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I. INTRODUCTION

A, Scope

This report summarizes the results of the initial phase of a comprehen-
sive simulation study of alternative signal processing algorithms for data
adaptive superresolution direction finding and spatial nulling to support sig-
nal copy in the presence of strong cochannel interference. The need for sﬁch
a study arises because, although most of the techniques evaluated have been
documented in the literature, no systematic comparison has heretofore been
undertaken.

The general approach of the current study is to simulate a sequence of
increasingly more general, i.e, realistic, signaling environments, ana to
expose each of the more promising algorithms to all of the "standardized”
experiments, in turn. %rﬁehﬁ&lﬂ&edthimun,whwemha&
an ideal environment characterized by a uniform, linear array of identical
isotropic elements and perfect receivers. In addition, partial results are
obtained for the case when the'érray steering vectors are in error by a small
amount which might be caused by residual calibration errofs, unmodeled multi-

path distortions, near—-field emitters, etc.

B. Focus of the Initial Inquiry

Many of the techniques proposed for - superresolution array processing have
their origin in spectral estimation for time series. Since the sampling of a
function in time is analogous to sampling a function in space, it is natural
to make this association; estimating the frequency of sinusoids in noise can
be seen to be equivalent to estimating the directions of planewaves in noise.

Although the superresolution problem involves finding plane waves in
noise, most spectral estimation techniques make no use of any information
about the underlying process. Indeed, such methods are only heuristically
motivated, since the estimation of a completely unknown function based upon a

finite number of samples is at best an underdefined process. Nevertheless,



since claims of success have been made for such techniques, we thought it best
to start our investigation by reviewing these "eclassical™ techniques.

Representative of such techniques are the following:
(1) Adapted Angular Response (AAR) [13]
(2) Maximum Entropy Method (MEM) [9]
(3) Maximum Likelihood Method (MLM) [12]
(4) Thermal Noise Algorithm (TNA) [15]

By contrast with classical spectral methods, a technique which uses (re-
quires) the fact that the number of plane waves is finite is the MUSIC
algorithm [16]. MUSIC, which denotes MUltiple SIgnal E}assification, is an
extension of the method of Pisarenko [18]. MUSIC is but one member of a class
of methods based upon the decomposition of covariance data into eigenvectors
and eigenvalues. Such techniques, known as Singular Value Decompositions
(SVD's), will be more completely reviewed in a subsequent phase of the study.
In order to place SVD techniques relati#e to the classical methods, however,
results for MUSIC are included in this report.

All of the techniques reviewed have application to arbitrary array geom~
etries. When the array happens to be linear, however, it is possible to take
advantage of the structure of the array to improve the resolving power of
these techniques [2]. TEach of the techniques involves the calculation of a
quadratic form which, in the case of the linear array, becomes a complex,
trigonometric polynomia; which is being evaluated on the unit circle in the
complex plane. The hehavior of such functions is dominated by the polynomial
roots which lie on or close to the unit circle. Thus, a rooting variant of
each technique is possible which computes the arguments of the roots closest
to the unit circle. The rooting variant of TNA is identical to that of AAR,

so that only four rooting algorithms have been presented.



The adaptive listening or copy functions for closely-spaced signals
requires the use of main-beam nulling. Since this is difficult to accomplish
without accidentaily mulling the desired signal [23], however, much attention
must be placed upon the sensitivity introduced by only approximately knowing
the direction of the desired signal. Two covariance modeling techniques for
steeriﬁg aulls in the direction of interferers are reviewe& in this report.

The sensitivity to errors in the knowledge of the array response to plane
waves will be the subject of a detailed study in a subsequenf report. Only a
brief introduction to this subject is included here to determine the comnse-
quences of such errors on the ability to place‘nulls for copy by the modeling
techniques described above. A simple direction-independent gain and phase
error, independent from receiver to receiver,' has been utilized for this

initial investigation.

C. Overview of ﬁhe Report

The following section (II) describes the performance bounds for direction
finding and copy. The bounds for estimation errors are the Cramer—Rao type
for the assumed case of Gaussian signals in Gaussian noise; the limiting per-
formance for ideal arrays and infinite data are given for copy performance
bounds. ‘

An expanded description of the algorithms considered during this study is
given in Section III. The emphasis in this section is a comparative introduc-
tion to the techniques for direction finding, vower estimation and adaptive
copy weighting.

An overview of the simulation approach used for this study is given in
Section IV and the results are summarized in Section V. Various appendices
elaborating on some topics and a complete collection of the Monte Carlo simu-

lation outputs are also included.



D. Major Findings "~

The principal conclusions based upon the initial experiments are as
follows:
1. Although some of the spectral algorithms tested to date are more

sensitive than MUSIC, the angle estimates provided by these
algorithms are generally poor.

2. For the linear array problem, a root variant of MUSIC exists
which is considerably more sensitive than the spectral version.

3. The direct solution for the power present in multiple directions
can fail because of mutual dependencies among direction vectors
whenever the array is irregular. This difficulty can be overcome
by formulating the power estimation as a least-squares problem.

4. Modeling of interference vectors provides an effective means of
avoiding signal cancellation as a result of direction-of-arrival

errors for the desired signal. Unfortunately, the resulting per-

formance is very sensitive to array calibration. errors.

The implications of these observations are that Singular-Value Decomposi-
tion is a desirable prerequisite for superresolution of plane waves and
the exploitation of special array structures leads to increased resolution
sensitivity, but that sensitivity to array errors is the most serious obstacle
to successful implementation. For these reasons, the emphasis for the next

phase of the study will be in the following areas:
1. | Singular-Value Decomposition techniques
2. Maximal exploitation of linear array structures
3. Robust algorithms to reduce array error sensitivities

In addition to these areas of emphasis, Monte Carlo experiments will be
extended to explore the effects of larger numbers of signals, decreased SIR,

and various forms of array errors.



II. THEORETICAL PERFORMANCE BOUNDS

A. Direction~Finding

A major portion of this report is concerned with direction-finding (DF)
algorithms and their expected performance, as determined by extensive Monte
Carlo simulations. Although these results can be studied on a stand-alome
basis, suitable theoretical benchmarks serve to put the results in a bet;ér
perspective.

Perhaps the most desirable benchmark would be the performance achieved by
the quintessential "optimum" processor. Given such a benchmark, one could
reasonably expect to make sound. judgements as to whether or not a particular
algorithm was "good enough”. Unfortunately, optimum processors can be prohib~-
itively expensive to simulate. Moreover, practical applications are ofien
sufficiently complicated that a single criterion for "optimality” is virtually
impossible to define.

As a relevant case in point, consider the problem of direction—finding in
a multiple emitter environment. This problem is characterized by an unknown
number of signals arriving from unknown directions. Thus, a good DF algorithm
must determine the number of signals present as well as provide'accurate di-
rection estimates. In some instances, estimates of the signal power levels
are also required. Finally, in order to be useful in unfriendly environments,
all of these requiremeats must be met without detailed knowledge of the signal
wavéforms.

Taken in its entirety, the multiple emitter DF problem is too complex to
admit a comprehensive theoretical analysis. One possible simplification is to
specify the number of emitters. In this case, one can obtain theoretical
bounds on the accuracy of the (DF) estimates by computing the relevant Fisher
information matrix. Inverting this matrix yields the Cramer-Rao bound on the
variance of any unbiased estimate.

For the purposes of direction-finding, the assumption is made that the
signal sources are stationary (complex) Gaussian random processes. The re—

eived signals are sampled at a rate less than the receiver bandwidth. Under



the latter assumption, the signals obtained at two different instants of time
are statistically uncorrelated. This model is extremely convenient for gener-
ating simulation data and leads to performance bounds that depend only on the
signal directions and powers.

The Cramer-Rao (C-R) bound for locating Gaussian emitters is derived in
Appendix A, Here, we merely state the underlying model and present the final
form of the result. To check the tightness of the bound, F. White [1] has
investigated the performance of two “optimum” DF processors. His results
indicate that the C-R bound is achievable over an interesting and broad range
of parameter values. '

The samples obtained from the array elements at any given instant of

time, called a snapshot, may be modelled as a vector
r=s+n s

where n denotes the contribution from thermal noise and other sources of error
in the receiver(s) and s represents the received signal(s). When only one

emitter is present, the signal vector may be written as
s=via) p ,

where p is the complex amplitude of the signal that would be observed at the
phase center of the array, and v(a) is a vector constructed from the complex
oltage gains of the individual array elements. The vector v(a) is often
referred to as a "direction” or "steering” vector since it depends only upon
the direction of arrival of the signal. For linear arrays, the most
convenient measure of direction is the cosine of the angle between the array
axis and the line—of-sight to the signal. The direction cosine is denoted by
a.
When more than one emitter is present, the principle of superposition

allows us to write the received signal as



s =Vp >

where the jth element of the vector p is the complex amplitude of the signal
from the jth emitter as “seen” at the array phase center. Note that the jth
column of the matrix V is the direction vector associated with the jth

emitter, i.e.,
v = [v(e)) | . | v(a;)]

where J denotes the actual number of emitters.
Under our statistical assumptions, the “signal-in-space” vector p is

completely described by its mean value, assumed to be zero, and its covariance

P =E{ppﬂ} ’

where E{x} generally denotes the expected value of x, and a superscript "H"
indicates the conjugate (Hermitian) transpose operation. Naturally, the
Gaussian model is extended to include the noise vector na, and we represent the

noise covariance matrix as

¥ = Efon” } .}

Assuming the noise statistics are known, one could always unormalize (or
transform) the data in such a way that the components of the noise vector n
are identically disﬁributed and statistically independent (uncorrelated).
Unless otherwise explicitly stated, we will proceed under the assumption that
the noise covariance is the identity matrix I.

Consider the problem of estimating the directions of arrival when the
signal-in-space covariance P is known. The Fisher information matrix for this
problem can be stated in a reasonably compact form by first introducing the

gramian wmatrix



w 2 viy

and solving
P-0 = PWO

for 0. It can be shown that this equation always has a unique (Hermitian)

solution. We next introduce the “derivative” of V

<o
[}

WCa) | oo o | el
where

dv/da

<e
]

is the usual derivative of v with respect to a. It is also convenient to

define

W 2 vy .

Under the conditions stated above, the Fisher matrix for the unknown
directions « is given by

F =2k re | (2-0)T O ' - WHab + @hIg b } ,

aa

where K is the number of available snapshots (observations). Re{x} denotes
the real part of x, and a superscript “T" refers to the usual transpose
operation. The element by element (Hadamard) product of two matrices A and B

with the same dimensions is written as A(B.



The main diagonal of the inverse of the Fisher matrix provides a lower
bound on the accuracy (i.e., variance) of any unbiased DF estimate. However,
when the signal-in-space covariance P is also unknown, the resulting bounds
are not as tight as they might be.

If the signal-in-space covariance were completely unspecified, generating
the required Fisher matrix would become extremely awkward. Fortunately, many
applications of interest are adequately modelled by assuming uncorrelated

emitters. In this important special case, P is a diagonal matrix, i.e.,

Thus, consider the vector 8 obtained by taking the logarithm of the emitter
"powers” (i.e., the main diagonal elements of P). When the directions of ar-
rival are known, the normalized Fisher matrix for estimating the emitter pow—

ers can be written as

_ T
FSB =K (ow) O (Qw)" .

When the directions and powers are both unknown, the "reduced” information

matrix for the directions is genmerally of the form

(8) _ J G
Foa = F o FBa B8 ~ Ba

The amount of information lost depends upon the coupling matrix, which is

given by

. T
Fo,= XK Re [ (o) O ()"}

for the problem considered here.



Inverting the reduced jnformation matrix yields the C-R bound for
(unbiased) DF estimates when the emitter powers are also unxnown. While the
exact expressions given above appear to be quite formidable, the asyumptotic
form of the DF bound is really quite simple. As the signal-to—moise ratios of
all of the emitters become arbitrarily large, we may replace Q with the in-
verse of W (providéd it exists, of course). Eventually, P completely domi-
nates Q and the asymptotic approximation

(B) __ —
Fow ~ Faa — X pda

emerges, where the array factor
A = v - W

depends only on the directions of arrival. Since P is a diagonal matrix, in-—
verting P[]A is trivial and the asymptotic accuracy of any unbiased DF esti-

mate is bounded by
Var {&.} —> [2R P..A..(a;, «ce, @ )]_l ,
3 jiiic J

where Var {x} denotes the variance of a random variable x. Surprisingly, the
asymptotic error predicted by the DF bound is independent of the relative
strength of the emitters! However, as expected, the asymptotic DF variance is
inversely proportional to the product of the signal-to—noise ratio and the
number of snapshots.

Unfortunately, the array factor is generally a very complicated function
of the directions of arrival and the array geometry. However, certain simpli-
fications are possible under the assumption of jdentical elements in a linear

array. In particular, the phase reference point may be chosen so that

Consequently, the array factor for a single emitter is given by

10



o

and the array factor for two emitters may be written as

ul

Ajj(al, @) = & n(a, - “1) ; = 1,2

where n(a) is a symmetric function which approaches unity for sufficiently
large @ Thus, n may be interpreted as an efficiency factor that only depends

on the separation of the two emitters [2].

B. Adaptive Listening

A phased arréy receiver is assumed to be used to monitor, or listen, toO
a desired emitter by discriminating against the undesired emitters only on the
basis of differences in angular directions of arrival. An adaptive array
differs from a more conventional phased array in that the complex weights
associated with the anténna elements are not determined by the designer a
priori. Instead, these weights are optimized, according to some criterion, on
the basis of measurements which are made on the signal enviroument.

Let =xi denote vector sample of complex array data collected during the
kth snapshot, where k=1,...,Ke As in the above discussion, the data are

representable as
X = psv( c‘s) + vl’pk + T\c
where it is assumed that the desired emitter arrives from direction og with

complex amplitude pg and the jth component of the vector py is the complex

amplitude of the jth interference wave source and
v, = [v(a1)| c .. 'V(aj_l)]

is the matrix of the interferer direction vectors. The objective of the

adaptive listening array js to enhance the gain of the array toward the

11



desired signal while simultaneously nulling the signal energy due to
directional interference. This is accomplished by computing a set
complex-valued element weights which, when applied to the element outputs

linearly combined, results in a complex scalar array output of the form

!
T =¥ %

If the signals and noise are Gaussian, the weight vector which maximizes

probability of detection of the desired signal is given by
W< -1 v(a )
o R Ve,
where Ry is the spatial covariance of the interference plus noise, viz.

Ry = E{IVyp + n ] [Vyp + nk]H}

?

= VIPIV!; +1

the
of

and

the

where, as above, we have taken the noise to be isotropic with unit variance.

Moreover, this same weight vector maximizes the output signal power to

average interference-plus-noise power ratio (SIR), given by

SIR = PS'WHV((:)|2/WH Ry W

Where Pg is the power of the desired signal, thus, the maximum output SIR is

given by

_ " -1
SIRmax— PS v (as) RN v(as)

12



In the present application, it is important to separate the desired
emitter from the interference and noise. In this .case, we start by observing

the covariance with all signals present

- .

Of course, in the limit for large sample size, R converges to R, where
R = + P v(a)vH(a)‘
RN s ] s ?
so that
R lv(a) = [1/CL + T RZw(a)
s o RN s

where T = SIR o
o max

Py

Thus, if v(cxs) is correct, W = R—l v( czs) will converge to the maximum SIR

weight vector in the limit for large K. Tnfortunately, as Miller [49] and
Boroson [50] have noted, the convergence rate will be dependent upon T,.

Specifically, if we define a generalized SIR as

2
_ B -1 H -1 -1
GIR(vs,P, v) = PS v P A / v P R‘ﬂ P~ v

then the convergence of the sampled data weight vector depends upon

~

GIR(vs, R, vs)
pl= T = 9/[1+To (1-0)] ’

o

where p is distributed according to the Beta density [491, [50]

13



L-2

—L+1
KL+ - ,

£(p) = [1 /BL-1,K+2-Dlop
0<p<l ,

with B(M, N) = (M-1)!(N-1)!/(M+N-1)!

Therefore,

Plo; <1 - 8] = Plo< (1 -8 (1+T)/1+T Q- N1}

If the desired signal power in the covariance matrix were zero, the above
expression predicts the familiar result of Reed, et al., [22] that X > 2L - 3
will result in E[p1] > 1/2. On the other hand, with T, = 20 dB, as many
as 50 times as many samples would be needed to achieve the same result [50,
Fig. 3].

Throughout the preceding discussion, the steering comstraint for the
listening weight vector was taken to be correct. Actually, this constraint
must be obtained from the direction-finding process described above in Section
A. Thus, we have only an estimate &s of the signal direction. Since we
need a direction vector to constrain the listening weights, however, we may
choose to use vg = v(ag), but this cholce will lead to a well-known
problem, termed “sensitivity to ‘mismatch” by Cox [23]. Examples of this
effect will be given in the next section.

For the present study, it is assumed that it is adequate to establish a
set of adaptive weights for which the GIR(vg, R, v(ag)) exceeds sowme
minimal opefation level, such as (say) 10 dB. Because of the relatively rapid
convergence of this performance with the number of array snapshots, a
reasonable bound on the adaptive receiver operating characteristic, may be
obtained by evaluating the GIR for infinite data. In the examples in this
report, a single interferer is placed A8 beamwidths from a desired signal and
the locus of GIR = 10 dB for A6 versus desired array signal-to-noise ratio is

used to predict limiting performance.

14



TIII. DESCRIPTION OF ALGORITHMS

A. Direction-Finding

Many practical algorithms that simultaneously estimate the directions of
several emitters generate a non-negative function called a DF spectrum from
the available- array data. The domain of this function is the set of all
possible directions, and the locations of its maxima (peaks) correspond to the
estimated directions of arrival. Most algorithms require a covariance
estimate, which is obtained from the array data. The covariance estimate is
then transformed to produce the spectral estimate.

For the purposes of this discussion, the covariance estimaté may be taken

to be the usuél sample covariance matrix generated from K snapshots of data
(% ‘ k=1, «o., K}, i.e.,

H
e M .

=y
0
| AN

bl Lol

k=1

This estimate is generally positive definite provided the number of snapshots
is not less than the number of array elements.

Table 3.1 Asummarizes the type of transformation used by several of the
currently most popular algorithms. In each case, the algorithm operates on
the covariance estimate with the direction vector v(a) to generate the
spectral estimate for the direction a. As can be seen, all of the DF spectra
in Table 3.1 require the computation of at least one quadratic form.

For the case of a uniform linear array, any quadratic form

H
g(a) = v (a) G v(a)
may be interpreted as a “trig” polynomial,_provideél G is a non—negative

definite Hermitian matrix. The spectral factorization theorem allows us to

represent g(a) by two ordinary polynomials, one with its roots inside the unit

15



TABLE 3.1
DIRECTION-FINDING SPECTRA

Adapted Angular Response

vH(cz) £~1 v(a)
vH( a) R—z v(a)

Beam-Scan Algorithm (BSA)

vH(o.) I‘i v(a)

Maximum Entropy Method (MEM)

Hconsiirlxt 9 ; uyis the first colum of
v (a) R uy the identity matrix

Maximum Liklihood Method (MLM)

1
vH( a) é’l v(a)

Multiple Signal Classification (MUSIC)

1 ; certain eigenvectors of R
H H are selected for the
v (a) ENEN v( a_) columns of Ey

Thermal Noise Algorithm (TNA)

1
Ha) B2 v(a)

16



circle and the other with corresponding roots outside the unit circle.
Moreover,. if z is a root of onme of these polynomials, then 1/z* is a root of
the other. Either of these two polynomials completely characterizes an
“311-zero” or finite impulse response (FIR) filter that produces a random
process with power spectrum g(a) when excited with white noise. A process
generated in this manner is sometimes called a moving average process.

The beam scan algorithm (BSA) produces a spectral estimate consistent
with a moving average process. All of the other DF spectra in Table III.A are
characterized by a denominator polynomial except AAR, which has both a
denominator and a numerator polynomial. The AAR spectrum is consistent with
an autoregressive-moving average (ARMA) process. The linear filter required
to synthesize an ARMA process has both poles and =zeroes. Each of the
remaining algorithms (MEM, MLM, TNA, and MUSIC) leads to a spectral estimate
consistent with an autoregressive process. As one might expect,' an
autoregressive process is characterized by an "all-pole” filter.

The beam scan algorithm actually provides the best possible estimate of
the direction of arrival of a single emitter received in the presence of
(spatially) white noise. 1In practice, one can expect the beam scan method to
perform adequately so long as the emitters are all well isolated. Unfortu-—
nately, this approach breaks down completely when two (or more) emitters are
separated by less than an array beamwidth. '

The beam scan algorithm is the DF equivalent of a standard technique used
jn classical time—series analysis. In many applications, a single record of
data is Fourier transformed to obtain a rough spectral estimate called a peri-
odogram. Averaging many periodograms yields a smoothed spectral estimate.
The spectral resolution provided by this approach is limited by the length of
the individual data records. Ouite analogously, the resolution of the beanm
scan algorithm is determined by the length of the array.

The limitations of the traditional approach eventually led to fundamental
investigations seeking spectral estimates with better resolution. Some of the

more important results of these investigations are summarized as follows.

17



1. Maximum Entropy Method

In 1967, John Burg [3] shook the foundations of traditional time-series
analysis with his assertion that conventional spectral estimation techniques
were fundamentally unsound. Burg was upset by the fact that, at the time, all
recognized methods for computing a power spectral density implicitly truncated
the correlation lags. As an alternative, Burg proposed his now famous
"maximum entropy” spectral estimate. Although it may not have been ﬁidely
recognized at the time, Burg was actually advocating that spectral estimates
be derived within the framework of an autoregressive (AR) model for the time
series [4].

In the usual time-series setting, maximum entropy spectral estimates are
derived from a linear prediction error filter. The leading coefficient of
this filter>is unity, and the remaining coefficients are chdsgn to minimize
its expected output power, usually referred to as the prediction error. The
theoretical basis for this procedure is discussed in detail in Appendix B and
the references therein. The desired filter coefficients are obtained by solv-

ing the mixed system of linear equations

R =le0 ... 0l (3.1)

for the prediction error e and the unknown elements of

w=117...2%

where R is the theoretical covariance (matrix) for an arbitrary snapshot. The

spectral estimate obtained from the solution to (3.1) can be written as

18



where uj is the first column of the identity matrix. Strictly speaking,
this expression can only be interpreted as a maximum entropy spectral density
in the ideal case of uncorrelated emitters and a linear array with uniformly
spacéd, omi-directional elements. Much of the confusion in the literature
concerning the maximum entropy approach (see, for example, [5]) can be
attributed to the prevailing uncertainty regarding the proper choice of a
covariance estimate. The elegance and efficiency of the well-known Levinson
recursion [6] has prompted many researchers to force a Toeplitz structure on
the covariance estimate. The standard Yule-Walker method [7] leads to an
estimate that is ‘posétive definite but badly biased, at least for DF
applications; The bias 1is easily removed, but only at the expense of
destroying (with some non-zero probability) the. desi;ed. positive definite
property. Neither of these approaches is recommended when high resolution is
important.

Fortunately, the intrinsic (temporal) smoothing provided by a sample co-
variance matrix is quite adequate for most difection—finding applications. Of
course, sample covariance matrices are never Toeplitz (except by accident)
and, if employed, ome must then solve the linear prediction (3.1) without the
help of a truly fast algorithm. However, in moéf DF applications, the data
records (i.e., snapshots) are short and computational efficiency is relatively
important. In the (rare) situations where the sample covariance approach is
unsatisféctory, the problems encountered with the Yule-Walker approach can be
circumvented by Burg's ingenious scheme for estimating reflection coefficients
directly from the data. -

The standard time—series implementation of Burg's technique [8] is quite
efficient, and a Burg filter always has the minimum phase property. This
property guarantees a stable inverse but is seldom crucial except perhaps when
one wishes to synthesize the input process. Moreover, the extended Burg tech-
nique- [9] for processing multiple snapshots is not significantly faster than
standard (e.g., Cholesky type) algorithms for solving the prediction (3.1) via

the sample covariance method [10].
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2. Maximum Likelihood Method

In [11] Lacoss discusses the maximum entropy method (MEM) and anothér
high-resolution spectral estimation algorithm attributed to J. Capon [12]
called the maximum likelihood method (MLM). The basic idea behind the latter
approach is simple. Weights for the array elements are chosen which insure
-unit gain in a given direction a while simultaneously minimizing the array
output power. Under these conditions, the output of the adapted array pro-
vides an unbiased, minimum variance estimate of the (desired) signal arriving
from the specified direction. When the interference is Gaussian, the power
out of the aﬁapted array is a maximum likelihood. estimate of the power re-
ceived from the direction a. _

In mathematical terms, the power out of the array can be expressed as

P = wRw (3.2)
where w represents the arfay weights. Constraining the gain of the array to

be unity in the direction a is achieved by demanding that w satisfy

va(a) =1 . ' (3.3)

Minimizing (3.2) subject to (3.3) is easily accomplished using the method of
LaGrange multipliers. The optimum weights for this problem maximize the

output signal-to-interference ratio (SIR) and are found by solving

Rw(a) = A v(a) (3.4)

where the Lagrangian A is chosen to satisfy (3.3). Pre-multiplying this
equation by the Hermitian transpose of w(a), we find that the MLM power
estimate and the Lagrangian are numerically the same. Replacing X with P in
(3.4), solving for w(a), and substituting the result in (3.2) leads to the MLM

power estimate

20



s . 1
w) R v

MIM

3. Adapted Angular Response
The adapted array response (AAR) algorithm suggested by Borgiottia and
Kaplan [13] can be interpreted as a variation on the MLM theme. As mentioned
above, the MLM array weights waximize the output SIR. This fact remains true
for any choice of the Lagrange mltiplier. The AAR spectral estimate is gen—
erated by scaling the MIM weights so that the sum of their squared magnitudes

is some fixed value, e.g.,

‘w(a)iz =1 . : (3.5)

This modification leads to a DF method with the desirable property that the
effect of white noise on the spectral estimate is (on the average) the same in
every direction. Choosing the Lagrangian A to satisfy (3.5) instead of (3.3)
leads to the AAR power estimate '

5T Rw()
AR Higy B2 v(a)

4, Thermal Noise Algorithm
As was mentioned above, the AAR power estimate has the same mathematical
structure as an ARMA power spectral density. Generally speaking, an ARMA
process can be represented by the cascade of an all-zero (FIR) filter and an
all-pole filter. In [14], the point was made that a signal consisting of sin-

usoids (i.e., plane waves) and additive white noise satisfies an ARMA-like
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difference equation. However, the sinusoids in noise process is an extremely
pathological case where the poles and zeroes lie on the unit circle and cancel
exactly. Thus, the frequency response of the cascade is perfectly flat! The
sinusoids arise from the transient response of the critically stable all-pole
filter. This strongly suggests that the denominator (i.e., the AR part) of an
ARMA spectral estimate suffices to determine the frequencies of the sinu-
soids. Although the underlying reasons that motivated Gabriel [15] were un-—
doubtedly somewhat different, the thermal noise algorithm (TNA) uses only the
denominator of the AAR spectrum, i.e.,

P, 1

TNA QH(a) i_z'v(a)

5. Multiple Signal Classification
The Multiple Signal Classification (MUSIC) approach to direction-finding
was first described in [16]. The theoretical framework behind the MUSIC algo-
rithm [17] is quite general and substantially extends the pioneering harmonic
retrieval method of Pisarenko [18].
The underlying assumption behind the MUSIC algorithm is that the number
of emitters seen by the receiver is less than the nuﬁber of antenﬁa elements.

Under this condition, the covariance matrix'of the received signal

is singular. Referring to (3.1), we observe that the null vectors of S
theoretically provide a perfect mechanism for spatially extrapolating (i.e.,
“predicting”) the received signal. Thus, one intuitively expects that the

emitter directions could somehow be extracted from the null space of S.
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The space spanned by the columns of § is referred to as the signal
space. Except in certain pathological cases (i.g., perfectly correlated sig-
nals), the direction vectors of the emitters will always lie in the signal
space. On the other hand, an arbitrary direction vector will generally have a
component in the (complementary) null spéce. Thus, a simple test based on the
distance to the signal space determines whether or not an arbitrarily chosen
direction is a possible emitter directiom.

Given an orthonormal basis for the null space, the Euclidian distance
from an arbitrary vector x to the signal space can be easily calculated. The

projection of x into the null space can be written as

Xy = FyEgx

where the columns of Ey are the (orthonormal) basis vectors for the null

space. Consequently, the distance from x to the signal space is

since

by construction.

The MUSIC (pseudo) spectrum is defined to be the inverse of the squared

distance from an arbitrary direction vector to the signal space, i.e.,

> 1
P. =
MUSIC H
. S v (a) ENEI’; v(a)
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In theory, the MUSIC spectrum becomes infinite at the true directions. How-
ever, small errors in the null vectors or the direction vectors will almost
surely prevent the denominator from vanishing entirely. Therefore, in prac-
tice, the direction vectors that lie closer to the signal space than their im-
mediate neighbors determiné the MUSIC direction estimates.

In an operational system, the MUSIC spectrum must be derived from a _>
sample covariance matrix. The first step in the MUSIC algorithm is to deter-
mine the standard eigenvalue (spectral) decomposition [19] of the sample co-

variance matrix, i.e.,

ﬁ = EDEH

where E is a unitary matrix and D is a (positive) diagonal matrix. Post-
multiplying by E, we immediately observe that the columns of E are eigenvec-
tors of the sample covariance matrix, and the (diagonal) elements of D are the
corresponding eigenvalues. Without loss of generality, we may assume that the
eigenvalues have been arranged in descending numerical order.

The signal space is specified by a simple partition of E, i.e.,

E = [55 | Byl .

At this point, the critical issue is the proper dimension of the signal
space. If the number of emitters present is known apriori {never the case in
practice), then the correct partition to employ is obvious. Given J emitters,
Eg consists of the first J columns of E. However, when the number of emitt-
ers is unknown, a choice (for J) must be made based on the available data.
Several methods for determining J from the eigenvalues have been examined.
These algorithms perform a sequence of likelihood ratio (hypothesis) tests and
select the smallest value of J that is statistically consistent with the em-—
pirical eigenvalue distribution. Simulations results and references for the

various likelihood ratio tests studied thus far are presented in Appendix C.

24



6. Rooting Methods for Linear Arrays
The root-finding method discussed here applies to all-pole (autoregres=—

sive) spectra of the general form

1

S(a) = 5
v (a) P v(a)

where P is a non—negative definite MxM Hermitian matrix that generally depends
on the sample covariance matrix in a nonlinear manner. For example, the MLM
spectrum is obtained by choosing P to be the inverse of the '(sample)
covariance matrix. For the purposes of this report, we may restrict our at-
tention to uniform linear arrays. In this special case, the direction vectors
are specified in Section IV.A. However, the basic approach described here is
easily extended to thinned (uniform) arrays with missing elements.

A direct calculation shows that the inverse of the (autoregressive)

spectrun defined above can be written as

IPR o=

s " = 'Z P, exP {—i 2 ™m Ea} s
m = M+l

where the mth coefficient is obtained by summing the elements on the mth diag-

onal of P, i.e.,
g Py . (3.6)

By introducing the change of variables

z =exp {127 Ea} s } (3.7)
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the spectrum can be expressed in terms of the polynomial

M-1
P(z) = zM-1 ) pmz“rn .
m = M+l
Specifically, we have
S = 'P{exp {—iZﬂga}}l-l .

Clearly, the polynomial P(z) contains all the information in the spectrum. In
fact, spectral peaks are a nafural consequence of polynomial roots that lie
near the unit circle. Hence, we are led to explore rootfinding as an alterna-
tive to searching for spectral peaks.

The Hermitian property of P insures that the polynomial coefficients in
(3.6) satisfy the (harmonic) relationship

Using this fact, it can be verified that:
*
1f z_ is a root of P(z), so is l/zm .

In practice, exactly half the roots of P(z) will lie inside the unit circle.
Direction (cosine) estimates can be derived from the roots by referring to
(3.7), i.e.,

- arg 2z
.
m 2w £ ‘
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When the separation between adjacent elements is less than 1/2 wavelength,
(i.e., £ < 1/2), the magnitude of an estimated direction cosine may be larger
than unity. In this case, the estimate lies outside "visible" space and
should be discarded. Naturally, other criteria can also be used to eliminate
spurious estimates. For example, roots that lie close to the origin are pre-
sumably of little interest, since they do not correspond to (significant)
spectral peaks. In the case of the root ve:siori of the MUSIC algorithm, only
the J roots closest to the unit circle are considered, wheré'J is the (esti-

mated) dimension of the signal space.

B. Power Estimation

It is well-known that sampling of a time fuﬂction introduces ambiguities
in the resulting spectrum. Similarly, sampling the received wavefréng: on én
aperture' produces ambiguities in the resulting estimates of angle of
arrival. The most familiar example is that of grating lobes which are
produced when the elements of an arréy are spaced farther than A/2 apart.
The ambiguity introduced by a grating lobe is fundamental; there is no way to
determine from which of the two (or more) directions signals are arriving.

The existence of ambiguities is a consequence of the linear dependence
of direction vectors. For example, suppose there exist direction vectors

Vi, V2, V3 such that

av, + bz_

1 2+<:\_r_=0

3

for some set of complex numbers (a,b,c), and that the signal is composed of
sources from directions wv;, V2 with complex Gaussian amplitudes A, B. 1f
the correct directions are selected, the resulting signal-in-space covariance

matrix is

' P 0
_ A ok A
P, =E [B](A B ) >

o
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The signal can be written equally well as

r= (8- aA)_V:2 - bAl3

However, if directions vp, V3 are s_elected, the resulting signal-in-space

covariance is

— sl 1

P +|a'2P ab P

— %*

p.. =t | B3 (B-aa)* -2 1= 3} A A

23 oA *be b| 2
a %y | | A

L ]

which 1is not diagonal. The same is true if directions vy, Vv3, Or Vj,

vo, v3 are chosen.

Adaptive algorithms for estimating the direction of arrival of
incoherent signals all operate on the principle of -adaptive cancellation.
They select a set (or sets) of weights to apply to the array data so as to
minimize the output power from the array. Some sort of constraint must be
imposed on the weights to keep them from going to zero; the algorithms differ
mainly in their choice of this comstraint.

It is intuitively clear that the adapted array pattern (i.e., the array
pattern using the adaptive weights) must have minimal gain in each of the
source directions. These minima serve as estimates of the source
directions. If vi, V2, V3 are linearly dependent directions, and
" sources are present in directions vi, ¥2, the adapted pattern will have
minima in -all three directions. To determine the true source distribution, a
power estimation algorithm which can handle linearly dependent direction
vectors is needed.

The usual method of power estimation requires that the candidate
direction vectors be 1linearly independent. Then, knowing the noise power

02, one can operate on the true covariance matrix
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R = OZI + V'PVH

and obtain
p = (@t @- Ay @ (3.8)

Of course, R is not known, so that sample covariance matrix

1 H
= z rr (3.9)
is used instead. - If the direction vectors are linearly dependent,
(VHV)"1 does not exist, and the method fails.
There are a variety of ways to avoid this problem. Several are

described in a recent paper by d'Assumpcao [20]. The technique discussed here
is called least squares power estimation.
The idea of least squares power estimation is to find positive numbers

P1, - « Py, (and 02, if the noise power is not known) which minimize

E =15~ o I-Vevily, (3.10)
= Tr(s ~ 0?1 - veThE (s - o’T - vevh)
2 H 2
= I, S~-¢1-VPV .
1,3 ( )iJ
2, . JE .
Assume first that ¢ is known. Setting T 0 for 2=1,L, we obtain the
set of equations1 .
1Note that = (VPVH) = v vH
P -2

2
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v, (8 -021)12=v VPV v ©og=1,L

m-T:Z-l Pm'zf:{rii' i

These equations may be written in matrix form as

0P =b=-odc (3.11)
where

bl=zis_gz (3.12)

€g 7 Y-i‘iz (3.13)

Qg = l-v-g-‘lzlz (3.14)

The matrix Q can be written as a Hadamard product. The Hadamard product of

two matrices is defined to be
A d B)kz = a, b, (3.15)
With this notation we can write

0= v g " (3.16)
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where * denotes the complex conjugate.2

The solution of (3.11) is clearly

P = 0-1(1_3_ - oz_g) (3.17)

In many cases, 0‘1 exists even when (VHV)"1 does not.

When o2 is unknown, we first solve

§§2= o Tr (S - &I - VYY) = 0
Lo

with the result

2

2 = L r(s-vpv) - | (3.18)

=)

where M is the number of array elements (the dimension of S). Substitution

into (3.10) gives

(s - 021 - vl (s - vevh)

(]
]

1]

re(s - vevl (s - vev) --%-Trz(s - vev)

Setting the derivatives equal to zero vields

L
. B2 1, B v Ho 3y o (g - II8 _
et P (ney]” —F G @) <5 © T Dy, =1Lt

;Since XHVTis Hermitian, we could equally well write
0 = VHV x (VEV)I,
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which can be written in the form

H

O-2cehrp-p-2¢ (3.19)

<4

The solution is, of course
(b-=—c¢ (3.20)

Lo
M-——.

. If Q has an inverse, so does Q -
Unfortunately, (3.17), (3.18), and (3.20) do not guarantee positive
estimates for the signal and noise ﬁowers. This reflécts the fact that in the
minimization, no constraint om the parameter values was Iimposed. 1f the
minimization were done numerically by a nonlinear program, the coustraints
could easily be included. However, this would be computationally much more
expensive than the simple unconstrained solution. '

The least squares power estimation technique eliminates spurious
spectral peaks by producing small (perhaps even negative) estimates of the
power associated with them; they can then be eliminated by a simple threshold
test. The results of a Monte Carlo computer simulation comparing the direct
method ((3.8), retaining only the diagonal terms) and the least squares method

(3.17) are presented in Appendix D.

C. Weight Design Procedures for Adaptive Listening

The problem of designing a set of optimal weights for an adaptive lis=-
tening array has been considered. This problem has been treated extensively
in the past [21-28]. 1In these previous analysés, it has been assumed that the
covariance matrix of the interference, or noise, can be obtained, or is
possibly known, in the absence of the desired signal. However, in the present

work, it is assumed that the covariance matrix of the signal plus noise is the
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quantity which can be obtained. This assumption leads to great complications,
as has been observed by Cox [23]. In particular, if an attempt
is made to use this covariance matrix to design a set of weights, using the
procedure which maximizes the signal-to—interference ratio (SIR), then the
resultant processor will be extremely sensitive to the mismatch problem,
i.e., the assumption about the angle of arrival of the desired signal.. This
particular design procedure is termed the Measured Covariance Method, and the

weights are designed as

where Ry is the covariance matrix for the desired signal plus interference,
discussed in Section II.B., and V is a steering vector which points in the
estimated direction of the desired signal.

A number of other design procedures were considered. The first method is

termed the Model Covariance Method and the weights are computed as

W, = (.% PV vlj{ + S v, ,
% . -
where J is the number of emitters, Vi is a s;eering vector which points in
the estimated direction of the k-th emitter, g2 is the incoherent noise
power, I is the L x L identity matrix. It is assumed that the desired emitter
corresponds to the k—th direction. In practice, the steering vectors would be
obtained from a direction-finding algorithm.

An example of the problem of sensitivity to mismatch is shown in Figs.
3.1a=b. A linear array of 10 elements is considered with an inter-element
spacing of 0.5 wavelengths. The power levels of the desired and undesired
emitters, relative to the background incoherent noise, is 26 dB and 40 dB,

respectively, per array element.

33



(a)

(b)

OUTPUT
SIGNAL-TO-INTERFERENCE RATIO (dB)

INPUT SIR
=-14dB

RELATIVE ARRAY GAIN (dB)

Fig. 3.1.

-20
-30
-1.00 -0.50 0.50
SCAN ANGLE (Beamwidth)
EXAMPLE
SEPARATION?
1
] I 1
30
20
10
0
-10
-20 |

DESIRED
SIGNAL

|

EMITTER SEPARATION (Beamwidth)

-1.00 -0.50 0 0.50 1.00

r—-—— SUM BEAM

ADAPTED BEAMS

MEASURED COVARIANCE
WITH 0.0-BW
SIGNAL DOA ERROR

MEASURED COVARIANCE
WITH 0.05-BW
SIGNAL DOA ERROR

MODELED COVARIANCE
WITH 0.05-BW
SIGNAL DOA ERROR

SUM BEAM

Copy semsitivity to signal direction—-of-arrival estimation errors.
a) Typical beam patterns with emitter separation.
b) Typical array output performance vs. emitter separation.

34

F31919-K



In Fig. 3.la the beam patterns are depicted for the Measured Covariance
Method and the Model Covariance method. The directions of arrival of the
desired emitter, and interference, are assumed to be 0 and 0.5 beamwidths,
respectively. The pattern for the sum beam, corresponding to a simple phase
steering and then summing of the antenna element outputs, serves to define the
natural beamwidth of the array as determined from the dimension of the array
in wavelengths, which was discussed in Section II.B. The pattern for the
Measured Covariance Method, when there is no error in the estimated direction
of arrival of the desired emitfer,_produces a null in the direction of the
interference, but has a relative array gain of about 0 dB for the desired
signal. However, if an error of 0.05 beamwidths is made, the pattern for the
Measured Covariance Method produces a null in the direction of the desired
signal. The reason fbr this is that the design procedure treats the desired
signal as interference, since its direction of arrival has not been specified
precisely. The pattern for the Model Covariance Method under these conditions
does not exhibit such behavior as seen in Fig. 3.la. This pattern produces a
null in the direction of the interference, but passes the desired signal. 1In
essence, this behavior of the pattern occurs since the effect of the desired
signal on the covariance matrix used in the design procedure has been
eliminated. Thus, the Model Covariance Method is relatively insenmsitive to
signal DOA errors. ‘

The effect of emitter separation upon the sensitivity to mismatch problem
is shown in Fig. 3.1b which depicts the output signal—to—in;erference ratio
(SIR) in dB, vs. the emitter separation in bheamwidths. The wmethod for
computing the SIR was discussed in Section II.B. The result for the sum beam
shown in this figure indicates that the performance obtained with this method
is not impressive when the magnitude of the emitter separation is less than 1
beamwidth. However, optimal performance 1is obtained for the Measured
Covariance Method when there is no error made in estimating the direction of
arrival of the desired signal. If the emitter separation is 0.5 beamwidths,

for example, then it is possible to obtain a depth of null of about 45 dB.
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That is, the desired signal level can be raised from 14 dB below the
interference to about 31 dB above the interference. Unfortunately, 1if an
error of 0.05 beamwidths is incurred, then the performance of this method
deteriorates seriously, as shown in Fig. 3.1b. However, the impressive
performance is maintained by the Model Covariance Method under these
conditions, as depicted in Fig. lb. These results indicate, once again, that
the Model Covariance Method is not sensitive to the error made in estimating
the direction of arrival of the desired signal.

Another weight design procedure which has been considered is the Projec—
tion Nulling Method. 1In this method the complex weights are computed as

_ _ -1
WP = (I W) "v) Vk
where

V-1

Vk—l»l‘ . o o

It has been shown ([8], p. 141) that if the signal-to—noise ratio is large,
then the Projection Nulling Method is equivalent to the Model Covariance

Method. This theoretical result has been confirmed by computer simulations
" in the present study. As a consequence, the Projection Nulling Method has not
been discussed in detail. As a final comment, it should be noted that since
the Projection Nulling Method is equivalent to the Model Covariance Method,
the former method is also not semnsitive to the error incurred in measuring the

direction of arrival of the desired signal.
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IV. DESCRIPTION OF THE MONTE CARLO EXPERIMENTS

A. Direction-Finding Comparison

A primary motivating factor behind this report is the desire to
communicate the results of an extensive simulation of a number of potentially
interesting direction-finding algorithms. These quantitativé performance
comparisons are presented, in their entirety, in Appendix,F.. A conceptual
flow diagram of the simulation experiments is shown in Fig. 4,1,

The basic scenario for all of the experiments consisted of two
independent emitters and a uniform linear array with ten omni-directional
elements. Adjacent elements were separated by 1/2 wavelength. The ouly
source of error was additive thermal noise at each of thg array elements.
The signals and noise were ‘modelled as complex Gaussian variables ‘as
‘discussed in Section II.A. Sample covariance matrices were generated using
the Wishart technique described in Appendix E. Since our antenna model
exhibits perfect symmetry with respect to its geometfic (phase) center, the
sample covariance matrix was first processed using the forward/backward
averaging technique described below. Based on the resulting covariance
estimate, tentative direction of arrival estimates were generated using one
of the algorithms discussed in Section I1I.A. The array signal-to-moise
ratio (SNR) associated with each candidate direction was estimated using the
direct method discussed in Section III.B. All candidate directioms with an
SNR estimate less than 0 dB were discarded. The remaining direction
estimates were compared with the true directions. "Those direction estimates
resulting in the smallest total (absolute) direction error were assigned to
the true directions subject to the following provisions:

1. A single estimate could not be assigned to both
emitters.

2. Assignments with an absolute direction error larger than
a beamwidth were not permitted.

3. An assignment was disallowed if the power estimate was
10 dB larger than the true power.
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All unassigned estimates were counted as false alarms. An unassigned emitter
was declared to he a miss. The emitters were said to be resolved if neither
was missed. The probability of resolution and the false alarm rate were
calculated based on 100 Monte Carlo trials. Second order statistics on the
DF errors were also accumulated, conditioned upon successfully resolving the
two emitters.

‘During the course of the simulation study, the fundamental parameters of
the system were varied in order to provide a better perspective on the
relative performance of the algorithms. The sensitivity of the algorithms to
thermal unoise was tested by changing the nuﬁber of snapshots used to
construct -the sample covariance. Three cases were considered, namely 10,
100, and 1000 snapshots (looks). To assess the résolution limits of the DF
algorithms, emitter separations of 0.1, 0.2, and 0.4 beamwidths were
considered. Initially, ;he relative power of the two emitters was 0 dB.
. Subsequently, an identical series of experiments was conducted with the
relative power set at -10 dB. In both cases, the array SNR of the desired
(weaker) signal was varied from 10 to 50 4B in 5'dB steps. These parameter

variations are surmarized in Table 4.l.

Table 4.1
PARAMETER VARIATIONS

SIR - : 0, -10 dB
Emitter Separation : 0.1, 0.2, 0.4 beamwidths

Number of Looks s+ 10, 100, 1000

.o

Array SNR 10, 15, ..., 45, 50 dB
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The relative power of the desired signal to the interfering signal is called
the signal-to-interference ratio (SIR). The emitter separation is specified
in terms of the available beamwidth of the array, defined to be the inverse
of the length of the array expressed in wavelengths. The desired signal was
always located broadside to the array (i.e., a = 0), and the beamwidth was
0.2 radians or 1l1.5 degrees. The number of independent (uncorrelated)
snapshots used to construct the sample covariance matrix, -denoted by K, is
referred to as the number of "looks"”. If the receiver IF bandwidth is B and
the data collection interval is T, then the number of looks is limited by the
(time-bandwidth) product BT, i.e.,

K < BT .
The array SNR is the total energy (in joules) received from an emitter in a
single snapshot divided by the thermal noise level (in watts/Hz = joules).
Note that the array SNR includes the signal gain available from the antenna.
For the ideal ten element array considered here, the array SNR is 10 dB
greater than the SNR on a single antenna element.

Calculations of the array SNR are facilitated by scaling the direction
vector v(a) to have unit norm. Moreover, it is usually convenient to choose
the phase reference (center) to be at the geometric center of the array.
Thus, the mth element of the normalized direction vector for an ideal array

is
vm(a) = ;%72 exp {i 2m(m - M/2) Ea} s m=20, 1, ..., M=l (4.1)

where M is the number of array elements and £ (= d/)) is the element
separation in wavelengths. One may easily verify that the direction vector

constructed from (4.1) has the properties

’v(a)'z =1
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and

(@) = Jv () , (4.2)

where J is the (usual) exchange matrix that reverses the order of the
elements of a vector (see Appendix B). .

A vector that satisfies the relationship in (4.2) is said to be
harmonic. A simple calculation reveals that every symmetric array with
isotropic (i.e., jdentical) elements has harmonic direction vectors. In
tﬁrn, the covariance matrix of the received signal, s = Vp (see Section
II.A), satisfies a similar harmonic property, €.g8.,

S = E{ssa}

vovt

%*
JUPVLT
%*

= J5°J

where P is a real diagomal matrix consisting of the emitter powers that would
be measured at the array phase center. When a Gaussian signal with a
harmonic (persymmetric) covariance matrix is received in Gaussian white
noise, it can be shown [29] that the forward/backward averaged sample

covariance matrix, i.e.,

1 ~ ke

‘zp/B =5 [R + R J] , ' (46.3)
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is a sufficient statistic for estimating any parameter of the (true)
covariance matrix. Note that this (harmonic) covariance estimate is obtained
by taking the arithmetic average of the usual sample covariance matrix and
the (sample) covariance matrix constructed from reversed and conjugated
data. A1l of the algorithms compared in this report derived their DF
estimates from the covariance estimate in (4.3).

Examples of the statistical data produced by the simulation are shown in
Fig. 4.2. Each data point was calculated on the basis of 100 Moate Carlo
trials. Smooth curves were fitted to the simulation data with a standard
algorithm provided in the software package used to plot the results. For
purely aesthetic reasons, the actual data points are normally suppressed.

Perhaps the most important DF statistic is the probability of resolving
two emitters. Generally speaking, moét: DF algorithms cannot reliably resolve
closely spaced emitters at very low signal-to-noise ratios. However, as
indicated by the example in Fig. 4.2, an algorithm's ability to resolve
emitters improves rapidly once the SNR exceeds some critical threshold
level. Below threshold, wmost algorithms erroneously feport the presence of a
single emitter at the "centroid” of the two emitters. At the two extremes,

relatively few spurious estimates are generated. However, the transition

from low to high probability of resolution is usually characterized by an '

increase in the  false alarm rate. Since an inordinately large number of

spurious direction estimates would be undesirable, the average number of

false alarms (per trial) for each of the algorithms tested has been plotted.

Above threshold, the precision of the direction estimates is the primary
measure of DF performance. In the statistical literature, an estimate is
said to be efficient if its variance agrees with the Cramer-Rao bound. The
example in Fig. 4.2 indicates that the DF algorithms are asymptotically
unbiased (consistent) and efficient as the SNR increases. In fact, most of
the algorithms become unbiased within a few dB of the -resolutiomn threshold.
Thus, the remaining issue is how quickly the direction error approaches the
Cramer-Rao bound. The simulation data in Appendix F address these issues

over the range of parameter values specified in Table 4.l.
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The algorithms tested (see Section III.A) were AAR, MEM, MILM, MUSIC, and
TNA. Data was obtained for both spectral and root versions of these
algorithms. Since the root version of TNA is the same as the root version of
AAR, only the results for the latter are presented. 1In several instances,
the false alarm data for some of the algorithms (especially MUSIC) may appear
to be missing. In these case, no false alarms were observed.

Occasionally, the standard deviation curve for an algorithm drops below
the C-R bound. Strictly speaking, the C-R bound plotted in the performance
comparisons is valid only for unbiased and unexpurgated estimates. The
latter requirement means that, in every instance, direction estimatesifor
both emitters must be generated in order to interpret the bound rigorously.
As stated previously, the DF statistics presented in this report are
conditioned on the emitters being resolved. Near (or below) threshold,
practical algorithms often fail to find both emitters and are usually
biased. Consequently, the C-R bounds are not strictly applicable except at
high SNR. Moreover, because of the conditioning, the statistical
significance of the average performance 'decreases as the probability of

resolution drops.

B. Adaptive Nulling to Support Signal Copy
1. Overview

The primary function of adaptive nulling of interference is to improve
the signal-to-noise interference ratio (SIR) of the emitter selected for
coﬁy. For the case of multiple emitters separated by less than one beamwidth
in azimuth angle, the adaptive nulling system must be able to place deep
nulls, within the “main beam”, on the interferers while maintaining
sufficient gain on the desired signal to permit classification and/or
monitoring. In order to properly support signal copy, the nulling system
must increése the (presumably negative) SIR in each of the receiver channels
to an output SIR of at least (say) +10 dB by a linear weighting of the

receiver outputs.
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As discussed in Section IIIL.5, the two imitial candidate nulling methods
under investigation base their nulling weights solely upon the estimated
directions and powers of all the emitters present. Therefore, either of
these nulling techniques is potentially compatible with any of the techniques
for super-resolution direction-finding. Since there are several performance
measures which are appropriate to the evaluation of direction-finding
algorithms and since the relative performance ranking of the various
algorithms depended upon the specific performance measure selected, it was
not obvious at the outset which combinations of DF methods vs. nulliﬁg
algorithms would be ‘most successful on the average. Thus, an- initial
standardized experiment was formulated to investigate the compatibility
issue. . 4 ‘

The standard experiment which was used for the initial review of nulling
alternatives was based upon the same 10-element, half-wavelength spaced array
which was used for the initial direction-finding algorithm assessment (see
Fig..4.3 for a conceptual block diagram).. Two emitters were modelled with
the desired signal =10 dB in-power relative to the interferer. For each of
the candidate pairings of the DF and nulling algorithms, two basic parametric
variations were explored: (1) the effects of sample-size and (2) the effects
of residual calibration errors. For all experiments, the criterion used to
evaluate the relative performance was the same: "what array signal-to-noise

ratio (SNR) is required to achieve +10 dB output SIR as a function of emitter

separation?” As before, array SNR is measured relative to the weaker, or in

this case desired, signal.

2. Description of Simulation Output
A typical summary plot, ijllustrating the comparison of several
algorithms for a particular setting of the experimental parameters, is shown
in Fig.A4.42. The shaded region in the cormer of the plot indicates those
combinations of array SNR and signal separation for which the indicated
nulling technique (in this case the Model Covariance Method) would be unable

to provide +10 dB output SIR, even if given perfect knowledge of all emitter

lThe ARM, or Auto Regressive Root Method, algorithm shown in Fig. 4.4 is
from [2]. Its performance is identical with the root variant of MEM when
forward-backward averaging of the covariance matrix is employed.

45



RANDOM

RANDOM
ERRORS SAMPLES
GENERATE ADD GENERATE .
TRUTH IDEAL ADD
. - THERMAL s SAMPLE
" COVARIANCE ERRORS NOISE COVARIANCE
FOR SIGNALS
CORRUPTED
STEERING
VECTORS

DIRECTION [ANGLES \ praseon ASSESS
SIR

FINDING POWERS WEIGHTS

4 TRUTH FOR
PERFECT DF
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directions—of-arrival and received powers. Thus, for example, at 0.1
beamwidth emitter separation, at least 24 dB array SNR of the target emitter
is required to support copy, according to this criterion.

The curves in Fig. 4.4 correspond to different super-resolution

algorithms In each case, the DF outputs were used by the nulling system to

_set up the weights for copy. The interpretation of the results is the same

as for the "ideal direction—finding” bound: below and to the left of each
curve it is not possible, on the average, for the indicated DF method to
provide +10 dB  output SIR ﬁhen.combined with the Model Covariance Nulling
method.

Using Fig. 4.4 as a reference then, we conclude that about 40 dB array
SNR is required in order for MUSIC (with 20 snapshots of array data) to
provide sufficiently accurate angle data on emitters to permit copy at 0.1
beamwidth emitter separation, as compared with 24 dB for ideal direction

finding, as described above.

3. Details of the Experiment

In order to evaluate the proposed performance criterion, separate Monte
Carlo simulation experiments were performed for 45 pairs of emitter
separations (0.05, 0.1, 0;2, 0.4, 0.8 beamwidths) and array SNR's (10, 15,
20, 25, 30, 35, 40, 45, 50 dB). The thebreticaily evaluated output power in
the true signal "direction,” including residual calibration errors, if any,
were tabulated. The desired locus of +10 dB output SIR was obtained from a
contour plotting program, based upon the rectangular array of output power
data.

For each setting of emitter separation and array SNR, a composite
DF/copy experiment was performed as illustrated in the block diagram of Fig.
4.3. This diagram depicts the flow of data during each of the 100 Monte
Carlo trials over which the output SIR was accunulated.

Given the positions and powers of the interferer and signal, the ideal

signal covariance (uncorrupted by calibration errors) is first computed as
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H H
Rs= PSV(SS)V (GS) + PI V(GI)V (SI)

Next, using a random error vector, Vg, having Gaussian phase and log-normal
amplitude with the assumed standard deviations, the steering vectors are
corrupted to reflect residual calibration effects, such as unmodelled
near-field multipath, etc. This transformation is obtained by premultiplying

the direction vectors with a diagonal matrix of the form

Re = RS T

where aj, ¢j are the n ﬁairs of amplitude and phase errors as selected
above. Since the same calibration errors are assumed for both signal and
interferer, the corrupted signal covariance is’ directly obtained by
premultiplying by Rg and post-multiplying by REH. Thermal noise of  the
required intensity is next added to the corrupted sigmal covariance to yield
the true covariance of the signals in space, as observed through the system
with residual calibration errors.

Since the signal and the thermal noise are assumed gaussian counditioned
on the steering vector errors, the Wishart density is appropriate for
generating samples, given the assumed number of array snapshots. Note that
this assumes that the measurement errors, although unknown, are constant
during the sampling process. The sampled covariance matrix is then
introduced to the chosen direction-finding algorithm, which yields
angles—-of-arrival and received powers for all of the emitters detected.
Because the desired signal was always given a direction cosine algebraically
lower than that of the interferer, the lowest detected direction cosine from
the direction-finding algorithm was used by the copy algorithm as the

estimated direction cosine of the signal.
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Note that neither the DF algorithm nor the nulling algorithm is given
knowledge of the corrupted steering vectors, so that both use ideal,
linear-phase, constant—-amplitude steering vectors. In order to determine the
best nulling weights that can be obtained with the modelling errors present,
therefore, the nulling algorithm is given the correct signal DOA's and
powers, but again is not told of the direction vector errors. The "ideal
direction-finding” curve in the Monte Carlo results represent a (generally
unachievable) performance limit for nulling methods which model the received
signals with erroneous steering vectors. Only in the limits of zero
modelling errors and infinite array snapshots is this ideal performance bound
achievable.

The assessment of the output SIR is done with full knowledge of the
corrupted signal steering vector, Vo(6g), .and the theoretical
jnterference plus noise covariance matrix, Q., with the corruptions
present. Thus, if the candidate nulling algorithm yields the weight vector,

W, then the output SIR in the true signal direction is computed as follows:

_ Ps|wHVc(es)'2

WHO W
c

SIR

The above quantity is linearly averaged for the 100 Monte Carlo trials
to obtain the performance statistics for the overall DF/copy experimént.
This measure may be interpreted as the average performance.achievable by the
calculated nulling vector when it 1is used with array data that are

statistically identical to those used to determine the nulling weights.
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V. SUMMARY OF MAJOR FINDINGS

A. Direction-Finding

One of the goals of the DF investigation was to determine what combina-
tion of algorithms and system parameters are needed to achieve superresolu-
tion, somewhat arbitrarily defined here as the ability to resolve emitters
separated by only 0.1 beamwidth. In theory, superresolution is possible but,
in practice, may require extremely high signal-to-noise ratios and/or large
numbers of looks (snapshots). The simulation results presented in Appendix F
serve to quantify these requirements for a number of interesting algorithms.

For example, an examination of the data in Fig. 5.1 indicates that
superresolution is difficult to achieve with spectral-type algorithms given
only a modest amount of data (i.e., 10 looks). However, with more data, the
situation is not nearly so bleak. Given 100 shapshots, the performance data
in Fig. 5.2 show considerable improvement in most of the algorithms, par-
ticularly MUSIC. Increasing the number of looks by yet another order of mag-
nitude, the results in Fig. 5.3 clearly indicate that MUSIC is asymptotically
mich more sensitive than any of the other algorithms tested.

The general trend of the data suggests that the error in the MUSIC di-
rection estimate gpproaches the Cramer-Rao bound as either the SNR or the
aumber of looks becomes sufficiently large. In other words, MUSIC appears to
be asymﬁtotically efficient. However, the relatively poorA sensitivity of
MUSIC in the data-limited (10 snapshots) case is somewhat disappointing.

In Fig. 5.4, the 10 look experiment has been repeated with the emitter
separation increased by a factor of two (i.e., 0.2 beamwidth separationj. We
again see that spectral MUSIC 1is noticeably less sensitive than some of the
other algorithms (esp., MEM and AAR) in terms of its ability to detect the
preéence of both emitters at low SNR. This trend continues to exist even at
0.4 beamwidth separation (see Fig. 5.5). However, in spite of its relatively
poor sensitivity, MUSIC is generally superior in terms of producing more
accurate estimates than any of the other spectral algorithms. 0f course, the

SNR must be sufficiently large to allow MUSIC to resolve the two emitters.
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The sensitivity of MUSIC and, in fact, all of the algorithms tested, is
improved considerably by adopting the root-finding approach discussed in Sec—
tion III.A. Even when limited to only 10 look.s, all of the root-type algo-
rithms are capable of resolving two emitters separated by 0.l beamwidth at
reasonable signal-to-noise ratios (see Fig. 5.6). Although MUSIC again ap-
pears to be less sensitive than its competitors, this slight disadvantage is
relatively insignificant in view of vtﬁe bias results. As the number of
available snapshots is increased, the difference among the root versions of
the DF algorithms become even less important. At 100 looks, the sensitivity'
of all the algorithms is comparable (see Fig. 5.7). However, MUSIC retains a
discernible advantage in terms of accuracy. Also significant is the smaller

bias and lower false alarm rate exhibited by MUSIC.

B. Adaptive Copy

Since it was not known in advance what the tradeoffs were in combining
the proposed Model Covariance Method or the Projection Nulling Method with
the various direction-finding techniques, all combinations were tried. For
the adaptive copy experiement defined in Section IV.B, the copy algorithm
assumed that the lowest detected direction cosine was that of the desired
signal. Thus, the assumed direction—of-arrival could be far removed from the
actual direction-of=-arrival whenever the direction-finding algorithm failed
to resolve the two emitters. For this reason, one might expect the
direction—finding algorithms having the best probability of resolution to
give the best copy performance. This was found to generally be the case for
both spectral and rooting algorithms, as can be seen by comparing Fig. 5.8
to Fig. F-19, Fig. 5.9 to Fig. F-21, and Fig. 5.10 to Fig. F-20. For the
rooting algorithms, this observation tends to hold only for those values of
array SNR above that value where the roots cross in angle (a dip in the
resolution probability often occurs at that SNR, as can be seen in Fig.
F.20).

By comparing Figure 5.10 to Figure 5.8 and Figure 5.11 to Figure

5.9, we see that the rooting variants of the direction—finding

57




*$300T Q0T Y3ITM SyIpfMwesq [°Q 3B swyijaodre 300y *9°¢ ‘314

(80) OlLVY ISION-01-TWNIIS AVHY¥Y
09 0s or

of ot o 0
b by i 1000

Yvv 1008 |
[ annos 8-3  ‘fioo
< ON3931
vo
Svigl 001
S¥001 01
s 800
‘d)S MB1VO .
suImI e . \\
]
ADVHNIIVY ONIONII—-NOILO3dId
(80) 0I1vY ISION-OL-TYNOIS AVHYY
09 os or ot ot o (]
A A A A r o
"SiHR 1008 B
TN 1004 i
BCILRTIT] m \“ ro
THvv 1008 H .n\
gN3931 \ \
H \. .\ "o
. m \\\\\ o0
Vi
S vyl 001 \\ (X
SY00101 ... \
WS 800 H &
: 910 - ——— ‘
Mz.”_ﬂ:r \\.s\\\\ss. ./ ,

JONVIWYOLHId NOILDIL3A TYNOIS FTdINNA

(SHLEMIY3E) NOLLYIATA QEVANVLS

NOINTOS3d 10 ALTIBVBONd

5620t (1
(80) OlIVY ISION-OL - TYNIIS AVHYY
(+1] oS or of 114 ot (]
L 4 1 1 s 100
*5ighn 1008
~nin 1008
“HIN 1008 P
“TuvY 1008 m
GN3931 vo g
e m
— 5
J o ]
L et s
—— , &
=
5
SIvivg 001 —
sxp010!
24 L)
'dIS MBI'0
LI RINILO RS
ol
JONVAHOAId WYYV 3STV4
(80) 011vY ISION-01~TYNDIS AVHYYV
09 o.n a.- o.n o.n m~ [} co-
“5iGhR 1608 i \ /
iR 008 [
“HIN 1008 A\ \
WV 1008 /!
ON39T1 /) \
q-- --& :
SN—’
S1vi¥i 001
SN0 01
NS 8Q 0
‘d3IS 810
SyllIny T
S0
Svig ONIGNI4—NOILO3MIa

NOILYYVY3S 43LUn3 / Svig

58



algorithms again offer significantly superior performance. This again
implies that exploitation of the array structure is desired in order to
achieve the best results.

The above results indicate that the modeling techniques which steer
nulls to perform copy offer nearly optimal performance in the case that the
array is perfectly calibrated for plane wave direction_finding. - On the other
hand, if small gain and phase errors are introduced randomly into each
receiver channel, independent of direction—-of-arrival, there results a
significant 1oss‘of superresolution copy performance, as seen in Fig. 5.12.
This result implies that null steering is an unacceptable approach for
obtaining superresolution copy. Techniques which exploit the signal space
decomposition employed in SVD-type direction-finding algorithms to overcome
this deficiency are being studied as alternatives and will be reborted in a

- future phase of this study.

C. Conclusions

Noise cancellation by singular-valued decomposition is a necessary
prerequisite to superres'olution (e.g., less than 1/10 beamwidth).
Exploitation of regular array structures (e.g., linear arrays) is necessary
to optimize resolution sensitivity and accuracy of estimates with small
amounts of data. Array errors due to, for example, calibration residuals,
cause significant degradation of superresolution performance and copy.
Methods - based upon open—loop null steering cannot provide superresolution
performance based upon array information which is only slightly in error
(e.g., 5° phase and/or 0.5 dB amplitude errors per element).

Recause of the above conclusions for the initial phase of the study,
focus for su_bsequent phases has been directed toward SVD-type algorithms,
both for direction-finding and copy, and robust extensions to desensitize

performance to array errorse.
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Appendix A
CRAMER-RAO DIRECTION-FINDING BOUNDS FOR GAUSSIAN SIGNALS

1. GENERAL DISCUSSION

Detailed treatments of the multiparameter Cramer-Rao bound are rgadily
available in the engineering 1itefature (e.g.; see [30]). For our purposes,
the fundamental theoretical result may be stated as fdllows:

Consider a probability denmsity function p(r ) that governs a probabil-
istic mapping from a parameter space into an observation space r . The
basic problem is to estimate the (vector) parameter 6 from the (vector) ob-
servation r. The Cramer-Rao bound. asserts that the covariance matrix of any

unbiased estimate of 6 must satisfy

Cov () >F T

where F is the Fisher information matrix with elements

_ 3 1Inp 9 ln P
an =E { aem }
2ln d1lnp
= -E { ae ae } - (Aol)

0f course, the expected value operation is defined in terms of the given

probability density function (pdf), i.e.,

E {x} = [ x(z) p(r|0) dr .
Situations frequently arise where one is primarily iﬁterested in a subset of
the unknown parameters. The remaining “nuisance” parameters are only impor-

tant to the extent that they adversely affect estimates of the "desired”

parameters. By simply partitioning 8, i.e.,
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If the Fisher matrix has an inverse, it may be written as

— e

-1 -1 T
-1 [ Faa - FaBFBBFBa ]
1 -1

%*
. _ -
[FBf3 FeaFmFaB] . (A.2)

L .

The remaining (off-diagonal) terms can be easily obtained but are not needed

here.
If the nuisance parameters (e.g., B) were known, the Cramer—-Rao bound

for an unbiased estimate of the desired parameters (i.e, a) would be

~ -1
Cov (@) > Fac .

This inequality is always valid but the bound obtained from (A.2) is tighter,

i.e.,

Cov (@ > FET >l

where the "reduced” information matrix is

(8) _ _ -1
F o = Faa Fagﬂgsa :
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In the following sections, it will be convenient to use the notation

to refer to an arbitrary element of a Fisher submatrix.

2. STATISTICAL INFERENCE BASED ON COMPLEX GAUSSIAN OBSERVATIONS

Consider a complex Gaussian vector T with zero mean, i.e.,

Note that a superscript T indicates the usual (real) transpose operation,
whereas an H represents the complex conjugate (Hermitian) transpose opera-

tion. The unknown parameters 6 are imbedded in the covariance, i.e.,
R = R(6) . .

Assuming the covariance matrix R is positive definite, the complex multivari-

ate Gaussian pdf [31] is given by

1 A1,
R exp { -r'R 't }

P(r'e) =
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where L is the dimension of r and 1R| denotes the determinant of R. By in-

troducing the sample covariance matrix

n K
R=1 1 ror® :
- K=t

the logarithm of the pdf for R statistically independent observations can be

written as

1 -~

1n p({r(k)|k=1,...,x}|e) =k [Tr{R "R} + 1In |R| + 1L 1n 7 ,

where Tr { } is the standard trace operator. In arriving at this result, use

has been made of the identity
Tr {aB} = Tr {BA} . (A.3)

In the next section, we will also have occasion to use

e (A%} =1 o}, (A.4)

where a superscript asterisk (*) denotes the complex conjugate operation.
As indicated by (A.l), an arbitrary element of the Fisher information

matrix can be determined by calculating

2

321
F = £ {5555 | .
mann m n

Invoking the differential rules [32]

a R L= <! a7t (A.5)
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and the less familiar

1}

-

d1n‘Rl=Tr{R

we first obtain

3 1lnp _ -1 R =17 _
36 =K Tr {R aem(R R~-1I)} .

Since the sample covariance matrix is always an unbiased estimate of the

actual covariance, i.e.,

E R} =R ,

it follows that

2 -1
Plnp | _ -1 R R
E{s55e I =K (R 538 % |
m n m
R R L
=k Tr {5535 } .
m n

Thus, the number of observations enters the result only as a multiplicative
constant. Since no loss of generality is incurred, the simplifying assump-—
tion K=1 is imposed at this point. Applying (A.5) once more and ignoring X,

we finally obtain the desired result in a suitable form for subsequent

calculations.

_ R _-1 &R -1
Fe 9 = Tr { TG_R TQ—R } . (A.6)
mnn m n
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3. APPLICATION TO DIRECTION-FINDING
For the direction-finding (DF) problem posed in Section II.A of this re-
port, the covariance matrix of the observed vector (snapshot) r can be writ-

ten as

R = aPA" + N ,

where the unknown directions

enter the problem through the direction matrix

A =1 ale) ’ I ala;) 1 .

The only requirement imposed on the (vector) array gain a(a) is that it pos-—

sess a derivative in the usual sense, i.e.,

da

*®
a ===

da

is assumed to exist at every direction a. The matrix constructed from the

derivatives of the array gain at each of the unknown directions is written as
£=1aCa) | - | dCap ] .

The “signal-in-space” covariance matrix P may be interpreted in terms of the
pairwise correlations that would exist among the J signals at some convenient
reference point on (or near) the array. Unfortunately, the general problem

where P is totally unknown soon becomes overwhelming as the number of signal
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directions increases. Thus, we first comnsider the ideal case of known P. We
then treat the important case where P is an unknown diagonal matrix. Since
the signals transmitted by two emitters are normally uncorrelated, the latter
assumption is quite reasonable for a large class of DF problems.

The noise covariance matrix N is assumed to be non~singular and known.
Under these conditions, the general problem is easily converted via a linear

transformation to the special case where N is the identity matrix, i.e.,

N—>1 .

Under this transformation, the direction matrix becoumes

A—>v=N'1/2A ,
and similarly,
P—v=x12% .

The covariance matrix for the transformed problem is

R = VPVE + I

Our results are somewhat easier to interpret if the inverse covariance matrix

is expressed in the form

gl =1 - voul . (A.7)

A direet calculation shows that Q is the (Hermitian) solution to

P - Q = PWQ = OWP (A.8)
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where we have introduced the Gramian matrix

w=vv . (A.9)

The uniqueness of the representation in (A.7) follows from the fact that
I + PW is a non-singular matrix. The proof is by contradiction, i.e., sup—

pose there exists a non—zero X such that
(I +PWN)x =0 .

Premultiplying this equation by V, it follows that
(1 + veviyvx = 0 .

Since R is obviously non-singular, it follows that Vx = 0. In turn, Wx = 0
and hence the contradiction (x = 0).

Thus, O may be written explicitly as

0= (I+ PW)-IP = P(I + w1=)’1 .

If P is positive definite, we also have

Vv, = = ) (A.10)
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for the partial derivative of the direction matrix V with respect to an un-
known direction. This derivative can be extracted from the matrix of deriva-

tives defined previously, i.e.,
V. =7 e.en , (A.11)

where the unit vector ej is the jth column of the JxJ identity matrix.
Using (A.10), we first write the partial derivative of the covariance

matrix with respect to the jth direction as

R _§opvE + vevh .
: aaj b k|

Substituting this expression in (A.6) and expanding terms, we get

o= (e Rl et R J e { Vet R vRVE R}

+1e { VRV RV v R b4 { wedt R ved R} . (a.12)

Since R and P are Hefmitian, it follows from the identities (A.3) and (A.4)
that the last term on the right-hand side of (A,lZ) is the complex conjugate
of the first term. Similarly, the second and third terms form a conjugate
pair. Further simplifications result from substituting (A.11) and arranging
terms, with the help of (A.3), to obtain scalar expressions within the

braces. In this manner, we eventually arrive at

F =2 Re { eTPVHR‘lﬁe elp VHR-lﬁe + eTPVHR—IVPe eTﬁﬂR—lﬁe b, a3
@ a n n m .n n m m n

where Re {x} denotes the real part of x.
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At this point, it is convenient to introduce the Hadamard product A[B

of two matrices, defined by

(ADB)mn = Amann

for any two matrices with the same dimensions. Unlike the usual matrix

product, the Hadamard prbduct is commutative, i.e., A[]B = B[]JA. Since

T -
(a"0B)__ = A B ,

the Fisher (sub)matrix with elements specified by (A.13) can be written as

F = 2% (vl T o) + ViR ) O IR} s

The matrix expressions that appear in this result can be simplified
considerably by using (A.7), (A.8), and (A.9), e.g.,

pviR " lve = PRI - vovyve
= (P - PWO)WP
= QWP
= P-Q . (A.15)
Similarly,
ety = prii(z - vovil) ¢

(P - PWO) V'V

]
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]
2

(A.16)

where, in the last step, we have introduced

despite the apparent abuse of notation. Consequently, we may also write

1

iR~V

a1 - vovh v

#y - Tl

Substituting these identities in (A.14), the final form of the Fisher matrix

for the unknown directions «a emerges as
F = 2Re (-0 TO ™ - @Fah + (@h O } .

In order to proceed without updue difficulty, we now assume that the
signal-in—-space covariance P is a positive (definite) diagonal matrix and,

accordingly, introduce the nuisance parameters

. = 1n P_. .
3]

The partial derivatives of the covariance matrix R with respect to the

nuisance parameters are given by

1]
rd
<
1)
®
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It follows easily from (A.6) that

F =Tr {P_ Ve iRl p ve e Rl )
%nqn mm m m nn nn

p IR lve P olVPR lve
mn m n nman m
Since

(DA)mn = DmmAmn

for any diagonal matrix D, we may write the submatrix for the nuisance

parameters as
Fag = vz lvy g @R InT .
From the development in (A.15), we deduce the identity
VR ly = , | (A.17)
which yields
Foo= (0w O @ .
BB
The caleulation of the coupling matrix proceeds along similar lines, e.g.,
F e [RTR P Ry

B a a8 da
m m n
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T { P R lve ervR T (¥ v + vV |
mm m m n n

2Re {P eTVHR-lﬁe eTPVHR—1Ve } .
o m n n m

Consequently, the information coupling between the directions and the

- nuisance parameters is determined by
. Fo=2r [ VR O VRO .

Ba

Simplifying with (A.16) and (A.17) yields

P = 2Re { (0D O @)t} .

Finally, since'a Fisher information matrix is symmetric, it follows that
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Appendix B
LINEAR PREDICTION AND MAXIMUM ENTROPY SPECTRAL ANALYSIS

Maximum entropy spectral analysis is closely linked to one of the more
fascinating questions in time series analysts — given a record of the past,
how well can one predict the. future? Differences of opinion concerning such
matters are what horseracing is all about; however, within the relatively
orderly realm of stationary random processes, the theory of linear prediction
offers a fairly complete answer. The discussion in this appendix covers most
of the salient points of this theory for complex—-valued processes.

1. LINEAR PREDICTION o _

Let e(n) denote the minimum mean square error that can be achieved by
linearly combining the n most recent observations of a zero-mean, stationary
complex random process in order to predict its next value. Intuitively, one
would expect the prediction error to decrease as the number of available ob-
servations increases. Indeed, it is a well-known fact that the prediction

error satisfies a recursive relationship of the form

e(n) = [ 1~ |k(n)|21 e(a-1) (.1)

where k(n) is the nth (complex) reflection coefficient of the process. Since
the prediction error is always non—negative, the magnitude of a reflection
coefficient can never exceed unity. Unless otherwise explicitly stated, per-—
fectly predictable (i.e., degenerate) processes are excluded from considera=-

tion in order to obtain the strict inequality
|k(n)l <1 . (B.2)

Makhoul [10] has emphasized the equivalence between the reflection coeffi-

cients of a process and its correlation coefficients. Unless a process is
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degenerate, the first n correlation coefficients uniquely determine the first
n reflection coefficients and vice versa. This statement also holds for de-
generate processes provided e(n—-1) > O.

Reflection coefficients provide an extremely convenient way to generate
prediction filters recursively. Let the vector w(n) denote the weights of
the nth order prediction error filter based on the n most recent observa-
tions. As shown in Fig. B.l, a prediction error filter is constructed by
subtracting the output of the corresponding prediction filter from its in-
put. Given the filter weights obtained at the (n-1)st stage of the recur-
sion, the nth order weights are completely determined by the nth reflection

coefficient. This relationship may be stated as
_ *
w(n) = w+(n-1) - k(n) J w+(n-1) (B.3)

where the subscript "+" denotes a vector which has been extended by appending

a trailing zero, e.g.,

[ab]+=[ab0] R

and J is the appropriate exchange matrix that simply reverses the order of

the elements within a vector. For example, the 3x3 exchange matrix is

oy
il
=~ O O
O+ O
QO+

and

[abe] J=[chb al .

The self-inverting property of exchange matrices, i.e.,

80



133931-N

13m-N

OBSERVATIONS

PREDICTION
ERROR

re.

LP
Sme——
FILTER DELAY

Fig. B.l. Prediction error filter.

AR
p3 - _ OBSERVATIONS

_ LP
DELAY == FILTER

Fig. B.2. Autoregressive model.

81



is often useful.

The prediction error filter of order zero has no memory, and the recur-
sion in (B.3) begins with w(0) = 1. Actually, the leading element of w(n) is
" always unity — a consequeﬁce of the direct éignal path in the block diagram
defining the prediction error filter (see Fig. B.l1). A more noteworthy ob-
servation is that the last coefficient of the nth order prediction filter is
the nth reflection coefficient. This interesting property enables one to re-
construct the first n reflection coefficients from the nth order linear pre-.
diction (LP) filter. The procedure for accomplishing this task 1is essen-
. tially the same as the famous Schur stability test [33]. The key here is to
realize that w(n-1) can be obtained directly from w(n), e.g.,

a,a-1) = (1 = @] ) + k)i @)

follows easily from (B.3)

0f course, the coefficients for a prediction error filter may be
obtained directly by minimizing its expected output power. In order to
pursue this (equivalent) approach, let the vector r represent an arbitrary
segment of the observed process. The covariance (correlation) matrix of r is
usually written as

R = E{rrH}
where a superscript H denotes the complex conjugate (Hermitian) transpose

operation. The response of a finite impulse respounse (FIR) filter to a seg- .

ment of the process can be written as

T
y = wJr ’
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where w represents the coefficients (impulse response) of the filter, and the
superscript T denotes the usual (real) transpose operation.

The minimum mean square prediction error is

min E{|Y|2-}

o
0

T * :
min w JRI w , . (B.5)

where the minimization is over all w with a leading coefficient of unity.
When the observed process is statistically stationary, R is a Toeplitz

matrix of (complex) correlation coefficients, i.e.,
*
R_=E {rmrn}
=c . ‘ (B.6)

m-n

Since a covariance matrix is always Hermitian, the correlation coefficients

(lags) must also satisfy
c _=c . A B.7)

Finally, without suffering any significant loss of generality, we may

restrict our attention to normalized processes with unit variance, i.e.,

Given (B.6) and (B.7), it is a relatively trivial exercise to show that R has

the (harmonic) property
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JRJ = R . (B.8)

Substituting (B.8) in (B.5), the linear prediction problem may be stated as

follows. Find the filter weights which achieve the minimum mean square error

e = min wHRw s
subject to the constraint
[10 ... 0] w=1 .
This constrained minimization problem is easily solved using the method of

Lagrangian multipliers. A complete solution is obtained by solving the

(mixed) linear system of equatioms

Rw =e [1 0 ... 0]T ] ' (B.9)

Thus, the fifst n lags of a stationary process determine the nth order pre-
diction filter. The following argument establishes the converse.

Using the method of bordering, it can be shown {34] that (B.1l) and (B.3)
solve (B.9) recursively. ' For non-degenerate processes, the nth reflection

coefficient is

k(n) = ¢ (a)dw,(n-1) / e(n-1) (3.10)
where the vector

c(n) = [1 Cp eee cn]T

is constructed from the first n lags.
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Given a prediction error filter w, we may (now) invoke (B.4) to generate
all the lower order prediction error filters. Following Burg [35], we con-
struct a lower triangular matrix L, column by column, from the weights for
the error filters of order n through 0. Since the first n reflection coef-

ficients can be extracted from L, e.g.,
[0 oo 0 1] L = [=k(n) ... —k(1) 1] s

we may compute the corresponding prediction errors from (B.l), starting with
e(0) = 1. The prediction errors are placed along the main diagonal of a
(diagonal) matrix D in order of increasing value.

By taking advantage of the Toeplitz structure of the correlation matrix

R, the prediction error filter Eq. (B.9) can be generalized to

where U is an upper triangular matrix (to be determined). By construction,
the main diagonals of L and U consist of all "1"s. Pre-multiplying (B.ll) by
the Hermitian transpose of L, we obtain

e = Bop

= DUHL . (B.12)

Since the product of two lower (upper) triangular matrices is also a lower
(upper) triangular matrix, the left—hand side of (B.12) is both an upper and

a lower triangular (Hermitian) matrix, i.e., a real diagonal matrix. It fol-

lows that

iy = oL
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is a real diagonal matrix with "1"s along the main diagonal (i.e., an iden-
tity matrix). Therefore, U is the inverse of the Hermitian transpose of L,

and consequently, the correlation matrix R is given by

r =1 B 7! = oot . (B.13)

Since L and D were constructed from the prediction error filter w, we may
conclude that the nth order LP filter for a stationary process uniquely spec—
ifies the first n lags of the process.

If the determinant of the nxn correlation matrix R is written as d(n),
it follows from (B.13) that

n
d(n+l) = I e(k)
k=0

or.equivalently,
e(n) = d(n+l)/d(n) . (B.14)

2. MAXTMUM ENTROPY SPECTRAL ANALYSIS

The "ratio of determinants” formula ultimately enables us to relate the
error in predicting a process, given its entire past, to the entropy of the
process. Taking the limit -of (B.14) for arbitrarily large n and applying a
well-known theorem from real analysis [36] yields

e(=)

lim e(n)

lim d(n+1)/d(n)

lim 2n d(n)]l/n .

]
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Taking the logarithm of both sides leads to
1n e(®) = lim (1/n) 1n d(n) . (B.15)

Although it is not essential for this discussion, the right-hand side of this

result can be expressed in closed form, e.g., see [371,

™
1im (1/n) In d(a) = (1/2m) [ 1n S(u) de . (B.16)

-7
where

«©
S(w) =1+2 § c cos ne
n=l n

is the true power spectral demsity of the proéess'(i.e., the Fourier series
of the correlation coefficients). The absolute integrability of 1n S(u) is
known in the literature as the Paley-Wiener conditionm. The right-hand side
of (B.16) is sometimes referred to as the entropy (rate) of the power spec-
tral density S(w).

The entropy of a random vector T with probability density function p(r)
is defined to be

h=E { -ln p(r) } .

In particular, the entropy of an n-dimensional circular (complex) Gaussian

vector with covariance R is given by [see Appendix A, section 2].

h(n) =n (1 +1n ) + 1In 'R‘ (B.17)

Thus, the average entropy per observation of a stationary complex Gaussian

process is
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<h>

1im (1/n) h(n)

1+ 1n 7+ lim (1/n) 1n d(n) (8.18)

Setting n = 1 in (B.17), we uote that the entropy of a circular Gaussian

" random variable with unit variance is

=3
]

h(1)

1+ 1n 7 . X (8.19)

Substituting (B.15) and (B.19) in (B.18), the relationship between the
entropy (rate) of a complex stationmary Gaussian process and its optimum

prediction error emerges as
<h> = h + In e(=) . (B.20)

Thus, the greater its entropy (i.e., disorder), the more difficult a process
is to predict.

At this point, we are to consider the class of processes that share the
same given set of N initial lag values. Of course, every process in this
class has the same prediction error based on the N most recent observations.
Given additional (older) observationms, the wbrst conceivable situation is for
the prediction error to remain constant. The implication of this rather
pessimistic assumption is that the additional observations are absolutely
useless.

Pessimistic or not, the situation described above is a legitimate model
and correspounds to choosing the (unknown) reflection coefficients to be

identically zero for n > N. For this model, we have

e(=) = e(N)
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and, in light of (B.20), the average entropy is clearly maximized. Moreover,
(B.3) shows that the Nth order maximum entropy model has the property that
its optimum prediction filter, based on the infinite past, is the same as its
Nth order prediction filter.

One of the most important consequences of the orthogonality principle
[38] is that the output of an optimum prediction error  filter is a white
noise process. Consequently, a statistically equivalent input process can be
generated by driving the inverse of the optimum error filter with white
noise. Referring to Fig. B.l, elementary linear systems analysis shows that
the required inverse can be constructed using the simple feedback arrangement
depicted in Fig. B.2. Since the maximum entropy error filter has a finite
memory (impulse response), its inverse ijs an all-pole filter. Thus, the
critical assumption behind the maximum entropy method is that the observed
time series is an autoregressive process.

The validity of the autoregressive assumption is an issue far beyond the
scope of this report. Ultimately, a preference for one model over another
should be based on empirical comsiderations. Deliberations about such wmat-
ters could perhaps be made more meaningful by'the inteiligent application of
statistical hypotheszs testing techniques [30].

The point to be made here is that the maximum entropy method (MEM) al-

ways leads to legitimate spectral estimates. An MEM spectral estimate takes

the form
S, () = e (8.21)
MEM N ' *
1 1+ 3 v exp(-inuw)
n+l

where the coefficients are obtained from the underlying LP filter

_ T
- [1 Wl s s e Wn]
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and e is the corresponding prediction error. In the traditional Blackman-
Tukey approach, a spectral estimate is derived from N lag estimates by com—

puting the (truncated) Fourier series

N
S(w) =1+27 ¢, cos nw . , (B.22)
n+l

Unfortunately, this estimate is not generally guaranteed to be positive!

The difficulty with the latter approach can be attributed to the fact
that the calculation in (B.22) implicitly assumes that the (unknown) lags for
n > N are zero. The standard “f{x" for this problem is to pre-multiply the
lags by a window function that is zero for n > N and has a positive Fourier
series (transform). This class of functions has been studied extensively
[{39], and a window can usually be found that yields a positive spectral esti-
mate. However, a spectrum computed from ~windowed” lags is never entirely
consistent with the original information (lag values).

Burg was disturbed by the distortion introduced by a more or less arbi-
trarily selected window function, and he argued that the given set of corre-
1ation coefficients should be extended to produce the spectral estimate. Of
all possible extensions, Burg preferred the extension with maximum entropy.
As we have already seen, this choice amounts to truncating the reflection co-
efficients rather than the lags. One may certainly question whether maximiz-
ing entropy is the “correct” approach, but the fact remains that the maxinum
entropy method always ylelds a positive spectral estimate (B.21) consistent

with the original lags.

3. A NOTE ON DEGENERATE PROCESSES

If the process is perfectly predictable (i.e., degenerate) after M ob-—
servations, the LP filters are no longer uniquely specified for n > M. Faced
with this situation, one-may prefer the filter with minimum norm. The coef-
ficients for this filter are easily computed by simply choosing the nth re-

flection coefficient to minimize

90



’w(n)!z = ,w (n-1) - k(n) Jw*(n-l) 2
+ +
for n > M. The reflection coefficient that minimizes this expression is

wf_(n—l) J w+(n—1)
kmin(n) = 2 ‘
|w+(n-l)|

In this case, the Schwartz inequality guarantees that the magnitude of the
reflection coefficient is less than unity. Filter weights calculated via the

minimum norm criterion obey the (now) familiar recursive relationship

|w(:i)|2 -1 - 'kmin(n)'zl |w(n—1)|2 .
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Appendix C
COMPARISON OF ALTERNATIVE LIKELIHOOD RATIO TESTS
FOR ESTIMATING THE NUMBER OF SIGNALS PRESENT

As was discussed earlier, the MUSIC algorithm needs an estimate for the
number of emitters in order to form the direction finding spectrum. In this
appendix, we preéent the results of-a comparative stu&y of several candidate
likelihood ratio tests (LRT's) which have origins in the multivariate
statistics literature [42-45]. Simkins [46] and Schmidt [47] have proposed
the use of an LRT for driving the MUSIC algorithm. The number of signals is
estimated as follows: A sequence of likelihood ratios is formed using the
eigenvalues of the sample covariance matrix for the hypotheses of zero
signals, one signal, etc. Their values are compared to a user—selected
confidence level of the appropriate x2 distributions, and the first
hypothesis whose likelihood ratio passes the test is accepted.

1. Candidate LRT's for use with MUSIC _

Figure C.l1 illustrates the directiop—finding accuracy achieved by MUSIC
when driven by various LR.T's.1 As a benchmark, the performance of MUSIC
when the number of signals is assumed to be two is also shown (as "™MUSIC w/o
LRT"). The best performance was achieved by MUSIC driven by the Simkins LRT
using the Lawley approximation [&2-44]2 - it was able to achieve the
benchmark standard. All the LRT's studied asymptotically approach a x2

distribution [42-46]; the Lawley approximation helps to match the LRT to the

lfor Figs. C.l1 and C.3, the statistics were accumulated based on the
condition that at least one signal was detected. For assessment purposes,
when only one signal was resolved, the angle estimate of the second,
undetected signal was set equal to that of the first. At low SNR's the MUSIC
spectrum exhibits one peak located at the centroid of the two emitters. A4s a
result, the RMS error tends to equal half the emitter separation for the case
of equal-powered emitters.

2rne form for the extra approximation term given by Simkins [44] is
incorrect, and should be replaced by the form given by Lawley [41].
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assumed distribution for small numbers of snapshots [43, 46]. Without the
Lawley approximatiom, the LRT overestimates the number of signals. As a
result, "™MUSIC with the Simkins LRT" performs poorer than "MUSIC with the
Simkins LRT using the Lawley approximation”. Finally, "MUSIC with the
Schmidt LRT" is not at all matched well to the problem. The Schmidt LRT [471]
exhibits poor performance because the x2 distribution being used has the
wrong number of degrees of freedom for the complex valued sample covariance
matrices under consideration.

2. Candidate LRT's for use with ROOT MUSIC

Because of their poor performance in the MUSIC LRT comparison, the
Schmidt LRT and the Simkins LRT (without the Lawley -approximation) .were
automatically ruled out for use with ROOT MUSIC. A comparison of ROOT MUSIC
driven by the Simkins LRT with the Lawley approximation versus ROOT MUSIC
assuming two emitters (i.e., "w/o LRT"), as seen in Figs €.2 and C.3,
demonstrated a need for a more sensitive LRT.

All of the previously considered LRT's make no assumption regarding the
noise power. For the problem at hand, we decided that it wae reasonable toA
assume a known noise level, so we tested an LRT which takes advantage of this
knowledge -~ what we refer to as the "Lawley LRT (known noise power)” [43].
As seen in Fig. C.4, the Lawley LRT detects the presence of two emitters
approximately 4 dB earlier than the Simkins tKT with the. Lawley
approx1mation resulting in improved performance in the ROOT MUSIC algorithm
(Figs. C.2 and C.3). Note that in Fig. C.2 it is apparent that perhaps an
additional 5 dB of sensitivity might be obtainable, but that its impact
(Fig. C.3) upon estimation performance would not be significant. Thus, the

sinking LRT with the Lawley approximation was used for ROOT MUSIC Monte Carlo

experiments described in Section IV.

3. Summary

The Simkins LRT with the Lawley’ approximation was judged adequately
sensitive to drive the MUSIC algorithm, regardless of the number of snapshots
available. The Lawley LRT for known noise power provides needed addltlonal
sensitivity to drive ROOT MUSIC and, of course, could also be used with
MUSIC. There remains a study of the sensitivity of the perforumance of the

Lawley LRT to errors in estimating the noise power.
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Appendix D
COMPARISON OF TWO POWER ESTIMATION TECHNIQUES
VIA COMPUTER SIMULATION

An angle estimation algorithm produces a set of candidate signal
~directions and tests them for authenticity by computing a power estimate for
each one. To obtain a set of direction estimates, a vector of weights must
be computed which minimizes the total power output of the array under various
constraints which serve to prevent the weighting vector from being the zero
vector. Many such constraints are possible, leading to many different
direction finding algorithms. ‘With total power minimized, the gain in each
of the true signal directions must also be minimized.- Therefore, the
locations of nulls in the weighted array pattern (or peaks in the reciprocal
pattern) provide the desired set of candidate directions. An example of a
plot of the reciprocal array pattern produced by the MUSIC algorithm is shown
in Fig. D.l1 for a uniform linear array of five elements spaced \/2 apart.
There are two signals located at 0 and 2/3 (sin6 coordinates), and since
there are no ambiguities in this array, the two peaks accurately reflect the
directions of the signals. Notice that these are the only two peaks
appearing in the reciprocal pattern.

Mnfortunately, many angle estimation algorithms produce more candidate
directions than the number of actual signals present, with the true signal
directions scattered among spurious candidate directioms. This is esﬁecially
true for thinned linear arrays due to the existence of ambiguities. An
ambiguity occurs when the direction vectors associated with a set of
directions are linearly dependent. True signals located in these linearly
dependent directions will cause false signal indications in other directions
which are linearly dependent upon the directions of the actual signals.

To more clearly illustrate this concept of linearly dependent
directions, refer to Fig. D.2. This shows how ambiguous, linearly dependent
angles are created when the center element of the aforementioned five—element
uniform array is removed. For emitters at the angles of #41.8° (sin 41.8° =

2/3) to the thinned array, the phase at each element is shifted #120°,
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combined with an emitter at 0°, the total signal at each element adds to
zero. The signal does not add to zero at the center element, but since that
element has been removed, this information is not available. Due to the
linear dependence of the direction vectors, signals located at 0° and 42°
would be indistinguishable from a pair located at +2°, or 0° and -42°.
Furthermore, this ambiguity is amplitude independent and occurs for any set
of three ;nglés which satisfy

sin93 - sin62 = sine2 - sing, = 2/3

1

Figure D.3 is the reciprocal pattern plot from the four;element thinned array
mentioned above. The true signals are still located at 0 and 2/3 as in the
other patterm, but noticé‘how removing the center antenna element causes the
angle estimation algorithm to show a third spurious peak at -2/3.

_ The purpose of the power estimation algorithm is now clear. Hopefully,
if a signal power estimate is computed for each candidate signal direction,
then the powers in the spurious directions will be at the noise level or
significantly below those of the true signal directions. A simple threshold
test can then identify and reject the “"false alarms” while retaining the true
signal directions.

The most straightforward way to estimate the power of each signal is via
a direct mathematical solution. First, assume that the sampled covariance
matrix, S, is equal to the true covariance matrix, R, which is unknown. It

may be shown that any true covariance matrix can be written in the form

R = cZI + VPVH

where the columns of V are the direction vectors and P is a diagonal matrix’
whose entries correspond to the power for each direction vector V. Solving

the above equation for P with S substituted for R yields

li.e., the signals are incoherent.
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P = (V’HV)_I 7 (s - FI) v Wyt .

When P is determined in this manmer, it will not be exactly diagonal,
since S = R was only an approximation. The diagonal elements of P are
nonetheless a very reas_bnable approximation of the signal 'powers, so the
non-diagonal elements may be ignored..

The direct solution method will work unless (VBV) is singular. This
occurs when the columns of V are dependent. A singular (vBy) is not a
problem for uniform linear arrays with interelement spacing £ A/2 because no
direction vectors are dependent, but it is a problem for thinned arrays.

To avoid this problem a least-squares solution is sought in which the
powers Pi;, P2, . . ., Py are éelected so as to minimize the squared

error between S and R. The squared error may be expressed

1S - R#& (Frobenius norm)

E = R
_ 2
= ! ! ISy~ Bm .
m n

Since the inverse of vV is not required to solve this problem, this
method has a chance of exhibiting reasonable performance when signals are
located ambiguously. In an ambiguous case, the actual signals should have
normal power estimates and the spurious signal indications should have power
estimates at the noise level.

In order to compare the theoretical performance of the direct solution
and the least-squares solution in an ambiguous situation, a computer
simulation was set up using the four—element thinned array as the receiving
antenna (Fig. D.4) and two emitters of equal powér. One emitter was held
fixed at 0° or directly broadside to the antenna. The other emitter was
moved step by step closer to 41.8° (Aresin 2/3) which is an ambiguous

situation. The beamwidth of this antenna is 23° and the simulation began
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with the unfixed signal 0.32 beamwidths or 7.33° away from the ambiguous
angle. The separation was reduced in 3 dB steps beamwidth separation and
then to a zero beamwidth separation (exact coincidence with the ambiguous
angle). The second input variable was the signal-to—noise ratio. A trial
consisted of 100 “looks™ at the array output, that is, 100 data vectors which
were processed to form 2 single covariance matrix. After the angle
‘estimation algorithm produced a set of direction estimates for the signals,
the power estimation algorithm generated a power estimate for direction. For
each signal-to-noise ratio (0 to 50 dB in 10 dB steps) at each separation
angle, 100 trials were conducted in order to compile power error statistics
for each solution method.

The results of the simulation may be seen in Figs. D.5 and D.6. There
are two curves for each separation, one for each signal, and the area between
them is shaded. - In Fig. D. 5, the bottom curve (brown) represents the best
performance of the direct solution method. For separatioms greater than .32
BW, this curve approximately represents the lower error bound. When the
separation decreases, however, representative curves break away from the
lower bound at progressively higher signal-to-noise ratios. Finally the
direct method breaks down completely at zero separation.

~ Now, the least-squares performance curves in Fig. D.6 may be compared
with the direct solution. The thick curve includes all of the separations of
Fig. D.5, including zéro separation. The curves in Fig. D.6 are all almost
exactly coincident with the lower error bound for the direct solution,
regardless of the separation from the ambiguity.

In summary, theory and experiments show that the direct solution power
estimator can fail for noa—uniform arrays. Whereas the traditional
direction finding oproblem has been resolving closely-spaced signals, it has
been shown that wide angles are also a problem when non—uniform arrays are
used.. The least-squares power estimator 1is able to identify and reject
spurious signals in situations where the direct solution breaks down due to
ambiguities. Experimental data shows that least-squares performance remains

constant independent of the signal separation from an ambiguity. Therefore,
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Fig. D.5. Comparison of direct solution power estimation error as emitters
approach linear dependence.

107



108 T T T ] , I I

107

108

105

10%

103

RMS POWER ERROR

102

10

] | I |
-10 0 10 20 30 40 50 60

ARRAY S/N RATIO PER LOOK (dB)

10!

Fig. D.6. Comparison of least-squares power estimation errors as emitters
approach linear dependence.

lo8

133041-y



a processing system using this power estimation technique will be able to

overcome the ambiguity problem of thinned arrays while allowing accuracy

comparable to uniform arrays.
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Appendix E
SAMPLING FROM THE WISHART DISTRIBUTION

1. THE COMPLEX WISHART DISTRIBUTION
Let r be an M-dimensional, complex (circular) Gaussian vector with zero
mean and covariance R. Given K observations {r(k)|k=1,...,K}, the sample co-

variance matrix

r(R)r (k)

Ay
]
AR
?I;llMW
[

ijs a sufficient statistic for inferring parameters of R. However, when K is
less than M, the sample covariance matrix has less than full rank and is
therefore singular. To avoid unnecessary complications, the analysis pre-

sented here is based on the simplifying assumption

R>M .
Under the above conditioms, the probability distribution of the elements of a
sample covariance matrix is completely specified by the complex Wishart dis-

tribution [31]. In particular, the joint probability density function of the

elements of

A=KR (E.1)

may be written as

|a|*™ |g| ¥

TT®My) P { -Tr ®'a) } . (E.2)

p(A) =

The normalization constant c(K,M) is given by
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c(R,M) = MUD/2 peey L p(ra+D) ,

where (V) is the gamma function [45]

? vl ==

T(v) = X e  dx ; v> 1 .

0
Since I'(1) = 1, the recursive property of the gamma function
T(vkl) = v T(V) _ (E.3)
establishes the familiar factorial formula
I'(n) = (n-1)!

for any positive integer n.

The probability density function (pdf) in (E.2) is defined over the do-
main of non-negative definite Hermitian matrices. While theoretically quite
elegant, this formula is awkward to use in many practical calculatioas. The
fundamental problem is that the elements of a sample covariance matrix are
not statistically independent. Even in the special case where R is the iden-
tity and K=M, the restriction of (E.Z) to a semi-definite domain complicates
matters considerably.

Fortunately, the Cholesky decomposition of A leads to a much more useful
representation. Thus, consider the class of (MxM) upper triangular complex
matrices with (real) positive elements along the main diagonal. The elements
above the main diagonal are unrestricted, whereas the elements below the main
diagonal are identically zero. For every positive definite Hermitian matrix

A defined by (E.1) there exists a unique upper triangular matrix U such that

A =0 .
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Goodman [31] has shown that the joint pdf of the elements of U is generally

of the form

M
_ 2 X 2R-1 _2K-3 IR-(M-1) (ool .
b0 = gy BT U1 Y22 ot Ve exp{~Tr@®@ T} . (E.H)

However, when R is the jidentity matrix I, the joint pdf of the elements of U
may be expressed as the product of the marginal densities of the individual

elements. This observation stems from the fact that

e (UUU) = |Um|2 .

?

The implication is that in the special case R=I the elements of U are statis—
tically independent! 1In order to establish this important result, we first

recognize that

Py (z) = (1/7m) exp {—‘z'z} ; complex z, m < n (E.5)
nn .

is the pdf of a (complex) circular Gaussian random variable with zero mean
and unit variance. Setting R=I in (E.4) and integrating out the M(M-1)/2

complex Gaussian terms leaves the pdf of the main diagonal of U, i.e.,

M
D(Ull’ cees UMM) = I
n=1

2 2R~(2m-1) 2
TRzt 1) mm exp {0, | .

Evidently, the mth diagonal element has the marginal density
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2 2(K--m+l)-1e

2
pUm(x) =m-i‘)x xp{—x } , x>0 . (E.6)

This pdf is closely related to the chi-square distribution with 2(K-m+1) de-

grees of freedom. Thus, consider the random variable
Y, = (1/2) - ' N (E.7)
n 2n

obtained by simply -scaling a chi-square random variable with 2n degrees of

freedom. It can be shown that the pdf of (E.7) is a gamma density, i.e.,

pY (x) = F(i) xn-1 exp { -xX } , x>0 .
n

The general form of the gamma density [46] is obtained by replacing n with a

real number v > 1 and introducing a positive scale factor a, i.e.,

paYv(x) ap Yv(ax)

f(v) b4 exp { -ax } , x>0 . (E.8)

The gamma variate (i.e., random variable) obtained by setting a=l in (E.8) is
referred to here as the vth order gamma variate. It follows from the recur-
sive property of the gamma function (E.3) that the expected value of the vth

order gamma variate is V.

The pdf of the square root of the vth order gamma variate is
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2
= TV X exp.{ -x“ } , x>0 .

Comparing this'pdf with (E.6), we conclude that the diagonal elements of U

are square roots of integer order gamma variates. Specifically, we have

_1/2
Umm = YR-mtl *

2. .APPLICATION TO MONTE CARLO SIMULATIONS
Sample covariance matrices can be generated directly from the Wishart
distribution as follows. Given an arbitrary covariance matrix R, consider

any convenient "square-root” decomposition

R = LLH .

The observed vector r may be interpreted as the linear transformation
r = Lw

of a normalized vector w with covariance

It follows that any sample (covariance matrix) of r is statistically equiva-

lent to a linear transformation of a corresponding sample (covariance matrix)

of w, i.e.,

115



Since

E{x3}=1 ,

the argument presented in the previous section applies, and hence we may con-

struct

R W = U

from the upper triangular matrix U with statistically independent elemeunts
described by (E.5) and (E.6). If L is the (lower) Cholesky factor of R, then

K R = oot

@ty arhf

is obtained as the product of its Cholesky factors.
The complex Gaussian elements of U (above the main diagonal) can be gen-—
erated using any oune of a number of well-known techniques. Perhaps the most

elegant approach is to compute

z = (-1n u)l/2 exp { i2mv }

where u and v are statistically independent random variables uniformly dis-
tributed over the semi-open interval (0,1]. This method is based on the fact
that -ln u is an exponential random variable with unit mean (i.e., a first
order gamma variate). Moreover, nth order gamma variates can be generated by
summing n jointly independent exponential variates. Thus, the remaining ele-
ments of U (on the main diagonal) could be obtained from expressions of the

form
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K-m+1

x= ) [-1nu(k)]1/2

where the {u(k)} are uniformly distributed over (0,11 and jointly
independent. However, a Fortran subroutine is widely available [47] that
calculates gamma variates much more efficiently, particularly for large

values of K. This algorithm is based on the method of acceptance/rejection

testing [48].
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APPENDIX F
DIRECTION FINDING EXPERIMENTS

The results of the Monte Carlo experiments described

in Section IV.A are

included 1in their entirety. Four different parameter variations are

explored:
(1) Signal-to-Interference Ratio Group
A. 0 dB B. =10 dB

(2) Emitter Separation Group

A. 0.1 Beamwidths B. 0.2 Beamwidths C. 0.4 Beamwidths

(3) Number of Looks Group
A. 10 B. 100 Cc. 1000

(4) DF Method Group

A. Spectral B. Root
AAR ROOT AAR
MEM ROOT MEM
MM ROOT MIM
MUSIC ROOT MUSIC
TNA

Using these group designatioms, the 36 summary plot

.finding experiments can be indexed as follows:

s for the direction

SIR SEPARATION LOOKS DF METHOD
GROUP GROUP GROUP GROUP FIGURE
A A A A F-1
- B F-2
B A F-3
B F-4
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SIR
GROUP

SEPARATION

GROUP

LOOKS DF METHOD
GROUP GROUP
c A

B
A A
B
B A
B
c A
B
A A
B
B A
B
c A
B
A A
B
B A
B
c A
B
A A
B
B A
B
C A
B
A A
B
B A
B
c A
B
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Appendix G
ADAPTIVE LISTENING EXPERIMENTS

The results of the Monte Carlo experiments described in Section IV.B.
are included here in their entirety. The curves in these figures all
represent loci of 10 dB output signal—to—interference-plus-noise ratio for a
two—emitter problem with the ‘desired signal 10 dB weaker than the
interferer. The results are divided into three sectioms: (1) Model
Covariance Method Experiments (pp. G-3 - G-14); (2) Projection Method
Experiments (pp. G-15 - G-26); and (3) Effécts.of Likelihood Ratio Test for
MUSIC (pp. G-27 - G-30).

Iﬁ the first two sections, three different parameter variations are

explored:

(1) DF Method Group

A. ARM* B. ROOTMEM
AAR ROOTTNA
MEM ROOTMLM*
TNA ROOTMUSIC*
MUsIC*
MIM

(2) Snapshot Group
A. 20 B. 100
(3) Calibration Error Group
A. 0 dB Amplitude B. 0.05 4B Ce. 0.5 4B

0° Phase 0.5° 5.0°

Using these group designations, the 24 summary plots for the Model

Covariance Method and Projection Nulling Method can be indexed as follows:

*Note that in the projection method evaluation only the algorithmns
indicated were compared, since the results tended to be identical with those
obtained for the model covariance method.
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DF METHOD SMAPSHOT CALIBRATION MODEL PROJECTION

GROUP GROUP ERROR GROUP COVARIANCE NULLING
METHOD FIGURE
FIGURE
A A A G-1 G-13
' B =2 ~14
C -3 -15
B A -4 -16
B -5 -17
C -6 -18
B A A -7 -19
B -8 -20
C -9 =21
B A -10 =22
B -11 -23
C -12 -24

The remaining four plots (G-25 to -28) illustrate the impact of the
alternative likelihood ratio tests for driving MUSIC. and Root MUSIC, as
described in Section III.A and Appendix C. It can be seen from these results
that, even for only 20 array snapshots, the choice of LRT is not important
for signals separated by less the 0.4 beamwidths with spectral MUSIC or less
than 0.2 beamwidths for Root MUSIC. Moreover, even in the worst case, the
impact of the choice of LRT is only seen to be at most a couple of dB in
required array SNR. Thus, we conclude that the choice of LRT is more
important as a factor in direction-finding performance than it is for

adaptive listening.
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EMITTER SEPARATION (Beamwidths)
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EMITTER SEPARATION (Beamwidths)

CALIBRATION ERRORS

PHASE 0.5 deg
AMPLITUDE 0.05 dB

MODEL COVARIANCE METHOD
TWO EMITTERS

10 SENSORS
0.5 0.5A SPACING
20 SNAPSHOTS
100 TRIALS
DF METHODS
. ARM
\, —— e —— AAR
. — e — MEM
N e - TNA

cescsseeeee MUSIC
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