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1.0 Executive Summary 

The most critical element in high-rate, plastic deformation of crystalline solids is the 

motion of dislocations. During the contract period, a great deal of attention was 

focused on this subject with particular emphasis on how dislocation motion should be 

incorporated into material constitutive equations. Results from these efforts appear in 

reference 1 (see Appendix A). This presents successful applications of dislocation- 

based, rate-dependent, plasticity theory to some simple, one-dimensional problems. It 

is suggested that such theory be incorporated into a finite element code such as EPIC 

so that more complex problems could be treated in the future. 

Most of the work performed under this contract involved novel analytical models to 

interpret the results from Taylor impact tests. In reference 2 (see Appendix B), the 

difference between the original Taylor theory and the so-called "alpha-beta theory" is 

examined. The latter requires solving a highly complex, transcendental equation in 

order to obtain a flow stress estimate from the Taylor test. Reference 2 establishes an 

empirical constant that simplifies the "alpha-beta theory" to a formula comparable to 

that of Taylor. This makes it simple to now estimate the flow stress from an ordinary 

Taylor test using the "alpha-beta theory." 

A trilogy of papers by: Foster, Maudlin, and Jones (reference 3, see AppendixC), 

Jones, Maudlin, and Foster (reference 4, see AppendixD), and Maudlin, Foster, and 

Jones (reference 5, see AppendixE) present analyses of the Taylor test from three 



different viewpoints. Reference 3 examines the Taylor test from the viewpoint of one- 

dimensional shock wave propagation. Reference 4 considers the Taylor test as a one- 

dimensional engineering problem. Reference 5 presents a computational approach to 

the problem based on a finite element code. These three views and their outcomes are 

compared and contrasted in the papers. Remarkably, the elementary shock physics 

and engineering modeling produce identical results and the computational mechanics 

code analysis confirms these conclusions. 

Within the aforementioned papers are the elements of a theory that is capable of 

describing material behavior at very high strain-rates and strains. This information is 

required for the successful simulation of terminal ballistic events. In these papers are 

representations for stress 

<7 = (l + e)(o-0+£(v0
2-W)2) 

e 

and an equation of motion for the undeformed section of the Taylor specimen 

plv = a0 

that were not previously reported in their present forms. The definitions and 

interpretations of all of the symbols appearing in these equations are given in 

Appendices C, D, or E. The potential application of these results and some of the 



companion kinematical equations to constitutive modeling of high strain-rate 

behavior of ductile materials is enormous. 

A summary, and an example, of the one-dimensional analysis is given in reference 6 

(see Appendix F). At the same time, a new estimate for the maximum strain-rate 

achieved in the test after initial transient behavior is completed is also included. 

Estimating the strain-rate from test data is the most challenging aspect of the 

modeling effort. Work continues on this problem and the results of reference 7 give 

some indication of the ultimate reward that is possible from these efforts. Jones, 

Allen, Sharp, and Foster (reference 7, see Appendix G) present an implicit, parametric 

representation of the constitutive equation for ductile isotropic metals. The parameter 

in the representation was the undeformed section speed in the Taylor specimen. The 

methods presented in these papers show great promise for mapping Taylor test results 

that are recorded by high speed photography, into stress, strain, strain-rate 

information. This would facilitate the construction of accurate material constitutive 

relations for use in numerical design simulations. 

Reference 8 (see Appendix H) provides internal void formation data from actual 

Taylor tests. This, in turn, provides a physical foundation for constitutive models that 

include material damage parameters. It would be very worthwhile to extend this work 

to other materials in addition to copper. 



Besides the Taylor test effort, analytical modeling of penetration experiments was 

emphasized. In references 9-12 (see Appendices I-L), the Alekseevskii-Tate theory of 

long rod penetration into a senn^infinite target was perturbed in several novel and 

interesting ways to improve the degree of agreement with previously reported 

experimental results. The emphasis in all of these papers was the simplicity of an 

engineering model. In some instances, the interpretation was through transient rather 

than steady-state behavior. 

The work discussed above was enhanced by presentations at national and 

international technical meetings. Below are listed the presentations that were made in 

connection with the project. The presentor is listed in parentheses after the citation. 

1. "The Role of Dislocations in High Rate Plasticity," Second Wright Laboratory/Air 

Force Office of Scientific Research Workshop on Integrated Theory and Numerics for 

Design Applications, Eglin AFB, FL, June, 1994 (P.P. Gillis). 

2. "An Analysis of Plastic Wave Propagation in Taylor Impact Specimens," Second 

Wright Laboratory/Air Force Office of Scientific Research Workshop on Integrated 

Theory and Numerics for Design Applications, Eglin, AFB, FL, June, 1994 (S.E. 

Jones). 



3. "Dislocation Theories of Viscoplasticity," Symposium on Finite Deformation 

Viscoplasticity, International Mechanical Engineering Congress and Exposition, 

Atlanta, GA, November, 1995 (P.P. Gillis). 

4. "Estimation of Flow Stress Under High Rate Plastic Deformation," Fall Meeting of 

TMS-AME, Pittsburg, PA, October, 1993 (J.W. House). 

5. "An Analysis of One-Dimensional Penetration Using a Revised Estimate for 

Impulse," SECTAM XVII, Hot Springs, AR, April, 1994 (S.E. Jones). 

6. "An Elementary Theory of One-Dimensional Rod Penetration Using a New 

Estimate for Pressure," 31st Annual Technical Meeting of the Society of Engineering 

Science, College Station, TX, invited paper, November, 1994 (S.E. Jones). 

7. "On the Taylor Test: A Continuum Analysis of Plastic Wave Propagation," APS 

Topical Conference on Shock Compression of Condensed Matter, Seattle, WA, 

August, 1995 (J.C. Foster, Jr.). 

8. "Constitutive Modeling Using the Taylor Impact Test," ASME Conference and 

Exposition (WAM), San Francisco, CA, invited paper, November, 1995 (S.E. Jones). 



9. "A Parametric Representation for the Constitutive Properties of Metals at High 

Strain-Rates," IMACS'94,14th World Congress on Computational and Applied 

Mathematics, Atlanta, GA, July, 1994 (S.E. Jones). 

As college professors, one of our most important functions is the direction of graduate 

student research. In this connection, three students at the University of Alabama 

received advanced degrees with work directly or indirectly associated with the 

project. One student was partially supported by project funds and another was entirely 

supported by funds from the Air Force Office of Scientific Research through an 

augmentation grant (Project ASSERT). Below is a list of the students and then- 

degrees: 

1. Dr. Ping Wang, received a Ph.D. in Engineering Science and Mechanics in 

May, 1994. Dr. Wang's work was in the area of one-dimensional modeling of 

penetration. The title of his dissertation was "An Investigation of One- 

Dimensional Penetration Modeling." Dr. Wang received no project support. 

2. Mr. David Allen received an M.S. in Engineering Science and Mechanics in 

December, 1995. Mr. Allen's work was in the area of Taylor test analysis using 

the EPIC code. He spent a summer at Los Alamos National Laboratory. The title 

of his thesis was "Use of the Taylor Impact Test to Determine Constants for 

Material Strength Models." Mr. Allen was partially supported with project funds. 



3.        Mr. Sandor Augustus received an M.S. in Engineering Science and Mechanics 

in May, 1996. Mr. Augustus' work was in the area of one-dimensional modeling 

of the Taylor test. Mr. Augustus spent a summer at Eglin AFB. The title of his 

thesis was "Validation of an Elementary Scaling Law in the Taylor Test for 6061- 

T6 Aluminum." Mr. Augustus was supported by an Air Force Fellowship from the 

Air Force Office of Scientific Research through an augmentation grant (project 

ASSERT). 
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2.0 Conclusions 

This project has lead to some important discoveries that provide very useful tools for the 

determination of the high rate properties of ductile materials. Listed below are the 

principal conclusions and their potential use for solving the important materials 

characterization problem connected with high rate deformation. 

1.  The related papers (references 3-5) present a new set of equations that interpret the 

Taylor impact test from the perspective of a plastic wave propagation problem. One 

interpretation of these results is the propagation of waves of constant strain. When 

viewed in this context, the kinematical equations can be integrated and a useful 

scaling law is produced. This relationship takes the form 

tf_   1-ßLf ] l    \~ßs }\-ß 
L e     L     L       e    L       e 

where all of the parameters that appear in this equation involve post-test measurements of 

recovered Taylor specimens or quantities that can be determined from the theory. Mr. 

Sandor Augustus extensively investigated this relationship for 6061-T6 Aluminum and 

found that for impact velocities that are sufficiently high it is valid. The implication from 

this conclusion is that the important physical parameter ß can now be determined from 

the slope of the line in the tf IL vs. Lf IL space. The details of this reasoning are 

contained in Mr. Augustus' thesis. 



The work mentioned above appears to provide the framework for a theory that will be 

capable of estimating stress states in ductile metals at high strain-rates. It also appears that 

this theory will be capable of providing these estimates for other materials, such as 

polymers or even energetic materials, for which there is no recovered impact specimen. 

We recommend that this work be extended and continued. 

2. A substantial effort was undertaken to develop an alternative and independent path to 

the state of stress in ductile materials. This involved the EPIC code. Mr. David Allen 

installed the EPIC code on a PC and an IBM Workstation. The purpose of this was to 

explore the development of new techniques for reducing Taylor test data using the 

code. His work concentrated on estimating Johnson-Cook strength constants using 

only Taylor test data. The results presented in his thesis are only preliminary, but it 

appears that this effort is worth pursuing and we recommend so. 

3. Dr. Ping Wang thoroughly investigated alternatives in the one-dimensional 

mathematical modeling of penetration by eroding rods into semi-infinite targets. This 

work was not supported by the Air Force, but was related to their interests and is 

mentioned here for that reason. Dr. Wang proposed several fundamental improvements 

in earlier modeling efforts. These improvements concerned the impulse of the force at the 

interface between the deformed and undeformed sections of the rod penetrator and the 

pressure at the target/penetrator interface. The agreement between theory and experiment 

was considerably improved and his work resulted in several publications in prominent 

conference proceedings and a journal. This work has reached the point where it appears 

10 



that any improvements will not be substantial without some inspirational change in 

thinking. We do not recommend continuing this effort any further. 

11 
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DISLOCATION THEORIES OF VISCOPLASTICITY 

Peter P. Gillis 
Department of Chemical & Materials Engineering 

University of Kentucky 
Lexington, Kentucky 

Crystalline marerials that deform plastically do so mainly by the movement of line defects known as 
crystal dislocations. At high rates of deformation this is especially one. Grain boundary sliding may 
contribute a small amount of viscoplastic deformation in polycrystalline materials. However, when 
deformation rates are as high as in most technologically important processes (e. g., rolling, forging, 
stamping and extrusion), almost all of the deformation is accommodated by the motion of dislocation. 
Two fundamental processes are important in crystal plasticity. The spatial and velocity configurations 

of the dislocation population determine local values of the plastic portion of the rate of deformation 
tensor. Also, the accumulation of plastic deformation reorients the polycrystalline grain structure. 
Thus, the accumulated motion of dislocations usually leads to texture formation in initially isotropic 
materials and texture redevelopment in anisotropic materials. 
In the present paper these two processes are reviewed. Experimental evidence that relates the motion 

and number of dislocations to stress and strain is presented. With this background developed, analytic 
solutions incorporating dislocation dynamics, are reviewed for some simple, one- and two-dimensional 
problems. Finally, author suggests some general features for a computational scheme to incorporate 
the essential results of dislocation theory into multidimensional computer codes. 
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INTRODUCTION 
Seminal papers by Taylor (1934), Orowan (1934), and by Polanyi (1934), introduced the concept of 

crystal dislocations into the science of the mechanics of deformable solids. Since then dislocation 
theory has become an important area of study by itself and has motivated many important advances in 
continuum mechanics. 

One such advance has been to emphasize the intrinsically viscous nature of plastic deformation. 
Crystalline materials that deform plastically do so mainly by the glide movement of dislocations. At 
high rates of deformation this is especially true. It is simple to show geometrically that local plastic 
strain is the time integral of local dislocation flux. Because this flux is always finite, the accumulation 
of plastic strain is time dependent or viscous. The characteristic time associated with this viscosity has 
been so small that at low rates of deformation inviscid theories have successfully described the resulting 
plasticity. However, such theories become less successful as deformation rates increase. 
Even before the concept of dislocations arose, the notion of slip band formation was associated with 

the plastic deformation of crystals. It was shown geometrically that homogeneous accumulation of 
strain on a single slip system reorients the crystal with respect to the loading direction (Schmid and 
Boas, 1935). A natural coupling should occur here with dislocation theory. In the many situations 
when slip is attributable to dislocation glide, the flux of glide dislocations then determines the rate of 
crystallographic reorientation as well as the rate of plastic straining. In principle, this would allow 
texture changes to be calculated from dislocation kinematics. In practice, no one seems to have 
attempted such a computation. 

Local dislocation flux is a summation over all the different dislocation families of the product of 
density times velocity. The speeds are highly sensitive to the local stress state. The densities require 
evolutionary equations (Kelly and Gillis, 1974a) mat account for cross glide multiplication events and 
stalemating of dislocations of one family by those of another as well as by grain and sub-grain 
boundaries and other crystal defects. Combine all this with compatibility and equilibrium conditions 
all the grain boundaries in polycrystal and an enormous computational problem results. 

REVIEW 
Dislocation Flux 
The Burgers vector is the relative displacement produced by the motion of a dislocation across a glide 

plane. Figure 1 (taken from Gilman, 1969) shows a crystal element being traversed by a dislocation line. 
The upper portion of the element is being displaced relative to the lower portion by some natural 
crystallographic spacing, denoted by b. As the dislocation line sweeps out an ever increasing area of 
the glide plane the average displacement of the top surface of the element increases. When the entire 
area has been traversed the relative displacement is uniformly b. The plastically deformed 
configuration corresponds to a simple shear strain with respect to the coordinate directions b and n 
where n is normal to the plane of the dislocation. The plastic strain-rate is proportional to the rate at 
which the dislocation sweeps out area. In turn, this depends upon the length of the dislocation line and 
its average speed The product of these two quantities is the dislocation flux. Its two components are 
extremely difficult quantities to probe experimentally. 
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Screw 
oriemation 

Figure 1. Spread of a glide dislocation across a crystallographic plane. (Gilman, 1969) 

Dislocation Density 
The length of dislocation line per unit volume of material is called dislocation density. The total 

dislocation density is often largely composed of dislocations whose motion is impeded by barriers of 
the types mentioned above. These are called immobile dislocations. Thus an important quantity in 
describing the plastic strain-rate is the mobile fraction of the total dislocation density. 

Measurements of total dislocation density have been made using such techniques as electron 
microscopy , etch pits, and x-ray topography. See, for example, Eddington (1968), Johnston and 
Gilman (1959) and Pope, et al. (1967). Figure 2 shows experimental data of Eddington (1968) relating 
total dislocation density to plastic deformation from tension tests of niobium monocrystals. The density 
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Figure 2. Dislocation density as a function of plastic deformation. (Eddington, 1968) 

units in this figure are cm'2 or cm/cm3. The data points near 10 x 109 cm"2 represent dislocation line 
lengths of about 6,000 miles per cubic centimeter! The figure purports to show that for these 
experiments density varied with plastic strain but not with strain-rate. Analysis of some dozen other 
data sets by Keshavan and Gfllis (1975) suggest that a simple linear dependence of density upon plastic 
strain is reasonably appropriate for other materials, including polycrystals. 

Dislocation Speed 
Measurements of mobile dislocation speeds have been made using etch pit and x-ray techniques. 

Figure 3 (due to Gilman, 1969) shows a compilation of speed versus applied stress for eight different 
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Figure 3. Some typical data showing the dependence of dislocation velocities on applied shear stress. 
(Gilman, 1969) 

materials in monocrystal form. The stress values represent shear on the glide plane in the direction of 
the Burgers vector. Note that both axes are scaled logarithmically. For germanium, silicon and copper 
the slopes are near unity while for the other five materials the slopes are extremely steep at low 
velocities. The alkali halides tend to level off as the shear wave velocity is approached. 
High speed dislocations present a special challenge experimentally. Even as low as 100 cra/s a stress 

pulse duration of 0.1 s will displace a dislocation 10 cm which usually means it has passed out of the 
test specimen altogether. In order to retain the dislocations within the specimen so that changes of 
position can be measured, extremely short, dynamic stress pulses are required. The rise and decay 
times of these pulses then become important quantities that are especially difficult to assess. 

Two features that characterize the data shown in Figure 3 are a limiting speed in the vicinity of the 
elastic shear wave velocity which dislocation speeds do not exceed, and a cut-off* stress below which 
dislocations do not move. This second feature roughly corresponds to the yield strength of the material. 
Plastic deformation does not occur at stress levels below this cut-off stress. Furthermore, the yield 
strength at low deformation rates is not sensitive to the rate. In nickel, for example, according to the 
figure, dislocation speeds increase by about a factor of 35 as the stress increases from 400 to 500 (25 
percent). For this stress increase the dislocation flux will increase more than 35 times because the 
slightly higher stress will drive additional dislocations into the initial mobile population and the already 
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higher flux will produce more new dislocations faster through the strain dependence of the dislocation 
density. Therefore, the yield stress will increase only moderately in response to very large increases 
in deformation rate. 
On the other hand, at sufficiently high deformation rates the first feature mentioned above comes into 

play. At high dislocation speeds an asymptotic approach is made to the limiting speed, then the 
sensitivity of dislocation speed to stress rapidly declines. Larger stress increments are required for 
successive, equd increments of dislocation speed. As tests are conducted at higher deformation rates, 
significantly higher stresses are required to produce plastic deformation. Experimental results for plain 
carbon steels (taken from Kanninen et al., 1968) are shown in Figure 4 which illustrate this behavior. 
Figure 5 shows a theoretical calculation by Gillis (1965) based on a limiting-dislocation-speed model 
and it qualitatively reproduces the experimental trend. 
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Figure 4. Data showing the strain rate dependence of the yield stress of steel at room temperature. 
(Kanninen et al., 1968) 
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Figure 5. Calculated non-dimensional yield stress versus specific crosshead rate. (Gillis, 1965) 

APPLICATIONS 
The forgoing physics was the basis for several idealized descriptions of viscoplastic deformation 

(Gillis and Oilman, 1965, Gillis and Kelly, 1972). Several one dimensional problems were solved 
(Gillis and Kelly, 1973, Kelly and Gillis, 1967,1974b, 1975, & 1977, SackettetaL, 1977, Gillis and 
Jones, 1977, Jones and Gillis, 1978) analytically or with computational schemes of varying degrees of 
complexity. Although inertia effects were not considered, some aspects of wave propagation were 
treated through elastic precursor decay and steady-state assumptions. These computations were all 
reasonably successful. 
More modem trends are towards using finite element calculations to solve problems in plasticity and 

to employ dynamic codes whenever necessary. In these codes two requirements arise that could be 
naturally satisfied by a dislocation-based material constitutive relation. First is a natural viscosity that^ 
results from plastic strain requiring a finite time to accumulate. Potentially this could replace the 
artificial viscosity introduced into current codes arbitrarily to stabilize numerical wave fronts. Second 
is a natural method for calculating finite rotations as discussed in the foregoing Introduction. 
An even more important computational concept coming from dislocation theories relates to the yield 

surface. Figure 3 shows that above the cut-off stress, the higher the applied stress the faster 
dislocations glide. And the faster they glide the larger is the plastic strain-rate. This suggests that the 
yield surface represent the cut-off stress, at or below which dislocations remain stationary. Plastic 
deformation then would require a stress state outside of the yield surface. The further outside, the larger 
would be the dislocation speed contributing toward plastic strain that would tend to relax the stress 
back into the yield surface. Everyone knows that is exactly what happens in reality. Dislocation 
dynamics merely provides a basis for assigning rates to these relaxation processes. 
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Summary—The impact of a cylindrical specimen against a rigid anvil was analysed in 1948 by 
G. I. Taylor. In 1987, Jones, Gillis and Foster proposed a modification to Taylor's analysis. This 
modification included a new equation of motion for the undeformed section of the specimen and 
relaxed one of the assumptions of Taylor's original work. While Jones and co-authors were able 
to show the existence of an exact solution, the utility of the analysis was severely limited by its 
complexity. The present paper introduces an approximation into this model which produces a 
simple algebraic formula to estimate its exact solution. Results of 92 tests of copper, aluminum 
and steel specimens are reported and used to evaluate this new approximation to the Jones, Gillis 
and Foster analysis. 

NOTATION 

A0 cross-sectional area of the undeformed section 
A cross-sectional area of the specimen just inside the plastic zone 
C constant plastic wave speed 
f experimentally determined parameter 
F force exerted by the deformed material 
h distance from the anvil face to the plastic wave front 

H distance from the anvil face to the plastic wave front at final time 
L original specimen length 

Lx final specimen length 
S constant flow stress 
t time 

7" final time 
u undeformed section speed 

U impact speed 
up particle velocity just inside the plastic region 

v speed of the plastic wave front 
x length of the undeformed region 
X final undeformed section length 
p mass density of specimen 
\j/ function representing t as a function of u 

differentiation with respect to time 

INTRODUCTION 

In 1948 an analysis of the impact of a long rod on a rigid boundary was presented by 
Taylor [1]. His simple, one-dimensional analysis produced an approximation to the plastic 
flow stress in what is often called the Taylor anvil test. This test consists of launching a 
cylindrical projectile and having it impact normally against a hardened, massive target. 
Today, researchers are using complex continuum codes to simulate this test, calculating 
the large plastic deformations occurring in the rod and the elastic deformations occurring 
in the rod and anvil. Despite this fact, simple models such as Taylor's are still in use because 
their simplicitiy provides a special insight into how the physical parameters affect the event. 
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For this reason, they can be used to provide a basis for the improvement of continuum 
code calculations and for devising test matrices. 

Since his original analysis, many attempts have been made to improve upon Taylor's 
one-dimensional theory. Hawkyard [2] for example, replaced one of Taylor's momentum 
equations by an energy balance, leading to somewhat different features in his final results. 
A fairly concise review of work up to 1983 can be found in the second half of a paper by 
Hutchings [3]. A more recent modification proposed in 1987 by Jones et al. [4] may be 
referred to as the "a/? model". This analysis showed that it was possible to relax one 
assumption made by Taylor and to carry the algebra through to a solution that was "exact" 
within the framework of the remaining Taylor postulates. However, its usefulness is severely 
limited by its greater complexity. Unlike the simple algebraic formula obtained by Taylor, 
the <xß computational procedure requires finding the solution to a highly non-linear, 
transcendental equation. The present paper introduces an approximation into the a/? model 
that reproduces the simplicity of an algebraic formula achieved by Taylor and provides 
an exellent approximation to the exact x/J solution. 

THEORY 

The notation used in this paper follows that of Taylor [1] wherever possible. Jones et 
al. [4] adopted different notation for the same quantities. With this in mind, consider a 
rod, initially circularly cylindrical with cross-sectional area A0 and length L, impacting a 
massive anvil at an initial longitudinal velocity U. Assume that the rod material is rigid, 
perfectly plastic with a flow stress S, and that the anvil is rigid. This situation is shown 
schematically in Fig. 1. Part (a) shows the rod at the moment of impact (time, r = 0). Part 
(b) shows the rod at some later time as it is deforming against the anvil. Here, the plastic 
wave front (which is shown in the figure as a discontinuity in the cross-section of the rod) 
has moved a distance h from the anvil, the undeformed rod length is now x, and the 
remaining velocity of this undeformed section is u. Part (c) shows the rod at the conclusion 
of the event (time, t=T). Here, h and .x have reached their final values of H and X, 
respectively; the rod cross-section no longer has a discontinuity; and the undeformed section 
of the rod has just come to rest (u = 0). The final overall length of the rod is denoted by 
Z.J, where 

L, = H+X. (1) 

(a) 

(b) 

(c) 

t=0 

t=T 

Fig 1. Schematic illustration of a projectile impacting a rigid anvil. The notation used in the paper 
is indicated in the figure. 
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K-r-~ X + dX- -dx 

■^— v*d v 

-u + du 

-x+dx- 

t+dt 

Fig. 2. Schematic illustration of a Taylor impact specimen at two different times during impact. 
The notation used for velocities and forces are indicated. 

With reference to Fig. 2, consider the foremost section of undeformed rod of length 
-dx>0 at some time t (0<t< T). This rod element passes from the rigid portion into the 
plastic zone during a time interval dt and it undergoes discontinuous changes: velocity 
from u to up and cross-sectional area from A0 to A. Here up is the particle velocity of the 
material just inside the plastic zone. Denote the mass density of the material by p, which 
is assumed to remain constant during plastic deformation. Denote the Eulerian velocity 
with which the plastic wave front is moving away from the anvil by v = dh/dt, and denote 
the force exerted by the previously deformed material as F. 

During the time interval dt, the change in linear momentum of the previously undeformed 
rod must equal the net impulse. Thus 

pA0xu - pA0(x + dx)(u+du) + pA0dx(up + dup) = 1/2(2F+ dF)dt. (2) 

Dividing through by pA0dt and eliminating higher order differential terms gives 

-xü-xu + xup = FI(pA0), (3) 

where superposed dots signify first derivatives with respect to time. Denote the dynamic 
flow stress of the rod material by S, then F=SA and Eqn(3) can be rewritten 

- (S/pXA/Ao) = x(u - U-) + lix. (4) 

Equation (4) may be further modified by taking into account conservation of mass. 
Consider again the foremost rod element originally shown in Fig. 2. Now, with reference 
to Fig. 3, the initial length of this element can be written -dx = (u + v)dt. This leads to the 
kinematic relation 

x=— (u + v). 
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(u*vict 

-  — udt 

—   -vdt 

uPdt—< 1» ! 

t*dt 

(v+u„)ct 

Fig. 3. Schematic illustration of a Taylor impact specimen at two different times during impact. 
Changes in the rod position are indicated. 

From the figure, it is clear that the deformed length of the rod element is (u + up)dt. Thus, 
conservation of mass requires that 

pA0(u + v)dt = pA{v + up)dr, 

which gives the relation 

A/A0=(u + v)/{v + up). 

Using Eqns (5) and (7) in Eqn (4) leads to the expression 

- (S/p){u + v)/{v+up) = - (u 4- »X« - «p)+"*• 

(6) 

(7) 

(8) 

In the aß model, as well as in the Taylor model, the rod material is assumed to come 
to rest immediately upon entering the plastic zone, up = 0, and the plastic wave speed is 
assumed to be a constant, v = C. Making these changes in Eqn (8) and rearranging gives 

xü = u(u + C)-(S/p)(u + C)/C. (9) 

This equation is precisely the same (except for notation) as Eqn (15) of the aß analysis. 
Time can be eliminated from Eqn (9) as the independent variable by using the chain rule 

of differentiation and Eqn (5) to obtain 

xdu/dx=-u + S/(pC). (10) 

In this form the variables are easily separated to give the following integral form 

SLdx/x=-ludu/[u-S/(pCi}. (ID 

This equation is equivalent to the aß Eqn (20). 
The aß solution is obtained as follows. First, solve Eqn (11) for x as a function of u 

(noting that S is a constant due to the assumed material characterization). Use the resulting 
function to eliminate x from the differential Eqn (9) in which the variables u and t are then 
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separable, so the equation can be integrated to obtain t as a function of u, say i//(u). Set 
u = 0 in that equation to obtain the final time T=ij/(0). Lastly, note that (for constant 
plastic wave velocity) H = CT so that from Eqn(l) 

T=IL,-X)/C. (12) 

Equating t/KO) to Eqn (12) enables C to be determined. However, it is a complex procedure 
because C appears in #)) in quadratic and logarithmic forms. Thus, the solution procedure 
requires lengthy numerical calculations based upon some procedure such as interval halving. 
This paper will not discuss the aß solution in any additional detail. Instead, a simplified 
approximate solution will now be presented. 

ANALYSIS 

As in the aß solution, integrate Eqn (11) to obtain the Mowing expression for x as a 
function of u: 

ln(jc/L) = ln KSHPQ- U)/(S/(pQ-u)l (13) 

At the final time T,u=0 and x = X; thus 

X/L = l-pUC/S, (I4) 

which can be rearranged and written as 

S/p = UC/(l-X/L). (15) 

In Eqn (15), p, U, X and L are known, but it would be difficult to guess the value of C. 
It proves somewhat easier to deal with the final time T. To this end, rearrange Eqn (12) 
to obtain 

C=(l!-Al/r. (16) 

Substitution into Eqn (15) yields 

S/p = (U/T)L(Ll-X)/(L-X), (17) 

with only the time of the event, T, being unknown. 
A fundamental geometric relation that involves the time of the event is 

L-L^lluff)dt. (18) 

A simple approach to solving this integral is to assume linear deceleration of the impacting 
rod, u{t)=U(l-t/n which yields the solution L-L^UT/2. Taylor used this approach 
in his first approximate solution. Another approach is to use Eqns(5), (9) and (12) to 
determine the exact solution. But this leads to the complex aß result. An intermediate 
approach is to represent the integral in Eqn (18) by the expression 

Jo
T u(t)dt=fUT, (19) 

where/is some fraction such that 0</<l. In the case of linear deceleration,/= 1/2. This 
representation is shown as the center curve in Fig. 4. On physical grounds, it is assumed 
«(f) is a monotonically decreasing function in the interval (0,7) with no points of inflection. 
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Fig. 4. Possible shapes of the remaining rod velocity vs time curve for different values of/ 

Table 1. Static material properties 

Yield Ultimate Strain 

Densitv strength strength failure 

Material 'gem'3) (MPa) (MPa) (%) 

OFE Copper (as received) 8.95 — 350 17 

DPTE Copper (as receivedl 8.95 — 300 13 

6061-T6 Aluminum 2.70 315 340 18 

2024-T4 Aluminum 2.70 400 500 23 

4340 Low strength steel 7.86 830 — 24 

Two other curves are shown in the figure corresponding to/< 1/2 and/> 1/2. Also shown 
is the limiting case/= 1. 

Substituting from Eqn(19) for the integral in Eqn(18) leads to 

T-iL-LJ/tfU). (20) 

This expression for the time of the event can then be substituted into Eqn(17) to obtain 
the final relation 

S/(pU2) =RULi - *)]/[(! - XiL - Lj]. (21) 

This relation will reproduce the aß solution for a given impact test if the correct value of 
/is known. 

EXPERIMENTAL 

Five materials were tested in a matrix which included 92 experiments. These materials 
are listed in Table 1 with their statically measured mechanical properties and densities. 
Rod stock of each material was machined to a diameter of 7.595 mm. Various lengths were 
cut giving LID ratios ranging from 1.5 to 10. These specimens were launched from a powder 
gun at a stand-off distance of 50-100 mm from the target. The target was a right circular 
cylinder with a diameter of 22.9 cm constructed of 4340 steel heat-treated to a hardness 
of Rc 58. 

The experiments were instrumented to determine the velocity of impact by three different 
techniques. One method involved using pressure taps along the barrel to measure time of 
arrival at points near the muzzle. Knowing the distance between pressure tap locations 
and the difference in times of arrival, the projectile velocity was determined. The second 
technique relied on two parallel laser beams and detectors positioned on opposite sides of 
the projectile's flight path. Again, knowing the distance between the beams and monitoring 
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times of arrival, the velocity is easily determined. The last method was to construct a 
position history of the projectile based on analysis of a high-speed film record. Typically, 
these three measurements gave impact velocities that agreed to within 5%. 

After an experiment, the specimen is recovered and subjected to a post-mortem analysis. 
This analysis includes measuring the mushroom diameter, the final length and the length 
of residual rod that remains undeformed. The latter was determined by a gauge used to 
locate the final position of the plastic front. The test identification number, specimen 
geometry, impact velocity and post-test measurements are given for each of the five different 
materials in Tables 2a-e. Additional experimental details are given in House [5] and Wilson 
et cd. [6]. 

Table 2a. Experimental data for oxygen-free electronic (OFE) 
copper 

Mushroom 
Shot u ii X diameter 
No L/D (m s~-. (mm) (mm) (mm) 

128 1.5 168 9.1 3.8 11.5 

55 1.5 191 8.9 4.1 12.0 

127 2 161 12.4 5.5 11.7 

147 2 169 12.1 5.5 12.1 

64 2 215 10.8 4.7 14.0 

129 3 162 18.3 7.8 12.4 

63 3 200 16.9 6.2 14.2 

65 4 170 24.3 10.3 12.7 

126 4 175 23.6 9.3 13.2 

16 5 182 28.1 8.3 13.2 

133 5 200 27.4 10.4 14.7 

73 7.5 153 47.3 22.1 11.8 

72 7.5 156 47.3 21.4 11.9 

146 7.5 180 42.8 17.1 14.1 

57 7.5 188 41.9 16.0 14.4 

145 7.5 189 41.7 16.3 14.7 

74 10 123 66.4 32.5 10.7 

75 10 127 66.6 33.3 10.5 

21 10 156 62.3 28.0 12.5 

23 10 166 60.6 27.1 13.1 
144 10 158 61.0 25.3 12.0 

143 10 168 58.8 24.8 13.3 

139 10 170 58.5 24.7 13.4 

141 10 176 58.7 24.5 13.0 

142 10 176 58.3 24.3 13.3 

140 10 184 57.9 23.6 13.5 

Table 2b. Experimental data for phosphorous deoxidized, 
tellurium bearing (DPTE) copper 

Mushroom 

Shot u Lx X diameter 

No. LID (ms'1; (mm) (mm) (mm) 

138 1.5 132 9.9 5.0 10.2 

79 1.5 139 9.7 4.5 10.2 

118 2 138 12.8 6.0 10.8 

97 3 136 19.2 8.4 11.2 

109 4 141 25.3 11.2 11.4 

100 5 152 31.4 13.2 11.5 

105 7.5 144 46.7 19.9 11.7 

93 7.5 154 46.4 19.8 11.6 

86 10 150 61.9 26.7 11.6 

87 10 158 60.6 24.7 12.0 
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Table 2c. Experimental data for aluminum alle y 6061-T6 

Mushroom 
Shot c ii X diameter 
No. LID (ms-lj (mm) (mm) (mm) 

28 1.5 Tl- 10.2 5.2 9.9 
69 1.5 215 9.9 4.4 9.9 
76 1.5 339 8.3 2.8 12.8 
50 2 212 13.6 6.5 9.7 
51 2 224 13.3 6.2 10.3 

114 2 240 12.9 5.7 10.6 
112 2 263 12.5 5.6 11.4 
113 2 328 11.4 4.8 13.1 
49 3 248 19.4 8.3 11.1 

119 3 279 18.5 7.4 12.2 
52 4 226 26.5 13.0 10.8 
47 4 231 25.9 11.8 11.4 

120 4 282 24.6 10.4 12.5 
17 5 170 34.8 18.3 9.7 
67 5 244 32.7 15.1 11.2 
18 5 295 29.9 12.2 13.5 
43 7.5 236 49.5 24.1 11.3 
45 7.5 242 48.5 22.0 11.9 
46 7.5 251 48.5 22.4 11.2 

121 7.5 276 46.4 20.0 12.4 
71 10 235 66.5 33.5 10.9 
68 10 256 63.8 28.7 11.9 
19 10 271 63.0 28.2 12.8 

Table 2d. Experimental data for aluminum alloy 2024-T4 

Mushroom 
Shot f Lx 

X diameter 
No. LID (m s~'/ (mm) (mm) (mm) 

27 1.5 163 10.9 5.5 8.6 
81 1.5 199 10.6 4.7 8.6 
83 1.5 283 9.9 3.8 10.0 
77 2 221 14.1 7.0 9.0 

115 2 250 13.5 4.8 9.7 
82 2 289 13.1 4.6 10.3 
84 3 266 19.9 7.2 10.0 

102 3 297 19.3 6.7 10.9 
85 4 248 26.9 10.8 9.8 

104 4 282 26.2 9.8 10.4 
7 5 195 35.2 16.4 8.9 

106 5 289 31.9 11.5 11.3 
42 7.5 192 52.6 25.0 9.0 
41 7.5 266 49.2 18.8 10.4 

122 7.5 270 48.9 18.0 10.3 
123 7.5 290 47.8 17.1 11.2 
22 10 250 66.6 26.7 10.3 

124 10 270 65.0 24.0 10.5 
125 10 290 63.7 22.5 11.0 
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Table 2e. Experimental data for 4340 low strength steel 

Mushroom 

Shot c ii X diameter 

No. LID (m s~') (mm) (mm) (mm) 

203 1.5 285 9.2 3.2 10.9 

196 ■> 234 13.1 5.6 10.2 

190 2 275 12.4 5.2 11.2 

191 2 302 12.0 5.2 12.2 

6 3.33 170 23.4 11.2 9.2 
4 3.33 215 22.4 10.0 10.3 

40 5 181 34.6 15.5 9.5 
14 5 183 34.7 15.3 9.8 

151 5 224 33.0 11.9 10.5 

35 5 234 33.1 13.3 10.6 

13 5 270 31.3 11.8 12.1 

204 7.5 242 47.8 17.5 11.6 

212 10 215 65.7 24.1 10.6 

213 10 240 64.4 23.2 11.2 

Table 3a. Flow stress for oxygen-free electronic (OFE) 
copper 

Shot ■^Taylor S*n / S,ve |A| 
No. (MPa) (MPa) (MPa) (%) 

128 379 559 0.64 559 0.13 

55 455 582 0.62 603 3.62 

127 387 551 0.63 561 1.97 

147 387 516 0.62 532 3.06 

64 421 533 0.64 537 0.88 

129 359 518 0.63 523 0.95 

63 384 583 0.66 563 3.47 

65 389 562 0.64 566 0.76 

126 358 541 0.65 532 1.57 

16 290 528 0.70 482 8.81 

133 356 517 0.66 501 2.93 

73 390 535 0.62 556 3.93 

72 401 568 0.62 584 2.79 

146 336 481 0.65 475 1.32 

57 336 490 0.66 478 2.50 

145 336 478 0.65 468 1.99 

74 354 496 0.61 522 5.24 

75 390 539 0.61 570 5.90 

21 378 530 0.62 544 2.62 

23 374 512 0.63 524 2.41 

144 338 502 0.64 502 0.05 

143 332 466 0.64 468 0.46 

139 334 466 0.64 469 0.48 

141 363 513 0.64 514 0.22 

142 353 497 0.64 497 0.10 

140 371 528 0.64 525 0.52 

RESULTS AND DISCUSSION 

A value for the parameter/was determined from each test in the data set (Tables 2a-e). 
The procedure involved first calculating the aß solution (Sxß) and then using it to back 
out a corresponding value of / from Eqn(21). Results of these calculations and, for 
comparison, the flow stress from Taylor's original analysis, are given in Tables 3a-e. 

The values off for all five materials ranged from 0.58 to 0.70 which correspond to a 
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Table   3b. Flow   stress   for   phosphorous  deoxidized, 
tellurium bearing (DPTE1 copper 

Shoi ^Tavlor •S* /( ./' sm |A| 
No. IM Pal IM Pa) (MPai {%) 

138 391 530 0.60 554 4.40 

79 367 516 0.62 528 2.33 
118 351 493 0.62 504 2.18 
97 326 486 0.63 486 0.17 

109 330 483 0.63 485 0.36 
100 360 542 0.64 537 0.91 
105 310 457 0.63 455 0.58 

93 350 513 0.63 510 0.58 

86 332 482 0.63 480 0.26 
87 325 487 0.65 476 2.44 

Table 3c. Flow stress for aluminum allov 2024-T4 

Shot •^Taylor Si it / sm |A| 
No. IM Pa) IM Pa) (MPa) (%) 

27 548 853 0.61 912 6.88 
81 511 854 0.63 881 3.19 
83 524 897 0.65 894 0.25 
77 680 1033 0.61 1102 6.65 

115 460 857 0.66 838 2.23 
82 486 889 0.67 864 2.80 
84 465 848 0.66 830 2.12 
102 463 841 0.67 815 3.10 
85 466 791 0.65 797 0.71 
104 481 834 0.66 826 1.04 

7 490 779 0.62 816 4.80 
106 424 738 0.66 723 2.10 
42 444 691 0.62 728 5.41 
41 .441 756 0.65 752 0.54 
122 426 747 0.66 736 1.52 
123 427 750 0.67 733 2.34 
22 440 739 0.65 744 0.70 
124 423 742 0.66 730 1.56 
125 421 747 0.67 727 2.68 

curve of the type/> 1/2 shown in Fig. 4. Average/-values for each material were determined 
and are given in Table 4. The values in Tables 3a-e under the column heading, Save, are 
calculated based on Eqn(21) and the material average value of/ The last column in 
Tables 3a-e shows the absolute value of the per cent difference between Ssß and Save. These 
differences are less than 5% in 84 of the 92 tests and, remarkably, less than 1% in more 
than a third of the tests. 

CONCLUSIONS 

This paper introduces an approximation into the <xß analysis of the Taylor impact test 
that produces a simple algebraic formula to estimate the dynamic flow stress. This formula 
is given as Eqn(21) and produces an excellent approximation to the aß solution. By using 
the material-specific/-values given in Table 4, flow stress estimates within 5% of the aß 
solution can be expected. For even greater simplicity, an overall average /-value of 0.63 
can be used in Eqn(21) for all materials. This will produce flow stress estimates that are 
generally within 10% of the more complex aß solution. 
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Table 3d. Flow stress for aluminum alloy 6061-T6 

Shot •JTavlor S,!, / Save |A| 
No. iMPai ■ MPa) (MPa) (%) 

28 468 653 0.60 672 2.91 

69 388 593 0.61 586 1.09 

76 318 516 0.68 470 9.07 

50 404 600 0.61 606 0.90 

51 379 557 0.58 559 0.42 
114 344 516 0.63 509 1.37 

112 356 505 0.62 501 0.74 

113 361 494 0.64 479 3.03 

49 367 568 0.64 555 2.39 

119 347 533 0.65 512 3.89 

52 380 534 0.61 544 1.78 
47 328 475 0.62 474 0.23 

120 364 538 0.64 523 2.70 

17 335 467 0.60 487 4.15 

67 392 569 0.62 569 0.07 

18 348 513 0.64 495 3.57 

43 396 554 0.61 563 1.72 

45 356 519 0.62 516 0.51 

46 385 551 0.62 551 0.14 

121 358 522 0.63 511 2.05 
71 422 577 0.60 593 2.72 

68 365 528 0.62 524 0.70 

19 386 552 0.63 548 0.83 

Table 3e. Flow stress for 4340 low strength steel 

Shot •^Tavlor Sr, / 5 
•^ave |A| 

No. (MPa) (MPa) (MPa) !%> 

203 1057 1594 0.67 1523 4.45 

196 1097 1497 0.64 1508 0.75 

190 1123 1476 0.64 1481 0.37 

191 1169 1424 0.63 1451 1.84 

6 1164 1576 0.61 1659 5.27 

4 1160 1575 0.62 1622 3.00 

40 1049 1473 0.63 1506 2.24 

14 1099 1571 0.63 1598 1.74 

151 982 1559 0.66 1504 3.56 

35 1153 1691 0.65 1676 0.88 

13 1076 1561 0.66 1522 2.52 

204 936 1419 0.66 1372 3.28 

212 889 1388 0.66 1343 3.18 

213 976 1515 0.66 1459 3.67 

Table 4. Average value of/ 

Material /average 

OFE copper 0.64 

DPTE copper 0.63 
2024-T4 aluminum 0.65 
6061-T6 aluminum 0.62 
4340 Low strength steel 0.64 
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The determination of the mechanical properties of materials is the foundation of many engineering 
design problems. Numerous test methods have evolved as standards for the determination of these 
properties. Design problems which require inelastic behavior of the material are unique because the 
test methods must provide a detailed knowledge of the evolution of the yield behavior. High rate 
problems represent a special class of inelastic engineering design problems and the interpretation of 
test methods used to determine material's behavior for these problems are an important research 
topic. The Taylor Anvil or Taylor Impact test is a test commonly employed to determine the 
mechanical properties of materials for this important class of engineering design problems. A 
continuum approach based on jump discontinuities at the plastic wave front is developed which can 
be used as the basis for advanced engineering models of the experiment and analysis of the 
numerical method used to incorporate various constitutive relationships into continuum codes. 

INTRODUCTION 

Taylor Anvil Experiment 

The determination of the inelastic behavior of 
metals subjected to high rates of loading is a 
subject of continued interest to a wide range of 
engineering problems. Examples of these include 
metal forming, high velocity impact, and 
explosive/metal design. One experimental 
technique in common use is the Taylor Impact 
test.(l) The test consists of impacting a right 
circular cylinder specimen against an anvil which 
represents a rigid semi-infinite plane. Taylor's 
model of the experiment is a one-dimensional 
rigid plastic formulation which utilizes post test 
measurements to determine a strength 
characteristic for the specimen material. This 
characteristic is generally interpreted as a 
saturation flow stress such as might be used in a 
perfectly plastic constitutive rule.    The test is 

widely used to evaluate more complex constitutive 
descriptions used in continuum mechanics 
computer codes.(2,3,4) Most comparisons are 
limited to the final geometric parameters. This 
approach, although more detailed than that used in 
Taylor's model, lacks a clear description of the 
relationship between the constants in the 
constitutive equation used in the code and the 
particular mechanical parameter measured from 
the recovered specimen. Recent refinements of the 
experimental techniques have significantly 
expanded the data which can be obtained from the 
experimenL(5,6,7) Data is obtained from high 
speed cameras (2 Mfps) and imbedded gages 
which measure stress wave arrival and amplitude 
time signatures. These additional data permit the 
refinement of the analytical models used to 
describe the experiment and the development of 
algorithms to interpret the data in terms of 
constitutive constants where the relationship 
between the constitutive parameter and the data is 
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explicitly described  in the formulation of the 
engineering model of the experiment. 

Engineering Models vs. Data Recovered 

The simplifying assumptions used in Taylor's 
original formulation have been re-evaluated in 
terms of the expanded data base obtained from the 
experiment. The equation of motion of the rigid 
rod section has been formulated to include may? 
loss from the undeformed specimen length and a 
strain discontinuity at the plastic wave front. (8) 
This model uses post test measurements of the 
specimen overall length (Lf) and the undeformed 
section length (lf) to correlate the deformation in 
the specimen with an improved estimate of the 
flow stress (a). The boundary conditions at the 
specimen-anvil interface at t = 0 have been 
formulated in terms of one dimensional shock 
jump conditions which when combined with 
Hugonoit data(9) for the anvil and the specimen 
material provide a relationship between the impact 
velocity and the particle velocity behind the plastic 
wave. This approach has identified two distinct 
phases in the deformation of the specimen. An 
early short duration phase which is characterized 
by the initial shock transients and relaxation to a 
quasi-steady plastic wave (phase I). The initial 
phase can be used to access the rate dependency in 
the constitutive properties of the material. The 
later phase (phase II) is being used to access the 
stress/strain/strain rate history of the specimen 
deformation. (10,11) 

CURRENT DEVELOPMENTS 

Most recently, a continuum analysis of the 
propagation of a plastic wave on a right circular 
cylinder of finite dimensions has been developed 
which yields insight as to how the parameters in 
the constitutive equation relate to the dynamics of 
the wave propagation and aids in the development 
of an algorithm for determining constants which 
characterize the mechanical behavior of the 
material consistent with a specific form of the 
constitutive equation. 

Jump Conditions 

The problem of a plastic wave propagating on a 
right circular cylinder of finite dimensions is 
formulated in terms of jump discontinuities 
associated with the wave front after the approach 
used by Rankine.(12) An essential element in the 
formulation of a continuum analysis of the plastic 
wave propagation is a recognition that the wave is 
propagating in the rest frame of the specimenOO. 
The problem can then be formulated in terms of 
the stress (cr), strain (e ), density (p), particle 
velocity (u), and internal energy (i) as state 
variables (see Figure 1). Conservation of mass, 
momentum, and energy combined with the 
equation of state and the constitutive equation of 
the mechanical behavior constitute a complete set 
of equations. 

STATE VARIABLES 

P .s p , E , u-o ,i 

Figure 1. Variables relative to the plastic wave front. Variables 
with subscript 0 are up stream of the wave and subscript 1 are 
downstream. 

The conservation of mass, momentum, and 
energy equations for a steady plastic wave 
propagating on a right circular cylinder are 
initially expressed in terms of the wave velocity 
(Uw), the cross sectional area (A), the density (p), 
the specific energy density ( i ), and the particle 
velocity behind the wave (u0 as 

PbA0uw = ftA^u,, - u,) 

ciA! -qjAo = -POAQUWUJ 

(1) 

(2) 
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and 

respectively. 

^-„.fl+a-a      (3) 

Now equation 1 can be rearranged to yield 

fpoAo     ,\ (4) 

A 

by subtracting and adding -^ to the expression in 

the brackets, 

CS-Hfe-W*-)      (5) 

Now, using p s —, 

1     1 
£0.    , __Vo V       V-Vp 

P I     "    vo 
V 

Av =» — sev Vo 

(6) 

In the limit of incompressible flow for phase I, 
AoL0=AL. Then, 

Ao    _L    Lo+AL 
A = Lo=    Lo 

= l+e (7) 

where e is the one dimensional engineering strain. 
Now equation (5) can be written as 

and the conservation of mass equation becomes 

u„ =■ 
e(sv + l)+ev 

(8) 

(9) 

Similar algebraic manipulations will yield 
conservation of momentum written in the same 
state variables as 

_2L_ 
1 + e -Co =-poUwUi (10) 

The development now follows the method of 
using shock jump conditions to isolate kinematic 
and thermodynamic variables to formulate the 
Hugoniot equation. The conservation of mass 
equation can then be used to eliminate the particle 
velocity (u0 from equation (10), to give 

«To - 1 + e 
[ev(e + 1) + e] 

= -poUw (ID 

which reduces to the equation for the classical 
Rayliegh line in shock physics for e=0. 

The wave velocity (uw) can next be eliminated 
from (10), to give 

.CTo"l^J [sie+U-Kä]=-ptf       (12) 

which is the equation for the constant particle 
velocity curve in terms of stress and strain criteria 
for the jump across the wave front. 

Finally, the conservation of mass and momentum 
equations can be used to rewrite the conservation 
of energy equation, 

Po(i-io) = 5K(e + l)+e] C70 + 
1+e 

(13) 

in terms of stress and strain which is a form of the 
Hugoniot equation. Equations (11), (12), and (13) 
in general require an equation of state and a 
constitutive equation to completely specify the 
curves in stress/strain space. This is a specific 
problem solution and is the subject of Maudlin, 
Foster, and Jones. (14) 

CONCLUSIONS 

We have presented an approach to understanding 
and analyzing time resolved data that results from 
impact experiments such as the classical Taylor 
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anvil test. The approach provides a local 
analytical solution to the equation of motion for a 
plastic wave propagating on a finite diameter right 
circular cylinder. In addition to providing insight 
into the development of the constitutive properties 
of the rod material from such data, the analysis 
provides a means of locally assessing the accuracy 
of continuum mechanics based codes on a 
relatively inexpensive problem.(14) Futher, this 
analysis can be transformeded to produce results 
that are completely equivalent to those developed 
by an alternative engineering approach. (15) It is 
obvious that the method can be extended along the 
development lines of the classical shock problem 
to provide even greater insight into this classical 
problem. 
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Summary—A new one-dimensional analysis of the Taylor impact test is presented. This analysis 
differs from any previously presented in that the wave mechanics are separated from the calculation of 
dynamic stress. The new results utilize post test measurements to estimate key parameters in the 
plastic wave propagation. However, these measurements are incorporated into the analysis in a very 
unconventional way. A comparison with continuum code calculations shows very good agreement 
has been achieved. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

The Taylor impact test [1] is a useful experiment for estimating material behavior at high 
strain rates. The test is reproducible and is reasonably economical after the initial investment 
has been made. The difficulty is to interpret the experimental data to reflect the constitutive 
properties of the specimen. 

Originally, the one-dimensional analysis of Taylor [1] was used by Whiffen [2] to estimate 
the dynamic yield stress of the specimen. However, the dynamic yield stress, by itself, does not 
provide the information necessary for a complete description of material behavior. In 
succeeding years, several improvements in the interpretation of test data have been offered by 
Lee and Tupper [3], Hawkyard [4], Hawkyard et al. [5], and others. Using a double frustum 
approximation, Hawkyard et al. [5] provided estimates for mean stress, mean strain, and 
mean strain rate. These results apply to ductile metals. Barenblatt and Ishlinskii [6] and Ting 
[7] gave results that apply to viscoplastic materials, and Hutchings [8] used the test to 
estimate the dynamic yield stress in polymeric materials. 

Modern technologies have placed demands for accurate constitutive modeling at strain 
rates exceeding 104/s. These rates are achieved in the Taylor test for even relatively low 
velocities but are very difficult to achieve using other methods. This makes for further 
development of theories with which constitutive properties of the specimen material can be 
deduced for useful enterprise. 

High-speed photography of specimen impacts (see Wilson et al. [9]) has opened a new 
window of opportunity to study time resolved specimen behavior. Recent developments in 
Taylor modeling fall into two categories: improvements in one-dimensional models and the 
use of computer codes to deduce the free parameters in constitutive equations. Both 
approaches have advantages. For a discussion of the latter for example, the reader is directed 
to Johnson and Holmquist [10] or Maudlin et al. [11]. One-dimensional models have the 
advantage of independence from assumptions regarding the functional form of a constitutive 
relation. They are usually very simple and offer insights into material behavior that are often 
missed in more complicated models. In spite of simplicity, the prospect for fairly accurate 
constitutive relations using one-dimensional models is very promising. 

This paper continues the spirit of Jones et al. [12] that proposes an equation of motion for 
the undeformed section which accounts for loss of mass across the plastic wave front. Later, 
Jones et al. [13] noted that a period of nonlinear initial transient behavior after impact could 
substantially affect estimates of plastic wave speed. A successful analysis must account for 
this period and the shock hardening of specimen material accompanied by it. 
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THEORY 

In Fig. 1, the basic nomenclature for the analysis is described. The time-dependent 
displacements, h and s, are positive, as is the undeformed section length, I. In our previously 
reported work [12], an examination of the change in linear momentum for the undeformed 
section, the portion of it that has become plastically deformed, and the net impulse on the 
system lead to the equation of motion for the undeformed section. 

Iv + l(v - u) = 
P(l + e) 

(1) 

In this equation, v is the velocity of the undeformed section, u is the particle velocity of the 
plastic material at the wave front, a is the engineering stress on the plastic side of the front, p is 
the density, and e is the engineering strain at the front. This equation continues to be valid. 
However, a more careful interpretation of the stress proves to be worthwhile. 

Consider an element of the undeformed section at time t that will be fully deformed at time 
t + At (see Fig. 2). An impulse-momentum equation can be written for the shaded and 
unshaded bodies over the elapsed time At. The impulses are estimated by averaging the forces 
and multiplying by the elapsed time. These equations are: 

pA0Alv — pA0Alu = 
CA + (G + Aa){A + AA) - a0A0 - (<r0 + Ag0)^0 ■At (2) 

Fig. 1. Schematic view showing a Taylor specimen of original length L which undergoes plastic 
deformation. 

OA <bAo    <bAo 

(a + &e){A + AA) (a0 + A%)Ao 

{% + AajAc 

(f+Af) 

/+ AV 

Fig. 2. Schematic view of undeformed and plastic segments over an elapsed time At. The shaded seg- 
ment of mass - pA0Al has become plastically deformed at time tf Ar and is now moving with speed u. 
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and 

plA0(v + Av) - plA0u = ^ At. 1-5) 

Dividing by At and taking the limit as Ar — 0, we get 

pA0'l{v -u) = aA — a0A0 (4) 

and 

pA0lv = a0A0. (5) 

Dividing both equations by A0 and using 

A 

Eqns (4) and (5) reduce to 

and 

pl(v-u) = —— -ff0 (7) 
X "T* c 

pl'v = ff„. (8) 

The stresses a and <r0 in Eqns (7) and (8) are generally both time dependent and will be 
interpreted later within the context of three distinct phases of deformation. Notice that 
Eqn (1) can be recovered by adding Eqns (7) and (8) and dividing by the density p. 

The remaining equations for describing the motion of the specimen stem from conserva- 
tion of mass [12] 

el = v-u (9) 

and adding the lengths in Fig. 1 

h + s + l = L. (10) 

The last equation can also be differentiated to give 

Ä + i + f = Ä + » + / = 0 (11) 

because s = v. 

PHASES OF DEFORMATION 

Recently [13], the deformation of a Taylor specimen was characterized by two patterns of 
behavior. The early time behavior, denoted by Phase I, was shock dominated nonlinear 
motion of the plastic wave front. This was followed by steady motion of the plastic wave 
front, denoted by Phase II. This simple description is mostly correct, but it is evident that the 
velocity of the plastic wave front must come to zero at the end of the event. Hence, 
a description that includes nonlinear behavior of the wave front at the end of the event is 
appropriate. 

As shown in Fig. 3, the stages of deformation of the Taylor specimen are characterized by 
the addition of a third regime, Phase III, in which deceleration of the plastic wave front 
occurs. Notice that fi comes to zero at the end of the event. 

PHASE I DEFORMATION 

Equations (7), (9), (10) and (11) provide an adequate description of the deformation during 
Phase I. As we have previously observed [13], the undeformed section suffers no deceleration 
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Fig. 3. Plastic wave front position as a function of time. For this test, the transition time between 
Phases I and II occurs at about lOps. 

during this phase. Thus, Eqns (7), (9), (10) and (11) become 

pl(v0 -u) = 
1 + e '0' 

el = v0 

h + l + v0t = L, 

", 

(12) 

(13) 

(14) 

and 

h + l + vo = 0. (15) 

In order to meet the objection to the variable strain distribution used in [13], we shall assume 
that e = const throughout the test. This is a questionable assumption during early time 
deformation, but it produces good results nevertheless. 

Manipulating Eqns (12) and (13), we find the early time dynamic stress 

o = {l + e)L0 + £(v0-u)2\ (16) 

This stress is expressed in terms of the unknown strain e and the particle velocity u. It is 
inappropriate to use Eqn (8) here. During Phase I deformation, the particle velocity is highly 
variable. A quadratic approximation was introduced in [ 15], which was shown to provide an 
adequate description of u, 

u = u0 + u1 It- 
ill) 

where u0 and ut are constants to be determined and Fis the time to end Phase I deformation. 
As noted in [13], for 30 caliber copper rods impacting 4340 steel anvils Fss 10 fxs. The initial 
particle velocity has been estimated by elementary shock physics as u0 « vJ2. When Fis reached, 
we enter the stage of quasi-steady motion; u is constant there, and thus du/dt = 0 at t = t. 

To conclude this section, we note that the motion of the plastic wave front can be estimated 
by Eqns (13), (15) and (17) during Phase I deformation. By combining them, we get 

fi= -v0-l = - 1 + e 

:K"°+"4-2^ 
1+e 

(18) 
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Integrating this equation, the time-dependent position of the plastic wave front can be found, 

„o-ll-^o^/r^ (19) 

e e \2r    6rJ 

At the end of Phase I deformation, the position of the plastic wave front is given by 

g=«o-(l-e)«;oF+»i- (20) 

e 3e 

PHASE II DEFORMATION 

After t = T,a period of quasi-steady motion occurs. The duration of this period depends on 
several things, but most importantly the length of the undeformed section after Phase 
I deformation. The longer this section, the more sustained will be the period of Phase II 
deformation. 

All of the physical parameters in the problem are virtually constant during Phase II 
deformation. So, certainly the particle velocity is proportional to the undeformed section 
velocity. This proportionality is also maintained during the terminal transient stage, Phase 
III. Hence, we assume that there exists a dimensionless constant ß for which 

u = ßv (2D 

throughout Phases II and III deformations. 
When we combine Eqns (9) and (21), we get 

el = (l-ß)v. (22) 

Now, this result can be used in Eqn (11) to find the plastic wave speed 

Ä=_fl+iziV (23) 

Because v = s, this equation can be directly integrated: 

h_h=-[l+LI\s-s). (24) 

The constant of integration has been evaluated at the beginning of Phase II deformation. It is 
tacitly assumed that all physical variables are continuous at the interface between Phases 
I and II. If we extend Eqn (24) to the end of the event, we get 

ht = h=Jl+LllXS{-sl (25) 

where /if and s{ are the final positions of the plastic wave front and back end of the specimen, 
respectively. 

The final displacement of the back end of the specimen can be found with a high degree of 
certainty. The final position of the plastic wave front or, equivalently, the final undeformed 
section length, is a measurement wrought with uncertainty. We say this because the criterion 
for determining the final position is ad hoc at best [2]. Unfortunately, the resulting 
predictions for dynamic stress [1,17] are highly dependent on this length. In the next section 
a new procedure for this measurement will be introduced. When used with Eqn (25), this 
method is shown to produce very good estimates of dynamic yield stress for OFHC copper in 
the annealed and unannealed states. 

Now, continuing with the development of the basic equations, we assume that the particle 
velocity is continuous across the Phase I/Phase II interface and match Eqns (17) and (21) 
when t = Fand v = i?0. This leads to 
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As indicated earlier, u0 can be found from elementary shock physics applied at the point of 
impact. For a copper rod impacting a 4340 steel anvil. u0 s: v0/2 and Eqn (26) can be used to 
find 

u,=(2ß-l)v0. 

When this value of ul is put in Eqn (20), we find 

h _ 2ß - 1     1 + 2e 
v0T      3e 2e 

(27) 

(28) 

which is another independent, linear relationship between ß and e. Together Eqns (25) and 
(28) comprise a system of two linear algebraic equations in the unknowns ß and e. 

POST TEST MEASUREMENTS AND THE SOLUTION FOR ß AND e 

Figure 4 shows time-resolved film data from a Taylor test [9]. A 30-caliber OFHC as 
received copper rod having a length to diameter ratio of 7.5 was impacted against a 4340 steel 
anvil at 176 m/s. For this test from the film record t« 10 /JS. and hv 5.1 mm. A measurement 
of the deformed specimen gives sf = 14.24 mm. The overall undeformed length of the rod was 
0.05715 m, and s = v0J = 1.76 mm. Now. the left-hand side of Eqn (28) is known and all but ht 
is known in Eqn (25). 

As indicated earlier, the measurement for h{ is very subjective. In this paper, we introduce 
a method for locating the undeformed section length on a Taylor specimen that is connected 
to the analysis and has very little uncertainty. It is evident that the final position of the plastic 
wave front must depend on the strain e at which the test is carried out. Since the strain is an 
unknown, this measurement must be incorporated into the system of Eqns (25) and (28) as 
a function of e. In general, ht = h((e) is a highly nonlinear function of the unknown strain. 
However, for practical purposes, the linearity of Eqns (25) and (28) can be maintained while 
performing a trial and error search along the deformed specimen until agreement in the 
unknown strain is reached. 

Figure 5 shows the profile geometry of the deformed Taylor specimen mentioned in Fig. 4. 
The specimen was measured with a high resolution, optical comparator to achieve the 
position/diameter data presented in Table 1. Various undeformed section lengths were tried 

E 
E 

10.0 

Fig. 4. Time resolved wave front versus time data for an as-received OFHC copper rod impacting 
a 4340 steel anvil at 176 m/s (from Wilson et al. [9]). 
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Fig. 5. Final geometry of a recovered OFHC copper impact specimen. The impact velocity was 
176 m/s, and the material was as received. 

Table 1. 

Axial Rod Axial Rod Axial Rod 

position diameter position diameter position diameter 

(mm) (mm) (mml (mm) (mm) (mm) 

0.00 7.62 20-32 7.82 32.39 9.65 

1.27 7.62 20.96 7.87 33.02 9.75 

2.54 7.62 21.59 8.00 33.66 9.86 

3.81 7.62 2223 8.08 34.29 9.96 

5.08 7.62 2186 8.15 34.93 10.14 

6.35 7.62 23.5 8.23 35.56 10.26 

7.62 7.62 24.13 8.31 36.20 10.29 

8.89 7.62 24.77 8.46 36.83 10.39 

10.16 7.62 25.40 8.56 37.47 10.47 

11.43 7.62 26.04 8.69 38.10 10.41 

12.70 7.62 26.67 8.79 38.74 10.39 

13.97 7.62 27.31 8.89 39.37 10.39 

•15.24 7.66 27.94 8.97 40.06 10.59 

16.51 7.67 28.5S 9.09 40.64 11.18 

17.15 7.70 2921 9.17 41.28 12.09 

17.78 7.72 29.S5 9.27 41.91 12.98 

18.42 7.72 30.4S 9.37 42.55 13.59 

19.05 7.77 31.12 9.47 42.85 13.74 

19.69 7.82 31.-5 9.55 

D-7 



102 S. E. Jones et al. 

in Eqns (25) and (28) until agreement with the engineering strain in the specimen at that cross 
section was achieved. Linear interpolation between the measured cross sections was used to 
find the location 21.12 mm from the undeformed end. The strain at this location is about 
— 0.071. With this undeformed section length, the final position for the plastic wave front is 
/if = 21.74 mm. Equations (25) and (28) can now be solved simultaneously to find 
e= -0.0712 and 0 = 0.834. 

Having found ß and e, we are able to calculate all of the other physical parameters in the 
test. For example, the dynamic stress during quasi-steady, Phase II deformation, can be 
found from Eqn (7) 

a = (l + e)L0 + {-}-j¥-pv^. (29) 

In this equation, a0 is some reference stress, which we will take to be a0 = — 293 MPa, 
a quasi-static yield stress estimate in compression for this OFHC, as received, copper. Using 
the values of e and ß just found in the previous paragraph, we obtain <x= — 371 MPa, 
a dynamic increment of about 27% in compression for this material at a strain rate consistent 
with Phase II deformation. The results are in very good agreement with code calculations 
[11]. Notice that the particle velocity is u = ßv0 = 147 m/s, and the plastic wave speed is 
fi=-{1+(l—ß)/e)v0 = 234m/s during Phase II deformation. This translates to 
ul = v0 — u = 29m/s and upw = fi + v0 = 410m/s in Ref. [16]. From Fig.II. 2 in [16] the 
calculated values of upw range from 490 m/s for a strain-rate of 104 s " * to 450 m/s for 103 s ~1, 
assuming the MTS flow stress model results. A one-dimensional analysis cannot be expected 
to perform much better. But, one source of improvement can be found in the nominal stress 
<70. There is some justification for taking it higher than quasi-static yield. If this were done, 
somewhat better agreement would be achieved. In fact, in order to match quasi-static yield 
with Eqn (29) as u0-»-0, we must take a0 = oJ{\ + e), where trs is the quasi-static yield stress 
for the material. Now, a = — 392 MPa, and we are very close to the intersection point 
predicted by the code. 

AN ANNEALED COPPER EXAMPLE 

Additional Taylor cylinders were fabricated from the same OFHC copper used for the 
previous specimen. These were annealed. The quasi-static yield stress for the annealed 
material was found to be only 83 MPa, only 28% of the half hard copper [9]. This soft 
material presents several problems for experimentalists. It is usually desirable, from an 
analysis point of view, to test longer cylinders. The reason for this is short cylinders of soft 
metal tend to be completely deformed, and there is no perceptible undeformed section length 
remaining. Whenever this happens, an analysis with any of the previously reported one- 
dimensional models is impossible because the undeformed section length usually appears in 
the denominator of some key fraction. Even if there is a small amount of undeformed 
material, there is usually too much uncertainty in the measurement to trust the results. Even 
minor inaccuracies in the undeformed section length can have a profound effect on the 
prediction of dynamic yield stress. This fact and the general uncertainty connected with the 
measurement of undeformed section length has caused some researchers to turn away from 
one-dimensional models of the Taylor test entirely. 

The analysis in this paper does not suffer from the defect of being unperformable when the 
undeformed section length goes to zero. That does not say that the results are very good when 
this happens. In the example we are about to present, treating the final position of the plastic 
wave front as the back end of the deformed specimen produces a very poor estimate of 
dynamic yield stress for annealed copper. However, if we employ the technique described in 
the previous section for locating the final position of the plastic wave front, we get excellent 
results. 

Figure 6 shows the time-resolved film data from a Taylor test [9] on annealed OFHC 
copper. The specimen is 30 caliber and is impacted at 227 m s against a 4340 steel anvil. For 
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Fig. 6. Time resolved wave front versus time data for an annealed OFHC copper rod impacting 
a 4340 steel anvil at 227 m/s (from Wilson et al. [9]). 

this test, I« 10Aß and ha4.20mm. A measurement of the deformed specimen gives 
se = 15 60 mm. The overall undeformed length of the rod was 38.1 mm and s = v0t = 2.27 mm. 
With these measurements, the left-hand side of Eqn (28) is known and all but h{ is known in 
Eqn (25). .        .   _.    , 

Figure 7 shows the profile geometry of the deformed Taylor cylinder mentioned in Fig. 6. 
Table 2 gives the position/diameter data from optical comparator measurements. Using 
Eqns (25) and (28), various undeformed section lengths were tried until agreement with the 
eneineering strain in the specimen was achieved. Linear interpolation between measured 
cross sections was used to find the location 3.02 mm from the undeformed end. The strain at 
this location is about - 0.119. Equations (25) and (28) can now be used to find e = - 0.116 
and 0 = 0.741. ••,.,♦ 

With o0 = cj{l+e)=- 94 MPa for this annealed copper, we find a dynamic yield stress 
of o- = - 310 MPa. The particle velocity is u = ßv0 = 168 m/s, and the plastic wave speed is 
fl=:-(l+(l-ß)/e)v0 = 267m/s. The results are in very good agreement with the one- 
dimensional expression of conservation of mass, energy and momentum with the incorpor- 
ation of mechanical threshold stress constitutive behavior and Mie-Grumesen equation of 
state [16,17]. 

CONCLUSION 

One of the most unreliable measurements in the Taylor test is the final undeformed section 
length. There is so much uncertainty associated with this length that many people have 
concluded that it is impossible to ascertain dynamic yield stress when this measurement is 
involved The analysis presented in this paper has removed some of the uncertainty 
associated with the undeformed section length by replacing it with a position measurement 
corresponding to a particular value of strain. This produces very satisfactory results on the 
basis of dynamic yield stress estimates. 

Another standard that can be applied to the results is the comparison with early time 
behavior provided by the film record. Once the strain e0 and the dimensionless constant 
ß have been found, Eqn (13) can be used to estimate plastic wave motion during the initial 
transient stage of the deformation process. For the shots discussed in this paper for half-hard 
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Fig. 7. Final geometry of a recovered OFHC copper impact specimen. The impact velocity was 
227 m/s, and the specimen was annealed. Note the considerable distinction between this geometry and 

that shown in Fig. 5. 

Table 2. 

Axial Rod Axial Rod Axial Rod 
position diameter position diameter position diameter 
(mm) (mm) (mm) (mm) (mm) (mm) 

0.00 7.60 8.26 9.45 16.51 10.59 
0.64 7.62 8.89 9.63 17.15 10.64 
1.27 7.75 9.53 9.70 17.78 10.49 
1.91 7.90 10.16 9.86 18.42 10.52 
2.54 8.05 10.80 9.96 19.05 10.54 
3.18 8.18 11.43 10.08 19.69 10.67 
3.81 8.33 12.07 10.11 20.32 11.10 
4.45 8.51 12.70 10.21 20.96 11.96 
5.08 8.69 13.34 10.31 21.59 13.03 
5.72 8.89 13.97 10.39 22.23 14.15 
6.35 9.07 14.61 10.44 22.38 14.30 
6.99 9.20 15.24 10.59 
7.62 9.35 15.88 10.57 

OFHC copper and annealed OFHC copper, the comparisons are shown in Figs 8 and 9. 
Obviously, the agreement is very favorable, indicating that the representation for early 
particle velocity in Eqn (17) is suitable. A more detailed discussion of the particle velocity at 
the plastic wave front is contained in [15]. 
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Fig. 8. Early time motion of the plastic wave front for a half-hard OFHC copper specimen. 

E 
E 

0.0 2.0 4.0 6.0 
t 0«) 

8.0 10.0 

Fig. 9. Early time motion of the plastic wave front for an annealed OFHC copper specimen. 

The theory introduced in this paper agrees precisely with that produced in [17] by other 
means. Additionally, the computational results presented in [16] lend further credibility to 
methods employed to reach such a satisfying conclusion. However, one important element is 
missing. A suitable estimate for strain-rate has not been given. Future efforts will concentrate 
on supplying strain-rate information and reporting results for other materials. 
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Summary—Simple conservation relationships ljump conditionsi in conjunction with postulated 
material "constitutive behavior are applied to steady plastic strain waves propagating in problems of 
uniaxial stress and Taylor Cylinder Impact. Tnese problems are simulated with a two-dimensional 
Lagrangian continuum mechanics code for the purpose of numerically validating the jump relation- 
ships as an accurate analytical representation of plastic wave propagation. The constitutive behavior 
used in this effort assumes isotropy and models the thermodynamic response with a Mie-Grunisen 
Equation-of-State and the mechanical response with the rate-dependent Johnson-Cook and MTS 
flow stress models. The jump relationships successfully replicate the results produced by continuum 
code simulations of plastic wave propagation and provide a methodology for constructing mechan- 
ical constitutive models from experimental plastic wave speed information. Comparisons are also 
presented between experimental speeds from Taylor Cylinder Impact tests with jump relationships 
and continuum code predictions, indicating that the above mentioned flow stress models may not 
accurately capture plastic wave propagation speeds in annealed and hardened copper. Copyright 
J: 1997 Elsevier Science Ltd. 

Keywords: plastic wave propagation. Taylor cylinder test, jump conditions 

1. INTRODUCTION 

For many years researchers have inferred high-rate mechanical constitutive behavior for 
metals from both static and dynamic plastic wave propagation data [1-6]. The cylinder 
impact test was first utilized by Taylor [1] to estimate an average dynamic flow stress from 
final recovered (static) cylinder shapes. Von Karman and Duwez [7], Kolsky [8], and 
Malvern [9] postulated the constitutive behavior for a uniaxial stress problem and then 
integrated an equation-of-motion by the method-of-characteristics in order to predict plastic 
strain wave profiles. These wave profiles were later compared to static experimental data, e.g. 
Kolsky and Douch [10], to validate the constitutive model. 

More recently, time-resolved (dynamic) plastic strain wave data [4-6] obtained via high- 
speed photography of an impact event have been used in an attempt to validate high-rate 
plasticity models used in continuum mechanics codes; the work at Eglin AFB [5] focuses 
upon producing a propagating plastic wave in a cylindrical metallic specimen, and ideally, 
the test should be of sufficient duration such that a steady propagation can be observed. The 
information extracted from this dynamic test can be combined with conservation jump 
relationships [11] that are applied across a plastic strain wave front to map out the material's 
constitutive behavior in a three-dimensional stress, strain, and strain-rate space [12,13]. 
In fact the constitutive behavior so determined is really a combination of the material's 
mechanical and thermodynamic behavior. If the material's thermodynamic behavior is 
assumed to be known (i.e. the jump relationships can be combined with an accepted 
equation-of-state, e.g. see [14]), then the theoretical analysis and comparison to experimental 
data can be focused solely on the material's mechanical behavior. Section 2 develops such 
a mathematical description of the mechanical behavior of a material that is then compared 
directly with uniaxial stress continuum code calculational results in Section 3, followed by 
Taylor Anvil calculations and experimental data in Section 4. A summary and conclusions 
are given in Section 5. 
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2. ONE-DIMENSIONAL STEADY WAVE RELATIONSHIPS 

The steady state conservation jump equations developed by Foster et al. [12] for a control 
volume attached to a wave of plastic strain are repeated in this section for further 
development. Strength constitutive behavior and an equation-of-state (EOS) are combined 
with these jump equations in order to derive a set of material specific relationships. The von 
Mises [15] yield surface, the Johnson-Cook (JC) [16,17] and MTS [18,19] flow stress 
models, and a Mie-Grunisen [14] EOS are the constitutive equations used in this section to 
augment the jump relationships. Obviously this choice of constitutive behavior is not unique, 
but should be familiar to most readers and will illustrate the main technical points. The 
analysis assumes the one-dimensional steady propagation of a plastic strain wave. 

2.1. Preliminaries 

Defining a as the Cauchy stress tensor and de as a true incremental strain (natural strain) 
tensor measured in the laboratory frame and denoting the deviatoric stress and incremental 
strain tensors by s and de, respectively, the relationship between these is given in the usual 
way using indicial notation: 

e   1 
^ = ^ + ^-(7,^ (la) 

and 

dfiy-dey  +  Sy-dfi^. (lb) 

If we now assume elastoplastic constitutive behavior and decompose the strain increment 
into elastic and plastic parts: 

de^ds'tj + defj, (2) 

the same decomposition in terms of deviatoric strains is obtained after combinina Eqns (lb) 
and (2), 

de^delj + defj. (3) 

If plastic volume incompressibility is assumed (i.e., dej^ = 0), then combination of the above 
strain relationships gives 

d£?. = de?.. (4) 

The true incremental strain tensor can be expressed in terms of the rate-of-deformation 
tensor (natural strain-rate tensor) multiplied by a time increment [20] as 

dev = Dydr, (5) 

where the rate-of-deformation tensor is the symmetric part of the velocity gradient tensor 
[Ly = oujdxiy. 

ßy = i(Ly + Lyj). (6) 

Here xt is the Eulerian position coordinate and u{ is the particle velocity. Usually the velocity 
gradient and time step information is readily available during a continuum mechanics code 
calculation. 

Consider the axi-symmetric cylindrical geometry of radius r shown in Fig. 1. An areal 
strain can be denned with respect to the current configuration using a sign convention chosen 
to give a negative value for compression: 

eA = ^-h (7a) 

where A0 is the initial undeformed area and A is the current area. Taking the differential of 
Eqn (7a) gives 

A0dA 
d^=-TT' (7b) 
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Fig. 1. Schematic of the Taylor Cylinder Impact Test. 

where the circular cross-sectional differential area is 

d.4 = 2-n.rdr. (8) 

Substituting Eqn (8) into Eqn (7b) and using nr2 for A relates the areal strain to a radial strain 
increment, that is replaced with the radial component of the rate-of-deformation gradient 
from Eqn (5) [20]: 

deA = 
Andr 
A  r 

^=_2^°d£   =-2^D„dt. (9a) 

Decomposing the radial strain appearing in Eqn (9a) into elastic and plastic parts and using 
plastic incompressibility to relate radial and axial plastic increments (noting that for the 
centerline of the geometry shown in Fig. 1 the transverse strain increments derp and dzm are 
equal) give for the areal strain: 

deA=-2^[de^de?r]=^[-2d<P + dey; (9b) 

and if the radial elastic strain increment is neglected, we obtain the statement that the areal 
strain increment defined by Eqn (7b) is approximately 

deA£^de!. = ^?de!.. 
A     '■'■     A 

We also define a volumetric strain increment referenced to the initial configuration as 

(10) 

_ dr     v dv _ v 
(11) 

Vn      Vn   V 

where v is the specific volume, and the sign has been chosen to be positive for tension, 
consistent with common convention. If we decompose Eqn (11) into elastic and plastic parts, 
again using plastic incompressibility, the result for metals is 

<fev = —d*u- vo 
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Integration of Eqn (11) from time r0 to time r yields a definition of volumetric strain needed 
for the discussion in Section 3: 

£,. = j — = 1. (1J) 

Also needed for the comparison to Kolsky's plastic wave analysis [8] discussed in 
Section 3 is the definition of an increment of small Lagrangian strain: 

dE^lL^j + L^FJldt, (14) 

where Ftj is the deformation gradient representing the change in the Eulerian spatial position 
with respect to a change in the Lagrangian coordinate: 

F..=Ä (15) 
"    öXj 

Even though the definition of incremental finite Lagrangian strain would be more appropri- 
ate for the larger magnitudes of strain realized in Kolsky's plastic wave analysis, i.e. 

d£, = FmjDmnFnj.dr. (16) 

The definition of small strain given by Eqn (14) is used in this work to be historically 
consistent with von Karman and Duwez [7] and Kolsky [8]. 

2.2. Conservation relationships 

From Foster et al. [12], the jump equations [11] for mass, momentum, and energy across 
a one-dimensional steady strain wave from the perspective of a reference frame attached to 
the wave and moving with wave velocity ww are, respectively, 

«„, = ■ 
(eA + sv + eAev)' 

(17a) 

ff, 

U+*A) 
■ff0 = -Po"w"l' (17t>) 

Po('i - 'o) = (gA + Sv + gA£v)5L ^*g ) + ffo 1 (17c) 

where Eqn (17c) has been manipulated with Eqns (17a) and (17b) to eliminate the panicle and 
wave velocities giving the energy jump in a stress work form. In this equation set p is the 
material density, u is the material particle velocity, and i is the specific internal energy. The 
subscript "o" refers to quantities in front of the wave, the subscript "1" refers to quantities just 
behind the wave, and the subscript w denotes a wave velocity. Note that ut is observed with 
respect to the inertial reference frame moving with constant velocity uw. Equations (17) 
represent three equations containing the six unknowns uw, uv eA, ev, alt i\. 

Also from Foster et al. [12], if Eqns (17a) and (17b) are manipulated to eliminate first the 
particle velocity ut and then the wave velocity uw, the following two relationships are 
obtained: 

o-i = (1 + e.A)I>o + Po"w(eA + £v + eA£v)] (18) 

ffi = (! + <?.*) n    4- P°UI 

(eA + £¥ + <?A£V) 
(19) 

2.3. Constitutive relationships 

Specification of a yield surface provides an equation relating the deviatoric stress to a yield 
stress or flow stress (<x). Here we use the von Mises surface [15] and a flow stress model that is 
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functionally dependent on equivalent plastic strain (sp). strain-rate (ep), and temperature (7): 

Is^-aHs'/s^T). (20) 

where the equivalent plastic strain-rate is defined as 

s^lDfjDfj, (2D 
j 

and the equivalent plastic strain is the time integral of Eqn (21): 

c? = }epdt. (22) 

For a one-dimensional geometry (or at the centerline of the cylinder shown in Fig. 1), the 
deviatoric stresses srr and sgg are both equal to -s„/2. This statement plus the assumption of 
negligible shear simplifies Eqn (20) to 

s==±|«r. (23) 

Two flow stress models are investigated here: the Johnson-Cook [16,17] model and the 
MTS [18,19,21] model. The Johnson-Cook model has the simple form 

.     T      (T-T, 
o- = [(T0 + B(eT][l^Cln(£p)] 1- 

T^-T, 
(24) 

The first factor in Eqn (24) represents strain hardening with a0 interpreted as the initial yield 
stress, B is a strain-hardening coefficient, and n is a strain-hardening exponent. The second 
factor accounts for strain-rate hardening effects with C being a strain-rate hardening 
coefficient. The last factor represents thermal softening relative to room temperature (Tr), 
decreasing to zero as the melting point (TJ is realized; the quantity m is a softening exponent. 
Johnson-Cook constants for copper are given in Table 1. 

The MTS model is expressed here in specific form for copper [21] (forms for other 
materials can be slightly more complicated): 

ff = ffa + 5thff. (25) 

The product in Eqn (25) contains a micro-structure evolution variable, i.e. 3-, called the 
mechanical threshold stress, that is multiplied by a constant-structure deformation variable 
sth; sth is a function of temperature T and plastic strain-rate sp. The athermal threshold stress 
aa represents dislocation interactions with long-range barriers such as grain boundaries and 
is typically assumed to be constant. The complementary equation to Eqn (25) is a differential 
hardening law representing dislocation-dislocation interaction: 

(26) 
*   A r          / i.\~i o<s     ^ ,-/ ff \ 
ä?=fc>° L'-*y 

Table 1. Johnson-Cook model constants for annealed copper 

Parameter Description Nominal value 

Initial yield stress 89.6 MPa 
B                                         Strain hardening coefficient 292.0MPa 
C                                         Strain-rate hardening coefficient 0.025 
n                                         Strain hardening exponent 0.31 

Temperature softening exponent 1-09 
Tr                                        Room temperature 294.0 K 
T                                         Melting temperature 1356.0K 
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In this equation ©0 represents hardening due to dislocation generation, and the product 
©0-F represents softening due to dislocation recovery. The threshold stress at zero strain- 
hardening i7s is called the saturation threshold stress. Relationships for F. 0O. <5\ are material 
specific: for copper these relationships are [21] 

. tr\_ tanh(27 ^J 

vo.)       tanhiZ) 

0O = a0 -r a. Infsp) 4- a2 v-'ep, 

<T Gb'A 

ff. = ff„l —) -ffa, 

(27) 

(28) 

(29) 

where (a0, at, a2) are material constants. ©0 has a maximum value constrained to the shear 
modulus, k is Boltzmann's constant (1.36 x 10 " 22 J/K), G is the shear modulus assumed to be 
temperature and possibly pressure dependent, b is the magnitude of Burgers vector (the inter 
atomic distance in the slip direction), ax is the saturation threshold stress at 0 K. sx is a reference 
strain-rate, and the quantity A is a material constant. The shear modulus appearing in these 
equations is assumed to be a function of temperature and given by the correlation G = b0 — bJ 
(e*2,T — 1). At room temperature this equation gives a value of 42.9 GPa for copper. 

If the temperature and strain-rate are both assumed to be constant and a Voce [19] law is 
used for the F function, then Eqn (261 can be integrated for the threshold stress giving the 
closed-form solution 

a = o\ '-('-?H*' 
©n 

o\ 
(30) 

This relationship can then be substituted into Eqn (25) to yield an analytical expression for 
the flow stress. 

For thermal-activation controlled deformation, sth is evaluated via an Arrhenius rate 
equation: 

/Jkrin(80/ep)V/«' 

11"\~GS 'So 

up 
(31) 

The exponents p and q are material constants, e0 is a reference strain-rate, and g0 is 
a normalized activation energy for a given dislocation/obstacle interaction, assumed to be 
a constant. The reader is referred to Refs [18] and [19] for more detail concerning the 
development of Eqns (25)—(31). MTS constants for copper are given in Table 2. 

Table 2. MTS Model constants for annealed copper 

Parameter Description Nominal value 

9o 

b 
A 

P 

a, 

a, 

b'o 

Rate independent threshold stress 
Normalized activation inergy 
Thermal activation equation constant 
Magnitude of Burgers vector 
Saturation stress equation constant 
Initial threshold stress 
Saturation stress at zero degrees K 
Saturation stress reference strain rate 
Free energy equation exponent 
Free energy equation exponent 
Hardening function constant 
Hardening function constant 
Hardening function constant 
Shear modulus constant 
Shear modulus constant 
Shear modulus constant 

40.0 MPa 
1.6 
lO's"1 

2.55 Ä 
0.312 
46.0 MPa 
900.0 MPa 
6.2 x 10I0s- 
2/3 
1 
2370.7 MPa 
8.295 MPa 
3.506 MPa 
47.3 GPa 
2.40 GPa 
130 K 
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A continuum mechanics code analysis of steady plastic wave propagation in the Taylor test 

The concept of a plastic wave propagation speed is used to compare the constitutive 
moduli to plastic wave speeds observed in continuum calculations and time-resolved tests. 
Therefore, we follow von Karman and Duwez [7] and Kolsky [8] by relating the wave speed 
to the partial derivative of the stress with respect to strain suggested by a method-of- 
characteristics solution of the equation of motion for the uniaxial stress problem: 

"•:•: 
1 ccr.. (32) 

where p0 is the initial density and £„ is the small Lagrangian strain given by Eqn (14). In 
order to further develop the wave speed given by Eqn (32), using either the Johnson-Cook or 
MTS model, the partial derivative of flow stress with respect to equivalent strain is needed. 
Thus we have for the former: 

^ = B«(£p)""l[l-cln(£p)] i-t I=1LY 
T -T *m       ■* r/    _ 

and for the latter 

0(7 MTS 

C7£" 
= %©0 l-F{T. 

(33) 

(34) 

There are several approaches for combining the flow stress models represented by 
Eqns (24) and (25) with the jump equations given by Eqns (17). In this effort, the combination 
is performed using the energy jump equation, a Mie-Grunisen EOS, and a von Mises yield 
function. We proceed with a Mie-Grunisen EOS (or nonlinear elasticity) using the quadratic 
form: 

P = (kip + k2p
2 + klp

3)(l-?-pj + ipor(l+p), (35) 

where the compression p = p/p0 — 1 can be related to the volumetric strain defined above as 
p. = — £v/( 1 4- ev), and the pressure P is the negative of one-third of the trace of the total stress 
tensor, i.e. in view of Eqn (la), 

.   _ff1=ff„ = s„-P. (36) 

The EOS parameters appearing in Eqn (25) are defined in Table 3. 
The EOS given by Eqn (35) can be inverted for the internal energy and substituted into the 

energy jump Eqn (17c) to eliminate ;'. If we also substitute for the pressure using Eqn (36), 
assume Eqn (23) applies (valid for one-dimensional behavior and also along the centerline of 
a cylindrical two-dimensional geometry), and solve for cru then we obtain an analogous 
Hugoniot [11] result: 

2^A- • £v + eA£>0 + /„Po + 
1 

a, - — - 
ru-r/t) 

r> + {kxp + fc,/r + k3p2)( 1 --ft 

1 

HI + AO 

1 .      1 
+ ^A + £v + eA£v) 

(37) 

(l + O 

Table 3. MIE-Grunisen EOS constants for copper 

Parameter Description Nominal value 

r 

Linear coefficient 
Quadratic coefficient 
Cubic coefficient 
Grunisen coefficient 
Initial densitv 

137.0GPa 
175.0 GPa 
564.0 GPa 

1.96 
8950.0 ke/m3 
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If the volumetric strain is now assumed to be small, i.e., |gv| « |eA| and jev| « 1, then Eqn (37) 
simplifies to 

'   ^A^o + 'oPo + rf^-^i 

'■~-—r-r1^ '- CT 

T    2(1 + eA) 

Recalling that the flow stress a is assumed to be a function of plastic strain, strain-rate, and 
temperature, the axial stress given by Eqn (38) is thus a function of plastic strain, strain-rate, 
temperature, and volumetric strain (assumed to be small but not zero). 

Equations (17a), (17b), and (38) now represent a set of three equations containing the seven 
unknowns uw, uv eA, ev, av a, ep. 

2.4. Uniaxial stress 

If we now focus on the uniaxial stress problem (i.e. the long wire problem), the pressure can 
be easily related to the flow stress. The stress state for uniaxial stress is 

C7rr = 0=>Srr = ? 

<r89 = 0=>safl = P (39) 

<7„ = S.. - P. 

Since the trace of the deviatoric stress tensor is zero, the stress components are related as 

s__r=-2srr; (40) 

and then replacing the deviatoric stress components in Eqn (40) using Eqn (23) and Eqn (39), 
the pressure is simply: 

P = ^. (41) 

Also for uniaxial stress the expressions for equivalent stress and strain simplify to 

a = \a2Z\ (42a) 

sp = |eL-|. (42b) 

Formulating wave speeds via Eqn (32) (noting Eqn 42) for the two flow stress models 
represented by Eqns (33) and (34) gives 

1   ™>r dB.. (43) 

P0  <7£p ÖE.. 

and 

-%^, (44) 
pQ   OEp  oE.. 

where increments of elastic strain have been assumed to be negligible in using the chain-rule 
on the strain partial derivative under the radicals (i.e., eL S e„). The partial derivative of 
natural strain with respect to small Lagrangian strain appearing in Eqns (43) and (44) is 
obtained using the ratio of strain increments from Eqns (5) and (14) 

^5==. -^5« —5s— F-i. (45) 
cE:z    d£::    L.JF.. 
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Since the displacement is equal to the difference between the Eulerian and Lagrangian 
positions, it then follows that F„ = £.. -f-1 [20]; and. when substituted into Eqn (45) and 
integrated between rQ and r. the two strain definitions are related as 

e.. = ln(£„-l) = liHF„). (46) 

Combining Eqns (46), (45), and (43) or (44) gives the wave speed in terms of either Lagrangian 
small strain or natural strain. 

The equivalent strain ep appearing in the above flow stress models is related to «?A via 
Eqn (10) as 

n /in n I 1 
(47) 

J
0A0-"        J(1+*A) 

and the temperature T also appearing in the flow stress models can be easily related to the 
internal energy i. 

Note that a comparison of Eqns (46) and (47) reveals that small Lagrangian strain £„ and 
areal strain eA are identical if we ignore elasticity. 

Figure 2 presents the wave speed for annealed copper as computed from the flow stress 
models Eqns (43) and (44). The wave speed is given as a function of areal strain eA with 
strain-rate indicated as a parameter. In general the wave speed is seen to always decrease with 
increasing strain. These results also indicate a rather large difference between the models of 
more than 200 m/s in wave speed and also reveal the insensitivity of the Johnson-Cook 
model to strain-rate. Taylor Cylinder test data discussed in more detail in Section 4 indicate 
that a plastic wave speed at the 5% strain level to be about 400 m/s for an annealed initial 
material condition. Thus the two flow stress models are seen to bracket this experimental speed. 

For the long wire problem the radial and axial elastic strain increments are related via 
Poisson's ratio v so that Eqn (12) can be rewritten as 

d£v = (l-2v)d£=:—, (48) 

1000 

800 

- ° -MTS. 103s"' 

- o "MTS, 104s"' 

- " "MTS, 10* s"' 

- ° "MTS, 10äs"' 

■JC, 103s"' 

■JC, 10*s'' 

"JC, 10s s'1 

■JC, 10s s"' 

Fi2.1. Plastic wave speed shown as a function of areal strain with strain-rate indicated as a parameter. These curves 
are determined from a strain differential of the Johnson-Cook and MTS flow stress models. Note the deceleration 

trend as strain increases. 
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which intearates to 

. = en- -- 1. (49) 

If this elastic axial strain is replaced with — aSE using Hooke's Law and Eqn (42a). the 
volumetric strain can be estimated for this uniaxial stress situation: taking the yield stress to 
be 200 MPa. Poisson's ratio to be 0.3-. and Young's modulus to be 132 GPa, which are 
appropriate for copper, a value of — 0.0485% is computed for £v. 

Also, if we relate the change in temperature to the plastic work simply by 

AT-- 
1 

PoCpO 
jode9 (50) 

and say that for copper the density is 89:0 kg/m3 and the specific heat is 383 J/kg-K, then the 
temperature rise for a 5% plastic strain is only 3 K. Thus for plastic strain waves of roughly 
5%, the thermal effect associated with the plastic work is small; and the temperature can be 
assumed constant for the evaluation of a flow stress. 

A graphical representation of Eqn (38) is given by Fig. 3, which presents a family of stress 
ff1 curves plotted as a function of strain ev with strain-rate ep indicated as a parameter 
ranging from 103 to 106s"l. These results are for a hardened copper having an initial yield 
stress of 293 MPa and a constitutive description corresponding to the MTS model. Also 
shown in Fig. 3 are curves of constant wave speed constructed using Eqn (18), with uw 

ranging from 300 to 600 m/s, and curves of constant particle velocity constructed using 
Eqn (19), with ut ranging from 10 to 75 m/s. These curves identify the stress, strain, and 
strain-rate states realized behind a wave of constant plastic strain eA. For example, say 
a compressive plastic strain wave of — 6% is traveling along a wire with a speed of 500 m/s: 
from Fig. 3 the material behind this wave has a particle velocity of about 30 m/s from the 
perspective of the wave frame, an axial stress of —400 MPa. and a strain-rate of lO^s-1. 
Figure 4 presents similar results for an annealed copper having an initial yield stress of 

6.0 10' 

S.0 101 

&      4.0 108- 

3.0 10 

2.0 10' 

0.06 0.12 0.18 0.24 0.3 

Fig. 3. Sress versus areal strain curves of constant wave speed, constant particle velocity, and analogue Hugoniots 
for hardened copper. Strain-rate is indicated as a parameter for the Hugoniot curves that incorporate the 

Mie-Grunisen EOS and MTS flow stress model. Units for the indicated speeds are in m/s. 
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6.0 

5.0 1 O 

4.0 10 

S.      3.0 108 

2.0 10 

1.0 10 

0.0 10 

0.06 0.12 0.18 0.24 0.3 

- e 

Fig. 4. Stress versus areal strain curves of constant wave speed, constant particle velocity, and analogue Hugoniots 
for annealed copper. Strain-rate is indicated as a parameter for the Hugoniot curves that incorporate the 

Mie-Grunisen EOS and MTS flow stress model. Units for the indicated speeds are in m/s. 

86 MPa. Note that the annealed material has higher wave speeds when compared to the 
hardened material of Fig. 3 for similar values of strain and strain-rate. This observation can 
be understood if one notes Eqn (44) and considers the difference in slope between the 
stress-strain curves for the two materials. 

Figures 5 and 6 present results analogous to Figs 3 and 4, but using instead the Johnson- 
Cook flow stress model to determine wave speed as indicated by Eqn (43). These figures 
indicate that the Johnson-Cook family of curves has a reasonable domain of intersection 
with the curves of constant wave speed and constant particle velocity over the range of 
strain-rates shown. Both the hardened and annealed results of Figs 5 and 6 indicate a plastic 
wave speed greater than 500 m/s at the 5% strain level. Taylor Cylinder test data discussed in 
more detail in Section 4 indicate that plastic wave speeds at the 5% strain level range from 
300 to 400 m/s depending on initial material condition. The strong sensitivity of wave speed 
to strain is especially reflected in the Fig. 6 annealed results where uw ranges from 700 down 
to 400 m/s as eA increases from 0 to 15%: this observation was made indirectly by Wilson et 
al. in Ref. [5] for annealed copper. ^ 

3. A LONG WIRE ANALYSIS 

A Lagrangian finite-element continuum mechanics code [22] was used to simulate the 
uniaxial stress problem (long wire problem) modeling the constitutive behavior with the 
relationships presented in Section 2.3. The purpose of these calculations was to evaluate the 
use of the jump relationships combined with the material's constitutive behavior (i.e. Eqns 35 
and 24 or 25) by comparing with continuum code results. 

Letting the Fig. 1 geometry represent a long wire (i.e. r becomes very small), the wire is set 
in motion at speed v0 and impacts a rigid surface at time zero. The impact produces 
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6.0 10° -r 

5.0 10 

£     4.0 10s-- 

3.0 10 

2.0 10 

0.06 0.12 0.18 0.24 0.3 

Fig. 5. Stress versus areal strain curves of constant wave speed, constant panicle velocity, and analogue Hugoniots 
for hardened copper. Strain-rate is indicated as a parameter for the Hugoniot curves that incorporate the 

Mie-Grunisen EOS and Johnson-Cook flow stress model. Units for the indicated speeds are in m/s. 

6.0 10 8    , 

0.0 10 

0.06 0.12 0.18 
- e 

0.24 0.3 

Fig. 6. Stress versus areal strain curves of constant wave speed, constant particle velocity, and analogue Hugoniots 
for annealed copper. Strain-rate is indicated as a parameter for the Hugoniot curves that incorporate the Mie- 

Grunisen EOS and Johnson-Cook flow stress model. Units for the indicated speeds are in m/s. 

E-12 



A continuum mechanics code analysis of steady plastic wave propagation in the Taylor test 243 

a compressive stress wave that propagates in the positive z direction. This wave separates 
into elastic and plastic parts [7.8] with the plastic wave being of most interest to this analysis. 

Continuum code calculations provide a means for numerically observing the plastic strain 
wave motion along the length of the impacting wire. A copper wire 5.08 cm (2 in.) long was 
modeled assuming a uniaxial stress geometry divided into 200 one-dimensional elements and 
given an initial speed v0 of 0.1 km/s. In order to compare the speed of the plastic wave inferred 
from these calculations with that indicated by the constitutive modeling (Eqns 43 or 44), 
some criterion must be used to establish the Eulerian position h(t) (defined as the distance 
from the rigid surface of the anvil face out to the plastic wave, see Fig. 1) of a plastic strain 
wave [5,6]. In this study the axial plastic strain el. discussed in Section 2.4 is applied along 
the wire to determine h(t). An arbitrary value "of -4.94% is used here for el., which 
corresponds to -4.82% for eA, -4.82% for £,., and 2.5% for the radial bulge (R - R0)/R0- 
The choice of -4.94% here is arbitrary, but does reflect the resolution of the experimental 
optics at Eglin AFB [5] used for reduction of the time-dependent Taylor Cylinder data 
discussed in Section 4, and must be consistent with the experimentally observed radial bulge. 

The discussion in this section first assumes a simple description for the material behavior 
(Eqn 51 below) in order to derive an analytic solution that can be compared to continuum 
calculations, and then more realistic material models (i.e. the Johnson-Cook and the MTS 
models) are investigated. The simple constitutive model is in fact identical to that used by 
Kolsky [8]. 

3.1. Simple constitutive model 

Figure 7 presents the plastic strain wave position h{t) as a function of time for a plastic 
strain of -4.94% propagating in the annealed copper wire with a constant plastic hardening 
modulus of 292 MPa., i.e. the flow stress is simply 

a = <r0 + B\EJ. (51) 

0.01 2. 

0.01 

0.008 

i   0.006 _ 
o 

0.004 _r. 

0.002 

—o— h(t), slope - 88 m/s 

—;—H(t), slope - 185 m/s 

0.0 10 5.0 10' 1.0 10' 

Time  (s) 

1.5 10' 2.0 10' 

Fis. 7. Wire problem plastic wave position curves using both Eulerian and Lagrangian position coordinates shown 
as "a function of time. This calculation incorporates the Mie-Grunisen EOS and a simple strain-hardening flow 

stress model for annealed copper. Initial impact velocity is 100 m/s. 
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This simple flow stress model implies a wave speed obtained via Eqn 32 of 

«w=   /-. (52) 
V Po 

which has a value of 0.181 km/s. The Fig. 7 code results show a wave traveling about 2.0 mm 
in 20 fis with a near constant slope h of 0.88 km/s. Also shown in Fig. 7 is the Lagrangian 
position H(i) of the same plastic wave, which measures wave travel out to about 4.0 mm in 
20 jxs with a near constant H of 0.185 km/s. Both wave position curves are measured from the 
laboratory reference frame but using different metrics; the H(t) curve in effect disregards the 
kinematical history of the material through which the plastic wave has propagated since it 
measures the wave position in terms of initial configuration coordinates. The slopes of the h(t) 
and H(t) curves in Fig. 7 differ by roughly v0, i.e. 0.097 km/s; the elastic precursor wave 
moving out in front of the plastic wave at 3.66 km/s has decelerated the wire particle velocity 
by a few percent. If we account for the deceleration effects of the elastic precursor, then we 
have for the plastic wave 

B = h-{vQ-ut), (53a) 

where the elastic jump velocity ue can be obtained by solving Eqn (17b) for the particle 
velocity and setting cr0 to zero, cr1 to the initial yield stress, uw to the elastic longitudinal wave 
speed (i.e. jEjpQ), and the strain to the elastic strain at yield: 

"■"ÄTk (53b) 

This relationship gives 2.75 m/s for annealed copper having an initial yield of 86 MPa and 
8.96 m/s for hardened copper having an initial yield of 293 MPa. 

Recalling that uw is the velocity of a reference frame attached to the plastic strain wave, this 
frame observes material entering the wave front with a particle velocity of - uw and material 
exiting from behind the wave front with a particle of - (uw - u:); i.e. the plastic wave frame 
does not "recognize" the particle velocity of the medium through which it is moving [11]. 
Therefore the slope of the H(t) curve in Fig. 7 or H should be identical to the wave speed ww of 
0.181 km/s for a steady state wave propagation; the explanation for the 2% difference 
between these speeds is discussed below. 

Figure 8 presents plastic strain profiles for the wire problem in terms of small Lagrangian 
strain E.. versus the characteristic variable Z/t where Z is the Lagrangian axial position. 
These profiles are given at three locations along the wire: Z = 1.27,2.54, and 7.62 mm. Kolsky 
[8] provides an analytical solution for the shape of these profiles relating the plastic wave 
speed to the characteristic variable Z r. 

«»(£...) = Z/t (54) 

and the maximum Lagrangian strain to this same speed: 
o 

v0=-$uJEJdE::. (55) 
£tna« 

Equation 54 states that every value of plastic strain can propagate at an unique speed; for the 
flow stress model given by Eqn (51), this speed is given by Eqn (52). Equation (55) relates the 
wave speed to the velocity of the undeformed wire and provides a means for computing the 
maximum plastic strain realized after the wire has decelerated to zero velocity. 

For uw equal to a constant, as is the case for Eqn (51), the profiles shown in Fig. 8 should be 
step functions at wave speeds of 0.181 km/s for the Z/t profiles. The observation that the 
Fig. 8 profiles are distributed about this speed is a consequence of the dissipation in the 
continuum code calculation, albeit the results do approach the analytical solution as the 
plastic wave propagates further down the long wire. 

Returning to the Fig. 7 observation that H appeared large by 2% relative to uw, this can be 
understood by noting from Fig. 8 that the numerical propagation speed for a strain close to 
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Fig. 8. Wire problem plastic wave profiles at various Lagrangian positions (Z) along the wire measured relative to 
the impact interface. Wave profiles are in terms of axial Lagrangian strain shown as a function of the characteristic 
variable Z/t. This calculation incorporates the Mie-Grunisen EOS and a simple strain-hardening flow stress model 
for an annealed copper. Initial impact velocity is 100 m/s. Also shown is the analytical profile from von Karman [7] 

and Kolsky [8]. 

5% is 0.225km/s at Z = 1.27mm, slowing to 0.190km/s at 7.62mm, and approaching 
0.181 km/s only in the limit as Z becomes large. Therefore, even though the slopes in Fig. 7 
appear to be constant, some transient behavior is still evident in the code calculations from 
Fig. 8 with the effect of producing slightly faster wave speeds {H), faster particle velocities (wj, 
and also higher stresses (c^); recall that the constitutive wave speeds (uw) given by Eqn (43) 
and (44) and the jump relationships given by Eqns (17) assume steady state wave propagation. 

Equation (55) can be solved for £"" using uw from Eqn (52), thus giving the relationship 

£max _ iip_ (56) 

that has a value of - 55.2% for the wire problem. This analytical result agrees very well with 
the Fig. 8 maximum strain of —54.5%. 

3.2. Realistic constitutive models 

Focusing now on constitutive models that are representative of real materials, Fig. 9 
presents continuum code results showing the wave position as a function of time for a plastic 
strain wave of sL = - 4.94% propagating in annealed copper (<70 = 86 MPa) with a consti- 
tutive description given by the MTS model. This wave is seen to travel about r = 8.5 mm (or 
Z = 10.3 mm) in 20 ^s with a constant speed ft of 0.406 km/s (or H of 0.503 km/s). Figure 9 
presents similar wave position results using a constitutive description given by the Johnson- 
Cook model. Here the wave is seen to travel about z = 5.1 mm (or Z = 6.9 mm) in 20 ^s with 
a speed h of 0.248 km/s (or H of 0.337 km, s). Comparison of the Fig. 9 curves indicates very 
different plastic wave propagation for the annealed material using the two different flow 
stress models, the MTS results representing a much faster wave propagation. 

Figure 10 is similar to Fig. 9 except that the initial material condition is now hardened (<r0 = 
293 MPa). Again the MTS result shows faster wave propagation relative to the Johnson- 
Cook results, albeit a much slower result when compared to the annealed material of Fig. 9. 
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Fig. 9. Wire problem plastic wave position curves using both Eulerian and Lagrangian position coordinates shown 
as a function of time. These calculations incorporate the Mie-Grunisen EOS and the Johnson-Cook and MTS flow 

stress models for an annealed copper. Initial impact velocity is 100 m/s. 
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Fig. 10. Wire problem plastic wave position curves using both Eulerian and Lagrangian position coordinates 
shown as a function of time. These calculations incorporate the Mie-Grunisen EOS and the Johnson-Cook and 

MTS flow stress models for a hardened copper. Initial impact velocity is 100 m/s. 
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Table 4. Plastic strain wave speeds for copper 

Material condition, 
constitutive model 

h (km.s) V0 -r II. 

(km.s) 
H (km.s) Wave speed 

u^ikm.'S) 

Annealed, constant u„ 
Hardened, constant w„ 
Annealed. MTS 
Hardened, MTS 
Annealed. JC 
Hardened. JC 

0.088 -0.097 0.185 0.181 
0.094 -0.091 0.185 0.181 
0.406 "-0.097 0.503 0.507 

0.315 -0.091 0.406 0.407 

0.248 -0.097 0.337 0.321 
0.264 -0.091 0.344 0.321 

Table 4 summarizes Figs 9 and 10 wave speeds comparing different constitutive models 
and material conditions. Both an annealed and a hardened copper are shown. The simple 
case where the constitutive model is given by Eqn (51) was discussed above and is given here 
only for comparison. Both the MTS annealed and hardened copper cases show good 
agreement when comparing H and uw. Also, h and H differ almost exactly by v0 + ue, 
satisfying Eqn (53a). 

The wave speed uw shown in Table 4 for the Johnson-Cook model is identical for both 
material conditions because the slope of the Johnson-Cook flow stress is independent of the 
initial yield stress (no implied saturation behavior). Actually, Johnson-Cook parameters 
characterized for a hardened copper would have a smaller value for the modulus B than that 
published for the annealed material in Ref. [17]. The Johnson-Cook annealed and hardened 
copper cases show somewhat less agreement when comparing H and uw, differing by about 
6%. Also the Johnson-Cook speeds h and H do not seem to differ by v0 + uc, as indicated by 
Eqn (53a). 

3.3. Comparison to jump relationships 

The upper portion of Table 5 summarizes the continuum code results in terms of wave 
speed, particle velocity, stress, and strain-rate at the plastic strain of eA = — 4.82% for the 
various material conditions and constitutive models. These code results can then be 
compared to jump relationship predictions obtained via Eqns (17) and (38) and listed in the 
lower portion of Table 5. The jump results are computed assuming a strain eA of —4.82% 

Table 5. Comparison of continuum code results with jump relationships using copper for the wire problem 

Continuum code Annealed, Hardened, Annealed. Hardened, Annealed. Hardened, 

using EPIC constant constant MTS MTS JC Model JC 
uw uw Model Model Model 

eA 
-4.82% -4.82% -4.82% -4.82% -4.82% -4.82% 

£» -0.0252% -0.0744% -0.0492% -0.0870% -0.0603% -0.120% 

uw(km/s) 0.181 0.181 0.507 0.407 0.321 0.321 

£(km/s) 0.185 0.185 0.503 0.406 0.337 0.344 

ujm/s) 9.36 9.36 25.7 22.0 26.7 31.6 
<r,(= -<r)(MPa) -104. -307 -203. -359. -249. -495. 

£"(1/S) 4.24 x 10* 3.04 x 10* 3.00 x 10* 2.53 x 10* 7.20 x 103 6.53 x 103 

Jump relationships Annealed, Hardened, Annealed, Hardened. Annealed, Hardened, 

plus constitutive constant constant MTS MTS JC JC 
model uw Model Mode! Model Model 

*A -4.82% -4.82% -4.82% -4.82% -4.82% -4.82% 

£» -0.0252% -0.0744% -0.0492% -0.0870% -0.0603% -0.120% 

u. (km/s) 0.204 0.180 0.521 0.391 0.615 0.684 

u,(ra,s) 9.83 8.67 25.1 18.9 29.6 33.0 

<r,(MPa) -104. -307. -203. -359. -249. -495. 

fi'd.'s) — — - 4 x 10* > 1 x 10* NI* NI* 

' NI: no intersection. 
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and a plastic wave speed obtained by solving Eqn (18) for uv: 

(Cl/(l+Q-«70) 

Recall that under the uniaxial stress assumption the magnitude of the axial stress ay is always 
equal to the flow stress a. without any adjustment for two-dimensional area changes. 
Therefore the stress aj{\ -i- eA) appearing in Eqn (57) is replaced by — a for the purpose of 
computing t/w for the wire problem. Recall also from Section 2.3 that the jump relationships 
plus a constitutive equation result in a system of three equations for six unknowns. Specifying 
the two variables eA and al(= — <r) and recalling that ev can be evaluated using the uniaxial 
stress assumption via Eqn (49), then allow the speed uw, the particle velocity ul? and the strain 
rate ep to be computed. Comparison of the code and jump results in Table 5 shows good 
agreement in uw and ul for the constant uw constitutive model and the MTS model and some 
disagreement for the Johnson-Cook model. 

4. A TAYLOR CYLINDER ANALYSIS 

4.1. Comparison to continuum code results 

The EPIC code [22] was used to simulate the Cylinder Impact Test shown in Fig. 1 for the 
purpose of numerically observing the plastic wave [7,8] motion along the length of the 
impacting cylinder. This problem is purposely quite similar to the wire problem except that 
a two-dimensional (r,r) axi-symmetric impact geometry is modeled using quadrilateral 
elements with an aspect ratio close to one. Ten elements were used across the radius of the 
cylinder to spatially resolve the plastic wave results presented below. The impact surface was 
modeled as a rigid boundary. The copper cylinder has a 7.62 mm (0.30 caliber) dia. a Length 
to Diameter ratio (LID) of 10, and an initial velocity of 0.100 km/s. The MTS flow stress 
model is assumed for the mechanical response of the copper, and the Mie-Grunisen EOS is 
assumed for the nonlinear elastic thermodynamic response. 

Plastic wave position curves H(t) and h(t) are presented in Fig. 11 for the annealed copper 
cylinder impact. The first 10-12 ^s of these results show a nonlinear transient (designated as 
Phase I in Ref. [23]) dominated by the EOS and is the result of the radial relief waves 
interacting with the lower frequency longitudinal waves [6]; the elastic part of these waves 
initially propagates at the dilatational speed in an extended medium [8]: 

ci = .l-[k + -G), (58) 

where k and G are the bulk and shear moduli, respectively, evaluated for the compressed 
material state. This wave speed is about 4.74 km/s for copper compressed to 3.85 GPa and 
agrees with the longitudinal sound speed reported by Marsh [24]. 

After Phase I (i.e. after roughly 12/JS) the kinematics of the plastic wave shown in Fig. 11 
transition to a more steady behavior (designated as Phase II in Ref. [23]) similar to wire 
problem results shown in Fig. 9. The so-called gap closure transient discussed in Ref. [6] 
determines the time of this Phase I to Phase II transition where the slope of h(t) becomes 
constant. During this transition the elastic wave speed decelerates from the dilatational speed 

cd to that for uniaxial stress realized in the wire problem (i.e. ~jE!pQ or 3.66 km/s), and the 
plastic wave propagates with a near constant speed corresponding to the constant slope 
observed in the Fig. 11 results after about 12 (j&. 

Davies and Hunter [25] and Follansbee [26] review a simple analysis for stress equili- 
brium concluding that a material region of dimension L requires 7t wave reverberations with 
its boundaries before a uniform stress state is achieved: in terms of an equilibration time Te 

they advocate 

Te = ^ (59) 
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Fig. U. Taylor Cylinder problem plastic wave position curves using both Eulerian and Lagrangian position 
coordinates shown as a function of time. These calculations incorporate the Mie-Grunisen EOS and the MTS flow 
stress model for both annealed and hardened coppers. Initial impact velocity is 100 m/s. Note that the position 

curves show an initial transient behavior [23] out to about \2fts. 

For an elastic problem the wave speed uw would be constructed from the appropriate elastic 
moduli, but for a plasticity problem with strain hardening (where the stress magnitude is 
a function of the plastic strain) the appropriate value for ww in Eqn (59) would be the plastic 
wave speed. If we let the dimension L be the radius R of the impacting 7.62 mm cylinder and 
uw be equal to a plastic wave speed of 0.507 km/s, then Te has a value of 23.6 /is. Thus plastic 
strain disturbances realized during the transition from Phase I to Phase II should require 
about 24 /is to attain radial stress uniformity, or about 36 ^s total (12 fis for Phase I plus 
24 us). Figure 12 supports this rationale showing stress histories for the cylinder impact 
problem realized at the centerline at the axial location of the plastic wave. The early time 
(Phase I) stress history has been discussed in some detail in Ref. [6]. It can be observed in this 
figure that the total axial stress and pressure do not achieve steady state until after at least 
36 /<s. However in terms of H(t) or h(t) results, i.e. Fig. 11, steady plastic wave propagation is 
realized quite early in the event, after 12/is. 

Further observation of Fig. 12 indicates that even though the stress state may be 
approaching a constant after 36 ps, a state of uniaxial stress has not yet been realized since the 
axial stress exceeds the flow stress by roughly 10% [see Eqn (42a)]. Again Davies and Hunter 
[25] and Follansbee [26] conclude that stress waves require upwards of 20-40 dia of travel 
before uniaxial stress is realized for a cylinder impact similar to a Taylor Test; for a 7.62 mm 
cylinder this means 152-304 mm of stress wave travel, or 41.6-83.2 ^s. Figure 12 indicates 
that 80 us is not quite sufficient to realize uniaxial stress in the Taylor Test simulation. 
Therefore, use of the uniaxial stress plastic wave relationship given by Eqn (32) at early times 
should therefore be corrected for inertial effects. 

Returning now to the Fig. 11 results, the slope of the H(t) curve after 12 ^s might be 
expected to correspond to the Table 4 uw of 0.507 km/s for annealed MTS copper. However, 
measurement of H for 12^s ^ t< 50/is gives a faster propagation of about 0.560 km/s. In fact 
H does not decay to smaller values even at late times, say 40-50 jus. The difference observed in 
these results [i.e. uw for the wire problem given by Eqn (32) versus uw for the finite cylinder 
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Fig. 12. Taylor problem stress histories from the centerline of an impacting cylinder at the axial location of the 
plastic wave position. These calculations incorporate the Mie-Grunisen EOS and the MTS flow stress model for 
annealed copper. Initial impact velocity is 100 m/s. Observed oscillations represent radial wave dispersion 
demonstrating that stress equilibrium is not achieved until after 40 ps. 

problem given by Eqn (57) is due in pan to the two-dimensional aspect of area change that is 
explicitly accounted for in Eqn (57) by the (1 + e^ factor modifying the stress at. This 
statement is supported by reviewing Fig. 12 where o\_ is not equal to —a, which is the 
criterion for uniaxial stress; at early times (20 /zs) in Fig. 12 the flow stress is about 199 MPa 
versus an axial stress value of —240 MPa. Note from Eqn (18) that the axial stress is 
proportional to the square of plastic wave speed, thus the faster speed observed in Fig. 11 is 
consistent with the larger stress magnitude observed in Fig. 12. 

Table 6 summarizes the comparison of the continuum results for the 0.100 km/s cylinder 
impact with the jump relationship predictions; both annealed and hardened material results 

Table 6. Comparison of continuum code results with jump relation- 
ships using copper for the Taylor impact problem (100 m/s) 

Continuum code Annealed. Hardened, 
using EPIC MTS Model MTS Model 

<?A -4.82% -4.82% 
e. -0.0509% ,     -0.0897% 
uw(km/s), Eqn (32) 0.502 0.434 
ff(km/s) 0.560 0.503 
"i(m/s) 26.9 25.9 
(^(ffMMPa) -240.(210.) -400.(370.) 
£'(1/S) 1.07 x 10* 9.00 x 103 

Jump relationships Annealed. Hardened, 
plus constitutive model MTS Model MTS Model 
*A -4.82% -4.82% 
£v -0.0509% -0.0897% 
uw(km/'s), Eqn (57) 0.573 0.550 
u,(m/s) 27.9 26.5 
<r,(MPa), Eqn (38) -225. -403. 
£p(l/s) 5. x 10s 1. x 105 
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are presented using the MTS mode!. Note the code results show 10% higher speeds when 
compared to uw calculated via Eqn (32), and that the axial stress ay is also larger than the flow 
stress (7 by 10-20%. One can speculate that areal and radial inertial effects account for most 
of the difference and conclude that the unia.xial stress assumption is valid to within 20%. The 
jump predictions presented at the bottom of Table 6 are better suited for comparison to the 
continuum code results because they do account for the areal change experienced by the 
cylinder at the position of the 4.82% plastic strain wave. In general, the jump values for uw, a„ 
cx all agree to within 5% with the code results for H. «t. ax, except for the hardened material 
wave speeds which exhibit more deviation. The procedure for evaluating the jump relation- 
ships first computes <rl via Eqn (38) assuming that c is given, then uw is computed using 
Eqn (57) [i.e. Eqn (18) inverted], and finally ut is obtained using Eqn (17a). These Table 6 
jump predictions are all consistent with a graphical solution using Figs 3 and 4 at the 4.82% 
plastic strain level; the strain-rates appearing at the bottom of Table 6 were inferred from the 
graphical solution and are observed to deviate substantially from the continuum code 
estimates. 

As to the question of the influence of numerical parameters such as artificial viscosity 0, 
a Courant condition [27] determined time step Ar, and initial finite element size Ar on the 
continuum code results shown in Tables 4-6, Table 7 presents sensitivity coefficients indica- 
ting the how these parameters affect the plastic wave speed H. Table 7 shows small sensitivity 
to EPIC numerical parameters, the largest being Ar, which decreases H by 3.06% if the mesh 
size were doubled. 

Plastic wave profiles similar to the wire problem profiles in Fig. 8 in terms of the axial 
plastic strain (£..) versus the Z/t for five elements of material on the cylinder centerline are 
shown in Fig. 13. As for the Fig. 8 results, all element positions are measured relative to the 
impact interface in terms of the Lagrangian position variable Z. The plastic strain profiles at 
low strain for most of these elements are somewhat ragged as a result of radial ringing [6]. 
Note that the profile shapes during Phase I (profiles Z = 0 and Z = 3.74 mm) are unique, but 
after the Phase I to Phase II transition the profile shapes (profiles Z = 7.47, 11.21 and 
14.91 mm) all collapse onto each other and indicate a common plastic wave speed of about 
0.550 km/s at the 5% strain level. 

4.2. Comparison to experimental data 

Several Taylor Anvil tests conducted by Wilson et al. [5] at Eglin Air Force Base were 
simulated. These tests feature copper cylinders having a 7.62 mm (7.62 mm) dia, a Length to 
Diameter ratio (LiD) of 7.5, and various initial velocities. In order to compare the 
calculations with the Eglin AFB test data in terms of plastic wave propagation speeds, two 
criteria were used: (1) the radial bulge criterion [i.e. {R — R0)/R0, R being the peripheral 
radius] used previously at Eglin [see Ref. 5] and (2) the axial plastic strain criterion used in 
Section 3 (i.e. e*.) applied at the centerline of the cylinder. The plastic strain criterion should 
define a wave position out in front of the (R — R0)/R0 position if radial inertia effects are 
present. A value for (R - Ro)/R0 of 2.5% (i.e. R - R0 equals 3.75/1000 in. for a 7.62 mm rod) is 
used here reflecting the resolution of the experimental optics [5]. Figure 14 presents the 
plastic wave position H{t) shown as a function of time from 0 to 25 ^s, comparing calculations 
with experimental data. The calculations use the MTS flow stress model for a hardened 
copper (o-0 = 293 MPa). Note that at small times the calculated radial bulge curve accelerates 

Table 7. Sensitivity of the wave speed to numerical parameters 

Parameter a Atf.H 

Ax i 

Time step, Af -9.33 x t(T3 

Element size. Ar -3.06 x 10": 

Artificial viscosity O -9.88 x 10-1 
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Fig. 13. Taylor problem plastic wave profiles at various Lagrangian positions (Z) along the cylinder measured 
relative to the impact interface. Wave profiles are in terms of axial Lagrangian strain shown as a function of the 
characteristic variable Z/t. This calculation incorporates the Mie-Grunisen EOS and MTS flow stress model for 
annealed copper. Initial impact velocity is 100 m/s. Note the coalescence of wave profiles after steady wave 

propagation is achieved (i.e. Phase II wave propagation). 
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Fig. 14. Taylor problem plastic wave position curves using Lagrangian position coordinates shown as a function of 
time. These calculations incorporate the Mie-Grunisen EOS and the MTS flow stress model for hardened coppers 
and are compared to experimental data. Note that the position curves show an initial transient behavior [23] out to 

about \5fis. 
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differently when comoared to the calculated plastic strain curve, but the two assume the same 
asymptotic slope (i.e. same speed, zero acceleration) after about 14 /ts: the so-called Phase I to 
Phase II transition time discussed in Ref. [13]. 

Also shown in Fis. 14 are the experimental data points from the Eglin AFB tests JG-JO and 
JG-32 [5.13]. These two tests are. in principle, identical except for the initial velocity. 0.176 
and 0.200 km/s. respectively. Note that the higher velocity JG-32 data points should he above 
the JG-30 data: the fact that the reverse is true (higher initial velocity results in higher strain 
rates, and higher strain rates result in faster wave speeds, see Fig. 2) is probably a measure of 
the uncertainty in the experimental data sets. The asymptotic slope indicated by the JG-30 
data is 43% less than the calculated curves (0.311 km/s for the tests compared to 0.M7 km/s 
for the calculations), and a similar statement can be made for JG-32; the MTS results in 
Fia. 14 have the appearance of being too stiff. 

Table 8 compares mainlv wave speeds from the experiments and MTS continuum 
calculations for the four Ealin AFB tests JG-30, JG-32. JG-34, and JG-38 [5,13]. As 
mentioned above, tests JG-30 and JG-32 use the hardened copper and tests JG-34 and JG-38 
use annealed copper. The wave speed uw shown in the fifth column is predicted with the jump 
relationships using the procedure: (1) given the flow stress at the position of the 4.82% plastic 
strain wave (as computed by the continuum calculation), calculate the axial stress <rl using 
the energy jump given by Eqn (38) and (2) the wave speed uw is computed using Eqn (57). This 
procedure is identical to that described in Section 4.1 for the Table 6 results, and produces 
speeds that compare well with H inferred from the calculations; only 2-4% differences are 
observed, with the jump uw being always slightly higher. 

Again viewing Table 8. the experimentally measured values of H are consistently slower by 
as much as 50% when compared to either the jump or the continuum code speeds. In fact 
a quick sensitivity studv illustrates that this difference cannot be reconciled with a moderate 
modification to the constitutive modeling: as indicated by Eqn (34) the MTS wave speed is 
determined bv the three functions sth, ©0, and ar We will say that the constant-structure 
thermal-activation function sth and the saturation threshold stress *, are both physically 
based and well characterized. As a sensitivity study then, we will treat the dislocation 
generation rate function 0O as an empirical function that is not well characterized and say it 
can be modified. Reducing 0O by 50% and repeating the continuum calculations for the same 
four tests slow the plastic wave speed H by about 20% as shown in Table 8, cutting the 
experimental and calculation^ difference to about 30%. So. although 0O may be empirical in 
form and have experimental uncertainty in its parameters, it cannot be in error by the 
amount needed to bring the calculations into agreement with the tests. 

Now the experimental speeds can be further analysed by assuming they are correct and 
reversing the jump computation procedure outlined above to infer a flow stress at the 4.82% 
plastic strain wave. Inverting Eqn (57) for ax and Eqn (38) for <x, and using the experimental 

Table S. Laboratory frame plastic strain wave speeds for copper 

Cylinder test or Ä(km/s) r„-i-u. H(km/s> «»_ "S 

Calculation (km/s) Eqn (57) Wave 
(km/s) (MPa) 

JG-30,0.176 km/s 
MTS-hardened 
Modified MTS-h, 
JG-32,0.200 km/s 
MTS-hardened 
Modified MTS-h 
JG-38,0.227 km/s 
MTS-annealed 
Modified MTS-a 
JG-34.0.204 km/s 
MTS-annealed 
Modified MTS-a 

0.144 -0.167 0.311 — 
0.379 -0.167 0.547 0.563 

0.275 -0.167 0.442 452.0 

0.104 -0.191 0.295 — 
0.361 -0.191 0.552 0.572 

0.261 -0.191 0.452 0.455 

0.151 -0.224 0.375 — 
0.417 -0.224 0.641 0.653 

0.293 -0.224 0.516 0.522 

0.156 -0.201 0.357 — 
0.431 -0.201 0.633 0.645 

0.308 -0.201 0.508 0.506 

289 
375 
331 
285 
379 
332 
129 
240 
ISO. 
124 
236 
174 
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H as the wave speed give the flow stresses listed for the four tests in Table 8. Note that these 
flow stresses show no work-hardening for the initially hardened copper (<70 = 293 MPa) and 
only a slight amount of work-hardening for the initially annealed copper (aQ = 86 MPa). 
Actually the initially hardened copper result shows a slight amount of strain softening. 

5. SUMMARIZING REMARKS AND CONCLUSIONS 

In summary, the significant parts of this effort are as follows: 
(1) The definition of areal strain eK used by others in the analysis of Taylor Cylinder Impact 

events [5,6,12,13.23] was related to the plastic logarithmic strain g?s in Section 2.1. 
Logarithmic or natural strain is in common use in explicit continuum mechanics codes 
and is used in this work to track numerically determined plastic strain waves. The areal 
strain eA can also be shown to be identical to the definition of small Lagrangian strain 
£„ in the axial direction. 

(2) Conservation jump relationships for mass, momentum, and energy formulated for 
a steady propagating plastic wave were combined with the thermodynamic and mechan- 
ical constitutive behavior of a metal in Section 2.3, yielding a set of four equations (i.e. 
Eqns(17a), (17b), (38). and a flow stress model) containing the seven unknowns 
uw, uv eA, ev, o-j, a, ep. This manipulation of jump equations in conjunction with constitut- 
ive relations is analogous to deriving a P(p) Hugoniot for the shock wave problem [11]. 
Hugoniot curves [i.e. at(eA, £)] are presented for the Johnson-Cook and MTS flow stress 
models (mechanical behavior) and a Mie-Grunisen EOS (thermodynamic behavior) 
plotted as a function of areal strain and strain-rate. 

(3) Rate-dependent mechanical constitutive behavior in the forms of the Johnson-Cook and 
MTS flow stress models was presented and subsequently differentiated with respect to 
strain to obtain the classical plastic wave speed [7,8] for the uniaxial stress problem. 
Numerical evaluation of these mechanically specific wave speeds indicated a strong 
sensitivity in the Johnson-Cook model to strain (at small values) and a very weak 
dependence to strain-rate. Conversely, the MTS model showed a linear dependence on 
strain and moderate sensitivity to strain-rate. Continuum code results for the uniaxial 
stress (wire) problem compare well to the analytical solutions derived by von Karman 
and Duwez and Kolsky for wave speed and the maximum realized plastic strain. 

(4) Continuum code simulations of Taylor Cylinder events were performed for 0.100 km/s 
impacts and the results (in particular uw, uu oj were compared to estimates using the 
specific jump relationships: 

^.^0 + i0pQ+-(^<y-svkt 

°>—-- r-nf-—'- (60) 
r + 2(i + *A) 

,'<7, (1 + e.) — a0 
«• = J-* ~ (61) 

"i = - "W*A- (62) 

Evaluation of these relationships assumes that a flow stress model is given and that the 
areal strain and strain-rate are specified. This comparison (detailed in Table 6) was found 
to be in good agreement for all quantities compared except for the strain-rate. The lack of 
agreement for the strain-rate is possibly due to the action of artificial viscosity in the 
continuum code results. A further assumption is made in the use of Eqns (60)-(62) that 
the volumetric strain sv can be approximated using the uniaxial stress relationship given 
by Eqn (49); this was found to be a very good approximation when compared to EPIC 
calculations. 

(5) A sensitivity analysis was performed to verify that the continuum code simulations of the 
Taylor Test are well resolved in space and time and not heavily influenced by artificial 
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viscosity. The sensitivities showed that :he effect of these numerical quantities on wave speeds 
is less than 3% per 100% change in the space or time resolution or artificial viscosity. 

(6) Continuum code simulations of the hardened and annealed copper Taylor Cylinder Tests 
conducted at Egün AFB [5] were performed for impact velocities that ranged from 0.176 
to 0.228 km/s, and the results (again u.4.T ult trj were compared to estimates using the jump 
relationships Eqns (60)-(62) and with the experimental plastic wave speeds extracted 
from the Eglin AFB time-resolved data (see Table 8). As in item 4 above, the continuum 
and jump results compare very well but both indicate much faster wave propagation 
relative to the experimental wave speeds. It can be speculated that the experimental wave 
speeds were extracted from the film at a strain level larger than the estimated resolution 
threshold of the data, or that the flow stress models used in the code calculations do not 
accurately capture the plastic wave propagation speed. Assuming that the experimental 
wave speeds are physically correct, the jump relationships can be inverted and used to 
estimate the flow stress implied by the Table 8 experimental wave speeds. Inverting the 
jump relationships for this purpose gives 

ffi-U+e/JOo + Po^J {63) 

3 •     r-    3-      r    3   , <*= -^eA<TQr--iQp0l-r-£yk1-a1 
'3    3   eAr 
- + -:: 
2    4(1+«*). 

(64) 

U=in + i^l-JL±—an \ (65) 
p02\(l + eA) 

that when applied to the experimental speeds gives a flow stress magnitude for the 
hardened copper that is close to the initial yield (showing negligible hardening at the 
4.82% strain level) and values for the annealed copper that indicate very modest 
hardening (see Table 8). 

(7) Note that Eqns (63)-(65) are in the appropriate form for converting time resolved 
experimental wave speeds, i.e. H(eA) or H{eA, ep), into mechanical constitutive behavior, 
i.e. a{eA, z\) or o{eK, ep, ix), respectively, under the assumption that elastic strains are small. 
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ABSTRACT 
The Taylor test can be conveniently divided into three fairly 

distinct stages. The first stage is initial transient behavior 
after impact characterized by nonlinear plastic wave 
propagation. The second stage is quasi-steady propagation of 
ehe plastic wave front. The duration of this stage is a'function 
of the specimen caliber and material. The'final stase is 
terminal transient behavior, during which most of" the 
deceleration of the undeformed section takes place. 

After the initial transient is complete, which varies with the 
strain at which the plastic wave front propagates, the motion 
is very well behaved, in the sense that a "one-dimensional 
analysis can be effectively applied. Tnis paper contains such 
an analysis. Tne results are supported by an examole from 
which the state of stress for an OFHC copper specimen is 
deduced. 

INTRODUCTION 
Tne motion of Taylor impact specimens has been discussed 

in some detail by the authors [1-3]. In this series of papers, 
estimates for plastic wave speed, stress, and other key 
material properties were given. These estimates were 
developed using two different viewpoints [1.2] and were 
verified with a continuum calculation [3]. Tne purpose of this 
pacer is to introduce a new estimate for the maximum strain- 
rate after the initial transient. This estimate, alons with the 
equation for stress at constant strain [1-3] for the plastic 
material, allows us to deduce the state of stress at strain-rates 
exceeding 104/sec. A stress/strain-rate diagram at 10% 
compressive strain for OFHC copper is included as an 
example at the end of the paper. 

Tne success of the analysis presented in this paper is based 
on the observation that the panicle velocity u of the material 
at^ the plastic wave front is proportional to the current speed 
of the undeformed section v after the initial transient is over. 
This means that 

u=ßv (!) 

where ß is the constant of proportionality. This hypothesis 
was first introduced by the authors in [4] without any 
supporting evidence. Strong supporting evidence for this 
assumption comes from continuum mechanics code 
calculations. Figure 1 shows such a calculation for an OFHC 
copper cylinder, impacting a hardened 43^0 steel anvil. The 
impact velocity is 176 m/s and after the initial transient the 
relationship between u and v is perfectly linear throughout 
the period of quasi-steady deformation and the terminal 
transient. Notice that the slope of the line in Figure I 
corresponds to a value of ß approximately 0.85. In [2], this 
value of corresponds to a strain at the plastic wave front of 
about 7% in compression. 

The notation used in this paper is the same as that used in all 
of our previous papers, e.g. [4]. For convenience. Figure 2 
shows deformed and undeformed specimens. The position of 
the plastic wave front relative to the fixed anvil face is h. Tne 
current undeformed section length is L Tne displacement of 
the back end of the specimen is s. with s=v. The 
engineering strain across the plastic wave front is 
e = At)/A-I, where A0 is the original cross-sectional area of 
the specimen and A is the deformed cross-sectional area. 

Conservation of mass (assuming constant density p across 
the plastic wave front) is given by 

":= v-u = (\-ß)v . (2) 

The equations of motion  for the undeformed section ' 
introduced in [1-2] are: 

P?V=CXo (3) 
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FIGURE 1. The relationship between particle velocity at 
the plastic wave front, a, and undeformed secton velocity, 
v. Notice that the relationship is completely linear, after a 
period of initial transient behavior. 

pi{v-u)*- o-0. W 

In these equations a0 is the quasi-static yield stress in 

compression for the specimen material and c is the dynamic 
compressive yield stress. By using equations (1) and {2). we 
can write equation (4) in the form ' * 

0" = (I-^ ob-- i-ß? 
•pv2 

(5) 

which expresses the dynamic yield stress in terms of the 
quasi-static yield stress and the current velocity, a fact which 
will be useful later. 

EVALUATION   OF   KEY  PARAMETERS 
The philosophy behind following a plastic wave of 

constant strain e has been fairly well documented by the 
authors [1-3]. In [2], it was shown that post-test 
measurements of recovered Taylor cylinders could be used to 
determine the key parameters in the test. Two fundamental 
relationships were devised from kinematic considerations and 
a detailed examination of the particle velocity during the 
initial transient [5]. Without further discussion, these 
relations are: 

and 

hf-h=-([ i-/n pf-s) (6) 

FIGURE 2.  A taylor impact specimen of original length L 
undergoing plastic deformation. 

h 

vor 

20-1 
(-) 

where >i is the position of the plastic wave front at the end of 
the initial transient (see Figure 2). Trie distance J=v0f is 
the displacement of the undeformed section at the end of the 
initial transient. The time I will vary for differing strains, as 

will the distance h . Figure 3. included here with the 
permission of the authors [6], shows reduced EPIC code 
calculations from a Taylor cylinder test on OFHC copper. 

For low strains, h is large while t is small. For larg= 

strains, h is small while t is large. The distances hf and sf 

can be measured from a recovered specimen for the strain 
prescribed. The impact velocity v0 is known from test 
instrumentation. * 

For a prescribed, compressive strain e. equations (6) and (") 
are a pair of linear algebraic equations for the determination 

of ß and h .   We assume that the transition time t is known. 

Notice that when h has been found. 7 can be determined from 

lfr?+S = L (3) 
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FIGURE 3. EPIC code calculation showing normalized 
radial displacement {R-RQ)IRQ versus time (included with 
the permission of the authors [6]). The normalized 
displacements correspond to 0.002,'0.010, 0.020, 0.050, 
and 0.100. The highest curve corresponds to the 
normalized displacement of 0.002 (0.4% compressive 
strain) and the largest curve corresponds to the 
normalized displacement of 0.100 (17.4% compressive 
strain). 

which stems from Figure 2. Also, when ß has been found, the 
plastic wave speed can be determined by 

<.-[>-?,. 
which is the result of combining 

h-rt-r V=Q 

(9) 

(10) 

with equation (2). Reference [2] contains a thorough 
discussion of these equations and the motivation behind 
them. A discussion of the post-test measurement technique is 
also included in this reference. 

BEHAVIOR   AFTER   THE   INITIAL  TRANSIENT 
Equation (3) describes the motion of the undeformed section 

f. during the period of quasi-steady deformation following the 
initial transient and the terminal transient during which most 
of the deceleration takes place. Equation (31 can be integrated 
directly when equation (2) is used to change the variables. 

Integration of this equation leads to 

(11) 

(12) 

The constant of integration C, can be evaluated wich the 
conditions at the end of the event.  In this case. 

2eC0     
c        { U (13) 

where t.f is the undeformed section length corresponding to 

the strain e with which the plastic wave is associated and vc 

is the critical velocity of the undeformed section below which 
deformation at that strain can no longer be sustained. When 
equations (12) and (13) are combined, we get 

f.-t. fexp Pjl-ß), 
2e(TQ   

[ (14) 

which is the velocity dependent undeformed section length. 
Notice that the critical velocity v. can be found from 

'-</«4*ü>*-*) (15) 

because I can be determined from equation (8). 
Equations (3) and (14) are also the source for information 

about the displacement of the undeformed* section, s. 
Changing the variables and separating them leads to 

pif      p(\-ß), ,    . 
as = expi -( v- - v; 

<70        I   2e<70   
{ ' 

Integration of this equation gives 

vdv (16) 

J+C^4M(vz.v:) 
\-ß 2ec0 

(17) 

The constant of integration can be evaluated from the 
conditions that exist at the beginning of quasi-steady, piastic 
wave propagation [4.5], 

efr fp(l-fl),  ,       ,.1    . 

and now equation (17) becomes 

r_ elf 
S~S     l-ß 

\p(l-ß)(   ■.      ,0 fp(l-ff),,,;    v2)\ 

(19) 
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Notics that at the end of the event when v = vc. 

sf-s=- ■-■^•H (20) 

which relates the total displacement during the quasi-steady 
and terminal transient stages to the change in velocity. 

One useful estimate remains to be found. The terminal time 
can be obtained from equations (3) and (14) by separating the 
time and velocity. 

Integrating this equation between the transition time t and 
the current time t allows us to find 

■4 

This equation estimates the current time in terms of the 
current velocity, v. 

ESTIMATION   OF   STRAIN-HATES 
The strain-rate is the most difficult physical quantity to 

estimate in the test. However, for a complete descrimion of 
the material it is essential. Taylor [7] and Whiffin [8] 
discussed ^the difficulties associated with "race of strain 
estimation" in their seminal papers. Tneir estimates are for 
average strain-rates with which the average yield stress can be 
associated. There is no strain connected with chese 
quantities. 

Taylor's [7] strain-rate estimate is based on uniform 
deceleration of the undeformed section. If one assumes that 
dv/ct = const., then it follows that 

1    ,    dv      ,   , 

dt i    0 (23) 

At the end of the event, this equation can be used to solve for 
dv/dt. 

The post-test geometry of a recovered Taylor cylind - " 
shown in Figure 4.   The average engineering strain iiTthe 
deformed region of the cylinder is given by 

[Lf-'.f)-[L-f.f) 
L-! f 

L-Lf 
(26) 

Using the terminal time estimate given in equation (25). an 
estimate for the average strain-rate can be found. 

e.AV=- 
(Lf-> 

L-t, 
T"o   _     Tvo 
L-Lf '    L-f. I 

(27) 

This is Taylor's estimate for the average strain-rate in a 
Taylor test. Generally, it underestimates the highest rate 
achieved in the test. 

An estimate similar to that of Taylor can be constructed for 
the present theory. Beginning with equation (23). we modify 
the result to account for initial transient behavior and find the 
equivalent of equation (24). 

dv_   ¥VQ~V;\ 
dt"      ,._* 

(28) 

Separating the variables in this equation and integrating leads 
to ehe time estimate 

under these conditions, equation (26) becomes 

(29) 

f.-Lf 

l-'f f-> 
(30) 

Combining equations (29) and (30). we can estimate the 
average strain-rate for the particular strain in the event. 

t-tf   2(sf-s) 
(3D 

dv _ —T vl 

dt     L-Lf 

Separating the  variables  in this equation and integrating 
provides us with an estimate for the terminal time. tf. 

'/ 
L-Lf 
v0/2 

The quantities necessary to make this calculation are all 
(24) contained in the previous sections.   However, the results, like' 

equation (27) are based on uniform deceleration and are 
typically low. 

To improve the strain-rate estimate, we can follow Taylor's 
reasoning for the current configuration of the specimen., 
Assuming that the strain behind the plastic wave front is 
approximately uniform, we can express the average strain- 

(25) rate as a function of the current position of the rod in the 
following form. 

at which v = 0. -s (32) 
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FIGURE 4. Deformed and undeformed taylor cylinders. 
The nomenclature used to describe the deformed cylinder 
is shown. 

Axial Ron AJQat ÄÖO. An« Hoc 
Position Diameter PoattioQ Diameter Position Diameter 
finches) (ineäeal f lochest fineses 1 finchest 'bean) 
0.1)00 CJOO o.aoo 0.308 ;_:73 X3S0 
0.040 OJOO 0.323 0.310 1.300 0.334 
0.100 0.300 0.830 0.313 1.323 azst 
0.130 0.300 0.873 0.318 1.330 0.3« 
0.3M 0.300 OJOO 0.321 1.373 0.399 
0.350 OJOO 0.323 0.32» 1.400 0.«* 
0.300 0.300 OJSO Q.227 U2S 3.403 
0.320 0.3X1 0.973 0.333 1.430 0.409 
0.400 0.300 LOOO Q.337 1.173 0.413 
0.430 OJOO L023 0.342 1.300 0.410 
0.3O0 OJOO UMO 0.3« LS25 0.409 
OJSO MOO LOTS 0.330 L330 0.409 
0.600 1301 1.100 0.213 1J73 0.417 
0.850 0.302 L123 0.33« 1.SOO 0.440 
0.673 OJ03 1.130 BJ81 1.623 0.478 
0.700 0.304 UTS 0JS3 1.630 0.311 
0.735 13« 1J0O ojao 1.673 0.333 
0.730 OJOC 1.2» 0.373 1.6ST 0.341 
0.7TS 0.30« 1.230 0.37« 

An estimate for the maximum rate achieved in the test after 
the initial transient can now be easily found. 

—s 

L-l 
(33) 

It is tempting to use equations (14). (19). and (22) 
to estimate the strain-rate as a function of velocity and then 
draw stress/strain-rate diagrams [8] However, because 
equation (32) utilizes uniform strain behind the plastic wave 
front, it does not predict the rates very well for large times 
after the initial transient. The assumption is reasonable when 
the transition from initial transient behavior to quasi-steady 
deformation occurs (equation (33)), because the deformation 
zone is thin. 

O0 = -300 MPa. we find a = -i04 MPa. From equation 
(33) we find that this stress corresponds to a strain-rate of 
-2.24x10Js"'. These estimates are all very reasonable and 
consistent with our earlier efforts [2. 3]. 

The one-dimensional analysis contained in this paper has 
been successfully applied to many Taylor specimens. 
Although only one example has been included, it is clear that 
data at other strains can be obtained using the same analysis. 
By varying the impact speed, other strain-rates can be 
achieved and.the stress/strain-rate diagram can be constructed 
at constant strain. Some of these diagrams will be reported 
later. 

It is possible to develop the constitutive behavior for the 
specimen material parametricaily in terms or" the velocity v 
[9]. Future efforts will concentrate on improving the estimate 
for velocity dependent strain-rate. 

Conclusion 
We conclude this paper with an example intended to clarify 

the very abbreviated presentation in the previous sections. 
To accomplish this, data from a Taylor test on OFHC copper 
[6] is presented in Table 1. A 30 caliber rod impacts a 
hardened 43^0 steel anvil at 176 m/s. Tne axial position is 
measured from the undeformed (back) end of the specimen and 
the associated diameter is given at intervals of 0.050". From 
these measurements, we can approximate the undeformed 
section lengths for given strains. For example, if e = -0.10. 
which corresponds to a diameter of 0.316", then we can use 
linear interpolation to find >., = 0.867" = 22.0 mm. For this 
specimen L = 57.15 mm and L, - 42.91 mm (See Figure 4). 
This means that /i, = 20.89 mm and s,= 14.24 mm. For this 

impact. f=14 us is a reasonable choice, and from this 
estimate s = v0i = 2.46 mm. 

Using the information in the previous paragraph, we can 
solve equations (6) and (7) for ß and h .   The results are: 
ß = 0.768   and    h - 5.40 mm.       It   now   follows   that 

7 = L-/7-J = 49.29 mm. 
We are now in a position to estimate the state of stress at 

10%   compressive   strain.      Using   equation   (5)   with 
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Introduction 

The Taylor impact test is a useful method for determining the flow stress of ductile material 
at high strain-rates [1,2]. Because the strain-rates achieved in the test can be roughly 104 or 
higher, interest in the Taylor test is growing. Early analyses of the test produced a single estimate 
for dynamic yield stress at an unknown strain and strain-rate. These estimates indicated the 
substantial increase in yield stress that can occur at elevated strain-rates, but were not very useful 
for developing the constitutive properties of the materials. Thus, the emphasis was directed toward 
using the test to evaluate the material parameters in constitutive equations with hydrocodes and- 
to assess the performance of the codes [3]. However, these results are usually correlated to the 
particular form of constitutive equation employed. Hence, they are limited by the mathematical 
structure of this equation and any assumptions used in its development. 

One-dimensional models still retain some attractive features. In spite of the fact that they 
cannot compete with code calculations in terms of accuracy and the number of physical parameters 
that can be included in a mathematical model, they very often offer a simplicity that lends itself 
to interpretation that exceeds that provided by the code: It is for this reason that an effort to 
develop and extend the one-dimensional analysis of the Taylor test continues. In this paper, using 
the equations governing the terminal transient for the test, implicit stress/strain-rate relations are 
given at constant strain. The key free parameters in the mathematical model are determined by 
the theory given in [4]. The results are applied to OFHC copper rods. 

The theory presented in [4] focuses on the determination of the key parameters which characterize 
the deformation of the specimen, during quasi-steady motion. However, the specimen undergoes 
three distinct stages of deformation: (1) an initial transient stage that is dominated by the shock 
at impact. (2) a period of quasi- steady deformation in which all of the parameters in the problem 

"remain virtually constantT and (3) a terminal transient stage in which deceleration of the undeformed 
section occurs. The initial transient has been fairly well characterized in [5]. The period of quasi- 
steady deformation has been extensively discussed in [6.7]. However, the terminal transient behavior 

<Oi the specimen has not been utilized. In this paper, we demonstrate that this stage can be very 
successfully applied to the development of constitutive properties for the specimen material. 

G-l 



Theory 

in r?we;ail?f tht deriVati0n °f th? eqUa:i0ÜS °f m0ti°a f0r the undef0^ed section are contained m [4J. Without further discussion, these equations are: 

e£ = v — u 

A 4- £ + v = 0 
and 

"(l + e)U + 

(1) 

(2) 

(3) v 

In these equations p is the density of the specimen, v is the current velocity of the unde-ormed 
section, u is the particle velocity of the plastic material at the plastic wave front, e is the en-neerin* 
strain at the plastic wave front, ß is a parameter relating the particle velocity to the uncVormed 
section velocity, <r0 is the compressive yield stress of the specimen material, and c is the comoressive 
dynamic yield stress of the specimen material. Dots over variables denote differentiation with reject 
to time t. * 

; For terminal transient behavior, we assume that the dynamic yield-stress given in eauation U) 
is valid. We further assume that a reasonable approximation to the plastic wave motion durin* this 
stage is provided by h * 0. This doesn't mean that the plastic material has come to rest, but=onlv 
tnat the wave front position is stationary in a frame fixed to the rigid boundarv surface. With this 
assumption equation (3) becomes 

U~v (5) 
and equation (1) can now be rewritten in the form 

This equation has separable variables and is easily integrated to give 

"-''«»{-£■*} 

(6) 

(7) 

which is a relation from which the undeformed section length during the terminal transient can 
be estimated   I, is the final undeformed section length which can be determined bv the theorv 
presented m [4]. The stress <r0 is compressive and, therefore, negative. 

With equation (7), an estimate for the strain-rate can be found. 

(3) 

Now, the constant strain can be estimated with the engineering analysis given in [4]. The parametric 
representation of the constitutive equation at constant strain for the specimen material is given bv 
equations (4) and (8). 
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Conclusions 

Equations (4) and (S) can be used to plot the total stress as a function of strain-rate at constant 
strain. A large base of Taylor test data can be accessed in [8] provided that an estimate for the 
plastic wave front position at the end of the initial transient can be found. To accomplish this, 
we observe that the relationship between the kinetic energy of the specimen at impact and the 
volume of the material in the mushroom is approximately linear. The details of this discussion 
are contained in [9]. The results of a typical test on OFHC Copper are shown in Figure 2. The 
strain-rate is somewhat underpredicted because the estimate in equation (8) is crude, especially for 
longer rods. The effect of reducing the rod length, which decreases I, is shown in Figure 3. For 
very short rods, the agreement with other observations is substantial. The situation is very similar 
to that experienced with strain gages in the neighborhood of non-uniform straining. The smaller 
the gage length, the more accurate the estimate of local strain. The undeformed section length 
in equation (8) effectively plays the role of a gage length for the specimen. Future efforts will be 
concentrated on improving the estimate for strain-rate at the plastic wave front. 
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ABSTRACT 

This paper reports results from the study of dynamic plastic deformation produced in OFE copper 
specimens by symmetric rod impact (rod-on-rod) tests. The study was performed by post-test sectioning 
of the specimens and examination of their microstructure using relatively low magnification optical 
microscopy. Particular emphasis was placed on porosity as a microstructural feature that relates directly 
to damage theories of constitutive behavior. 

INTRODUCTION 

Following World War II, Taylor (1947) and Whiffin (1947) published the technique of impacting a cylindrical 
specimen against a massive anvil and the concomitant elementary analysis that estimates the specimen 
flow stress from its post-test deformation. Since then, this test has remained a means of primary importance 
in determining dynamic mechanical properties of ductile materials. As high-speed large capacity 
computers came into general use, highly sophisticated numerical analyses were applied to this tes 
Uncertainties concerning friction, compliance, and impedance, at the specimen-anvil interlace eventually 
led Erlich ef a/., (1981) to modify this test by impacting a pair of identical rods, one against the other. I his 
form of the test is generally referred to as a symmetric rod impact test or a rod-on-rod (ROR) test, whereas 
the original rod against anvil experiment is often called a Taylor test. This paper reports results from the 
study of deformation damage produced in ROR impact testing. 

The study was performed by post-test sectioning of the specimens and examination of their microstructures 
using relatively low magnification optical microscopy. Particular emphasis was placed on porosity, or ,he 

lack thereof. 

Metallographic analysis of imoact specimens subject to high strain rates provides insight into continuum 
processes, such as plasticity'and damage. The objective of this paper is to describe and compare the 
observed microstructure of Oxygen Free Electronic (OFE) Copper ROR specimens tested at different 

impact velocities. 

EXPERIMENTAL 

The material used in these ROR impact tests was OFE copper. However, two different initial grain sizes 
were used, 75 and 40 am. Specimens were cut to length from cylindrical rod stock of an initial diameter of 
7 94 mm and then turned to a final diameter of 7.62 mm to match the bore of the mann barrel. Material to 
be tested was annealed at 600°C for one hour in a vacuum and the final average gram size of the:specimens 
tested was 75 and 40 urn, as shown in Fig. 1. The large grain material was impacted at 392 m/s and 
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Fig. 1.     Initial microstructure of OFE copper material, a) 75 micron 
average grain size, b) 40 micron average grain size. 

300 m/s. The fine grain material was impacted at 233 m/s. Complete details of the experimental apparatus, 
data acquisition techniques, and interpretation are presented elsewhere (House era/., 1992). 

Recovered ROR specimens were sectioned along the axis of the rod. Sectioning of the rods was 
accomplished using a diamond abrasive cutting wheel. After mounting in cold mount epoxy, the specimens 
were ground and polished using standard methods for preparing copper materials. Final polishing was 
completed using 0.05 urn alumina abrasive. Dichromate etch was applied to reveal grain structure. The 
specimens were then viewed under an optical microscope at 50X magnification for microstructural analysis. 

RESULTS AND DISCUSSION 

Figure 2 is a montage created from photomicrographs originally taken at 50X magnification. The test 
specimens had been impacted together at 392 m/s. The montage details a midplane of the impactor and 
receptor rods, from the impact interface back to near the undeformed regions of each. By enlarging this 
area of interest under the microscope, microstructural features in the plastically deformed region are clearly 
observed. 

As expected, grains near the impact interface and near the specimen axis had collapsed under the large 
compressive load. The post-impact structure has flat, pancake-shaped grains parallel to the impact face 
as shown in location a of Fig. 2. Similar deformation is observed to different degrees throughout the 
mushroomed region. However, it is most severe nearest the impact face and nearest the axis. 

Of particular interest, however, are voids observed along the axis near the impact face in both the impactor 
and receptor, location b. Typically, these cavities are non-symmetric. In order to assess whether the 
observed porosity resulted from metallographic polishing, the mating surfaces to those shown in Fig. 2 were 
polished using a different technique. The voids observed in these mating surfaces matched those in the 
figure. Thus, we believe the observed damage was produced during the impact event. 

The void porosity, or damage, results from strong tensile release waves that propagate from the lateral free 
surface of the rods after the initial compressive wave. These tensile release waves focus on the rod axis 
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Fig. 2.      Deformed microstructure c: 75 urn copper impacted at 392 m/s. 

to create a very high, radial tensile stress. This stress causes microvoids to nucleate and grow. Close 
inspection reveals that the nucleation sites are alcrg grain boundaries with void growth, or link-up, occurring 
along grain boundaries as well. 

Christy etal., (1986) reported on microstructural features of similar OFE copper shock loaded in flyer plate 
experiments. They reported that in large grain cccper, 250 Jim and 90 urn material, void nucleation and 
growth occurred at grain boundaries. The average grain size of the material in Fig. 1a is 75 ±12 urn as 
determined by the linear intercept method. 

Figure 3 shows results from a test conducted at 3C0 m/s with the 75 urn copper. Comparison between Figs. 
2 and 3 shows similar grain deformation has occurred at the impact interface nearest the rod axis. Void 
nucleation has occurred and appears to be associated with the grain boundaries of the material. In general, 
Fig. 3 reveals a smaller void size which is consistent with a lower impact velocity. The amplitude of the initial 
compressive and tensile release waves are impact velocity dependent. 

Figure 4 shows results from a test conducted at 233 m/s with the 40 am copper. Comparison with the 
75 |im material shows similar types of grain deformation. However, the void porosity on the rod axis nearest 
the interface has now increased, and the geometric shape of the voids is spherical. The increased void 
porosity, for a lower impact velocity experiment, indicates a relationship between the stress state in the 
material and the grain size. 

Christy et al., also experimented with finer grain. 20 urn, copper and with cold worked copper. These 
materials revealed a change in phenomenology associated with void nucleation and growth. In these 
materials, Christy etal., observed that the nucleat:cn sites for voids were occurring as often in the matrix 
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Rg. 3.     Deformed microstr_:rjre of 75 urn copper impacted at 300 m/s. 

as they did at the grain boundary.  Propagation of the voids in fine grain and cold worked copper was 
occurring by transgranular growth. These enervations are consistent with the results seen in Fig. 4. 

Grain size studies show that a smail grain ma:: 
grain material. This phenomena is related :; 
strain compatibility requirements between ne 
to create dislocation pile-ups and can be sinks 
of grain boundary, a fine grain material tencs 
homogeneous distribution of dislocations. 

Copper with a large grain size has a lower vc . 
and to have, initially, a more heterogeneous 
adjacent to grain boundaries have a high c: 
dislocation density remains relatively low. Cc 
waves, the large grain material hardens aic-; 
cause void nucleation to occur. Once DL: ■. 
boundaries where the energy requirement ■"; 

-ial will harden faster at low levels of strain than does a larger 
;r:e grain boundary surface area per unit volume and to the 

cnboring grains. Under an applied load, grain boundaries act 
;or dislocation annihilation. Because of a high volume fraction 
:o harden rapidly at low strain levels and to have a relatively 

.me fraction of grain boundary, it tends to harden more slowly 
cistribution of dislocations. In larger grain material, regions 
vocation density, whereas in the inner matrix material the 
-sequently, under the stress state created by tensile release 
: the grain boundaries where eventually the stress state will 
sated, voids in the material will propagate along the grain 
' crack growth will be lowest. 

Under the same stress state, fine grain ma:;-=ls will uniformly harden both at the grain boundary and in 
the matrix. This condition makes the prebsr ty of void nucleation at the grain boundary versus the matrix 
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One significant difference arises in the quantitative interpretation of porosity between high-speed ROR tests 
and pseudo-static tension tests. In the latter, the hydrostatic stress is somewhat uniform over any cross- 
section of the specimen, even after severe recking. Consequently, the area fraction of porosity on any 
cross-section can be easily calculated and ?rcm it the volume fraction (that appears in most theories) can 
be readily found. By contrast, the stress state :n an ROR specimen is much more variable. There are axial 
and time variations as in the tension specimen, but, unlike the tension specimen, there are large radial 
variations in stress. In fact, except near transverse free surfaces, the only region of the specimen in which 
the hydrostatic stress can become tensile is :,ie longitudinal axis. Radial waves from the lateral surface 
propagate tensile (release) stresses towards the specimen axis. As they converge on the axis, they amplify 
and produce extremely high hydrostatic tensions in this region even though the axial stress component 
remains compressive. This description is consistent with the observations of porosity near the specimen 
axis and complete absence thereof near the lateral surface (Worswick et ai, 1991). This leads to the 
conclusion that there is a radial variation in fractional porosity from center to surface, which raises the 
question of what total area should be used to calculate an area fraction. 

CONCLUSIONS 

Microstructural features such as grain deformation and porosity have been examined in specimens 
recovered from ROR impact tests. These experiments revealed that grain size played a major role in 
determining the hardening and void growth characteristics of OFE copper. Experiments with 75 jim material 
at 392 m/s and 300 m/s showed a smaller void size at the lower velocity. An experiment conducted with 
40 urn material at 233 m/s showed a striking increase in void porosity and a general change in void geometry. 
This demonstrates the influence of the grain boundary causing more rapid hardening of the fine grain 
material than in the larger grain material. Tne ROR impact test has proven to be a useful experiment for 
studying high strain-rate deformation when combined with an analysis of internal material damage. 
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Summary—In this paper, a new pressure law is proposed to replace the modified Bernoulli equation 
of Täte in 1967 and 1969. It is achieved by decomposing the equation of motion, which was proposed 
by Jones et al. in 1987. into two parts and incorporating the kinematic equation by Wilson et at. in 
1989. The new pressure law takes the effect of mushroom strain into account. From two different 
considerations, the pressure law is applied to the one-dimensional penetration modeling. First, by 
assuming that the rod/target interface pressure is approximately constant during the quasi-steady 
state, the governing equations can be analytically integrated to give a closed form solution for the 
penetration depth. The prediction is reasonably good in the low velocity regime. Secondly, a velocity- 
dependent interface pressure is added. A so-called shape factor, which was first introduced without 
physical interpretation by Alekseevskii in 1966. is substantiated. With this factor, the governing 
equations can be numerically integrated to give very accurate predictions for the impact velocity 
range from 1 km.s to 4 km/s. 

INTRODUCTION 

In the model developed by Alekseevskii [1] and Täte [2], the behavior of the rod is assumed 
to have two consecutive deformation zones. The first zone is a wafer thin plastic region, which 
is instantaneously eroded at the tip (or rod/target interface) of the rod. The second zone is the 
current uneroded (rigid) portion of the rod. In the first zone, the rod material is assumed to 
behave hydrodynamically, and in the second zone the rod is rigid over its uneroded length. 
The transition between these two zones is assumed to occur somewhere around the 
maximum stress (ultimate dynamic yield strength) that the rod can sustain as a rigid body. 
Beyond this dynamic yield strength, the material then behaves more like an incompressible 
and inviscid fluid in steady state. In order to simulate this transition phenomenon, for the first 
zone, they introduced the modified Bernoulli equation, which includes both dynamic 
strengths of the rod and target. This was used to estimate the rod/target interface pressure 
and to relate the current penetration velocity to the current velocity of the uneroded rod. As 
to the second zone, they applied Newton's second law to estimate a decelerated motion for 
the undeformed section. However, a factor that is controversial, but vital to the modified 
Bernoulli equation, is how to determine the strengths for the rod and target materials. These 
strength values are frequently obtained by matching the theoretical prediction of penetration 
depth with experimental data. A variety of attempts to estimate the target strength analyti- 
cally thus became the focus of many efforts in verifying or revising the theory of Täte and 
Alekseevskii. Täte [3, 4] developed a flow field model, from which the modified Bernoulli 
equation was derived and the strength factors were correlated to material constants. 
Assuming elastic-plastic behavior of the rod and target material, the size of plastic region in 
the rod was estimated. It was suggested by Täte that, a treatment of the unsteady motion 
could be accommodated by the addition of a Archimedean buoyance terms, which are 
present in any accelerated frame of reference. From the viewpoint of force balance, 
Rosenberg et al. [5] introduced the effective cross-sectional areas of the rigid rod and its 
mushroom front end to the modified Bernoulli equation. Based on this modification, and 
estimating the target resistance from the expansion of a cylindrical cavity in an infinite 
medium, they claimed good agreement between the model and experimental data. On the 
other hand. Wright [6.7] and Wright and Frank [8] questioned the validity of the 
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assumption of the steady state and the estimate of the interface pressure by the modified 
Bernoulli equation. Lately. Anderson and Walker [9] have made a further examination of 
Tale's model with the aid of numerical simulation. They indicated that because a finite region 
of the projectile deceleration is not accounted for, Tate's model predicts the rear of the 
projectile decelerates too late and too rapidly at the end of penetration. On the basis of 
discrepancies in the prediction between Tate's model and numerical simulation. Walker and 
Anderson [10] proposed a nonsteady state penetration model. Anderson« al. [11, 12] also 
reported that target resistance varies considerably during penetration and that the resistance 
value used in Tate's model should be considered as an average value to give the correct 
penetration depth. Recently, Grace [13] proposed a new one-dimensional theory of non- 
steady penetration of long rods into semi-infinite targets. In his model, the target is modeled 
as a finite mass that resides within the semi-infinite target and undergoes erosion and 
deceleration during the penetration process. Based on Newton's law, deriving the equations 
of motion for the target and the penetrator leads to a new u-v relationship that has replaced 
the modified Bernoulli equation. 

Evidently, there are some deficiencies in the theory of Täte and Alekseevskii in spite of the 
fact that it has been broadly thought of as a standard reference for one-dimensional long-rod 
penetration over the past decades. Indicating the fact that this model does not consider mass 
transfer into the plastic zone and a non-zero mushroom strain at the penetrator tip, Jones 
et al. [14] used the impulse-momentum equation to modify Tate's equation of motion for 
the undeformed section: 

lv + i(v-u)=--^— (1) 
p(l+e) 

where / is current length of the undeformed penetrator, of which I lie current velocity is v, and 
u is the penetration velocity of the penetrator tip. The parameter p represents the rod density 
and e is th*- mushroom strain, which is assumed constant throughout the quasi-steady state. 
The term r„ is the penetrator/target interface pressure, estimated by the modified Bernoulli 
equation. In this equation, the relative velocity term at the left hand side provides the 
contribution to momentum due to mass transfer into the plastic zone and the strain factor 
e reflects uishrooming effect at the tip of the penetrator. Compared with Eqn(l), Tate's 
model has. ned the plastic region is instantaneously consumed, which renders no change 
in momentum and a 0% compressive strain. Although Eqn (1) can characterize the 
penetration process in more detail, the pressure term based on the modified Bernoulli 
equation is ad-hoc. It is apparent that the pressure used by Täte, which in effect causes a 0% 
compressive strain to the penetrator tip, must be too high for a penetratu -vith a non-zero 
mushroom strain. Th refore, Cinnamon et al. [15] tried to reduce the net force by 
introducing a factor to account for the variation of the pressure across the mushroom face. 
1 ; factor is further correlated to the target strength. With this factor n added, Eqn (1) 
b. omes 

lv + i(v-u)=- PB . (2) 
p(\ +n)(l+e) 

Accompanied with an initial transient analysis and a linear relationship between crater 
volume and kinetic energy, reasonable predictions can be obtained for impact velocities from 
1 km/s to 3 km/s. However, an attempt to integrate the equations analytically and piece 
together the initial transient and quasi-steady state motions does not succeed due to the 
presence of a singularity. Consequently, Cinnamon [16] made a further analysis in which the 
average pressure at quasi-steady state is assumed constant over the range of impact velocities 
for particular shot combinations. The average pressure is again correlated to the target 
strength. A similar attempt to integrate these equations analytically by replacing the 
modified Bernoulli pressure PB in Eqn (1) with the average pressure also cannot be 
accomplished due to the presence of a singularity. The reason for this may be the answer for 
the unsuccessful implementation of modified pressure laws in the model. This suggests that 
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a reconstruction of the u-v relationship may be necessary in this model, and that a more 
accurate pressure law may depend on more than densities and strengths. 

In this paper, the model proposed by Jones et al. [ 14] is re-examined. Based on the work of 
Wang and Jones [17], the original equation or motion will be decomposed into two parts to 
account for the motions of the mushroom region and the undeformed portion of the 
penetrator separately. As a result of incorporating these two equations with the kinematic 
equation derived by Wilson et «/. [ 18], a new pressure law is proposed to replace the modified 
Bernoulli equation. This new estimate for pressure, taking the effect of mushroom strain in 
the penetrator tip into account, leads to a new interpretation of the interaction between the 
pressure and the penetrator during penetration. 

Two different cases are considered to implement the pressure law in the model and 
reasonable agreement with experimental data is achieved with each. In the first case, the 
pressure is assumed velocity independent (constant) and a new u-v relationship is construc- 
ted. Direct integration of this system leads to a closed form solution for the penetration depth. 
The constant pressures are obtained by matching the penetration depths and then further 
correlated to the target strengths. In the second case, a velocity-dependent pressure with 
a shape factor is considered. Numerical integration is required to obtain the penetration 
depths The shape factor, which was first proposed by Alekseevskii without physical 
interpretation, is also correlated to mushroom strain. With these considerations, 
the previous singularity problem is removed and reasonably accurate predictions can be 

achieved. 

DEVELOPMENT: A NEW PRESSURE LAW 

Although Eqn (1) contains the motions of the mushroomed tip and the undeformed (rigid) 
part of the penetrator. its validity is undermined when the force (pressure) that controls 
deceleration is incorrectly assumed. The equations of motion are separately derived for the 
mushroom and the undeformed portions of the penetrator, as illustrated in Fig. l.From the 
free body diagram of the mushroom, the equation of motion over the time t to t + Ar is 
obtained from Newton's 2nd law: 

P(-AIA0) 
u — v 

= oA-o0A0. (3) 

The ratio in the bracket represents the acceleration of the mushroom over Ar. The area of the 

/ + A/ 

ca4, 

a/L 
Ci4, 

t + At 

V-rAv 

Fig. 1. Free body diagrams of the undeformed and mushroom head (shaded area) of a rod during the 
time interval St. 
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fully developed mushroom. A, and the area of the original penetrator, A0, can be correlate   : o 
the engineering strain e: 

Accordingly. let At approach zero and use Eqn (4), and Eqn (3) becomes 

p/(„_M, = _f__ffo. (5) 

SimiL:, iy, from the free body diagram of the undeformed section, the equation of motion has 
the form: 

'° ~KT"°A° (6) 

and let At approach zero, the Eqn (6) becomes 

pit = cr0. (7) 

Note that a is the penetrator/target interface stress and <r0 is the internal stress exerted 
between the plastic region and undeformed portion of the penetrator. Both of these two 
stresses are time-dependent in nature. Note that if we combine Eqn (5) and (7) by eliminating 
the term a0, the resulting equation is exactly the same as Eqn (1). Moreover, Eqn (7) is 
actually the equation of motion used by Täte [2], if we assume that <J0 is the dynamic yield 
stress for the penetrator. 

Now, we introduce the kinematic relationship derived by Wilson et al. [18], which has the 
form: 

ei=v-u. (8) 

By eliminating /term between Eqn (5) d (8) and solving for a, we arrive at an expression for 
the target/penetrator interface stress (pressure): 

"p{v - u)2 

P=-([+e) + <?n (9) 

where a has been replaced by P 'ind the negative sign denotes •     >pre >n. Before we 
make further use of Eqn (9) to si       n penetration problem, more insight into this equation 
should first be made. If we comp.ue Eqn (9) with the modified Bernoulli c used by 
Täte [2], üv dimensionless coefficient of the term (v - it)2, -(1 + e)/e, iv is more 
general than i,2. The socalled shnpe far -r proposed by Alekseevskii [1] ca ected by 
this coefficient as well. It shou!   'ie clear that the mushroom strain influent . interface 
pressure. 

A PENETRATION MODEL BASED ON CONSTANT PRESSURE 

Based on Eqns (7-9), a new penetration model can be established once an estimate for 
P has been found. To begin, we assume that the target/penetrator interface pressure is 
approximately constant throughout the steady state. Actually, this assumption dates back to 
the early eighteenth century work of Robins and Euler [19]. However, it is only applicable to 
the penetration of nondeforming projectiles at low velocities [19. 20]. Considering the 
penetration of deforming penetrators, Christman and Gehring [21] used this assumption to 
typify steady state penetration. The validity of this assumption has also been discussed by 
Anderson et al. [9,12] using a numerical simulation. Based on the constant pressure, the u-v 
relationship is thus obtained directly from Eqn (9) in terms of P: 

1/2 

u = v — 
If -e l-P ■e,(jf 

p\l+e-     -l'J° 
(10) 

where e has been replaced by et, which denotes the constant strain during quasi-steady state 
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penetration. Accordingly, the difference between the penetration velocity u and the current 
velocity r is also constant. Now, we incorporate Eqns (7) and (8) to obtain 

''' dl 
(11) 

'0 

(v — u)dv = 
ane 0C1 

/ P   Ji 

where V is the initial impact velocity and \{ is the residual length of the undeformed section at 
the end of the steady-state phase. Because the difference between u and t' is a constant, a direct 
integration of Eqn (11) gives 

/f = Loexpf_^£) (12) 
\     et"o/ 

where K = v-u = constant, which comes from Eqn (10). By assuming that a final transient 
phase adds little to total penetration, the total steady-state penetration depth z at u = 0 can 
now be obtained by evaluating the integral: 

%K 

udt = -av = — (v-K)ldv. (13) 
v 

After integration, a closed form solution for z can be found: 

, = -Eh. [exp(a(/C -V)) + (aV-aK- 1)] (14) 
a ao .     . 

where a = pK!c0ex is a constant. It should be noted that <r0 represents the dynamic yield 
strength of the penetrator, which is treated as an empirical constant. At this point, the 
remaining problem is how to find P. 

Determining the constant pressure 

One straightforward way to determine the constant pressure is to find the pressure that can 
best match the experimental data for penetration depth. The mushroom strain is obtained 
from the experimental data of crater diameters. It is noted that the current model does not 
explicitly account for the influence of the target strength factor (R) but that of the penetrator's 
dynamic yield strength <r0. According to Anderson et al. [11], the penetration performance is 
more susceptible to the target strength than the penetrator strength. Consequently, it is 
anticipated that these P values may be correlated to target strengths. After investigating the 
experimental data, only the P values that best fit the penetration depths at low velocities 
(1 km/s-2km/s) were obtained. Moreover, it is found that the value of P in each case is 
approximately twice the dynamic yield strength of the target. However, at higher velocities, 
this P-R relationship underestimates penetration performance. Conceptually, this can be 
understood from the impulse-momentum equation that develops the model. This approach 
relates the time-dependent (or velocity-dependent) penetration force to the product of 
a constant pressure and impact velocity-dependent mushroom strain (or area). At low impact 
velocities, the increasing force can be approximately reflected by the product because of 
increasing mushroom area, when impact velocity increases. However, as the impact velocity 
gets higher, the mushroom area is approaching some asymptotic limit [15], so the product 
cannot keep up with the increasing trend of the force. This accounts for the limitation of the 
application of constant pressure at lower velocities. On the other hand, for low-aspect-ratio 
penetrators, because a quasi-steady state penetration process may be very short, or may not 
even be reached, the assumptions of quasi-steady state and constant pressure are not 
appropriate. Besides, the dynamic yield strengths of some soft targets (like 1100-O AL and 
lead) are usually very strain-rate sensitive at higher strain rates [22,23], so a constant value 
for R is not appropriate. Based on these considerations, the constant pressure model has been 
mainly used to investigate the cases involving aspect ratios greater than 10 and steel targets. 

Prediction based on the constant pressure 

A huae database of penetration mechanics compiled by Anderson et al. [24] has been used 
to examine the validity of the proposed models in this paper. The predictions based on 
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Fig. 3. Normalized penetration depth (Z/L) vs impact velocity (V). 

constant pressure show common S-shaped penetration curves. For the cases involving steels 
against steels (e.g. Figs 2-4) and tungsten alloys against steels (e.g. Figs 5 and 6), the 
theoretical predictions (crosses) can reasonably match the experimental observations 
(circles) at velocities between 1 km/s and 2km/s, but suffer considerable error when the 
velocities exceed 2 km/s. In addition to the previously stated limitation at low velocities, 
it is possibly due to inertia effects which become more significant relative to strength 
effects at higher velocities. Numerical simulation also shows that the magnitude of the 
nonsteady state of penetration increases with impact velocity, and that it contributes 
significantly to the total penetration at the higher impact velocities [12]. Thus, a velocity- 
dependent pressure will be invoked to cure the deficiency in the current model. The 
uncertainties in the experimental data of crater sizes apparently can cause some scattered 
predictions. For the cases investigated, realistic estimates for material strengths (o0 or R) 
have been used: C110W1-1200 MPA, St37-860MPA, St52-960 MPA, St3-1300MPA, 
D17-1600 MPA, and W8-1800 MPA. 
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A PENETRATION MODEL BASED ON VELOCITY-DEPENDENT PRESSURE 

As the constant-pressure model has indicated, the accuracy of the prediction is reasonably 
good at low impact velocities (< 2 km/s) for long rods. The predicted S-shaped trend does not 
match well in the high velocity range ($5 2 km/s). In addition to inertia effects at higher 
velocities, the interface pressure may change with the deformation at the penetrator tip 
(mushroom strain) and penetration velocities. The assumption of constant pressure through- 
out the quasi-steady state cannot account for these factors. Motivated by these observations, 
a velocity-dependent pressure is considered to modify the previous elementary pressure 
estimate. 

Shape factor 

Although Eqn (9) has represented the interface pressure P in terms of the current 
penetration velocity u and current undeformed section velocity v, one more equation is 
needed to construct the relationship between u and t; if P is velocity-dependent. Let's recall 
the theory proposed by Alekseevskii [1], who considers the pressure balance across the 
target/penetrator interface and postulates the following equation: 

Y + kpPp(i--u)2 = R + klPlu
2 (15) 

where kp and kt are shape factors that characterize the deformed regions in the penetrator and 
target materials, respectively. Y and R represent the dynamic strength of the penetrator and 
target, respectively. Simply indicating that these two shape factors depend on the flow 
geometry and assuming that they are approximately 1/2 based on the hydrodynamic model, 
Alekseevskii does not give any further physical insight into these factors. Swanson and 
Donaldson [25] proposed a so-called integral theory of impact to model the long rod 
penetration process. In their model, they assume the target/penetrator interface pressure is 
governed by fluid drag, Cd, and the adiabatic hardness. The adiabatic hardness is used to 
explain the strength factor for the target and is defined as the product of the target density, p„ 
and the energy per unit mass dissipated in the form of plastic work as the target flows around 
the penetrator, £*. Thus, the interface pressure assumes the following form: 

P = pt(jfu* + EA (16) 

where u is penetration velocity. It is not difficult to find that the dimensionless drag factor Cd 

in Eqn (16) plays a very similar role to the shape factor /c, in Eqn (15). Lately, Rosenberg et al. 
[5] considered the equilibrium of force at rod/target interface by introducing effective 
cross-sectional areas of the rigid rod and its mushroomed front end to the modified Bernoulli 
equation. The resultant area ratio, which was specifically taken as two in their model, is 
somewhat like the shape factor mentioned by Alekseevskii [1]. On the other hand, the 
coefficient -(I +el)/el in Eqn (9) has also revealed the possible physical meaning of the 
shape factor kp in Eqn (15). Based on the above overview of the shape factor, it is reasonable 
to assume that the pressure has the form: 

P = kxp,u2 + R = -(\+ei 
p(v-uY y- - + <x0 (17) 

where fc, is a constant and will be determined later. R represents the dynamic yield strength of 
the target, which for example, can be determined by a Taylor impact test. Equation (17) thus 
establishes a new u-v relationship. Particularly, if kt and —(l+el)/el are both set equal to 
1/2, then Eqn (17) returns the modified Bernoulli equation. Or, in other words, the modified 
Bernoulli equation is a special case of Eqn (17) when e, = - 2/3 and the penetrator's strength 
(Y) is one third of its dynamic yield strength. It is interesting to note that ex = - 2/3 is the 
critical value of the tip strain in the earlier penetration theory of Jones et al. [14], which was 
further elaborated by Gillis et al. [26]. 
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Derivation of the model 

A new penetration model based on velocity-dependent interface pressure can be developed 
by incorporating Eqn (7), (8), and (17). For the sake of convenience, we rewrite Eqn (17) as 

where 

P = kiu
2 + R = k2{v-u)2 + Y 

kl = klp, 

(18) 

and 

*2=-( —)PD> 

Y=-(l+ei)a0. 

Note that <r0 is negative because it is a compressive stress. From Eqn (18), we can rearrange 
and get a quadratic equation in it: 

(*. + k2)u2 + 2k2vu + (fcj - k2v2) = 0 (19) 

where k2 = R-Y.A further solution for u depends on the sign of the coefficient (k, - k2). By 
letting C2 = k Jk2, u can be written in the following form: 

u = ■ 
v-ttv2-Ay12 

i-c2. 
(20) 

for)t1^fc2,and/l=r1(l-C2),or 

u = 
k2v2-k3 

2k2v 
(21) 

for fc, = k2. Based on Eqns (20) and (21), the residual length of the penetratorcan be obtained 
by evaluating the integral in Eqn (11). Consequently, the residual penetrator length has the 

form: 

I v + Jv2 + A tp^C/Ze.Ood-Ol 

^o    \_V + S/V
2 + A_ 

x exp 
P<, 

_2^<T0(1-C2) 
j- Kvy/7+Ä - c»2) - ( VJW^A - c v2)-] 

for/cj #/c2, or 

— = exp 
_4cxff0 

(v2 - V2 
{pk,l2kieteo) 

for fc, = k2. Now, the penetration depth z can be obtained by solving 

udt = 
v a0 J 

(22) 

(23) 

(24) 

which is similar to Eqn (13). A numerical integration is required to evaluate the integral in 

According to Tale's theory [27], there exists a critical velocity during the deceleration of 
the penetrator, below which rigid body penetration will continue if Y> R and a further 
erosion of the penetrator without gaining penetration depth will continue if Y < R. A similar 
consideration can be made for the current model. 
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I. Rigid body penetration. This implies v = u and / is constant, so we can solve for the 
critical velocity vc from Eqn (18): 

f, = 
Y-R 

(25) 

Because the penetrator remains rigid in this stage, the interface pressure should be the stress 
responsible for decelerating the residual penetrator(with mushroom tip and constant length). 
Hence, we transform Eqn (7) to 

pJj^-iky + R) (26) 

where /c represents the residual length that corresponds to v = vc, and can be found from 
either Eqn (22) or Eqn (23). Integrating Eqn (24) by using Eqn (26), the penetration depth 
during this stage is obtained: 

-'& 
'krf + R 

R 
(27) 

Thus, when T > R, tne total penetration depth is equal to the sum of Eqns (24) and (27). 

II. Erosion without penetration. This implies u = 0, so we can solve for the critical velocity 
vc from Eqn (18): 

vr = 
R-Y 

L    "-2     J 

1/2 

(28) 

In this stage, the interface pressure is not high enough to make the target material deform, but 
high enough to continue the material flow across the rigid-fluid interface of the penetrator. 
Therefore, the undeformed section of the penetrator is decelerated by its dynamic yield 
strength. That is, Eqn (7) is still valid. Accompanied with Eqn (8) (u = 0), Eqn (7) can be 
integrated to give the final length: 

/f = /cexp P»l 
2e1<r0_ 

(29) 

From the previous discussion, it is likely that most of the penetration problems fall in the 
second type, erosion without penetration. This is because the strength factor of penetrator 
(Y) is reduced by the factor —(1 +ea). This implies that at the end of penetration, once v < vc, 
the second type of penetration is the most likely case. Up to this point, we have established 
a new penetration model based on a new pressure law, but the shape factor /c, is still 
unknown. 

Determining the shape factor 
In order to investigate the behavior of the shape factor, we find its value for each shot by 

matching the experimental depth data. Motivated by the previous observation that the shape 
factor fcp is a function of e t, we make the same assumption for kt. After examining all the cases, 
a common trend can be found: 

(30) &,(*!)-*oo    whenej-^e,, 
k^e^-^0     when e{ -» — 1 

where e0 and k0 are both constants. This relation implies that the shape factor becomes large 
when the mushroom strain approaches some constant (at low velocities) and approaches 
a small constant value when the mushroom strain approaches -1 (at high velocities). From 
another viewpoint, this relation is also conceptually similar to the definition of the drag 
coefficient. Based on Eqn (30), the hyperbolic-type property of kx{e,) can be approximated by 
taking the first three terms of a power series of the form: Xü*o c«(ei ~ eo)~"-Tnat is> 

*, S c0 + (e,-e0)    (ev-e0y 
(31) 
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where (■„,(•,, and c\ are constants to be determined after a value of e0 has been assumed. For 
most of the cases. e0 is chosen to comply with ic, = 0 when e, = — l.That is, k0 in Eqn(30)is 
normally zero. In only one case, "AL alloy on lead", has kt been non-zero as et approaches 
— 1. In such cases, a maximum trend for the penetration curve can be obtained. On the other 
hand, it is also found that for most high-aspect-ratio (L/D ^ 10) cases, c0 can be simply set 
equal to zero. The exceptions to this are the low-aspect-ratio cases (L/D = 3), "1100-O AL on 
1100-O AL" and "CIO 15 steel on CIO 15 steel". In these cases, c0 has a significant contribu- 
tion in determining kt. However, a further attempt to find regularities among these three con- 
stants, or to correlate these constants to other physical parameters, is difficult due to many 
untractable uncertainties in material properties. 

Prediction based on velocity-dependent pressure 

By using the strains predicted by the initial transient analysis from Wang and Jones [28], 
the current model is again tested with a large volume of experimental data. Some selected 
results predicted by the model, compared with the experimental data, have been presented 
graphically in the form of normalized penetration depth {Z/L) vs impact velocity (V). The 
predicted results agree well with the experimental data over an impact velocity range of 
0-4 km/s. The S-shaped curve is also reasonably well reflected by the model. 

As Fig. 7 shows for the case of aluminum alloy penetrators against lead targets (L/D = 10, 
<r0 = 275 MPa, and R = 60 MPa), the current model can successfully show the maximum 
trend of penetration performance, which cannot be achieved in some of our previous work. 
Figure 8 shows reasonable agreement throughout the whole impact velocity range for the 
case of D17 WA against St52 steel targets (L/D = 10, <r0 = 1600 MPa, and R = 960 MPa). As 
to the cases of C1015 steel on C1015 steel (L;D = 3,<r0 = R = 650 MPa) and 1100-O AL on 
1100-O AL (L/D = 3, <x0 = R = 160 MPa) shown in Figs 9 and 10 respectively, the increasing 
trends to Z/L at higher velocities (V > 2 km/s), which cannot be captured by our previous 
models [4,16], can now be accurately predicted by the current model. 

CONCLUSION 

In this paper, an attempt has been made to modify the modified Bernoulli equation used by 
Täte. By decomposing the equation of motion proposed by Jones et al. [14] into two parts, 
a new analytical form for the interface pressure has been developed. This pressure form is 
more general than the modified Bernoulli equation because the mushroom strain effect is 
included. As a first approximation, a constant interface pressure (P) was assumed dominant 
through the quasi-steady state, which gives a new relation between the Current tail and the 
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Fig. 7. Normalized penetration depth (Z/L) vs impact velocity (V). 
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penetration velocity [Eqn (10)]. By employing the experimental strains, P for each case is 
found and is approximately twice of R. Based on this constant pressure, the model can be 
integrated analytically and a closed-form solution for penetration is obtained. This removes 
the singularity problem that has often prevented the integration of the equations of motion 
introduced by Jones et al. [14]. However, the predicted penetration depths show reasonable 
agreement only in cases with low impact velocities and large aspect ratio. Moreover, most 
of these cases involve WA or steel penetrators against steel targets. For the penetrations 
at higher velocities, a constant P-R relationship may lose effectiveness because the effect 
of inertia and the contribution of nonsteady state penetration become more significant. 
Accordingly, the pressure distribution may be more velocity-dependent. Despite these 
disadvantages, the constant-pressure model reveals a promising direction for the con- 
struction of a new pressure law. 

Motivated by the constant-pressure model, a velocity-dependent pressure law was for- 
mulated. The new pressure law is suggested by equating the previously developed pressure 
from the viewpoint of the penetrator to an assumed pressure with a similar structure from the 
viewpoint of the target. By recalling the original theory proposed by Alekseevskii [1], the 
obscure "shape factor" was reconsidered and identified in terms of the new pressure law. 
From the viewpoint of the penetrator, the shape factor is a function of the mushroom strain, 
but from the viewpoint of the target, the shape factor (/c.) cannot be obtained a priori and 
has to be determined by examining the experimental data. All the distributions of fc, vs the 
strain were commonly hyperbolic, which can be approximated by an inverse power series 
expansion with respect to the strain. Nevertheless, further effort failed to correlate the 
coefficients of the series to known physical parameters. However, with the shape factor added 
to the model, the system can be integrated numerically without any singularity problem. 

This model gives a more accurate prediction than the constant-pressure model, as long as 
the shape factor is properly chosen and a correct strain trend is determined. It is noteworthy 
that the velocity-dependent pressure enables the model to capture the maximum trend of the 
penetration curves for soft targets, which has invalidated some of the previous models. For 
penetrations by low-aspect-ratio penetrators, better agreement can be achieved because the 
shape factor probably has offset the deficiency of the assumption of quasi-steady state by 
taking the flow geometry at the penetrator/target interface into account. 

Finally, as a comparison with the numerical simulation made by Anderson et al. [12], 
by choosing an average mushroom strain of -0.8, the pressure predicted by the velocity- 
independent model is plotted as a function of impact velocity for the shot combination of 
D17 on W8 [24] in Fig. 11. The increasing trend of pressure with impact velocity is generally 
consistent with the observation from numerical simulation when e is constant. On the other 
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Fig. 11. Interface pressure (P) predicted by velocity-independent model vs impact velocity (V). 
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Fig. 12. Interface pressure {P) predicted by velocity-dependent model vs scale time ((VjL). 

hand, the pressure predicted by the velocity-dependent model is plotted as a function of 
scaled time for the shot combination of D17 on St52 [24] in Fig. 12. By choosing an average 
mushroom strain of —0.8 and four typical impact velocities, similar to those used by 
Anderson et al. [ 12], similar increasing trends of pressure with impact velocity are obtained. 
However, the predicted pressure is apparently much lower than that obtained from the 
numerical simulation. This is due to the increase in area at the penetrator tip. A compressive 
strain —0.8 is the equivalent to increasing the diameter by a factor of 2.24. 
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AN ANALYSIS OF ONE-DIMENSIONAL PENETRATION 
USING A REVISED ESTIMATE FOR IMPULSE 

Pins Wans1 and S. E. Jones2 

ABSTRACT 

In this paper, a more detailed estimate for the impulse of the external forces 
acting on a deforming, rigid-plastic penetrator has been made. This result 
is used in the initial transient analysis introduced by Cinnamon, et al. 
(1992a) to produce a new estimate for penetration depth. A new 
parameter, called the impulse factor, correlates with the dynamic strengths 
of the penetrator and target materials. The predicted results are in good 
agreement with most of the experimental data. 

Introduction 

Alekseevskii (1966) and Täte (1967, 1969) independently proposed a simple one- 
dimensional analytical model to simulate the normal penetration of a semi-infinite target by an 
instantaneously eroding cylindrical rod. Based on the assumption of quasi-steady state 
penetration, a modified hydrodynamic equation (or modified Bernoulli equation) was introduced 
to relate the interface pressure between the penetrator and target to their dynamic yield strengths 
and to the penetrator and penetration velocities. Due to its simplicity and its ability to make 
qualitative predictions, Tate's theory has become a standard reference in one-dimensional 
engineering models to explore the terminal ballistic behavior of long rods against semi-infinite 
targets. A series of experimental investigations on different tungsten alloys and steel alloys 
impacting different armor steel targets at velocities between 0.5 km/s and 4 km/s were conducted 
by Hohler and Stilp (1977, 1980, 1984, 1987) to investigate the validity of Tate's model. One 
factor that is widely considered controversial but vital to Tate's model is how to decide the 

1Graduate student, Department of Engineering Science and Mechanics, The University of 
Alabama, Tuscaloosa, AL 35487 
2University Research Professor, Department of Engineering Science and Mechanics, The 
University of Alabama, Tuscaloosa, AL 35487 
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dynamic yield strength or target resistance. A variety of attempts to estimate taw strength 
analytically thus became the focus of many efforts in verifying or revisina Tate's theorv On "he 
other hand, Wright (1981, 1983) indicated the flaws of Tate's assumotions of steadv state and 
ngid-plasnc behavior of materials and questioned the validity of using the modified Bernoulli 
equation to describe the stress applied at the target/penetrator interface. Lateiv, Anderson and 
Walker (1991) made a further examination of Tate's mode! with the aid of numerical simulation 
On the basis of discrepancies in the prediction between Tate's mode! and the numerical simulation! 
Walker and Anderson (1992) proposed a nonsteady-state penetration model. Anderson, et al 
(1992a) also reported that target resistance varies considerably durina penetration and that the 
resistance value used in Tate's model should be considered as an average value to aive the correct 
penetration depth. Using information provided by numerical simulation, these authors proposed 
many possible directions to modify Tate's model but not much proaress was made in developine 
analytical techniques. ~ 

In 1987, Jones, Gillis, and Foster (1987) used the impulse-momentum equation to modify 
the equauon of motion derived by Täte. A further modification was made by Wilson, et al. (1989) 
on the kinematic equations by considering the conservation of mass across the plastic interface 
between the mushroom and the uneroded portion of the rod.    In the revised model, the 
engmeering strain of the mushroom tip of the penetrator was assumed constant and obtained by 
measuring the diameters of craters in targets. Nevertheless, the modified Bernoulli equation was 
still used.  The dynamic yield strengths of targets and penetrators were also assumed constants 
and treated as empirical quantities. In order to remove dependence of mushroom strain on post- 
test measurement, a linear crater volume-kinetic energy relationship was applied by Kerber, et al. 
(1992).  Due to the assumption of steady-state behavior for the whole penetration process the 
predicted results were satisfactory for longer rods and higher impact velocities, but not well 
correlated for shorter and lower velocities where the initial transient state should not be ianored 
Cinnamon, et al. (1992a) thus adapted the governing equation to the transient state by presumina 
negligible deceleration and constant penetration velocity during the initial transient. This transient 
analysis, accompanied with the crater volume-kinetic energy" relationship, made it possible to 
calculate crater diameters and penetration depths in a completely algebraic way.   On the other 
hand, a specific factor, which was correlated to target strengths, was" introduced to describe the 
variation of the interface pressure across the mushroom tip.   Due to this factor, the interface 
pressure estimated by the modified Bernoulli equation was reduced and reasonable predictions for 
penetration depths were obtained for impact velocities between 1 knv's and 3 km/s. However, for 
impact velocities above 3 km/s, this model tended to over-predict the penetration depths 
Believing that the pressure was too high, Cinnamon (1992) made a further pressure analysis and 
found that if the average pressure at steady state was presumed to be constant over the range of 
impact velocities for particular shot combinations, then reasonable penetration results could be 
predicted.  Again, this average pressure was successfully correlated to target strength.   A huge 
database of penetration tests compiled by Anderson et al. (1992b), which embraces a wide ranae 
of impact velocities and various kinds of target and penetrator materials, was used to examine the 
validity of the model based on the combination of the new pressure analysis, transient analysis and 
crater volume-kinetic energy relationship.   The results showed the trend of penetration depths 
converges as the high velocity regime is reached, which is in aareement with most experimental 
observations. 
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In this paper, a re-examination is made of the impuise-momenrum relationship derived bv 
Jones, et al. in 1987. Considering the impulse due to the nonlinear time-dependent force exerted 
on a rod which transitions from an undeformed state to a fully deformed state (mushroom), an 
important factor called the impulse factor is introduced to evaluate the time integral of force 
(impulse). Based on the initial transient analysis, the impulse factor is found dependent on two 
dimensionless parameters, which play a significant role in characterizing the trend of the 
mushroom strain at the transition point between transient and steady state penetration. By 
matching the available experimental data of crater diameters and penetration depths, one of the 
parameters is found to have a constant value and the other one can be correlated to the dynamic 
yield strength factors of penetrators and targets. Because the impulse factor more practically 
accounts for the effect of impulse during penetration, the current study has suggested an 
alternative way to modify previous models from an aspect that is different from pressure 
reduction. Computational results show that the current model has good predictive capability over 
a fairly wide range of penetrator and target combinations. 

Theorv 

1. Impulse factor. In 1987, Jones, et al. modified Tate's model by separating the rod 
material into rigid (undeformed) and plastic (deformed) regions during the penetration process 
(Fig. 1). They examined the balance of impulse and momentum across the deformed and 
undeformed sections (Fig. 2). By assuming a linear force-time relation (Fig. 3-a), the impulse 
integral was thus simply estimated by the rectangular area under the force-time curve. The force 
was further correlated to the modified Bernoulli pressure Pa Accordingly, the equation of 
motion was obtained by dividing by At and taking the limit as AT approaches to zero: 

Iv + !(v-u) = ^— (1) 

In this equation, v is the velocity of the undeformed section, u is the penetration velocity, / is the 
undeformed section length, p is the constant penetrator mass density, PB is the interface pressure 
(the modified Bernoulli pressure) between the penetrator tip and the target and e is the 
engineering strain in the deformed section of the penetrator adjacent to the rigid-plastic interface. 
According to the modified Bernoulli equation, P3 is represented by 

P3=Ipta
:
+il=lp(v -u?+Yp (2) 

where p. is the density of target, and Rt and Yp are the dynamic yield strengths of the target and 
penetrator, respectively. Due to Eq. (2), a relationship between u and v is also uniquely defined. 

Despite the simple way of estimating the impulse during penetration, this model ignored 
possible nonlinear force-time relation (Fig. 3-a) that may be attributed to different impact 
velocities and material properties. In a related problem, Ipson and Recht (1975) investigated the 
structure of this integral. However, the impulse integral cannot be obtained precisely because a 
knowledge of the actual force-time relation is usuallv not available.   In order to overcome this 

J-3 



problem, we invoke the mean value theorem of integral in calculus to estimate the impulse which 
is schematically shown in Fig. (3-b). According to the theorem, if the integrand is continuous the 
integral can be replaced by: •   ' 

Impulse = JF(g>dc=F(T)At (3) 

where t < x < t-u. We assume that F{x) can be denoted by a positive real factor n called the 
impulse factor, multiplied by Fv If we now repeat the procedure for deriving Eq (1) then we 
have: 

/V +7(V - U) = 2— (A\ 

Note that Eq. (4) only differs from Eq. (1) by the factor n but reduces to Eq. (1) when n is set 
equal to one. The impulse factor will be used in the transient analysis. 

2. Initial Transient Analysis. Following the assumptions made by Cinnamon, et al. 
(1992a) to characterize the initial transient phase, we arrive at the transition between transient and 
steady state, and Eq. (4) becomes: 

where v0 is impact velocity, u0 is penetration velocity at impact and e, is the mushroom strain 
when steady state is reached. Another equation which accounts for the conservation of mass 
across the mushroom is: 

^'=^-"0 (6) 

Eqs. (5) and (6) govern the mushrooming process during the transient phase until steady state is 
reached. By eliminating / between Eq. (5) and Eq. (6) and rearranging, we obtain: 

p(vo-a,)3
=       m, 

Pa 0 + «,) (7) 

In order to estimate the behavior of the impulse factor n, we rewrite Eq. (7) as: 

Y = nX (8) 

where X = -eJ(\ + ex) and Y = p(v0 -u0)
z/Pa and then evaluate the X-Y relation with the 

penetration database compiled by Anderson et al. (1992b). An important X-Y relation can be 
obtained for each combination of shot by a least-squares fit: 
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y=^j (9) 

where a and ß are two least-square coefficients. Using Eqs. (8) and (9), the impulse factor n can 
be found: 

»^^'^ (10) 

Thus we can solve for the strain e, by substituting n back into Eq. (7): 

P 

*,= p- (ID 
-K-^)z-(a-ß)(^-) 

P 

3. Determining a and ß. As shown in Eq. (10) the impulse factor is dependent on two 
dimensionless constants a and ß. One way to find these two constants is to match the theoretical 
strains predicted by Eq. (11) to the experimental strains. However, a limited number of shotsJbr 
each material combination, which are often subject to uncertainties, and different choices of 
impact velocity, make it difficult to precisely find the impulse factor by only matching the strain 
trend. This drawback is especially apparent in the higher velocity regimes, where small errors in 
predicting strains usually results in considerable errors in predicting penetration depth when the 
linear kinetic energy-crater volume relation is applied. On the other hand, the impulse factor 
should be able to reflect a well-known experimental observation—the saturation region at high 
velocities. Based on the above observations, a and ß will be selected to match the following 
equation for penetration depth z derived by Cinnamon, et al. (1992a) 

z = ±(l+el)(aE,+b) (12) 
A 

where £0 is kinetic energy of the penetrator at impact, A is initial cross-section area of penetrator 
and a, b are the slope and intercept of the kinetic energy-crater volume line respectively. 

After matching the predicted results obtained from Eq. (11) and Eq. (12) with the 
experimental data case by case, it is found that agreement with Eq.(12) only occurs when a is 
equal to two, and the values of ß vary as the dynamic yield strengths of penetrators and targets. 
Further investigation shows ß can be approximated by the dynamic yield strength ratios of 
penetrators to targets (Fig. 4 ). Using a least-square scheme to correlate ß to strength ratio, we 
find: 

Y. 
ß =-03947-1.5687(-^-) (13) 
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It should be noted that the dynamic yield strengths used in this paper refer to the compressive 
strengths measured by a Taylor anvil test or by a split Hopkinson bar test at hish strain rates 
Some of the information for dynamic strengths can be found in some previously reported papers 
or experimental reports. For the cases where no dynamic strength data are available,' the strengths 
are estimated from the formula suggested by Täte (1986). However, dynamic yield strengths of 
some materials are usually very sensitive to strain-rate, the type of experiment, and heat treatment 
or materials. This makes it difficult to obtain definite and reproducible experimental 
measurements. The strength factors in this paper are based on the highest available strain rate.' 

Computational results 

A collection of penetration data for normal impacts against semi-infinite targets published 
by different researchers from 1961 to 1991 was compiled in a penetration mechanics database by 
Anderson, et al. (1992b). Using these data, the current model that incorporates Eqs. (2), (10), 
(11) and (12) has been verified to make accurate predictions for crater diameters and penetration 
depths for most cases. Some selected results within the impact velocity ranee between 1 km/s and 
4 km/s are shown in Figs. (5)-(8). Figure (5) compares the predicted results of low-strength 
1100-O aluminum penetrator against different low-strength steel and aluminum targets. Good 
agreement has been achieved with the experimental data. The underestimated points can be 
attributed to the fact that the strength of 1100-O aluminum is more strain-rate sensitive at Sah 
impact velocities. Two cases are compared in Fig. (6) for the results of low-strength aluminum 
(2024-T3) rods and high-strength aluminum (7075-T6) rods impacting on a soft target (1100-O 
AL). The latter case suffers more deviation at lower velocities, which can be attributed to the 
errors in transient analysis and the cylindrical crater approximation. For shallow craters, the 
cylindrical approximation is especially poor. Figures (7) and (8) show good agreement with the 
experimental data for high-strength rods (4340 hard steel) against high-strength targets (4340 
hard steel) as well as high-density rods (D17) against high density targets (D17) and against hieh- 
strength steel targets (WS), respectively. 

Conclusion 

In this paper, a more detailed estimate for the impulse of the external forces acting on a 
deforming, rigid-plastic penetrator has been made. This result is used in the initial transient 
analysis introduced by Cinnamon, et al. (1992a, 1992b) and Cinnamon (1992) to produce a new 
estimate for penetration depth that extends over a wider range of impact velocities than previously 
reported. A new parameter, called the impulse factor, correlates with the dynamic strengths of 
the penetrator and target materials. For the most part, the results show reasonable agreement 
with experimental observations. Figure (9) is an example of an aberrant fit to the experimental 
data. For very soft targets, like lead, the theory cannot capture the trend for maximum 
.penetration observed by Täte (1969) and others. This"is probably due to neglecting the strain-rate 
dependence on velocity-dependent strength in the target. Future efforts will concentrate on 
improving the estimate for impulse and utilizing the velocity-dependence of the target strength in 
the analysis, as observed by Anderson, et al. (1992a). 
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F.gure 1. Schematic of rod. (a) Shows plastic portion (shaded area) A/ and 
undefonned portion /-A/, (b) Shows penetration into target to a decth z. 
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Figure 2. Schematic of the transfer of mass element pAA/ from the 
undefonned to the plastic portion of rod during the time interval Ar. The 
external impulsive force also varies from Fa to Ft. 
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Figure 3. (a) Schematic of a linear and imaginary nonlinear force-time 
relationship, (b) Schematic of using mean value theorem of integral for an 
imaginary nonlinear force-time curve. 
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Figure 4. An approximately linear relationship between the ß values and the 
ranos ot the penetrator srengths to the targe: strengths. 

V0(3ca/s) 

Figure 5. Normalized penetration deoth vs. imoact velocity 
0: experimental data of 1IOO-O AL on C1015 St; -: 'current model 
X experimental data of 1100-O AL on 2024-T3 AL; -: current model 
-■ experimental data of 1100-O AL on 304 stainless stsal; -: current mode' 
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Figure 6. Normalized penetration depth vs. impact velocity 
O: experimental data of 2024-T3 AL on UOO-0 AL; -: current model. 
X: experimental data of 7075-To AL on 1100-O AL; -: current model. 

vo (tan/s) 

Figure 7. Normalized penetration depth vs. impact velocity 
0: experimental data of 4340 hard steel on 4340 hard steel; -: current model. 
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Figure 8. Normalized penetration depth vs. impact velocity 
0: experimental data of D17 on WS; -: current model. 
X: experimental data ofD17 on D17; -: current model 
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Figure 9. Normalized penetration depth vs. imoact velocitv 
0: experimental data of AL alloy on lead; ~: current model.; -: fate's model 
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A ONE-DIMENSIONAL ANALYSIS OF THE PEJ^TRATION 
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ABSTRACT 

The one-dimensional analysis of normal rod penetration, recently presented 
bv Cinnamon, e^l, 1992, is applied to a very soft target, 1100-0 aluminum. The 
results are shown to be satisfactory for impact velocities under about 2.o km/sec. 
Since the analysis is based on the initial transient stage of penetration, the theory 
can be applied to impacts by rods with very low L/D ratios. The theory is entirely 
algebraic and the depths of penetration are predicted from crater volume/kinetic 
energy curves. To extend the theory to higher velocity impacts, a new distribution 
of pressure is introduced. These results are promising. 
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NOTATION 

initial cross-sectional area of the penetrator 
slope of the crater volume-kinetic energy line ^ 
intercept of the crater volume-kinetic energy line 
engineering strain in'the mushroom of the penetrator 
engineering strain in the mushroom at impact 
engineering strain in the mushroom at steady state 
kinetic energy of the penetrator at impact 
current undeformed section length 
pressure distribution exponent 
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PV? ; 

h'$ 

Prf. 
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P average pressure on the penetrator tip 
Pi average pressure on the penetrator tip at the end of 

the transient stage 
p pressure distribution on the penetrator tip 
Pa pressure on the axis of the penetrator tip 
q uniform pressure component 
r radial distance from the axis of the penetrator 
R radius of the undeformed penetrator 
Rt dynamic strength of the target 
t time elapsed since impact 
u current penetration velocity 
uo penetration velocity at impact 
Vc volume of the crater 
v current velocity of the undeformed section 
VQ impact velocity 
YP dynamic strength of the penetrator 
Z penetration depth 
a. dimensionless constant related to n 
ß constant related to n with the dimension of MPa 
p penetrator density 
p2 ratio of target density to penetrator density 

INTRODUCTION 

Jones, et al.. 1987, presented an alternative formulation of the classic theory of 
Täte, 1967, and Alekseevskii, 1966, theory for normal penetration of semi- infinite 
targets by long rods. The new formulation contained a relative velocity term to 
account for mass loss from the undeformed section and an infinitesimally thin 
mushroom with an enlarged cross-sectional area. A new equation to account for 
conservation of mass across the plastic wave front of the penetrator was added 
by Wilson, et al.. 1989. The penetration depths predicted by this theory were 
shown to be in fairly good agreement with experiment when the mean strain 
in the mushroom was estimated from the profile diameters of recovered targets. 
It should be pointed out, at this juncture, that all dynamic material properties 
were estimated by laboratory tests (e.g.. Taylor impact tests, Split Hopkinson Bar 
tests, etc.) at high strain rates. The results were encouraging. However, there 
are several defects in the modeling process. One is that the entire penetration 
process is treated as steady, while the mushroom has constant strain. The constant 
strain assumption may be appropriate for the steady portion of the penetration 
process, but not for the entire event. This stimulated Cinnamon, et al.. 1992, a, 
b, to investigate the initial transient stage of penetration. In this case, the initial 
transient stage shall refer to everything that precedes steady penetration. This 
includes the shock/impact stage in both the penetrator and the target and the 
complete mushrooming of the penetrator. By considering the pressure distribution 
p on the penetrator tip to be nonuniform 
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P = Pa     1 - R2 (1) 

where pa is the pressure on the rod axis, r/R is the dimensionless radial distance 
from the axis, R is the undeformed rod radius, and n is a dimensionless exponent, 
Cinnamon, et al., 1992, a, b, developed a one-dimensional analysis of penetration 
that was completely algebraic. The pressure distribution in equation (1) is re- 
ferred to the original configuration of the rod, but is extended over the deformed 
configuration in the equation of motion by means of the mean mushroom strain, 
e. The equation of motion for the undeformed section of length t can now be 
shown to take the form 

m 

"1 

/ill 
"if 

£v + t(v -u) = -Pa 
(2) /»(n + l)(l + e) 

where u is the current velocity of the undeformed section, u is the penetration 
velocity, and p is the density of the penetrator. Dots over symbols denotes differ- 
entiation with respect to time t. When equation (2) is coupled with the equation 
for conservation of mass for the mushrooming material introduced by Wilson, et 
al[4] 

:i3- 

tl-v-u (3) 

and elementary theory for mushrooming was produced. It was shown that n was 
basically a function of target strength for the low to intermediate impact velocities, 
say 1 km/sec to 3 km/sec. Specifically, 

n a-T 
Rt 

(4) 

where a and ß are constants and Rt is the dynamic strength of the target at a 
strain- rate appropriate to the penetration event. A good correlation was achieved 
for a = 9.2117 x 10~2 and ß = 1335.117 MPa. This hypothesis was tested for 
several target materials in [5]. The targets were: 2024-T4 Aluminum, 7075-T6 
Aluminum, and 4340 Steel in hard and annealed states. The penetrators were 
of the same materials. In Cinnamon, et al, 1992, b, the hypothesis was shown 
to be valid for OFHC copper, 4340 steel, and tantalum penetrators into rolled 
homogeneous armor and 4340 steel targets. 

The pressure exponent n rapidly increases with decreasing target strength. It 
is interesting to apply this reasoning to a very soft target, say 1100-0 aluminum. 

PENETRATION OF 1100-0 ALUMINUM TARGETS 

Christman, et al. 1964, reported penetration data for 1100-0 Aluminum tar- 
gets. Their data will be used for comparison in this section. A static yield strength 
for 1100-0 aluminum is approximately 70 MPa. However, for strain-rates appropri- 
ate to mushroom formation, 250 MPa is acceptable. For Rt = 250 MPa, equation 
(4) indicates that n = 7.41. Figure 1 shows graphically the relationship between 
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n and target strength for all of the targets considered. Figures 2 and 3 show 
the engineering strain in the target ej when steady state is reached for 2024-T3 
aluminum and C1015 steel penetrators. The dynamic yield stresses for the pene- 
trator materials are assumed to be 750 MPa for 2024-T3 aluminum and 1000 MPa 
for C1015 steel. The strain ex has been estimated from [5] by 

ex = _       -{VQ -up)' 

(VQ - u0) ^SL (5) 
p(n+l) 

Pi is the pressure at the initiation of steady penetration that can be estimated by 
the Modified Bernoulli Equation (e.g., Täte, 1967). 

pi ~ 2^Pul + Rt = 2P (V° ~ U°)2 + Yp (6) 

In this equation, Yp is the dynamic strength of the penetrator, v0 is the impact 
velocity, u0 is the penetration velocity during mushroom formation (assumed to 
be approximately constant), and fi2p is the target density. These equations can 
be used to find uQ in terms of v0 and the other physical parameters, as well as the 
pressure Px. 

Penetration depths can be estimated by assuming that the crater in the targe: 
is approximately a cylinder whose cross-sectional area can be computed from the 
engineering strain ex in equation (5). Experimental evidence suggests that in the 
range of impact velocities in question, the relationship between crater volume V- 
and kinetic energy on impact E0 is approximately linear. 

Mi 

? **. 

hr- 

Vc = aEQ + b 

This means that the penetration depth z can be estimated from 

^=4(1+^)^=1(1 

(• 

(S) 

where A is the original cross-sectional area of the rod penetrator. The constants 
a and 6 are determined experimentally. Figures 4 and 5 show the penetration 
depth curve predicted by equation (7) for 2024- T3 aluminum and C1015 steei 
penetrators. The results are good up to impacts of about 2.5 km/sec. They 
deteriorate rapidly at velocities higher than that. This is partly due to the simple 
pressure distribution presented in equation (1). In the next section, we introduce 
a more general pressure distribution. 

A DIFFERENT DISTRIBUTION OF PRESSURE 

Following a suggestion made by Anderson, 1991, we consider an alternative 
form for the pressure distribution in equation (1). A uniform component q is 
added to the variable distribution in equation (1). The new distribution has the 
form 

it ■ 

mw\ 
P = q + {Pa-q)\l 

R2 (9) 
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Hg.l. „vs.targetstrengthÄ(MPa). The relationship 
between them is approximately given by n = *■*» x 
10"2 +1830 / R. Q denotes a fit to experimental data. 

Fig. 2. Strain vs. impact velocity (m/s) for 2024-T3 Al 
(750 MPa) penetrators against 1100-0 Al (250 MPa) 
targets.  Q denotes experimental data points, 
ej (lower solid curve) is the predicted strain at the 
beginning of steady state and e0 (upper solid curve) is 
the predicted strain at impact. 

FIB 3. Strain vs. impact velocity (m/s) for C 1015 st 
(1000 MPa) penetrators against 1100-0 Al (250 MPa) 
targets.  □ denotes experimental data points. 
e. (lower solid curve) is the predicted strain at the 
beginning of steady state and e0 (upper solid curve) is 
the predicted strain at impact. 
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Fig. 4.  Penetration depth (mm) vs. impact velocity 
for 2024-T3 Al penetrators impacting 1100-0 Al 
targets. Q denotes experimental data points for 
L/D=3 penetrators. The solid curve is a prediction 
based on the crater volume/kinetic energy relationship. 

Fig. 5. Penetration depth (mm) vs. impact velocity 
(m/s) for C 1015 st. penetrators impacting 1100-0 Al 
targets   □ denotes experimental data points forUV=s 
penetrators. The solid curve is a prediction based on 
the crater volume/kinetic energy relaüonship. 
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where pa is the total pressure on the axis of the penetrator. Now, the average 
pressure P which appears in the equation of motion of Jones, et al [1], is easily 
shown to be 

P==UpdA=J!± 
+ i -.^T ^ 

where A is the undeformed cross-sectional area of the penetrator. Using equation 
(10) for the average pressure revises the equation of motion for the undeformed 
section into the form 

tv + t{v-u) = 
•1 

{nq + Pa) (11) p(l + e)(l+n) 

This equation, coupled with equation (3), given a new system from which we can 
estimate the initial transient behavior of the penetrator in terms of two parame- 
ters, n and q. It should be noted, however, that n will no longer have the simple 
interpretation afforded by equation (4). 

THE INITIAL TRANSIENT STAGE 

**':< 

>ir 

If 
mn. p 
m 

mi 
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I 
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Equations (3) and (11) can be used to estimate the initial transient behavior 
of the penetrator when suitable assumptions are made about the velocity of the 
undeformed section v and the penetration velocity u. Equation (5) was developed 
by Cinnamon, et al.. 1992, a, by assuming that v ä VQ and u zz u0 (const.) during 
the mushrooming of the penetrator. These assumptions force equations (3) and 
(11) to take the form 

ti = vQ — u0 

and 

£{v0 - uQ) = 
-1 

(n1 + Pa) 

(12) 

(13) 
p(l + e)(l + n) 

When I is algebraically ehminated between these equations, we get a single equa 
tion for the mushroom strain, e. 

-p(n + l)(v0-uQy 

p(n + I) (vQ - UQ)
2
 + pa + nq 

This equation expresses e in terms of the time- dependent pressure pa, the uniform 
pressure component q, and the parameter n. The uniform pressure q could vary 
with time, but for this analysis we will assume that it is constant. 

Equation (14) is valid throughout the mushrooming stage. At the transi- 
tion point between mushrooming and steady state, we assume that the Modified 
Bernoulli Equation (6) applies. This suggests that equation (14) should reduce to 

d = 
-p(n + 1) (v0 - if0)2 

p(n + 1) (üo - UQ)
2
 + P1+nq 

(15) 
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W 
and Px is taken from equation (6). 

The two parameter strain equation (15) is used to match experimental data at 
hi*h and low velocities. The parameters q and n are then determined algebraically. 
Fo°r C1015 steel penetrators impacting 1100-0 aluminum targets the results are 
shown in Figure 6. In this instance, n = 15.14 and , = 105.17 MPa. The esti- 
mates for penetration depth using equation (3) are shown in Figure ,. They are 
somewhat disappointing, because even a slight variation m strain at Percentages 
a, high as those given in Figure 6, can produce considerable discrepancy in the 

penetration depth predicted by equation (8). 

The two parameter strain equation was also applied to some of the cases for 
which only low velocity data was available. The results for hard «40 steel pen- 
etrators impacting hard 4340 steel targets are shown m Figures b and 9. In this 
case n = 3*07 and q = 344.8 MPa. For annealed 4340 steel penetrators impacting 
annealed 4340 steel targets, the results are shown in Figures 10 and 11. In this 

instance, n = 2.58 and q = 705.89 MPa. 

Fibres 19 and 13 show the results of tungsten (W10) penetrators impacting 
RH A Targets at velocities between 1 km/sec and 3km/sec. The expenmental 
comparison is taken from Silsby, 1984. For this comparison, n = 8.^2 and q - 

1790 MPa. 

CONCLUSIONS 

The results of Cinnamon, et^L, 1992, a, have been extended to the penetra- 
tion of 1100-0 aluminum targets. For lower impact velocities  say those under -.o 
km/sec, the correlation of pressure exponent n in equation  1), predicted by equa- 
tion (4), produces verv reasonable results. However, for higher impact velocities 
the results deteriorate rapidly.  To accommodate higher velocities, the pressure 
was generalized in equation (9) and the strain at steady state ex w* shown to 
correlate very well with independently reported experimental results [,] for two 
penetrators impacting 1100-0 aluminum targets. The penetration depth predic- 
tions using the elementary algebraic method introduced by Cinnamon sLaL   99 
a  are somewhat disappointing.  However, this is understandable.   At very large 
s rains, even minor deviations from the experimental results will produce signif- 
icant deviations in the cross-sectional area of the crater^ As a result, equation 
(8) will produce estimates that differ from experiment. Such differences are not 
as visible at low velocities because the strains are smaller in magnitude. Future 
efforts will be directed toward improvement in this area. Future efforts will also 
center on other forms for the pressure distribution in equation (9). Some progress 

has already been made in the area. 

A project of some interest to us is the physical interpretation of n and q. For 
the simple pressure distribution in equation (1), a low velocity interpretation can 
be provided by equation (4). However, for a = 0 and velocities higher than about 
3 km/sec, n does not have this interpretation. It remains to be seen whether a 
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Fig. 6. Strain vs. impact velocity (m/s) for C 1015 st. 
(1000 MPa) penetrators against 1100-0 Al (250 MPa) 
targets. G denotes experimental data points. 
ey (lower solid curve) is the predicted strain at the 

beginning of steady state and e0 (upper solid curve) is 
the predicted strain at impact. 
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Fig. 8. Strain vs. impact velocity (m/s) for hard 4340 
st. (1825 MPa) penetrators against hard 4340 st. (1825 
MPa) targets. Q denotes experimental data points, 
«j (lower solid curve) is the predicted strain at the 
beginning of steady state and e0 (upper solid curve) is 
the predicted strain at impact. 
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Fig. 10. Strain vs. impact velocity (m/s) for annealed 
4340 st. (1263 MPa) penetrators against annealed 4340 
st. (1263 MPa) targets. Q denotes experimental data 
points. ex (lower solid curve) is the predicted strain at 
the beginning of steady state and e0 (upper solid 
curve) is the predicted strain at impact. 

'•V 
Fig. 7. Penetration depth (mm) vs. impact velocity 
(m/s) for C 1015 st. penetrators impacting 1100-0 Al 
targets. Q denotes experimental data points for 
L/D=3 penetrators. The solid curve is a prediction 
based on the crater volume/kinetic energy relationship. 
The disparity noted for the intermediate velocities is 
caused by small deviations in the predicted strain 
which can result in large deviations in the predicted 
cross-sectional area of the crater. 
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Fig. 9. Penetration depth (mm) vs. impact velocity 
(m/s) for hard 4340 st. penetrators impacting hard 
4340 st. targets. O denotes experimental data points 
for L/D=10 penetrators. The solid curve is a 
prediction based on the crater volume/kinetic energy 
relationship. 
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Fig. 11. Penetration depth (mm) vs. impact velocity 
(m/s) for annealed 4340 st. penetrators impacting 
annealed 4340 sL targets.  Q denotes experimental 
data points for L/D=5 penetrators. The solid curve is a 
prediction based on the crater volume/kinetic energy 
relationship. 
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Fig. 12. Strain vs. impact velocity (m/s) for tungsten 
W 10 (2500 MPa) penetrators against RHA (1000 
MPa) targets. Q denotes experimental data points. 
e\ (lower solid curve) is the predicted strain at the 
beginning of steady state and eQ (upper solid curve) is 
the predicted strain at impact. 
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Fig. 13. Penetration depth (mm) vs. impact velocity 
(m/s) for Tungsten W 10 penetrators impacting RHA 
targets. O denotes experimental data points for 
L/D=3 penetrators. The solid curve is a prediction 
based on the crater volume/kinetic energy relationship. 
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AN ELEMENTARY THEORY OF ONE-DIMENSIONAL ROD PENETRATION 
USING A NEW ESTIMATE FOR PRESSURE 

P. Wang and S. E. Jones 

Department of Engineering Science and Mechanics 
University of Alabama, Tuscaloosa, AL 35487 

ABSTRACT 

A re-examination is made of the one-dimensional eroding-mushrooming rod penetration model proposed by Jones, 
et al. in 1987. The original equation of motion is decomposed into two parts to account for the motions of the mushroom 
region and undeformed portion of the penetrator separately. As a result of incorporating these two equations with the 
kinematic equation derived by Wilson, et al. in 1989, a new pressure law is proposed to replace the modified Bernoulli 
equation of Tale. This new estimate for pressure, taking the effect of mushroom strain in the penetrator tip into account, 
gives more physical insight into the interaction between the pressure and the penetrator during penetration. 

Two different attempts are made to investigate the validity of the proposed pressure law. In the first case, the 
pressure is assumed velocity-independent and a new current velocity-penetration velocity relationship is constructed. Direct 
integration of the system leads to a closed form solution for the penetration depth. The constant pressure is obtained by 
matching the penetration depth and then further correlated to the target strength. The predicted results are fairly accurate 
in high velocity range. 

In the second case, a velocity-dependent pressure with a shape factor is considered. Numerical integration is 
required to obtain the penetration depths. The shape factor is obtained by matching the penetration depths and can be 
hyperbolically correlated to the strain. The results from some typical calculations are shown in Fig. 1. Realistic estimates 
for material strengths have been used. 
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Figure 1. Normalized penetration (Z/L) depth vs. impact velocity (V). Circles represent the experimental data and the solid 
curve, the theoretical prediction, (a) Y=R=1600 MPA (b) Y=275 MPA, R=60 MPA 
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