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Introduction: 

This is the final technical report on AFOSR Grant F49620-95-1-0140 

(January 15, 1995 through May 31, 1998, $418,671). There was a companion 

AASERT  Grant  F49620-95-1-0402 (June 1, 1995 through May 31, 1998, 

$116,936) entitled "Noise Characterization of Devices for Optical Computing" 

under the direction of the same Co-Principal Investigators plus Dr. David J. 

Mehrl. The final report on the AASERT grant is being submitted separately. 

Objectives: 

The major objectives of this research effort were (1) to develop multi- 

level, multi-error-correcting codes suitable for both the binary and non-binary 

operation of optical matrix-vector multipliers, including efficient decoding 

techniques, and (2) to investigate accuracy issues associated with optical 

memory technologies, including photon echoes, and multiplexed holography. 

Another objective in the original proposal, to investigate the noise 

characteristics of advanced optical sources, spatial light modulators, and other 

devices which are candidates for application in optical computers, was shifted 

to the companion   AASERT Grant, F49620-95-1-0402, "Noise Characterization 

of Devices for Optical Computing," running from June 1, 1995 to May 31, 1998. 

Summary of Effort: 

We achieved significant results in two areas: (1) multiple error correction 

codes for optical matrix-vector multipliers and (2) analytical, computer, and 

experimental investigations on noise modelling for photon echo memories. In 

the latter work we collaborated closely with Dr. Ravinder Kachru's group at SRI 



International. This collaboration resulted in both noise modelling and analytical 

calculations by Ph.D. candidate Jin Y. Choi, and experimental investigations, at 

SRI International, undertaken by Mr. Choi and by Dr. X.A. Shen of SRI. The 

results of this work and the earlier work on error coding for OMVM's have been 

submitted for publication.  Two papers related to the photon echo memory noise 

modelling project are included in the Appendix to this report.  Also attached is 

a reprint related to research on the technology of multiplexed holographic 

storage in Bacteriorhodopsin supported by NASA Ames Research Center and 

performed by Dr. Arkady S. Bablumian, a Research Associate in our group. Dr. 

Bablumian is an expert on holographic storage techniques, particularly as they 

relate to optical security issues. 

Details  of Accomplishments/New  Findings: 

See the following summary, written by Dr. J.Y. Choi, for an overview of 

the accomplishments on the photon echo noise modelling project.   We have 

reported earlier on our results relating to multiple error correction codes for use 

in optical matrix-vector multipliers.  Preprints of papers relating to both projects 

are presented in the appendix to this report. 

Overview:  Noise Effects in Photon Echo Memories 

A photon echo memory1, also known as Time Domain Optical Storage 

(TDOS)2, offers the potential of ultrahigh storage density and ultrahigh data 

throughput rates3. A photon echo memory stores information in the spectral 

domain of an inhomogeneously broadened absorbing material in addition to 



the spatial addresses used in conventional two-dimensional optical memories. 

In a photon echo memory, the temporal Fourier transform of the input data 

sequence from a light source emitting at a fixed frequency is written into the 

inhomogeneous absorption profile. To store and to recall the input data 

faithfully, the bandwidth of the input data sequence must, therefore, be narrower 

than the inhomogeneous bandwidth. This requirement on the Fourier transform 

of the input data sequence sets an upper limit for the TDOS read-write data rate 

that essentially equals the inhomogeneous bandwidth of the material. 

In reality, however, the data storage density and data transfer rates are 

further limited by the several kinds of imperfections in the storing and recovering 

processes. For example, the laser, which is used as the light source for a 

photon echo process, has imperfections like the fluctuations in the spectral 

linewidth and intensity, and these provide a noise background which results in 

degradation of the recovered signal. Also, in the photon echo process, we have 

assumed that the atom population and the inhomogeneous absorption profile 

are constant over the entire spectral range. Real materials, however, have a 

variation in local environments due to strains, impurities, dislocations, and other 

imperfections. In these physically realizable situations the atom population at 

each frequency will fluctuate, and this fluctuation will result in noise in the 

recovered signal. Finally, the noise generated by the detector is unavoidable. 

During the period of this grant, we have investigated the noise 

characteristics of a photon echo memory system4. We divided the noise sources 

into three groups. One is the noise which is generated by equipment 

imperfections or current technology limitations. One of the most important noise 

sources in the photon echo memory is the frequency drift of lasers combined 



with the bandwidth limitations of the system. It the bandwidth of the system is 

infinite, then even with frequency drift in the laser, the output will be an exact 

copy of the original signal. For an infinite bandwidth, however, the write/read 

pulses must be delta functions which is impossible in a real experimental 

situation. Therefore, researchers employ several techniques to broaden 

bandwidth as much as possible with limited laser power. For example, a 

frequency chirping technique may be applied to the write/read pulses to 

broaden their bandwidth. Our analysis5 showed that when write/read pulses 

with frequency chirping were used, the system behaves like an ideal bandpass 

filter. We know that other techniques (e.g. phase modulation, data encoding, 

etc.) also introduce bandwidth limitations into the system. These bandwidth 

limitations distort the output of the system. When a laser frequency drift also 

exists, the output becomes even more distorted. According to the analysis6, the 

frequency drift, combined with the bandpass filter effect generates three peaks 

for each kind of data ("0" and "1") in the integrated intensity. Furthermore, these 

peak values depend on the amount of frequency drift of the laser and the 

system bandwidth. 

In practice, the integrated intensity of the output is not an observable 

quantity, because in reality what we can see is the detector output and this 

output is at least contaminated by shot noise. Therefore, we can't always 

observe the distribution of the integrated intensity directly. Analysis of the shot 

noise shows that when the output signal is weak, detector output is smoothed 

by the shot noise, in this case we cannot see any resemblance between the 

integrated intensity and the detector output. When the output echo is strong 

enough to ignore the shot noise effect, then we can see the resemblance 



between the integrated intensity and the detector output. That makes sense 

because we know that if the signal is strong, then the output becomes free from 

shot noise influence. Therefore, we can observe the distribution of the 

integrated intensity indirectly at the detector output if the signal is large enough 

that we can ignore the effects of shot noise. 

Thermal noise is another important factor in the measurement of weak 

signals in the photon echo memory system. As we know, thermal noise is 

Gaussian distributed, and the effect of thermal noise is to make the overall 

noise characteristics Gaussian. That is, if thermal noise is dominant, then the 

output noise is also Gaussian distributed regardless of the characteristics of the 

shot noise. It means that if the thermal noise becomes dominant, the distribution 

of the data also tends to be Gaussian. Our analysis showed that even when the 

output signal is large (i.e., when the shot noise does not affect the output 

distribution), if the thermal noise is strong, then the combined noise has a 

Gaussian distribution for both data "0" and data "1" cases. On the other hand, if 

the thermal noise is weaker than the shot noise, the combined noise possesses 

shot noise characteristics. Generally, the shot noise PDF is close in shape to a 

Poisson distribution for data "0" and to a Gaussian distribution for data "1". 

Therefore, if we measure the output characteristics, we can estimate which 

noise is the dominant noise in the system. 

Atom fluctuations7, which we refer to here as frequency domain noise, 

are not significant in the real experimental environment because other noise 

sources (like laser frequency drift, shot noise, thermal noise, etc.) are much 

more dominant than the noise caused by atom fluctuations. One might ask why 

we analyze it? Because, like shot noise and thermal noise, it is also an 



unavoidable noise source in the photon echo memory in the absence of a 

perfect crystal. Of course, perfect crystal do not exist, and real crystals have a 

distribution of local environments due to strains, impurities, dislocations, and 

other imperfections. Consequently, the number of atoms at each frequency in 

the material will be different and will follow a statistical distribution. This random 

distribution affects the echo output from the photon echo memory system and 

we performed our analysis to determine its effect on the echo output. 

For our analysis, we first needed to know the characteristics of the atom 

fluctuations. However, analyzing the characteristics of the atom fluctuations is 

not easy and, until now (as far as we know), no one has ever analyzed its 

characteristics. We analyzed the cases where the distributions of the atom 

fluctuation were Gaussian, uniform and Poisson distributed. We also 

considered whether the noise is signal-independent and signal-dependent. The 

noise characteristics are also dependent on the properties of the write/read and 

data pulse combinations. We divided each case into three situations: (1) the 

write and read pulses are delta functions; (2) the write pulse is a non-delta 

function but the read pulse is a delta function; and (3) the write and read pulses 

are both non-delta functions. Because there is a Fourier transform relationship 

between the atom fluctuations and the output signal, we first needed to know 

the relationship between the probability density function (PDF) of the atom 

fluctuation and the PDF of the output signal in time. We derived the relationship 

between these two PDFs analytically and also performed computer simulations. 

Based on this relationship, we derived the PDF and the mean and variance of 

the output instantaneous intensity for each special case. 



To find the shot noise effect, we needed to know the PDF of the 

integrated intensity. The integrated intensity is the integral of the instantaneous 

intensity over the pulse time interval. As a numerical approach, we used a 

simulation method to find the relationship between the instantaneous power 

and the integrated power depending upon pulse width for each model. What we 

did in the simulation is as follows: (1) based on the PDF of the instantaneous 

power, we generated the random instantaneous power; (2) we integrated the 

instantaneous power using pulse width; (3) we found the PDF of the integrated 

intensity. The thermal noise was added after the recovered signal went through 

the detector. Since the shot noise is generated at the detector, we can think of 

the thermal noise as being added to the shot noise. Therefore, modeling the 

shot noise and thermal noise together as a sum of two random process, we can 

find the PDF of the output signal from the PDF of two random noises by 

convolving their individual density functions. From the shot noise analysis, we 

found the PDF of the shot noise, and since the thermal noise was assumed to 

be Gaussian distributed, we were able to find the PDF of the echo output quite 

easily. What we need to know for convolution is the thermal noise 

characteristics, that is mean and variance of the thermal noise. The mean is 

generally assumed as zero, so what we don't know is the variance of the 

thermal noise. We assumed several variances for the thermal noise. By finding 

the output noise characteristics for each variance, we showed how thermal 

noise impacts the output noise characteristics for each case. 

The bit error rate analysis5 for the bandwidth showed that the BER 

decreases rapidly when we increase the bandwidth from 1/t to 4/t, where t is the 

data pulse width, however, increasing the bandwidth beyond that does not give 
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much benefit in terms of bit error rate. Therefore, in terms of the bit error rate, we 

conclude that a bandwidth of 4/t is sufficient for accurate echo signal recovery. 

The analysis for the frequency drift6 showed that the frequency drift affects the 

BER greatly when the system bandwidth is comparable to the data pulse 

bandwidth. However, when the system bandwidth is much bigger than the data 

pulse bandwidth, the frequency drift is not a important factor in terms of bit error 

rate. The analysis also showed that when we increase the echo efficiency, the 

means for both data cases increase exactly at the same rate, but the standard 

deviations increase more slowly. That means that if we have a high echo 

efficiency system, we can obtain an improved system performance over the low 

echo efficiency system in terms of the bit error rate. 
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Personnel supported during the grant: 

1. Faculty: 

Dr. J.F. Walkup, Co-Principal Investigator, P.W. Horn Professor 
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Dr. D.J. Mehrl, Co-Investigator, Associate Professor 

2. Research Associates and Graduate Students: 

Dr. Arkady S. Bablumian, Research Associate 

Tankut Caglar, MS student 

Jin-Youb Choi, Ph.D. student 

Note: S. Mark Storrs, a Ph.D. candidate (graduation expected August, 

1998) and U.S. citizen, was supported by the companion AASERT grant. 

3. Secretary: 

E. Gonzales 

Publications: 

Journal Publications: 

Papers Published: 

S.A. Ellett, T.F. Krile and J.F. Walkup, "Throughput Analysis of Digital 
Partitioning with Error-Correcting Codes for Optical Matrix-Vector Processors," 
Appl.Qpt. 34. 6744-6751(1995). 

M. Storrs, D.J. Mehrl and J.F. Walkup,  "Programmable spatial filtering with 
Bacteriorhodopsin," Appl. Optics. 35. 4362-4636 (1995). 

Papers in Press 

D.A. Timucin, J.F. Walkup and T.F. Krile, "Accuracy in Analog Optical 
Processors: Statistical Modeling (in press for J.Qpt. Soc. Am. A). 
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Papers Submitted 

AT. Caglar, T.F. Krile and J.F. Walkup, "Multiple Error-correction Coding for 
Optical Matrix-vector Multipliers," submitted to Applied Optics-Information 
Processing, August, 1997 (currently under revision). 

J.Y. Choi, X.A. Shen, J.F. Walkup and T.F. Krile, "The relationship between 
bandwidth and bit error rate for a photon echo memory with chirped 
write/read pulses," submitted to Applied Optics-Information Processing, 
January, 1998. 

J.Y. Choi, J.F. Walkup, T.F. Krile and D.J. Mehrl, "Relationship of laser 
frequency drift to bit error rate for a photon echo memory,"(submitted to 
Appl.Qptics-lnformation Processing, April, 1998). 

A.S. Bablumian, T.F. Krile, D.J. Mehrl and J.F. Walkup,"M-type Thick 
Holograms in Bacteriorhodopsin Films with a High-Divergence Reference 
Beam," Appl.Qptics-IP, 37,1350-1355 (1998) (related research supported 
by NASA Ames grant). 

Paper in Preparation^ be submitted to J. Opt. Soc. Am. A in 1998 based 
on research completed under AFOSR Grant 91-0192): 

"Accuracy in analog optical processors: limitations and enhancement" 
(D.A. Timucin, J.F. Walkup and T.F. Krile). 

Interactions/Transitions: 

Conferences/Seminars/Briefings 

1. Presented invited colloquium entitled "Performance Enhancement in Optical 
Computing", Penn State University, State College, PA, September, 1995 (J.F. 
Walkup). 

2. Participated in Phoenix, AZ Workshop(March 27-28, 1996) on Data- 
Encoding for Page-Oriented Optical Memories (Drs. Walkup, Krile, and 
graduate student Jin Choi).  Dogan Timucin (NASA Ames) presented a paper 
based on previous Texas Tech AFOSR-funded work relating to statistical 
models for optical 3-plane processors. 

3. Attended SPIE Aerosense '96, Orlando, FL, and presented paper entitled 
"Holographic data storage in bacteriorhodopsin using phase-encoded 
multiplexing and spectrum spreading techniques", April, 1996 (T.F. Krile and 
J.Y. Choi). 

4. Attended SPIE Aerosense '96. Orlando, FL, and presented paper entitled 
"Application of Multiple Error Correcting Binary BCH Codes to Optical Matrix- 
Vector Multipliers" (T.F. Krile). 
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5. Attended SPIE Annual Meeting, Denver, CO and presented paper entitled 
"Multiport Model of a Liquid Crystal Light Valve", August, 1996 (J.F. Walkup and 
M. Storrs). 

6. Participated in panel discussion on Future Directions for Optical Signal 
Processing and Computing, SPIE Annual Meeting, Denver, CO, August, 1996 
(J.F. Walkup). 

7. Presented paper entitled "Noise Modeling of a Photon Echo Memory in the 
Frequency Domain" at the 1996 LEOS meeting in Boston, MA, Nov. 1996 (Jin 
Choi). 

8. Presented poster paper entitled "Laser Noise Analysis for a Photon Echo 
Memory"   at 1997 Gordon Research Conference on Optical Information 
Processing and Holography in Meriden, NH, June, 1997 (J.F. Walkup). 

9. Attended 1997 SPIE Technical Symposium, San Diego, July 1997 (T.F. Krile 
and J.F. Walkup).  J.F. Walkup chaired session, received SPIE Fellow award. 

10. Presented paper "Hologram Multiplexing in Bacteriorhodopsin," OSA 
Annual Meeting, Long Beach, CA, October 1997 (A.S. Bablumian, T.F. Krile, 
D.J. Mehrl, J.F. Walkup). 

11. Presented paper "Noise Characteristics of a Photon Echo Memory," OSA 
Annual Meeting, Long Beach, CA, October 1997 (J.Y. Choi, J.F. Walkup.T.F. 
Krile, and D.J. Mehrl). 

12. Presented paper "Applications of Bacteriorhodopsin for Optical Data 
Storage and Processing,"(invited), LEOS '97, San Francisco, CA, November 
1997(A. S.Bablumian, D.J. Mehrl, T.F. Krile, J.F. Walkup). 

13. Plan to present paper "Holographic Multiplexing in a Multilayer Recording 
Medium", SPIE Vol. 3468. SPIE Annual Meeting, San Diego, CA, July, 1998 
(A.S. Bablumian, T.F. Krile, D.J. Mehrl and J.F. Walkup). 

14. Plan to present paper "Bit Error Rates for a Photon-echo Memory," SPIE 
Vol. 3468. SPIE Annual Meeting, San Diego, CA, July, 1998 (J.Y. Choi, J.F. 
Walkup, T.F. Krile and D.J. Mehrl). 

15. Plan to present paper" Holographic Properties of Bacteriorhodopsin ", OSA 
Annual Meeting, Baltimore, MD, Oct. 1998 (A.S. Bablumian,  J.F. Walkup, T.F. 
Krile and D.J. Mehrl). 

Lab Visits and Other Interaction: 

1. Patent awarded: "Optical Pattern Recognition System and Method for 
Verifying the Authenticity of a Person, Product, or Thing," (US Patent No. 
5,485,312; Jan. 16, 1996; J.L. Homer, B. Javidi and J.F. Walkup). 
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2. Lab visits (by Dr. R. Kachru to Texas Tech and Dr. J.F. Walkup to SRI) to 
establish a working relationship with SRI International researchers working on 
systems analysis/optimization of photon echo memories. 

3. Interacted with Drs. Charles Gary, John Downie and Dogan Timucin(Texas 
Tech Ph.D., 1995) of NASA Ames, and Dr. Dan Smithey of Bend Research on 
holographic data storage in Bacteriorhodopsin films (Drs. Walkup, David Mehrl, 
Ph.D. candidate Jin Choi and Research Associate Dr. Arkady Bablumian). 

4. Visited SRI International and participated in experiments designed to 
characterize laser noise processes associated with photon echo data storage, 
March, 1997, June-July, 1997 (Jin Choi). Preprint of paper resulting from 
experiments in Appendix. 

Transitions 

Dr. X.A. Shen and Dr. Ravinder Kachru from SRI International worked with us to 
optimize the systems aspects of photon echo memories. We suggested 
experiments which were performed at SRI for the purpose of modelling the 
noise properties of photon echo memories. Dr. Dan Smithey from Bend 
Research interacted with us for the purpose of improving BR films for holo- 
graphic data storage. We also interacted with Drs Charles Gary, John Downie 
and Dogan Timucin at NASA Ames Research Center to share data on BR 
recording techniques. We have also interacted with Dr. Henryk Temkin from 
Texas Tech  on measurements of the noise characteristics of optical devices. In 
summary we have had a significant number of researchers interested in our 
research projects under the AFOSR grant and the companion AASERT grant. 

New Discoveries, Inventions or Patents:   No inventions or patents during 
this funding period on material directly related to this project. 

Honors/Awards: 

John F. Walkup: Fellow of IEEE , OSA and SPIE, P.W. Horn Professor of 
Electrical Engineering at Texas Tech University. 

Thomas F. Krile: Fellow of Optical Soc. of America. 

In addition, Drs. Walkup, Krile, and Mehrl have each won a significant number 
of research and teaching awards at Texas Tech University. 
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April, 1998. 
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5. A.S. Bablumian et al., "M-type thick holograms in bacteriorhodopsin films 
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Multiple error-correction coding for optical matrix-vector 

multipliers 

A. Tankut Caglar, Thomas F. Krile, and John F. Walkup 

Abstract 

Application of multiple-error-correction codes to optical matrix-vector multipliers 

(OMVM's) can improve the accuracy of these processors. Two different error-correcting 

codes are examined; binary, multiple-error-correcting Bose-Chaudhuri-Hocquemghen 

(BCH) codes and non-binary, multiple-error-correcting Reed-Solomon codes. The 

advantages and disadvantages of using binary BCH codes versus non-binary Reed- 

Solomon codes are investigated. Based on the results obtained from the simulations, the 

conditions under which the use of error-correction coding is feasible in optical matrix- 

vector multipliers are discussed. 

Key words: Optical computing, error-correcting codes, accuracy enhancement 

1. Introduction 

An optical matrix-vector multiplier (OMVM) is one specific type of optical linear 

algebra processor (OLAP) that is capable of performing matrix-vector multiplications.1 

During matrix-vector operations, vast amounts of data are manipulated in these 

processors; consequently, even a small amount of error may cause a large inaccuracy in 

the end result. When the low accuracy level of OLAPs is also considered, it becomes 

important to apply some type of error detection/correction technique to optical processors 

1 



in order to increase their reliability. A number of researchers2'3,4,5 have investigated the 

application of error detection/correction codes, normally used for information 

transmission and data storage, to various types of optical computational systems, 

including OMVMs. 

Single-error-correction codes have been previously applied to these structures by 

Ellett et al. and results demonstrating the improvement gained in the process have been 

summarized in several related papers.6'7,8 Little effort, however, has been spent on the 

application of multiple-error-correcting codes to these multipliers9. Single-error- 

correcting codes improved the performance of these structures to some extent and 

multiple-error-correction techniques hold the promise of providing even more 

improvement. An overview of the model used for applying error coding to noisy 

computational systems is given in Section 2. 

In a previous paper, the application of binary, multiple-error-correcting BCH 

codes to modulo-2 OMVM's was investigated.9 A two-error-correcting (15,7) BCH code 

was applied, and the results obtained were then compared to the three-error-correcting 

(15,5) binary BCH code. Simulations were performed both for signal-independent and 

signal-dependent noise in either the matrix A or the vector x of the computation y = Ax. 

Also the limitations in applying this code were pointed out in order to build the 

background necessary for choosing a new, improved code. Summary results ofthat paper 

will be shown in Section 3 for comparison purposes. 

In this paper, the error-correction code applied to modulo-m OMVMs is the non- 

binary multiple-error-correcting Reed-Solomon (RS) code. Reed-Solomon codes are 

shown to correct more errors for a fixed message and code word length than the binary 

2 



BCH codes. This enhancement is purchased at the cost of the non-binary arithmetic 

involved in the encoding and decoding algorithms. However, these operations can be 

easily implemented with various electronic structures. In this case again, two different 

RS codes were simulated; the first being a four-error-correcting (15,7) RS code and the 

second being a five-error-correcting (15,5) RS code. The lengths of the code word vector 

and the message vector were chosen to be the same as those used for the BCH codes in 

order to be able to make a better and more appropriate comparison between them. The 

improvement that these codes supplied is presented with detailed discussions and figures 

in Section 4. 

2. Error-Correction In Optical Matrix-Vector Multipliers 

Application of error-correction codes to optical linear algebra processors is one 

technique proposed to overcome the low level of accuracy from which these architectures 

suffer, and to increase their reliability. Optical matrix-vector multipliers, which are a 

subclass of optical linear algebra processors, are usually designed to perform the 

following matrix-vector multiplication: 

y = Ax (1) 

where y is an mxl vector, A is an mxn matrix and x is an nxl vector. In order to apply 

error-correction to this multiplication, the above equation must be encoded so as to obtain 

a new, coded y vector which is dimensionally larger than the original result of this 

multiplication. The redundancy added to the y vector will help us to correct errors in the 

result, if any occur. 



In order to understand the encoding process better we will proceed in reverse 

order through the algorithm. If we wanted to directly encode the resultant y vector 

without dealing with the multiplication process, we would use the generator matrix 

approach, as described in the following equation 

yc = Gy (2) 

where yc represents the encoded vector and G is the generator matrix associated with the 

code. If we make the substitution in Equation (1) for y, we get 

yc = Gy = GAx = Acx (3) 

where Ac is the encoded matrix. We note that for the encoding process we need to 

encode the A matrix by pre-multiplying it with the appropriate generator matrix. Then 

the matrix-vector multiplication is carried out in the usual manner and at the end the 

resultant coded output vector is decoded to correct any errors that have occurred during 

the multiplication process. This procedure is explained in Figure 1. 

In determining the performance improvement of an optical matrix vector 

multiplier employing some kind of error-correction code, several models for the noise 

present in the optical processor have been used. In this paper we considered basically 

four different cases for the noise present in the OMVM: 1) Signal-independent noise 

present in matrix Ac only; 2) Signal-independent noise present in vector x only; 3) 

Signal-dependent noise present in matrix Ac only, and 4) Signal-dependent noise present 

in vector x only. 

For the case of noise present in matrix Ac, each entry ay in Ac is replaced by a 

noisy entry as follows; 



äiJ = a,J(l + nij) + mu (4) 

where / = 1,2,3,...,/-, andy = 1,2,3,...,c. Here r is the number of rows in the Ac matrix 

and c is the number of columns in the same matrix. In the above equation ny and my are 

zero mean Gaussian random variables with the same standard deviation, ex. These 

random variables are assumed to be jointly statistically independent. If the noise added is 

to be signal-independent, then ny is set to zero. In the case of noise present in vector x, 

the same conditions apply to the elements of the vector. 

3. BCH Codes 

The properties and encoding/decoding procedures associated with BCH codes 

were presented in Ref. 9 and the results of applying these codes to a modulo-2 OMVM 

will be reiterated here for a comparison to the Reed-Solomon codes of the next section. 

In all the simulations reported in this paper, encoding, decoding and error-correction 

procedures were considered to be noiseless. The dimensions of the A matrix were 

different in each simulation depending on the dimensionality of the error-correction code 

used in that particular simulation. However, since the dimensionality of the error- 

correcting code affects only the number of rows of the A matrix, the number of columns 

in all the simulations was held fixed at five. For example, when (15,7) BCH codes were 

simulated, the dimensions of the A matrix were 7x5, and when the (15,5) BCH code was 

used, those dimensions were 5x5. The dimension of the multiplier vector x was fixed at 

5x1 for compatibility. 

The simulations were performed as follows: in the case of signal-independent 

noise in matrix A for example, first a random x vector and a random A matrix were 



formed. Then, noise of a fixed standard deviation was added to each element of the Ac 

matrix, after which the result was thresholded back to a binary, but noise, matrix. The 

product yc = Acx was formed arithmetically and, after thresholding to binary and 

decoding, the decoded result was compared to the original result. If all output 

components matched, that trial was marked as correct, otherwise it was marked as wrong. 

This procedure was repeated for various standard deviations of the noise. In each case 

the number of trials was 500 minimum. Finally, the probability of correct detection 

(PCD) was plotted versus the standard deviation of the noise. 

In this part of the research, two different binary BCH codes were simulated. The 

first was the (15,7) BCH code which is capable of correcting two errors. This code 

encodes 7 bits of an information vector into a 15-bit code word vector. The second code, 

a (15,5) binary BCH code, was better than the first in the sense that it can correct three 

errors instead of two. However, in this case one has to sacrifice the number of 

information bits that can be encoded. Thus, this code can encode a 5-bit information 

vector into a 15-bit code vector but can correct three errors. This is the usual trade-off 

encountered in error-correction coding. 

Figure 2 shows the improvement obtained when there is signal-independent noise 

added to the A matrix. It can be observed that the three-error-correcting code supplied a 

better improvement than the two-error-correcting case. Figure 3 shows the results for the 

signal-dependent case. The use of error correction codes still provides improvement in 

the signal-dependent case when the data processed is binary. However, it will be seen 

that this is not the case when the data processed is non-binary. 



In Figure 4, the results for signal-independent noise added to the x vector are 

plotted. Due to the high correlation between the input vector noise and the output vector 

noise, the use of error correction codes provided almost no improvement. Likewise 

Figure 5 shows that again no enhancement is obtained when the noise in the system is 

signal-dependent. Thus, the input vector to an OMVM must be very noise-free for good 

system performance. 

4. Reed-Solomon Codes 

Reed-Solomon (RS) codes are non-binary codes; therefore, each code word 

symbol becomes a string of bits when transmitted across a binary channel. In case of a 

noise burst, which corrupts several consecutive bits on the channel, these bit errors are 

trapped within a small number of non-binary symbols. As opposed to correction of a 

long series of bits, Reed-Solomon codes need to correct only a few symbols for correct 

detection. These codes have been used extensively in many electronic information 

systems and have been proposed for use in optical memories.10 

Reed-Solomon codes can be viewed as sets of algebraic curves defined by 

polynomials with a limited range of degrees. The degree limitation allows recovery of 

the complete curve even when the graph is assumed to be erased at many points. The 

relation of this idea to error control and correction in noise-corrupted digital channels is 

well known. These codes actually are a special subclass of generalized BCH codes. An 

(n,k) primitive RS code defined in the Galois field GF(2m) has code words of length 



n = 2m-l (5) 

where m is a positive integer, n is the number of code words symbols and k is the number 

of message symbols. 

Because an RS code is, in one sense, a special case of the BCH codes, one can 

construct its generator polynomial, g(x), in the same way as one constructs the g(x) for 

any other BCH code. In this case, however, g(x) can be factored completely into linear 

factors. Unlike BCH codes, RS codes have not been tabulated as a special class. The 

generator polynomial of the code is 

n-k-l 

g(x)=Yl(x + ah+i), (6) 
/=o 

where a is a primitive element in GF(2m) and h is an integer constant. Different 

generating polynomials are formed with different values for h; in practical applications by 

carefully choosing the constant h, the circuit complexity of the encoder and decoder can 

be reduced." In the rest of the discussion presented here, however, only the h = 1 case is 

considered. In this case the generator polynomial g(x) is 

g(x) = "fl(x + ct+i) 
;'=0 

(7) 

= (x + a){x + c?){x + c?)...{x + cOO + a2')- 

Expressed in another way 

g(x) = g0+glx + g2x
2+...+gn_k_lx"-k-1 +gn_kx"-k. (8) 

The above equation can be obtained from Equation (7) by first expanding it and 

then reducing it by using the arithmetic rules defined by the primitive polynomial over 

GF(2m). 



A. Encoding 

Encoding of RS codes can be done in many ways, such as by polynomial division, 

encoding in the frequency domain, and encoding using a Cauchy matrix or encoding 

using a generator matrix. Here only two of these encoding algorithms will be discussed, 

namely encoding by polynomial division and encoding using a generator matrix. 

In the polynomial division method, a code word can be obtained in systematic 

form by adding n-k (=2t) parity-check symbols to the data symbols, where t is the number 

of symbols which can be corrected. Using polynomial notation, we can write the code 

word, v(x), as 

v(x) = p(x) + x'-ki(x), (9) 

where 

2(-l 

/?(*) = 5>,x' (10) 
i=0 

is a polynomial over GF(2m) of degree 2t-\ or less and i(x) is the data word. The parity 

symbols are chosen such that v(x) is divisible by the generator polynomial g(x), i.e., 

p(x) = Rg{x)[x"-ki(x)], (11) 

where i?gW[-] denotes the remainder after division by g(x). 

Thus the encoding of an RS code can be performed using the following algorithm; 

pre-multiply data polynomial i(x) by xn~k, obtain p(x) as defined in (11), combine p(x) 

and xn~ki(x) to obtain code word v(x) as indicated in (9). 

In the generator matrix method, the procedure is the same as that for BCH codes.12 

First we need the generator polynomial for the code. Previously it has been shown that 

the generator polynomial for an RS code can be obtained as 



n-k-l 

g(x)=Y[(x + aM) 
i=0 

(12) 
= {x-d)(x-c?)(x-c?)...(x-c?'-x){x-a2') 

which can also be expressed as 

g(x) = & + glX+g2x
2 +... +gll_k_lx'-k-' + g„_kx"-k. (22) 

In this case the generator matrix can again be constructed as in the BCH code case 

as follows: 

Gk.va - 

on—it  on—Jt—1        * * 

0       ft-* gn-k-\       ■ 

0 0        gn-k gn-k-i 

&   &   a   &   o    o    o o o 
•    &   &   ft   &    o    o o o 

•     ft    gi    g\    go    o o o 
  0 0 

  0 0 

ooooo   gn_kgn_k_x   . 

0 

ft   ft    ft   ft 

B. Decoding 

There are many decoding algorithms developed for RS codes such as syndrome 

based decoding, algebraic decoding and transform decoding. Here we will only be 

interested in syndrome-based decoding. For the RS codes it is necessary to compute not 

only the error locators but also the amount of error; in other words, error values, 

Yk, k = \,2,...,2t. Therefore, decoding of RS codes includes all the steps required to 

decode BCH codes and another step to find the error values.13,14 

C. Computer Simulations 

In this part of the research, simulation results obtained for the determination of the 

performance of Reed-Solomon codes, applied to optical matrix-vector multipliers, will be 

10 



presented.   The same noise scenarios discussed in the previous section for BCH code 

simulations apply here also, with computations being performed modulo-16. 

In this work, we simulated two RS codes. One was a four-error-correcting (15,7) 

code, i.e., (n,k,t) = (15,7,4) RS code. Note that the length of the code word vector and 

that of the message vector are the same as for the (15,7) binary BCH code; however, in 

this case the code is capable of correcting four errors rather than only two. The other 

code was a five-error-correcting (15,5) code, i.e., (15,5,5) RS code. Again note that the 

number of correctable errors in this case is two more than that in the BCH case. This 

increase in the number of correctable errors comes from switching from a binary code to 

a non-binary code. Also, in Reed Solomon codes there is much more flexibility in 

choosing the length of the message and code word vectors. The same matrix and vector 

dimensions as in the case of the BCH codes were used in these simulations. One 

additional feature is that the root-mean-square (RMS) error, normalized by the y vector 

magnitude, was used along with probability of correct detection as a measure of the 

quality of the decoded result vector. 

Figures 6 and 7 show the improvement achieved when there is signal-independent 

noise added to the matrix A. The perfect right-shift of the curves indicates the success of 

the code applied over that specific region of standard deviation of noise. Figures 8 and 9 

present the results for signal-dependent noise corrupting matrix A. We can still observe 

the perfect shift of the curves but this time the standard deviation of noise range is almost 

ten times smaller than in the signal-independent case. This means signal-dependent 

noise, when working with non-binary data, degrades the performance of the code 

seriously. 

11 



In Figures 10 and 11, the improvement obtained when signal-independent noise is 

present in the x vector is shown. Again, there is no gain obtained by the use of error 

correction codes for this situation, just like the case for binary BCH codes. Figures 12 

and 13 show the case for the signal-dependent noise in x. One can notice that, once 

again, the standard deviation of noise range is much smaller than that for the signal- 

independent case. 

5. Conclusions 

The results presented here show the error performance enhancement that can be 

obtained in OMVMs by using binary and non-binary multiple-error-correction codes. In 

both cases it was shown that error-correction codes performed much better with a 

noiseless input vector and when the noise in the system is signal-independent. Although 

signal-dependent noise did not degrade performance very much over that of signal- 

independent noise for binary BCH codes, it was found that in the non-binary case it 

significantly decreased the enhancement that the code provided. However in the binary 

BCH code we could not achieve a great flexibility in choosing message and code word 

lengths. That is, the message vector length was known only after one has decided on the 

code word length and on the number of errors to be corrected. The performance of the 

code was directly proportional to the number of correctable errors. These limitations, and 

the restriction to modulo-2 arithmetic of the binary BCH code, were overcome by 

switching to a non-binary Reed-Solomon error-correction code. 

12 



The main result of using non-binary Reed-Solomon codes was a gain of flexibility 

in the construction of the dimensions of the matrix and vector and also a gain in the 

enhancement of error correction performance. From the plots of probability of correct 

detection and RMS error vs. noise variance, it can be seen that these codes provided 

much better improvement in a much wider range of standard deviation of noise for the 

signal-independent case than the BCH codes. However, although these codes performed 

better than BCH codes, in the signal-dependent noise case the degradation in the 

efficiency of the code was significant. This was due to the fact that noise inserted into the 

system was being amplified by the non-binary elements of the signal. This was the major 

drawback of these codes, since they extensively restricted the range of the standard 

deviation of the noise for which accuracy improvement was possible in the presence of 

signal-dependent noise. 
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Figure 1 Application of error-correction to optical matrix-vector multipliers. 
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The photon echo memory requires a write/read pulse with infinite bandwidth for 

accurate echo data recovery. The infinite bandwidth implies a delta-function pulse in the time 

domain, however, which is impossible to achieve experimentally. Instead, several techniques 

are used. One popular method is to use chirped write/read pulses to generate a pulse with as 

broad a bandwidth as possible. The chirped write/read pulse has a much larger bandwidth than 

does an unchirped pulse. However, the bandwidth is still comparable to the data pulse 

bandwidth and this limits the accuracy of the echo signal recovery. In this paper we formulate 

a model for the photon echo system which uses a chirped write/read pulse and we analyze the 

effect of its finite bandwidth on the echo signal using a statistical noise model. We also 

analyze the effect of echo efficiency on the echo output signal. 

Keywords : photon echo memory, frequency chirping, noise model 

1. Introduction 

Among optical memory techniques, there are two schemes which have received the most attention 

to date, namely, Frequency Domain Optical Storage(FDOS) and Time Domain Optical Storage(TDOS). 

A particularly attractive feature of time-domain and frequency-domain optical storage is the ability to 

store many bits of information in a diffraction-limited spot(1) thereby dramatically increasing the data 

storage density. In FDOS, the reading and writing are performed in the frequency domain; i.e. a 

narrowband laser beam is frequency scanned across the sample's inhomogeneous line, spectral holes are 



written at those frequencies where "l"s(or "0"s) are desired, and the written data are read out by again 

scanning a narrowband laser and detecting the changes in the sample's transmission. The optical 

frequency or wavelength at which holes are burned is used to encode digital information where, for 

instance, the presence of a hole at a particular optical frequency may be used to encode a digital "1" and 

the absence of a hole a digital "0" or vice versa. In FDOS, it has been implicitly assumed that in all cases 

the writing and reading times for a single bit are longer than the homogeneous dephasing time of the 

transition, T2, so that a rate equation analysis can be used to describe the kinetics of the laser-material 

interaction. Due to the additional use of the frequency dimension, multiple bits can be stored in one laser 

focal volume, yielding areal densities several orders of magnitude higher than those obtainable with 

conventional optical or magnetic storage. 

In TDOS, on the contrary, the temporal Fourier transform of the input data sequence is written into 

the inhomogeneous absorption profile. Data are encoded by means of temporal modulation onto the 

waveform of a finite duration data beam. A single spatial location is illuminated by this beam together 

with a reference beam. The two beams act to record the Fourier transform of the data beam's temporal 

envelope into the spectral absorption profile. Individual bits are not localized to a specific spectral 

channel; instead, they are stored throughout a region of spectral-addressing space. Extended spectral 

storage of bits eliminates the speed limitation intrinsic in FDOS. In TDOS, to store and recall the input 

data faithfully, the Fourier transform of the input data sequence must be narrower than the 

inhomogeneous bandwidth. This requirement on the Fourier transform of the input data sequence sets an 

upper limit for the TDOS read-write data rate that essentially equals the inhomogeneous bandwidth of 

the transition. 

To record and recover data accurately, there are several assumptions to be satisfied(}. They are (1) 

the pulse data obeys the constraint 0Ob(o)) <1 for all oo, where 90b(<ü) represents the area of the object 



pulse; (2) the write and read pulses are sufficiently short to have uniform spectral components over the 

region where 0ob(©) is appreciable; and (3) over the same spectral region, the absorption profile is 

essentially constant(and close to its maximum value). In reality, however, those three conditions cannot 

be completely satisfied because of technical limitations. For example, to excite the atoms uniformly over 

the wide spectral region, the write pulse must have a short duration and sufficient power at the same 

time. These conflicting conditions will be compromised in practice and this creates a non-ideal situation 

for actual echo experiments. In this paper, we formulate a simple model for the experimental situation 

including noise and, by analyzing this model, derive the output signal characteristics. Finally, we 

compare the analytical and simulation results. 

2. Photon echo noise model 

A conceptual view of the photon echo technique is shown in Fig. 1. The recovered echo signal is 

expressed as 

Eecho(t) = a ff'{E,*(/)E2(/)E3(/)} (1) 

where a is the overall attenuation of the photon echo system, ^"' is the inverse Fourier transform, Ei (/) 

is the complex conjugate of the Fourier transform of the write pulse, E2(/) is the Fourier transform of the 

data pulses, and E3(/) is the Fourier transform of the read pulse, respectively. As described in Fig. 1, the 

echo signal is the convolution of the data pulses with the correlation of the write and read pulses. To 

simplify the equation, let's replace Ei*(f)E^(f) with H(/), so that 

Eecho(t) = ai-'{H(/)E2(/)} (2) 

Now, using the transfer function concept, we can represent this system as in Fig.2. 

In actual signal recovery, noise is another important factor to be considered. There are several 

kinds of noise sources in the photon echo experimental environment. These include noise from laser 



' phase fluctuations, laser intensity fluctuations, material imperfections, electronic circuit noise, etc. 

Depending on the situation, some noise sources are dominant while others maybe negligible. In our 

model we assumed that the echo intensity is very low and the dominant noise source is shot noise from 

the photodetector. The total system including the noise is shown in Fig. 3. 

As is well known, shot noise is based on the fundamentally random interaction between light and a 

detector. By Mandel's formula(3), if we know the distribution of integrated intensity(4) at the input to a 

photodetector, we can estimate the distribution of the output of the photodetector by 

P(K) = i;(J^e-y-Pw(W)dw (3) 

where P(K) is the probability of observing K photoevents in the time interval (t,t+ r), y=r\/h v , where h is 

Planck's constant (6.626196xl0"34 joule-sec), v is the mean optical frequency of the radiation, the 

quantum efficiency, r\, represents the average number of photoevents produced by each incident photon, 

W is the integrated intensity in the time interval (t,t+r), and pw(W) is the probability density function 

(PDF) of the integrated intensity. 

Based on this model, we first find the system transfer function composed of chirped write/read 

pulses(5), H(co) and using the transfer function and arbitrary input data, we will evaluate the integrated 

intensity at the input to the detector. Then, using Mandel's formula, we estimate the probability density 

of the output signal as degraded by shot noise. Finally, by summing the two noise components, we 

estimate the probability distribution of the echo output signal. 

3.  The analysis 

The transfer function of the system, H(/), is represented by the product of write and read pulse 

spectra, that is, Ei*(f)E^(f). The photon echo memory requires write/read pulses with infinite bandwidth 

for accurate echo data recovery as can be seen from Eq. (1). In an experimental situation, however, it is 



not possible to generate a pulse with infinite bandwidth. Instead, we may use various techniques to 

generate a pulse with as broad a bandwidth as possible. Frequency chirping is one such technique. 

Frequency chirped write and read pulses can be expressed, respectively, as in Eq. (4), 

Ei(t)= rect(-^-)cos(2^f0(t-t,) + 7tk(t-t1)
2) 

E3(t) = rectO^3-) • cos(27tf0(t -13)+7ik(t -13 f), (4) 

where Ei(t) is the write pulse, E3(t) is the read pulse, k is the chirp rate, in Hz/sec, and T is the chirp 

duration. The instantaneous frequency changes in a linear fashion from f0 - kT/2 to f0 + kill. The net 

frequency sweep, A= kl, is the difference in these two values. To find the transfer function, we first find 

the Fourier transform of each pulse. These are given by, 

2 (5) 

E,(f)--e-j2rf,'[C;2 exp^«^0'^21dt + J_™   exp-J2*'^0"*2'dt] 

The second integral of each pulse essentially defines the spectrum at negative frequencies and has 

the same distribution for the positive frequencies. Also, if fo/kt is sufficiently large, the spectrum of each 

side will not overlap. Therefore, if we have the distribution for positive frequencies, we can obtain the 

distribution for negative frequencies also. Calculating the first integral, we obtain 

B1(f) = |e-J2rf-A^e^Cr0"> {CCV^C^ + ^-^^ + j-SCV^kC^ + ^-^W+CCV^kcl-^1)) (6.1) 

+ j-S(V2ke-^-^))}, 
2       k 

.*(fo-02 

E3({) = le-^^±/ \     {C(V^(l + ^)) + j.S(V2l(| + ^))+C(V2T(|-^)) 

+ j-S(V2k(^-\-f-))}, 2       k 

(6.2) 

where 



C(x) s }0
xcos-z2dz and S(x) = |0

xsin-z2dz (7) 

are the Fresnel integrals(6). The transfer function derived from Eq. (6-1) and (6-2) is given by, 

H(f)=EI*(f)E3(f)=-i-e-J2'rf(t'-,')[{C(z2) + C(z1)}2 + {S(z2) + S(Zl)}2], (8) 
8k 

where 

Z2=V2k(- + ^-)   andZ,=V2k(--^-^). (9) 

Using the fact that the frequency shift is Af = kT, the arguments Zj and Z2 will be 

zu.^1±^!>,. (10) 

Inspection of (10) shows that Af «T is the only auxiliary variable present besides the frequency 

deviation, i.e. (fo-f)/ Af. This product is called the dispersion factor and is denoted by D(7). Figs. 4, 5, and 

6 show the system transfer function for several values of the dispersion factor and frequency deviation. 

Qualitatively, these curves show that, as the dispersion factor is increased, the spectrum shape 

becomes more nearly rectangular, with a total bandwidth approaching Af. In a real experiment we can 

make D large, generally much greater than 100, so we will assume that the transfer function 

approximates an ideal bandpass filter, that is, 

H(f)= rect(-^), (11) 
JD 

where fc is the center frequency of the bandpass filter and B=Af is the bandwidth of the filter. 

Now, we will find the echo signal characteristics. From Eq. (2), we know that the echo signal is 

the convolution of the transfer function and data signal. When the data is just a single pulse, the echo 

signal will be a pulse smoothed by the transfer function. The echo pulse smoothness depends on both the 



data pulse width and the transfer function bandwidth. When the data pulse is a string of multiple bits, the 

echo signal may be described by, 

Eecho(t)l =a£Ei •rect(-^^)*sinc(B(t-ti)), (12) 
i=i T 

where a is the attenuation constant, Ej is the amplitude of each pulse, x is the data pulse width, and * 

denotes convolution. For the pulse series, we expect interference between adjacent pulses. That 

interference will depend on the input data distribution. Therefore, when we know the data distribution, 

we can calculate the integrated intensity of the echo signal exactly. 

The integrated intensity W(t0) at the input of the photodetector can also be calculated from Eq. 

(12). That is 

l0+T/2     N       N t-tj+r/2 t-tj+r/2 

W(t0) = a2   j    £ iTEiEj    J        JsincCBCx-t^sincCBCy-t^dxdydt . (13) 
t0-T/2    i=l     j=l t-tj-r/2 t-trr/2 

Using Eq. (13), we can calculate the integrated intensity for each input pulse. From that, we can 

derive a PDF for the integrated intensity. To find the output distribution caused by shot noise, we use 

Mandel's formula(3) as described earlier. 

In the photon echo detection system, there are many kinds of noise, such as shot noise, dark 

current noise, thermal noise, etc. Among those noise sources, depending on the detector which is used for 

the detection, there will be a dominant noise. In general, when pin photodiodes are used, the dominating 

noise currents are those of the detector load resistor (the thermal current) and the active elements of the 

amplifier circuitry. For avalanche photodiodes the thermal noise is of lesser importance, and the 

photodetector noise sources usually dominate<8). The principal noise sources associated with 

photodetectors are shot noise, dark current noise, and surface leakage current noise. Here, we assume that 

the shot noise is the dominant noise, and find the relationship between the bandwidth, echo efficiency, 



and output characteristics. The number of photoevents, which is related to the bandwidth and echo 

efficiency of the system, has a different PDF for each combination of bandwidth and echo efficiency. 

Ideally, if the bandwidth is infinite, the integrated intensity has a Dirac-delta function PDF, and the 

number of photoevents will be Poisson distributed by Eq. (3). When the bandwidth is finite, the 

integrated intensity for each data pulse will be different, and the number of photoevents will deviate from 

the Poisson distribution. Fig. 7 shows a typical distribution of the number of photoevents for a specific 

bandwidth. 

To find the relationship between the bandwidth and the number of photoevents, first we find the 

relationship between the bandwidth and the integrated intensity. As was mentioned earlier, the integrated 

intensity for each data will be different from data to data depending on the pulse position and adjacent 

pulses. Theoretically, the effect on a particular data pulse comes from all other pulses in the pulse train, 

but in reality, the major effect comes from the adjacent pulses. Here, we analyze the impact of the 

adjacent pulses only (Fig. 8). For three pulses, the input data is expressed by 

t-(tn-T) t-t0 t-(t0+T) „ ^ 
x(t) = x0 • rect( -^ -) + x. • rect( -) + x, • rect( — ), (14) 

XT' X 

where x0, xi, and x2 can be either "0" or "1" depending on the data sequence. The equations for the 

relationship between the bandwidth of the system and the integrated intensity for every case can be 

found in [9]. Table 1 shows the relationship between the bandwidth and the normalized integrated 

intensity for all eight data cases. 

For the analysis of the output, it might be convenient to approximate the PDF by a known 

distribution. Fig. 9 shows the original distribution and a Gaussian curve approximation for each data 

(data "0" and data "1"). As we can see in Fig. 9, the Gaussian approximation of data "0" is not 

particularly good but the approximation of data "1" is very close to the original distribution. The 



Gaussian approximation is made for the purpose of calculating the bit error rate for each bandwidth and 

echo efficiency combination, and we are more interested in whether the tail approximation is good or 

not. As we can see, the tail of the Gaussian curve for data "0" is slightly lower than the original curve 

while the tail of the Gaussian curve for data "1" is slightly higher than the original distribution. 

Therefore, we can assume that errors from the approximations can be compensated and that the 

calculation of a bit error rate from the approximated Gaussian curve will be accurate enough for the 

original distribution. 

To calculate the mean and variance of the photoevents, we use Eq. (15)(4). 

K = )W,        <yK
2=fü + 72<?w2 (15) 

where K is the mean of the number of photoevents, W is the mean of the integrated intensity, CTK is the 

variance of the number of photoevents, and aw2 is the variance of the integrated intensity. If we assume 

the equiprobable data cases, we can find the mean and variance of the normalized integrated intensity 

directly from the relationship between the bandwidth and the normalized integrated intensity using the 

relationships 

Mm+M„,+Mm+M, _       L00   '   +yx01    ■   ±TJ-Q2   '   ^,x03 

0   _ A 
^o2=E(M0l-m0)

2 

(16) 
M,0 + M„+M12+M,3 2     ^ 

* i=l 

where m0, and mi are the means of the normalized integrated intensity for data "0" and data "1", 

respectively, M;; is the value from Table 1, while o0
2 and o\2 are the variances of the normalized 

integrated intensity for data "0" and data "1", respectively. 

To calculate the bit error rate for each bandwidth and echo efficiency combination, we first 

calculate the mean and variance of the integrated intensity for the data "0" and data "1" cases. Bacause 

we know the relationship between the bandwidth and the normalized integrated intensity, if we know the 



bandwidth of the system and the real power of the output, we can then calculate the mean and variance of 

the data "0" and data "1". Fig. 10 shows the changes in the mean and standard deviation of data "0" and 

data "1" of normalized integrated intensity depending on the bandwidth. The mean and variance of the 

number of photoevents are related to the integrated intensity by Eq. (15), and since we know the mean 

and variance of the integrated intensity from Eq. (16), we can then calculate the mean and variance of the 

number of photoevents. Using a Gaussian approximation, the PDF of the output distribution of 

photoevents can be expressed as 

1 (k-K0)
2 

Pdata(o, (k) =   , exp(- 2    ) and 
*j27toK0

2 2a k0 
(17) 

1 (k-K,r 
p«"(k)=7wexp(""^' 

where K0 is the mean of the number of photoevents for data "0", aKo is the standard deviation of the 

number of photoevents for data "0", K, is the mean of the number of photoevents for data "1" and aKi is 

the standard deviation of data "1". From Eq. (17), we can estimate the bit error rate for any combination 

of bandwidth and echo efficiency. Fig. 11 shows the relationship between the bit error rate and the 

bandwidth and echo efficiency. The solid lines show the analytical results which are based on the 

bandpass filter and three pulse model while the circles show the simulation results which used a random 

data pulse train. Figure 11 shows that the bandpass filter and three pulse model is in good agreement with 

the simulation results. The only big error occurs when the system bandwidth is infinity. In reality, 

however, the bandwidth of the system is finite, so we can ignore the infinite bandwidth case. 

5.   Conclusion 

In conclusion, we formulated a photon echo noise model and analyzed the relationship between 

the bit error rate and the bandwidth and echo efficiency for chirped write/read pulses. The analysis 

10 



showed that the chirped write/read pulse combination can be simplified as an ideal bandpass filter if the 

bandwidth of the write/read pulse is much less than the chirp width of the pulses. Use of the ideal 

bandpass model simplifies the analysis considerably. From the bandpass filter model, we can derive the 

output characteristics of the shot noise. The analysis shows that the mean, standard deviation of data "0" 

and the standard deviation of data "1" decrease while the mean of data "1" increases when the 

bandwidth of the system increases. The mean of each data are exactly proportional to the echo efficiency, 

that is output power, but the standard deviation is not. The analysis shows that the standard deviation 

increases a little more slowly than the mean of the data when the output power increases. That explains 

that the bit error rate of the output signal decreases when the output power increases (Fig. 10(b)). The 

relationship between the bandwidth and the bit error rate shows that the error probability decreases 

rapidly when we increase the bandwidth from 1/x to 4/x, however, increasing the bandwidth beyond that 

does not give much benefit in terms of bit error rate. Therefore, in terms of the bit error rate, we conclude 

that a bandwidth of 4/x is sufficient for accurate echo signal recovery. 

The authors gratefully acknowledge the support of this work by the Air Force Office of Scientific 

Research, USAF, under AFOSR Grant F49620-95-1 -0140. 
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Figure Captions 

Fig. 1 Conceptual view of time-domain optical storage. The write pulse prepares for the storage of the 

data pulses in the material. The data pulses are stored in the material in a Fourier transform domain. The 

read pulse recovers the data. Each retrieved data pulse is the convolution of the corresponding input data 

pulse and the correlation of the write and read pulses. 

Fig. 2 System representation of the photon echo memory. E2(t) represents the data pulses, H(/) 

represents the correlation between the write pulse and the read pulse and the attenuator represents the 

system's overall attenuation. 

Fig.3 The noise analysis model for the photon echo memory system. W(to) is the integrated intensity at 

the input of the photodetector. The shot noise is from the random interaction between a light and a 

photodetector. 

Fig.4. Spectral amplitude of a chirp signal for D=12. The x-axis shows the frequency offset from the 

center frequency, i.e., (f-f0)/Af. The dispersion factor is relatively small, and the curve is not very 

rectangular. 

Fig.5 Spectral amplitude of a chirp signal for D=60. The x-axis again shows the frequency offset from 

the center frequency, i.e., (f-fo)/Af. This curve is more rectangular than Fig. 4. 

Fig. 6 Spectral amplitude of a chirp signal for D=120. The x-axis shows the frequency offset from the 

center frequency, i.e., (f-f0)/Af. This curve is now nearly rectangular. 
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Fig. 7 The probability density function of the number of photoevents. The x-axis shows the number of 

photoevents and y-axis shows the probability for each number of photoevents. For the calculation, we 

used 5 nw output power, 50 nsec pulse width, 527.39 nm wavelength, quantum efficiency of detector of 

Fig. 8 The data pulse sequence for analysis of bandwidth effect 

Fig. 9 The Gaussian approximation of data "0" and data "1". (a) shows the Gaussian approximation 

of data "0" and (b) shows the Gaussian approximation of data "1". 

Fig. 10 The change of mean and standard deviation of normalized integrated intensity depending on 

the bandwidth. (1) shows the change of standard deviation of data "0", (2) shows the change of mean 

of data "0", (3) shows the change of standard deviation of data "1", and (4) shows the mean of data 

Fig. 11 (a) shows the relationship between the bandwidth and the bit error rate for several echo 

efficienciesCn). (1) is for r|=r|i, (2) is for r\=2r\i, (3) is for r\=3r[h (4) is for rp4r|i where r[i is the 

echo efficiency which can generated by 1.25e-17 (Joule) of energy, (b) shows the relationship 

between the echo efficiency and the bit error rate for several bandwidths(BW). (1) is for BW=1/T, (2) 

is for BW=2/x, (3) is for BW=3/x, (4) is for BW=4/x, where x is the data pulse width. Tr\s solid line 

shows the bit error rate calculated from the 3 pulse model and circles show the simulation results 

using a random data pulse train. 
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Data Read Echo(Retrieved Data) 

-4h -► t 
t.       t, t3    t = t,+(t,-t,) 

Fig.l Conceptual view of time-domain optical storage. The write pulse prepares for the storage of the 

data pulses in the material. The data pulses are stored in the material in a Fourier transform domain. The 

read pulse recovers the data. Each retrieved data pulse is the convolution of the corresponding input data 

pulse and the correlation of the write and read pulses. 
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E2(t) 

E2(/) 
H(0 Attenuator(a) 

W(to) 

Shot noise + Eech0(t) 

Fig. 2 System representation of the photon echo memory. E2(t) represents the data pulses, H(/) 

represents the correlation between the write pulse and the read pulse and the attenuator 

represents the system's overall attenuation. 
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H</) Attenuator^.) J^echoW 

Fig.3 The noise analysis model for the photon echo memory system. W(to) is the integrated intensity at 

the input of the photodetector. The shot noise is from the random interaction between a light and a 

photodetector. 

17 



•äl K 

§   0.50- 

■ 
\r\ 

■ 
■ P"! 

0.00 

frequency deviation 

^^^^s 

- SA 
0.50 

Fig.4. Spectral amplitude of a chirp signal for D=12. The x-axis shows the frequency offset from the 

center frequency, i.e., (f-f0)/Af. The dispersion factor is relatively small, and the curve is not very 

rectangular. 
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Fig.5 Spectral amplitude of a chirp signal for D=60. The x-axis again shows the frequency offset from 

the center frequency, i.e., (f-f0)/Af. This curve is more rectangular than Fig. 4. 
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Fig. 6 Spectral amplitude of a chirp signal for D=120. The x-axis shows the frequency offset from the 

center frequency, i.e., (f-f0)/Af. This curve is now nearly rectangular. 
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Fig. 7 The probability density function of the number of photoevents. The x-axis shows the 

number of photoevents and y-axis shows the probability for each number of photoevents. For the 

calculation, we used 5 nw output power, 50 nsec pulse width, 527.39 nm wavelength, quantum 

efficiency of detector of "1". 
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Fig. 8 The data pulse sequence for analysis of bandwidth effect 
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Table 1 The relationship between the bandwidth and integrated intensity 
000 

(Moo) 
100 

(Moi) 
001 

(M02) 
101 

(M03) 
010 

(M,o) 
110 

(M„) 
Oil 

(M12) 
111 

(M,3) 

B=1/T 0 0.0689 0.0689 0.0752 0.6060 0.8668 0.8668 1.0650 

B=2/T 0 0.0179 0.0179 0.0410 0.8668 0.9291 0.9291 0.9966 

B=3/T 0 0.0200 0.0200 0.0279 0.8877 0.9517 0.9517 1.0035 

B=4/T 0 0.0104 0.0104 0.0228 0.9291 0.9634 0.9634 0.9997 

B=5/T 0 0.0114 0.0114 0.0177 0.9351 0.9706 0.9706 1.0008 

B=6/X 0 0.0073 0.0073 0.0157 0.9518 0.9754 0.9754 1.0000 

B=7/x 0 0.0080 0.0080 0.0130 0.9545 0.9788 0.9788 1.0003 

B=8/T 0 0.0056 0.0056 0.0119 0.9635 0.9815 0.9815 1.0000 

B=9/T 0 0.0061 0.0061 0.0103 0.9650 0.9835 0.9835 1.0001 
B=oo 0 0 0 0 1.0 1.0 1.0 1.0 
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Fig. 9 The Gaussian approximation of data "0" and data "1". (a) shows the Gaussian 
approximation of data "0" and (b) shows the Gaussian approximation of data "1". 
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Fig. 10 The change of mean and standard deviation of normalized integrated intensity 
depending on the bandwidth. (1) shows the change of standard deviation of data "0", 
(2) shows the change of mean of data "0", (3) shows the change of standard deviation 
of data "1", and (4) shows the mean of data "1". 
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Fig. 11 (a) shows the relationship between the bandwidth and the bit error rate for several echo 
efficiencies(Ti). (1) is for rpru, (2) is for rj=2r|i, (3) is for T|=3TII, (4) is for rp4r|i where rji is the 
echo efficiency which can generated by 1.25e-17 (Joule) of energy, (b) shows the relationship 
between the echo efficiency and the bit error rate for several bandwidths(BW). (1) is for BW=l/x, (2) 
is for BW=2/x, (3) is for BW=3/x, (4) is for BW=4/x, where x is the data pulse width. Tr|e solid line 
shows the bit error rate calculated from the 3 pulse model and circles show the simulation results 
using a random data pulse train. 
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Abstract 

In a photon echo memory, the temporal Fourier transform of the input data sequence from a 

light source emitting at a fixed wavelength is written into the recording medium's inhomogeneous 

absorption profile. To store and recall the input data faithfully, the Fourier transform of the input 

data sequence must be narrower than the medium's inhomogeneous bandwidth. This requirement 

sets an upper limit for the read-write data rate. In reality, however, the data storage density and data 

rates are further limited by errors associated with the storage and retrieval processes. For example, a 

real laser possesses imperfections such as temporal fluctuations in its spectral bandwidth and 

intensity. These characteristics produce noise which results in a degradation of the recovered signal. 

In particular, the frequency drift of a laser in conjunction with the system bandwidth negatively 

affects the recovery of the echo output signal. In this paper we analyze the relationship between 

frequency drift, system bandwidth, and the characteristics of the output signal using a statistical 

model. To characterize the memory's output characteristics, we employ the bit error rate as a 

performance measurement parameter. 

Keywords : photon echo memory, frequency drift, noise model, bit error rate 



1. Introduction 

For investigating the photon echo memory mechanism, we assume laser pulses which have an 

electric filed of the form1 

Ep(t- "HP) = £ P(t- Tip) cos t «PO Tip) + <Pp ] , (!) 

where r\p = (nkp-r/c)+tp; n is the index of refraction of the material; kp-r is the wave vector associated 

with the pulse; c is the speed of light in vacuum; tp is the time at which the leading edge of the pulse 

reaches the arbitrary location r = 0; and cpp is a constant phase factor, s p is the pulse function and cop is 

the laser's center radian frequency. For the ideal case, we assume that both the amplitude and the laser 

frequency are invariant. In fact, they are not invariant because of quantum mechanical limitations and 

experimental noise sources. The quantum mechanical limitations come from the particle nature of light 

and from spontaneous emission. Spontaneous emission occurs when an atom is in an excited state and 

is influenced by the vacuum field. This field generally has a random phase and therefore the emitted 

waves have random phases. In laser amplifiers, spontaneous emission places a lower bound on the 

amplitudes of signals which can be amplified without getting lost in the noise. 

The analysis of the noise and the spectrum of the laser are well described in [2]. In reality, 

however, we must emphasize that the theoretical limits of the intensity fluctuations and linewidths 

don't necessarily correspond to the values commonly observed in the laboratory. The output of 

operational lasers is broadened mostly by thermal and acoustic fluctuations in the optical resonator 

length, which cause the resonant frequencies to shift about rapidly. The measurement of the actual 

amplitude fluctuations and frequency drift of the laser used for our photon echo experiments showed 



that the amplitude fluctuations were small over the time scale of the writing process. Nevertheless, 

laser frequency drift can still be harmful when recovering data, as will be developed below. 

In this paper, we analyzed the effect of the laser frequency fluctuations on the performance of a 

photon echo memory. To determine the effect of frequency drift on the recovered data, we first needed 

to know the distribution of the frequency drift. Previous analyses2,3 have shown that the lineshapes of 

lasers are between Gaussian and Lorenzian depending on the noise spectral density. Here, however, for 

our analysis we will assume a Gaussian lineshape for simplicity. 

2. Frequency drift analysis 

We have constructed a model for the analysis of the frequency drift as shown in Fig. 1. In a 

photon echo memory, the echo output signal is expressed as 

Eecho(t) oc & {E,*( /) E2(/) &,(/)} (2) 

where E\*(f) is the complex conjugate of the spectrum of the write pulse, E2(/) is the spectrum of the 

data pulse, and E3(/) is the spectrum of the read pulse. When we consider the recovered data signal, we 

can simplify Eq. (2) by writing it as 

EechoWocg-^H^EaC/)} (3) 

where H(/)= Ei*(/)E3(/) which we will call the system transfer function. In Fig. 1, H(/) denotes the 

system transfer function resulting from the write/read pulses, I(H,,to) indicates the instantaneous 

intensity at time to, W(to) is the integrated intensity of the echo output, p(W) is the probability density 

of the integrated intensity, and P(K) is the probability of observing K photoevents at the output. In this 

model, we introduce a frequency drift in the data signal and find the distribution of the integrated 

intensity of the output signal. By comparing the amount of frequency drift and the distribution of the 

output signal, we can determine the effect of the frequency drift on the output characteristics such as 



the bit error rate. The transfer function H(/) is determined by the combination of write/read pulses. The 

transfer function was analyzed for the case where the write/read pulses were frequency chirped . As far 

as the dispersion factor5 is large, usually greater than 100, the spectrum shape becomes nearly 

rectangular and we can assume that the transfer function is that of an ideal bandpass filter, that is 

H(f) = rect(—-^ + rect(—-±), (4) 
D D 

where fc is the center frequency of the filter and B is its bandwidth. 

The echo output signal is integrated for the pulse interval in the second part of the system. Also, 

from the relationship between the frequency drift and the integrated intensity, we find the probability 

density function for the case where the frequency drift has certain distribution characteristics. In the 

third part, to consider the stochastic effect of the detector, we use Mandel's formula6 and find the 

probability density function of the number of photoevents. 

Consider first the input data, which is a train of data pulses. The input data may be expressed as 

N               t_t 

x(t) = y X; • rect( '-) ■ cos(2^fit). (5) 

Here N is the number of data pulses in the pulse train, x; can be either "0" or "1", tj shows the 

position of each data pulse, x is the data pulse width, and fj is the instantaneous laser frequency for the 

ith data pulse. Here we assumed the frequency of the laser does not vary within the duration of a single 

data pulse, but may "drift" in frequency from pulse to pulse. 

Now consider the rectangular input pulse. The spectrum of a rectangular input pulse has an 

infinite bandwidth, but the system has a finite bandwidth and the output signal thus has an infinite 

duration. This means that interference occurs between adjacent data pulses, i.e. we experience 

intersymbol interference7. Theoretically, the effect on an arbitrary pulse comes from all other pulses in 

the pulse train. In reality, the major effect comes from the adjacent pulses. We will concentrate here 



only on the impact of the adjacent pulses (Fig. 2). We divide this into 4 cases for each kind of data ("0" 

and "1"). Table 1 shows the 8 cases for calculating the integrated intensity. 

We will now find the relationship between frequency drift and integrated intensity for each case. 

We will then evaluate the probability density function (PDF) of the integrated intensity. For a 

sequence of three pulses, the input data sequnece is expressed by 

x(t) = x0 • rect(        ° ~ T ) • cos(27tf0t) + x, • rect( -) • cos(2flf,t) 

! T (6) 
t-(t0+T) 

+ x, • rect( ) • cos(277i2t), 
T 

where x0, xu and x2 can individually be either "0" or "1" while f0, fi, and f2 are the instantaneous 

frequencies for the 0, 1, and 2 data pulses, respectively. 

For Case 1, the data pulse is expressed as 

x(t) = rect( -) • cos(27rf,t), so that 
T (7) 

X(f) = -T ■ sinc(T(f - f, ))e-j2*(f-f',,<> + -T ■ sinc(T(f + f, ))e-j2*(f+f|),,>, 

where X(f) is the Fourier transform of the input data pulse. We assumed here that the system transfer 

function is an ideal bandpass filter, that is, 

f - f f + f ,0. 
H(f) = rect(——^ + rect(——*-), (8) 

D D 

where fc is the center frequency, and B is the filter's bandwidth. 

From the input data and system transfer function, we now find the output given by 

1    T<fC~f'+^ 2^,   ,   ) T(fC_fl+^ J2*V«0) 
y(t)= |x(f)H(f)ej2,rf,df = -[     J     sincw/^'^du +     J     sinc(u)e ^'"'"'du].       (9) 

^ B B 
T(fc-f,--) r(fc-f,--) 



We ignore the phase of y(t) because we are interested in the intensity. From the amplitude, we 

can calculate the integrated intensity by using the relationship 

t„+I 

W(t0)= Jy(t)y*(t)dt, (10) 
T 

to-- 

where y*(t) denotes the complex conjugate of y(t). By plugging Eq. (7) into Eq. (8), we obtain 

T uu uu 
W(t0) = — [ j Jsinc(u)sinc(u')sinc(u + u')du'du +j Jsinc(u)sinc(u')sinc(u - u')du'du], (11) 

2   LL LL 

where L=T(fc-f,-B/2) and U=x(fc-fi+B/2). 

From Eq. (11), we can obtain the relationship between the frequency drift and the integrated 

intensity. Fig. 3 shows the relationship between the frequency drift and the integrated intensity for Case 

1. The x-axis shows the frequency offset drift from the center frequency, i.e., (f-fc)/B, and the y-axis 

shows the integrated intensity distribution normalized by the input pulse area. 

By the same token, we can evaluate the integrated intensity for all cases in Table 1. Those 

results are summarized mathematically in the Appendix. For Case 2, the frequency drift has 2 

arguments, Af0=fc-fo, and Afi=fc-fi- Fig. 4 shows the relationship between the frequency drift and the 

integrated intensity. 

Figure 4 shows that the integrated intensity changes rapidly due to a frequency drift of pulse 1 

but changes less due to a frequency drift of pulse 0. Case 3 has the same relationship between 

frequency drift and integrated intensity as Case 2 because the frequency drift of pulse 0 in Case 2 and 

pulse 2 in Case 3 contributes the same amount of integrated intensity to the pulse 1. Fig. 5 shows the 

relationship between frequency drift and integrated intensity for Case 6. The relationship between 

frequency drift and integrated intensity for Case 7 is the same as Case 6 because they have the same 

symmetry. 



Now we know the relationship between integrated intensity and the frequency drift for each of 

the eight cases. If we know the distribution characteristics of the frequency drift, then, since we know 

the relationship between the frequency drift and the integrated intensity, we can find the distribution 

characteristics for the integrated intensity. The composite probability density of the integrated intensity 

can be calculated as: 

8 

Pw(w)= XP(wlcase i) • p(case i) (12) 
i=l 

If we assume all eight data sequence cases are equiprobable, then 

1 8 

PwOv)=-XPi(*f). 03) 
o  i=l 

where p\(w) represents the probability density of the integrated intensity for the ith case. We further 

assumed that the frequency drift obeys a Gaussian distribution. Thus, if we know the relationship 

between the frequency drift and the integrated intensity, we can calculate the probability density of the 

integrated intensity for each case. Now for Case 1, from Fig. (3), we can approximate the calculated 

value using a Gaussian curve. Fig. 6 shows the original data and the curve fitted using a Gaussian 

equation. In Fig. 6, frequency drift scale (x-axis) is normalized by B/2 where B denotes the bandwidth 

of the system. The integrated intensity is normalized by the input pulse area. 

The circles in Fig. 6 indicate the real computation results and the approximation to the "data" 

curve fitted based on the model 

Af2 

W(to)= 0.8656 exp(—^—). (14) VHW 0.2129 

Since earlier we assumed a Gaussian frequency drift, the probability density function of Af is 

expressed by 



2 

.     pCA/^-pL-expC-^-y). (15) 
4lncs 2cr 

Using a transformation of random variables8, we can show that the PDF of the integrated 

intensity corresponding to Eq. (14) is given by 

0.2129 

pM= 0.0981      W> ' o<w<0.8656. (16) 

Using the same method, we can find the relationship between the frequency drift and the 

resulting integrated intensity for the other cases. Unfortunately, except for Cases 1 and 5, we could not 

determine a simple equation to represent the relationship between the frequency drift and the integrated 

intensity. For those cases, we numerically estimated the PDF relationship between the frequency drift 

and the integrated intensity. Based on those relationships, we can find the PDF of the total integrated 

intensity for a specific frequency drift. Fig. 7 presents an one example of PDF of integrated intensity 

for a frequency drift of a=0.05B. The integrated intensity, as usual, is normalized by the input data 

pulse area. 

In Fig. 7, the arrow at the "0" intensity indicates the PDF of a "0" integrated intensity and it 

came from the case in which all data pulses are "0". The probability of "0" integrated intensity is 0.125 

if we assume that all eight cases are equiprobable. Fig. 7 also shows that each data value has 3 peaks in 

its distribution. As was discussed earlier, Cases 2 and 3 for data "1" are symmetrical and Cases 6 and 7 

for data "0" are symmetrical. These cases produce the peak probability for each data value and the 

other two cases (Cases 1 and 4 for data "1" and Cases 5 and 8 for data "0") produce the smaller PDF 

peaks for each data value. That is why there are three peaks for each data value. If the frequency drift 

becomes smaller than the a=0.05B case shown in Fig. 7, the integrated intensity variation will become 



smaller. On the other hand, if the frequency drift becomes larger, the integrated intensity variation will 

become larger and the PDF peaks for each data case will overlap. 

3. Shot noise analysis 

We now find the probability distribution of the photoevents, which is the output of the 

photodetector. When light having a deterministic variation of intensity over space and time is incident 

on a photodetector, the fluctuations of the photoevents obey Poisson statistics9. In this analysis, 

however, the light waves incident on the photosurface are random, and the probability of observing K 

detected photoevents can be expressed as 

P(K) = j P(K\W)pw(W)dW = y—-\-zaW Pw(W)dW, (17) 
0 0 

where pw(W) is the probability density function of the integrated intensity and a is the proportionality 

constant given by 

a = ^= . (18) 
nv 

Here y is the quantum efficiency (y<l) which represents the average number of photoevents produced 

by each incident photon, h is Planck's constant (6.626196 x 10"34 joule-sec), and v is the mean optical 

frequency of the radiation. This equation will serve as the basis for our calculations of photoevent 

statistics. It is called Mandel's formula after the individual who first derived it. The mean and variance 

of K are given by9 

K = aW, oK
2 =aW + a2aw

2 (19) 

Thus, if we know the probability of the integrated intensity, we can evaluate the probability of the 

photocounts at the detector. 



As we can see from the previous analysis, the integrated intensity depends on the frequency drift 

and on the bandwidth of the system. In addition to those factors, the integrated intensity also depends on 

the echo efficiency of the system. Depending on the value of the echo efficiency, the characteristics and 

the number of detected photoevents can change significantly. To illustrate, we choose a minimum 

output power of 0.5 nW and assume an echo efficiency of r|i which produces that amount of power at 

the output. Fig. 8 shows the typical distribution of the number of detected photoevents for various drifts, 

bandwidth, and echo efficiencies. 

For the analysis of the output, it might be convenient to approximate the PDF by a known 

distribution. As we can see from Fig. 8, the distribution of the number of photoevents is different for 

each frequency drift, bandwidth and echo efficiency combination. In general, however, the data "0" 

distribution remains close to a Poisson distribution and the data "1" distribution remains close to a 

Gaussian distribution. To calculate the bit error rate, we used the Gaussian approximation to the Poisson 

distribution because it is more convenient and the inaccuracy resulting from the Gaussian 

approximation is small10. Fig. 9 shows the change of the mean and variance for specific values of 

frequency drift and various system bandwidth. The average number of photoevents for data "0" 

decreases as the system bandwidth increases and the standard deviation for data "0" also decreases with 

the increase of system bandwidth. For data "1", the average number of photoevents increases as the 

system bandwidth increases but the standard deviation decreases with the increase of system bandwidth. 

Therefore, the bit error rate will decrease as the system bandwidth increase as we expect. 

4. Bit error rate calculation 

To calculate the bit error rate for each frequency drift, bandwidth and echo efficiency combination, 

we first calculate the mean and variance of the integrated intensity for the data "0" and data "1" cases. 

Because we know the relationship between the frequency drift, bandwidth and normalized integrated 
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intensity, if we know the frequency drift characteristics, bandwidth of the system and the real power of 

the output, we can then calculate the mean and variance of the data "0" and data "1" cases. Using a 

Gaussian approximation, the PDFs of the output distribution of detected photoevents can be expressed as 

1 (k-K0)
2 

Pda,a(0)(k) = -f^=TeXP( ^     2       ) 
V27rCrK02 

2 2(7 kO 

-   2 (20) 
1 (k-K,)2 

andPda,a(i)(
k)=  / =-exp(- 2    ),k = 0, 1, 2,--- 

■J2nau 
l(Jk\ 

where K0 is the mean of the number of photoevents for data "0", aKo is the standard deviation of the 

number of photoevents for data "0", K, is the mean of the number of photoevents for data "1" and aK\ is 

the standard deviation of data "1". 

From Eq. (20), we can estimate the bit error rate for any combination of frequency drift, bandwidth 

and echo efficiency. Fig 10 shows the results of bit error rate calculations for several cases of frequency 

drift, system bandwidth, and echo efficiency. The solid line shows the bit error rate calculated from the 

three adjacent pulse model and the circles show the simulation results using a random data pulse train. 

Fig. 10 shows that the bit error rate is more dependent on the bandwidth than the frequency drift when 

the output signal is relatively small. With a relatively large output signal, the amount of frequency drift 

can affect the bit error rate considerably. Generally, the effect of the frequency drift on bit error rate is 

less than that of the bandwidth of the system. 

5. Conclusion 

In conclusion, we have formulated a laser frequency drift noise model and analyzed the 

relationship between the frequency drift, system bandwidth, and output noise characteristics. When the 

echo efficiency is small, the output is shot noise-limited. This means that the distribution is smoothed by 

the Poisson transformation (i.e. Mandel's formula). When the echo efficiency is large, the output is no 
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longer shot noise limited and it's PDF resembles the original probability of the integrated intensity. 

Therefore, we can say that the effect of the Poisson transform on the probability density pw(W) is more 

significant when the number of photoevents is small and the effect decreases when the number of 

photoevents becomes larger. The average number of photoevents is directly related to the integrated 

intensity and is linearly proportional to the echo efficiency. The standard deviation increases more 

slowly than the average number of photoevents for both data values. When the echo efficiency is small, 

the distribution for data "0" is close to a Poisson distribution and the distribution for data "1" is close to 

a Gaussian distribution. 

When we increase the echo efficiency, t|, the analysis shows that the mean numbers of 

detected photoevents for both data values increase exactly at the same rate(for example, if we 

increase the echo efficiency 10 times, the means of both data values increase exactly 10 times), but 

the standard deviation increases with a lower rate. That means if we have a high echo efficiency 

system, we can obtain an improved system performance over the low echo efficiency system in terms 

of the bit error rate. 

The authors gratefully acknowledge the support of this work by the Air Force Office of Scientific 

Research, USAF, under AFOSR Grant F49620-95-1-0140. 
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Appendix 

In this appendix, we show the relationship between bandwidth, frequency drift and integrated 

intensity for all cases in Table 1. 

For case 1, 

T uu uu 
W(t0) = — [J Jsinc(u)sinc(u')sinc(u + u')du'du+{ Jsinc(u)sinc(u')sinc(u-u')du'du], (A-l) 

2   LL LL 

where L=T(fc-f,-B/2) and U=x(fc-f,+B/2). 

For Case 2, 

u„ 
W(t0) = -{Re j jsinc(u)sinc(u')sinc(u + uV^^du'du 

2       L" 

u, u„ 
+ Re | }sinc(v)sinc(v')sinc(v + v')ej2'r(v+v')dv,dv + J Jsinc(u)sinc(u')sinc(u - uV^^du'du 

L, t„ (A_2) 

u, u,u„ 
+ J }sinc(v)sinc(v')sinc(v + v')dv'dv + 2 ■ Re J J sinc(v)sinc(u')sinc(v + u')e"J OT)du'dv 

L| L[   LQ 

U°U' 
+ 2 ■ Re | j sinc(u)sinc(v)sinc(u + v)eJ    }dvdu} 

LoL, 

where Lo=x(fc-f0-B/2), U0=x(fc-fo+B/2), Li=T(fc-frB/2), Ui=T(fc-f,+B/2) and Re denotes the real part 

of the integral. 

For Case 3, one obtains 

W(t0) = —{Re | |sinc(u)sinc(u')sinc(u + u')du'du 
2 L, 

U, U, 

+ R,e J |sinc(v)sinc(v')sinc(v + v')e"j2,r(v+v)dv'dv + J Jsinc(u)sinc(u')sinc(u - u')du'du 
L2 L, 

u2 u,u2 

+ J |sinc(v)sinc(v')sinc(v - v')e"j27r(v"v)dv'dv + 2• Re J \ sinc(u)sinc(v')sinc(u - v')ej2?tv)dv'du 
L, L, u 

u,u, 
+ 2 • Re | | sinc(u)sinc(v)sinc(u + v)e"J_m,>dvdu} 

L, L, 

where L,=x(fc-f!-B/2), U1=x(fc-f1+B/2), L2=x(fc-f2-B/2), U2=T(fc-f2+B/2). 

(A-3) 
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For Case 4, 

T U° 
W(t0) = -{Re J Jsinc(u)sinc(u')sinc(u + u')ej2'r(u+u')du,du 

2 L„ 
u, u2 

+ Re J Jsinc(v)sinc(v')sinc(v + v')dv'dv + Re J Jsinc(w)sinc(w')sinc(w + w')e"J ,r(w+w }dw'dw 
L, L2 

U„ U, 

+ J |sinc(u)sinc(u')sinc(u-u')ej2'r(u"u)du'du+ J |sinc(v)sinc(v')sinc(v-v')dv'dv 
L0 L, 

U2 U„U, 

+ | |sinc(w)sinc(w')sinc(w - w')e"j2,r(w~w')dw'dw + 2 • Re } J sinc(u)sinc(v)sinc(u + v)ej2™dvdu (A-4) 
L, L0 L, 

U0U2 U,U2 

+ 2 • Re | } sinc(u)sinc(w)sinc(u + w)ej2,r<u"w)dwdu + 2 ■ Re J J sinc(v)sinc(w)sinc(v + w)e"J2;rwdwdv 

u0u, u0u2 
+ 2-Re | J sinc(u)sinc(v')sinc(u-v')ej2'mdv'du + 2Re J } sinc(u)sinc(w')sinc(u-w')e'2?r(u"1"w)dw'dv 

L{) L| L() L2 

U,U, 

+ 2-ReJ J sinc(v)sinc(w')sinc(v-w')eJ ^dw'dv 
L, L2 

where Lo=x(fc-fo-B/2), U0=T(fc-fo+B/2), L,=r(fc-fi-B/2), U,=x(fc-f,+B/2), L2=x(fc-f2-B/2), U2=x(fc- 

f2+B/2). 

For Case 5, because the data are all "0", the output is all "0". That is, 

W(to)=0 (A-5) 

For Case 6, 

u0 u0 

W(t0) = -[Re J Jsinc(u)sinc(u')sinc(u + u')ej2,r(u+u,)du'du + } }sinc(u)sinc(u')sinc(u-u')ej2,r(u"u')du'du] (A-6) 

For Case 7, 

u2 

W(t0) = - [Re J J sinc(u)sinc(u' )sinc(u + u' )ej27r(u+u,du' du 

(A-7) 

+   f fsinc(u)sinc(u')sinc(u-u^e^^^'du'du]. 

For Case 8, 
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u 
T 

W(t0) = -{Re J Jsinc(u)sinc(u')sinc(u + uV^'^du'du 
2 L, '0 

u 
+ J Jsinc(w)sinc(w')sinc(w + w')ej2'r(w+w')dw,dw+ | |sinc(u)sinc(u')sinc(u-u')ej27r(u"u,du'du 

L2 

+ 

(A-8) 
U-, U0U2 

J Jsinc(w)sinc(w')sinc(w - w')e j2>r<w"w,)dw'dw + 2 • Re J Jsinc(u)sinc(w')sinc(u - w')ej2,r(u+w 'dw'du 
L, L0 L, 

u„u, 
+ 2 • Re | Jsinc(u)sinc(w)sinc(u + w)ej2?r(u"w)dwdu. 

L„L, 
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Figure Captions 

Fig. 1 Noise model due to laser frequency drift. 

Fig. 2 The data pulse sequence for analysis of frequency drift noise 

Table 1. The eight input pulse permutations for 3 adjacent pulses 

Fig. 3 Relationship between integrated intensity and frequency drift for Case 1. 

Fig. 4 Relationship between integrated intensity and frequency drift for Case 2. 

Fig. 5 Relationship between integrated intensity and frequency drift for Case 6 

Fig. 6 Curve fitting for Case 1. 

Fig. 7 Probability density function of the integrated intensity for a specific frequency drift (a=0.05B 
where B is the bandwidth). 

Fig. 8 Some typical distributions for the number of detected photoevents. 

Fig. 9 The variation of the mean and standard deviation of the detected photoevents for several 
bandwidths ( standard deviation of frequency drift=2 MHz). 

Fig. 10 (a) Relationship between the frequency drift and BER for several bandwidths, (b) relationship 
between the frequency drift and BER for several echo efficiencies. (1) is for bandwidth=l/x, (2) is 
for bandwidth=2/x, (3) is for bandwidth=3/x, (4) is for bandwidth=4/x, where x is the pulse width, 
which is 50 nsec (1) r\=r\i, (2) 11=2^1, (3) r|=3r|i, (4) ri=4rji, where r|i is the echo efficiency 
which can generated by 2.5e-17 (Joule) of energy. 
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Fig. 1 Noise model due to laser frequency drift. 
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Fig. 2 The data pulse sequence for analysis of frequency drift noise 



Case Pulse 0 Pulse 1 Pulse 2 Case Pulse 0 Pulse 1 Pulse 2 
1 0 1 0 5 0 0 0 
2 1 1 0 6 1 0 0 
3 0 1 1 7 0 0 1 
4 1 1 1 8 1 0 1 

Table 1. The eight input pulse permutations for 3 adjacent pulses 
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Fig. 3 Relationship between integrated intensity and frequency drift for Case 1. 
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Fig. 4 Relationship between integrated intensity and frequency drift for Case 2. 
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Fig. 5 Relationship between integrated intensity and frequency drift for Case 6 
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Fig. 6 Curve fitting for Case 1. 
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Fig. 7 Probability density function of the integrated intensity for a specific frequency drift 

(CJ=0.05B where B is the bandwidth). 
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Fig. 8 Some typical distributions for the number of detected photoevents. 
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Fig. 9 The variation of the mean and standard deviation of the detected photoevents for several 
bandwidths ( standard deviation of frequency drift=2 MHz ). 
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Fig. 10 (a) Relationship between the frequency drift and BER for several bandwidths, (b) 
relationship between the frequency drift and BER for several echo efficiencies. (1) is for 
bandwidth=l/x, (2) is for bandwidth=2/x, (3) is for bandwidth=3/x, (4) is for bandwidth=4/x, 
where x is the pulse width, which is 50 nsec (1) r|=r|i, (2) 11=2^1, (3) r|=3r|i; (4) r|=4r|i, where r|i 
is the echo efficiency which can generated by 2.5e-17 (Joule) of energy. 
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ABSTRACT 

The noise characteristics of the photon echo memory have been investigated. The photon echo memory has the ability to 
store many bits of information in a diffraction-limited spot, thereby dramatically increasing the storage density. The temporal 
Fourier transform of the input data sequence is written into the inhomogeneous absorption profile of the recording medium. Data 
are encoded by means of temporal modulation onto the waveform of a finite duration data beam. Individual bits are not localized 
to a specific spectral channel; instead, they are stored throughout a region of spectral-addressing space. In order to store and recall 
the input data accurately, the Fourier transform of the input data sequence must be narrower than the inhomogeneous bandwidth. 

In the photon echo memory mechanism, there are several factors affecting the system bit error rate such as finite-width 
write/read pulses, echo efficiency, shot noise, thermal noise, etc. The accuracy of the echo output depends on those system 
factors. In this paper we formulate a simple.model of the photon echo system, and by analyzing this model we derive the 
relationship between the characteristics of the echo output signal and several factors such as the bandwidth of the system, echo 
efficiency, atom excited state population fluctuations, shot noise, and thermal noise. 

Keywords: photon echo memory, optical data storage, atom population fluctuation , shot noise, thermal noise, bit error rate 

1. INTRODUCTION 

A photon echo memory1, also known as TDOS(Time Domain Optical Storage)2, time-domain FSDS(Frequency Selective 
Data Storage)', CTDOM(Coherent Time-Domain Optical Memory)3, and TDOM(Time Domain Optical Memory)4, offers the 
potential of ultrahigh storage density and ultrahigh data throughput rates3. A photon echo memory stores information in the 
spectral domain of an inhomogeneously broadened absorbing material in addition to the spatial addresses used in conventional 
two-dimensional optical memories. In a photon echo memory, the temporal Fourier transform of the input data sequence from a 
light source emitting at a fixed frequency is written into the inhomogeneous absorption profile. To store and recall the input data 
faithfully, the bandwidth of the input data sequence must, therefore, be narrower than the inhomogeneous bandwidth. This 
requirement on the Fourier transform of the input data sequence sets an upper limit for the photon echo memory read-write data 
rate that essentially equals the inhomogeneous bandwidth of the material. 

In the photon echo process, various noise sources and distortions will unavoidably be introduced which can lead to errors in 
the interpretation of the received signal. Some of them come from the limitation of current technology and others come from 
fundamental limitations in the photon echo process. In the photon echo process, the most important factors which affect the echo 
output signal are system bandwidth (which arises from the write/read pulses), echo efficiency (which is defined by the ratio of the 
power of the output echo signal to that of the input signal), statistical excited state population fluctuations5 (defined as the 
variations in the local environment of the atom storage centers), shot noise (fundamental detector noise), and thermal noise (post- 
detector electronics noise). In this paper, we analyze the effect of each of these factors on the bit error rate of the output signal. 

2. ANALYSIS 

2.1 Photon echo process 

The ideal noiseless echo output signal is expressed as 

EechoWcC g-,{E,>)E2(<»)E3((ö)}, (1) 



where Eecho(t) represents the echo output signal, fy"' represents the inverse Fourier transform, E, (co) represents the complex 
conjugate of the Fourier transform of the write pulse, E2(co) represents the Fourier transform of the data pulses, and Ei(o)) 
represents the Fourier transform of the read pulse. 

In reality, this ideal echo output signal is contaminated with noise which is generated by the statistical excited state 
population fluctuations. In the photon echo process, when the material is exposed to laser pulses, the excited state population of 
atoms is modulated according to the Fourier spectrum of the pulses and the information about the pulses is stored in a population 
grating. As we described before, under ideal conditions the population grating is exactly proportional to the Fourier transform of 
the input pulses. However, such an ideal condition does not exist, and there will be fluctuations in the atom population. This 
i'undamental source of noise imposes a limit on the achievable storage density for a given concentration of storage centers. The 
photon echo process including the noise source from the atom fluctuations is shown in Fig. 1. 

Thus, when we include the noise component from the atom fluctuations, the echo output will be 
Eecho(t) = 8T' { E,*(co) E2(co) E3(co)} + S1 { N(co)} 

= E,(t) 8 E2(t) * E3(t) + X(t) + j Y(t), (2) 
where © denotes correlation, * denotes convolution, N(co) denotes the noise component from the atom fluctuations, X(t) 
represents the real noise component in the time domain, j represents the imaginary operator, and Y(t) represents the imaginary 
noise component in the time domain. The effects of convolution and correlation on the data signal are to 1) smooth the output 
signal, and 2) increase the pulse width. When the pulse widths of the write/read and data pulses are all the same, say x, the output 
pulse will be 3x in width. This means the output signal will cause intersymbol interference to the two adjacent pulses on each side. 

1 
On the other hand, it the write/read pulse widths are — T , where T is the data pulse width, then the intersymbol interference will 

affect only the adjacent pulses. Generally, in the photon echo process, we assume that the write/read pulses are very short 
compared to the data pulse, so we will assume that the intersymbol interference only affects the adjacent output signals. Fig. 2 
shows the effects of convolution and correlation on the output signal. 

Now consider the data pulse train which is stored using the photon echo process. When we think about the data pulse which 
is "0" or "1", there are, effectively, three situations. That is, (1) both adjacent data pulses are "0", (2) one of adjacent data pulses 
is "1", (3) both of the adjacent data pulses are "1". For each case, the first term of Eq. (3) will have different values. The noise 
component in the time domain is the inverse Fourier transform of N(co). Analysis6 has shown that when the atom fluctuation is 
Gaussian, or uniform-distributed, the noise components in the time domain for the echo output signal are each infinite sums of 
Gaussian noises with different variances. From the Central Limit Theorem7, we can say that X(l) and Y(t) are also Gaussian 
distributed with zero mean. The variance of the noise in the time domain will be determined by the atom fluctuations and the read 
pulse width. Therefore, the output is composed of a constant plus Gaussian noise. The constant value is dependent on the data 
position and its adjacent data. 

E«to(t) = 3r,{N((a)}=X(t)+jY(t) or 

Eecho(t) = a(t) + ?f' {N(a>)} = a(t) + X(t) + j Y(t) or 

Eecho(t) = b(t) + g"' {N(co)} = b(t) + X(t) + j Y(t) when the data=0, and (3) 

Eecho(t) = c(t) + g"1 {N((0)} = c(t) + X(t) + j Y(t) or 

Eecho(t) = d(t) + ff1 (N(co)} = d(t) + X(t) + j Y(t) or 

Eecho(t) = 1 + ff' {N(co)} = 1 + X(t) + j Y(t) when the data= 1, (4) 

where a, b, c, and d are determined by the relationship between the pulse width of the data and that of the read/write pulses, "a" is 
for data "0" when one of the adjacent pulses is "1", "b" is for data "0" when both of the adjacent pulses are "1", "c" is for data 
"1" when both of the adjacent pulses are "0", and "d" is for data "1" when one of the adjacent pulses is "0". Those values are 
determined by the system bandwidth and echo efficiency. The one thing we need to mention is the probability of occurrence of 
each special case. The probability of having one adjacent "1" is twice as large as the probability of having no adjacent "l"s or all 
adjacent "l"s. Therefore, we have to take into account these probabilities when we calculate the PDF of the power distribution. 

The echo output signal is detected by using a photodetector and related post-detector electronics. For the detection of the 
echo output signal, we assume the case of using IM/DD(Intensity Modulation/Direct Detection). When the variance of the real 



and imaginary time domain noise components are a112, the PDF of the power is calculated as in Eq. (5). Here we assumed that the 
value "a" is related to the case of having one adjacent "1" for data "0" and the value "d" is related to the case of having one 
adjacent "1" for data "1". Again, the relationship between the frequency domain noise and the time domain noise variance is 
determined by the pulse width. 

/P(/>)=—Tie'  +2e   °~ I0(—V-) + e   "" I0(—\-)} {P>0} fordata="0'\ 
4cr a a 

MP)=—y(e  °2 I0(—^) + 2e   °2 IQ(—\-) + e  °2 I0(^V)}, {P>0) fordata='T'. (5) 
4(7 O <J O 

where ¥P(p) is the PDF of the echo output signal and Io is a Modified Bessel function of order zero. The mean and variance for 
the data "0" and data "1" cases are, respectively, 

a2     b2       2 
E[P0]=— + — + 0" fordata=0, 

2       4 
1     C2     d2        2 

E[P,]=- + — + —+ C7 fordata=l. (6) 
4      4       2 

Therefore, the average power at time t is a function of a, b, and a for data "0", and c, d and a for data "1". The constants 
"a", "b", "c" and "d" are determined by the system bandwidth and echo efficiency and a is determined by the atom fluctuations. 

2.2 Optical receiver 

The echo output signal is detected by an optical receiver. A typical optical receiver, whose schematic diagram includes the 
noise components, is shown in Fig. 3. The three basic stages of the receiver are a photodetector, amplifier, and equalizer. The 
photodetector can be either an avalanche photodiode with a mean gain Mora pin photodiode for which M=\. The photodiode has 
quantum efficiency r| and capacitance Q. The detector has a bias resistor (resistance Rb) which generates a thermal noise current 
*'b(t). 

The amplifier has an input impedance represented by the parallel combination of a resistance RA and a shunt capacitance CA 

Voltages appearing across this impedance cause current to flow in the amplifier output. This amplifying function is represented by 
the voltage-controlled current source which is characterized by a transconductance gm. There are two amplifier noise sources. 
The input noise current source iA(t) arises from the thermal noise of the amplifier input resistance RA, whereas the noise voltage 
source eA(t) represents the thermal noise of the amplifier channel. These noise sources are assumed Gaussian in their statistics, flat 
in spectrum (which characterizes white noise), and uncorrelated (statistically independent). They are thus completely described by 
their noise spectral densities9. The equalizer that follows the amplifier is normally a linear frequency-shaping filter that is used to 
mitigate the effects of signal distortion and intersymbol interference. 

At time t the mean output current from the photodiode resulting from the echo output signal is 

(i(t)> = -^ M(P(t)> =R0M (P(t)), (7) 
hv 

where r| is the quantum efficiency (i.e. the number of electron-hole carrier pairs generated per incident photon of energy hv), and 
R0 is the photodiode responsivity. This current is then   amplified and filtered to produce a mean voltage at the output of the 
equalizer given by the convolution of the current with the amplifier impulse response 

< vout(t)) = ARoM (P(t)) * hB(t) * heq(t) = Rfi{P(t)) *hM*heq(t). (8) 
Here A is the amplifier gain, we define G-AM for brevity, hB(t) is the impulse response of the bias circuit, heq(t) is the 

equalizer impulse response, and * denotes convolution. 

We now calculate the noise voltages or, equivalently, the noise currents. If Vf/t) is the noise voltage causing v„„/fj to deviate 
from its average value, then the actual equalizer output voltage is of the form 

VcJt) = ( v0Jt)) + vM (9) 

The noise voltage at the equalizer output can be represented by 
V

2
N W = v\(t) + v\(t) + v2m + v2M (10) 



where v/t) is the quantum (or shot) noise resulting from the random Poisson nature of the photocurrent is(t) produced by the 
photodetector, vrf[t) is the thermal (or Johnson ) noise associated with the bias resistor Rb, v/fj results from the amplifier input 
noise current source ia(t), and v^t) results from the amplifier input voltage noise source ea(t). Here, we are interested in the mean 
square voltage {v2

N), which is given by 
( v2

w ) = ( [v,Jt) - < v,Jt) )f ) = ( v2
0Jt) ) - < v,Jt) >2 ) 

= < v\(t)) + < v2M) + ( v2lt)) + ( v2dt) >. (11) 

Personick9 carried out a detailed analysis that evaluated the shot noise as a function of time within the bit slot. This results in 
an accurate estimate of the shot noise contribution to the equalizer output noise voltage, but at the expense of computational 
difficulty. Smith and Garrett10 subsequently proposed a simplification of Personick's expressions by relating the mean square 
shot noise voltage ( v2

s(t)) at the decision time to the average unit gain photocurrent (i0 ) over the bit time Tb through the shot 
noise expression" 

(v2
x(t)) = 2q{i0) ( m2)BNR2A2, (12) 

where { m2) is the mean square avalanche gain, which has the form M2+x with 0 < x < 1.0, BN is the noise equivalent bandwidth 
of the bias circuit, amplifier, and equalizer defined for positive frequencies only1-, A is the amplifier gain and R is the total 
resistance of the parallel combination of/?/, and RA, that is 

R = *—^-. (13) 
RA+Rb 

We now calculate the mean unity-gain photocurrent ( i0 ) over the bit-time. In Eq. (6), we found the average power at time / 
for pulse "0" and pulse "1". Because constants a, b, c, and d are directly related to the ratio of write/read pulse and data pulse 
widths and echo efficiency, and a is related to the atom fluctuations, we see that the mean unity-gain photocurrent (i0 ) is also 
related to the system bandwidth, echo efficiency, and atom fluctuations. From Eq. (6), we can calculate the mean unity-gain 
photocurrent as 

Oo)o = 7^—\ T „ E[P0 ]dt    for data =0, and 
nV lb     'h'2 

riQ  i rv^ 
<io>.= Tp-— I T/ E[P,]dt      fordata=l. (14) 

nv   I.   J-Th/2 

bias circuit, amplifier, and equalizer as'2 

[\HB(f)HcJf)\2df. (15) 

Lb 

BN is calculated from the bias circuit, amplifier, and equalizer as 
1 

BN = 
HB(0)Heq(0)\2 

Therefore, once we know the system bandwidth and echo efficiency, we can estimate the mean unity-gain photocurrent (io) 
and the shot noise component for the data = "0" and data =" 1" cases. 

The first thermal noise term of Eq. (11) at the output of the equalizer is12, 
4k  T 

(v2
R(t))=-^-BNR2A2, (16) 

Kb 

where kBT is Boltzmann's constant times the absolute temperature. Since the thermal noise contributions from the amplifier input 
noise current source iA(t) and from the amplifier input noise voltage source eA(t) are assumed to be Gaussian and independent, 
they are completely characterized by their noise spectral densities12. Thus, the last two noise terms are 

{v2M)=S,BNR2A2 (17) 
and 
{v2dt)) = SEBeA

2 (18) 
where S/ is the spectral density of the amplifier input noise current source, SE is the spectral density of the amplifier noise voltage 
source, and 

B,= 
1 

H<A2 \~Mjtfdf (19) 

is the noise equivalent bandwidth of the equalizer. Therefore, the total mean square noise voltage becomes 



na    1  rV2 ,        ,  ,    4kRT        ,   , „  „ 
(v2

N)0 = 2— E[P„]dt< m2)BNR2A2+ —BNR2A2 + S,Bv^A2 + SEBe/l2fordata=0and 
hv Tb 

J-Tb/2 Rb 

Tj/7     1   /»T ii 41c T 
(v2

N)t = 2— f "    E[P0]dt( m2)BNR2A2 + —^—BnR2A2 + S,BNR2A2 + SEBeA
2forda.to=\. (20) 

hv Tb 
}-\n Rb 

2.3 Bit error rate analysis 

2.3.1 Shot noise 

Our task now is to find the bit error rate caused by each noise component. From Eq. (8), if we assume ideal conditions for the 
bias circuit and the equalizer, the average output voltage during the time interval Tb can be calculated from Eq. (6). Thus 

< v„„, >o = ARoM —- f *    E[P0 ]dt for data=0, and 
Tfe 

J-T„/2 

< vM), = ARoM—fT'" E[P, ]dt fordata=l. (21) 
Tfe 

J-Th/2 

Also, the variances of the shot noise components can be calculated from the first terms of Eq. (20). Thus 

J]Q2   1   rV2 
G0

2
=2 — E[P0 ]dt ( m2 )BNR2A2 for dala=0, and 

hv Tb 
J-Th/2     0J 

v\a2   1   fTb/2 
a?=2— E[Pn]dt( m2)BNR2A2 fordata=l. (22) 

hv Tb 
J-V2      ° 

Although the shot noise has a Poisson distribution, the inaccuracy resulting from use of a Gaussian approximation is small . 
If we assume that the voltage at the equalizer output is Gaussian distributed, and if the decision threshold voltage vu, is set so that 
there is an equal error probability for 0 and 1 pulses and if we assume that the 0 and 1 pulses are equally distributed, then the error 
probability Pe is given by 

i    r     r (v-(vout)0)
2 i    fvü,       (-v+(vout) )2 

Pe=   .— exp —r^—]dv=   .— exp 2        ]dv. (23 

The error probability contribution from the shot noise is determined by several parameters. Most of the parameters such as 
amplifier gain, photodiode responsivity, noise equivalent bandwidth, etc., are determined by the receiver configuration. 
Therefore, when we choose a specific optical receiver, we can determine those parameters which are related with the optical 
receiver. The parameter which is related to the photon echo process is the average power at the input of the optical detector and it 
is determined by the system bandwidth, echo efficiency, and atom population fluctuations. Therefore, if we can analyze the 
relationship between those parameters and the average power, then we can estimate the effect of these parameters on the error 
probability. Fig. 4 shows the relationship between system bandwidth and average power integrated over the pulse interval for the 
data "0" and data "1" cases. 

From Fig. 4, we see that the integrated average power for data "0" is increased with write/read pulses bandwidth decrease, 
whereas the integrated average power for data "1" is decreased with a write/read pulses bandwidth decrease. This means that the 
mean and variance for data "0" will increase but the mean and variance for data "1" will decrease with a decreasing system 
bandwidth. When we consider the distribution for both data components, the two distributions will become closer and the 
distribution of data "0" will become wider when write/read pulse bandwidth decreases. Only the distribution for data "1" will 
become narrower. Therefore, we can expect the error probability to increase when the write/read pulses bandwidth decreases. 
Also, from Eq. (6) the average powers for both data components have a common term which is related to atom population 
fluctuations. Therefore, we can say that when the atom population fluctuations become larger, the means and variances for both 
data components will increase, so we can expect that the error probability will also increase. Fig. 5 shows the error probability 
variations for several cases of bandwidth, echo efficiency, and atom fluctuations. In general, the bit error rate increases with 
decreasing bandwidth, decreasing efficiency and increasing atom population fluctuations. 



2.3.2 Thermal noise 

When we assume that the thermal noise is dominant at the output, the total thermal noise can be calculated from three thermal 
noise components which are the second, third, and fourth terms of Eq. (20) for each data case. The thermal noise component is 
the same for data "0" and data "1", compared to the shot noise component which is different for data "0" and data "1". We know 

that the thermal noise is Gaussian distributed with mean=0, so if we denote the variance of each thermal noise term as a^ for the 

first thermal noise, aA2 for the second thermal noise, and 0^3 for the third thermal noise, then the total thermal noise is also 
Gaussian distributed and the mean and variance of the output data are 

< v«, )o = ARoM—J_^/2 E[P0 ]dt for data=0, 

1   fV2 

< v0„,), = ARoM — E[P ]dt for data=l, and 
Tb 

J-V2 

<?tot2 = <7(hi2+ 0th22+ sti,3
2 for data=0 and data= 1. (24) 

If the decision threshold voltage v,h is set so that there is an equal error probability for 0 and 1 pulses and if we assume that 
the 0 and 1 pulses are equally likely, then the error probability Pe is given by 

Pe=-7^= I   exp[ ->—^— ]dv = -7== I   exp[ x   /'    ]dv . (25) 
2KOM 

Jv- 2<rtot- V27rrjt0t 
J~ 2a,01 

Generally, when the photodiode is without internal avalanche gain, thermal noise from the detector load resistor and from the 
active elements in the amplifier tends to dominate14. As in the shot noise case, the mean of data "0" will increase but the mean of 
data "1" will decrease when the write/read pulses' bandwidth decreases. The variances of both data components are independent 
of the write/read pulses bandwidth. Therefore, we can expect that the error probability for thermal noise will increase as 
write/read pulses bandwidth decreases. However, we expect no effect on error probability from atom population fluctuations 
because the distance between the means of both data components is not changed and neither the variances are changed. 

2.3.3 Total noise 

The above analysis shows that the bit error rate for one of the two kinds of noise dominates the other kind of noise. When 
they are comparable, the bit error rate calculation needs to include both noise sources. From the shot noise analysis, we 
approximate the output distribution as Gaussian. Using this approximation and the same approach which we used in the thermal 
noise analysis, we can calculate the average value and the variance of each data components as 

< v„„, >o = ARQM — f ' " E[P0 ]dt for data=0, 
Tb 

J-V2 

< va„ >, = ARoM — J^ /2E[P, ]dt for data=l, 
T 

riq  1  rV2 
0-0 =2<?——J       E[Po]dt(/m2;ßwÄ2A2 + 0tot

2 fordata=0,and 
hv Tb 

J-V2 

7]q   1   rTh/2 77a   1   rv2 

a,2=2<7—— E[P,]dt('m2;ÄA,/?
2A2 + CTtot

2 fordata=l. (26) 
hv X, J-V2 

If the decision threshold voltage v,h is set so that there is an equal error probability for 0 and 1 pulses and if we assume that 
the 0 and 1 pulses are equally likely, then the error probability Pe is given by 

1    r    r (v_<v».)o)2„       1    r-    , (-V+(V».>,)2,J 

27rcr0 
Jv"' 2<70 V2^cr1 

J~°° 2er, 



3. CONCLUSION 

We derived the bit error rate expressions for the shot noise and thermal noise in the photon echo memory. We showed how 
the write/read pulses width, echo efficiencies, and atom population fluctuations are related to the error probability of the output 
signal. Actual bit error rates are also related to the detector circuit parameters, such as the responsivity of the photodetector, 
amplifier gain, gain of the photodetector, noise bandwidth, and resistor values. However, those parameters are actually related to 
the optical receiver, and many people have analyzed the relationship between those parameters and the bit error rate. That is why 
we only concentrated on the effects of system bandwidth, echo efficiency, and atom population fluctuations. As expected, the 
relationship between the system bandwidth(write/read pulses width) and the bit error rate shows that when the system bandwidth 
decreases, the bit error rate is increased. When the echo efficiency is increased, the bit error rate is decreased. When the atom 
population fluctuation is increased, the bit error rate is also increased, expected. The thermal noise analysis, however, shows that 
the error probability due to the thermal noise is not changed with changes in system bandwidth, echo efficiency, and atom 
population fluctuations. That is reasonable because the thermal noise is generated from the optical receiver circuit and is not 
directly related to the photon echo process. 
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M-type thick holograms in bacteriorhodopsin films 
with a high-divergence reference beam 

Arkady S. Bablumian, Thomas F. Krile, David J. Mehrl, and John F. Walkup 

The capacity to use differing read and write wavelengths for reconstructing volume holograms recorded 
in a shift-multiplexing geometry is analyzed and realized for M-type volume holograms recorded on 
bacteriorhodopsin films. The intensity distribution in the reconstructed wave is calculated as a function 
of the parameters of the recording and readout beams. Optimal recording and retrieving geometries, as 
well as a precise method for tuning the readout setup, are suggested. © 1998 Optical Society of 
America 

OCIS codes:   090.0090, 090.7330. 

1.    Introduction 

High-capacity storage of optical information can be 
achieved by holographic recording throughout the 
volume of a thick medium.1 The strong sensitivity 
of thick holograms to the parameters of the recon- 
struction beam allows one to multiplex many holo- 
grams in the same volume and then read them out 
selectively. The simplest way to retrieve any de- 
sired hologram is to use a readout beam identical in 
all respects to the reference beam used for recording. 
At the same time, for nondestructive retrieval of 
stored holograms it is necessary either to fix them or 
to reconstruct them at wavelengths to which the ma- 
terial is insensitive. (The latter is of particular in- 
terest in the general area of real-time optical data 
processing.) In general, changing the readout wave- 
length will change not only the output's orientation 
(in accordance with the Bragg condition) but also the 
shape of the wave front. This leads to both a loss of 
information in the object beam and difficulties asso- 
ciated with the synthesis of a readout beam with a 
complicated wave-front shape. 

Hologram reconstruction with different wave- 
lengths that employs distortion compensation during 
reconstruction by means of changing the curvature of 
the readout wave front was described in Ref. 2. In 
the paraxial approximation using the coupled-wave 
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theory, the authors calculated the optimal parame- 
ters for the readout beam (focal length) and assessed 
the width of the reconstructed spherical beam. Un- 
fortunately, under the approximations used in Ref. 2 
this approach cannot be applied for analyzing several 
interesting hologram-multiplexing geometries for sit- 
uations in which recording beams are highly diver- 
gent spherical waves. Such a geometry was 
investigated in Ref. 3, which described a hologram of 
an information-bearing signal considered to be a su- 
perposition of plane-wave elemental holograms with 
the same spherical reference beam. The plane-wave 
object beam of each elemental hologram represented 
a single component of the signal. This approach al- 
lowed the authors to calculate the optimal parame- 
ters of the reconstructing beam—a shift parameter 
characterizing hologram selectivity—and an assess- 
ment of maximal resolution in the reconstructed im- 
age. 

In this paper we apply another approach in which 
we consider the relative change of the intensity dis- 
tribution in the frequency plane of the signal. For 
an arbitrary wavelength we calculate the reconstruc- 
tion of the points of the Fourier transform of a signal 
by considering the hologram as a superposition of 
elemental holograms, each being formed by two point 
sources. We show that, besides the parameters 
mentioned above, such an approach allows one to 
assess distributions of both relative intensity and res- 
olution along the reconstructed image. These pa- 
rameters are then compared with values derived 
experimentally. 

It is necessary to note that the readout beam has to 
be calculated and oriented with respect to the holo- 
gram with high accuracy, according to the shift se- 
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Fig. 1. Geometry of the recording and readout rays. Here t and 
T denote the transparency and its scaled Fourier transform, re- 
spectively, i represents the reconstructed image, and OF denotes 
the optical fiber. 

lectivity of a chosen setup.3 Since the orientation 
has three degrees of freedom and recording beams 
have to be measured with the above-mentioned accu- 
racy, it becomes clear that the results cannot be ap- 
plied easily without some practical method of finding 
the optimal location of the readout beam. So our 
next step was to develop a method for tuning the 
readout setup. Finally, experimental verification of 
the theory is demonstrated by use of M-type holo- 
grams in bacteriorhodopsin (BR) films. 

2.   Theory 

Let the hologram be recorded by the reference u 1 and 
object u2 waves, as shown in Fig. 1. In both record- 
ing arms the laser beams are expanded and then 
point focused. This allows both the formation of a 
spherical reference beam and the insertion of the 
information into the object arm by use of a transpar- 
ency with transmittance t. The scaled Fourier 
transform of t is produced at the plane of the beam 
focus [(x2, y2) in Fig. 1]. Here we let (x1; yx) desig- 
nate the coordinates of the spherical reference source 
and (x2, y2) designate the coordinates of the zeroth- 
order component of the Fourier spectrum of transpar- 
ency t. 

The hologram of transparency t can itself be re- 
garded as the superposition of an array of elemental 
holograms, each being formed by a pair of spherical 
beams whose sources are located at the point (x^yj 
and one of the points of the Fourier plane [(x2 + Ax, 
y2 + Ay) in Fig. 1]. The hologram of the zeroth-order 
component of the Fourier spectrum T [H(Ax, Ay) = 
H(0, 0)] will determine the background in the recon- 
structed image /, whereas the holograms of higher- 

order components [H(Ax, Ay)] will determine its 
resolution. It is evident that each elemental holo- 
gram can be reconstructed by the beam whose pa- 
rameters coincide with those of one of the recording 
beams. The existence of reconstructed beams whose 
wavelengths differ from the recording wavelength be- 
comes clear from the following: Each elemental 
hologram is recorded by point-source beams; there- 
fore any of its small parts is described by the constant 
grating vector K. This means that, for an arbitrary 
wavelength X in every point (x, y) of the elemental 
hologram, two rays (incident and diffracted) oriented 
at the Bragg angle to the grating vector K are deter- 
mined unambiguously. The lattice of rays combines 
to form only two beams that can be diffracted by this 
hologram and that, generally speaking, for an arbi- 
trary wavelength X are not spherical. 

Let us consider hologram reconstruction by a 
spherical wave u3 with coordinates (x3, y3) and de- 
termine the Bragg mismatch angle 8 for its rays at 
every point of their crossing within the hologram. 
Let us also consider the cone of rays emanating from 
(*3> J3) with an average spatial frequency ß,,. The 
angular aperture of this cone of rays we choose is 
small enough to consider it to be a plane wave. Our 
purpose is to define the conditions under which (1) 
the intensity change along the cone in hologram H is 
equivalent to (2) the intensity change of a plane wave 
incident on a plane diffraction grating. Such an 
analogy will allow us to assess the diffraction in the 
case 1 by calculation of the diffraction in case 2 in 
accordance with the coupled-wave theory.4 Under 
suitable approximations, described below, the inten- 
sity of the plane wave in the output plane of the 
equivalent diffraction grating will be equal to the 
output intensity of the cone of rays. Continuing this 
procedure for all ßk, we can calculate the output in- 
tensity arising from the source u3. Then one can 
calculate the intensity distribution of the diffracted 
beam for each elemental hologram H, considering the 
sum of the incident and diffracted beams to be con- 
stant. The sum of the elemental holograms corre- 
sponds to the Fourier spectrum of the transparency 
T, by which we can estimate the resolution in the 
reconstructed beam. 

First, let us consider the main arguments support- 
ing the proposed approximation, as well as the limits 
of its applicability. The diffraction process is deter- 
mined mostly by the direct energy diverted from the 
incident into the diffracted beam when the values of 
the diffraction efficiency (DE) are low (typically the 
case for BR). It follows from the fact that the am- 
plitude change of the incident wave is proportional to 
the amplitude of the diffracted wave, and vice versa, 
that the amplitude change of the diffracted wave is 
proportional to the amplitude of the incident wave.4 

Therefore the diverted energy proceeds mainly in one 
direction when the difference between the ampli- 
tudes of the interacting waves is large. Let us ne- 
glect the influence of the parameters of the diffracted 
beam on the intensity change of the incident beam. 
This assumption and the fact that the incident rays 
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from u3 intersect one and only one conical region of 
the hologram allow one to consider the diffraction in 
such conical regions independently of each other. It 
means that the diffraction of the beam u3 within a 
region determined by ßk will not be changed after the 
arbitrary changing of the hologram's structure, as 
well as the shape of the beam u3 outside the region. 
In particular, diffraction by hologram H within a re- 
gion will be equivalent to the diffraction of the plane 
wave with spatial frequency ßk on a hologram whose 
grating vector K varies as a function of y in the same 
manner as that in the given region of hologram H and 
is independent of x. 

Let us now break this new holographic structure 
into parallel layers yk_1 < y < yk. We choose the 
thickness of each layer to be thin enough to consider 
K(y) to be constant within the layer. In this case the 
intensity change of the incident plane wave within 
each layer can be calculated in accordance with the 
coupled-wave theory. We can see from Eq. (2.5) be- 
low that the equation describing the diffraction de- 
pends on only the Bragg mismatch angle 8 if we use 
a first-order Taylor approximation for 8 and K. It 
means that changing the value of K in any layer 
without changing 8 does not change the intensity of 
the incident beam in the output plane of the holo- 
gram. This, in turn, means that the grating vector K 
can be chosen to have the same value for all layers 
with the condition that 8 is constant. Thus, assum- 
ing 8 is not changed along the propagation path of the 
cone of rays constituting u3, we can calculate the 
output intensity by calculating the diffraction of the 
plane wave on the equivalent diffraction grating. 
The spatial frequency of the plane wave and the ab- 
solute value of the grating vector if have to be chosen 
to be equal to ßA and K(x, 0), respectively. 

As indicated in Fig. 1, rays from the recording 
(xi> Ji)> (*2> y?) and reconstructing (x3, y3) sources 
traveling to an arbitrary point (x, 0) on the recording 
medium make an angle 0;, where 

6;(*, y) = arctan i = 1,2,3.    (2.1) 

The Bragg angle at the same point is 

9i(x, v) - e2(x,y) 
0Bragg(x, y) = arcsini — sin 3im — 

ei(s,y) + e2(*,y) 
2 * 

(2.2) 

which follows directly from the Bragg law written in 
common form2 for readout \2 

and recording Xx wave- 
lengths.    Consequently, the Bragg mismatch angle 
^Bragg 1S 

g(*> y) J Bragg' (x,y) - Q3(x,y). (2.3) 

We choose the coordinates of the point-source re- 
construction beam (x3, y3) in such a way that two of 
its rays crossing the hologram at points (0, 0) and 
(c, 0) make Bragg angles with the input plane [Eq. 

C=6mm 

C=4nim 

C=2mm 

-15 -10 -5 
X(mm) 

Fig. 2.   Normalized DE of H(0, 0) versus the hologram plane 
position for various values of the parameter c. 

(2.2)]. 
that 

Using geometric construction we can show 

cos[9Bragg(0, 0)]cos[eBragg(c, 0)] 
y* ~~c sin[eBragg(o, 0)] - eBragg(c, o)]' 

x3 = y3tan[eBragg(0,0)]. (2.4) 

We then determine the mismatch angle 8Bragg for the 
rest of the rays of the reconstructed beam and insert 
it into the relation that expresses the angular sensi- 
tivity of a thick hologram: 

exp 
ad 

c« 

X exp[-i£] 
expiHe + v2)0-5] - exp[-i(?z + v2)0'5] 

2\0.5 

2   1 + 

(2.5) 

where £ = (2Tm/X.2)8Bragg d sin[(91 - 62)/2], with v = 
xd/cs, cs = cos[(9x — 82)/2], d is the thickness of the 
hologram, and x is the coupling constant.4 

Expression (2.5) describes, in the exit plane of the 
hologram, the profile of the intensity of the diffracted 
wave that attains its maximum at points x = 0 and 
x — c. Note that we are interested in the relative DE 
of diffracted rays versus only Sßragg f°r each of them, 
so we can simplify Eq. (2.5) to obtain 

^ = v2 sine W + £8Bragg
2(;c, y)f5}.     (2.6) 

"Ho 

Here we took into account the fact that the presence 
of loss has very little influence on the angular sensi- 
tivity4 and used Eq. (2.5) as written for lossless grat- 
ings with real x- The constant v was measured 
experimentally. 

Figure 2 represents the relative-intensity distribu- 
tion profile (equivalent to the normalized DE) of dif- 
fracted beams in the exit plane of the hologram 
calculated for the elemental hologram H{0, 0) (corre- 
sponding to the zeroth-order component of the Fou- 
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Fig. 3.   Normalized DE for cases (xlt .v,) = (7, 10), (x2, y2) = 
(6.5, 10) (plot 1), (8, 10) (plot 2), (5, 10) (plot 3). 

and one can use this curve to define an effective spa- 
tial cutoff frequency at some particular value of the 
relative DE (1/e in this paper). 

Let us now consider in more detail how the inten- 
sity profiles of beams diffracted by elemental holo- 
grams (Figs. 2-4) can be utilized to determine the 
resolution and intensity distribution in the recon- 
structed image t. Each point P of the recording 
transparency t is formed by a cone of rays connecting 
it with points of the Fourier spectrum (Fig. 1), each of 
which we took as an elementary point-spurce object 
beam of the elemental hologram. The part of the 
transparency t in the vicinity of the point P will be 
reconstructed with a resolution h if all rays of a cone 
with a base radius of 

rier spectrum T of transparency t) for reconstructed 
beams with different values of the parameter c. Val- 
ues of Xj = 458 nm and K2 = 633 nm were used for 
this and subsequent plots. The X axis is in the 
hologram recording plane, and the different values of 
c are obtained by the changing of the location of the 
reconstruction point source (x3, y3). Optimized 
readout parameters correspond to the portion of the 
hologram where the curves of Fig. 2 have sufficient 
DE, say not less than 1/e (as for the definition of the 
width of a Gaussian-shaped signal), and are as flat as 
possible. In our experiments (Section 3) the holo- 
gram was approximately 3 mm in extent, so c = 2 mm 
would be optimal from Fig. 2. 

Profiles of diffracted beams with the optimized pa- 
rameter c, calculated for several recording setups of 
H(0, 0) holograms (with different orientations and 
average spatial frequencies of their recording beams), 
are shown in Fig. 3. The diffraction of the beam 
optimized for the reconstruction of hologram H(0, 0) 
from holograms H(Ax, Ay), which correspond to the 
higher-order components of the Fourier spectrum T, 
is shown in Fig. 4. These plots represent the sum 
intensity distribution of beams diffracted by elemen- 
tal holograms H(Ax, Ay) andH(-Ax, -Ay), where we 
use the fact that symmetric components of the Fou- 
rier spectrum contain the same information. From 
Fig. 4 we can see that the relative DE decreases with 
increasing values of r, corresponding to holograms of 
higher components of the Fourier spectrum T. Thus 
the reconstruction system acts like a low-pass filter, 

r = 
O.ßlkj.D 

~h 
(2.7) 

X (mm) 
Fig. 4.    Normalized DE of elemental holograms with various val- 
ues of r versus the hologram plane position. 

have enough DE (r| > r\0/e), where r = (Ax2 + Ay2)05 

is one of the coordinates of the Fourier plane of the 
transparency t and D is the distance between the 
plane of transparency t and its Fourier transform 
plane T.° If the behavior of the plots in Fig. 4 is 
taken into account, the proper DE of only edge cone 
rays corresponding to the maximum-order compo- 
nents of the Fourier spectrum will provide the re- 
quired resolution. Then it is easy to see that the 
intensity distribution of the reconstructed beam at 
the image plane corresponds to a profile of the beam 
diffracted by the H(0, 0) hologram at its exit plane, 
reduced in size by D2 cos Q^JD^ where Dx and D2 

are the distances between the Fourier plane of image 
i and, accordingly, the hologram and the plane of the 
image, respectively, and 8avcr is the average incident 
angle of the reconstructing beam. Thus the inten- 
sity and resolution in an arbitrary part of the recon- 
structed image T can be estimated by the profiles of 
two beams diffracted by elemental holograms H(0, 0) 
and H(Ax, Ay), where Ax and Ay obey the condition of 
Eq. (2.7). 

Let us also consider the limits that the assump- 
tions defined above place on the thickness of the 
hologram (more exactly, on the Klein parameter Q, 
which characterizes thick gratings5 for which the the- 
ory is valid). Calculations [Eqs. (2.1)-(2.6)] showed 
that, for a thickness of approximately 0.5 mm and 
values of the Q factor of the order of 104, the values of 
8 variations along the propagation path of the recon- 
structing beam do not exceed 10"4 rad, which corre- 
sponds to a percent error in the intensity calculation 
of not more than 5%-7%. 

3.   Experimental Results 

To investigate the different wavelength regimes of 
recording and reconstructing volume holograms we 
used a thick BR film. This material exhibits excel- 
lent properties for real-time optical processing appli- 
cations, as well as for permanent high-density data 
storage.6 Hologram recording in BR films was car- 
ried out in the M-type regime, in which red readout 
light provided at the same time excitation for the BR 
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molecules, transforming them into the M-state ready 
for recording with blue light. Using M-type holo- 
grams allowed us to investigate the two-lambda 
method3 of constructing the holographic memory and, 
simultaneously, to change and compare in real-time 
the recording and readout parameters. 

Mutant variant BRD96N- films with a thickness of 
100 (xm were used. A hologram of a standard U.S. 
Air Force test pattern was recorded at \ = 458 nm 
and reconstructed at A = 633 nm. The setup geom- 
etry for recording and reconstruction was chosen ac- 
cording to the theory described in Section 2, enabling 
us to compare the experimental results with the re- 
sults derived theoretically (see Figs. 2-4). 

As was pointed out above, in a recording regime 
with a high sensitivity to shift the process of finding 
the location of the readout beam with the given pa- 
rameters becomes a difficult problem practically 
This is particularly true for high values of the Klein 
pafameter Q. For optimally tuning the readout 
setup the following method was suggested and uti- 
lized:   The thick recording medium was first re- 

placed by a structure consisting of two separated thin 
films. A hologram recorded in such a structure, in 
contrast to a common thick hologram, can be recon- 
structed by readout beams of any orientation. This 
forms two images that are propagated, in general, in 
different directions. On optimal orientation of the 
readout beam these directions coincide, and inter- 
ferometric fringes of overlapped images coalesce into 
one fringe. From the maximal size of this fringe one 
can judge the accuracy of the reconstruction source 
location. 

For modeling the volume medium a 1-mm glass 
plate with photoresist layers on both surfaces was 
used. The readout beam was formed by use of a 
piece of optical fiber to facilitate precise positioning of 
the point source. After finding the optimal position 
for the reconstruction source, we then replace the 
model medium with the BR film. We also devised a 
technique (not discussed here for the sake of brevity) 
to compensate for the fact that the overall thickness 
of the model medium and the BR film are not the 
same. 
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Figure 5 presents photographs of the U.S. Air Force 
test-pattern image reconstructed from the BR film 
with different values of the Q factor.   For compari- 
son, next to each photograph we show plots of the 
intensity profiles of beams diffracted from two ele- 
mental holograms, H(0,0) and H(r = 1 mm), recorded 
in the corresponding geometry.   As was pointed out 
above, a sufficient DE for these two elemental holo- 
grams automatically ensures a sufficient DE for all 
elemental holograms H(\r\ < 1 mm) (remember that 
r is the coordinate in the frequency domain).   With 
the parameters of the beam u2 taken into account, it 
is easy to calculate that the reconstruction of a 1-mm- 
extent u2 in the frequency plane provides a 30-|xm 
resolution in the reconstructed image [Eq. (2.7)].   As 
one can see, this resolution (the width of the first 
element in the fourth group of the test pattern), 
which conforms to the lower traces in Figs. 5(a)-5(c), 
is provided over all the field of the reconstructed im- 
age for Q = 100, 300 but is reduced for Q = 750. 
These results are supported by analysis of the corre- 
sponding photos.   The experimental sensitivity of 
the setup with Q = 750 to the shift of the readout 
beam was approximately 20 p.m, deviating by 5%-6% 
from the theoretical prediction.    The measured DE 
of the reconstructed images was approximately 49k- 

4.   Conclusions 

We have demonstrated a relatively simple method of 
calculating critical parameters for the processes of 
reading and writing volume holograms using highly 
divergent beams of differing wavelengths. The ex- 
perimental results were shown to agree with the the- 
oretical results. We have considered the resolution 
and relative-intensity distribution of the recon- 
structed image stored in a thick hologram by a high- 
divergence reference beam that is arbitrarily 
oriented relative to the object beam.    These param- 

eters, as well as the optimal parameters of the read- 
out beam, can be estimated from the intensity profiles 
of beams diffracted by two elemental holograms (re- 
corded by a pair of spherical beams), whose simple 
calculation method has been presented above. 

A method for modeling a volume hologram by use of 
a medium consisting of two separated thin layers has 
also been suggested. This approach allows one to 
find experimentally the precise optimal position of 
the readout beam. Also, the method makes accessi- 
ble the modeling and direct visualization of the pro- 
cess of diffraction by thick holograms with arbitrary 
recording parameters. These procedures could be 
difficult or impossible as a result of the characteris- 
tics of commonly used volume recording media (e.g., 
short lifetimes, low DE, destructive readout, etc.). 
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