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Abstract 

A central controversy in the design of instruction concerns the amount of freedom 

or guidance that should be provided to students. We examined the cognitive and 

the motivational consequences of guidance and freedom in a learning environment 

used by students learning introductory programming. Students worked with one 

of three interactive learning environments that varied in the amount of freedom to 

explore or guidance provided. The Guided group solved a set of assigned problems 

worked with a tutoring system (GIL) that interrupts and provides explanatory feed- 

back whenever students make mistakes. An Exploratory group worked on the same 

problems using an exploration-oriented version of the system that does not interrupt 

upon errors, but instead enables students to test ideas and receive feedback at their 

request. A Free group used the same exploratory learning system but was free to 

generate their own tasks. The tutorial guidance helped students solve the assigned 

problems more quickly, although there were no differences in the subjects' under- 

standing of programming constructs or their ability to construct programs. However, 

both discovery learning groups were more effective in detecting bugs in programs, 

presumably due to their experiences finding and repairing their own errors. For 

students required to solve assigned problems, the positive or negative nature of the 

learning environment's motivational consequences appeared to depend upon the rel- 

ative ability of the student. The learning environments differentially affected the 

attitudes of high and low ability students toward the domain and their assessments 

of the success of their performance. Low ability students in the discovery learning 

situation tended to exhibit more negative judgments about their performance and 

the computer's assistance than comparable students who received tutoring. In con- 

trast, high ability students tended to exhibit somewhat more positive opinions of 

their performance in the discovery learning environment than comparable students 

in the tutoring situation. We argue that discovery learning creates more opportuni- 

ties for students to assess how well they can overcome obstacles, and their resulting 

attitudes toward their past and future success in the domain relies heavily on this 

type of attribution. The positive or negative nature of that attribution will depend 

on their relative success in achieving their goals. 
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The Debate Over Discovery Learning 

One of the most controversial issues in the design of instruction concerns the amount 

of freedom or guidance that a learning environment should provide. Advocates of 

learning by discovery have emphasized the student's active control of learning. In 

this view, students should be free to explore a domain, should learn by inferring 

principles rather than being told them, and should be free to make errors and learn 

by recovering from them (Bruner, 1961; Papert, 1980; Schänk & Jona, 1991). In con- 

trast, investigations of novice problem solving have suggested that errors can often 

be costly and lead to counterproductive floundering (e.g. Lewis & Anderson, 1985), 

leading some researchers to argue that providing careful guidance of students' prob- 

lem solving is important in facilitating learning (Anderson, Boyle, & Reiser, 1985; 

Anderson & Corbett, 1993). This paper presents an empirical investigation of the 

effects of guidance and freedom to explore in a learning environment. First, we re- 

view the arguments for discovery learning and the concerns about this method. The 

experiment examines students learning LISP programming using three computer- 

based learning environments that vary in the guidance and freedom for exploration 

they provide. We consider both the cognitive and motivational outcomes of the 

guidance and the freedom to explore provided in these learning environments. 

Proponents of Discovery Learning 

A leading advocate of early interest in discovery learning was Jerome Bruner (1961, 

1966). Bruner argued that learning in schools occurs typically in "expository mode," 

in which the teacher communicates information to the student and controls the 

structure and content of the interaction. In contrast, more efficacious learning oc- 

curs in "hypothetical mode," in which the teacher and learner are in a cooperative 

relationship, and the student plays a larger role in determining the nature of the 

interaction. The student can actively evaluate incoming information and sponta- 

neously form new hypotheses about the topic of the learning. Bruner argued that 

the instruction process is more meaningful to learners who have a significant role in 

determining its course. Early investigations of the learning by discovery approach 

occurred in domains such as physics, in which students controlled the gathering 

of data to test their hypotheses provoked by classroom demonstrations (Suchman, 

1961), and mathematics, in which students worked through examples and tried to 
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discover mathematical principles (Davis. 1966). 

Much of the recent interest in the use of computers in education has centered on 

using the computer to provide an environment that students can explore under their 

own control. Debates about the best use of computers in instruction have rekindled 

interest in the issue of learning by controlling one's own investigations of a domain. 

Proponents of discovery learning environments have focused on the process of hy- 

pothesis generation and testing. Schwartz (1989) argued that educational computer 

programs should be "intellectual mirrors," enabling students to investigate a do- 

main while providing little control of the students' interactions. For example, in the 

Geometric Supposer system (Schwartz & Yerushalmy, 1987; Yerushalmy, Chazan, & 

Gordon, 1990), students are encouraged to be creative in making conjectures about 

geometry and then to test them by having the computer construct geometric ob- 

jects with the desired properties. Schwartz argued that learning environments that 

attempt to Monitor students' problem solving to control the instructional process 

would only complicate and frustrate learning. Dugdale (1982) and Schoenfeld (1988) 

have designed learning environments in which students learn by making predictions 

about mathematical behavior and testing them through the program's graphical rep- 

resentation of the students' mathematical expression. Papert's (1980) arguments for 

the pedagogical benefits for children learning Logo include the freedom Logo pro- 

vides students to explore the consequences of their actions and set their own goals 

to investigate the computer's responses, rather than be restricted to working on 

predefined problems. 

Recently, some instructional systems have been designed to capitalize on the 

process of learning through making predictions by providing facilities for students 

to conduct experiments. An important trend in learning environment design is to 

construct microworlds that simulate essential properties of a domain which students 

can explore. For example, students can use Smithtown to learn about economics by 

varying aspects of the current economic situation in a small town (such as prices 

and availability of particular goods) and observing the effects on prices and amount 

of goods sold (Shute & Glaser, 1990; Shute, Glaser, & Raghavan, 1989). Students 

using Voltaville can learn about electric circuits by conducting experiments in the 

simulation environment to explore the concepts of voltage, current and resistance 

(Schäuble, Glaser, Raghavan, & Reiner, 1991). Grade school students working with 

Thinker Tools can perform simple experiments in a microworld to explore laws of 
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mechanics (White, 1993). 

In summary, in a discovery learning context, the student is in primary con- 

trol of the interaction. The student's goals and interests determine the learning 

agenda. Students are encouraged to form hypotheses, test these hypotheses, and 

observe the results. Students learn by inferring principles from the gathered ob- 

servations, rather than by the teacher communicating the central principles. This 

situation contrasts with more didactic and constraining teaching strategies in which 

an instructor presents ideas that have been included in a preestablished curriculum 

designed according to the logical structure of the domain of study. 

The arguments for discovery learning have included claims for both cognitive and 

motivational benefits. The proposed cognitive benefits are that students learn better 

or learn more general skills when learning by discovery. The proposed motivational 

benefits are that students find a domain more intrinsically motivating when learning 

through exploration, and that they will develop more positive attitudes toward 

the domain and toward their abilities. Next we briefly review the arguments and 
evidence bearing on these issues. . 

Proposed Cognitive Benefits of Discovery Learning 

The early arguments for discovery learning claimed that knowledge acquired through 

this method was better understood, better organized, and more amenable to future 

use (Bruner, 1961; Suchman. 1961). Yet early empirical investigations of discovery 

learning yielded mixed results. Some studies comparing directed instruction and 

learning by discovery found that directed instruction led to superior learning, while 

others found an advantage for the discovery students (Wittrock, 1966). However, 

these studies have been criticized for the use of rote learning as the control condition 

for comparison with discovery learning (Ausubel, 1963; Cronbach, 1966; Resnick & 

Ford, 1981). These studies confounded the directed versus exploratory nature of 

the learning with the content of the learned material. Advantages for the discovery 

group may have arisen because the learning situation led students to focus on the 

structure of the problems and formulate principles, while the rote learning group 

had no motivation and in many cases no opportunities to learn organizing princi- 

ples for the material. Hence these studies were potentially measuring the advantages 

of meaningful learning over rote learning, rather than any advantage of discovery 
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learning over direct instruction. Wittrock (1966) argued that the discovery learn- 

ing claims were in reality a number of related claims concerning meaningfulness, 

induction, student control, and so on. and that these claims should be evaluated 

individually rather than by simple comparisons of discovery learning with other 

learning situations. In recent work, the arguments have become more focused and 

potentially amenable to experimental investigation. In this section we review the 

particular claims for discovery learning and summarize the empirical evidence. 

The first type of argument for learning by discovery relies on the general prin- 

ciple that a greater amount of self-generated processing results in superior memory 

and performance of the target skill than a more passive encoding method. Recent 

theories of learning argue for the importance of "learning by doing" (Anderson, 

1983; Laird. Newell, & Rosenbloom. 1987). For example, it is generally considered 

better for students to solve problems themselves than merely to observe solutions 

performed by a teacher or to read worked-out solutions in a textbook. Analyses of 

students learning in domains such as mathematics and computer programming sug- 

gest that acquiring skills in a new domain requires that students attempt to apply 

the material presented in instructional text to solve new problems (Anderson, 1987; 

Trafton & Reiser, 1993; VanLehn, 1990). Extending this superiority of learning 

through active problem solving over passive observation, it might be argued that 

students who construct or discover a procedure for themselves would acquire more 

elaborated or robust knowledge than students who were guided in their problem 
solving. 

Arguments for the robustness of knowledge acquired through discovery have been 

made by Carroll and his colleagues (Carroll, Mack, Lewis, Grischkowsky, & Robert- 

son, 1985). They argued that instructional texts should encourage "active learning" 

by providing information to enable students to explore but never explicitly laying 

out procedures to be memorized. They found that students given a "Minimal Man- 

ual" that encouraged exploration learned more about operating a word processor 

than students given a tutorial manual that led them step by step through a series 

of examples. These results suggest the importance of eliciting reasoning from the 

student in contrast to asking students to learn procedures from detailed step-by-step 

instructions. Indeed, the degree to which students explain instructional examples to 

themselves greatly influences how much is learned from them (Chi, Bassok, Lewis, 

Reimann, & Glaser, 1989). Students who treat instructional examples as problems 
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to be solved and attempt to explain each step learn more from these examples than 

students who treat them as text to be read and understood. Such elaborated rep- 

resentations of solutions produced by self-explanation or by solving problems may 

contain representations of a problem's goal structure and records of obstacles and 

decisions during reasoning, and are more useful in guiding later problem solving 

than more passively encoded examples (Carbonell, 1986; Trafton & Reiser, 1993; 

VanLehn, Jones, & Chi, 1992). 

Carroll et al. (1985) argued that their results support the effectiveness of learning 

by discovery. However, it is difficult in these studies to disentangle the effects of 

exploration from the effects of problem solving. Charney and Reder (1986) suggested 

that it may be the problem solving nature of the task, in which students must select 

a step to take, carry it out. and evaluate the consequences, that accounts for the 

better learning in the Carroll et al. experiment, and not the exploratory feature 

of the problem solving. Charney and Reder found that students learned a word 

processor more effectively by solving assigned problems than students who only 

studied the same examples or students in a "guided practice" group who were told 

exactly what actions to take and hence did not have to actively construct solution 

plans themselves. Thus, although the problem solving subjects worked on assigned 

problems and were not free to explore or set their own tasks, they benefited just 

did as students who learned by discovery in the investigations of Carroll et al. This 

finding is consistent with Ausubel's (1963) argument that the benefits documented 

for discovery learning in early studies were due not to the method of learning, but to 

the fact that these students learned meaningful principles not available to students 

in other learning conditions. 

Taken together, these results suggest the importance of engaging the student in 

the reasoning required to produce solutions. They suggest the pedagogical effective- 

ness of requiring students to learn by solving problems. It is possible that it will be 

even more effective to let students explore the space by themselves, construct their 

own problems and discover their own solution methods, but the studies by Carroll 

et al. and earlier studies reviewed by Wittrock (1966) do not separately test these 

benefits of exploratory learning. 

A second argument for discovery learning concerns the central role of learning 

from errors. Proponents of discovery learning argue that an important benefit of 

exploration is the potential for encountering unanticipated events and then learning 
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to reproduce unanticipated positive outcomes or avoid negative outcomes. Schänk 

and his colleagues proposed that students learn when their expectations fail and 

they attempt to explain the unanticipated success or failure (Schänk, 1986; Schänk 

& Leake, 1989). In this view, a learning environment should encourage students to 

ask questions, to predict answers, to be wrong, and to explain and thereby profit 

from mistakes (Schänk, 1990; Schänk & Edelson. 1990; Schänk & Jona, 1991). In 

contrast, didactic teaching strategies aim for the elimination of expectation failures, 

and according to this view cannot support the development of creative thinking and 

flexible problem solving. 

Indeed, the use of failed expectations as opportunities for instruction can be 

observed in the behavior of expert teachers. Collins and Stevens (1982) found that 

teachers employing inquiry-based strategies utilize an entrapment strategy, in which 

the teacher leads students into articulating a prediction which they then discover 

is incorrect. Students are then forced to actively analyze the prediction in order to 

determine why it was wrong. A similar strategy, called "torpedoing," was used by 

Davis (1966). in which students are given examples, asked to form generalizations 

to explain the examples, and then given new examples that reveal a flaw in the 

generalization, thus pushing the students to refine and extend their explanations to 
cover the new cases. 

In evaluating these arguments concerning the active nature of the problem solv- 

ing and the utility of learning from errors, it is important to consider the potential 

costs of problem solving as well. Although learning by solving problems is clearly 

effective, in some situations students may learn more by studying examples than by 

unguided problem solving (Sweller, 1988: Sweller & Cooper, 1985). Sweller and his 

colleagues argued that if problem solving forces students to rely upon weak methods 

such as means-ends analysis, this can interfere with acquiring the problem schemata 

necessary to gain proficiency in the skill, and therefore learning is more effectively 

accomplished by understanding a series of worked-out examples instead. In some 

domains, if a problem's solution was obtained with excessive floundering, it may 

be difficult for students to remember how they constructed the solution and hence 

learning from that solution will be difficult (Lewis & Anderson, 1985). Anderson 

et al. (1985) argued that when errors in a solution lead to a costly floundering 

episode in an attempt to recover, such episodes interfere with learning rather than 

produce desirable learning outcomes. Anderson and Corbett (1993) argued that in 
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domains such as mathematics and programming, in which completed solutions pro- 

vide a record of the successful problem solving decisions, learning will be a function 

of the solutions students achieve and not strongly affected by the trajectories they 

take to reach the same solutions. In these types of domains, leaving students free to 

explore may lengthen learning time with no increase in amount learned (Anderson, 

Conrad, & Corbett, 1993). Hence, they argued that a learning environment should 

minimize floundering time in problem solving. 

The third argument for discovery learning states that this type of learning situ- 

ation helps students learn to control their own learning. Theorists have argued that 

students need to acquire "a working heuristic of discovery" (Bruner, 1961) such as 

general scientific inquiry skills (Shute k Glaser, 1990; Shute et al, 1989) and er- 

ror management skills that are necessary to systematically learn new domains. For 

example, the ThinkerTools environment is designed so that students learn not only 

simple laws of mechanics but also more general scientific experimentation strate- 

gies (White, 1993). Bereiter and Scardamalia proposed that learning environments 

should promote "intentional learning" in which students learn how to set goals, 

diagnose their own errors, and monitor and organize their knowledge (Bereiter & 

Scardamalia. 1989; Scardamalia, Bereiter, McLean, Swallow, & Woodruff, 1989). 

Research on learning general problem solving heuristics through discovery has 

provided a mixture of evidence. One reason for concern about students learning 

through exploration is that naive strategies for hypothesis testing often exhibit a 

bias to seek evidence to confirm hypotheses rather than discriminate between com- 

peting theories (Klayman & Ha, 1987; Nisbett & Ross, 1980) and a bias to accept 

confirming evidence while seeking alternative explanations for disconfirming evi- 

dence (Nisbett & Ross, 1980). Examination of students' behavior in exploratory 

learning situations reveals that there are indeed inquiry skills important for learn- 

ing. Shute et al. (1989) investigated students' experimentation strategies in their 

discovery microworld for economics. Shute et al. found that students differed in 

the degree to which they utilized effective heuristics for constructing tests of hy- 

potheses, and those students exhibiting better heuristics also learned more about 

economics as a result of their inquiries. Similarly, Schäuble et al. (1991) found 

strong differences in what students learned from their exploration in an electri- 

cal circuit simulation environment based on the sophistication of their prior causal 

models about the domain.   Klahr, Dunbar, and Fay (1990) found that students' 
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generation and pursuit of hypotheses was markedly influenced by their prior beliefs 

about the phenomenon. This line of research indicates that students who come to 

the task with more sophisticated prior knowledge and with more effective hypothe- 

sis generation, experimentation, and data organization skills learn more from their 

experimentation. Therefore, students may be unlikely to collect evidence through 

their explorations that is sufficient for learning the desired concepts. Thus, there is 

evidence for the importance of effective inquiry heuristics in learning. However, it 

remains unclear how these heuristics are actually learned, and there is little evidence 

that experience with discovery learning improves these heuristics. Indeed, although 

there may be clear advantages to acquiring discovery or inquiry heuristics, it may 

be that these heuristics are not best learned by discovery (Wittrock, 1966). 

One promising area to look for evidence that discovery learning leads to inquiry 

and other general skills would appear to be the research on Logo programming, 

which was touted as an example environment in which students will acquire not only 

computer programming constructs but also general problem solving skills through 

their exploration (Papert, 1980). However, recent evaluations of the Logo claims 

typically have failed to demonstrate that students learning Logo acquire general 

problem solving heuristics such as means-ends analysis, forward chaining, or other 

effective planning strategies (Pea, Kurland, & Hawkins, 1987). In fact, Logo can 

be an effective environment in which to learn planning or debugging strategies, but 

these outcomes have not been demonstrated when students are left free to explore, 

but only when these strategies were an explicit topic of the teacher's instruction, 

and this required a fair amount of teacher intervention to model the target reasoning 

process (Carver, 1988; Swan, 1989). 

Another potential problem with discovery learning is the danger that students 

will fail to discover important aspects of the domain. Ausubel (1963) argued that 

while the idea of finding out for oneself may sound appealing, in practice it may often 

be the case that people fail to uncover important principles. An informed teacher 

can perform more effective instruction through explicit communication of insights 

and ideas critical for meaningful understanding of the domain. Research on children 

learning Logo provides some support for this concern — students who are left to 

learn purely through their own exploration may fail to acquire important computer 

programming skills. For example, Mayer (1985) found that students who learned 

by discovering BASIC on a computer developed a greater number of fundamen- 
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tal misconceptions than did students who learned exclusively from a text. Dalbey 

and Linn (1985) reported that students often fail to learn Logo well when they 

are left on their own. Similarly. Kurland, Clement, Mayby and Pea (1987) found 

that students learning Logo in a discovery curriculum only learned the rudiments 

of programming constructs such as variables and procedures but did not exhibit 

an understanding of the flow of control of programs or the structure of the lan- 

guage required for "sophisticated understanding" such as passing variables between 

procedures or reusing procedures across programs. Although these studies did not 

directly compare students learning Logo through discovery to those learning with 

more directed instruction, the results do suggest that learning through exploration 

may sometimes fail to achieve the proficiency with the domain that may be desired. 

In summary, the claimed cognitive benefits for learning through discovery con- 

cern a more elaborated representation of problem solving skills, more effective learn- 

ing from errors, and general self-monitoring and inquiry skills. Although the impor- 

tance of inquiry skills has been demonstrated, there is little evidence to date that 

learning through discovery leads to acquisition of effective general problem solving 

heuristics. Two general concerns with discovery learning have been raised. The 

stronger claim is that any benefits of discovery are outweighed by the advantages 

of a good teacher, i.e., learning is more effective with lessons planned by a teacher 

according to the conceptual structure of the domain and with guidance provided 

to keep problem solving productive. The second concern is that while discovery 

may have some benefits, students who are left to explore may never uncover some 

important principles if they are not included in a preestablished curriculum. 

Proposed Motivational Benefits of Discovery Learning 

The second important class of claims for discovery learning emphasizes motivational 

effects. The arguments for the motivational benefits of discovery learning state that 

knowledge acquired through discovery is more valued, and students develop more 

confidence in themselves and more positive attitudes toward the domain (Bruner, 

1961; Suchman, 1961). Bruner (1961) argued that learning by discovery is driven 

by the rewards of the task itself, and that instruction should be designed to "enlist 

spontaneous learning" rather than to drive learning by extrinsic rewards (Bruner, 

1966).    These early advocates, however, did not propose a model of how these 
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motivational benefits arise from a learning situation. 

More recently, Lepper and his colleagues have developed a theory of intrinsic 

motivation in learning (Lepper & Chabay, 1985; Lepper & Malone, 1987; Malone 

& Lepper, 1987). Malone and Lepper (1987) considered aspects of instructional 

situations likely to lead to interest in the domain for the reward of engaging in the 

activity itself. Malone and Lepper's analyses of motivational influences on individual 

learners provide a framework in which we can evaluate the potential motivational 

consequences of discovery learning. We briefly review these analyses and consider 

related claims and evidence. 

The first characteristic of learning situations considered by Malone and Lepper 

(1987) is an optimal level of "challenge." They argued that challenge should make 

the task interesting and effortful without being frustrating. To accomplish this, the 

activity should either present clear, fixed goals or allow learners to set the goals 

themselves. In addition, there should be an uncertainty of outcomes, frequent and 

helpful instructional feedback (so students can adjust their goals during learning), 

and performance feedback that promotes self-esteem. Challenge is an interesting 

issue for evaluating guided and discovery based learning. It seems reasonable that 

either extreme in a learning environment may lead to negative motivational out- 

comes. If the student receives too much help, then the learning activity will not 

be sufficiently challenging. However, if students are left free to explore and achieve 

goals without guidance, a difficult task may become too challenging, leading to 

negative self-evaluations. 

The second intrinsically motivating aspect of a learning activity considered by 

Malone and Lepper (1987) is curiosity. Intrinsically motivating learning activities 

are those that engage the learner's curiosity by providing discrepancies between the 

learner's expectations and actual events. Thus, the types of failures of expectations 

that Schänk and Jona (1991) present as the key opportunities for learning are those 

that lead to increased interest in the topic of study in Malone and Lepper's model. 

In addition, the learning . tivity can promote curiosity by exposing incompleteness 

or inconsistency in the learner's knowledge. Thus, students who realize that their 

knowledge is inconsistent or incomplete when arguing with inquiry teachers (Collins 

k Stevens, 1982) or when causing unexpected events through exploration (e.g. Ran- 

ney k Thagard, 1988; White, 1993) are likely to become more curious about the 

domain and motivated to investigate further. 
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The third aspect of intrinsic motivation discussed by Malone and Lepper (1987) 

is control. They argued that students should feel in control of their actions and the 

responses of the environment. The environment should provide a moderately high 

level of choice so that the student feels in control of the direction of the interaction, 

but not confused and unsure of where to begin. This type of intrinsic motivation is 

clearly associated with discovery learning, in which the student controls the learning 

agenda, the topics and methods of exploration. Malone and Lepper also discussed 

the benefits of giving students the power to create large and interesting effects. One 

of the purported benefits of Logo is that it enables children to produce spectacular 

visual displays with only a moderate investment of effort (Papert, 1980), and recent 

experiments with Logo go even further in allowing students to program the behavior 

of physical objects (Resnick & Ocko, 1991). 

Investigators have argued that learning driven by intrinsic motivation or "learn- 

ing goals" is not only more enjoyable for the learner, but also leads to more effective 

learning than learning driven by "performance goals" (Dweck, 1986; Lepper, 1988). 

Intrinsically motivated students engage in the learning task because they find it 

rewarding, but extrinsically motivated students commit effort only to obtain an 

external reward, and may therefore devote less time and effort to learning activ- 

ities (Lepper, 1988). In addition, intrinsic motivation may elicit more productive 

cognitive processing, leading to more efficient or more elaborative learning (Lep- 

per, 1988). Extrinsically motivated students select less difficult and challenging 

problems, while intrinsically motivated students are more likely to select problems 

that will challenge their capabilities (Dweck, 1986; Pittman, Emery, & Boggiano, 

1982). Similarly, students with learning goals tend to increase effort or modify their 

strategies in response to obstacles, in contrast to the less productive responses of 

students with performance goals such as withdrawal (Dweck, 1986). Consistent with 

these proposals, Nolen (1988) showed that motivational factors affect the learning 

strategies that students value and utilize. Students motivated by intrinsic properties 

of a learning task were more likely to value and employ deep-processing strategies 

(e.g., discriminate between important and unimportant information, integrate new 

information with old information, etc.), while students motivated by extrinsic con- 

cerns were more likely to value and employ surface-level strategies (e.g., repeatedly 

read an entire passage, memorize exact wording, rehearse salient facts). Because 

deeper processing strategies are more likely to lead to understanding and reten- 
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tion (Brown. Bransford. Ferrara. & Campione. 1983), these results suggest that the 

intrinsically motivated students will learn more from their studying time than ex- 

trinsically motivated students. Recent studies by Lepper and his colleagues suggest 

that "motivationally-enhanced" learning environments, in which a rather dry learn- 

ing task is enhanced by setting it within a motivating fantasy context, can lead to 

superior learning outcomes (Lepper & Cordova, 1992; Parker & Lepper, 1992). 

These analyses of the motivational issues involved in learning suggest the poten- 

tial advantages of discovery learning environments. Learning through exploration 

certainly can provide more challenge than learning controlled by a teacher. The 

student's curiosity is invoked and can drive the particular problems or tasks set by 

the student. The control clearly belongs to the student rather than to an authority 

such as a teacher, or to a machine controlling the learning (as in "drill and practice" 

computer-based instruction). However, there may ai.so be dangers lurking in these 

potential advantages. If the domain proves more difficult than the student's capa- 

bilities and most of the student's goals meet with failure, then the learning activity 

can lead to decreased motivation. Students' curiosities will not be satisfied if the 

students cannot achieve goals to find answers, resolve inconsistencies, and explain 

unexpected results. Such evidence of failure, if attributed by the student to a lack 

of ability, can have negative consequences for self-esteem, expectations, and future 

effort (Dweck, 1975; Weiner. 1979. 1985). 

This review of evidence presents an ambiguous picture of the cognitive and mo- 

tivational consequences of discovery learning. The evidence for superior learning 

outcomes acquired through discovery is mixed, and the observed positive effects 

may be due to researchers contrasting problem solving situations with more passive 

learning methods. The effectiveness of students learning from errors is largely un- 

demonstrated, and there are reasons for concern with learning episodes consisting 

predominantly of errors and error recovery. The success of learning general inquiry 

and error management skills through discovery is also in doubt. Overall, there is 

little direct evidence for the cognitive benefits of discovery Wrning. Among the 

motivational consequences, we have reviewed both the reasons to expect that some 

characteristics of discovery learning situations lead to more intrinsic motivation, 

and reasons to expect that greater intrinsic motivation positively affects learning. 

However, there have been few investigations directly examining the motivational 

consequences of freedom or guidance in instruction. 
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An Empirical Investigation of Tutoring and Dis- 
covery Learning 

The present study was designed to investigate both the cognitive and motivational 

consequences of guidance and freedom to explore in a learning situation. Certainly 

there is much middle ground possible between a pure discovery learning system and 

one in which students' problem solving is carefully guided. For example, some de- 

signers have explored mixed systems in which students have a chance to explore but 

can receive coaching upon request or upon strongly demonstrated need (e.g. Burton 

& Brown, 1982; Elsom-Cook, 1990; Lesgold, Lajoie, Bunzo, k Eggan, 1992). Other 

researchers have stressed the role of students working together to learn from their 

interactions with a microworld (e.g. Roschelle, 1992). However, there have been few 

investigations that directly examine the learning and the motivational consequences 

of providing guidance or freedom in a learning environment. Informed design of 

learning environments requires a better understanding of what the potential bene- 

fits and the costs are of providing coaching or of providing the freedom to explore. 

The present experiment is designed to begin to provide such evidence. 

Intelligent tutoring systems provide a promising workbench for investigating 

these learning issues. An instructional system that can understand students' rea- 

soning as they construct a solution is capable of providing careful guidance during 

problem solving (Anderson et al., 1985; Lesgold et al., 1992). A learning environ- 

ment can be constructed to allow students the freedom to explore and work on the 

same problems without the constraints of the tutor's guidance. This provides the 

opportunity to keep most aspects of the target knowledge in the domain constant 

and keep the problem solving representations used by the student constant, while 

varying the amount of guidance and freedom to explore provided during learning. 

We investigated these issues using three computer-based instructional systems 

that embody a range of pedagogical strategies, from constraining and didactic to 

discovery learning. The experiment examines programming novices learning to write 

LISP programs. All students read the same textbook and worked with one of three 

interactive learning environments. We evaluated the cognitive consequences (what 

the students learn) and the motivational consequences (the students' attitudes to- 

ward the domain and toward themselves). 
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Learning Environments Used in the Study 

The three interactive learning environments cover a range from interventionist tutor- 

ing system to a free open-ended discovery learning environment. All three programs 

are based on GIL, Graphical Instruction in LISP. GIL is an intelligent tutoring sys- 

tem designed to help students understand how programs work as they construct and 

debug LISP programs (Merrill, Reiser, Beekelaar. & Hamid, 1992; Ranney & Reiser, 

1989; Reiser. Beekelaar, Tyle, & Merrill, 1991; Reiser, Kimberg, Lovett, & Ranney, 

1992; Reiser. Ranney, Lovett, & Kimberg, 1989). There are two characteristics 

of GIL that contribute to its pedagogical effectiveness. First, GIL is designed to 

be more congruent with effective problem solving processes. Second, GIL provides 

explanatory feedback as students work on problems. GIL understands a student's 

solution as it is constructed and hence it can provide feedback to warn the student 

about misconceptions or slips and provide strategic hints to assist the student's 

problem solving. By varying when GIL provides feedback and varying the degree 

of freedom students are given to explore, we can investigate the learning effects of 

these instructional designs. In this section we will present a brief summary of GIL 

and describe the guided learning and discovery learning environments that we have 

constructed for these investigations. GIL's problem solver, explanatory component, 

and graphical representation are more completely described by Reiser et al. (1992). 

The first goal in GIL's design is to provide a reasoning-congruent learning envi- 

ronment to help scaffold effective problem solving (Merrill & Reiser, 1993; Merrill 

et al., 1992; Reiser et al., 1991; Reiser, Friedmann, Gevins, Kimberg, Ranney, & 

Romero, 1988). A difficulty in learning to solve problems in many domains is that 

the syntax of a problem's solution does not reflect the reasoning process required 

to construct the solution (Collins & Brown, 1988). A reasoning-congruent learning 

environment is designed to provide a better fit with students' reasoning, thereby 

minimizing the translation between their plans and the recording of inferences in 

the external record of their solution. GIL uses a graphical interface to help organize 

problem solving and make hidden information (such as data flow) explicit. GIL 

students build a program by connecting together objects representing program con- 

structs into a graph, rather than by defining LISP functions in their traditional text 

form. In the early curriculum, students select a LISP function and specify its input 

and output data, thus making explicit assertions about the changing state of the 
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program's data. (In the later curriculum, not used in the present study, students 

are not asked to specify input and output data, but can obtain this information 

on demand.) A completed program in GIL consists of a graph specifying how a 

chain of LISP functions transforms the input data to achieve a particular type of 

output. The use of intermediate products makes the process of embedding functions 

to sequence operations on data more explicit, and is designed to lead to a better 

understanding of functions. The interaction allows the tutor to monitor students 

more closely and to provide more useful assistance as they learn programming plans 

than in an environment in which students specify only the final surface form of the 

solution. 

In GIL's graphical representation, the structure of the solution being constructed 

mirrors the planning required to construct a program better than in a text-based 

representation. Reasoning chains are represented by branches of the graph joined 

together to achieve the final goal. Intermediate reasoning products are made explicit, 

so that students see the data manipulated as they construct the program. This helps 

students understand how particular algorithms work and, more generally, helps 

them learn the logic of embedding functions within other functions to construct 

an algorithm. Finally, the GIL interface enables students to plan in a variety of 

directions. Students can reason forward from the given data toward the goal, or 

can use goal decomposition and work backward from the goal toward the given 

data. The interface supports both types of reasoning and provides a distinct visual 

representation that mirrors the direction of reasoning. This facilitates students' 

reasoning about programs, because they often do not construct the components of 

solutions in the order in which these appear in the final surface form of the solution 

(Trafton & Reiser, 1991). 

The three environments based on GIL are summarized in Table 1. The critical 

hypotheses in this study concern the cognitive and the motivational consequences of 

allowing students freedom to explore or providing tutorial guidance as they work to 

master a curriculum. Thus, the central comparisons in the experiment concern the 

Guided and Exploratory environments, in which students work through the same 

textbook and set of assigned problems, but receive highly interventionist tutorial 

guidance (Guided) or are free to construct their solutions and obtain feedback only 

upon demand (Exploratory). We also included a third condition in which students 

were free to work on problems of their own choosing (Free), to examine the con- 
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sequences of a completely open-ended discovery environment.   The next section 

describes the three environments in more detail. 

Insert Table 1 about here 

Guided Environment: Tutored Learning 

The guided version of GIL provides tutorial guidance as students learn to solve 

problems. GIL contains a problem solving model that encodes the target skills in 

the curriculum and a diagnosis component that compares the student's reasoning 

to the actions of its own problem solver. The system employs the model tracing 

method (Anderson et al., 1985) and analyzes each step as it is taken to determine 

whether it is on a path toward a solution or indicates a misconception. GIL stays in 

the background when the student is following a path leading to a correct solution, 

but it provides a hint upon a request or an error, enabling the student to continue. 

GIL responds to student errors and requests for guidance by accessing the rel- 

evant knowledge in the problem solver and generating explanatory feedback. If an 

error in a student step is found, GIL's explainer analyzes the discrepancies between 

the student's step and the closest matching correct plan and offers suggestions about 

how to improve the step. GIL intervenes when students use a programming con- 

struct incorrectly, when they incorrectly describe the data that would be input to or 

output from a particular construct, or when they build a legal portion of a program 

that is not strategically useful for a solution. GIL first describes what is good about 

the student's step and then points out the ways in which the step is in error or could 

be improved by explaining how the student's step deviates from the action consid- 

ered by the problem solver. Figure 1 displays two levels of help in GIL's reaction to 

a legal error in the two paragraphs in the Hint Window. The first level provides a 

hint concerning what is wrong with the step. The student may attempt to fix the 

error, or may ask for the optional and more directive second level of help, which 

typically offers a specific suggestion about how to repair the step. 

Insert Figure 1 about here 
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GIL's feedback helps students recover from errors by helping them isolate the 

errors in a solution and understand why they are incorrect. First, since feedback is 

provided as soon as students complete each step, students know upon completing 

each portion of the program whether it is correct and a strategic step toward a 

solution or must be modified. Second, for steps requiring repair, the feedback indi- 

cates whether the step is strategically useful but contains an illegal portion, or is a 

strategic error and the student should consider a different plan. Third, the feedback 

focuses the student on the particular components of the step requiring repair. 

To emphasize the contrast between the tutoring and discovery learning condi- 

tions, we constructed a slightly modified version of GIL for this experiment. This 

version is designed to tell the student the answer when an error is made, rather 

than providing a hint, and then following the hint with an answer only upon the 

student's request. Thus, whenever a student makes an error, the program inter- 

rupts and provides not only the first level of help, which offers a hint suggesting 

what is wrong with the step, but it also automatically generates the second level 

of help to tell the student how to fix the step. By presenting its own explanation 

and suggested repair immediately upon errors, this version of GIL differs markedly 

from a discovery learning environment, in which students learn by forming their 

own explanations and repairs in response to errors. If there are cognitive benefits 

to repairing one's own errors, these benefits should be weakest in this condition. 

Exploratory Environment: Discovery Learning, Assigned 
Problems 

The second learning environment used in the present study is a version of GIL 

that provides the reasoning-congruent environment, but without the model tracing 

constraint and associated tutoring assistance. There are two goals in the design 

of this environment. First, students working through the same set of problems as 

the Guided group are given freedom to explore, make mistakes, and diagnose and 

correct those mistakes themselves. Second, the system is designed to facilitate the 

process of learning by testing hypotheses. 

The exploratory version of GIL provides students more freedom in constructing 

a solution than the guided version. With model tracing, GIL must check each step 

for correctness, so the system constrains students to include three components in 
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each step — a function, the input, and the output. In contrast, the exploratory 

version of GIL does not require students to complete all three components of one 

step before beginning another. Students can assemble graph objects (functions 

and data nodes) in any sequence desired, drawing connections between objects by 

clicking on one object and dragging a line to another object and releasing the mouse 

button. Furthermore, the student is not constrained to build graphs only from the 

bottom up and the top down as they are in the Guided environment. Instead, the 

student can place any functions and data nodes anywhere in the graph and link them 

in whatever order desired. Figure 2 displays a partial solution in the exploratory 

system at a point at which the student decided to request feedback. Note that the 

student has begun a forward path and has also constructed a portion of the graph 

that has not yet been connected, using the function LIST on the input a to get the 
resulting list (a). 

Insert Figure 2 about here 

The most important characteristic of the freedom provided in this exploratory 

version is the freedom to pursue incorrect solutions. In this mode, the system does 

not interrupt when the student constructs an illegal or non-strategic step. Feedback 

is available only when specifically requested by the student. For this reason, it 

is important to provide methods for deleting and editing portions of a graph. In 

the guided version of GIL, because errors must be corrected as soon as they are 

made, the only delete capability is the Oops button which can be used to cancel 

the last action or to backup further by successively removing previous steps. The 

exploratory system contains a Delete button that can be used to delete any function 

or data node or any link between a function and a data node, and a Replace button, 

that can be used to replace one function by another or to enter a new value for a 

data node. 

The second design goal in the exploratory system is to facilitate more explicit 

hypothesis testing. A crucial component of discovery systems is the ability to elicit 

feedback from the system when desired, so that students can test hypotheses. The 

system contains facilities for testing partially constructed solutions and for running 

a program on given data to examine its behavior.  The student can select a Test 
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button and click on any node in the graph. The system then begins with the initial 

input and tests the paths up to the target node to determine whether each function 

can be applied to its input data and each data node in the graph is the correct output 

for the indicated function. If GIL finds any illegally applied functions or incorrect 

data nodes, it marks the node and prints a message in the Hints window. The 

Hints Window in Figure 2 contains GIL's response to an error. Since this version 

of GIL allows the student freedom to explore, it responds only to legal errors when 

the student requests a test of the graph, and it does not comment on the student's 

strategy for a solution. Using the test facility, students can construct a partial 

graph, filling in the data nodes to demonstrate how they expect the program to 

behave, and can then test the graph to see whether their predictions are correct. 

The environment also contains facilities for students to run a complete graph to 

see whether the sequence of functions behaves as they expect on other examples. 

The Run button causes GIL to test the current graph, and prompts the student to 

replace the initial input or inputs with new values if it is correct. The system then 

executes the student's program using the new data, by filling in each data node 

with the value calculated by operating the function on the new value passed to that 

function. This enables students to experiment with the behavior of a program by 

executing the program on new data values. An example of the student running a 
program is shown in Figure 3. 

Insert Figure 3 about here 

This version of GIL allows students to explore and work without guidance, but 

the exploration is within the context of a curriculum of assigned problems. When 

students have finished a program intended to satisfy the requirements for an assigned 

problem, they can select the Submit button to ask GIL to evaluate their solutions. 

GIL tests a student's program with a set of examples associated with the problem 

to determine whether the program computes the correct result for each example. 

If the student's program satisfies the problem's constraints, then GIL presents the 

next problem in the curriculum. If the student's program only works for the original 

example but is not general enough to work for the other examples, GIL provides an 

example that does not work and asks the student to modify the program. 
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The hypothesis testing facilities of GIL are enhanced by the use of the graphical 

representation. Students indicate how the program manipulates its data as they 

construct a solution. When students test a partially completed solution, they have 

entered their predicted result for each function application. Thus, students are led 

to articulate their reasoning and make predictions as they go along. Therefore, 

the system not only provides facilities for hypothesis testing, but also aids in the 

articulation of hypotheses, by providing a representation that makes the student's 

reasoning iv.ore explicit (Merrill et al., 1992). 

In summary, this environment implements freedom to explore within constrained 

problems. Students are given the freedom to explore without being interrupted, to 

make errors, and to determine when to receive feedback, but they are required to 

solve the same curriculum of problems as the guided students. Students elicit feed- 

back upon demand (as frequently or rarely as desired), rather than being interrupted 

whenever they make an error. Students must discover and repair their own errors 

and decide when to request analysis of their solutions. Students in this environment 

can elicit feedback on the legality of their solution at any time, but can only find out 

whether their solution fully satisfies the problem specifications when it is complete 

and submitted. 

For the purpose of this experiment, the guided and exploratory versions of GIL 

have been constructed to heighten the contrast between the tutored and exploratory 

versions. Thus, the guided version used in this study provides only the model-tracing 

feedback, but does not offer students the ability to run their own programs or delete 

or replace arbitrary portions of their graphs. In the complete GIL environment, 

we have combined the guidance and hypothesis testing facilities so that even when 

working with model tracing, students can run partially complete solutions to ex- 

amine the behavior of their programs, and have complete editing control of their 

solution (Merrill et al. 1992; Reiser et al., 1991). 

Free Environment: Discovery Learning, Self-Generated Cur- 
riculum 

The Free environment provides a facility for students to set their own goals and 

learning agenda. This implements the third learning condition, discovery learning 

with a self-generated curriculum. In this version of GIL, students are free to work 
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on whatever programs they choose. No assignments are displayed, and students are 

not required to solve problems in a particular curriculum. Thus, their programs are 

never submitted as solutions. Instead, Free subjects are free to build any program 

at all, either setting up problems to solve, or just building graphs with no particular 

problem intended. 

In this system, the Submit button is replaced by a Save button. Selecting the 

Save button produces a printed copy of whatever program graph(s) are currently 

on the screen, and clears that window so that the subject may start anew. Figure 4 

displays a student saving the results of some exploration of the LISP functions she 

had been studying. 

Insert Figure 4 about here 

The Save feature was added to roughly parallel the notion of completing problems 

in the first two conditions, in which students are informed when they have completed 

a problem successfully. We were concerned that Free subjects might be discouraged 

by the fact that any interesting program graph they might create would have to be 

simply erased and lost in order to make room for something else. The facility to save 

and print graphs, which can be used later to study before the posttest, provides a 

more sensible sequence of interactions than merely building a graph and erasing it. 

In light of this addition, the Guided and Exploratory versions of GIL were designed 

to produce printouts of each correct program graph created by subjects. All subjects 

were told that they would have an opportunity to review their printouts prior to 
the posttest. 

We have designed the Free environment to embody as much as possible the 

proposed benefits of a total discovery learning environment. The system provides 

no set goals other than understanding of the material it presents. The student can 

access all the elements of LISP and discover when each may profitably be used. The 

student is encouraged to formulate and test hypotheses about LISP and the system 

contains facilities to help students explicitly articulate their hypotheses and then 

test them. In addition, students have full control over their interaction with the 

system and feedback is only provided upon a student's request. Finally, the choice 

and duration of the learning topics is completely under the student's control, rather 

than requiring the student to solve problems in a prescribed curriculum. 
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Method 

Subjects learned two chapters of introductory LISP programming, reading the same 

text but using one of the three learning environments provided guided learning, 

discovery learning with assigned problems, or self-controlled discovery learning. We 

evaluated learning consequences by analyzing the records of the students' problem 

solving, their speed of learning the material, and their performance on a posttest. 

We assessed motivational consequences via a questionnaire completed at the end of 

the learning session. 

Subjects 

The subjects were 30 undergraduates from Princeton University and other nearby 

colleges and universities (Rider College, Mercer County Community College, and 

Temple University), recruited through advertisements and paid by the hour for their 

participation. All had taken no more than one year (or two semesters) of computer 

programming courses, including no more than one semester course above the high 

school level and no more than one semester involving a programming language 

other than BASIC. None of the subjects had any knowledge of LISP. The data from 

five potential subjects were discarded: three experienced computer malfunctions 

during the course of the experiment, one left before completing the experiment, and 

another misunderstood the instructions and failed to produce saved problems. All 

of the remaining subjects were between 18 and 23 years of age (mean age = 19.3 

years). Six subjects were male and twenty-four were female. 
Ten subjects were assigned to each of the three experimental conditions (Guided, 

Exploratory, and Free). In an attempt to minimize differences in performance be- 

tween conditions that might result from individual differences, we assigned subjects 

to conditions so as to create a rough balance of programming ability across the 

conditions. Mathematical reasoning ability is the best available predictor of success 

in learning to program (Mayer, Dyck, & Vilberg, 1986), so we assigned subjects to 

conditions such that the distributions of Math SAT scores for each of the three con- 

ditions were as similar as possible. The subjects' Math SAT scores ranged from 420 

to 800, with a median score of 635. The mean Math SAT scores for each condition 

were 619, 624. and 612 for the Guided, Exploratory, and Free learning environments 

respectively. 
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Apparatus and Materials 

The versions of GIL used in this study were implemented in Interlisp and LOOPS 

and run on Xerox 1108 and 1186 LISP workstations. Subjects completed question- 

naires, read written text, and filled out posttests at a desk away from the computers. 

Interactions with the computers took place in enclosed rooms or cubicles, one sub- 

ject per area, each containing a single workstation with a standard keyboard, 18" 

or 20" monochrome display, and an optical three-button mouse for manipulating 

objects on the screen. 

The printed text used to teach subjects LISP is based on the first two chapters of 

a college-level LISP textbook (Anderson, Corbett, & Reiser, 1987), modified to use 

GIL's graphical representation for LISP programs. All subjects were given the same 

instructional text, which consisted of 15 pages of instructional text and diagrams 

containing approximately 4,600 words. 

The assigned problems for the Guided and Exploratory groups included thirteen 

problems plus one demonstration problem involving manipulation and construction 

of lists .(e.g., see Figure 1). The problems were grouped into three problem sets 

interspersed within the text. These same problems were also provided to Free sub- 

jects as a set of "Optional LISP Exercises." The Free subjects were encouraged to 

do anything at all which would help them to learn the material in the text. The op- 

tional exercises sheet could be used as a source of ideas if desired, and were included 

to prevent potential discouragement for subjects who might have no idea where to 

start. These instructions for Free subjects were as follows: 

Keep in mind that you are free to use your time with the computer 

in any way you please. You are not required to solve any of these prob- 

lems, nor are you even required to attempt them. You can also work on 

problems which are extensions or modifications of those presented here, 

work on problems which are entirely of your own design, or try building 

program graphs with no particular problem in mind at all. We provide 

this sheet only because some people like suggestions of possible ideas to 
get started with. 

Procedure 

Background Questionnaire: Each subject began by filling out a background ques- 
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tionnaire containing questions concerning age, SAT scores, and mathematics and 

computer course experience. The background questionnaire also contained seven 

questions designed to measure students' attitudes about a variety of learning activ- 

ities such as learning from lectures, working on mathematics problems, and using 

computers. 

Learning Session: After completing the background questionnaire, each subject 

was given the first of the three separate sections of printed text to read. Upon 

reaching the last page, subjects were led through a brief demonstration to familiarize 

them with the computer-based learning environment. During the demonstration the 

experimenter led each subject through two solutions of the first problem in the GIL 

curriculum: one forward reasoning (building a program graph from the input to 

the output, moving upwards on the screen) and one backward reasoning (building 

the same graph from the output to the input, moving downwards on the screen). 

Subjects were instructed that either direction of reasoning could be used whenever 

desired in a solution. Free subjects were further instructed that it was not necessary 

to solve any particular problems at all, but that obtaining a specific output from a 

specific input might be an interesting exercise. 

The demonstration also included a run-through of any special buttons of the 

environment being used (e.g., Oops, Replace, etc.). At the end of the demonstration, 

all subjects received for future reference a summary sheet outlining the operation 

of the program. 

Following the demonstration, Free subjects were given the remaining two sections 

of the text and told that, while it might be a good idea to apply new knowledge 

on the computer before moving on to the next section of text, they were free to 

use their time with the computer in any way they chose. These subjects were told 

to learn the material in the text, and to notify the experimenter when they felt 

comfortable enough with it to be tested. The only stipulation was that the time 

spent on the computer by each subject had to be at least 90 minutes and no more 

than 240 minutes, measured from the time at which the subject received the text. 

These time constraints were based on pilot research with Exploratory subjects, in 

which most pilot subjects took at least 90 minutes to read the text, receive the 

demonstration, and complete the thirteen assigned problems, and no subjects took 

longer than 240 minutes. The time constraints were imposed on Free subjects in 

order to lessen any differences among conditions which might arise simply as a result 
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of differences in amount of time spent on learning. 

Subjects working with Guided and Exploratory environments were required to 

solve all the problems in each set. When the subject submitted a correct solution, 

the computer then presented the next problem. Subjects working with these envi- 

ronments did not receive the second and third sections of printed text until they 

reached specific points in the problem series. They were free to take as much time 

as necessary to complete their problem sessions. 

Signup Task: After finishing their sessions with the computer, subjects were 

given the opportunity to sign up for participation in a later experiment using a 

similar computer system. The experimenter left the subject a signup sheet and told 

each subject to list their name, phone number, and best time to call if they were 

interested in participating, or just to leave it blank if not. The experimenter then 

left the room to pick up printouts and told the subject to leave the form (whether 

empty or completed) on the desk. 

In reality, the signup sheet was intended only to measure subjects' attitudes 

towards the experience they had just completed. We reasoned that subjects would 

be more likely to sign up for a second experiment if they were enjoying the first one. 

Almost all subjects did decide to sign up for the additional experiment, and two of 

the three who didn't do so cited reasons unrelated to motivation (e.g., one wasn't 

sure if she'd be able to get a ride again). Therefore, the results of the signup task 

were excluded from further analysis. 

Evaluation Questionnaire: After filling out the signup sheet, each subject com- 

pleted a more explicit test of motivational orientation in the form of an 11 item 

"evaluation questionnaire," shown in Table 2. We designed this questionnaire to 

examine their resulting attitudes toward the domain (including programming itself 

and the computer learning environment) and toward their own performance, based 

on three factors that affect motivation in Malone and Lepper's (1987) model — 

challenge, curiosity, and control. 

Insert Table 2 about here 

After completing the evaluation questionnaire, subjects were given five minutes 

to review the printouts of their work on the computer. For Guided and Exploratory 



Reiser, Copen, Ranney, Hamid, k Kimberg 26 

subjects, these printouts depicted the subject's own correct solutions for the assigned 

problems. For Free subjects, the printouts were those made every time the Save 

button was pressed. 

Posttest: Following the five minute review period, the experimenter removed the 

printouts and gave the subject the written posttest, designed to measure a variety of 

LISP programming skills acquired during the learning sessions. Subjects completed 

all problems on paper, without using any feedback from the computer. Subjects 

were allowed a maximum of 25 minutes; most subjects finished in somewhat less 

time. The first problem on the posttest consisted of a complete program graph like 

those built on the computer, except that the names of all the functions in the graph 

were missing. Subjects were instructed to fill in the boxes with the names of the 

functions that would produce the output shown. In the second problem, the function 

boxes were present and all data nodes were left blank (except for the original input 

and final output of the program). These two problems assessed whether subjects 

correctly learned the behavior of the LISP functions described in the text. 

The third and fourth problems measured subjects' ability to fix incorrect pro- 

grams. These problems consisted of complete but buggy program graphs. Subjects 

were instructed to correct these programs, making a minimum of changes, so that 

they would work properly. 

The last two problems required subjects to create entire program graphs from 

only an input and an output — these problems were of the same format as those 

encountered in the learning sessions. However, they required using more complex 

data structures than the assigned problems for Guided and Exploratory subjects and 

the optional problem suggestions for Free subjects. These problems required the use 

of embedded lists, for instance, the list ((a b c) (1 2 3)). This type of structure was 

described in the text, and the principles of behavior of the functions described in 

the text are general enough to handle these structures, but these structures were not 

used in the exercises in the learning session. Therefore, these problems constitute a 

near-transfer task. 

Results and Discussion 

Subjects varied widely both in their performance and in their responses on the 

motivational questionnaire. Some of this variance is likely to be due to differences 
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in background and programming aptitude not associated with the differences in the 

learning environments. Because Math SAT score was our best available measure of 

students' mathematical reasoning ability, which is the best predictor of individual 

differences in learning programming (Mayer et al., 1986), we used this score as a 

covariate in an analysis of covariance to assess differences between conditions. 

We performed a second type of analysis to test whether the effects of the in- 

structional manipulations differentially affected students of different ability levels. 

We assigned each subject an "ability level" on the basis of math SAT score. Those 

below the median score of 635 (420-630) were classified as the "Low SAT" group and 

those above the median (640-800) were classified as the "High SAT" group. (We 

should stress that these terms refer to a measure of programming ability relative to 

our population of subjects — some "lower ability" subjects were of higher ability 

than the national average, for example.) We performed an analysis of variance with 

both SAT level and instructional condition as the independent variables. We also in- 

cluded planned comparisons (described later) to test specific predictions concerning 

the role of guidance for higher and lower ability students. 

The following sections present four sets of analyses. First, we consider the per- 

formance of subjects during the learning sessions. Second, we compare subjects' 

performance on the written posttest. Third, we examine the variety of learning 

strategies and self-chosen curricula apparent in the behavior of subjects in the two 

discovery-oriented learning conditions. Finally, we examine the motivational conse- 

quences as manifested in subjects' responses to the motivation questionnaire. 

Learning Session Performance 

Students in the Guided and Exploratory learning conditions were required to solve 

each problem correctly before receiving the next problem assignment. We defined 

solution time as the total time to solve the 13 assigned problems following the 

first demonstration problem and excluding time spent reading the instructional text 

between problem sets. Mean solution times are displayed in Figure 5. Exploratory 

subjects took longer to solve the 13 problems than subjects working with the guided 

version of GIL, F(l, 17) = 14.58,p = .001, with mean solution times of 75.8 and 

43.5 mins, respectively. This indicates that the tutor's additional guidance helped 

students solve the problems more quickly than students working with the same 
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representations without this guidance. Low SAT subjects took longer than High 

SAT subjects to solve these problems, F(l, 16) = 23.98, p < .001, with mean solution 

times of 82.7 and 36.5 mins, respectively. This large effect supports the use of SAT 

as a measure of subjects' prior abilities for this domain. The difference between 

low and high ability subjects was somewhat more pronounced in the Exploratory 

condition than in the Guided condition F(l, 16) = 3.15, p = .095, suggesting that 

students of lower ability benefitted more from GIL's guidance. 

Insert Figure 5 about here 

No solution time measure is available for Free subjects because they were not 

assigned a required set of problems. However, we can measure total learning session 

times for these subjects, which includes all time spent reading text and working on 

the computer. The learning session time for Free subjects was 122.1 mins, longer 

than the Guided group (89.5 mins), but approximately the same duration as the 

Exploratory group (118.6 mins). More interestingly, the learning session time for 

Free subjects was negatively correlated with SAT score (r = -.67). Because Free 

subjects were instructed to end their learning sessions when they felt they had 

learned all of the material, this self-imposed difference in time spent suggests that 

the subjects may have been accurate in their assessments of how much time they 

needed to learn. 
Next we considered the factors that contributed to the solution time differences 

between the Guided and Exploratory groups. The longer solution times for Ex- 

ploratory subjects may indicate that they encountered more difficulty, or alterna- 

tively it may indicate that their exploration activities such as running the program 

to experiment with different inputs simply consumed more time. To address this, we 

examined the instances in which subjects had to repair their solutions. We counted 

the occurrences in which subjects received feedback indicating a portion of a solution 

was in error. This feedback consisted of explanatory error messages for the Guided 

subjects, and error feedback during a test, run, or submission for the Exploratory 

subjects. Low ability subjects did receive more error feedback than high ability 

subjects, 20.2 vs. 6.0 messages per session, respectively, F(l,16) = 6.09,p = .03. 

However, the amount of error feedback was not reliably different for Guided and 

Exploratory subjects, 11.5 vs. 14.7 messages, respectively, F < 1. 
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We next considered the cost of repairing errors. If the number of times that 

subjects received an indication that their solution needed repair did not differ be- 

tween Guided and Exploratory subjects, then perhaps learning time differences arose 

because repairs were more difficult for Exploratory subjects. To assess this, we ex- 

amined the number of functions and data nodes each subject deleted or replaced 

while constructing and debugging their solutions. Again, low ability subjects had 

to delete substantially more of their programs than did high ability subjects, 63.1 

vs. 16.3 objects, F(l,16) = 13.04,p = .002. Furthermore, Exploratory subjects 

deleted more program components than did Guided subjects, 53.2 vs. 26.2 objects, 

-F(l> 17) = 5.86, p = .03. The interaction of learning environment with ability level 
was not reliable, F(l, 16) = 1.45,p = .25. 

These learning session performance measures suggest differences between the 

two ability groups, and reveal the facilitation in mastering the material provided 

by model-tracing guidance. First, the low ability subjects encountered substantially 

more difficulty in mastering the material. They took more than twice as long to 

solve the assigned problems, encountered three times as many errors, and deleted 

more than three times as many of their program components while constructing 

solutions as did the high ability subjects. Second, the results demonstrate the 

success of the model-tracing guidance. Guided subjects were able to solve problems 

more easily. This occurred, at least in part, because guided subjects could repair 

their errors more easily. Presumably the tutor's model-tracing feedback offered 

during students' solution construction enabled errors to be repaired at a lower cost 

in deleting and replacing program components than the error feedback obtained 

by subjects in the Exploratory condition, which required modification of greater 

portions of their programs. This result is also consistent with Anderson et al. (1993) 

who found that model-tracing guidance helped students solve problems more quickly 

than a minimal-feedback group who used the same interface with only minimal 

feedback on the correctness of completed solutions. The present results extend the 

findings of this previous study, in that the Exploratory subjects working without 

model-tracing guidance also had tools specially tailored to testing solutions and 

discovering errors on their own, and the model tracing still enabled the Guided 

subjects to solve problems more efficiently. 
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Posttest Measures 

The written posttest was designed to measure students' knowledge of LISP pro- 

gramming acquired during the learning session. The functions, data, and graph 

generation problems tested coding skills fundamentally important to the creation 

of program graphs, which was the target skill of the lesson. The functions problem 

contained eight blank functions to be entered, and the data problem contained five 

data nodes to be supplied. Each node was scored as either correct or incorrect. The 

two graph problems were each scored on a five point scale, with one point subtracted 

for each error or missing step in the complete program. There were no differences 

between conditions on any of the three coding scores, nor on a combined score de- 

rived by averaging them, F < 1. The mean proportion correct were .88, .91, and .89 

correct for Guided, Exploratory and Free subjects respectively. The high SAT sub- 

jects scored slightly better than the low SAT subjects on the combined coding score, 

.93 versus .86 correct, but the difference was not reliable, F(l,24) = 2.35, p = .14. 

This difference was not significantly affected by learning environment, F < 1. These 

results suggest that although the Exploratory subjects took longer to solve the as- 

signed problems than Guided subjects, they eventually learned coding skills to the 

same level of proficiency. The Free subjects also acquired comparable coding skills, 

even though they were given much greater control over their own learning. 

The analysis of debugging scores yielded very different results. The debugging 

portion of the posttest assesses whether subjects learned to find and repair errors. 

We computed debugging scores by grading subjects' corrections on the two buggy 

problems. Each buggy area of a problem graph was worth between 2 and 5 points 

depending on the complexity of the replacement required to repair the error; there 

were a total of 23 possible points for the six bugs in the two problems. We as- 

signed corrections made to each buggy area of a program graph a score ranging 

from zero (representing a failure to notice the bug in the particular location) to the 

maximum score for that area (for repairs that were functionally correct and suffi- 

ciently succinct). A planned comparison revealed that the debugging scores of the 

Exploratory and Free subjects were significantly higher than those of the Guided 

subjects F(l, 26) = 4.31, p = .048. The proportion correct is shown in Table 3. 
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Insert Table 3 about here 

We also separated the debugging score into two additional measures to sepa- 

rate subjects' abilities to detect errors and to repair them once found. We defined 

the detection score as the number of the six bugs the subject attempted to repair 

(whether correctly fixed or not). We defined the bug fixing score as the propor- 

tion of points awarded for those bugs that were detected. The two measures are 

also shown in Table 3. A planned comparison revealed that Exploratory and Free 

subjects were better at detecting bugs in the posttest programs than were Guided 

subjects, F(l, 26) = 5.04,p = .03. However, subjects in all conditions were approxi- 

mately equally effective at fixing those bugs which they found, F < 1. Performance 

on these debugging measures did not reliably interact with ability level, F < 1. 

These results suggest that the differences in debugging scores arose primarily from 

Exploratory and Free subjects' increased ability to detect bugs, and not from any 

greater proficiency at repairing them. This detection advantage may be a result of 

the practice discovery learning students receive in finding their errors. While the 

Guided environment pointed out any errors as they occurred, Exploratory and Free 

subjects had no such assistance and had to locate bugs on their own. 

The locus of the debugging differences in error detection but not error repair is 

consistent with prior studies of debugging, suggesting that detection and repair skills 

draw upon separate subskills (Katz &, Anderson, 1988; Kessler & Anderson, 1986). 

These results suggest that once an error is found, repairing it is simply a matter of 

rewriting the correct portion of the program, requiring the same knowledge used to 

construct solutions rather than special bug repair knowledge. 

Choices of Learning Strategies and Material 

Strategies for Selecting Goals 

In evaluating the effectiveness of discovery learning in this experiment, it is impor- 

tant to consider how students used the freedom to explore and how their learning 

progressed without a tutor's guidance. One aspect of freedom in learning is the 

students' ability to select their own learning strategies. Students learning with no 

assigned curriculum, and to a lesser extent, those learning with the Exploratory 
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environment, are free to choose their own strategies for exploring LISP and to de- 

termine their own emphases on the various concepts in their exploration. In this 

section, we consider the strategies evident in the students' learning sessions. 

The Free subjects exhibited a wide variety of behaviors ranging from careful 

solution of the supplied optional problems to undirected exploration. Interestingly, 

all of the Free subjects attempted at least six of the thirteen problems supplied on the 

"optional LISP exercises" sheet. The average number of these problems attempted 

was 10.3. Two subjects attempted all of the supplied problems. Only one subject 

limited her usage of the computer to the optional problems; the remaining nine 

subjects engaged in some other form of exploration. 

There are several ways in which the students' problem solving in the discovery 

environments deviated from the more controlled problem solving of the Guided 

students, even when solving the same problems. First, while some of the Free 

subjects simply completed the suggested problems and moved on, others appeared 

to be more actively engaged in the solution process. Some subjects solved a single 

problem more than once, exploring different ways to produce a correct program 

(or perhaps simply gaining additional practice which they felt was needed). Some 

subjects interrupted their solutions of problems to explore issues that arose during 

the course of a solution. For example, one subject interrupted an attempt to solve 

one of our problems in order to explore more directly the effects of various functions. 

After doing so, she returned to the problem she had been working on. 

Insert Figure 6 about here 

This kind of "intensive self-instruction" was frequently evident in the behavior 

of the Free subjects. Some subjects built long and sometimes complicated program 

graphs in order to explore newly learned LISP functions (see Figure 6). These 

graphs were often much more complex than those produced as solutions to the 

optional exercises. Other subjects interspersed their work on optional problems 

to explore the behavior of particular functions without the distraction of a larger 

problem context (see Figure 4). In this way, subjects were able to provide themselves 

with focused instruction in important concepts, much as a skilled instructor might 

interrupt problem solving to focus on poorly understood material. 
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Concepts Explored 

One argument against discovery learning is the concern that students who are left to 

explore on their own may never discover certain fundamentally important concepts 

nor practice essential components of the target skill (Ausubel, 1963). Analyses of 

the Exploratory and Free subject problem solving records provided some support 

for this concern. The use of concrete examples in the graphical interface of all three 

learning systems appears to simplify the task of learning how functions behave and 

how to embed functions to design an algorithm (Reiser et al, 1989). However, the 

danger of this teaching method is that students may design nongeneral programs — 

sequences of functions that compute the correct result for the stated example but 

would not work correctly for other examples. Debriefings with subjects revealed that 

some understood that their programs would not behave correctly for different input 

data, but had thought that they would simply change the sequence of functions for 

different data. This indicates that they did not completely acquire the concept of a 

program as a fixed sequence of functions that performs a particular calculation on 
a range of input data. 

The three systems respond quite differently to nongeneral programs. In guided 

mode, GIL's model tracer recognizes any attempts to produce nongeneral solutions 

after any step, interrupting immediately with meaningful feedback before they can 

progress. Guided subjects were generally successful in recovering from these errors. 

This error occurred in a total of six problems in three of the subjects, and was 

repaired within one or two attempted steps in five of these cases; one occurrence 

consisted of an extended episode of bad plans of this type. In contrast, the ex- 

ploratory version of GIL leaves students free to construct nongeneral solutions and 

does not intervene. When Exploratory students requested feedback, GIL provided 

feedback only upon illegal statements but did not point out strategic errors. In 

principle, Exploratory subjects were free to try running their programs on different 

examples (as in Figure 3) and could detect their nongenerality in that way, but 

this detection rarely occurred, perhaps because the subjects who constructed such 

nongeneral solutions did so because they did not understand the manner in which 

their programs were to be general. Thus, Exploratory subjects obtained feedback 

on nongeneral solutions predominantly when they submitted them. This feedback 

proved difficult to understand, and some subjects resubmitted the same nongeneral 
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solution several times. In the Free environment, of course, no feedback is provided, 

and so subjects were free to construct nongeneral solutions to suggested problems 

and may never have realized that these solutions were inappropriate. Indeed, six 

of the ten Free subjects produced nongeneral solutions to problems from the op- 

tional exercises sheet, and of course these six subjects were never informed that 

there was anything wrong with their solutions. It is possible that these subjects 

never learned the concept of generality, even though it was mentioned briefly in 

the text and in the experimenter's demonstration. Unfortunately, the posttest was 

not constructed specifically to investigate whether students would tend to construct 

nongeneral solutions, and did not contain problems likely to elicit such solutions. 

Some Free subjects also received limited instruction in other areas simply be- 

cause they chose not to explore them. Just as some of the subjects in this condition 

reported skipping some of the sample problems because they seemed too easy, other 

subjects skipped the more complex problems, perhaps because they seemed too dif- 

ficult and therefore unpleasant. These subjects were thus deprived of extra practice 

on more challenging assignments. 

Despite these examples of Free subjects' failing to discover or practice certain 

important concepts, it should be noted that they often discovered important con- 

cepts that were largely unavailable to subjects in the other conditions. For example, 

two Free subjects solved some problems by adding on to existing program graphs 

instead of starting from scratch. The concept of using previously defined functions 

in building new ones is central to programming but it is not covered in the early 

part of the GIL curriculum used in this study, so those subjects in the two assigned 

problems conditions were not able to write programs using their own previously 

defined programs. In addition, six of the Free subjects and three Exploratory sub- 

jects made problem graphs containing embedded lists — a LISP construct that was 

introduced in the instructional text and examples but not included in any of the 

required problems (see Figures 4 and 6). 

Hypothesis Testing 

A crucial issue in evaluating whether subjects made effective use of a discovery 

learning situation is whether they indeed constructed and tested hypotheses. Sub- 

jects in both the Exploratory and Free conditions could construct and test their 
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hypotheses about LISP, and potentially correct their own specific misconceptions. 

While it is difficult to identify specific episodes of hypothesis testing in subjects' 

logs, there is evidence to suggest that Exploratory and Free subjects engaged in this 

kind of strategy. For example, Free students' in-depth exploration of the properties 

of specific functions may be an example of hypothesis testing in action. 

Explicit evidence for hypothesis testing is provided by students' usage of the 

Test button, which could be used to determine whether a given portion of a solu- 

tion graph was correct. On average, Exploratory subjects pressed the Test button 

approximately once every third step. In some cases, these occurrences were simply 

checking a completed solution, but in most cases students used the Test button 

during the construction of a program to evaluate particular hypotheses about the 

behavior of a partially complete program (as in Figure 2). Many of these tests (35%) 

uncovered problems in the students' graphs. This suggests that the subjects may 

have been sensitive to potential difficulties with their solutions. This extensive use 

of the Test button was not uniform among subjects. Some Exploratory subjects 

preferred simply to submit their graphs and let the computer find the problems, but 

most subjects made use of the hypothesis testing capabilities of the system. 

The Test button was also used frequently by the Free subjects. Indeed, 57% 

of the steps taken were followed by tests, and 36% of these tests uncovered illegal 

statements in the students' programs. Thus, subjects in the two exploratory condi- 

tions indeed appeared to use the facilities provided in the system to large extent to 

evaluate and monitor their own problem solving. 

Error Detection 

In the previous section on learning consequences, we considered how well subjects 

exhibited error detection skills on the posttest, and found an advantage for the 

two discovery learning groups. Here, we consider subjects' performance during the 

learning sessions, to see how effective they were in analyzing their own errors during 
the learning session itself. 

There are some difficulties in evaluating how well students managed to find their 

own errors during learning, because there is no clear definition of what steps should 

be regarded as erroneous. In the Free environment, subjects were encouraged to 

engage in undirected exploration, so no particular step can truly be classified as an 
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error without knowing what goal the student had in mind. Even in the Exploratory 

version of GIL, in which subjects are assigned problems to solve, it is difficult to 

distinguish between errors and correct steps because a seemingly inappropriate step 

may lead to a correct yet roundabout solution, or to an exploratory sequence that is 

not meant to be a correct solution to the assigned problem. It is, however, possible to 

analyze subjects' own perceptions of errors that need to be fixed. We defined "repair 

episodes" to be sequences of steps in which a student deleted or replaced a portion of 

a program graph. Exploratory subjects engaged in an average of 18.5 repair episodes 

during the learning session. Analyzing the event that occurred immediately prior to 

each repair episode may reveal the manner in which subjects detected their errors. 

Table 4 presents a summary of these episodes. 

The simplest type of repair episode followed an unsuccessful Submit attempt; 

16% of the episodes occurred in this way. In these cases, subjects had either mistak- 

enly believed their programs were correct, or else they simply wanted the computer 

to uncover any errors in their completed solution. This behavior presumably would 

not help students acquire the type of error management discovery learning environ- 

ments are claimed to elicit — students who simply complete a problem and let the 

computer find their errors for them may have difficulty finding their errors them- 

selves when unassisted. A small number of repair episodes were precipitated by 

unsuccessful Run attempts. An attempted Run signifies a belief that a program 

is correct for the data given (GIL only allows students to replace data by a Run 

in programs that are correct so far), so these episodes also suggest a low level of 

student involvement with the error detection task. 

Insert Table 4 about here 

A more interesting group of episodes are those initiated by a Test operation that 

located an error. This was the most frequent initiating event, comprising 46% of 

the total episodes. Some of these may have been "lazy tests," made after finishing 

a problem in order to avoid expending any effort on the location of bugs. Most, 

however, represented examples of recovering from failed predictions, where students 

constructed a partial solution which they expected would behave in a particular 

way, tested it to determine whether it behaved as predicted, and then, upon the 
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surprising result, were forced to explain the failure and then modified their solution 

based upon this result. This type of hypothesis-driven learning is precisely the 

type of behavior discovery learning advocates argue leads to meaningful learning 

(Bruner. 1961: Papert. 1980: Ranney & Thagard. 1988: Schänk k Edelson, 1990). 

The large proportion of errors corrected in this way suggests that students were 

making effective use of the hypothesis testing capabilities of the system. 

Another interesting group of repair episodes are those that were self-initiated 

(32% of repair episodes), that is. undertaken without any explicit hint of a problem. 

In these cases, subjects made errors (or at least believed that they had done so), 

located their problems, and attempted to repair them. Presumably some of these 

self-initiated repair episodes were merely corrections of typographical errors or ex- 

amples of trial-and-error search. Nevertheless, it is interesting that, in a relatively 

large number of cases. Exploratory subjects determined the need to modify their 

programs with no assistance, and they could utilize the system's facilities to inform 

their repair. This behavior, which was not possible for subjects learning with the 

guided version of GIL. may have contributed to the discovery learning subjects' 

higher debugging scores on the posttest. 

Summary of Learning Consequences 

We found no evidence of superior conceptual understanding of LISP functions or a 

greater ability to construct program graphs for students learning with the discovery 

environments. The posttest scores provide no evidence to support the claim that 

concepts learned through discovery will be better understood or more applicable 

to later situations (Bruner. 1961). In contrast, we found that the Guided group 

mastered the material more efficiently, requiring less time and fewer edits of their 

programs than Exploratory subjects. The finding of similar learning outcomes for 

students receiving different amounts of guidance during learning is consistent with 

the results of Anderson et al. (1993). who argued that learning depends on the 

problems students solve correctly and is not strongly affected by the difficulty they 

encounter in constructing those solutions. 

Discovery learning did produce a beneficial effect on the acquisition of debugging 

skills. Those subjects whose learning took place in more discovery-oriented envi- 

ronments were better at detecting incorrect program graphs.   Forcing students to 
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correct their own errors lengthened the learning process, but it apparently paid off 

in the form of enhanced error management abilities. It is interesting that superior 

error management skills appeared to result not only for the Exploratory students, 

but also for the Free students. The Free students were not required to solve any 

particular problems, and thus were not constrained to correct any errors in order to 

proceed through the learning session. These students modified their program graphs 

only when they did not meet their own goals. Thus, this suggests that subjects in 

this very free environment indeed set goals for themselves that they attempted to 

achieve. 

These results have demonstrated an advantage for the Exploratory group that 

has not arisen in previous studies of guidance. Anderson et al. (1993) compared 

students working with model-tracing guidance to students who received the same 

feedback only on demand and found faster learning for the guided group but equiv- 

alent learning outcomes. Our exploratory environment differs from that used by 

Anderson et al. in one important respect. The exploratory environment in the 

present study was constructed as more than simply an equivalent interface with- 

out model tracing guidance. The exploratory version of GIL contains support for 

students to articulate and then test hypotheses. The advantage for the discovery 

learning groups in debugging may have been facilitated by the tools to support the 

hypothesis testing phase of debugging, absent in Anderson et al.'s demand-feedback 

environment. 

The exploration allowed by the Free environment appeared to have mixed con- 

sequences. Analysis of problem solving interactions showed that increased freedom 

for exploration resulted in a number of innovative and probably beneficial learning 

strategies, as subjects constructed their own study sheets to contrast the behavior 

of functions, constructed more complex combinations of functions than required by 

the curriculum, explored an additional data construct not required in the assigned 

curriculum, and solved the same problem in a variety of ways. These are examples 

of the type of deep, elaborative, integrated processing argued to lead to better learn- 

ing (Bruner, 1961; Nolen, 1988). The discovery students' use of the Test button for 

hypothesis testing and subsequent explanation and repair suggests that they may 

benefit from the freedom to form their own ideas about how programs work (Schänk 

& Edelson, 1990). The finding that subjects often initiated their own repair episodes 

without outside help shows that they indeed search for their own errors, and that 
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this process may be helpful to development of error management skills. 

In contrast, the important concept of program generality was not addressed by 

some of the subjects. Some Free subjects constructed programs that were not general 

and would not have been accepted by GIL in either Guided or Exploratory modes. 

In addition, some discovery learning subjects constructed awkward and strategically 

poor programs that would have been prevented in the Guided environment. These 

findings support the concern that discovery environments can fail to teach students 

important information simply because the students do not stumble upon it (Ausubel, 

1963; Kurland & Pea, 1985). However, it does not appear that the coding portion 

of the learning posttest was sensitive enough to detect any potential decrements in 

programming ability of the discovery learning students. 

Taken together the results demonstrate both the potential advantages of discov- 

ery learning for providing opportunities for students to manage their own learning 

and acquire error management skills, the cost in learning time and effort, and the 

potential danger of discovery learning for those students who do not take advantage 

of the opportunity to explore, and who therefore may learn inferior strategies or 

even fail to acquire important concepts. 

Motivational Consequences 

We measured subjects' attitudes toward the domain and themselves with the eleven 

item questionnaire shown in Table 2. We consider these results in light of the factors 

proposed by Malone and Lepper (1987) in their discussion of the characteristics of 

learning situations that elicit intrinsic motivation. The eleven items are grouped into 

five subcomponents reflecting attitude toward the domain of LISP, attitude toward 

the student's own performance, perceived difficulty, perceived amount of freedom, 

and attitude toward the computer's feedback. 

The central question addressed in these analyses concerns the motivational effects 

of providing guidance or allowing exploration in a learning environment designed to 

cover a target curriculum. Therefore, the major focus in this analysis is to examine 

the motivational consequences of guidance or freedom to explore for students who 

are solving a common set of problems. Thus, we focus our analyses primarily on the 

Guided and Exploratory groups. Following this set of results, we will also present a 

comparison of the Free subjects with the other two groups to consider the potential 
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motivational effects of leaving students free to construct their own curriculum. 

We performed an analysis of variance with both SAT level and learning environ- 

ment as the independent variables. Some studies of aptitude-treatment interactions 

have suggested that lower ability students perform better with more structure in a 

curriculum, while higher ability students exhibit a truncated or even opposite ef- 

fect of constraint (Snow & Lohman, 1984). Therefore, rather than look for overall 

effects of instructional condition, we examined the effects of guidance versus ex- 

ploration separately for low and high ability students. To do this, we performed 

three planned comparisons to examine (1) the effects of learning environment for 

low ability students, (2) the effects of learning environment for high ability students, 

and (3) the hypothesis that the environment would have opposite effects for the two 

ability groups. 

Intrinsically motivating tasks are those students find enjoyable and are interested 

in pursuing for their own sake rather than for external rewards. The first two ques- 

tions of our questionnaire were intended as general assessments of students' resulting 

attitudes toward the domain. The questions asked subjects to rate their enjoyment 

of the learning experience and their interest in learning more about programming. 

The results, shown in Figure 7, suggest that the learning environments differen- 

tially affected high and low ability students, although this effect was not reliable, 

F(l,24) = 1.68,p = .21. There is the suggestion that the Exploratory environment 

led to a more negative attitude toward the domain than the Guided environment 

for low ability students, F(l,24) = 2.25,p = .15. The learning environment had no 

reliable effect on high ability students' attitudes toward the domain, F < 1. Al- 

though the pattern of differential outcomes for guidance versus exploration for the 

high and low ability students is not strongly supported by this analysis, the pattern 

is consistent with the other measures we will present in this section. 

Insert Figure 7 about here 

The third, fourth, and fifth questions asked subjects to rate their abilities and 

their overall performance in the learning task. These questions asked subjects to 

assess their performance in the task relative to their expectations, their performance 

relative to others, and their ability to learn similar material in the future, relative 
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to others (see Figure 8). Malone and Lepper (1987) suggested that an optimal level 

of challenge elicits intrinsic motivation because it increases students' self-esteem. 

On this measure, the guidance or freedom differentially affected the attitudes of low 

and high ability students toward their performance, F(l,24) = 4.94,p = .04. The 

separate contrasts for low and high ability students suggest that guidance produced 

more positive outcomes for low ability students, F(l,24) = 2.71,p = .11, while 

there is a suggestion of a negative effect of guidance for high ability students, but 

this difference was not reliable, F(l,24) = 2.24,p = .15. 

Insert Figure 8 about here 

It seems the freedom or guidance in the environment led to two different out- 

comes in assessing competence for the two ability groups. Unlike the Guided system, 

which assisted students with their problem solving as much as they required, the 

Exploratory system afforded more opportunities for students to produce satisfying 

solutions on their own, or to experience difficulties in correctly solving the problems. 

The interaction contrast indicates that the two ability groups responded differen- 

tially to these opportunities. One possible interpretation is that the Exploratory 

system's lack of intervention gave higher ability students the opportunity to demon- 

strate their competence to themselves, but low ability students were led to feel less 

competent when they experienced difficulty in constructing acceptable solutions. 

The next component of the motivation ratings, consisting of the sixth, seventh, 

and eighth questions, asked subjects to assess how well they met the perceived diffi- 

culty of the learning task. Subjects were asked to rate the difficulty of writing their 

programs, how well they understood each problem, and how easily they were able 

to accomplish their solutions. In Malone and Lepper's analysis, an optimal level of 

challenge and clearly-defined and appropriately difficult goals are important com- 

ponents of an intrinsically motivating task. The ratings are displayed in Figure 9. 

Here again, the guidance and freedom had quite different effects on the the low and 

high ability students' perceptions of the task difficulty, F(l,24) = 10.71, p = .003. 

The low ability students in the Exploratory condition found the task significantly 

more difficult than those in the Guided environment, F(l,24) = 8.11,p = .009. 

In marked contrast, however, the high ability subjects in the Exploratory condi- 

tion tended to find the task easier than their peers in the Guided environment, 
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F(l. 24) = 3.17, p = .09. The interaction in these judgments, like the student's atti- 

tude toward their performance, may result from the opportunities the Exploratory 

environment offers for students to assess their own abilities and success. High ability 

subjects may have found the Exploratory environment easier than the Guided envi- 

ronment because they more frequently experienced evidence of their ability to cope 

successfully with the problem solving task without help. These subjects apparently 

were able to take advantage of the Exploratory environment's added flexibility in 

order to set and achieve their own goals. In contrast, the low ability students found 

themselves struggling more often in the Exploratory environment, and felt less able 

to handle the complexity of the learning task. Thus, the tutor's guidance greatly 

helped low ability subjects to structure their learning experience and cope with the 

new task's difficulty, but offered fewer opportunities for high ability students to 

prove themselves capable of tackling the domain's challenges. 

Insert Figure 9 about here 

The next two subcomponents of the questionnaire assessed subjects' attitudes 

toward two aspects of the environment that Lepper and Malone suggest are im- 

portant factors in intrinsically motivating tasks. The ninth question asked subjects 

how free they were to solve problems in the way they wanted; it was intended to 

measure perceived control over the teaching interaction. The mean ratings, shown 

in Figure 10, exhibit a pattern similar to the previous measures, but the differences 

are not reliable, all Fs < 1. It is interesting that students' feelings of freedom were 

not affected by the presence or absence of model-tracing feedback while subjects 

were working on the assigned problems. Although these two environments differed 

drastically in the amount of freedom they provided, the students did not feel ap- 

preciably more free in the Exploratory learning system. It is possible that these 

subjects, with no prior experience with interactive learning environments, had little 

basis on which to evaluate the freedom provided. 

Insert Figure 10 about here 
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The final subcomponent, consisting of the tenth and eleventh questions, assessed 

the amount and helpfulness of performance feedback, another factor in Malone and 

Lepper's (1987) analysis of intrinsic motivation. The two contributing questions 

assess the perceived amount of feedback (from "not enough" through "just right" 

up to "too much") and the helpfulness of that feedback (from "not helpful" to "very 

helpful"). The mean ratings are displayed in Figure 11. The pattern suggests that 

the guidance and freedom differentially affected the low and high ability subjects' 

attitudes toward feedback, F(l,24) = 2.50,p = .13. In fact, low ability students 

perceived the feedback to be less frequent and helpful in the Exploratory environ- 

ment, F(1.24) = 4.99, p = .04, while high ability subjects exhibited no differences 

in their attitudes toward the computer's feedback in the two environments, F < 1. 

Here again, low ability subjects exhibited more dissatisfaction with their ability to 

meet the challenge of the task's difficulty in the Exploratory environment. 

Insert Figure 11 about here 

Finally, we consider the attitudes of the Free subjects. So far, we have seen 

that the low ability subjects generally exhibit more negative attitudes in the Ex- 

ploratory environment than the Guided environment, while the high ability subjects 

either do not show a difference or else exhibit more positive attitudes in the Ex- 

ploratory environment. The mean ratings collapsed across all five subcomponents 

of the motivation questionnaire are shown in Figure 12. Interestingly, the results 

of the Free subjects do not parallel the results of the Exploratory subjects. Any 

negative effect on attitudes of exploration in the low ability subjects appears greatly 

truncated in the Free condition, and there is no evidence of any positive effect of 

freedom to explore in the Free condition for the high ability subjects. The lack 

of required problems appears to have ameliorated both the potential positive and 

negative outcomes of the freedom to explore. During the learning session, the Free 

subjects received no external feedback yet on how they were performing, since they 

did not submit their solutions to be checked, nor had they yet taken the posttest to 

assess their understanding of the material. 

Insert Figure 12 about here 
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Summary of Motivational Consequences 

We did not find overwhelming support for increased development of intrinsic moti- 

vation for students learning by discovery. Instead, the nature of the result depended 

upon the relative ability of the student. To summarize these results, we first focus 

on the contrast between the two groups who were required to solve a set of assigned 

problems, the Guided and Exploratory groups. 

Our results suggest that discovery learning creates more opportunities for attri- 

butions concerning the student's performance. The general pattern of results was a 

differential effect of learning environment, with the suggestion of lower ratings for 

low ability students in the Exploratory environment than the Guided environment, 

and no such effect or a trend toward higher ratings in the Exploratory environment 

for the high ability students. 

We suggest that these results can be explained by considering the opportunities 

for self-attribution each environment provides. The critical attributions concern 

overcoming obstacles. Discovery learning creates more opportunities to attribute 

success or failure in overcoming errors. Whereas the Guided system provided fre- 

quent feedback, the Exploratory environment enabled students to detect and at- 

tempt to overcome obstacles on their own. The stakes are higher, and so are the 

attributional consequences. This creates the potential for both positive and nega- 

tive consequences. We found strong evidence for differential effects for low and high 

ability students. First, consider the low ability students, who tended toward more 

negative attitudes in the Exploratory environment than in the Guided environment. 

Those in the Exploratory situation tended to be less satisfied with their ability to 

master the domain (as measured by perceived difficulty), less satisfied with the com- 

puter's assistance, and tended (not reliably however) toward more negative opinions 

of the domain. Although all of these low ability students correctly solved the prob- 

lems, the learning task was indeed objectively more difficult in the Exploratory 

condition, as evidenced by the time required to solve the problems (almost twice 

as long as the Guided students), the number of errors encountered, and the cost of 

repairing each error. The Guided students were able to recover from errors more 

easily, because the tutor would suggest an error fix in many cases, or at least would 

tell students whether their attempted fixes were correct. In addition, the Guided 

students were able to resolve planning impasses more easily — when Guided stu- 
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dents didn't understand what to do next, they could always try a step and get the 

tutor's reaction. In contrast, the Exploratory students would have to follow a plan 

far enough along to see its consequences and then decide for themselves whether 

it seemed to be leading to a solution. While these challenges created events that 

could potentially lead to positive attributions for students who could overcome these 

difficulties, they seemed to lead to negative outcomes for the low ability students 

for whom the difficulties were more taxing. Presumably the discovery learning con- 

dition led to more cases of students feeling they had made mistakes and feeling 

confused about how to proceed. Therefore, these students were led to feel less able 

and less motivated to engage further in the domain. 

Interestingly, although the Guided students received a good deal of assistance, 

these interventions did not lead to a negative impact on low ability students' self- 

esteem. One might expect that students who realize they are receiving a great deal 

of help would attribute their success to the tutor's assistance rather than their own 

abilities. Indeed, for the high ability students, noting they received even a small 

amount of help negatively affected their self-attributions, leading to ratings of the 

learning in the Guided condition as more difficult than when they were left free to 

explore. However, this did not seem to occur for the low ability students. Indeed, 

the low SAT students' attitudes toward the domain and their performance tended 

to be more positive in the Guided than in the Exploratory environments, in some 

cases equal to or perhaps greater than the attitudes of the high ability subjects. 

This suggests that tutoring may serve as a buffer against the difficulty of the 

learning task for low ability students. Although the tutor did indeed point out many 

cases in which students made errors (on average 17 errors in the 13 problems for 

the low SAT students), the quick intervention limited the consequences of errors, 

and may have helped students avoid frustrating episodes in recovering from difficult 

errors. Furthermore, the knowledge that the tutor will immediately notify students 

upon errors or initiation of bad plans provides feedback students can use to monitor 

their problem solving and may help students feel more confident as they construct 

a solution — any step accepted by the tutor is guaranteed to be part of a potential 

solution. This may have contributed to the reduction of stress as students tried to 

construct solutions. At the end of the learning session, when students are asked 

to consider how difficult the task was and how well they performed, they may 

undervalue the tutor's contribution to their success, and therefore attribute their 
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success to their mastery over the domain. Thus, low ability Guided students rate 

their performance more highly than comparable students using the Exploratory 

environment. 

By intervening and limiting the consequences of errors, GIL exhibits some ad- 

vantages of expert human tutors, who offer constant (but subtle) feedback to help 

guide students' problem solving (Merrill, Reiser, Ranney, & Trafton, 1992; Merrill, 

Reiser, Merrill, & Landes, 1993). GIL is not designed to be as "gentle" as human 

tutors in their interventions. Indeed in this experiment, we made GIL even more 

directive in its feedback by automatically providing both a hint and the suggested 

correction in the Guided mode rather than letting students receive the suggested fix 

only if they so request. Even so, the guidance in constructing solutions and limit- 

ing consequences of errors appears to have helped students feel more in control of 

their learning and generally more positive about themselves and the domain, just as 

human tutors support students' learning (Lepper, Aspinwall, Mumme, & Chabay, 

1990; Merrill et al., 1992, 1993). 

For high ability students, this challenge provided by the Exploratory environ- 

ment appeared not have the same negative consequences. The high ability students 

rated their success more highly in the Exploratory environment (as evidenced by 

perceived difficulty), and they did not exhibit the lowered performance judgments 

or dissatisfaction with the computer's assistance that low ability subjects experi- 

enced in the Exploratory condition. Presumably these high ability students were 

better able to overcome the obstacles when encountering errors in the Exploratory 

environment, and interpreted the experience as indicating successful application of 

their abilities. Apparently being able to meet the challenge of the Exploratory en- 

vironment led to greater feelings of competence then being interrupted by the tutor 

to be told how to repair errors. Even though these students could have fixed the 

errors by themselves without frustration (as evidenced by the positive attributions 

of the high ability Exploratory subjects), these Guided students were less satisfied 

with their performance. Relying on a tutor's help may lead students to assume 

that they needed this help, just as it may lead observers to attribute lower abilities 

to students receiving a teacher's unsolicited assistance (Graham & Barker, 1990). 

Hence, although the Exploratory condition was objectively more difficult in that it 

took longer to solve the assigned problems and students encountered more errors, 

in fact it was perceived as less difficult by the high ability students.   This result 
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is consistent with the interpretation that the Exploratory environment led to more 

intrinsic motivation. Intrinsically motivated students show greater persistence in 

the face of failure (Dweck & Leggett, 1988). Although the Exploratory learning sit- 

uation contained more difficulties, these obstacles were less negatively interpreted 

than those encountered by comparable students in the tutored condition. 

Our experiment does not directly examine why the high and low ability students 

responded differently to the freedom in the learning environment. One possible 

explanation for this is that the important differences between students concern dif- 

ferences in ability, and the low SAT group performed more negative attributions 

in the Exploratory learning situation because they encountered more failures, while 

the high ability students found themselves better able to handle the slight increased 

cost in errors and time. The suggestion of an interaction in the solution time results, 

with larger effects of guidance for the lower ability students, suggests that although 

even the high ability students did encounter more errors in the Exploratory than 

the Guided environment, these errors were more easily handled than were the errors 

encountered by the low ability students. Another possibility is that the attitudes 

the students bring to the learning task affects the attributions they make. Perhaps 

characteristics of the high ability students such as higher self-esteem or more focus 

on learning goals made them more resilient to failure and obstacles. Either or per- 

haps both of these explanations may underlie the differential effects of freedom and 

guidance for the two ability groups. What is important for the current study is that 

these two ability groups differently responded to the freedom. 

The findings of positive and negative influences on students' assessments of their 

competence and ability is a very important result. Attributing success and failure 

to ability rather than to effort influences students' expectations of future success 

(Weiner, 1979, 1985). Furthermore, students' judgments of their abilities affect 

future effort and the manner in which they will react to obstacles. Students who 

attribute failures to their lack of ability show reduced effort and less resistance to 

obstacles in future performance (Bandura, 1982; Dweck & Leggett, 1988). 

The Free learning condition, in which students construct their own learning 

agenda, produced a different pattern of events. Unlike the Guided and Exploratory 

groups, these students were not required to solve a set of problems, and thus the 

learning session does not contain the same sequence of clear successes or failures that 

must be explained. The effect of this situation appeared to weaken both the positive 
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motivational effects of "discovery for the high ability students and the negative out- 

comes for the low ability students. The challenges met by the high ability students 

were only those that were self-generated, and these did not appear to be as reward- 

ing as being able to solve the assigned problems. Thus, this version of discovery 

learning did not lead to the same motivational advantages over the Guided condi- 

tion found in the Exploratory environment. Similarly, for the low ability students, 

the challenges were not as intimidating as for the assigned problems condition. If a 

problem appeared too difficult, students could chose not to undertake its solution. 

Thus, the free curriculum discovery learning situation did not lead to the negative 

motivational outcomes found in the assigned problems environment. 

Finally, an interesting issue concerns the students' assessments of freedom. Being 

free to set goals, make mistakes and repair them, and find one's own solutions are 

argued to be important components of discovery learning. We found no evidence 

that students in this experiment were sensitive to the relative amount of freedom 

provided. Indeed, although the differences were not reliable, the pattern roughly 

mirrored the pattern of ratings for performance and problem difficulty. Perhaps 

students' assessments of freedom depend upon the freedom to be successful. 

The Interplay of      Cognitive and Motivational Factors 

The desirability of structuring learning so that students engage in a task because it 

is rewarding rather than for external rewards has long been a theme in pedagogical 

debates. Recent theoretical frameworks have provided a context to investigate the 

consequences of these types of motivations. Intrinsic motivation has been a topic of 

modern educational concern since an important set of studies in the 1970's began 

to document the potential negative effects of reward, demonstrating that rewards 

extrinsic to the learning task may undermine students' subsequent intrinsic interest 

in the task (e.g., Condry k Chambers, 1978; Deci & Ryan, 1985; Lepper & Greene, 

1978). A related dimension concerns the focus of students on learning goals, learning 

for its own sake, versus performance goals, performing to receive positive feedback or 

avoid negative feedback from others (Dweck, 1986; Dweck & Leggett, 1988). Lepper 

(1988) reviewed several types of influences that increased intrinsic motivation and 

learning goal focus could have on learning outcomes. Students intrinsically moti- 

vated commit more time to engaging in a task (Lepper & Greene, 1978), are more 
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likely to choose challenging tasks (Condry & Chambers, 1978; Pittman et al., 1982), 

and show greater persistence in the face of failure (Dweck, 1975; Dweck k Leggett, 

1988). Each of these influences on students' strategies or investment of effort may 

plausibly result in more effective learning. Recently Lepper and his colleagues have 

attempted to demonstrate a direct link between increasing the intrinsic motivation 

of a learning environment and the learning gains of the students. In several studies 

Lepper and his colleagues demonstrated that increasing the intrinsic motivation of 

an educational game by setting the challenges in a fantasy context (drawing geomet- 

ric shapes versus an astronaut searching for new planets in space) led to increased 

learning gains about the domain (Logo and geometry) even when time on task was 

controlled (Lepper k Cordova, 1992; Parker k Lepper, 1992). In some of these 

studies, there was also a tendency for the motivationally embellished games to lead 

to somewhat more positive attitudes toward the domain and their competence. 

Our results are consistent with and extend this prior work on the potential atti- 

tudinal and learning outcomes of different learning environments. First, the studies 

by Lepper and his colleagues manipulated intrinsic motivation by setting the game 

activity within situation contexts such as pirates searching for buried treasure or 

astronauts looking for planets. While these contexts are clearly "fantasy contexts" 

in that the children must use their imaginations to view the animation on the screen 

as representing pirates or astronauts and treasure or planets, these contexts may 

also serve to better link the new mathematical problem solving activities concern- 

ing geometric shapes to their prior intuitions than the decontextualized problem 

solving task of drawing abstract shapes in Logo. Thus, the task may not only have 

been more motivating but may also have served to better ground the new skills 

on students' prior conceptions (c.f., Confrey, 1990; Lampert, 1986). We adopted 

a different strategy, manipulating the potential intrinsic interest in the activity by 

directly manipulating the opportunities for challenge and control of the problem 

solving task, while keeping the situation context constant (all problems involved 

manipulations of simple data such as numbers and lists of words). 

The results of the present study suggest the subtle nature of the motivational 

effects of the learning environment design. The greater freedom in the Exploratory 

environment clearly provided more potential for challenge and student control. How- 

ever, this did not uniformly result in increased intrinsic motivation and positive 

attitudes for all students. Instead, the increased challenge and freedom appeared to 
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lead to more negative attitudes for lower ability students, and comparable or more 

positive attitudes for the high ability students. We have proposed that the increased 

freedom provides more opportunities for students to resolve obstacles themselves be- 

cause the guidance helps identify potential errors and prevents them from becoming 

serious. Higher ability students appear to meet these challenges more successfully, 

while they appear to cause differentially more difficulty and negative attitudinal 

differences for the low ability students. These results have demonstrated the poten- 

tial for influencing students' motivational outcomes through the design of features 

of the task argued to be central to intrinsic motivation, namely challenge and con- 

trol (Malone & Lepper, 1987). However, the results also suggest that designing 

an optimal level of challenge and control needs to be sensitive to the backgrounds 

and abilities of individual students. These results demonstrate the importance of 

considering the fit between an environment and students' strategies and abilities 

(Shute, 1992, 1993). Shute (1992, 1993) has demonstrated that learning outcomes 

in an interactive environment depend in part on the fit of students' strategies to the 

amount of control allowed by the environment. 

In the present study, rather than keeping time on task constant as in Lepper's 

studies (Lepper & Cordova, 1992; Parker & Lepper, 1992), we included an assigned 

curriculum for the Guided and Exploratory groups, which may be more represen- 

tative of typical instructional situations, in which students must work through a 

specified set of material. The required material may have heightened the potential 

for negative consequences, forcing students to encounter obstacles and to overcome 

them in some manner before continuing. 

The present experiment also reveals the importance of disentangling the cogni- 

tive and motivational effects. While the direction of the motivational consequences 

appeared to differ depending on the ability level of the student, we found no such dif- 

ferential effects for cognitive outcomes. We found solely positive effects of guidance 

on the problem solving difficulty measures. The guidance appeared to help subjects 

solve problems with less difficulty than the more free exploratory system. Earlier 

demonstrations of learning efficiency advantages for model-tracing guidance (An- 

derson et al., 1993) found an advantage for a guided group over a minimal-feedback 

group who used the same interface with only minimal feedback on the correctness of 

solutions. The present experiment suggests that providing tools specifically tailored 

to scaffold exploration, such as the environment's support for making predictions 
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explicit in the notation and for testing predictions (Merrill & Reiser, 1993; Mer- 

rill et al., 1992), may result in more positive attitudes than a guided environment, 

for students inclined and able to successfully handle these opportunities, despite the 

somewhat less efficient learning sessions. Thus, the advantages of guidance, found in 

this and other studies (Anderson et al, 1993), must be weighed against the potential 

positive advantages of providing support and freedom to explore. 

Conclusions 

We began with a discussion of the arguments for discovery learning, and some rea- 

sons for concern about these claims. By constructing variations of a computerized 

interactive learning environment, we can begin to provide empirical evidence to in- 

vestigate both the cognitive and motivational consequences of discovery and guided 

learning in a fashion heretofore impossible. Our results have provided direct evi- 

dence that students' judgments of their own abilities and their resulting interest in 

a domain will be affected by the type of support offered or freedom allowed by a 

learning environment. 

Our results suggest a view of discovery learning as a situation that creates im- 

portant opportunities for learning outcomes. What occurs with these opportunities 

appears to depend upon the abilities and perhaps upon the attitudes and expecta- 

tions students bring to the learning situation. Some students take advantage of the 

freedom in the discovery learning situation to initiate effective learning strategies 

that may enable them to investigate more sophisticated concepts than the guided 

students, or to investigate the concepts in a depth not possible in the guided learn- 

ing situation. In addition, these students manage their own learning and learn to 

recognize their own errors, thus acquiring better error management skills than the 

guided learning students. The freedom to fail enables positive attributions for those 

students who succeed. The high ability students tended to form more positive at- 

tributions about their performance than students of similar ability in the guided 

learning situation, which provided direction in overcoming obstacles they may have 

been able to resolve on their own. 

With the freedom of discovery learning also comes opportunities for negative 

outcomes. Some students failed to employ these types of effective strategies, and 

indeed seemed to fail to construct examples sufficient to acquire one of the more 
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important constructs in the curriculum. Furthermore, the increased opportunities 

for attributions about one's ability to overcome obstacles led to more negative out- 

comes for the low ability students. These students struggled to construct solutions 

and faced with a large amount of evidence of their own difficulties, formed more neg- 

ative opinions both about the domain and about their own abilities in the domain. 

For these students, the increased opportunities to demonstrate their effectiveness 

led to more negative inferences. 

In contrast to the discovery learning situation, the guided learning appeared 

to insulate the students from assessing their own abilities, by providing fewer op- 

portunities for students to overcome obstacles on their own, while also preventing 

the consequences of errors or impasses from becoming too severe. For low ability 

students, the computer tutor appears to have some advantages similar to the scaf- 

folding provided by human tutors, in that the frequent interventions enable students 

to continue solving difficult problems they otherwise could not handle. Tutored stu- 

dents feel like they have been the ones responsible for the performance success, rather 

than attributing their success to the tutor, with corresponding negative attributions 

about their own abilities (Lepper et al., 1990). 

There can be no clear answer as to whether discovery learning or guided learn- 

ing is "superior." Certainly the answer must depend on the goals of the learning 

and the particular domain. The present experiment also suggests the important 

contribution of the student's own ability and attitudes. Discovery learning provides 

more opportunities for students to control their own learning. The potential cogni- 

tive benefits of this control are the opportunity to employ more effective learning 

strategies and to better learn error management skills, but the potential costs are 

the acquisition of less efficient strategies and the possibility of failing to exercise im- 

portant components of the skill. The potential motivational benefits are increased 

confidence in one's ability to handle challenges and perhaps an increased interest in 

the domain, but the potential costs are conclusions about one's ineffectiveness and 

a corresponding loss of interest in the domain. Overall, with more at stake, there 

appears to be more to gain for the high ability students, but also more to lose for 

the low ability students. The present results strongly indicate the importance of 

making guidance available in a learning environment for students who may need or 

want it. 
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Table 1: Learning Environments Used in the Study 

Guided Environment: Tutored Learning. GIL monitors students' problem solv- 
ing to interrupt whenever students make errors and provide feedback designed 
to help students understand and fix the error. 

Exploratory Environment: Discovery Learning, Assigned Problems. This ver- 
sion of GIL contains the same problem solving interface, but it does not inter- 
rupt upon errors to offer guidance as the tutored version of the system does. 
Instead, it contains facilities to enable students to test their ideas. 

Free Environment: Discovery Learning, Self-Generated Curriculum. The same 
exploratory learning version of the system is used, but there are no assigned 
problems. Students are free to explore by building whatever programs they 
desire or solving any problems of their own choice. 
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Table 2: Motivation Questionaire 

1. How would you rate your overall experience learning LISP today? 
(1 - "unpleasant," 4 - "neutral," 7 - "lots of fun") 

2. Are you interested in learning more about computer programming? 
(1 - "no, not at all", 4 - "maybe", 7 - "yes, very interested") 

3. How do you feel about your performance on the learning task you have just com- 
pleted? 
(1 - "much worse than I would have expected," 4 - "about as well as I would have 
expected," 7 - "much better than I would have expected") 

4. How well do you think you did relative to others learning programming by this 
method? 
(1 - "far below average," 4 - "about average," 7 - "far above average") 

5. How would you rate your ability to learn computer programming in the future 
compared to other students with similar background? 
(1 - "far below average," 4 - "about average," 7 - "far above average") 

6. How hard was it to write programs on the computer today? 
(1 - "too hard," 4 - "just right," 7 - "too easy") 

7. How well did you understand each problem and how you were expected to solve it? 
(1 - "not at all, very unclear," 7 - "very well, no problem there") 

8. To what extent were you able to accomplish the steps you wanted to accomplish 
while using the computer? 
(1 - "very difficult to do so," 7 - "very easy to do so") 

9. How free were you to solve problems in the way you wanted? 
(1 - "not free, solutions controlled by computer," 7 - "very free to come up with 
own solutions") 

10. Please rate the amount of feedback and intervention provided by the computer: 
(1 - "not enough, it should have said more," 4 - "just right," 7 - "too much, it 
should have left me alone more") 

11. When the computer did provide instructional feedback, how helpful was it? 
(1 - "not helpful," 4 - "somewhat helpful," 7 - "very helpful") 
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Table 3: Performance on the Debugging Posttest 
Guided    Exploratory    Free 

Overall Debugging       .67 .83 .80 
Bug Location .78 .92 .92 
Bug Repair .84 .92 .86 
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Table 4: Exploratory Subjects' Repair Episodes 

Self-initiated: 59 (32%) 
Initiated by successful Run: 2 (1%) 
Initiated bv unsuccessful Test: 86 (46%) 
Initiated by unsuccessful Run: 8 (4%) 
Initiated by unsuccessful Submit: 30 (16%) 
Total: 185 
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Figure Captions 

Figure 1.    GIL's explanatory feedback in response to an illegal step. 

Figure 2.    Testing a partial program in the exploratory version of GIL 

Figure 3.    Exploring the behavior of a program by running it on new data 

Figure 4.    Saving the result of exploration in the Free version of GIL 

Figure 5.    Time to correctly solve the assigned problems. 

Figure 6.    Complex exploration in the Free learning environment. 

Figure 7. Rated attitude toward the domain (enjoyment of the lesson and in- 

terest in learning more). 

Figure 8. Subjects' attitudes toward their own performance, assessed by asking 

subjects how well they performed relative to their expectations and relative to other 
students. 

Figure 9. Subjects' judgments of how well they met the task difficulty, assessed 

by asking subjects how difficult they found the programs to write, how well they 

understood the problems, and how well they were able to accomplish their solutions. 

Figure 10. Ratings of the amount of freedom available during the learning ses- 
sion. 

Figure 11. Ratings of the amount of feedback and helpfulness of the feedback 

provided by the computer. High ratings on the two contributing questions represent 

perceptions of frequent and helpful feedback, respectively. 

Figure 12. Mean ratings across all five subcomponents of the attitude measures 

for all three learning environments. High ratings represent positive attitudes. 
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