine the new linear inequalities with those remaining from Xf. to obtain Xf.+l, and update 

the list of vertices contained in each facet. 

9. Repeat steps 3 through 8 until all v £ V are incorporated. 
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This algorithm generates XI by constructing a sequence of polytopes, Xf C X%. At each 

step we have that Xf C Xf.+l since inclusion of the new vertex, Vfc+i, cannot render any of the 

previously incorporated vertices internal, or nonextremal, points of X|+1. The set, X£
s, is built up in 

a simplicial form, and the volume of Xf. increases monotonically with k. Moreover, as noted above, 

this algorithm is applicable to the general case where the points are not in general position and where 

there may be those that are interior to the convex hull. If the points are not in general position, 

facets that are not simplexes are simply partitioned into two or more Simplexes. Interior points are 

eliminated automatically with no additional processing. If vk+i is interior, then no facets will fail in 

step 4, and it is discarded. Also, if an interior point, p, is incorporated into an intermediate polytope 

during a particular pass, then on a subsequent pass p will be in the shadow of the supporting cone 

associated with a new point. In this case p is only contained in failed subfacets, and is automatically 

eliminated by virtue of not being included in a new facet. 

In practice it is often desirable to reduce the number of linear inequalities that must be evaluated 

by the on-line reference signal governor. This is accomplished by thinning the set of vertices, V. A 

set, V' C V, is obtained by including only those elements of V that are a prespecified Euclidean 

distance, d, from each other. The set, X$ C XI, is then obtained by performing the recursive 

algorithm on V'. The number inequalities required to characterize X% is fewer than that required to 

characterize X%. Of course, the volume of X6
S is also less than that of XI. However, the number of 

vertices in V', and the number of inequalities required to characterize X6
S, can generally be reduced 

substantially with little loss in volume. Finally, it is important to note that the recursive convex hull 

algorithm is performed off-line, and only the resultant linear inequalities of eq. (52), or eq. (53), 

are used by the on-line constraint mitigation strategy. 
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3.3.1   Numerical Precision Considerations 

Due to finite word length limitations of digital machines, it may be necessary to account for 

computer round-off errors when determining valid and failed linear inequalities using eq. (59). 

Computer round-off errors may creep in when generating the initial linear inequalities that char- 

acterize O^, when obtaining the vertices of Xe
s, and when generating the linear inequalities that 

characterize Xf.. This problem can be eliminated by sufficiently reducing the set of vertices. 

Another motivation for reducing the set of vertices is to obtain a set of vertices that lie in general 

position. If the elements of V are not in general position, then Xe
s is not simplicial. That is, some 

facets of Xg will contain more than n vertices. Since the above convex hull algorithm constructs 

XI in a simplicial manner, facets that are not Simplexes are partitioned into two or more simplexes 

that have the same affine hull. As noted earlier, this results in redundant inequalities in eq. (52). 

Figure 13 shows a three dimensional example where facets U, h, and fa are all contained in the 

same hyperplane. In this case elimination of 1*3 yields a simplicial polytope with no loss of volume. 

Figure 14 shows another third-order example. In this case facets f$ and fs are contained in the 

same hyperplane. Unlike the example of Fig. 13, deletion of any of the involved vertices results in 

some loss of volume. 

In theory, as the recursive convex hull algorithm incorporates new vertices, the above situa- 

tions can be detected and appropriate action taken. However, computer round-off errors must be 

accounted for when determining if a set of vertices lie in general position. One method, is to declare 

that Vk+i is contained in the ith hyperplane, hi, whenever 

|7i[^+l - l| < M 

where, // is a small positive tolerance. In this case the vertices do not lie in general position. The 

appropriate value of/x is dependant on the numerical precision of the host computer system. Another 
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Figure 13. A set of points that are not in general position in E3 

Figure 14. A nonsimplicial polyhedron in Ez 
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method is to compute the condition numbers of the matrices 

Vi, - vin        vix - vk+1 M,.= 
Wi, — v. «2 112     11^1 Vi, - V. »3 II2 \Vi, —Vi     9    \\Vi I     fcl fcn. IIZ       II     L «fc+ilb 

, i = l---p 

where v^, j = 1 • • • n, are the n vertices contained in the ith facet / hyperplane of XjF. Notice 

that if ffc+i is contained in hi then the elements of Mk. define a hyperplane that passes through the 

origin. In this case one eigenvalue of Mki, Amini =min |A (MjJI, is zero, Ran^M^) — n - 1, 
i 

and CondlMkJ = undefined. Now, due to computer round-off errors, it generally transpires 

that Am;ni is non-zero and Cond{Mkt) is a large, but defined, real number. Thus, an appropriate 

threshold, £, for Cond(Mki) must be determined. Then, after the recursive convex hull algorithm 

has terminated, if 

max (Cond(Mk.)) > £ 
i 

on any pass of the algorithm, the elements of V, or V', are not in general position. Determination of 

an appropriate hyperplane failure tolerance, /J,, and matrix condition number threshold, £, requires 

some analysis. 

This analysis is demonstrated with the following example in E3. Let the ith hyperplane, hi, 

be specified by the linear functional, 

7f. = [—1, 2, —4], and scalar, 6; = 1 

It is easy to verify that the vertices, 
1 -1 0.5 -2 
2 

0.5 
,    Vl2   = 2 

1 
.  «is = -3 

-1.875 
, and vk+1 = 5 

2.75 
are each contained in hi. A perturbed vertex, vk+\, is generated by perturbing the third element of 

vk+i by a small amount, viz., 
-2 

Vk+i = 5 
2.75 + 6 
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Now, compute £fc. = y£vk+i — 1, Cond(Mki), Rank(Mki), and Amini for several values of 6. 

Here, 

Mki = 
!F<i-Vta||2   IK-fi3ll2        Fii-^Jl2   IK-^fe+ilb. 

,® 

Table 1 shows the results for several values of 6. 

The results of Table 1 were obtained using Matlab^ version 4.2, hosted on a Pentium 120 

MHz personal computer. This system's machine epsilon, the distance from 1 to the next largest 

floating point number, is 2.22 x 10-16. From Table 1 it is clear that hi should be declared invalid 

if (k. > 3.2 x KT14. Also, If Cond(Mk.) > 1.4 x 1015, then the elements of V, or V, are not 

in general position. Thus, in this case, reasonable values for JX and £ are 3 x 10~14 and 1 x 1015, 

respectively. It is important to note that evaluating the condition numbers of the matrices, Mki, 

provides much more information than simply testing the rank of these matrices. Evaluating the 

above condition numbers lets the designer know the relative degree to which the elements of V, or 

V', are in general position. 

3.4 Two Dimensional Problem 

The following two dimensional problem provides an illuminating demonstration of the meth- 

ods described in this chapter. Moreover, the two dimensional problem allows us to make use of 

graphical interpretations of the concepts presented here. First, the maximal statically admissible 

set, Xs, is constructed for the continuous-time system. Then, the discrete-time methods of Sections 

3.2 and 3.4 are used to develop a finitely determined approximation to Xs. 

Consider the two dimensional continuous time system 

x(t)   =   Ax(t) + Bu(t) = 

y(t)     =     Cx(t) =[10] X(t) 

0   1 
2   1 x(t) + u{t) 

(60) 
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Table 1. Numerical precision analysis 

6 Cfc.. -1 Cond(Mki) Rank(Mki) ^miiii 

-0.05 0.2 219 3 2.28 x 10~2 

-0.001 4.00 x 10~a 1.10 x 104 3 4.38 x 10-4 

-1 x 10_ia 4.00 x 10_i:i 1.10 x 1013 3 4.37 x 10~ia 

-1 x 10~ia 4.00 x 10-13 1.10 x 10i4 3 4.39 x 10-14 

-1 x 10-14 4.09 x 10~14 1.04 x 10i5 3 4.81 x 10~10 

-8 x 10~ib 3.20 x 10-14 1.41 x 10i& 3 3.30 x lO"10 

-7 x 10~15 2.84 x 10"14 1.53 x 10i5 2 2.90 x lO"15 

8 x 10"lb -3.20 x 10-14 1.42 x 10i5 3 -3.17 x MTiö 

7 x 10~xt> -2.84 x 10~i4 1.59 x 10ib 2 -2.94 x 10~i5 
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where the constrained control signal, u(t), is given by 

- 1 < u(t) = kxx(t) + krr'(t) < 1 (61) 

and, the inner-loop control system's gains 

kx = [ -9   -2.5 ], and kr = 8 (62) 

have been chosen to provide good small signal tracking performance. Note, that kr has been chosen 

so that the system output, y = x\, tracks r' asymptotically. Notice also that the open-loop system 

dynamics matrix is unstable, with eigenvalues at — 1 and 2. Furthermore, statically admissible values 

of r' satisfy 

-r.s < r' < rs 

where, in this example 

CAfB 
rs = —-,— = 1 

1 - kxAfB 
and Aci = A + Bkx. 

Let Xs{r0) denote the set of statically admissible states for a constant r = r0. Then the 

statically admissible set, Xs, may be manually constructed for the second-order system of eqs. 

(60) and (61) by obtaining Xs(r0) for constant statically admissible reference signals that satisfy 

—rs <r0<rs, and then noting 

Xs=      U       Xs{r0) 
—ra<r„<rs 

X2 
lie in Also, for each — rs < r0 < rs, statically admissible values of the state vector, x = 

the intersection of the two half-spaces, 

kxx — (1 — krr0)    <   0 

-kxx - (1 + krr0)   <   0. (63) 

Thus, for a particular constant, statically admissible reference signal, r0, Xs(r0) is the set of all 

initial states, x(0), such that the ensuing trajectory does not violate eq. (63). 
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Figure 15 shows the hyperplanes and extremal trajectories for r0 = 0 and r0 = 0.9. Xs(0) 

is the region bounded by the two hyperplanes and the two extremal trajectories, while X,(0.9) is 

the region bounded by the right hyperplane and the single extremal trajectory. A family of extremal 

trajectories for several statically admissible values of r0 is shown in Figure 16. Notice that as r0 

approaches ±rs = ±1, the size of the set of statically admissible states, x 
Xl 

X2 
decreases. 

Moreover, at r0 = ±rs = ±1, the statically admissible set reduces to a single point, viz., Xs (±1) = 

±1 
0 

Moreover, the states x = 
±1 

0 
are not elements of Xs(r0) for r0 ^ ±1. Thus, 

it becomes "stuck". This 
±1 

0 
should the system ever reach the valid equilibrium points x = 

phenomenon is a common characteristic of control systems where the open-loop system is unstable 

and subject to control constraints. 

Figure 17 shows Xs(0) inscribed within Xs. The set, Xs, was obtained from the union of all 

Xs(r0) for — rs < r0 < rs. Notice that while Xs is convex, it is not finitely determined, as is 

demonstrated by the two curved segments of its boundary Finitely determined maximal statically 

admissible sets are an artifact of discrete time systems. 

The maximal positively invariant set, Xi, is now constructed to illustrate the relationship be- 

tween it and the maximal statically admissible set, Xs. The set, Xi, is obtained by finding all initial 

states, x(0), for which there exists a feasible reference signal trajectory such that the resulting state 

trajectory, x{t), remains in Xi for all t € Z+. Actually, we must have that x (t) converges to a stat- 

ically admissible state, xss 6 Xs. From eq. (61) it is clear that for a particular state, x(t), r(t) must 

satisfy 

rf(t)mm < r(t) < r/(t)max, 

where 

r/(t)min = 
-1 - kxx(t) 

fZnr 
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Figure 15. Statically admissible sets Xa(0) and X,(0.9) for the 2D problem. 

3    0- 

-0.5 

Figure 16. Extremal trajectories for several values of r0 for the 2D problem. 
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3   o 

Figure 17. Convex hulls of Xs and Xs(0) for the 2D problem. 
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and 

Tf(t)ma,x — 
1 - kxx(t) 

Thus, if x(0) E Xj, and at each time increment, t € Z+, r(t) is chosen to be the solution of the 

problem 

mm |r| subject to rf(t)mhl <r< rf(t)max (64) 

then the state trajectory must converge to a statically admissible equilibrium point. 

Figure 18 is a plot of Xi. Initial states in the two regions bounded by dashed lines are elements 

of Xi n Xg. With the exception of those initial states that lie on the dashed boundary segments, 

choosing r(t) in accordance with eq. (64) causes the state trajectory to converge to the origin for all 

initial states in Xr. State trajectories resulting from initial conditions that lie on the dashed boundary 

segments converge to the "sticking" points, xss — 

Xi is not convex. 

±1 
0 

Finally, notice that Xs C Xi, and that 

3.4.1   The Maximal Statically Admissible Set 

Application of the methods described here to obtain a finitely determined approximation to Xs 

requires consideration of an equivalent discrete-time system. Using a sampling rate of 100 Hz, i.e., 

Ts = 0.01 sec,the equivalent discrete-time system is given by 

1.0001      1.0051 x 10~2 

2.0101 x 10~2 1.0102 
x(k + l) x(k) + 1.0034 x 10~4 

2.0101 x 10~2 
u{k) 

=   Adx(k) + Bdu{k) (65) 

y(k)   =   Cx(k) =[10] x(k) (66) 

-1   <   u(k) = kxx(k) + krr(k) = [ -9   -2.5 ] x(k) + Sr\k) < 1. (67) 

A finite set of inequalities which characterize 0%^ may be obtained using the methods of Chap- 

ter 2. The augmented system and output constraints are given by eq. (31) with 

1       0 
Bd   Aci A9   = Bd = BdK, Aci = Ad + Bdkx 
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Figure 18. Maximal positively invariant set for the 2D problem 

61 



1 
0 
0 

In this case the constrained output, yc, is the constrained control signal, u. Also, the constraint set, 

Bg , and Cg = [ kr   kx] = [8   -9   -2.5 ] . 

Y, contains the origin, is bounded, and is given by 

Y = {yc e *ft : Myc) < 0,   i = l,2} 

where fi(yc) = yc — 1, and /2(yc) = ~Vc — 1- Moreover, the pair (Aci, kx) is observable. Thus, 

O^o is given by eq. (34) where 

H0 = kx(I- Ad)~l Bd + kr = -1. 

With e = 0.05, the algorithm of Section 2.3 gives t\ = t\ = 121. Thus, O^ is given by 

Olo   =    {xgG^3:fi(CgA
t

gxg)<0,t = 0,...,121, i = l,2 

and - 0.95 < r < 0.95} . (68) 

Recall, that eq. (35) is an equivalent expression for O^,. In this case we have Tg € 3ft246 x3 and 

ßg G 5ft246. Also, Tg and /?ff are available from the computations performed to determine t*. 

The set of vertices, V, of the polygon, X£
s, are obtained from the Linear Program (54). In 

this problem, two rows of Tg result in cT = 0, and are neglected. The Linear Program of eq. (54) 

generates 244 vertices. However, only 86 of these vertices are unique. Thus, V has 86 elements. 

Figure 19 is a plot of all 86 vertices. 

Notice that the vertices are clustered in two large and four smaller groups. As noted earlier, 

this suggests that, by eliminating closely spaced vertices to obtain a set, V C V, we may generate a 

characterization of a set, X6
S C X%, with substantially fewer linear inequality constraints, and with 

little loss of volume. 

The recursive convex hull algorithm of Section 3 is used to generate the set of linear inequalities 

(52) that characterize X%. In this two dimensional case, the 86 vertices in V result in 86 linear 

inequality constraints. Figure 20 is a plot of the 86 supporting hyperplanes of Xe
s.  Comparing 
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Figure 19. \ertices of XI for the 2D problem. 
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Figures 20 and 17 shows that the most noticeable difference is that two small areas, one at the lower 

left corner and another at the upper right corner of Xs, have been shaved off. In fact, Xf limits x\ 

±1 
0 

This is due to such that —0.9556 < x\ < 0.9556, and does not contain the states x = 

the e approximation used to obtain O^, and is desirable in light of the above mentioned "sticking" 

phenomenon. 

To illustrate the effects of eliminating closely spaced vertices, two different subsets of Xf (Xf1 

and Xg2) are characterized using two different subsets of V (V{ and V^). Each subset is generated 

by requiring that all elements be a specified Euclidean distance, d, from each other. The set V{ 

contains 26 vertices, and is obtained with d = 0.009, and V^ contains 10 vertices obtained with 

d = 0.05. Given V[ and V'2, the recursive convex hull algorithm generates the linear inequality 

constraints of eq. (53). The sets Xf1 and Xf2 are characterized with 26 and 10 linear inequality 

constraints respectively. 

Figure 21 shows the 26 supporting hyperplanes associated with Xf1. Notice that the loss of 

volume is minimal. Moreover, the set of statically admissible equilibrium points allowed by Xf1 is 

identical to that of X£
s, viz., the line segment -0.95556 < x\ < 0.95556. However, there are only 

26 inequalities required to characterize X^1, versus the 86 inequalities of Xf, or the 246 inequalities 

required to characterize O^. Figure 22 shows the 10 supporting hyperplanes associated with Xf2. 

While Figure 22 shows a slight reduction in volume, this may be acceptable in light of the reduced 

computational burden. 

Notice that for this problem 86 inequalities are required to characterize Xf, but a very good 

approximation is obtained using only 10 inequalities. Thus, while the method of [9] requires eval- 

uation of 246 inequalities at each time step to insure x(k + 1) G Ooo, only 10 inequalities must be 

evaluated to insure x(k + l) £ Xe
s. Not only does this method provide improved tracking perfor- 

mance, but the computational burden is reduced. 
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Figure 20. Supporting hyperplanes for X% for the 2D problem. 

Figure 21. Supporting hyperplanes for X\x for the 2D problem. 
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The trade-off between computational burden and steady state responses allowed by X8
S, for 

various subsets of V, may be computed from the resultant linear inequality constraints of eq. (53). 

In steady state x(t + 1) = x(t) = xss and r'ss = yss. Then, xss € Xf requires that 

T6{I-Acly
lBdr'ss<ß8. 

Let Tg be an TV x n matrix and define 

q> = 
i>i 

i>. N 

= T6(I-Ady
1Bcl. 

Since each element of ßs is 1, and the origin is in the interior of Xf, then 

1 
max(^ 

and 

(69) 

ssmin mm ^J 

This provides a means to determine if a particular set, Xf, supports a desired set of equilibria points. 
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Figure 22. Supporting hyperplanes for Xf2 for the 2D problem. 
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3.5  Summary 

In this Chapter a procedure was developed to project the maximal output admissible set, O^ C 

9?n+1, onto the 3Jra subspace to obtain an approximation of the maximal statically admissible set, 

Xg C Wn. It was also noted that the boundary of Xe
s generally contains several segments with 

closely spaced vertices. By thinning these clusters of vertices, the subsets, X\ C Xe
s, were obtained. 

Since X\ contains fewer vertices, it is characterized with fewer linear inequalities. Also, since only 

closely spaced vertices are eliminated, the volume of Xf is similar to that of Xe
s. Thus, a substantial 

reduction in on-line computational burden may be realized with little loss in closed-loop system 

performance. The concepts and methodology developed here were illustrated with a second order 

example. 

A recursive convex hull algorithm was developed to generate the linear inequalities that char- 

acterize Xg. Unlike existing convex hull algorithms the algorithm developed here does not generate 

the complete facial graph, but only the list of vertices contained in each facet, as well as the desired 

linear inequalities. Thus, this algorithm may be more efficient than existing algorithms. While 

not required for the problem addressed here, the recursive nature of this algorithm also makes it 

amenable to on-line operation. Moreover, this algorithm is applicable to problems with interior 

points, and to problems where the points are not in general position. 

68 



Chapter 4 - Constraint Avoidance Methods 

4.1 Overview 

In the previous chapter the set X£ C 3Jn was characterized with a set of linear inequalities 

by projecting the polytope, O^ C 3ftn+1, onto the W1 subspace. The set X6
S C Xe

s was also 

obtained by eliminating closely spaced vertices of X£
s. Since it contains fewer vertices the number 

of inequalities required to characterize X6
8 is fewer than those required to characterize X£. 

In this chapter specific reference signal governor (RSG) algorithms are developed. The con- 

straint avoidance strategy employed here is to choose r'(t) at each time step so that x(t + 1) € X£ 

and yc(t) € Y. This allows the greatest flexibility in selecting r' at each time step, while also pro- 

viding a BIBO stable closed-loop system. In particular, r' is not restricted to statically admissible 

values at each time step. Examples are used to illustrate the potential improvement in tracking per- 

formance this can provide. Constraint avoidance methods based on polyhedral and elliptical subsets 

of the set X£ are also presented. These methods can result in a substantial reduction in the RSG 

on-line computational burden. 

4.2 Constraint Avoidance Strategy 

The definitions concerning admissible and feasible reference signals first presented in Chapter 

2 play an important role in the proposed constraint avoidance strategy, and are reviewed here. Given 

xit) € XI, if r'(t) is chosen such that x(t + 1) e X£, then r'(t) is said to be admissible with 

respect to the set X£. Also, if r'(t) is chosen such that yc(t) € Y then r'(t) is said to be feasible. 

Given x(t) e X£ it may be possible to choose an r'(t) that is admissible, but not feasible. In this 

case the hard constraints will be encountered and saturation will ensue. On the other hand it may 

be possible to choose an r'(t) that is feasible but not admissible. In this case the hard constraints 

are not immediately violated, but xit + 1) ^ Xe
s will transpire and an unstable system response 
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may ensue. Thus, both admissibility and feasibility constraints must be enforced at each time step 

to obtain a guaranteed BIBO stable closed-loop system. This requires that the admissibility and 

feasibility constraints be consistent for any x G Xs. That is, the set of reference signals that are 

both admissible and feasible must be non-empty for any x G X£
s. The following theorem addresses 

this issue. 

Theorem 1.    For any x(t) G X£ there exists an r'(t) such thatxit + 1) G Xs andyc(t) G Y. 

Proof: 

Let x0 G X£ be arbitrary but fixed. Because Xs is the projection of O^ onto the 5R™ sub- 

space, there exists at least one statically admissible constant reference signal, r'a G R£
s, such that 

G O6^. Also, from the definition of the set O^, if xg = 
r' ' O 

0bn 

r' 
x 

and yc G Y. In addition, if xg(0) = 
r' ' o 

x(0) 
G Olc, then xg(t) = 

G O^, then x G X£ 

r'o 
x(t) 

G 0%, for all 

t G Z+. Thus, given x(t) = x0, let r'(t) = r'a. Then, x(t + 1) G X% and yc(t) eY. □ 

It follows that if x(0) G X£ and at each time increment the RSG chooses r'(t) such that 

x(t + 1) G X% and yc(t) G Y, then x(t) G X§ and yc(t) G Y for all t G Z+, and the closed-loop 

system will be BIBO stable. In the future, a reference signal that is both admissible and feasible is 

said to be allowable. 

Unlike the DTRG, the RSG relies on the existence of a time varying allowable reference signal 

to insure x(t) G Xe and yc(t) G Y for all t G Z+, and does not require that at any time increment 

r'(t) be such that it is allowable for all r > t. Also, the RSG does not restrict the modified reference 

signal to the set of statically admissible reference signals, vis., Re
s. This additional flexibility in 

selecting r'{t) may be used to improve tracking performance over that obtained with the DTRG 

system. At the same time the RSG constraint avoidance strategy results in a BIBO stable closed- 

loop system. 
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4.3 Determination of the Modified Reference Signal 

In this section explicit algorithms are developed which compute r'(t) at each time increment. 

The single input problem is exclusively considered. First the set of allowable reference signals is 

determined based on the admissibility and feasibility constraints. Then two control concepts are 

specified which choose the best allowable reference signal based on two different metrics or criteria. 

Admissibility of r'(t) with respect to the set XI requires that x(t +1) € X%. In terms of the 

linear inequalities that characterize X£
s this translates into 

T£x(t + 1) < ße. 

Since x(t + 1) = Ac[x(t) + Bcir'(t), the admissibility requirement may also be expressed as 

TeBdr'{t) <ß£- TeAdx{t). (70) 

Upper and lower bounds imposed on r' (t) by the admissibility constraints are easily determined 

at each time increment by evaluating the linear inequalities of eq. (70). First, let 

veBcl = e 

01 
02 

0N 

andße-T£Acix(t) = $(t) 

Mt) 

<t>N(t) 

(71) 

Also, let qi denote the set of indices for which 0{ > 0, and qi denote the set of indices for which 

9i < 0. That is, let qi = {i e {1,2,...,N} : 9t > 0}, and q2 = {i € {1,2,...,iV} : 0* < 0}. 

Then, r'(t) is admissible if 

ra(*)min < r'(t) < ra(t)max (72) 

where ra(£)min and ra(t)max are the minimum and maximum admissible values of r'(t), and are 

given by 

ra(t)max=min l^ß\ (73) 
*e<7i   {   0i   } 

and 

ra(t)mm =max \ -^— \ (74) 
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Feasibility of r'(t) requires that yc(t) = CCclx(t) + DCclr'(t) GYc ffl. In the case where 

the constraint set Y is a polytope, an equivalent expression is 

Pmin < CCclx(t) + DCc/(t) < Pmax (75) 

where pmin and pmax are p-dimensional vectors. Equation (75) represents 2p inequalities. Now, let 

DCcl = 
d2 

dp 
and, define the sets qs = {i £ {1,2,... ,p} : di > 0}, and q^ = {i € {1,2,... ,p} : rfj < 0}. Then, 

r'(t) is feasible if 

r/(*)mm < r'{t) < rf(t)max (76) 

where rf(t)m[n and r/(£)max are the minimum and maximum feasible values of r'(t), and are given 

by 

r,(.W - min fej, {"™* ^'W } , gin {*- ^M }} (77) 

and 

r^Vin = max {max { Pmi" " j^**® |, max |P— "J^*® } j . (78) 

The set of all allowable reference signals is the intersection of the sets of admissible and feasible 

reference signals, and is given by 

r'(t)min < r'(t) < r'(t)max (79) 

where 

r'(t)max = min {rf(t)max, ra(t)max} 

and 

r'COmin = max {r/(t)min, ra(t)min}. 

Also, since the set of allowable reference signals must be non-empty when x (t) € XJ,thenr'(i)min < 

f'(t)max is guaranteed. Now that the set of allowable reference signals has been determined, the ref- 

erence signal governor selects the best allowable reference signal based on the specified metric. 
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4.3.1   Control Concepts 

In addition to insuring r'{t) is allowable at each time increment we must also define a metric 

to determine the "optimal" modified reference signal from the set of all allowable reference signals. 

Two possible metrics, which are consistent with those used in the scalar example of Chapters 1 and 

2, are presented next. 

Let Ra(t) denote the set of all allowable reference signals at time increment t. A reasonable 

control concept is to minimize the distance between the exogenous and modified reference inputs, 

subject to the constraints. In this case r'(t) is chosen so as to solve the minimization problem 

min     \\r(t)-r'(t)\\ (80) 

This is referred to as the minimum distance reference signal governor (MDRSG) and results in 

{r'(t)max,    r(t) > r'(t)max 

r(t), r'(t)min < r(t) < r'(t)max   _ (81) 

r'(i)min,    r(t) < r'(i)min 

The second control concept attempts to drive the tracking error, e = r — y, to zero as quickly 

as possible. In this case, if |e(t) | > r, then r'(t) is chosen so as to minimize \e(t + 1) | subject to the 

constraints. Here, r > 0 is a predetermined tracking error tolerance which prevents chattering and 

oscillatory responses. When |e(i)| < r we revert to eq. (81). Specifically, the control concept is 

If e > r then       max     (r') 
r'(t)€Ra(t) 

If e < — T then       min     (r') fQ^\ 
r'(t)GÄ0(i) ^^ 

If lei < T then       min     Mt) - r'it)) 
r'(t)eRa(t) 

This is referred to as the saturating reference signal governor (SRSG), and results in 
' r'(t)max,   r(t) - y(t) > r 

r'(t)min,   r(t) - y(t) < -r 

r'(t) = {   r(*)>     K*) - y(f)\ < T and r'Wmin < r(t) < r'(t)max   _ (83) 

r'(t)max,    \r{t) - y{t)\ < T and r(t) > r'(t)max 

r'COmin,     \r(t) -y(t)\<T and r(t) < r'(t)min 

The MDRSG control concept is similar to that of the DTRG in that both control concepts 

attempt to minimize the difference between the exogenous and modified reference signals. However, 
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the MDRSG constraints are less restrictive in that at any particular time step, t, r'{t) is not required 

to be statically admissible. Thus, the MDRSG may provide improved tracking performance in 

some cases. The SRGS is the most aggressive of the three control concepts in that it attempts 

to drive the tracking error to within a prespecified tolerance as fast as possible. As the following 

examples show, of the three control concepts, the SRSG has the potential to provide the best tracking 

performance. While the MDRSG preserves small signal performance, the SRSG modifies small 

signal performance. Both the MDRSG and SRSG control concepts result in BIBO stable closed- 

loop systems, and the computational burden imposed by either control concept is a function of the 

number of inequality constraints required to characterize Xe
s. 

Other control concepts are also possible. Specifically, a BIBO stable LQT controller could be 

developed using one step ahead constraint enforcement. In this case, any reference signal prediction 

scheme can be used, and the constraints of [17] are replaced with those developed here to obtain a 

BIBO stable closed-loop system. 

4.4  Simulation Results 

Three examples are presented here based on the two dimensional system of Section 3.4. Along 

with the controlled process of Section 3.4, two additional examples are developed in which the 

open-loop plant of eq. (65) is combined with different state feedback matrices to obtain two differ- 

ent overdamped controlled processes. The trade-off between achievable tracking performance and 

the size of X§ is then examined. The specific dual-loop controller architecture for this problem is 

depicted in Fig. 23. Simulations results are presented for the MDRSG, SRSG, and DTRG control 

concepts. System responses to both statically admissible and statically inadmissible reference sig- 

nals are also presented. 
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Controlled Process 

9C CH^ Discrete Time 
Plant (A,B) C -*■ y 

Figure 23. Nonlinear control system. 
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4.4.1   Example One 

The discrete-time model for the controlled process of Section 3.4 is 

0.999197      9.799662 x 1(T3 

-0.160808   0.959898 
x(t) + x(t + l)    = 

=   Aclx(t) + Bclr'(t) 

y(t)   =   Cxit) =[10] x(t). 

The control signal is subject to hard constraints and is given by 

- 1 < u(t) = kxx(t) + krr'(t) < 1 

where 

8.026867 x 10~4 

1.608080 x 10-1 r'(t) 

(84) 

(85) 

kx = [ -9   -2.5 ] , and kr = 8. 

In terms of eq. (75) the output constraint is 

-l<Vc(t) = Ceelx(t) + DCelr'{t)<l 

where CCcl = kx and DCcl = kr. 

Recall that for this system X§ is characterized with 86 linear inequalities. Thus, Te is an 

86 x 2 matrix, and ß£ is an 86 element vector. At each time increment, the minimum and maximum 

admissible reference signal bounds, ra(t)min and ra(i)max, are determined by evaluating the 86 

inequalities in accordance with eqs. (70)-(74). Also, the minimum and maximum feasible reference 

signal bounds are given by 

rf(t)min = -
1 -7

kxX{t) (86) 
fw 

and 

Vf\t)max — 
1 - kxx(t) 

IXif 

(87) 
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Example la. 

System responses to a statically admissible input are investigated first. The initial condition 

and exogenous reference signal are 

x (0) = [0.5, Of 

and 

u.      f     0.5,       0 < t < 10 
r^ = { -0.5, 11 < t < 500 

T The desired final state is rc(500) = [—0.5, 0] . The state trajectory and control signal responses 

obtained for the system with no reference signal governor are shown in Figures 24 and 25. Figure 24 

shows the state trajectory superimposed on a plot of the boundary of Xf, denoted by dX§. Although 

the initial condition, final state, and exogenous reference signal are all statically admissible in this 

example, in the absence of saturation effects mitigation measures, the control signal hard constraints 

are encountered, and an unstable system response ensues. 

Figures 26-29 show the MDRSG system responses to the same initial condition and exogenous 

reference signal. Figure 26 is a plot of the state trajectory superimposed on dXg. As designed, the 

MDRSG restricts the state trajectory to the invariant set Xe
s. In deed, the state trajectory traces 

a segment of <9Xf enroute to the final state. An important point is that when the state trajectory 

encounters a segment of dX^ the linear inequalities associated with that segment of dX^ become 

the active admissibility constraints. 

The control signal response is shown in Figure 27. The minimum and maximum control sig- 

nals generated for this example were um{n = -1.0, and umax = 0.9999934. Hard limits were not 

imposed on the control signal in this case. Thus, the control constraints are respected by the MDRSG 

system. Limits imposed on the modified reference signal by the admissibility and feasibility con- 

straints are plotted in Figure 28. Clearly, the constraints are consistent at all times. The modified 

reference signal is shown in Figure 29 along with an expanded view of the constraints. Figures 27 
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and 29 show that the feasibility constraints are active between 0.1 and 0.6 seconds. At about 0.6 

seconds the state trajectory encounters dXe and the admissibility constraints become active. At 

about 2 seconds the state trajectory leaves dX£
s, both the feasibility and admissibility constraints 

become inactive, and r'(t) = r(t) = -0.5. After 2 seconds, when all constraints are inactive, the 

reference governor becomes transparent, and a linear system response ensues. Thus, small signal 

performance is preserved. Figures 29 and 27 also demonstrate the nonlinear nature of the reference 

signal governor. 

System responses obtained with the SRSG were very similar to those obtained with the MDRSG 

for this example. Recall that the SRSG generates the largest magnitude allowable modified refer- 

ence signal whenever the tracking error is greater than some prespecified tolerance. A tracking error 

tolerance of r = 0.05 was used in this case. The only noticeable difference is in the control signal 

response, Figure 30. Notice that, unlike the MDRSG control signal response, the control signal is 

driven to its upper limit in the interval between 2.1 and 2.4 seconds. However, this has a negligible 

impact on the state trajectory. The lightly damped nature of the controlled process in this example, 

( = 0.5, precludes use of a tracking error tolerance much less than r = 0.05. Also, the admissibil- 

ity constraints are active much of the time the tracking error is greater than r = 0.05. The SRSG 

control concept is clearly better suited to highly damped systems, and situations where the state tra- 

jectory does not encounter dXe for an extended period of time. This will be demonstrated with the 

next two examples. 

The DTRG tracking performance is also similar to that of the MDRSG, Fig. 31. However, 

Fig. 32 shows that when the state trajectory is on dXe
s the DTRG control signal response exhibits 

chatter. This is a common phenomenon associated with the DTRG. 
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Figure 24. System response for Example la with no constraint avoidance measures. 
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Figure 25. Control signal response for Example la with no constraint avoidance measures. 
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3   o 

Figure 26. MDRSG state trajectory for Example la. 
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Figure 27. MDRSG control signal response for Example la. 

80 



-6 

- admissibility constraints 
feasibility constraints 

_j i_ 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Time (sec) 

Figure 28. MDRSG reference signal constraints for Example la 
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Figure 29. Modified reference signal response for Example la. 
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Figure 30. SRSG system control signal response for Example la. 
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Figure 31. Comparison of DTRG and MDRSG tracking performance for Example la. 
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Figure 32. DTRG control signal response for Example la. 
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Example lb. 

System responses to statically inadmissible exogenous reference signals are now investigated. 

The initial condition and exogenous reference signal are 

x(0) = [ 0.9,   0 f 

and 
' 0.9,        0<i<50 

r(t) = <   2.0,        51 < * < 300 
k -3.0,     301 < t < 2000 

For this system, statically admissible inputs satisfy \r\ < 0.95556. Thus, r = 2 and r = — 3 are 

both statically inadmissible inputs. 

Figures 33-36 show system responses obtained with the MDRSG constraint avoidance control 

concept. Regardless of the statically inadmissible input, the system converges to a statically admis- 

sible equilibrium point, vis., r'(2000) = -0.95556 and x(2000) = 
-0.95556 

0 
The minimum 

and maximum control signals generated for this case are u = —1.0 and u = 1.0 respectively. Also, 

max (r/(*)min - ra(t)max) = -1-964 x 10~6, at t = 165 

and 

max (r0(t)min - r/(i)max) = -2.496 x 10~6, at t = 1028. 

Thus, the control signal constraints are not violated, and the admissibility and feasibility constraints 

are consistent at all times. Finally, the controlled process state coincides with vertices of XI at both 

t = 165 and t = 1028. 

A detailed analysis of the MDRSG performance is facilitated by Fig. 37 which shows three 

expanded views of Fig. 36. Note that for 0 < t < 50 (t = 50 corresponds to 0.5 seconds) no con- 

straints are active. This is expected since the system is initialized at an equilibrium point. Then, 

at t = 51 the exogenous reference input changes from 0.9 to 2.0, and the modified reference input 

is limited by the upper feasibility constraint which becomes active at t = 51. The state trajectory 

initially encounters the boundary of XI at t = 52, at which time the admissibility constraints be- 
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come active. When the exogenous reference signal changes from 2.0 to -3.0 at t = 301 the lower 

feasibility constraint becomes active, and x(t) e int (Xf) for 301 <t< 473. The state trajectory 

encounters the boundary of X% again at t = 474, and remains on the boundary for the remainder of 

the simulation. 

Again, SRSG and DTRG tracking performances are similar to that obtained with the MDRSG 

for this example. However, the DTRG control signal chatter is again present when the state trajectory 

is on dXg. 

The simulation results presented here clearly demonstrate the effectiveness of the proposed 

MDRSG constraint avoidance strategy. Based on the current controlled process state, the MDRSG 

generates a modified reference input that ensures the system constraints are avoided, and that the 

controlled process state is constrained to the invariant set Xg. Moreover, a stable closed-loop sys- 

tem response is obtained regardless of the exogenous reference input. Due to the lightly damped 

nature of the controlled process, the SRSG control concept does not improve tracking performance 

substantially. 

4.4.2   Example Two 

This example is included to demonstrate the potential improvement in tracking performance 

that can be realized with the SRSG control concept. The open-loop plant of eq. (65) is combined 

with a different state feedback matrix to obtain an overdamped controlled process. The new state 

feedback matrix is 

kx = [ -33   -10.5 ] 

To obtain perfect tracking kr is chosen so that 

CAfB 
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Figure 33. MDRSG state trajectory for Example lb. 

1 

} 

I 

J^       ' ' _ 

O.J - 

0.( - 

0.' V - 

o.: i - 

=>     0 - 

-o.; _ - 

-0.^ - 

-o.e - 

-o.t - 

-1 >-v--> - 

< D         2 4 6 8        10       12 
Time (sec) 

14 16 18 2 

Figure 34. MDRSG control signal response, statically inadmissible input for Example lb. 
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Figure 36. Modified reference signal response for Example lb. 
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Figure 37. Expanded views of modified reference signal response for Example lb. 
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With these values of kx and kr the discrete time controlled process dynamics and input matrices are 

Ad = 
9.967893 x KT1      8.9970 x 10~3 

-6.432321 x KT1   7.990903 x 10"1 and Bd - 
3.2107 x 10~3 

6.432321 x IQ"1 

The eigenvalues of Ad are Ai = 9.610593 x 10-1 and A2 = 8.348202 x 10"1. The unconstrained 

system response to a unit step input is shown in Fig. 38. 

As before, the controlled process constraints are given by 

- 1 < u(t) = kxx(t) + krr\t) < 1 (88) 

In this case 0%, with e = 0.05, is characterized with 60 linear inequalities, and the Linear Program 

(54) generates 14 unique vertices. Thus, Xe
s is characterized with 14 linear inequality constraints, 

Fig. 39. Figure 40 shows a comparison of the sets, XI, obtained for Examples 1 and 2. 

Figure 41 is a comparison of the DTRG, MDRSG, and SRSG responses to a 0.1 amplitude 

step input. As expected, the DTRG and MDRSG tracking performances are very similar. However, 

the SRSG control concept provides a substantial improvement in tracking performance. As shown 

in Fig. 42, the SRSG drives the control signal to its limits, similar to a Bang - Bang controller, 

whenever r — y > r. In this case r = 0.065. In the absence of constraint avoidance measures 

saturation does occur, viz., a peak control signal command of 3.2 is generated, but the constrained 

system response is stable in this case. In fact, enforcing hard limits on the control signal results in a 

response that is similar to that of the MDRSG system. This is because the state trajectory does not 

encounter d (XJ) in this case. 

An excellent example of the SRSG control concept's potential for improving tracking perfor- 

mance is shown in Fig. 43. Here, the tracking performance of the unconstrained LTI controlled 

process is compared to that of the DTRG and SRSG systems for a 0.1 amplitude step input. As 

expected the DTRG system response is slightly slower. However, the SRSG system response is ac- 

tually much faster than that of the LTI system. This is inspite of the fact that the SRSG system only 
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Figure 38. Unconstrained system response to a unit step input for Example 2. 
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Figure 39. Supporting hyperplanes of XI for Example 2. 
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Figure 41. Small signal tracking performance comparison for Example 2. 
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Figure 42. SRSG control signal response to a 0.1 amplitude step input for Example 2. 
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generates allowable control signal increments, whereas the LTI system generates a peak control sig- 

nal magnitude that is more than three times the allowable limit in this case. 

An example of tracking performance during a slewing maneuver is presented next. The initial 

condition and exogenous reference signal are 

x (0) = [0.3, 0]r 

and 

r(t) _ f     0.3,       0 < t < 10 
K)     \ -0.3,       11<*<500 

Figure 44 shows that without constraint avoidance measures, the constrained system response is 

unstable. Tracking performances of the DTRG, MDRSG, and SRSG systems are shown in Fig. 45. 

The SRSG control concept clearly out performs the DTRG and MDRSG control concepts. However, 

the improvement is not as great as that obtained in the earlier case, Fig. 41. The SRSG control signal 

response is shown in Fig. 46. From Fig. 46 it is clear that the state trajectory coincides with the 

boundary of Xf from about 0.5 seconds to about 1.25 seconds. As noted earlier, any time the state 

trajectory encounters dX§ the admissibility constraints are active, and SRSG tracking performance 

improvements are limited. Hence, the greatest improvements in tracking performance are realized 

with the SRSG control concept in situations where dXe
s is not encountered. This includes small 

signal operation and small to moderate slewing maneuvers. 

4.4.3   Example Three 

This example is included to demonstrate the trade-offs that exist between system performance 

and the size of Xf. In this case the open-loop plant of eq. (65) is again combined with a different 

state feedback matrix to obtain an overdamped controlled process that is substantially slower than 

that of Example 2. The state feedback matrix is 

kx = [ -5   -3.5 ] . 
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Figure 43. Comparison of SRSG, DTRG, and LTI system tracking performances for Example 2. 
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Figure 44. System response to a slewing maneuver without constraint avoidance for Example 2. 
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Figure 45. Comparison of DTRG, MDRSG, and SRSG responses to a slewing maneuver for Exam- 
ple 2. 
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Figure 46. SRSG control signal response to a slewing maneuver for Example 2. 
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kr is again chosen to obtain perfect tracking, viz., 

kr = =— = 4. 
CAfB 

With these values of kx and kr the discrete time controlled process dynamics and input matrices are 

9.995987 x lCT1    9.6993 x 1(T3 

-8.04040 x 10~2   9.397973 x 10"1 
4.0134 x 10-4 

8.04040 x 10"2 and Bd = 

The eigenvalues of Ad are Ai = 9.803837 x 10"1 and A2 = 9.590122 x 10_1. The system 

constraints are again given by eq. (88). Figure 47 compares the response of the unconstrained 

system to that of the controlled process of Example 2 for a unit step input. As Fig. 47 shows, this 

system is much slower than the system of Example 2. 

In this case 0%^, with s = 0.05, is characterized with 198 linear inequalities, and the Linear 

Program (54) generates 70 unique vertices. Thus, XJ is characterized with 70 linear inequality 

constraints, Fig. 48. Figure 49 shows a comparison of the sets, XI, obtained for Examples 1, 2, 

" ±1 
0 

, and are contained in and 3. Notice that all three sets avoid the "sticking" points at x = 

the slab defined by the intersection of the two half-spaces, [ 1 1 ] x < 1 and [ —1 — 1 ] x < 1. 

As Figs. 47 and 49 show, we have traded tracking performance for a larger statically admissible 

set. However, from Figs. 50 and 51, it is clear that SRSG control concept may be used to improve 

the tracking performance to the point that the current system performs better than the system of 

Example 2 with the DTRG control concept. Thus, a larger maximal statically admissible set is 

obtained without sacrificing tracking performance. 

4.5  Constraint Avoidance Using Subsets of X~ 

In practice it is usually desirable to base the constraint avoidance strategy on a subset of XI to 

reduce the on-line computational burden. One method is to use subsets of XI obtained by thinning 

the set of vertices obtained from the Linear Program (54). The resultant set, X6
S C Xf is character- 
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Figure 47. Comparison of the unconstrained system responses to a unit step input for Examples 2 
and 3. 

Figure 48. Supporting hyperplanes for X% for Example 3. 
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Figure 50. Small signal tracking performance comparison. 
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Figure 50. Small signal tracking performance comparison. 
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ized by a smaller set of linear inequalities, 

X* = {xeWl: T6x < ßs} . 

Thus, fewer inequalities must be evaluated on-line. Of course the volume of the set X8 is less 

than that of the set Xs, but generally this method results in a substantial reduction in the number of 

inequalities with only a small loss of volume, as demonstrated in Section 3.4.1. A potential problem 

with this method is that unlike the set X£, the set Xs is not invariant. However, this problem is easily 

overcome by taking advantage of the fact that X8 C Xe
s. 

Another method to reduce the on-line computational burden is to inscribe an ellipsoid inside 

either X\ or X\ This method leads to even less on-line computational burden, but also results in a 

greater loss in volume. One benefit of this method is that the resulting set, Es, is invariant. 

4.5.1   Constraint Avoidance Using Polyhedral Subsets 

Here constraint avoidance is based on the set X8 C X£
s. In this case, given x(t) G X8, r'(t) 

is admissible with respect to the set X8 if x(t + 1) G X6
S. The feasibility constraint, yc(t) G Y, 

remains unchanged. Thus, the development of Section 4.3 is modified by replacing Te and ß£ in 

eqs. (70) and (71) with Tg and ßs respectively. For a given x(t) G X8
S, r'(t) is now considered 

allowable if x(t +1) G Xs
s and yc (t) G Y. 

In general Xs is not an invariant set for the controlled process, and there exist states, x(t) G 

Xs, for which no allowable r'(t) exists. That is, it may transpire that for some x(t) G Xs the 

admissibility and feasibility constraints are not consistent, and no r'(t) exits such that both x(t+l) G 

Xs and yc (t) € Y. This situation can only transpire when x(t) G dX6 since the admissibility 

constraints are not active when x(t) G int (-X"f). 

A solution to this problem lies in the fact that X8 C X£
s, and X£ is an invariant set for the 

controlled process. That is, for any x(t) G X8
S there must exist at least one feasible reference signal 
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that is admissible with respect to the set Xf. Thus, when x{t) E Xf, but no feasible reference signal 

exists that is admissible with respect to the set Xf, one solution is to determine a reference signal 

that is admissible with respect to the set X*. In this case x(t + 1) E XI n (Xf )c and yc(t) E Y 

will transpire. Of course, the desired reference signal must be determined without the benefit of 

the linear inequalities that characterize the set Xf. The following analysis provides the necessary 

insight to determine an appropriate modified reference signal in this situation. 

For a given x (t) E Xf define the sets 

#£(*)   =    {r'(t):rs
a(t)min<r'(t)<rs

a(t)max}, 

KM    =    {r'(t):rl(t)min<r'(t)<rl(t)max}, 

Rf(t)    =    {r'(t):rf(t)min<r\t)<rf(t)max}. 

Where #*(£) denotes the set of reference signals that are admissible with respect to the set Xf, 

Re
a(t) the set of reference signals that are admissible with respect to the set Xf, and Rf(t) the 

set of reference signals that are feasible. For the given state assume Ri(t) D Rf(t) = {}. Since 

x (i) E Xs
s C XI, then Re

a(t) f*l Rf(t) must be non-empty. Moreover, the sets Rs
a(t), R

£
a(t), and 

Rf(t) are all convex, and R^ (i) C Ä„(i). Thus, the feasible reference signal that is the minimum 

distance from the set R^(t) must be contained in Ra(t) C\ Rf(t). 

In the single input case, if Rs
a(t) D Rf(t) = {}, either rs

a(t)m{n > rf(t)max or rs
a(t)max < 

r/(*)mm- If ^a(*)min > f f {t)max, then rf(t)max is the feasible reference signal that is the minimum 

distance from the set Ri(t), and must be contained in R%(t) D Rf(t). In this case choose r'(t) = 

rf(t)max. Similarly, if r6
a(t)max < rf(t)min, then choose r'(t) = r/(t)min. 

To insure the state trajectory converges to a state x(t) E Xf, the admissibility constraint, 

r'(t) E R6
a{t), is replaced with the constraint, r'(t) E R%(t) n Rs

s, whenever x(t) is within an 

epsilon neighborhood of dX%. This also avoids chattering and numerical accuracy problems. Here, 
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Rs
s is the set of constant reference signals that are statically admissible with respect to the set X\ 

That is, 

R8
S = {rss : Ysxss < ßs} 

where xss is the associated equilibrium point for a given statically admissible reference signal, rs, 

and is given by 

xss = (■* — Acl)      -Oclrss- 

Thus, 

Rl = {rss :T6(I- Ad)'1 Bdrss < ß6} , 

and 

Rs
a(t)nRs

s = { r'(t) 
TsBci 

r'(t)< 
T6(I-Ald)-

lBel 

Let Rs
as(t) = R6

a(t) n R6
S, and note that in the sing 

the set Ri is 

ß6 - Aclx(t) 

ßs 
e input case an equivalent expression for 

RSs = {rss:ri^<rss<rs
ss_} 

where r*       and r*       are the minimum and maximum statically admissible reference signals. 

Since ßs = [ 1,   • • •,   1 ]   , and the origin is an interior point of Rs
s, then 

1 
71 _ 

and 

max (rs (I - Ad)-15d) 

^min 

Thus, the set R6
as(t) is given by 

min (TS (I - A^-1 Bd) 

where, 

RL(t) = {r'(t) : r6
as(t)min < r'(t) < rs

as(t)m^] 

ras(*)min = max (ra(£)min, rSSm.m ) 

102 



and, 

rL(*)max = min (rs
a(t)max, rfSm 

Now, let e be a predetermined small positive number. Then, when 

mm(ßs-r6x(t))<e, (89) 

x(t) is within an epsilon neighborhood of dX6
s, and the admissibility constraint becomes r (t) E 

Rl(t). 

4.5.1.1  Simulation Results 

The MDRSG control concept simulations of Section 4.4 are repeated here. Reference sig- 

nal admissibility constraints are based on a set X6
S C X|, which is characterized with 26 linear 

inequalities. For this set, the minimum and maximum statically admissible reference signals are; 

ri = -0.95556 and A. = 0.95556. Also, e = 0.05 is used in eq.. (89) to determine ifx(t) 

is within an epsilon neighborhood of dX8
s. Results are presented for the same initial conditions and 

reference signals as those used in Section 4.4. 

Example 4a. 

Figures 52-55 show system responses to a statically admissible reference signal. As before, 

The initial condition and exogenous reference signal are 

x (0) = [0.5, 0]T 

and 

f     0.5,       0<i<10 
y)     \ -0.5,       ll<t<500   - 

With the exception of the reference signal maximum admissibility limit in figure 54, the system 

responses of Figures 52-55 are nearly identical to those of Figures 26-29. Although the constraint 

avoidance strategy is based on the set X6
S, the feasibility and admissibility constraints are consistent 

at all times for this case, and x(t) £ X% for all time increments. The only noticeable difference is that 
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the maximum statically admissible reference signal value, 0.95556, is substituted for the maximum 

admissibility limit when the state trajectory is on the boundary of X%, Figure 54. However, this 

constraint is never active, and does not affect other system responses. 

Example 4b. 

Figures 56-60 show simulation results obtained for a statically inadmissible input. As in Sec- 

tion 4.4, the initial condition and exogenous reference signal are 

x(0) = [ 0.9,   0 ]T 

and 
( 0.9,        0<t<50 

r(t) = \   2.0,        51 < t < 300 
{ -3.0, 301 < t < 2000 

Again, the most noticeable difference from the results of Section 4.4 is in the admissibility con- 

straints. Except for a short time interval, 380 < t < 430, the controlled process state is near or on 

the boundary of Xf, and the admissibility constraints are r'(t) € R6
as(t). However, except for the 

initial 0.5 seconds, 0 < t < 50, the active admissibility constraint is one of the linear inequalities. 

Thus, the only substantial difference in system responses is a smaller magnitude control signal spike 

at t = 50. 

Unlike the previous case, the admissibility and feasibility constraints are inconsistent over 

two short time intervals, Figure 60. In accordance with the strategy presented here, the modified 

reference signal is limited by the appropriate feasibility constraint in these situations. Figure 61 is 

a plot of the state trajectory associated with the bottom plot in Figure 60. The dots in Figure 61 

are the vertices of XJ, only one of which is contained in X%. As expected, during the time interval 

that the admissibility and feasibility constraints are inconsistent, the situation x(t) G Xe
s n (Xff 

transpires. 

The simulation results presented here clearly demonstrate the effectiveness of implementing 

the proposed constraint avoidance strategy with the linear inequalities that characterize the set X6
S. 
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Figure 52. State trajectory for Example 4a. 
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Figure 53. Control signal response for Example 4a. 
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Figure 54. Reference signal constraints for Example 4a. 
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Figure 55. Modified reference signal response for Example 4a. 
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Figure 56. State trajectory for Example 4b. 

Figure 57. Control signal response for Example 4b. 
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Figure 58. Reference signal constraints for Example 4b. 
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Figure 59. Modified reference signal response for Example 4b. 
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Figure 60. Inconsistent constraints for Example 4b. 
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Regardless of the exogenous reference signal, the controlled process constraints are not violated, 

and the state is constrained to the invariant set XI. Moreover, a stable closed-loop system response 

is obtained. 

4.5.2   Constraint Avoidance Using Ellipsoidal Subsets 

Here constraint avoidance is based on the ellipsoidal set, Es, which is inscribed inside either 

XI or Xs
s. A major advantage of this method is the on-line computational burden is much less than 

that imposed by polyhedral sets. Ellipsoidal subsets are also invariant with respect to the controlled 

process. Thus, the problems associated with the set X6
S are avoided. A major disadvantage of this 

method is the resulting volume of the invariant ellipsoidal subset may be substantially smaller than 

that obtained with polyhedral subsets. 

The locus of points on the boundary of the set Es satisfy 

(x — m)   P(x — m) — 1 

where m is the ellipsoid center, and P is a positive definite symmetric matrix. If the constraint set 

is symmetric about the origin, as is generally the case in problems of concern here, then X£
s is also 

symmetric about the origin. In this case the greatest volume will be obtained by an ellipsoid that is 

also symmetric about the origin. Then the locus of points on the boundary of the set Es satisfy 

xTPx = 1 

where the positive definite symmetric matrix, P, is obtained by solving a convex optimization prob- 

lem. 

Now, given x(t) € Es, r'(t) is admissible with respect to the set Es if 

x(t + l)TPx{t + 1) < 1 

Substituting for x(t + 1) gives 

iT 
Adx(t) + Bdr (t)     P Adx{t) + Bdr (t) < 1 (90) 
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Since P is a positive definite symmetric matrix, the admissibility constraint (90) reduces to a 

quadratic equation with real roots, 

ar (tf + b(t)r (t) + c(t) < 0 (91) 

where a = BT
dPBd, b(t) = 2B%PAdx(t), and c{t) = x(t)TA^PAdx(t) - 1. Thus, the set of 

reference signals that are admissible with respect to the set Es is given by 

Ra («) = {r\t) : A(*)min < r'(t) < A(i)max} 

Where A(i)min and A(i)max are the minium and maximum roots of eq. (91) respectively. 

4.5.2.1   Simulation Results 

Example 5. 

An example of constraint avoidance using an elliptical subset of Xf is presented here. The 

initial condition and reference signal are 

x (0) = [0.5, 0]T 

and 

f     0.5,       0<t<10 
w     \ -0.5,       11 < t < 500   - 

System responses to this initial condition and reference signal are shown in Figures 62-65. 

As expected, the state trajectory is constrained to the ellipse, and the admissibility and feasibility 

constraints are consistent for all time increments. Moreover, the control signal magnitude is limited 

to \u\ < 1 for all time increments. 

4.6  Summary 

In this chapter specific reference signal governor (RSG) algorithms were developed based on 

the set Xg. The modified reference signal, r'(£), was chosen at each time step so that x(t + l) e XI 

and yc(t) E Y. This allowed the greatest flexibility in selecting r'(t) at each time step, while 

also providing a BIBO stable closed-loop system. It was shown that under appropriate conditions 
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Figure 63. Control signal response for Example 5. 
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Figure 65. Reference signal response for Example 5. 
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the SRSG control concept can provide a substantial improvement in tracking performance over 

that of the MDRSG and DTRG control concepts. Finally, Constraint avoidance methods based on 

polyhedral and elliptical subsets of the set XI were also presented. 
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Chapter 5 - Flight Control Application 

5.1 Overview 

In this chapter a realistic flight control application of the methods developed in Chapters 2, 3, 

and 4 is presented. The constrained system includes a second-order short period approximation of 

the longitudinal dynamics of an F-16 aircraft, augmented with a first-order actuator model and an 

integral control state. The resulting fourth-order system is subject to state and control constraints 

which arise from actuator displacement and rate constraints. 

To reduce the on-line computational burden, reference signal governor algorithms are based on 

polyhedral subsets of X\. Maximum and minimum allowable steady state conditions are compared 

for several different polyhedral subsets. This provides one measure to determine if a particular set, 

Xgl C XI, is adequate. 

Validation of the recursive convex hull algorithm for this fourth-order problem is also accom- 

plished. Recursive convex hull algorithm results are compared to those obtained from a brute force 

algorithm. Additional validation of the recursive algorithm is also accomplished by examining the 

vertices, subfacets, and facets that are involved in the incorporation of each new vertex. 

5.2 Aircraft Model and Constraints 

A continuous time second-order short period approximation of the F-16 longitudinal dynamics, 

for a flight condition of 10,000 feet, Mach 0.7 is 

a 
Q 

-1.15   0.9937 
3.724    -1.26 

a + -0.177 
-19.5 S,. 

The tracking task requires pitch rate, q, to follow an exogenous reference signal, r. An integral 

control state is given by z = r — q. The actuator is modeled as a first-order lag with a bandwidth 

of 20 rad/sec. Augmenting the bare plant model with the actuator model and integral control state 
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results in 

x(t) 

-1.15 0.9937 -0.177   0 0    0 
3.724 

0 
-1.26 

0 
-19.5    0 
-20     0 

x(t) + 0    0 
20   0 

8ec(t) 
r(t) 

0 -1 0        0 0    1 

y(t)   =    [010   0]x(t) 

where x =  [ a   q   6e   z ]   . Actuator position and rate constraints are ±0.44 rad and ±1.0 

rad/sec respectively, and may be expressed in terms of output constraints as 

6e(t) 

6e(t) 

-0.44 
-1.0 < Vc(t) = = Ccx(t) + Dc 

Sec(t) 
r(t) 

< 0.44 
1.0 

where 

Cc = 
0   0 
0   0 

1     0 
-20   0 

, and Dc 
0    0 

20   0 

Using a sampling interval of T = 0.01 seconds, and assuming a zero-order hold on the input 

yields the following equivalent discrete-time system: 

x(t + 1) = Ax(t) + B Sec(t) 
r(t) 

where, 

and, 

9.887487 x 10-1     9.8186 x 10~3 

3.67962 x 10~2 9.876618 x 10"1 

0 0 
-1.8472 x 10~4 -9.9379 x 10~3 

B = 

The control law is 

-2.2624 x 10~4 

-1.81874 x 10~2 

1.812692 x 10"1 

6.1686 x 10~5 

-2.4949 x 10~3 

-1.756338 x 10-1 

8.187308 x 10-1 

9.0937 x 10"4 

0 
0 
0 

1.00 x IQ-2 

6ec(t) = kxx(t) + krr(t) 

where kx and kr are chosen to provide satisfactory small signal operation, and are 

kx   =    [ 0.35090   1.1373   -0.9184   -6.6107 ] 

kr   =   -0.6. 

117 



Then, the discrete-time controlled process is 

x(t + i) = 
6e(t + l) 
Z(t + 1) 

y(t)   =    [010   Q]x(t) 

= Adx(t) + Bdr(t) 

(92) 

where, 

Ad = 

and, 

9.886693 x 10"1 9.5613 x 10~3 -2.2871 x 10~3 1.4956 x 10~3 

3.04143 x 10~2 9.669773 x 10"1 -1.589305 x 10"1 1.202316 x 10"1 

6.36074 x 10~2 2.061658 x 10"1 6.522531 x 10"1 -1.1983166 
-1.6307 x 10~4 -9.8677 x 10"3       8.5272 x 10~4 9.995922 x 10"1 

Brl   = 

1.3575 x 10-4 

1.091245 x 10-2 

-1.087615 x 10-1 

9.9630 x 10-3 

In terms of the discrete time system, the actuator displacement and rate constraints are modeled 

as 

or, 

-0.44 
-0.01 

-0.44 
-0.01 

< 6(t) 
6(t + 1) - 6(t) 

< 

< CCclx(t) + DCclr(t) < 

0.44 
0.01 

0.44 
0.01 

(93) 

where, 

Cccl 
= 0         0             1             0 

-"•cZs.i   Aci32   Aci33 — 1   Aci3i 

\            0                          0 
6.36074 x 10-2   2.061658 x 10" 

and, 

DCcl 

0 

-3.477469 x 10" 

0 

0 
-1.1983166 

-1.087615 x 10-1 

Equations (92) and (93) define the controlled process and its constraints. Of course, since a 

dual loop controller architecture is employed, the exogenous input, r, is replaced with the modified 

reference signal, r'. 

118 



5.3  Linear Inequality Constraints 

First, the set, O^ C 9ft5, is characterized using the methods of Chapter 2. This requires that 

we augment the controlled process (92) with the first-order lag filter of eq. (29). This results in the 

augmented state vector 

with the augmented system dynamics and output constraints given by 

xg(t + 1)   =   Agxg{t) + BgX(r(t), xg{t)) (r(t) - [ 1   04xi ] xa{tj) 

yc(t)   =   Cgxg(t)eYcU2 

where, 

1 0ix4 
Bd   Ad 

,Bg 
1 

04x1 
J   Cg   —    [    DCcl CCal     J 

and the output constraint set, Y, is given by 

Y = {yc e 3ft2 : fi{yc) < 0,    » = 1,2,3,4} 

Where, 

fi(Vc) = yc(i)-o.44 

hive) = yc(2)-o.oi 

h(yc) = -yc(i)-o.44 

hive) = -yc(2)-om. 

Let e — 0.05, and note that 

H0 = CCcl (I - Ad)-1 Bd + DCcl = 

Then, the additional constraints of eq. (33) become 

-3.9985 < r' < 3.9985, 

and 0|o is given by 

0%,   =   {xg€&:fi(CgA
t

gxg)<0,t = 0,■■-,£*, i = l,2,3,4, 

0.097536 
0 
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and  - 3.9985 < r' < 3.9985} 

where t\ = t% = 53, and tf, = t\ = 31. Recall that an equivalent expression for 0%^ is 

Oe
00 = {xg£M5:Tgxg<ßg}. (94) 

Here Tg is a 174 x 5 matrix, and ßg is a 174 element vector. 

Given Tg and /?ff the Linear Program (54) generates a 112 element set of unique vertices, V, 

that lie on Cb(Xf). Validation of the recursive convex hull algorithm's performance in this four 

dimensional problem is accomplished next. Also, a comparison of the maximum and minimum 

allowable steady state conditions, the maximum condition numbers of the matrices, M^, and the 

number of linear inequality constraints associated with several subsets of XJ, is performed. 

5.3.1   Validation 

In this case the set X£
s is a four dimensional polytope. Each facet of Xf is a three dimensional 

polytope, viz., a tetrahedron, and contains four vertices and four two dimensional subfacets, or 2- 

faces. Each subfacet is shared by exactly two facets, and contains three of the four vertices contained 

in each facet. As each new vertex is incorporated, a listing of subfacets is generated for each failed 

facet. The four subfacets contained in each failed facet are represented by the four unique sets of 

three out of four vertices contained in each facet. Notice that the convex hull algorithm need only 

construct the affine hull of each facet of Xe
a, and does not construct the two dimensional subfacets, 

or other lower dimensional faces, failed subfacets are identified by comparing the vertices con- 

tained in subfacets from different failed facets. If the same three vertices appear in subfacets from 

two different failed facets, then the subfacet represented by these three vertices is contained in the 

intersection of two failed facets, and is declared failed. 

As an example, consider the two facets fa and fa where fa contains the vertices (1,2,5,6) and 

fa contains the vertices (1,4,5,6). Assume fa and fa were invalidated by the incorporation of the 
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vertex, vj. The subfacets contained in /i are (125, 126, 156, 256), and those contained in fa are 

(145, 146, 156, 456). Since the vertices (1, 5, 6) appear in a subfacet from both facets, this subfacet 

is common to both facets and is invalid. In this case incorporation of v-j results in elimination of 

two facets and construction of six new facets. 

To demonstrate that the recursive edging algorithm performs as intended several intermedi- 

ate results are analyzed for a 14 element subset of V. These intermediate results are compared for 

consistency, and include the number of facet / hyperplanes invalidated during each pass of the algo- 

rithm, the vertices and subfacets contained in each failed facet / hyperplane, the number of valid and 

failed subfacets associated with the set of failed facets / hyperplanes, the vertices associated with 

each valid subfacet, the number of new facets /hyperplanes generated, and the vertices contained in 

each new facet / hyperplane. 

Table 2 is an example of the data generated and evaluated for each pass of the algorithm. The 

numbers in columns 2 through 5 of Table 2 refer to the vertices contained in the associated facets 

and subfacets. In this case incorporation of vertex, vu, results in 7 failed facets / hyperplanes and 

generation of 12 new facets / hyperplanes. Each failed facet contains 4 subfacets for a total of 28 

subfacets. Eight subfacets appear in two failed facets, leaving 12 valid subfacets. The vertices from 

each valid subfacet are combined with v\\ to generate the 12 new facets / hyperplanes. As Table 2 

shows, the recursive convex hull algorithm performs as designed. 

Further validation is also accomplished by comparing results obtained from the recursive con- 

vex hull algorithm with those obtained from a brute force algorithm for a 14 element subset of V. 

The brute force algorithm generates a hyperplane for every possible combination of 4 vertices us- 

ing eq. (56). The validity of each hyperplane is then tested using eq. (55). While this brute force 

method provides accurate results for sparse sets of vertices, it has sever drawbacks. First, the num- 

ber of candidate hyperplanes quickly grows large as the number of states, n, and the number of 
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Table 2. Recursive edging algorithm data 

New 
Vertex 

Failed 
Hyperplanes 

Failed 
2-Faces 

Valid 
2-Faces 

New 
Hyperplanes 

vn 1,2,3,5 1,2,5 1,2,3 1,2,3,11 
1, 2, 5, 7 1,3,5 2,3,5 2,3,5,11 
1, 2, 6, 7 1,2,7 2,5,7 2, 5, 7, 11 
1,3,5,9 1,5,7 1,2,6 1,2,6,11 
1, 5, 7, 9 1,6,7 2,6,7 2,6,7,11 
1, 6, 7, 9 1,5,9 1,3,9 1,3,9,11 

6, 7, 9, 10 1, 7, 9 3,5,9 3,5,9,11 
6,7,9 5,7,9 5, 7, 9, 11 

1,6,9 1, 6, 9, 11 
6, 7, 10 6, 7, 10, 11 
6, 9, 10 6, 9, 10, 11 
7, 9, 10 7, 9, 10, 11 
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vertices, K, increase. For example, for n = 4, the number of candidate hyperplanes is 

(K)(K-l)(K-2)(K-3) 
4! 

Thus, with n = 4, and K — 14, the brute force algorithm must consider 1,001 possible hyperplanes. 

If the number of vertices is increased to 30, the number of candidate hyperplanes becomes 27,405. 

The reliability of the brute force algorithm is also sensitive to the numerical precision required by 

eq. (55). \fertices that are not in general position, or closely spaced vertices, such as those that 

occur in clusters, increase the numerical precision required for a particular problem, which may in 

turn exceed the limitations of the computing system. Thus, to insure valid results the brute force 

algorithm must only be applied to an appropriately thinned set of vertices. 

In this case the maximum condition number obtained for the matrices Mk. is 2.32 x 105. Thus, 

the 14 vertices clearly lie in general position. The brute force algorithm generated 44 hyperplanes 

from the 14 element subset of V. The recursive convex hull algorithm generated the same 44 hy- 

perplanes. The lists of vertices contained in each hyperplane is provided in Appendix I. This is an 

important result because, in the absence of numerical precision problems, the brute force algorithm 

must produce valid results. 

5.3.2   Polyhedral Subset Comparisons 

An important consideration in choosing a specific subset of V, is the set of steady-state con- 

ditions supported by the resulting constraints. For a particular set of constraints, r$x < ßs, the 

maximum and minimum steady-state values of r' may be determined by noting that if xss is an ad- 

missible steady-state state vector, then 

Tsxss < ßs. (95) 

Also, 

xss = {I- Ad)'1 Bdr'ss 
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where r'ss is the steady-state modified reference input. Thus, 

Ts(I-Acl)-
lBclr'ss<ß6. (96) 

Recall that by construction all elements of ßs are 1, viz., ßs =[ 1   1   1    •••    l]   . Also, since 

0 G int(Xf) we have that 

wm(]f6{I - A*)-1 Bd^j <0. 

Let $ = Tg (I — Ac/)- Bd, then the maximum and minimum values of r'ss are given by 

S5max max($) 

rssmhl   =    min ($)' (97) 

The maximum and minimum values of r'ss provide one measure of the suitability of a particular 

subset of V. As a benchmark for this problem consider the maximum and minimum values of r'ss 

allowed by O^, which are ±3.9985 rad/sec. Also, an important property of V is that it is composed 

of 56 pairs of symmetrical vertices. This is a consequence of the symmetrical constraints in this 

problem. Thus, a requirement that candidate subsets of V contain a symmetrical set of vertices is 

enforced. This naturally results in r'       = — r'      . 

Another consideration in choosing a particular subset of vertices is the maximum condition 

number obtained over all passes of the convex hull algorithm for the matrices, M&.. As noted in 

Chapter 4, the maximum condition number obtained for a particular set of vertices should be less 

than 1 x 1015 to insure the vertices lie in general position. Table 3 summarizes the results for several 

subsets of V. 

Table 3 demonstrates the trade-off that exists between the number of linear inequality con- 

straints required to characterize a particular set, X6
S % and the resulting allowable steady state condi- 

tions. A significant reduction in the magnitude of allowable steady state conditions may indicate a 

like reduction in the volume of X6
S \ which in turn may indicate a significant degradation in tracking 

performance. Also notice the condition numbers in the last column of Table 3. Clearly, the vertices 
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Table 3. Results for several subsets of V 

d Vertices Set No. LIs /           (rad\ /          (rod) max(cond (Mfc J) 

0.1 60 377 3.847 -3.847 undefined 
0.5 36 182 3.847 -3.847 6.44 x 1010 

0.7 28 136 3.845 -3.845 3.29 x 1017 

1.0 20 Y"*20 85 3.830 -3.830 1.09 x 1017 

1.5 18 XblB 64 3.632 -3.632 2.46 x 105 

1.8 14 Xbl4 44 3.219 -3.219 2.32 x 105 
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of the 60, 36, 28, and 20 element subsets do not lie in general position, while those of the 18 and 

14 element subsets do lie in general position. The results of Table 3 indicate that the 18 element 

subset may provide the best trade-off between performance and computational burden. This will be 

demonstrated in the following section. 

5.4 Simulation Results 

The unconstrained system's pitch rate and elevator rate responses to a 0.1 amplitude step input 

are shown in Fig. 66. Notice that the elevator rate clearly violates its constraint even for this rela- 

tively small input. The elevator displacement, not shown, is well within its limits in this case with 

a maximum amplitude of 0.0332 radians. This is typical of systems with both elevator rate and el- 

evator displacement constraints. That is, elevator rate constraint violation generally transpires well 

before elevator displacement constraint violation becomes an issue. The constrained system's pitch 

rate and elevator rate responses to the same 0.1 amplitude step input are shown in Fig. 67. With 

no saturation effects mitigation method employed the elevator rate saturates immediately, and an 

unstable system response ensues. 

Pitch rate and elevator rate responses of the SRSG and DTRG systems are presented in Fig. 

68. Both reference signal governors avoid constraint violation, and produce stable responses. The 

SRSG provides slightly improved tracking over that of the DTRG. Also, the SRSG is implemented 

using the set, Xf18, or 64 inequality constraints. Recall that the DTRG requires 174 inequality 

constraints in this case. Thus, the SRSG system provides improved tracking performance with less 

on-line computational burden. 

In this case the set, X^18, provides a reasonable trade-off between computational burden and 

system performance. This is also consistent with the results of Table 3. On the other hand Table 3 

indicates that the volume of X6
s
li is substantially less than that of X6

S
18. Thus, implementing the 
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Figure 66. Unconstrained system responses to a 0.1 amplitude step. 
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Figure 67. Constrained system responses to a 0.1 amplitude step. 
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Figure 68. SRSG and DTRG system responses to a 0.1 amplitude step. 
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reference signal governor using Xf14 may result in poor tracking performance. This is demonstrated 

in Fig. 69. In Fig. 69 the MDRSG system pitch rate response to a unit step input is compared for 

the sets Xf36, Xf18, and Xf14. While the sets Xf36 and Xf18 provide similar tracking performance, 

the set Xg14 results in a much slower response. This is a result of the more restrictive admissibility 

constraints associated with Xf14, Fig. 70. Figure 70 is a plot of the admissibility constraint limits 

imposed by the three sets of linear inequalities. Clearly, the state trajectory encounters the boundary 

of Xf14 much earlier than it does the boundaries of either Xf36 or Xf18. It is important to note that 

the state trajectories for the three cases of Fig. 70 only coincide during the initial 0.13 seconds, or 

13 time steps. Thus, this initial interval provides the best measure of the differences and similarities 

between the three sets of linear inequalities. The results shown in Figs. 69 and 70 are consistent with 

the sharp reduction in the magnitude of the allowable steady state conditions associated with Xf14, 

Table 3. Finally, a comparison of the MDRSG-Xf18 and DTRG tracking performance is shown in 

Fig. 71. While the MDRSG-Xf18 response is only slightly faster than that of the DTRG system, it 

only requires evaluation of 64 versus 174 linear inequality constraints at each time step. 

5.5  Summary 

A realistic flight control application is presented in this chapter. The controlled process is 

a fourth-order system with an open-loop unstable plant, and is subject to both state and control 

constraints. An approximation of the maximal output admissible set, 0%^, is characterized with 

174 linear inequality constraints, and the LP (54) produces a set of 112 unique vertices, V. The 

recursive convex hull algorithm is performed on several subsets of V to obtain several polyhedral 

sets, Xfi C Xf. 

Several intermediate results of the recursive convex hull algorithm are examined to verify that 

it performs as intended. Moreover, the results of the recursive convex hull algorithm are compared 
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Figure 69. MDRSG tracking performance comparison for a 1.0 amplitude step. 
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Figure 70. Comparison of admissibility constraints. 
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Figure 71. Comparison of MDRSG and DTRG performance 
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to those obtained with a brute force algorithm for a 14 element subset of V. This comparison shows 

that the same 44 linear inequality constraints are obtained with both algorithms, and is a practical 

demonstration of the validity of the recursive convex hull algorithm. 

A comparison of allowable steady state conditions and tracking performance obtained for sev- 

eral sets, Xg\ shows that a significant reduction in the number of vertices in V' C V, and thus the 

number of linear inequalities required to characterize X%\ is possible with little impact on system 

performance. In this case, very little improvement in closed-loop system performance is obtained 

when the number of vertices in V is increased beyond 18. However, a substantial loss in both al- 

lowable steady state conditions and tracking performance are encountered with a 14 element subset. 

Moreover, implementing reference signal governors with Xf18, characterized with 64 LIs, provides 

faster tracking responses to step inputs than that of the DTRG which requires 174 LIs. Finally, com- 

parison of the maximum condition numbers obtained for the matrices, M^, also indicates that the 

18 element subset of vertices is an appropriate choice for this problem. 
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Chapter 6 - The Constrained Regulator Control Problem 

6.1 Overview 

In this chapter the constrained regulator control problem is viewed as a special case of the 

constrained tracking control problem, and is addressed with the nonlinear dual loop controller ar- 

chitecture of Fig. 72. In this case the exogenous reference signal is identically zero, and the outer 

loop nonlinearity is a reference signal generator that produces nonzero reference signal increments, 

when necessary, to avoid saturation. This results in a substantial increase in the size of the maximal 

statically admissible set for a given controlled process, and reduces the inherent trade-off between 

achievable small signal performance, and the size of the maximal statically admissible set. 

6.2 Reference Signal Generator 

The following discrete-time regulator control problem is considered 

x(t + 1) = Ax{t) + Bu(t),   x(0) = x0,xG 3T, u € fft1, t E Z+ = {0,1,2,...} (98) 

where the open-loop dynamics matrix, A, may have eigenvalues outside the unit circle, viz., the 

open-loop system is unstable. Also, assume there are hard constraints on either or both the state and 

control variables, including linear combinations of them. With appropriate choices of matrices, Cc 

and Dc, and output constraint set, Y C $tp, all such constraints may be expressed in terms of output 

constraints, viz., 

yc{t) = Ccx(t) + Dcu{t) eYcW. (99) 

Assume that the control signal, u, is given by 

u(t) = kxx(t). (100) 

Then, the closed-loop system and its constraint may be expressed as 

x(t + l)   =   Adx(t) 

yc(t)   =   CCclx(t)EYcW (101) 
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where, Ad = (A + Bkx) and CCcl = (Cc + Dckx). The state constraint set, X, is defined as 

X = {x e W1 : CCclx{t) EY}C »n. 

We are concerned with the case where the constraint set, Y, is a polytope which contains the origin. 

That is, Y may be expressed as 

Y = {yc e W : fi{yc) < 0,   i = l,2,...,s} (102) 

where, the s functionals, /; : ffi —> 3?, are linear in yc, with /j(0) < 0. 

Since the open-loop system of eq. (78) is unstable, global stability can not be achieved, and 

one is instead interested in determining a control law such that the resultant closed-loop system is 

asymptotically stable for the largest possible set of initial states, XQ. This problem has been ad- 

dressed in the literature using the concept of positive invariance [3], [4], [5], [10],and [26]. Typi- 

cally, Lyapunov functions are used to determine a stabilizing state feedback matrix, kx, for which a 

predetermined set of initial states, XQ C 5ft™, is contained in a set, W C Kn, which is admissible 

and positively invariant with respect to the closed-loop system. That is, kx is determined such that 

\Xi(A + Bkx)\ < 1, and such that for all x(0) EX0cW, we have that x(t) e W and yc(t) G Y 

for all t 6 Z+. Clearly, W is a positively invariant subset of X. 

Since Y is polyhedral the maximal positively invariant subset of X, Xr, associated with a par- 

ticular state feedback matrix, kx, is also polyhedral. Thus, non-quadratic Lyapunov functions are 

exploited in [3], [4], [5] and [26] to obtain polyhedral positively invariant sets, W C X C 5Rn. 

However, using a Lyapunov function to determine kx and W generally results in W C XT, because 

the existence of a Lyapunov function is a sufficient, but not necessary, condition for asymptotic sta- 

bility. Thus, these methods result in a conservative estimate of the set of allowable initial conditions 

for a given state feedback matrix. This conservatism may be eliminated by using the methods of [8] 

to characterize Xr. More importantly, these methods generally provide very conservative results 

because only linear control laws are considered. Thus, small signal performance must be sacrificed 
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to insure constraint violation is avoided for large initial state disturbances [7]. In general, a trade-off 

exists between the size of XQ and closed-loop system performance. Increasing the size of XQ gener- 

ally results in degraded closed-loop system performance, such as slower response times. Evidently, 

and as noted in [7], nonlinear control laws can produce improved closed-loop system performance, 

for a given predetermined set XQ, over that achievable with linear control laws. However, as noted 

in Chapter 1, nonlinear control laws based on solutions to optimal control problems are generally 

impractical to implement. 

Thus, the stated problem is addressed with the nonlinear dual loop controller architecture of 

Fig. 72. Of course, implementation of the dual loop control law requires modification of the existing 

linear regulator control law to afford tracking of the synthetically generated reference signal, r'. 

As an example, consider the system of eq. (78), and assume the constrained control signal is 

given by 

-1 < u(t) = kxx(t) < 1. 

Let Xr C 5Rn denote the maximal positively invariant subset of X obtained for a particular stabi- 

lizing state feedback matrix, kx. The set, Xr, is the set of all initial states in üftn such that \u(t) \ < 1 

for all t 6 Z+. Now, consider the associated tracking control law 

-1 < u(t) = kxx{t) + krr'(t) < 1. 

Here, kx is the same as before, and kr is chosen to provide asymptotic tracking. Let Xs C 3?n denote 

the set of all initial states for which there exists a constant reference input, r , such that \u(t)\ < 1 

for all t € Z+. The set, Xs, is the maximal statically admissible set for the closed-loop system. 

Now we can avoid constraint violation when |/CX:E(£)| > 1 by allowing non-zero reference signals, 

r'. Thus, we have that Xr C Xs. While this example considers the case where the regulator control 

law consists of a state feedback matrix, it is important to note that the proposed methodology is 

applicable to any linear regulator control system. 
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The reference signal generator may be implemented so that for small disturbances, for which 

x(0) € Xr, we have r = 0. In this case, the system response is determined by the original 

regulator control law for small disturbances. Thus, for a given regulator control law, the size of the 

set of allowable initial conditions may be substantially increased without sacrificing small signal 

performance. Conversely, small signal performance may be improved for a prespecified set of initial 

conditions, XQ, by implementing a more aggressive inner-loop linear control law. The proposed 

methodology requires extensive off-line calculations, but on-line implementation of the control law 

is practical. Moreover, the closed-loop system is asymptotically stable for all x e Xs. 

6.3  Second-Order Example 

The regulator synthesis method described here is demonstrated with a second-order example. 

Consider the constrained regulator problem of Fig. 73 and defining equation 

x(t + l)   =   Ax(t) + Bu(t) 

y(t)   =   Cx(t) 

-1 < u(t)   =   kxx(t) < 1 (103) 

where, 

1.0001      1.0051 x 10"2 

2.0101 x 10~2 1.0102 
B = 

1.0034 x 10~4 

2.0101 x IQ"2 A   = 

C   =    [1   0 ], and kx = [ -9   -2.5 ] . 

Notice that this is the open-loop system and state feedback matrix of eqs. (65) and (67), Section 

3.4.1. The constrained variable is the control signal, 

yc{t) = u(t) e Y 

where 

Y = {yc E 3? : fi(yc) < 0,   « = 1,2} 
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and 

fiiVc)   =   Vc-l 

h{yc)  =  -ye -1. 

Also, the open-loop system is unstable with \\{A) = 0.99005 and A2(A) = 1.0202. 

The closed-loop system and constraint are given by 

x(t+l)     =    Aclx(t) 

y(t)   =   Cx{t) 

yc{t)   =   CCclx(t)eY (104) 

where, Ad = (A + Bkx), and CCol = kx. Now, |Ai)2(^d)| = 0.9802, the pair (CCcl , Acl) is 

observable, and Y is a polyhedron that contains the origin. Thus, the methods of Section 2.3 may 

be used to characterize Xr in terms of eq. (25). 

In this case 84 inequalities are required to characterize Xr, and Tr is an 84 x 2 element matrix. 

Figure 74 shows Xr bounded by the 84 half-spaces. The set, Xr, is the maximal statically admissible 

set for the closed-loop system of eq. (104). To obtain a larger statically admissible set for this control 

system, the state feedback matrix must be modified. However, if the constrained regulator control 

problem is viewed as a special case of the constrained tracking control problem, with r = 0, then a 

much larger statically admissible set may be obtained for the existing state feedback matrix. Thus, 

consider the nonlinear tracking control system of Fig. 75. Then the system of eq. (103) becomes 

x(t + l)   =   Ax(t) + Bu(t) 

y  =  Cx{t) 

-1    <   u(t) = kxx(t) + krr'(t) < 1. (105) 

Now, although r = 0, the nonlinear feedback reference generator, N, may generate a nonzero 

exogenous reference signal, r'(t), in the event |fea;a;(t)| > 1.  Thus, for a given state feedback 
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matrix, kx, control signal saturation may be avoided for a much larger set of initial conditions. This 

improves the robustness of the closed-loop system with respect to external disturbances without 

sacrificing small signal performance. 

Since the existing regulator control system does not include integral action in this example, we 

enforce asymptotic tracking by choosing kr such that 

kr = CAj-B = 8. 

Then, the linear controlled process of Fig. 75 is given by 

x(t + l)   =   Aclx(t) + Bclr'(t) 

y  =  Cx(t) 

yc(t)    =   CCalx(t) + DCclr'(t)EY (106) 

where Ad = (A + Bkx), B<j, = Bkr, CCcl = kx, and DCcl = kr. A finitely determined approxima- 

tion of Xs c 3?2 may be developed using the methods of Section 3.4.1, where Xe
s c Xs is given by 

eq. (52). In Section 3.4.1 Xe is characterized for the controlled process of eq. (106) with 86 linear 

inequality constraints. 

Figure 20, repeated below in Fig. 76, is a plot of the 86 supporting hyperplanes of X£
s. A 

comparison of Xr and X% is shown in Fig. 77. Clearly, Xr C X£
s. Thus, the size of the positively 

invariant set has been increased without sacrificing small signal performance. Moreover, X£ is an 

arbitrarily close approximation to the maximal statically admissible set, Xs, for the given controlled 

process. Finally it should be noted that Xs C Xj, and that by enforcing the feasibility constraints 

set 
when x € Xi — Xs, the controlled process state can be made to converge to the origin for any 

Constraint mitigation is accomplished using the MDRSG algorithm of Section 4.3 with the 

additional caveat that when x £ X£, only the feasibility constraints are enforced. Then for small 
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disturbances we have that x(0) G Xr, and r'(t) = r(t) = 0 for all t. In this case, the closed-loop 

system response is dictated by kx. However, when x(0) G {Xi - Xr} transpires, as may result 

from larger disturbances, then r'(t) ^ 0 ensues, and the closed-loop system response is modified, 

but stable. Thus, for the specified state feedback matrix, kx, we have substantially increased the size 

of the set of admissible initial conditions without sacrificing small signal performance. Of course, 

if x(0) £ Xi should transpire, the system may diverge because the open-loop plant is unstable. 

In general a characterization of Xj is difficult or impossible to obtain.  Hence, we require that 

x0 c xi 

6.4  Simulation Results 

An example of the simulation results obtained for the second-order problem with the dual- 

loop controller architecture and nonlinear reference generator are presented in Figures 78 and 79. 

The initial condition for this case is a;(0) = [ 0.9, -0.5 ] . Figure 78 shows the state trajectory 

transposed on plots of Xe
s and Xr. This demonstrates that for any x(0) G Xe

s we have x(t) G Xe
s 

for all t G Z+. The nonlinear nature of the reference generator is evident in the control signal 

and reference signal responses shown in Fig. 79. The control signal response also shows that 

constraint violation is avoided. The transitions in the control signal and reference signal responses 

at approximately 0.4 and 0.95 seconds coincide with the state trajectory encountering and leaving 

the boundary of Xe
s. At about 0.95 seconds we have x(t) G Xr, and thereafter the system response 

is dictated by kx. 

An example of simulation results obtained for the state feedback control law is shown in Fig. 

80. The initial condition is again x(0) = [ 0.9, —0.5 ] . In this case control signal saturation is 

encountered immediately since a;(0) ^ Xr, and the system diverges. While there are certainly cases 
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for which the linear state feedback control system does not diverge when x(0) £ Xr, constraint 

violation will always occur in these cases. 

6.5  Summary 

Positively invariant sets play a central role in controller synthesis methodologies that address 

the constrained regulator control problem. Many of these methods exploit Lyapunov functions to 

obtain state feedback matrices for which a statically admissible set, W C 5ft™, is positively invari- 

ant. However, these techniques must trade-off small signal performance against the size of W. On 

the other hand, nonlinear controllers based on solutions to optimal control problems are generally 

impractical to implement. 

Here, the constrained regulator problem is addressed with a dual-loop nonlinear controller syn- 

thesis methodology. An outer-loop reference signal generator injects admissible non-zero reference 

signals into an inner-loop feedback control system. The reference signals are tracked by the inner- 

loop linear control law. Small signal performance is then preserved while simultaneously the size 

of the maximal statically admissible set associated with the controlled process is significantly in- 

creased. Moreover, on-line implementation of the control law is practical, and, most importantly, 

the closed-loop system is asymptotically stable for all x € Xj. 
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Figure 72. Nonlinear dual-loop controller architecture. 
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Figure 73. Constrained regulator control problem. 
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3   o 

Figure 74. Xr for the second-order regulator control system. 
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Figure 75. Nonlinear dual-loop controller architecture. 
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Figure 77. Comparison of Xr and Xs. 
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Figure 78. Dual-loop control system response for x(0) = [0.9, — 0.5p 

0.5       1 1.5       2        2.5       3        3.5       4       4.5       5 

Figure 79. Responses of u and r for x(0) = [0.9, —0.5]T. 
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3   o 

Figure 80. Regulator control system response for a;(0) = [0.9, —0.5]T when saturation mitigation 
is not employed. 
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Chapter 7 - Conclusion 

7.1 Overview 

The problem of high amplitude tracking control of dynamic reference signals in the face of hard 

control and state constraints, and open-loop unstable plants is investigated. In the case of open-loop 

unstable plants and control and state constraints, global stability cannot be achieved. Then, one is 

interested in characterizing the largest possible positively invariant set of initial states, and in re- 

stricting the state vector to this set. Here, the maximal statically admissible set is characterized for 

a discrete-time constrained control system, and a nonlinear control methodology is proposed that 

restricts the state vector to this positively invariant set. Moreover, the proposed method does not 

unnecessarily restrict the feasible reference signal to statically admissible values. The proposed ref- 

erence governor methodology is outlined in this chapter, and specific contributions of this research 

are presented. Specific conclusions and recommendations for further research are also provided. 

7.2 Contributions and Accomplishments 

Real world physical systems are generally subject to physical limitations such as actuator dis- 

placement and rate constraints. These physical limitations translate into hard constraints on linear 

system model control and state variables. Unfortunately, physical system limitations are often ig- 

nored in the initial controller design process since linear control system design methods cannot 

accommodate hard nonlinearities. This leads to control laws that may generate unrealizable con- 

trol signals, which result in constraint violation, even for moderate exogenous reference signals. 

Thus, many ad hoc post-design techniques have been proposed in the literature to mitigate the ef- 

fects of constraint violation. For the most part, constraint effects mitigation methodologies focus on 

improving system performance through various anti-windup techniques. These techniques do not 
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fully prevent constraint violation, and thus do not perform well in the case of open-loop unstable 

plants and high amplitude dynamic reference signals. 

Several recent research efforts have attacked the constrained tracking control problem with 

dual-loop controller architectures based on the concepts of static admissibility and positive invari- 

ance. In these investigations a linear inner-loop control law is implemented which provides good 

small signal tracking performance and stability in the absence of constraint violation. Then the 

controlled process is augmented with a nonlinear supervisory loop which contains a reference sig- 

nal governor. The reference signal governor prevents constraint violation by generating a modified 

reference signal which depends nonlinearly on the exogenous reference signal and the controlled 

process state. A common characteristic of these reference signal governor methods is that to obtain 

a BIBO stable closed-loop system, the modified reference signal is restricted to statically admissible 

values. However, This is not strictly necessary. It is sufficient to restrict the controlled process state 

vector to a positively invariant set to obtain a BIBO stable closed-loop system. Thus, these meth- 

ods unnecessarily sacrifice achievable tracking performance to obtain guaranteed BIBO stability 

of the resulting closed-loop system. While the current dual loop reference signal governor meth- 

ods do sacrifice tracking performance to some degree, they do have several admirable attributes, 

including; guaranteed BIBO stability, preservation of small signal performance, improved large sig- 

nal performance, complete constraint violation avoidance, and reasonable on-line computational 

burden. Thus, the focus of this research is the development of a dual-loop reference signal gover- 

nor methodology that removes the requirement of static admissibility from the modified reference 

signal, results in a BIBO stable closed-loop system, and has similar, or less, on-line computational 

burden than current reference signal governor methods. 

Specifically, the discrete time controlled process 

x(t + l)   =   Acix(t) + Bdr'(t),   xeW1,   r'GSR 
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y(t)   =   Cdx(t) + Ddr'(t) 

with constraint vector, yc, given by 

yc(t) = CCclx(t) + DCc/(t) EYCW 

is considered. Here the constraint set, Y, is a polytope that contains the origin, and r' is the modified 

reference signal generated by the reference signal governor. The proposed reference signal governor 

restricts the controlled process state to an admissible positively invariant set without unnecessarily 

restricting r' to statically admissible values. This is accomplished by obtaining an arbitrarily close 

approximation, XI, of the controlled process' maximal statically admissible set, Xs, in terms of a 

finite set of linear inequality constraints, viz., 

X£
s = {XEW

1
: TEx < ße} 

No previous characterization of this set has been accomplished. Moreover, this set is shown to be 

positively invariant with respect to the controlled process. Thus, to obtain a BIBO stable closed-loop 

system, at each time increment, t, it is sufficient to insure that r'(t) is chosen such that yc(t) € Y 

and x(t + l) E Xg. Additional criteria are also selected by the designer to determine the "optimal" 

allowable modified reference signal. 

Implementation of the proposed dual-loop tracking control law consists of: 

1. Development of a linear, small signal controller that provides the desired level of 

performance. Together, the open-loop plant and linear control law comprise the controlled 

process. Excessive small signal tracking control specifications should be avoided since this 

may reduce the volume of the controlled process' maximal statically admissible set. 

2. Express the controlled process state and control constraints in terms of an output constraint 

vector, yc, and a single polyhedral set inclusion, Y. 

3. Augment the controlled process with Gilbert's variable bandwidth first-order low-pass filter, 
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and characterize an approximation to the maximal output admissible set in terms of a finite set 

of linear inequality constraints. 

0lo = {xgeMn+1:Tgxg<ßg} 

4. Find the set, V, of extremal points of XI using the series of LPs 

max (cf xg)        s. t.    Tgxg < ßg,   i = l,2,...,M 
Xg 

where cf is obtained from the rows of the M x (n + 1) matrix Tg. 

5. Generate subsets of V by only including vertices that are a specified Euclidean distance, di, 

from each other. 

6. Characterize the sets Xgi C Xf in terms of linear inequality constraints using the recursive 

convex hull algorithm of Section 3.3. 

7. Specify a criteria to determine the best allowable modified reference signal, such as the 

MDRSG or SRSG control concepts. 

8. Perform a trade-off study to determine the most appropriate set, X8
S\ for on-line 

implementation of the reference signal governor. This is accomplished by comparing allowable 

steady state conditions and tracking performance for different subsets. 

The resulting closed-loop system is globally BIBO stable. Moreover, Tracking performance is 

emphasized by not explicitly restricting the modified reference signal to statically admissible val- 

ues. Instead, the controlled process state vector is constrained to a positively invariant set, viz., an 

arbitrarily close approximation to the maximal statically admissible set. The control law is nonlin- 

ear, but the nonlinearity is confined to the outer supervisory loop. Thus, it is sufficient to insure the 

modified reference signal does not result in immediate saturation, or drive the controlled process 

state out of the positively invariant set. On-line computational burden is reduced by implement- 
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ing the reference signal governor with the smallest subset, Xs
s
l, consistent with required system 

performance. While a trade-off exists between the volume of the subset and the number of linear 

inequalities, there is generally a threshold above which increasing the number of linear inequalities 

provides little improvement in volume of the subset, tracking performance, and allowable steady 

state conditions. 

Specific criteria are specified by the designer to determine the "optimal" modified reference 

signal that satisfies the feasibility and admissibility constraints. Moreover, the reference signal 

governor may be implemented so that it is transparent in the case of small exogenous reference 

signals. Thus, small signal performance is preserved. Also, a graceful degradation in tracking 

performance is provided in the case of large inputs or large slewing maneuvers. Control concepts 

demonstrated here include the MDRSG and SRSG control concepts. More sophisticated concepts 

which include reference signal prediction and Receding Horizon control paradigms, such as LQT, 

are also possible. In the case of the LQT control paradigm any reference signal extrapolation scheme 

could be used in conjunction with one step ahead constraint enforcement to obtain a BIBO stable 

closed-loop system. Finally, the proposed methodology is applicable to tracking control systems 

subject to high amplitude dynamic reference signals, with both actuator displacement and actuator 

rate constraints, actuator dynamics, and open-loop unstable plants. 

It should be noted that the maximal statically admissible set is a subset of the maximal posi- 

tively invariant set. However, it is shown here that the maximal positively invariant set is not gener- 

ally convex, and cannot be characterized by a finite set of inequality constraints. Thus, the maximal 

statically admissible set is the largest positively invariant set that is useful for our purpose. 

The reference governor system architecture is also applied to the constrained regulator prob- 

lem. This novel approach can substantially increase the size of the statically admissible set of initial 

states, for a given regulator control problem, without degrading small signal performance. More- 
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over, a more aggressive inner-loop linear control law may be implemented for a given predetermined 

initial set of states. In this case the outer-loop nonlinearity is a reference signal generator that pro- 

duces a non-zero reference signal, as needed, to prevent saturation. 

An additional contribution of this research is the development of a new computationally effi- 

cient recursive convex hull algorithm. Unlike existing algorithms the complete Hasse diagram, or 

facial graph, is not generated. The n-tope is built up simplicially with each (n — 1) dimensional 

facet containing exactly n vertices. The recursive algorithm only generates the (n — 1) dimensional 

facets and a listing of vertices (0-faces) included in each facet. Listings of all intermediate faces are 

not explicitly generated. A listing of all (n — 2)-faces are generated for invalidated facets, however, 

during each pass of the algorithm. Since the algorithm is recursive, it lends itself to on-line opera- 

tion, although it is not employed in this manner here. Finally, the algorithm is applicable to cases 

where the set of points are not all vertices, and where the points are not in general position. 

7.3 Research Conclusions 

Regarding the constrained tracking control problem of eqs. (14)-(102), the following specific 

conclusions are drawn based on this research: 

1. An arbitrarily close approximation to the maximal statically admissible set can be 

characterized with a finite set of inequality constraints for the stated problem. 

2. The set, Xf C üft™, inherits the property of positive invariance from the set O^ C 9ftn+1. 

3. Closed-loop system BIBO stability can be achieved using the dual loop reference governor 

methodology without restricting the modified reference signal to statically admissible values. 

4. Removing the restriction of static admissibility from the modified reference signal allows 

greater flexibility in choosing the "optimal" modified reference signal from the set of allowable 
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reference signals. This allows use of aggressive control concepts such as the SRSG and LQT 

concepts which may provide significant improvements in tracking performance. 

5. On-line computational burden can be substantially reduced with little or no impact on system 

performance by implementing the reference signal governor with polyhedral subsets, X% C X%. 

6. Positively invariant elliptical subsets result in the least on-line computational burden. 

However, a substantial loss in volume may be incurred with a like degradation in closed-loop 

system performance. 

7. The maximal positively invariant set, Xi, is generally not convex, and thus cannot be 

characterized with a single set of linear inequality constraints. 

Regarding the regulator control problem of eq. (78), the following conclusions are drawn: 

1. For a given linear regulator control law, the size of the maximal statically admissible 

set may be significantly increased using the nonlinear dual loop reference signal generator 

methodology. This increases the robustness of the closed-loop system to external disturbances 

without sacrificing small signal performance. 

2. The dual loop reference signal generator methodology can improve small signal performance 

by allowing a more aggressive inner-loop linear control law to be implemented for a given 

predetermined set of initial states, XQ. 

Regarding the recursive convex hull algorithm, the following conclusions are drawn: 

1. The convex hull of a set of points, V, may be built-up simplicially without generating a 

complete facial graph. Only a listing of vertices for each facet is required. 

2. Given an initial polytope generated from a subset of V, each additional point is easily 
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incorporated by considering which (n — l)-faces, (n — 2)-faces, and 0-faces (points) lie in the 

shadow of the associated supporting cone. Specifically, it is not necessary to consider other 

intermediate faces regardless of the dimension, n, of the problem. 

3. Algorithm efficiency is improved if the initial polytope contains the origin. This is not strictly 

necessary however, and the algorithm is applicable to problems for which the origin is not an 

interior point of the convex hull. 

4. Cases for which the points do not lie in general position are handled by eliminating points that 

lie in the interior of existing facets during the construction process, and by partitioning facets 

that are not simplexes into two or more Simplexes. Thus, a simplicial polytope is constructed 

regardless of the geometric relationship between points. 

7.3.1   Recommendations 

The following areas are recommended for future research: 

1. Demonstrate a complete MIMO extension of the proposed reference signal governor 

methodology. This requires on-line Linear Programming to determine the set of admissible 

reference signals at each time increment. It also requires on-line solution of convex 

optimization problems when the reference signal governor is based on a polyhedral subset, 

2. Investigate robustness issues. For example, can model uncertainty be addressed by 

constraining yc such that yc € Y
e C Y. 

3. Investigate a BIBO stable LQT control concept with one-step ahead constraint enforcement. 

This is accomplished by choosing r'(t) at each time increment, t, such that yc(t) € Y and 

x(t +1) e xe
s. 
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APPENDIX A - Recursive Convex Hull Algorithm Results 

Results generated by the recursive convex hull algorithm for the fourth order problem of Chap- 

ter 5, using several subsets of vertices, are provided here. These results may be reproduced with the 

script, "edge4", provided in Appendix B. 

A.1  Recursive Convex Hull Algorithm and Brute Force Algorithm Results 
Comparison 

In this section results obtained with both the recursive convex hull and brute force algorithms 

are presented. As noted in Chapter 5, these results were generated from a 14 element subset of 

vertices, Fig. 81. Results obtained with the recursive convex hull algorithm are shown in Fig. 82. 

The linear functionals that comprise the rows of Ts
s
li and the vertices contained in each facet of X%14 

are listed. Figure 83 shows the results obtained with the brute force algorithm. A careful inspection 

shows that the results obtained with both algorithms are consistent. 
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Vertices 

1.5206 0.4416 2.7208 -2.9293 2.9293 -1.81 
0.0049 3.6854 4.3563 -4.1820 4.1820 -5.65 
0.4400 -0.0830 0.4351 -0.4267 0.4267 -0.37 
-0.0101 0.3103 0.4006 -0.3799 0.3799 -0.59 

-1.5206 -0.4416 -2.7208 2.6056 -2.6056 1.81 
-0.0049 -3.6854 -4.3563 -5.3490 5.3490 5.65 
-0.4400 0.0830 -0.4351 0.4284 -0.4284 0.37 
0.0101 -0.3103 -0.4006 -0.5517 0.5517 0.59 

Figure 81. Fourteen element subset of vertices 
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Linear Functionals Vertices 

0.4165 
0.6801 
-0.0960 
0.8814 

-0.3621 
-0.3543 
-0.1952 
-0.4898 
-0.1521 
0.6423 
-0.0924 
0.7401 
0.5102 
0.0995 

-0.1228 
-0.0494 
0.3543 
0.3621 
0.0494 

-0.0995 
0.1228 
0.1911 
0.5453 
0.0960 
0.0924 
0.3608 
0.3894 
0.9888 
0.7493 
0.4898 

-0.3608 
-0.7493 
-0.5102 
-0.3894 
-0.8814 
-0.7401 
-0.9888 
-0.5453 
-0.1911 
0.1952 

-0.6801 
-0.6423 
-0.4165 
0.1521 

0.8474 
-0.9916 
-0.5048 
-2.4293 
2.6592 
2.6467 
2.4019 
2.9327 
2.4322 

-1.1504 
-0.5089 
-1.8521 
0.1534 
1.0330 
0.3067 
0.2426 

-2.6467 
-2.6592 
-0.2426 
-1.0330 
-0.3067 
-0.3916 
-1.9888 
0.5048 
0.5089 
0.1483 
0.0687 
-3.2249 
-1.5547 
-2.9327 
-0.1483 
1.5547 

-0.1534 
-0.0687 
2.4293 
1.8521 
3.2249 
1.9888 
0.3916 

-2.4019 
0.9916 
1.1504 

-0.8474 
-2.4322 

-3.9173 
-4.4167 
0.5433 

-4.7586 
2.8696 
2.8296 
1.9575 
3.2394 
1.3068 

-3.6098 
0.5261 

-3.7707 
-4.0470 
-2.8578 
-1.7479 
-2.1613 
-2.8296 
-2.8696 
2.1613 
2.8578 
1.7479 
1.3596 

-0.8323 
-0.5433 
-0.5261 
-1.9632 
-2.2258 
-4.9073 
-4.4536 
-3.2394 
1.9632 
4.4536 
4.0470 
2.2258 
4.7586 
3.7707 
4.9073 
0.8323 

-1.3596 
-1.9575 
4.4167 
3.6098 
3.9173 

-1.3068 

-8.4827 
8.4649 
3.0550 

23.1025 
-27.0770 
-26.9501 
-24.5028 
-30.0449 
-25.0978 

9.5715 
3.0939 
16.7120 
-0.4082 
-9.9527 
-3.0987 
-2.4511 
26.9501 
27.0770 
2.4511 
9.9527 
3.0987 
3.9424 
19.3987 
-3.0550 
-3.0939 
0.4221 
1.2571 

32.3591 
16.9670 
30.0449 
-0.4221 

-16.9670 
0.4082 

-1.2571 
-23.1025 
-16.7120 
-32.3591 
-19.3987 
-3.9424 
24.5028 
-8.4649 
-9.5715 
8.4827 

25.0978 

2 6 7 
6 7 8 
4 6 9 
7 8 9 
1 2 3 
2 3 5 
2 5 7 
1 2 6 
2 6 7 
6 7 10 
6 9 10 
7 9 10 
2 7 8 
2 6 8 
4 6 10 
6 8 10 
4 9 10 
8 9 10 
1 3 11 
1 9 11 
3 5 11 
5 7 11 
7 9 11 
2 3 5 
2 3 12 
2 5 7 
2 7 12 
7 8 9 
7 8 12 
8 9 12 
4 6 9 
1 6 11 
1 9 11 
6 9 11 
1 2 3 
2 3 12 
1 2 6 
2 6 12 
4 6 12 
4 9 12 
1 3 13 
3 12 13 
1 9 13 
9 12 13 

Figure 82. Recursive convex hull algorithm results, 14 element subset of vertices 
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-0.3621 
-0.8814 
-0.4898 
-0.9888 
0.0494 
-0.6801 
-0.7493 
-0.0995 
-0.5102 
-0.4165 
-0.3543 
0.0960 
0.0924 
-0.7401 
-0.1952 
0.3608 
0.4165 
-0.1521 
0.0995 
-0.5453 
0.5102 
0.3894 
0.1228 
-0.6423 
-0.0960 
-0.3608 
-0.1228 
-0.1911 
0.3543 
0.1952 
0.1911 
0.6801 
0.6423 
-0.0494 
-0.0924 
-0.3894 
0.8814 
0.9888 
0.7493 
0.7401 
0.5453 
0.3621 
0.4898 
0.1521 

2.6592 
2.4293 
2.9327 
3.2249 
-0.2426 
0.9916 
1.5547 
-1.0330 
-0.1534 
-0.8474 
2.6467 
0.5048 
0.5089 
1.8521 
2.4019 
0.1483 
0.8474 
2.4322 
1.0330 
1.9888 
0.1534 
0.0687 
-0.3067 
1.1504 
-0.5048 
-0.1483 
0.3067 
0.3916 
-2.6467 
-2.4019 
-0.3916 
-0.9916 
-1.1504 
0.2426 
-0.5089 
-0.0687 
-2.4293 
-3.2249 
-1.5547 
-1.8521 
-1.9888 
-2.6592 
-2.9327 
-2.4322 

2.8696 
4.7586 
3.2394 
4.9073 
2.1613 
4.4167 
4.4536 
2.8578 
4.0470 
3.9173 
2.8296 
-0.5433 
-0.5261 
3.7707 
1.9575 
-1.9632 
-3.9173 
1.3068 
-2.8578 
0.8323 
-4.0470 
-2.2258 
1.7479 
3.6098 
0.5433 
1.9632 
-1.7479 
-1.3596 
-2.8296 
-1.9575 
1.3596 
-4.4167 
-3.6098 
-2.1613 
0.5261 
2.2258 
-4.7586 
-4.9073 
-4.4536 
-3.7707 
-0.8323 
-2.8696 
-3.2394 
-1.3068 

-27.0770 
-23.1025 
-30.0449 
-32.3591 
2.4511 
-8.4649 
-16.9670 
9.9527 
0.4082 
8.4827 

-26.9501 
-3.0550 
-3.0939 
-16.7120 
-24.5028 
0.4221 
-8.4827 
-25.0978 
-9.9527 
-19.3987 
-0.4082 
1.2571 
3.0987 
-9.5715 
3.0550 
-0.4221 
-3.0987 
-3.9424 
26.9501 
24.5028 
3.9424 
8.4649 
9.5715 
-2.4511 
3.0939 
-1.2571 
23.1025 
32.3591 
16.9670 
16.7120 
19.3987 
27.0770 
30.0449 
25.0978 

2 3 
2 3 
2 6 
2 6 
3 11 
3 13 
6 11 
9 11 
9 11 
9 13 

2 3 5 
2 3 5 
2 3 12 
2 3 12 
2 5 7 
2 5 7 
2 6 7 
2 6 7 
2 6 8 
2 6 12 
2 7 8 
2 7 12 
3 5 11 
3 12 13 
4 6 9 
4 6 9 
4 6 10 
4 6 12 
4 9 10 
4 9 12 
5 7 11 
6 7 8 
6 7 10 
6 8 10 
6 9 10 
6 9 11 
7 8 9 
7 8 9 
7 8 12 
7 9 10 
7 9 11 
8 9 10 
8 9 12 
9 12 13 

Figure 83. Brute force algorithm results, 14 element subset of vertices 

157 



A.2  Results for Selected Subsets of Vertices. 

Results obtained for the 18, and 20 element subsets of vertices are provided here. Only the 

lists of vertices contained in each facet are provided. The associated linear functionals are easily 

generated using eq. (56) from Chapter 3. 
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vertices 1 through 6 

1.5206e+000 4.4162e-001 2.7208e+000-2.9293e+000 3.8229e+0 
4.9356e-003 3.6854e+000 4.3563e+000 -4.1820e+000 3.3111e+0 
4.4000e-001 -8.3014e-002 4.3513e-001 -4.2667e-001 2.6734e-001 
-1.0150e-002 3.1030e-001 4.0063e-001 -3.7988e-001 3.4041e-001 

vertices 7 through 12 

-1.9424e+000 -2.6056e+000 4.1618e+000 -1.5206e+000 -4.4162e-0 
-5.3558e+000 5.3490e+000 5.5195e-001 -4.9356e-003 -3.6854e+0 
-4.0269e-001 -4.2842e-001 2.9805e-001 -4.4000e-001 8.3014e-002 
-5.3640e-001 5.5169e-001 3.9452e-003 1.0150e-002-3.1030e-001 

vertices 13 through 18 

2.6056e+000 2.9293e+000-1.8420e+000 1.9424e+000-3.8229e+0 
-5.3490e+000 4.1820e+000 -5.5948e+000 5.3558e+000-3.3111e+ 
4.2842e-001 4.2667e-001 -3.7904e-001 4.0269e-001 -2.6734e-001 
-5.5169e-001 3.7988e-001 -5.8396e-001 5.3640e-001 -3.4041e-001 

Figure 84. 18 element subset of vertices 

vertices 1 through 6 

1.5206e+000 4.4162e-001 2.7208e+000 -2.1489e+000 2.0362e+000 -2. 
4.9356e-003 3.6854e+000 4.3563e+000 -4.9985e+000 5.1725e+000 5. 
4.4000e-001 -8.3014e-002 4.3513e-001 -4.2086e-001 4.1565e-001 -4.28 
-1.0150e-002 3.1030e-001 4.0063e-001-4.8061e-001 5.0607e-001 5.51 

vertices 7 through 12 

-2.9293e+000 -7.7823e-001 3.6195e+000 4.1618e+000-1.5206e+000-4. 
-4.1820e+000 3.8991e+000 3.8458e+000 5.5195e-001 -4.9356e-003 -3. 
-4.2667e-001 -4.4000e-001 3.1908e-001 2.9805e-001 -4.4000e-001 8.30 
-3.7988e-001 3.8592e-001 4.0659e-001 3.9452e-003 1.0150e-002-3.10 

vertices 13 through 18 

-2.7208e+000 7.7823e-001 -2.0362e+000 2.6056e+000 2.9293e+000 2. 
-4.3563e+000-3.8991e+000-5.1725e+000-5.3490e+000 4.1820e+000 4 
-4.3513e-001 4.4000e-001-4.1565e-001 4.2842e-001 4.2667e-001 4.20 
-4.0063e-001 -3.8592e-001 -5.0607e-001 -5.5169e-001 3.7988e-001 4.8 

vertices 19 through 20 

-3.6195e+000 -4.1618e+000 
-3.8458e+000-5.5195e-001 
-3.1908e-001 -2.9805e-001 
-4.0659e-001 -3.9452e-003 

Figure 85. 20 element subset of vertices 

159 



7ac ets: -32 Facets 33 - 6' 1 

2 5 6 8 1 3 6 1 
2 5 8 10 2 6 8 1 
2 5 9 10 2 3 14 1 
5 7 9 10 3 6 14 1 
4 5 8 11 2 5 6 1 
5 6 8 11 2 5 14 1 
5 7 10 12 5 6 14 1 
4 5 8 12 1 3 13 1 
5 8 10 12 2 3 14 1 
4 5 11 12 2 13 14 
4 7 11 12 3 13 14 
5 7 11 12 2 8 15 1 
1 3 6 13 4 8 15 1 
1 6 11 13 2 13 15 
5 6 11 13 1 11 13 
5 7 9 13 11 13 15 
5 7 11 13 4 7 11 1 
2 5 9 14 4 7 15 1 
3 6 13 14 7 11 15 
5 6 13 14 1 3 16 1 
2 9 13 14 2 3 16 1 
5 9 13 14 2 8 16 1 
2 8 10 15 4 8 11 1 
2 9 10 15 4 8 17 1 
7 9 10 15 4 11 17 
4 7 12 15 1 6 11 1 
4 8 12 15 1 11 17 
7 10 12 15 6 8 11 1 
8 10 12 15 1 6 16 1 
2 9 13 15 1 16 17 
7 9 13 15 6 8 16 1 
7 11 13 15 8 16 17 

Figure 86. List of vertices / facet for the 18 element subset of vertices 
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Facets 1 -43 

4 5 6 7 
1 3 5 9 
2 6 7 9 
5 6 7 9 
2 5 7 10 
5 7 8 10 
5 7 8 11 
4 5 6 12 
4 5 7 13 
5 7 11 13 
5 8 11 13 
4 6 7 13 
6 7 11 13 
4 5 12 13 
4 8 12 13 
5 8 12 13 
4 8 12 14 
1 5 9 14 
5 9 12 14 
2 7 10 15 
7 8 10 15 
7 8 11 15 
4 8 13 15 
8 11 13 15 
4 8 14 15 
8 12 14 15 
5 8 10 16 
5 8 12 16 
1 3 5 16 
1 3 14 16 
1 5 14 16 
5 12 14 16 
8 10 15 16 
8 12 15 16 
12 14 15 16 
2 5 7 17 
2 7 9 17 
3 5 9 17 
5 7 9 17 
2 5 10 17 
2 10 16 17 
3 14 16 17 
3 5 16 17 

Facets 44 - 85 

5 10 16 
1 3 9 1 
2 6 9 1 
1 9 14 1 
2 3 17 1 
2 9 17 1 
3 9 17 1 
1 3 14 1 
4 12 14 
2 6 7 1 
2 7 15 1 
6 7 11 1 
7 11 15 
4 6 13 1 
4 13 15 
6 11 13 
11 13 15 
4 14 15 
2 10 15 
2 10 16 
10 15 16 
14 15 16 
2 3 17 1 
3 14 17 
2 16 17 
14 16 17 
1 3 18 1 
2 3 18 1 
1 14 18 
2 6 18 1 
5 6 9 2 
5 6 12 2 
5 9 12 2 
9 12 14 
4 6 12 2 
4 6 19 2 
4 12 19 
12 14 19 
6 9 18 2 
6 18 19 
9 14 18 
14 18 19 

Figure 87. List of vertices / facet for the 20 element subset of vertices 
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APPENDIX B - Selected Script Files 

This appendix contains selected Matlab script files. Each script file contains a header which 

explains its intended use. Script files are provided in the order in which they are used in solving a 

problem. 

B.l   Script Files for the Second Order Problem 

EX2LP.M % Determines the maximal output admissible set for the fast 

% overdamped second-order example. Implements algorithm 3.2 

% of Gilbert's first paper. 

% 

% 

clear 

format short e 

% Continuous time open-loop system with output = xl 

a=[0 1;2 1]; 

b = [0;2]; 

c = [10]; 

d = 0; 

% State feedback matrix 

kx=[-33-10.5]; 

% Compute kr so that we have perfect tracking 

ac=a+b*kx; 

aci=inv(ac); 

kr=-l/(c*aci*b); 

162 



be = b*kr; 

cc = c; 

dc = d; 

eig(ac) 

% Equivalent open-loop discrete time system with output equal to xl 

[ad,bd,cd,dd]=c2dm(a,b,c,d,0.01,'zoh'); 

% form closed-loop discrete-time and augmented system dynamics 

% matrices, and output matrix associated with constraints, Cg 

acl=ad+bd*kx; 

bcl=bd*kr; 

ag = [10 0;bclacl]; 

cg = [kr kx]; 

HO = kr + kx*(inv(eye(2) - acl))*bcl; 

% Compute static admissibility constraints and specify epsilon. 

epsi = 0.05; 

brs = (1 - epsi) 

% set up linear programming problem 

t = -l; 

lim = [l;l]; 

% To obtain tstar use (while all), to obtain tistar use (while any) 

while any(lim > 0) 

%while all(lim > 0) 

t = t+l; 

% Construct f_i(caA(t+l)) for i=l,2 Neglecting the bias term 
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% We can ignore the bias term for now since maximizing f_i(y_c) 

% without the bias term gives the same result. But we will use 

% the bias term later in determining the actual max value achieved 

% for each f_i(y_c). 

fl=cg*agA(t+l); 

Q = -cg*agA(t+l); 

% lp finds the min, but we want the max. Also, lp needs 

% f as a column vector rather than a row vector. So negate 

% and transpose each of the fi 

fl=-fl'; 

f2 = -f2'; 

% Now build the constraint matrix and vector. The first two rows 

% of AGC and BGC are associated with the static admissibility 

% constraints on rprime. 

AGC = [10 0;-10 0]; 

BGC = [brs;brs]; 

for k = 0:t; 

AGC = [AGC;cg*agAk]; 

BGC = [BGC; 1]; 

end 

for k = 0:t; 

AGC = [AGC;-cg*agAk]; 

BGC = [BGC; 1]; 

end 
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% Solve the linear programs 

XI = lp(fl,AGC,BGC); 

X2 = lp(f2,AGC,BGC); 

% compute the max value of each of the fi(caA(t+l)x) obtained. 

% If all max values are less than zero we are done, and tstar is 

% equal to the current value oft. 

lim(l) = -fl'*Xl-l 

lim(2) = -f2'*X2-l 

end 

tstar = t 

VERT2.M 

% Find the vertices of Xs for example 2, using the 

% 60 rows of the constraint matrix, AGC, as the linear functionals. 

% Must either run ex21p.m to generate the 

% AGC matrix and BGC vector, or load ex2gam.mat. 

format short e 

% Delete the first and second rows of AGC and BGC since these deal 

% with the statically admissible r-prime constraints 

Ag=[AGC(3:60,:)]; 

Bg=[BGC(3:60)]; 

fork =1:58 

c = Ag(k,:)'; 

c(l)=0; 

% lp finds the min, but we want the max. Thus, negate c. 
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c = -c; 

% Note: Use the complete set of constraints in AGC and BGC 

% when performing the LE 

xgstar(:,k)=lp(c,AGC,BGC); 

end 

EDGE2.M 

% Constructs Xs for example 2 using the 

% recursive construction algorithm. Needs xgstar which was generated 

% with vert2.m, and is also stored in ex2gam.mat. 

format short e 

clear 

load ex2gam 

% get rid of the r-prime elements of xgstar 

vta = xgstar(2:3,:); 

% save only unique vertices of Xs which 

vt(:,l) = vta(:,l); 

1=1; 

fork = 2:58; 

for I = 1:1; 

% testxg(:,I) = vta(:,k) - vt(:,I); 

testxg(I) = sqrt((vta(l,k) - vt(l,I))A2 + (vta(2,k) - vt(2,I))A2); 

end 

% testm = min(max(abs(testxg))); 

testm = min(testxg); 
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clear testxg; 

if testm > .001; 

1 = 1+1; 

vt(:,l) = vta(:,k); 

end 

end 

ys=size(vt); 

numv = ys(2) 

numv2 = ys(2)/2; 

% generate first n+1 = 3 hyperplanes using the first n+1 = 3 

% vertices, each hyperplane contains n = 2 vertices 

% al, a2, a3 are row vectors and are actually al', a2' a3' 

% in my notes 

al = [ll]*inv([vt(:,l)vt(:,2)]); 

a2 = [ll]*inv([vt(:,l)vt(:,3)]); 

a3 = [ll]*inv([vt(:,2)vt(:,3)]); 

Ak = [al;a2;a3]; 

Bk = [l;l;l]; 

% keep track of which vertices are in which hyperplanes. 

% Numbers in h refer to columns of vt. Each row of h 

% is associated with the hyperplane of the corresponding rows 

%ofAkandBk. 

h=[12;13;2 3]; 

% Insure vectors are outward pointing 
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clear ch 

ch(l) = al*vt(:,3); 

ch(2) = a2*vt(:,2); 

ch(3) = a3*vt(:4); 

for I =1:3; 

ifch(I)> 1 

Ak(I,:) = -Ak(I,:); 

Bk(I) = -Bk(I); 

end 

end 

% Now construct Xs recursively by adding remaining vertices 

% one at a time. 

% n = no. of states, k = number of vertices included, 

% mk*n = dimensions of Ak 

n = 2; 

k = 3; 

mk = (k-n)*(n-l) + 2; 

%kl = 4; 

forkl =4:numv; 

ckplane = Ak*vt(:,kl); 

Jerror = 0; 

forL2 = l:mk; 

ifckplane(L2)>Bk(L2); 

J = L2; 
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Jerror = Jerror + 1; 

% if Jerror == 1 

% jtest = J 

% end 

end 

end 

if Jerror ~= 1 

error('none or more than one hyperplane failed for new point') 

end 

% Now update Ak, Bk, and h 

forL3 = l:(J-l); 

Akl(L3,:)=Ak(L3,:); 

Bkl(L3,:) = Bk(L3,:); 

hl(L3,:)=h(L3,:); 

end 

forL3=J:(mk-l); 

Akl(L3,:) = Ak(L3+l,:); 

Bkl(L3,:)=Bk(L3+l,:); 

hl(L3,:)=h(L3+l,:); 

end 

% Generate n = 2 new hyperplanes and append new vertices to h 

% This code must be modified for problems with n ~= 2 

% Also verify outward pointing vectors 

Akl(mk,:) = [1 l]*inv([vt(:,h(J,l)) vt(:,kl)]); 
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Akl(mk+ 1,:) = [1 l]*inv([vt(:,h(J,2))vt(:,kl)]); 

Bkl = [Bkl;l;l]; 

chl =Akl(mk,:)*vt(:,h(J,2)); 

if chl > Bkl(mk) 

Akl(mk,:) = -Akl(mk,:); 

Bkl(mk) = -Bkl(mk); 

end 

ch2 = Akl(mk + l,:)*vt(:,h(J,l)); 

ifch2>Bkl(mk+l) 

Akl(mk + 1,:) = -Akl(mk + 1,0; 

Bkl(mk+1) = -Bkl(mk+1); 

end 

k = k+l; 

mk = (k-n)*(n-l) + 2; 

Ak = Akl; 

Bk = Bkl; 

h = [hl;h(J,l)kl;h(J,2)kl]; 

clear Bkl; 

clear Akl; 

clear hi; 

end 

B.2  Script Files for the Fourth Order Problem 

FOURLP.M % Determines the maximal output admissible set for the 4th- 
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% order f-16 model. Implements algorithm 3.2 of Gilbert's 

% first paper. 

% 

% 

% 

% 

% 

clear 

format short e 

% F16 continuous time system and output constraint 

ac = [-1.15 .9937 -0.177 0;3.724 -1.26 -19.5 0; 

0 0 -20 0;0 -1 0 0]; 

bu=[0;0;20;0]; 

br=[0;0;0;l]; 

bc = [bubr]; 

kx=[0.3509 1.1373 -0.9184 -6.6107]; 

kr = -.6 

cc=[0 0 1 0;0 0 -20 0]; 

dc=[0 0;20 0]; 

[ad,bd,cd,dd]=c2dm(ac,bc,cc,dc,0.01,'zoh'); 

% Closed-loop discrete-time system and output constraints 

adcl = ad + (bd(:,l)*kx); 

bdcl = bd(:,l)*kr + bd(:,2); 

ccdcl = [001 0;ad(3,:)-[0 010] + bd(3,l)*kx]; 
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dcdcl = [0;bd(3,l)*kr + bd(3,2)]; 

% Augmented system and HO. Note H0(2)=0 because the actuator rate is zero 

% in steady state. Thus, get rid of garbage in H0(2) by setting it to zero. 

Ag = [1 0 0 0 0;bdcl add]; 

Bg = [l;0;0;0;0]; 

Cg = [dcdcl ccdcl]; 

HO = dcdcl + ccdcl* inv(eye(4)-adcl)*bdcl; 

H0(2)=0; 

% Compute static admissibility constraints and specify epsilon. 

% Note, for this problem HO = [h;0] because the second row 

% of HO is associated with the elevator rate constraints, and 

% the elevator rate is zero in steady state. 

epsi = 0.05; 

brs = (0.44 - epsi)/H0(l); 

% set up LP 

t = -l; 

lim = [l;l;l;l]; 

%while any(lim > 0) 

while all(lim > 0) 

t = t+l; 

% Construct fi(caA(t+1)) for i= 1,2,3,4 Neglecting the bias term 

% We can ignore the bias term for now since maximizing fi(yc) 

% without the bias term gives the same result. But we will use 

% the bias term later in determining the actual max value achieved 
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% for each fi(yc). 

fl=Cg(l,:)*Ag*(t+l); 

f2 = Cg(2,:)*Ag*(t+l); 

f3 = -Cg(l,:)*AgA(t+l); 

f4 = -Cg(2,:)*AgA(t+l); 

% lp finds the min, but we want the max. Also, lp needs 

% f as a column vector rather than a row vector. So negate 

% and transpose each of the fi 

fl=-fl'; 

f2 = -f2'; 

f3=-f3'; 

f4 = -f4'; 

% Now build the constraint matrix and vector. The first two rows 

% of AGC and BGC are associated with the static admissibility 

% constraints on rprime. 

AGC = [100 00;-10 00 0]; 

BGC = [brs;brs]; 

fork = 0:t; 

AGC = [AGC;Cg*AgAk]; 

BGC = [BGC;0.44;.01]; 

end 

for k = 0:t; 

AGC = [AGC;-Cg*AgAk]; 

BGC = [BGC;0.44;.01]; 
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end 

% Solve the linear programs 

XI = lp(fl,AGC,BGC); 

X2 = lp(f2,AGC,BGC); 

X3 = lp(f3,AGC,BGC); 

X4 = lp(f4,AGC,BGC); 

% compute the max value of each of the fi(caA(t+l)x) obtained. 

% If all max values are less than zero we are done, and tstar is 

% equal to the current value oft. 

lim(l) = -fl'*Xl-.44; 

Iim(2) = -£2'*X2-.01; 

lim(3) = -f3'*X3-.44; 

lim(4) = -f4'*X4-.01; 

end 

tstar = t 

VERT4.M 

% Find the vertices of Xs for the 4th-order system, using the 

% 174 rows of the constraint matrix AGC as the linear functionals 

% AGC was generated with four21p.m 

clear 

format short e 

load xg4 

% Delete the first two rows of AGC since these deal with 

% the static admissibility of rprime, and lead to 
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% c_i = 0. 

AG = AGC(3:174,:); 

BG = BGC(3:174); 

% Find the vertex associated with each row of AGC. Also, normalize 

% each linear functional. 

fork =1:172; 

c = AG(k,:); 

c(l) = 0; 

% Normalize the linear functionals 

c = c/sqrt(c(2)A2 + c(3)A2 + c(4)A2 + c(5)A2); 

% lp finds the min, and we want the max. Also, lp 

% wants c as a column vector. So, negate and transpose c. 

c = -c'; 

% Note: Use the complete set of constraints in AGC and BGC 

% when performing the LE 

xgstar(:,k) = lp(c,AGC,BGC); 

end 

EDGE4.M 

% Constructs Xs for the fourth-order f-16 system using the edge 

% recursive construction algorithm. Needs xgstar which was generated 

% with vert4.m, and is also stored in xg4.mat. 

% 

clear 

format short e 

175 



load xg4 

% get rid of the r-prime elements of xgstar 

verts = xgstar(2:5,:); 

% save only unique vertices of Xs, or thin the set of 

% vertices. 

vt(:,l) = verts(:,l); 

1=1; 

% There are 172 elements in verts, but to enforce 

% symmetry, only process the first half 

% Then, append the negative of the selected 

% vertices. The constraints are symetric, so the vertices 

% in xgstar and verts are also symmetric. Also, the vertices have 

% been ordered in verts such that vertices 87 - 172 are the negative 

% of vertices 1 - 86. 

for k = 2:86; 

for I = 1:1; 

testxga = (verts(l,k)-vt(l,I))A2 + (verts(2,k) - vt(2,I))A2; 

testxgb = (verts(3,k)-vt(3,I))A2 + (verts(4,k) - vt(4,I))A2; 

testxg(I) = sqrt(testxga + testxgb); 

end 

testm = min(testxg); 

clear testxg; 

clear testxga; 

clear testxgb; 
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iftestm > 1.5; 

1 = 1+1; 

vt(:,l) = verts(:,k); 

end 

end 

vt=[vt-vt]; 

ys=size(vt); 

numv = ys(2) 

% rearrange vt so that the origin is included in the initial 

% polyhedron. 

vttemp = vt; 

% rearangement for 60 vertices, d = 0.1 

%vttemp(:,2)=vt(:,10);vttemp(:,3)=vt(:,20);vttemp(:,4)=vt(:,30);vttemp(:,5)=vt(:,60); 

%vttemp(:40)=vt(:,2);vttemp(:,20)==^(:,3);vttemp(:,30)=vt(:,4);vttemp(:,60)=vt(:,5); 

% rearangement for 36 vertices, d = 0.5 

% vttemp(:,5)=vt(:, 1 l);vttemp(:, 11 )=vt(:,5); 

% rearangement for 20 and 18 vertices, d = 1.0 and 1.5 respectively 

vttemp(:,4)=vt(:,5);vttemp(:,5)=vt(:,8);vttemp(:,8)=vt(:,4); 

% rearangement for 28 vertices, d = 0.7 

%vttemp(:,4)=vt(:,5);vttemp(:,5)=vt(:,10);vttemp(:,10)=vt(:,4); 

% rearangement for 14 vertices, d = 1.8 

%vttemp(:,4)=vt(:,5);vttemp(:,5)=vt(:,12);vttemp(:,12)=vt(:,4); 

vt = vttemp; 

% generate first n+1 = 5 hyperplanes using the first n+1 = 5 
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% vertices, each hyperplane contains n = 4 vertices 

% al, a2, a3, a4, a5 are row vectors and are actually al', a2' a3', 

% a4' and a5' in my notes 

al = [l 1 1 l]*inv([vt(:,l)vt(:,2)vt(:,3)vt(:,4)]); 

a2 = [l 1 1 l]*inv([vt(:,l)vt(:,2)vt(:,3)vt(:,5)]); 

a3 = [1 1 1 l]*inv([vt(:,l)vt(:,2)vt(:,4)vt(:,5)]); 

a4 = [l 1 1 l]*inv([vt(:,l)vt(:,3)vt(:,4)vt(:,5)]); 

a5 = [1 1 1 l]*inv([vt(:,2)vt(:,3)vt(:,4)vt(:,5)]); 

Ak= [al;a2;a3;a4;a5]; 

Bk=[l;l;l;l;l]; 

% keep track of which vertices are in which hyperplanes. 

% Numbers in h refer to columns of vt. Each row of h 

% is associated with the hyperplane of the corresponding rows 

%ofAkandBk. 

h = [1 2 3 4;1 2 3 5;1 2 4 5;1 3 4 5;2 3 4 5]; 

% Insure vectors are outward pointing 

clear ch 

ch(l) = al*vt(:,5); 

ch(2) = a2*vt(:,4); 

ch(3) = a3*vt(:,3); 

ch(4) = a4*vt(:,2); 

ch(5) = a5*vt(:>l); 

for I =1:5; 

ifch(I)> 1 
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Ak(I,:) = -Ak(I,:); 

Bk(I) = -Bk(I); 

end 

end 

Bk 

ifany(Bk<0) 

Ak 

ch 

error('Bk error') 

end 

% Now construct Xs recursively by adding remaining vertices 

% one at a time. 

% n = no. of states, k = number of vertices included, 

% mk x n = dimensions of Ak 

n = 4; 

k = 5; 

mk= 5; 

nbf=0: 

klf=0; 

failnew(l :5,1:2) = zeros(5,2); 

edges(l:5,l) = zeros(5,l); 

Q1 = 0;Q2 = 0; 

forkl = 6:numv; 

% Check to see if v(k+l) is contained in an existing hyperplane 
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% Also, compute condition numbers of the matrices M_k_i 

hsize = size(h); 

for J= l:hsize(l) 

va = (vt(:,h(J,l)) - vt(:,h(J,2)))/norm(vt(:,h(J,l)) - vt(:,h(J,2))); 

vb = (vt(:,h(J,l)) - vt(:,h(J,3)))/norm(vt(:,h(J,l)) - vt(:,h(J,3))); 

vc = (vt(:,h(J,l)) - vt(:,h(J,4)))/norm(vt(:,h(J,l)) - vt(:,h(J,4))); 

vd = (vt(:,h(J,l)) - vt(:,kl))/norm(vt(:,h(J,l)) - vt(:,kl)); 

psi(J) = cond([va vb vc vd]); 

end 

[maxpsi(kl), hrow(kl)] = max(psi); 

failnew(kl,l) = 0; 

ckplane = Ak*vt(:,kl); 

nf=0; 

clear hf 

clear row 

for I = 1 :mk; 

ifckplane(I)-Bk(I)> le-14; 

%ifckplane(I)-Bk(I)>0; 

failnew(kl,l) = failnew(kl,l) + 1; 

nf=nf+l; 

hf(nf,:)=h(I,:); 

row(nf) = I; 

Q1=Q1 + 1; 

storold(Ql,:)=h(I,:); 
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end 

end 

ifnf < 1 

error('No hyperplanes failed for new vertex') 

end 

% Create the initial hi, Akl, and Bkl matrices by deleting the rows 

% of h, Ak, and Bk that correspond to failed hyperplanes 

mkl = mk - nf; 

forJ=l:nf 

if J== 1 

if row(J)= 1 

hi = h(2:mk,:); 

Akl=Ak(2:mk,:); 

Bkl = Bk(2:mk,:); 

else 

hl=h(l:(row(J)-l),:); 

hi = [hl;h((row(J)+l):mk,:)]; 

Akl=Ak(l:(row(J)-l),:); 

Akl = [Akl;Ak((row(J)+l):mk,:)]; 

Bkl=Bk(l:(row(J)-l),:); 

Bkl = [Bkl;Bk((row(J)+l):mk,:)]; 

end 

end 

ifj> 1 
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if row(J) = J 

hi = hl(2:(mk-J+l),:); 

Akl=Akl(2:(mk-J+l),:); 

Bkl=Bkl(2:(mk-J+l),:); 

elseif row(J) == mk 

hl=hl(l:(row(J)-J),:); 

Akl=Akl(l:(row(J)-J),:); 

Bkl=Bkl(l:(row(J)-J),:); 

elseif row(J) ~= mk 

hl=hl(l:(row(J)-J),:); 

hi = [hl;h((row(J)+l):mk,:)]; 

Akl=Akl(l:(row(J)-J),:); 

Akl = [Akl;Ak((row(J)+l):mk,:)]; 

Bkl=Bkl(l:(row(J)-J),:); 

Bkl = [Bkl;Bk((row(J)+l):mk,:)]; 

end 

end 

end 

% Generate a list of all subfacets associated with failed facets 

clear ha 

clear hb 

hfsort = sort(hf')'; 

11 = 1; 

12 = 1; 
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while II <=nf 

ha(I2,:)=hfsort(Il,l:3); 

12 = 12+1; 

ha(I2,:) = [hfsort(Il,l:2)hfsort(Il,4)]; 

12 = 12+1; 

ha(I2,:) = [hfsort(Il,l)hfsort(Il,3:4)]; 

12 = 12+1; 

ha(I2,:)=hfsort(11,2:4); 

12 = 12 + 1; 

11=11 + 1; 

end 

% Find unshared subfacets (subfacets that only appear once in the list 

% of subfacets) 

hb(l:4,:) = ha(l:4,:); 

Jl=4; 

forl = 5:(4*nf) 

clear ht 

forJ=l:Jl 

htl = abs(ha(I,l) - hb(J,l)) + abs(ha(I,2) - hb(J,2)); 

ht2 = abs(ha(I,3) - hb(J,3)); 

ht(J) = htl+ht2; 

ifht(J) = 0 

if J~= 1 

hbl(l:J-l,:)=hb(l:J-l,:); 
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hbl(J:Jl-l,:) = = hb(J+l:Jl,:); 

else 

hbl(l:Jl-l,:) = = hb(2:Jl,:); 

end 

J1=J1-1; 

end 

end 

ifall(ht~=0) 

J1=J1 + 1; 

hb(Jl,:)=ha(I,:); 

else 

hb = hbl; 

clear hbl 

end 

end 

% Create new hypeplanes from vertices in unshared subfacets and the new vertex 

numedg = size(hb); 

edges(kl,l) = numedg(l); 

failnew(kl,2) = 0; 

for I = l:edges(kl,l) 

a=[l 1 1 l]*inv([vt(:,hb(I,l))vt(:,hb(I,2))vt(:,hb(I,3))vt(:,kl)]); 

Akl = [Akl;a]; 

Bkl = [Bkl;l]; 

hi = [hl;hb(I,l) hb(I,2) hb(I,3) kl]; 
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mkl =mkl + 1; 

Q2 = Q2+1; 

stomew(Q2,:) = [hb(I,l) hb(I,2) hb(I,3) kl]; 

failnew(kl,2) = failnew(kl,2) + 1; 

end 

Ak = Akl; 

Bk = Bkl; 

h = hl; 

mk = mkl; 

clear Akl 

clear Bkl 

clear hi 

end 

yxs = Ak*inv(eye(4)-adcl)*bdcl; 

rssmax = l/max(yxs) 

rssmin = l/min(yxs) 

hsize = size(h); 
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