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Abstract: The objective of the current research was to develop improved methodology for 
diagnosing anomalies and maintaining oil lubrication systems for gas turbine engines. The effort 
focused on the development of reasoning modules that utilize the existing, inexpensive sensors 
and are applicable to on-line monitoring within the full-authority digital engine controller 
(FADEC) of the engine. The target application is the Enhanced TF-40B gas turbine engine that 
powers the Landing Craft Air Cushion (LCAC) platform. To accomplish the development of the 
requisite data fusion algorithms and automated reasoning for the diagnostic modules, Perm State 
ARL produced a generic Turbine Engine Lubrication System Simulator (TELSS) and Data Fusion 
Workbench (DFW). TELSS is a portable simulator code that calculates lubrication system 
parameters based upon one-dimensional fluid flow resistance network equations. Validation of the 
TF-40B modules was performed using engineering and limited test data. The simulation model 
was used to analyze operational data from the LCAC fleet. The TELSS, as an integral portion of 
the DFW, provides the capability to experiment with combinations of variables and feature 
vectors that characterize normal and abnormal operation of the engine lubrication system. The 
model-based diagnostics approach is applicable to all gas turbine engines and mechanical 
transmissions with similar pressure-fed lubrication systems. 
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Background: The primary function of a lubricant is to reduce friction through the formation of 
film coatings on loaded surfaces. It also transports heat from the load site and prevents corrosion. 
The lubricating oil in mechanical systems, however, is contaminated by the introduction of wear 
particles, internal and external debris, foreign fluids, and even internal component {additive) 
breakdown. All of these contaminants affect the ability of the fluid to accomplish it's mission of 
producing a lubricity (hydrodynamic, elastohydrodynamic, boundary or mixed) layer between 
mechanical parts with relative motion.12 

Lubricant contamination can occur due to many mechanisms. Water ingestion through seals 
(common in marine environments) or condensation will cause significant viscosity effects and 
corrosion. Fuel leakage through the (turbine fuel-lube oil) heat exchanger will also adversely 
effect lubricity. Moreover, fuel soot, dirt and dust can increase viscosity and decrease the oil 
penetration into the loaded surface of the gears or bearings.3 An often overlooked contamination, 
but sometimes very significant, is the addition of incorrect or old oil to the system. Table 1 
provides a list of relevant faults that could occur in oil lubrication systems and some wetted 
components' faults. 
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Lubricant Faults Gear Faults Bearing Faults 
Viscosity Breakdown Plastic Deformation Surface Wiping 

Oxidation Pitting Fatigue 
Emulsification Heavy Scuffing Fretting 

Additive Depletion Chipping and Tooth Crack Foreign Debris 
Sludge Formation Tooth Breakage Spalling 

Fluid Contamination Case Cracking Inadequate Oil Film 
External Debris Contam. Surface Fatigue Overheating 
Internal Debris Contam. Abrasive Wear Corrosion 

System Leakage Chemical Wear Cavitation Erosion 
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Table 1. Lubricant and Wetted Component Faults 

Many off-line, spectroscopic and ferrographic techniques exist to analyze lubricant condition and 
wear metal debris.4' A '8 These methods, while time-proven for their effectiveness at detecting 
many types of evolving failures, are performed at specified time intervals through off-line 
sampling.9 The sampling interval is driven by the cost to perform the preventative maintenance 
versus the perceived degradation window over an operational time scale.1 The use of intermittent 
condition assessment will miss some lubricant failures. Moreover, the employ of such off-line 
methods is inconvenient and increases the preventative maintenance cost and workload associated 
with operation of the platform. 

Introduction:   Maintenance   actions 
can be performed when a component 
or system fails (corrective),  on an 
event or time basis (preventative), or 
when   an   assessment   of  condition 
indicates a failure is likely (predictive). 
Figure 1 depicts the variation in costs 
with number of maintenance events. 
Corrective maintenance produces low 
maintenance cost (minimal 
preventative     actions)     but     high 
performance costs due to the cost of 
operational   failures.        Conversely, 
preventative    maintenance    practice 
produces low operations costs, but 
more   preventative   actions   produce 
greater maintenance department costs. 
Moreover, the application of statistical 
safe-life methods (still preventative) to critical systems usually leads to very conservative 
estimates of the probability of failure. The result of such methods is an additional hidden cost 
associated with disposing of components that still retain significant remaining useful life. Abrief 
description of relevant terminology is provided below.10 
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Figure 1. Cost Variation with Different 

Maintenance Practices (adapted from Ref. 1) 



Condition-Based Maintenance: GBM is a maintenance philosophy in which equipment is maintained only 
when there is objective evidence of an impending failure. 
Diagnosis: Identification of a particular evolving failure based on the observables sensed on a piece of 
equipment. Inherently, diagnosis of the state of the system must precede a prognosis or prediction of the 
machinery's future health. 
Prognosis: The ability to provide a reliable and sufficiently accurate prediction of the remaining useful life 
of equipment in service. By predicting the remaining useful life, the prognostic capability assists the 
operator in actively managing his/her maintenance resources and recommends suitable actions. 
Remainins Useful Life (RUL):   Operational time from the present until a system will not be able to 
successfully complete its next "mission".  A mission is a time when maintenance cannot be conveniently 
conducted. Thus, a mission separates convenient repair opportunities. 

The additional GBM terms of a failure trajectory, critical prediction horizon and critical detection 
horizon are discussed in Reference 10. They provide elaboration on the modeling of state space 
evolution of a failure mode and how this relates to detection, alert and alarm structuring. 

Needs and Requirements: Gas turbine (GT) engines are prime candidates for CBM for many 
reasons. GT engines similar to the current LGAG TF-40B, shown in Figure 2, are highly critical 
subsystems as power sources on numerous Navy and DoD platforms such as surface ships (for 
electrical power generation), tanks {MlAl), and both rotary wing (H-46, H-53, H-60, etc.) and 
fixed wdng (F-16, F-18, etc.) aircraft. The engines 
operate at high temperatures and the lubricant may 
experience thermal degradation, oxidation, and 
coking, which can plug passages and damage 
seals. The ester-based lubricants (MIL-L-23699E) 
used have finite shelf lives with additives that may 
be quickly consumed. Oil-wetted components are 
the   critical   path   for   maintaining   machinery 
alignment and transferring power through the 
engine and to the transmission.  A significant 
failure in the oil will quickly lead to mechanical 
failure and loss of the engine.   The maintenance 
costs for a gas turbine bearings (#l-#6) range in 
the tens to hundreds of thousands of dollars 
depending on size and precision.11    Continuous 
monitoring  is   even   more   desirable   with   the 
widespread use of Full Authority Digital Engine Controllers (FADEC), which provide computer 
processing and memory storage to perform diagnostics in addition to the primary functions of 
operational mode sequencing and fuel metering. 

Due to the potential catastrophic effect of a failure on such high-speed machines, a great deal of 
usage-based maintenance is performed. Within the helicopter community such maintenance costs 
are about 25% of the life cycle costs. The reliability data indicates that engines are a significant 
portion of this maintenance cost. Typical numbers from the LCAC reliability summary, for 
instance, indicate the engine and propulsion related problems account for about 30%-40% of the 
recorded mechanical system failures. The data from the helicopter community is shown in Figure 

Figure 2. Helicopter, Marine and Aircraft 
Gas Turbine Engines (courtesy of Allison, 

AlliedSignal, Pratt &Whitney) 
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Figure 3. Mechanical System Fault 
Distribution (for Navy Helicopters) 

3. Chamberlain12 documents the high rate of engine- 
related problems and the need for Health and Usage 
Monitoring Systems (HUMS). 

LCAC, TF-40B, and FADEC: Four TF-40B engines, 
which drive the lift fans and the propellers as shown in 
Figure 4, power The LCAC hovercraft. The LCAC 
transmission system includes two mechanically 
independent systems on both the port and starboard 
sides. Each combines power output from the TF40B 
engines on one side of the craft through right angle 
gearboxes and shafts running fore and aft. Power is 
transmitted to two in-line lift fans through the forward 

offset gearbox and aft to the propeller drive shaft. Manually operated disconnect clutches permit 
power splitting and isolation. As can be discerned from the figure, the port and starboard 
transmission system are mirror images of each other.13 The LCAC is currently undergoing a 
Service Life Extension Program (SLEP), which includes the propulsion system, skirt design, crew 
station, many accessory systems, engine power capacity and control electronics. 

The TF-40B, shown in the upper right corner of 
Figure 2, is a twin spool gas turbine with a 
modular design. The gas generator turbine 
powers the compressor and accessory gearbox. 
The accessory gearbox drives the main and 
scavenge pump. The sump is a modular unit with 
7 gallon capacity. The power turbine supplies 
mechanical energy to drive the lift fans and 
propellers through clutch mechanisms. 

The interface to the engine sensors is through the 
FADEC  I/O  busses.     The FADEC  hardware 
includes an upgraded CPU, expanded memory, 
and the capability for future growth.   In addition, 
the enhanced FADEC  offers engine to  engine communication through a  serial network 
connection. The processing and memory capacities were deemed sufficient for the planned 
diagnostics module. 

TFr40B Lubrication System: The TF-40B lubrication system is shown in Figure 5. On the left 
side, the main pump, which is powered through the accessory gearbox by the engine, draws flow 
frorn the sump and delivers it to the lube element. The lube element consists of a fuel/oil heat 
exchanger, a 7-micron filter with bypass, a "last-chance" filter in the mixing block, and a series of 
parallel legs to individual bearings and gears within the engine and gearbox. The flow distribution 
is proportioned by line friction, orifice and injection jet pressure drops. The oil filter bypass is 
passively caused by a high delta-p due to flow restriction (clogging). To prevent bypass during 
cold (high viscosity) operation, the bypass valve has a thermal lockout. 

Figure 4. Landing Craft, Air Cushion 
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The current sensor suite is limited. The sensors that provide the most useful information from the 
perspective of characterizing normal mode operation and faulted conditions are the gas generator 
speed, the oil temperature, and the pressure to the 45 bearing.   At first appearance, the chip 
detectors seem to provide very useful information, but much care must be taken with their use 
given the high nuisance rate and 
manual versus automatic zapping in 
use. In fact, some LCAC systems 
have automatic fuzz burning and 
others   require   the   operator   to 
discharge   the   detector.   Correct 
incorporation of the chip detectors 
requires a significant experimental 
database, which was unavailable. 
The oil level switch in the sump and 
the filter delta-P  switch do not 
provide a real measurement but 
rather only a switch when some 
limit is exceeded. 

Figure 5. Schematic of Lubrication System 

Procedure: The procedure on this program is shown in Figure 6.  The specific components will 
be discussed in greater detail throughout the remainder of the paper. 
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Figure 6. Evolution of Diagnostic Modules 



It must be noted that association of failure modes to sensor and fused data signatures remained a 
hurdle in the current work. Evaluation of LPAS operational data provided some association to 
believed faults, but insufficient data on key parameters prevented the implementation of a fault 
tree or even an implicit association. A better solution would be to support this development with 
a lubrication systems test bench capable of evaluating failure signatures in transitional and seeded 
tests. This concept is further discussed in recommendations for future work. Given the lack of 
failure test and limited data available on the actual engine, the TELSS output was used to 
generate virtual sensor outputs. This data was evaluated in the data fusion and automated 
reasoning modules. 

Turbine Engine Lubrication System Simulator (TELSS): The Turbine Engine Lubrication System 
Simulation (TELSS) consists of a procedural program and a display interface. The procedural 
program is written in C code and uses the analog of electrical impedances to model the oil flow 
circuit. The model contains analytical expressions of mass, momentum, and energy equations as 
welj as empirical relationships. The interface displays state parameters using an object-oriented 
development environment. Both scripted and real system data can be run through the simulation: 
Theeode was optimized for on-line applications and can process a full data calculation in less than 
a few milliseconds on a FADEC-elass processor. A great deal of effort was expended to properly 
characterize the Reynold's number and temperature dependent properties and characteristics in 
the model. TELSS requires the geometry of the network, the gas generator speed, and a bulk oil 
temperature to estimate the pressures and flows throughout.14 Reference 14 provides a more 
thorough description of the model and parameters. 

Data Fusion and Reasoning Tools: Data fusion techniques combine data from multiple sensors 
and information from associated databases to achieve improved accuracy and usually more 
specific inferences than can be achieved through a single measurement.15 Data fusion systems are 
used extensively for target tracking, automated identification of targets and other automated 
reasoning applications. They provide the benefits of improved fault detection and a reduction of 
false alarms over conventional, single sensor alerts. 

Significant observable synergy is possible with digital intelligence techniques such as neural 
networks and fiizzy logic. The use of hybrid (combined) automated reasoning appears to be an 
even more effective method to optimize the diagnosis of failure modes in mechanical systems. 
Current thesis work has indicated that a nominal weighting of 40% NN, 40 % FL, 20 % ES was 
effective in fatigue cracking in gearboxes.16 

Data Analysis Results: 

AlliedSignal Engines Data: AlliedSignal Engines provided data from the comparator engine test 
conducted in the summer of 1996. ASE performed these tests to verify the performance of a test 
cell that is to be used for qualification testing of Enhanced TF-40B production engines. The data 
generated was single design point data within the operational envelope of the engine. That is, the 
data acquisition system was turned on for a second or two at each steady-state condition within 
the test matrix. Because of this method, no continuous data streams were available. Obviously, no 
known faults were present in the test engine. 
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The data was used in several ways. The data was processed using the DFW to produce 
continuous data through interpolation. Typical data is seen in Figure 7. This data allowed the 
opportunity to trend variables against the fuel flow rate to the engine, gas generator speed and 

torque,   and   the   power 
3B53 „,„„„„„„  turbine speed and torque. 

Ultimately, the gas 
generator was deemed the 
most suitable regression 
(independent) variable for 
the other parameters. It 
was used to develop three- 
dimensional maps and 
regressions with a 
measured temperature to 
provide guidelines for 
normal operation. 
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DFW 
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LPAS Data Sets: Operational data was made available to ARL from the Naval Coastal Systems 
Station, Panama City. The data was collected at NCSS as part of their LCAC Performance and 
Analysis System (LPAS). The data was limited to the production engine variables. 

Data files were processed using TELSS in the Data Fusion Workbench. The TELSS interface for 
an LPAS run is shown in Figure &. Since the condition of the oil and filter was unknown for these 
runs, the type of oil and a specified amount of clogging was assumed.   The variation of oil and 
types of filters can vary 
the results  significantly. 
Different MIL-L-23699E 
oils,   which   the   model 
possesses regressions for 
many,    may   vary   the 
flowrate  predictions  by 
5%.   Similar variation is 
seen when trying to apply 
the   filter   clogging   to 
different   vendors   filter 
products. A    more 
thorough   discussion   of 
the     effects     of     oil 
properties     and     filter 
clogging       is       being 
investigated.14 

Figure 8. TELSS Processing of LCAC Run 



The largest effect in predicted pressure and flow is manifested by the characterization of the pump 
pressure relief valve (PRV). Since the TF-40B system is designed ttr relieve at operating speed, 
its effects must be accounted for in the simulation. The pressure relief valve is treated as a 
variable resistance orifiee that increases throughput linearly with pressure. Its SOW characteristics 
were determined using an ASE pump qualification specification. The model predictions are good, 
but better characterization of the main pump PRV would certainly improve the accuracy of the 
simulation. Typical TELSS output graphs are shown in Figures 9 and 10. 
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Figures 9 and 10. TELSS Ngg Input and Mass Flow and Pressure Predictions 

Discussion: The output from the TELSS/DFW was processed using an automated reasoning shell 
tool. The output of a shell that could be used to detect filter-clogging fractions is shown in the 
figures below. An expert system, a fuzzy logic association and a neural network perform the 
evaluations of filter clogging. The flow, temperature and differential pressure were divided into 
three operational ranges. The ES was provided set values for fraction clogged. The FL was 
modeled with trapezoidal membership functions. The NN was trained using the fuzzy logic 
outputs.17 For the first case shown, the combination of 4.6 gpm, 175 deg F, and 12 psid the 
reasoning techniques all predict relatively low clogging. In the next case, the flow is slightly less 
whereas the pressure is slightly higher  ■■■■■■■ H'fjjaalütä psjfel'xj 

at 12.5 psid. The NN evaluation 
quickly leans towards a clogged filter, 
but the other techniques lag in fraction 
clogged. The expert system is not 
sensitive enough to the relationships 
between the variables and the 
significance of the pressure differential 
increasing while the flow decreases 
markedly. In this present study and 
others conducted at ARL, it is 
believed that a hybrid approach will 
allow the greatest flexibility in such 
assessments. 
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Figure 11. Hybrid Reasoning Shell Evaluation (Case 1 and 2) 



The basic reasoning module for the Enhanced TF-40 B uses only the existing sensor suite to 
assess system condition.14 Enhancements to the basic modules are possible with additional sensor 
outputs. A separate leg to the current module that logs the pressure change with varying 
temperature to estimate the viscosity change over a period of time could be performed by storing 
an array of pressure values as a function of measured temperature. An obvious enhanced module 
is one that includes the output of a flow and deltaP sensor at the filter as is shown in the 
autpmated reasoning shell. With these measurements, the TELSS simulation could provide 
direct output to the % clogged of the oil filter. Alternatively, the TELSS code could be used to 
predict the third variable given two of the three. At a minimum for enhanced diagnostics, a pump 
pressure and mass flow rate would greatly improve predictions. 

Conclusion: The objective of the current research program was to demonstrate an improved 
method of diagnosing anomalies and maintaining oil lubrication systems for gas turbine engines. 
The target application was the Enhanced TF-40B gas turbine engine that powers the LCAC 
platform. Initial estimated data sets and ASE test stand data was used in an attempt to 
characterize normal operation and validate the TELSS simulation. Virtual sensors from the 
TELSS program and LCAC operational engine data sets were used in a hybrid reasoning shell. A 
simple module for the current limited sensor suite on the TF-40B was proposed and 
recommendations for enhanced sensor suites and modules was provided. The results and tools, 
while developed for the TF-40B, are applicable to all gas turbine engines and mechanical 
transmissions with similar pressure-fed lubrication systems. 

Recommendations for Future Work: As mentioned in a previous section, the ability to 
associate faulted conditions with measurable parameters is tantamount for developing predictive 
diagnostics. A Lubrication Systems Test Bench {LSTB) has been proposed as a test platform to 
gather transitional and seeded data and augment this work. The LSTB will be capable of 
measuring system and advanced sensing data as faults and conditions requiring maintenance are 
introduced: Development of diagnostic models is expected to result from the fusion of the system 
measurements as they are correlated to an assessed damage state. 
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