
REPORT DOCUMENTATION PAGE Form Approved

0MB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response. including the time for reviewing instructions. researching existing data sources, gathering and
maintaining the data needed. and completing and reviewing the collection of information. Send-conmments regarding this burden estimate or any other aspect of this collection of information.

icluding s uggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1275 Jefferson Davis Highway, Suite 1204. Arlington, VA

22202-4302. and to the Office of Management and BudgeL Paperwork Reduction Project (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 15, 1998 Final Report, October 8, 1997 - June 8, 1998

4. TIT=E AND SUBTITLE 5. FUNDING NUMBER

IMPACT: Integrated Multi-Level Performance Framework for Scalable Systems

6. AUTHOR(S)

Jay Martin and Rajive Bagrodia

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Scalable System Solutions SSS-9802
10495 Colina Way
Los Angeles, CA 90077

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORINGSAGENCY REPORT NUMBER

Defense Advanced Research Projects Agency

1I. SUPPLEMENTARY NOTES 19980622 160
I 2a. DISTRIBUTION/AVAILABIITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

i '. ABSTRACT (Alaxirmunm 200 wvords}
The current state of art in performance technology does not facilitate detailed performance evaluation of complex, large
scale systems. The aim of the Phase I effort was to demonstrate the feasibility of an Integrated Multi-Level Performance
Framework for Complex Systems (IMPACT) for simulation of a parallel database system. As described in this report,
the Phase I effort resulted in the design and an initial implementation of an object-oriented scalable simulator. A
prototype model to simulate a parallel database machine was developed and the model was used to simulate the
performance of a database running on a shared nothing architecture. The model was developed using three different
simulators: CSIM, a commercial sequential simulator, PARSEC, an existing C-based parallel discrete event simulator,
and COMPOSE, a new C++ library for parallel discrete-event simulation. The parallel models were validated against
the functionally equivalent CSIM model and were found to produce identical outputs. The performance of the parallel
models was subsequently studied for different workloads and substantial performance improvements were observed from
parallel execution of the model. Based on the positive results obtained from the Phase I study, we have initiated
development of a state of the art performance modeling tool for scalable data base systems using the COMPOSE parallel
object-oriented simulator.

14. SUBJECT TERMS Parallel simulation, data base models, simulation framework 15. NUMBER OF PAGES 60

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 9. SECURITY CLASSIFICATION 20. LMITATION OF ABSTRACT
OF REPORT 1 TIS PAGE OF ABSTRACT

?'JqN insnian-m.• nn Standard Form 298 (Rev. 2-89)

DTIMC QUALTY INOPECTED I

IMPACT- Integrated Multi-Level Performance

Framework for Scalable Systems

June 8, 1998

Sponsored by

Defense Advanced Research Projects Agency
Information Technology Office (ITO)

Issued by U.S. Army Aviation and Missile
Command Under

Contract No. DAAH01 -98-CR-01 0

Program Manager:
Dr. Frederica Darema
DARPA ITO

Technical Monitor:
Mr. Alexander Roach
US Army Missile & Aviation Command

Prepared By
Jay Martin and Rajive Bagrodia
Scalable System Solutions
10495 Colina Way
Los Angeles, CA 90077
(310) 475 1919
rlb(,scalable-solutions.com

The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either express or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government

2

Table of Contents
1. Executive Sum mary .. 5

Primary Results 5
2. Requirem ents Analysis .. 7

2.1 Heterogeneity Requirements ... 7
2.2 Scalability Requirements .. 8
2.3 Extensibility Requirements .. 9

3. State of the Art in Perform ance Tools for Scalable System s .. 10
3.1 M easurement Tools ... 10
3.2 Analytical M odeling Tools ... 12
3.3 Simulation Tools ... 12
3.4 Parallel Simulation ... 14
3.5 Parallel Simulation Tools ... 16
3.6 M ulti-Level M odels ... 17

4. IM PACT Simulators ... 19
4.1 PARSEC Simulator .. 19
4.2 COM POSE .. 21
4.3 Complete Compose Example ... 28
4.4 Runtim e Systems: Design Issues ... 29
4.5 Runtim e System : Implementation Issues .. 30
4.6 Algorithm -Specific COM POSE Constructs ... 40

5. Database M odels ... 43
5.1 Hardware Architectures ... 43
5.2 Parallelism in Relational Databases ... 43
5,3 Data Partitioning .. 43
5.4 Prototype Database M odels ... 44
5.5 M odel Parallelization ... 46

6. Results .. 48
6.1 M odel 1: Sequential Performance .. 48
6.2 M odel 1: Conservative Performance ... 49
6.3 M odel 2: Conservative Performance ... 51
6.4 M odel 2: Optim istic Performance .. 52

7. Conclusion ... 55
8. Bibliography ... 57

3

List of Figures

Figure 1: Simulation Environment Components .. 30
Figure 2: Schematic of A Parallel Database ... 45
Figure 3 Comparative Simulator Performance on a Single Node of the Sparc 1000 48
Figure 4 Parallel Performance of a Scan query: Sparc 1000 ... 50
Figure 5 Parallel Performance of a Query Involving Data Redistribution: Sparc 1000 51
Figure 6: Data Redistribution Query with Delay Model: Sparc 1000 .. 51
Figure 7: Parallel Performance on 4-way SNP with Intel Pentiums and Windows NT 51
Figure 8: Speedup variation as a function of Communication Latency of target hardware 51
Figure 9: Parallel Performance of M odel 2 ... 52
Figure 10: Impact of state saving and GVT computation frequency on parallel performance 53
Figure 11: Optimistic Performance of M odel 2 .. 53

4

1. Executive Summary

The goal of the Phase I effort as indicated in the proposal was to
...demonstrate the feasibility of an Integrated Multi-Level Performance

Framework for Complex Systems (IMPACT) by doing a detailed design of the
proposed framework and complete a prototype implementation of selected
components for a limited performance study of a real world parallel database
system using industry standard benchmarks
As discussed in this report, each of the preceding objectives has been accomplished.

Primary Results

The primary accomplishments of Phase I include:
"* requirements analysis of the performance evaluation environment
"* a survey of the current state of the art in tools and technologies for scalable

simulation environments,
"* a detailed design of a scalable multi-level performance framework,
"* implementation of the primary components of the framework on sequential and

parallel platforms,
"* design of a prototype model to simulate a parallel database machine,
"* use of the model to simulate a configuration that is architecturally similar to the NCR

Teradata database system.
"* an experimental study on the performance of the database simulator to evaluate the

potential benefits that may be derived from parallel execution of the model on
shared memory parallel architectures using a variety of synchronization algorithms.

"* performance comparison of the proposed simulator with existing commercial
simulators

The prototype database model developed during Phase I simulates a database running on
a parallel shared-nothing architecture. The hardware architecture can be viewed as a set
of N nodes linked by a multi-path interconnection network such that no memory or
other resources within a node is directly sharable or accessible by another node. Each
node is a symmetric multiprocessor and consists of P processors, C disk controllers and D
disks, where controller cj controls di disks. The processors are connected to the disk
controllers via a common bus. The model simulated each of the preceding components
using FIFO servers; no attempt was made to capture the algorithmic details of the disk
read and write operations. The model was developed using three different simulators:
CSIM, a commercial sequential simulator, PARSEC, an existing C-based parallel discrete
event simulator, and COMPOSE, a new C++ library for parallel discrete-event
simulation.

The PARSEC and COMPOSE models were developed by SSS personnel, whereas the
functionally equivalent CSIM model was developed by NCR. The PARSEC and
COMPOSE models were validated against the functionally equivalent CSIM model and
were found to produce identical outputs. The performance of the PARSEC and
COMPOSE models was subsequently compared against the CSIM model for different

5

workloads. The workload was provided by NCR as representative of two extreme types
of queries: the first example represents a scan query on a partitioned table and contains
lots of inherent parallelism. At the other extreme was a hash-join query that required
numerous data redistributions which implies a lot of communication and possibly
blocking leading to degraded performance from the parallel database. The validated
simulation model was also executed on multiple parallel architectures using different
parallel simulation algorithms.

The study showed that the sequential performance of the Maisie/PARSEC model was
almost identical to that of the CSIM model; however the performance of the COMPOSE
model implemented on a single node was almost three times better than the sequential
CSIM model! Further, for the scan query, the performance of the parallel COMPOSE
model was faster by a factor of 5.7 compared to the sequential COMPOSE model and
almost 17 times faster compared to the sequential CSIM model! The speedup for the
hash-join query varied with the hardware configuration of the target system, but
significant performance benefits were demonstrated for both sequential and parallel
models.

Based on the encouraging results obtained from the Phase I study, we have initiated
development of a state of the art performance modeling tool for scalable data base
systems using the COMPOSE parallel object-oriented simulator

6

2. Requirements Analysis
The first step in the design of the performance environment was to complete a
requirements analysis for the proposed system. The requirements were divided into three
primary categories: heterogeneity, scalability, and extensibility.

2.1 Heterogeneity Requirements
The set of requirements covered in this section refer to the ability of the performance
framework to model different systems at varying levels of detail possibly using different
modeling paradigms.

Support for end-endperformance models Performance frameworks that target only
software, hardware, or application level models are unlikely to yield significant insights
into the performance characteristics of applications. While low level models can be
extremely useful in designing individual components (e.g. transistor level models for the
design of VLSI circuits), system designers are primarily interested in studying the impact
of specific design alternatives on the performance of the application. This means that the
model must be developed in layers, where each layer models the lower layers at an
appropriate level of abstraction, but the workload that is used to drive the model can be
transformed to derive appropriate responses from the lower layer models. Considering
a database system as an example, IMPACT must be capable of developing models of
the hardware system that consists of a set of processors, each with its own local memory
and disks and the interconnection network that links the processors; model the
representation of the database as it is distributed among the multiple disks and processor
memories and the architecture of the query processing software system; and finally
model the workload as a traffic generator.

Support for multi-level, hierarchical models As systems become arbitrarily large,
detailed simulation models for such systems may be computationally intractable even
with parallel execution of the models. It should be possible to model each subsystem at
multiple levels of granularity, from coarse to detailed, and compose a model of the
system that includes subsystem models that have varying levels of granularity. For
instance, it may be desirable to model each node of a parallel machine as a single delay
server when evaluating the impact of different decomposition strategies for a given query
in a database system. On the other hand, while evaluating the impact of different
declustering or partitioning strategies for the relations in a database across multiple disks,
the node must be modeled at a greater level of detail.

Hierarchical modeling of subsystems allows a given layer in a end-end performance
model to view the lower layer as an abstraction, while maintaining the required degree of
detail at each layer in the system model. Hierarchical modeling also allows the model
itself to be designed in a top-down iterative manner that imposes established software
engineering discipline on the model design process.

7

Support for hybrid models A hybrid model is a partially implemented design, where
some components exist as simulation or analytic models and others as operational
subsystems realized in hardware or in software [Bagrodia & Shen 1991]. Hybrid models
directly support integration of measurement and modeling frameworks. This paradigm
allows an analyst to ascertain the impact of design changes in one subsystem without
developing detailed simulation models of the entire system.

Hybrid models have a number of advantages over simulation models, particularly for on-
line monitoring. For domains like network protocols or parallel software, operational
software is typically faster than a detailed simulation model; integrating operational
subsystems in the model can lead to better model execution times. Second, every
simulation model is an abstraction of a system and is hence only an approximate
representation of the corresponding subsystem. Inclusion of operational subsystems
typically implies an improvement in the overall accuracy of the model. Third, hybrid
models are particularly useful when evaluating complex systems, parts of which have
already been implemented. Rather than design simulation models of the existing
subsystems, the operational system may itself be integrated into the model.

Seamless integration of measurement & modeling in a common framework A
coordinated measurement, modeling, and simulation approach is essential to evaluate
complex systems. Measurements on operational systems allow the identification of the
critical subsystems that are the first order performance bottlenecks. Models allow us to
investigate the impact of alternative implementations for the bottlenecks, and to identify
future bottlenecks that might emerge in the redesigned system. An integrated
measurement and modeling approach is thus iterative in nature; it ensures that the
performance of the system can be monitored continuously during its lifetime such that
existing performance problems are correctly solved and future performance problems
can be anticipated before they develop into critical bottlenecks.

2.2 Scalability Requirements

The performance framework must be scalable along numerous dimensions: it must
support the design of large and complex models, it must support the evaluation of very
large systems within a reasonable duration of time, and it must serve as a conduit to
eventual system deployment.

Reduce design costs of complex systems: The primary motivation for a performance
framework must be to enable system designers to tradeoff design alternatives prior to the
prototyping stage, so that components in deployed systems are not found to be sub-
optimal, requiring expensive and time consuming redesign and implementations. The
success of IMPACT depends on its ability to reduce the design cost of a real world
system.

Ability to predict performance of very large systems The scalability of the performance
framework is relevant from two perspectives: first, IMPACT must be capable of
specifying arbitrarily large configurations. Second, IMPACT must be capable of
executing models for arbitrarily large physical configurations. In other words, if the
physical system is scaled up by a factor of s, it is desirable if the response time of the

8

model does not increase by more than a factor of s. Alternately, it should be possible to
use additional resources (scaled by a factor no larger than s) to maintain the same
response time for the model. Parallel execution offers an attractive potential to scale the
modeling framework.

IMPACT supports multiple simulation protocols and diverse parallel architectures to
execute parallel simulation models. It must be able to simulate database models with
many millions of relations stored on tens of thousands of disks connected to thousands of
processors.

2.3 Extensibility Requirements

Both the measurement and modeling components of IMPACT must be extensible. It must
permit different types and granularities of measurements to be specified for a given
system and experiment. The application level measurement framework must be portable
such that if the application is ported among different systems, the instrumentation can
also be ported with minimal changes. This would greatly facilitate a comparative
evaluation of the performance of a given application as a function of different hardware
and software system parameters ranging from processor configurations to interconnection
network characteristics and the input-output system configuration.

Support for migration of simulation models to prototypes The costs of model design and
maintenance has been another drawback to widespread use of advanced performance
technology. The design and development costs for detailed simulation models for
complex systems can easily rival corresponding costs for the physical systems
themselves.

To preserve the significant investment in developing detailed simulation models, it is
desirable to support the transition of the simulation models into operational software. Not
only does such a port allow effective reuse of code, it also ensures consistency between
the model and the eventual implementation. IMPACT must support a methodology and
tools for the migration of simulation models to software prototypes.

Support for visual, interactive interface for model design A visual and interactive model
design interface can help to rapidly configure a system from existing components, build
alternative models from these components and built-in entity templates in a simple visual
framework, specify the metrics that are of interest to the analyst, interactively debug the
simulation and monitor its execution, changing the level and detail at which the
performance metrics are being collected, and optimize these models for parallel
execution, if necessary.

The Visual interface may be used to design new models, as well as to integrate existing
libraries into a model. Modular design allows large structures to be built in ever larger
increments. A set of connected entities may be grouped together as a module (e.g. a node
that consists of a processor and disks). The module may be replicated and also nested in
higher level modules which supports the design of a hierarchy of models with an
arbitrary level of nesting.

9

3. State of the Art in Performance Tools for Scalable Systems
Large scale performance studies have used a variety of tools and techniques ranging from
measurements, analytical models, simulation models, and hybrid techniques that use a
combination of the preceding approaches.

3.1 Measurement Tools

Consistent and accurate measurement techniques are useful in understanding the
performance of operational systems and in identifying the primary bottlenecks in their
execution. This is particularly true of large parallel and distributed systems, where the
sheer number of individual components and the complexity of their interactions make it
hard to collect data that is time synchronized across the system. Although a large number
of measurement packages are available ranging from simple profilers to sophisticated
instrumentation and analysis frameworks, we only examine systems that have been
successfully used to measure a diverse set of parallel applications and have been ported to
multiple parallel architectures.

We survey the state of measurement technology in three primary areas that are relevant to
this project: parallel applications running on massively parallel architectures, networked
systems, and parallel database systems. Example measurement systems in the first
category include the Pablo [Reed et al 92] measurement suite from University of Illinois
which has been used to monitor, analyze, animate, and display the performance of
parallel programs on shared memory and distributed memory architectures and Paradyne
[Miller et al 95] from University of Wisconsin that can be used to add instrumentation to
object code without the need for recompilation. In the area of network measurements,
frameworks like SNMP (Simple Network Management Protocol) and the Universal
Measurement Architecture (UMA) have been commonly used. In the commercial
database arena, all vendors provide customized performance monitoring capabilities, but
relatively few systems are used widely across diverse platforms and vendors.

Parallel Programs
Three primary techniques have been used to measure the performance of software
systems: profiling, sampling, and event traces[Reed et al 92]. Profiling is perhaps the
simplest and best known technique that is commonly and transparently supported by most
operating systems. A profiler allows a programmer to identify the application modules
that consume the greatest percentage of the systems resources (typically expressed in
terms of cpu cycles, main memory, and disk accesses). However for parallel
applications, profiling can produce a lot of disconnected and unrelated data that is hard to
interpret. Profiling also provides summary data over the entire execution of the program
rather than as a time varying stream. Sampling can be used to provide useful
performance information in a temporal context. However, the sampling frequency is
typically not related to specific system states and there is little correlation between the
sampled values and the system state. The sampled data does not provide adequate
insight in to the performance of the system.

10

Event traces are an abstraction that allow a programmer to relate all activities in the
system, to the extent they can be instrumented, that are spawned by a specified event.
What constitutes an 'event' is specified by the programmer using the constructs supported
by the instrumentation framework. All system wide activities, ranging from local
computation, message traffic, and disk accesses triggered by the event maybe collected to
produce a complete and time ordered sequence of relevant activities. The primary
drawback with this is that unless used wisely, it tends to produce a fire hose of data that
must first be processed and reduced automatically to permit meaningful analysis.

One of the well-known trace-based instrumentation system is Pablo [Reed et al 92], a
portable and extensible instrumentation library that has been used to characterize the
performance of a variety of applications on parallel and networked computer systems.
Pablo provides a graphical interface to specify the necessary instrumentation on a given
parallel program. The instrumented program is then compiled and linked with a trace
capture library that actually records the specific trace information in a standard format
called SDDF for self-describing data format. SDDF data may then be analyzed and
displayed using a variety of data visualization tools. The trace information collected by
the library can be specified at three different levels of detail ranging from summary
counts that simply count the number of occurrences of an event (e.g. entry of a given
procedure) to time intervals that measure the total time that elapses during the execution
of a given logical code fragment.

Network Measurement Systems

SNMP [Stallings 96] was designed to be an application-level protocol that is part of the
TCP/IP protocol suite. The proposed architecture uses a manager-agent model, where the
agents reside on the nodes of the managed network and their data collection activities are
supervised by the manager. The manager periodically polls the agent to obtain collected
measurements. Alternately the agents may generate trap messages to send data to the
manager. A management information base (MIB) is used to collect and organize the
statistical data that is collected by the framework. A RDBMS MIB has also been
defined to collect generic and vendor-specific data when SNMP is used to monitor a
database system.

UMA is similar to SNMP in that it also uses a manager-agent monitoring model, with the
primary difference that UMA supports a per-peer or agent-agent communication model.
Also, unlike SNMIP which uses a connection-less UDP based communications to
exchange performance metrics, UMA uses TCP/IP. Performance information is typically
sent autonomously by the agents to the manager. UMA uses a hierarchical data format
with implicit timestamps. Unlike SNMP, which defines a relatively small set of metrics,
UMA has been designed to update a very large set of performance metrics (e.g., 160
different fields for UNIX and another 160 for databases like Oracle). Although there is
substantial overlap between SNMP and UMA, it appears that whereas he former is more
suitable as the network management protocol, the latter provides a more comprehensive
and easily extensible solution for system performance management [Gunther 98].

11

Database Systems

Much of the work in the commercial marketplace in the area of database performance
evaluation is based on measurements. Relational Data Base Management Systems
(RDBMS) sometimes use transaction monitors to aid load balancing for OnLine
Transaction Processing (OLTP). Commonly used monitors include Tuxedo and Encina
[Gunter 98]. A number of vendors offer sophisticated toolkits to tune the performance of
operational databases. For instance Precise Software Solutions offer the Precise/SQL
system to monitor and tune the performance of Oracle databases[Precise]. Menlo
Software offer the DBAware [Menlo] tool to monitor and tune the performance of Oracle
and Sybase databases. A number of other vendors offer similar suite of tools that allow
users and database administrators to measure the performance of operational databases
while they are processing queries to identify patterns of resource usage. However these
tools do not provide significant help either in predicting the scalability of these systems
as both the databases and the hardware systems get larger. Neither do they provide any
assistance for capacity planning or evaluation of alternative data management strategies
(e.g., different data partitioning techniques).

3.2 Analytical Modeling Tools

A large number of analytical techniques, and tools that exploit these solution methods,
have been developed [Allen 94]. To a large extent, the popularity of the analysis tools is
their ability to estimate critical performance metrics like response time, throughput, and
system utilization using a few simple properties of the systems. Typically, the system is
described using a network of queues, where each queue is characterized by properties that
include inter-arrival time of customers, service time distributions for jobs, number of
servers, service discipline of the queue, system capacity, and routing probabilities for
departing jobs. The most commonly used technique for the solution of queuing
networks (circuit of queues) is Mean Value Analysis or MVA. Of course, MVA is
known to be applicable in only a subset of situations, where the queuing network satisfies
the restrictions due to the so called product form networks [Jain 91]. As the
computations for the MVA algorithm are recursive, for sufficiently large N, the
computation may become computationally intractable. A number of approximations
have been suggested to reduce the computation time at the expense of some loss of
accuracy, but the primary problem with analytical techniques is the limited applicability
of the technique. A large number of system characteristics have been identified, which if
present in the system, will render it unsuitable (or at least make the solution considerably
harder) for analytical models. These characteristics include the presence of blocking at
one queue that may inhibit processing at another queue, bulk or load-dependent arrivals,
mutual exclusion, contention, queue defections, and non-exponential service times
[Gunther 98]. Analytical techniques have been used successfully to evaluate limited
facets of computer system performance, including large data base systems.

3.3 Simulation Tools

Measurement requires that the system being measured be deployed and accessible to
instrumentation and minor perturbation. While this is normally possible for operational
systems, this approach is not applicable for large scale systems that are in the process of
being designed. Further, it is typically infeasible to modify characteristic parameters of

12

an operational system across a wide parameter space to study the impact of the changes
on the actual system performance. Analytical techniques are useful for rapidly evaluating
a set of alternative solutions to identify the most promising alternatives. However, their
primary drawback is their limited applicability. The complex interactions among the
various components of scalable systems like wireless networks and database systems
means that it is only possible to construct approximate analytical models of the system
and detailed analysis of the system via analytical models is not feasible. Simulation is
the most commonly used performance evaluation technique for such systems. A number
of commercial tools are available both as general purpose simulators (e.g. Simscript,
Modsim, SESworkbench, CSIM, etc.) as well as domain specific tools (e.g., BoNeS,
COMNET (CACI), CPT (Rooftop Communications) and OPNET (Mil3) for simulation
of network protocols). However, most of them use only sequential model execution
restricting their utility for large models and none of them provide a path towards
eventual implementation of the protocols. University simulators include NS from
Lawrence Livermore Labs[McCanne et al], Morpheus [Abbott 92] from University of
Arizona, NetSimPro [Short 95] from UCLA, and the interactive network simulator from
Xerox Parc.

A number of other domain-specific simulators have also been developed including
parallel program simulators like the Wisconsin Wind Tunnel[Reinhart et al 93],
LAPSE[Dickens et al 96] and MPI-SIM [Prakash 96]; system software simulators like
SimOS[Rosenblum 95] and SESAME [Bagrodia et al 97]; and parallel architecture
simulators like Tango [Davies wt al 91] and Proteus[Brewer et al 91] and many others.
Most simulators for database systems are constructed from general purpose simulators
like those developed to evaluate the Gamma[Dewitt et al 90] and Bubba[Boral et al 90]
data base systems. Commercial data base vendors tend to develop specialized in house
simulators or use general purpose simulation tools for limited evaluations (e.g., the TCP
tool from NCR described in the previous section). The one exception to this appears to
be the recent tool from SES for the simulation of relational databases.

Although simulations are widely used for performance studies, a number of factors have
limited their use in evaluating scalable, heterogeneous systems:
"* Resource intensive model design: In many simulators (e.g., OPNET, SES

Workbench, etc.) no direct path is provided from the simulation model to system
prototypes. This requires that the system designer begin the coding and
implementation phase from scratch after a proposed design has been simulated to
resolve performance issues which increases product development costs and hinders
future investments in performance models.

" Model Scalability: Execution times for sequential simulation models have become a
significant bottleneck in effective use of these models. For instance, slowdown
factors of 30-50 per processor are typical in the simulation of parallel programs.
This implies that simulation of a query that executes for 5 to 15 seconds on 128
nodes of a contemporary multi-processor architecture can take anywhere from a few
days to many weeks on state of the art sequential workstations! As the size of the

13

physical system is increased, the memory requirements for the model can easily
outgrow the memory capacities of sequential workstations.

Heterogeneous models: For end-to-end performance analysis, it is necessary to
model systems at all levels ranging from applications, software, and hardware.
Typically, subsystems at different levels are required to be modeled at different levels
of detail, and may involve the use of different modeling paradigms that must be
supported in an integrated manner.

Some recent efforts in developing advanced performance technology for scalable systems
have produced simulation environments that address the preceding concerns. In
particular, the PARSEC and COMPOSE simulators developed at UCLA and Scalable
System Solutions respectively. These tools share the following primary characteristics
that address the preceding problems: First, they provide an easy path for the migration of
simulation models to operational software prototypes. Second, they are among the few
simulation environments that has been implemented on both distributed and shared
memory platforms, and which supports a diverse set of parallel simulation protocols.
Third, they directly integrate parallel and hybrid model execution techniques within the
overall framework of system simulation. Lack of such integration has been an important
hindrance to widespread utilization of parallel simulation.

3.4 Parallel Simulation
A simulation consists of a series of events, which must be executed in the order of the
time stamps placed on them. On a single processor, these events can be placed in a
central queue to ensure their correct ordering (the Global Event List algorithm). When
run in parallel, however, the event list is distributed such that each processor has only a
portion, and events may arrive asynchronously from other processors. Thus, additional
information is required to ensure that each processor executes events in their correct
order. To this end, three primary types of parallel synchronization protocols have been
described in the literature: conservative[Misra 86], optimistic[Jefferson 85], and
mixed[Jha & Bagrodia 95], where the last may include sub-models that execute in either
conservative or optimistic modes.

Parallel simulation models are commonly programmed as a collection of logical
processes (or LPs), where each LP models one or more physical process in the system.
Events in the physical system are modeled by message communication among the
corresponding LP; each message carries a time stamp that represents the time at which
the corresponding event occurs in the physical system. Henceforth, we will use the terms
event and message interchangeably. The following variables are defined for each LP[Jha
& Bagrodia 95]:

* Earliest Output Time (EOT): The EOT of an LP is a lower bound on the time stamp
of any future messages that may be sent by the LP. If EOTs is infinity for some LP
s, the remaining LP can be executed independently of s. A sink process is an example
of such an LP.

* Earliest Input Time (EIT): The EIT of an LP is a lower bound on the time stamp of
any future message that may be received by the LP. the EITs of an LP s is the earliest

14

time that it may receive a message from another LP. The EIT of an LP is infinity if no
other LP send messages to it; a source process is an example of such an LP.

* Lookahead: The lookahead for an LP is the future time interval over which the LP
can completely predict the events which it will generate. The lookahead is used to
calculate EOT. For instance, consider a FIFO server that serves each incoming job
for delta time units. If the server is idle at some simulation time t, its lookahead is
delta and its EOT is (t+delta).

In its most commonly used forms, a PDES model is either optimistic (all LP executed in
the optimistic mode) or conservative (all LP executed in a conservative mode). A
conservative LP cannot tolerate causality errors (events executing out of timestamp
order); hence it will only process events with timestamps less than its EIT. A number of
algorithms have been designed to compute the EIT of each LP in a distributed manner.
Many of these have been implemented in PARSEC and COMPOSE. In general, the
lookahead and communication topology of a model have a significant impact on the
performance of conservative algorithms. The communication topology of a model is
described by maintaining predecessor- and successor-sets at each LP, that respectively
refer to the set of LPs from which an entity may receive messages or to which it may
send messages.

An optimistic LP may process events with timestamps greater than its EIT; however, the
underlying synchronization protocol must detect and correct violations of the causality
constraint. The simplest mechanism for this is to require an optimistic LP to periodically
save (or checkpoint) its state. Subsequently, if it is discovered that the LP processed
messages in an incorrect order, it can be rolled back to an appropriate checkpointed state,
following which the events are processed in their correct order. An optimistic algorithm
is also required to periodically compute a lower bound on the timestamp of the earliest
global event, also called the Global Virtual Time or GVT; checkpoints timestamped
earlier than GVT can be reclaimed. Using our model, it is sufficient for an optimistic LP
to preserve at least one checkpointed state with a timestamp smaller than its EIT. (The
minimum of the EIT of all optimistic LP is a reasonable lower bound on the GVT of the
model).

Given appropriate mechanisms to advance the EIT and EOT of the conservative or
optimistic LP, it is possible to implement a PDES model which is composed from
optimistic & conservative sub-models. In general, any of the GVT computation
algorithms, conservative algorithms, or even a combination of the preceding algorithms
can be used by a PDES to compute the EIT of each LP, regardless of the execution mode
of the individual LP in the model. The choice of a specific algorithm for a given scenario
is an efficiency rather than a correctness issue. We outline an aggressive null message
based scheme: whenever the EOT of an LP, say s, changes, EOTs is sent using a null
message to other LP; the null message may of course be piggy backed on a regular
message when feasible. On receipt of a null message, an LP recomputes its EIT and EOT
and propagates changes to other LP. It is easy to show that given a model with no zero
delay cycles (i.e. a cycle of LP all of which have a zero lookahead), such an algorithm
will eventually advance the EIT (and hence the time) of every LP, regardless of whether
it executes in conservative or optimistic mode. The hybrid protocols are also useful for

15

the composition of autonomous simulators, where each simulation may internally use a
conservative, optimistic, or sequential protocol.

3.5 Parallel Simulation Tools

Available tools for large scale parallel simulation range from operating systems dedicated
to support of parallel simulations to domain-specific packages. The primary advantage of
the OS-based approach is that it provides complete flexibility in the choice of a
programming language, and that much of the scheduling, memory management, and IPC
functionality provided by the OS need not be duplicated by the parallel simulator. The
major drawback of this approach is the sheer complexity of implementing an operating
system while tracking the multiple parameters that eventually determine its performance.
A second drawback is that at least in some implementations, each simulation object is an
OS thread and is treated as a heavy-weight process; such an implementation is efficient
only if the computation contains coarse grain parallelism and can be efficiently
decomposed to exploit this characteristic. Operating systems that have been designed to
support parallel simulations include the Time Warp Operating Systems from JPL and the
MIMDIX system from Georgia Tech.

At the next level of abstraction are scalable simulation languages (PSLs) and libraries
that provide programmers with a set of well-defined constructs to design (parallel)
models. PSLs provide a set of model definition primitives together with a set of parallel
programming primitives for process (or thread) definition, creation and interprocess
communication and synchronization. The primary advantage of PSLs over the OS
approach is that the former can provide programming primitives that can be supported
efficiently by the underlying simulators and eschew those that are hard to implement.
Secondly, a well-designed language can present the simulator to the programmer at an
appropriate level of abstraction. Transparency of the underlying implementation is
desirable from a software engineering viewpoint but may lead to inefficiencies in model
implementations. The primary disadvantage of PSLs is the need to learn new languages,
although most PSLs are designed by extending a familiar base language with a small set
of primitives.

At the end of the spectrum are domain-specific tools that are designed to serve a specific
application area like logic simulation of VLSI circuits. The obvious advantage of this
approach is that the simulator can exploit specific application characteristics to reduce
overheads of parallel model execution and present an application-specific interface to the
programmer to facilitate model description. Three areas that have shown significant
potential for performance improvements include circuit simulations (with tools like
PLDVISIM from UNC, MIRSIM from UCLA, and PVHDL from Cincinnati among
others), parallel program models (tools like LAPSE from NASA, Wisconsin Wind
Tunnel from Wisconsin, and MPI-SIM from UCLA), and communication network
models (with tools like GloMoSim from UCLA, SimKIT from Calgary). In each of the
preceding areas, performance improvements of at least one order of magnitude have been
obtained for realistic applications. Our goal is to develop an efficient, scalable simulator
for parallel database systems using a general purpose PDES environment.

16

Common approaches to design of general purpose parallel simulation software include:

" Library based approaches represented by systems like GTW, UPS, COMPOSE, and
SPEEDES. These systems typically provide simulation and parallelism capabilities
via calls to libraries implemented in standard sequential languages like C or C++.
Their primary advantage is that the user does not have to learn a new language. A
major drawback is that because no translator is used, the library routines must provide
a less abstract interface than is typically possible with a high-level simulation
language. Some systems have targeted a specific domain. For instance, UPS
proposes an interesting extension to existing sequential simulators by exploiting
parallelism in restricted ways with specific simulation objects like queues that are
known to have good lookahead properties.

" Enhancement of sequential (simulation) languages with primitives for parallel
simulation; examples include Sim++ [Baezner et al. 1990], APOSTLE [Wonnacott
and Bruce, 1996], Maisie [Bagrodia and Liao 1994], MOOSE, an object-oriented
extension of Maisie, and PARSEC, a next generation implementation of Maisie. The
ability to use a translator allows languages to provide a more succinct and 'natural'
interface for the programmer as compared with simulation libraries. It is also
possible to implement a number of optimizations like automatic granularity control as
in APOSTLE and automatic reduction of rollback distances as in Maisie.

In this project we used a parallel simulation language (PARSEC) and a parallel
simulation library (COMPOSE) to develop parallel simulation models of parallel
database systems.

3.6 Multi-Level Models

A multi-level modeling methodology allows initial abstract or coarse models of a system
to be iteratively refined into detailed models for critical subsystems. The coarse
simulation model is used to predict behavior at very large scales, where detailed models
may be intractable even with parallel model execution. Initial coarse models also identify
the subsystems that are performance bottlenecks and require detailed representation.

The refined simulation model captures the implementation details of the critical
subsystem. Assume that the interconnection network was found to be the primary
performance bottleneck in a coarse model of the database. The simple contention free
model used in the coarse model may then be replaced by a switch-level model that
models the queuing and contention at each intermediate point of the network to identify
the primary cause of the congestion. The modeling framework must allow the detailed
network model to be inserted with minimal modifications to the rest of the model. In the
best case, the other components are not modified at all and the interface compatibility
issues are addressed by using adaptive and intelligent interface code.

The inclusion of detailed model characteristics allows the refined models to estimate
performance measures not derivable in the coarse grain simulator (e.g., message loss due
to congestion). Once these parameters have been estimated in the fine-grain model, they

17

are subsequently introduced as macroscopic parameters in the coarse grain simulator to
evaluate larger systems. Thus, an iterative modeling approach is used where each
subsystem is eventually modeled at the level of detail necessary for the performance
study.

The hierarchical approach is well suited to the interactive design and implementation of
parallel systems. It permits us to carry out conceptual algorithm design on large
topologies in an efficient, interactive manner using the coarse grain simulator. In this
high level design process, the implementation details are hidden behind a few key
parameters which were derived from the fine grain simulator. In turn, the high level
designs tested in the coarse simulator are implemented in the fine grain simulator.
Eventually, the fine grain simulator will serve as a conduit to software implementation as
described in the previous section. This design and evaluation cycle is closed by feeding
back the measurement results to the simulation model to further improve its accuracy for
predicting the performance of large-scale models.

Support for multi-level models requires the design of a rich library of models that include
subsystem models at various granularities and/or the ability of a language to support
adaptive interfaces between model components that allow a coarse model of a subsystem
to be replaced by a detailed model, without requiring significant changes in other
component models. In Phase I, we have developed low fidelity and approximate models
for each of the subsystems for parallel databases. In Phase 2, we expect to develop
detailed models of the critical subsystems and develop capabilities to incorporate multi-
level models.

18

4. IMPACT Simulators
Two different simulators have been used to develop the database models described in this
report: Maisie together with its newer incarnation PARSEC, and COMPOSE. We
present a brief description of PARSEC and a complete description of the COMPOSE
simulation environment.

4.1 PARSEC Simulator

PARSEC, a Parallel Simulation Environment for Complex systems is a parallel
simulation language that uses the process-interaction approach to discrete event
simulation. PARSEC has been implemented on both distributed and shared memory
platforms, and supports both conservative and optimistic parallel simulation protocols.
Supported conservative protocols include the null message based schemes as well as
protocols based on the conditional event algorithm, whose performance has not been
studied widely. The optimistic protocol is based on the space-time paradigm, an early
implementation of which is described in [Bagrodia et al 1991]. PARSEC also supports
the Ideal Simulation Protocol or ISP which can be used by an analyst to compute a tight
lower bound on the execution time of a parallel simulation model on a given architecture
[Bagrodia et al 1998]. Although there are other tools that have been implemented on
multiple architectures or support multiple simulation protocols, to the best of our
knowledge, no existing simulation environment provides such a broad coverage of
parallel architectures and protocols. PARSEC has been used to simulate a diverse set of
applications including VLSI circuits, parallel programs, parallel 10 systems,
interconnection networks, electronic LANs, ATM networks, aeronautical communication
networks, and wireless communication protocols.

A PARSEC program consists of a set of modules, where each module is an entity or C
function. Each entity is an LP that models a corresponding physical process. Entities can
be created and destroyed dynamically and multiple entities can be mapped to a single
processor. For parallel execution, each entity is explicitly mapped to a processor when it
is created and cannot subsequently be migrated to a different processor. Events are
modeled by message communications among the corresponding entities. Each entity is
associated with a unique message buffer and asynchronous send and receive primitives
are provided to deposit and remove messages from the buffer. An entity in a PARSEC
model simulates the local actions of a physical object using C code and describes the
interactions of the corresponding physical object via timestamped messages. It supports
both the hold and wait until primitives introduced earlier. The PARSEC implementation
of a wait until statement allows many complex enabling conditions to be expressed
directly, without requiring the programmer to describe the buffering explicitly. The
resume condition can be a complex expression and may reference (though not modify)
state variables of the entity and the message buffer. We present two examples to illustrate
PARSEC constructs for parallel simulation.

The first example illustrates the asynchronous message passing constructs used by
PARSEC using an entity called manager to simulate a resource manager. The first three

19

lines declare the types of messages that may be sent or received by the entity: type
request that is used by another entity (with id his id) to request a certain number of units
(num), type release to return resources to the pool, and type done to inform the requesting
unit that the requested number of units are available. The body of the entity is basically
an infinite loop with a receive statement to process the two message types (request and
release) that may be received by the entity. We note that the request message includes a
Boolean expression or guard. The guard has two expressions: the first ensures that a
given request is accepted by the entity only if the required number of units are currently
available with the manager. The second expression ensures that if the buffer contains
both request and release messages, release messages are accepted by the manager first.

message Request {int num; ename his id;};
message Release {int num;};
message Done {};
entity Manager (int maxa)
{ int units=maxa;

for(;;)
receive (Request req) when ((req.num<=units) &&
qempty(Release))
{ units -= req.num;

send Done to req.his id;
}
or receive (Re/ease rel)

units += rel.num;

Resource Manager

The next code fragment illustrates the simulation constructs supported by PARSEC. The
fragment simulates the transmission of a data packet by an entity to another entity with id
next-hop. The first statement sends a message of type data-packet. The next statement
causes the entity to suspend until one of three events occur: it receives an ack message
(line 2); it receives a nack message (line 5); or it receives a timeout message (line 8). The
timeout message is a conditional message; the entity will receive his message only if it
does not receive an ack or a nack message within the specified time-out interval -- round-
trip-delay-time. If it receives an ack message, the message is copied into local variable a;
the entity executes a hold statement to simulate the time required to process the message
and executes function processack to simulate the actions executed by the corresponding
physical process. A nack message is processed similarly. The definition of the various
message types have been omitted for brevity.

Every PARSEC program must include an entity called driver. Execution of a PARSEC
program is initiated by executing the first statement in the body of entity driver. As
mentioned earlier, PARSEC supports a number of parallel simulation protocols and
architectures. The specific protocol and architecture to be used in a given execution of a
model is specified as a command line option. A complete description of the language is
available in the Parsec User Manual [UCLA 1998], and a report on the parallel

20

performance of the simulator with a variety of applications has been summarized in
[Bagrodia et al 1998].

I send data-packet{data} to next-hop;
2 receive { (ack a)

{
3 hold(ack-time); r* suspend for time to process an ack */
4 processackreceived(a); /* in the physical system */

I
or (nack n) {

6 hold(ack-time); r* suspend for time to process a hack */
7 processnackreceived(n); /* in the physical system */

}
8 or timeout after (round-trip-delay-time) {
9 resend data-packet(data);

}

Data Transmitter

4.2 COMPOSE
COMPOSE (Conservative, Optimistic and Mixed Parallel Object-oriented Simulation
Environment) is a C++ library for executing parallel discrete-event simulations on both
shared and distributed memory parallel computers. The environment is a pure C++ class
library design and does not require special preprocessing or compilation. COMPOSE
models simulation entities with C++ objects that send time-stamped messages which
correspond to simulation events. To ensure correct simulation event execution order, the
runtime implements sequential and parallel simulation algorithms.

COMPOSE uses the process-interaction approach to discrete event simulation, which
assumes that a parallel simulation is composed of a set of simulation objects (or entities)
that do not share state and communicate exclusively by time-stamped asynchronous
message passing. When a message is sent to another entity, it corresponds to scheduling
an event at that other entity.

COMPOSE uses the "concurrent object model" for message processing: when a message
is processed, a method of the object is executed to completion. This can also be looked at
as an asynchronous method call on the object with the message as the method's (input)
parameter. This model is different than the usual process model that has explicit receive
statements and a thread of control. To provide the object model (without using compilers
or preprocessors), the runtime requires that the simulation programmer explicitly register
at runtime the proper "simulation action" method for each received message type. These
action methods perform changes to the simulation entities and send messages to other
entities. COMPOSE messages are user defined C++ structs that inherit from class
"MessageType".

21

4.2.1 Why COMPOSE

In Phase I of this study, we investigated the feasibility of using both PARSEC and
COMPOSE for the proposed database simulator. The following factors influenced our
decision to use COMPOSE to develop the proposed simulator: first, while PARSEC is
based on C, COMPOSE was designed using C++ and all the benefits of object-oriented
programming are directly available to the simulationist. In particular, multi-level models
using associative broadcasts are more effectively implemented in an object-oriented
environment, where inheritance and virtual function concepts may be used to provide the
appropriate interfaces in a modular manner. Second, unlike PARSEC which is a
language, COMPOSE is a library; programmers familiar with C++ do not have to learn a
new programming environment and hence may be more inclined to use this system. For
instance, existing commercial C++ program development environments (e.g., Visual
C++) can directly be used to develop COMPOSE programs. Third, the sequential
performance of the database models in COMPOSE was almost twice as fast as PARSEC.
The primary reason for the superior performance of the COMPOSE is that it
significantly reduced the number of distinct simulation objects at run time, which
increases computational granularity and reduces context-switching overheads. Last, the
simulation runtime system for COMPOSE is designed to promote interoperability and we
intend to explore the use of existing object frameworks like DCOM and CORBA both to
support object distribution within COMPOSE and for integration of COMPOSE with
other tools.

4.2.2 COMPOSE Constructs

COMPOSE provides various routines for performing simulation initialization, entity
creation, unconditional event scheduling (message passing) and conditional event
scheduling (timeouts). These runtime capabilities are provided by the "EntityType" base
class. The programmer creates an entity class by inheriting from "EntityType" and
implementing the data structures and action methods. The action methods perform the
events and call methods from the "EntityType" base class (for example, "SendMessage").
Once all entity classes have been defined, the programmer writes a "Starter Entity". The
"Starter Entity" is a special entity that is used to initialize the simulation. Its job is to
create all simulation entities and to seed the simulation with initial messages. After it
does its job, the "Starter Entity" is destroyed and the simulation is executed. The
simulation then executes until there is no activity in the simulation or the specified end
simulation time has been reached.

The primary constructs in the design of a simulation model in COMPOSE include
simulation entities, messages, and timeout events. We briefly describe these facilities in
this section.

Messages
Messages are the communication mechanism used by COMPOSE. Entities send time-
stamped messages to other entities and these messages cause simulation events.
Messages are implemented as simple C++ structs that are derived from a base class called

22

"MessageType". The "MessageType" base class provides the message header needed by
the COMPOSE runtime to process the message. It includes such things as the message's
time-stamp and the source and destination of the message, but these variables are
declared private and cannot be accessed by the simulation programmer.

Example Message Type Declaration:
class UsexmessageType: public MessageType {
public:

// User-specified parameters.
int Parml;
char Pa m2;};

To work with distributed memory parallel machines, COMPOSE messages must be
completely self-contained and thus must not contain data-structures with pointers. With
shared memory machines, pointers are possible but message data-structures must not be
shared and the message type must have a virtual destructor to reclaim the dynamic
memory. Messages must also be allocated from the heap with "new". To minimize
overhead, COMPOSE does not copy messages and overrides "new" for message types.

Simulation Entities

In COMPOSE, objects in the simulation (henceforth referred to as "entities") are
represented as C++ objects. For this purpose, the COMPOSE library provides a base
entity class called "EntityType" which provides a set of useful member functions
(runtime operations) and encapsulates information necessary for the simulation
environment. Because we are executing a possibly distributed simulation that has
simulation time ordering, entities cannot call each others method functions directly.
Instead, messages are sent and queued in the runtime for each entity and in the proper
time order, the messages are given to the entity. COMPOSE has a concurrent object
model for message processing: a message is processed by the entity by executing a
method of the C++ object. These methods are executed to completion and there is no
capability of context switching from a method execution. These methods have one
parameter that corresponds to the specific message type it will process. A runtime
binding mechanism is used to associate a message type with its corresponding method.
The library provides the routines "RegisterlnitMethod" and "RegisterMethod" to specify
this message type to method mapping. These binding calls must be made by the
simulation programmer in the object's constructor.

Example entity class:

#include "conpose.h"
class UserEntityType: public EntityType {
public:

COMPOSEENTITYENVIROIEMNT (UserEntityType);
// Initialization Message definition.
class InitMessageType: public MessageType {
public:

// Initialization Variables.

I;

23

private:
// Define entity methods.
void InitMethod(const InitMessageType& InitMessage);
void JobMethod(const JobMessageType& JobMessage);

// Define constructor with method registration calls.
UserEntityType ()

Regis terInitMethod (InitMethod);
RegisterMethod (JobMethod);

}

// State Variables

S; //UserEntLt~yTYpe//

Message Type to Method Binding Runtime Calls

The following runtime call associates a user method with a message type so when a
message of that type is processed by an entity the corresponding method is called. These
calls should occur in the entity's constructor. If a message type is not registered by an
entity, receipt of a messag eof that type will cause a runtime error. This makes
COMPOSE a dynamically typed simulation object model.

0 REGISTERMETHOD(UserMessageType, ActionMethodPointer);

This runtime call registers the "ActionMethodPointer" with the runtime and binds it with
the specified "UserMessageType". An entity may selectively receive certain messages
by specifying guards as shown below

' REGISTERMETHODANDGUARD(UserMessageType, ActionMethodPointer,
GuardMethodPointer);

When the guard method, specified by the GuardMethodPointer returns "False", the entity
can not process messages of this type and the message is deferred. The message can be
processed in the future when this method evaluates to "True".

Initializing and Creating Entities

Once an entity is defined, it can be created and initialized with method calls in this
section. In COMPOSE, creation and initialization are done in two steps. First the entity
is created causing the entity's constructor to be executed, then the entity is initialized by
sending an initialization message to the just created entity. This causes the method
mapped to initialization message type to be executed. These actions are done
synchronously which means the runtime waits until these actions complete before it
returns from these methods. This eliminates race condition problems at simulation
startup at the cost of decreased parallelism during the entity creation.

"* CREATEENTITY(EntityType, NodeID, NewEntityName) ;

"* CreateEntity(&EntityType::COMPOSENew, NodeID, NewEntityName);

This method creates an entity of type 'EntityType" on the virtual node "NodeID"
number. Virtual node Ids are "int"s and go from 0 to (NumberOfNodes - 1). IDs outside

24

this range will be "mod-ed" to be within this range. The name of the created entity is
returned (out reference parameter) in "NewEntityName" (of "EntityNameType"). This
returned name is used in calls such as "SendMessage" to identify the entity

The explanation for the non-macro version requires a digression about how creation is
implemented in a distributed memory (but homogenous) environment. To create an
object on another node, the constructor for the specific entity type needs to be called on
that node (in a different address space). The way this is done in COMPOSE is by using a
pointer to the entity's constructor. The first problem is that C++ doesn't provide a
pointer to a constructor feature. The simple and standard workaround for this deficiency
is to define a trivial function that just calls the constructor and use a pointer to the trivial
function. This trivial constructor function is defined in the
"COMPOSE ENTITY ENVIRONMENT" macro and is called "COMPOSE Newo".
This is why the CreateEntity method must have "&EntityType::COMPOSENew" as its
first parameter. The macro version simply hides this ugliness. Given the runtime has a
pointer to the "COMPOSENew" function, another problem is that this pointer is from
the sender's address space and probably cannot be used in the destination node address
space. COMPOSE uses the fact that the execution binaries on the two nodes are identical
and tweaks the passed pointer to point to the right executable code.

"* InitEntity(EntityName, InitMessagePointer);

"* INIT_ENTITY(EntityName, InitMessagePointer);

This runtime call Initializes the entity with name "EntityName" (of EntityNameType)
with the Message with pointer "InitMessagePointer'. Note that the message must be
allocated with "new". Example of an entity creation and initialization:

CREATEENTITY (MyEntityType, NodeID, NewEntityName);

INIT_ENTITY (NewEntityName, new MyEntityType: :InitMessageType (...);

The reason that creation and initialization are done separately is that most simulation
topologies are cyclic and thus neighboring entity names needed for the entity's
initialization may not yet exist. The usual method to build a simulation is simply to
create all the entities and then initialize them with entity name of their neighbors.

Sending Messages
An entity can send messages to other entities in the simulation with the following
methods:
9 SendMessage(EntityName, MessagePointer);

This method sends a message pointed to by "MessagePointer" (of type 'MessageType*")
to the entity identified by "EntityName" ("EntityNameType"). The message must be
allocated with "new" (Passing an address of a stack or global variable will cause an
error). Once a message has been sent, it becomes the property of the receiving entity and
must not be modified or reclaimed by the sending entity. Passing a pointer eliminates

25

being forced to copy the message. A message with a delyaedtime stamp is sent by the
following method:
a SendDelayedMessage(EnfityName, MessagePointer, DelayTime);

Timeout Events
The basic idea behind the "timeout event" is for an entity to wait for events for a
specified length of time and if no messages come in then to "timeout" and do some
special processing. If a message does come in, then the timeout event is cancelled. The
following method allows the simulation programmer to setup the timeout:
M ScheduleTimeout(TimeoutMethodPointer, TimeoutTime);

The action taken by the timeout is passed in the first parameter as a pointer to parameter-
less method ("TimeoutMethodPointer"). The time that the timeout will occur is the
second parameter "TimeoutTime" (of type "TimeType")). One prickly issue with
timeout events is defining when the timeout occurs in relation to events with the same
timestamp. For example, if a timeout event is scheduled for time 10 and there is a regular
event scheduled at time 10, does the event cancel the timeout? The default in COMPOSE
is for the timeout to occur and to be the first event for a particular timestamp. This can be
overridden at the entity level so that timeouts only execute if they will be the last event
for that timestamp:

Executing timeouts as the last event has problems with zero delay cycles. In the simplest
case, suppose the timeout event sends a message to itself with zero delay, then the
"executed last" property has just been violated. This will actually cause an infinite
rollback sequence in the optimistic parallel algorithm. Executing timeouts last also
effects the conservative parallel protocol as it puts stricter requirements on lookaheads. It
is highly likely that the conservative protocol will require a positive delay when sending a
message from a timeout event.

Building and Starting Simulations

COMPOSE can be executed in a shared memory environment or distributed memory
environment. Execution of the COMPOSE model begins with the exeuction of maino;
for shared memory implementations, "maino" is executed and the simulation system
starts up parallel threads for other simulation objects. In a distributed memory
environment, N copies of "maino" are executed in parallel, one on each node. This
causes a problem as normally the programmer only requires a single one simulation
routine to initiate execution. COMPOSE gets around this problem by requiring the
simulation programmer to make a special temporary object called the "Starter Entity" that
is executed only on one node (node 0) in a distributed environment.

The Starter Entity's job is to create and initialize the simulation entities (with
"CreateEntity" and "InitEntity") and seed the simulation with initial messages (with
"SendMessage"). After it does this it is killed and the simulation starts executing. The
Starter Entity's simulation construction code can be in either its constructor or its
initialization method.

26

The following calls are provided by the library to build and initiate execution of the
model. For the first option, only the constructor is executed:

"* StartCOMPOSE(&StarterEntityType::COMPOSENew, NumberVirtualProcesses);

"* STARTCOMPOSE_NOINIT(StarterEntityType, NumberVirtualProcesses);

In the next option, both constructor and initialization methods are executed:

" StartCOMPOSE(&StarterEntityType::COMPOSENew, InitMessage,
NumberVirtualProcesses);

" STARTCOMPOSE(StarterEntityType, InitMessage, NumberVirtualProcesses);

These routines create the "Starter Entity" and then execute the simulation. There are two
versions, one that requires an initialization message ("InitMessage" of type
MessageType) and one that doesn't (entity initialization is skipped). Note that the
initialization message for StartCOMPOSE does not have any of the restrictions on
pointers and references as normal messages and can viewed as just a regular object that
the programmer is passing into the system. The first parameter,
"&EntityType::COMPOSENew" is the pointer to the starter entity's constructor (see
create entity command section). "NumberVirtualProcessors" (of type int) is the number
of threads to create in a shared memory environment (ignored in a distributed
architecture). The macro versions simply hides the ": :COMPOSE New" syntax.

Example main program:

int mnain(o (
Start_COMPOSE(&StarterEntityType: :COMPOSENew, 4);
return 0;

}

Entity And Simulation Termination
Entities are deleted by the runtime immediately after they execute "TerminateMe0" in a
method and at the end of the simulation. When an entity is deleted, its C++ destructor is
called. In COMPOSE, the destructor code is designated to be "outside the simulation"
and must not effect the state of the simulation itself. This means that messages cannot be
sent from within a destructor. A destructor could write some simulation results to a file
or store them in some global data-structure.

A simulation completes if there are no more events to process or the simulation has
reached the designated "end of simulation time" (see "SetEndOfSimulationTime").
When the simulation completes, for every existing entity, the destructor is executed and
the entity is deleted. (This is the reason why destructors are not allowed to contain code
that sends messages). After all simulation resources have been cleaned up, the call to
StartCOMPOSE completes.

Starter Entity Runtime Methods

These runtime calls are defined in class "EntityType" and can only be called at the
beginning of the simulation in the Starter Entity. The purpose of these runtime routines is
to define the global properties and algorithms to be used by the simulation.

27

"* SetEndOfSimulationTime(const TimeType& EndTime);

Sets the end of simulation time. Events after the time "EndTime" will not execute.

" DoNullMessageSynchronizationo;

Execute using the null message algorithm.
" SetGVT ProcessinglntervalRealSeconds(IntervalTime);

Set the real interval time between GVT calculations. "IntervalTime" is a float. The
primary use of this routine is to tune how often GVT is calculated when running the
optimistic algorithm. If it is calculated more frequently, then the amount of memory
used state saving will be reduced at the cost of greater GVT calculation overhead.

4.3 Complete Compose Example

The following is the complete C++ source for a simple FIFO queue server entity. The
server simply accepts jobs (messages) in FCFS order and forwards them to another entity
after delaying them by a duration that corresponds to its service time. The InitMethod
sets up the communication topology for the network for use by conservative and adaptive
algorithms. In this example, the server sends messages it processes back to itself. The
end of simulation time is set so the simulation will terminate.
const ServiceTime = 10;
class JobMessageType: public MessageType { };

class ServerEntityType: public EntityType I
public:

COMPOSEENTITYENVIRONMENT (ServerEntityType);

class InitMessageType: public BaseMessageType {
public:

EntitylDType SuccessorEntity;
InitMessageType (EntityNameType SuccEntity)

SuccessorEntity(SuccEntity) {1
1;

private:
// Define entity methods.
void InitMethod(const InitMessageType& InitMessage);
void Jobkethod(const JobMessageType& JobMessage);
// Define constructor with BirndMethod statements.
ServerEntityType ()

REGISTER INIT METHOD (InitMethod, InitMessageType);
REGISTER_METHOD (JobMethod, JobMessageType);

II State Variables
EntityIDType SuccessorEntity;

I ; //ServerEntityType//

/1 InitMethod initializes the entity's variables
II and provides the topology and lookahead information
// for conservative or adaptive algorithms.

28

void ServerEntityType: : InitMethod (const InitMessageType& InitMessage)
{

SuccessorEntity = InitMessage. SuccessorEntity;
AddSuccessorEntity (SuccessorEntity);
SetLookahead (ServiceTime);

) //InitMethod//

void ServerEntityType: : JobMethod (const JobMessageType& JobMessage)
{

Hold (ServiceTime);
Sendblessage (SuccessorEntity, JobMessageType);

}//JobMethod//

// Simple Starter Entity that builds the simulation.

class StarterEntityType {
public:

CHMPOSE_ENTITYENVIRONMNT (StaterEntityType);
Private:

StarterEntityType 0I
SetEndOfSimulationTime (1000);
EntityNaneType EntityName;
CREATE ENTITY(ServerEntityType, 0, EntityName);
INIT ENTITY (EntityName,

new ServerEntityType: : InitMessageType (EntityName));
SEND]MESSAGE (EntityName, new JobMessageType);

}//StarterEntityType ()
};

imt maino {
Start_COMPOSE (&StarterEntityType: :CCMPOSE New, 1);

)

4.4 Runtime Systems: Design Issues
A portable kernel has been designed to execute COMPOSE programs on sequential and
parallel architectures (distributed memory and shared memory) using both conservative
and optimistic algorithms. The set of simulation algorithms currently supported
supported (or anticipated to be available shortly) to be used with COMPOSE include:

"* sequential or Global Event List algorithms,
"* three parallel conservative algorithms that respectively use null messages, conditional

events, and a combination of the preceding two schemes called the accelerated null
message protocol (ANP),

"* a parallel optimistic algorithm based on space-time simulations, and
"* the Ideal Simulation Protocol (or ISP) which is based on the concept of the critical

path to predict a realistic lower bound on the execution time of a given parallel
model.

The kernel provides a unified simulation runtime system to implement the preceding set
of synchronization algorithms on a variety of architectures as shown in Figure 2. For a
given experiment, the programmer specifies the synchronization algorithm to be used as a
command line option, which causes the appropriate library to be linked in with the
runtime system. The preceding set of algorithms are currently available under
PARSEC. In some cases, COMPOSE shares the same code base, and in others the code

29

has been re-implemented when it is possible to exploit additional efficiencies given the
simpler interface that has been defined for COMPOSE.

PARSEC PAVE JCOMPOSE J

Virtual Time Synchronization

Null [Conditionaii ANP Optimistim ,SP Sequential
Message Event I " I.
Run-Time Run-Time Run-Time Run-Time- Run-Tim Run-Time

Communication

MPL Pth reads

Uniprocessor
=M Machine

IBM SP Workstation Sun Sparc 1000

Figure 1: Simulation Environment Components

The ISP algorithm allows an analyst to estimate a realistic lower bound on the execution
time of a parallel simulation program. ISP computes the execution time for a given model
on a given architecture by executing the model using a complete message trace for that
model. Using the trace, each entity can locally determine the order in which incoming
messages are to be processed, without using any synchronization protocol. Consider the
following example: an entity receives a message m, with timestamp u, when the EIT of
the entity was v; v<u. In general the entity can process this message only when its EIT is
u or larger. Assuming that the entity has no other messages that can be processed, it must
remain idle for the time interval that its EIT remains less than u. However, using the
message trace, ISP pre-computes the sequence in which incoming messages are accepted
by the entity, thus allowing it to process the 'next' message in the sequence as soon as it
arrives; in the preceding example, if m was the next message in its sequence, it can be
processed by the entity as soon as it is received and no blocking overhead is incurred. In
this manner, ISP excludes overheads that are due solely to the simulation protocol, but
includes all overheads that are due to the model partitioning, message transmission and
buffering, and other factors related to the execution of a parallel program. This allows an
analyst to determine if the observed inefficiencies in the execution of a parallel
simulation model are primarily due to implementation inefficiencies in the simulation
protocol or to the inherent lack of concurrency in her parallelized model.

4.5 Runtime System: Implementation Issues

The COMPOSE runtime is constructed from the following object types and subsystems:

30

"* Messages
"* Entity Objects
"* Manager Objects
"* Shared Memory Communication Buffers.
"* Distributed Communication System.
0 Synchronization mechanisms

Entity and Message Objects
An entity object encapsulates the code and data structures defined by the user-level entity
and provides the system-defined (library) data-structures necessary for execution of
events in the runtime system. It includes code to manage the message queue of the entity,
including adding and removing messages from the queue. This object also performs all
the simulation-related actions on behalf of the corresponding user-level entity. For
instance, when executed in the optimistic mode, it performs the necessary state saving,
rollback, and garbage collection activities. Similarly when the object is executed in the
conservative mode using the null message algorithm, necessary computation to handle
incoming null messages, compute the EIT, EOT and transmit null message activities are
performed by this object.

Messages are the primary means of interaction among the simulation objects. An event
that occurs at some time T at a simulation object P, is implemented in the runtime system
by transmitting a message with timestamp T to the simulation object that corresponds to
the object P. All messages in the system are derived from the pre-defined COMPOSE
class called 'MessageType'.

Entity Manager Objects
Although entities represent a single thread of control for the programmer, the run-time
system defines a layer of manager objects, each of which manages a set of entities. Each
manager object corresponds to a single schedulable thread that is visible to the OS. On a
distributed memory platform, each processor will normally contain a single manager
object. Entities that are managed by the same manager object are said to be local,
whereas entities managed by different manager objects are said to be remote. The
manager object is responsible for scheduling the entities it manages, as well as
maintaining the appropriate state information for each entity, handling the creation and
deletion operations, retrieving messages from the communication interface that are
destined for one of its entities, transmitting messages to remote entities, etc. In addition
the manager schedules synchronization algorithm specific activities like GVT
calculations, null message sends, etc. The runtime system is designed such that
communication between remote entities must go through their respective managers. On a
shared memory architecture, the managers communicate through shared memory
communication buffers. Because entities are accessed only by their owning manager's
thread, entities are not concurrently accessed by multiple OS threads and thus locks are
not necessary to maintain the integrity of an entity's data-structures.

Inter-manager Communication
On a distributed memory architecture, the communication among the manager objects is
typically implemented via calls to the standard message passing libraries like MPI or by a

31

vendor provided communication capability. On a shared memory architecture, a
memory buffer is provided for each manager. Communication among managers is
implemented by reading and writing the messages to the appropriate buffer. As buffers
may be accesses simultaneously, appropriate locking mechanisms must be used to ensure
exclusive access to the buffer. A number of optimizations have been implemented to
improve the cache behavior at each manager and these are discussed subsequently.

4.5.1 Entity Scheduling

As discussed in the previous section, each entity manager corresponds to a parallel
thread. The manager schedules entities in an order determined by the execution mode of
the simulator. In sequential and optimistic modes, the scheduling queue is a priority
queue that orders entities by the timestamp on its earliest executable event. The priority
queue is implemented as a heap where the entities float up and down inside the heap.
Execution of an event will cause an entity to move further down in the heap, and
receiving an early message will cause an entity to move up in the heap. An embedded
link back from the entity allows a constant access time to be maintained for each entity.
Using this data structure causes all events to be executed in the strict order of their
timestamps. This requires an O(Log N) reordering of the queue after each event.

For conservative execution, the entity manager keeps a list of all conservative entities and
a simple FIFO queue of conservative entities that are ready to execute some event (i.e. it
has at least on event with a timestamp smaller than its safe time). Each entity is removed
from the FIFO queue, in turn, and all safe events at that entity are executed. The entity is
descheduled only when it has no events to process. Note that the queue management
overheads for the conservative algorithm is much less than the sequential/optimistic
priority queue because queue manipulations for the non-sorted FIFO queue is a constant
time operation and, unlike the case with sequential algorithms, multiple events may be
executed following each dequeue operation.

4.5.2 Entity Message Queue and Event Execution

A COMPOSE entity specifies a number of message types that it may receive. During
entity creation, each message type is bound to a method and an optional guard as
described in section 4.2.2. An incoming message is processed by the entity by executing
the corresponding method, only if the associated guard (if any) evaluates to true; other
wise he message is deferred. Deferred messages are stored in a local queue at the entity
until a future time when the guard evaluates to true. Because COMPOSE has the ability
to defer messages by type, the message queue for an entity is implemented as a list of
sub-queues, one for each message type. Each sub-queue is implemented as a splay-tree
for fast O(log N) insertions and deletions. The RTTI feature of C++ is used to
differentiate message types so they can be filed into the proper sub-queue. A number of
optimizations have been added to improve the performance of optimistic simulations.
For instance, when an entity is rolled-back, the rolled-back messages are not reinserted
back into the splay-trees but are instead stored in linked lists separated by message type.
Because these messages are rolled-back in sorted order, no ordering is necessary and
insertion is constant time versus the O(log N) time that would be necessary to insert them

32

into the splay-trees. This technique does require that the head of the link lists to be
checked and compared to the heads of the splay-trees when retrieving the next message
for processing.

A guard function can be associated with each message type. The guards must be re-
evaluated following every method executed by the entity. Following the execution of a
method, the runtime identifies the message types that are not deferred (referred to as
active types) and determines the earliest timestamp for messages in the active message
queues. This is the earliest event time for the entity and is used by the manager entity to
make its scheduling decisions. When this event is scheduled for execution, the method
that is to be executed is identified by a simple table lookup (recall that each message type
is mapped to a unique local method by the simulation programmer during entity
creation). The specified method is executed with the corresponding message as a
parameter.

The "timeout" event is handled as a special case separate from the message queues. The
timeout message may be used in one of two modes: timeoutfirst and timeout last. Given
a timeout scheduled for execution at time T, timeout first will execute the message before
any other messages with that timestamp. Timeout last guarantees that it will be executed
only after all messages with that timestamp have been executed. Timeout last can be
used to collect all messages of a certain timestamp by scheduling a timeout of duration 0.
In COMPOSE, the "timeout method" which performs the timeout processing, is
registered dynamically using the "ScheduleTimeout" library call described in (4.2.2)

4.5.3 Message Communication in Shared Memory

In the shared memory implementation, each manager thread has an incoming message
buffer into which other managers can deposit messages. Rather than deposit entire
messages, only message pointers are actually inserted. Since these buffers are accessed
concurrently, they must be locked. A simple dual buffer technique is used so that the
destination manager can empty a buffer while other threads are adding more messages to
the alternate buffer. The buffers are implemented as contiguous arrays so that a single
cache-line will contain a good sized block of the transferred message pointers. This
minimizes the number of cache lines that need to be retrieved when the buffer is emptied.
Minimizing cache line movement is a critical factor for efficient execution of a parallel
simulator.

In optimistic mode, these buffers also distinguish between regular messages and anti-
messages so that an anti-message can also be sent by merely sending a pointer to the
original message.

Message Memory Caches
Message memory is cached in COMPOSE to lower the number of calls to the system
allocate and de-allocate routines, which are considerably more expensive. Each manager
thread maintains its memory cache locally and first tries to obtain the memory required to
transmit a message from the local pool. On receiving a message, the receiver thread

33

gains ownership of the message and the corresponding memory. This scheme has been
referred to as "sender pools" in the literature. The message pool at each entity is
organized as a set of lists, where each list contains free message blocks of a given size,
with the sizes organized into ranges. A default set of ranges is provided by COMPOSE,
but can be overridden by an entity. Large messages outside these size ranges are not
cached. The sender pool scheme can lead to imbalances in the size of the local memory
pools if, for example, an entity is a message sink. To handle imbalances, COMPOSE
maintains a central memory pool. Messages are transferred to this pool by a manager, if
the number of messages at a manager thread gets above a certain threshold. When a
manager exhausts its local pool, it checks the central pool before allocating additional
memory from the OS.

4.5.4 Message Communication in Distributed Memory

In the distributed memory implementation, COMPOSE relies on MPI to implement
communication among remote entities. The communication subsystem collects
information needed by the distributed GVT algorithm. Specifically, it tracks the
sequence numbers and the message simulation times of messages that it sends to and
receives from other nodes. This information is periodically sent to the central GVT
algorithm calculator and is used to compute the GVT as explained in section 4.5.8.

4.5.5 Entity Creation and Initialization

Creation in COMPOSE is complicated because of the 'library only" limitation as well as
the need to run in distributed memory. Basically, to create an arbitrary entity object on a
remote node, the runtime systems must call the constructor of the entity object which
resides in a different address space on the destination node. This requires two problems
to be solved: first, C++ does not provide a pointer to a constructor feature. The simple
(and standard) workaround for this deficiency is to define a trivial function that just calls
the constructor and using a pointer to the trivial function. This trivial constructor
function is defined in the "COMPOSEENTITY ENVIRONMENTQ" macro that must
be inserted into the user's entity classes. The second problem is that the pointer must
point to the appropriate location in the address space of the destination node.
COMPOSE uses the fact that the execution binaries on the two nodes are identical and
tweaks the pointer passed by the creator o point to the right executable code.
Entity creation and initialization is done synchronously which means the creator entity is
blocked until these actions complete. Synchronous creation helps to prevent race
conditions in message communications.

4.5.6 Null Message Algorithm

COMPOSE provides an implementation of the null message conservative algorithm. The
null message algorithm works by sending null messages that give guarantees about the
earliest message that could be sent from one entity to another. By taking the minimum of
these guarantees, the entity can determine whether it can safely execute an event. The
null message algorithm uses the message communication topology to reduce the number
of null messages. This topology is represented by the predecessor- and successor-sets

34

described in section 4.6.2. These sets can be viewed as input and output channels from
and to other entities. For each predecessor, there is an "Earliest Input Time" (EIT[i]) for
the channel, the minimum of all these EITs is the overall EIT for the entity. Each
channel to a successor gets an Earliest Output Time (EOT[j]) from the entity. There are
two modes to calculate EOT, one mode with a single global EOT and one mode that
calculates channel specific EOT[j]'s. To carry out this calculation the simulation
programmer needs to specify lookaheads and "EOTCeiling"s. The "lookahead" is the
minimum delay before sending a message after receiving a message and the EOTCeiling
puts a limit on the EOT calculated (for supporting "Timeouts"). Depending on the mode
there may be one pair of these values or one pair for each output channel. The equations
for calculating EOT or EOT[j] are as follows:
"* ErT = min(EIT[ii).
"* EarliestEventTime = min(E1T, CurrentEntityTime, EarliestMessagelnQueueTime)
"* EOT = min((EarliestEventTime + LookaheadTime), EOTCeiling)

or
" EOTUj] = in((EarliestEventTime + LookaheadTime[j]), EOT-Ceilingfj])

Entities propagate EOTs by sending null messages. The entity managers usually
schedule sending null messages and entities do not necessarily send null messages every
time an EOT changes. Entities piggyback EOTs onto regular messages on distributed
memory architectures. Currently the runtime calculates EITs, EOTs and flushes null
messages when there are no events to process. Another possibility would be to flush null
messages after so many events.

In the conservative algorithm, the GVT value is a lower bound on the earliest event time
currently in the simulation. If an EIT is less than GVT, then the EIT can be increased to
the GVT. This could be used to jump the null message algorithm forward if there was a
large quiet period in the simulation. Normally when running the conservative
algorithm, the GVT algorithm is only used for termination, i.e. when it detects that there
are no events left to be executed in the simulation.

4.5.7 Null Messages in Shared Memory

Null messages are used to notify an entity of a new "Earliest Input Time" for a channel.
In shared memory, instead of making and sending null messages, the system can simply
set the EIT variable directly at the destination entity without using locks. This requires
moving only one cache line. This saves the overhead of sending an actual message that
must be created and inserted into the concurrent message buffers (which requires using
locks). This is possible because there is only one writer and only one reader. Another
nice property is that Channel EITs always increase. The downside of this scheme is that
the entity and its manager no longer have notification when the Channel EITs change and
thus the runtime must poll these variables. This requires the entity managers to schedule
when the entities EIT (minimum of all channels) will be calculated. Because the "null
messages" are bypassing the communication buffer used by the regular messages, there is
a possibility that the "null messages" will pass the regular messages and be processed in
the wrong order. To stop this from occurring, the runtime first calculates EITs (gets the
"null messages"), then it empties the normal messages in the communication buffer and
finally it calculates the EOTs needed for outgoing null messages.

35

Currently the entity manager simply notifies all entities to perform EIT and EOT
calculations and do null message sends. It does not keep lists of entities with pending
calculations or null messages. This is reasonable, as the conservative algorithm normally
needs a steady flow of null messages flowing around the system to be efficient so it is
likely that each entity will have null messages to send. This is especially true given that
the manager does null message calculations only when it has run out of executable
events.

4.5.8 Optimistic Algorithms

Entity State Saving and the Event Queues

In optimistic mode, an entity's state is saved so the entity can be rolled back. This
requires a set of queues to keep track of past events, states and output messages.
COMPOSE supports periodic state saving which implies that the entity's state may not be
saved for each event. This naturally causes a distinction between event and entity state
data-structures. The past event data-structure has the following information:
"* A reference to the event's message.
"* The "preempt time", i.e. if there is a message before this time the event must be rolled back.
"* A reference to the list of output message that the event sent. This is needed for sending anti-messages.
"* An optional reference to a copy of the entity's state.

The runtime implements an event queue that records past events by inserting new event
records at the tail of the queue. Rollbacks remove incorrect events from the tail of the
queue and the old events are deadwood collected from the front of the queue. It is
important that the event record be as small as possible as each event record is memory
overhead that will slow the simulator down (cache effects) in comparison with the
sequential simulator.

Each event record also keeps track of the message that corresponds to the event and all
messages generated by the event. This allows these message to be cancelled via anti-
messages. The event record can also have a reference to a copy of the state of the entity
before the event was executed. This allows the state of the entity to be restored during
rollback. Note that all data-structures used by the runtime implement memory caching so
as to minimize the use of the OS memory management system calls. For example, the
above queues will keep a free list of "queue cell memory blocks" for reuse. This means
that these data-structures will grow to their maximal size and not shrink. Currently,
there is no memory cache flushing protocol in COMPOSE.

Periodic State Saving with Coast Forward
Because of periodic state saving, the closest saved state may be earlier than the desired
state. To restore the entity to the desired state, the runtime "coasts forward" from the
saved state. A "coast forward" re-executes already completed events merely to restore
the state of the entity; output messages generated by the entity during this phase are
discarded.

36

Anti-message rollbacks

An entity message may be cancel a message that was sent earlier by sending a anti-
message. When an entity receives an anti-message, it checks to see if the message has
been processed. If not, the message is simply deleted from the message queue. If it has
been processed, an anti-message rollback event is scheduled by the destination entity (a
variable is set) and the incoming message s marked appropriately. In shared memory
architectures, this marking can be done directly by the sender by maintaining a pointer to
the original message. Eventually the anti-message rollback event is executed assuming
it is not preempted by an even earlier anti-message or straggler message rollback. The
anti-message rollback causes the entity's state to be restored to before the cancelled
message's execution and this event and all later events are canceled. For each cancelled
event, the event's message is put back into the message queue (if it has not been killed)
and anti-messages are sent for all sent messages.

Straggler rollbacks

A straggler message refers to a message that is received by its destination after a message
with a later timestamp has been processed. An entity schedules a straggler rollback event
when it receives a straggler. Execution of this event causes the entity to be rolled back
to a checkpoint preceding the timestamp of the straggler, cancel all events (and
messages) that were executed and re-execute the events following the straggler. Note
that the straggler event does not cancel events of the same timestamps except for
"timeout last" timeouts which must be the last event for that timestamp.

Rollback with Lazy Cancellation

When an entity is rolled back, it typically cancels all events that it generated since the
event that is being rolled back. As discussed earlier, cancellation is implemented by
sending anti-messages. With lazy cancellation, an entity that is rolled back does not send
the anti-messages immediately, but rather stores them locally in the Lazy Cancelled
Message List(LCM). During a subsequent re-execution, if the sequence of generated
messages are a complete subsequence of messages in the LCM, they are simply
discarded. If a generated message is different, the remaining messages in the LCM must
be cancelled by sending the corresponding anti-messages and the new messages are sent
to their destinations. Lazy cancellation may prevent unnecessary cancellation and re-
execution of a given event. For example, if a straggler message simply causes the event
to be queued within a destination entity, the events generated by the entity following a
rollback will perhaps be identical to the ones that were generated during the preceding
computation: Note that the implementation must include messages on the LCM when
computing the GVT of the model.

Entity State Savinq

Periodically, COMPOSE checkpoints all of an entity's state into "state objects" to
support rollback and recomputations. The following information is saved:
"* All time varying status variables in the runtime (the entity's time, etc).
"* A memory dump of the user's entity object.
"* All dynamically allocated objects from the state saved memory manager.

37

The runtime provides a user accessible state-saved memory allocator that keeps track of
blocks of memory so that can be saved and restored when a rollback occurs.

Copy State Saving

The state of the entity is represented as a list of memory blocks. This includes both the
entity object itself and dynamically allocated memory in the entity's changeable state.
Note that these memory blocks cannot be moved because the user may have pointers in
their data-structures that reference the addresses in these blocks. The concept behind the
big block system is to provide a software layer to support different small block memory
allocators which use the big blocks. The memory blocks can also have a dynamic size,
i.e. the last used address can be specified so that unused memory does not have to be
saved.

To save the entity state, the list of entity state memory blocks and the entity object's
immediate memory are copied into a "memory block queue". The process is reversed to
restore the state of the entity. Conceptually the "memory block queue" allows for the
saving of memory blocks of many varied sizes in a packed sequential manner. Memory
blocks are saved at the back of the queue and rollbacks will cause memory from the back
of queue to be reused. Garbage collection reclaims memory from the front of the queue.
Because of the properties of optimistic execution, memory will never have to be
reclaimed from the center of the queue. The implementation of the "memory block
queue" is a doubly linked circular list of fixed sized blocks. In this circular queue of
fixed sized blocks, the "state blocks" being saved can start at any position within a fixed
size block and can span any number of fixed blocks. The queue is expanded as needed
and by leaving the allocated memory in the circular queue when it becomes unused, the
queue serves as "memory cache" (which reduces calls to the OS memory allocator).
There may need to be a periodic mechanism that flushes this cached memory back to the
OS.

One complication is the addition and deletion of blocks to the entity's state block list.
Previous saved states will not have the same state block set and thus copying the old
block set over the new block set will not work. To handle deletion, the "state block list"
keeps deleted blocks around until the states that include the block are deadwood
collected. To handle insertion, the system keeps track when the block was created to
detect and when the creation is rolled-back the block can be deleted.

Rollbackable Data structures

Rollbackable data structures remember past states and can roll backwards in time.
Pointers to these objects are kept on a list and when a rollback or deadwood collection
occurs each of these data-structures are notified. C++ allows for these objects to
automatically register themselves with the runtime. This is done by placing code in the
base rollbackable class's constructor to register itself with the currently executing entity.
This allows for automatic registration without bothering the user.

38

class RollbackableType (
public:

RollbackableType (;
virtual void Rollback(int EventNumber) = 0;
virtual void void GarbageCollect (int BeforeEvent) 0;

private
PointerType (EntityType) EntityPtr;

};//RollbackableType//

RollbackableType: :RollbackableType() {
EntityPtr = EntityType: :CurrentThreadsEntityPtr 0;
Entityptr->RegisterRolibackableObject (this);

)//RollbackableType)//

GVT Algorithms and Deadwood Collection

The Global Virtual Time (GVT) is a lower bound on the earliest message in the system.
In optimistic simulations, events before GVT can be reclaimed ("deadwood collected") as
these events can never be rolled back. When the GVT is calculated, it is immediately
distributed through out the system.

Currently the runtime schedules the GVT algorithms to execute periodically every "D"
real time seconds, where D is a user-specified parameter that should typically be set to a
small fraction of a second. A designated thread (Thread 0) is in charge of controlling the
GVT calculation along with its other normal simulation duties.

Simple shared memory GVT algorithm

The shared memory GVT calculation algorithm is a simple non-blocking algorithm based
on time intervals. In this algorithm, each virtual processor thread stores the earliest
timestamp on any message sent to another thread during the current interval. The
beginning and end of the intervals are designated when the "Interval Local Virtual Time"
(Interval LVT) is calculated.

The algorithm is as follows:

1. The thread calculating the GVT sends "Interval LVT Request Messages" to all other
nodes. It then goes back to regular processing.

2. Each node on receiving a "Interval LVT Request Message":

"* Finishes distributing all messages from the communication buffer.

"* Calculates the minimum of the current lowest event time of all its entities and the
time of the earliest message sent during this interval. A new interval is then
started.

"* Sends a "Interval LVT" message with the calculated value back to the GVT
calculating thread.

3. On receiving the last "Interval LVT Message" from the other threads, the GVT
calculating thread calculates the GVT as the minimum of all received "Interval
LVT"'s and its own "Interval LVT" (calculated as in (2).

39

4. The GVT calculating thread sends a "GVT notification" message with the new GVT
value to the other threads and performs its own deadwood collection processing based
on the new GVT.

5. On receiving a new GVT the threads perform deadwood collection to clean up its
memory.

Simple Distributed GVT alqorithm
The simple distributed GVT algorithm works as follows: Each time a message is sent or
received its sequence number and message time is noted by the subsystem. Periodically
the subsystem is instructed to send a summary of this information to the central GVT
controller. The information sent is the sequence number interval for each output channel
and the lowest message times for each interval. Also the last sequence number received
on each input channel is also sent and the Local Virtual Time for the node. The GVT
controller looks at this information and can determine a lower bound on the time
messages that are still "in flight" and must be used in the GVT calculation. Periodically
the GVT controller calculates the GVT and sends it to all other nodes. This calculation is
simple: the sent sequence number intervals for each channel are remembered (a list),
when a new value for the last received sequence number for that channel is received, the
intervals before that sequence number are deleted and the minimum time of the
remaining intervals is recalculated. This protocol uses O(N) messages of size O(N) per
periodic GVT calculation phase.

4.6 Algorithm-Specific COMPOSE Constructs

4.6.1 Sequential Algorithms

If the simulation is executed with one virtual processor, the runtime will default to
sequential execution using the global event list algorithm based on splay trees. No
optimizations are needed to execute the model in this mode, which is the default mode
for COMPOSE models.

4.6.2 Null Message Algorithm

To execute in this mode the "Starter Entity" must execute the
"DoNullMessageSyncronizationo" method.

An entity notify the runtime that it will execute conservatively by calling:

2 AnmConservativeO;

With the Null Message algorithm each entity must notify the system of its local topology,
i.e., which entities it will send to. The following methods allow an entity to add or delete
destination entities from its local topology.

"* AddSuccessorEntity(const EntityNameType& EntityName);

"* DeleteSuccessorEntity(const EntityNameType& EntityName);

40

The entity must also specify the lookahead:
2 void SetLookahead(LookaheadTime, EOTCeiling);

The "LookaheadTime" (of type TimeType) is the minimum delay that on receiving a
message the entity will send a message to another entity. The "LookaheadTime" is used
to calculate the "Earliest Output Time" which is defined to be the earliest time that the
entity could possibly send a message. The "EOTCeiling" (TimeType) is an optional
parameter that specifies a ceiling on the EOT and is normally used in conjunction with
"Timeout Events".

* void SetLookahead(DestinationEntityName, LookaheadTime, EOTCeiling);

This version of"SetLookahead" allows the user to specify lookahead times for each
destination entity. This gives finer control over EOT's than the global lookahead
approach. The two "SetLookahead" call types are mutually exclusive and calling both in
the same entity will produce a runtime error.

If the topology or lookahead are incorrectly specified, the simulation will terminate with
a runtime error.

Dynamic creation of entities with the conservative simulation algorithm is very tricky.
Suppose entity "A" wants to create entity '"' that will have a reference to existing entity
"B", then there must be a "positive lookahead path" from entity "A" to entity "B" with
total lookahead time "L". Furthermore, the new entity "N" must not send a message to
"B" before delaying by at least "'L" (otherwise the previous lookahead guarantees would
be violated).

4.6.3 Optimistic Algorithm

With Optimistic execution, the entity's state must be saved and restored. COMPOSE
saves the memory image of the entity's member variables. Changing dynamic memory
pointed to by member variables must also be saved. To accomplish this, all such
dynamic memory must be allocated from a state-saved memory allocator as follows:

DataPtr = new (StateSavedMenory) DataType (...);

The runtime system will keep track of this memory and restore it to its proper state when
a rollback occurs.

Non-changing data structures can be allocated with the standard "new" operator.

Note that if even one bit of changing state is not under the control of the optimistic
runtime, then the simulation will fail to work correctly as the entity's state will not be
rolled-back properly. This mistake is extremely easy to make, as it will occur with any
use of global variables or memory allocated through the standard "new" call supported by
C++.

41

Optimistic Entity Termination and Abortion

With a dynamic topology, events that create other entities can be rolled-back which
causes the creations to be rolled-back. Thus, entities can be created and then rolledback
out of existence (aborted). This causes an ambiguity when the entity's destructor is
called as it is not known whether the entity terminated naturally or was aborted.

To differentiate between the two cases the following method is provided:
N Bool ICompletedNormallyO;

This method will return true when the entity completed normally and false when it is
aborted (rolled-back out of existence). The simulation programmer should dump results
only if the entity completed normally.

Optimizations

a SetStateSavinglnterval(int Interval);

The "SetStateSavinglnterval" method allows the entity to change its state saving interval.
State saving interval defaults to 1 (saved every event). Upping this value lowers state
saving costs and memory requirements, but increases the cost of doing a rollback.

M TurnOnLazyCanceflationO;

This method switches to "lazy cancellation" of anti-messages, a variant of the optimistic
protocol. The default is aggressive cancellation that sends anti-messages immediately.
Lazy cancellation delays the sending of anti-messages in the hope that the re-execution of
the entity will produce the exact same messages that were produced before. When this
occurs, the anti-messages and the duplicate messages do not have to be sent.

42

5. Database Models

The primary focus of the Phase I effort was to implement a prototype parallel simulator
using C++ and evaluate the feasibility of simulating very large parallel databases
accessing many terabytes of data running on thousands of processors. In modeling
parallel databases, there are two important considerations: the hardware architecture and
the data model.

5.1 Hardware Architectures

Three types of architectures have commonly been used for parallel databases:
"* Shared-memory architectures: All processors share all memory and all disk resources

available within the system.
"* Shared-disk architectures: Each processor has private memory but all disks are shared

among all processors
"* Shared nothing, or clustered, architectures: Each processor can access a unique set

of memory and disk elements. Access to the remote disk or memory element must be
sent as a message using the interconnection network.

In recent years, almost all parallel databases, particularly in the commercial context, have
migrated towards the shared-nothing architecture. Two primary reasons have led to this
development: first, this architecture is able to exploit advances in processor, memory and
disk technologies directly. Second, the cluster computing architecture is scalable, both
in terms of the maximum number of devices that can be connected together without
significant increase in the interference in the communication network, as well as in its
ability to do this in an incremental manner. Most commercial vendors are beginning to
exploit this architecture for their parallel databases; Teradata was among the first to use
this architecture for their parallel databases. The focus of this effort was on shared
nothing architectures.

5.2 Parallelism in Relational Databases

In relational databases, parallelism may be exploited via inter-query parallelism (multiple
OLTP queries can be processed simultaneously by multiple processors) or intra-query
parallelism where a complex query is decomposed into multiple steps, which may be
executed in parallel. Scans and joins are the most common operators in complex
queries and their execution time has the most impact on overall database performance.
A relational query can be executed as a dataflow graph which can exploit both pipelined
and partitioned parallelism. In general, pipelined parallelism offers limited opportunities
for speedup because a query has only a few steps. In contrast, partitioned parallelism
offers significant opportunities for scaling with processors, disks, and perhaps most
importantly, the size of the database. Given the significantly larger potential for superior
performance with partitioned parallelism, this effort was devoted primarily to the
evaluation of workloads amenable to this form of parallelism.

5.3 Data Partitioning

43

Parallel databases partition a relation to improve performance by exploiting the collective
bandwidth from accessing multiple disks in parallel. This involves distributing the tuples
in a relation over multiple disks. Three primary partitioning strategies have been used:
round robin that simply allocates the tuples among the disks in a round robin fashion;
range partitioning that clusters tuples based on their proximity with respect to specific
attributes; and hash partitioning which use a hashing function on a specified attribute of
the tuple to decide its placement on a specific disk. The latter two techniques are used
commonly: for instance Teradata uses hash partitioning whereas both Tandem and Oracle
have used range partitioning. Both techniques have advantages in specific applications:
range partitioning clusters related data together, but tends to be application-specific. So
if a given relation is used in many different types of applications, the clustering may lead
to sub-optimal performance. It is also the case, that queries with even low amounts of
selectivity can cause severe load imbalance. In contrast, hashing tends to randomize data
rather than cluster it and is more suitable for sequential and associative scans (where data
with a given value of an attribute are accesses together). Some databases use a variation
of range partitioning where the range is not selected uniformly; rather the data is
distributed based on the access frequency of tuples.

Partitioning raises a number of performance issues. Note that although partitioning
generally tends to improve performance, beyond a limit it can cause unnecessary
fragmentation of the relation leading to an increase in the execution time
[Ghandeharizadeh and DeWitt 1990]. In Phase I, our aim was to evaluate performance
of workloads and datasets using the hash partitioning that has been used by Teradata.

5.4 Prototype Database Models

The prototype model simulates a parallel database running on a parallel architecture. The
hardware architecture can be viewed as a set of N nodes linked by a multi-path
interconnection network such that no memory or other resources within a node is directly
shared or accessed by another node. Each node is a symmetric multiprocessor and
consists of P processors, C disk controllers and D disks, where controller ci controls di
disks. The processors are connected to the disk controllers via a common bus. Memory
elements are not shown in this schematic because memory performance is critical in data
base models. A simple schematic of the hardware architecture is shown in Figure 2

below.

From a software perspective, each node has two types of threads: PE threads and AMP
threads that together share the processors available within each node. Each PE thread
controls a unique job, that consists of a sequence of steps. Some steps are required to be
executed on all the nodes (for instance for a query that does a massive scan) and others
may only be executed only on a specific node. Each step is executed by creating an
AMP thread that corresponds to the operations to be performed on a subset of the disks
belonging to that node. Each AMP thread created by a step owns a unique set of disks,
such that a disk di may only be accessed by some AMP thread, say ampj. The AMP
thread is the primary simulation object in the model and it executes the following two
tasks to simulate the execution of a query on its subset of disks: first, is the local step,
where it performs the local computation and the 10 operations necessary to compute a

44

local result and second, is the transmit step, where it transmits the result to the PE that
owns this step.

SMP Nodes

Iiskstr

System I I
Interconnect

Figure 2: Schematic of A Parallel Database

The first task is performed by implementing it as a loop that uses the following facilities
in sequence: CPU, bus interconnect internal to the node, disk controller(s) that control its
unique disk subset, and a set of disks. The number of loop iterations and the amount of
time used by each of the preceding components per iteration is parameterized. The loop
is used to simulate the resource sharing and contention among the different threads within
the SMP node as each AMP thread performs the required read/write operations on the
disks, performs necessary computations, and possibly moves data between the multiple
nodes.

The second task simulates transmission of the results computed by the AMP thread to the
PE as a sequence of one or more return packets. This task uses the CPU component
within the node that performed the computation, utilizes some time on the global
interconnect, and uses CPU at the destination node that contains the PE thread that
spawned this step. Once the preceding tasks have completed, the AMP thread terminates.

A scan operation is simulated by performing a large number of local steps in a loop. A
hash join or other operation that involves a redistribution of data requires transmitting the
result of a query back to the corresponding job thread. This is simulated by inserting
appropriate, transmit steps into the preceding scan loop.

In the simple model, each of the preceding components except the interconnect (CPU,
system bus, disk controller, disks) is modeled by a FIFO server. As each node has an 8
processor CPU, the processors are modeled by a service station with 8 FIFO servers.
The model computes the average waiting time and utilization for each server.

A number of communication models were implemented to simulate the system
interconnect. In the initial version, the interconnect was modeled as a simple global
resource and simulated using a common FIFO queue. However as this did not appear to

45

be an appropriate representation of the system (it introduced large queuing delays even
among messages that were being transmitted between independent source-destination
pairs), the interconnect was subsequently modeled by a distributed direct link based
model. The resulting model was used for the initial comparison between PARSEC,
CSIM, and COMPOSE and is henceforth referred to as Model 1. In the direct link
model, there are no shared interconnect path ways and contention is only modeled on
links into or out from a node. In Model 1, query result was simulated by sending
messages to the proper "job thread", but data redistributions only simulated the use of the
communication links. Note, a data redistribution will send to all other nodes, while a
query result communication will only send data to the node that is executing the
corresponding "job thread". The next evolution of this model (Model 2) was to improve
the fidelity of the data redistribution queries in two ways:

* The transmit phase occurs periodically during the local loop, rather than only at the
end

Actual messages are sent to the destination node(s) to simulate the use of the
interconnect on data redistributions, rather than simply simulating these as delays at
the local interconnect facility. This allows an interconnect communication model
with shared pathways to be modeled by the system. For example, congested shared
interconnect pathways will increase the communication time and thus may become a
bottleneck and thus increase the time to complete a database step.

Both Model 1 and Model 2 have a very low computation granularity because each
system component is modeled by a server where the only computation in response to an
incoming message is the computation of a service time for the corresponding step. Even
the time to execute a read or write request for a data block is modeled simply by
delaying the corresponding AMP thread by an interval that is proportional to the length of
the data block that is being read or written. No algorithmic or data distribution
properties of the system are simulated. Given the extremely low computation
granularity, it did not appear reasonable to model each facility as an entity as this would
severely degrade the sequential performance. Instead, each facility was modeled by a
"variable' within a single entity that simulated each node of the target hardware. This
approach was dubbed the 'Variable Facilities' approach as each server (or facility) is
modeled by a single variable.

Using the "Variable Facilities' approach, the sequential COMPOSE implementation of
Model I was found to be 3X faster than the functionally equivalent CSIM model. This
exercise also served to illustrate the classic tradeoff between programming effort and
ease of use versus raw execution speed. Clearly the use of variable facilities considerably
improved the performance of the sequential simulator but the performance benefits came
at the expense of considerable programming efforts when compared with the ease of
implementing a model where each facility was programmed as a simulation object.

5.5 Model Parallelization

46

Large data mining database operations have considerable internal parallelism which has
prompted the development of parallel databases on massively parallel architectures. It
follows that a simulation model of such a system must also have considerable potential to
benefit from parallel execution. However, there is one significant difference between the
physical database and its model: the physical database has a large computation
granularity because each node may include a large set of relations. In contrast, as the
model simulates the local processing simply by estimating a delay the computation
granularity for the model is much smaller. The small computation granularity may, in
some cases, be compounded by frequent communications among the nodes that are
mapped to different processors of the simulator. These messages can create event chains
with small delays weaving back and forth between the processors in the simulator.
These chains will force the critical path of the parallel simulator to become too dependent
on the message passing latency of the simulating machine and thus likely to kill the
possibility of parallel speedups. This is why the communication between nodes in the
simulator is of primary importance to parallel simulation. With the conservative parallel
simulation algorithm, even the possibility of such chains will cause a problem, as this
algorithm must have guarantees that include the worst case. This is not the case with the
optimistic algorithm as it can tolerate such event chains if they are infrequent.
Fortunately, such chains do not occur very often with the data mining workloads, which
are characterized by long running scans and joins.

The models described in the previous section were executed using both conservative and
optimistic simulation algorithms and the results of the experiments are presented next.

47

6. Results

The Phase I study demonstrated the feasibility of using parallel simulation with
COMPOSE to achieve scalability for database modeling. As summarized in this section,
we were successful in developing a prototype implementation of an object-oriented
parallel simulation environment (COMPOSE), develop a simplified model of a Teradata
parallel database, simulate simple queries that were similar to the queries from the TPC-
D benchmark, validate the model with respect to a model developed by NCR using
CSIM, a commercial C-based simulation library, demonstrate the functional equivalence
between a COMPOSE and CSIM model of a Teradata database, and most importantly
demonstrate the considerably superior performance that could be obtained with the
COMPOSE simulator. Two different types of workloads were used to respectively
represent the best and worst case scenarios: the first workload represented a large scan of
the database that can effectively exploit the partitioned parallelism. Due to the large
amount of inherent parallelism, the parallel implementation of the simulator was expected
to produce good speedup. The second workload represents a query which includes steps
that requires significant data redistribution. Such steps would occur, for example, during
a hash join that must redistribute intermediate tables produced to evaluate the original
query. Because of the frequent communications, this type of query has relatively poor
performance on the physical database and even the parallel performance of the simulator
was expected to be relatively poor. This section presents the primary results from the
study.

6.1 Model 1: Sequential Performance

A model simulated a database running an 8-nodes with 8 jobs distributed to a
corresponding number of front-end (PE) threads. The first step in the study was to
validate the output from the COMPOSE model against the CSIM model developed by
NCR personnel. A detailed trace was produced to ensure that the event sequences were
identical in both cases. The execution time of the sequential implementations were
compared next. As seen from Figure 3, the sequential performance of the COMPOSE
model was almost 3 times better than the CSIM model. The 1-node implementation of
the conservative protocol performed even better than the sequential protocol, due to its
lower context switching overheads.

Simulator Time(secs) Speedup
CSIM 237 --

COMPOSE Sequential 82 2.9
COMPOSE Conservative 75 3.1

Figure 3 Comparative Simulator Performance on a Single Node of the Sparc 1000

48

6.2 Model 1: Conservative Performance

6.2.1 Parallel Model Refinement

In the conservative method, the simulation programmer must provide the simulation
system with "lookahead" information for each simulation object. The lookahead
represents a guarantee by the entity about the earliest future time at which it will send a
message; e.g., at time 10 a simulation entity can declare it will not send a message until
time 15 which implies that it has a lookahead of 5. In general, the larger the lookaheads
the better is he parallel performance.

The lookaheads for every "Job Thread" and "Worker Thread" were calculated and the
lookaheads were aggregated for each node. One of the methods used was to calculate a
total "contention-free" delay (lookahead) for the thread and then at each event subtract
the "contention-free" delay for that event. This works well with read scans as the delay
before they will send a completion message to the "Job Thread" is quite long. Since the
earliest output time to each node may be different, it makes sense to specify the
"lookaheads" for each node rather than use a single global value. With data
distributions or when results are returned to the "Job Thread", there is also an
"contention-free" delay that can be utilized. To maximize this delay, the lookaheads
must be based on the specific model's exact communication pattern. A good
characteristic of this model is that inter-node communication on large data mining
queries is usually a steady stream of packets. The conservative algorithm works best with
predictable steady stream communication and does not work well with infrequent and
unpredictable communication with small delays. A low delay "killer" query would be a
simple retrieval of a single data record as follows:

* A Job thread is created and sends a message to another node to get some data.

* The node has the data in a cache and can ship it back, with negligible delay, to the
Job Thread.

It may be necessary to modify the model to better exploit lookahead guarantees. For
example, it is known exactly when a transaction will enter the system and thus the
transaction can be inserted before its execution and used in lookahead calculations.
Another problem is the transition from one job step to the next. At the end of a step, all
"Worker Threads" must report that they are done. If the work done at the end of the step
is very small, there will be very little delay between the last message and the start of the
new step. To increase lookahead on long running steps, it may be necessary for the
"Worker Threads" to send estimates for which the "Job Thread" to calculate an estimate
for the start of the new step.

As the previous examples demonstrate, calculating lookaheads is a difficult task and
depends on the specific model, model parameters and the workloads to be modeled.
There will be certain combinations of parameter and workloads that will have poor
lookaheads and thus will result in poor parallel performance with the conservative
algorithm. The optimistic parallel simulation algorithm is probably more appropriate in
these situations. If the interconnect delay is large enough, then it may not be necessary to
bother with the all the above lookahead calculations as it would sufficient to just rely on
the lookahead of the interconnect delay.

49

6.2.2 Conservative Performance
The conservative COMPOSE model was migrated to two parallel architectures - a SUN
Sparc 1000 architecture with 8 symmetric multiprocessors and a 4-processor SMP
platform from DELL running Windows NT, where each processors is a Pentium Pro. We
first consider the performance on the Sparc. As expected, the parallel implementation
yields excellent speedup for the scan query (Figure 4). In the figure, the column titled
speedup presents the performance improvement as compared with the sequential
implementation and the column titled scaled speedup compares the parallel performance
with respect to the sequential CSIM model. Figure 5 presents the performance for the
hash-join query with data redistribution. Although the large amount of communication
with limited lookahead causes the speedup to become worse, parallel execution still
results in some benefit: with 4 processors there is a factor of 2 improvement in the
performance. Further, the simulation model assumed the very worst case, where the
communication latency on the target hardware was assumed to be 1 microsecond! For
realistic architectures, the communication latency would be considerably larger, and this
effect was investigated on the DELL platform.

Two sets of experiments were run on the DELL. The first set was similar to the
experiments run on the Sparc 1000; the purpose was to verify that the superior parallel
performance could be replicated on an architecture with state of the art sequential
processors. As seen in Figure 7, the speedup obtained for both the scan and the join
queries were comparable to those obtained on the SparclOOO with 4 processors. For the
second set of experiment, the communication latency of the target architecture was
varied. As the latency is increased, the lookahead in the model increases proportionately
which should lead to better parallel performance for the model. As seen from the graph
in Figure 8, this was indeed found to be the case, with the speedup for the join query
approaching that of the scan for communication latencies of over 500 microseconds.
Although, contemporary parallel architectures have a communication latency of between
20-100 microseconds, for the large amounts of data (typically in the Megabytes) that are
typically transmitted for database queries, communication delays of hundreds of
microseconds and even milliseconds are not unusual. For the Sparc 1000 case, when a
communication latency of 1 ms was introduced, the speedup went back to that obtained
for the scan queries (Figure 6). The evidence of significant potential for parallel
simulation to improve model execution time for this application is unmistakable!

No. of Processors Execution Time(s) Speedup Scaled Speedup
1 285 1 3.1
2 151 1.88 5.8
4 83 3.4 10.6
8 50 5.7 17.6

Figure 4 Parallel Performance of a Scan query: Sparc 1000

50

No. of Processors Execution Time(s) Speedup Scaled Speedup
1 204 1 3.1
2 152 1.3 4
4 102 2 6
8 89 2.3 7.1

Figure 5 Parallel Performance of a Query Involving Data Redistribution: Spare 1000

No. of Processors Execution Time(s) Speedup Scaled Speedup
1 195 1 3.1
2 107 1.8 5.6
4 55 3.5 10.8
8 35 5.5 17

Figure 6: Data Redistribution Query with Delay Model: Sparc 1000

No. of Processors Scan Join with redist.
Exec time speedup Exec time speedup

1 85 1 53 1
2 47 1.8 39 1.4
4 25 3.4 28 1.9

Figure 7: Parallel Performance on 4-way SMP with Intel Pentiums and Windows NT

3.5
3

-a 2

S1

0.5
0

0 500 1000

Latency (microsecs)

Figure 8: Speedup variation as a function of Communication Latency of target hardware

6.3 Model 2: Conservative Performance

As discussed in the previous section, the primary difference in Model 2 is that the
communication that arises in the physical system when simulating a scan query is

51

modeled more accurately. The experiments were repeated for the heavy communication
scenario for Model 1 as this was the most challenging workload for Model 1 in terms of
delivering appropriate parallel performance. The speedup for both the Sparc 1000 and the
Dell machines is presented in Figure 9 as a function of the number of processors.
As communication among the different entities in the model increases, a degradation in
the parallel performance of the model was expected because the lookaheads tend to
become worse than in the case where all communication occurs only at the end of the
step. This can be seen clearly from noticing that the 1-node conservative model now
becomes substantially less efficient than the 1-node sequential model. Note also that the
sequential execution time on the DELL platform is almost half that of the Sparc 1000, but
both architectures demonstrate he benefits of parallel model execution. It was interesting
that even for this configuration, reasonable benefits could be obtained from parallel
execution on both platforms!

Processors Sparc 1000 Dell 4-Way
Time Speedup Time Speedup

1; sequential 69 1 33.1 1
1; conservative 81 0.85 38.0 0.87
2 46 1.5 22.2 1.5
4 125 2.8 12.5 2.65
8 115 14.6.....

Figure 9: Parallel Performance of Model 2

6.4 Model 2: Optimistic Performance

A number of alternative model implementations were also used to evaluate the
performance of the optimistic synchronization algorithms for this model. Recall that in
the very first implementation, every thread and facility were represented by a separate
entity. Although this model was easy to develop it had terrible sequential performance
and, interestingly, the optimistic performance was also poor. The implementation of
Model 1 using the "variable facilities" concept greatly improved the basic efficiency of
the sequential model implementation but it also complicated the design and development
of the optimistic model. This is because the "variable facility" model merged all objects
that belong to a single node of the target architecture into a single simulation entity. The
default state saving technique in the system was the copy state saving and this introduced
substantial overheads for optimistic execution of Model 1. As expected, experiments
showed that running the model naively in optimistic simulation mode achieved
extremely poor performance (in some cases, 7X slower on 4 CPUs than the sequential
version). The reason for this is that copy state saving was too expensive. In these
experiments, periodic state saving helped to reduce this overhead, but increasing the
period increased the overhead of re-executing events during "coast forward" processing.
Obviously, a more sophisticated method of state saving was necessary. In addition to
state saving overheads, the costs of GVT computation also had an impact on the
performance. Figure 10 shows a sample scenario that demonstrates the impact of varying
these parameters on the performance of the parallel optimistic model. The experiments
were executed on the DELL platform. The second column indicates the number of

52

events executed by an entity between successive state saving operations and column 3
indicates the number of times GVT was computed/second of physical time. Increasing
the frequency of GVT computations improves performance because it reduces the
memory requirements of the model. Clearly the state saving problem had to be
addressed in a different way if the optimistic techniques were to be useful.

No. processors State Saving Interval GVT calculations/sec Exec. Time (secs)
1; sequential .. 8.9
4 10 20 80
4 100 20 12.9
4 100 100 11.9
4 200 20 11.2
4 200 100 9.9

Figure 10: Impact of state saving and GVT computation frequency on parallel performance

The method used for this report is a incremental state saving technique that only tracks
the part of the entity state that is actually modified by the execution of an event. For
each event, the entity prepares a changes record that records the part of the entity state
that was actually modified and this "change" record is then inserted into a queue. During
a rollback, the changes for the event can be undone by restoring the state of the
corresponding simulation object. Previous states can be restored by undoing all events
in the queue in backwards order, in the same way a undo function works in a word
processor or text editor. To prevent overflowing the computers memory, the front of the
"change" record queue needs to be garbage collected as soon as the simulator
determines that the past events will never be rolled back. COMPOSE provides a simple
interface to allow a model to be notified of rollbacks and garbage collections.

The implementation with the optimistic algorithms with incremental state saving was
used to evaluate the performance of the configuration that included the very heavy
communication scenario which had previously yielded he dramatic slowdowns described
previously. As seen from Figure 11, using incremental state saving did reduce the state
saving overheads substantially enough such that it was now possible to get improved
performance with parallel model execution on the Sparc 1000:

Processors Exec. Time (secs) Speedup
1 66 1
4 47 1.4
8 31 2.1

Figure 11: Optimistic Performance of Model 2

Though greatly reduced, state saving and keeping track of past events in the optimistic
runtime are the the major overheads with these results. If the model with this test case is
executed on 1 CPU but states are saved and managed the model is slowed down by a
factor of 2.6X. Eliminating the incremental state saving in the model lowered this to
about a factor of 2 slower which represents the COMPOSE optimistic mode overhead.
One inefficiency with this setup is that because we used a general optimistic simulator
both the model and COMPOSE keep and manage event/state queues. A specific
streamlined simulator for this model would be faster at the cost of not leveraging the
general simulator. Undoubtably, both the overheads in COMPOSE and the modeled

53

incremental state saving can be improved to lower this overhead somewhat. In the test
case, the overhead is overpowered by throwing processors at the problem. Given a larger
model configuration, a parallel machine with more CPUs and good memory bandwidth
should be able get better speedups with these results. The 8 node test case may be limited
by the small shared memory bandwidth of the Sparc 1000.

54

7. Conclusion
The Phase I study demonstrated the feasibility of using parallel simulation to achieve
scalability for database modeling.

As summarized in this report, during Phase I
"* we designed a performance evaluation capability for scalable systems,
"* developed a prototype implementation of an object-oriented parallel simulation

environment (COMPOSE),
"* developed a simplified model of a Teradata parallel database,
"• simulated simple queries that were similar to the queries from the TPC-D

benchmark,
"* validated the model with respect to a model developed using CSIM, a commercial C-

based simulation library, and demonstrated the functional equivalence between a
COMPOSE and CSIM model of a parallel database, and

"* demonstrated the considerably superior performance that could be obtained with the
COMPOSE simulator for different workloads.

Two different types of workloads were used to respectively represent the best and worst
case scenarios: the first workload represented a large scan of the database that can
effectively exploit the partitioned parallelism. Due to the large amount of inherent
parallelism, the parallel implementation of the simulator was expected to produce good
speedup. The second workload represents a query which includes steps that requires
significant data redistribution. Such steps would occur, for example, during a hash join
that must redistribute intermediate tables produced to evaluate the original query.
Because of the frequent communications, this type of query has relatively poor
performance on the physical database and even the parallel performance of the simulator
was expected to be relatively poor.

A model simulated a database running an 8-nodes with 8 jobs distributed to a
corresponding number of front-end (PE) threads. As described in this report, the
sequential performance of the COMPOSE model was almost 3 times better than the
CSIM model and the 1-node implementation of the conservative protocol performed even
better, due to its lower context-switching overheads. The COMPOSE model was
subsequently migrated to two parallel architectures - a SUN Sparc1000 architecture with
8 symmetric multiprocessors and a 4-processor SMP platform from DELL running
Windows NT, where each processors is a Pentium Pro. As expected, the parallel
implementation yields excellent speedup for the scan query on both platforms, with the
Sparc 1000 yielding a speedup factor of 17 on 8 processors as compared with the
sequential CSIM model and the 4-processor PC yielding a speedup of almost 10 as
compared with the sequential CSIM model. For the hash-join query with data
redistribution, although the large amount of communication with limited lookahead
causes the speedup to become worse, parallel execution still results in some benefit: with
4 processors there is a factor of 2 improvement in the performance. Further, the
simulation model assumed the very worst case, where the communication latency on the

55

target hardware was assumed to be 1 microsecond! For realistic architectures, the
communication latency would be considerably larger. in our study, this was indeed found
to be the case, with the speedup for the join query approaching that of the scan for
communication latencies of over 500 microseconds. Although, contemporary parallel
architectures have a communication latency of between 20-100 microseconds, for the
large amounts of data (typically in the Megabytes) that are typically transmitted for
database queries, communication delays of hundreds of microseconds and even
milliseconds are not unusual. The evidence of significant potential for parallel
simulation to improve model execution time for this application is unmistakable!

Based on the positive results obtained from the Phase I study, we have initiated
development of a state of the art performance modeling tool for scalable data base
systems using the COMPOSE parallel object-oriented simulator. A proposal for Phase II
funding for this purpose has been submitted to the DARPA ITO office.

56

8. Bibliography

M. Abbott and L. Peterson. A language-based approach to protocol implementation.
Technical Report Tech. Rep. 92-2, University of Arizona CSD, July 1992.

A. Allen, Introduction to Computer Performance Analysis with Mathematics, Academic
Press, Boston, 1994

Wing Au and Rakesh Jha. C3H Parallel benchmark suite: Map-image correlation.
Technical Report, Honeywell Technology Center, April 1997.

D. Baezner, G. Lomow, and B. Unger, "Sim++: The transition to distributed simulation,"
Proceedings of the 1990 SCS Multiconference on Distributed Simulation, San Diego,
California, January 1990, pp. 211-218.

R. Bagrodia, K. Chandy, and W-T. Liao, A unifying framework for distributed
simulations. ACM Transactions on Modeling and Computer Simulation, Vol. 1(4),
October 1991, pp. 348-385.

Rajive Bagrodia, Stephen Docy, and Andy Kahn ,Parallel Simulation of Parallel File
Systems and I/O Programs, SuperComputing '97 - SC97, November 15-21, 1997, San
Jose, CA.

R. Bagrodia and W. Liao, "Maisie: A language for the design of efficient discrete-event
simulations," IEEE Transactions on Software Engineering, Vol. 20(4), April 1994, pp.
225-238.

R. Bagrodia, R. Meyer, B. Park, H. Song, Y. Chen, X. Zeng, J. Martin, M. Takai;
"PARSEC: A parallel simulation environment for complex systems," IEEE Computer
Magazine, 1998 (to appear).

R. Bagrodia and C.-C. Shen "MIDAS: Integrated Design and Performance Evaluation of
Distributed Systems,"; IEEE Transactions on Software Engineering, October 1991, Vol.
7(10), pp. 1042-1058.

Carrie Ballinger. Relevance of the TPC-D benchmark queries. Technical report, NCR
Parallel Systems, 1996.
B. Bayerdorffer, "Distributed Programming with Associative Broadcast", HICSS , Jan.

1995.

G. Booch, J. Rumbaugh and I. Jacobson '"nified Modeling Language User Guide"
(Addison-Wesley, Englewood Cliffs, 1997)

H.-Boral, W.-Alexander, and L.-et-al Clay. Prototyping Bubba, a highly parallel
database system. IEEE Transactions on Knowledge and Data Engineering, 2(1):4--24,
March 1990.

57

E.-A. Brewer, C.-N. Dellarocas, A.--Colbrook, and W.-E. Weihl. PROTEUS: A High-
Performance Parallel-Architecture Simulator). Technical Report MIT/LCS/TR-516,
Massachusetts Institute of Technology, Cambridge, MA 02139, 1991.

J. Briner, J. Elis, and G. Kedem, "Breaking the barrier of parallel simulation of digital
systems," Proceedings of ACM/IEEE Design Automation Conference, 1991.

Y. Chen and R. Bagrodia, "Shared Memory Implementation of A Parallel Switch-level
Simulator," Proceedings of the 12th Workshop on Parallel and Distributed Simulations,
Banff, Alberta, Canada, May 1998.

Peter F. Corbett and Dror G. Feitelson. The Vesta parallel file system. ACM Transactions
on Computer Systems, 14(3):225--264, August 1996.

Culler, D., Rt Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian,
T. VonEiken, "LogP: Towards a Realistic Model of Parallel Computation", Proc. 4th
ACM SIGPLAN Symp. on Principles and Practices of Parallel Programming (PpoPP
'93),San Diego, May 1993, pp. 1-12.

H. Davis, S. R. Goldschmidt, and J. Hennessey. Multiprocessor simulation and tracing
using Tango, Proceedings of the 1991 International Conference on Parallel Processing
(ICPP'91)}, pages II99-41107, August 1991.

S. Das, R. Fujimoto, K. Panesar, D. Allison, and M. Hybinette, "GTW: A time warp
system for shared memory multiprocessors," 1994 Winter Simulation Conference, Lake
Buena Vista, FL, December 1994.

Deelman, E. et al, POEMS: End-to-end Performance Design of Large Parallel Adaptive
Computational Systems, Workshop on Software Tools & Performance, 1998 (submitted)

Defense Modeling and Simulation Office, HLA Interface Specification 1.1, Feb 1997.

Dewitt and J. Gray, Parallel Database Systems: The Future of High Performance
Database Systems, Communications of ACM, 35(6), June 1992, pp8 5 -9 8 .

D.-Dewitt, S.Ghandeharizadeh, D. Schneider et al, The gamma database machine project
IEEE Transactions on Knowledge and Data Engineering), 2(1):44--63, March 1990.

P. Dickens, P. Heidelberger, and D. Nicol, "Parallelized direct execution simulation of
message-passing parallel programs," IEEE Transactions on Parallel and Distributed
Systems, Vol. 7(10), October 1996.

Ghandeharizadeh, S. and DeWitt D.J., Performance Analysis of Alternative Declustering
Strategies, Proc. Sixth International Conference on Data Engineering, Feb, 1990

N. Gunther, The Practical Performance Analyst, McGraw Hill, New York, 1998

58

IEEE Transactions on Knowledge and Data Engineering, 2(1), March, 1990

R. Jain, The Art of Computer Systems Performance Analysis, John Wiley & Sons, New
York, 1991

D. Jefferson, "Virtual Time," ACM Transactions on Programming Languages and
Systems, Vol. 7(3), July 1985, pp. 404-425.

V. Jha and R. Bagrodia, "A performance evaluation methodology for parallel simulation
protocols," Proceedings of the 10th Workshop on Parallel and Distributed Simulations,
Philadelphia, PA, May 1996, pp. 18 0-1 8 3 .

J. Martin and R. Bagrodia "COMPOSE: An object-oriented environment for parallel
discrete-event simulations," Proceedings of the 1995 Winter Simulation Conference,
December 1995, pp. 763-767.

S. McCanne, S. Floyd et al "NS Manual page, http://www-nrg.ee.lbl.gov/ns/man.html

Menlo Software, DBAware 2.0 User Manual, http://menlosoftware.com/

Barton P. Miller, et al .The paradyn parallel performance measurement tools .IEEE
Computer, 28(11), November 1995.

J. Misra, "Distributed discrete-event simulation," ACM Computing Surveys, Vol. 18(1),
March 1986, pp. 39-65.

MPI Forum. MPI: A message passing interface. Proceedings of 1993 Supercomputing
Conference, Portland, Washington, November 1993.

V.A.Norton, Frederica Darema, and G.F. Pfister. Using a single-program- multiple-data
computational model for parallel execution of scientific applications. IBM Research
Report, RC 11552, IBM T.J. Watson Research Center, Yorktown Heights, New York,
November 1985

S. Prakash, Performance Prediction of Parallel Programs, Ph.D. Dissertation, UCLA
Computer Science Department; July 1996

Precise Software Solutions, Precise/SQL Manual, http://www.precisesoft.com/

J. Rasure, D. Argiro, T. Sauer, and C. Williams, A Visual Language and Software
Development Environment for Image Processing," International Journal of Imaging
Systems and Technology, Vol. 2, pp 183-199 (1990).

Daniel A. Reed, et al, Pablo: An extensible performance analysis environment for parallel
systems Pablo Research Group Technical Report; http://bugle.cs.uiuc.edu/Pablo.html,
1992.

59

S. Reinhardt, M. Hill, J. Larus, A. Lebeck, J. Lewis, and D. Wood, "The Wisconsin Wind
Tunnel: Virtual prototyping of parallel computers," Proceedings of the 1993 ACM
Sigmetrics Conference, May 1993, pp. 509-518.

J. Rumbaugh, et.al. Object-Oriented Modeling and Design, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

Rosenblum, M., S.A. Herrod, E. Witchel, and A. Gupta, "Complete computer system
simulation: The SimOS approach," IEEE Parallel and Distributed Technology, Winter
1995, pp. 34-43.

H. Schwetman, "CSIM: A C-based process oriented simulation language," Proceedings
of the 1986 Winter Simulation Conference, 1986, pp. 387-396.

S. Shlaer and S. Mellor "Object Lifecycles: Modeling the World in States" Yourdon
Press, New York, 1992

J.-Short, R.-Bagrodia, and L.-Kleinrock. Mobile Wireless Network System Simulation.
Proceedings of the 1995 ACM International Conference on Mobile Computing and
Networking, Berkeley, CA, November 1995.

W. Stallings, SNMP, SNMPv2 and RMON Practical Network Management, Addison
Wesley, 1996

NCR Corp, Teradata Capacity Planner White Paper, 1997.

UCLA Parallel Computing Laboratory, PARSEC User Manual, Release 1.0, Computer
Science Department, University of California, Los Angeles, CA, http://pcl.cs.ucla.edu,
February 1998.

X. Zeng, R. Bagrodia and M. Gerla, "GloMoSim: A library for the parallel simulation of
large wireless networks," Proceedings of the 12th Workshop on Parallel and Distributed
Simulations, Banff, Alberta, Canada, May 1998.

60

