
REPl Wff DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-0188), Washington, DC 20503. 

1.  AGENCY USE ONLY (Leave blank) 2.   REPORT DATE 

2 SEP 97 

3.   REPORT TYPE AND DATES COVERED 

Final 1 May 96 - 30 Apr 97 
4.  TITLE AND SUBTITLE 

"Computer Aided Synthesis or Measurement Schemas For Telemetry Applications" 

6.  AUTHOR(S) 

Professor Peter H. Sydenham, Investigator 
Peter Evdokiou, Researcher 

5.  FUNDING NUMBERS 

Grant - F49620-96-1-0186 

7.   PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Australian Center for Test and Evaluation 
University of South Australia 
Building 7, Smith Road 
Salisbury East 
South Australia 5109 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

■N/A 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Asian Office of Aerospace Research and Development (AoARD) 
Unit 45002 
APO AP 96337-5002 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

AOARD 96-01 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 
This report describes the design, implementation, testing and operation of a subminiature telemetry (SMT) configuration 
tool. The configuration tool is comprised of software and hardware components. The softtware, written in Microsoft Visual 
Basic Version 4.0, offers a graphical user interface for specifying SMT configurations. It also includes a function for 
automating the tedious task of setting up a telemetry frame structure. The program features automatic report generation, 
programming of the SMT devices and setting up a test environment to configure and verify correct operation of the SMT 
devices in a laboratory before going out in the field. The hardware includes a programming interface between a PC and an 
SMT device and a programmable test signal generator to test and verify the correct SMT configuration. The SMT 
configuration tool has reduced a labour skilled intensive process to an automated, efficient and user friendly computer aided 
approach. The tool has been used in realistic environments to support test and evaluation missions of high-tech 
state-of-the-art conventional armanent. 

14. SUBJECT TERMS 

Telemetry, subminature, programming. 

15. NUMBER OF PAGES 

140 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRAC1 

UL 

jyriC QUALITY INSPECTED 1 
Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 239.18 
Designed using Perform Pro, WHS/DIOR, Oct 94 



DEPARTMENT OF THE AIR FORCE 
ASIAN OFFICE OF AEROSPACE RESEARCH AND DEVELOPMENT 

AIR FORCE RESEARCH LABORATORY/OFFICE OF SCIENTIFIC RESEARCH 
AOARD UNIT 45002, APO AP 96337-5002 

10 Jun98 

MEMORANDUM FOR Defense Technical Information Center 
8725 John J. Kingman Road, STE 0944 
Fort Belvoir VA 22060-6218 

FROM: AOARD 
Unit 45002 
APO AP 96337-5002 

SUBJECT: Submission of Document 

1. A Final Technical Report entitled, "Computer Aided Synthesis of Measurement 
Schemas for Telemetry Applications" is attached. 

2.  Please contact our Administrative Officer, Dr. Jacque Hawkins, AOARD, DSN: 315- 
229-3388, DSN FAX, 315-229-3133, e-mail: hawkinsj@aoard.yokota.af.mil, if you need 
additional information. 

KOTO WHITE 
Director, AOARD 

Attachment: 
AOARD 96-01, w/SF 298 and DTIC 50 



FINAL TECHNICAL 

REPORT 

Computer Aided Synthesis of 

Measurement Schemas 

for 

Telemetry Applications 

Principal Investigator: Prof. Peter H. Sydenham 

Principal Researcher: Peter Evdokiou 

from 

Australian Center for Test and Evaluation 

University of South Australia 

Building 7, Smith Road 

Salisbury East 

South Australia 5109 

Grant Number: F49620-96-1-0186 

Tuesday, 2 September 1997 

19980623 147 



■f 

,/ 

Final Technical Report: Created at: 

Australian Centre for Test and Evaluation 

University of South Australia 

Adelaide SA, Australia 

Period: 1 May 96 to 30 April 97 

Prof. Peter Sydenham Peter Evdokiou, Meng, Beng (Hons) 

Australian Centre for Test & Evaluation Australian Centre for Test & Evaluation 

University of South Australia University of South Australia 

Salisbury SA, Australia Salisbury SA, Australia 



Table of Contents 

1. INTRODUCTION 9 

2. OBJECTIVE 10 

2.1. AIM 10 
2.2. PROBLEM DEFINITION 10 

2.2.1. Software Configuration Tool 11 
2.2.2. Hardware Test-Bed Interface 12 

3. INTRODUCTION TO SUBMINIATURE FRAME TELEMETRY 13 

3.1. INTRODUCTION TO TELEMETRY 13 
3.2. FRAME TELEMETRY 14 
3.3. THE HARRIS 3003274 SMT DEVICE 16 

3.3.1. Structure of the SMT device..^^ .„ 16 
3.3.2. SMTdevice connections..., / 18 

3.4. SMT DEVICE EEPROM FORMAT 19 
3.4.1. Command part 20 

3.4.1.1. ADAC opcodes: 21 
3.4.2. Scantable part 22 

4. OVERVmW OF THE SMT CONFIGURATION TOOL 23 

4.1. OVERVIEW OF THE CONFIGURATION SYSTEM 23 
4.2. OVERVIEW OF THE SMT CONFIGURATION SOFTWARE 23 

5. DESIGN OF THE SMT CONFIGURATION TOOL 26 

5.1. HARDWARE 26 
5.1.1. Programming interface 26 
5.1.2. Test signal generator. 26 

5.1.2.1. PC interface 27 
5.1.2.2. Analog test signals 27 
5.1.2.3. Digital test signals 28 
5.1.2.4. Serial test signal 28 
5.1.2.5. Power supply 29 

5.1.3. Receiver 31 
5.2. SOFTWARE 31 

5.2.1. Visual Basic 31 
5.2.2. SMT specification database format 32 
5.2.3. SMT specification format 33 
5.2.4. User interface 34 
5.2.5. Frame structure generation 34 

6. TEST AND EVALUATION OF SMT INTERFACE 37 

6.1. SOFTWARE 37 
6.1.1. Debugging 37 

6.1.1.1. Emphasise Combo Box 37 
6.1.1.2. Transmit Frequency Combo Box 38 
6.1.1.3. PN SEED Text Box 38 
6.1.1.4. Minor Frame Length Text Box 39 
6.1.1.5. Minor Frames Per Major Frame Text Box 39 
6.1.1.6. SFID Column Width 39 
6.1.1.7. Generate Report .40 

6.1.2. Inclusion of Extra Features 40 
6.1.2.1. Analog Filter Pop Up Menu 40 
6.1.2.2. Repeat Command Box 40 
6.1.2.3. Scroll Bars 41 

6.1.3. Program Commenting 41 



6.2. HARDWARE 41 
6.2.1. Frequency 41 
6.2.2. Gain and Offset 41 

6.3. POWER SUPPLY 43 

7. USER'S GUIDE TO THE HARDWARE AND SOFTWARE 44 

7.1. SOFTWARE 44 
7.1.1. Creating SMT configurations 44 

7.1.1.1. SMT configuration settings 44 
7.1.1.2. Error messages 45 
7.1.1.3. File Menu 46 
7.1.1.4. Input Menu 46 

7.1.2. Output options 46 
7.1.2.1. EEPROM file creation 46 
7.1.2.2. Test Signal Generator 46 
7.1.2.3. Report generation 46 

7.1.3. How to add new SMT device types 47 
7.1.4. How to change the report layout 48 

7.2. HARDWARE ,.,,_ ,- 48 
7.2.1. Calibration procedure , /...... 48 

8. CONCLUSIONS AND RECOMMENDATIONS 49 

PREFERENCES 50 

10. APPENDIX A: A SAMPLE REPORT 5l 

11. APPENDIX B: SOFTWARE CODE 55 



List of Figures 

Figure 1. SMT Hardware Test-Bed & Software Configuration Tool System 10 

Figure 2. Telemetry system overview 13 

Figure 3: SMT device block diagram 16 

Figure 4: System overview 23 

Figure 5: Software configuration tool overview 24 

Figure 6: SMT Interface specification 26 

Figure 7: Low-pass filter input and output, f_3dB=3f 26 

Figure 8: Low-pass filter input and'output, f.3dB-5f 27 

Figure 9: Test signal generator 29 

Figure 10: SMT Specification database 32 

Figure 11: SMT Database format 33 

Figure 12: Examples of channel distribution 36 

Figure 13: Main configuration screen 44 



List of Tables 

Table 1:IRIG Class I and II telemetry 14 

Table 2. IRIG telemetry frame format 15 

Table 3: IRIG recommended synchronization patterns 15 

Table 4: SMT device pin layout 18 

Table 5: Collision of channels that do not share a common factor 35 



Preface 

This is the Final Technical Report of the collaborative project between the Australian 
Centre for Test & Evaluation (ACTE) at the University of South Australia (IMSA) 
and Wright Laboratory of Eglin Air Force Base. The Author wishes to acknowledge 
the work of the following people: 

• ACTE (South Australia) 

• Prof. Peter Sydenham, Director of ACTE 

• David Harris, Manager of ACTE, 

• Mark Dvorak, Project Leader at ACTE, 

• Peter Evdokiou, Principal Researcher on the system conceptualisation, 
requirements definition, hardware/software implementation, test and 
evaluation, and operation. 

• Eric Lammerts (hardware/software implementation), 

• Howy Truong (software debugging) 

• La Cuong (literature review on modulation schemes). 

• Eglin Air Force Base (Florida) 

• Ed Keller (Eglin AFB) 

• John Cesulka 

• David Kerr 

AFOSR (Tokyo) 

• Dr. Thomas Davis (AFOSR), 

• USAF. 

• 

Peter Evdokiou 

Adelaide, September 2, 1997 



Abstract 

This report describes the design, implementation, testing and operation of a 
subminiature telemetry (SMT) configuration tool. The configuration tool comprises of 
software and hardware components. The software, written in Microsoft Visual Basic 
Version 4.0, offers a graphical user interface for specifying SMT configurations. It 
also includes a function for automating the tedious task of setting up a telemetry frame 
structure. The program features automatic report generation, programming of the SMT 
devices and setting up a test environment to configure and verify correct operation of 
the SMT devices in a laboratory before going out in the field. 

The hardware includes a programming interface between a PC and an SMT device, 
and a programmable test signal generator to test and verify the correct SMT 
configuration. 

The SMT configuration toot has reduced a 'labour skilled intensive process to an 
automated, efficient and user friendly computer aided approach. The tool is been used 
in realistic environments to support test and evaluation missions of high-tech state-of- 
the-art conventional armament at Eglin Air Force Base. 



1.      Introduction 

The University of South Australia is conducting research in collaboration with the 
Royal Australian Air Force and Wright Laboratory of Eglin Air Force Base (Florida, 
USA) to optimise telemetry stream data structures in an effort to improve the 
traceability between test requirements and measured data. 

Modern complex systems require rigorous test and evaluation programmes to be 
conducted to assure that they operate reliably to prescribed standards. Conducting a 
test and evaluation programme requires the acquisition, management, processing and 
analysis of large volumes of test data. The measured data must be traceable to 
internationally accepted standards, and the data processing chain must be well defined 
to guarantee that data of known quality is delivered to customers. 

The colaborative research has investigated how to adapt already developed ACTE 
specification tools to create highly-marketable, off the shelf, Sub-Miniature Telemetry 
(SMT) modules for widespread domain use. These domains are applications where the 
cost per system is affordable to users who previously could not make use of telemetry 
due to high cost, large bulk, and lack of sufficient technical expertise. This research 
has explored set-up configuration tools and the knowledge needed to put telemetry in 
the hands of non-expert users as an effective, affordable, system. Examples *of 
potential users of "affordable telemetry" include: 

• Ambulatory medical patient monitoring, 

• Machine tool automation, 

• Process Control, 

• Wild/farm animal and fish health monitoring, 

• "Just in time", air, sea and land vehicle test, 

• etc. 

The aim of the collaborative research was focused on conceptualising and developing 
demonstrable structured computer aided methodologies, that will aid non-expert users 
of SMT technology, in the process of establishing domain specific measurement/data- 
acquisitions Schemas from an overall generic telemetry model. The model is based on 
the structural, functional, and behavioural capabilities of the current SMT technology. 

This report describes the conceptualisation, design, development, test and evaluation, 
and operation of a software configuration tool for SMT modules. 



2.      Objective 

2.1. Aim 

The aim of this hardware/software development project shall be to conceptualise, 
design, develop, test and evaluate a full prototype system of what shall be called the 
"Sub-Miniature Telemetry (SMT) Hardware Test-Bed and Software Configuration 
Tool. This tool shall form part of the overall research project currently being 
undertaken by the Principal Researcher, Peter Evdokiou. The overall research project 
is known as "Computer Aided Synthesis of Measurement Schemas for Telemetry 
Applications". 

2.2. Problem Definition 

The hardware/software development project £an best be defined by considering 
Error! Reference source not found.. / 

V V 

"    '    \SMT '  ' 
y  ' Transmitter.     '\>-\ Bllllslllli 

i, ••••,••  .. ■/f'u.vl.'.'—,.,1 ■.*„..;f j.%Vv*I*'*T*fS.1s- •'.••»'S'i*.    ■• .••,- i"2._l: '1-11:,',   i,,',    ""/-""**•■ *'v* 

Figure 1. SMT Hardware Test-Bed & Software Configuration Tool System. 

10 



Figure 1 shows the system as a whole when in operation. It shows structurally that the 
SMT transmitter and receiver shall be configured through a Software Configuration 
Tool via a Hardware Test-Bed Interface between the SMT's and the PC environment. 
A description of the Software Configuration Tool and the Hardware Test-Bed 
Interface appear in the following sections. 

2.2.1.  Software Configuration Tool 

The Software Configuration Tool serves three main purposes and hence can be 
considered to have three modes of operation: 

Mode 1: "SMT Set-Up" 

Mode 1 of operation involves the set-up of the SMT EEPROMS on board 
the SMT modules. The EEPROMS on board the SMT's contain the 
program that configure the SMT's/for an specific measurement schema. 
Given a file containing a list of parameters such as: 

• number of inputs, 

• type of inputs (ie., analog, digital, discrete), 

• sampling rates, 

• analog filter bandwidths, 

• TM format, 

• sync words, 

• transmit frequency, 

• gains, etc. 

An EEPROM file is required to be generated in the proper syntax and format, 
as specified by Harris Corporation Engineers, comprising the above 
instantiated parameters. 

In this mode of operation the Software configuration tool should be able to 
take a file comprising of the above instantiated parameters and produce an 
EEPROM file that complies to the Harris Corporation syntax and format, and 
then download to the EEPROM on the SMT's (using a special driver 
supplied by Harris Corporation) via a Hardware Test-Bed Interface that 
connects the PC and SMT's together. 

Configuring the SMT's for an specific measurement schema is only part of 
the problem. Verification must be made about the correctness of the set-up 
procedure to ensure that what is intended to be transmitted will in actual fact 
be what will be received. This brings rise to the next mode of operation. That 
being Mode 2, "SMT Run & Verify". 

Mode 2: "SMT Run & Verify" 

In Mode 2 of operation the Software Configuration Tool must verify the 
correctness of the set-up procedure in Mode 1, and also perform tests to 

11 



obtain performance results on each input and its corresponding receiver 
output. The Verification phase of Mode 2 shall simply involve the sending of 
appropriate signals to the inputs of the SMT and verifying that they have 
been received at the receiver. A report must be produced to show the test 
method, test signals at the transmitter inputs, and the test signals received at 
the receiver, and any other information directly relevant to the Verification 
phase. 

Once the Verification Phase has been completed and is successful then the 
user may wish to apply certain test signals to the inputs of the transmitter and 
view the received signals in real time on the computer for performance 
related purposes. Details of this Test Phase of Mode 2 will be investigated at 
a later date. Once the SMT set-up has been verified and tested to comply with 
the requirements of the user, a detailed report needs to be generated that 
includes all the information relating to the initial requirements of the user, 
set-up and verification results of Modes 1 and 2. 

•  Mode 3: "System Options Set-Up for System Expert" 

Mode 3 simply contains special set-up options to configure the Hardware 
Test-Bed for special Engineering purposes. This mode should not relate to 
the needs of the user but merely for the Telemetry expert to set-up otRer 
interesting features on the Hardware Test-Bed Interface. Possible features 
have yet to be determined. This is left to the discretion of the Engineer 
undertaking this project. 

2.2.2.  Hardware Test-Bed Interface 

The Hardware Test-Bed Interface shall be a physical interface between the PC 
environment that runs the Software Configuration Tool and the SMT transmitter and 
Receiver. This interface shall provide the correct connections between the physical 
elements concerned, and also contain the necessary electronics to perform the various 
functions depicted in the three modes of operation of the Software Configuration 
Tool. 

The Hardware Test-Bed Interface shall meet the interface requirements of the SMT's 
concerned and also the interface requirements of a PC, and the relevant 
communication protocols associated with each of these. 

The Hardware Test-Bed Interface shall be robust, small in size and easy to be handled 
in field environments. Field Environments can span various domains from military, 
medical down to home applications. 

The Hardware Test-Bed Interface shall be built with custom off the shelf hardware. 
Cost of design and parts shall be kept to a minimum as possible. 

12 



3.      Introduction to Subminiature Frame Telemetry 

In this chapter, first an introduction to telemetry in general, and frame telemetry in 
particular will be given. It is followed by a description of the device used in this 
project, the Harris 3003274. Because this device is highly integrated and therefore 
very small, we speak about Subminiature Telemetry (SMT). The description is split 
into two parts: The physical characteristics and the programming of the EEPROM of 
the device. 

3.1.     Introduction to telemetry 

The Federal Communications Commission (FCC) defines telemetry as the "use of 
telecommunication for automatical indicating or recording measurements at a distance 
from the measuring instrument". Telemetering systems are used in many 
environments, like spacecraft^ ^sending dafa to Earth, control of satellite 
communications systems for voice and video communications, monitoring body 
signals of sick persons in hospitals and missile and aircraft testing. Figure 2 shows the 
basic structure,of a telemetry system. 

In most cases data from multiple measurements has to be sent through one channel. 
This calls for a multiplexing method. Well-known multiplexing methods include 
Frequency Division Multiple Access (FDMA), Time Division Multiple Access 
(TDMA) and Code Division Multiple Access (CDMA). In the first case, the 
bandwidth of the channel is divided into subbands, in which data can be sent. In 
TDMA measurements are sent after each other. In CDMA, the data is coded in such a 
way that the correlation with the other coded data is zero. This way, multiple signals 
can be sent simultaneously in the same bandwidth. 

measure- 
ments 
data 
input 

multiplexing 
/ encoding 

decoding / 
demultiplexing 

measure 

—+ transmitter | /, receiver —» *      menis 
—►      data 
—►     output 

Figure 2. Telemetry system overview 

Nowadays data is usually sent over the communications channel as digital data using 
Pulse Code Modulation (PCM). Analog measurements are converted to a digital 
equivalent. The multiplexing method that fits best to digital data channels is TDMA. 
For the receiver to be able to demultiplex the data, the data must be sent in a 
structured way. Data from multiple sources is packed in a frame. If the frames are 
transmitted continuously, we speak of frame telemetry. Another method of 
structuring data is to generate packets of data and send them when they are available, 
much like the format used for most computer-to-computer communication. This is 
called packet telemetry. 

In this project a telemetry device manufactured by Harris Corp. will be used. This 
device is a complete telemetry package in itself. While the size of the device is very 
small (2" x 2" x 0.25"), it features 4 analog, 8 digital and 1 serial inputs, generates a 

13 



telemetry frame, encodes it and modulates it onto a carrier frequency generated 
internally. All of these functions are fully programmable. 

3.2.     Frame telemetry 

The Inter-Range Instrumentation Group (IRIG) has defined two frame formats for 
telemetry purposes. These are called Class I and Class II specification. They are 
illustrated in Table 1. The whole frame is called the major frame. This major frames 
consists of a number of minor frames. In Table 2, the minor frames are shown as 
rows. In Class I, the minor frames are of a fixed length. This length is divided into a 
number of fixed-length words, containing the telemetry data. At the start of each 
minor frame a synchronization word is required. This allows the receiver to determine 
which field contains which data. 

Table 1: IRIG Class I and II telemetry 

Parameter Class I specification Class II specification 

Data bits/words per minor frame <8192 bits or <512 words <16384 bits or <512 words 

Minor frame length Fixed Variability allowed 

Fragmented words Not allowed Allowed 

Format changes Not allowed Allowed 

Asynchronous formats Not allowed Allowed 

Bit rate >10bps > 5Mbps 

Independent subframes Not allowed Allowed 

Supercom spacing Uniform in minor frame "Even as practical" 

Data format Unsigned binary / 

Complement binary 

Others allowed 

Word length 4 to 16 bits 16 to 64 bits 

In a typical application, not all measurements have to be done at the same rate. To 
accomodate this and still use bandwidth efficiently, the IRIG standard allows 
supercommuted and subcommutated signals. 

Commutated signals are sent each minor frame, and their position within the minor 
frame is fixed. The sampling rate of these signals therefore equals the minor frame 
rate. Examples in Table 2 of these signals are the field labeled 1, 2, 3 and n-1. 

Supercommutated signals are sent more than once per minor frame. Therefore, a 
higher sampling rate is possible. Usually, the fields are positioned in the minor frame 
in such a way that the time difference between each occurrence of the field is the same 
(Class I requires this). An example of this are the Supercom-n-fields in Table 2. 

14 



Subcommutated signals are sent less than once per minor frame. (Without 
subcommutated signals, there would be no reason to have more than one minor frame 
per major frame). Subcommutated signals are put in a subframe, shown in Table 2 
with a grey background. Each signal appears once per major frame. Example: i+1 

Super-subcommutated signals are signals sent in a subframe, but appearing more 
than once per major frame. An example of this is field i in Table 2. 

Table 2. IRIG telemetry frame format 

Sync Word Supercoml Supercom2 n-1 

Sync Word Supercoml Supercom2 n-1 

Sync Word Supercoml Supercom2 n-1 

Sync Word S~upercoml UPir  l-i Supercom2 n-1 

Sync Word Supercoml 
pi» m Supercom2 n-1 

Sync Word Supercoml 
mm 

Supercom2 n-1 

Sync Word Supercoml 
mm UP HUB Supercom2 n-1 

Sync Word Supercoml m m 3Hs4? Supercom2 n-1 

In Class I Telemetry, subframes are synchonized with the major frame. That means a 
subframe starts when a major frame starts. To allow the receiver to distinguish 
between the minor frames, a field called subframe identifier (SFTD) is used. This is a 
counter that is increased or decreased every minor frame, and is reset when another 
major frame starts. 

In Class II Telemetry, there are much more variations allowed than in Class I. For 
example, it is allowed to have subframes that are not synchronized with the major 
frame. Then the subframe must have its own synchronization method. It is also 
allowed to fragment a data word. All fragments have to be transmitted within the 
same minor frame. Table 1 sums up the specifications of the two classes. 

The synchronization word, with which each minor frame begins, is a fixed bit pattern 
of 8 to 33 bits. IRIG has compiled a table of optimal bit patterns that can be used. The 
patterns are optimal in the sense that the chances are minimal that the receiver locks 
onto the wrong words. The optimal patterns are listed in Table 3. 

15 



Table 3: IRIG recommended synchronization patterns 

length pattern length pattern 

16 111010111001000 0 25 111 110 010110 111000100 000 0 

17 111 100110101000 00 26 111 110100110101 100110 000 00 

18 111 100 110 101000 000 27 111110101101001100 110 000 000 

19 111 110 011001010 000 0 28 111 101011 110 010 110 011000 000 0 

20 111011011 110 001000 00 29 111 101011 110 011001 101000 000 00 

21 111011 101001011000 000 30 111 110101 111001 100 110 100 000 000 

22 111 100 110110 101000 000 0 31 111 111 100110 111 110101000 010 000 0 

23 111 101011 100 110 100 000 00 32 111 111 100 110 101 100 101 000 010 000 00 

24 111 110 101 111001 100 100 000 
1 : rne  

33 111 110 111010011 101001010 010 011000 

3.3.     The Harris 3003274 SMT device 

The Harris SMT device is a complete telemetry package. While the size of the device 
is very small (2" x 2" x 0.25"), it features 4 analog, 8 digital and 1 serial inputs, 
generates a telemetry frame, encodes it and modulates it onto a carrier frequency 
generated internally. All of these functions are programmable. The device is available 
is two versions: an FSK (Frequency Shift Keying) and a QPSK (Quadrature Phase 
Shift Keying) version. 

3.3.1.  Structure of the SMT device 

A block diagram of the QPSK version of the device is given in Figure 3. Each part of 
the device will be described below. The transmitter section will be described only 
briefly because this project does not deal with its characteristics. 

analog Input 1 

*— 

MUX 

-   gain/bandwidth 

programmable offset 

+   programmable 
-   gam/bandwidth 

«— programmable offctt AID 

analog Inputs 

«— 

+   programmable 
-   gam/bandwidth 

programmable offset 

•A. g«iwstor .    .     .. —HI-   gam/bandwidth 
1 

 1 /*\ QPSK 
modulttor 

f—in   1 progrunmible offset 
■4 

Frame 
generator 

<SH 
convolution»! 

encoder 
block 

Interleaver 
dHfarantial 
anaxhr 

T ._ 
se a pa 

Figure 3. SMT device block diagram 

16 



Analog signal conditioning 
Each analog channel features a differential input, programmable offset and gain, 
and a programmable anti-aliasing filter. The analog inputs are differential inputs. 
The offset can be applied by connecting the voltage offset output from the device 
to the negative input. What remains then is a single-end input. So the user can 
choose either the offset capability or a differential input. 
Possible offset values are: -2.5 V - 2.5 V in steps of 0.3125 V. A value of 0 V, 
however, is not possible. But if no offset is needed, the negative input can be 
connected to ground instead of to the offset output voltage. 
Possible gain values are: 1, 2,4, 8, 16, 32. The accuracy of the gain stage is 0.4%. 
This filter consists of a discrete-time filter (using switched-capacitor techniques) 
functioning as an anti-aliasing filter for the A/D converter, preceded by a 
continuous-time filter which provides anti-aliasing for the discrete-time filter. 
Unfortunately, the documentation of the device doesn't specify the order of the 
filters. 
Possible anti-aliasing filter cut-off frequencies are: 122 Hz, 244 Hz, 488 Hz, 976 
Hz, 1953 Hz and 3906 Hz. The accuracy of the cut-off frequency is 1%. 

Multiplexer 
The multiplexer selects an analog channel from the inputs. Because all the data 
words are time-multiplexed in the frame structure anyway, the usage of only one 
A/D converter is no drawback. However, due to setup times it is not possible to 
transmit two analog values after each other. So in the frame structure an analog 
channel has to be followed by a non-analog channel. 
A/D converter 
The A/D converter is of the successive-approximation type. It has an input range 
of -2.5 V to 2.5 V. The resolution is 8 bits, the linearity 1/2 LSB and the accuracy 
3% of full-scale. 
Frame generator 
The frame generator is fully programmable. As only data words of 8 bit are 
generated, the frame generator is programmed byte by byte. This implies that the 
synchronization word must be either 16, 24 or 32 bits long, and that the SHOD field 
must be either 8 or 16 bits long. When programming the table that the device 
traverses to generate the frame, bytes with value <128 are taken as channel 
addresses, while byte >=128 are taken as literal values to be transmitted. Because 
sync words and the SFTD field have to be programmed as literal values, each 8-bit 
part of the sync words and SHOD field has to start with a "l"-bit. This limits the 
choice of sync words. Especially the IRIG recommended syncwords of length 24 
and 32 are not possible to program. 
Convolutional encoder & block interleaver 
The convolutional encoder uses Viterbi R=l/2, k=7 encoding. This means the data 
rate is increased by a factor of two. The available data rate is therefore reduced by 
a factor of two when the user chooses to use Viterbi encoding. The block 
interleaver is used to equalize the spectrum. 

17 



• Differential encoder 

This encoder encodes the bit stream using the well-known Manchester encoding 

technique. 

• Code generator and multiplier 

The code generator generator a pseudo-random bit sequence with which the data 
stream is multiplied. This generates a spread-spectrum signal. The receiver side 
should use the same pseudo-random generator seed. A maximum of 12 SMT 
devices can operate using the same frequency provided they are programmed with 
different seeds that cause bit sequences having a cross-correlation function 

equalling 0. The seed is 11 bits long. 

• QPSK modulator 

The QPSK modulator encodes the resulting data stream on a carrier frequency 
generated internally. The carrier frequency can be set from 2320 Mhz to 2380 Mhz 
in steps of 10 Mhz. xv_ ^ 

\ j 

3.3.2.   SMT device connections 

All connections to the SMT, except for the transmitter output, are made with one 
connector. This is a 37-pin subminiature D-connector. On the SMT device, the gender 
of the connector is female. *" 

Table 4 lists the pin assignments. The connections can be divided in six categories: 
Analog, Digital, Serial, Setup, Control and Power. The first three are inputs for the 
measurements (and the auxiliary outputs Serial Clock and A1-A4 Voltage Offset). 
The Setup signals are used for programming the device. The Control signals are used 
for setting run-time parameters: The transmitter is switched on by tying the pin 
Transmitter On (33) to ground, and a beacon signal can be switched on by providing a 
TTL high level to the pin Beacon Enable (3). The beacon signal allows a receiver to 
determine the position of the device, and causes only a moderate current drawn from 
the power supply (much less than while transmitting). The power connections are used 
to connect the two supply voltages (a positive and a negative) to the SMT device. 
These voltages must both be between 5.2V and 7.4V. The device draws a maximum 
of 400mA from the positive supply and 40mA from the negative supply. When the 
transmitter is switched off however, the current drawn is much lower. 

18 



Table 4: SMT device pin layout 

pin name group type pin name group type 

0 Setup Done Setup TTLout 19 Setup Data Setup TTLin 

l A3- Analog Analog in 20 Ready for Data Setup TTLout 

2 Setup Data Clock Setup TTLin 21 A2 + Analog Analog in 

3 Beacon Enable Control TTLin 22 D7 Digital TTLin 

4 A4 + Analog Analog in 23 A3 + Analog Analog in 

5 Dl Digital TTLin 24 D3 Digital TTLin 

6 D5 Digital TTLin 25 D4 Digital TTLin 

7 A2- Analog Analog in 26 D2 Digital TTLin 

8 DO Digital TTLin 27 A1 + Analog Analog in 

9 Serial Clock Serial TTLout 28 D6~ Digital TTLin 

10 Serial Byte Data Input Serial TTLin 29 Al Voltage Offset Analog Analog out 

11 Al- Analog Analog in 30 A2 Voltage Offset Analog Analog out 

12 A3 Voltage Offset Analog Analog out 31 Signal Ground 

13 A4- Analog Analog in 32 A4 Voltage Offset Analog Analog out 

14 Daisy Out Control TTLin 33 Transmitter On Control 

15 MCMTEMP Control 34 Negative Supply Return (+) Power 

16 Negative supply (-) Power 35 Positive Supply (+) Power 

17 Positive Supply (+) Power 36 Positive Supply Return (-) Power 

18 Positive Supply Return (-) 1 Power 

Nota Bene: When the Signal Ground (31) is connected to the Power Supply Return 
pins (18, 34, 36), the current limiting circuitry inside the device is rendered 
inoperational. It is therefore advisable to use separate power supplies for the device 
and the surrounding circuitry. 

3.4.     SMT device EEPROM format 

This section describes how the SMT device interprets the contents of its EEPROM. 
The programming of the SMT device EEPROM is generally done by a program called 
ITPDL.EXE which is provided by Harris Corp. The connection to the SMT device is 
made using a standard PC parallel port. The input ITPDL needs a file in ASCII text 
format. In this file, each line should consist of two decimal values, optionally 
followed by text. The text is ignored by the program. This makes it possible to add 
comments to the file, making it more readable for humans. The first value on each line 
is the EEPROM address, and the second value is the data to program into that 
location. 

The file consists of two parts: 

19 



• Command part 
The command part contains instructions that the SMT device performs when it is 
powered up. The instructions involve setting up transmission parameters, analog 
channel conditioning and scantable length. 

• Scantable 
When the SMT device had been put in run mode, the SMT device stops executing 
commands, and starts to scan the scantable and generates output bytes according 
to the table entries. This is how the telemetry frames are generated. 

3.4.1.  Command part 

Commands consists of an opcode (operation code) and parameters. The 3 most 
significant bits of the first byte of a command form the opcode. This allows for 8 
opcodes. The remaining 5 bits can be used as parameters. Also, there can be more 
bytes following the first byte, providing more parameter space. The opcodes are: 

.0 
This opcode takes the 3 LSB's and programs them as the 3 MSB's of the spread- 
spectrum pseudorandom generator seed (PN seed). It takes a second byte as 
parameter and programs that as the 8 LSB's of the PN seed. 

• 1 
This opcodes takes three bytes as parameter and sends them to the FSK/QPSK 
modulator and carrier frequency generator. When the first parameter byte is 0x80, 
the carrier frequency is set. When the first parameter byte is 0, the reference word 
is set. The second and third byte function as one 16-bit parameter (MSB first, then 
LSB). 
For FSK versions, the carrier frequency equals the second parameter / 8 [Mhz], 
and the reference word should be 0x103. 

For QPSK versions, the carrier frequency equals the second parameter, and the 
reference word should be 0x23. 

• 2 
This opcode takes the 4 LSB's and programs them into the Single Bit Setup 
Register. This registers controls the bitrate, encoding and modulation type: 

parameter setup 

0x0 200kb/s FSK, no Viterbi coding / block interleaving 

0x4 200kb/s FSK, Viterbi coding / block interleaving 

0x3 2Mb/s FSK, no Viterbi coding / block interleaving 

0x7 2Mb/s FSK, Viterbi coding / block interleaving 

0x8 200kb/s QPSK, no Viterbi coding / block interleaving 

OxC 200kb/s QPSK, Viterbi coding / block interleaving 

3 
The 3 LSB's are sent to the ADAC (A/D converter) as an opcode. The second byte 
provides the ADAC address, while the third byte provides the ADAC data. 

20 



The 3 LSB's are sent to the ADAC (A/D signal conditioner) as an opcode. The 
following byte is sent as ADAC address. 

5 
This opcode puts the SMT device is run mode. It takes two bytes as parameters, 
and uses this 16-bit value as the scantable start address. The scantable end address 
is always 8191. After reaching that value, the scantable adress counter wraps back 
to the start address. 
After this command, the SMT device stops processing command bytes and starts 
its normal operation. 

6&7 
These opcodes are unspecified. 

3.4.1.1.AI)AC opcodes: 

•    0 
Initialize ADAC. This opcode needs to be sent twice, with an adress parameter of 
0, to reset the ADAC. 

•    1 
Program offset: 

Param. Offset Param. Offset Param. Offset Param. Offset 

0 0.3125 V 4 1.5625 V 8 -2.5 V OxC -1.25 V 

1 0.625 V 5 1.875 V 9 -2.1875 V OxD -0.9375 V 

2 0.9375 V 6 2.1875 V OxA -1.875 V OxE -0.625 V 

3 1.25 V 7 2.5 V OxB -1.5625 V OxF -0.3125 V 

Address program. Each time this command is sent, the next channel of the ADAC 
is programmed with its address (given as parameter to his command). This opcode 
should be sent after initializing and before gain/offset/filter setup of a particular 
channel. The address is used when programming gain/offset/filter properties and 
in the scantable. 

21 



Program bandwidth of anti-aliasing filter (200kb/s version): 

Parameter Cut-off frequency 

2 122 Hz 

3 244 Hz 

4 488 Hz 

5 976 Hz 

6 1953 Hz 

7 3906 Hz 

This opcode is unspecified 

5 
Program gain: 

Parameter Gain 

0 Power Down 

1 1 

2 2 

3 4 

4 8 

5 16 

6 32 

7 Invalid 

• 6 
Reset CO A function (it is not specified what the-COA function is). 

• 7 
This opcode is unspecified 

3.4.2.  Scantable part 

A byte in the scantable is interpreted as a channel address when the most significant 
bit is 0, and taken as a literal value when the most significant bit is 1. The channel 
addresses that can be used are 0, indicating the serial input, 1, indicating the digital 
input, and any of the analog channels addresses, which are determined by the user 
using the ADAC Address Program commands (opcode 2). The maximum size of the 
scantable is 7168 bytes. Note that it is the user's task to take care of synchronization / 
subframe identifier fields. These fields are implemented by putting literal values in the 
scantable. 

22 



4.      Overview of the SMT Configuration Tool 

4.1. Overview of the configuration system 

The structure of the SMT configuration system is depicted in Figure 4. The user sets 
up the SMT system using the software configuration tool. The software configuration 
tool determines the necessary configurations of the three hardware components and 
configures those components through the PC hardware interface. In the following 
sections the components that make up the system are described in short. 
• Test signal generator 

The test signal generator is used to provide signals to the SMT transmitter inputs 
in order to test whether the SMT transmitter and receiver are setup properly. The 
requirements of these signals vary with the SMT transmitter setup. Therefore, the 
test signal generator must be programmable by the configuration tool. 

• SMT transmitter 
The SMT transmitter integrates of a data acquisition system providing analog and 
digital inputs and a transmitter. All of its functions are programmed through the 
PC hardware interface. 

• SMT receiver 
The SMT receiver is able to receive signals from multiple SMT transmitters. In 
this configuration system only one transmitter is used at a time. The SMT receiver 
is used to verify the correct operation of the SMT transmitter. It is configured 
though a serial interface connected to the PC hardware interface. 

• PC hardware interface 
The PC hardware interface forms the connection between the software and the 
hardware components of the system. On the PC side, it connects to a standard 

^ parallel port. Therefore there are no special requirements on the PC. 
• Software configuration tool 

The configuration tool enables users 
without expertise on telemetry 
systems to program the SMT 
transmitter. This allows for easy 
configuration. The software can also 
generate reports on the actions 
performed for easy documentation. 

4.2. Overview of the SMT 
configuration software 

The software configuration tool can be 
divided in functional parts, shown in 
Figure 5. In the following paragraphs, 
these parts and their interaction are 
described. 

\ /  — / —► \ / 

test signal 
generator —► 

SMT 
transmitter 

SMT 
receiver 

i . i i i 

' 
PC hardware interface 

JL 

" 
software configuration tool 

;, 

*' 
user 

Figure 4: System overview 

23 



SMT Device Specification database 
The information about the device we want to configure is contained in this 
database. The reason to use this database is to allow other device types to be added 
in later, without rewriting the software. The information can be divided into two 
categories: the device capabilities, and how to setup the device. 
SMT configuration 
This part of the tool comprises a graphical user interface to enter an SMT 
configuration. Information from the databases described above helps the user to 
enter this information quickly and reliably. 
Storage system 
Complete configurations can be saved to and retrieved from disk. 
SMT configuration file generation 
From the information entered by the user, an SMT configuration file is generated. 
This file describes the contents of the EEPROM of the SMT device. As this file 
conforms to the specification by Harris Corp., it allows the use of the program 
ITPDL, written by Harris Corp., to program the SMT devices. 
SMT programming 
This part consists of the ITPDL program. It programs the SMT device using a PC 
parallel port according to the configuration file. Regrettably this program cannot 
provide feedback about the results of the programming to the SMT configuration 
tool. It only reports to the user, on the screen. Therefore, the results of the 
programming cannot be included in the report that can be generated automatically 
(see below). 
Test signal generation, test signal generator setup 
For each configuration, test signals are defined that allow the user to verify each 
aspect of the SMT programming, for instance the analog input range and filter cut- 
off frequency. When the verification starts, the test signal generator is configured 
through the PC hardware interface. 

measurements 
database —► 

sensor 
database 

transmitter 
setup database 

SMT device 
database 

' ■ ■ ■ ■ 

r 

-'- 
' 

V 

SMT configuration <—» storage 
system 

SMT receiver 
interface 

■ ' • r ' ' 1 ' 
SMT configuration- 

file generation 
test signal 
generation 

SMT receiver 
configuration 

SMT signal 
reconstruction 

' • ' ' i ' ' ■ 

SMT programming 
(ITPDL.EXE) 

test signal 
generator setup 

SMT receiver 
setup SMT verification 

* ' ■ • ' r i ' 

■■» 

Figure 5: Software configuration tool overview 

24 



• SMT receiver configuration, SMT receiver setup 
The receiver setup must of course match the transmitter setup. If the receiver is 
directly connected to the PC the configuration can be done automatically. If the 
receiver is a stand-alone system, the user can use the information in the report to 
configure it properly. 

• SMT receiver interface 
The receiver interface is the driver which reads data from the SMT receiver 
through the PC hardware interface. 

• SMT signal reconstruction, SMT verification 
From the frames received by the receiver interface, the individual analog and 
digital values are retrieved. Then, the signals received are verified to match the 
signals generated by the test signal generator. 

• Report generator 
The report generator is an important part of the system. It produces a report about 
all of the configuration settings. The report is created in Microsoft Word using 
OLE (object linking and embedding). The reason to do this is the rich feature set 
of Word, and the fact that Word is the mostly used word processor on PCs. It 
enabled users to easily integrate the report in a larger document. 

25 



5.      Design of the SMT Configuration Tool 

5.1.     Hardware 

5.1.1.  Programming interface 

D1 e- -o Setup Data Clock 

DOO- 

Ü 
= a a u) = ot 
Cm n Q 

/Error ©- 

-e Setup Data 

-o Ready for Data 

Ground o- 

Busy o—i 
T 

Ground o—< 

»LI sioM 
ON 

-o Ground 

-e On 

_Q beacon 
enable 

-o done 

-o daisy out 

Figure 6: SMT Interface specification 

Because the programming of the 
SMT Device is performed by the 
program ITPDL.EXE provided by 
Harris     Corp.,     the     interface 
hardware   has   to   conform   to 
Harris'        specification.       This 
specification is depicted in Figure 
6.   The   schematic   needs   little 
explanation.    The    "done"-LED 
should    light    up    when    the 
programming   of  the   device   is 
completed.    The    "daisy-chain"- 
LED should be off when the "On"-switched is closed. In the actual design, two AND 
gates are put between D0/D1 and Setup Data Clock/Setup Data. This allow the user to 
turn off the power of the SMT device and remove all signals without shutting off the 
PC. 

5.1.2.   Test signal generator 

The test signal generator has to 
provide the signals needed to test 
whether the SMT device is setup 
and programmed properly. Of the 
analog channels, gain, offset and 
low-pass filter characteristics 
should be tested. To implement 
this, a square-wave generator was 
designed with programmable 
frequency, gain and offset. 

-saBnU 
2.8ns 2.4ns 

n U<U3:+)  • U(C2:2) 

The frequency of the generator is 
set to approx. 1/3 of the filter cut- 
off frequency. Then the 3rd 
harmonic of the square-wave is  Figure 7: Low-pass filter input and output, f.3dB=3f 
still there after the filter (attenuated 3dB), while higher-order harmonics are 
significantly reduced in amplitude. At the receiver side, this should be clearly visible. 
If the filter setting is not set correctly, either the 3rd harmonic disappears (cut-off 
frequency too low), or higher-order frequencies appear (cut-off frequency too high). 
Because the transfer function of the low-pass filter is not given (only the -3dB 
frequency), the output cannot be predicted in what it will look like. To get some idea 
of the shape of the output waveform, a plot was made of a square wave of 1.3 kHz, 
and the same signal filtered by 4th-order Butterworth filters with -3db frequencies of 
3.9 kHz and 6.5 kHz (Figure 7 and Figure 8, resp.). The 5th harmonic is clearly visible 

JE 
e £■ 
o " 
U £Q 

t ° 
= E 
CO  u 

1   '   '   '   ',/ 

26 



iiOOnll-1      •      ■      - 

flü-j      •      •      • 

JHIOnU-i      -      ■      ■ 

|- 1 | 1 
\l   1 

in      Figure      8.      The 
amplitude of the signal is 
set to 0.6 times the range 
of the analog input. One 
reason for this is the fact 
that   after   filtering   the 
voltage span of the signal 
gets larger (see Figure 7 
and Figure  8).  Another 
reason  is  to   allow  for 
some   tolerance   in   the 
signal generator, allowing 
cheaper components to be 
used without the need for Figure 8: Low-pass filter input and output, f.3dB=5f 
calibration. 

Because the SMT device has a very limited set of possible settings (16 offset values, 6 
gain values and 6 cut-off frequencies), the test signal generator doesn't need complex 
circuitry. Is is therefore possible to build it with standard, off-the-shelf components, 
allowing a low-cost design. 

Because the SMT device has 4 input channels, four test signal generators should be 
provided. To keep the circuit simple, we use one test signal generator which is time- 
shared by the four channels. Every second the PC switches the output of the test signal 
generator to another analog input. The other analog inputs receive 0 V input. 

The complete circuit diagram is depicted in "Figure 9. A discussion of the function of 
all components appears in the following section. 

5.1.2.1 JC interface 

A41 of the functions, except switching on/off the SMT device power supply, are setup 
by the PC though its parallel port. For this we need 12 bits (3 to select the frequency, 3 
to select the gain, 4 to select the offset and 2 to select the channel). Because there's 12 
output bits on the PC parallel port, of which 2 are taken by the SMT program 
interface, we need to extend the number of output bits. This is done by a shift register 
(IC5). The software provides data -signals on D5 and clock signals on D6. An 
advantage of using an extra IC here is the fact that the output characteristics of IC5 are 
well-known. This allows a 4-bit D/A converter to be built with a simple 4-resistor 
network (R8-R11). This can't be done reliably on the parallel port output because 
signal levels and output impedance aren't specified precisely enough (the only 
specification you can rely on is that the output signals are TTL compatible). 

ICla and IClb provide a means for the software to check whether the hardware is 
connected to a parallel port (and to which parallel port). 

5.1.2.2.Analog test signals 

The test signal frequencies are generated by IClc and IC2. IClc generates a signal of 
10.4 kHz. IC2 divides this frequency to 1.3 kHz, 650 Hz, 325 Hz, 163 Hz, 81 Hz, 41 
Hz, 20 Hz and 10 Hz. One of these is selected by IC3, a multiplexer. After this, the 
DC component of the signal is removed by the high-pass filter formed by R1-R6 and 

27 



CIO. The cut-off frequency of this filter is 0.85 Hz. Because the lowest possible signal 
frequency is 20 Hz, this is sufficient. The gain selection circuit is built around R1-R6 
and IC4. Multiplexer IC4 selects the signal attenuation by connecting the input of 
IC6a to a point in the resistor ladder. IC6b buffers the signal, which is then converted 
to a current by P2. The inverting input of IC6c provides a virtual ground. Therefore, 
the signal current generated by IC6b / P2 is independent of R8-R11, P3 and R20. To 
the signal current the offset current is added. This offset current is generated by 4-bit 
D/A converter IC5 / R8-R11. Because we need positive as well as negative offset 
currents, the DC level of the offset is adjusted to 0 V by P3. The signal current plus 
offset current is then converted to an output voltage by IC6c / R20. 

The component values follow from: 

(   4.1V      . V„w    4.7V ^ 
V    = -R vout iv20 30kQ, P2       P2> 

Where n e {0,1,...,6,7,9,10,...,16}, A e {1,-,-,-,—,—,0}and Vsignal is a square- 

wave with an amplitude of 4.7 V / 2 = 2.35 V. 

Note the omission of n=8, caused by R8=l^R9 instead of i?8=l^i?9. This 

conforms to the omission of 0V in the possible offset values of the SMT device. 

Because n=8 corresponds to 0V offset, the DC level of the output voltage equals: 

V    —R   (°.4JV      4JV) 
°ut 2\  30m     P3) 

This needs to be zero, so P3 = 3.75&Q. 

The amplitude of the output needs to be 0.6*2.5V=1.5V in case the gain of the SMT 
2.35V 

device is lx. Therefore, P2 = Ron — = 3.125£Q. 20 1.5V 

The resulting analog signal is connected to one of the analog input of the SMT device 
by IC8. R14-R17 ensure that the input voltages the inputs not currently connected to 
the signal generator output equal 0V., To enable the offset capabilities of the SMT 
device, the offset output voltages are' connected tö'^the inverting inputs of the SMT 
device. 

5.1.2.3.Digital test signals 

As digital test signals, the output from the frequency divider is taken. At the receiver 
side one can check the frequency of each digital input, or, if the digital inputs are 

presented as one byte, the value of that byte increases every = 0.769m,y. 
1.3kHz 

5.1.2.4.Serial test signal 

Since access to documentation on the serial input was not available, it was not 
possible to define a meaningful test signal. Therefore, the serial input was connected 
to the first digital input, DO. One might be able to check the serial input function by 
comparing the serial channel values with those of DO. 

28 



5.1.2.5.Power supply 

The test signal generator itself needs a +5v supply for the digital IC's and a positive 
and negative supply for the analog output. The SMT device needs a +5.2 - 7.4V at 
400mA and -5.2 - 7.4V at 40mA supply. The power supply circuit is set up to provide 
+6.5V, +4.7V, -4.7V and -6.5V, and works as follows: If an external power adaptor is 
used, only the circuit of IC10 with surrounding components is used. This circuit is 
well-known. A bridge rectifier (Dl) and a buffer capacitor (C2) are provided to be 
able to connect a DC as well as AC power adaptor, and to eliminate the need to pay 
attention to the polarity of the input voltage. 

Unless shown ofherwise, Vdd of all ICs is connected to +4W, and decoupled by a 1 MnF capacitor. 

"Figure 9: Test signal generator 

29 



If power is drawn from the PC keyboard connector, the output voltage has to be higher 
than the input voltage. Therefore a switching power supply is needed. This is built 
using IC9 and surrounding circuitry. IC9 is a simple-to-use, almost completely 
integrated switching power supply. It works as follows: IC9 turns on and off its output 
switch, which is connected between SW and GND, at a frequency of 52 kHz. When 
the switch is closed, energy is accumulated in inductor LI. When the switch opens, 
the side of the inductor connected to D4 flies above the input voltage (this is caused 
by the negative dILl I dt of the inductor), thereby charging C7. IC9 regulates the 

output voltage by changing the duty cycle of the output switch signal. The shorter the 
switch is closed, the less energy is accumulated in LI and the lower the output voltage 
will be. 

Because the switching power supply has no current-limiting circuitry, the output is 
connected to the voltage-regulating circuitry of IC10. Another advantage of this setup 
is that the power supplies to the SMT device contains less high-frequency interference 
generated by the switching. A disadvantage of this approach is the extra energy loss 
incurred by IC10. A higher current is therefore drawn from the PC. This current 
equals: 

j _     SMT   '   * generator   "IC9,out 
sup ply 

"H "lC9jn 

Where ISMT < 450mA (400mA for the positive supply and 50mA for the negative 
supply), and Igenemtor < 100mA. 77 denotes the effiency of IC9, and is typically 80%, 

according to the datasheet. VIC9out = 6.5V + 2V (IC10 needs 2 V power drop) and 

VIC9out =5V. Therefore, 7supp;>, ~ 1.2A. PC power supplies are quite able to provide 
this amount of current. 

Because power to IC10 is supplied through either Dl or D4, it is possible to have both 
power circuits connected at the same time, while only one is providing output power. 
This saves a switch and is easier for the user. From the 6.5V delivered by IC10, a 
4.7V voltage is derived with R21 and D3. Because the components using this power 
require very little power, no further regulation is necessary. The negative power 
supply is derived from the positive supply by ICH, a charge-pump voltage inverter. 
Its main features are a voltage drop of less than 0v3V at an output current of 60mA 
and a conversion efficiency of 88% (typ.). Only two external capacitors are needed for 
the device to function. The -4.7V supply is derived from the -6.5V supply the same 
way as for the positive supply voltage. 

When the SMT device is switched off, the negative voltages are also switched off 
because they're only needed for the SMT device and the analog test signal generator. 
Besides that, all signals to the SMT device are switched off so the device can be 
unplugged safely without turning off the PC. This is accomplished through IC7a-c, 
IClb,d and R12/R13. When the SMT device is switched off, the input of ICld drops 
to 0V (R12 is provided to protect the input against the 6.5V input, which is higher 
than the supply voltage of ICld (4.7v)). The output of ICld then disables the 
multiplexers IC3 and IC8, and resets IC2. Then all digital and analog inputs of the 
SMT device are 0V. Through IClb and IC7a,b the programming interface pins of the 
SMT are set to 0V. IC7c decouples the SMT from a pull-up resistor that might be 
present on the /ERROR input of the parallel port. 

30 



Note that the signal ground is connected to the power supply return pins. The SMT 
device specifications discourages this because the internal current limiting circuitry 
doesn't work anymore. The reason for this action is because at the time the circuit was 
designed this information was not yet available. And changing the circuit afterwards 
would take too much time. The consequences are not too serious because the power 
supply circuit has a current limiting circuit of its own. 

5.1.3.  Receiver 

Because a receiver nor the specification of one was available, it was impossible to 
integrate a receiver interface into the design. This means that the correctness of the 
SMT device setup cannot be verified by the configuration tool and has to be done 
manually. 

5.2.     Software 

5.2.1.   Visual Basic 

Visual Basic is a programming language developed by Microsoft to provide 
programmers with a quick and easy method of developing Windows applications. It 
provides the programmer with an integrated environment where he can use tools to 
create a graphical user interface and use event driven programming techniques. A 
developer can quickly and easily create a user interface, then write the code to respond 
to specific events which occur as a result of user input. The integrated development 
environment allows you to attach code quickly to the interface created for each event 
which is applicable for any type of object on the interface. 

Advantages of using Visual Basic are: 

• Quick development of nice-looking programs. 

• Easy integration with other Microsoft applications. 

• Built-in extensive database capabilities. 

• Easy creation of programs for both Windows 3.x and Windows 95. 

Disadvantages of using Visual Basic are: * 

• The Basic language is a not so powerful language compared to C / C++. 

• A large run-time library is required to run VB programs and must be distributed 
with the program. 

• It's almost impossible to port programs to other platforms than Windows. 

• Run-time efficiency is traded in for easy development. As a result, programs run 
slower and need more memory. 

In this project, quick development was a must. Therefore, Visual Basic was chosen to 
program the SMT configuration tool. 

The information the SMT software uses is managed by the Visual Basic Database 
Engine. Advantages of this approach are the possibilities of data exchange with other 
applications, good integration with Visual Basic controls and easy maintenance by 

31 



iü Table: ascii        B 
data i        description t 

g!i. 

-1: bitrate/coding 
•1 11UPN seed [MSB) 
•1 llb.'PN seedILSB) 
ä 

5ÖTeniJ"qPSK settings 

8 
_.J28j 

0 repeated analog mit 
130 

i1 

iÄi 
99! 

4: 
•11 filtering A1 

97* 
 ' 

1 

p 

'— 

■1 oll;elAl 
101 

4!                                 i 
1jgainA1 

102"!                ™      ! 
4t 
0A2 

9i 
5 

■l! filtering Ä2 
97T       """1 

1 

5 
-1'offset A2 

"  101" 
 1                j 

•1 gamA2 
 löz 1 

m 

5!                                 1 
ÖIÄ3 

991                                 | 
6 | 

•1 filtering A3 

W. 

97 
' "'G] I 

■1 ollietA3 

>$. 

101                                     I 
 61 | 

■Ü! gain A3 1 
M HRecord:|                 |of i 

m 

Table: system 

Table: channels 
IM     II   llll_lllli-_¥ ill 

A1 _ 
A2 
A3 A4"""! 

D 
S 
SFIO 

m&mmimmmmmm^m^wmmwM^m^m 
Yes; 
Ye: 
Yes 
Yest' 
Ho' 
No! 
No 

25 
37 
49]" 

S. 
I 
S 

' 8 

16; Analog Ch1 
28! Analog Ch 2 
40 Analog ChT 
52 Analog ChT" 

Discrete byte 
Serial elk out tdati 
Subframe Identifier i 

:IET 

eachminorliame I 
NO] 
No] 
No 
No 
No 

 No! 
Yes' 

IMb/s.FSK, Viterbi coding 
100 kb/s,FSK. Viterbi coding 
100fcb/:.QPSK Viteibi coding 
2 Mb7s, FSK( no Viterbi coding 
200 kb7s. FSK. no Viterbi coding 

MlpilRecordill" of 6 gl 

2320 Mhzi 
2330 Mhz 
2340 Mhz 
2350Mhz' 
23|bMhzt 

2380 Mhz I 

data 

jffl 
26 
36 

II 
56 II 
76 
b 

MB Recorder 

VIIIUL. I imt cldtd I test Jala 

Table: gain       | ■■■ j* 

Tx"    ! 
2* 
4*  
8x 

Mi 
32 x 

gjj||pecord|r ToTT 

± 

t«s 

Table: offset *f 
value  i tint dütu | test Ja 

fiJ125Vi 
■0.625ÖV! 
■0 9375 V 
■125Ü0V 

IS 
14l 
13 
if 

•15625 V 
1.8750 V 

-2.1875 V] 
JlflOOVi 
0.3125 V i 
06250 V 
0 9375 V 
1.2500 V 

111 
TOT 

9 
8* 

HRecord:|1 of 16 

Table: filter 

122.1 Hz 
1953 H; 

H] 
VfiluB I «nt data Ipil data I 

244.1 Hz i 
3906 Hz 
488.3 Hz I 
97&6Hz"f 

113 
T_227 
147 

J83 
 PS 

BIJilRecordlT TofB 

Figure 10: SMT Specification database 

less experienced programmers. Furthermore, it allows rapid development without 
worrying about file formats and low-level file operations. 

Disadvantages are the probably lower speed and an increase in the program size and 
required memory. Speed, however, is not a concern because there are only small 
amounts of data involved in the SMT setup. And because all database functions are 
contained in the Visual Basic run-time library, program size isn't a problem either. 

5.2.2.  SMT specification database format 

To make is possible to program future types of SMT devices, the information about 
the device is put in a Microsoft Access database. When a new type of SMT device 
becomes available, the software doesn't need to be modified. Only the database has to 
be altered. However, some basic assumptions about the device programming structure 
have to be made. The database structure is depicted in Figure 10. The database 
consists of 8 tables: 

ascii: ASCII file template 

This table consists of the bytes that are the same in each configuration. Positions 
that have to be filled in afterwards are set to -1. The table also contains a 
description of each field, making the ASCII file more readable for humans. 

32 



    Table: system_setup  |^j; 
pnseed frequency! imnoiriamclenqlh   minoiFiaiüetI »ynrlcnnthI wnc i(idStait|rfidDiil deicriptmn 

>; 200 ktVs, QPSK, no Viteibi codingl 7FF       12380Mta 

p]a"eeord: ~fotT IEEM; 

12! 
"or 

16 EB90 !255 Down    test setup 

m 

m 

Tables 1 
SHKL 
Sync2 
Ä1 
D_  
A2 
SFID 
Al 
D 
AT  
s  
A1 
D  
Spinel 
Sync2 
A1 

SFID 
Al  

PL 
A4 

l_ 
Al*" 

■ 

■ 

Table: analog FFi 
...... A2 

A3 
A4 

Channel    |       Gdin       1      OHsrt     I       Filter 
4x 
8x 
16x 
32 x 

12.5000 V 
! -0.9375 V 
R25Ö0V" 
! 03125 V 

i1953 Hz 
19761 Hz 
i46ft"3i¥'" 

M Record: 1 of 4 UM: 

Figure 11: SMT Database format 

• system: System parameters 
This table contains the ASCII file length, and the position in the ASCII file of the 
system parameters: bitrate, transmission frequency, PN Seed and scantable start 
address. 

• channels: Channel characteristics 
In this table the channels supported by the SMT device are listed. Sync words are 
not listed, because they are a special case. The properties of each channel are: 
name, description, value to be put in the scantable, whether the channel is analog 
or digital, position of gain/offset/filter setting in the ASCII file (only applicable for 
analog channels) and whether this value should appear at the same position in each 
minor frame. 

• transmitfreq, bitrate, gain, offset, filter 
In these table the possible values for each parameter are listed, along with the 
value to program the SMT device with that value. The Gain/Offset/Filter entries 
also have a test_data field, which is used to program the test signal generator. 

The way the database is setup makes it easy to change the characteristics SMT device. 
You can add more channels, change transmission specifications, bitrates and so forth. 

5.2.3.  SMT specification format 

It is possible to load/save the SMT configuration from/to disk. The Microsoft Access 
Database format was chosen to do this. This allows other programs (like Visual Basic 
applications or MS Office applications) to interact with this data. The database is 
depicted in Figure 11. The table 'system_setup' contains the system parameters line 
bitrate, PN seed etc. The table 'analog' contains the properties of the analog channels. 
The table 'scantable' contains the scantable in a one-dimensional way: All minor 
frames are put after each other. The reason not to use a two-dimensional format is that 

33 



is is more difficult and slower to add/remove fields when the frame dimensions are 
changed. Furthermore, it takes more effort to write software to interact with a database 
with a variable number of fields. That means it would be harder for external programs 
to interact with the database. 

5.2.4. User interface 

The user interface consists of the main editing window and some additional windows 
used for special functions. The main editing window allows the user to edit all of the 
SMT configuration properties. The most important additional windows are the Frame 
Generation window, the View Errors window, the SMT EEPROM file window and 
the Test Signal Generator status window. 

A description of how to use the software is given in the next chapter. No description 
of the source code will be given, as it should be clear by itself. Where useful, some 
comments were included, so one should be able to understand / modify the code. The 
only exception is the frame generation code, which deserves a little more explanation. 

5.2.5. Frame structure generation 

The algorithm generating the frame structure should take as inputs the sampling 
frequency requirements of the channels, and produce on its output either the frame 
structure or an indication that the input requirements cannot be met. 

The input sampling frequencies are in fact given as integers describing the period time 
of the sampling, expressed in the byte transmission time. For example, if the byte rate 
is 25kb/s and the desired sampling frequency is 1kHz, then the period time is 25. The 
reason the inputs are given like this is that a period time of n means that the channel 
value should be repeated every n bytes. 

The frame structure generated always consists of only one minor frame. The reason 
why this is done is that this allows a more efficient use of bandwidth, because there 
are less sync words needed, and no subframe identifiers are needed. 

Example: Consider the fo lowing two frame structures: 

Syncl Sync 2 Al D A2 SFID Al A3 Sync 1 , 
> 

Sync 2 Al D A2 Al A3 

Syncl Sync 2 Al D A2 SFID Al S Al D A2 Al S 

Syncl Sync 2 Al D A2 SFID Al A3 Al D A2 Al A3 

Syncl Sync 2 Al D A2 SFID Al A4 Al D A2 Al A4 

The left frame structure consists of 4 minor frames, each consisting of 8 bytes. The 
right frame structure consists of 1 minor frame consisting of 32 bytes (displayed as an 
8-by-4 matrix). Since the word rate is the same for both frames, it is clear that the 
sampling frequencies of each channel are the same for both frames. The ten empty 
cells in the frame on the right can be filled in with more data. 

So if one minor frame is always preferable over multiple minor frames, one might ask 
himself why minor frames are used at all. The reason for this is that the Class IIRIG 

34 



Standard prescribes a maximum minor frame length of 8192 bits or 512 words. For 
example a frame structure of 64x16 bytes can't be replaced by a 1024x1 structure. 

The SMT device used in this project however only has 6 channels (4 analog, a digital 
and a serial). There's no need to use frame structures with as total length of more than 
512 words. Even future devices with 8 or 16 channels would hardly need such large 
frame structures. 

The frame structure generator generates every second frame field. It does this because 
the SMT device can't handle two analog channels directly after each other. So in 
between analog channels there can only be the digital channel(s), the serial channel(s) 
and the sync words. This provides so much bandwidth for the digital and serial 
channels that they are not included in the automatic frame structure generation. 

To improve readability, in the rest of this section only the analog channels are 
mentioned, as if there are no other channels. The other channels get weaved in later. 

The analog channel period times are refered to as nj,... «#./. There are N-l analog 
channels. gcd() denotes the greatest common divisor of its arguments, and lcm() 
denotes the least common multiple of its arguments. 

Because the IRIG standards require the spacing of each channel to be uniform within 
the minor frame, the minor frame length must be a multiple of n,- , i=l...N-l. 
Therefore, the minor frame length should be lcm(n;,.„ nN.j) or a multiple thereof. 
Using a multiple has no advantages, and it therefore not considered. Knowing the 
frame length, we know the period time of the sync word, for which a space should 
also be reserved. We denote the period time of the sync word by nN, and treat the sync 
word as a normal channel. So we have N channels in total. 

Now the remaining problem is how to fill the frame structure in such a way that all 
channels fit in without colliding. For two channels not to collide, it is required and 
sufficient that their period times share a common factor, gcd(n/,n2). For example, if 
tlie period times are 4 and 5, there will always be a collision no matter how you shift 
the cells. This is shown in Table 5. 

Table 5: Collision of channels that do not share a common factor 

Al Al ~ Al 
-..V 

Al 

A2 A2 A2 A2 A2 

A2 A2 A2 A2 A2 

A2 A2 A2 A2 A2 

A2 A2 A2 A2 A2 

For more than two channels not to collide, their period times should at least share a 
common factor, gcd(«;,... n^). If this common factor is greater or equal to the number 
of channels, it fits. Otherwise, the channels should be divided among gcd(n/,... n^) 
groups. In every such group the same requirements apply, except that the period times 
should be divided by gcd(«/,... «#)• 

35 



To make this description a little bit more readable, Figure 12 shows two examples on 
how channels can be fitted in. The first example shows how three channels fit in 
directly because their common factor is large enough. In the second channel, the 
common factor is 2 which is less than the number of channels. The channels are 
therefore divided into two groups. The first one only contains nj, the second one 
contains n.2 ... n.4. In the second group, the common factor divided by the common 
factor of the previous group (2) equals 3. This equals the number of channels. 
Therefore it is possible to fit these channels into the frame structure. 

Generally there can be a lot of ways to divide channels among groups. The algorithm 
implemented in SCANTBL.BAS (listed in Appendix A) tries all combinations. It tries 
the possibilities that are most likely to succeed (those with equal distribution over the 
groups) first. The algorithm uses the function "try_permutation" recursively to 
distribute channels among the groups, and the function "try_subtable" to check each 
group. When a valid distribution is found, the resulting positions of the channels in 
the frame structure are recorded in the array "offset". When the user accepts the 
results, the procedure "generateScantable" puts the values in the frame structure. The 

0 
n,=3 n,=6 n,=15 

number of channels=3 

gcd(nj,... nN) = 3 

a 
number of channels=4 

gcd(/i7,... nN) = 2 

Figure 12: Examples of channel distribution 

positions are shifted in such a way thatthe sync wojd is the first word. 

36 



6.      Test and Evaluation of SMT Interface 

Unfortunately during the initial testing and evaluation process conducted in Australia 
access to an SMT device and SMT receiver was impossible. The only testing that 
could be done was therefore the software, the test signals generated by the Test Signal 
Generator and the power supply. Later however, when testing was performed at 
Wright Laboratory (Eglin Air Force Base, Florida USA), the testing focussed on the 
software as the primary objective. It was agreed that the hardware would be left for 
someone else to test and modify. 

6.1.     Software 

The software has been tested with different SMT device specifications, and different 
setups. Minor frame lengths of 3-512 have been tested and 1-256 minor frames per 
major frame. A bug still existing in the program is that the EEPROM file is generated 
within a string of maximum length 64 kbytes, and displayed in a textbox with a 
maximum string length of 32 kbytes. Because the average line length is approx. 25, 
this means that problems occur when the total frame length exceeds 1280 bytes. A 
solution to this problem may be writing the EEPROM file directly to disk instead of 
accumulating the text in a string. 

6.1.1.  Debugging 

6.1.1.1. Emphasise Combo Box 

The function of the emphasise combo box is emphasise on one data channel. That is it 
tries to re-arrange the frame into an N rows x M columns matrix such that the data 
channel to be emphasised is shown down one column. This function is only available 
when there is only one Minor Frame Per Major Frame. The TableWidth TextBox 
value would be modified (to the value M) to reflect on the change. The problems and 
solutions for this combo box are given in the table below: 

No Problem t            Solution 

1 The combo box does not offer a means~to undo 
the emphasise command. 

This was fixed by adding a new item in the 
combo box called "Normal", which reverses 
the emphasise function. 

2 The program would crash when the user tried 
to modify the Scantable whilst in emphasise 
mode. 

Fixed by not allowing editing whilst in 
amphasise mode. 

37 



6.1.1.2. Transmit Frequency Combo Box 

The function of the Transmit Frequency Combo Box is to show the user the possibile 
frequencies available for configuration of the SMT device. The problems and 
solutions for this combo box are given in the table below: 

No Problem Solution 

1 The frequencies shown were out of order. Fixed by setting the "sort" property of the 
ComboBox to true. Double listing of 
frequencies were also removed. 

2 Depending on the modulation type (QPSK or 
FSK) chosen in the BitRate ComboBox, only 
certain   frequencies   were   available   to   the 
Transmit Frequency ComboBox. 

Fixed by using a simple number filter to select 
the frequencies required and reloading the 
Transmit Frequency ComboBox every time the 
BitRate was changed. 

3 As the user clears the Transmit Frequency 
ComboBox   the   BitRate   ComboBox   was 
changed.    This   was   necessary   as   some 
frequencies were not allowed under QPSK and 
vise versa for FSK.  The user might have 
chosen a correct frequency under QPSK, but is 
incorrect if the user decides to change the 
format to FSK. This offered inconvenience to 
the user. 

Fixed by setting up a new database table to 
enter a default value in the Box. This allows 
the user enter their own default value by 
changing the value in the database table. 

6.1.1.3. PN SEED Text Box 

The function of the PN SEED Text Box is required when selecting modulation type of 
QPSK. The problems and solutions for this combo box are given in the table below: 

No Problem Solution 

1 Text  Box   is   enabled   for  both   types   of 
modulation.                                        / 

Fixed by enabling the edit option of the Text 
Box when QPSK is selected and disabled when 
FSKis selected. 

38 



6.1.1.4. Minor Frame Length Text Box 

The function of the Minor Frame Length Text Box is to specify how many cells 
should be in each minor frame. The problems and solutions for this combo box are 
given in the table below: 

No Problem Solution 

1 

2 

The Text Box does not respond to the user 
after Enter is pressed. The program would only 
respond   after  the   user  clicks   the   mouse 
elsewhere on the screen. 

The Text Box cuts off data. This arises when a 
user decides to change the number in the 
Minor Frame Length Text Box when the frame 
is still under emphasis, the program assumes 
the original Minor Frame Length with only M 
columns, hence results in cutting off data in the 
second row onwards and appends the new cells 
from cell M onwards. 

Fixed by creating an event to respond to the 
"Enter" and "Tab" keys. 

Before changing the length of the frame, check 
if Scantable is  in emphasis.  If it is  then 
Normalise before changing length.    Problem 
fixed. 

6.1.1.5. Minor Frames Per Major Frame Text Box 

The function of this Text Box is to specify how many minor frames are within the 
major frame. The problems and solutions for this combo box are given in the table 
below: 

No Problem Solution 

1 The text box does not respond to the user after 
Enter is pressed. 

Fixed by creating an event to respond to the 
"Enter" and "Tab" keys. 

6.1.1.6. SFID Column Width 

The problems and solutions for this are given in the table below: 

No Problem Solution 

1 When the user  specifies  a column  in the 
Scantable to be the SFID column, "SFID" is 
not shown in entirety due to the width of the 
cells. 

Fixed by checking if the column is designated 
"SFID" and if so the cell width is adjusted. 

39 



6.1.1.7. Generate Report 

The function of the generate report menu item is to activate the procedure which 
generates an MS Word 6 document detailing the configuration information entered in 
the current project. The problems and solutions for this are given in the table below: 

No Problem Solution 

1 If there is only one minor frame in the major 
frame, the code generates a two column grid 
for the scantable in the document. This is 
wasteful of paper, and unprofessional in the 
presentation.    There   was    also   redundant 
information printed in the docuement relating 
to the testing of signals. This is not required at 
present. 

Fixed   by   commenting   out   the   code   to 
emphasise the scantable together with code 
regarding the testing of signals. 

6.1.2.  Inclusion of Extra Features 

The following extra features were built into the software to make it more user 
friendly, easy to use, and robust. 

6.1.2.1. Analog Filter Pop Up Menu 

The function of this is to pop up a menu of available frequencies for the filters. The 
prequirements and solutions for this are given in the table below: 

No Requirement Solution 

1 There are only certain frequencies for 200Kb/s 
and a different set of frequencies for 2Mb/s. 

/ 

An extra menu has been created to cater for the 
seclection   of  different   sets   based   on   the 
BitRate.   * 

6.1.2.2. Repeat Command Box 

The function of this Repeat Command Box allows the user to highlight the set of cells 
to be repeated in sequence to the end of the minor frame length. If the pattern copied 
is incomplete at the end of the minor frame then the user is notified with a message to 
bring attention to the matter. 

40 



6.1.2.3. Scroll Bars 

The software was also intended to be used with a lap-top computer out in the field. 
Currently the user interface is set to medium screen resolution. If the software is 
installed on computers with lower screen resolutions than the current user interface 
screen resolution then the users will not be able to see the entire user interface. To 
overcome this, scroll bars have been introduced to allow the user to scroll to parts of 
the user interface cut-off by lower screen resolutions. 

The software module used to incorporate scroll bars on the user interface comes from 
a third party provider. This evident when the software is first run. A message appears 
to inform the user that a third party module is in use and needs to be registered. This is 
left to the USAF to proceed with any further action on this matter. 

6.1.3.  Program Commenting 

All the code in the software contains brief comments to aid programmers in 
understanding what the code does and to allow for easy readability and modification 
of the code in the future. The complete software code is attached in Appendix B. 

6.2.     Hardware 

After calibration, the hardware was tested using a Tektronix 2225 oscilloscope. The 
measurements include frequency, offset and amplitude of the test signal. Tests on 
long-term stability of the test signals and the influence of disturbing factors like 
temperature variations and load variations on the power supply were not performed as 
this product is only considered a concept phase demonstrator. 

6.2.1. Frequency 

Because all frequencies are derived from one source (an RC generator) by binary 
divider circuitry, only one measurement suffices. The frequency was measured on the 
output for channel 1 with settings: gain: lx, offset^ 0.3125 V and filter 3.9kHz. The 
frequency should be 1.3kHz in this case. Because the measurement was done just after 
calibration, it may not come as a surprise that the frequency was exactly what it 
should be. 

6.2.2. Gain and Offset 

The gain and the offset were measured for in several combinations. The test results are 
enumerated in the following table (the first value denotes the measured amplitude in 
volts, the second the measured offset in volts): 

Gain 

Offset lx 4x 32x 

41 



Gain 

Offset lx 4x 32x 

-2.5 V 1.4 

-2.4 

0.33 

-2.35 

45m 

-2.3 

-1.25 V 1.4 

-1.15 

0.33 

-1.2 

45m 

-1.15 

-0.3125 V 1.45 

-0.25 

0.34 

-0.24 

45m 

-0.27 

+0.3125 V 1.5 

0.30 

0.32 

0.32 

45m 

0.33 

1.25 V 1.45 

1.4 

0.35 

1.2 

45m 

1.2 

2.5 V 1.45 

2.5 

0.34 

2.4 

45m 

2.4 

The relative inaccuracy of these results is shown below: 

Gain 

Offset lx 4x 32x 

-2.5 V -6.7% 

-4% 

-12% 

-6% 

-10% 

-8% 

-1.25 V -6.7 

-8% 

-12% 

-4% 

-10% 

-8% 

-0.3125 V -3.3% 

-20% 

-9.4% 

-23.2% 

-10% 

-13.6% 

+0.3125 V 0% f 

-4% 

-4.7%     ' 

2.4% 

-10% 

5.6% 

1.25 V -3.3% 

12% 

-6.7% 

4% 

-10% 

4% 

2.5 V -3.3% 

0% 

-9.3% 

-4% 

-10% 

-4% 

The inaccuracies measured are pretty large to what you would expect from a signal 
generator. However, the purpose of the test signal generator is only to test whether the 
setup was done correctly. For this purpose, variations of up to 10 percent are not a 
problem. There are some measurements that fall out of this range. Reasons for this can 
be the poor power supply stabilization of the 4.7V supply and inaccuracy of resistors. 

42 



6.3.     Power supply 

The Test Signal Generator has two power supply options: An AC or DC power back, 
or the PC. After building the circuit, some problems arose using the PC power supply. 
Inductor LI became very hot, after which the generated voltage collapsed. This is 
most likely caused by an incorrect type of inductor used for LI, causing it to be driven 
into saturation. This can cause a significant dissipation. Therefore, only one power 
option remains. 

The quality of the standard voltage regulating circuitry was not fully tested. It may be 
expected however that the IC used for this purpose (the LM317T) is up to its task. 

43 



7.      User's Guide to the Hardware and Software 

7.1.     Software 

7.1.1.   Creating SMT configurations 

Figure 13 shows the SMT configuration screen. The configuration is divided into 4 
groups: descriptions, transmission setup, channel setup and frame structure setup. 

7.1.1.1. SMT configuration settings 

The descriptions are for human use only. A project name, a description of this 
particular setup and your name can be filled in. 

The transmission setup consists of settings for bitrate/encoding, PN Seed (QPSK 
version only, don't care for the FSK version), transmission frequency and 
synchronization word setup. You can pick most settings from the drop-down boxes, 
which contain all possible values for the setting. When filling in the sync word, note 
that the length of the syncword should match the 'sync word length' field. 

The channel setup is organized as a matrix. In the different rows the analog channels 
are listed. The digital and serial channel(s) don't have properties to setup and are 
therefore omitted from the matrix. In the columns, the gain, offset and bandwidth 
properties are listed. When you click on a cell, a pick list pops up, allowing you to 
choose a value for the selected property. It is also possible to select an entire column 

File    input    Output    Help 
SMT Configuration Tool - SMT.MDB 

MäUOTWiwMraimrK« * WM JWMa*>v|*miftHr Sfci \*-*wt*:- jby^jftHT'. !pvc?»np> "v^Tt^-uOTrcir^a<rTtij«ii>w)TCc»j ■* i "xiiX" V^wmmmmrwkuwaw'fttt r*i T^NJQONHW* mm m 

BSpio|eclname_ II 
SHtest setup 
m-r :■■■■■'■-'■"■■ s 

»i»;«t gy.y-'-^'»tMii-llP«ra'«*»l >tt-<mCT«j-.-tara«»iiiia.miirni«f Maanma«gs«i«8j 

Figure 13: Main configuration screen 

44 



by clicking on the column header or dragging the mouse across the matrix. All 
selected properties are filled in then. When using the keyboard, you can move around 
with the cursor keys and select values using the spacebar or enter key. Multiple cells 
can be changed by using the shift+cursor keys. 

The frame structure setup consists of the settings of the minor frame length, the 
number of minor frames, the subframe-identifier (SFTD) (only if there's more than one 
minor frame) and the frame itself. The sync words are already filled in, since their 
position is fixed. The cells are named according to IRIG standards (the first field after 
the sync words is numbered 1). Editing the frame structure works just like the analog 
channels: When you click a cell, or select a region, a pick list pops up, allowing you to 
choose the cell value. You can also choose to clear the cells, copy them to the 
clipboard or paste the clipboard into the frame structure. The format used on the 
clipboard is text with each row on a line, columns separated by tabs. This format 
allows easy integration with Microsoft Excel and other applications that use data in a 
tabular format. There are also two command buttons that deal with the clipboard: 
Copy Entire and Paste Entire. Copy Entire copies the whole frame to the clipboard. 
This is equivalent to selecting the whole frame structure and choosing Copy from the 
pick list. The Paste Entire has some added functionality: It examines the clipboard and 
adjusts the settings for minor frame length and the number of minor frames. So if you 
prepared a frame structure in a different application, you paste it with ease. 

The SFTD settings consist of a start value and a direction. The start value determines 
he values of the SFED in the first minor frame. Each following minor frame gets a 
number one higher or lower than in the previous frame. 

When there's only one minor frame, things change: The frame structure can be viewed 
not only as one row with several columns, it can also be viewed as a matrix. This has 
two purposes: First, giving a better view of the frame structure, since it usually 
eliminates the need to scroll the screen. Second, giving a clear view of how often a 
cell value is repeated. You can set the number of columns to any number the minor 
frame length is divisible by. An easier way to change the number of columns is click 
the Emphasize Channel control. When you select a channel from the list, the program 
emphasizes the position of that channel, and tries to adjust the column width so that 
the channel appears once a row, in the same column. This only works when the 
channel values are spaced uniformly ir/the minor frame (this is an IRIG requirement). 

The SFDD setting disappears because there's no need for an SFID. 

7.1.1.2.Error messages 

When you enter an inappropriate value, or violate the requirements imposed by the 
SMT device capabilities, an error message is generated. This error message is 
displayed in de bottom of the window. If you enable the Sound checkbox, a beep is 
generated when an error occurs. The software was deliberately made in such a way 
that the user can continue editing without being interrupted with message windows 
stating things you might know already. There can be only one error message in the 
text box, and the text box only displays errors in the item you are currently editing. If 
you want a list of all error, choose View Errors on the Output menu. Note that still 
only one error message per setting is displayed. 

45 



7.1.1.3 Jlle Menu 

The File menu offers you the familiar New/Open/Save/Save As options. The only 
thing different from most Windows applications is that the SMT configuration files 
are saved in the Microsoft Access database format. You can save the configuration 
data to an existing database, even if it doesn't already contain the tables used to hold 
the SMT data. The tables are automatically created then. When the tables do already 
exist, their properties should be compatible with the requirements of the configuration 
tool. Otherwise, you are informed why things are not working. 

The other options in the File menu (Open/Edit SMT Device Specification) allow you 
to use other SMT device specifications than the default one. 

7.1.1 AInput Menu 

Currently, the only item on this menu is the automatic frame structure generation. You 
can specify the sample frequencies you want by typing them in the boxes. With the 
button "Generate Frame Structure" you can check whether the chosen combination is 
possible. Unfortunately the user gets little help when it comes to selecting appropriate 
values. There was no time left to improve this part. With the button "Use this frame 
structure", the frame structure on the main form is filled with the channels specified. 

7.1.2.   Output options 

The SMT Configuration Tool has three ways to output the SMT configuration: 
Creating an SMT EEPROM file necessary to program the SMT device, setting up the 
test signal generator and creating a report of the configuration. 

7.1.2.1.EEPROM file creation 

If you choose this option, the program generates the EEPROM file and displays it in a 
window. Comments are added to the file, so it is possible to inspect the system 
settings, channel settings and scantable. After inspection you can save it, and 
optionally start ITPDL to program the device. Refer to the ITPDL documentation for 
instruction about this. 

7.1.2.2.Test Signal Generatgr 

When you activate this option, the program investigates the parallel ports on the PC to 
check whether the hardware is connected. The standard port addresses 0x3BC (LPT1), 
0x378 (LPT1/2) and 0x278 (LPT2/3) are checked. If the hardware is found, it is 
configured to generate the correct test signals. You can choose to test one channel, or 
have the program alternate between the four channels automatically. Don't forget that 
when the channel is set to a certain value, the input voltage of the other channels 
equals 0. 

7.1.2.3.Report generation 

To generate the report, functionality of Microsoft Word is borrowed. This means you 
have to have Word installed on your machine. The program creates a link to Word 
using OLE (object linking and embedding). It sends the configuration data to Word 
and formats it. The information included is: 

46 



• Title, project name, description, author, date&time, number of pages 

• Transmission Parameters 

• Analog channel properties 

• Digital channels properties 

• Frame structure 

• Test signals 

• EEPROM file 

A sample report is included in Appendix A. 

For the Analog and Digital channels, the sampling frequency is automatically deduced 
from the frame structure and bitrate. When non-uniform spacing of supercommutated 
signal occurs, this is printed as well. Strictly speaking, non-uniform spacing is not 
allowed by the IRIG Class I standards. 

When Word is ready creating the report, it saves it with the name you chose. You may 
want to print it too, but you can of course do this later as well. 

7.1.3.  How to add new SMT device types 

To add new SMT devices, you need to generate an SMT device specification file. The 
easiest way is to copy the existing SMTSPEC.MDB file to a new name and editing the 
tables. That way, the table structures are automatically correct. The following tables 
are to be edited: 
• ascii 

This table contains the configuration part of the EEPROM. All commands are pre- 
entered into this table. You need to figure out these commands yourself. 
Parameters and such are filled in by the program. The locations of those 
parameters are listed in the tables "system" and "channels". Locations that need to 
be filled in are given the data value -1. Since this is an invalid value for the 
EEPROM, it allow the configuration tool to detect that information is missing. 

• system 
The program uses only the first record of this table. The fields contain the 
locations in the EEPROM configuration part of various system parameters. 
Exceptions are the fields "asciiFileLength" and "scantableMaxLength". These 
contain the EEPROM size and the maximum size of the scantable, resp. 

• bitrate & transmitfreq 
These tables contain the valid values for these system parameters. The field 
"smt_data" contains the values to program into the EEPROM locations. 

• channels 
This table describes the properties of the input channels of the device. For all 
channels, this includes the name, description and the boolean field 
"eachminorframe". This field determines whether it's required to have this field in 
each minor frame in the same position. For the digital, serial and analog channels, 
the value with which the channel is identified in the scantable is given in the field 
"scantable_value".  Finally,  only for analog channels,  the  locations  in  the 

47 



EEPROM configuration part of the gain, offset and filter properties of the channel 
are given. 

• gain, offset & filter 

These tables contain the valid choices for the Gain, Offset and Filter settings of the 
analog channels. For each choice, the value to put into the EEPROM configuration 
part is given.The field "test_data" is used by the Test Signal generator. It contains 
the codes to setup the test hardware correctly. 

7.1.4.  How to change the report layout 

You may want to alter the paper size, margins etc. of the report. If you want to change 
the default values the program uses, start Word and edit the file REPORT.DOC, 
residing in the SMT configuration tool's program directory. This file contains the 
template used for creating the file. You can change the paragraph style by changing 
the styles "Heading 1" (used for the title), "Heading 2" (used for the header of each 
section), "SMT.EEPROM" (used for the EEPROM file) and "Normal" (used for 
normal text and tables). Other styles are not used. 

7.2.     Hardware 

7.2.1.   Calibration procedure 

The test signal generator has three calibration points: Frequency (PI), Gain (P2) and 
Offset (P3). These calibrations do not influence each other, so they can be done in any 
order. Below a calibration procedure is described (there is of course more than one 
way to do it). For this procedure an oscilloscope is needed. Only one channel is 
needed, and the bandwidth of the signals measured is so small (below 100kHz) that 
almost any scope will do. 

• Step 1: Frequency 

** Connect the scope to the CLK pin of IC2 (pin 10) and turn PI so that the 
frequency equals 10.4 kHz. 

• Step 2: Offset 

Run the SMT configuration tool, set for channel 1 the gain to 32, the offset to 
2.5V and the filter bandwidth to, 3.9kHz. Stajk the test signal generator, select 
channel 1. Connect the scope input to the A1+ pin of the SMT connector. A 
square wave with a small amplitude (something like 50mV) and frequency of 
1.3kHz should be visible. Turn P3 so that the mean level of the signal equals 2.5V. 

• Step 3: Gain 

Change the gain setting of channel 1 to 1 and the offset to 0.3125V. Start the test 
signal generator, select channel 1. Connect the scope input to the A1+ pin of the 
SMT connector. Turn P2 so that the peak-peak value of the square wave equals 
3V. 

This completes the hardware calibration. 

48 



8.      Conclusions and Recommendations 

During this project, an SMT configuration tool was developed and tested. Hardware 
as well as software has been designed and tested. The software allows the user to 
easily put together a set of specifications to program the SMT device. The hardware 
allows the user to actually program the device and test its setup. 

Using off-the-shelf database technology, easy integration with other programs is 
possible. 

An aim that is not attained fully is the computer-aided frame structure generation. It is 
therefore highly recommended that further research be conducted in this area. 

An aim than could not be attained at all is the integration of the receiver side of the 
telemetry system. This is because no information was available about that system. 

49 



9.      References 

Stephen Horan, "Introduction to PCM Telemetering Systems", CRC Press, Inc., 1993 

OJ.  Strock,   "Telemetry Computer Systems:  The New Generation", Instrument 
Society of America, 1988 

'TRIG   Standard   106-93:    Telemetry   Standards",    Telemetry   Group,    Range 
Commanders Council, 1993 

50 



10.    Appendix A: A Sample Report 

SMT Configuration Report 
Project: test project 

Description: test setup 

Author: Eric Lammerts 

Date of creation: Monday, Sep 16 1996 16:16 

Number of pages: 4 

Transmission parameters 

Bitrate 200 kb/s, QPSK, no Viterbi coding 

PN Seed 7FF 

Transmit frequency 2380 Mhz 

Analog channels 
Name Gain Offset Filter Sampling frequency 

Al 4x 2.5000 V 3906 Hz 6250 Hz 

A2 8x -0.9375 V 1953 Hz 2083 Hz 

A3 16 x -1.2500 V 976.6 Hz 1042 Hz 

A4 32 x 0.3125 V 488.3 Hz 1042 Hz 

Digital channels 
Name Sampling frequency 

EL 6250 Hz 

S 2083 Hz 

Frame Structure 
Minor frame length: 12 

Minor frames per major frame: 4 

Sync words: EB 90 (hex) 

SFID Start value: 255 

SFID Direction: Down 

Frame Structure: 

1 2 3 4 5 6 7 8 9 10 

Minor frame 1 Syncl Sync2 Al D A2 SFID Al D A3 S Al D 

Minor frame 2 Syncl Sync2 Al D A2 SFID Al D A4 S Al D 

Minor frame 3 Syncl Sync2 Al D A2 SFID Al D A3 S Al D 

Minor frame 4 Syncl Sync2 Al D A2 SFID Al D A4 S Al D 

51 



Test Signals 

Name Type Frequency [Hz] Amplitude [V] Offset [V] 

Al square wave 2600 3.75E-01 -2.5 

A2 square wave 1300 1.88E-01 0.9375 

A3 square wave 650 9.38E-02 1.25 

A4 square wave 325 4.69E-02 -0.3125 

D(0) digital 2600 

D(l) digital 1300 

D(2) digital 650 

D(3) digital 325 

D(4) digital 162 

D(5) digital 81 

D(6) digital 40 

D(7) digital 20 

52 



SMTEEPROM Description file (ASCII file) 
0 72 (0x48 bitrate / coding -> 200 kb/s, 2PSK 
1 7 (0x7 llbit PN seed (MSB) -> Ox7FF 
2 255 (OxFF llbit PN seed (LSB) 
3 2 (0x2 
4 50 (0x32 end QPSK settings 
5 128 (0x80 
6 0 (0x0 
7 128 (0x80 
8 0 (0x0 repeated analog init 
9 130 (0x82 

10 4 (0x4 Al 
11 99 (0x63 
12 4 (0x4 
13 227 (0xE3 filtering Al = 3906 Hz 
14 97 (0x61 
15 4 (0x4 
16 7 (0x7 offset Al = 2.5000 V 
17 101 (0x65 
18 4 (0x4 
19 3 (0x3 gain Al = 4 x 
20 102 (0x66 
21 4 (0x4 
22 0 (0x0 A2 
23 99 (0x63 
24 5 (0x5 
25 193 (OxCl filtering A2 = 1953 Hz 
26 97 (0x61 
27 5 (0x5 
28 13 (OxD offset A2 = -0.9375 V 
29 101 (0x65 
30 5 (0x5 
31 4 (0x4 gain A2 = 8 x 
32 102 (0x66 
33 5 (0x5 
34 0 (0x0 A3 
35 99 (0x63 
36 6 (0x6 
37 183 (0xB7) filtering A3 = 976.6 Hz 
38 97 (0x61) 
39 6 (0x6) 
40 12 (OxC) offset A3 = -1.2500 V 
41 101 (0x65) 
42 6 (0x6) 
43 5 (0x5) gain A3 = 16 x 
44 102 (0x66) 

-'4,5 6 (0x6) 
46 0 (0x0) A4 
47 99 (0x63) 
48 7 (0x7) 
49 147 (0x93) filtering A4 = 488.3 Hz 
50 97 (0x61) 
51 7 (0x7 
52 0 (0x0 offset A4 = 0.3125 /V 
53 101 (0x65 ^ ,-J.\ 

54 7 (0x7 
55 6 (0x6 gain A4 = 32 x 
56 102 (0x66 
57 7 (0x7 
58 0 (0x0 
59 32 (0x20 
60 128 (0x80 
61 9 (0x9 
62 76 (0x4C transmit frequency -> 2380 Mhz 
63 32 (0x20 
64 0 (0x0 
65 0 (0x0 
66 35 (0x23 
67 160 (OxAO 
68 31 (OxlF scan table pointer MSB 
69 208 (OxDO 

(OxEB 
scan table pointer LSB 

8144 235 Sync word #1   
8145 144 (0x90 Sync word #2 
8146 4 (0x4 Analog Ch 1 
8147 1 (Oxl Discrete byte 
8148 5 (0x5 Analog Ch 2 
8149 255 (OxFF Subframe Identifier 
8150 4 (0x4 Analog Ch 1 
8151 1 (Oxl Discrete byte 

53 



8152 6 (0x6) 
8153 0 (0x0) 
8154 4 (0x4) 
8155 1 (0x1) 
8156 235 (OxEB) 
8157 144 (0x90) 
8158 4 (0x4) 
8159 1 (Oxl) 
8160 5 (0x5) 
8161 254 (OxFE) 
8162 4 (0x4) 
8163 1 (Oxl) 
8164 7 (0x7) 
8165 0 (0x0) 
8166 4 (0x4) 
8167 1 (Oxl) 
8168 235 (OxEB) 
8169 144 (0x90) 
8170 4 (0x4) 
8171 1 (Oxl) 
8172 5 (0x5) 
8173 253 (OxFD) 
8174 4 (0x4) 
8175 1 (Oxl) 
8176 6 (0x6) 
8177 0 (0x0) 
8178 4 (0x4) 
8179 1 (Oxl) 
8180 235 (OxEB) 
8181 144 (0x90) 
8182 4 (0x4) 
8183 1 (Oxl) 
8184 5 (0x5) 
8185 252 (OxFC) 
8186 4 (0x4) 
8187 1 (Oxl) 
8188 7 (0x7) 
8189 0 (0x0) 
8190 4 (0x4) 
8191 1 (Oxl) 

Analog Ch 3 
Serial elk out & data in 
Analog Ch 1 
Discrete byte 
Sync word #1 ============ 
Sync word #2 
Analog Ch 1 
Discrete byte 
Analog Ch 2 
Subframe Identifier 
Analog Ch 1 
Discrete byte 
Analog Ch 4 
Serial elk out & data in 
Analog Ch 1 
Discrete byte 
Sync word #1 ============ 
Sync word #2 
Analog Ch 1 
Discrete byte 
Analog Ch 2 
Subframe Identifier 
Analog Ch 1 
Discrete byte 
Analog Ch 3 
Serial elk out & data in 
Analog Ch 1 
Discrete byte 
Sync word #1 ============ 
Sync word #2 
Analog Ch 1 
Discrete byte 
Analog Ch 2 
Subframe Identifier 
Analog Ch 1 
Discrete byte 
Analog Ch 4 
Serial elk out & data in 
Analog Ch 1 
Discrete byte 

54 



11.    Appendix B: 

Software Code 

55 



frmAbout - 1 

Option Explicit 

Private Sub cmdAboutOk_Click() 
Unload Me 

End Sub 

Private Sub cmdACTE_Click() 
frmACTE.Show 

End Sub 

5k 



frmAbout - 1 

VERSION 5.00 
Begin VB.Form frmAbout 

BorderStyle 1  'Fixed Single 
Caption        = "About..." 
ClientHeight   = 4320 
ClientLeft 3048 
ClientTop 4092 
ClientWidth 3900 
LinkTopic      = "Forml" 
MaxButton      = 0   'False 
MinButton 0   'False 
PaletteMode 1  'UseZOrder 
ScaleHeight 4320 
ScaleWidth 3900 
Begin VB.CommandButton cmdACTE 

Caption "Info" 
Height 435 
Left 3060 
Tablndex 3 
Top 120 
Width 615 

End 
Begin VB.CommandButton cmdAboutOk 

Caption "OK" f 

Height 375 ■' 

Left 1176 
Tablndex 0 
Top 3828 
Width 1455 

End 
Begin VB.Label txtAbout 

Alignment 2  'Center 
Caption "October, 1996" 
BeginProperty Font 

Name "MS Sans Serif" 
Size 9.6 
Charset 0 
Weight 400 
Underline 0   'False 
Italic 0   'False 
Strikethrou gh  =  0   'False 

EndProperty 
Height 312 
Index 6 
Left 312 
Tablndex 8 
Top 2760 
Width 3252 
Wordwrap -1  'True 

End 
Begin VB.Label txtAbout 

Alignment 2  'Center 
Caption "Modified by Peter Evdokiou" 
BeginProperty Font 

Name "MS Sans Serif" 
Size 9.6 
Charset 0 
Weight 400 
Underline 0   'False 
Italic 0   'False 
Strikethrough  =  0   'False 

EndProperty 
Height 312 
Index 5 
Left 540 
Tablndex 7 
Top 2388 
Width 2832 
Wordwrap -1  'True 

End 
Begin VB.Label txtAbout 

Alignment 2  'Center 
Caption "Copyright 1996" 
BeginProperty Font 

51 



frmAbout - 2 

Name =  "MS Sans Serif" 
Size =  9.6 
Charset =  0 
Weight =  400 
Underline =  0   'False 
Italic =  0   'False 
Strikethrough  =  0   'False 

EndProperty 
Height =  312 
Index =  4 
Left =  1176 
Tablndex =  6 
Top =  3360 
Width =  1512 
Wordwrap =  -1  'True 

End 
Begin VB.Label txtAbout 

Alignment =  2  'Center 
Caption =  "June 10th - September 13th, 1996" 
BeginProperty Font 

Name =  "MS Sans Serif" 
Size =  9.6 
Charset =  0 
Weight =  400     ^~ 
Underline =  0   'False 
Italic =  0   'False 
Strikethrough  =  0   'False 

EndProperty 
Height =  315 
Index =  3 
Left =  360 
Tablndex =  5 
Top =   1920 
Width =   3255 
Wordwrap =  -1  'True 

End 
Begin VB.Label txtAbout 

Alignment =   2  'Center 
Caption =  "written by Eric Lammerts" 
BeginProperty Font 

Name =  "MS Sans Serif" 
Size =  9.6 
Charset =  0 
Weight =  400 
Underline =  0   'False 
Italic =  0   'False 
Strikethrough  =  0   'False 

EndProperty 
Height =  315 
Index =  2 
Left =  540 
Tablndex =  4 
Top =  1560 
Width =  2835 
Wordwrap =  -1  'True 

End 
Begin VB.Label txtAbout 

Alignment =  2  'Center 
Caption =  "Australian Centre for Test and Evaluation" 
BeginProperty Font 

Name =  "MS Sans Serif" 
Size =  9.6 
Charset =  0 
Weight =  400 
Underline =  0   'False 
Italic =  0   'False 
Strikethrough  =  0   'False 

EndProperty 
Height =   555 
Index =  1 
Left =  840 
Tablndex =  2 
Top =  120 
Width =  2115 



frmAbout - 3 

Wordwrap = -1  'True 
End 
Begin VB.Image imgUnisa 

Height = 540 
Left = 180 
Picture = (Bitmap) 
Top = 120 
Width = 420 

End 
Begin VB.Label txtAböut 

Alignment = 2  'Center 
Caption = "SMT Configuration Tool" 
BeginProperty Font 

Name "MS Sans Serif" 
Size 12 
Charset 0 
Weight 400 
Underline 0   'False 
Italic 0   'False 
Strikethrough 0   'False 

EndProperty 
Height = 495 
Index = 0 
Left = 300 
Tablndex = 1 
Top = 1020 
Width = 3315 
Wordwrap = -1  'True 

End 
End 

5^ 



riw     Australian Centre for Test    <$%$%?.'■■ 
Wl and Evaluation $0$ 

SMT Configuration Tool 

written by Eric Lammerts 

June 10th - September 13th, 1996 

Modified by Peter Evdokiou 

October, 1996 

Copyright 1996 

mm^mmsim 

(r<, 



frmACTE - 1 

Option Explicit 

Private Sub cmdAboutOk_Click() 
Unload Me 

End Sub 

<n| 



frmACTE - 1 

VERSION 5.00 
Begin VB.Form frmACTE 

BorderStyle = 1 'Fixed Single 
Caption = "What is ACTE?" 
ClientHeight = 5676 
ClientLeft = 1416 
ClientTop = 1812 
ClientWidth = 8412 
LinkTopic = "Forml" 
MaxButton = 0 'False 
MinButton = 0 'False 
PaletteMode = 1 'UseZOrder 
ScaleHeight = 5676 
ScaleWidth = 8412 
Begin VB.CommandButton cmdAboutOk 

Cancel = -1  'True 
Caption = "OK" 
Default = -1  'True 
Height = 375 
Left = 3480 
Tablndex = 0 
Top = 5160 
Width = 1455 

End 
Begin VB.Label lblACTE 

Caption = "For more informat 
Height = 255 
Index = 4 
Left = 120 
Tablndex = 5 
Top = 4740 
Width = 8175 
Wordwrap = -1  'True 

End 
Begin VB.Label lblACTE 

Caption = <. . .> 
Height = 855 
Index = 3 
Left = 120 
Tablndex = 4 
Top = 3840 
Width = 8235 
Wordwrap = -1  'True 

End 
Begin VB.Label lblACTE 

Caption = <• . .> 
Height = 855 
Index = 2 
Left = 120 
Tablndex = 3 
Top = 3000 
Width = 8175 
Wordwrap = -1  'True 

End 
Begin VB.Label lblACTE 

Caption = "What is ACTE?" 
BeginProperty Font 

Name "MS Sans Serif" 
Size 12 
Charset 0 
Weight 400 
Underline 0   'False 
Italic 0   'False 
Strikethrough 0   'False 

EndProperty 
Height = 315 
Index = 1 
Left = 120 
Tablndex = 2 
Top = 2640 
Width = 1695 
Wordwrap = -1  'True 

End 
Begin VB.Image imgACTE 



frmACTE 

Height = 1548 
Left = 120 
Picture = (Bitmap) 
Top = 120 
Width = 6564 

End 
Begin VB.Label lblACTE 

Caption = <• . .> 
Height = 435 
Index = 0 
Left = 120 
Tablndex = 1 
Top = 2160 
Width = 8175 
Wordwrap = -1  'True 

End 
End 

<rv- P'l 



UNIVERSirrOF 
SOUTH AUSTRALIA 

AUSTRALIAN CENTRE EÖR TEST Al^ EVAI^ATTO 

The Australian Centre for Test and Equation (ACTE) is located ot tit« University of South Australia's Salisbury Campus, »hich is located 
some 17 kilometres north of Adelaide, South Australia, 

What is ACTE? 
The Australian Centre for Test and Evaluation (ACTE) has been establish««! to provide a foeus for Test and Evaluation in the Asia Pacific 
Region, to expand recopition of the value of T&E and to develop the.skil levels of its practitioners. I is the first such activity in a 
non-defence university, and is one of severe! R&D centres in the School of Physics and Electronic Systems Engineering. 

T&E is a scientifically bosed disciplined process used to help ensure that new complex technological systems and products are maturing at 
on expected rate, that simulations and models of those systems and products «re faithful and that they behave as expected in the user 
envronmsnt oyer their useful lives, T&£ is s principal mechanism for reducing technological risk. ACTE offers a range of services to assist 

For more information, took at the ACTE Web page at http://wBv.ccte.unis8.edu.au 

trA 



frmAscii - 1 

Option Explicit 

Private Sub save() 
Dim file, i As Integer 
Dim filename As String 

With commondialogAscii 
•Flags = _ 

cdlOFNHideReadOnly Or cdlOFNNoReadOnlyReturn Or _ 
cdlOFNOverwritePrompt Or cdlOFNPathMustExist 

filename = frmMain.commondialogFile.filename 
For i = Len(filename) To 1 Step -1 

If Mid(filename, i, 1) = "." 
Or Mid(filename, i, 1) = "\" Then Exit For 

Next 
If filename <> "" Then 

If Mid(filename, i, 1) = "." Then Mid(filename, i) = ".DAT" 
End If 
.filename = filename 
On Error GoTo errAsciiSave 
.ShowSave 
On Error GoTo 0 
If .filename <> "" Then 

file = FreeFile _, 
Open .filename For Output Access Write As #file 
Print #file, txtAscii 
Close #file 

End If 
End With 
Exit Sub 

errAsciiSave: 
MsgBox "Error saving ASCII file", vbOKOnly + vbExclamation, "Error" 

End Sub 

Private Sub cmdAsciiDontSave_Click() 
Unload Me 

End Sub 

Private Sub cmdAsciiSave_Click() 
save 
Unload Me 

End Sub 

Private Sub cmdAsciiSaveProgram_Click() 
save 
Shell App.Path & "\ITPDL.PIF " & commondialogAscii.filename, vbNormalFocus 
Unload Me 

End Sub 

h"\ 



frmAscii - 1 

VERSION 5.00 
Object = "{F9043C88-F6F2-101A-A3C9-08002B2F49FB}#1.1#0"; "COMDLG32.OCX" 
Begin VB.Form frmAscii 

BorderStyle    = 1 'Fixed Single 
Caption        = "ASCII File" 
ClientHeight 6060 
ClientLeft 876 
ClientTop 1248 
ClientWidth 9600 
Icon           = (I< :on) 
LinkTopic      = "Form2" 
MaxButton 0 'False 
MinButton 0 'False 
PaletteMode    = 1 'UseZOrder 
ScaleHeight    = 6060 
ScaleWidth 9600 
Begin VB.CommandButton cmdAsciiSaveProgram 

Caption = "Save && Program" 
Default = -1  'True 
Height = 315 
Left = 120 
Tablndex = 0 
Top = 5640 
Width = 1515        ^~ 

End \ 
Begin VB.CommandButton cmdAsciiDontSave 

Cancel = -1  'True 
Caption = "Cancel" 
Height = 315 
Left = 3480 
Tablndex = 2 
Top = 5640 
Width = 1515 

End 
Begin VB.CommandButton cmdAsciiSave 

Caption = "Save" 
Height = 315 
Left = 1800 
Tablndex = 1 
Top = 5640 
Width = 1515 

End 
Begin VB.TextBox txtAscii 

BeginProperty Font 
Name "Courier New" 
Size 8.4 
Charset 0 
Weight 400 
Underline 0   'False 
Italic 0   'False 
Strikethrough 0   'False 

EndProperty 
Height = 5355 
Left = 120 
Locked = -1  'True 
MultiLine = -1  'True 
ScrollBars = 2  'Vertical 
Tablndex = 3 
TabStop = 0   'False 
Top = 120 
Width = 9375 

End 
Begin MSComDlg.CommonDialog commondialogAscii 

Left = 5640 
Top = 5520 
ExtentX = 847 

_ExtentY = 847 
Version = 327681 
CancelError = -1  'True 
DefaultExt = "dat" 
DialogTitle = "Create ASCII File" 
Filter = "SMT Ascii files (*.dat)|* .dat" 
MaxFileSize = 64 

End 

U 



frmAscii  -  2 

End 

fei 



mm 
J|@$!Pgi 

6g> 



frmErrors - 1 

Option Explicit 

Private Sub cmdViewErrorsOk_Click() 
Unload Me 

End Sub 

Private Sub Form_Deactivate() 
Unload Me 

End Sub 

Private Sub Form_Load() 
txtViewErrors = "" 

End Sub 

b9 



frmErrors  -  1 

VERSION 5.00 
Begin VB.Form frmErrors 

BorderStyle = 1 'Fixed Single 
Caption = "Error list" 
ClientHeight = 6036 
ClientLeft = 1092 
ClientTop = 1512 
ClientWidth = 6720 
Icon = (I 3on) 
LinkTopic = "Form2" 
MaxButton = 0 'False 
MinButton = 0 'False 
PaletteMode = 1 'UseZOrder 
ScaleHeight = 6036 
ScaleWidth = 6720 
WindowState = 1 'Minimized 
Begin VB.CommandButton cmdViewErrorsOk 

Cancel = -1  'True 
Caption = "OK" 
Default = -1  'True 
Height = 315 
Left = 120 
Tablndex = 0 
Top = 5640 
Width = 1275 

End 
Begin VB.TextBox txtVi ewErrors 

Height = 5415 
Left = 120 
Locked = -1  'True 
MultiLine = -1  'True 
ScrollBars = 2  'Vertical 
Tablndex = 1 
TabStop = 0   'False 
Top = 120 
Width = 6495 

End 
End 

ID 



agaßä 

1i 



frmFileEditSmtDeviceSpecification - 1 

Option Explicit 

Private Sub cmdFileEditSmtDeviceSpecification_Click() 
Unload Me 

End Sub 

U 



frmFileEditSmtDeviceSpecification - 1 

VERSION 5.00 
Begin VB.Form frmFileEditSmtDeviceSpecification 

BorderStyle = 3  'Fixed Dialog 
Caption = "Edit SMT device specification" 
ClientHeight = 1644 
ClientLeft = 2052 
ClientTop = 3156 
ClientWidth = 3468 
ControlBox = 0   'False 
Icon = (Icon) 
LinkTopic = "Forml" 
MaxButton = 0   'False 
MinButton = 0   'False 
PaletteMode = 1  'UseZOrder 
ScaleHeight = 1644 
ScaleWidth = 3468 
ShowInTaskbar = 0   'False 
Begin VB.CommandButton cmdFileEditSmtDeviceSpecification 

Caption "OK" 
Height 375 
Left 960 
Tablndex 1 
Top 1080 
Width 1455        ^- 

End V                       ' 

Begin VB.Label lblFileEditSmtDeviceSpecification 
Alignment =  2  'Center 
Caption =  "Sorry, this function is not implemented yet. Use Microsoft Access 1 
Height 735 
Left 360 
Tablndex 0 
Top 240 
Width 2655 
Wordwrap -1  'True 

End 
End 

13 



74 



frmgen - 1 

Option Explicit 
Dim numchannels As Integer 
Dim channelfreqO As Integer 

Private Sub updateChannelfreq() 
Dim i As Integer 
Dim tot As Double 

For i = 1 To numchannels 
If Val(cmbRequestedFreq(i)) > 0 Then 

channelfreq(i) = wordrate / 2 / Val(cmbRequestedFreq(i)) 
Else 

channelfreq(i) = 0 
End If 

Next 
tot = 0 
For i = 1 To numchannels 

If Val(cmbRequestedFreq(i)) > 0 Then tot = tot + Val(cmbRequestedFreq(i)) 
Next 
txtCapacityUsed = Format(tot / (wordrate / 2), "Percent") 

'End Sub 
Private Sub cmbRequestedFreq_Click(Index As Integer) 

updateChannelfreq 
End Sub 

Private Sub cmbRequestedFreq_LostFoous(Index As Integer) 
cmbRequestedFreq_Click (Index) 

End Sub 

Private Sub cmdGenerate_Click() 
Dim scantableO As Integer ^ 
Dim i As Long 

updateChannelfreq 
channelfreq(numchannels + 1) = 1 
i = 1cm(channelfreq) 
channelfreq(numchannels + 1) = i 

If scantablePossible(channelfreq) Then 
With grdAnalogFreq 

.cols = numchannels + 1 

.row = 0 
For i = 1 To numchannels 

.col = i 
If channelfreq(i) <> 0 Then 

.text = Format(wordrate / 2 / channelfreq(i), "0.00") 
Else 

.text = "" 
End If 

Next 
End With 

Else 
MsgBox "Scantable not possible", vbOKOnly + vbExclamation, "Error" 

End If 
End Sub 

Private Sub Commandl_Click() 
generateScantable 
frmMain.cmbEmphasize.Listlndex = 0 
unload Me 

End Sub 

Private Sub Form_Load() 
Dim i, j, colw, spacing As Integer 

computeBitrateWordrate 
computeSampleFreqs 
Select Case wordrate 

Case Is >= 1000000 
txtWordrate = wordrate / 1000000 & " Mwords/s" 

Case Is >= 1000 
txtWordrate = wordrate / 1000 & " kwords/s" 

Case Else 
txtWordrate = wordrate & " words/s" 

End Select 

'15 



Vf 

frmgen - 2 

numchannels = frmMain.grdAnalog.rows - 1 
ReDim channelfreq(l To numchannels + 1) 
spacing = lblChannel(1).Width + 50 

frmMain.grdAnalog.col = 0 
frmMain.grdAnalog.row = 1 
lblChannel (1) = frmMain.grdAnalog 
cmbRequestedFreq(l) = "" 
For i = 2 To numchannels 

Load lblChannel(i) 
lblChannel(i).Left = lblChannel (i - 1).Left + spacing 
frmMain.grdAnalog.row = i 
lblChannel(i) = frmMain.grdAnalog 
lblChannel(i).Visible = True 

Load cmbRequestedFreq(i) 
cmbRequestedFreq(i).Left = cmbRequestedFreq(i - 1).Left + spacing 
cmbRequestedFreq(i).Tablndex = cmbRequestedFreq(i - 1).Tablndex + 1 
cmbRequestedFreq(i) = "" 
cmbRequestedFreq(i).Visible = True 

Next 
frmMain.grdAnalog.col = 0 
For i = 1 To numchannels 

frmMain.grdAnalog.row = i  * 
For j = LBound(channels) To UBound(channels) 

If channels (j) = frmMain.grdAnalog Then Exit For 
Next 
cmbRequestedFreq(i) = Format(Abs(samplefreqs(j)), "0.##") 

cmbRequestedFreq(i).Addltem "off" 
For j = 2 To 10 

cmbRequestedFreq(i).Addltem Format(wordrate / j / 2, "0.##") 
Next 

Next 
updateChannelfreq 
With grdAnalogFreq 

.cols = numchannels + 1 

.rows = 10 

.FixedRows = 0 

.FixedCols = 1 
colw = lblChannel (2) .Left - lblChannel(1).Left - _ 

(.ColPos(2) - .ColPos(l) - .ColWidth(l)) 
.ColWidth(O) = lblChannel(1).Left - .Left 
For i = 1 To numchannels 

.ColWidth(i) = colw 
Next 
.Width = .ColPos(numchannels) + .ColWidth(numchannels) + 300 

End With 
fraSolutions.Width = 2 * grdAnalogFreq.Left + grdAnalogFreq.Width 
fraRequested.Width = fraSolutions.Width 
frmgen.Width = 2 * fraSolutions.Left + fraSolutions.Width + 120 

End Sub 



frmgen - 1 

VERSION 5.00 
Object = "{A8B3B723-0B5A-101B-B22E-00AA0037B2FC}#1.0#0"; "GRID32.0CX" 
Begin VB.Form frmgen 

Caption        = "Frame structure generator" 
ClientHeight   = 2880 
ClientLeft     = 360 
ClientTop      = 1680 
ClientWidth    = 8808 
LinkTopic      = "Forml" 
PaletteMode    = 1  'UseZOrder 
ScaleHeight    = 2880 
ScaleWidth     = 8808 
Begin VB.CommandButton Commandl 

Caption = "Use this frame structure" 
Height = 315 
Left = 4680 
Tablndex = 2 
Top = 1740 
Width = 1935 

End 
Begin VB.TextBox txtCapacityUsed 

BackColor = &H8000000F& 
Height = 285 
Left = 1260 
Locked = -1  'True ' 
Tablndex = 12 
TabStop = 0   'False 
Top — 1740 
Width = 855 

End 
Begin VB.TextBox txtWordrate 

BackColor = &H8000000F& 
Height = 285 
Left = 960 
Locked = -1  'True 
Tablndex = 10 
TabStop = 0   'False 
Top = 120 
Width = 1275 

End 
Begin VB.CommandButton cmdGenerate 

Caption = "Generate frame structure" 
Height = 315 
Left = 2520 
Tablndex = 1 
Top = 1740 
Width = 2055 

End 
Begin VB.Frame fraSolutions 

Caption = "Solutions" 
Height = 675 
Left = 120 
Tablndex = 6 
Top = 2100 
Width = 7875 
Begin MSGrid.Grid grdAnalogFreq 

Height 315 
Left 180 
Tablndex 7 
TabStop 0   'False 
Top 240 
Width 2535 
Version 65536 
ExtentX 4471 
ExtentY 556 
StockProps 77 

BackColor 16777215 
BeginProperty Font {0BE35203-8F91-11CE-9DE3 

Name "MS Sans Serif" 
Size 7.8 
Charset 0 
Weight 400 
Underline 0   'False 
Italic 0   'False 



frmgen - 2 

Strikethrough  =  0   'False 
EndProperty 
Rows 1 
FixedRows 0 
Mouselcon =   {Binary} 

End 
End 
Begin VB.Frame fraRequested 

Caption = "Requested frequencies" 
Height = 1155 
Left = 120 
Tablndex = 4 
Top = 480 
Width = 6315 
Begin VB.ComboBox cmbRequestedFreq 

Height 300 
Index 1 
Left 1380 
Tablndex 0 
Text _  H ^ M 

Top 660 
Width 1095 

End 
Begin VB.Label Lat ell          N'~ 

Caption "Frequency (Hz):" 
Height 195 
Index 1 
Left 180 
Tablndex 9 
Top 720 
Width 1215 

End 
Begin VB.Label Labell 

Caption "Channel:" 
Height 195 
Index 0 
Left 180 
Tablndex 8 
Top 360 
Width 735 

End 
Begin VB.Label lblChannel 

Alignment 2  'Center 
BorderStyle =  1  'Fixed Single 
Caption "Labell" 
Height 255 
Index 1 
Left 1380 
Tablndex 5 
Top 300 
Width 1095 

End 
End 
Begin VB.Label lbll 

Caption = "Capacity used:" 
Height = 195 
Index = 1 
Left = 120 
Tablndex = 11 
Top = 1740 
Width = 1095 

End 
Begin VB.Label lbll 

Caption = "Word rate:" 
Height = 195 
Index = 0 
Left = 120 
Tablndex = 3 
Top = 180 
Width = 795 

End 
End 

"\fc 



nfft 



frmGenerating - 1 

Option Explicit 

Private Sub cmbAbort_Click() 
abort = 1 

End Sub 

Private Sub Form_Load() 
lblGenerating = "Generating frame structure of size " & scantableLength * 2 

End Sub 



frmGenerating - 1 

VERSION 5.00 
Begin VB.Form frmGenerating 

BorderStyle 
Caption 
ClientHeight 
ClientLeft 
ClientTop 
ClientWidth 
LinkTopic 
MaxButton 
MinButton 
PaletteMode 
ScaleHeight 
ScaleWidth 
ShowInTaskbar 
Begin VB.CommandButton cmbAbort 

3  'Fixed Dialog 
"Generating frame structure" 
1188 
3120 
3060 
3636 
"Forml" 
0   'False 
0 'False 
1 'UseZOrder 
1188 
3636 
0   'False 

Cancel 
Caption 
Height 
Left 
Tablndex 
Top 
Width 

-1  'True 
"Abort" 
375 
1260 
0 
660 
1215 

End 
Begin VB.Label lblGenerating 

Alignment 
Caption 
Height 
Left 
Tablndex 
Top 
Width 

'Center 

315 
120 
1 
180 
3375 

End 
End 

£| 



V-, 



frmMain - 1 

Option Explicit 

If you have any questions about the source code, feel free to email me 

Eric (eric@scintilla.utwente.nl) 

Private Declare Function checkHardwarePresence Lib "hwaccess" () As Integer 

Dim dbSpec, dbSmt As Database 
Dim rsSpec, rsSmt As Recordset 
Dim grdScantableln, grdAnalogln As Boolean 
Public smtChanged As Boolean  ' indicates whether the user should be asked to save the data 
Const scantableColwidthMin As Long = 300 
Const scantableColwidthMax As Long = 570 

Private Function checkAll() As Boolean 
txtDescription.SetFocus 
DoEvents       ' generate lostfocus event for the control 

1 the user is editing right now 
checkAll = True 
If checkBitrate Then Exit Function 
If checkTransmitFreq Then Exit Fun£'£1 on      / 
If checkPNSeed Then Exit Function 
If checkSyncword Then Exit Function 
If checkSfid Then Exit Function 
If checkMinorframelength Then Exit Function 
If checkMinorframes Then Exit Function 
If checkAnalog Then Exit Function T, 
If checkScantable Then Exit Function 
checkAll = False 

End Function 

Private Sub viewAll() 
txtDescription.SetFocus 
DoEvents       ' generate lostfocus event for the control 

' the user is editing right now 
checkBitrate 
checkTransmitFreq 
checkPNSeed 
checkSyncword 
checkSfid 
checkAnalog 
checkMinorframelength 
checkMinorframes 
checkScantable 

End Sub 
Private Sub logError(errorMsg As String) 

If frmErrors.Visible Then 
frmErrors.txtViewErrors = frmErrors.txtViewErrors & errorMsg & Chr(13) & Chr(10) 

Else 
txtError = errorMsg 

End If 
End Sub 
Private Sub clearError() 

txtError = "" 
End Sub 
Private Function checkBitrate() As Boolean 
Dim i As Integer 

clearError 
checkBitrate = False 
With cmbBitrate 

For i - 0 To .ListCount - 1 
If .text = .list(i) Then Exit Function 

Next 
End With 
logError "Invalid bitrate" 
checkBitrate = True 

End Function 
Private Function checkTransmitFreq() As Boolean 
Dim i As Integer 

^ 



frmMain - 2 

clearError 
checkTransmitFreq = False 
With cmbTransmitFreq 

For i = 0 To .ListCount - 1 
If .text = .list(i) Then Exit Function 

Next 
End With 
logError "Invalid transmit frequency" 
checkTransmitFreq = True 

End Function 
Private Function checkPNSeedO As Boolean 

clearError 
If ValC'&H" & txtPNSeed) < 0 Or Val("&H" & txtPNSeed) > &H7FF Then 

logError "PN Seed should be between 0 and 0x7FF" 
checkPNSeed = True 

Else 
1       txtPNSeed = Hex(Val("&H" & txtPNSeed)) 

checkPNSeed = False 
End If 

End Function 

Private Function checkMinorframelength() 
clearError 
If minorframelength > maxMinorframe-rength Or mlnorframelength < syncwords Then 

logError "Invalid minor frame length" 
checkMinorframelength = True 

Else 
checkMinorframelength = False 

End If 
End Function n 

Private Function checkMinorframes() 
clearError 
If minorframes > maxMinorFrames Or minorframes < 1 Then 

logError "Invalid number of minor frames per major frame" 
checkMinorframes = True 

Elself minorframes * minorframelength > maxscantablelength Then 
logError "No more than " & maxscantablelength & " bytes per major frame allowed" 
checkMinorframes = True 

Else 
checkMinorframes = False 

End If 
End Function 

Private Function checkAnalog() As Boolean 
Dim i, j, row As Integer 
Dim err As String 

clearError 
With grdAnalog 

On Error GoTo analogError 
For i = 1 To .rows - 1 

.row = i 

.col = 1 
For j = 1 To 1000 

If mnuAnalogGainEntry(j).Caption = .text Then Exit For 
Next 

.col = 2 
For j = 1 To 1000 

If mnuAnalogOffsetEntry(j).Caption = .text Then Exit For 
Next 

.col = 3 
For j = 1 To 1000 

If mnuAnalogFilterEntry(j).Caption = .text Then Exit For 
Next 

Next 
End With 
checkAnalog = False 
Exit Function 

analogError: 
row = grdAnalog.row 

9A- 



frmMain - 3 

grdAnalog.row = 0 
err = "Invalid value in " & grdAnalog & " setting of channel " 
grdAnalog.row = row 
grdAnalog.col = 0 
logError err & grdAnalog & "." 
checkAnalog = True 

End Function 

Private Function checkScantable() As Boolean 
Dim r, c As Integer 
Dim err, reqd As String 
Dim prevanalog, analog, eachminorframe, sfid As Boolean 

clearError 
checkScantable = True 
saveScantable ' save grdScantable in array 'scantable' 
sfid = False ' no SFIDs encountered yet 
For c = syncwords To minorframelength - 1      ' check scantable column-wise 

If scantable (0, c) = "SFID" Then sfid = True    ' SFID encountered! 
For r = 0 To minorframes - 1 

1 empty cells not allowed 
If scantable(r, c) = "" Then 

err = "Scantable field should be filled" 
GoTo rowcol w" 

End If > 
1 check whether channel exists 

If Not isinlist(channels, scantable(r, c)) Then 
err = "Unknown scantable entry" 
GoTo rowcol 

End If 
eachminorframe = isinlist(eachminorframes, scantable(r, c)) 
If r = 0 Then 

If eachminorframe Then 
' remember that field should be the same in every minor frame 
reqd = scantable(r, c) 

Else 
reqd = "" 

End If 
Else 

If reqd <> "" Then 
If reqd <> scantable(r, c) Then 

1 a field that should be the same in every minor frame 
' occured in row 0 but not in a row>0 
err = "Value should be the same as in previous minor frame" 
GoTo rowcol 

End If 
Else 

If eachminorframe Then 
' a field that should be the same in every minor frame 
1 occured in a row>0 but not in row 0 
err = "Value not allowed if not present in all minor frames" 
GoTo rowcol 

End If 
End If 

End If 
Next 

Next 
If sfid And minorframes = 1 Then 

logError ("Subframe identifier in a frame with no subframes") 
GoTo endCheckScantable 

End If 
If Not sfid And minorframes <> 1 Then 

logError ("No subframe identifier in a frame with subframes") 
GoTo endCheckScantable 

End If 
' check for consecutive analog cells 
For r = 0 To minorframes - 1 

prevanalog = isinlist(analogs, scantable(r, syncwords)) 
For c = syncwords + 1 To minorframelength - 1 

analog = isinlist(analogs, scantable(r, c)) 
If analog And prevanalog Then 

GoTo twoanalog 
End If 
prevanalog = analog 

8 



frmMain - 4 

Next 
Next 
checkScantable = False 
GoTo endCheckScantable 

twoanalog: 
err = "Two analog channel entries after ea ch other not allowed" 
GoTo rowcol 

rowcol: 
If minorframes = 1 Then 

grdScantable.row = c 
grdScantable.col = 0 
err = err & " in row 
grdScantable.col = c 
grdScantable.row = 0 

Else 
ardScantable.row = r 

\ columns + 1 

" & grdScantable 
Mod columns + 1 

+ 1 
grdScantable.col = 0 
err = err & " in row " & grdScantable 
grdScantable.col = c + 1 
grdScantable.row = 0 

End If 
logError err & ", column " & grdScantable & "." 

endCheckScantable: 
Erase scantable 

End Function 

Private Function checkSfidO 
clearError 
checkSfid = False 
If minorframes = 1 Then Exit Function ' with 1 minor frame you don't use sfid's 
checkSfid = True 
If Val(txtSfidStart) < 128 Or Val(txtSfidStart) > 255 Then 

logError "SFID should be between 128 and 255" 
Exit Function 

End If 
If cmbSfidDir = "Up" Then 

If Val(txtSfidStart) + (minorframes - 1) > 255 Then 
logError "SFID exceeds 255 in minor frame " & 256 - Val(txtSfidStart) 
Exit Function 

End If 
Elself cmbSfidDir = "Down" Then 

If Val(txtSfidStart) - (minorframes - 1) < 128 Then 
logError "SFID is lower than 128 in minor frame " & Val(txtSfidStart) - 127 
Exit Function 

End If 
Else 

logError "SFID Direction should be '.Up' or 'Down'," 
Exit Function J ^,v 

End If 
txtSfidStart = Val(txtSfidStart) 
checkSfid = False 

End Function 
Private Function checkSyncwordO 
Dim i As Integer 

clearError 
' check sync words that should not be used 
For i = 0 To 3 - syncwords 

If syncwordbytes(i) <> 0 Then 
logError "Sync word too long" 
checkSyncword = True 
Exit Function 

End If 
Next 
1 check sync words that should be used 
For i = 4 - syncwords To 3 

If syncwordbytes(i) < &H80 Then 
logError "Sync words should be between 0x80 and OxFF" 
checkSyncword = True 
Exit Function 

End If 
Next 
checkSyncword = False 

Silo 



frmMain - 5 

End Function 

Public Sub update_form() 
Dim r, c, row, col, colw As Integer 
Dim one As Boolean 

one = (minorframes = 1) 
' if 1 minor frame, then show the appropriate controls (columns & emphasize channel) 
lblDisplay(0).Visible = one 
lblDisplay(1).Visible = one 
txtCols.Visible = one 
cmbEmphasize.Visible = one 

' if >1 minor frame, then show the appropriate controls (SFID) 
lblSfid(O).Visible = Not one 
lblSfid(l).Visible = Not one 
cmbSfidDir.Visible = Not one 
txtSfidStart.Visible = Not one 

With grdScantable 
mouseHourglass ' it might take a second 
If minorframes = 1 Then 

.cols = columns + 1 

.rows = minorframelength \ columns + 1 
Else 

.cols = minorframelength + 1 

.rows = minorframes + 1 
End If 
row = .row 
col = .col 
.FixedAlignment(0) = 2 'centered 
.col = 0 
For r = 1 To .rows - 1 

.row = r 

.col = 0 
If minorframes = 1 Then 

.text = "+" & (r - 1) * columns 
Else 

.text = r 
End If 
If r = 1 Or minorframes > 1 Then 

For c = 1 To syncwords 
*     .col = c 

.text = "Sync" & c 
Next 

End If 
Next 
.row =0 . , 

cwords) 

If .cols * scantableColwidthMax > Twidth Then 
colw = (.Width - (1 + syncwords) * scantableColwidthMax - 120) \ (.cols - 1 - syn 

If colw < scantableColwidthMin Then colw = scantableColwidthMin 
Else 

colw = scantableColwidthMax 
End If 
For c = 1 To .cols - 1 

.col = c 
If c > syncwords Then 

.ColWidth(c) = colw - 15 

.text = c - syncwords 
Else 

.ColWidth(c) = scantableColwidthMax 

.text = "" 
End If 
.ColAlignment(c) = 2 'centered 
.FixedAlignment(c) = 2 'centered 

Next 
.row = row 
.col = col 
.SelStartCol = 2 
.SelEndCol = 1 
.SelStartRow = 1 
.SelEndRow = 1 

VI 



frmMain - 6 

mouseNormal 
End With 
txtMinorframelength = minorframelength 
txtMinorFrames = minorframes 
txtCols = columns 
txtSyncword_Click 

End Sub 

Public Sub fillgrdScantable(text As String) 
On Error GoTo End_Function 
With grdScantable 

If .CellSelected Then 
If .SelStartRow = 0 Then .SelStartRow = 1 
If .SelStartCol <= syncwords Then .SelStartCol = syncwords + 1 
.FillStyle = 1 
.text = text 
'hkt one line 
If (.text = "SFID") And (txtMinorframelength > 21) Then .ColWidth(.col) = 1.1 * T 

extWidth(.text) 
.FillStyle = 0 

' If .SelStartCol <= syncwords Then update_form 
End If 

End With 
End_Function: 
End Sub 
Private Function closeSmtFile() As Boolean 
Dim file As String 

If Not smtChanged Then 
closeSmtFile = True 
Exit Function 

End If 
If commondialogFile.filename = "" Then 

file = "(Untitled)" 
Else 

file = commondialogFile.filename 
End If 
Select Case MsgBox(file & " has changed!" & Chr(13) & Chr(13) & "Save changes?", _ 

vbYesNoCancel Or vbQuestion, frmMain.Caption) 
Case vbCancel 

closeSmtFile = False 
Exit Function 

Case vbYes 
mnuFileSave_Click 

Case vbNo 
End Select 
closeSmtFile = True 

End Function , ( 

Private Sub addtolist(list(), S As String) 
On Error Resume Next 
err.clear 
ReDim Preserve list(l To UBound(list) +1) 
If err.Number > 0 Then ReDim list(l To 1) 
list(UBound(list)) = S 

End Sub 

Private Function isinlist(list(), S As String) As Boolean 
Dim Is As Variant 

isinlist = True 
For Each Is In list 

If Is = S Then Exit Function 
Next 
isinlist = False 

End Function 

Private Sub generateTestSignals() 
Dim i As Integer 

With grdAnalog 
ReDim testSignalSetup(1 To 3, 0 To .rows - 2) 

Set rsSpec = dbSpec.OpenRecordset("gain") 
rsSpec.Index = "value" 



frmMain - 7 

.col = 1 
For i = 0 To .rows - 2 

.row = i + 1 
rsSpec.Seek "=", .text 
testSignalSetup(.col, i) = rsSpec("test_data") 

Next 
rsSpec.Close 

Set rsSpec = dbSpec.OpenRecordset("offset") 
rsSpec.Index = "value" 
.col = 2 
For i = 0 To .rows - 2 

.row = i + 1 
rsSpec.Seek "=", .text 
testSignalSetup(.col, i) = rsSpec("test_data") 

Next 
rsSpec.Close 

Set rsSpec = dbSpec.OpenRecordset("filter") 
rsSpec.Index = "value" 
.col = 3 
For i = 0 To .rows - 2 

.row = i + 1 
rsSpec.Seek "=", .text 
testSignalSetup(.col, i) = rsSpec("test_data") 

Next 
rsSpec.Close 

End With 
End Sub 
Private Sub updateFormCaption(ByVal filename As String) 
Dim i As Integer 

For i = Len(filename) To 1 Step -1 
If Mid(filename, i, 1) = "\" Then 

filename = Mid(filename, i + 1) 
Exit For 

End If 
Next 
frmMain.Caption = "SMT Configuration Tool - " & filename 

End Sub 
Private Function createAsciiFile() 
Dim asciiFileLength, bitrate, PNSeedLSB, PNSeedMSB As Integer 
Dim scantableStartLSB, scantableStartMSB, transmitFreq As Integer 
Dim i, j, row, col, b, v, addr, recordCount As Integer 
Dim data() As Integer 
Dim descripO As String 
Dim rsSpecProp As Recordset 
Dim prop As String ,. * 
Dim stringl, string2 As String „.        ,_.,x 

If checkAll Then 
Beep 
createAsciiFile = False 
Exit Function 

End If 
mouseHourglass 
asciiFile = "" 
Set rsSpec = dbSpec.OpenRecordset("system") 

' get system parameters addresses 
asciiFileLength = rsSpec("asciiFileLength") 
bitrate = rsSpec("bitrate") 
PNSeedLSB = rsSpec("PNSeedLSB") 
PNSeedMSB = rsSpec("PNSeedMSB") 
scantableStartLSB = rsSpec("scantableStartLSB") 
scantableStartMSB = rsSpec("scantableStartMSB") 
transmitFreq = rsSpec("transmitFreq") 
rsSpec.Close 

' get ascii table 
Set rsSpec = dbSpec.OpenRecordset("ascii") 
rsSpec.MoveLast 
recordCount = rsSpec.recordCount 
rsSpec.MoveFirst 



frmMain 

ReDim data(recordCount) 
ReDim descrip(recordCount) 
addr = 0 
Do Until rsSpec.EOF 

If VarType(rsSpec("description")) = vbString Then 
descrip(addr) = rsSpec("description") 

Else 
descrip(addr) = "" 

End If 
data(addr) = rsSpec("data") 
addr = addr + 1 
If addr > recordCount Then 

' this shouldn't be necessary, but rsSpec.recordCount is not always right! 
recordCount = addr + 10 
ReDim Preserve data(recordCount) 
ReDim Preserve descrip(recordCount) 

End If 
rsSpec.MoveNext 

Loop 
' this shouldn't be necessary, but rsSpec.recordCount is not always right! 
' very weird 
recordCount = addr 
rsSpec.Close 

' fill in bitrate 
Set rsSpec = dbSpec.OpenRecordset("bitrate") 
rsSpec.Index = "value" 
rsSpec.Seek "=", cmbBitrate 
data(bitrate) = rsSpec("smt_data") 
descrip(bitrate) = descrip(bitrate) & " -> " & cmbBitrate 
rsSpec.Close 

' fill in transmitFreq (line 61) 
Set rsSpec = dbSpec.OpenRecordset("transmitFreq") 
rsSpec.Index = "value" 
rsSpec.Seek "=", cmbTransmitFreq 
' data(transmitFreq) = rsSpec("smt_data") 
descrip(transmitFreq) = descrip(transmitFreq) & " -> " & cmbTransmitFreq 
' fill in the calculated values for lines 61 & 62 (Modified by Peter Evdokiou) 
' Check to see the type of Modulation Scheme selected 
stringl = InStr(cmbBitrate, "QPSK") 
string2 = InStr(cmbBitrate, "FSK") 
If string^ = 0 Then    ' if Mod Scheme is FSK then set data for lines 61 & 62 as 

data(61) = Int(Val(cmbTransmitFreq) * 0.03125) 
data(62) = Val(cmbTransmitFreq) * 8 - (256 * Int(Val(cmbTransmitFreq) * 0.03125)) 

Else       ' if Mod Scheme is QPSK then set data for,lines 61 & 62 as 

data (61) =9 
data (62) = rsSpec("smt_data") 

End If 
rsSpec.Close 

' fill in the values of lines 65 & 66 according to type of Modulation scheme 
Set rsSpec = dbSpec.OpenRecordset("bitrate") 
rsSpec.Index = "value" 
rsSpec.Seek "=", cmbBitrate 
stringl = InStr(cmbBitrate, "QPSK") 
string2 = InStr(cmbBitrate, "FSK") 
If stringl = 0 Then 

data(65) = 1 ' Value taken if Mode Scheme selected is FSK 
data (66) = 3 ' Value taken if Mode Scheme selected is FSK 

Else 
data(65) = 0 ' Value taken if Mode Scheme selected is QPSK 
data (66) = 35 ' Value taken if Mode Scheme selected is QPSK 

End If 
rsSpec.Close 

' fill in PNSeed, scantableStart 
i = ValC'&H" & txtPNSeed) 
data(PNSeedLSB) = i Mod 256 

c\o 



frmMain 

data(PNSeedMSB) = i \ 256 
descrip(PNSeedMSB) = descrip(PNSeedMSB) & " -> Ox" & Hex(i) 
b = asciiFileLength - minorframes * minorframelength 
data(scantableStartLSB) = b Mod 256 
data(scantableStartMSB) = b \ 256 

1 fill in analog properties 
Set rsSpec = dbSpec.OpenRecordset("channels") 
rsSpec.Index = "ID" 
For i = 1 To grdAnalog.cols - 1 

grdAnalog.col = i 
grdAnalog.row = 0 
prop = grdAnalog 
Set rsSpecProp = dbSpec.OpenRecordset(prop) 
rsSpecProp.Index = "value" 
For j = 1 To grdAnalog.rows - 1 

grdAnalog.row = j 
grdAnalog.col = 0 
rsSpec.Seek "=", grdAnalog 
grdAnalog.col = i 
rsSpecProp.Seek "=", grdAnalog 
addr = rsSpec(prop & "_address") 
data(addr) = rsSpecProp("smt_data") 
descrip(addr) = descrip(addr) & " = " & grdAnalog 

Next 
rsSpecProp.Close 

Next 

For addr = 0 To recordCount - 1 
If (data(addr) < 0) Then 

MsgBox "SMT Specification Database invalid in line " & addr + 1, _ 
vbOKOnly + vbExclamation, "Error" 

createAsciiFile = False 
Exit Function 

End If 
asciiFile = asciiFile & _ 

Format(addr, "@@@@") & "  " & _ 
Format(data(addr), "@@@") & "   " & 
Format("(Ox" & Hex(data(addr)), "@@@@@@") & ") " & _ 
descrip(addr) & Chr(13) & Chr(10) 

Next 
ReDim descrip(1) 
Erase data* 

' recordset("channels") is still open 
saveScantable 
For row = 0 To minorframes - 1 

For col = 0 To minorframelength - 1 , , 
If col < syncwords Then      J _..v 

v = syncwordbytes(4 - syncwords + col) 
descrip(0) = "Sync word #" & col + 1 
If col = 0 Then descrip(0) = descrip(0) & " =====================" 

Else 
rsSpec.Seek "=", scantable(row, col) 
v = rsSpec("scantable_value") 
descrip(0) = rsSpec("description") 
If v = -1 Then 

'SFID 
If cmbSfidDir = "Up" Then 

v = txtSfidStart + row 
Else 

v = txtSfidStart - row 
End If 

End If 
End If 
asciiFile = asciiFile & _ 

Format(b, "@@@@") & "  " & _ 
Format(v, "@@@") & "   " & _ 
Format("(Ox" & Hex(v), "@@@@@@") & ") " & _ 
descrip(O) & Chr(13) & Chr(10) 

b = b + 1 
Next 

Next 
rsSpec.Close 

Q 



frmMain - 10 

mouseNormal 
createAsciiFile = True 

End Function 

Private Sub cmbBitrate_Click() 
'by hkt except line 3 

Dim stringQPSK As Integer   'string has qpsk modulation 
Dim string_kbs As Integer   'string has 200kb/s format 
'Dim string is_QPSK As Boolean     'FSK or QPSK 
'Dim string_string_is_kbs As Boolean '200 kb/s or 2Mb/s 
Dim def_qpsk, def_fsk As String 

'original line 
smtChanged = True 
stringQPSK = InStr(cmbBitrate, 
If stringQPSK > 0 Then 

string_is_QPSK = True 
Else: string_is_QPSK = False 
End If 

'default value for 2Mbs and 200kbs Transmission 

"QPSK")  'check if string has QPSK 

'set flag if it has 

string_kbs = InStr(cmbBitrate, "200 kb/s")  'check if string has 200 kbs 
If string_kbs > 0 Then     'set flag if it has 

string_is_kbs = True 
Else: string_is_kbs = False 
End If 
'if QPSK then enable PN Seed, else disable 
If string_is_QPSK = True Then 

txtPNSeed.Enabled = True 
Else: 

txtPNSeed.Enabled = False 
End If 

'clear transmit freq and reload 
cmbTransmitFreq.clear 
Set rsSpec = dbSpec.OpenRecordset("transmitFreq") 
If string_is_QPSK = True Then   'if QPSK then reload only these freq 

Do Until rsSpec.EOF 
If rsSpec("value") = "2310 Mhz" Then 

cmbTransmitFreq.Addltem (rsSpec("value") 
rsSpec.MoveNext 

Elself rsSpec("value") = "2320 Mhz" Then 
cmbTransmitFreq.Addltem (rsSpec("value") 
rsSpec.MoveNext 

E>self rsSpec("value") = "2330 Mhz" Then 
cmbTransmitFreq.Addltem (rsSpec("value") 
rsSpec.MoveNext 

Elself rsSpec("value") = "2340 Mhz" Then 
cmbTransmitFreq.Addltem (rsSpec("value") 
rsSpec.MoveNext 

Elself rsSpec("value") = "2350 Mhz" Then 
cmbTransmitFreq.Addltem (rs~Spec ("value") 
rsSpec.MoveNext 

Elself rsSpec("value") = "2360 Mhz" Then 
cmbTransmitFreq.Addltem (rsSpec("value") 
rsSpec.MoveNext 

Elself rsSpec("value") = "2370 Mhz" Then 
cmbTransmitFreq.Addltem (rsSpec("value") 
rsSpec.MoveNext 

Elself rsSpec("value") = "2380 Mhz" Then 
cmbTransmitFreq.Addltem (rsSpec("value") 
rsSpec.MoveNext 

Else: rsSpec.MoveNext 
End If 

Loop 
Else       'if FSK then load all 

Do Until rsSpec.EOF 
cmbTransmitFreq.Addltem (rsSpec("value")) 
rsSpec.MoveNext 

Loop 
End If 
rsSpec.Close   'close datatable 
Set rsSpec = dbSpec.OpenRecordset("startfreq")  ' give combo box default value 
def_qpsk = rsSpec("value")  'default value of QPSK 
rsSpec.MoveNext 
def fsk = rsSpec("value")   'default value of FSK 

U/i 
If- i 



frmMain - 11 

rsSpec.Close 

If string_is_QPSK = True Then 
cmbTransmitFreq.text = def_qpsk 

Else: cmbTransmitFreq.text = def_fsk 
End If 

End Sub 

Private Sub cmbEmphasize_Click() 
Dim i, first As Integer 
'hkt next 7 line 
Dim string_normal As Integer 

string_normal = InStr(cmbEmphasize, "Normal")   'if normal chosen then normalise 
'minor frame 

If string_normal > 0 Then 
txtCols = minorframelength 
txtCols_Click 
Exit Sub 

End If 

first = -1 
With grdScantable 

For i = 0 To minorframelength - 1 

.col = i Mod columns + 1 remmed by hkt 

.row = i \ columns + 1  remmed by hkt 
hkt next 2 
col = i Mod (columns + 1) 
.row = i Mod (columns + 1) 

If .text = cmbEmphasize Then 
If first = -1 Then 

first = i 
Else 

txtCols = i - first 
txtCols_Click 
GoTo found 

End If 
End If 

Next 
If first = -1 Then Exit Sub 
txtCol« = minorframelength 
txtCols_Click 

found: 
.SelStartCol = first Mod columns + 1 
.SelEndCol = first Mod columns + 1 
.SelStartRow = 1 
.SelEndRow = .rows - 1 ' 

End With 
End Sub 

Private Sub cmbSyncwordLength_Click() 
Dim newsyncwords As Integer 

newsyncwords = Val(cmbSyncwordLength) \ 8 
If newsyncwords <> syncwords Then 

If newsyncwords < syncwords Then 
With grdScantable 

.SelStartCol = newsyncwords + 1 

.SelEndCol = syncwords 

.SelStartRow = 1 

.SelEndRow = .rows - 1 

.FillStyle = 1 

.text = "" 

.FillStyle = 0 

.SelEndCol = 1 

.SelEndRow = 1 
End With 

End If 
syncwords = newsyncwords 
update_form 
smtChanged = True 

End If 
End Sub 

^?J 



frmMain - 12 

Private Sub cmdButtonBar_Click(Index As Integer) 
Select Case Index 

Case 0 
mnuFileNew_Click 

Case 1 
mnuFileOpen_Click 

Case 2 
mnuFileSave_Click 

Case 3 
mnuFileSaveAs_Click 

Case 4 
mnuFileGenerateScantable_Click 

Case 5 
mnuFileViewErrors_Click 

Case 6 
mnuFileCreateAscii_Click 

Case 7 
mnuFileTestsignalgenerator_Click 

Case 8 
mnuGenerateReport_Click 

End Select 
End Sub 

Private Sub Form_Activate() 
Unload frmgen 

End Sub 

Private Sub Form_Initialize() 
minorframelength = 4 
columns = 4 
minorframes = 1 

End Sub 

Private Sub cmbSfidDir_Click() 
checkSfid 
smtChanged = True 

End Sub 

Private Sub cmbTransmitFreq_Click() 
smtChanged = True 

End Sub     * 

Private Sub cmdCopyEntire_Click() 
Dim c As Integer 

c = columns 
txtCols = minorframelength 
txtCols_Click 
With grdScantable 

.SelStartCol = 1 

.SelEndCol = .cols - 1 

.SelStartRow = 1 

.SelEndRow = .rows - 1 
Clipboard.SetText .Clip + Chr(13) 
.SelEndCol = 1 
.SelEndRow = 1 

End With 
txtCols = c 
txtCols_Click 

End Sub 

Private Sub cmdPasteEntire_Click() 
Dim clipdata As String 
Dim i, rows, cols, curcols As Integer 
Dim content As Boolean 

smtChanged = True 
clipdata = Clipboard.GetText 
1 clipboard analysis; cols are separated by tab 
' (tab=chr(9)), rows by cr/lf (cr=chr(13)) 
rows = 0 
cols = 0 
curcols = 1 

c}4- 



fritiMain - 13 

For i = 1 To Len(clipdata) 
If Asc(Mid(clipdata, i, 1)) >= 32 Then 

content = True 
End If 
If Mid(clipdata, i, 1) = Chr(9) Then 

curcols = curcols + 1 
End If 
If Mid(clipdata, i, 1) = Chr(13) Then 

rows = rows + 1 
1 take largest value of all rows: 
If curcols > cols Then cols = curcols 
curcols = 1 
content = False 

End If 
Next 
' if the last line doesn't end with a cr: 
If content Then rows = rows + 1 
If rows = 0 Or cols <= syncwords Then 

Beep 
Exit Sub 

End If 

grdScantable.rows = rows + 1 
grdScantable.cols = cols + 1 
With grdScantable 

.SelStartCol = 1 

.SelEndCol = cols 

.SelStartRow = 1 

.SelEndRow = rows 
' copy data: 
.Clip = clipdata 
.SelEndCol = 1 
.SelEndRow = 1 

End With 

minorframelength = cols 
columns = cols 
minorframes = rows 
update_form 

End Sub 

Private Sub Form_Load() 
Dim i, j As Integer 
Dim control As Variant 
Dim rsSpecID As String 

' position window in the middle of the screen: 
frmMain.Left = Screen.Width / 2 - frmMain.Width / 2  ( 
frmMain.Top = Screen.Height / 2 - frmMain.Height / 2 
' frmerrors.Hide 
If sSmtSpecDatabasefile = "" Then 

sSmtSpecDatabasefile = App.Path + "\SMTSPEC.MDB" 
End If 
'hkt 2 lines 
'set the scroll bars for laptop useage 
vsViewPortl.VirtualWidth = vsViewPortl.Width + 2000 
vsViewPortl.VirtualHeight = vsViewPortl.Height + 2000 

On Error GoTo dbSpecError 
Set dbSpec = DBEngine.Workspaces(0).OpenDatabase(sSmtSpecDatabasefile, , True) 
Set rsSpec = dbSpec.OpenRecordset("system") 
maxscantablelength = rsSpec("scantableMaxLength") 
rsSpec.Close 

Set rsSpec = dbSpec.OpenRecordset("bitrate") 
i = 0 
Do Until rsSpec.EOF 

cmbBitrate.Addltem (rsSpec("value")) 
rsSpec.MoveNext 
i = i + 1 

Loop 
rsSpec.Close 
'rem by hkt next 6 
'Set rsSpec = dbSpec.OpenRecordset("transmitFreq") 

^ 



frmMain - 14 

Do Until rsSpec.EOF 
cmbTransmitFreq.Addltem (rsSpec("value")) 
rsSpec.MoveNext 

Loop 
rsSpec.Close 

Set rsSpec = dbSpec.OpenRecordset("channels") 
rsSpec.Index = "ID" 
i = 1 
grdAnalog.col = 0 
Erase eachminorframes 
Erase channels 
Erase analogs 
Erase digitals 
Do Until rsSpec.EOF 

rsSpecID = rsSpec("ID") 
addtolist channels, rsSpecID 
If rsSpec("eachminorframe") Then 

addtolist eachminorframes, rsSpecID 
Elself rsSpec("Analog") Then 

grdAnalog.rows = grdAnalog.rows + 1 
grdAnalog.row = grdAnalog.rows - 1 
grdAnalog = rsSpecID 
addtolist analogs, rsSpecID 

Else 
addtolist digitals, rsSpecID 

End If 
cmbEmphasize.Addltem (rsSpecID) 
Load mnuScantableEntry(i) 
mnuScantableEntry(i).Caption = rsSpecID 
i = i + 1 
rsSpec.MoveNext 

Loop 

rsSpec.Close 
'hkt one line 
'add "normal" to "emphasize" box 
cmbEmphasize.Addltem "Normal" 
With grdAnalog 

.FixedAlignment(0) = 2 

.ColWidth(O) = 400 

.ColWidth(l) = 800 

.Colwi*dth(2) = 900 

.ColWidth(3) = 900 

.FixedRows = 1 

.row = 0 

.col = 1 

.text = "Gain" ,. , 
•col = 2 
.text = "Offset" 
.col = 3 
.text = "Filter" 

End With 
mnuScantableEntry(1000).Visible = False 

Set rsSpec = dbSpec.OpenRecordset("gain") 
rsSpec.Index = "value" 

i = 1 
Do 

mnuAnalogGainEntry(i).Caption = rsSpec("value") 
rsSpec.MoveNext 
If rsSpec.EOF Then Exit Do 
i = i + 1 
Load mnuAnalogGainEntry(i) 

Loop 
rsSpec.Close 

Set rsSpec = dbSpec.OpenRecordset("offset") 
rsSpec.Index = "value" 

i = 1 
Do 

mnuAnalogOffsetEntry(i).Caption = rsSpec("value") 
rsSpec.MoveNext 



frniMain -  15 

If  rsSpec.EOF Then Exit  Do 
i =  i  +  1 
Load mnuAnalogOffsetEntry(i) 

Loop 
rsSpec.Close 

Set rsSpec = dbSpec.OpenRecordset("filter") 
1    rsSpec.Index = "value" 
■hkt 
'load in freq for pop up menu analog filter 

i = 1 
Do 

mnuAnalogFilterEntry(i).Caption = rsSpec("value") 
mnuAnalogFilterkbsEntry(i).Caption = rsSpec("value") 
mnuAnalogFiltermbsEntry(i).Caption = rsSpec("value") 

rsSpec.MoveNext 
If rsSpec.EOF Then Exit Do 
i = i + 1 
Load mnuAnalogFilterEntry(i) 
Load mnuAnalogFilterkbsEntry(i) 
Load mnuAnalogFiltermbsEntry(i) 

Loop 
rsSpec.Close 

'by hkt 28 
'filter the freq required for 200 kb/s format 
filter_item_max = i 'max number in filter 
For i = 1 To filter_item_max 

Select Case mnuAnalogFilterkbsEntry(i).Caption 
Case "122.1 Hz" 
Case "244.1 Hz" 
Case "488.3 Hz" 
Case "97 6.6 Hz" 
Case "1953 Hz" 
Case "3906 Hz" 
Case Else 

mnuAnalogFilterkbsEntry(i).Visible = False 
u 'mnuAnalogFilterkbsEntry(i).Enabled = False 

End Select 
Next i 

'by hkt 
'filter freq for 2 Mb/s format , , 
For i = 1 To filter_item_max '        wv 

Select Case mnuAnalogFiltermbsEntry(i).Caption' 
Case "152.5 Hz" 
Case "305 Hz" 
Case "610 Hz" 
Case "1220 Hz" 
Case "2440 Hz" 
Case "4880 Hz" 
Case "19530 Hz" 
Case "9766 Hz" 
Case Else 

mnuAnalogFiltermbsEntry(i).Visible = False 
'mnuAnalogFiltermbsEntry(i).Enabled = False 

End Select 
Next i 

On Error GoTo 0 

cmbSyncwordLength.Listlndex = 0 
smtChanged = False 
mnuFileNew_Click 
update_form 

Exit Sub 
dbSpecError: 

q~ 



frmMain - 16 

On Error Resume Next 
MsgBox "Invalid SMT Specification Database", vbOKOnly + vbExclamation, "Error" 
For Each control In frmMain 

If Val(control.Tag) = 1 Then control.Enabled = False 
Next 

End Sub 

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer) 
If closeSmtFile = False Then Cancel = True 
If UnloadMode <> vbFormCode Then End 

End Sub 

Private Sub grdAnalog_KeyDown(KeyCode As Integer, Shift As Integer) 
'var by hkt 
Dim string_kbs, i, j As Integer 

smtChanged = True 
With grdAnalog 

Select Case KeyCode 
Case vbKeyReturn, vbKeySpace 

Select Case .col 
Case 1 

PopupMenu mnuAnalogGain, vbPopupMenuCenterAlign, _ 
fraAnalog.Left + .ColPos(.col) + .Left, _ 
fraAnalog.Top + .RowPos(.row) + .Top 

Case 2 
PopupMenu mnuAnalogOffset, vbPopupMenuCenterAlign, _ 

fraAnalog.Left + .ColPos(.col) + .Left, _ 
fraAnalog.Top + .RowPos(.row) + .Top 

Case 3 
'hkt 
If string_is_kbs = True Then 
PopupMenu mnuAnalogFilterkbs, vbPopupMenuCenterAlign, _ 

fraAnalog.Left + .ColPos(.col) + .Left, _ 
fraAnalog.Top + .RowPos(.row) + .Top 

Else 
PopupMenu mnuAnalogFiltermbs, vbPopupMenuCenterAlign, _ 

fraAnalog.Left + .ColPos(.col) + .Left, _ 
fraAnalog.Top + .RowPos(.row) + .Top 

End If 
End Select 

End Select 
End With '* 

End Sub 

Private Sub grdAnalog_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As Single 
) 

With grdAnalog , , 
grdAnalogln = X <= .ColPos(.cols -  1)   + .ColWidth(.cols - 1) And 

Y <= .RowPos(.rows - 1) + .RowHeight(.rows - 1) 
End With 

End Sub 

Private Sub grdAnalog_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single) 

With grdAnalog 

If Button = vbLeftButton And grdAnalogln Then 
smtChanged = True 
Select Case grdAnalog.col 

Case 1 
PopupMenu mnuAnalogGain 

Case 2 
PopupMenu mnuAnalogOffset 

Case 3 
'PopupMenu mnuAnalogFilter 
'by hkt next 5 

If string_is_kbs = True Then 
PopupMenu mnuAnalogFilterkbs 

Else 
PopupMenu mnuAnalogFiltermbs 



frmMain - 17 

End If 
End Select 

End If 
End With 

End Sub 

Private Sub grdAnalog_SelChange() 
grdAnalog.SelEndCol = grdAnalog.SelStartCol 

End Sub 

Private Sub grdScantable_KeyDown(KeyCode As Integer, Shift As Integer) 
smtChanged = True 
With grdScantable 

Select Case KeyCode 
Case vbKeyDelete, vbKeyBack 

fillgrdScantable ("") 
Case vbKeyReturn, vbKeySpace 

PopupMenu mnuScanTable, vbPopupMenuCenterAlign, _ 
.ColPos(.col) + .Left, .RowPos(.row) + .Top 

End Select 
End With 

End Sub 

Private Sub grdScantable_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As Sin 
gle) 

With grdScantable 
grdScantableln = _ 

X <= .ColPos(.cols - 1) + .ColWidth(.cols - 1) And _ 
Y <= .RowPos(.rows - 1) + .RowHeight(.rows - 1) 

End With 
End Sub 

Private Sub grdScantable_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Singl 
e) 

With grdScantable 
'If Button = vbLeftButton And grdScantableln Then 
If Button = vbLeftButton Then 

smtChanged = True 
PopupMenu mnuScanTable 

End If 
End With 

End Sub 

Private Sub lblErrorSound_Click() r , 
chkErrorSound = 1 - chkErrorSound    J ^_x 

End Sub 

Private Sub mnuAnalogFilterEntry_Click(Index As Integer) 
smtChanged = True 
With grdAnalog 

If .SelStartRow = 0 Then .SelStartRow = 1 
If .CellSelected Then 

.FillStyle = 1 

.text = mnuAnalogFilterEntry(Index).Caption 

.FillStyle = 0 
End If 

End With 
checkAnalog 

End Sub 

Private Sub mnuAnalogFilterkbsEntry_Click(Index As Integer) 
'by hkt 
'enter the text into the cell selected in grid analog filter 
'for 200 kb/s menu 

smtChanged = True 
With grdAnalog 

If .SelStartRow = 0 Then .SelStartRow = 1 
If .CellSelected Then 

.FillStyle = 1 

.text = mnuAnalogFilterkbsEntry(Index).Caption 

Sci 



frmMain - 18 

.FillStyle = 0 
End If 

End With 
checkAnalog 

End Sub 

Private Sub mnuAnalogFiltermbsEntry_Click(Index As Integer) 
'by hkt 
'enter text in cell chosen from the 2 Mb/s menu 

smtChanged = True 
With grdAnalog 

If .SelStartRow = 0 Then .SelStartRow = 1 
If .CellSelected Then 

.FillStyle = 1 

.text = mnuAnalogFiltermbsEntry(Index).Caption 

.FillStyle = 0 
End If 

End With 
checkAnalog 

End Sub 

Private Sub mnuAnalogGainEntry_Click(Index As Integer) 
smtChanged = True 
With grdAnalog 

If .SelStartRow = 0 Then .SelStartRow = 1 
If .CellSelected Then 

.FillStyle = 1 

.text = mnuAnalogGainEntry(Index).Caption 

.FillStyle = 0 
End If 

End With 
checkAnalog 

End Sub 

Private Sub mnuAnalogOffsetEntry_Click(Index As Integer) 
smtChanged = True 
With grdAnalog 

If .SelStartRow = 0 Then .SelStartRow = 1 
If .CellSelected Then 

.FillStyle = 1 

.text = mnuAnalogOffsetEntry(Index).Caption 

.FillStyle = 0 
End If 

End With 
checkAnalog 

End Sub 

Private Sub mnuFileCreateAscii_Click()    J __,_v 
If Not createAsciiFile Then Exit Sub 
Load frmAscii 
frmAscii.txtAscii = asciiFile 
frmAscii.Show 

End Sub 

Private Sub mnuFileGenerateScantable_Click() 
cmbSyncwordLength.Listlndex = 0 
clearError 
If checkBitrate Then 

Beep 
Exit Sub 

End If 
frmgen.Show 

End Sub 

Private Sub mnuFileNew_Click() 
Dim i, j As Integer 

If closeSmtFile = False Then Exit Sub 
updateFormCaption "(Untitled)" 
cmbBitrate.Listlndex = -1 
txtPNSeed = "7FF" 
cmbTransmitFreq.Listlndex = -1 
cmbSyncwordLength.Listlndex = 0 

I Go 



fritiMain -  19 

txtSyncword = "EB90" 
minorframelength = 10 
columns = 10 
minorframes = 1 
txtSfidStart = "" 
cmbSfidDir.Listlndex = -1 
txtProject = "" 
txtDescription = "" 
txtAuthor = "" 

update_form 
With grdScantable 

.SelStartCol = syncwords + 1 

.SelEndCol = .cols - 1 

.SelStartRow = 1 

.SelEndRow = .rows - 1 

.FillStyle = 1 

.text = "" 

.FillStyle = 0 

.SelEndCol = 1 

.SelEndRow = 1 
End With 
With grdAnalog 

.SelStartCol = 1 

.SelEndCol = .cols - 1 

.SelStartRow = 1 

.SelEndRow = .rows - 1 

.FillStyle = 1 

.text = "" 

.FillStyle = 0 

.SelEndCol = 1 

.SelEndRow = 1 
End With 

smtChanged = False 
End Sub 

Private Sub mnuFileOpen_Click() 
Dim i, j As Integer 

If closeSmtFile = False Then Exit Sub 
With commondialogFile 

.Flags* = cdlOFNFileMustExist Or cdlOFNHideReadOnly _ 
Or cdlOFNNoReadOnlyReturn 
.DialogTitle = "Open" 

.filename = "" 
On Error GoTo errFileOpenCancel 
.ShowOpen , ( 
On Error GoTo 0 J ,WjV 
If .filename = "" Then Exit Sub 

End With 

On Error GoTo errFileOpenFile 
mouseHourglass 
Set dbSmt = DBEngine.Workspaces(0).OpenDatabase(commondialogFile.filename) 

On Error GoTo errFileOpenRS 
Set rsSmt = dbSmt.OpenRecordset("system_setup") 
On Error GoTo errFileOpen 
cmbBitrate = rsSmt("bitrate") 
txtPNSeed = rsSmt("pnseed") 
cmbTransmitFreq = rsSmt("frequency") 
cmbSyncwordLength.Listlndex = -1 
For i = 0 To cmbSyncwordLength.ListCount - 1 

If Val(cmbSyncwordLength.list(i)) = rsSmt("synclength") Then 
cmbSyncwordLength.Listlndex = i 
Exit For 

End If 
Next 
txtSyncword = rsSmt("sync") 
minorframelength = rsSmt("minorFramelength") 
columns = minorframelength 
grdScantable.cols = minorframelength + 1 
minorframes = rsSmt("minorFrames") 

lt>{ 



frmMain - 20 

grdScantable.rows = minorframes + 1 
If minorframes <> 1 Then 

txtSfidStart = rsSmt("sfidStart") 
cmbSfidDir = rsSmt("sfidDir") 

End If 
On Error Resume Next 
txtProject = "" 
txtProject = rsSmt("project") 
txtDescription = "" 
txtDescription = rsSmt("description") 
txtAuthor = "" 
txtAuthor = rsSmt("author") 
rsSmt.Close 
mouseHourglass 

On Error GoTo errFileOpenRS 
Set rsSmt = dbSmt.OpenRecordset("analog") 
On Error GoTo errFileOpen 
With grdAnalog 

For i = 1 To .rows - 1 
If rsSmt.EOF Then Exit For 
.row = i 
.col = 1 
.text = rsSmtC'Gain") 
.col = 2 
.text = rsSmt("Offset") 
.col = 3 
.text = rsSmt("Filter") 
r s Smt.MoveNext 

Next 
End With 
rsSmt.Close 

On Error GoTo errFileOpenRS 
Set rsSmt = dbSmt.OpenRecordset("scantable") 
On Error GoTo errFileOpen 
With grdScantable 

For i = 1 To .rows - 1 
.row = i 
For j = 1 To .cols - 1 

If rsSmt.EOF Then GoTo scantableDone 
.col = j 

'■*  .text = rsSmt ("value") 
rsSmt.MoveNext 

Next 
Next 

End With 
scantableDone: „ , 

rsSmt. Close J _vv 

dbSmt.Close 
update_form 
mouseNormal 
On Error GoTo 0 
updateFormCaption commondialogFile.filename 
smtChanged = False 

errFileOpenCancel: 
Exit Sub 

errFileOpen: 
MsgBox "Error opening file:" & Chr(13) & _ 

err.Description & Chr(13) & _ 
"table=" & rsSmt.Name, vbOKOnly + vbExclamation, "Error" 

dbSmt.Close 
GoTo errFileOpenFinish 

errFileOpenRS: 
dbSmt.Close 

errFileOpenFile: 
MsgBox "Error opening file:" & Chr(13) & _ 

err.Description, vbOKOnly + vbExclamation, "Error" 
errFileOpenFinish: 

On Error GoTo 0 
smtChanged = False 
mnuFileNew_Click 

\ f 



frniMain - 21 

Exit Sub 
End Sub 

Private Sub mnuFileOpenSmtDeviceSpecification_Click() 
If closeSmtFile = False Then Exit Sub 
With commondialogSpecFile 

.Flags = cdlOFNFileMustExist Or cdlOFNHideReadOnly _ 
Or cdlOFNNoReadOnlyReturn 

On Error GoTo ErrFileOpenSmtDeviceSpecificationCancel 
.ShowOpen 
On Error GoTo 0 
If .filename = "" Then Exit Sub 
sSmtSpecDatabasefile = .filename 

End With 
'    frmMainReload.Hide 

smtChanged = False 
Unload frmMain 
frmMain.Show 

ErrFileOpenSmtDeviceSpecificationCancel: 
End Sub 

Private Sub mnuFileSave_Click() 
Dim i, j As Integer 
Dim tdSmt As TableDef 
Dim fldSmt As Field 

If commondialogFile.filename = "" Then 
mnuFileSaveAs_Click 
Exit Sub 

End If 
On Error GoTo errFileSaveOpen 
Set dbSmt = DBEngine.Workspaces(0).OpenDatabase(commondialogFile.filename) 
On Error GoTo errFileSaveFatal 

dbSmt.BeginTrans 

On Error GoTo errFileSave_system_setup 
Set rsSmt = dbSmt.OpenRecordset("system_setup") 
On Error GoTo errFileSaveFatal 
If rsSmt.EOF Then rsSmt.AddNew Else rsSmt.Edit 
rsSmt("bitrate") = cmbBitrate 
rsSmtC'pnseed") = txtPNSeed 
rsSmt("frequency") = cmbTransmitFreq 
rsSmt("synclength") = Val(cmbSyncwordLength) 
rsSmt("sync") = txtSyncword 
rsSmt("minorFramelength") = minorframelength 
rsSmt("minorFrames") = minorframes 
rsSmt("sfidStart") = txtSfidStart      , , 
rsSmt("sfidDir") = cmbSfidDir        J _, v 
rsSmt("project") = txtProject 
rsSmt("description") = txtDescription 
rsSmt("author") = txtAuthor 
rsSmt.Update 
rsSmt.Close 

On Error GoTo errFileSave_scantable 
Set rsSmt = dbSmt.OpenRecordset("scantable") 
On Error GoTo errFileSaveFatal 
With grdScantable 

For i = 1 To .rows - 1 
.row = i 
For j = 1 To .cols - 1 

.col = j 
If rsSmt.EOF Then rsSmt.AddNew Else rsSmt.Edit 
rsSmt("value") = .text 
rsSmt.Update 
If Not rsSmt.EOF Then rsSmt.MoveNext 

Next 
Next 

End With 
Do Until rsSmt.EOF 

rsSmt.Delete 
rsSmt.MoveNext 

Loop 

u> 



frmMain - 22 

rsSmt.Close 

On Error GoTo errFileSave_analog 
Set rsSmt = dbSmt.OpenRecordset("analog") 
On Error GoTo errFileSaveFatal 
With grdAnalog 

For i = 1 To .rows - 1 
If rsSmt.EOF Then rsSmt.AddNew Else rsSmt.Edit 
.row = i 
.col = 0 
rsSmt("Channel") = .text 
.col = 1 
rsSmt("Gain") = .text 
.col = 2 
rsSmt("Offset") = .text 
.col = 3 
rsSmt("Filter") = .text 
rsSmt.Update 
If Not rsSmt.EOF Then rsSmt.MoveNext 

Next 
End With 
rsSmt.Close 
dbSmt.CommitTrans 
dbSmt.Close 
On Error GoTo 0 
smtChanged = False 

Exit Sub 

errFileSaveOpen: 
On Error GoTo errFileSaveCreate 
'create database 
Set dbSmt = DBEngine.Workspaces(0).CreateDatabase(commondialogFile.filename, _ 

dbLangGeneral) 
On Error GoTo 0 
Resume Next 

errFileSave_system_setup: 
On Error GoTo errFileSaveFatal 
'create system_setup 
Set tdSmt = dbSmt.CreateTableDef("system_setup") 
Set fldSmt = tdSmt.CreateFieldC'bitrate", dbText, 50) 
fldSmt.AllowZeroLength = True 
tdSmt.Fields.Append fldSmt 
Set fldSmt = tdSmt.CreateField("pnseed", dbText, 4) 
fldSmt.AllowZeroLength = True 
tdSmt.Fields.Append fldSmt 
Set fldSmt = tdSmt.CreateField("frequency", dbText, 1Q) 
fldSmt.AllowZeroLength = True        J _, x 
tdSmt.Fields.Append fldSmt 
Set fldSmt = tdSmt.CreateField("minorFrameLength", dblnteger) 
tdSmt.Fields.Append fldSmt 
Set fldSmt = tdSmt.CreateField("minorFrames", dblnteger) 
tdSmt.Fields.Append fldSmt 
Set fldSmt = tdSmt.CreateField("synclength", dblnteger) 
tdSmt.Fields.Append fldSmt 
Set fldSmt = tdSmt.CreateField("sync", dbText, 8) 
fldSmt.AllowZeroLength = True 
tdSmt.Fields.Append fldSmt 
Set fldSmt = tdSmt.CreateField("sfidStart", dbText, 5) 
fldSmt.AllowZeroLength = True 
tdSmt.Fields.Append fldSmt 
Set fldSmt = tdSmt.CreateField("sfidDir", dbText, 4) 
fldSmt.AllowZeroLength = True 
tdSmt.Fields.Append fldSmt 
Set fldSmt = tdSmt.CreateField("project", dbText, 80) 
fldSmt.AllowZeroLength = True 
tdSmt.Fields.Append fldSmt 
Set fldSmt = tdSmt.CreateField("description", dbText, 80) 
fldSmt.AllowZeroLength = True 
tdSmt.Fields.Append fldSmt 
Set fldSmt = tdSmt.CreateField("author", dbText, 80) 
fldSmt.AllowZeroLength = True 
tdSmt.Fields.Append fldSmt 



frmMain - 23 

dbSmt.TableDefs.Append tdSmt 
Resume 0 

errFileSave_scantable: 
On Error GoTo errFileSaveFatal 
'create scantable 
Set tdSmt = dbSmt.CreateTableDef("scantable") 
Set fldSmt = tdSmt.CreateField("value", dbText, 5) 
fldSmt.AllowZeroLength = True 
tdSmt.Fields.Append fldSmt 
dbSmt.TableDefs.Append tdSmt 
Resume 0 

errFileSave_analog: 
On Error GoTo errFileSaveFatal 
'create analog 
Set tdSmt = dbSmt.CreateTableDef("analog") 
Set fldSmt = tdSmt.CreateField("Channel", dbText, 4) 
fldSmt.AllowZeroLength = True 
tdSmt.Fields.Append fldSmt 
Set fldSmt = tdSmt.CreateField("Gain", dbText, 20) 
fldSmt.AllowZeroLength = True 
tdSmt.FieIds.Append fldSmt 
Set fldSmt = tdSmt.CreateField("Offset", dbText, 20) 
fldSmt.AllowZeroLength = True 
tdSmt.Fields.Append fldSmt 
Set fldSmt = tdSmt.CreateField("Filter", dbText, 20) 
fldSmt.AllowZeroLength = True 
tdSmt.Fields.Append fldSmt 
dbSmt.TableDefs.Append tdSmt 
Resume 0 

errFileSaveCreate: 
MsgBox "Error creating file:" & _ 

Chr(13) & err.Description, vbOKOnly + vbExclamation, "Error" 
On Error GoTo 0 
Exit Sub 

errFileSaveFatal: 
dbSmt.Rollback 
MsgBox "Error saving file:" & Chr(13) & _ 

err.Description & Chr(13) & _ 
"tabled" & rsSmt.Name, vbOKOnly + vbExclamation, "Error" 

On Error GoTo 0 
End Sub 

Private Sub mnuFileSaveAs_Click() 
With commondialogFile _, , 

.Flags = cdlOFNOverwritePrompt Or cdlOFNHideReadOnly _ 
Or cdlOFNNoReadOnlyReturn Or cdlOFNPathMustExist 

.DialogTitle = "Save As" 
On Error GoTo ErrFileSaveAsCancel 
.ShowSave 
On Error GoTo 0 
If .filename = "" Then Exit Sub 

End With 
mnuFileSave_Click 
updateFormCaption commondialogFile.filename 

ErrFileSaveAsCancel: 
End Sub 

Private Sub mnuFileTestsignalgenerator_Click() 
Dim i As Integer 

If checkAnalog Then 
Beep 
Exit Sub 

End If 

frmTests.pport = checkHardwarePresence 
If frmTests.pport = 0 Then 

MsgBox "No Test Signal Generator found on any parallel port, " & _ 
"or SMT Device is switched off", vbOKOnly + vbExclamation, frmMain.Caption 

Exit Sub 



frmMain -24 

End If 
generateTestSignals 
frmTests.Show 

End Sub 

Private Sub mnuFileViewErrors_Click() 
frmErrors.Show 
viewAll 
If frmErrors.txtViewErrors <> "" Then 

frmErrors.WindowState = 0 
Else 

Unload frmErrors 
MsgBox "No errors in SMT configuration", vbOKOnly, frmMain.Caption 

End If 
End Sub 

Private Sub mnuGenerateReport_Click() 
Dim cr, tb As String 
Dim ch As Variant 
Const normal As String = "Normal" 
Const headingl As String = "Heading 1" 
Const heading2 As String = "Heading 2" 
Const tableformat As Integer = 20 
Dim filename, shortfilename As String 

Dim i, j, freq, cols, maxcols As Integer 
Dim gain, offset As Double 
Dim fontsize As Integer, colw As String 

cr = Chr(13) 
tb = Chr(9) 
If checkAll Then 

Beep 
Exit Sub 

End If 
createAsciiFile 
With commondialogReportFile 

If commondialogFile.filename <> "" Then 
filename = commondialogFile.filename 
For i = Len(filename) To 1 Step -1 

If Mid(filename, i, 1) = "." 
Or Mid(filename, i, 1) = "\" Then Exit For 

Ne*xt 
If Mid(filename, i, 1) = "." Then Mid(filename, i) = ".DOC" 
.filename = filename 

End If 
.Flags = cdlOFNOverwritePrompt Or cdlOFNHideReadOnly _ 

Or cdlOFNNoReadOnlyReturn Or cdl.OFNPathMustExj.st 
On Error GoTo errSaveReportCancel J w x 
.ShowSave 
On Error GoTo 0 
If .filename = "" Then Exit Sub 
filename = .filename 

End With 
For i = Len(filename) To 1 Step -1 

If Mid(filename, i, 1) = "\" Then Exit For 
Next 
If Mid(filename, i, 1) = "\" Then 

shortfilename = Mid(filename, i + 1) 
End If 

On Error GoTo errOLE 
Set oleReport = CreateObject("Word.basic") 

' close existing Word documents with the same name (without saving) 
For i = 1 To oleReport.CountWindows 

If oleReport.windowname(i) = shortfilename Then 
oleReport.WindowList i 
oleReport.fileclose 2 
Exit For 

End If 
Next 

oleReport.AppMinimize 1 



frmMain - 25 

oleReport.FileNew App.Path + "\REPORT.DOC" 
oleReport.Style headingl 
oleReport.Insert "SMT Configuration Report" + cr 
oleReport.Style normal 
oleReport.Insert "Project: " + txtProject + cr 
oleReport.Insert "Description: " + txtDescription + cr 
oleReport.Insert "Author: " + txtAuthor + cr 
oleReport.Insert "Date of creation: " + Format(Now, "dddd, mmm d yyyy hh:nn") + cr 
oleReport.Insert "Number of pages: ##pages##" + cr 

oleReport.Style heading2 
oleReport.Insert "Transmission parameters" + cr 
oleReport.Style normal 
oleReport.TablelnsertTable , 2, 2, "4 cm", , tableformat, 129 
oleReport.Insert "Bitrate" 
oleReport.nextcell 
oleReport.TableColumnWidth "7 cm" 
oleReport.Insert CStr(cmbBitrate) 
oleReport.nextcell 
oleReport.Insert "PN Seed" 
oleReport.nextcell 
oleReport.Insert CStr(txtPNSeed) 
oleReport.nextcell 
oleReport.Insert "Transmit frequency" 
oleReport.nextcell 
oleReport.Insert CStr(cmbTransmitFreq) 
oleReport.LineDown 

DoEvents 
computeSampleFreqs 
oleReport.Style heading2 
oleReport.Insert "Analog channels" + cr 
oleReport.Style normal 
oleReport.TablelnsertTable , 5, 2, "2 cm", , tableformat, 161 
oleReport.Tableheadings 
oleReport.TableColumnWidth "1.25 cm" 
oleReport.Insert "Name" 
oleReport.nextcell 
oleReport.Insert "Gain" 
oleReport.nextcell 
oleReport.Insert "Offset" 
oleReport.nextcell 
oleReport ^Insert "Filter" 
oleReport.nextcell 
oleReport.TableColumnWidth "4 cm" 
oleReport.Insert "Sampling frequency" 
For i = 1 To grdAnalog.rows - 1 

grdAnalog.row = i , 
grdAnalog.col = 0 '        __, v 
For j = LBound(channels) To UBound(channels) 

If channels(j) = grdAnalog Then Exit For 
Next 
oleReport.nextcell 
oleReport.Insert CStr(grdAnalog) 
grdAnalog.col = 1 
oleReport.nextcell 
oleReport.Insert CStr(grdAnalog) 
grdAnalog.col = 2 
oleReport.nextcell 
oleReport.Insert CStr(grdAnalog) 
grdAnalog.col = 3 
oleReport.nextcell 
oleReport.Insert CStr(grdAnalog) 
oleReport.nextcell 
oleReport.Insert Format(Abs(samplefreqs(j)), "0") + " Hz" 
If samplefreqs(j) < 0 Then 

oleReport.Bold 1 
oleReport.Insert " (non-uniform)" 
oleReport.Bold 0 

End If 
Next 
oleReport.charright 2 

DoEvents 

,t) 



frmMain 26 

2, 2, "2 cm", , tableformat, 161 

oleReport.Style heading2 
oleReport.Insert "Digital channels" + cr 
oleReport.Style normal 
oleReport.TablelnsertTable 
oleReport.Tableheadings 
oleReport.TableColumnWidth "1.25 cm" 
oleReport.Insert "Name" 
oleReport.nextcell 
oleReport.TableColumnWidth "4 cm" 
oleReport.Insert "Sampling frequency" 
For Each ch In digitals 

oleReport.nextcell 
oleReport.Insert ch 
oleReport.nextcell 
For j = LBound(channels) To UBound(channels) 

If channels(j) = ch Then Exit For 
Next 
oleReport.Insert Format(Abs(samplefreqs(j)), 
If samplefreqs(j) < 0 Then 

oleReport.Insert " (non-uniform)" 
End If 

Next 
oleReport.charright 2 

■0") + Hz" 

DoEvents 
oleReport.Style heading2 
oleReport.Insert "Frame Structure" + cr 
oleReport.Style normal 
oleReport.Insert "Minor frame length: " & minorframelength & cr 
oleReport.Insert "Minor frames per major frame: " & minorframes 
oleReport.Insert "Sync words: " 
For i = 4 - syncwords To 3 

oleReport.Insert Hex(syncwordbytes(i)) + " " 
Next 
oleReport.Insert "(hex)" + cr 
oleReport.Insert "SFID Start value: " & txtSfidStart & cr 
oleReport.Insert "SFID Direction: " & cmbSfidDir & cr 
oleReport.Insert "Frame Structure: " & cr 

& cr 

If minorframelength > 14 Then 
maxcols = 18 
fontsize = 8 
colw =* "0.8 cm" 

Else 
maxcols = 14 
fontsize = 10 
colw = "1 cm" 

End If 
rem by hkt 3 lines ' ; 
disable the emphasis facility to give "neater presentation 
If minorframes = 1 Then 

txtCols = maxcols 
txtCols_Click 

End If 
With grdScantable 

.FixedRows = 0 

.SelStartRow = 0 

.SelEndRow = .rows - 1 
For i = 0 To .cols - 2 Step maxcols 

DoEvents 
If i + maxcols < .cols - 1 Then 

.cols - 1 

+ 1 
cols 

cols = maxcols 
Else 

cols 
End If 
.SelStartCol = i 
.SelEndCol = i + 
oleReport.Insert .Clip + Chr(13) 
oleReport.LineUp 
.col = 0 
For j = .rows - 2 To 0 Step -1 

.row = j + 1 
If minorframes > 1 
oleReport.Insert 

Then oleReport.Insert "Minor frame 
text + tb 

t'u. 



frmMain - 27 

oleReport.LineUp 
oleReport.StartOfLine 

Next 
oleReport.Insert tb 
oleReport.StartOfLine 
oleReport.ExtendSelection 
oleReport.EndOfDocument 
oleReport.TextToTable , , , colw, , tableformat, 161 
oleReport.fontsize fontsize 
oleReport.TableColumnWidth , 0 
oleReport.CenterPara 
oleReport.Cancel 
If minorframes > 1 Then 

oleReport.StartOfLine 
oleReport.TableColumnWidth "2.5 cm" 

End If 
oleReport.EndOfDocument 
oleReport.Insert cr 

Next 
.FixedRows = 1 
.SelEndCol = 1 
.SelEndRow = 1 

End With 
reduce the redundant information generated in the report 
hkt remitted generate Test Signal 
generateTestSignals 
oleReport.Style heading2 
oleReport.Insert "Test Signals" + cr 
oleReport.Style normal 
oleReport.TablelnsertTable , 5, 2, "4 cm", , tableformat, 161 
oleReport.Tableheadings 
oleReport.TableColumnWidth "1.25 cm" 
oleReport.Insert "Name" 
oleReport.nextcell 
oleReport.TableColumnWidth "2.5 cm" 
oleReport.Insert "Type" 
oleReport.nextcell 
oleReport.Insert "Frequency [Hz]" 
oleReport.nextcell 
oleReport.Insert "Amplitude [V]" 
oleReport.nextcell 
oleReport.Insert "Offset [V]" 
With grdÄnalog 

For i = 0 To UBound(testSignalSetup) 
.row = i + 1 
.col = 0 
oleReport.nextcell 
oleReport.Insert CStr(grdAnalog) , 
oleReport.nextcell ' 
oleReport. Insert "square wave"" 
oleReport.nextcell 
oleReport.Insert Str(2600 / 2 A testSignalSetup(3, i)) 
oleReport.nextcell 
If testSignalSetup(1, i) > 0 Then 

gain = 1 / (2 A (testSignalSetup (1, i) -1)) 
Else 

gain = 0 
End If 
oleReport.Insert Format(2.5 * 0.6 * gain, "Scientific") 
oleReport.nextcell 
If testSignalSetup(2, i) >= 8 Then 

offset = (testSignalSetup (2, i) - 7) * 0.3125 
Else 

offset = testSignalSetup(2, i) * 0.3125 - 2.5 
End If 
oleReport.Insert CStr(offset) 

Next 
End With 
DoEvents 
freq = 2600 
For i = 0 To 7 

oleReport.nextcell 
oleReport.Insert "D(" & i & ")" 
oleReport.nextcell 

\Ö\ 



frmMain - 28 

oleReport.Insert "digital" 
oleReport.nextcell 
oleReport.Insert CStr(freq) 
oleReport.nextcell 
oleReport.nextcell 
freq = freq \ 2 

Next 
DoEvents 
oleReport.charright 2 

oleReport.insertPageBreak 
oleReport.Style heading2 
oleReport.Insert "SMT EEPROM Description file (ASCII file)" + cr 
oleReport.Style "SMT_EEPROM" 
oleReport.Insert cr + asciiFile 

oleReport.EndOfDocument 
i = oleReport.Sellnfo(l) 
oleReport.StartOfDocument 
oleReport.EditReplace "##pages##", CStr(i), ,,,,,, 1 
oleReport.StartOfDocument 

oleReport.FileSaveAs filename 
oleReport.AppMinimize 0 

1    oleReport.fileclose 
Exit Sub 

errOLE: 
MsgBox "Error using OLE to create report:" & Chr(13) & _ 

err.Description, vbOKOnly, frmMain.Caption 
errSaveReportCancel: 
End Sub 

Private Sub mnuScanTableClear_Click() 
smtChanged = True 
fillgrdScantable ("") 
update_form 
checkScantable 

End Sub 

Private  Sub mi?uScanTableCopy_Click () 
Clipboard.SetText  grdScantable.Clip + Chr(13) 

End Sub 
Private Sub mnuScanTableCut_Click() 

smtChanged = True 
mnuScanTableCopy_Click » 
mnuScanTableClear_Click J _,,v 
checkScantable 

End Sub 

Private Sub mnuScantableEntry_Click(Index As Integer) 
smtChanged = True 
fillgrdScantable (mnuScantableEntry(Index).Caption) 
checkScantable 

End Sub 

Private Sub mnuFileEditSmtDeviceSpecification_Click() 
frmFileEditSmtDeviceSpecification.Show 

End Sub 
Private Sub mnuFileExit_Click() 

End 
End Sub 
Private Sub mnuHelpAbout_Click() 

frmAbout.Show 
End Sub 
Private Sub mnuScanTablePaste_Click() 
Dim clipdata As String 
Dim i, rows, cols, curcols As Integer 
Dim content As Boolean 

smtChanged = True 
clipdata = Clipboard.GetText 



frmMain 29 

' clipboard analysis; cols are separated by tab 
' (tab=chr(9)), rows by cr/lf (cr=chr(13)) 
rows = 0 
cols = 0 
curcols = 1 
For i = 1 To Len(clipdata) 

If Asc(Mid(clipdata, i, 1)) >= 32 Then 
content = True 

End If 
If Mid(clipdata, i, 1) = Chr(9) Then 

curcols = curcols + 1 
End If 
If Mid(clipdata, i, 1) = Chr(13) Then 

rows = rows + 1 
' take largest value of all rows: 
If curcols > cols Then cols = curcols 
curcols = 1 
content = False 

End If 
Next 
1 if the last line doesn't end with a cr: 
If content Then rows = rows + 1 
If rows = 0 Or cols = 0 Then Exit Sub 

With grdScantable 
' adjust selection to clipboard content, 
1 taking care of grid boundaries: 
.SelStartCol = .col 

cols > .cols Then 
= .cols - 1 

If 

= .col + cols 

.row 
> .rows Then 
= .rows - 1 

.col + 
.SelEndCol 

Else 
.SelEndCol 

End If 
.SelStartRow = 
If .row + rows 

.SelEndRow 
Else 

.SelEndRow = .row + rows 
End If 
' copy data: 
.Clip = clipdata 
.SelEndCol = .col 
.SelEftdRow = .row 

End With 
update_form 
checkScantable 

End Sub 

Private Sub repeat_Click() 
Dim clipdata As String 
Dim i, rows, cols, curcols As Integer 
Dim content As Boolean 
Dim s col, s row, rpt_times As Integer 

'clipboard data 
'col and row var 
'correct content status 
'start row and start col, and number of repeats to do 

Dim hi_start, hi_end, no_col As Integer 'highlighted cells and cols 
Dim msg_string, Response As String     'msg at end 
Dim rpt_left_over As Boolean 'incomplete copy status 
Dim string_Sync As Integer     'sync cells string check 
Dim col_Sync As Integer        'no of sync cols 

On Error GoTo End_Function 
smtChanged = True 
msg_string = "incomplete pattern copied at tail of minor frame" 'set message 

rpt_left_over = False  'set var 

s_row = grdScantable.SelStartRow   'set var 
hi_start = grdScantable.SelStartCol 
hi_end = grdScantable.SelEndCol 
no_col = (grdScantable.SelEndCol - grdScantable.SelStartCol) + 1 
s col = hi start 

'Clipboard.clear 

W\ 



frmMain - 30 

1clipdata = Clipboard.GetText 

Clipboard.SetText grdScantable.Clip + Chr(13) 
' clipboard analysis; cols are separated by tab 
1 (tab=chr(9)), rows by cr/lf (cr=chr(13)) 
clipdata = Clipboard.GetText 
'initialse variable 
rows = 0 
cols = 0 
curcols = 1 
'check if highlighted area has correct data 
For i = 1 To Len(clipdata) 

If Asc(Mid(clipdata, i, 1)) >= 32 Then 
content = True 

End If 
If Mid(clipdata, i, 1) = Chr(9) Then 

curcols = curcols + 1 
End If 
If Mid(clipdata, i, 1) = Chr(13) Then 

rows = rows + 1 
1 take largest value of all rows: 
If curcols > cols Then cols = curcols 
curcols = 1 
content = False 

End If 
Next 
1 if the last line doesn't end with a cr: 
If content Then rows = rows + 1 
If rows = 0 Or cols = 0 Then Exit Sub 
'calc the number of times we need to repeat the copy command 
rpt_times = ((grdScantable.cols - grdScantable.col) + 1) \ no_col 
'check for sync cells 
col_Sync = 0 
For i = 1 To 5 

string_Sync = 0 
grdScantable.col = 1 
string_Sync = InStr(grdScantable.text, "Sync") 
If string_Sync > 0 Then 

col_Sync = col_Sync + 1 
End If 

Next i 

With grdScantable 
' adjust selection to clipboard content, 
' taking care of grid boundaries: 
.SelStartRow = s_row 
.SelEndRow = s_row , , 

'copy highlighted cells til end of minor frame   ^v 

For i = 1 To rpt_times 
s_col = s_col + cols 'set s_col for loop 
If Val(s_col) >= Val(.cols) Then Exit For 'if greater than minor frame 
.SelStartCol = s_col 
If Val(.SelStartCol + cols - 1) >= Val(.cols) Then 

grdScantable.SelEndCol = grdScantable.cols - 1 
rpt_left_over = True 

Else 
.SelEndCol = Val(s_col + cols - 1) 

End If 
' copy data: 
.Clip = clipdata 

Next i 
End With 
'if an incomplete copy at tail of minor frame then give message 
If rpt_left_over = True Then 

Response = MsgBox(msg_string, vbOKOnly, "Message") 
End If 
update_form 
checkScantable 

End_Function: 

End Sub 

Private, Sub txtCols Click() 
Ut. 



frmMain 31 

If Val(txtCols) = columns Then Exit Sub 
columns = Val(txtCols) 
Do While minorframelength Mod columns <> 0 

columns = columns - 1 
Loop 
If columns <= syncwords Then columns = syncwords 
saveScantable 
update_form 
restoreScantable 
smtChanged = True 

End Sub 

Private Sub txtCols_KeyDown(KeyCode As Integer, Shift As Integer) 
'by hkt 
'txtcol responds to keyboard events 

Select Case KeyCode 
Case vbKeyReturn 

If Val(txtCols) = columns Then Exit Sub 
columns = Val(txtCols) 
Do While minorframelength Mod columns <> 0 

columns = columns - 1 
Loop 
If columns <= syncwords Then columns = syncwords 
saveScantable 
update_form 
restoreScantable 
smtChanged = True 
Exit Sub 

Case vbKeyTab 
If Val(txtCols) = columns Then Exit Sub 
columns = Val(txtCols) 
Do While minorframelength Mod columns <> 0 

columns = columns - 1 
Loop 
If columns <= syncwords Then columns = syncwords 
saveScantable 
update_form 
restoreScantable 
smtChanged = True 
Exit Sub 

End Select 
End Sub 

Private Sub txtCols_LostFocus() 
txtCols_Click 

End Sub 

Private Sub txtDescription_Change ()       J _.,v 
smtChanged = True 

End Sub 

Private Sub txtError_Change() 
If txtError <> "" Then 

txtError.BackColor = &H80FFFF 
If chkErrorSound Then Beep 

Else 
txtError.BackColor = &HFFFFFF 

End If 
End Sub 

Private Sub txtMinorframelength_Click() 
'hkt var 
Dim changelength As Integer 'value of new length 

If Val(txtMinorframelength) = minorframelength Then Exit Sub 
'hkt next 4 
'check if in emphasis state, and if so normalise before changing 
If Val(txtCols) <> Val(txtMinorframelength) Then 

changelength = txtMinorframelength 
txtCols = minorframelength 
txtCols_Click 

End If 

\r» J 



frmMain - 32 

minorframelength = Val(txtMinorframelength) 
If minorframelength > maxMinorframelength Then minorframelength = maxMinorframelength 
If minorframelength < syncwords Then minorframelength = syncwords 
If minorframes = 1 Then columns = minorframelength 
smtChanged = True 
update_form 

End Sub 

Private Sub txtMinorframelength_KeyDown(KeyCode As Integer, Shift As Integer) 
'by hkt 
Dim changelength As Integer 'value of new length 

Select Case KeyCode 
Case vbKeyReturn 

If Val(txtMinorframelength) = minorframelength Then Exit Sub 
'hkt next 4 
'check if in emphasis state, and if so normalise before changing 
If Val(txtCols) <> Val(txtMinorframelength) Then 

changelength = txtMinorframelength 
txtCols = minorframelength 
txtCols_Click 

End If 

ngth 

ngth 

minorframelength = Val(txtMinorframelength) 
If minorframelength > maxMinorframelength Then minorframelength = maxMinorframele 

If minorframelength < syncwords Then minorframelength = syncwords 
If minorframes = 1 Then columns = minorframelength 
smtChanged = True 
update_form 
Exit Sub 

Case vbKeyTab 
If Val(txtMinorframelength) = minorframelength Then Exit Sub 
'hkt next 4 
'check if in emphasis state, and if so normalise before changing 
If Val(txtCols) <> Val(txtMinorframelength) Then 

changelength = txtMinorframelength 
txtCols = minorframelength 
txtCols_Click 

End If 

miaorframelength = Val(txtMinorframelength) 
If minorframelength > maxMinorframelength Then minorframelength = maxMinorframele 

If minorframelength < syncwords Then minorframelength = syncwords 
If minorframes = 1 Then columns = minorframelength 
smtChanged = True 
update_form >'' 
Exit Sub -'        "^ 

End Select 
End Sub 

Private Sub txtMinorframelength_LostFocus() 
txtMinorframelength_Click 

End Sub 

Private Sub txtMinorframes_Click() 

If Val(txtMinorFrames) = minorframes Then Exit Sub 
minorframes = Val(txtMinorFrames) 
If minorframes > maxMinorFrames Then minorframes = maxMinorFrames 
If minorframes < 1 Then minorframes = 1 
If minorframes = 1 Then columns = minorframelength 
smtChanged = True 
update_form 

End Sub 

Private Sub txtMinorframes_KeyDown(KeyCode As Integer, Shift As Integer) 
'by hkt 
'responds to keyboard events 

Select Case KeyCode 
Case vbKeyReturn 

If Val(txtMinorFrames) = minorframes Then Exit Sub 

U4 



frmMain - 33 

minorframes = Val(txtMinorFrames) 
If minorframes > maxMinorFrames Then minorframes = maxMinorFrames 
If minorframes < 1 Then minorframes = 1 
If minorframes = 1 Then columns = minorframelength 
smtChanged = True 
update_form 
Exit Sub 

Case vbKeyTab 
If Val(txtMinorFrames) = minorframes Then Exit Sub 
minorframes = Val(txtMinorFrames) 
If minorframes > maxMinorFrames Then minorframes = maxMinorFrames 
If minorframes < 1 Then minorframes = 1 
If minorframes = 1 Then columns = minorframelength 
smtChanged = True 
update_form 
Exit Sub 

End Select 

End Sub 

Private Sub txtMinorframes_LostFocus() 
txtMinorframes_Click 

End Sub 

Private Sub txtPNSeed_Change() 
checkPNSeed 
smtChanged = True 

End Sub 

Private Sub txtPNSeed_Click() 
txtPNSeed_LostFocus 

End Sub 

Private Sub txtPNSeed_LostFocus() 
txtPNSeed = Hex(Val("&H" & txtPNSeed)) 

End Sub 

Private Sub txtSfidStart_Change() 
checksfid 
smtChanged = True 

End Sub 

Private Sub txtSyncword_Change() 
smtChanged = True 

End Sub 

Private Sub txtSyncword_Click() 
Dim b, sw As Integer 
Dim i As Long / ( 

i = Val("&H" & txtSyncword & "&")       -        -^ 
txtSyncword = Hex(Val(i & "&")) 
For sw = 3 To 0 Step -1 

b = i Mod &H100 
If b < 0' Then 

b = b + &H100 
i = i - &H80000000  ' work around Bill Gates' brain damage 
i = i \ &H100 
i = i + &H800000 

Else 
i = i \ &H100 

End If 
syncwordbytes(sw) = b 

Next 
checkSyncword 

End Sub 

Private Sub txtSyncword_LostFocus() 
txtSyncword_Click 

End Sub 

W^ 



frmMain - 1 

VERSION 5.00 
Object = "{F9043C88-F6F2-101A-A3C9-08002B2F49FB}#1.1#0"; "COMDLG32.0CX" 
Object = "{A8B3B723-0B5A-101B-B22E-00AA0037B2FC}#1.0#0"; "GRID32.0CX" 
Begin VB.Form frmMain 

BorderStyle    =  1  'Fixed Single 
Caption       =  "SMT Configuration Tool" 
ClientHeight   =  8208 
ClientLeft     =  72 
ClientTop     =  1740 
ClientWidth    =  11880 
Icon =  (Icon) 
MaxButton     =  0  'False 
MinButton     =  0  'False 
PaletteMode    =  1  'UseZOrder 
ScaleHeight    =  8208 
ScaleWidth     =  11880 
Begin VB.PictureBox vsViewPortl 

Height        =  7035 
Left =  720 
ScaleHeight    =  6984 
ScaleWidth     =  9924 
Tablndex      =  50 
Top =  480 
Width =  9975 
Begin VB.Frame fraAnalog 

Caption       =  "Analog channels setup" 
Height        =  2355 
Left =  8160 
Tablndex       =  47 
Top =  1440 
Width =  3615 
Begin MSGrid.Grid grdAnalog 

Height = 1935 
Left = 120 
Tablndex = 48 
Tag = 11 "I 1! 

Top = 300 
Width = 3375 
Version = 65536 
ExtentX = 5953 

_ExtentY = 3413 
_StockProps = 77 
BaskColor = 16777215 
BeginProperty Font {0BE35203-8F91-11CE-9DE3-00AA004BB851} 

Name "MS Sans Serif" 
Size 7.8 
Charset 0 
Weight 400 
underline 0 'False ''' 
Italic 0 ■False"'        "^ 
Strikethrough 0 'False 

EndProperty 
Rows = 1 
Cols = 4 
FixedRows = 0 
ScrollBars = 2 
Mouselcon = {Binar\ r) 

End 
End 
Begin VB.Frame fraScantable 

Caption       =  "Scantable setup" 
Height =  2355 
Left =  5100 
Tablndex      =  31 
Top =  1440 
Width =  3075 
Begin VB.CommandButton cmdPasteEntire 

Caption = "paste table" 
Height = 315 
Left = 1080 
Tablndex = 40 
Tag = ff-| 11 

Top = 1920 
Width = 915 

uu 



frmMain 

End 
Begin VB.TextBox txtSfidStart 

Alignment = 1  'Right Justify 
Height = 285 
Left = 1680 
Tablndex = 39 
Tag = iin II 

Text = "255" 
Top = 1140 
Width = 555 

End 
Begin VB.ComboBox cmbSfidDir 

Height = 300 
Left = 1680 
Style = 2  'Dropdown List 
Tablndex = 38 
Tag = ff-| II 

Top = 1500 
Width = 855 

End 
Begin VB.CommandButton cmdCopyEnt ire 

Caption = "copy table" 
Height = 315 
Left = 120 
Tablndex = 37 
Tag = III II 

Top = 1920 
Width = 975 

End 
Begin VB.TextBox txtCols 

Height = 300 
Left = 2010 
Tablndex = 36 
Tag = 11*1 II 

Text = II __1 II 

Top = 1125 
Width = 555 

End 
Begin VB.ComboBox : cmbEmphasize 

Height = 300 
Left = 1980 
Style = 2  'Dropdown List 
Tablndex = 35 
Tag = II-I II 

Top = 1500 
Width = 855 

End 
Begin VB.TextBox txtMinorframelength 

Height = 315 
Left = 1680 
Tablndex = 34 
Tag = II-1 II 

Text = »_1 » 

Top = 300 
Width = 555 

End 
Begin VB.TextBox txtMinorFrames 

Height = 315 
Left = 1680 
Tablndex = 33 
Tag = I11 II 

Text = »_*1 » 

Top = 720 
Width = 555 

End 
Begin VB.CommandButton repeat 

Caption = "repeat" 
Height = 315 
Left = 1980 
Tablndex = 32 
Top = 1920 
Width = 915 

End 
Begin VB.Label Labell 

\n 



fnriMain - 3 

Caption = "Minor frames per major frame: II 

Height = 495 
Index = 3 
Left = 120 
Tablndex = 46 
Top = 660 
Width = 1335 
Wordwrap = -1  'True 

End 
Begin VB.Label Label1 

Caption = "Minor frame length:" 
Height = 195 
Index = 2 
Left = 120 
Tablndex = 45 
Top = 360 
Width = 1395 

End 
Begin VB.Label lblSfid 

Caption = "SFID start value:" 
Height = 195 
Index = 0 
Left = 120 
Tablndex = 44 
Top = 1200 
Width = 1275 

End 
Begin VB.Label lblSfid 

Caption = "SFID direction:" 
Height = 195 
Index = 1 
Left = 120 
Tablndex = 43 
Top = 1560 
Width = 1095 

End 
Begin VB.Label lblDisplay 

Caption = "Table width (on screen):" 
Height = 195 
Index = 0 
Left = 120 
Tablndex = 42 
Top = 1200 
Width = 1875 

End 
Begin VB.Label lblDisplay 

Caption = "Emphasize channel:" 
Height = 195 
Index = 1 
Left = 120 
Tablndex = 41 
Top = 1560 
Width - 1515 

End 
End 
Begin VB.Frame fraTransmi ssion 

Caption =  "Transmission parameters" 
Height 2355 
Left 0 
Tablndex =  20 
Top 1440 
Width 5115 
Begin VB.TextBox txtSyncword 

Alignment = 1  'Right Justify 
DataField = "syncl" 
DataSource = "datSmtSystemSetup" 
Height = 285 
Left = 1800 
Tablndex = 25 
Tag = ir-j i? 

Text = "EB90" 
Top = 1920 
Width = 1155 

End 



frmMain - 4 

Begin VB.ComboBox cmbBitrate 
Height = 288 
Left = 1800 
Style = 2  'Dropdown List 
Tablndex = 24 
Tag = "l" 
Top = 360 
Width = 2832 

End 
Begin VB.ComboBox cmbTransmitFreq 

Height = 288 
Left = 1800 
Sorted = -1  'True 
Style = 2  'Dropdown List 
Tablndex = 23 
Tag = 111 1? 

Top = 1080 
Width = 1308 

End 
Begin VB.ComboBox cmbSyncwordLength 

Height = 300 
Left = 1800 
Style = 2  'Dropdown List 
Tablndex = 22 
Tag = 111 IT 

Top = 1500 
Width = 855 

End 
Begin VB.TextBox 1 bxtPNSeed 

Alignment = 1  'Right Justify 
Height = 285 
Left = 1800 
Tablndex = 21 
Tag = 111 II 

Top = 720 
Width = 555 

End 
Begin VB.Label Label3 

Caption = "PN Seed (hex):" 
Height = 255 
Left = 240 
Tablndex = 30 
Top = 780 
Width = 1395 

End 
Begin VB.Label label4 

Caption = "Transmit frequency:" 
Height = 255 
Left = 240 
Tablndex = 29 
Top = 1140 
Width = 1575 

End 
Begin VB.Label Labe12 

Caption = "Bitrate:" 
Height = 255 
Index = 0 
Left = 240 
Tablndex = 28 
Top = 420 
Width = 855 

End 
Begin VB.Label Labe15 

Caption = "Sync word (hex):" 
Height = 255 
Index = 0 
Left = 240 
Tablndex = 27 
Top = 1980 
Width = 1575 

End 
Begin VB.Label Label5 

Caption = "Sync word length:" 
Height = 255 

l\°l 



frmMain - 5 

Index = 1 
Left = 240 
Tablndex = 26 
Top = 1560 
Width = 1575 

End 
End 
Begin VB.Frame Frame1 

Caption =  "Identification" 
Height 1455 
Left 0 
Tablndex 13 
Top 0 
Width 11775 
Begin VB.TextBox txtDescription 

Alignment = 1  'Right Justify 
Height = 285 
Left = 1080 
Tablndex = 16 
Tag = 111 IT 

Top = 600 
Width = 10395 

End 
Begin VB.TextBox txtProject 

Alignment = 1  'Right Justify 
Height = 285 
Left = 1080 
Tablndex = 15 
Tag = 111 II 

Top = 240 
Width = 10395 

End 
Begin VB.TextBox txtAuthor 

Alignment = 1  'Right Justify 
Height = 285 
Left = 1080 
Tablndex = 14 
Tag = II-I II 

Top = 960 
Width = 10395 

End 
Begin VB.Label Label2 

Caption = "Description:" 
Height. = 255 
Index = 1 
Left = 120 
Tablndex = 19 
Top = 660 
Width = 855 

End "■' 

Begin VB.Label Labe12 
Caption = "Author:" 
Height = 255 
Index = 4 
Left = 120 
Tablndex = 18 
Top = 1020 
Width = 855 

End 
Begin VB.Label Label2 

Caption = "Project:" 
Height = 255 
Index = 5 
Left = 120 
Tablndex = 17 
Top = 300 
Width = 855 

End 
End 
Begin MSGrid.Grid grdScantable 

Height        =  3315 
Left =  0 
Tablndex      =  49 
Tag =  "1" 

\ S-ti 



frmMain - 6 

Top 3780 
Width 11775 
_Version 65536 
ExtentX 20770 

_ExtentY 5847 
StockProps 77 

BackColor 16777215 
BeginProperty Font {0BE35203-8F91-11CE-9DE3- -00AA004BB851} 

Name "MS Sans Serif" 
Size 7.8 
Charset 0 
Weight 400 
Underline 0  'False 
Italic 0  'False 
Strikethrough 0  'False 

EndProperty 
MouseIcon =  {Binary} 

End 
End 
Begin VB.CommandButton cmdButtonBar 

Caption = "Generate report" 
Height = 315 
Index = 8 
Left = 7200 
Tablndex = 12 
TabStop = 0  'False 
Top = 60 
Width = 1335 

End 
Begin VB.CommandButton cmdButtonBar 

Caption = "Start test signal generator" 
Height = 315 
Index = 7 
Left = 8616 
Tablndex = 11 
TabStop = 0  'False 
Tag = 11*1 If 

Top = 60 
Visible = 0  'False 
Width = 1995 

End 
Begin VB.CommandButton cmdButtonBar 

Caption ■» = "Create ASCII file" 
Height = 315 
Index = 6 
Left = 5700 
Tablndex = 10 
TabStop = 0   'False \ 
Tag = IM IT                                 /' 

Top = 60 ,-AA 

Width = 1335 
End 
Begin VB.CommandButton cmdButtonBar 

Caption = "View errors" 
Height = 315 
Index = 5 
Left = 4740 
Tablndex = 9 
TabStop = 0  'False 
Tag = 11*1 II 

Top = 60 
Width = 975 

End 
Begin VB.CommandButton cmdButtonBar 

Caption = "Generate frame structure" 
Height = 315 
Index = 4 
Left = 2640 
Tablndex = 8 
TabStop = 0  'False 
Tag = II-1 II 

Top = 60 
Width = 1935 

End 

\&\ 



frmMain - 7 

Begin VB.CommandButton cmdButtonBar 
Caption = "Save As" 
Height = 315 
Index = 3 
Left = 1680 
Tablndex = 7 
TabStop = 0  'False 
Tag = ill ir 

Top = 60 
Width = 795 

End 
Begin VB.CommandButton cmdButtonBar 

Caption = "Save" 
Height = 315 
Index = 2 
Left = 1140 
Tablndex = 6 
TabStop = 0  'False 
Tag = t» -T II 

Top = 60 
Width = 555 

End 
Begin VB.CommandButton cmdButtonBar 

Caption = "Open" 
Height = 315 
Index = 1 
Left = 600 
Tablndex = 5 
TabStop = 0  'False 
Tag = 111 II 

Top = 60 
Width = 555 

End 
Begin VB.CommandButton cmdButtonBar 

Caption = "New" 
Height = 315 
Index = 0 
Left = 120 
Tablndex = 4 
TabStop = 0   'False 
Tag = IM II 

Top = 60 
Width = 495 

End 
Begin VB.CheckBox chkErrorSound 

Caption = "Checkl" 
Height = 195 
Left = 10980 
Tablndex = 0 
Top = 7860 
Width = 255 

End 
Begin VB.TextBox txtError 

Alignment = 1  'Right Justify 
BackColor = &H00FFFFFF& 
BeginProperty Font 

Name "MS Sans Serif 
Size 7.8 
Charset 0 
Weight 700 
Underline 0  'False 
Italic 0  'False 
Strikethrough 0  'False 

EndProperty 
Height = 285 
Left = 660 
Locked = -1  'True 
Tablndex = 1 
TabStop = 0  'False 
Tag = 111 II 

Top = 7800 
Width = 10215 

End 
Begin MSComDlg.CommonDialog commondialogReportFile 

u, 



} 

frmMain - 8 

Left = 11040 
Top = 0 
ExtentX = 847 

_ExtentY = 847 
Version = 327681 
CancelError = -1  'True 
DefaultExt - "mdb" 
DialogTitle = "Save Report As" 
Filter = "Document files (*.doc)|*.doc" 
MaxFileSize = 64 

End 
Begin MSComDlg.CommonDialog commondialogFile 

Left = 10440 
Top = 0 
ExtentX = 847 

_ExtentY = 847 
Version = 327681 
CancelError = -1  'True 
DefaultExt = "mdb" 
Filter = "SMT Configuration files (*.mdb)|*.mdb" 
MaxFileSize = 64 

End 
Begin MSComDlg.CommonDialog commondialogSpecFile 

Left = 10740 
Top = 0 
ExtentX = 847 

_ExtentY = 847 
Version = 327681 
CancelError = -1  'True 
DefaultExt = "mdb" 
DialogTitle = "Open SMT Configuration Specification file" 
Filter = "SMT Config Spec files (*.mdb)|*.mdb" 
MaxFileSize = 64 

End 
Begin VB.Line Linel 

XI = 0 
X2 = 11880 
Yl = 420 
Y2 = 420 

End 
Begin VB.Label lblErrorSound 

Caption = "Sound" 
Height u = 195 
Left = 11280 
Tablndex = 3 
Top = 7860 
Width = 495 

End 
Begin VB.Label Label2 /•            * 

Caption = "Errors:"        -'        '~f'x 

Height = 255 
Index = 2 
Left = 120 
Tablndex = 2 
Top = 7860 
Width = 555 

End 
Begin VB.Menu mnuFile 

Caption = "SFile" 
Begin VB.Menu mnuFileNew 

Caption "&New..." 
Tag _     If 1 f? 

End 
Begin VB.Menu mnuFileOpen 

Caption "&Open..." 
Tag __  n i ii 

End 
Begin VB.Menu mnuFileSave 

Caption "&Save" 
Tag _     "1" 

End 
Begin VB.Menu mnuFileSaveAs 

• Caption "Save &As..." 
Tag —  HI II 

\'X, 



frniMain 

End 
Begin VB.Menu mnuSepBarl 

Caption       =  "-" 
End 
Begin VB.Menu mnuFileOpenSmtDeviceSpecification 

Caption       =  "Open SMT &device specification. 
End 
Begin VB.Menu mnuFileEditSmtDeviceSpecification 

Caption       =  "&Edit SMT device specification. 
End 
Begin VB.Menu mnuSepBar4 

Caption       =  "-" 
End 
Begin VB.Menu mnuFileExit 

Caption       .=  "E&xit" 
End 

End 
Begin VB.Menu mnulnput 

Caption .      =  "&Input" 
Begin VB.Menu mnuFileGenerateScantable 

Caption       =  "&Generate frame structure..." 
Tag =  "1" 

End 
End 
Begin VB.Menu mnuReport 

Caption       =  "SOutput" 
Begin VB.Menu mnuFileViewErrors 

Caption       =  "&View errors" 
Tag =  "1" 

End 
Begin VB.Menu mnuSepBarlO 

Caption 
End 
Begin VB.Menu mnuFileCreateAscii 

Caption        =  "SCreate ASCII file" 
Tag =  "1" 

End 
Begin VB.Menu mnuGenerateReport 

Caption       =  "&Generate Report..." 
End 
Begin VB.Menu mnuSepBar3 

Caption 
End    •» 
Begin VB.Menu mnuFileTestsignalgenerator 

Caption       =  "S&tart test signal generator" 
Tag =  "1" 

End 
End 
Begin VB.Menu mnuHelp '' 

Caption       =  "&Help" "        ~^v 

NegotiatePosition=  3  'Right 
Begin VB.Menu mnuHelpContents 

Caption       =  "&Contents" 
Shortcut      =  {Fl} 
Visible       =  0  'False 

End 
Begin VB.Menu mnuSepBar2 

Caption 
Visible       =  0  'False 

End 
Begin VB.Menu mnuHelpAbout 

Caption       =  "&About..." 
End 

End 
Begin VB.Menu mnuScanTable 

Caption       =  "scantable_popup" 
Visible       =  0  'False 
Begin VB.Menu mnuScantableEntry 

Caption       =  "dummy" 
Index =  1000 

End 
Begin VB.Menu mnuScanTable_ 

Caption       =  "-" 
End 

\£A 



frmMain - 10 

Begin VB.Menu mnuScanTableCut 
Caption       =  "Cut" 

End 
Begin VB.Menu mnuScanTableCopy 

Caption       =  "Copy" 
End 
Begin VB.Menu mnuScanTablePaste 

Caption       =  "Paste" 
End 
Begin VB.Menu mnuScanTableClear 

Caption       =  "Clear" 
End 

End 
Begin VB.Menu mnuAnalogGain 

Caption       =  "analogGain_popup" 
Visible       =  0  'False 
Begin VB.Menu mnuAnalogGainEntry 

Caption 
Index =  1 

End 
End 
Begin VB.Menu mnuAnalogOffset 

Caption       =  "analogOffset_popup" 
Visible       =  0  'False 
Begin VB.Menu mnuAnalogOffsetEntry 

Caption       =  "" 
Index =  1 

End 
End 
Begin VB.Menu mnuAnalogFilter 

Caption       =  "analogFilter_popup" 
Visible       =  0  'False 
Begin VB.Menu mnuAnalogFilterEntry 

Caption 
Index =  1 

End 
End 
Begin VB.Menu mnuAnalogFilterkbs 

Caption       =  "analogFilterkbs_popup" 
Visible       =  0  'False 
Begin VB.Menu mnuAnalogFilterkbsEntry 

Caption 
Indexi»        =  1 

End 
End 
Begin VB.Menu mnuAnalogFiltermbs 

Caption       =  "analogFiltermbs_popup" 
Visible       =  0  'False 
Begin VB.Menu mnuAnalogFiltermbsEntry 

Caption 
Index =  1 

End 
End 

End 

I r\[ 



SagggBEgSffglgSBamEgagBgW^ 

«WWW» 

BKSS^;j^»^fty>^£f#^'-$;^.«^^ ö^JÖSBäeiKCj r^^^äMäBääMaainäa 

to.^^^>^;,iK,i^Va» ^ w;r/.n^:;-.-fe-:^/Tri L/^'^:V3t5iJii8j:'Su-J SSB»^Wi»Mim 

Mm 



frmStartup - 1 

Option Explicit 

Private Sub Form_Load() 
1 position window in the middle of the screen: 
frmStartup.Left = Screen.Width / 2 - frmStartup.Width / 2 
frmStartup.Top = Screen.Height / 2 - frmStartup.Height / 2 
frmMain.Hide 
Form_Paint 

End Sub 

Private Sub Form_Paint() 
1 start wait time 
tmrStartup.Interval = 3000 
tmrStartup.Enabled = False 
tmrStartup.Enabled = True 

End Sub 

Private Sub tmrStartup_Timer () 
frmMain.Show 
Unload Me 

End Sub 



frmStartup - 1 

VERSION 5.00 
Begin VB.Form frmStartup 

BorderStyle 
Caption 
ClientHeight 
ClientLeft 
ClientTop 
ClientWidth 
ControlBox 
LinkTopic 
MaxButton 
MinButton 
PaletteMode 
ScaleHeight 
ScaleWidth 
ShowInTaskbar 
Begin VB.Timer tmrStartup 

Left =  360 
Top =  660 

End 
Begin VB.Image imgStartup 

0  'None 
"Forml" 
2352 
3588 
2916 
2700 
0  'False 
"Forml" 
0  'False 
0 'False 
1 'UseZOrder 
2352 
2700 
0  'False 

Height 
Left 
Picture 
Top 
Width 

1884 
0 
(Bitmap) 
0 
2160 

End 
End 

\3^ 



© Australian Centre for 
Test & Evaluation 

iMT 
cxinfigurotian taal 

Vf itten bg Eric Larnmerts  

A 



frmTests - 1 

Option Explicit 
Private Declare Sub setupTestSignal Lib "hwaccess" (ByVal port As Integer, ByVal gain As Inte 
ger, ByVal off As Integer, ByVal freq As Integer, ByVal chan As Integer) 
Dim channel As Integer 
Public pport As Integer 
Const channels = 4 

Private Sub cmdCancel_Click() 
Unload Me 

End Sub 

Private Sub Form_Deactivate() 
Unload Me 

End Sub 

Private Sub Form_Load() 
channel = 3 
lblPortAddress = "Using parallel port at address Ox" & Hex(pport) 
tmrInterval_Timer 

End Sub 

Private Sub optChannel_Click(Index As Integer) 
If Index = 0 Then 

tmrlnterval.Enabled = True 
tmrlnterval.Interval = Val(txtInterval) 

Else 
tmrlnterval.Enabled = False 
tmrlnterval.Interval = 0 
channel = Index - 1 
setupTestSignal pport, _ 

testSignalSetup(l, channel), _ 
testSignalSetup(2, channel), _ 
testSignalSetup(3, channel), channel 

lblTestChannel.Caption = "Testing analog channel " & channel + 1 
End If 

End Sub 

Private Sub tmrInterval_Timer() 
channel = ((channel + 1) Mod channels) 
lblTestChannel.Caption = "Testing analog channel " & channel + 1 
setupTestSignal pport, _ 

testSisfnalSetup (1, channel), _ 
testSignalSetup(2, channel), _ 
testSignalSetup(3, channel), channel 

End Sub 

Private Sub txtInterval_Change () '' 
tmrlnterval.Interval = Val(txtlnterval) 
tmrlnterval.Enabled = False 
tmrlnterval.Enabled = True 

End Sub 

i.i\ 



frmTests 

VERSION 5.00 
Begin VB.Form frmTests 

BorderStyle =  1  'Fixed Single 
Caption "Test Signal Generator" 
ClientHeight 2904 
ClientLeft 1248 
ClientTop 2772 
ClientWidth 3312 
Icon =  (Icon) 
LinkTopic "Forml" 
MaxButton 0  'False 
PaletteMode 1  'UseZOrder 
ScaleHeight 2904 
ScaleWidth 3312 
Begin VB.OptionButton optChannel 

Caption "Channel 4" 
Height 195 
Index 4 
Left 240 
Tablndex 3 
Top 1560 
Width 1875 

End 
Begin VB.OptionButton optChannel 

Caption "Channel 3" 
Height 195 
Index 3 
Left 240 
Tablndex 2 
Top 1320 
Width 1875 

End 
Begin VB.OptionButton optChannel 

Caption "Channel 2" 
Height 195 
Index 2 
Left 240 
Tablndex 1 
Top 1080 
Width 1875 

End 
Begin VB.OptionButton optChannel 

Caption ^ "Channel 1" 
Height 195 
Index 1 
Left 240 
Tablndex 0 
Top 840 
Width 1875 

End 
Begin VB.TextBox txtInterval 

Height 285 
Left 1920 
Tablndex 5 
Text "1000" 
Top 1860 
Width 555 

End 
Begin VB.Timer tmr Interval 

Interval 1000 
Left 2520 
Top 1020 

End 
Begin VB.CommandButton cmdCancel 

Cancel -1  'True 
Caption "Cancel" 
Default -1  'True 
Height 375 
Left 1020 
Tablndex 6 
Top 2340 
Width 1215 

End . 
Begin VB.OptionButton optChannel 

n\ 



frrtiTests 

Caption = "Auto change every" 
Height = 255 
Index = 0 
Left = 240 
Tablndex = 4 
Top = 1860 
Value = -1  'True 
Width = 1695 

End 
Begin VB.Label lblPortAddress 

Alignment = 2 'Center 
Height = 195 
Left = 300 
Tablndex = 9 
Top = 120 
Width = 2715 

End 
Begin VB.Label lblTestChannel 

Alignment = 2  'Center 
Height = 195 
Left = 300 
Tablndex = 8 
Top = 480 
Width = 2715 

End 
Begin VB.Label Label1 

Caption = "ms" 
Height = 255 
Index = 1 
Left = 2520 
Tablndex = 7 
Top = 1920 
Width = 255 

End 
End 

\-bt 





modScantableGenerator - 1 

Option Explicit 

Public abort As Boolean 
Dim gcdtable(), gcds As Integer 
Dim offset{) As Integer 
Public scantableLength As Long 
Dim ch As chSet 
Dim chRepeatTime() As Integer 

Private Function try_subtable(ch As chSet, depth, pos As Integer) As Boolean 
1 tries to fit a subtable in the space provided 
1 * ch is the table to try 
1 * depth is the depth of recursion of try_subtable 
' * pos indicates where in the scantable the channels should go 
Dim subch() As chSet 
Dim gcd, i As Integer 

' make Windows respond to other events (other applications and the abort button) 
DoEvents 

If depth > UBound(gcdtable) Then ReDim Preserve gcdtable(depth) 
' gcdtable(depth) is greatest common divisor of the repeat times of the channels involved 
gcdtable(depth) = ch.gcd(chRepeatTime) 
' gcd is the greatest common divisor of the repeat times of the channels involved 
' divided by the table cell repeat time 
gcd = gcdtable(depth) \ gcdtable(depth - 1) 
If gcd >= ch.length Then 

' enough space for all channels 
For i = 0 To ch.length - 1 

offset(ch.peek(i)) = i * gcdtable(depth - 1) + pos 
Next 
try_subtable = True 

Else 
' not enough space for all channels, try to divide channels into subtables 
ReDim subch(gcd) 
For i = 0 To gcd - 1 

Set subch(i) = New chSet 
Next 
try_subtable = try_permutation(ch, subch, 0, gcd, ch.length, depth + 1, pos) 

End If 
End Function 

Private Function try_permutation(ch, subch() As chSet, hint, gcd, _ 
chlen, depth, pos As Integer) As Boolean 

1 tries all possibilities of fitting the ch channels in gcd subtables 
1 * ch is the table containing channels to be divided amongst subch 
' * subch is the array of subtables where the channels should go 
1 * hint is a parameter that allow tryjpermutation to check even distributions first, 
'     greatly reducing processing time     "        ~'x 

1 * gcd is the amount of subtables used 
' * chlen is the number of channels in the original table 
' *■ depth is the depth of recursion of try_subtable 
' * pos indicates where in the scantable the channels should go 
Dim i, j As Integer 

If abort Then 
' user aborted scantable generation 
try_permutation = False 
Exit Function 

End If 
If ch.length > 0 Then 

1 recurse further 
For i = 0 To gcd - 1 

j = (i + hint) Mod gcd 
' move channel from table to subtable 
subch(j).push (ch.pop) 
tryjpermutation = tryj?ermutation(ch, subch, (hint + 1) Mod gcd, gcd, _ 

chlen, depth, pos) 
' reverse that move 
ch.push (subch(j).pop) 
If try_permutation Then Exit Function 

Next 
Else 

\?A- 



modScantableGenerator - 2 

' all channels are allocated to a subtable 
1 now check if all subtables are possible 
try_permutation = False 
For i = 0 To gcd - 1 

If subch(i).length = chlen Then Exit Function ' subtable same as table, worthless 
If subch(i).length > 0 Then ' subtables of length 0 are always possible 

If Not try_subtable(subch(i), depth, i * gcdtable(depth - 2) + pos) Then 
Exit Function 

End If 
End If 

Next 
try_permutation = True 

End If 
End Function 

Public Function scantablePossible(channelRepeatTime() As Integer) As Boolean 
' this function takes a requirement provided in channelRepeatTime() and produces offset (), 
' the array that determines which channel has to go where 
' return value indicates whether scan table is possible 
Dim i As Integer 

Set ch = New chSet 
ch.clear 

' make local copy of channelRepeatTime() to be used later by generateScantable 
' fill channel array 
ReDim chRepeatTime(LBound(channelRepeatTime) To UBound(channelRepeatTime)) 
For i = LBound(channelRepeatTime) To UBound(channelRepeatTime) 

If channelRepeatTime(i) <> 0 Then 
ch.push (i) 
chRepeatTime(i) = channelRepeatTime(i) 

End If 
Next 
ReDim offset(LBound(chRepeatTime) To UBound(chRepeatTime)) 

' scantable length is the least common multiple of all channel repeat times 
scantableLength = ch.lcm(chRepeatTime) 

1 if scantable length doesn't conform to IRIG, return error 
If 2 * scantableLength > maxMinorframelength Then 

scantablePossible = False 
Exit Function 

End If   ■» 

ReDim gcdtable(10) 
gcdtable(0) = 1 
gcds = 1 
abort = False 
1 show form indicating the algorithm is busy 
frmGenerating.Show ""'        "^ 
scantablePossible = try_subtable(ch, 1, 0) 
Unload frmGenerating 

End Function 

Public Sub generateScantable() 
' takes the offset() array generated by scantablePossible() and puts the channel 
' values in frmmain.grdScantable 
Dim i, j, chn As Integer 
Dim Shift As Integer 

With frmMain.grdScantable 
frmMain.smtChanged = True 
minorframes = 1 
minorframelength = scantableLength * 2  ' digitals inbetween analogs req'd 
columns = scantableLength * 2 
frmMain.update_form ' resize grid 
.row = 1 
.SelStartCol = syncwords + 1 
.SelEndCol = .cols - 1 
.SelStartRow = 1 
.SelEndRow = 1 
.FillStyle = 1 
.text = digitals(LBound(digitals))     ' fill grid with first digital channel 
.FillStyle = 0 



modScantableGenerator - 3 

.SelEndCol = 1 

.SelEndRow = 1 
End With 

1 shift scantable so syncword is in first position 
Shift = scantableLength - offset(ch.peek(ch.length - 1)) 
For i = 0 To ch.length - 2 

chn = ch.peek(i) 
For j = (offset(chn) + Shift) Mod chRepeatTime(chn) To scantableLength - 1 
Step chRepeatTime(chn) 

'fill grdScantable with analog channel 
frmMain.grdScantable.col = 2 * j + 1 
frmMain.grdScantable = frmgen.lblChannel(chn) 

Next 
Next 

End Sub 

\ '<At 



Module1 - 1 

Public Const maxMinorframelength As Integer = 514 ' IRIG class I 
Public Const maxMinorFrames As Integer = 256 ' IRIG class I 
Public maxscantablelength As Long 

Public sSmtSpecDatabasefile As String 

Public testSignalSetup() As Integer 
Public bitrate, wordrate As Long 
Public channels(), eachminorframes(), analogs(), digitals(), dummy As String 
Public samplefreqs() As Double 

Public minorframelength, minorframes As Integer 

Public columns As Integer 

Public syncwords As Integer 
Public syncwordbytes(0 To 3) As Byte 

Public oleReport As Object 

Public grdScantableChanged As Boolean 
Public scantableO As String 

Public asciiFile As String 
'global var by hkt 
Public filter_item_max As Integer  'max item in filter data table 
Public string_is_QPSK As Boolean 'QPSK/FSK format chosen 
Public string_is_kbs As Boolean '200 kbs or 2 Mbs chose 

Public Function doGcd(ByVal a, ByVal b As Integer) As Integer 
' compute greatest common divisor 
' Euclid's algorithm 

Do While (a <> b) 
If a > b Then a = a - b Else b = b - a 

Loop 
doGcd = a 

End Function 

Public Function gcd(a() As Integer) As Integer 
' compute greatest common divisor of array 
' ignoring zerft entries 
Dim i As Integer 
Dim g As Long 

g = a(LBound(a)) 
For i = LBound(a) + 1 To UBound(a) , 

If a(i) <> 0 Then g = doLcm(g, a(i)) /        ^v 

Next 
gcd = g 

End Function 

Public Function doLcm(ByVal a, ByVal b As Long) As Long 
' compute least common multiple 

doLcm = a * b / doGcd(a, b) 
End Function 

Public Function lcm(a() As Integer) As Long 
' compute least common multiple of array, 
Dim i As Integer 
Dim 1 As Long 

1 = 1 
For i = LBound(a) To UBound(a) 

If a(i) <> 0 Then 1 = doLcm(l, a(i)) 
Next 
lern = 1 

End Function 

Public Sub mouseHourglass() 
Screen.MousePointer = 11 ' hourglass 

End Sub 

v\ 



chSet - 1 

Option Explicit 

Private chList () As Integer 
Private listLen As Integer 

Private Sub Class_Initialize() 
ReDim chList(0) 
listLen = 0 

End Sub 

Public Sub clear() 
listLen = 0 
ReDim chList(0) 

End Sub 

Public Function length() As Integer 
length = listLen 

End Function 

Public Sub push(i As Integer) 
If listLen > UBound(chList) Then 

ReDim Preserve chList(listLen) 
End If 
chList(listLen) = i 
listLen = listLen + 1 

End Sub 

Public Function pop() As Integer 
If listLen > 0 Then 

listLen =.listLen - 1 
pop = chList(listLen) 

Else 
err.Raise vbObjectError, , "Pop from empty set" 

End If 
End Function 

Public Function peek(ByVal i As Integer) As Integer 
If i < listLen Then 

peek = chList(i) 
Else 

err.Raise vbObjectError, , "Peek beyond end of set" 
End If 

End Function •» 

Public Function gcd(chfreq() As Integer) As Integer 
Dim i, g As Integer 

If listLen = 0 Then err.Raise vbObjectError, , "Gcd from empty set" 
g = chfreq(chList(0)) / ( 

For i = 1 To listLen - 1 -' ^'v 

g = doGcd(g, chfreq(chList(i))) 
Next 
gcd = g 

End Function 

Public Function 1cm(chfreq() As Integer) As Integer 
Dim i As Integer 
Dim 1 As Long 

If listLen = 0 Then err.Raise vbObjectError, , "Lern from empty set" 
1 = CLng(chfreq(chList(0))) 
For i = 1 To listLen - 1 

1 = doLcmd, chfreq(chList (i))) 
Next 
lem = 1 

End Function 

■3 O 
1 .1 c> 



Module1 - 2 

Public Sub mouseNormal() 
Screen.MousePointer = 1 ' arrow 

End Sub 
Public Sub computeBitrateWordrate() 
Dim i As Integer 

bitrate = Val(frmMain.cmbBitrate) 
For i = 1 To Len(frmMain.cmbBitrate) 

Select Case LCase(Mid(frmMain.cmbBitrate, i, 1)) 
Case "k" 

bitrate = bitrate * 1000 
Case "m" 

bitrate = bitrate * 1000000 
Case "a" To "z" 

Exit For 
End Select 

Next 
wordrate = bitrate / 8 

End Sub 

Public Sub computeSampleFreqs() 
Dim r, c, ch As Integer 
Dim i, pos, posl, dtmin, dtmax, tot As Long 

ReDim samplefreqs(LBound(channels) To UBound(channels)) 
saveScantable 
computeBitrateWordrate 
For ch = LBound(channels) To UBound(channels) 

posl = -1 
dtmin = minorframelength * minorframes 
dtmax = 0 
tot = 0 
i = 0 
For r = 0 To minorframes - 1 

For c = 0 To minorframelength - 1 
If scantable(r, c) = channels(ch) Then 

If posl < 0 Then 
posl = i 

Else 
If i - pos < dtmin Then dtmin = i - pos 
If i - pos >.dtmax Then dtmax = i - pos 

End If 
■*    pos = i 

tot = tot + 1 
End If 
i = i + 1 

Next 
Next , 
If posl < 0 Then ''' 

samplefreqs (ch) =0 "' ^'x 

Else 
posl = posl + minorframelength * minorframes 
If posl - pos < dtmin Then dtmin = posl - pos 
If posl - pos > dtmax Then dtmax = posl - pos 
If dtmin = dtmax Then 

samplefreqs(ch) = wordrate / dtmin 
Else .   _    ., . . , 

samplefreqs(ch) = -(wordrate / (minorframelength * minorframes)) * tot 
End If 

End If 
Next 

End Sub 
Public Sub saveScantable() 
Dim r, c As Integer 
Dim msg As String 
ReDim scantable(minorframes - 1, minorframelength - 1)  allocate memory 

With frmMain.grdScantable 
For r = 1 To .rows - 1 

.row = r 
For c = 1 To .cols - 1 

.col = c 
If minorframes = 1 Then 

scantable(0, (r - 1) * (.cols - 1) + (c - 1)) = .text 



Module1 - 3 

Else 
scantable(r - 1, c - 1) = .text 

End If 
Next 

Next 
End With 

End Sub 

Public Sub restoreScantable() 
Dim r, c As Integer 

With frmMain.grdScantable 
For r = 1 To .rows - 1 

.row = r 
For c = 1 To .cols - 1 

.col = c 
If minorframes = 1 Then 

.text = scantable(0, (r - 1) * columns + (c - 1)) 
Else 

.text = scantable(r - 1, c - 1) 
End If 

Next 
Next 

End With 
Erase scantable  ' free memory 

End Sub 

\4-o 


