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1.0   Introduction 

Presently, ultra-fast TDM is limited by the availability of a compact, 
short-pulse source that is directly compatible with fiber coupled 
modulator technology. Fiber laser signal sources possess several 
significant advantages over established diode laser technology. The pico 
second and sub-pico second pulse widths achievable in fiber lasers are 
significantly shorter, allowing more efficient use of the full bandwidth 
available from single mode fiber. The wavelength region and configuration 
of fiber based lasers are inherently compatible with fiber amplifier 
technology, thereby greatly facilitating compensation for the distribution 
and splitting losses encountered in practical systems. Finally, nonlinear 
soliton type pulse generation   and shaping in a fiber can be achieved 
naturally and can be designed to minimize dispersion induced limits 
experienced by all fiber systems at the bit rates required by the next 
generation of communication systems. 

Work done by us under previous contracts has been primarily directed 
towards developing a short pulse fiber laser using a multiple quantum 
well saturable absorber based on InAIIAs/lnGaAs structures as a passive 
mode locker. Using this approach, we have demonstrated the possibility of 
constructing a rugged, stable, and efficient source of 10 ps. pulses at a 
repetition rate of about 3.5 MHz. A critical factor in this work has been 
the reproducibility of the multiple quantum well structure used to mode 
lock the laser. The proper linear transmission and saturation flux at the 
laser operating wavelength are required for short pulse duration and a low 
pump power threshold. These factors have proven difficult to optimize. In 
order to obtain the information needed to control these parameters during 
the growth of the structures, correlated measurements of the linear and 
non linear transmission and mode locked pulse duration in as wide a range 
of samples as possible were continued as part of this contract. 

Furthermore, passively mode locked lasers tend to be subject to pulse 
frequency jitter, pulse amplitude fluctuations and CW background which 
can limit their usefulness in high speed communications applications. An 
analysis of these effects and the limitations they impose on passively 
mode locked fiber lasers was begun during the present contract. Of 
particular interest was the degree to which these types of noise can be 
reduced using a synchronized laser scheme reported on earlier. 



2.0 Results 

2.1 A Passively Mode Locked Erbium Fiber Laser for Field Use 

Work done by us has resulted in an extremely stable laser design which is 
fiber integrated, rugged, and completely free of   alignment and 

polarization   sensitivity.1-2 The entire system can be enclosed in a 2x3x5 
in. package. This linear cavity laser uses fiber gratings to determine the 
operating wavelength, is passively mode locked with a quantum well 
saturable absorber and is completely self-starting with a pump power 
requirement of only 40 mW in the fiber. This is to our knowledge the 
lowest pump power reported for such performance, and permits operation 
with standard compact cost effective 980 nm laser diode chips, in marked 
contrast to the multi stage pump diodes, TkSapphire pumped systems or 
bulk type Nd-YAG (YLF ) lasers generally used in recently reported ultra- 
short pulsed TDM applications. The pulse width achieved in our laser is 10 
picoseconds, corresponding to a potential system limit of 5 gigabits. 

1 
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Fig. 1. Fiber laser Design 

The laser is based on the linear cavity design shown in Fig.1. Here the 
Erbium doped fiber is pumped at 980 nm. through a fiber grating. The pump 
laser was a pigtailed semiconductor laser which produced a maximum 
pump power of 70 mW. in the fiber. The output coupler was a fiber based 
splitter. One fiber from this splitter was butt coupled to the surface of 
the multiple quantum well saturable absorber shown in Fig. 2, and fixed in 
place with a UV curable epoxy cement. The method of coupling is 
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illustrated in Fig 3. The other output port of the splitter was fusion 
spliced to an optical isolator through which the output of the laser was 
taken. 

10 nm ln0.53Ga0 47As wells 

iiii 

litt 
10 nm lno.52Alo.48As barriers 

1 |im 500 |im 

1 InP Substrate 

Fig. 2 Structure of the Quantum   Well Absorber 
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Fig 3. Fiber butt coupled to quantum well saturable absorber 
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The transmission of the fiber grating used in this laser is shown in Fig. 4. 

Fig. 4. Transmission of Grating Used in the Mode Locked QW Laser 

A typical spectrum and auto correlation trace of the output of the laser 
are shown in Figs. 5 and 6. Note that these spectra are characteristic of a 
specific quantum well structure. This data translates into a pulse 
duration of 8.0 ps., assuming a hyperbolic secant shape, and a spectral 
width of 0.35 nm or 43 GHz. The resulting time - bandwidth product was 
approximately 0.35. A summery of the operating characteristics of this 
laser is shown in Tab.1. 
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Fig. 5. Optical Spectrum of Mode Locked QW Laser Using Saturable 
Absorber 1305 



Fig 6. Auto Correlation Trace Corresponding to the Spectrum Shown in Fig. 5. The 
Pulse Duration from this Data is 8.0 ps. 

Out Put Power   1.00 mW 

Peak Power       40 W 

Wavelength        1.56 microns 

Period 300 ns 

Pulse Duration  10 ps 

Table 1. Laser operating characteristics. 

The auto correlation trace shown in Fig. 6 illustrates one of the problems 
encountered to date with this passively mode locked laser design. The 8.0 
ps pulses shown are superimposed on a broad background which involves a 
sizable fraction of the laser power, thus reducing the peak power of the 
pulses.    The reduction of this background might be substantially reduced 
by optimization of the saturable absorber and ways of accomplishing this 
are being explored, as described below.   Another problem is that the 
fundamental frequency of the mode locked pulses in these long cavity 
lasers is two low for several important applications. The frequency could 
be increased by shortening the cavity length by perhaps a factor of 10, but 
a frequency above 100 MHz is probably not obtainable by this means. 
Active mode locking would provide a way of operating the laser at a high 
harmonic of the fundamental frequency. 



2.2 Active Mode Locking and the Synchronization of a Passively Mode 
Locked Erbium Fiber Laser. 

The synchronization of short pulse fiber lasers is a requirement for their 
use in high speed optical communications systems where optical clock 
recovery is important. Also, as mentioned above, a drawback of most 
pulsed fiber laser systems has been their relatively low repetition rate 
(a few MHz) due to cavity length. We have demonstrated that mode locked 
pulses at a gigabit rate can be generated in the laser design described 
above by injection seeding with a second fiber laser actively mode locked 

in a very high harmonic.3>4 This resulted in a completely synchronized 
gigabit rate output from the two fiber lasers. In our case, synchronization 
of a passively mode locked laser was accomplished by saturating the 
multiple quantum well absorber with the signal from an actively mode 
locked ring laser. A schematic of the system used is shown in Fig. 7. 

Synchronized Laser Setup 

& <^ 
"\ 

, Mach-Z*nd«r 
' E*lum Modul.tor 

Fib«r 

Slave Laser 

Fig. 7 Setup Used to Synchronize Two Lasers 

The master laser was a harmonically mode locked fiber ring laser based on 

a design previously described by Harvey and Mollenauer.6 Mode locked 
pulses from this laser are fed into the passively mode locked laser 
through a 3 dB coupler. 

The slave laser was constructed using a modification of the standing wave 
design described above. A fiber Bragg grating with a reflectivity of 50% at 



1555 nm provided feedback as a cavity mirror and also acted as the output 
coupler. The laser was pumped through a 980/1550 nm wavelength 
division multiplexer by a 980 nm laser diode developing 50 mW of power. 
A multiple quantum well saturable absorber of the type described   above 
was butt coupled to the end of the Erbium fiber and acted as the second 
mirror of the cavity. The slave laser passively mode locked at a repetition 
rate of of 3.5435 MHz, corresponding to a cavity length of approximately 
30 m. An auto correlation trace of the output of the unsynchronized slave 
laser is shown in Fig. 8a. The pulse duration varied from 7 to 14 ps 
depending on the alignment of the end of the Erbium fiber and the 
saturable absorber. Spectral widths varied from 0.37 to 0.52 nm giving 
time-band width products ranging between 0.32 to 0.61. 
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Fig. 8 
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correlation Trace of the Output of the Unsynchronized Slave Laser 
correlation Traces of the Synchronized Output of the Slave Laser 

The ring laser was initially adjusted to run at the fundamental frequency 
of the slave laser (3.5435 MHz) and its output was injected into the slave 
laser through the Bragg grating, which was transparent at the operating 
wavelength of the ring laser. The output of the slave laser was obtained 
through the unused port of the 50/50 coupler. 



Fig 9. Mode Locked Synchronized Output 

Mode locked synchronized output, shown in Fig. 9, was maintained at th» 

oUw « if wqUenCy °' thS S,aVe laser »* -erage Tn^cted powe s as 
low as 1.3 mW, corresponding to injected pulse eneraies of «fin n i   I . 
th» level the the ring laser signal' was insufficen, tein" iate   P      e'°W 

synchromzed behavior. No discernible difference in opera,™ „as 
ob erved when the injected power was increased above th,s threshold 
Auto correlation traces of the synchronized output at three different 
pos,t,ons on the saturable absorber are shown in Fig. 8b  The shortest 

oet:reddU1'T550obrewd,hWaS
h

10HPS- ^ ^ S^m ™ ^ cenierea at 1550 nm with a band width of 0.32 nm. 

2.3 Active Mode I orking Via Th* Qn.H.^^r^^ 

It has been shown that if an electrical field is applied to a multiole 
quantum well stack such as the one illustrated in Fie   ?*L1       ♦•        « 
the wells shifts to longer wavelengths duto a quadratic LTZct"Z 
example of this effect is shown in Fio   10   In thk r«I! ?K A" 
was applied to the quantum well   by   m    d   n      em      1 * ^T f,eW 

which could be back biased to the ^SXJ^Z   g^Th °" 
measurements shown were carried out by Dr. Mark Kro.l aspart of his PhD 

hi r. T """ ^ direCt,0n °f Pr°feSSOr ^^ P^hlmhba-an" at the Optical Sciences Center, University of Arizona.? 
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From: M. F. Krol, PhD Thesis, Optical Sciences Center, University of Arizona, 1996 

Fig. 11 Photomicrograph of the surface of the quantum well structure used to 
electrically mode lock a fiber laser. 
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Fig 13. Optical Spectrum of Electrically Controlled Laser 

If a sinusoidal   AC voltage at twice the fundamental frequency of the 
laser cavity was superimposed on the DC voltage, a mode locked pulse 
train at this frequency was produced. In this case the pulse widths 
appeared to be substantially longer than in the case where the laser was 
simply switched on. 

2.4 Optimization of Multiple Well Saturable Absorbers. 

During this contract period emphasis was also placed on improving the 
performance of the multiple quantum well saturable absorber used to 
mode lock the fiber lasers described above. The objectives of this work 
were to achieve a reduction of pulse duration in passively mode locked 
operation and the elimination of the pedestal or background shown in Fig 
6. To this end several samples of the multiple quantum well structure 
shown in Fig. 2 were grown. The first of these to be characterized was the 
original sample labeled 1305. Two others, namely 1442 and 1590 were 
also studied. All these samples were grown under slightly different 
conditions. In each case the number of quantum wells, their thickness, and 
the thickness of the substrate were kept constant. Photoluminescent 
measurements, linear absorption as a function of wavelength, 
measurements of the non linear absorption at a given wavelength and the 
temporal duration of the non linear absorption were made for each 
sample.These results were compared to measurements of pulse duration 
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during mode locking. 
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Fig. 14b Sample 1442. Pulse Duration = 18.1 8 ps 
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Fig 14c. Sample 1590. Pulse Duration = 30 ps. 
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Fig. 15. The Linear Absorption of the Three 
Saturable Absorbers Studied to Date 
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TL1!,8^!! thS linear abS0rpti0n of ,he three sa^Ptes. The absorption 
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Room temperature photo luminescence spectra were measurer) ™ «,= », 
samp,es1305, 1442 and 1590, each excited with    e TarnetWavelength 17 
with the same input power. The spectra are shown in Fig.16  They wire 
obtained by excting the multiple quantum well structures with Lwof 
photon energy well above the band edge of the host material  The 

carriers at the bound states of the quantum wells. If the luminescence 
decay rate consists of both radiative and non radiative processes   the 
relative intensity of the photo luminescence can be correctedTwi'th L 
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Fig 16. Photo luminescence Spectra of the Three samples 
The non linear transmittance of the samples was studied using a tunable 

Cr4+:YAG laser described elsewhere.8 In these the DC output of the laser 
was focused into a jim spot on the surface of the sample and the fraction 
of the light transmitted was measured as a function of laser power. The 
intensity of the incident light was calculated from the measured output 
power of the laser and the known spot size. Measurements were made at 
1550 nm. Preliminary results are shown in Figs. 17 a,b and c. The data 
indicates that the saturation flux, or threshold for saturation, was 
highest for samples 1305 and 1590. It is interesting to note that the the 
transmittance of sample 1305 did not seem to reach saturation over the 
range of incident intensities used. 
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Fig. 17a Sample 1305 
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The time evolution of the saturated absorption of the three sample is 
shown in Figs. 18 a, b, and c. These measurements were made by initially 
saturating the absorption with a femtosecond duration pulse from a mode 
locked Cr4+:YAG and then probing the decay of the transmission as a 
function of time using delayed pulses from the same laser. 
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The decay times of the saturated transmission inferred from this data are 
indicated on the figures. Of the three sample 1305 had the shortest decay 
time of 325 ps. However, all of the decay times are much longer than the 
duration of the mode locked pulses obtained. All of the samples can 
therefore be classified as slow saturable absorbers. Mode locking is 
initiated by the saturation of absorption but other non linear mechanisms 
operating in the gain medium of the laser or in the passive fiber portions 
of the laser cavity must contribute significantly to pulse shaping. 
Optimization of the saturable absorber itself should continue to insure 
reproducibility in the processes used to grow the samples, but a parallel 
investigation into the effect of the fiber grating band pass and non linear 
dispersion in the fiber and in the saturable absorber should be initiated to 
determine pulse shaping mechanisms. 

18 



3.0 References 

1. R. Erdmann and K. Teegarden, " A compact mode locked Erbium doped 
fiber laser for field use." Laser 95 Congress, Munich, Germany June19-23, 
1995 
2. K.J. Teegarden and R.K. Erdmann," Self-Starting mode-locked Erbium 
fiber laser using fiber gratings," SPIE Vol. 2481, Photonic Device 
Engineering for Dual Use Applications, 1995 
3. Final Technical Report RL-TR-96-249, KJT Inc. Contract # F30602-95- 
C-0058 
4. R. Erdmann, W. Kaechele, and R. Fork, "Synchronization of passively and 

actively mode locked Er3+ fiber lasers,"   Presented at the OSA Annual 
Meeting, Portland, Oregon, 1995 
5. W. Kaechele, W. Haus, M. Hayduk, R. Erdmann, and K. Teegarden, 
"Synchronization of Active/passive Mode- locked Erbium Fiber Lasers," 
SPIE Vol. 35 
6. M. Kroll, "Ultrafast Carrier Dynamics and Enhanced Electroabsorption in 
(Ga,IN)As/(AI,ln)As Assymetric Double Quantum Well Structures" PhD 
Thesis, Optical Sciences Center, University of Arizona, 
7. G. T. Harvey and LF. Mollenauer, Opt. Lett., Vol.18,   p.107, 1993 
8. M.J. Hayduk, ST. Johns, M.F. Kroll, C.R. Pollock, and R.P. Leavitt, 

"Self- starting passively mode-locked tunable femtosecond Cr4+:YAG 
laser using a saturable absorber mirror". Opts Comm. Vol. 137, p. 55, 1997 

19 


