
AFRL-IF-RS-TR-1998-52
Final Technical Report
April 1998

INTELLIGENT AGENT INTEGRATION
TECHNOLOGY

Lockheed Martin

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. A521

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19980618 179
The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

■E0&®

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1998-52 has been reviewed and is approved for publication.

APPROVED: ' ^; " '•"' '" ~ -M

RAYMOND A. LIUZZI
Project Engineer

FOR THE DIRECTOR:
NORTHRUP FOWLER, III, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-01'88

Public reportmq burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing

the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing tinsborderit«'Washington Headquarters Services, Directorate for Information

Operations and Reports 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Propel (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY /Leave blank/ 2. REPORT DATE

 April 1998

3. REPORT TYPE AND DATES COVERED

Final Sep 93 - Jun 97
4. TITLE AND SUBTITLE

INTELLIGENT AGENT INTEGRATION TECHNOLOGY

6. AUTHOR(S)

Donald P. McKay, Tim Finn, Stuart Shapiro, and Nick Roussopoulos

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lockheed Martin
590 Lancaster Avenue
P.O. Box 4001
Frazer PA 19355-1808
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington VA 22203-1714

Air Force Research Laboratory/IFTB
525 Brooks Road
Rome NY 13441-4505

5. FUNDING NUMBERS

C - F30602-93-C-0177
PE - 62301E
PR - A521
TA - 00
WU - 01

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1998-52

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Raymond A. Liuzzi/IFTB/(315) 330-3577

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words/

The major areas of research described in this report include the contribution to the Knowledge Query and Manipulation
Language (KQML) specification under the DARPA-sponsored Knowledge Sharing Initiative and the developing of a
scaleable and an efficient implementation of information system components for ontological translation and effective
cache-based implementations. This effort focused primarily upon developing Intelligent Agent Integration Technology and
demonstrating it within distributed agent systems. This effort was a joint university/industry project in which technology
development was supported by several university participants. The integration technology developed is based on KQML, a
language and protocol intended to support interoperability among intelligent agents in a distributed application. The technical
scope is the coordination of multiple "intelligent agents" which must communicate with one another. This report presents the
basic accomplishments achieved which include: software systems and associated documentation for communication among
multi-agent systems using the Knowledge Query and Manipulation Language (KQML); performance metrics and
instrumentation for intelligent agent communication and knowledge base access to databases which highlight performance
issues, aspects and potential improvements for large-scale architectures; and study of ontological mediation issues and

research.

14. SUBJECT TERMS

Computers, Software, Databases, knowledge Base, Artificial Intelligence

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION

OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

176
16. PRICE CODE

20. LIMITATION OF
AEJSTF*ACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDI0B, Oct 94

INTELLIGENT AGENT INTEGRATION TECHNOLOGY

Donald P. McKay
Tim Finn

Stuart Shapiro
Nick Roussopoulos

Contractor: Lockheed Martin
Contract Number: F30602-93-C-0177
Effective Date of Contract: September 1993
Contract Expiration Date: June 1997
Program Code Number: A5210001
Short Title of Work: Intelligent Agent Integration Technology
Period of Work Covered: Sep 93 - Jun 97

Principal Investigator: Donald P. McKay
Phone: (610) 407-3527

AFRL Project Engineer: Raymond A. Liuzzi
Phone: (315)330-3577

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored by
Raymond A. Liuzzi, AFRL/IFTB, 525 Brooks Road, Rome, NY
13441-4505.

1. SUMMARY.

Table of Contents
 2

1.1 LANGUAGE AND PROTOCOL FOR INFORMATION EXCHANGE 2

1.2 OBJECTIVE 2

1.3 APPROACH 3

1.4 PROGRESS 3

1.5 TECHNOLOGY TRANSITION 3

1.6 ACCOMPLISHMENTS ^

1.7 DOCUMENTS PRODUCED 4
1.7.1 Government Documents • 4
1.7.2 Technical Papers 4

1.8 MAJOR SOFTWARE SYSTEMS 5

2. KQML-AN AGENT COMMUNICATION LANGUAGE 6

3. PROPOSED NEW KQML SPECIFICATION 1S

4. A SEMANTICS APPROACH FOR KQML .. 58

5. A SECURITY ARCHITECTURE FOR KQML 68

6. AGENT NAMES FOR A KQML AGENT SYSTEM 91

6.1 INTRODUCTION 92

6.2 THE PROBLEM 92

6.3 DISTRIBUTED AGENT-NAME RESOLUTION 93

6.4 WHAT SHOULD AGENT NAMES LOOK LIKE?
93

6.5 How AGENT NAMES ARE RESOLVED 94

6.6 TAKING NAMES SERIOUSLY • 95

6.7 PROXY AGENTS AND THEIR PROTOCOLS
95

6.8 CHANGES TO KQML AND STANDARD UTILITY AGENTS 96

6.9 CONCLUSIONS :
yo

6.10 BIBLIOGRAPHY 97

7. ONTOLOGICAL MEDIATION 98

8. CACHED KNOWLEDGE FRAGMENTS •• 110

9. PLANNING INITIATIVE INFORMATION AGENT 136

10. INTELLIGENT RESOURCE AGENT ARCHITECTURE 145

10.1 INTRODUCTION 146

10.2 SYSTEM ARCHITECTURE • 147

10.2.1 System Components 147

10.2.2 Agent Descriptions 1H0

10.2.3 Inter-Agent Communication Language '50
10.2.4 Shared Communication Ontology '$"

10.3 IMPLEMENTATION 151

10.3.1 Intelligent Resource Agent Architecture ^
10.3.2 Application to K-12 Education 153

10.4 CONCLUSIONS AND FUTURE DIRECTIONS 154

10.5 REFERENCES
155

1. SUMMARY

1.1 LANGUAGE AND PROTOCOL FOR INFORMATION EXCHANGE
Large scale information networks such as that envisioned for the National Information Infrastructure
(Nil) require flexible, scaleable and information-oriented communication infrastructures. Most current
efforts still focus on data-level communications and ignore the issues of flexibility and scalability for the
large evolving information networks now being built. Lockheed Martin, along with other industrial and
university collaborators, has developed the Knowledge Query and Manipulation Language, KQML, to
support these and future information networks. Significantly, KQML supports an scaleable architecture
for agents including software and other information services.

Lockheed Martin has demonstrated KQML supporting efficient communication within the
DARPA/Rome Lab Planning Initiative (ARPI) supporting initial communication within the ARPI
common prototyping environment (CPE) and subsequently in a demonstration of an intelligent
information services architecture. KQML was used to integrate information agents at UCLA, USC ISI
and Lockheed Martin of the internet in a demonstration of a distributed intelligent information system for
military transportation logistics. In a previous use within the CPE, the Lockheed Martin KQML
implementation in Common Lisp has been measured to be as efficient as standard RPC mechanisms from
Common Lisp sustaining interaction rates of 50 milliseconds for round trip experiments. In addition, a
compression technique for ARPI was demonstrated which resulted in a 4x reduction in space and over a
2x reduction in communication time for large messages.

We have also established and demonstrated an Intelligent Resource Agent Architecture in the DARPA
Computer Aided Education and Training Initiative (CAETI) supporting an infrastructure of reusable
agents. These have been used to develop demonstrations within both K-12 education and adult training
domains. Further, within CAETI, Lockheed Martin established KQML as one of the "Minimal
Architecture" communication standards - this was a significant step forward as other heretofore non-
participants in the KQML specification and promulgation began to participate, e.g., Teknowledge
developed and used a variant of KQML support the interoperation of a set of component agents for
intelligent tutoring systems using KQML to satisfy a CAETI program goal of distributed and reusable
tutoring components.

Lockheed Martin is also using and promulgating KQML within other DARPA programs such as the
Advanced Logistics Program (ALP) in which KQML will be used to support a distributed architecture
for "sentinel agents" monitoring and responding to changes in status of Long Term Agreements (a kind
of supplier contract with the Defense Logistics Agency). This infrastructure is also being used as a part
of a Rapid Supply demonstration that Lockheed Martin is participating in as a part of the ALP program.
In a similar effort, Lockheed Martin will apply the results of this project to efforts in support of the
Planning and Decision Aids Technology Integration Experiments integrating planning and scheduling
systems. Preliminary use and integration has been in place with David Wilkens' planning group at SRI
for over the past year.

Finally, the KQML implementation and system is being used extensively within Lockheed Martin C2
Integration Systems to support advanced information systems employing agents and agent-based
mediated architectures.

1.2 Objective

This research has significantly advanced the state of the art in scaleable Intelligent Agent Integration
Technology. The major areas of research contributed to this effort include the contribution to the

Knowledge Query and Manipulation Language (KQML) specification under the DARPA-sponsored
Knowledge Sharing Initiative, the developing a scaleable and an efficient implementation of information
system components for ontological translation and effective cache-based implementations.

1.3 Approach
This effort focused primarily upon developing Intelligent Agent Integration Technology and
demonstrating it within distributed agent systems. This effort was a joint university/industry project in
which technology development will be principally supported by the university participants including Tim
Finin at the University of Maryland - Baltimore County (UMBC), Stuart Shapiro at the State University
of New York at Buffalo (SUNY/Buffalo), and Nicholas Roussopoulos at the University of Maryland -
College Park (UMD). Lockheed Martin will serve primarily as a technology provider for KQML.

The integration technology we developed is based on KQML, a language and protocol intended to
support interoperability among intelligent agents in a distributed application. The technical scope is the
coordination of multiple "intelligent agents" which must communicate with one another.

• Which other agents to communicate with.

• How to establish a reliable communication channel with them.

• What protocol to use in the ensuing dialogue.

• What language to use to exchange information knowledge.

• What terms within the language to use to guarantee that the other agent will interpret the expressions
in the same way.

• How to handle inconsistent information and the eventual mis-matches that arise from different views
and representations of the world.

1.4 Progress
Lockheed Martin developed and packaged an initial release of the KQML C and Common Lisp
implementations suitable for use and for further joint collaborative development by the university
participants. This release served as the baseline software and documentation for use by all participants.
University participants at UMBC developed a formal semantics for KQML as well as designed and
implemented a hierarchical agent name service and completed an initial security study. SUNY/Buffalo
investigated the formal conditions under which it is meaningful for two software systems to exchange
information which requires semantic translation, e.g., more than simple data representation translations
such as unit conversions. UMD extended a model of adaptive caching for distributed systems, analyzed
its performance and performed performance experiments.

1.5 Technology Transition

Key technologies exported from this project include intelligent interfaces to databases and interagent
communication. This software system has been exported for use to other sites and DARPA projects
such as ARPI, PDA, ALP, CAETI and other internal Lockheed Martin efforts.

Systems -

• Knowledge Query and Manipulation Language (KQML) - KQML defines a common language and
protocol for intelligent agent communication and its development is supported via the ARPA

Knowledge Sharing Initiative. KQML implementations exist for Common Lisp (Lucid) and C
running on Sun UNIX platforms with a minimum of 16MB of physical memory. POC: Robin
McEntire, Lockheed Martin, (610) 407-3567, Robin.A.McEntire@lmco.com.

1.6 Accomplishments

In this report, we present the basic accomplishments achieved under this contract which include:

• Software systems and associated documentation for communication among multi-agent systems
using the Knowledge Query and Manipulation Language (KQML).

• Performance metrics and instrumentation for intelligent agent communication and knowledge base
access to databases which highlight performance issues, aspects and potential improvements for
large-scale architectures..

• Study of ontological mediation issues and research.

We continued use of the Common Lisp implementation of KQML within demonstrations and
experiments under the DARPA Rome Lab Planning Initiative. KQML has been used to support
information mediators from UCLA, USCISI and Lockheed Martin to interoperate over the internet. The
C implementation of KQML is also used in the development of a Agent Name Server implemented in C.

1.7 Documents Produced

1.7.1 Government Documents
The following documents describe the software developed under this contract:

1. Software Design Document for the Knowledge Query and Manipulation Language (KQML)

2. Software User's Manual and for the Knowledge Query and Manipulation Language (KQML)

1.7.2 Technical Papers

The following technical papers were developed or contributed to under this contract; on-line versions can
be accessed for many from the UMBC web site http://cs.umbc.edu/kqml or http://cs.umbc.edu/agents,
additional site is at http://www.paoli.atm.lmco.com/

Hans Chalupsky, Stuart C. Shapiro & Alistair E. Campbell, "Ontological Mediation: An analysis"
Technical Report, Department of Computer Science, SUNY/Buffalo, 1994.

C. Chen and N. Roussopoulos, "Adaptive selectivity estimation using query feedback", Technical Report,
Department of Computer Science, University of Maryland College Park, May 1994.

A. Delis and N. Roussopoulos, "Management of updates in the enhanced client-server DBMS",
Technical Report, Department of Computer Science, University of Maryland College Park, June 1994

Donald McKay, Jon Pastor, Robin McEntire and Tim Finin, An architecture for information agents, in
"Advanced Planning Technology", (ed. Tate,A.), The AAAI Press, Menlo Park, CA., USA, May 1996
ISBN 0-929280-98-0.

Chelliah Thirunavukkarasu, Tim Finin and James Mayfield, Secret Agents - A Security Architecture for
the KQML agent communication language, proceedings of the ACM CIKM Intelligent Information
Agents Workshop, Baltimore, December 1995.

Tim Finin, Chelliah Thirunavukkarasu, Anupama Potluri, Donald McKay, and Robin McEntire, On
Agent Domains, Agent Names and Proxy Agents, proceedings of the ACM CIKM Intelligent Information
Agents Workshop, Baltimore, December 1995.

James Mayfield, Yannis Labrou, and Tim Finin, Evaluation of KQML as an Agent Communication
Language, in Intelligent Agents Volume II -- Proceedings of the 1995 Workshop on Agent Theories,
Architectures, and Languages. M. Wooldridge, J. P. Muller and M. Tambe (eds). Lecture Notes in
Artificial Intelligence, Springer-Verlag, 1996.

James Mayfield, Yannis Labrou and Tim Finin. Evaluation of KQML as an Agent Communication
Language, JJCAI-95 Workshop on Agent Theories, Architectures, and Languages, Montreal, Quebec, 19-
20 August 1995.

Tim Finin, Yannis Labrou, and James Mayfield, KQML as an agent communication language. In Jeff
Bradshaw (Ed.), ^Software Agents", MIT Press, Cambridge, to appear 1997.

James Mayfield, Yannis Labrou, and Tim Finin, Desiderata for Agent Communication Languages ,
Proceedings of the AAAI Symposium on Information Gathering from Heterogeneous, Distributed
Environments, AAAI-95 Spring Symposium, Stanford University, Stanford, CA. March 27-29, 1995.

Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire, "The Knowledge Query and Manipulation
Language for Information and Knowledge Exchange", In the Proceedings Third International
Conference on Information and Knowledge Management (CIKM'94), November 1994.

Yannis Labrou and Tim Finin, "A semantics approach for KQML—a general purpose communication
language for software agents", In the Proceedings Third International Conference on Information and
Knowledge Management (CIKM'94), November 1994.

Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire, "KQML: An Information and Knowledge
Exchange Protocol", in Kazuhiro Fuchi and Toshio Yokoi (Ed.), "Knowledge Building and Knowledge
Sharing", Ohmsha and IOS Press, 1994.

Tim Finin, Don McKay, Rich Fritzson and Robin McEntire, KQML - A Language and Protocol for
Knowledge and Information Exchange. Proceedings of the 13th International Distributed Artificial
Intelligence Workshop. July, 1994.

Specification of the KQML Agent-Communication Language. The ARPA Knowledge Sharing
Initiative External Interfaces Working Group

1.8 Major Software Systems
We have developed a major release of the KQML. The release notes and documentation described the
basic features of the software.

2. KQML - AN AGENT
COMMUNICATION LANGUAGE

Intelligent Agent Integration Technology

This section appeared in The Proceedings of the Third International Conference on Information
Management (CIKM), ACM Press, November 1994. It details project background and architectural

underpinnings for the KQML system developed as a part of this contract.

KQML as an Agent Communication Language

Tim Finin and Richard Fritzson
Computer Science Department

University of Maryland Baltimore County
Baltimore MD USA
nnin@cs.umbc.edu

fritzson@cs.umbc.edu

Don McKay and Robin McEntire
Valley Forge Laboratory

Unisys Corporation
Paoli PA USA

mckay@vfl.paramax.com
robin@vfl.paramax.com

Abstract

This paper describes the design of and experimentation with
the Knowledge Query and Manipulation Language (KQML),
a new language and protocol for exchanging information
and knowledge. This work is part of a larger effort, the
ARPA Knowledge Sharing Effort which is aimed at devel-
oping techniques and methodology for building large-scale
knowledge bases which are sharable and reusable. KQML is
both a message format and a message-handling protocol to
support run-time knowledge sharing among agents. KQML
focuses on an extensible set of performatives, which defines
the permissible "speech acts" agents may use and comprise
a substrate on which to develop higher-level models of in-
teragent interaction such as contract nets and negotiation.
In addition, KQML provides a basic architecture for knowl-
edge sharing through a special class of agent called com-
munication facilitators which coordinate the interactions of
other agents The ideas which underlie the evolving design of
KQML are currently being explored through experimental
prototype systems which are being used to support several
testbeds in such areas as concurrent engineering, intelligent
design and intelligent planning and scheduling.

1 Introduction

The computational environment which is emerging in such
programs as the National Information Infrastructure (Nil)
is characterized by being highly distributed, heterogeneous,
extremely dynamic, and comprising a large number of au-
tonomous nodes. An information system operating in such
an environment must handle several emerging problems:

• The predominant architecture on the Internet, the cli-
ent-server model, is too restrictive. It is difficult for
current Internet information services to take the ini-
tiative in bringing new, critical material to a user's
attention. Some nodes will want to act as both clients

* This work was supported in part by the Air Force Office of Sci-
entific Research under contract F49620-92-J-0174, and the Advanced
Research Projects Agency monitored under USAF contracts F30602-
93-C-0177 and F30602-93-C-0028 by Rome Laboratory.

To appear in The Proceedings of the Third International
Conference on Information and Knowledge Management
(CIKM'94), ACM Press, November 1994.

and servers, depending on who they are interacting
with.

• Several forms of heterogeneity need to be handled, e.g.
different platforms, different data formats, the capabil-
ities of different information services, and the imple-
mentation technologies employed.

• Many software technologies such as event simulation,
applied natural language processing, knowledge-based
reasoning, advanced information retrieval, speech pro-
cessing, etc. have matured to the point of being ready
to participate in and contribute to an Nil type environ-
ment. However, there is a lack of tools and techniques
for constructing intelligent clients and servers or for
building agent-based software in general.

A community of intelligent agents can address each of the
problems mentioned above. When we describe these agents
as intelligent, we refer to their ability to: communicate
with each other using an expressive communication lan-
guage; work together cooperatively to accomplish complex
goals; act on their own initiative; and use local informa-
tion and knowledge to manage local resources and handle
requests from peer agents.

Knowledge Query and Manipulation Language (KQML)
is a language that is designed to support interactions among
intelligent software agents. It was developed by the ARPA
supported Knowledge Sharing Effort [24, 27] and separately
implemented by several research groups. It has been suc-
cessfully used to implement a variety of information systems
using different software architectures.

The Knowledge Sharing Effort

The ARPA Knowledge Sharing Effort (KSE) is a consor-
tium to develop conventions facilitating sharing and reuse
of knowledge bases and knowledge based systems. Its goal
is to define, develop, and test infrastructure and support-
ing technology to enable participants to build much bigger
and more broadly functional systems than could be achieved
working alone. The KSE is organized around four working
groups each of which addresses a complementary problem
identified in current knowledge representation technology:
Interlingua, KRSS, SRKB, and External Interfaces.

The Interlingua Group is developing a common language
for expressing the content of a knowledge-base. This group
has published a specification document describing the Knowl-
edge Interchange Formalism or KIF [15] which is based on
first order logic with some extensions to support non-mono-
tonic reason and definitions. KIF includes both a specifica-

tion of a syntax for the language as well as a specification for
the semantics. KIF can be used to support the translation
from one content language to another or as a common con-
tent language between two agents which use different native
representation languages. Information of KIF and associ-
ated tools and is available from http://svs.cs.umbc.edu-
/kse/kif/ .

The KRSS Group (Knowledge Representation System
Specification) is focussed on defining common constructs
within families of representation languages. It has recently
finished a common specification for terminological represen-
tations in the KL-ONE family. This document and other
information on the KRSS group is available as http ://vvv. -
cs.umbc.edu/kse/krss/ .

The SRKB Group (Shared, Reusable Knowledge Bases)
is concerned with facilitating consensus on contents of shar-
able knowledge bases, with sub-interests in shared knowl-
edge for particular topic areas and in topic-independent de-
velopment tools and methodologies. It has established a
repository for sh arable ontologies and tools which is avail-
able over the Internet as http: //avs . cs. umbc. edu/kse/srkb/

The scope of the External Interfaces Group is the run-
time interactions between knowledge based systems and other
modules in a run-time environment. Special attention has
been given to two important cases - communication between
two knowledge-based systems and communication between a
knowledge-based system and a conventional database man-
agement system [26]. The KQML language is one of the
main results which have come out of the external interfaces
group of the KSE. General information is available from
http://nB.cs.11abc.edu/k9il.

2 KQML and Intelligent Information Integration

We could address many of the difficulties of communication
between intelligent agents described in the Introduction by
giving them a common language. In linguistic terms, this
means that they would share a common syntax, semantics
and pragmatics.

Getting information processes, especially AI processes,
to share a common syntax is a major problem. There is no
universally accepted language in which to represent infor-
mation and queries. Languages such as KIF [15], extended
SQL, and LOOM [22] have their supporters, but there is
also a strong position that it is too early to standardize on
any representation language [19]. As a result, it is currently
necessary to say that two agents can communicate with each
other if they have a common representation language or use
languages that are inter-translatable.

Assuming a common or translatable language, it is still
necessary for communicating agents to share a framework
of knowledge in order to interpret message they exchange.
This is not really a shared semantics, but a shared ontology.
There is not likely to be one shared ontology, but many.
Shared ontologies are under development in many impor-
tant application domains such as planning and scheduling,
biology and medicine.

Pragmatics among computer processes includes 1) know-
ing who to talk with and how to find them and 2) knowing
how to initiate and maintain an exchange. KQML is con-
cerned primarily with pragmatics (and secondarily with se-
mantics). It is a language and a set of protocols that support
computer programs in identifying, connecting with and ex-
changing information with other programs.

B

4
D

Figure 1: Several basic communication protocols are sup-
ported in KQML.

Agent Communication Protocols

There are a variety of interprocess information exchange
protocols. In the simplest, one agent acts as a client and
sends a query to another agent acting as a server and then
waits for a reply, as is shown between agents A and B in
Figure 1. The server's reply might consist of a single answer
or a collection or set of answers. In another common case,
shown between agents A and C, the server's reply is not the
complete answer but a handle which allows the client to ask
for the components of the reply, one at a time. A common
example of this exchange occurs when a client queries a rela-
tional database or a reasoner which produces a sequence of
instantiations in response. Although this exchange requires
that the server maintain some internal state, the individual
transactions are as before - involving a synchronous com-
munication between the agents. A somewhat different case
occurs when the client subscribes to a server's output and an
indefinite number of asynchronous replies arrive at irregular
intervals, as between agents A and D in Figure 1. The client
does not know when each reply message will be arriving and
may be busy performing some other task when they do.

There are other variations of these protocols. Messages
might not be addressed to specific hosts, but broadcast to
a number of them. The replies, arriving synchronously or
asynchronously have to be collated and, optionally, associ-
ated with the query that they are replying to.

Facilitators and Mediators

One of the design criteria for KQML was to produce a lan-
guage that could support a wide variety of interesting agent
architectures. Our approach to this is to introduce a small
number of KQML performatives which are used by agents to
describe the meta-data specifying the information require-
ments and capabilities and then to introduce a special class
of agents called communication facilitators [16]. A facilita-
tor is an agent that performs various useful communication
services, e.g. maintaining a registry of service names, for-
warding messages to named services, routing messages based
on content, providing "matchmaking'' between information
providers and clients, and providing mediation and transla-
tion services.

As an example, consider a case where an agent A would
like to know the truth of a sentence X, and agent B may
have X in its knowledge-base, and a facilitator agent F is
available. If A is aware that it is appropriate to send a query
about X to B, then it can use a simple point to point protocol
and send the query directly to B, as in Figure 2. If, however,
A is not aware of what agents are available, or which may
have X in their knowledge-bases, or how to contact those of
whom it is aware, then a variety of approaches can be used.
Figure 3 shows an example in which A uses the subscribe
performative to request that facilitator F monitor for the
truth of X. If B subsequently informs F that it believes X
to be true, then F can in turn inform A.

broker(ask(X»

Figure 2: When A is aware of B and of the appropri-
ateness of querying B about X, a simple point-to-point
protocol can be used.

Figure 4 shows a slightly different situation. A asks F
to find an agent that can process an ask(X) performative.
B independently informs F that it is willing to accept per-
formatives matching ask(X). Once F has both of these mes-
sages, it sends B the query, gets a response and forwards it
to A.

In Figure 5, A uses a slightly different performative to
inform F of its interest in knowing the truth of X. The re-
cruit performative asks the recipient to find an agent that
is willing to receive and process an embedded performative.
That agent's response is then to be directly sent to the initi-
ating agent. Although the difference between the examples
used in Figures 3 and 5 are small for a simple ask query,
consider what would happen if the embedded performative
was subscribe(ask-all(X)).

As a final example, consider the exchange in Figure 6 in
which A asks F to "recommend" an agent to whom it would
be appropriate to send the performative ask(X)). Once F
learns that B is willing to accept ask(X) performatives, it
replies to A with the name of agent B. A is then free to
initiate a dialog with B to answer this and similar queries.

From these examples, we can see that one of the main
functions of facilitator agents is to help other agents find
appropriate clients and servers. The problem of how agents
find facilitators in the first place is not strictly an issue for
KQML and has a variety of possible solutions.

Current KQML-based applications have used one of two
simple techniques. In the PACT project [7], for example,
all agents used a central, common facilitator whose location
was a parameter initialized when the agents were launched.
In the ARPI applications [5], finding and establishing con-
tact with a local facilitator is one of the functions of the
KQML API. When each agent starts up, its KQML router
module announces itself to the local facilitator so that it is
registered in the local database. When the application exits,
the router sends another KQML message to the facilitator,
removing the application from the facilitator's database. By

subscribe(ask(X))^ F K tell(X)

V J *

, .
tell(X) 1 , A K B

Figure 3: Agent A can ask facilitator agent F to monitor
for changes in its knowledge-base. Facilitators are agents
that deal in knowledge about the information services
and requirements of other agents and offer such services
as forwarding, brokering, recruiting and content-based
routing.

Figure 4: The broker performative is used to ask a facil-
itator agent to find another agent which can process a
given performative and to receive and forward the reply.

convention, a facilitator agent should be running on a host
machine with the symbolic address facilitator.domain and
listening to the standard KQML port.

Scaling up to a national-scale information enterprise will
require the incorporation of new techniques. The current
Internet Domain Name Servers (DNS) use a very simple,
yet robust technique for mapping symbolic names into in-
ternet IP addresses. Similar techniques can be used to map
symbolic agent "names" into specific agent references that
can be used to contact the agent. What will be involved is
the development of a hierarchical "ontology" for organizing
information that is orthogonal to the hierarchical scheme
used to organize the Internet. Figure 7 shows such an agent
which could function as such facilitator-agent-server.

The role of KQML
As a communication language for intelligent information
agents, KQML draws on work in both distributed systems
and distributed AI and offers a level of abstraction that
should be useful to both.

With respect to distributed software systems in general,
KQML provides an abstraction of a process as an informa-
tion agent as a knowledge-based system (KBS). The KBS
model easily subsumes a broad range of commonly used
information agent models in use today, including database
management systems, hypertext systems, server-oriented soft-
ware (e.g. finger demons, mail servers, HTML servers, etc),
simulations, etc. Such systems can usually be modeled as
having two virtual knowledge bases - one representing the
agent's information store (i.e., beliefs) and the other repre-
senting its intentions (i.e., goals). We hope that future stan-
dards for interchange and interoperability languages and
protocols will be based on this very powerful and rich model.
This will avoid the built-in limitations of more constrained
models (e.g., that of a simple remote procedure call or rela-
tional database query) and also make it easier to integrate
truly intelligent agents with simpler and more mundane in-
formation clients and servers. Current KQML implementa-
tions have used standard communication and messaging pro-
tocols as a transport layer, including TCP/IP, email, Linda,
HTTP, and CORBA. As standards in this area evolve and

advertise(ask(X))

Otell(X)

Figure 5: The recruit performative is used to ask a fa-
cilitator agent to find an appropriate agent to which an
embedded performative can be forwarded. Any reply is
returned directly to the original agent.

recommend(ask(X)Vi p advertise(ask(X))

Otell(X)

Figure 6: The recommend performative is used to ask a
facilitator agent to respond with the "name" of another
agent which is appropriate for sending a particular per-
formative.

new standards are introduced, we expect that KQML im-
plementations will use them.

The contribution that KQML makes to Distributed AI
research is to offer a standard language and protocol that
intelligent agents can use to communicate among themselves
as well as with other information servers and clients. The in-
dependence of the communication and content languages af-
fords a flexibility which is quite useful. In designing KQML,
our goal is to build in the primitives necessary to support all
of the interesting agent architectures currently in use. If we
have been successful, then KQML should serve to be a good
tool for DAI research, and, if used widely, should enable
greater research collaboration among DAI researchers.

3 The KQML Language

Communication takes place on several levels. The content
of the message is only a part of the communication. Be-
ing able to locate and engage the attention of someone you
want to communicate with is a part of the process. Pack-
aging your message in a way which makes your purpose in
communicating clear is another.

When using KQML, a software agent transmits content
messages, composed in a language of its own choice, wrapped
inside of a KQML message. The content message can be ex-
pressed in any representation language and written in either
ASCII strings or one of many binary notations (e.g. network
independent XDR representations). All KQML implemen-
tations ignore the content portion of the message except to
the extent that they need to recognize where it begins and
ends.

The syntax of KQML is based on a balanced parenthesis
list. The initial element of the list is the performative and
the remaining elements are the performative's arguments as
keyword/value pairs. Because the language is relatively sim-
ple, the actual syntax is not significant and can be changed
if necessary in the future. The syntax reveals the roots of
the initial implementations, which were done in Common
Lisp, but has turned out to be quite flexible.

KQML is expected to be supported by an software sub-
strate which makes it possible for agents to locate one an-
other in a distributed environment. Most current implemen-
tations come with custom environments of this type; these
are commonly based on helper programs called routers or
facilitators. These environments are not a specified part of
KQML. They are not standardized and most of the cur-
rent KQML environments will evolve to use some of the
emerging commercial frameworks, such as OMG's CORBA
or Microsoft's OLE2, as they become more widely used.

The KQML language supports these implementations by
allowing the KQML messages to carry information which is

Figure 7: Some facilitator agents will specialize in know-
ing how to contact other agents (among other things)
and can thus act as "agent-servers".

useful to them, such as the names and addresses of the send-
ing and receiving agents, a unique message identifier, and
notations by any intervening agents. There are also optional
features of the KQML language which contain descriptions
of the content: its language, the ontology it assumes, and
some type of more general description, such as a descriptor
naming a topic within the ontology. These optional fea-
tures make it possible for the supporting environments to
analyze, route and deliver messages based on their content,
even though the content itself is inaccessible.

The forms of these parts of the KQML message may
vary, depending on the transport mechanism used to carry
the KQML messages. In implementations which use TCP
streams as the transport mechanism, they appear as fields
in the body of the message. In an earlier version of KQML,
these fields were kept in reaerWlocations, in an outer wrap-
per of the message, to emphasize the difference from other
fields. In other transport mechanisms the syntax and con-
tent of these message may be different. For example, in the
E-mail implementation of KQML, these fields are embedded
in KQML mail headers.

The set of performatives forms the core of the language.
It determines the kinds of interactions one can have with
a KQML-spealring agent. The primary function of the per-
formatives is to identify the protocol to be used to deliver
the message and to supply a speech act which the sender
attaches to the content. The performative signifies that the
content is an assertion, a query, a command, or any other
mutually agreed upon speech act. It also describes how the
sender would like any reply to be delivered, that is, what
protocol will be followed.

Conceptually, a KQML message consists of a performa-
tive, its associated arguments which include the real content
of the message, and a set of optional arguments transport
which describe the content and perhaps the sender and re-
ceiver. For example, a message representing a query about
the price of a share of IBM stock might be encoded as:

(ask-one
:content (PRICE IBM ?price)
:receiver stock-server
:language LPROLOG
:ontology NYSE-TICKS)

In this message, the KQML performative is ask-one, the
content is (price ibm fprice), the ontology assumed by the
query is identified by the token nyse-ticks, the receiver of the
message is to be a server identified as stock-server and the
query is written in a language called LPROLOG. A similar
query could be conveyed using standard Prolog as the con-

10

tent language in a form that requests the set of all answers
as:

(ask-all
:content "price(IBM, [?price, ?time])"
:receiver stock-server
:language standard_prolog
:ontology NYSE-TICKS)

The first message asks for a single reply; the second asks
for a set as a reply. If we had posed a query which had
a large number of replies, would could ask that they each
be sent separately, instead of as a single large collection by
changing the performative. (To save space, we will no longer
repeat fields which are the same as in the above examples.)

(stream-all
;;?VL is a large set of symbols
:content (PRICE ?VL ?price))

The stream-all performative asks that a set of answers be
turned into a set of replies. To exert control of this set of
reply messages we can wrap another performative around
the preceding message.

(standby
:content (stream-all

:content (PRICE ?VL ?price)))

The standby performative expects a KQML language con-
tent and it requests that the agent receiving the request take
the stream of messages and hold them and release them one
at a time, each time the sending agent transmits a message
with the next performative. The exchange of next/reply
messages can continue until the stream is depleted or until
the sending agent sends either a discard message (i.e. dis-
card all remaining replies) or a rest message (i.e. send all
of the remaining replies now). This combination is so useful
that it can be abbreviated:

(generate
:content (PRICE ?VL ?price)))

A different set of answers to the same query can be ob-
tained (from a suitable server) with the query:

(subscribe
:content (stream-all

:content (PRICE IBM ?price)))

This performative requests all future changes to the an-
swer to the query, i.e. it is a stream of messages which are
generated as the trading price of IBM stock changes. An
abbreviation for subscribe/stream combination is known a
monitor.

(monitor
:content (PRICE IBM ?price)))

Though there is a predefined set of reserved performa-
tives, it is neither a minimal required set nor a closed one.
A KQML agent may choose to handle only a few (perhaps
one or two) performatives. The set is extensible; a commu-
nity of agents may choose to use additional performatives if
they agree on their interpretation and the protocol associ-
ated with each. However, an implementation that chooses
to implement one of the reserved performatives must imple-
ment it in the standard way.

Basic query performatives:

• evaluate, ask-if, ask-in, ask-one, ask-all, ...

Multi-response query performatives:

• stream-in, stream-all, ...

Response performatives:

• reply, sorry, ...

Generic informational performatives:

• tell, achieve, cancel, untell, unachieve,...

Generator performatives:

• standby, ready, next, rest, discard, generator,...

Capability-definition performatives:

• advertise, subscribe, monitor, import, export, ...

Networking performatives:

• register, unregister, forward, broadcast, route, ...

Figure 8: There are about two dozen reserved performa-
tive names which fall into seven basic categories.

Some of the reserved performatives are shown in Fig-
ure 8. In addition to standard communication performatives
such as ask, tell, deny, delete, and more protocol oriented
performatives such as subscribe, KQML contains performa-
tives related to the non-protocol aspects of pragmatics, such
as advertise - which allows an agent to announce what kinds
of asynchronous messages it is willing to handle; and recruit
- which can be used to find suitable agents for particular
types of messages. For example, the server in the above
example might have earlier announced:

(advertise
:ontology NYSE-TICKS
:language LPROLOG
:content (monitor

:content (PRICE ?x ?y)))

Which is roughly equivalent to announcing that it is a stock
ticker and inviting monitor requests concerning stock prices.
This advertise message is what justifies the subscriber's send-
ing the monitor message.

4 KQML Software Architectures

KQML was not defined by a single research group for a
particular project. It was created by a committee of rep-
resentatives from different projects, all of which were con-
cerned with managing distributed implementations of sys-
tems. One was a distributed collaboration of expert systems
in the planning and scheduling domain. Another was con-
cerned with problem decomposition and distribution in the
CAD/CAM domain. A common concern was the manage-
ment of a collection of cooperating processes and the simpli-
fication of the programming requirements for implementing
a system of this type. However, the groups did not share a
common communication architecture. As a result, KQML
does not dictate a particular system architecture, and sev-
eral different systems have evolved.

Our group has two implementations of KQML. One is
written in Common Lisp, the other in C. Both are fully in-
teroperable and are frequently used together. The design of
these implementations was motivated by the need to inte-
grate a variety of preexisting expert systems into a collab-
orating group of processes. Most of the systems involved
were never designed to operate in a communication oriented

11

I
z

KQML
strings

7
KQML
objects

Al

b L! J

uu If /

Agent

Network
connections

Function
calls

Figure 9: A router gives an application a single interface
to the network, providing both client and server capabil-
ities, managing multiple simultaneous connections, and
handling some KQML interactions autonomously. The
KEIL is the interface to the agent application and pro-
vides internal access points to which the router deliv-
ers incoming messages, analyzes outgoing messages for
appropriate domain tagging and routing, and provides
application specific interface and procedures for commu-
nication access.

environment. The design is built around two specialized pro-
grams, a router and a facilitator, and a library of interface
routines, called a KRIL.

KQML Routers

Routers are content independent message routers. Each
KQML speaking software agent is associated with its own
separate router process. All routers are identical; each is just
an executing copy of the same program. A router handles
all KQML messages going to and from its associated agent.
Because each program has an associated router process, it is
not necessary to make extensive changes to each program's
internal organization to allow it to asynchronously receive
messages from a variety of independent sources. The router
provides this service for the agent and provides the agent
with a single point of contact for the rest of the network. It
provides both client and server functions for the application
and manages multiple simultaneous connections with other
agents.

The router never looks at the content fields of the mes-
sages it handles. It relies on the KQML performatives and
its arguments. If an outgoing KQML message specifies a
particular Internet address, the router directs the message
to it. If the message specifies a particular service, the router
will attempt to find an Internet address for that service and
deliver the message to it. If the message only provides a de-
scription of the content (e.g. query, :ontology "geo-domain-
3", language "Prolog", etc.) the router may attempt to find
a server which can deal with the message and it will deliver
it there, or it may choose to forward it to a smarter com-
munication agent which may be willing to route it. Routers
can be implemented with varying degrees of sophistication
- they can not guarantee to deliver all messages.

KQML Facilitators

To deliver messages that are incompletely addressed, routers
rely on facilitators. A facilitator is a network application
which provides useful network services. It maintains a reg-
istry of service names; it will forward messages on request
to named services. It may provide matchmaking services
between information providers and consumers. Facilitators
are actual network software agents which have their own

KQML routers to handle their traffic and deal exclusively in
KQML messages. There is typically one facilitator for each
local group of agents. This can translate into one facilitator
per local site or one per project; there may be multiple local
facilitators to provide redundancy. When each application
starts up, its router announces itself to the local facilitator
so that it is registered in the local database. When the ap-
plication exits, the router sends another KQML message to
the facilitator, removing the application from the facilita-
tor's database. In this way applications can find each other
without there having to be a hand maintained list of local

KQML KRILs

Since the router is a separate process from the application,
it is necessary to have a programming interface between the
application and the router. This application program inter-
face (API) is called a KRIL (KQML Router Interface Li-
brary). While the router is a separate process, with no un-
derstanding of the content field of the KQML message, the
KRIL API is embedded in the application and has access
to the application's tools for analyzing the content. While
there is only one piece of router code, which is instantiated
for each process, there can be various KRILs, one for each
application type and one for each application language. The
general goal of the KRIL is to make access to the router as
simple as possible for the programmer.

To this end, a KRIL can be as tightly embedded in
the application, or even the application's programming lan-
guage, as is desirable. For example, an early implementation
of KQML featured a KRIL for the Prolog language which
had only a simple declarative interface for the programmer.
During the operation of the Prolog interpreter, whenever
the Prolog database was searched for predicates, the KRIL
would intercept the search; determine if the desired predi-
cates were actually being supplied by a remote agent; for-
mulate and pose an appropriate KQML query; and return
the replies to the Prolog interpreter as though they were
recovered from the internal database. The Prolog program
itself contained no mention of the distributed processing go-
ing on except for the declaration of which predicates were
to be treated as remote predicates.

It is not necessary to completely embed the KRIL in the
application's programming language. A simple KRIL gen-
erally provides two programmatic entries. For initiating a
transaction there is a send-kqml-message function. This
accepts a message content and as much information about
the message and its destination as can be provided and re-
turns either the remote agent's reply (if the message trans-
mission is synchronous and the process blocks until a reply
is received) or a simple code signifying the message was sent.
For handling incoming asynchronous messages, there is usu-
ally a declare-message-handler function. This allows the
application programmer to declare which functions should
be invoked when messages arrive. Depending on the KRILs
capabilities, the incoming messages can be sorted according
to performative, or topic, or other features, and routed to
different message handling functions.

In addition to these programming interfaces, KRILs ac-
cept different types of declarations which allow them to reg-
ister their application with local facilitators and contact re-
mote agents to advise them that they are interested in re-
ceiving data from them. Our group has implemented a va-
riety of experimental KRILs, for Common Lisp, C, Prolog,
Mosaic, SQL, and other tools.

12

5 Experience with KQML

The KQML language and implementations of the protocol
have been used in several prototype and demonstration sys-
tems. The applications have ranged from concurrent de-
sign and engineering of hardware and software systems, mil-
itary transportation logistics planning and scheduling, flex-
ible architectures for large-scale heterogeneous information
systems, agent-based software integration and cooperative
information access planning and retrieval. KQML has the
potential to significantly enhance the capabilities and func-
tionality of large-scale integration and interoperability ef-
forts now underway in communication and information tech-
nology such as the national information infrastructure and
OMG's CORBA, as well as in application areas electronic
commerce, health information systems and virtual enter-
prise integration. The content languages used have included
languages intended for knowledge exchange including the
Knowledge Interchange Format (KIF) and the Knowledge
Representation Specification Language (KRSL) [21] as well
as other more traditional languages such as SQL. Early ex-
perimentations with KQML began in 1990. The following
is a representative selection of applications and experiments
developed using KQML.

The design and engineering of complex computer sys-
tems, whether exclusively hardware or software systems or
both, today involves multiple design and engineering disci-
plines. Many such systems are developed in fast cycle or
concurrent processes which involve the immediate and con-
tinual consideration of end-product constraints, e.g., mar-
ketability, manufacturing planning, etc. Further, the design,
engineering and manufacturing components are also likely to
be distributed across organizational and company bound-
aries. KQML has proved highly effective in the integration
of diverse tools and systems enabling new tool interactions
and supporting a high-level communication infrastructure
reducing integration cost as well as flexible communication
across multiple networking systems. The use of KQML in
these demonstrations has allowed the integrators to focus
on what the integration of design and engineering tools can
accomplish and appropriately deemphasized how the tools
communicate [17, 23, 8, 10].

We have used KQML as the communication language
in several technology integration experiments in the ARPA
Rome Lab Planning Initiative. One of these experiments
supported an integrated planning and scheduling system for
military transportation logistics linking a planning agent (in
SIPE [30, 4]), with a scheduler (in Common Lisp), a knowl-
edge base (in LOOM [22]), and a case based reasoning tool
(in Common Lisp). All of the components integrated were .
preexisting systems which were not designed to work in a
cooperative distributed environment.

In a second experiment, we developed a information agent
consisting of CoBASE [6], a cooperative front-end, SIMS
[1, 2], an information mediator for planning information ac-
cess, and LIM [26], an information mediator for translating
relational data into knowledge structures. CoBASE pro-
cesses a query, and, if no responses are found relaxes the
query based upon approximation operators and domain se-
mantics and executes the query again. CoBASE generates a
single knowledge-based query for SIMS which using knowl-
edge of different information sources selects which of sev-
eral information sources to access, partitions the query and
optimizes access. Each of the resulting queries in this ex-
periment is sent to a LIM knowledge server which answers
the query by creating objects from tuples in a relational

database. A LIM server front-ends each different database.
This experiment was run over the internet involving three,
geographically dispersed sites.

Agent-Base Software Integration [18] is an effort under-
way at Stanford University which applying KQML as an
integrating framework for general software systems. Using
KQML, a federated architecture incorporating a highly so-
phisticated facilitator is developed which supports an agent-
based view of software integration and interoperation [16].
The facilitator in this architecture is an intelligent agent
used to process and reason about the content of KQML
messages supporting tighter integration of disparate soft-
ware systems.

We have also successfully used KQML in other smaller
demonstrations integrating distributed clients (in C) with
mediators which were retrieving data from distributed da-
tabases. Mediators are not just limited distributed database
access. In another demonstration, we experimented with a
KQML URL for the World Wide Web. The static nature
of links within such hypermedia structures lends itself to
be extended with virtual and dynamic links to arbitrary
information sources as can be supported easily with KQML.

6 Conclusion

This paper has described KQML - a language and associated
protocol by which intelligent software agents can communi-
cate to share information and knowledge. We believe that
KQML, or something very much like it, will be important in
building the distributed agent-oriented information systems
of the future.

The design of KQML has continued to evolve as the ideas
are explored and feedback is received from the prototypes
and the attempts to use them in real testbed situations.
Furthermore, new standards for sharing persistent object-
oriented structures are being developed and promulgated,
such as OMG's CORBA specification and Microsoft's OLE
2.0. Should any of these become widely used, it will be
worthwhile to evolve KQML so that its key ideas the collec-
tion of reserved performatives, the support for a variety of
information exchange protocols, the need for an information
based directory service can enhance these new information
exchange languages.

Additional information on KQML, including papers, lan-
guage specifications, access to APIs, information on email
discussion lists, etc, can be obtained via the world wide web
as http://BBv.c8.unbc.edu/kqml/ and via ftp from ftp.es.-
umbc. edu in pub/kqml/.

References

[1] Yigal Arens. Planning and reformulating queries for
semantically-modeled multidatabase systems. In First
International Conference on Information and Knowl-
edge Management, October 1992.

[2] Yigal Arens, Chin Chee, Chun-Nan Hsu, Hoh In, and
Craig A. Knoblock. Query processing in an informa-
tion mediator. In Proceedings of the ARPA/Rome Lab
1994 Knowledge-Based Planning and Scheduling Initia-
tive Workshop, February 1994.

[3] External Interfaces Working Group ARPA Knowledge
Sharing Initiative. Specification of the KQML agent-
communication language. Working paper. Available as
http://BBB.cs.umbc.edu/kqml/papers/kqml-spec.ps, De-
cember 1992.

13

[4] Marie Bienkowski, Marie desJardins, and Roberto Des-
imone. SOCAP: system for operations crisis action
planning. In Proceedings of the ARPA/Rome Lab 1994
Knowledge-Based Planning and Scheduling Initiative
Workshop, February 1994.

[5] Mark Burstein, editor. Proceedings of the ARPA/Rome
Lab 1994 Knowledge-Based Planning and Scheduling
Initiative Workshop. Morgan Kuafmann Publishers,
Inc., February 1994.

[6] Wes Chu and Hua Yang. Cobase: A cooperative query
answering system for database systems. In Proceed-
ings of the ARPA/Rome Lab 1994 Knowledge-Based
Planning and Scheduling Initiative Workshop, Febru-
ary 1994.

[7] M. Cutkosky, E. Engelmore, R. Fikes, T. Gruber,
M. Genesereth, and W. Mark. PACT: An experiment
in integrating concurrent engineering systems. IEEE
Computer, pages 28-38, January 1993.

[8] D. Kuokka et. al. Shade: Technology for knowledge-
based collaborative. In AAAI Workshop on AI in Col-
laborative Design, 1993.

[9] J. McGuire et. al. Shade: Technology for knowledge-
based collaborative engineering. Journal of Concurrent
Engineering: Applications and Research (CERA), 1(2),
September 1993.

[10] William Mark et. al. Cosmos: A system for supporting
design negotiation. Journal of Concurrent Engineering:
Applications and Research (CERA), 2(3), 1994.

[11] Tim Finin, Rich Fritzson, and Don McKay. A high-
level language and protocol to support intelligent agent
interoperability. In Workshop on Enabling Technologies
for Concurrent Engineering, April 1992.

[12] Tim Finin, Rich Fritzson, and Don McKay. A
knowledge query and manipulation language for in-
telligent agent interoperability. In Fourth Nar
tional Symposium on Concurrent Engineering, CE
& CALS Conference, June 1-4 1992. Available as
http://www.cs.umbc.edu/kqml/papers/cec&ls.ps.

[13] Tim Finin, Don McKay, Rich Fritzson, and Robin
McEntire. KQML: an information and knowledge
exchange protocol. In International Conference on
Building and Sharing of Very Large-Scale Knowl-
edge Bases, December 1993. A version of this pa-
per will appear in Kazuhiro Fuchi and Toshio Yokoi
(Ed.), "Knowledge Building and Knowledge Shar-
ing", Ohmsha and IOS Press, 1994. Available as
http://www.es.unbc.edu/kqml/papers/kbks.ps.

[14] Tim Finin, Charles Nicholas, and Yelena Yesha, editors.
Information and Knowledge Management, Expanding
the Definition of Database. Lecture Notes in Computer
Science 752. Springer-Verlag, 1993. (ISBN 3-540-57419-
0).

[15] M. Genesereth and R. Fikes et. al. Knowledge inter-
change format, version 3.0 reference manual. Technical
report, Computer Science Department, Stanford Uni-
versity, 1992.

[16] Michael R. Genesereth and Steven P. Katchpel. Soft-
ware agents. Communications of the ACM, 37(7):48-53,
147, 1994.

[17] Mike Genesereth. Designworld. In Proceedings of the
IEEE Conference on Robotics and Automation, pages
2,785-2,788. IEEE CS Press.

[18] Mike Genesereth. An agent-based approach to software
interoperability. Technical Report Logic-91-6, Logic
Group, CSD, Stanford University, February 1993.

[19] Matt Ginsberg. Knowledge interchange format: The
KIF of death. AI Magazine, 1991.

[20] Yannis Labrou and Tim Finin. A semantics approach
for KQML - a general purpose communication language
for software agents. In Third International Conference
on Information and Knowledge Management, Novem-
ber 1994. Available as http://9ww.cs.umbc.edu/kqml/-
papers/kqml-semantics.ps.

[21] Nancy Lehrer. The knowledge representation specifica-
tion language manual. Technical report, ISX Corpora-
tion, Thousand Oaks, California, 1994.

[22] Robert MacGregor and Raymond Bates. The LOOM
knowledge representation language. Technical Report
ISI/RS-87-188, USC/ISI, 1987. Also appears in Pro-
ceedings of the Knowledge-Based Systems Workshop
held in St. Louis, Missouri, April 21-23, 1987.

[23] M.Tenenbaum, J. Weber, and T. Gruber. Enterprise
integration: Lessons from shade and pact. In C. Petrie,
editor, Enterprise Integration Modeling. MIT Press,
1993.

[24] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil,
T. Senator, and W. Swartout. Enabling technology
for knowledge sharing. AI Magazine, 12(3):36-56, Fall
1991.

[25] Jeff Y-C Pan and Jay M. Tenenbaum. An intelli-
gent agent framework for enterprise integration. IEEE
Transactions on Systems, Man and Cybernetics, 21(6),
December 1991. (Special Issue on Distributed AI).

[26] Jon Pastor, Don McKay, and Tim Finin. View-
concepts: Knowledge-based access to databases. In
First International Conference on Information and
Knowledge Management, October 1992.

[27] R. Patil, R. Fikes, P. Patel-Schneider, D. McKay,
T. Finin, T. Gruber, and R. Neches. The DARPA
knowledge sharing effort: Progress report. In Princi-
ples of Knowledge Representation and Reasoning: Pro-
ceedings of the Third International Conference, Novem-
ber 1992. Available as http://www.cs.umbc.edu/kqral/-
papers/kr92.ps.

[28] R. Patil, R. Fikes, P. Patel-Schneider, D. McKay,
T. Finin, T. Gruber, and R. Neches. The DARPA
knowledge sharing effort: Progress report. In B. Nebel,
C. Rich, and W. Swartout, editors, Principles of
Knowledge Representation and Reasoning: Proc. of the
Third International Conference (KR'92), San Mateo,
CA, November 1992. Morgan Kaufmann.

[29] Gio Wiederhold, Peter Wegner, and Stefano Ceri. To-
ward megaprogramming. Communications of the ACM,
33(ll):89-99, November 1992.

[30] David Wilkins. Practical Planning: Extending the Clas-
sical AI Planning Paradigm. Morgan Kaufmann Pub-
lishers, Inc., San Mateo, CA., 1988.

14

3. PROPOSED NEW KQML
SPECIFICATION

Intelligent Agent Integration Technology

Prepared by:
Yannis Labrou

and
Tim Finin

Co-Principal Investigator
University of Maryland • Baltimore County

finin@cs.umbc.edu, (410)455-3522

This section is also available as Technical Report TR CS-97-03 from UMBC.

15

A proposal for a new KQML specification

This document constitutes a proposal for a revision of the current KQML specification
document ([1]). Although the differences regarding the syntax of KQML messages and the
reserved performative parameters are minimal, there are significant changes regarding the
set of reserved performatives, their meaning and intended use. Parts of Sections 1 and 2
appear in the current KQML specification document ([1]) and are included here for reasons
of completeness of this presentation.

1 KQML transport assumptions

This chapter presumes a model of message transport. So for these purposes, we define the
following abstraction of the transport level:

• Agents are connected by unidirectional communication links that carry discrete mes-
sages.

• These links may have a non-zero message transport delay associated with them.

• When an agent receives a message, it knows from which incoming link the message
arrived.

• When an agent sends a message it may direct the message to a particular outgoing
link.

• Messages to a single destination arrive in the order they were sent.

• Message delivery is reliable.

NOTE: The latter property is less useful than it may appear, unless there is
a guarantee of agent reliability as well. Such a guarantee is a policy issue, and
may vary among systems but it is important (as an assumption) for the semantic
description presented in [3]

This abstraction may be implemented in many ways. For example, the links could be
TCP/IP connections over the Internet, which may only actually exist during the trans-
mission of a single message or groups of messages. The links could be email paths used by
mail-enabled programs. The links could be UNIX IPC connections among processes running
on an ether-networked LAN. Or, the links could be high-speed switches in a multiprocessor
machine like the Hypercube, accessed via Object Request Broker software. Regardless of
how communication is actually carried out, KQML assumes that at the level of agents, the
communication appears to be point-to-point message passing.

The point of this point-to-point message transport abstraction is to provide a simple,
uniform model of communication for the outer layers of agent-based programs. This should
make agent-based programs and APIs easier to design and build.

16

A proposal for a new KQML specification

2 KQML string syntax

A KQML message is also called a performative. A performative is expressed as an ASCII
string using the syntax defined in this section. This syntax is a restriction on the ASCII
representation of Common Lisp Polish-prefix notation. The ASCII-string LISP fist notation
has the advantages of being readable by humans, simple for programs to parse (particu-
larly for many knowledge-based programs), and transportable by many inter-application
messaging platforms. However, no choice of message syntax will be both convenient and
efficient for all messaging APIs.

Unlike Lisp function invocations, parameters in performatives are indexed by keywords and
are therefore order independent. These keywords, called parameter names, must begin with
a colon (:) and must precede the corresponding parameter value. Performative param-
eters are identified by keywords rather than by their position due to a large number of
optional parameters to performatives. Several examples of the syntax appear throughout
this document.

The KQML string syntax in BNF is shown in Figure 1. The BNF assumes definitions for
<ascii>, <alphabetic>, <numeric>, <double-quote>, <backslash>, and <whitespace>.
"*" means any number of occurrences, and "-" indicates set difference. Note that <perf orm-
ative> is a specialization of <expression>. In length-delimited strings, e.g., "#3"abc",
the whole number before the double-quote specifies the length of the string after the double-
quote.

<performative>::= (<word> {<whitespace> :<word> <whitespace> <expression>}*)
<expression> ::= <word> I <quotation> I <string> I

(<word> {<whitespace> <expression>}*)
<word> ::= <character><character>*
<character> ::= <alphabetic> I <numeric> I <special>
<special> ::=<|>I=I+|-I*l/I&|-|-I_l

ffl I $ I '/. I : I . I ! I ?
<quotation> ::= '<expr> I '<comma-expr>
<comma-expr> ::= <word> | <quotation> I <string> I ,<comma-expr> I

(<word> {<whitespace> <comma-expr>}*)
<string> ::= "<stringchar>*" I #<digit><digit>*"<ascii>*
<stringchar> ::= \<ascii> I <ascii>-\-<double-quote>

Figure 1: KQML string syntax in BNF

17

A proposal for a new KQML speciGcation

3 Reserved performative parameters

As described in Section 2, performatives take parameters identified by keywords. This
section defines the meaning of some common performative parameters, by coining their
keywords and describing the meaning of the accompanying values. This will facilitate
brevity in the performative definitions presented in Section 4, since those parameters are
used heavily.

The following parameters are reserved in the sense that any performative's use of parameters
with those keywords must be consistent with the definitions below. These keywords and
information parameter meanings are summarized in Table 1. The specification of reserved
parameter keywords is useful in at least two ways: 1) to mandate some degree of uniformity
on the semantics of common parameters, and thereby reduce programmer confusion, and
2) to support some level of understanding, by programs, of performatives with unknown
names but with known parameter keywords.

:sender <word>

:receiver <word>

These parameters convey the actual sender and receiver of a performative, as opposed to
the virtual sender and receiver in the :f rom and :to parameters of a forward performative
(see Section 4.3).

:reply-with <word>

:in-reply-to <word>

The sender knows that the reply (meaning the response or follow-up, in a more general sense,
that is "related" or "linked" to the message), if any, will have a : in-reply-to parameter
with a value identical to the <word> of the :reply-with parameter of the message to which
it is responding.

:language <word>

:ontology <word>

:content <expression>

Keyword Meaning
:sender
:receiver
:from
:to
:in-reply-to

jreply-with
:language
:ontology

:content

the actual sender of the performative
the actual receiver of the performative
the origin of the performative in : content when forward is used
the final destination of the performative in : content when forward is used
the expected label in a response to a previous message (same as the
reply-with value of the previous message)

the expected label in a response to the current message
the name of the representation language of the : content
the name of the ontology (e.^., set of term definitions) assumed in the
content parameter

the information about which the performative expresses an attitude

Table 1: Summary of reserved parameter keywords and their meanings.

18

A proposal for a new KQML specification

The : content parameter indicates the "direct object" (in the linguistic sense) of the per-
formative. For example, if the performative name is tell then the : content will be the
sentence being "told". The <expression> in the :content parameter must be a valid ex-
pression in the representation language specified by the : language parameter (or KQML
in some cases). Figure 1 suggests that expressions in the : content, that have parentheses
(like the Prolog expressions that appear in the examples throughout this chapter) should be
enclosed in <double-quote>s (" "). Furthermore, the constants used in the <expression>
must be a subset of those defined by the ontology named by the : ontology parameter.

NOTE: The BNF suggests that both : language and : ontology are restricted
to only take <word>s as values, and therefore complex terms, e.g., denoting
unions of ontologies, are not allowed. The definitions for <quotation> and
<comma-expr> in Figure 1, are intended to accommodate expressions in KIF
that use special operators.

19

A proposal for a new KQML specißcation

4 The reserved performatives

We provide descriptions of the reserved performatives and examples that show their proper
use. We use the following notation:

• When referred to in text, performative names are written in italics, e.g., ask-all, tell,
etc.

• In text, we use the names of reserved performative parameters to refer to their values,
so : sender refers to the particular sender of a performative, : content refers to the
content and so on.

• Occasionally, we use parameterper/ormati„e to refer to the value of a particular per-
formative parameter, i.e., senderadverti,e to refer to the sender of an advertise in a
particular case.

• We use <perf ormative> to refer to a particular instance of a performative.

The performatives examined in this document are organized in three (3) categories and
their meaning and some properties of interest can be found in Table 2 (page 7), Table 3
(page 8), Table 4 (page 9) and Table 5 (page 10). The parameters presented with the
performatives' specifications are mandatory and define the minimum for proper use of the
performative. Parameters preceded by an asterisk (*) are not always mandatory. For
example, the :in-reply-to for ask-if is mandatory if the ask-if follows a relevant advertise,
but not in other cases. The asterisk itself is not part of the KQML syntax; we only use it
as a meta-syntactic marker. Finally, although often some of the values of the parameters
can be inferred, we choose completeness over economy.

4.1 Discourse performatives

This is the category of performatives that may be considered as close as possible to speech
acts in the linguistic sense. Of course the idea of explicitly stating the format of the response
(as in stream-all or ask-one) is unusual from a speech act theory perspective, but they may
still be considered as speech acts in the pure sense. These are the performatives to be used
in the context of an information and knowledge exchange kind of discourse between two
agents.

(ask-if
:sender <word>
:receiver <word>
:in-reply-to <word>
:reply-with <word>
:language <word>
:ontology <word>
:content <expression>)

20

A proposal for a new KQML specification

Agent A sends the following performative to agent B. The :in-reply-to suggests that
the ask-all follows a relevant advertise message.

(ask-all
:sender A
:receiver B
:in-reply-to idO
:reply-with idl
:language Prolog
:ontology foo
:content "bar(X.Y)")

and agent B replies with the following KQML message

(tell :sender
:receiver
:in-reply-to
:reply-with
:language
:ontology

B
A
idl
id2
Prolog
foo

:content "[bar(a,b), bar(c ,d)]")

Figure 2: An ask-all performative and the appropriate response.

The : sender wishes to know if the : content is true of the receiver. True of the :receiver is
taken to mean that either the <expression> matches a sentence in the receiver's Knowledge
Base (KB) or is provable of the : receiver, i.e., matches a sentence in the receiver's Virtual
Knowledge Base (VKB).1

(ask-all
:sender <word>

:receiver <word>

* : in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

The : sender wishes to know all instantiations of the : content that are true of the : re-
ceiver; <expression> has free variables that are bound to values in the instantiations of
the response. Those instantiations will be delivered in the form of a collection provided by
: language. Of course, the notion of the collection is language dependent. In the example
in Figure 2 (: language is Prolog) such a collection is just a list.

(ask-one

'From now on we will use "VKB" to refer to either "exists in the KB" or "provaMe-"

21

A proposal for a new KQML specification

Name

ask-if
ask-all
ask-one
stream-all

tell
untell
deny
insert
uninsert
delete-one
delete-all
undelete
achieve
unachieve
advertise

unadvertise

subscribe

sorry

standby

ready
next
rest
discard

register
unregister
forward

broadcast

Page

11
11
11
13
13
13

Meaning

S wants to know if the : content is in R's VKB
S wants all of R's instantiations of the : content that are true of R
S wants one of R's instantiations of the : content that is true of R
multiple-response version of ask-all
the end-of-stream marker to a multiple-response (stream-allf
the sentence is in S's VKB
the sentence is not in S's VKB

14
14
16
16
16
17
17
19

21

21
22
24

the negation of the sentence is in S's VKB
S asks R to add the : content to its VKB
S wants R to reverse the act of a previous insert
S wants R to remove one matching sentence from its VKB
S wants R to remove all matching sentences from its VKB
S wants R to reverse the act of a previous delete
S wants R to do make something true of its physical environment
C ~.~_x_ r» i- it e . _ . S wants R to reverse the act of a previous achieve
S wants R to know that S can and will process a message like the one in
:content
S wants R to know that S cancels a previous advertise and will not
process any more messages like the one in the : content
S wants updates to R's response to a performative
S considers R's earlier message to be mal-formed

24

25
25
25
29

30
30
31

transport-address
broker-one

broker-all

recommend-one
recommend-all
recruit-one
recruit-all

S understands R's message but cannot provide a more informative re-
sponse
S wants R to announce its readiness to provide a response to the message
in :content
S is ready to respond to a message previously received from R
S wants R's next response to a message previously sent by S
S wants R's remaining responses to a message previously sent by S
S does not want R's remaining responses to a previous (multi-response)
message
S announces to R its presence and symbolic name

32
30
35

35

37
37
37
39

S wants R to reverse the act of a previous register
S wants R to forward the message to the :to agent (R might be that
agent)
S wants R to send a message to all agents that R knows of
S associates its symbolic name with a new transport address
S wants R to find one response to a <perf ormative> (some agent other
than R is going to provide that response)
S wants R to find all responses to a <perf ormative> (some agent other
than R is going to provide that response)
S wants to learn of an agent who may respond to a <perf ormative>
S wants to learn of all agents who may respond to a <perf ormative>
S wants R to get one suitable agent to respond to a <perf ormative>
S wants R to get all suitable agents to respond to a <perf ormative>

Table 2: Summary of reserved performatives for : sender S and : receiver R.

22

A proposal for a new KQML specification

Category Name Response
Required

Response
Only

No
Response

:content

Discourse ask-if X <ezpression>
ask-all X <ezpression>
ask-one X <ezpression>
stream-all X <ezpression>
eos X empty
tell X <expression>
untell X <ezpression>
deny X <ezpression>
insert X <expression>
uninsert X <ezpression>
delete-one X <expression>
delete-all X <ezpression>
undelete X <ezpression>
achieve X <ezpression>
unachieve X <expression>
advertise X <perfozmative>
unadvertise X <performative>
subscribe X <performative>

Intervention
and Mechanics

error X empty
sorry X empty
standby n/a n/a n/a <performative>
ready n/a n/a n/a empty
next n/a n/a n/a empty
rest n/a n/a n/a empty
discard n/a n/a n/a empty

Facilitation
and Networking

register X <ezpression>
unregister X empty
forward :content <performative>
broadcast :content <perforaative>
transport-address X <ezpression>
broker-one :content <performative>
broker-all :content <perf ormative >
recommend-one X <performative>
recommend-all X <performative>
recruit-one :content <performative>
recruit-all :content <performative>

Table 3: This is the set of performatives discussed in this document and their properties
when used in conversations. The properties have the following meaning: "response required"
means that the : receiver processes the performative and generates the response on its own;
"response only" means that the performative can only be used in the context of responding
to some other performative; "no response" means that those performatives do not require
(but might allow) a response (there is also the possibility of a follow-up message); and
: content refers to the type of the : content ("n/a" stands for not applicable; see Section 4.2
for an explanation). Forward, broadcast, broker-one, broker-all, recruit-one and recruit-all,
do not require a response by default. Whether there is a response or a follow-up to them,
depends solely on the :content, i.e., on the <perf ormative> that appears in the :content
and its properties in conversations.

23

A proposal for a new KQML specification

Category Name advertise subscribe standby forward
broadcast

Facilitation
performatives

Discourse ask-if X X X X
ask-all X X X X
ask-one X X X X X
stream-all X X X X X
eos X X
tell X X
untell X
deny X
insert X X X
uninsert X
delete-one X X X
delete-all X X X
undelete X
achieve X X X
im achieve X
advertise X
unadvertise X
subscribe X X X X

Intervention
and Mechanics

error X
sorry X
standby X
ready X
next X
rest X
discard X

Facilitation
and Networking

register
unregister
forward
broadcast
transport-address
broker-one X
broker-all X
recommend-one X X X
recommend-all X X X
recruit-one X
recruit-all X

Table 4: Advertise, subscribe, standby, forward, broadcast and the facilitation performatives
are the only performatives that may have a <performative>, i.e., a KQML message, as
:content ("facilitation performatives" refers to broker-one, broker-all, recruit-one, recruit-
all, recommend-one and recommend-all). Note that the facilitation performatives allow
exactly the same performatives as advertise, which makes sense since the processing of the
facilitation performatives depends on advertisements. The facilitation performatives may
appear in the : content of advertise messages if and only if a non-facilitator is the : sender
of the advertise.

24

A proposal for a new KQML specification

Category Name All
agents

Facilitators
only

Only if
advertised

Discourse ask-if X
ask-all X
ask-one X
stream-all X
eos X
tell X
untell X
deny X
insert X
uninsert X
delete-one X
delete-all X
undelete X
achieve X
un achieve X
advertise X
unadvertise X
subscribe X

Intervention
and Mechanics

error X
sorry X
standby X
ready X
next X
rest X
discard X

Facilitation
and Networking

register X
unregister X
forward X
broadcast X
transport-address X
broker-one X X
broker-all X X
recommend-one X X
recommend-all X X
recruit-one X X
recruit-all X X

Table 5: This table lists the performatives that various kinds of agents may process. We
distinguish between agents that are facilitators and agents that are not facilitators. The
categories have the following meaning: "all agents" refers to all agents, whether they serve
as facilitators on not; "facilitators only" only applies to agents that are facilitators; and
"only if advertised" refers to non-facilitator agents that have to advertise for the specific
<perf ormative>. A subtle distinction has to be drawn between an agent's ability to process
a performative in principle and to process a <perf ormative>, i.e., a KQML message ofthat
performative with a particular : content. So, for example, although all agents can process
ask-if, i.e., they have handler functions for that performative, they still have to advertise
their ability to process an ask-if with a particular : content.

25

A proposal for a new KQML specification

: sender <word>
:receiver <word>
:in-reply-to <word>
:reply-vith <word>
:language <word>
:ontology <word>
:content <expression>)

This performative is the same as ask-all but only one expression is sought as a response.
Any of the tell performatives of Figure 3 would constitute the appropriate response to an
ask-one message similar to the ask-all message of Figure 2.

NOTE: The : sender of an ask-one has no control over which of the possible
responses might be delivered to it (first, last, random, etc.)

(stream-all

:sender <word>
:receiver <word>
:in-reply-to <word>
:reply-with <word>
:language <word>
:ontology <word>
:content <expression>)

This performative's meaning is identical to that of ask-all, except for the format of the
delivery of the response. Instead of delivering the collection of matches in a single perfor-
mative, a series of performatives, one for each member of the collection, should be sent.
This only holds of course, if the response to the corresponding ask-all would have been a
tell. See Figure 3 for an example of an exchange that involves the stream-all performative
and note that the collective response is equivalent to that of Figure 2.

(eos

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>)

This performative only serves the purpose of marking the end-of-stream of the multi-
response to a stream-all (see Figure 3).

26

A proposal for a new KQML specification

Agent A sends a message to agent B

(stream-all
:sender A
:receiver B
:in-reply-to idO
:reply-with idl
:language Prolog
:ontology foo
:content "bar(X.Y)")

and agent B replies with the following KQML message

(tell :sender B
:receiver A
:in-reply-to idl
:reply-with id2
:language Prolog
:ontology loo
:content "bar(a,b)")

and later agent B sends

(tell :sender B
:receiver A
:in-reply-to idl
:reply-with id3
:language Prolog
:ontology foo
:content "bar(c,d)")

and finally concludes the response with

(eos :sender B
:receiver A
:in-reply-to idl
:reply-with id4)

Note that B's response is equivalent to B's single performative response to the similar
ask-all of Figure 2.

Figure 3: A stream-all performative and the appropriate responses.

27

A proposal for a new KQML specification

(tell
:sender <word>

:receiver <word>

:in-reply-to <word>
:reply-with <word>

:language <word>
:ontology <word>

:content <expression>)

This performative indicates that the : content expression is true of the : sender, i.e., that
: expression is in its VKB.

(untell
:sender <word>
:receiver <word>
:in-reply-to <word>
:reply-with <word>
:language <word>
:ontology <word>
:content <expression>)

This performative indicates that the : content expression in not true of the sender, i.e., it is
not part of the sender's VKB. This does not necessarily mean that the expression's negation
is true of the sender. In other words, untell<expx,Baioa> is not the same as *e//-,<expreaBion>.

(deny
:sender <word>
:receiver <word>

:in-reply-to <word>
:reply-with <word>
:language <word>

:ontology <word>
:content <expression>)

This performative indicates that the negation of the : content is true of the sender, i.e.,
it is in the sender's VKB. In other words, deny<expTeaaion> is the same as <e^<eXpression>.

NOTE: The reason for having such a performative is that a system might not
provide for logical negation in : language but still operate under a Closed World
Assumption (CWA), i.e., non-provability of an <expression> is equivalent to
provability of its negation.

28

A proposal for a new KQML specißcation

(insert
:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

The : sender requests the : receiver to ad

(uninsert

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <ezpression>)

This performative is a request to reverse an insert that took place in the past by deleting
the inserted expression.

NOTE: Performatives like insert and delete can only be used when an agent
has advertised that is going to accept them. Such an advertisement implies the
acceptance of the corresponding uninsert and undelete messages. Although it is
tempting to view insert and delete as complementary and use delete in the place
of uninsert, and insert instead of undelete, we choose having performatives of
the un- variety, because: (a) an agent might advertise only an insert or only a
delete for a particular : content, and (b) to emphasize that the intent of the un-
performative is to reverse an action that has taken place rather than negate its
effects. An uninsert can only be used after a corresponding insert.

An example that involves insert and uninsert can be seen in Figure 4.

(delete-one

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

29

A proposal for a new KQML specification

Agent A sends the following performative to agent B

(advertise
:sender A
:receiver B
:reply-vith idl
:language KQML
:ontology kqml-ontology
:content (insert

:sender B
:receiver A
:in-reply-to idl
:language Prolog
:ontology foo
:content "bar(X.Y)"))

Later B sends the following message to A, making use of the advertise

(insert
:sender B
:receiver A
:in-reply-to idl
:reply-with id2
:language Prolog
:ontology foo
:content "bar(a,b)")

and some time later B sends the following message to A

(uninsert
:sender B
:receiver A
:in-reply-to idl
:reply-with id3
:language Prolog
:ontology foo
:content "bar(a,b)")

which is followed a bit later by

(insert
:sender B
:receiver A
:in-reply-to idl
:reply-with id4
:language Prolog
:ontology foo
:content "bar(c,d)")

Figure 4: An insert performative following a related advertise, and an example of a proper
uninsert. Note that reply - vith^,,,,,., is not preset by the : sender of the advertise.

30

A proposal for a new KQML specißcation

This performative is a request to delete one sentence from the receiver's KB. The sentence
to be deleted is the one that would have been the : content of the response if an identical
ask-one KQML message had been sent and a tell performative had been used in the response.

NOTE: Had the response to the corresponding ask-one been anything other
than a tell, a sorry should be the response to a delete-one. The idea is that in
such a case, e.g., had a deny been the response to the ask-all, the : content of
the deny would not appear in the KB, and thus cannot be removed from it.

(delete-all

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <ezpression>)

This performative is a request to delete all sentences from the receiver's KB that would
have constituted the response if an identical ask-all KQML message had been sent and a
tell performative had been used for the response.

(undelete
:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

This performative is a request to reverse a delete that took place in the past by inserting
the deleted expression(s).

NOTE: An undelete can only be used after a corresponding delete-one or delete-
all. In either case, it undeletes whatever was deleted in the first place, assuming
of course that the original delete action was executed successfully (no error or
sorry was sent as a response).

31

A proposal for a new KQML specification

(achieve
:sender <word>

:receiver <word>

:in-reply-to <word>
:reply-with <word>
:language <word>
:ontology <word>

:content <expression>)

The : receiver is asked to want to try to make the : content true of the system. Of course
this can always be done by just inserting the : content in the KB, but this performative
makes sense when the : receiver has a representation of the real world in its KB and the
result of the attempt to "make the : content true" will be some action in the real world
the effect of which will be to modify the respective part of the representation of the real
world and thus make the .-content true in the KB. In other words, the :content can be
made true only as a result of some action outside of the system, in the physical world. See
Figure 5 for an example of an exchange that involves the achieve performative.

(unachieve

:sender <word>
rreceiver <word>

:in-reply-to <word>
:reply-with <word>
:language <word>
:ontology <word>
:content <expression>)

This performative is a request to reverse an achieve that took place in the past. See Figure 5
for an example of an exchange that involves the unachieve performative.

NOTE: An unachieve can only be used after a corresponding achieve.

(advertise

:sender <word>
rreceiver <word>
:reply-with <word>
:language <word>
:ontology <word>
:content (performative_name

:sender <word>
rreceiver <word>

:in-reply-to <word>

32

A proposal for a new KQML specification

Agent A sends the following performative to agent B (the : in-reply-to value suggests
that B has sent an advertise for such an achieve message), requesting that B set a new
value for the motor torque of motorl

(achieve :sender A
:receiver B
:in-reply-to idl
:reply-vith id2
:language Prolog
:ontology motors
:content "torque(motor1,5)")

After achieving the requested motor torque (assuming that it was not already set to 5),
agent B sends the following message to A (although this is not required)

(tell :sender B
:receiver A
:in-reply-to id2
:reply-with id3
:language Prolog
:ontology motors
:content "torque(motor1,5)")

Some time later, agent A sends the following message to B, in effect requesting that the
previous setting (unknown to A) be achieved

(unachieve :sender A
:receiver B
:in-reply-to idl
:reply-with id4
:language Prolog
:ontology motors
:content "torque(motorl,5)")

Agent A responds with the following message that serves as acknowledgment (although
this is not required), which implies that the motor torque for motorl has been sent to its
previous value (as a result of the unachieve)

(untell :sender B
:receiver A
:in-reply-to id4
:reply-with id5
:language Prolog
:ontology motors
:content "torque(motorl,5)")

A could choose to send a tell instead, in which case A would give information to B about
the original value (before the achieve) of the motor torque of motorl.

Figure 5: An achieve performative and the appropriate response, later followed by an

unachieve request.

33

A proposal for a new KQML speciGcation

:language <vord>

:ontology <word>

:content <expression>))

This performative indicates that the : sender commits to process the whole embedded
message if the senderad„ertiae receives it (presumably from receiverad„ertiäC in the future).
The subsequent KQML message ought to be identical to whatever the contentQduertI3e is,
except for the :reply-with value that is going to be set by the : receiver of the advertise.
There are constraints that apply to such a message:

• performative .name can be one of ask-if, ask-one, ask-all, stream-all, insert,
delete-one, delete-all, achieve and subscribe (or one of the facilitation perfor-
matives if the : sender is not a facilitator; see also Table 4).

• senderadt)erfije = receiverperformativejname

• receiveradt,ertise = send.6TpeTformative_name

• reply - vithodvertise = in - reply - t0per/ormati„ejiame

See Figure 6 for an example of an exchange that involves the advertise performative.

NOTE: Advertising to a facilitator is like advertising, i.e., potentially sending
an advertise, to all agents that the facilitator knows (or might learn) about. So,
when an agent sends an advertise to a facilitator, the agent will process messages
like the contentadvertise from any agent and not only from receivera(ft,ertjse. For
all practical purposes, an advertise to a facilitator is an advertise to the commu-
nity. Since in order for the senderad„ertjse to process such a message, the proper
value for the in - reply - toperformativename is needed, the senderadt,ertise can
rest assured that such knowledge was acquired only through the facilitator that
was the receiverad„ertwe-

(unadvertise

:sender <word>

:receiver <word>

:reply-with <word>

:language <word>

:ontology <word>

:content (performative_name

:sender <word>

:receiver <word>

:in-reply-to <word>

:language <word>

:ontology <word>

:content <expression>))

34

A proposal for a new KQML specification

Agent A sends the following performative to agent B

(advertise
:sender A
:receiver
:reply-with
:language
:ontology
:content

B
idl
KQML
kqml-ontology
(ask-if

:sender B
:receiver A
:in-reply-to idl
:language Prolog
:ontology foo
:content "bar(X.Y)"))

Later B sends the following message to A, making use of the advertise

(ask-if
:sender B
:receiver A
:in-reply-to idl
:reply-with id2
:language Prolog
:ontology foo
:content "bar(X.Y)")

and agent A responds accordingly, as committed to do

(tell
:sender A
:receiver B
:in-reply-to id2
:reply-with id3
:language Prolog
:ontology foo
:content "bar(X.Y)")

At some later time, B sends another ask-if message, with a new reply - with^.jj this
time, and agent A will respond promptly again.

Figure 6: An example of an advertise and appropriate follow-ups to that.

35

A proposal for a new KQML specification

This performative essentially cancels an advertise. Its : content has to be the same with
the : content of the advertise that it cancels.

(subscribe

:sender

:receiver

:in-reply-to

:reply-vith

:language

:ontology

:content

<word>

<word>

<word>

<word>

<word>

<word>

(performative_name

:sender

:receiver

:in-reply-to

:language

:ontology

:content

<word>

<word>

<word>

<word>

<word>

<expression>))

This performative is a request to be updated every time that the would-be response to
the message in : content is different than the last response delivered to the senderaue,a£Tj6e.
Additionally, since a point of reference is needed for the receiver of a subscribe, it should
issue the first response immediately after receiving the performative and then store the last
response in order to compare. We do not need something like an unsubscribe performative
because a subscribe does not affect the VKB, so there is nothing to be undone. If an agent
has lost interest to the responses to a prior subscribe, a discard (see page 29) may be used
to inform the other agent. See Figure 8 for an example of an exchange that involves the
subscribe performative.

NOTE: The performative .name in the contentau6ÄCr,6e might be any of the
performatives that require a response (see Table 3).

36

A proposal for a new KQML specißcation

(advertise
:sender B
:receiver
:reply-with
:language
:ontology
:content

A
idO
KQML
kqml-ontology
(subscribe

:sender A
:receiver
:in-reply-to
:language
:ontology
:content

B
idO
KqML
kqml-ontology
(ask-all

:sender A
:receiver
:in-reply-to
:language
:ontology
:content

B
idO
Prolog
foo
"bar(X.Y)")))

There is no in - reply - tooduertjae because advertise messages are starting points for
conversations, and there is no reply - with^j,^^ value because this is not to be provided
by the agent that advertises.

Figure 7: An example of an advertise of a subscribe of a ask-all.

4.2 Intervention and mechanics of conversation performatives

The role of those performatives is to intervene in the normal course of a conversation.
The normal course of a conversation is as follows: agent A sends a KQML message (thus
starting a conversation) and agent B responds whenever it has a response or a follow-up.
The performatives of this category, either prematurely terminate a conversation (error,
sorry), or override this default protocol (standby, ready, next, rest and discard).

(error

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>)

This performative suggests that the : sender received a message, indicated by the value
of : in-reply-to, that it does not comprehend. The cause for an error might be: 1)
syntactically ill-formed message, 2) the message has wrong performative parameter values,
or 3) it does not comply with the conversation protocols. This performative can appear as
a response to any performative, if necessary. See Figure 9 for examples of cases that may
lead to an error performative being sent.

37

A proposal for a new KQML specißcation

Agent A sends to agent B the following KQML message, whose : in-reply-to tag suggests
that is a follow-up to an advertise (see Figure 7 for this advertise; it is an example of a
really long KQML message)

(subscribe
:sender A
:receiver B
:in-reply-to idO
:reply-with idl
:language KqHL
:ontology kqml-ontology
:content (ask-all

:sender A
:receiver B
:in-reply-to idO
:reply-with id2
:language Prolog
:ontology foo
:content "bar(X,Y)"))

Upon receiving this subscribe message, B responds immediately with an appropriate mes-
sage (as if processing the ask-all)

(tell
:sender B
:receiver A
:in-reply-to id2
:reply-with id3
:language Prolog
:ontology foo
:content "[bar(a,b),bar(a,c)]")

Some time later, when the would-be response to the ask-all message changes, B sends
another message to A

(tell
:sender B
:receiver A
:in-reply-to id2
:reply-with id4
:language Prolog
:ontology foo
:content "[bar(a.b)]")

In the future, whenever B decides that the would-be response to the ask-all message would
have been different than the last response sent to A, B will sent a new update to A. Note
that B's responses are to the ask-all (and not to the subscribe), which explains the values
of the : in-reply-to parameters.

Figure 8: A subscribe request and appropriate responses.

38

A proposal for a new KQML specißcation

(sorry
:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>)

This performative indicates that the : sender comprehends the message, which is correct in
every syntactic and semantic aspect, but has nothing to provide as a response. The sorry
performative may be used also when the agent could give some more responses (assuming
the agent has provided responses in the past, as in when responding to a subscribe), i.e.,
theoretically there are more responses, but for whatever reason decides not to continue
providing them. When an agent uses sorry as a response to a <performative> this means
that the agent did not process till the end the message to which it is responding to, e.g., an
agent that responds with a sorry to a insert, never inserted the : content to its KB. This
performative can appear as a response to any performative, if necessary.

(standby
:sender <word>

:receiver <word>

:reply-with <word>

:language <word>

:ontology <word>
:content (performative_name

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-vith <word>

:language <word>

:ontology <word>
:content <expression>))

Normally the : receiver of a performative will deliver its response as soon as a response
is generated. The standby performative that takes a <perf ormative> as its content, acts
like a modifier on the usual order of affairs. It is a request to the receiverstand&j, to handle
the embedded performative as it would normally do, but in addition, the : receiver should
inform the sender^,^ that it has generated the response and then withhold it until the
: sender requests for it. In effect, standby warns the :receiver that the response to the
: content should not be delivered until the : sender of the standby sends an appropriate
notification. Prom the above it is obvious that performativejiame may be any of the
performatives of Table 3 that require a response.

NOTE: In short, standby transfers control of the timing of the responses to the
: sender of the original query, thus reversing the default protocol, according to
which the : receiver delivers its responses at will.

39

A proposal for a new KQML specification

See Figure 10 for an example of an exchange that involves the standby performative.

(ready

:sender <word>

:re c e iver <word>

:in-reply-to <word>

:reply-with <word>)

This performative is used by an agent to announce its readiness to deliver at least one of
its responses to a KQML message that has been embedded in a standby performative. The
use of standby does not put the additional constraint on the receiverstQnd6j, (which is also
the senderreadj,) to generate all of its possible responses before announcing its readiness.
See Figure 10 for an example of an exchange that involves the ready performative.

(next

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>)

This performative is used by an agent that has sent a standby in order to request a response
from its interlocutor, after the interlocutor (the receiver of the standby) has announced
that it has the response(s) (with the use of ready). See Figure 10 and Figure 11 for an
example of an exchange that involves the next performative.

(rest

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>)

This performative is to be used by an agent to request for the remaining of the responses, in
an exchange that started with a standby. In effect, rest results to an undoing of the standby,
since it puts in effect the default protocol where the : receiver is in charge of the pace of
the conversation and may deliver its responses at will. See Figure 10 and Figure 11 for an
example of an exchange that involves the rest performative.

(discard

40

A proposal for a new KQML specification

Agent B has received the ask-all message of Figure 2. If B sends either of the following 3
messages as a response to agent A, agent A will respond with an error.
Example 1

(tell :sender B
:receiver A
:reply-vith id2
:language Prolog
:ontology foo
:content "[bar(a,b),bar(c,d)]")

The response is incorrect because it is syntactically ill-formed (the value of the
: in-reply-to tag is missing).

Example 2

(tell :sender B
:receiver A
:in-reply-to id5
:reply-vith id2
:language Prolog
:ontology foo
:content »[bar(a,b),bar(c,d)]")

The response is incorrect because the value of the : in-reply-to is incorrect (assuming
that A has sent no message to B with such a : in-reply-to tag).
Example 3

(tell :sender B
:receiver A
:in-reply-to idl
:reply-with id2
:language Prolog
:ontology foo
:content M[foo(a,b,c),foo(c,d,e)]")

The response is semantically incorrect because the value of the : content is not an
instantiation of the value of content0,fc_aH to which this message serves as a re-
sponse (the response could also be semantically incorrect if the performative-name used in
the response had not been one of those allowed by the conversation policies, e.g., an insert).

Had agent B responded with either of the above messages, agent A would have sent

(error :sender A
:receiver B
:in-reply-to id2
:reply-with. id3)

Figure 9: Examples of the three situations that may result in an error.

41

A proposal for a new KQML specißcation

Agent A sends a message identical to the stream-all of Figure 3 but this time a standby is
used.

(standby
:sender A
:receiver B
:reply-with idOO
:language KQML
:ontology kqml-ontology
:content (stream-all

:sender A
:receiver B
:reply-with idl
:language Prolog
:ontology foo
:content "bar(X,Y)"))

and agent B this time responds with

(ready
:sender B
:receiver A
:in-reply-to idOO
:reply-with idOl)

Then, agent A requests the first response with

(next
:sender A
:receiver B
:in-reply-to idOl
:reply-with id02)

and finally A delivers

(tell :sender B
:receiver A
:in-reply-to idl
:reply-with id2
:language Prolog
:ontology foo
:content "bar(a,b)")

Note that the : in-reply-to value of the tell matches the reply-with value of the stream-
all and not that of the next, since tell is the response to the stream-all. From that point
on, a couple of different scenarios are possible (see Figure 11).

Figure 10: The exchange of Figure 3 when standby is used.

42

A proposal for a new KQML specification

Scenario 1: Agent A requests the second response and B delivers it

(next

(tell

:sender
:receiver
:in-reply-to
:reply-with
:sender
:receiver
:in-reply-to
:reply-vith
:language
:ontology
:content

A
B
idOl
id03)
B
A
idl
id3
Prolog
foo
"bar(c.d)")

Agent A requests for the next response with next and B ends the exchange, since there
are no more responses, by delivering the end-of-stream marker

(next

(eos

:sender
:receiver
:in-reply-to
:reply-with
:sender
:receiver
:in-reply-to
:reply-with

Scenario 2: Agent A might request for the remaining responses all together

(rest :sender A
:receiver B
:in-reply-to idOl
:reply-with id05)

in which case the exchange ends with B delivering

A
B
idOl
id04)
B
A
idl
id4)

(tell

(eos

:sender
:receiver
:in-reply-to
:reply-with
:language
:ontology
:content
:sender
•.receiver
:in-reply-to
:reply-with

B
A
idl
id3
Prolog
foo
"bar(a,b)")
B
A
idl
id4)

Scenario 3: Agent A is not interested in any more responses and lets B know that, by

(discard :sender A
:receiver B
:in-reply-to idOO
:reply-with id06)

Figure 11: The possible scenarios that the exchange of Figure 10 might continue with
(Figure 10 shows the exchange of Figure 3 when standby is used).

43

A proposal for a new KQML specißcation

:sender <word>

:re c e iver <word>

:reply-with <word>

:in-reply-t o <word>)

This performative indicates to the : receiver that the : sender is not interested in any more
responses (presumably to a multi-response performative). See Figure 10 and Figure 11 for
an example of an exchange that involves the discard performative.

NOTE: Performatives that may result to a multi-response are: stream-all,
subscribe, recommend-all.

44

A proposal for a new KQML specification

4.3 Networking and Facilitation performatives

The performatives of this category are not speech acts in the pure sense. They are primarily
performatives that allow agents to find other agents that can process their queries. Although
regular, non-facilitator agents could choose to process them, it would not be particularly
helpful since the facilitation performatives rely on advertise messages and only facilitators
have the power to make advertise messages community-wide.

(register

:sender <word>

:receiver <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

This performative is used by an agent to announce to a facilitator its presence and the
symbolic name associated with its physical address. The : content comprises of the agent's
symbolic name and other information about the agent suggested by some KQML-agents
ontology.

(unregister

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>)

This performative is used to undo a previously sent register and can only be used if a register
has been sent before by the same agent (the senderunre9iater)- This also automatically
cancels all the commitments made by the agent in the past, i.e., all advertise messages sent
by the agent to the facilitator become invalid.

(transport-address

:sender <word>

:receiver <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <word>)

45

A proposal for a new KQML specification

This performative may be used by an agent to announce its relocation in the network
(mail forwarding with the U.S. Postal Service meaning). Using transport-address updates
the information provided by a register. Essentially this is a unregister (from the physical
address where the register was sent from), followed by a register from the new (current)
physical address.

NOTE: The physical address is automatically captured by the router of a re-
ceiving register and is not part of the KQML message. Performatives like regis-
ter, unregister and transport-address generate an association between a symbolic
name (which is part of the KQML message) and a physical address and port
(captured by the router of a receiving agent, by virtue of the message being sent
across the network).

(forward

:from <word>
:to <word>
:sender <word>
:receiver <word>

* :in-reply-to <word>
:reply-with <word>
:language <word>
:ontology <word>
:content (performative_name

:sender <word>
:receiver <word>

* :in-reply-to <word>
:reply-with <word>

:language <word>
:ontology <word>
:content <expression>))

This performative is a request from agent : sender to agent :receiver to deliver a message
that originated from agent :from, to agent :to. The :receiver of the forward might be
the :to agent, in which case the :receiver just processes the message in : content. Agent
: receiver might not be able to deliver the message to agent :to in which case it should
send a forward to some other agent that has a better chance to get the message to the :to
agent. The following constraints hold:

• fromjoryjard = senderper^ormaj,„e_name

• t0/oru>ard = receiveiper/ormaMve_name

See Figure 12 and Figure 13 for an example of an exchange that involves the forward
performative.

46

A proposal for a new KQML specification

NOTE: The : in-reply-to parameter for forward is optional and as far as
we know only makes sense in the context of responding to recommend-one,
recommend-all, broker-one and broker-all in which case the forward is a direct
response to the <perf ormative>. In the case of forward being used to respond
to broker-one and broker-all, the : sender value of the embedded performative
is omitted.

(broadcast

:sender

:receiver

:reply-with

:language

:ontology

:content

<word>

<word>

<word>

<word>

<word>

<performative>)

This performative is a request to forward the <performative> to all agents that the
:receiver knows of, i.e., to all agents that have registered (using register with the :re-
ceiver, if :receiver is a facilitator), or that the :receiver might know of. A broadcast is
equivalent (and implemented in such a manner) to a series of forward messages to all such
agents.

NOTE: All agents (both facilitators and regular agents) are by default capable
of processing forward and broadcast, so agents do not have to send advertise
messages for those performatives. This is the reason why broadcast requires no
: in-reply-to value. What might have been advertised is the contentftroadcast
and it is the : content's : in-reply-to value that is of interest.

(broker-one

:sender

:receiver

:in-reply-to
:reply-with

:language

:ontology

:content

<word>

<word>

<word>

<word>

<word>

<word>

(performative„name

:sender

:reply-with

:language

:ontology

:content

<word>

<word>

<word>

<word>

<expression>))

47

A proposal for a new KQML specification

Let us consider the following situation: agent C knows of agent A, agent A knows of agent
B and agent B knows of agent D ("knows of is synonymous to "is able to deliver messages
to"). Agent C wants agent D to process an ask-if for which agent D has advertised its
ability and commitment to do so (it is possible for C to know that agent D exists but still
not being able to deliver messages to it, e.g., C learned about D after a recommend-one
message similar to that of Figure 15). So, agent C sends the following forward message to
agent A.

(forward
:from C
:to D
:sender C
:receiver A
:reply-with idOO
:language KQML
:ontology kqml-ontology
:content (ask-if

:sender C
:receiver D
:in-reply-to idl
:reply-with id2
:language Prolog
:ontology foo
:content "bar(a,b)H))

Agent A is not the t,oiorward, and cannot deliver to it, so it sends another forward to
B, hoping that B will have a better chance to accomplish the task. If B is incapable of
doing so, B will respond with a sorry to A and A will eventually respond with a sorry
to C's original forward request (such a sorry will be a response to the forward, so the
: in-reply-to will be idOO). This sorry will not get back to A wrapped in a forward.

(forward
:from C
:to D
:sender A
:receiver B
:reply-with
:language
:ontology
:content

idOl
KqML
kqml-ontology
(ask-if

:sender C
:receiver D
:in-reply-to
:reply-with
:language
:ontology
:content

idl
id2
Prolog
foo
"bar(a,b)"))

See Figure 13 for the continuation of this exchange.

Figure 12: A conversation involving the forward performative. See Figure 13, also.

48

A proposal for a new KQML specification

Continuing the exchange that is shown in Figure 12, agent B sends to agent D the following
forward message.

(forward
:from C
:to D
:sender B
:receiver D
:reply-with id02

:language KQML

:ontology kqml-ontology

:content (ask-if
:sender C
:receiver D
:in-reply-to idl
:reply-with id2
:language Prolog

:ontology foo
:content "bar(a,b)"))

There are two possible scenarios for D upon receiving this last message.
Scenario 1: D can deliver directly to C, i.e., D knows of C even though C does not know
of D. In this case C sends the following message

(tell :sender D
:receiver C
:in-reply-to id2
:reply-with id3
:language Prolog

:ontology foo
:content "bar(a,b)")

Scenario 2: If D cannot deliver directly to C, then the response has to follow a similar
path back to C, i.e., the response is wrapped in forward messages that travel from D ->
B -> A -*■ C, and D starts this by

(forward
:from D
:to C
:sender D
:receiver 6
:reply-with id03
:language KQML

:ontology kqml-ontology

:content (tell :sender
:receiver
:in-reply-to
-.reply-with
:language
:ontology
:content

D
C
id2
id3
Prolog
foo
"bar(a.b)"))

that is followed by messages similar to those of Figure 12.

Figure 13: The rest of the exchange of Figure 12.

49

A proposal for a new KQML specification

The constraint is that performative .name can be one of the performatives that can be used
with advertise (see page 19). This is a request to find an agent that can and will process the
: content, (i.e., an agent that has sent an advertise with such a :content) in the name of
the receiver of the broker-one (so all responses from the third party will be directed to the
broker, i.e., the receiver6rofcer_tme). After receiving the response, the broker will sent it to
the : sender of the broker-one, wrapped in a forward originating from the broker-ed agent.
See Figure 14 for an example of an exchange that involves the broker-one performative.

NOTE: The in-reply-to value only makes sense if :receiver is not a facil-
itator, in which case it might have advertised the broker-one. The same holds
for the remaining performatives of this category.

(broker-all

:sender

:receiver

:in-reply-to
:reply-with

:language

:ontology

:content

<word>

<word>

<word>

<word>

<word>

<word>

(performative.name

:sender

:reply-with

:language

:ontology

:content

<word>

<word>

<word>

<word>

<expression>))

This performative is a request to find all agents that can and will process the content
(similar to broker-one). The constraint is again that performative .name can be one of
those that may be used with advertise (see page 19).

(recommend-one

:sender

:receiver

:in-reply-to

:reply-with

:language

:ontology

:content

<word>

<word>

<word>

<word>

<word>

<word>

(performative_name

:sender

:language

:ontology

:content

<word>

<word>

<word>

<expression>))

50

A proposed for a new KQML specification

Agent facilitator has received an advertise message from agent A, identical to the first
message in Figure 6, except for receiver^e,-«« = facilitator and sendera,fc_i/ =
facilitator). Later, agent C sends the following message to the facilitator

(broker-one :sender
:receiver
:reply-with
:language
:ontology
:content

facilitator
id3
KQML
kqml-ontology
(ask-if :sender

:reply-with
:language
:ontology
:content

C
id4
Prolog
foo
"bar(X,Y)"))

Agent facilitator, after searching through the advertise messages that have been sent to
him, decides to send the following KQML message to agent A

(ask-if :sender facilitator
:receiver A
:in-reply-to idl
:reply-with id4
:language Prolog
:ontology foo
:content "bar(X,Y)"))

Agent A responds with the following message

(tell :sender A
:receiver facilitator
:in-reply-to id4
:reply-with id5
:language Prolog
:ontology foo
:content "barU.Y)"))

and finally, agent facilitator sends the following KQML message to agent C, as a response
to the original broker-one message from C.

(forward :from
:sender
:receiver
:in-reply-to
:reply-with
:language
:ontology
:content

facilitator
C
id3
id6
KQML
kqml-ontology
(tell :receiver

:language
:ontology
:content

C
Prolog
foo
"bar(X,Y)"))

The : from of the forward, which is also the value of the : sender of the tell, is omitted for
reasons that are made clear in the semantic description (see [3]).

Figure 14: An example of a broker-one performative and the follow-up

51

A proposal for a new KQML specißcation

The constraint is that perf orn.ative.name be one of the performatives that can be used
in advertise (see page 19). This is a request to suggest an agent that can process the
:content (again, as is the case with broker-one, use is made of the advertise messages that
tne receiverrecommend_one has received). Since more than just an agent name is needed in
order tor sender^^^^^ to be able to contact this agent, the appropriate response of
receiverrec^ d_one will be to forward the advertise message that satisfies the request
bee Figure 15 for an example of an exchange that involves the recommend-one performative.'

(recommend-all
:sender
rreceiver
:in-reply-to
:reply-vith
:language
:ontology
:content

<word>
<word>
<word>
<word>
<word>
<word>
(performative_name

:sender
:language
:ontology
:content

<word>
<word>
<word>
<expression>))

The constraint is that perf ormative^ame can be one of the performatives that can be

conw a(
dVe"lS\{See Page 19£ ™s is a »*»* to suggest all agents that can process the

content (similar to recommend-one).

(recruit-one

:sender

:receiver
:in-reply-to
:reply-with
:language
.•ontology
:content

<word>
<word>
<word>
<word>
<word>
<word>
(performative_name

:sender
:reply-with
:language
.•ontology
:content

<word>
<word>
<word>
<word>
<expression>))

The constraint is that performative_aame can be one of the performatives that can be
used m adverse (see page 19). This performative is like a broker-one but responses will be
directed back to the issuer of the recruit-one. In effect, recruit-one is equivalent to

52

A proposal for a new KQML specification

Agent facilitator has received an advertise message from agent A, identical to the first mes-
sage in Figure 6 (except receiver0d„erti,e = facilitator and sender0,fc_i/ = facilitator).
Later, agent C sends the following message to the facilitator

(recommend-one
:sender C
:receiver facilitator
:reply-with id3
:language KQML
:ontology kqml-ontology
:content (ask-if

:sender C
:language Prolog
:ontology foo
:content "bar(X,Y)" »

Agent facilitator sends the following KQML message to agent C, after searching through
the advertise messages that have been sent to it.

(forward
:from A
:to C
:sender facilitator
:receiver C
:in-reply-to id3
:reply-with id5
:language KQML
:ontology kqml-ontology
:content (advertise

:sender
:receiver
:reply-with
:language
:ontology
:content

A
C
idl
KQML
kqml-ontology
(ask-if

:sender
:receiver
:in-reply-to
:language
:ontology

C
A
idl
Prolog
foo

:content "bar(X,Y)")))

Note that receiverad„erti»e = C instead of facilitator which was the value of
receiverad„ertj,e in A's advertise. Since A's advertise was made to the facilitator, the
value of the receiver,,^,.«« rnay be set by the facilitator to the name of any agent that
has registered with the facilitator.

Figure 15: An example of a recommend-one and a response to it.

53

A proposal for a new KQML specification

(forward

:from

:to

:sender

:receiver

:in-reply-to

:reply-with

:language

:ontology

:content

<word>

<word>

<word>

<word>

<word>

<word>

<word>

<word>

(performative_name

:sender

:receiver

:in-reply-to

:reply-with

:language

:ontology

:content

<word>

<word>

<word>

<word>

<word>

<word>

<expression>))

with the additional constraint that toforward = receiverperformativejname = X, where X
is to be provided by the receiver/o™^, i.e., the receiverrccrujt-<me, making use of the
advertise performatives known to it (likewise for the in - reply - toperformativejname) See
Figure 16 for an example of an exchange that involves the recruit-one performative.

(recruit-all

:sender

:receiver

:in-reply-to

:reply-with

:language

:ontology

:content

<word>

<word>

<word>

<word>

<word>

<word>

(performative_name

:sender

:receiver

:in-reply-to

:reply-with

:language

:ontology

:content

<word>

<word>

<word>

<word>

<word>

<word>

<expression>))

The constraint is that performative-name can be one of the performatives that can be
used in advertise (see page 19). This performative is like a broker-all but responses will
be directed to the issuer of the recruit-all. In effect broker-all is equivalent to a series of
forward messages, like those mentioned in the description of recruit-one.

54

A proposal for a new KQML specification

Agent facilitator has received an advertise message from agent A, identical to the first
message in Figure 6 (except for receiverad„ert<,e = facilitator and sender0,*-i/ =
facilitator). Later, agent C sends the following message to the facilitator

(recruit-one
:sender C
:receiver facilitator
:reply-with id3
:language KqHL
:ontology kqml-ontology
:content (ask-if

:sender C
:reply-vita id4
:language Prolog
:ontology foo
:content "bar(X,Y)"))

Agent facilitator sends the following KQML message to agent A, after searching through
the advertise messages that have been sent to it.

(forward
:from C
:to A
:sender facilitator
:receiver A
:reply-with id4
:language KQML
:ontology kqml-ontology
:content (ask-if

:sender C
:receiver A
:in-reply-to idl
:reply-with id4
:language Prolog
:ontology foo
:content »bar(X,Y)"))

Agent A responds with the following message that is sent to C and not to the facilitator

(tell
:sender A
:receiver C
:in-reply-to id4
:reply-with id5
:language Prolog
:ontology foo
:content "bar(X,Y)")

Figure 16: An example of a recruit-one and its follow-up.

55

A proposal for a new KQML specification

Summary

Let us summarize the features of a domain of KQML-speaking agents:

• In each domain of KQML-speaking agents there is at least one agent with a special
status called facilitator that can always handle the networking and facilitation per-
formatives. Agents advertise to their facilitator, i.e., they send advertise messages to
their facilitators, thus announcing the messages that they are committed to accepting
and properly processing. Advertising to a facilitator is like advertising to the commu-
nity (either of their own domain or of some other domain). Agents can still advertise
on a one-to-one basis, if they so wish, and such advertisements do not commit them to
processing messages from agents other than the : receiver of the advertise. Actually,
such advertisements will never be shared with other agents, because of the "personal"
nature of the advertisements, i.e., they are addressed to particular agents and only
facilitators can supersede that; see Table 5, also. Agents can use their facilitator either

- to have their queries properly dispatched to other agents, using recruit-one,
recruit-all, broker-one or broker-all, or

- to send a recommend-one or a recommend-all to get the relevant advertise mes-
sages and directly contact agent (s) that may process their queries.

• Agents can access agents in other domains either through their facilitator, or directly.
This implies that a smart facilitator may be built in such a way that whenever it
cannot find a useful, relevant advertise from an agent in its domain, it may query
another facilitator, in some other domain. Such an action initiates a sub-dialogue
with another facilitator in order to serve the original query. Elaborate protocols of
this kind are examples of conversations (interactions) that be built on top of the
conversation policies presented in [3]

• Facilitators may request the services of other facilitators in the same way that regular
agents may request the services of their facilitator. Facilitators do not advertise, not
even to other facilitators. The model we imply is one where regular agents advertise
their services to their facilitators and thus facilitators become providers of query-
processing information about the agents in their domain; such information can then
be accessed by any agent (regular or facilitator), using the facilitation performatives.

• We use the term facilitator to refer to all kinds of special services that may be provided
by specialized agents, such as Agent Name Servers (ANS), proxy agents, or brokers
([2])-

References

[1] ARPA Knowledge Sharing Initiative. Specification of the KQML agent-communication
language. ARPA Knowledge Sharing Initiative, External Interfaces Working Group
working paper., July 1993.

[2] Tim Finin, Anupama Potluri, Chelliah Thirunavukkarasu, Don McKay, and Robin
McEntire. On agent domains, agent names and proxy agents. In CIKM Intelligent
Information Agents Workshop, Baltimore, MD, December 1995.

56

A proposal for a new KQML specification

[3] Yannis Labrou. Semantics for an Agent Communication Language. PhD thesis, Uni-
versity of Maryland, Baltimore County, August 1996.

57

4. A SEMANTICS APPROACH
FOR KQML

Intelligent Agent Integration Technology

Prepared by:
Yannis Labrou

and
TimFinin

Co-Principal Investigator
University of Maryland - Baltimore County

finin@cs.umbc.edu, (410)455-3522

This section includes the first comprehensive published paper on a semantics for KQML. It appeared in
the 1994 Conference on Information and Knowledge Management.

58

A semantics approach for KQML -
a general purpose communication language for software agents

Yannis Labrou
Computer Science Department

University of Maryland, Baltimore County
Baltimore MD 21228

email: jklabrou@cs.umbc.edu
voice: (410) 455-2667
fax: (410) 455-3969

Tim Finin
Computer Science Department

University of Maryland, Baltimore County
Baltimore MD 21228

email: finin@cs.umbc.edu
voice: (410) 455-3522
fax: (410) 455-3969

Abstract

We investigate the semantics for Knowledge Query Manipu-
lation Language (KQML) and we propose a semantic frame-
work for the language. KQML is a language and a pro-
tocol to support communication between software agents.
Based on ideas from speech act theory, we propose a se-
mantic description for KQML that associates descriptions
of the cognitive states of agents with the use of the lan-
guage's primitives (performatives). We use this approach to
describe the semantics for the basic set of KQML performa-
tives. We also investigate implementation issues related to
our semantic approach. We suggest that KQML can offer
an all purpose communication language for software agents
that requires no limiting pre-commitments on the agents'
structure and implementation. KQML can provide the Dis-
tributed AI, Cooperative Distributed Problem Solving and
Software Agents communities with an all purpose language
and environment for intelligent inter-agent communication.

1 Introduction

Let us picture a company where employees keep calendars
in their personal computers. A database keeps information
on the employees, such as names, offices, phone numbers.
Another database may register conference rooms, with addi-
tional information regarding capacity, availability, scheduled
activities and so on. One may want to build a system that
can schedule group meetings in the company, according to
the availability of employees and locations. The well-known
approach is to built an application from scratch, so that one
application holds all necessary information and knowledge.
The alternative would be to use the existing applications.
Doing that, would require: 1) the applications to be able
to comprehend each other's knowledge stores, despite dif-
ferences in implementation languages and knowledge repre-
sentation schemes, and 2) the applications to communicate
with each other and dynamically make queries, answer them,

assert or remove facts from their knowledge stores, in short,
to interact intelligently.

This example is an instance of the larger problem of pro-
viding for an environment where software agents may effec-
tively communicate and exchange knowledge and informa-
tion. Addressing this problem is the primary goal of the
ARPA Knowledge Sharing Effort (KSE) [23]. KSE is an ini-
tiative to develop the technical infrastructure to support the
sharing of knowledge among systems [22]. Its goal is to de-
velop new systems by selecting components from libraries of
reusable modules and assembling them together. One of the
key areas identified by KSE was that of protocols for commu-
nication between separate knowledge-based modules, as well
as between knowledge-based systems and databases. The re-
sult was Knowledge Query Manipulation Language (KQML)
(see [1, 2, 14] for documentation on KQML) a message for-
mat and a message-handling protocol to support run-time
knowledge sharing and interaction among agents.

Interaction is more than an exchange of messages. Issues
associated with it, are: models of agents (beliefs, goals, rep-
resentation and reasoning), interaction protocols (an inter-
action regime that guides the agents) and interaction lan-
guages (languages that introduce standard message types
that all agents interpret identically). KQML is intended to
be a untverja/interaction language, that supports communi-
cation through explicit linguistic actions. Our focus in this
paper is the formal description of the semantics of the lan-
guage. Although the language is partly designed and in use,
it lacks a formal semantics, and its current description [2]
is based on natural language descriptions of its primitives
called performatives. We believe that a formal semantics is
necessary for the unambiguous definition of the language,
and its appropriate use. Furthermore, the semantic descrip-
tion is related to implementation issues.

Research communities with a potential interest in such
a language are those of Distributed Artificial Intelligence
(DAI1) ,the subfield of AI concerned with concurrency in
AI computations, (Cooperative) Distributed Problem Solv-
ing, that studies how a loosely coupled network of problem
solvers can work together to solve problems that are beyond
their individual capabilities [12], and Multi Agent Systems,
concerned with coordinating behavior among a collection of
(possibly pre-existing) autonomous intelligent agents. The
rising demand for software agents that can interoperate [16],
and for intelligent agents that can take advantage of the

For an introduction to the issues that DAI is concerned with, see
[4] and [15].

59

enormous resources of today's Internet (like Etzioni's Inter-
net softbots [13]) provide a proving ground for a communica-
tion language. KQML can be used in any environment where
software agents need to communicate something more than
pre-defined and fixed statements of facts and provides for
dynamic run-time interaction, so that intelligent agents can
combine their efforts, or make use of other agents' abilities,
in order to achieve their goals.

In the remainder of this paper we will begin by provid-
ing a brief introduction to speech act theory which under-
lies our approach to defining the semantics of KQML. We
will then associate KQML messages with speech acts and
present a general semantic framework for KQML. Following
this framework, we will give the semantics for a small set of
KQML performatives. In the final two sections of the pa-
per we discuss the impact of our analysis on some software
implementation issues and discuss the kinds of applications
which are appropriate for KQML.

2 Speech act theory and speech act semantics

Speech act theory is a high-level theoretical framework de-
veloped by philosophers and linguists to account for human
communication. It has been extensively used, formalized
and extended within the fields of Computational Linguistics
and AI as a general model of communication between arbi-
trary agents. As such, we believe that speech act theory can
provide us with a framework for the semantics of KQML,
a language focused on the communication between software
agents. Speech act theory is primarily concerned with the
role of language as action. The following three distinct ac-
tions can be identified in a speech act: (1) a locution, i.e.,
the actual physical utterance (with a certain context and
reference), (2) an illocution, i.e, the conveying of the speak-
ers intentions to the hearer, and (3) the perlocutions, i.e.,
actions that occur as a result of the illocution. For example,
"I order you to shut the door" is a locution, its utterance is
the illocution of a command to shut the door and the per-
locution may be (if all goes well) that the hearer shuts the
door. An illocution is usually considered to have two parts:
an illocutionary force and a proposition. The illocutionary
force classifies speech acts into the following classes2: 1)
assertives, that are statements of facts, 2) directives, that
are commands, requests or suggestions, 3) commisives, e.g.,
promises, that commit the speaker to a course of action,
4) declaratives, that entail the occurrence of an action in
themselves3, and 5) expressives, that express feelings and
attitudes.

There is no consensus in the literature regarding the se-
mantic approaches for speech acts but no matter what one
may consider as speech act semantics, it is necessary to make
reference to the cognitive states of the agents that use them.
After all, speech acts are supposed to be the result of agents'
efforts to act upon the world and/or other agents. The
representation of and reasoning about the states of agents
and the world and how agents' actions affect them is a pre-
requisite for any semantic approach. There is a plethora
of approaches regarding the abstractions (models) used for
capturing and describing such states, depending on one's
motivations. They range from informal references to propo-
sitional attitudes, like "believe" or "want", as in Searle's
early work [25] where speech acts are used in the context of
the investigation of reference and other Philosophy of Lan-

variations of this classification appear also in the literature
as in "I name this ship the Titanic?'

guage issues, to strict formalisms, as in the work of Cohen
and Levesque [6, 8, 7] that define a formal model of the cog-
nitive state of an agent and then use it to interpret speech
acts as actions that are derived, guided and controlled in the
context of the cognitive states of the related agents. Camp-
bell [5] uses predicates (that stand for epistemic operators),
and propositions to describe mental states associated with
specific speech acts (like warning or bargaining). Cohen
and Perrault in their plan-based theory of speech acts [9] use
a believe modal operator based on Hintikka's ideas about
propositional attitudes, knowledge and belief [20]. Singh is
interested in modelling agents in terms of beliefs and inten-
tions [26] and uses this description to provide a semantic
approach for speech acts [27], enhancing the usual model-
theoretic framework with modal operators for the primitive
concepts of intention and know-how. The common denom-
inator of most of the formal semantic approaches is the
possible-world model that has an axiomatization in terms
of modal logic (for an introduction to the possible worlds
model and the issues related to it see [21]).

We adopt Searle's description (approach) for speech acts
[25, 24]. A speech act may be described zsF(P) where F is
the illocutionary force indicator and P is the propositional
content of the illocutionary act4. Searle suggests the follow-
ing seven components of the illocutionary force:

1. The illocutionary point is a fundamental primitive no-
tion. The illocutionary points are: assertive, directive,
commisive, declarative, and expressive. The illocution-
ary point of a type of illocutionary act is achieved if the
act is successful. The illocutionary point of a promise
to do act P (commisive), is for the speaker to commit
himself to doing P and the illocutionary act will be
successful if the promise is to be kept in the future.

2. The degree of strength of the illocutionary point can
distinguish between "shut the door!" and "could you
please close the door?" that are both directives, but
the first is a command and the second is a plea.

3. The mode of achievement suggests the special ways or
set of conditions under which the illocutionary point
has to be achieved in the performance of the speech
act. A command may require a position of authority
on behalf of the speaker; use of this authority may
be necessary in issuing the utterance and eventually
achieving the illocutionary point.

4. The propositional content conditions impose what can
be in the propositional content P for a specific force F.
For example, a speaker can not promise that a third
agent will do something.

5. The preparatory conditions are conditions that should
hold for the successful performance of an illocutionary
act. In the case of a promise, such conditions might be
that whatever was promised is in the hearer interest
and the hearer in fact wanted him to issue the promise.

6. The sincerity conditions relate to the psychological (or
cognitive) state of the agent. Agents have beliefs, in-
tentions and desires. The propositional content of the
illocutionary act should be identical to the proposi-
tional content of their psychological state.

The truth might be a little more complicated because P can by a
proposition plus syntactic features and a context for the utterance.

60

7. Finally, the degree of strength of the sincerity condi-
tions suggests the existence of a degree of strength in
the expression of the psychological state of the speaker.
"Requesting" and "begging", do not suggest the same
level of desire for something to occur.

3 KQML and speech act theory, as a context for its
semantics

KQML is intended as a general purpose communication lan-
guage for the exchange of information and knowledge be-
tween software agents. Here is an example of a KQML mes-
sage:

(tell '.language prolog
:ontology
:in-reply-to
:sender
:receiver
:content

Genealogy
ql
Gen-1
Gen-DB
"iatherUohn,Alice)")

In KQML terminology, "tell" is a performative5 (see Ta-
ble 1 for more KQML performatives). Performatives ex-
plicitly suggest the illocutionary force. The value of the
: content slot is an expression in some "computer inter-
preted" language6, in other words it is the propositional
content of the illocutionary act (technically, the illocution-
ary act is the "delivery" of a KQML message). The other
parameters (keywords), introduce values that provide a con-
text for the interpretation of the propositional content and
at the same time hold information to facilitate the process-
ing of the message. In this example, "Gen-1" is stating to
"Gen-DB" (these are symbolic names for applications), in
Prolog, that "father(John,Alice)". This is a response to the
KQML message (illocutionary act) identified by "ql". The
ontology7 named "Genealogy" may provide additional infor-
mation regarding the interpretation of the content.

We will use the term semantics to refer to: 1) everything
that provides for an unambiguous interpretation of the per-
formative, viewed as an illocutionary force indicator, 2) the
perlocutionary effects, i.e, how agents' states change after
sending or receiving a KQML message, and 3) criteria that
suggest when the illocutionary point of the performative is
satisfied.

Searle broke down the illocutionary force into seven com-
ponents (presented in Section 2). Next, we examine those
components that are of interest to us, and how they relate
to our effort to provide meaning to performatives. The per-
formative's illocutionary point and degree of strength axe ax-
iomatically defined by the designers (in our current analysis
we ignore the degree of strength). Table 1 shows the illo-
cutionary points for the performatives of this presentation.
The sincerity conditions and their degree of strength are of
no immediate interest, because we assume that all agents are
sincere to the best of their ability. The propositional content
conditions assure that agents do not make promises about
other agents, they do not respond to queries not directed to
them, etc. They are enforced by the conversation policies
(more about them in the Section 6.1) and the application

5 term first coined by Austin [3], to suggest that some verbs can be
uttered so that they perform some action (later, it was decided that
all verbs may be considered as performatives)

6 In the full version of KQML (not presented here), the content
may also be a KQML message itself.

7 An ontology is a repository of semantic and primarily pragmatic
knowledge over a certain domain. Ontologies are part of the Shared
and Reusable Knowledge Bases Group of the KSE.

programmer8. The mode of achievement refers to estab-
lishing certain relationships between speakers and hearers
that make certain illocutionary acts, meaningful. The mode
of achievement is set by the "organizational" hierarchy or
interaction protocol that the agents may use in their inter-
action. In Contract Net [28] , the fact that some agents
act as managers and others as potential contractors, creates
a context for the negotiation [11] , through bidding, that
characterizes the protocol. The preparatory conditions are
viewed as preconditions on the cognitive state, for an agent
to use a performative.

For the perlocutionary effects we provide suggestions for
the states of the sender, after sending a message and for the
receiver, after processing it (presented as postconditions).
The objective is to help with the interpretation of the per-
formative, by suggesting the desired effects of its use, and
to link (and restrict) the possible responses that will be ac-
ceptable follow-ups to the sender's action, by establishing
preconditions for the possible response.

Finally, we need to know when the illocutionary point
of a performative is eventually satisfied, e.g., a query is sat-
isfied when it is answered appropriately. Other illocution-
ary acts are satisfied just by being uttered, such as telling
(tell), and others, like asking (ask-if and other query per-
formatives), require a further exchange of messages, i.e., a
"conversation". Thus, we provide satisfiability (completion)
condition, that indicate the state of affairs after the comple-
tion of the speech act (performative).

4 A framework for the semantics of KQML

The central idea is to formally define cognitive states for
agents, use them to describe the performative, the precon-
ditions, postconditions and satisfiability conditions, men-
tioned before, and associate those states with the use of the
performatives. We use expressions in First Order Predicate
Calculus (FOPC), to do that. In these expressions we use
operators that have a reserved meaning (the operators will
be identified by predicates). The use of such operators, to
describe mental states of agents that use speech acts, can be
found in approaches as diverse as Campbell's [5] and Singh's
[27]. The operators used in this presentation are:

1. Bel, as in bel(A.P) which has the meaning that P is
true for A. P is an expression in the native language
of A's application. We will further refer to this op-
erator in Section 7. For now, it suffices to say that
P "exists" in the agent's knowledge base (or virtual
knowledge base).

2. Know, like the following two operators, refers to the
cognitive state of the agents9. Know(A,P) expresses a
state of knowledge awareness on behalf of A, about P.

3. Want, as in want(A,P), to mean that agent A desires
the event (or state) described by P, to occur.

4. Intend, as in intend(A,P), to mean that A has every
intention of doing P.

It is necessary for the programmer to guarantee that an applica-
tion does not use bizarre propositional contents for a certain perfor-
mative, due to their pragmatic nature. Since KQML is opaque to the
content of the message, there is no way to guarantee that, for instance,
an agent does not promise that "the time is 12:30PM". However, the
conversation policies will ensure that if agent A poses a query to agent
B, B will respond only to A and A will receive responses to this query,
only from B.

9As such, all three could be termed as epistemic operators.

61

Name

tell
deny
ask-if
ask-all

stream-air

error
sorry

Illocutionary
point

assertive
assertive
directive-

directive"

directive
declarative
assertive
assertive

Meaning

A states to B that A believes the content to be true
A states to B that A does not believe the content true ~~
A wants to know what U believes regarding the truth status of the content,
Ä *wr~n*_ *~ I. _ll U>_ •! 1 I 1 . 1 ■ — —

■ .77., ""^-■^° ■^»nimeiat num ami.ua vi me conieni
A wants to know all B's responses that would make the content true of B
(the response will be a collection of expressions)
like ask-all, but the responses are to be delivered one by one"
end of a stream ol responses to an earlier query
A states to ti that B's message was not processed by A — - - - — ^—- —•-.*»» oar w A**^»W«I»*^* ■ v %^j iiv v L/lUV/^iOO^U mj ¥ S\

A states to B that B's message was processed by A, but no reply can be provided

Table 1: Performatives mentioned in this presentation, for sender A and recipient B.

Roughly, know, want and intend stand for the psychologi-
cal states of knowledge, desire and intention, respectively.
Only for the bei predicate, it is the case that P is an expres-
sion in the agent's implementation language. For all other
three operators, P is an expression that combines other op-
erators, and stands for an event or a state of affairs. For
example, it is correct to say "know(A,bel(B,foo(a,b)))" (if
B «speaks" Prolog) but not "know(A,foo(a,b))\ One can
ask if (and how) those operators are implemented in an ap-
plication. The short answer is that only the 6c/ operator
has to have a concrete meaning (that depends on the appli-
cation language or knowledge representation language and
scheme), and the others prescribe a state of affairs for the
agent that is associated with the use of the language. The
use of a specific performative suggests an associated state
for the speaker, as in assuming when one asks X, that he
wants to know X.

The semantics are implemented through the conversa-
tion policies to be provided by the KQML developers, and
the handler functions, to be provided by the application pro-
grammer 10. The conversation policies indicate what perfor-
matives can follow the utterance of a certain performative,
so that agents can have meaningful conversations. The con-
versation policies are an integral part of the semantics and
are consistent with the preconditions, postconditions and
completion conditions, to be introduced for the performa-
tives. For example, when an ask-if is uttered, it can only
be followed (see Figure 1) by a tell or deny11 which, in re-
turn, can only be uttered as a response to an "asking". Fig-
ure 1 gives an example of the conversation policy for the
small subset of KQML performatives introduced here. It
as part of an Augmented Transition Network specification,
with the constraints and relating actions missing. Details
about the implementation and functionality of conversation
policies (along with details for the structure and construc-
tion of KQML speaking agent) can be found in Section 6.
The handler functions are defined in order to process mes-
sages received by an application and should be consistent
with the semantics described here. Handler functions are not

10 The software architecture of a KQML speaking agent is shown in
Figure 2 and more details about it are given in Section 6.

A sorry or an error may also occur.

application dependent, but rather language dependent12, in
the sense that all applications using the same language share
the same handler functions.

5 Semantics for KQML performatives

The general semantic description of a KQML performative
has the following six constituents:

1. A natural language description of the performative's
intuitive meaning.

2. An expression in our logic that describes the illocu-
tionary act. For all practical purposes, this is a formal
representation of the natural language description.

3. Preconditions that indicate the necessary state for an
agent in order to send a performative and for the re-
ceiver to accept it and process it.

4. Postconditions that describe the states of agents after
the utterance of a performative (for the sender) and
after the receipt (but before a counter utterance) of a
message (by the receiver)13.

5. Completion conditions for the sender that indicate the
final state of the sender, after possibly a conversation
has taken place and the intention suggested by the
performative that started the conversation, has been
fulfilled.

6. Any natural language comments that we might find
suitable to enhance the understanding of the perfor-
mative.

If there are non-null preconditions for the receiver, this will
mean that the performative can only be some-kind of re-
sponse to the use of another performative that established

For an application written in Prolog, a handler function to handle
ask-if messages, looks like this:
handle(ask-if,Content)>
(call(Content) ->
(reply-tojnessage.with(tell, Content));
(reply-to_message-with(deny,Content))).
where reply.tojnessage.with interacts with the conversation module,
that implements the conversation policies, to provide the appropri-
ate values for the other message parameters and finally deliver the
response.

After the receiver replies, a new cycle of preconditions and post-
conditions gets started.

62

those preconditions14. No preconditions are necessary for
the receiver of a performative that starts a conversation (see
Pre(B) for the query performatives, such as ask-if, ask-all,
stream-all).

In a conversation, the postconditions for the sender of
a message should be a subset of the preconditions for the
receiver of the message that may follow (compare Post(A)
for ask-if and Pre(A) for tell).

When no conversation is necessary after the utterance of
a performative, completion (satisfiability) conditions are a
subset of the postconditions. Such performatives are satis-
fied just by being successfully uttered and processed by the
intended recipients.

In the rest of this section we give the semantic descrip-
tions for the eight performatives in Table 1. In these de-
scriptions A is the sender, B is the receiver and X is the
prepositional content. All expressions mentioned as precon-
ditions, postconditions and completion conditions, are the
minimum necessary for our specification of KQML.

• ask-if(A,B,X)

1. A wants to know what B believes regarding the
truth status of the content.

2. want(A,know(A,Y)),
where Y may be one of the following:
bel(B,X), bel(B,NOT(X)), NOT(bel(B,X))
(this means that Pre(A) could also be stated as:
want(A,know(A,bel(B,X))) OR
want(A,know(A,bel(B,NOT(X)))) OR
want(A,know(A,NOT(bel(B,X)))))

3. Pre(A): want(A,know(A,Y))
(optionally, NOT(know(A,Y)) should also hold)
Pre(B): NONE15

4. Post(A): intend(A,know(A,Y))
Post(B): know(B,want(A,know(A,Y)))

5. Completion(A): know(A.Y)

6. Not believing something is not necessarily the
same as believing its negation, although this may
be the case for certain systems.

• ask-all(A,B,X)

1. A wants to know all of B's responses that make X
true of B. X is an expression with variables and A
wants all the expressions that are true for B and
have values for these variables16

2. want(A,know(A,Y)),
where Y is bel(B,Y') and Y' is a finite collection
of Yi, Y2, ... Each Yi is an instance of X with
values for the variables in X, identified by the

14 To provide an example, consider the situation that A asks B the
time and B responds 12:00PM. From our point of view, two speech
acts take place (so two messages with the appropriate performatives
have to be exchanged), the asking and the response to the asking. A
precondition for B to respond would be that A asked him and for B
that he still wants to know the time. For A to pose the question,
there is a precondition that A wants to know the time (and possibly
that A does not know the time already).

15 For expository purposes we have made the simplifying assumption
that agents know what other agents know, so they only ask them
questions that they can answer. We have to do that for the sake of
completeness of the subset we present here. In the full KQML version,
there are ways for agents to learn what other agents can answer.

16 the variables for which A wants values, are specified by the :aspect
parameter in the KQML message

/EXPORTing message state IMPORTing message state

Figure 1: A simple example of an ATN to parse sequences
of KQML messages.

: aspect parameter and each Yi- appears once in
this collection (the collection might be empty).

3. Pre(A): want(A,know(A,Y))
(optionally, NOT(know(A,Y)) should also hold)
Pre(B): NONE

4. Post(A): intend(A,know(A,Y))
Post(B): know(B,want(A,know(A,Y)))

5. Completion(A): know(A,Y)

6. An ask-if would be appropriate to ask "is it past
5 o'clock?" and an ask-all would be more suit-
able to ask "what time it is?". It is not necessary
that when X has free variables, an ask-all should
be used. An ask-if with content foo(X,Y) makes
perfect sense (for PROLOG "speaking" agents),
if one wants to know if there exist X such that
foo(X,Y) is true. But if the same expression is
used with an ask-all, one expects something like
[foo(a,b),foo(a,c)]. The use of ask-all assumes
that the application's language provides built-in
features for collections (such as a list in our PRO-
LOG example).

• stream-all(A,B?X) Everything mentioned for ask-all
holds for stream-all, too. A is interested in a series
(possibly infinite) of statements of facts, as a response.
The only difference is in the expected delivery format
of the response. Either because the sender can not
(or does not want to) process collections or due to re-
ceiver's inability to provide collections, the elements
of the would be collection are to be delivered one by
one (using tell since they are statements of facts for B).
This performative also allows for responses to be deliv-
ered one at a time, as they are computed, thus permit-
ting "pipelining" and efficient handling of very large,
or even infinite, collections. The eos performative is to
be used to mark the end of this multi-response (this
is for A's benefit).

• tell(A,B,X)

1. A states to be that A believes the content to be
true.

2. bel(A,X)17

17This interprets tell as an assertive. If interpreted as a directive,
it should be want(A,know(B,bel(A,X))).

63

3. Pre(A): bel(A.X) , know(A,want(B,know(B,Y)))
A does not lie and B is interested in knowing.
Y is any of the Y's mentioned in ask-if, ask-all,
stream-all.
Pre(B): intend(B,know(B,Y))

4. Post(A): know(A,know(B,bel(A,X))) (optional)
Post(B): know(B,bel(A,X))

5. Completion(A): know(B,bel(A,X))

6. The completion condition holds, unless a sorry or
error suggests B's inability to acknowledge prop-
erly the tell.

• deny(A,B»X) Everything mentioned about tell holds
for deny, if bei (A, X) is replaced with N0T(bel(A,X)).

For the next two performatives, we will need three extra
predicates. We consider three stages in the handling of a re-
ceived message. First, it is physically received (something we
implicitly assume throughout the analysis18), second, pro-
cessed, in the sense that it is a valid KQML message and
will be delivered to the application for processing, and third,
delivered to the application (technically, a handler function
takes over) and the application will reply to that accordingly.
We will use the predicates receive, process and respond,
for those 3 stages, respectively. The predicates refer to the
stages when completed and reference of each of one of those,
assumes that the prior stages have occurred. Reference to
the message being handled is made through Id (specified in
the :reply-with parameter), and Id refers to the message
as a whole.

• error(A,B»W)

1. A states to B that is not going to process the
KQML message identified by Id.

2. NOT(process(A,Id))

3. Pre(A): receive(A,Id)
Pre(B): NONE

4. Post(A): know(A,know(B,NOT(process(A,Id))))
Post(B):know(B,NOT(process(A,Id)))

5. Completion(A): know(B,NOT(process(A,Id)))

6. An agent might respond with an error if either
he cannot successfully parse it as a KQML mes-
sage, or the message is not an acceptable one, in
the context of a "conversation" between the two
agents.

• sorry(A,B)Id)

1. A states to B that although he processed the mes-
sage, he has no response to provide.

2. NOT(respond(A,Id))

3. Pre(A): process(A.Id)
Pre(B): NONE

4. Post(A): know(A,know(B,NOT(respond(A,Id))))
Post(B):know(A,NOT(respond(A,Id)))

5. Completion(A): know(B,NOT(respond(A,Id)))

6. The best analogy for understanding the perfor-
mative, is what happens when you are asked the
time and you do not know what time it is.

AppUctJ«

H*1Ä=ÄS*U—' C*K3£'~

NETWORK

Figure 2: Logical architecture of a KQML speaking agent.

• eos(A,B,Id) This performative is somewhat unusual
with respect to the other performatives mentioned be-
cause it is only purpose is to notify B that there are
no more responses to a request for a multi-response
query.

An example

Here, is an example of a conversation between agents with
symbolic names Gen-DB and Genl. Genl wants to know
who are John's parents, and sends a stream-all to Gen-DB,

(stream-all :sender
:receiver
:language
:ontology
.-aspect
:reply-»ith
:content

Genl
Gen-DB
Prolog
Genealogy
"X"
qi
" parent(John,X)'')

and, in time, Gen-DB responds accordingly:

(tell

(tell

(eos

:sender
:receiver
:language
:ontology
:in-reply-to
:content

:sender
:receiver
:language
:ontology
:in-reply-to
:content

:sender
:receiver
:in-reply-to

Gen-DB
Gen-1
Prolog
Genealogy

qi
' 'parent (John, Al ice) ")

Gen-DB
Gen-1
Prolog
Genealogy

qi
" par ent (John, Bob)")

Gen-DB
Gen-1

qi)

Addressing the issue of agent notification for messages delivered
and received, is among those considered in KQML's implementation.

6 KQML semanticsand architecture of KQML speak-
ing agents

The logical architecture of a KQML speaking agent is shown
in Figure 2. It is based in the KQML implementation devel-
oped at UNISYS [14] . We identify the Mowing four parts:

64

Application. In the case that this is a non-distributed
application, the application programmer has to identify the
points in the program where external information is needed.
At those points, queries (in the general sense) have to be de-
livered to other applications (agents) that can answer them.
The problem of what to send to whom can be attacked
in several ways: 1) if the query-answering capabilities of
each agent are well known in advance (like in [17] and in
[10], where early versions of KQML were used for inter-
agent communication) the application programer encodes
the information in the distributed application so that when
a query has to be answered by an agent in the outside world,
the application knows in advance whom to query, 2) if the
application operates in an environment mostly consisting of
open systems [19, 18] the application can ask a facilitator*
to appropriately deliver its query, or, 3) the application can
ask the facilitator (or other agents) to take care of appropri-
ately delivering the query or "discuss" the matter with the
facilitator or other agents, in order to deliver the query on
its own, or collect information from agents and facilitators,
so that it can make its own decisions regarding the delivery
of its queries (such an approach is also best suited for an
open systems' community). KQML provides performatives
to support the implementation of all the above mentioned
approaches. Only in this last case, has the application pro-
grammer to provide code in order to use the extra informa-
tion regarding other agents' capabilities.

Handler functions and Interface Module. The appli-
cation programmer has to provide functions (called handler
functions) that will process the various performatives. For
example, for the ask-if performative the handler function
(written in the application's native language) should access
the application, check the truth status of the expression for
the application and accordingly convey this information to
the agent that made the query. Normally either the tell
or the deny performative should be used in such a case.
Through them, the application can state either that the ex-
pression is true, or that it is not known to be true or that
the negation of the expression is true. In order for the appli-
cation programmer to provide the handler functions he has
to know the exact meaning of the various KQML perfor-
matives (here on called semantics of the performatives) and
the policies that govern their use (conversationpolicies). We
further refer to the conversation policies in Section 6.1.

Conversation Module. The conversation module lies be-
tween the router and the handler functions and interface
module. Every message, either received by the agent or sent
to some other agent, has to go through the conversation
module. This module implements the conversation policies
and checks all messages in order to decide if they are allow-
able continuations of the agent's current conversations with
other agents. Our approach regarding the implementation
of this module and its role and functionality in the overall
architecture of an agent, is the subject of Section 6.1. We
consider this module to be a partial implementation of the
semantics.

Router. The router handles all KQML messages going to
and from its associated application. Each KQML speaking
software agent has its own router process but all routers are

19Facilitators are specialized agents that are designated with the
task of facilitating the communication of agents by primarily holding
information regarding the query answering capabilities of the agents
in their network domain.

fatlr-vitk l«-«-l i
M»lr-*ltfc u-fc-l i
la-M»lr*t» 14-*-l i

la-M»lr-c« l«-«-l ■•
u-Mtlr-t« l«-k-l "

la-ntlr-t* i«-«-a •<

Figure 3: Sequence of imported and exported messages for
agent "a".

identical. Routers are content independent message routers
that provide the agent with a single point of contact for the
rest of the network. It provides both client and server func-
tions for the application and manages multiple simultaneous
connection with other agents.

6.1 Implementation of the conversation policies for
KQML performatives

The purpose of the conversation module is to assure that
the agent is involved in meaningful conversations with other
agents and keep track of them, despite the possibly asyn-
chronous behavior of the agent. The conversation module is
an implementation of the conversation policies that suggest:
1) which performatives start a conversation, and 2) which
performative is to be used at any given point of a conver-
sation. Figure 3 gives an example of a series of messages
sent and received by an agent name a during some time pe-
riod. Between times T\ and T9 messages from three different
conversations are handled. The conversation module should
handle something like that appropriately, keeping track of
all three ongoing threads. Here is the scheme we suggest for
doing that:

1. When a message (either to be imported to the applica-
tion or to be exported to some other agent) reaches the
conversation module, the module attempts to match it
against one of the ongoing conversations.

2. If the message is not an acceptable continuation of
some current thread, an attempt is made to start a
new thread with it20.

3. If no new thread can start with the current message, a
message with the error performative will be sent to the
sender (if the message is to be imported) or a signal
is delivered to the application (if the message is to be
exported).

We obviously have to define the acceptable threads of mes-
sage exchanges and provide the module with the means to
test them. We view the problem as one of parsing where the

20Not all performatives can be starting points for new threads. In
the example of Figure 3 we consider the performatives ask-if, ask-all,
stream-all to be acceptable starting points. We believe that eventu-
ally only advertise performatives (that are used to make known to
other agents the capabilities of an agent) should be starting points.

65

grammar defines the conversation policies and messages are
the terminals (so any series of messages in the same thread,
is a "sentence" to be parsed). It differs from the usual pars-
ing paradigm, though, in that the "sentence" might well be
unfinished, meaning that the thread might not be complete
(see Figure 3 as of time Tt or Tß). Figure 1 shows part of
an Augmented Transition Network (ATN) specification that
can be used to perform this task for the subset of KQML
performatives of Table 1, The ATN defines the conversation
policies for this subset. For illustrative reasons the states
where a message is to be imported are shaded. Not pre-
sented here are the tests and actions of the ATN that han-
dle the necessary constraints among the various fields of the
messages in order to define a thread21 (conversation). The
terminals are not known in advance. As mentioned before,
the terminals are KQML messages with values for all their
fields. Every time that a new message is to be handled by
the module, the message becomes a potential new terminal.
Referring to the described, top-level procedure, this new ter-
minal is appended to the first "sentence" (thread) and an
attempt is made to successfully parse the new sentence. If
this fails, the second "sentence" is tried and so one.

An implementation of the conversation policy for a con-
siderably extended set of KQML performatives is in progress.
We believe that by providing a conversation module that can
cooperate with the router the agent will be able to better
handle asynchronous behavior, help the agent keep track of
its business and provide the means to the application pro-
grammer to build more complex schemes of inter-agent com-
munication (protocols like the Contract Net, see [28, 11]).

7 Software agents and KQML

We argue that our semantic approach does not constrain the
kinds of software agents that can use KQML. Although the
prepositional attitudes represented by the predicates know,
want, intend make reference to cognitive states for the
agents, the cognitive states are necessary for understanding
the performatives but not for using them. If the applica-
tion designer wants to build a belief model to implement
those mental states on top of the application, so that the
application can better support a problem solving strategy
or protocol, so be it. KQML does not require the existence
of such a protocol or a cognitive model. Operators like want
and know are materialized by virtue of use of a performa-
tive and are implied by the use of the language, rather, than
the other way round, i.e., cognitive states implying a certain
use of the language.

The really interesting question is how to interpret the bei
operator in a given computer program. It depends on what
the programmer ascribes to the program. For a PROLOG
application (or a logic based system in general), bei might
stand for whatever can be proved true in the system. Similar
arguments can be made for other applications that adhere
to the physical symbol-system hypothesis (frames, scripts,
rule-based systems, semantic nets). How about a neural
net? One can still suggest an interpretation that associates
input and output. The same argument can be made for
devices (such as thermostats), or databases. A functional
approach to provide materialization for bei and common
sense about how it should be interpreted for a given system,
will do. If not, the : ontology slot can solve the problem.
By choosing an interpretation from a library of such, the

The fields for the KQML subset presented here, are: :sender,
receiver , :reply-with and :in-reply-to.

application can make known to its conversational partner
what bei means for it.

It is our view that a belief model or a cognitive model is
not necessary for a software agent to talk KQML. It can be
useful to have one, either elaborate or primitive, but nothing
more that a functional interpretation of the bei operator is
necessary, for the semantics to make sense. All that is nec-
essary is a program and handler functions. In between these
two, many things can be included. A belief space, a cognitive
model, a goal space, a problem solving strategy, or various
combinations of the above. But none of that is mandatory
for KQML to be used. In KQML, like in human communica-
tion, the personal agendas and beliefs of the agents suggest
the choice of words, but the words themselves have an ac-
cepted meaning.

8 Conclusion

We have presented an approach for the definition of the se-
mantics of KQML. Although it is eventually the programmer
that materializes the semantics through the handler func-
tions that he writes, we have provided a framework that the
programmer has to comply with. This framework is more
detailed and formal than the existent so far ([2]), and will
be supported by a software module (the conversation mod-
ule) that will guide and restrict the possible uses of the lan-
guages primitives (performatives). The framework is based
on speech act theory and primarily Searle's ideas.

We envision KQML as a general purpose communication
language for software agents of all kinds. We believe that
we offer an approach towards the semantics of the language
that makes no commitments to application languages, agent
models, programming paradigms, problem solving strategies
and protocols. This approach stems from our belief that all
those issues are peripheral to the communication language
itself, which should be rich enough to accommodate a variety
of propositional attitudes and offer enough leeway to imple-
ment all kinds of models, strategies and protocols, beneath
the language. Ideally, KQML will rise to its full potential
with the use of the results of the other research efforts of the
KSE, because those efforts will provide the means for inter-
agent understanding of the propositional context itself.

In the future, we intend to further apply our semantic
approach to the full set of the up to date KQML performa-
tives and refine the structure of a KQML speaking agent.
All material related to KQML and the KSE can be accessed
through the World Wide Web22.

References

[1] External Interfaces Working Group ARPA Knowledge
Sharing Initiative. KQML Overview. Working paper,
1992.

[2] External Interfaces Working Group ARPA Knowledge
Sharing Initiative. Specification of the KQML agent-
communication language. Working paper, June 1993.

[3] J.L. Austin. How to do things with words. Harvard
University Press, Cambridge, MA, 1962.

[4] Alan H. Bond and Les Gasser. An analysis of problems
and research in DAI. In Readings in Distributed Arti-
ficial Intelligence, pages 3-35. Morgan Kaufman Pub-
lishers, San Mateo, California, 1988.

URL is http://www.cs.umbc.edu/kqml/

66

[5] John A. Campbell and Mark P. D'Inverno. Knowl-
edge interchange protocols. In Y. Demazeau and J.-P.
Müller, editors, Decentralized A.I.: Proc. of the First
European Workshop on Modelling, pages 63-80. Else-
vier Science Publishers B.V. /North Holland, Amster-
dam, 1990.

[6] Philip R. Cohen and Hector J. Levesque. Intention
= Choice + Commitment. In Proceedings of the Na-
tional Conference on Artificial Intelligence, pages 410-
415, July 1987.

[7] Philip R. Cohen and Hector J. Levesque. Intention
is choice with commitment. Artificial Intelligence,
42:213-261, 1990.

[8] P.R. Cohen and H.J. Levesque. Persistence, intention,
and commitment. In P. R. Cohen, J. Morgan, and M. E.
PoUack, editors, Intentions in Communication, pages
33-69. MIT Press, Cambridge, MA, 1990.

[9] P.R. Cohen and C.R. Perrault. Elements of a plan-
based theory of speech acts (1979). In Alan H. Bond
and Les Gasser, editors, Readings in Distributed Ar-
tificial Intelligence, pages 169-186. Morgan Kaufman
Publishers, San Mateo, CA, 1988.

[10] M. Cutkosky, E. Engelmore, R. Fikes, T. Gruber,
M. Genesereth, and W. Mark. PACT: An experiment
in integrating concurrent engineering systems. 1992.

[11] Randall Davis and Reid G. Smith. Negotiation as a
metaphor for distributed problem solving. Artificial In-
telligence, 20:63-109, 1983. (Also published in Readings
in Distributed Artificial Intelligence, Alan H. Bond and
Les Gasser, editors, pages 333-356, Morgan Kaufmann,
1988).

[12] E.H. Durfee, V.R. Lesser, and D.D. Corkill. Coopera-
tive distributed problem solving. In A. Barr, P.R. Co-
hen, and E.A. Feigenbaum, editors, The Handbook of
Artificial Intelligence, Vol. IV, pages 83-147. Addison-
Wesley Pub. Co., Reading, MA, 1989.

[13] Oren Etzioni and Daniel Weld. A softbot-based inter-
face to the internet. CACM, 37(7):72-76, 1994.

[14] Tim Finin, Don McKay, Rich Fritzson, and Robin
McEntire. KQML: an information and knowledge ex-
change protocol. In Kazuhiro Fuchi and Toshio Yokoi,
editors, Knowledge Building and Knowledge Sharing.
Ohmsha and IOS Press, 1994.

[15] L. Gasser. An overview of DAI. In Nicholas M. Avouris
and Les Gasser, editors, Distributed Artificial Intelli-
gence: Theory and Praxis, pages 9-30. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 1992.

[16] Michael R. Genesereth and Steven P. Ketchpel. Soft-
ware agents. CACM, 37(7):48-53, 1994.

[17] Mike Genesereth. Designworld. In Proceedings of the
IEEE Conference on Robotics and Automation, pages
2,785-2,788. IEEE CS Press.

[18] Carl Hewitt. Offices are open systems. Communications
of the ACM, 4(3):271-287, July 1986. (Also published
in Readings in Distributed Artificial Intelligence, Alan
H. Bond and Les Gasser, editors, pages 321-330, Mor-
gan Kaufmann, 1988).

[19] Carl Hewitt and Jeff Inman. DAI betwixt and be-
tween: From "intelligent agents" to open systems sci-
ence. IEEE Transactions on Systems, Man and Cyber-
netics, 21(6), December 1991. (Special Issue on Dis-
tributed Al).

[20] J. Hintikka. Knowledge and Belief. Cornell University
Press, Ithaca, New York, 1962.

[21] Kurt Konolige. A Deduction Model of Belief. Pitman,
London, 1986.

[22] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil,
T. Senator, and W. Swartout. Enabling technology for
knowledge sharing. AI Magazine, 12(3):36 - 56, Fall
1991.

[23] R. Patil, R. Fikes, P. Patel-Schneider, D. McKay,
T. Finin, T. Gruber, and R. Neches. The DARPA
Knowledge Sharing Effort: Progress report. In
B. Nebel, C. Rich, and W. Swartout, editors, Principles
of Knowledge Representation and Reasoning: Proc. of
the Third International Conference (KR'92), San Ma-
teo, CA, November 1992. Morgan Kaufmann.

[24] J. Searle and D. Vanderveken. Foundations of illocu-
tionary logic. Cambridge University Press, Cambridge,
UK, 1985.

[25] John R. Searle. Speech Acts. Cambridge University
Press, Cambridge, UK, 1969.

[26] M.P. Singh. Towards a formal theory of communication
for multiagent systems. In Proceedings of the IJCAI'91,
1991.

[27] M.P. Singh. A semantics for speech acts, (to appear
in Annals of Mathematics and Artificial Intelligence),
1992.

[28] Reid G. Smith. The contract net protocol: High
level communication and control in a distributed prob-
lem solver. IEEE Transactions on Computers, C-
29(12):1104-1113, December 1980. (Also published in
Readings in Distributed Artificial Intelligence, Alan H.
Bond and Les Gasser, editors, pages 357-366, Morgan
Kaufmann, 1988).

67

5. A SECURITY
ARCHITECTURE FOR KQML

Intelligent Agent Integration Technology

Prepared by:
Chelliah Thirunavukkarasu

and
TimFinin

Co-Principal Investigator
University of Maryland - Baltimore County

finin@cs.umbc.edu, (410)455-3522

This section includes the first comprehensive published paper on a security architecture for KQML. It
was presented at the ACM CIKM Intelligent Information Agents Workshop, Baltimore, December 1995.

68

A Security Architecture for KQML

Abstract

KQML is a message protocol and format for agents to communicate with
each other. In this paper we discuss the security features that a KQML user
would expect and an architecture to satisfy those expectations. The proposed
architecture is based on cryptographic techniques and would allow agents to
verify the identity of other agents, detect message integrity violations, protect
confidential data, ensure non-repudiation of message origin and take counter
measures against cipher attacks.

1 Introduction
Agents, in their different manifestations as filter agents, personal agents, softbots,
knowbots etc, have become an important topic and is one of the primary research
areas in the academia and the industry. These agents, to successfully interoperate
with each other and share their knowledge, need a common interface standard.

KQML, Knowledge Query and Manipulation Language [1] is such a message for-
mat and protocol, which enables autonomous and asynchronous agents to share their
knowledge and or work towards cooperative problem solving.

With the popularity of internet and the possibilities offered by the agent technology
we can expect an explosion of agents in the internet. For KQML to be an effective
agent communication protocol in such an environment, it should provide some means
for agents to communicate in a secure manner to protect the privacy and integrity of
data and to provide for the authentication of other agents.

In this paper we discuss a security architecture which would enhance KQML and
allow KQML speaking agents to authenticate senders, verify message integrity and
have a private conversation.

2 Functional Requirements
We arrived upon the following requirements for a KQML security model based on the
analysis of the security models for Privacy Enhanced Mail [4], Corba [3] and DCE
[5]. Interested readers are referred to [2], for a thorough treatment of security threats
and mechanisms to counter them.

69

A Security Architecture for KQML

• Independence of KQML and application semantics
The security architecture should not depend on the semantics of KQML perfor-
mative (i.e An ask-all from an agent will entail a tell or sorry horn the receiver.
The security model should not rely upon this kind of interaction semantics).
The security model should be general and flexible enough to support different
models of agent interaction (e.g contract net, electronic commerce).

• Authentication of principals
Agents should be capable of proving their identities (they are who they actually
claim to be) to other agents and verifying the identity of other agents.

• Preservation of message integrity
Agents should be able to detect intensional or accidental corruption of messages.

• Protection of privacy
The security architecture should provide facilities for agents to exchange confi-
dential data.

• Detection of Message duplication or replay
A rogue agent may record a legitimate conversation and later play it back to
disguise its identity. Agents should be able to detect and prevent such playback
security attacks.

• Non-repudiation of messages
Non-repudiation of message is necessary to enforce accountability. An agent
should be accountable for the messages that they have sent or received, i.e,
they should not be able to deny having sent or received a message.

• Independence of transport layer
The security architecture should not depend on the features offered by the trans-
port layer. This is critical to facilitate agents to communicate across heteroge-
neous transport mechanisms and to extend the security model to accommodate
embedded KQML messages.

• Non dependence on a global clock or clock synchronization
The security architecture should not be clock dependent, as global synchroniza-
tion of time is difficult to achieve and would lead to further security issues of
its own. Further such a security model may have inherent security weaknesses
[7]-

• Prevention of message hijacking
A rogue agent should not be able to extract the authentication information from
an authenticated message and use it to masquerade as a legitimate agent.

70

A Security Architecture for KQML

• Authentication by crypto-unaware agents
An agent need not have cryptographic capabilities to authenticate the sender
of a message.

• Support for a wide variety of crypto systems
Agents should be able to use different cryptographic algorithms. But for two
agents to interact, they should have a common denominator. The security
architecture should not depend on any specific cryptographic algorithm.

3 Architecture Overview
The proposed security architecture is based on data encryption techniques [9]. In
tune with the asynchronous nature of KQML, the model expects a secure message
to be self authenticating and does not support any challenge/response mechanism to
authenticate a message after it has been delivered. The architecture supports two
security models, basic and enhanced.

The basic security model supports authentication of sender, message integrity and
privacy of data. The enhanced security model, in addition to the above, supports
non-repudiation of origin (proof of sending) and protection from message replay at-
tacks. The enhanced security model also supports frequent change of encryption keys
to protect from cipher attacks.

3.1 Definitions
The following paragraphs define the cryptographic techniques used by this architec-
ture and the new performative and the parameters that have been introduced to
implement the architecture.

3.1.1 Data Encryption Keys

An agent that implements the proposed security architecture should have a master
key, Ka, which it would use to communicate with other agents. This key can be based
on a symmetric or asymmetric key cryptosystem.

If a symmetric key mechanism is used, we suggest that the agent, in addition to
the general master key, also use a specific master key, Kai,»2 for each agent that it
communicates with, for better privacy and stronger authentication. If more than two
agents share a single master key, any of those agents can masquerade as the other or

71

A Security Architecture for KQML

eavesdrop on all the conversations between the agents sharing the key. If a master
key is shared by more than two agents, the strength of security is directly related to
the degree of trust between the agents.

If an agent does not share a master key, K»i.a2 with another agent, it can use its
master key, K», or can use the services of a central authentication server to generate
such a key. The agents may use different keys in either direction of message flow i.e
Kai,a2 is created by al and would be used when al is sending a message to a2 and
K»2.ai is created by a.2 and would be used when a.2 is sending a message to al.

If more than two agents share a single master key, any of those agents can masquerade
as the other or eavesdrop on all the conversations between the agents sharing the key.
If keys are shared by more than two agents, the strength of the security provided is
directly related to the degree of trust between these agents.

If an asymmetric key mechanism is used, a unique key for each pair of agents is not
necessary, as the agent can use the public key of its peer agent to encrypt the message
and prevent eavesdropping. It can also use its private key to sign the message and
prove its identity to its peer.

We assume that the agents know the master key of the other agents. We also suggest
a secure mechanism to do master key lookup.

In the enhanced model, the agents use an additional key, the session key, to ensure
privacy, message integrity and proof of identity. The session key can be symmetric
or asymmetric and can be generated with the help of the authentication server. The
session keys are set up by using a handshake protocol explained later. This handshake
protocol requires the use of a master key to ensure security.

The agents can use either the session or master key for exchanging messages and
must inform the other agent of the key that was used for encryption to ensure proper
decryption.

When agents exchange keys, they encrypt them using the current session or master
key. Keys are never exchanged in clear text form.

We recommend using the enhanced security model (if possible, as the enhanced model
cannot be used under all circumstances) with an expensive master key and a cheap
session key which is changed frequently.

72

A Security Architecture for KQML

3.1.2 Message Id

The message ID is used in the enhanced security model to protect agents from attacks
by message replay. When the two agents establish a session key, they also exchange a
message ID which the sender would use in the next message. Every message from an
agent would carry a message ID and a new message ID for the next message. Each
message ID is used only once to prevent replay and they are encrypted using the
session or master key for security.

3.1.3 Message Digest

Each secure message generated using this architecture has a message digest or sig-
nature associated with it. The digest is calculated using a secure hash function like
MD2, MD5 or SHS [9]. This hash function computes a digital fingerprint of the mes-
sage (i.e acts as a "checksum" for. the message). The sender then encrypts this digest
using the session or master key and attaches it to the message.

This encrypted message digest forms the core of the security architecture. The re-
ceiver of a message uses this digest to verify the identity of the sender and the integrity
of the message. The digest also protects the message ID field from being hijacked
and used in a different message.

3.1.4 New KQML Parameters

The following new KQML parameters have been added to implement the security
architecture.

:auth-master-key <boolean>
If T, the :auth-digest and :auth-mesg (if present) are encrypted using the master key.

Else the session key is used. An agent would use the master key for encryption, if
it does not share a session key with the receiving agent or if it does not know the
receiver in advance. Under these circumstances, it could use this parameter to help
the receiver in choosing the proper decryption key.

:auth-digest (<digest-type> <encrypted-digest>)
The digest-type specifies the hashing function used (MD4, MD5, etc.) to compute

the message digest. The encrypted-digest is the message digest encrypted using the
key specified by the :auth-master-key parameter. This parameter should be present
to prevent message hijack, and to provide for sender authentication and integrity as-

73

A Security Architecture for KQML

surance.

:auth-mesg-id <string>
The value of this parameter is a pre-agreed random string. This parameter is required

only in the enhanced security model to prevent message replay. After verifying the
current message, to prevent a reuse of the same message ID, the receiver should reset
its internal message ID field to the :auth-new-mesg-id or NIL.

:auth-new-mesg-id <encrypted-string>
The value of this enhanced model parameter is the message ID for the next message

and is encrypted using the key specified by the :auth-mastei--key parameter. For effec-
tive prevention of message replay, this parameter should be present in each message.

:auth-new-session-key (<key-type encrypted-key>)
The value of this parameter specifies the session key for subsequent messages. If the

value is T and the :auth-shared-key parameter is NIL, the current session key is de-
stroyed and the sender will use the master key for subsequent messages. If the value is
NIL, the session key, is left undisturbed. If it is not T or NIL, it is the new session key
encrypted using the key specified by the :auth-master-key parameter. This parame-
ter can be used to change the session key from time to time to protect from cipher
attacks. Since the session key can be changed frequently, a cheap (computation-wise)
cipher can be used as the session key.

:auth-mesg <encrypted-KQML-message>
This parameter is used only in auth-private performative. The value of this performa-

tive is a confidential KQML message which has been encrypted using the key specified
by the :auth-master-key performative.

:auth-key-list ((<al>, <key-type> <encrypted-key>) ...)
This parameter is used by an agent during master key registration with the authenti-

cator. The value is a list of 3-tuple. The first element is the agent name, the second
element is the key type and the third element is the encrypted master key. If the
agent name is NIL, that key is shared with all the agents. If an agent uses asymmetric
master key, the parameter contains only key agent name set to NIL.

3.1.5 New KQML Performatives

The following new KQML performatives have been added to implement the security
architecture.

74

A Security Architecture for KQML

auth-link
The sender wishes to authenticate itself to the receiver and set up a session key and
message ID.

auth-challenge
The sender challenges the identity of the receiver in response to an auth-link. The
sender encrypts a random string using the master key Ks,r or Ks and sends it as con-
tent.

auth-link-request
The sender asks the receiver to send an auth-link and start the authentication process.

auth-private
The sender is sending a confidential message to the receiver. The :auth-mesg parame-
ter contains the encrypted message and the :auth-master-key parameter specifies the
encryption key. The :auth-digest parameter should be present to verify the identity of
the sender and the :auth-mesg-id, :auth-new-mesg-id and :auth-new-$essiön-key pa-
rameters may be present if enhanced security model is used.

auth-challenge-help
A crypto-unaware agent is enlisting the help of a trusted friend to construct a chal-
lenge message. The .-from parameter will specify the agent to which the challenge
message has to be sent.

auth-mesg-help
A crypto-unaware agent is enlisting the help of its trusted friend to authenticate a
message with :auth-digest parameter. The message will contain the -.from parameter
whose value is the agent from which this message was received and the -.content pa-
rameter's value will be the received message.

auth-key-request
The sender is requesting the authenticator to provide the master key for the agent
specified in the -.from field. If a master key pair exists for the two agents, the authen-
ticator returns it. The .-content parameter specifies the requested key's type.

This performative can also be used to generate a master or session key. A key is
generated if :to is used instead of :from and it is an error to use both. If .to is used,
the .-content parameter is a 2-tuple. The first element is the key-type and the second
element is a boolean flag which will be true, if a master key is requested. If a master
key is requested, the generated key is added to the key list of the sender.

75

A Security Architecture for KQML

4 Basic security model

An implementation should support the following protocol to conform with the basic
security model. This model supports authentication, integrity and privacy of data.
If asymmetric keys are used for session and master keys, this model also supports
non-repudiation of origin.

When R2D2 sends a secure message to C3P0, it would compute a message digest
and encrypt it using the master key.

<performative>
:sender R2D2
.-receiver C3P0
:auth-master-key T
:auth-digest (<digest-type> <encrypted-digest>)

Or, if R2D2. needs to send a confidential message to C3PO, it can encrypt the message
and embed it in an auth-private performative.

auth-private
:sender R2D2
:receiver C3P0
:auth-master-key T
:auth-digest (<digest-type> <encrypted-digest>)
:auth-mesg <encrypted-KQML-message>

This model can be used when R2D2 does not know the recipient in advance e.g.
broadcast and facilitation performative. Or if R2D2 and C3PO do not require pre-
vention of message replay and can afford the cost of using the master key.

In the above message, the :auth-digest parameter can be used to verify the integrity
of the message, authenticate the sender and ensure non-repudiation of origin (if the
master key is asymmetric in nature). If the message has been corrupted, the message
digest will not agree with the value of the :auth-digest parameter. Since the message
digest is encrypted with the master key of the :sender, only the :sender or the agents
with which the :sender shares the encryption key could have generated the message.
If the master key is an asymmetric key, only the .sender could have generated the
message, as only the .sender knows the private key that has been used for encryp-
tion. Note that we can only verify the identity of the generator (i.e. the message was

76

A Security Architecture for KQML

encrypted by the .sender agent) of the message. This message can be a replay of
legitimate message previously sent by the generator.

5 Enhanced security model
This model in addition to the basic security, supports prevention of message replay,
and stronger non-repudiation of message origin (if asymmetric keys are used). Even
though non-repudiation can be achieved in the basic security model, we can only be
sure that the message was generated by the sender, as a rogue agent can replay a
message and we will not be able to detect it.

In the remainder of this section we will demonstrate how the new KQML performa-
tives and parameters can be used to converse/communicate securely.

5.1 Self authentication
Agent R2D2 has cryptographic capabilities and would like to prove its identity to
agent C3PO. The agents would follow the following handshake protocol to achieve it.

1. auth-link ^

2. auth-challenge

3- rePly

4. reply/error

5: <performative>/
auth-private

Figure 1: Self authentication protocol

1. R2D2 sends an auth-link performative to C3P0.

auth-link
:sender R2D2

77

A Security Architecture for KQML

:receiver C3P0
:reply-vith <expression>

2. If C3P0 will not authenticate senders, it can respond with an error, otherwise
it sends a auth-challtnge with a random string encrypted using the master key.
A random string is used to prevent message replay.

auth-challenge
:sender C3P0
:receiver R2D2
:in-reply-to <expression>
:reply-with <expression>
:content <encrypted-random-string>

3. R2D2 responds with a reply performative with the :auth-digest, :auth-new-mesg-
id and :auth-new-session-key (if present) encrypted in the master key. The value
of .-content and :auth-mesg-id is the decrypted random string. The session key
parameter is optional.

reply
:sender R2D2
:receiver C3P0
:in-reply-to <expression>
:reply-with <expression>
:auth-master-key T
:auth-digest (<digest-type> <encrypted-digest>)
:auth-mesg-id <mesg-id>
:auth-nev-mesg-id <encrypted-new-raesg-id>
:auth-new-session-key (<key-type> <encrypted-key>)
:content <random-string>

Now, C3PO can verify if the sender is R2D2 by inspecting the random string.
Only R2D2 (or in the case of symmetric key, one of the other agents which shares
the same key) could have decrypted the random string as it was encrypted using
the master key. The message digest can be used for non-repudiation if asym-
metric keys are used.

4. C3PO responds with a reply or an error depending on the success of authenti-
cation.

5. Now, R2D2 can send an authenticated message to C3PO by using the session
key or master key to encrypt the message digest and a non replayable message
by using :auth-mesg-id and :auth-new-mesg-id parameters.

78

A Security Architecture for KQML

<performative>
:sender R2D2
:receiver C3P0
:auth-master-key T or NIL
:auth-digest (<digest-type> <encrypted-digest>)
:auth-mesg-id <mesg-id>
:auth-nev-mesg-id <encrypted-new-raesg-id>
:auth-new-session-key (<key-type> <encrypted-key>)

Or if R2D2 needs to send a confidential message to C3P0, it can encrypt the
message and embed it in an auth-private performative.

auth-private
: sender R2D2
:receiver C3P0
:auth-master-key T or NIL
:auth-digest (<digest-type> <encrypted-digest>)
:auth-mesg-id <mesg-id>
:auth-new-mesg-id <encrypted-new-mesg-id>
:auth-new-session-key (<key-type> <encrypted-key>)
:auth-mesg <encrypted-KQML-message>

5.2 Authentication by request
R2D2 may expect some of the incoming messages from C3P0 to be authenticated
and it can initiate the authentication process by following the handshake protocol
given below:

1. auth-link-request^

^ 2. auth-link

3. auth-challenge ^

^ 4. reply

5. reply/error ^

6. <performative>/
^ auth-private

Figure 2: Authentication by request protocol

79

A Security Architecture for KQML

1. R2D2 can initiate the authentication process bv sending an auth-link-request to
C3PO.

auth-link-request
:sender R2D2
:receiver C3P0
:reply-with <expression>

2. C3P0 and R2D2 would then follow the steps outlined in Self Authentication.

5.3 Crypto un-aware agents

Agent Leia may not have crypto capabilities. But it trusts its friend R2D2 and R2D2
is prepared to authenticate messages on behalf of Leia. Since Leia does not have
crypto capabilities, it will not accept auth-private performative. The agents would
follow the handshake protocol given below to verify SkyWalker's identity.

1. auth-link

4. auth-challenge

5. reply

^reply/error

9. <performative>/
auth-private ^

2. auth-challen

3jreply
■M-hely

6. auth-mesg-heü? I R2D2

7^-eplv/error

Figure 3: Trusted friend protocol

1. Agent Sky Walker sends Agent Leia an auth-link message to initiate the process
of proving its identity to Leia.

auth-link
:sender SkyWalker
:receiver Leia
:reply-with <expression>

2. When Leia receives an auth-link message from SkyWalker, Leia requests a chal-
lenge string from its trusted friend, R2D2.

80

A Security Architecture for KQML

auth-challenge-help
:sender Leia
-.receiver R2D2
:reply-with <expression>
■.from SkyWalker

3. R2D2 will generate a random string on behalf of Leia, encrypt it using the
master key (shared by Leia and SkyWalker or Leia's master key, which R2D2
knows) and will forward it to Leia.

reply
:sender R2D2
:receiver Leia
:in-reply-to <expression>
:content (SkyWalker <encrypted-random-string>)

4. Leia will construct an auth:challenge performative and send it to SkyWalker.
Subsequent performative from SkyWalker with an :auth-digest will be forwarded

to R2D2.

auth-challenge
:sender Leia
:receiver SkyWalker
:reply-vith <expression>
:in-reply-to <expression>
: content <encrypted-randoro-string>

5. SkyWalker will respond with a secure reply.

reply
:sender SkyWalker
:receiver Leia
:reply-with <expression>
:in-reply-to <expression>
:auth-master-key T
:auth-digest (<digest-type> <encrypted-digest>)
:auth-mesg-id <mesg-id>
:auth-new-mesg-id <encrypted-new-mesg-id>
:auth-new-session-key (<key-type> <encrypted-new-key>)
: content random-string

6. Leia will wrap the response in an auth-mesg-help and send it to R2D2.

auth-mesg-help
•.sender Leia
:receiver R2D2
:reply-with <expression>
:frora SkyWalker

81

A Security Architecture for KQML

:content message-from-SkyWalker

7. R2D2 will respond with a reply or an error.

8. Leia would forward the R2D2,s reply to SkyWalker.

9. The handshake is now complete and SkyWalker can send secure performative
to Leia, which Leia would verify with the help of R2D2.

6 Authenticator Agent

The authenticator acts as a repository of the agent's master keys. It can also generate
session or master keys for the agents. The security architecture does not depend on
the existence of an authenticator.

An agent and the authenticator share a master key which is known only to the agent
and the authenticator. The master key may actually be a pair, one for the agent
to send messages to the authenticator and the other for the authenticator to send
messages to the agent.

The authenticator accepts only messages in the enhanced model, i.e., the messages
should have an :auth-mesg-id. So, each agent should have established a secure link
using auth-link-request and auth-link with the authenticator upon startup. It is the
agent's responsibility to verify the identity of the authenticator and prove its identity
to the authenticator.

6.1 Key lookup using the Authenticator

Agent Solo has received a message from Chewie and would like to know the master
key used by Chewie. Solo uses the following protocol to get the master key from the
authenticator.

82

A Security Architecture (or KQML

1. auth-key-request
(with :from) .

2. reply/error

Figure 4: Key request (lookup) protocol

1. Agent Solo would send an auth-key-request to the authenticator to lookup the
master key used by Chewie to send out messages. The -.content parameter
contains the requested key-type.

auth-key-request
:sender Solo
-.receiver Authenticator
:reply-with <expression>
:from Chewie
:auth-master-key T or NIL
:auth-digest (<digest-type> <encrypted-digest>)
:auth-mesg-id <mesg-id>
: auth-new-mesg-id <encrypted-new-mesg-id>
: auth-new-session-key (<key-type> <encrypted-new-key>)
:content <key-type>

2. If Chewie had previously registered a master key for communication with Solo,
the authenticator will return that key in a reply performative. If there is no
such key, the authenticator will reply with an error.

reply
:sender Authenticator
:receiver Solo
:in-reply-to <expression>
: auth-master-key T or NIL
:auth-digest (<digest-type> <encrypted-digest>)
:auth-mesg-id <mesg-id>
:auth-new-mesg-id <encrypted-new-mesg-id>
:auth-new-session-key (<key-type> <encrypted-new-key>)
:content (Chewie <key-type> <encrypted-master-key>)

83

A Security Architecture for KQML

6.2 Key creation using the Authenticator
Agent Solo would like to send a secure message to Chewie and needs a session or
master key for that purpose. It can send an auth-key-request to the authenticator to
create such a key. If a master key has been requested, the authenticator would store
the key in its database.

A master key creation would not be necessary if asymmetric keys are used as a
single master key per agent is suffice to talk securely to all the agents. Further, non-
repudiation of message origin is not possible if the authenticator knows the private
key.

1. auth-key-request
(with :to) .

2. reply/error

Figure 5: Key request (creation) protocol

1. Agent Solo would send an auth-key-request to generate a master or session key
to send messages to Chewie. The -.content parameter is a 2-tuple. The first
element is the requested key's type and the second element is T if a master key
is requested.

auth-key-request
:sender Solo
:receiver Authenticator
:reply-with <expression>
:to Chewie
: auth-master-key T or NIL
:auth-digest (<digest-type> <encrypted-digest>)
:auth-mesg-id <mesg-id>
:auth-nev-mesg-id <encrypted-new-mesg-id>
:auth-new-session-key (<key-type> <encrypted-new-key>)
:content (<key-type> T-or-NIL)

84

A Security Architecture for KQML

2. Authenticate* creates a key and sends it in a reply performative. If the requested
key is a master key, the key is added to Solo's key list. If the authenticator
is not able to create the key for whatever reason, it responds with an error
performative.

reply
:sender Authenticator
:receiver Solo
:in-reply-to <expression>
:auth-master-key T or NIL
:auth-digest (<digest-type> <encrypted-digest>)
:auth-mesg-id <mesg-id>
:auth-nev-mesg-id <encrypted-nev-mesg-id>
:auth-nev-session-key (<key-type> <encrypted-new-key>)
:content (Chewie <key-type>
<encrypted-master-or-session-key >)

6.3 Key registration with Authenticator using KQML
Agent Yoda would like to register its master keys with the authenticator.

1. register

2. reply/error

Figure 6: Key register protocol

1. Yoda would send a secure register with the keys in the :auth-key-list parameter.
The keys are encrypted using the key specified by the :auth-master-key param-
eter. The agent can also use this performative to change the master key that it
shares with the authenticator.

register

85

A Security Architecture for KQML

: sender Yoda
:receiver Authenticator
:reply-with <expression>
:auth-master-key T or NIL
:auth-digest (<digest-type> <encrypted-digest>)
:auth-mesg-id <mesg-id>
:auth-new-mesg-id <encrypted-nev-mesg-id>
:auth-new-session-key (<key-type> <encrypted-nev-key>)
:auth-key-list ((<agent> <key-type> <encrypted-key>)
...)
:ontology tcp-address-ontology
:content (tcp-host tcp-port)

2. If the key registration is successful, the authenticator responds with a reply else
with an error.

6.4 Initial key registration with the authenticator

Agent Yoda is starting up for the first time and would like to register the master key
that it shares with the authenticator. This can be achieved either using KQML or
some other external mechanism.

If symmetric keys are used, KQML cannot be used to register the initial key as there
is no master key to encrypt the key. If asymmetric keys are used, the initial master
key is encrypted using the authenticator's public key. Even if asymmetric keys are
used, there is a security problem. A rogue agent, agent DarthVader may know that
agent Ben respects performative from agent Yoda. Agent DarthVader may also find
out that Yoda has not registered with the authenticator and therefore the authenti-
cator does not know the existence of such an agent. Now, DarthVader can register
itself as Yoda. If this type of masquerading can be an issue, KQML should not be
used for the initial registration.

The protocol would be same as the key register process. The :auth-key-list parameter
will contain only one key pair and the agent name would be NIL as this is an asym-
metric key and it is suffice to use a single asymmetric master key for all the agents.

If the authenticator does not have any entry for Yoda, it accepts the registration and
adds it to its database and sends a reply.

86

A Security Architecture for KQML

7 Limitations of this model
• An agent can send out authenticated messages if and only if it has crypto

capabilities (A fair limitation).

• The security architecture introduces state information. Agent Emperor has to
keep track of the next message ID and optionally the next session key that will
be used by agent DarthVader. The agents can choose not to use this feature if
they are not concerned with message replay attack and cipher attack.

• Messages delivery must be reliable and in order. (A fair limitation considering
that KQML itself assumes that).

• The model does not support non-repudiation of receipt of messages. This would
be difficult to implement due to the asynchronous nature of KQML and can be
done only at the application level.

• There is no support for a mechanism to exchange credentials. Lets say that
agent Emperor trusts agent DarthVader and would like to delegate DarthVader
to act on its behalf. There is no way for DarthVader to take up Emperor's
credentials.

• The model does not support replay detection if :auth-mesg-id and :auth-new-
mesg-id are not used. These parameters cannot be used if the recipient is not
known in advance.

• The model should be enhanced to support the use of the Crypto APIs recom-
mended by NSA (GSS, GCS and Cryptoki) [8], especially for the key-type and
digest-type values.

• The architecture does not address traffic analysis by rogue agents. We feel that
traffic analysis is best handled at the link/transport layers.

8 Conclusion
The proposed security model addresses privacy, authentication and non-repudiation
(if asymmetric key mechanism is used for the master and session keys) in agent com-
munication. It does not fully address the issue of message replay, especially if the
recipient of a performative is not known in advance.

The security model depends on the strength of the crypto algorithm, message digest
function and the random number generator used by the agent for its effectiveness.

87

A Security Architecture for KQML

LORAL and UMBC have a KQML implementation [10], and we shall discuss the mod-
ification required to that implementation to provide secure services to the agents. In
the LORAL and UMBC architecture, each agent application is associated with its
own separate router process. The routers used by all the agents (under this imple-
mentation) are identical; a copy of the same program. The router process handles all
KQML messages going to and from its associated agent. The security enhancement
can be easily added to this KQML implementation by modifying the router to be
security aware, without involving any major change to the agent application.

The agent application only needs to specify the degree of security (any combination
of provide for message authentication, protect from replay attack, send a confiden-
tial message and sign the message-non-repudiation of origin) of an outgoing message.
The router would handshake with the receiving agent and secure the message to the
extent possible (the receiving agent may not support asymmetric key cryptography,
auth-private performative etc or the router may not know the receiving agent of the
embedded message if it is sending out a broadcast or facilitation performative).

Similarly, when the router receives an authenticate request from another agent, it
can handle the handshake itself, without involving the agent application. When the
router receives a message from another agent, it would tag the message with a security
level (confidential, authenticated, etc.). The agent application can decide to process
or ignore the message based on the message's security level.

A similar approach can be followed to add security enhancement to most other KQML
implementations. Most implementations would provide a library with at least a basic
send and receive primitive to send and receive KQML messages. These primitives
can be modified to add the authentication information to the outgoing messages or
process the authentication information in the incoming messages. The implementa-
tions can use one of NSA recommended crypto APIs [8] for cryptographic capabilities.
These APIs provide support for asymmetric and symmetric key cryptography, mes-
sage digest, key generation etc. The use of a standard API would help agents using
different KQML implementations to interact without any incompatibility problems.

9 Acknowledgments

I thank Mr. Arulnambi Kaliappan, Graduate Student, Computer Science, UMBC for
his suggestion of agent names and and Mr. Senthil Periaswamy, Graduate Student,
U of South Carolina for the stimulating discussions on possible security threats and
attacks. Last but not least, I express my gratitude to my advisor Dr. Timothy Finin,

88

A Security Architecture for KQML

for his support and guidance. But for his encouragement and enthusiastic support,
this work would not have been possible.

89

A Security Architecture for KQML

References

[1] Draft specification of the KQML agent communication language, Tim Finin, Jay
Weber et al. Jun 15 1993, http://www.cs.umbc.edu/kqml/kqmlspec/spec.html

[2] Security Mechanisms in High-Level Network Protocols, Victor L.Voydock,
Stephen T. Kent, ACM Computing Surveys, Vol.15, No. 2, 135-171, Jun 83

[3] OSTF RFP3 Submission, Corba Security, OMG Document Number 95-3-3, Mar
8 1995, http://www.omg.org/docs/95-3-3.ps

[4] Privacy Enhancement for Internet Electronic Mail: Part I: Message
Encryption and Authentication Procedures, J. Linn, Oct 02 1993,
http://ds.internic.net/rfc/rfdl421.txt

[5] Security in a Distributed Computing Environment, OSF-0-WPl 1-1090-3,
http://www.osf.org/comm/lit/OSF-O-WPll-1090-3.ps

[6] Project Athena Technical Plan, Section E.2.1, Kerberos Authentication and Au-
thorization System, S.P.Miller, B.C.Neuman, J.I.Schiller and J.H.Saltzer, Oct 27
1988, ftp://athena-dist.mit.edu/pub/kerberos/doc/techplan.PS

[7] Limitations of the Kerberos Authentication System, S.M. Bellovin, M.
Merritt, Proceedings of the Winter 1991 Usenix Conference, Jan 1991,
ftp://research.att.com/dist/internetjsecurity/kerblimit.usenix.ps

[8] Security Service API: Cryptographic API Recommendation, NSA Cross Organi-
zation, CAPI Team, Jun 12 1995, http://www.omg.org/docs/95-6-6.ps

[9] RSA Labs' frequently asked questions (FAQ), http://www.rsa.com/rsalabs/faq

[10] Software Design Document for KQML, Revision 3.0, Mar 1995, LORAL Corpo-
ration, Paoli PA, USA

90

6. AGENT NAMES FOR A
KQML AGENT SYSTEM

Intelligent Agent Integration Technology

Prepared by:
Tim Finin, Chelliah Thirunavukkarasu and Anupama Potluri

Co-Principal Investigator
University of Maryland - Baltimore County

finin@cs.umbc.edu, (410)455-3522

Donald P.McKay and Robin McEntinre
Lockheed Martin

Donald.P.McKay@lmco.com and Robin.A.McEntire@lmco.com

91

6.1 Introduction

Agents need to talk to other agents. If you are an agent A and there is another specific agent B that you
want to send a message to, how do you manage it? Well, clearly there is a need for some kind of
referential expression that A can use for B and which can be given to the underlying machinery which
will convey the message to B. One solution is to use an expression that locates the agent with respect to
the message transport system. Examples of such "transport address names" would be a structure which
contains an IP address and a port number, or a URL, or an email address for the TCP/IP, http and SMTP
protocols. This is a common practice in many of our primitive agent systems today.

Another approach allows agents to use one of more symbolic names and to provide some kind of
mechanism by which names can be registered and associated with their appropriate "transport address
name". This approach is only slightly more sophisticated than the first. The name registration can be
done in any of several ways, such as hand coding the associations into all of the agents, or broadcasting
the associations over the transport mechanism or assuming the use of "communication facilitator" type
agents.

The KQML language and protocol includes special commands (the register and unregister performatives)
by which agents can announce the symbolic names by which they wish to be known. Special agents
(commonly known as "communication facilitators") traffic in this knowledge and provide a name
registration and resolution service. In the Loral/UMBC "KQML Agent Technology Software" (KATS)
architecture, this name registration and resolution is handled automatically by a generic router sub-agent
attached to each agent. From the agents perspective, all it has to do is to specify the set of symbolic
names it wished to be known by. The router sub-agent automatically contacts the local "facilitator agent"
f41 to register the agent by its symbolic names.

For example, suppose the agent named A wants to send a query to agent B. It passes a KQML form like

• (ask-one :from A :to B xontent...)

to its router sub-agent (call it r(A)). This router is responsible, among other things, for resolving the agent
name B into an address that can be given to the transport layer for delivery. In KATS, the router checks
it's cache to see if it knows how to deliver a message to an agent named "B". If it does, it ships the
message out. If not, it sends a KQML query to the local agent name server, asking for the address of an
agent named "B". Upon receiving the information, it adds it to its cache and sends off the message.

There are additional wrinkles, of course, such as how to determine when a cache entry is stale and needs
to be flushed, but this describes the current arrangement.

6.2 The Problem

Although this approach works quite well as far as it goes, it just does not go very far. The problem is that
it only supports communication between two agents if they both register with a common agent name
server. There are several possible solutions. All agents could use a single master name server possibly
located deep under Cheyenne Mountain. Another approach is to have the name servers share their
registration databases. Still a third, and more general, technique involves having the name servers use a
distributed protocol to seek out the contact information on non-local agents. We next describe our
protocol for such a distributed agent name resolution scheme.

92

6.3 Distributed agent-name resolution

We propose to organize agents into "agent domains" in much the same way that the Internet is organized
into "host domains". An "agent domain" can be thought of as a collection of agents that are associated
with a particular set of facilitator-class agents. In particular, every agent domain must have an "agent
domain name server" (or "agent name server" or ANS for short) running. There may be other facilitator-
class agents, such as brokers, associated with the agent-domain.

Agent domains will be organized into a
hierarchy. Agents will register with an
ANS, as shown in figure one. An ANS,
being an agent itself, will register with a
"parent ANS", resulting in a hierarchy, as
shown in Figure Two. Each agent will have
one or more local names. An agent can also

agents registered with agent name server ANS 1 be referred to by its "domain qualified
name". For example, consider the agent-

Figure 1 -- a set of agents are associated with an agent domain hierarchy in Figure Three.
name server by sending it a KQML "register"
performative. . .
 — ' One possibility we might consider is just to
"piggy-back" on the existing Internet host structure. For example, why not refer to the agent "colossus"
running on the machine "cujo.cs.umbc.edu" as "colossus@cujo.cs.umbc.edu" and assume a standard port
for KQML speaking agents. This idea is attractive in that it makes efficient use of a well thought out and
implemented architecture. However, there are several problems which argue against this. The primary
difficulty is that we do not want to tie KQML and agent communication in general to a single transport
mechanism. Current research groups are using a variety of mechanisms to carry KQML messages -
TCP/IP, SMTP, CORBA objects, and HTTP. We would like to continue to keep KQML flexible in this
regard. A consequence of this is that we need a general mechanism for naming agents that is independent
of the transport mechanism.

6.4 What should agent names look like?

We propose a naming scheme similar to the one used for hosts on the Internet. Every agent will have one
or more local names optionally followed by a domain qualifier. A local name can be any non-zero length

sequence of characters chosen
from the character set

Figure 2 — Agent name servers are organized into a hierarchy
through the registration process.

• {a-z,A-Z,0-l,-,_,.,+,#}

A domain qualifier begins with
the character "." and consists of
one or more agent domain names
separated with a "." character.
Thus a fully qualified agent name
has the structure:

• <local name>.
<domain l>.<domain2>.
<domain3>.. .<domainN>

93

The following would all be valid names for an agent with the local name "colossus" registered in the
"umbc.edu." agent domain (and assuming that it is in turn registered in the "edu." domain which is in the
top-level"." domain.)I51

• colossus
colossus.umbc
colossus.umbc.edu.

Furthermore, we propose a correspondence between the names of agent domains and agent domain
servers. Thus in the above example, agent colossus is registered with the ANS with local name umbc
which is registered with the ANS with local name edu which is registered with the global ANS. Thus, the
fully qualified name of an agent could be defined by its local name followed by a"," followed by the'
fully qualified name of its official agent name server.

There are obvious alternatives to the syntax we are proposing which would model agent names after
email addresses (e.g., colossus@umbc.edu) or URLs (e.g., kqml://umbc.edu/colossus). There are several
arguments against using either of these existing formats. One argument that applies to both is that we
would like to avoid confusion about what a particular address means, e.g., is it the name of an agent, a
reference to a document, or a reference to a mailbox. One might think that such a confusion could be a
feature rather than a bug, since each of these might be a very reasonable way to think of and interact with
an agent. However, there is clarity to be gained by separating the concept of a abstract reference to an
agent that is independent of communication channel and a reference to an agent that implies a means of
communication. The email style address has an advantage of using a special character (the @) to separate
the "local name" from the "host name". When standards for SMTP were being developed, this was quite
useful since it provided a mechanism to support gateways between email systems that used very different
protocolsf61.

6.5 How agent names are resolved

The process of resolving a name is similar to the one used for the Internet DNS. One difference is that
agent with a given name can have many addresses -- one for each transport mechanism that it can use.
Thus, the agent_address is a function from agent names and agent transport types to transport addresses.
We assume that an agent can be referred to using its fully qualified nameJT] or any non-ambiguous
abbreviation.

Suppose agent Al wants to resolve the fully qualified name N2 into an address for transport type T2. The
process starts when Al asks its agent name server.8 The query is passed up the hierarchy of agent name
servers as long as the address is not known and N2, is not recognized as being the name of some
descendant. If an agent name server gets the query and knows the address, the process stops and a
response is sent to Al. If the root of the agent domain hierarchy is reached and the address was not
found, the process fails and an appropriate error message is sent to Al. If an agent name server
recognizes that N2 is the name of some descendant, it is passed down to the appropriate immediate child
agent name server. This process continues until we find an agent name server that knows the address or
we recognize that we can go no further. In this latter case, the process fails and an appropriate error
message is sent to Al.

Resolving partially qualified agent names follows a very similar process. There are a number of details
that must be decided on in standardizing this name resolution protocol - i.e., whether answers are sent

94

directly back to the agent initiating the query or passed back through the hierarchy and cached along the
way. These details should only effect the performance of the name resolution process.

6.6 Taking names seriously

Agents should take names seriously. What we mean by this is that application agents should always refer
to other agents by their names, and not the underlying transport addresses, if known.M Agents should
leave the resolution of these names into transport addresses up to specialized agents (e.g., agent name
servers) and sub-agents (e.g., routers). Adapting this convention will directly support the concept of a
proxy agent, the use of logical agent services, and other important notions. We will discuss the concept
of a proxy agent in more detail and sketch how it can be easily implemented by adopting a few simple
conventions for agent name servers.

6.7 Proxy agents and their protocols

A proxy agent is an agent that handles all of the incoming and outgoing messages (perhaps with respect
to a particular transport mechanism) for another agent. A simple proxy mechanism can be used to provide
a number of services:

• firewall gateways - agents which are behind a security firewall and use a proxy agent to
communication to agents outside the firewall.

• protocol gateways - An agent which is unable to send or receive messages via a particular
transport mechanism (e.g., email) can still communicate with agents who only use that
mechanism by having a proxy agent to mediate between two transport mechanisms.

• message processing - The proxy can provide a processing service, such as logging incoming or
outgoing messages, without altering the stream.

• filtering and annotating — The proxy can alter the stream by filtering out certain incoming
messages, blocking outgoing messages to particular destinations, annotating incoming messages,
etc.

• agent composition - A proxy agent facility allows one to develop a notion of "agent
composition" similar to functional composition.

As an example, suppose we have two agents A and B, both of which use the agent name server F. A has
proxy agent p(A) and B has proxy agent p(B). Suppose A wants to send a message to B. The following
events take place:

• 1. A hands off the message to its router subagent r(A).
2. r(A) asks F for B's address.
3. f gives r(A) the address of p(A), A's proxy.
4. r(A) delivers the message to p(A) but the :TO field equals b.
5. p(A), knowing that it is a proxy for a (possibly among others) and noticing that it has received
a message from a with the :TO field of B, understands that the message is not really intended for
it, and asks its router r(p(A)) to deliver it to B.
6. r(p(A)) asks F for the B's address.

95

Figure 3 - A conversation among five agents and their sub-agents.

7. F gives r(p(A)) the address of p(B) - B's proxy).
8. r(p(A)) delivers the message to p(B) with the :TO field equals B.
9. p(B), knowing that it is a proxy for B (possibly among others) and noticing that the :TO field
is B, understands that the message is not really intended for it, and asks its router r(p(B)) to
deliver it to B.
10. r(p(B)) asks F for the address of B.
11. F recognizes that p(B)) is B's proxy so it gives p(B) the real address of B.

This example demonstrates
the use of proxy agents for
both outgoing messages and
messages. The proxy agents
may do some additional
processing of the messages

they get, of course, like logging or traffic analysis, etc. The scenario above is the worst case in that it
assumes all of the router subagent caches are empty. Subsequent communications would find the caches
filled, so the agent name server would not have to be involved.

Implementing the concept of a proxy agent is rather trivial once we have agent name servers and agents
who contact agents by name rather than by transport address. First, if an agent P is willing to serve as a
proxy agent, it has to be able to provide some of the functionality that an agent name server does.
Second, if A wishes to use P as a proxy for transport mechanism T, it must (1) get permission from ask P
for this and (2) unregister with A's agent name server for transport T (if it was so registered). Third, P
should register with A's agent name server in A's name for transport T. Good design dictates that all of
the agents involved should also explicitly "know" that P is acting as A's proxy with respect to messages
carried by transport mechanism T.flQI

6.8 Changes to KQML and standard utility agents

This naming scheme will not require any major changes to KQML such as the addition of new
performatives or new parameters. It will have an impact on the form of the register performative and on
the standard agent ontology and on the protocols used by standard utility agents such as an agent name
server and a router. This, in turn, will effect the protocols that all agents who use these standard utility
agents follow.

An agent name server will have to store more information about the agents that are registered with it and
will have to handle some additional performatives. When an agent registers with an agent name server, it
should provide a set of symbolic names it will respond to and a set of transport type/address pairs.
Authentication information may be provided as described in (Thirunavukkarasu, Finin and Mayfield 95).
A standard agent name server must handle requests to register and unregister from agents as well as
various kinds of queries against its registration databasejlll

In reaching a consensus on the precise details of how to add these changes to KQML we will have to
choose what aspects are expressed by adding to or modifying the basic components of KQML (i.e.,
performatives and parameters and their semantics) and which are expressed by extending the common
"agent ontology" that is assumed by KQMLJ12 1

6.9 Conclusions

We have discussed the problem developing a global naming scheme for software agents and how such
names can be resolved into usable addresses. We have assumed an agent environment which (1) is

96

dynamic with agents being created and destroyed frequently; (2) undergoes re-organizations with agent
groups and sub-groups forming and disbanding; and (3) supports agent communication by any of several
transport mechanisms such as TCP/IP, email, http and distributed object systems. We proposed the use of
agent domains which are organized into an agent domain hierarchy. Agent name resolution will be done
agent name server agents which use a distributed protocol similar to that used by Internet domain name
servers. This approach supports the definition of proxy agents which have a variety of uses. We have
briefly discussed how this proposal would impact the KQML agent communication language and
protocol and describe an ongoing implementation of a generic KQML Agent Name Server and its
integration into the KATS framework.

6.10 Bibliography

Paul Albitz & Cricket Liu, DNS and BIND, O'Reilly, 1992, ISBN: 1-56592-010-4.

Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire. KQML: an information and knowledge
exchange protocol In International Conference on Building and Sharing of Very Large-Scale Knowledge
Bases, December 1993. A version of this paper will appear in Kazuhiro Fuchi and Toshio Yokoi (Ed.),
"Knowledge Building and Knowledge Sharing", Ohmsha and IOS Press, 1994. An online copy can be
obtained from "http://www.cs.umbc.edu/kqml/papers/kbks.ps".

Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire. The KQML information and knowledge
exchange protocol. In Third International Conference on Information and Knowledge Management,
November 1994.

Tim Finin, Yannis Labrou, and James Mayfield, KQML as an agent communication language, invited
chapter in Jeff Bradshaw (Ed.), ^Software Agents", MIT Press, Cambridge, to appear, (1995).

Rich Fritzson, Tim Finin, Don McKay and Robin McEntire. KQML - A Language and Protocol for
Knowledge and Information Exchange, 13th International Distributed Artificial Intelligence Workshop,
July 28-30,1994. Seattle WA.

Mark R. Horton, What is a domain?, available on-line as <http://www.dns.net/dnsrd/docs/domain.ps>.

Yannis Labrou and Tim Finin. A semantics approach for KQML-a general purpose communication
language for software agents. In Third International Conference on Information and Knowledge
Management, November 1994. Available on-line as http://www.cs.umbc.edu/kqml/papers/kqml-
semantics.ps.

R. Patil, R. Fikes, P. Patel-Schneider, D. McKay, T. Finin, T. Gruber, and R. Neches. The DARPA
knowledge sharing effort: Progress report. In B. Nebel, C. Rich, and W. Swartout, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the Third International Conference (KR'92),
San Mateo, CA, November 1992. Morgan Kaufmann.

R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W. Swartout. Enabling technology for
knowledge sharing. AI Magazine, 12(3):36~56, Fall 1991.

James Mayfield, Yannis Labrou and Tim Finin. Evaluation of KQML as an Agent Communication
Language, the IJCAI-95 Workshop on Agent Theories, Architectures, and Languages.

97

7. ONTOLOGICAL MEDIATION

Intelligent Agent Integration Technology

Prepared by:
Alistair E. Campbell

and
Stuart C. Shapiro

Co-Principal Investigator
State University of New York at Buffalo
shapiro@cs.buffalo.edu, (716)636-3935

This paper originally presented at the International Joint Conference on Artificial Intelligence - Workshop on Basic
Ontological Issues in Knowledge Representation.

98

Ontologic Mediation : An Overview

Alistair E. Campbell and Stuart C. Shapiro
Department of Computer Science
and Center for Cognitive Science

State University of New York at Buffalo
226 Bell Hall

Buffalo, New York 14260
{aec,shapiro}@cs.buffalo.edu

1 Introduction

One of the motivations behind the Knowledge Sharing Initiative [Neches et al., 1991] is to enable
effective communication between software knowledge agents so that independent, heterogeneous
agents can share their knowledge with one another. Hence, many researchers are developing tech-
niques, protocols, languages, etc. to facilitate the creation of new knowledge agents, incorporate
them into a growing community of agents, and allow them to communicate and interact with fellow

agents.
There is a wide_ variety of other prerequisites to interagent communication. One is that the

agents use compatible communication protocols. The protocol aspect of communication encom-
passes establishing a communication channel, deciding on a content language, using the proper
speech acts, e.g., assertion, query, etc., transmitting actual information, synchronization, error
detection and recovery, etc. Tim Finin's Knowledge Query and Manipulation Language, KQML
[Finin and others, 1992], is mainly concerned with that part of the communication between knowl-
edge agents. Another important prerequisite of successful communication is that the exchanged
content messages have the proper meaning so that they are understood correctly by the intended
recipient. To achieve this, the language of one agent has to be translated into the language of
the other. A form of translation — perhaps better called explanation — might be necessary even
if the agents speak the same language, because they might have different expertise, use different

terminology, etc.
One such technique, known as the mediation approach has been introduced by Gio Wiederhold

[Wiederhold et al., 1990]. This approach tries to assume as little as possible about the various
knowledge agents, while enabling communication between them by providing a special class of
agents called Mediators or Facilitators. These mediators normally speak the language of one par-
ticular knowledge agent as well as a common mediator language that lets them easily communicate
with mediators of other knowledge agents. The advantage of the mediation approach is that it is
applicable to a wide variety of already existing knowledge agents, The main disadvantage is that
it involves possibly difficult translation at various levels.

Wiederhold justifies the use of mediators (called SoD's) this way: [Wiederhold et al., 1990]:

Today, without the knowledge encoded in SoDs, the methods for retrieving the best
information are explicitly specified by the user. It is likely to require distinct methods

99

for multiple domains. Both in database and Prolog access styles, these specifications
require knowledge of each the [sic] underlying domains and their structure. In today's
database languages a sensible specification is likely impossible to state, so that all the
data has to be retrieved into memory, and then processed and reduced by the application
programs, (p. 67)

Our main interest lies in the mediation approach, and in this paper we investigate a particular
kind of mediation. In our model, a mediator enables communication between agents by learning
the meanings of new words, and forming appropriate models of the communicating agents' mental
concepts

Such a mediator would facilitate the translation part of communication. Therefore, we are
investigating the notion of an ontological mediator (OM), and the feasibility of implementing a
computerized OM. An ontological mediator is an agent that enables communication among two or
more intelligent agents who either speak different dialects of their common language or use different
ontologies. Unlike KQML mediators who treat the messages of the agents as uninterpreted strings,
OMs are to involve themselves in the meanings of the messages being sent among agents.

We need mediators because there is no common framework within which the community is
developing knowledge agents. The interaction between specialized knowledge agents and users
presupposes that the users already understand the meta-language required for knowledge queries,
and will completely understand the responses they receive. When a human user doesn't understand
a response, they will issue a new query in an attempt to gain clarification. Automated interaction
between autonomous knowledge agents, however, was never intended. Mediators bridge the gaps
between agents. They determine what clarifying questions to ask about concepts foreign to one of
the agents. They rearrange the structure of queries and responses to smooth out inconsistencies
and prevent miscommunications. Finally, they learn the correct translations for cases where use or
ontology vary between agents.

2 What is an Ontology

The primary task of an OM is to mediate between agents using different ontologies, so, what are
these ontologies? Or better, what do we mean when we say ontology'! Let us start out with a few
definitions from the literature and then give our definition of it.

From Webster's on-line dictionary:

on.tol.o.gy noun [NL ontologia, fr. ont- + -logia -logy] 1: a branch of metaphysics
relating to the nature and relations of being 2: a particular theory about the nature of
being or the kinds of existence.

This definition characterizes ontology the way it is standardly used in philosophy.
In artificial intelligence (AI) circles people are less concerned with the actual nature of existence

or reality than with the modeling of certain aspects of that reality. They use the term more along
the lines of Tom Gruber, one of the principle designers of Ontolingua. He writes [Gruber, 1994,
p.l]:

An ontology is an explicit specification of a conceptualization. The term is borrowed
from philosophy, where an Ontology is a systematic account of Existence. For AI sys-
tems, what "exists" is that which can be represented. When the knowledge of a domain
is represented in a declarative formalism, the set of objects that can be represented is

100

called the universe of discourse. [...] Formally, an ontology is the statement of a logical

theory.

Gruber's characterization of ontology qua logical theory actually subsumes more than what AI
researchers usually consider as part of an ontology. In his view an ontology consists of a represen-
tational vocabulary with precise definitions of the meanings of the terms of this vocabulary plus a
set of formal axioms that constrain the interpretation and well-formed use of these terms.

Most commonly however, the representational vocabulary is the only aspect considered to be
part of an ontology. Such representational vocabularies are usually defined as taxonomic class
hierarchies. For example, the taxonomy of a general natural language understanding system would
have very general classes such as abstract things and concrete things at the top of the hierarchy,
bottoming out at specific common nouns, verbs and adjectives. The ontology, together with the
specific individuals of each taxonomic class, constitute the agent's knowledge base. The constraint
axioms omitted from the specification of the ontology are added to the AI system separately.

In the following we will use the term ontology in this narrower sense. Hence, for us the primary
function of an OM is to translate between differing taxonomies of communicating agents. One of
the foci of our future research in this area will be to incorporate semantic constraints in inter-agent
reasoning, as it would seem necessary if we wish to have agents understand each other's meanings.

3 Mediation interface

Inter-agent communication is based on a message passing protocol in which agents send messages
to other agents, and receive messages from other agents. Each message has an explicit sender
and an explicit receiver. The communication pathway can be any medium; we are thinking of a
physical network connection employing standard data protocols such as TCP/IP. These protocols
are separate fromthe protocols discussed here. We presume that both agents can employ the same
language in the sense that they employ the same syntax, and use the same closed-class vocabulary.
Open-class words may differ between communicating knowledge agents.

An ontological mediator sits like a two-way filter between two particular communicating knowl-
edge agents. It serves as a translator for messages the agents send to each other. In our current
model, every pair of knowledge agents will need its own translator. The OM monitors at least the
syntactic content of sending agent's messages to ensure they will be received without misunder-
standing. The translation problems mentioned in the previous section apply to the OM's ability to

perform this task.
It is a requirement that agents who wish to communicate have ontologies that overlap. It is not

necessary for the agents to share the same terms for every item of discourse, but at least they must
share some intensional objects. In other words, if two agents' ontologies have nothing in common,
they can have nothing to discuss with one another. Attempts by agent A to communicate with
agent B when B doesn't share any of A's ontology need to be politely interrupted by the mediator.

Given that the communicating agents have some common ground in their ontologies, An onto-
logical mediator can be used to extend the ontologies of either agent. If one agent begins to use
a term unknown to the other agent, the mediator will introduce the term, and attempt to explain
the term using language the other agent already understands. If the other agent is not satisfied by
the explanation, or needs further information, it may, via the mediator, query the first agent. The
ensuing meta-discussion ends when both agents are satisfied that the second agent understands the
term well enough to use it appropriately in the context of communication. An appropriate task for
the OM will be to determine when the meta-discussion has exhausted its usefulness for the agents,

101

and it is time to continue the original communication.
A prerequisite to this process is that the mediator know something about the ontologies of both

agents. In order to explain a term or translate terms between ontologies, the OM must be able to
compare pieces of ontology from both agents until it finds sufficient similarity. It can extract pieces
of an agent's ontology remotely by querying the agent, or it could store the complete ontologies
of both agents in its own memory. The obvious advantage to maintaining local copies is reduced
overhead, but it comes at the price of having to monitor dialog between agents and determine when
ontologies are modified.

4 A comparison of ontologies

A number of different computer-based ontologies are used by existing knowledge agents to taxon-
omize the world and restrict the kinds of assertions that can be made about objects. We expect
that communicating agents may use ontologies that differ. However, since any two rational agents
who live in the real world have the common experience of real world, we expect to find that on-
tologies describing the same portion of reality will have significant overlap. We have collected a
few ontologies from various sources in order to determine whether the extent to which ontologies
overlap meets with our expectations.

4.1 Integrating ontologies

In building interlingua for communicating agents, one approach is to merge separate ontologies into
one ontology that is consistent with both agent's world view. In order to determine whether this
is feasible, we must examine the structure of ontologies. If they are identical except for concepts
at the bottom of the taxonomy,

The Wordnet lexical database system provides relational information about synonym groups
(synsets). Thesynsets for nouns are organized in a several hierarchies. The higest concepts for these
hierarchies include {"act," "human action," "human activity"}, {"phenomenon"}, {"psychological
feature"}, {"abstraction"}, and {"entity"}.

The Penman [Penman, 1989] taxonomy is designed to support natural language understanding.
Part of this system is the Penman Upper Model, a LOOM [MacGregor, 1988] taxonomy that drives
the natural language generation engine. Similarly, the CYC knowledge base [Lenat and Guha, 1989]
is an ontology designed for general-purpose artificial intelligence systems.

We compare the upper levels of these three systems. Figure 1 illustrates the very top levels of
the CYC and Penman system. In CYC, the top levels are in a relatively sparse tangled hierarchy.
The Penman system, on the other hand, employs a dense tree. Notice also that there is very little
obvious overlap in top-level concepts between CYC and Penman. Clearly, these are two orthogonal
ways of taxonomizing the world.

It is not necessary for ontologies to match at every level, however. If two agents are discussing
technical issues, the vocabulary will remain at the lower levels of their respective ontologies. It
does not matter how the two agents partition their concepts as long as they mean the same things
by use of particular concepts in dialogue.

Thus, a top-down approach to ontological augmentation, where agents discuss the classification
of a concept beginning with the most general and abstract items in their taxonomies, will not
always succeed because of a lack of a common frame of reference at that level. By the same token,
a bottom-up approach, is not guaranteed either. Instead, if a common frame of reference can
be found nested in both ontologies, an iterative graph traversal algorithm (growing both up and

102

down) is the most successful heuristic. Our algorithm employs this approach by finding immediate
subclasses and immediate superclasses of a noun concept, then expanding the search by part-whole

relationship information.
Consider one of Wordnet's top levels, {"entity"}. It is divided into ten synsets, each of which

has multiple words. The same word may belong to more than one sense, actually occupying multiple
places in the ontology. Wordnet is much more dense and tangled hierarchy than both CYC and
Penman. We omit a diagram of the {"entity"} top level for that reason.

Many approaches to the problem of heterogeneous knowledge sources involve merging two or
more sources of knowledge into one large knowledge base. This is also known as building an
interlingua. A major obstacle to building an interlingua is the task of translating each source into
the knowledge representation language to be used in the interlingua. When ontologies are merged,
it is often done by hand [Knight and Luk, 1994] It is not yet clear how to automate this process
in the general case. Even if ontologies are structurally identical but use different words, there may
not be direct translations between words at the same level of the ontology. The spreading search
heuristic may lead to a solution for particular concepts. In addition to this basic paradigm we also
require a model of agent-mediation-agent explanation dialogue.

Another problem related to merging is that of making use of common on-line resources, in-
cluding machine-readable dictionaries. Given dictionaries such as the Longman's Dictionary of
Contemporary English (LDOCE), or Roget's International Thesaurus (RIT), one may want to
build up a lexicon that can be used by natural language understanding systems. Such a project
has been attempted by [McHale and Crowter, 1994]. In order to build a complete lexicon, certain

-thematic roles for words have to be extracted from the dictionary. However, these roles are not
explicitly represented in the LDOCE. A pattern matching heuristic is employed on sample sen-
tences in the LDOCE to determine the ways words are used in the context of actual sentences. It
can then be determined, for example, which verbs require direct or indirect objects. Additionally,
their algorithm will attempt to correlate word senses between the LDOCE and RIT, essentially
merging concepts from different sources and representing their common meanings. If a mediator
understands and represents explicitly the meanings of words, or the concepts that the words label,
rather than just the words themselves, it is better prepared to make proper translations.

Must translations be exact? Except in very precise and technical areas, the most intelligent of
agents—humans—do not always mean the exactly the same thing, even when they use the same
word. However, humans share enough of the meanings of words to allow them to communicate
effectively, and understand enough. One theory that describes this phenomena is set forth in
[Lehmann and Cohn, 1993]. Every concept is described by a two-part system, the EGG, which for-
mally defines the concept, and the YOLK, which is a set of core exemplars, either formally defined,
or enumerated. In order for effective communication to occur about a particular EGG/YOLK con-
cept, both agents must agree on the YOLK, or agree to disagree about the meanings of the terms
they are using. In addition, the EGG/YOLK formalism allows for a much finer distinction between
concepts. There is a partial order of 46 distinct ways in which the EGGS and YOLKS of two con-
cepts can overlap, each from total disjointedness to total equality. The agents can therefore work
to integrate their knowledge automatically at the possible expense of accuracy, or they may choose
not to allow integration except where the degree of concept overlap exceeds some threshold. This
approach is useful to a mediator because one of the mediator's primary facilities is to determine
when two different terms match well enough in context that they mean the same thing, or when to
identical terms really mean different things to each knowledge agent.

103

CYC

IndividualObject

Event

\ ~~ Process
SomthingOccuning

Object

Thing

RepresentedThing

Intangibles tuff

Intern alMachineThing
AttributeValue Slot

Quality

Maferial-P Mental-P Relatiojial-P Verbal-P
Decomposable-Object

Nondecomposable-Object

Ordered
Object

Space-Point

Substance

Time-Point

Directed
Action

Nondirected
Action

M-Active
M-Inactive

Logical
Quality ModaI

Quality

aterial-World.
Quality

OnePlace-R

TwoPlace-R

Dynamic/ Polar \ Scalable
Stative Taxonomic j^on

Scalable

PENMAN

Figure 1: A comparison of ontologies

104

5 Terminological Representation and Translation

An ontological mediator needs to have knowledge of the base-level category words used by the
agents whose communication it is mediating. We presume that the communicating agents speak
the same language, and barring any evidence to the contrary, they use the same words to speak of
objects known to both agents. Often, however, different agents will use different words to represent
the same object, or the same word to represent different objects.

We have developed a representation scheme for ontologies and a mechanism for translating sen-
tences when the agents use different words to represent the same object. Words used by a speaking
agent are translated into the equivalent words used a listening agent. The agents themselves do not
represent this meta-ontological translation knowledge. Rather, it is stored in the knowledge base
of the Ontological Mediator. Ultimately, when agent A wants to sent a message to agent B, A will
send the message to the OM for appropriate translation, then the OM will forward the message
with translated terms to agent B.

Meta-ontological knowledge about the terms used by two agents is formed in the belief space
of the ontological mediator by a set of asserted propositions of the form "Agent X believes that
expression T denotes object O." Each agent is represented as an individual base node in the OM's
semantic network. To specify a specific term translation, two propositions are asserted in OM's
belief space: "Agent X believes that expression T\ denotes object 0,-," and "Agent Y believes that
expression Ti denotes object 0,-." The 0,'s in the OM represent the same concept for which the
communicating agents use different terms. An 0{ can be an individual or a class.

6 Definitions

The Ontological Mediator's primary function is to provide accurate translations between sentences
of one agent and sentences of another. The agents use the same language, but might use open-class
words unfamiliar to each other. The key to providing an accurate translation is to understand
the content of the message. Most importantly, an agent needs to determine a definition for each
unfamiliar open-class word it hears.

Karen Ehrlich [Ehrlich, 1994] is developing a system which will learn meanings of new words
from the context in which they are used in a narrative. With respect to nouns, the system searches
for the following narrative cues:

1. relationship to basic-level categories (identity, subclass, superclass)

2. function (what purpose the noun serves)

3. structure (what parts or possessions the noun has)

4. actions (what the noun does)

5. ownership (who or what can own a noun)

6. other properties (default size, color, etc..)

7. synonyms

Rather than read a narrative, an ontological mediator can ask questions of its agents. Given a
new word, its task is to find a place for it in the agent's ontology. The mediator needs to ask the
right questions in order to make this placement correctly.

105

Following the work of Ehrlich, we have begin to develop a system which interfaces with the
Wordnet ontology and asks the user questions about a given noun. It asks the user to specify
class inclusions and part-whole relationships about the word. It then displays possible words the
given noun might match. If the user verifies a match, the system will place the new word in the
corresponding synset, and update its internal database with this new information. Currently, our
interface to Wordnet is read-only, but even if it were read-write, we don't believe it is the mediator's
job to change the ontologies of its agents directly. If a word match cannot be found, but the user
is satisfied that the given noun is a sibling of the hyponyms of a Wordnet word, the system will
modify its internal database with a new synset of that sense containing just the new word. After
this system is more fully developed, future queries of the system regarding the given noun will
reveal its placement in the taxonomy.

The question/answer approach to determining the ontological status of a new word places a
great deal of trust in the user's (or question-answering agent's) competence. For example, the agent
must know the meaning of each word the mediator presents; otherwise important clues as to the
new word's placement might go unnoticed. In our informal experiments to date, we have discovered
that the user must almost know a priori the classification of sibling words in the destination synset.
Otherwise, the user may cause the mediator to digress in a direction that ultimately fails to classify
the new word. The user needs to be intelligent enough to realize when such a digression has occurred
and to tell the mediator to back up to a point before the digression began.

7 Learning translations for isolated anomalies

Often it is the case that two agents really have the same ontology structure, but they use different
words to refer to the same concept. A speaking agent may use an unfamiliar word to a listening
agent. The mediator is then called in to learn an appropriate translation, and thus solve the
communication discrepancy.

If the discrepancy happens in isolation, that is, where the words for surrounding concepts are
the same, then A translation can be found by querying the speaking agent for the subclasses,
superclasses, and coordinates of the misunderstood word.

Consider figure 2. Here are two agents which have some domain knowledge about machinery,
but use different words. Perhaps the American agent uses the word "elevator" and the British
agent uses the word "lift" to refer to the same concept. The British agent doesn't know the word
"elevator." so the mediator needs to learn a translation.

The mediator first asks the American speaker for the subclasses and superclasses of "elevator"
It finds that there are no subclasses, and the superclass is "lifting device." The next query is for
the coordinates of "elevator." This query yields "winch," "crane," and "hoist." From these four
concepts, the British listener can be asked if it has a concept which matches the superclass and
coordinates retrieved from the speaker. In this case it does. We find that the concept corresponding
to "lift" has superclass "lifting device" and coordinates "winch," "crane" and "hoist." From this
match the mediator concludes with a high degree of certainty that the appropriate translation for
"elevator" is "lift."

In many cases like this one, it will be able to respond with an appropriate term translation for
the unknown word, although a simple examination of subclass, superclass, and coordinate matches
is not sufficient to guarantee a high degree of accuracy in the translation. In these cases, other
ontologic aspects of the words, such as part-whole relationships, roles in various actions, ownership,
default properties such as color, relative size, etc.

All of this ontologic information can be used only if the agents are capable of providing it. Not

106

winch

AMERICAN

ng^deyi

elevator crane hoist

winch

BRITISH

lifting^device

crane hoist

Figure 2: Isolated ontologic differences

all ontologies or agents are designed to be able to provide every piece of ontologic data a mediator
could use to learn translation. Therefore', a mediator needs to be flexible enough to make use of
the information it can get.

8 Conclusions and Future Work

A implementation of a computerized ontological mediator is being prepared. The mediator will
store translations in its own knowledge base so that it does not have to re-learn them every time
anomolies appear.

The simple isolated anomaly example illustrates the basic strategy to be employed in learning
translations. It can be enhanced in a number of ways. First, there are more properties of ontologic
entities than simple subclass, superclass, and coordinates. These properties, such as part/whole
relationships, class of entity (object, relation, etc..) can be queried as well to further constrain the
search for translations.

It is often the case that term-for-term translations don't exist. Here, the mediator might make
a translation decision by determining which translation is the least anomalous, or it may choose to
inform the agents that there is a terminolgy disagreement between them that can't be resolved by

the mediator.
Domain knowledge is sometimes lacking, and one agent may not have as rich a knowledge

base as another. In this case, the mediator may have to inform an agent that it has no concept
corresponding to an unknown word. Perhaps in these cases the agent should be able to create a
new concept. The mediator will be invaluable in helping the agent place the new concept into its
ontology. This facilitates intellectual growth from agent dialogue.

An implementation of a computerized ontological mediator is being developed. The mediator
will store translations in its own knowledge base so that it does not have to re-learn them every time
anomolies reappear. This mediator program interfaces with a human user and an computerized
agent such as Wordnet. A crucial requirement of both agents is that they be able to communicate
directly about their ontologies.

107

The mediator program is given a word which is found in the ontology of the first agent (the
human), but not in the ontology of the second agent (Wordnet). The OM then asks both agents to
respond to queries about their ontologies. Since it is assumed that there is some ontological overlap,
at least one common term related to the unknown word will be found in both agents' ontologies.

References

[Ehrlich, 1994] Karen Ehrlich. Automatic expansion of vocabulary through natural language con-
texts. Draft of Ph.D. dissertation, 1994.

[Finin and others, 1992] Tim Finin et al. An overview of KQML: A knowledge query and manip-
ulation language. Unpublished Draft, 1992.

[Gruber, 1994] Thomas R. Gruber. Toward principles for the design of ontologies used for knowl-
edge sharing. In Nicola Guarino and Roberto Poli, editors, Formal Ontology in Conceptual
Analysis and Knowledge Representation. Kluwer Academic, 1994. in preparation, also available
as Stanford Knowledge Systems Laboratory Report KSL 93-04.

[Knight and Luk, 1994] Kevin Knight and Steve K. Luk. Building a large scale knowledge base for
machine translation. In Proceedings of AAAI, Seattle, WA, August 1994.

[Lehmann and Cohn, 1993] Fritz Lehmann and Anthony G. Cohn. The EGG/YOLK reliability hi-
erarchy: Semantic data integration using sorts with prototypes. Technical Report 93-2, GRandAI
Software, 1993.

[Lenat and Guha, 1989] Douglas B. Lenat and R.V. Guha. Building Large Knowledge-Based Sys-
tems. Addison-Wesley, Reading, MA, 1989.

[MacGregor, 1988] R. MacGregor. A deduction pattern matcher. In Proceedings of the Seventh
National Conference on Artificial Intelligence, 1988.

[McHale and Crowter, 1994] Michael L. McHale and John J. Crowter. Constructing a lexicon from
a machine readable dictionary. Technical Report RL-TR-94-178, Rome Laboratory, Air Force
Materiel Command, Griffiss Air Force Base, New York, November 1994.

[Neches et al., 1991] Robert Neches, Richard Fikes, Thomas Gruber, Ramesh Patil, Ted Senator,
and William R. Swartout. Enabling technology for knowledge sharing. AI Magazine, 12(3), Fall
1991.

[Penman, 1989] Penman. The penman documentation. Technical report, USC/Information Sci-
ences Institute, 1989.

[Wiederhold et al., 1990] Gio Wiederhold, Peter Rathmann, Thierry Barsalou, Byung Suk Lee,
and Dallas Quass. Partitioning and composing knowledge. Information Systems, 15(l):61-72,
1990.

108

Materialized Join View
Materialized OuterJoin View

Join ViewCache
Partial Mater. Join ViewCache

Partial Mater. Projection ViewCaches

Key-Key
7436
6457
2739
671
582

Key-Foreign Key
13275
12473
4689
1271
879

Non Key-Non Key
45492
44491
4815
1714
1093

Table 5: Comparison of I/O of View Incremental Maintenance Algorithms

109

8. CACHED KNOWLEDGE
FRAGMENTS

Intelligent Agent Integration Technology

Prepared by:
Nick Roussopoulos

Co-Principal Investigator
University of Maryland ■ College Park

College Park, MD 20742
nick@cs.umd.edu, (301)405-6707

110

1 Summary of Research- Framework

In a distributed knowledge-based system, interactions among interoperating
knowledge/database sources are carried out by transferring query results
from one ore more sites to the requesting site. Therefore, a client-server
architecture is appropriate. Many of these query results have a long usable
life and can, therefore, be cached and maintained by a cache manager. These
Cached Knowledge Fragments (CKFs) are used in subsequent broader or
narrower queries and, because they are on the local cache, they are accessed
at a fraction of the cost of a remote access. A client-server architecture has
been enhanced to deal with the cached CKFs. This architecture provides
the client full DBMS functionality for managing cached CKFs and other
locally maintained (and perhaps privately owned) client data.

The basic goal of this research is to capitalize on CKFs which have
been accessed from one or more source knowledge/data bases, hereafter the
Servers, and delivered to a consumer, hereafter the Client. CKFs carry a lot
of information which can be used during optimization of follow-up queries.
During each interaction between a client and the servers, we observe the total
cost of accessing them, the amount of data delivered, and cardinalities of
the results. We then use query feedback, a novel approach introduced Jay our
group, to adaptively improve query optimization and execution strategies.

We use cardinalities of CKFs along with the query predicates in figur-
ing out attribute selectivities, attribute value distributions in the accessed
sources, and total cost of prior queries in estimating the cost of follow-up
queries. Attribute value distribution are approximated by a curve-fitting
function. A similar technique is used for the interoperation cost model we
introduce.

We have investigated the following areas:

1. update propagation strategies for CKFs

2. adaptive attribute selectivity and value distribution estimation

3. utilization of CKFs

4. adaptive query optimization in a heterogeneous environment.

5. adaptive query optimization in a heterogeneous environment.

6. efficient maintenance of remotely cached materialized views.

7. data dissemination for mobile clients

111

In the following subsections we describe the results obtained from this re-
search and the resulted publications.

2 Update Propagation Strategies for CKFs

Client-Server models have emerged as the main paradigm in modern database
computing [RD91], [DR92],[DR93]. The Enhanced Client-Server architec-
ture takes advantage of disks and most of the DBMS functionality. Clients
can cache server data fragments into their own disk units if such data is
useful and accessed frequently. However, when updates occur at the server,
some of the client CKFs may be affected by the updates. In such situa-
tion, the CKSs can either be invalidated or incrementally updated using the
update logs of the servers. Such propagation of updates is crucial for the
overall performance. In [DR94], we examine five update propagation strate-
gies and techniques in the context of the Enhanced Client-Server DBMS
architecture and examine their performance through detailed simulation ex-
periments. These strategies are outlined below:

Lazy, On-Demand strategy. The server does not keep a catalog of client
CKFs and does not propagate updates unless it is asked from a dient. Each
client makes a specific request for receiving relevant to a particular CKF
updates just before it uses it. This strategy may increase response time, but
has the least overhead and is scalable.

Eager Blind Broadcasting: This strategy broadcasts all update as soon
as they occur to all clients. Although this has relatively small overhead
for the server, it has a significant overhead on the network and the clients
simply because all relevant and irrelevant updates have to be delivered to
everyone who in turn has to examine them and take appropriate action.

Eager Informed Multicasting: This strategy sends eagerly relevant up-
dates to a the affected CKFs of clients. This means that the server has
to keep track of where the CKFs are located.This reduces network traffic
and client processing time at the expense of servers' which now have to do
catalog management for all CKFs.

Periodic Blind Broadcasting: Instead of being eager, blind updates are
sent periodically or whenever a number of updates have passed a threshold.

Periodic Informed Multicasting: Again, informed updates are propagated
at prespecified time intervals or thresholds.

Other strategies can be composed from these five.

112

3 Adaptive Selectivity Estimation

In most database systems, the task of query optimization is to choose an
efficient execution plan. Best plan selection requires accurate estimates of
the costs of alternative plans. One of the most important factors that affects
plan cost is attribute selectivity, which is the number of tuples satisfying
a given predicate. Attribute selectivities are directly related to attribute
value distributions, However, real value distributions are not available and
all query optimizers make various assumptions about them. Most of them
assume uniform distribution that is already known to be very bad.

A study on error propagation [IC91] revealed that selectivity estimation
errors can increase exponentially with the number of joins and, thus, affect
the decisions in query optimization. Accurate selectivity estimation has be-
come even more important in much larger database systems distributed over
a network. In such systems, query plans have significance cost variance due
to database size, volume of data transmission, and network latency. There-
fore, accurate selectivity estimation is even much more crucial for distributed
systems than centralized ones.

Typically, selectivity estimates are collected periodically by background
processes which do sampling on different parts of the database. However,
this solution is inadequate because of the heavy overhead and the lack of
dynamically sampling the active part of the database.

In [CR94b], we present a new approach which accurately computes the
attribute selectivities and value distributions using query feedback. Since
queries are executed anyway, this approach has practically no overhead. The
idea is to use the cardinalities from query feedback to "regress" the distri-
bution gradually and, as queries proceed, the approximation becomes more
and more accurate especially for the active part of the database. This adap-
tive "learning" from query executions not only "remembers" and "recalls"
the selectivities of repeated query predicates, but also "infers" (predicts) the
selectivities of other query predicates.

The advantages of this new approach are:

• Efficiency — Unlike the previous methods which do background database
scans proportional to the database size, the overhead of our method
is negligible. It only adds some computation cost to regress the query
feedback and, thus, is independent of the database size and is very
efficient.

• Adaptation — The technique is used during both queries and updates.

113

None of the previous methods can do this.

The technique of query feedback and the regression of value distributions
will be applied to adaptively estimate the interoperation cost of heteroge-
neous systems.

4 Utilization of Cached Knowledge Fragments

As mentioned above, query results are cached on a client site to be reused at
subsequent queries. The goal of this part of this study is to find an efficient
algorithm for utilizing CKFs on a client's database with as little as possible
access to the servers' databases.

Let Q be an SQL query of the form:

Q : SELECT * FROM Ä?,J#,...,Ä? WHERE Q'(B?tR$,.. .,Ä?)

where the selection predicate QP(R?,£?,.. .,Rf) is a disjunction of con-
junctions (or has been transformed to a disjunction of conjunctions) of atom
predicates. The atom predicates that we consider are the usual =,<^>,>
t<i#- We have taken the assumption that we do not make any projection
on the attributes of the cartesian product R% x B$ x ... x R.f.

Since CKFs are materialized views defined on the base relations of the
srvers, we will refer to them by the term views. Clearly, only materialized
views are useful in a remote client so that the data can be accessed locally
without having to transmit the result over the network.

Let us name V = Vi,..., V„, the set of cached views that reside at the
disk of the system. We suppose that the system keeps a description of each
view, say Vi, in the form

Vt: SELECT * FROM äJ\J#,...,äJJ WHERE V;p(<\ J#,.. .,i#)

where V? is the selection predicate (again we made the assumption that no
projection has be done).

We could alternatively say that the views Vu...,Vn and the query Q
are expressed in a selection on cartesian product form as :

114

A base relation R can be described as

Otrv.tR

Note that the form that we use for the description of the query Q as well as
the views Vi, V2> • • •, Vn is sufficient to describe any view that is the result
of the join, select and cartesian product operators. It can also support the
union,difference and intersection operators as long as they are applied on
views of the same type. For a query that is denned as a selection on a
cartesian product, we define as type the set of the relations that appear on
the cartesian product. Ie,the type of Vi is the set {R1',R2', • • •,Rtt'}- Our

form of representing cached views is sufficient for the description of

aF,(Ri x ... x Ä„) U <TF2(RI x ... x Rn)

since the above can be converted to

(7F,vF2(£i x ...XÄ„)

Similar conversions apply for the intersections and differences of views of
the same type:

aFl (Äi x ... x Rn) D o-Fi{R\ x ... x Rn) = aFl„Fj{R\ x ... x Rn)

<TFl (Ä] X . . . X Rn) - <Tp2{Ri X ... X Rn) = (TF, A-vF2(
Äl X . . . X Ä„)

Our goal is to determine, without accesing the content of CAT« but solely
working with the selection predicates of the views, a subset of {Vj, V2,..., V„},
if any, which can be used in the incremental computation of Q. More specif-
ically, we will try to find out a subset S of {Vi, V2,..., Vn} such that the
union of suitably selected disjoint horizontal fragments of the views of S will
give the needed query Q , in a cost effective manner. Since we want to get
Qasa union of selections on the cached views of S, we have to consider as
possible candidates for the set 5 cached views of the same type with Q.

5 Adaptive Query Optimization in a Heteroge-
neous Environment

We are developing a query cost model in an environment of interoperating
heterogeneous systems, such as DBMSs. In such an environment, where the

115

optimizers are hidden inside these foreign systems, we want to use adaptive
techniques for estimating the cost of mediators interfacing the application
layer interface as opposed to the internals of the system. We are developing
an adaptive cost estimation (ACE) module based on query feedbacks and
statistics yielding more and more accurate cost estimates as the system
learns from experience. The novelty of this approach is that the coefficients
of the cost formula are determined and dynamically modified at run time
and, thus, there is no need for sampling or calibrating databases.

In traditional distributed DBMSs, the formula for determining the total
cost of distributed queries is:

Total-Cost = CPU-Cost + I/O-Cost + Message-Cost + Transmission-
Cost

Such a formula can only be used if all participating DBMSs on different
sites are compatible to each other such that the global query optimizer is
capable of knowing the internal details of the participating DBMSs and
obtaining necessary information from them.

We targeted our cost model for a client-server architecture in which the
client accepts each query and ships it over to the server for execution. The
server runs the query and sends back the result. The total query cost in
terms of the elapsed time can be viewed as:

Total-Cost = Initialization-Cost + Query-Shipping-Cost + Query-Execution-
Cost + Result-Transmission-Cost where

• Initialization-Cost is constant with respect to the query types.

• Query-Shipping-Cost is dependent on the number of messages passed
between client and server for a given query.

• Query-Execution-Cost is based on the characteristics of the DBMS,
the statistics of the operand relations and the type of a given query.

• Result-Transmission-Cost is dependent on the selectivity of the query
and the size of the query result.

All of the above components will be adaptively estimated using ACE.

6 Adaptive Query Optimization in a Heteroge-
neous Environment

As in traditional distributed DBMSs, query optimization is important in
HDBMS [Day85, SY+89, SL90, DKS92, LS92, ZL94, DSD95], particularly

116

for global queries which are joins between tables from separate foreign DBMSs.
A 9/060/ execution plan for a global query constitutes of a sequence of sub-
queries which specifies the join order, table/result shipping direction, and ex-
ecution sites. Although the optimization techniques used in traditional dis-
tributed DBMSs [ML86] can be adapted to HDBMSs [DKS92], they induce
some non-trivial problems. One of the problems is cost estimation for query
plans, which has been a recent research issue in HDBMS [DKS92, ZL94].
Cost estimation is essential in selecting the best plan among various global
query plans. The problem is harder in HDBMSs than in traditional dis-
tributed DBMSs because foreign DBMSs from different vendors have differ-
ent access methods, optimization strategies and cost models, all of which
may be hidden from the global optimizer of the HDBMS.

This report presents a practical method for estimating the costs of global
query plans for distributed HDBMSs based on experience acquired from pre-
vious query executions. The basic idea is to use query feedback to adapt a
parametric cost function. The parameters of the cost function are gradu-
ally adjusted after each query execution, using query and database depen-
dent feedback such as table size and predicate selectivities measured during
the execution of the query, and query execution time measured after the
query. Query and database feedback is independent of the performance
characteristics of the underlying DBMS, network, and HDBMS client-server
implementation, while query execution time is totally determined by them.
An Adaptive Cost Estimation (ACE) module has been designed and im-
plemented which adapts its parameters by distributing amongst them the
estimation error which is the difference between estimated and actual val-
ues. The adapted parameters are then used for estimating follow-up queries.
ACE is operational in ADMS±, an Enhanced Client-Server HDBMS pro-
totype developed at the University of Maryland [RK86, RES93a, DR94],
and obtains accurate cost estimates with small CPU overhead but no I/O.
The ACE module works together with another adaptive module of ADMS±
which estimates the selectivities from exactly the sizes of the returned results
[CR94b].

6.1 Cost Model

In traditional distributed database systems where all 6ites are running the
same DBMS, the following formula is typically used in estimating the cost of
a distributed query plan (with known local access methods) [ML86, 0V91]:

Total cost = Wcpu * (number.of .instructions) + Wj/o * (number j>fJ/Os) +

117

Cost Factor Meaning

h constant initialization overhead cost of 1 unit
h number of messages required to execute an LCF
h cardinality of the first operand table
u average tuple length of the first operand table in bytes
h cardinality of the second operand table
h average tuple length of the second operand table in bytes
fl cardinality of query result
h average tuple length of query result in bytes
h total size of query result in bytes

Table 1: Notations for Cost Factors

WMSG * {number.of .messages) + WBYTE * (number jof.bytes) (1)

where WCPU,W1/0,WMSG, and WBYTE, are system-wide constants that
denote the weighted (relative) cost per instruction execution, per I/O oper-
ation, per message transmitted and per byte of data transmitted over the
network, respectively. Usually, these weights are empirical values obtained
by running a large set of sample queries and are hard-coded into the DßMS
kernel. Details about the local access methods of the query plan must be
known a priori in order to estimate the parameters including number of
instructions executed, number of I/Os performed, number of messages and
total bytes of data transferred over the network. These parameters depend
not only on the query characteristic and data profile (including table sizes
and query selectivities), but also on the DBMS kernel's characteristics (in-
cluding the size of the code that implements each access method, the buffer
manager's strategies, and the network interface parameters). These param-
eters can only be available in proprietary solutions of homogeneous systems,
and therefore are refereed to as system-dependent parameters.

The above formula, however, is of no use for the HDBMS case because
the global query optimizer has no access to the system-dependent param-
eters and/or knowledge on how the optimizer of each foreign DBMS will
perform. Since system-dependent parameters are unavailable, we must use
a cost model that is solely based on query/data-dependent parameters such
as query expression, data statistics, and estimated sizes of results. Like
[ASC+79, K+85, ZL94], we assume that all four parameters of formula 1 are
in proportion to a few basic quantitative query/data dependent parameters,
called cost factors. ACE uses nine cost factors /j ~ /9 whose meaning is

118

shown in Table 1. For a sp query, the factors /5 and f$ are omitted and
their values are zeros. The CPU and I/O costs on the server are captured
in the fz ~ it factors while the rest of them model the communication net-
work and the client-server inter-operation cost. Exact or pretty accurate
estimates of the above factor values can be obtained by the query feedback
as these factors do not depend on the internals of the foreign DBMSs, and
can readily be obtained.

For each query class QCj(l < j < 6), ACE maintains and uses a cost
estimation function:

c(q) = 5>.; •/«(«) (2)
t

where c(q), the estimated cost of a LCF query q 6 QCj, is a linear com-
bination of cost factors /,(g), with OJ,J being the cost coefficients (of query
class QCj) that map the cost factors to the estimated cost. Note that unlike
formula 1 where the CPU, I/O, and network costs are considered separately,
the ACE cost formulae model the cumulative cost of all these costs regardless
of the idiosyncrasies of the underlying DBMS and network.

Consider a sp query q of class QC\ where the clustered index is main-
tained as a B-tree. The cost of shipping the query to the foreign DBMS will
be subsumed by ai,i/i(g) and 02,1/2(9)- The cost of navigating the B-tree,
which includes the initialization overhead (a constant) and the number of
B-tree nodes retrieved (depending on the height of the tree and the selectiv-
ity of the predicate), will be subsumed by ai,i/i(g), 03,1/3(9) and 07,1/7(9)-
Similarly, the cost of retrieving and processing the qualified tuples from the
relation will be subsumed by 04,1/4(0), 07,1/7(0), and o8,i/8(9); tne cost
of transmitting the result over the network will be subsumed by 09,1/9(0).
Similarly, if a linear scan, rather than the B-tree, is chosen as the access
method, the cost of the linear scan can still be properly subsumed by differ-
ent products in the cost function. The purpose of the cost coefficients a,-,j
is to map a query to the cost of the access method that is most likely to
be chosen, based on the characteristics of the query (which are quantified
by the cost factors). The values of a^ determine the accuracy of the cost
estimation.

6.2 Implementation of ACE

We implemented ACE inside ADMS±, an enhanced multi-site client/server
(E-CS) HDBMS, in which the clients are fully-fledged DBMSs capable of
caching and maintaining downloaded data subsets obtained as a result of

119

ORA.CLE7

ADMS-*

1

ORACLE6

ADMS+

I

INGRES

ADMS+

Comm. Soft. I

ADMS- Bltffers

Application
Software

Client

ADMS

ADMS+

Net WAN/LAN

IComm. Soft.]

ADMS- Buffers

Application
Software

Client

Connm. Soft.

ADMS- Bttffers

Application
Software

Client

Figure 1: ADMS± System Architecture

running global queries on multiple DBMSs [RK86, RES93a, DR94]. The
database servers are commercial and other prototype DBMSs accessed through
application level gateway software, called ADMS+, which capitalizes on in-
cremental access methods [Rou91b] for downloading and maintaining cached
data results in the form of materialized views. The communication be-
tween servers and clients is based on TCP/IP Networking Protocol over
LAN/WAN. Figure 1 shows the system architecture of ADMS± with three
commercial DBMSs and our own ADMS prototype. Each client runs a
single-user version of ADMS, called ADMS-, which maintains on its own
local storage materialized views, cached catalogs, and statistics.

ACE is built into the Global-Query Optimizer of ADMS± to estimate
the costs of different classes of LCF queries. The Global-Query Optimizer
parses a global HDBMS query into a sequence of LCF-subqueries, obtains
statistic information about the operand tables(cardinality, tuple length,
indexes etc.) from the locally stored system catalogs, maps each LCF-
subqueries into its corresponding query class based on the classification cri-
teria defined in Table ??, then invokes the ACE module to produce the cost

120

estimation for each LCF-subquery. The total cost of a global query plan can
be obtained by summing up the costs of the composing LCF-queries. The
Global-Query Optimizer then prunes off costly query plans and generates
an execution plan with the minimum cost estimate.

One of the key factors related to the cost estimation is the predicate
selectivity, which is the number of tuples satisfying a given predicate. The
accuracy of selectivity estimation directly affects the accuracy of the query
cost estimation. ADMS uses another adaptive module, called Adaptive Se-
lectivity Estimator (ASE) [CR94a], for interpolating the value distributions
of attributes which are then used to estimate selectivities. ASE produces
accurate estimates of record selectivities from real attribute value distri-
butions which are adaptively approximated by a curve-fitting polynomial
using the query feedback mechanism. Its accuracy and performance have
been reported in the above paper.

Both ACE and ASE are modules of the global-query optimizer of ADMS±
using query feedback to adapt. ASE is invoked by ACE when a LCF-
subquery with a selection predicate is generated by the global-query op-
timizer and its selectivity needs to be estimated. In ADMS±, the query
feedback consists of (a) the actual selectivity obtained after running the
query, (b) the actual real time cost of the query execution, (c) catalog statis-
tics from the server(s). ASE uses (a) and (c) while ACE uses (b) and (c).
Catalog statistics basically include table cardinalities and indexing informa-
tion. These are piggy-backed with the query result from the server(s) and
used to update the locally cached client catalogs.

ACE and ASE require some matrix manipulation and mathematical com-
putation but only incur CPU cost. In our ADMS± implementation of ACE
and ASE, the overhead of the ACE and ASE module computation is only a
small fraction of the optimization cost and negligible when compared to the
real query execution cost.

As mentioned above, ACE uses real wall-clock time observed on the client
to adapt. For each query, a start timestamp is obtained by the client just
before it begins to transmit the query to the server(s) and an end timestamp
is recorded after the last record of the result has been received. The elapsed
time between the timestamps is our metric of cost and measures all other
costs, inter-operation, server CPU, server I/O, communication, and server
and network contention factors.

121

6.3 Experimental Results

We performed extensive experiments to estimate LCF query cost in ADMS±.
The configuration of these experiments included three commercial DBMS
servers Oracle (v7.0), Oracle (v6.0) and Ingres (v6.0), our own prototype
ADMS (v3.3) server, and the ADMS± (v2.0) Enhanced Client-Server HDBMS.
Oracle 7 runs on a SparcStation 20, Oracle 6 on a SparcStation 2, Ingres on
a DECstation 5000/200, and ADMS on a SparcStation 2. The clients were
run on separate SparcStation 2s. AU client and server machines are con-
nected via a shared Ethernet network. All the experiments were conducted
during the night under low network/server loads.

We used the Wisconsin Benchmark relations [BT94] in all our experi-
ments. The eight tables used along with their statistics are shown in Table 2.
These are pre-loaded into each of the server DBMSs before the experiments
are run. A range-varying parametric query for each of the six LCF classes of
queries was used to generate randomly distributed range queries. These are
shown in Table 3 in their ADMS± extended SQL syntax with d and C2

being the variable range parameters and, RELl and REL2 being relation
variables from the database. The result is to be downloaded to and stored
in a materialized view on the client.

For each LCF class, one hundred different ranges were randomly gener-
ated but with controlled selectivity to generate results of varying sizes from
10 to 10000 records. Each of these groups of one hundred queries was regen-
erated for four different sets of varying size relations to obtain 400 queries
for each class or 2400 queries for the whole experiment. These 2400 queries
were randomly mixed to generate the final query stream used in all server
runs of our experiment. The random ranges, the variations of relations and
the random mix were employed to reduce side-effects of shared buffers by
similar queries.

The query stream was run from cold start and a single log for each
server was generated. From these logs we make our observations and draw
conclusions. We compare the ACE estimated cost with the actual real-
time costs and generate histograms and graphs showing the accuracy of the
estimates, the relative errors, and the adaptive capability of ACE.

Figure 2 ~ Figure 5 show the statistical and confidence analysis of ACE's
runs on all four servers. The histograms show the percentage of queries for
each 10% intervals of relative error. On Oracle7, 92% of the queries had
relative error between 0 and 10%. The corresponding figure for Oracle6 is

122

90%, for Ingres 78% and for ADMS1 70%. The percentage of queries for
which ACE had relative error of less than 20% range from an impressive
97% for Oracle7 down to 92% for Ingres.

The right hand side of Figure 2 ~ Figure 5 illustrate the confidence
analysis on the mean relative error for each 10-second query time interval
ranging from 0 to the maximum query time on each server. The confidence
coefficient was set to 95%. These graphs show the mean relative error and
its standard deviation contained below the 20% value.

'ADMS is more susceptible to Unix mannerisms and its eager prefetching which are
more difficult to estimate. Another reason for the lower figure for ADMS is that query
execution times are much shorter than all the other server DBMS and thus the standard
deviation of the relative error is much more sensitive.

123

Hologram ot Fteutw* Erron vt Pwcwttag« d Quanta

1 70
■
s

I

£ 30

ConfcOarca Anatyiu

.5 *> s
- MH

I 40

o.
«■ SO €0 70

Quory Tim« In Sacondi

Figure 2: Complete Mixed Queries on 0racle7 Server
HWo9Tim of Fttatv» Erro» « PofcanMpa of Ouonw Conddanc» Anayin

40 50 «0 70 •0 70
OuMyTlnw In S«oond« fWlMw* Enor(%) MMfvau

Figure 3: Complete Mixed Queries on 0racle6 Server
Htttoorm of AtliWi Eiron VB. P*K«nt»pt of OUMU

to .
•0

t 70

f "
£ 30

20

10

.1 1.1 1,.

Ouwy TfcMi In Sooondi

Figure 4: Complete Mixed Queries on Ingres Server

100
HMAofmmof AofclfetEranv». PoieonUQ» at Qutnaa

M -
10

*

T SO

'

a 30

30

10 .
.rn—

Coflfdonco AnaJyali

30 40 SO «0 70 M M 100
RMIM ETOI{%) totomb Ouoiy Tknot tn Socorvfa

**-* i . ^ #■•

124

7 Efficient Maintenance of Cached Materialized
Views

View refreshment is a central issue in distributed database environments
where efficient access to a set of source databases must be supported. This is
the case in data warehousing environments where views defined on physically
separated, heterogeneous, and autonomous databases must be supported
[ZGMHW95]. Changes in the source databases must be transformed into a
data model format used by the warehouse and integrated into the warehouse.

A data warehouse can be used as an integrated and uniform basis for
decision support, data mining, data analysis, and ad-hoc querying across
the source databases. A data warehouse is likely to be a growing collection
of possible time-stamped raw data. In some cases a data warehouse will be
an append-only database. For example, a department store chain may want
to support central access to all sales transactions. In some cases a data
warehouse will be a temporally constrained database. For example, the
department store chain may want to limit the access to sales transactions
within the last year.

A data warehouse must not necessarily be completely up to date. The
reason is that the warehouse is used for analytical, managerial data pro-
cessing rather than for day-by-day operational data processing. Inmon has
even recommended that a data warehouse is refreshed with a 24-hour delay
in order to ensure that warehouse data are not confused with operational
data [Inm93]. Consequently, it makes sense to assume that warehouse use
and warehouse refreshment are separate processes. We believe that such
separation will make it easier to answer warehouse queries efficiently and to
solve the problems of warehouse consistency [ZGMHW95].

In this report we address some of the problems of efficient incremen-
tal refreshment of warehouse views. We focus on the following questions.
What information should be stored at the warehouse in order to support ef-
ficient view refreshment? It is much more expensive to retrieve a remote
disk page than to retrieve a local disk page. Therefore, network communi-
cation should occur only when a source database signals relevant changes
to a warehouse. The warehouse should be able to process the changes with-
out querying source databases. Otherwise, warehouse refreshment may be-
come too dependent on the activity, availability, and efficiency of the source
databases. This implies that a copy of all data objects that are needed for
view refreshment must be present at the warehouse.

125

What data structures and algorithms should be used for view organization
and refreshment? Incremental view refreshment should be performed with as
little access to raw data as possible. The raw data objects may be very large
compared to the attributes that are used in selection and join predicates.
Indexing and view caching can be used to reduce or avoid raw data access
during view refreshment. A combination of three basic methods can be
used to support data warehouse views. A computed view is stored as a view
definition, ie., as a query expression. A computed view is reconstructed each
time it is accessed by methods like query modification [Sto75]. A pointer
cached view is stored as a set of pointers that identify the data objects in the
view. The pointers can be used to create a materialized view [Rou91a]. A
materialized view is stored as the set of data objects that belong to the view
[Han87]. Pointer cached views and materialized views must be maintained
incrementally.

We have developed five refreshment algorithms that are based on various
combinations of materialized views, partially materialized views, and pointer
caches. Existing data warehousing approaches focus solely on materialized
views. We present the results of an experiment that strongly indicates that
refreshment algorithms based on a combination of materialized views, par-
tially materialized views, and pointer caches outperform algorithms based
solely on materialized views. We have assumed that all involved databases
are relational databases.

7.1 Experiments

In this section we describe a limited experiment testing some of the in-
cremental join algorithms developed. All the experiments were run in the
ADMS prototype [RES93b]. ADMS engine has been developed to take ad-
vantage of cached views.

We ran the experiments to measure the I/O cost of the five algorithms
described in the above subsection: the two basic categories of fully Material-
ized Views, the ViewCache Pointer based one, and two Partially Materialized
and partially ViewCaches.

1. Materialized Join View: the Warehouse stores the tuples of the result
and, in separate relations, the tuples which do not appear in the Join
View. These are necessary for discovering tuple joins that were not
joining before, but they may join with newly inserted tuples on the
other relation.

126

2. Materialized OuterJoin View: the Warehouse stores the outer join.
This view does not need any additional information as the not joining
tuples are stored in the OuterJoin view.

3. Pointer ViewCache: Only ViewCache pointers to the underlying rela-
tions which, like all pointer based views, are also stored in the ware-
house.

4. Partially Materialized ViewCache: the warehouse stores the View-
Cache augmented with all the joining values of the underlying tuples
next to the pointers.

5. Partially Materialized projections of the ROWID and the joining at-
tribute values, and a ViewCache pointer view.

7.1.1 Experiment design

We used a variation of the Wisconsin Benchmark relations [BT94]. Two of
them with 10,000 records each and another with 24,000. In each of the 10,000
relations, 20% of the tuples do not join with any of the 24,000 tuples in the
third relation. The join views were created and stored on the warehouse.
They included:

1. key-key join where the joining attribute was a key on both relations,
which produce a tuple count of 10,000.

2. key-foreign key join where the joining attribute was a key on the first
and foreign key on the second, which results in a tuple count of 24,000s.

3. non key-non key join where neither of the joining attributes were keys
in their respective relations, and produces 48,000 tuples.

After the creation, 10% insertions were applied to each of the base re-
lations and the incremental algorithms were performed. The I/O needed
to perform the algorithms were obtained from the ADMS buffer manager
statistics of page faults.

We did not test the algorithms under deletions. The reason is that, ma-
terialized view based methods are very different than pointer based ones.
The first category requires sophisticated preprocessing of the logs and non-
negligible I/O - comparable to duplicate elimination - pointer based meth-
ods incur no cost for deletions when done in the same pass with the pro-
cessing of insertions [Rou91a].

127

7.1.2 Storage Overhead

First, we provide storage statistics for each of the view categories. Table 4
indicates the amount of storage in excess of the total storage cost required
for the base relations. Note that in these sizes we assume that for the
Materialized Join and OuterJoin Views, the warehouse does not store a
copy of the base relations but, for the pointer based categories, it does.

The table shows that materialized views have an overhead ranging from
20-324% and this is caused by the multiplicity factor of the joining tuples,
with the worst case being the non-key to non-key join. On the other hand,
the pointer based methods incur overhead that ranges between 2-12%. This
significant difference in storage overhead is the main reason for similar dif-
ference in I/O performance discussed in the next subsection.

7.1.3 Performance of Algorithms

In each of the described algorithms, we applied the best, to our knowledge,
method. Most of the incremental algorithms are based on two-way hash
joins but for the Materialized view category, we used a 3-way hash based
join algorithm which hashes the insertion logs of the two relations, and then
scanning the materialized join view or outer join view once. Then duplicate
elimination of the resulting tuples was done afterwards. For the pointer-
based algorithms, duplicate elimination is achieved by bookkeeping on the
fly using hash bit vectors on the ROWIDs of the tuples.

Table 5 shows the dramatic performance difference of the methods.
Clearly, the materialized view based methods incur high I/O volume due
to their mere size. It is doubtful that algorithm improvements can reduce
the I/O to a point to compete with the pointer based techniques. From the
pointer based ones, the straight pointer ViewCache spends more than 94%
of its I/O is from the underlying base relations for obtaining the joining
tuple attribute values. This lead us to the last two pointer based algorithms
which keep these values in a easier and a lot less I/O intensive disk cache.

128

8 Data Dissemination for Mobile Clients

We extended our architecture and algorithms to mobile computers and wire-
less networks. In this environment, mobile computing can only be fully uti-
lized if the data associated with the mobile applications becomes equally
mobile. Our initial results were published in [SRB96] and a more thorough
tratment of the work will appear in [SRB97].

With smaller and yet more powerful computers becoming more and more
common, with disks shrinking in size but increasing in capacity, and with
networks providing more and more wired and/or wireless connectivity, the
ADMS± project is exploring how to efficiently achieve data dissemination
and caching on ever moving mobile clients based on their need . The need
of each client may be changing rapidly, and in many cases, depending on
the client's location, the network's bandwidth and reliability, and security.

The ADMS± project provides an SQL interoperability over TCP/IP. It
allows wired connection to multiple commercial databases, including Oracle,
Ingres, Sybase, and Dlustra, over LAN/WAN. Query results are dynamically
downloaded and cached to the client's, and maintained incrementally there-
after. As the client accesses remote database systems,ADMS± builds a
working data set pertinent to the client's application data needs. Updates
applied on the servers are This architecture has two significant advantages.
First, the latency of data access gets significantly reduced by accessing lo-
cally cached data, and, second, network data transmission is reduced to
absolutely minimum by only transmitting incremental updates. Experi-
ments and simulations have shown that, depending on the update ratios,
the throughput rate of the ADMS± architecture is one to two orders of
magnitude higher than a standard client-server architectures.

We applied the ADMS± architecture to broadcast data through Data
Air Waves. We are addressed the issues of asynchronous delivery of data
and updates to clients connected through wireless links. More specifically,
we proposed an adaptive scalable architecture based on wireless data broad-
casting. We use a broadcast channel to transmit the update logs of servers
as well as query results requested by the clients.

We compiled a list of applications that have a need for wireless data
dissemination such as Battlefield Management, Tele-medicine, Doctor Hos-
pital Rounds, Road Emergency, and Road Service. The computing environ-
ment in these applications is highly dynamic in terms of network topology,
availability, load factor, and data location. Current distributed database
technology is geared towards static environments in which communication

129

is reliable and bandwidth is readily available. Therefore, classic distributed
query processing and data management cannot cope with the dynamics of
ubiquitous client mobility in the above environment. There is a need for
intelligent staging and data dissemination to the mobile units while they
are being deployed or moving to their field position. Data migration must
be done in an asynchronous mode that is not intrusive to the mobile unit.
This can be done during idle time or as a light background process.

To achieve this, we developed robust three level database architecture
which extends the client-server paradigm. Level 0 includes the legacy database
servers (LBS) which, in many cases, exist and are placed in secure and/or
secluded locations. Level 1 contains database subserver units (SU) capa-
ble of storing significant subsets of data pertinent to an area or a mission
and can be transported near the field of operation. Finally, level 2 contains
a very large number of mobile clients (MC). Each client can capture data
and carry it on-board for subsequent use. Depending on their functionality
and area of deployment, clients may need to have relatively large storage
capacity to reduce the number of remote data access. For data that is not
stored on a client's store, the client will make one or more requests to the
nearest SUs. If the data is available in the SUs, it is transferred to the -client.
Otherwise, the SUs turn themselves into clients and place requests to the
servers. The servers then broadcast the requested data and all SUs may
tune in to receive it. The SUs act as mediators which reduce the amount of
interactions between the clients and the legacy database servers. Each of the
SUs can be preloaded with the subsets of the databases that are pertinent
to the location and field conditions in which it is to be deployed and it will
continue to adjust its data subsets in order to satisfy their clients requests.

A client's query will be first attempted against its locally stored data.
If the data is not available, the nearest SUs will be queried which may,
themselves have to pose the same or subqueries to the LBSs. In the latter
case, the LBSs will broadcast the results to all the SUs which may tune-in to
"listen" to the results for "relevant" to their mission data. The broadcasting
of the server and the filtering of the results on the SU sides are instrumental
in the scalability of the centributed architecture.

Updates are posted to the servers who are then responsible for broad-
casting the update logs. The logs are then filtered and, if relevant, applied to
the locally stored data in each of the SUs. The incremental update also re-
duces network load by avoiding of retransmitting complete and much larger
data objects.

We implemented this wireless architecture using the Altair system and

130

the Hughes DirecPC. One server, one SU serving as a proxy, and one client
were connected. The server was pushing data through broadcast channel
over the DirecPC satellite. The SU was receiving and locally storing the
received data. The client gets its data from the SU. If the data is not there,
a direct request is sent to the server which would then gets broadcasted over
the satellite.

Although the wireless data dissemination is well beyond the scope of
the current contract, it was done as a demonstration of the versatility the
caching techniques developed in this project. The enhanced client-server
architecture and the capability of caching query results as query fragments
is general and applies to a wide variety of applications. During the life of
this contract, it became apparent that data dissemination and management
of disseminated data is crucial to most data intensive applications.

References

[ASC+79] M.M. Astrahan, P.G. Sellinger, D.D. Chamberlain, R.A. Lo-
rie, and T.G. Price. Access Path Selection in a Relational
Database Management System. In Proceedings of the 1979
ACM SIGMOD International Conference on Management of
Data, pages 22-34,1979.

[BT94] D. Bitton and C. Turbyfill. A Retrospective on the Wisconsin
Benchmark. In M. Stonebraker, editor, Readings in Database
Systems, pages 422-441. Morgan kaufmann, 1994.

[CR94a] C. Chen and N. Roussopoulos. Adaptive Selectivity Estima-
tion Using Query Feedback. In Proc. of ACM SIGMOD, 1994.

[CR94b] CM. Chen and N. Roussopoulos. Adaptive selectivity esti-
mation using query feedback. In Procs. of the ACM SIGMOD
Intl. Conf. on Management of Data, 1994.

[Day85] U. Dayal. Query Processing in Multidatabase System. In
W. Kim, D. Reiner, and D. Batory, editors, Query Processing
in Database Systems. Springer Verlag, 1985.

[DKS92] W. Du, R. Krishnamurthy, and M. Shan. Query Optimization
in Heterogeneous DBMS. In Proc. of the 18th International
Conference on VLDB, Vancouver, Canada, 1992.

131

[DR92] A. Delis and N. Roussopoulos. Performance and Scalabil-
ity of Client-Server Database Architectures. In Proc. of the
19th Int. Conference on Very Large Databases, Vancouver,
BC, Canada, August 1992.

[DR93] A. Delis and N. Roussopoulos. Performance Comparison of
Three Modern DBMS Architectures. IEEE-Transactions on
Software Engineering, 19(2):120-138, February 1993.

[DR94] A. Delis and N. Roussopoulos. Management of Updates in
the Enhanced Client-Server DBMS. In Proceedings of the
Uth IEEE Int. Conference on Distributed Computing Sys-
tems, Poznan, Poland, June 1994.

[DSD95] W. Du, M.-C. Shan, and U. Dayal. Reducing Multidatabase
Query Response Time by Tree Balancing. In Procs. of the
1995 ACM-SIGMOD Int'l Conf. on Management of Data,
1995.

[Han87] E.N. Hanson. A Performance Analysis of View Materialization
Strategies. In Proceedings of the 1987 ACM SIGMOD Inter-
national Conference on Management of Data, San Fransisco,
California, pages 440-453, 1987.

[IC91] Y.E. Ioannidis and S. Christodoulakis. On the propagation
of errors in the size of join results. In Procs. of the ACM
SIGMOD Intl. Conf. on Management of Data, pages 268-277,
Denver, Colorado, 1991.

[Inm93] W.H. Inmon. Building the Data Warehouse. John Wiley &
Sons, Inc., 1993.

[K+85] W. Kim et al., editors. Distributed Database Query Processing.
Springer-Verlag, 1985.

[LS92] H. Lu and M. Shan. Global Query Optimization in Multi-
database Systems. 1992 NFS Workshop on Heterogeneous
Databases and Semantic Interoperability, 1992.

[ML86] L.F. Mackert and G.M. Lohman. R* Optimizer Validation and
Performance Evaluation for Distributed Queries. In Procs. of
the 12th Intl. Conf. on Very Large Data Bases, 1986.

132

[0V91] M. Ozsu and P. Valduriez. Principles of Distributed Database
Systems. Prentice Hall, Englewood Cliffs, New Jersey, 1991.

[RD91] N. Roussopoulos and A. Delis. Modern Client-Server DBMS
Architectures. ACM-SIGMOD Record, 20(3):52-61, Septem-
ber 1991.

[RES93a] N. Roussopoulos, N. Economou, and A. Stamenas. ADMS:
A Testbed for Incremental Access Methods. IEEE Trans, on
Knowledge and Data Engineering, 5(5):762-774,1993.

[RES93b] N. Roussopoulos, N. Economou, and A. Stamenas. ADMS:
A Testbed for Incremental Access Methods. Technical Re-
port UMIACS-TR-90-103, University of Maryland Institute
for Advanced Computer Studies, 1993.

[RK86] N. Roussopoulos and H. Kang. Principles and Techniques in
the Design of ADMS±. Computer, December 1986.

[Rou91a] N. Roussopoulos. An Incremental Access Method for View-
cache: Concept, Algorithms, and Cost Analysis. ACM Trans-
actions on Database Systems, 16(3):535-563, September 1991.

[Rou91b] N. Roussopoulos. The Incremental Access Method of View
Cache: Concept, Algorithms, and Cost Analysis. ACM Trans-
actions on Database Systems, 16(3):535-563, September 1991.

[SL90] A. Sheth and J. Larson. Federated Database Systems
for Managing Distributed, Heterogeneous, and Autonomous
Databases. ACM Computing Surveys, 22(3), 1990.

[SRB96] Konstantinos Stathatos, Nick Roussopoulos, and John S.
Baras. Adaptive data broadcasting using air-cache. In First
International Workshop on Satellite-based Information Ser-
vices (WOSBIS), Ray NY, November 1996.

[SRB97] Konstantinos Stathatos, Nick Roussopoulos, and John S.
Baras. Adaptive data broadcast in hybrid networks. In 1997
Proceedings of the 23rd International Conference on Very
Large Databases, Athens, Greece, August 1997.

133

[Sto75] M. Stonebraker. Implementation of Integrity Constraints and
Views by Query Modification. In Proceedings of the 1975 SIG-
MOD Workshop on Management of Data, San Jose, Califor-
nia, pages 65-78,1975.

[SY+89] P. Scheuermann, C. Yu, et al. Report on the Workshop on
Heterogeneous Database Systems held at Northwestern Uni-
versity, Evanston, Illinois, Dec. 1989.

[ZGMHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View
Maintenance in a Warehousing Environment. In Proceedings
of the 1995 ACM SIGMOD International Conference on Man-
agement of Data, San Jose, California, USA, pages 316-327,
1995.

[ZL94] Q. Zhu and P. Larson. A Query Sampling Method for Esti-
mating Local Cost Parameters in a Multidatabase System. In
Proc. of the 10th International Conference on Data Engineer-
ing, 1994.

134

Relation Tuple-Length Cardinality ClusteredJndex Non.Clustered-Index

onekl 182 1000 Y Y
onek2 182 1000 N N
twokl 182 2000 Y Y
twok2 182 2000 N N
fivekl 182 5000 Y Y
fivek2 182 5000 N N
tenkl 182 10000 Y Y
tenk2 182 10000 N N

Table 2: Experiment Relations

Query Type | ADMS± Extended SQL Format

sp with a
cluster-indexed attribute

select ai,..., a„ from DB.RELl
where un2 > C\ and unl < C2 into VIEWl;

sp with a
non-cluster-indexed attribute

select ai,..., On from DB.RELl
where tinl > Ci and unl < C2 into VIEW2;

sp with no
indexed attribute

select ai,..., an from DB.RELl
where Jbl > d and ifcl < C2 into VIEWS;

spj with a
cluster-indexed attribute

select oi,...,om,ti,.. .,6„ from DB.RELl, DB.RELl
where DB.RELl.unl = DB.REL2.un2 and
DB.RELl.un2 > Ci and DB.RELl.un2 < C2 into VIEWA;

spj with a
non-cluster-indexed attribute

select oj,.. .,am,h 6n from DB.RELl, DB.REL2
where DB.RELl.unl = DB.REL2.un2 and
DB.RELl.unl > Ci and DB.RELl.unl < C2 into VIEW5;

spj with no
indexed attribute

select a! ami6i bn from DB.RELl, DB.REL2
where DB.RELl.kl = DB.REL2.un2 and
DB.fi^Il.Jbl > Ci and DS.Äf'Ll.Jkl < C2 into V/£W6;

Table 3: Experiment Queries

Key-Key Key-Foreign Key Non Key-Non Key

Materialized Join View 1.22 1.64 3.24
Materialized OuterJoin View 1.20 1.58 3.18

Join ViewCache 1.02 1.03 1.06
Partial Mater. Join ViewCache 1.04 1.06 1.11

Partial Mater. Projection ViewCaches 1.07 1.04 1.12

Table 4: Storage Overhead

135

9. PLANNING INITIATIVE
INFORMATION AGENT

Intelligent Agent Integration Technology

Prepared by:
Donald P. McKay

Principal Investigator
Lockheed Martin

590 Lancaster Avenue, PO Box 4001,
Frazer, PA 19355-1808

Donald.P.McKay@lmco.com, (610)407-3527

This section is a copy of material developed under the Lockheed Martin Planning Initiative contract. It
is provided here as additional related information about the use ofKQML in an information agent

architecture.

136

An Architecture for Information Agents

Donald P McKay, Jon Pastor and Robin McEntire
Loral Defense Systems

Tim Finin
Computer Science and Electrical Engineering
University of Maryland - Baltimore County

Abstract

Information agents include a significant class of applications
which mediate information structures of domain objects to
instance representations in a storage manager. Over the past
several years, we have been experimenting with an
information agent architecture in the context of the ARPI.
Our information agent architecture uses the Knowledge
Query and Manipulation Language (KQML) to implement
access the knowledge services of such an information agent.
The information agent itself, which we call the Loom
Interface Module (LIM), uses knowledge structures to
represent domain objects and contains an explicit mapping
of knowledge structures to representations in an external
storage manager, a relational database management system.
We have developed several performance metrics and
features for information agents constructed using this
architecture. We described several key component
algorithms and performance measurements We have
developed the performance metrics, analysis and examples
as a part of ARPI TIEs, introduction into the Common
Prototyping Environment and, most importantly, under
collaboration with the SIMS project at USCISI and with the
CoBASE project at UCLA.

Introduction

Knowledge-based systems can provide a key
information processing aid to operational planning,
scheduling and monitoring of operations. Specifically,
these systems can provide key information support for
current deficiencies in crisis action planning for
transportation logistics. Requirements for these systems
include the ability to access, manipulate, and modify the
information stored in existing databases, and, a high level

1 This work was supported by Rome Laboratory and the
Advanced Research Projects Agency under USAF contracts
F30602-93-C-0177 and F30602-93-C-0028. The views
and conclusions are the authors' and should not be
interpreted as the official opinion or conclusions of the US
Government, the USAF, Rome Laboratory, or ARPA.

of collaborative and cooperative processing with the other
planning agents including people and software components.
Within the ARPA/Rome Lab Planning Initiative (ARPI),
Loral Defense Systems, in collaboration with USC ISI and
UCLA, developed an intelligent information services
architecture which integrates cooperative user interaction
and information location via domain/user-oriented object
representations. This effort, involving participants and
software components developed by Loral Defense Systems,
USC ISI and UCLA, demonstrated an experimental
prototype operating in real-time over the internet capable of
providing information satisfying user requests making
transparent to the user 1) query relaxation
and reformulation despite over-specific queries and lack of
data, 2) location and selection of information sources
based upon multiple selection criteria, 3) transformation of
low-level data source information from databases into
domain and user relevant information structures, and 4) the
query language utilized. Internal communications over the
internet were implemented using KQML, the Knowledge
Query and Manipulation Language, an ARPA-sponsored
emerging language and protocol for information exchange.

In this paper, we describe technology components to
support persistent storage and retrieval of plans and other
military transportation relevant entities. This includes the
integration of knowledge-based (KB) representation and
reasoning systems with standard database (DB)
management systems and the development of new
standards for interface languages between knowledge-based
systems and other software components including
knowledge-based systems themselves. The integration of
knowledge bases and databases is accomplished by the
Loom Interface Module (LIM). LIM allows Loom
(MacGregor & Bates 1987) applications to reason
efficiently over a large collection of data from a database
by utilizing the efficient computational capabilities of a
database management system and by avoiding the need to
create regular Loom objects to represent intermediate data.
In order to enhance the integration of multiple knowledge-
based systems, Loral Defense Systems and UMBC are
designing and prototyping a new high-level protocol for
conveying knowledge between systems. This protocol,

137

KQML (Knowledge Query and Manipulation Language), is
being developed in conjunction with a number of university
and industry laboratories under the ARPA Intelligent
Information Integration program and the Knowledge
Sharing Initiative.

These two components, when integrated with other
intelligent information system components being
developed at USC ISI (SIMS) and at UCLA (CoBASE),
provide intelligent access to distributed information sources
in a fault tolerant and cooperative manner supporting
military planners. The SIMS (Arens 1992) and CoBASE
(Chu & Chen 1994) systems are described elsewhere.

ARPI Information Agent

This section describes the basic architecture of an
Information Agent — a knowledge server or source capable
of handling all requests for information in a given domain,
in this case, the transportation logistics planning domain.
We have constructed an Information Agent prototype based
on the Loom Interface Module (LIM). Using LIM, we
have constructed an Information Agent (see Figure 1)
which mediates between knowledge structures defined for
use by intelligent system components and database
structures. This information agent responds to queries and
other commands which operate upon knowledge structures

and translates them to the appropriate target system, e.g.,
SQL queries and data manipulation commands. This
information agent has been used to support experimental
representations of transportation assets (e.g., planes and
ships), geographical locations (e.g., airports and seaports)
as well as transportation relevant information about forces
and transportation schedules. This LIM information agent
is used in conjunction with the CoBASE and SIMS systems
described elsewhere to provide a flexible and distributed
cooperative intelligent information agent for transportation
data which can be accessed at each of these interface
points. If only mediation to shared representations is
desired, the LIM information agent can be accessed
directly; if information access planning is required the
SIMS agent can be accessed; finally, if cooperative
processing is desired, CoBASE can be used as the point of
contact. All three systems can be accessed independently
depending on the desired functionality. The Knowledge
Query and Manipulation Language is used to support this
level of communication transparency.

We have built an Information Agent prototype which
involved the integration of the three knowledge-base/data-
base components: LIM, SIMS, and CoBASE and focused
upon the data and information collected for the
transportation logistics domain. The prototype also tested
the robustness of its three component systems in a realistic

SIMS (USC ISI)

CoBASE(UCLA)

Cooperative
Processing for
Approximate

Queries

CPE Agwit

CPE Agtnt

CPEAgant

Planning
or

Scheduling
CoHiponofli

1

*5» ^S

Figure 1. LEV! Information Agent LIM provides domain relevant
representations of transportation assets and other resources in a high-level
representation. It mediates between the storage structures and the
representations used by other intelligent agents.

138

information environment. Performance of tasks in the
transportation planning domain typically requires access to
data stored in a multiplicity of databases, by people (or
computer systems) unfamiliar with their specific structure
and contents. It is thus necessary to provide for the
possibility of retrieving required data using a uniform
language, independently of where the data is actually
located and how complicated the actual process of
retrieving it may be.

The Information Agent architecture currently address
separate aspects of this problem. This prototype united
them into one system that:
• accepted a query in an extension of the Loom

language,
• relaxed the query, if appropriate, to enable retrieval of

additional information of relevance to the user,
• planned a series of queries to databases and data

manipulations that
• brought about the retrieval and/or computation of the
• requested data, and finally
• execute the plan, issuing the necessary queries to the

appropriate databases, and returned the resulting data
to the user

LIM, SIMS, and CoBase have been combined in
various ways, including both a single Common Lisp
program which shared one Loom model of the application
domain and the databases as well as a distributed
Information Agent architecture in which the LIM
Information Agent, acting as a server, was at a remote site.
Queries were submitted in the Loom language, extended by
the approximation operators supported by the CoBASE
system. CoBASE translated the user's query into one in the
standard Loom language. SIMS broke down the resulting
query into a series of LIM queries (again in the Loom
language), each restricted to a single databases. The
databases were accessed over a network, using the LIM
database interface.

KQML Agent Communication Language

This section provides a brief overview of the agent
communication language used in the Information Agent
architecture. Many computer systems are structured as
collections of independent processes, frequently distributed
across multiple hosts linked by a network. Database
processes, real-time processes and distributed AI systems
are a few examples. Furthermore, in modern network
systems, it should be possible to build new programs by
extending existing systems; a new small process should be
conveniently linkable to existing information sources and
tools such as filters or rule based systems.

One type of program that would thrive in such an
environment is a mediator (Wiederhold 1992), or

information agent in this paper. Mediators are processes
which situate themselves between "provider" processes and
"consumer" processes and perform services on the raw
information such as providing standardized interfaces;
integrating information from several sources; translating
queries or replies. Mediators are becoming increasingly
important as they are commonly proposed as an effective
method for integrating new information systems with
inflexible legacy systems.

Standards and intercommunication approaches such as
CORBA, ILU, OpenDoc, OLE, etc., are efforts that are
often promulgated as solutions to the agent communication
problem. Driving such work is the difficulty of running
applications in dynamic, distributed environments. The
primary concern of these technologies is to ensure that
applications can exchange data structures and invoke
remote methods across disparate platforms. Although the
results of such standards efforts will be useful in the
development of software agents, they do not provide
complete answers to the problems of agent communication.
After all, software agents are more than collections of data
structures and methods on them. Thus, these standards and
protocols are best viewed as a substrate on which agent
languages might be built.

KQML is a language and a protocol that supports this
type of agent communication specifically for knowledge-
based systems or information agents. It was developed by
the ARPA supported Knowledge Sharing Initiative (Neches
et al. 1991, Patil et al. 1992) and separately implemented
by several research groups. It has been successfully used to
implement a variety of information systems using different
software architectures.

KQML is a layered agent communication language
(Finin et al. 1994; Finin et al. 1995; Mayfield et al. 1996).
The KQML language can be viewed as being divided into
two layers: the content layer, and the message layer or the
communication layer. The content layer is the actual
content of the message, in the agent's representation
language; in the Information Agent described in this paper
the content language was an extension of the Loom
language developed under the Planning Initiative. KQML
can carry any representation language, including languages
expressed as ASCII strings and those expressed using a
binary notation. All of the KQML implementations ignore
the content portion of the message except to the extent that
they need to determine where it ends.

The communication level encodes a set of features to
the message which describe the lower level communication
parameters, such as the identity of the sender and recipient,
and a unique identifier associated with the communication.
It also determines the kinds of interactions one can have
with a KQML-speaking agent. The primary function of the
communication layer is to identify the protocol to be used
to deliver the message and to supply a speech act or

139

performative which the sender attaches to the content. The
performative signifies that the content is an assertion, a
query, a command, or any of a set of known performatives.
Because the content is opaque to KQML, this layer also
includes optional features which describe the content, e.g.,
its language.

Conceptually, a KQML message consists of a
performative, its associated arguments which include the
real content of the message, and a set of optional arguments
which describe the content in a manner which is
independent of the syntax of the content language. For
example, a message representing a query about the location
of a particular airport might be encoded as:

(ask-one :content (GEOLOC LAX (?long
?lat)) :ontology GEO-MODEL3)

In this message, the KQML performative is ask-one, the
content is (geoloc lax (?long ?lat)) and the assumed
ontology is identified by the token :geo-model3. The same
general query could be conveyed using standard Prolog as
the content language in a form that requests the set of all
answers as:

(ask-all :content

"geoloc(lax,[Long,Lat])"

:language standard_prolog

:ontology GEO-MODEL3)

Loom Interface Module

LIM acts as an intermediary between a Loom application
and one or more DBs. The inter-relationships among the
various components of the overall system are illustrated in
Figure 2. LIM uses the DB schema, building a Loom
representation of the schema based on this information.
Subsequently, in response to a query or update request from
a Loom application that requires access to the DB, LIM
parses the request and generates the appropriate data
manipulation language {DML) statements for the DBMS; in
the case of a query, it then processes the tuples returned to
it by the DB into the form requested by the application.
The details of the design and implementation appear
elsewhere (Pastor & McKay 1994; Pastor, McKay & Finin
1992).

Processing within LIM is directed by a multi-layer KB
architecture that is built in a mixed-initiative process. Figure
3 depicts the layers in this architecture. The Semantic
Mapping KB (SMKB) is an isomorphic representation of
the DB schema; it defines one Loom concept for each table
and one Loom relation for each column. Application KBs
(AKBs) define view-concepts which are concepts or objects
in the domain and refer to concepts and relations in the
SMKB. Within the ARPI Information Agent, concepts such

as Seaport are defined over underlying SMKB primitive
data elements. View-concepts in the AKB do not
necessarily map in any simple way to the tables in the DB,
and can have arbitrary hierarchical structure. Connections
to the DB are implemented via DB-mapping declarations,
in which a concept-role pair in the AKB is mapped to a
SMKB role. View-concepts are checked at definition time
to assure that they specify an unambiguous database query
and, if declared to be updatebale, are unambiguously so.
For updates, LIM determines whether the resulting DB
action should result in an insert or an update.

Loom
Application

I i LflDmoBJKto

LIM

Figure 2. LIM Overview

- gfcjfcn «fcjnai cy_ed

GEOLOC

Figure 3. LIM Knowledge Base Architecture

LIM, given a query or update request involving a
concept in the SMKB or AKB, first obtains schema
mapping information from the SMKB, then translates the
request into an equivalent DML statement, submits the
statement to the DBMS and assembles the result; and
finally (for a query), restructures the returned tuples as
necessary, generating any KB structures required to satisfy

140

the query. With regard to the last point, a fundamental
principle of LIM is that KB structures are created only on
demand: queries are satisfied without creation of KB
objects whenever possible, to minimize overhead and
bookkeeping. Control over object creation is entirely at the
discretion of the application.

A LIM query consists of a list of output variables to be
bound, and one or more statements that produce sets of
bindings for these variables. It is easily determined from
the positions of variables in the output list and the query
expressions whether a particular output variable
corresponds to a role value or a concept. For a variable
corresponding to a role value, the value retrieved from the
DB can be returned to the application, possibly with some
conversion due to the differences between semantic types
used in the KB and simple DB types. For a variable
corresponding to a concept, however, the application will
expect to have returned to it an instance of that concept;
this requires that LIM be capable of creating Loom
instances using values retrieved from the DB. LIM's object
generation module extracts from the returned tuples all
values requested specifically for the purpose of building
Loom objects, creates the objects, and returns them to the
application. In the Information Agent, the result, either a
set of tuples or instance objects is then described in a
KQML message using a content expression to desribe each
tuple or object instance.

LIM uses a few different caching schemes, for two
purposes. The first purpose is the conventional one of
improving performance; the second is related to preserving
referential integrity. When a user queries LIM for an
instance of a view-concept, and then subsequently queries
for an instance with the same key values, it is usually the
case that one expects the same KB object to be returned in
both cases. For this reason, LIM checks the Loom instance
database (ABox) prior to creating instances. Given an
object query, after submitting a query to the IDI and
receiving return values, LIM queries the Loom ABox
before creating a new instance. If the view-concept that is
to be the type for the instance has keys defined, LIM uses
these (in conjunction with Loom's indexing capabilities) to
speed the search; otherwise, all values are used. This
mechanism is also used to support incremental creation of
object instances over several LIM queries. Other caching
strategies avoid reissuing the same query.

Note that "ABox cache" checking is not an efficiency
measure: on the contrary, it carries a performance penalty
that can become significant on extremely large queries,
e.g., many hundred to several thousand objects. For this
reason, and because of situations such as dynamic DB
contents where ABox cache checking is undesirable, it is
controllable both globally and at the individual query level.

LIM Example

Let us presume that an application requires information
about the location of various seaports. In the databases,
information about seaports is stored in a table called
SEAPORTS, and information about geographic locations in
a table called GEOLOC. The various KB layers representing
the mapping from application to DB are shown in Figure 3.
The bottom panel shows a simplified tabular representation
of the schema definitions for the two tables, SEAPORTS
and GEOLOC. The middle panel shows the SMKB
concepts representing the two tables. The SMKB definition
is:

(defconcept Geoloc
:is-primitive
(:and db-concept

(:the Geoloc.Glc_cd Geoloc_Code)
(:the Geoloc.glc_lncn Longitude)
(:the Geoloc.glc_ltcn Latitude)))

The top panel shows a simple application-level concept
derived from information in both DB tables. The following
is the Loom concept definition for the AKB concept
seaport:

(defconcept seaport
: is-primitive
(:and View-Concept

(:the primary-port-name string)
(:the lat latitude)
(:the Ion longitude)))

This is mapped to the DB by making additional
declarations, which are stored as assertions in the Loom
KB. Queries can be posed referencing either the SMKB or
the AKB. For example, the query:

(db-retrieve (?name)
(:and

(Seaports ?port)
(Geoloc ?geoloc)
(Seaports.Glc_cd ?port ?geocode)
(Geoloc.Port_Code ?geoloc

?geocode)
(Seaports.port_name ?port ?name)
(Geoloc.Country_State_Code

?geoloc "DP")
(Seaports.Clearance_Rail_Flag

?port "Y*)))

("What are the names of seaports in Dogpatch that have
railroad capabilities at the port?") can be posed using the
SMKB. The SQL generated by LIM for this query is:

SELECT DISTINCT RVl.name
FROM SEAPORTS RV1, GEOLOC RV2
WHERE RV2.glc_cd = RVl.glc_cd
AND RV2.country_state_code = 'DP'
AND RVl.clearance_rail_flag = 'Y'

The values returned are a set of tuples:

141

("Cair Paravel* "Minas Tirith"
"Coheeries Town" "Lake Woebegon" "Oz")

The query:

(db-retrieve ?port
(:and

(seaport ?port)
(primary-port-name ?port "Oz")))

("Return a seaport object for the port whose name is 'Oz'")
can be posed using the AKB. The SQL generated for this
query is:

SELECT DISTINCT RVl.name,
RV2.latitude,
RV2.longitude

FROM SEAPORTS RV1, GEOLOC RV2
WHERE RV2.glc_cd = RVl.glc_cd
AND RVl.name = 'Oz'

The value returned by this query is an object whose Loom
definition is:

(TELL
(:ABOUT SEAPORT59253

SEAPORT
(LON 98.6)
(LAT 3.14159)
(PRIMARY-PORT-NAME "Oz")))

The Information Agent uses a slightly different form of the
above s-expressions for sets of tuples and instances to
return answers to other agents. The particulars are outside
the scope of this paper.

Information Agent Performance

We have defined metrics for performance evaluation and
have been using them continuously throughout the
development of the Information Agent for both KQML and
LIM. The performance model for KQML is described
elsewhere. The LIM Information Agent metrics include
components of total execution time:
• Augmentation: CPU time required to add concept-

derived restrictions to the query
• Translation: CPU time required to translate LIM

query into internal canonical form
• Query Generation: CPU time required to translate

internal canonical form into DML
• Connection: Real time required to establish

connection with DBMS server
• Execution: Real time required to execute the query on

a DBMS server
• Collection: CPU time required to accumulate results

of the query
• Object Generation: CPU time required to post-process

results including creation of Loom instances if
appropriate

• ABOX Cache: CPU time required to search Loom
instance database (Abox) to prevent creation of
duplicate instance (included in Object Generation
time)

• Total Execution Time: Sum of all the above excluding
the ABOX Cache time

Using benchmarks derived from queries collected
during early uses of the LIM Information Agent under
ARPI technology integration experiments, we have
developed a performance profile. The queries vary from
small functional tests to the retrieval of large view-concepts
for force modules for combat services and combat services
support; each force module is retrieved independently. The
benchmark consists of executing the LIM query 25 times
with all caching turned off, i.e., queries are sent to Oracle
each time. Figure 4 below compares performance from
initial baseline performance in November 1992, LIM 1.1
performance in May 1993, LIM 1.2 performance in May
1994, and LIM 1.4 performance in May 1995.

It should be noted that these queries retrieve and create
a significant number of object instances with relatively
large numbers of slot value sets; performance is now well
below one second for total execution time. One test results
in over 700 force module instances created and about
60,000 attribute value sets within those instances. The total
execution time for this query set as of May 1994 was on the
order of ten minutes; current execution time (LIM 1.4) is
approximately 1 minute 25 seconds.

We have improved LIM performance dramatically over
the course of the Planning Initiative. The most notable
improvements are due to the following factors:
• We now use of faster Loom primitives where available,

or adopted them they became available, which has
dramatically improved basic execution speed.

• In cases where repeated use of the same Loom
inferencing chain might otherwise result, we cache
information retrieved from Loom knowledge base to
"memoize" knowledge base access

• We use improved fundamental data structures within
the LIM database interface

• We improved algorithms; for example, it is now
possible to specify that results be returned from the
Oracle interface in batches, rather than tuple-at-a-time.

• We tuned fundamental data structures extensively for
speed and space.

All data has been collected on SUN SPARC 2 CPU
with 96MB memory. Since a component of LIM
processing is due to actual execution of queries on a remote
Oracle database, the times measured below are dependent
on the actual system used to support Oracle as well.

142

Performance Comparison,
November 1992 TIE through UM 1.4

FM Query ID

Figure 4 LIM Information Agent performance summary.

We have begun to compare critical portions of the LIM
execution profile, specifically, object creation and slot
filling algorithms, with those available in a commercial
product expert system shell (ES). Initial results are
preliminary, but, illustrate some of the performance issues
for Information Agents. LIM, implemented in Common
Lisp and Loom, outperforms the commercial ES, one
written in C. We have measured the performance of LIM
with that of the expert system shell (ES) on two query sets,
showing both DB execution and Object Creation. The
database and queries were selected from a set developed in
another project. We have observed about a 10:1 ratio for
object creations per second of DB execution time in favor
of LIM. In addition, at least a 10:1 ratio for object
creations per second of object creation time, again in favor
of LIM. The most accurate metric is based upon slot-value
sets, since this accurately reflects the total amount of data
being transmitted and processed; in our initial
measurements this is significantly over 10:1.

Conclusion

We have described an Information Agent architecture in
which two key components are an agent communication

language and a collection of information agents.
Specifically, we have described KQML, the communication
portion of the agent communication language. In addition,
we have described the LIM Information Agent which
interfaces the Loom knowledge representation and
reasoning system with relational databases. We have
described some of the performance measures we have
developed for the LIM Information Agent and reviewed
some of our current performance results. One set of
preliminary measurements indicates that the performance of
object creation and manipulation components for
information agents is a key measure, and, that LIM
outperforms at lest one widely available expert system
shell. We intend to follow up on this result and investigate
this measurement approach further.

The LIM Information Agent relies on a view-concept
model which uses a knowledge representation language,
Loom, to define the semantic schema of a database. This
definition has two levels, each of which is of utility to a
knowledge-based application. The semantic mapping layer
defines the relevant concepts supported by the database
domain; in our current knowledge bases, the semantic
mapping layer adds semantic types to the automatically-
generated schema model. We envision additional

143

information in the semantic mapping layer, including
composites of database objects which form larger
conceptual structures. The view-concept model includes an
application-specific layer that defines the mapping between
an application domain's conceptual structures and the
semantic definition of database concepts. We believe that
the structured approach embodied in the view-concept
model significantly elucidates the knowledge-base-to-
database interface problem.

The system described above has operated in single
module form where each of SIMS and CoBASE have LIM
loaded into the same Common Lisp program,
independently using LIM as a server remotely over the
network (local or internet) and together in an architecture
where SIMS acts both as a server to CoBASE and as a
client to multiple LIM-based knowledge agents available
on the network in a mixture of local and internet
configurations. The basic issue addressed in all of the
above work is the actual running of demonstrations in a
reliable and repeatable manner. This goal forces one to pay
attention to details of normal operations including
performance and interpretation. Further, without the
attempt to integrate, some of the issues described above
would have not been identified as well as other integration
issues.

Acknowledgments

The authors wish to acknowledge the contributions of the
LIM development team, specifically Rebecca Davis, Robin
McEntire, Rich Fritzson, Tim Finin, and Barry Silk (US
Government). Earlier contributors to the first version of the
Intelligent Database Interface include Tony O'Hare,
currently at IBM, Research Triangle, and Larry Travis of
the University of Wisconsin. Also, we acknowledge the
useful comments and suggestions of users of LIM
specifically Yigal Arens and Craig Knoblock of USC ISI,
Wes Chu, Berthier Ribiero and Galdys Chow of UCLA,
Scott Fouse, Nancy Lehrer, Mark Hoffman and Louis
Rumanes of ISX, and, Glenn Abrett and Mark Burnstein of
BBN. Finally, we have appreciated participating in the
ARPA Rome Lab Planning Initiative and acknowledge the
stimulating interactions with the participants in the
program, Steve Cross and Tom Garvey the APPA Program
Managers as well as the staff and program management at
Rome Laboratory specifically Ray Liuzzi, Lou Hoebel,
Don Roberts and Nort Fowler.

References

Yigal Arens 1992. Planning and Reformulating Queries for
Semantically-Modeled Multidatabase Systems, In

Proceedings of the First International Conference on
Information and Knowledge Management.

Wesley W. Chu and Q. Chen 1994. A structured approach
for cooperative query answering. IEEE Transactions on
Knowledge and Data Engineering, 6(5):738~749.

Tim Finin, Richard Fritzson Don McKay and Robin
McEntire 1994. KQML as an Agent Communication
Language, In Proceedings of the Third International
Conference on Information and Knowledge Management,
ACM Press.

Tim Finin, Yannis Labrou, and James Mayfield 1995.
KQML as an agent communication language, In Jeff
Bradshaw (Ed.), "Software Agents", MIT Press,
Forthcoming.

Robert MacGregor and Raymond Bates 1987 The Loom
Knowledge Representation Language, Proceedings of the
Knowledge-Based Systems Workshop, St. Louis, Missouri.

James Mayfield, Yannis Labrou, and Tim Finin 1996.
Evaluation of KQML as an Agent Communication
Language. In Intelligent Agents Volume II - Proceedings
of the 1995 Workshop on Agent Theories, Architectures,
and Languages. M Wooldridge, J. P. Muller and M. Tambe
(eds). Lecture Notes in Artificial Intelligence, Springer-
Verlag.

R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T.
Senator, and W. Swartout 1991. Enabling technology for
knowledge sharing. AI Magazine, 12(3):36 ~ 56.

Jon Pastor and Don McKay 1994. View Concepts -
Persistent Storage for Planning and Scheduling,
Proceedings of the ARPA/Rome Lab 1994 Knowledge-
Based Planning and Scheduling Initiative Workshop,
Tucson, AZ.

Jon Pastor, Don McKay and Tim Finin 1992. View-
Concepts: Knowledge Based Access to Databases. In
Proceedings of the First Conference on Information and
Knowledge Management.

R. Patil, R. Fikes, P. Patel-Schneider, D. McKay, T. Finin,
T. Gruber, and R. Neches 1992. The DARPA Knowledge
Sharing Effort: Progress Report. In B. Nebel, C. Rich, and
W. Swartout, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Third
International Conference.

Gio Wiederhold, 1986 Views, Objects, and Databases,
IEEE Computer, 19(12):37-44.

Gio Wiederhold, 1992 Mediators in the Architecture of
Future Information Systems, IEEE Computer, 25(3):38-49.

144

10. INTELLIGENT RESOURCE

AGENT ARCHITECTURE

Intelligent Agent Integration Technology

Prepared by:
Donald P. McKay

Principal Investigator
Lockheed Martin

590 Lancaster Avenue, Frzer, PA 19355-1808
Donald.P.McKay@lmco.com, (610)407-3527

This information was developed under a separate Lockheed Martin contract. It is provided here as related
material demonstrating the utility of an architecture for intelligent agents using KQML The paper will appear in

the Proceedings of the Cooperative Information Systems '97.

145

10.1 Introduction

The proliferation of large network systems in general, and the exponential growth of the World Wide
Web (WWW) in particular, have resulted in nearly unlimited opportunities for the large scale gathering,
creation, and sharing of information. One unfortunate aspect of such systems, and especially of the
WWW, is that they are still relatively unstructured collections of heterogeneous resources.
Imagine a third-grade teacher who wants to find current online resources to supplement a planned space
science unit. This teacher is not sophisticated technically, is unfamiliar with the subtleties of using search
engines like Lycos and Infoseek, and has little time available for class preparation. A keyword search for
"space and planets" submitted to Infoseek produces a list of literally hundreds of possibilities. Since
standard WWW search interfaces are purely keyword-driven, and have no notion of the purpose of the
search ("material suitable for a third-grade science class") or any particulars about the user
("collaborative activities ideal; prefer images to text; special interest in Jupiter"), the list contains mostly
irrelevant or uninteresting information, and—even worse—may miss items that would be nearly ideal.
For example, twelve pages down in the list is the perfect resource—a collaborative activity sponsored by
NASA that would really get her students excited and involved—but it is buried in the sheer volume of
data. A recent set of spectacular Jupiter images doesn't even appear in the list, because the captions
happen not to contain the search terms ("space" and "planets"). Very few valuable, interesting, or
relevant resources are found in the 15 minutes that the teacher has before her next class, and she
dismisses the WWW as a waste of time and energy.

To assist users like this teacher in obtaining useful, structured information—rather than a chaotic mass of
largely irrelevant data—we have developed a set of specialized intelligent resource agents that serve as
mediators between the user and Internet resources. These agents interact cooperatively in a distributed
environment, and are accessible from within a WWW infrastructure. This system will eventually employ
over a dozen agents to perform a variety of tasks related to supporting and enhancing the use of the
Internet as an educational tool. Agents in the current implementation perform tasks ranging from remote
database access, to dynamic composition of HTML pages for the display of appropriate resources, to
customization of both the form and content of those pages to an individual user's preferred styles. An
early prototype in the domain of K-12 education is in use with teachers through the Defense Advanced
Research Projects Agency (DARPA) Computer Aided Education and Training Initiative (CAETI)
program.

146

Figure 1: Intelligent Agent Architecture

In this paper, we describe the components of the overall system architecture and its implementation,
including the agents themselves, the communication protocols, and the shared domain model. This
application is just one example of the power of well-designed distributed agent architectures to maximize
"plug-and-play" compatibility and reuse.

10.2 System Architecture

10.2.1 System Components

The first step in constructing a large-scale system is identifying the key functionality required, and
ascribing each functional unit to a separate module. In the case of an agent architecture, these modules
are embodied as independent applications, interacting cooperatively in the distributed environment. The
overall system requires the coordinated application of a wide range of conventional technologies,
including information retrieval, knowledge bases, databases, as well as domain-dependent technologies
such as intelligent custom generation of HTML pages to suit purpose and preferences of the individual
user. Our analysis of the problem domain suggested that the requisite functionality was best factored into
approximately a dozen agents, as depicted in Figure 1. The resulting system is accessible from within a
WWW infrastructure, interfacing with the users via standard WWW languages and protocols—HTTP,
HTML, JavaScript, and the Common Gateway Interface (CGI).
The overall Intelligent Resource Agent architecture consists of the agents themselves, common message
exchange protocols and syntaxes, and a common domain description or ontology. Information about the
users, and meta-information about Internet resources, is maintained in external persistent stores, and
accessed via specialized agents ("knowledge servers"). This information is used by the agents to
customize interfaces, personalize searches for web resources, and generate appropriate customized
displays of search results. The knowledge server architecture itself is described in [Pastor 92, Pastor 94,

147

McKay 96]; it is based on the concept of a mediator between information consuming agents and
information providing agents [Wiederhold 95, Wiederhold 92].

10.2.2 Agent Descriptions

The agents of Figure 1 fall loosely into three categories:

intelligent resource agents,
• generic intelligent systems agents, and
core infrastructure agents.

Intelligent resource agents implement functionality that is appropriate for cooperative information
systems, applied to the problem of information resource identification and use in the WWW and similar
areas (e.g., digital libraries), but not necessarily generalizable outside the information resource domain.
Generic intelligent systems agents are components that are generally reusable across instances of the
intelligent resource agent architecture, and are designed to be easily customizable for a given application.
Examples of this class of agent include:

evaluation agents, which are used to measure and report on system and resource utilization, and
information mediators, which provide persistent storage in terms of the common ontology.

Core infrastructure agents are components that are required to support inter-agent communication and
system operation.

Intelligent Resource Agents work together to enable appropriate, timely and customized access to
distributed information sources. In our particular case, these agents target multi-media Internet resources.
This includes creating customized interfaces to assist the user in finding potential sources of information,
identifying relevant information, and forming new resources based on this information which are
presented to the user in an appropriate manner (e.g., a summary of findings customized for the user).

The Resource Discovery Agent retrieves and collects information from a variety of dispersed,
multimedia information resources. This agent is responsible to keeping track of resources in this dynamic
environment—i.e., resources may change, move to different locations, or even disappear at any time.
This collected information is a primary source for the resource catalog. In our implementation, the
resource discovery agent is akin to a web- crawler, searching the Internet based on known educationally-
relevant seed sites, and indexing resources. The resource discovery agent contributes some meta-data
about the resource, along with content-based indexing, to help populate the catalog.

Resource cataloging technology then provides the means for representing, integrating, and acquiring
knowledge about the collection of information resources through an analysis of the objects and
relationships among them. The Resource Catalog provides a conceptualization and description of
information resources which adds semantic structure for a domain-specific use. The Resource Catalog
Mediator allows users to quickly, intelligently, and productively access information sources. Where
most search engines available on the WWW search strictly on content, via Boolean combinations of
keywords, the resource catalog provides a database of structured meta-information on relevant resources.
This allows the users to target their searches in useful ways, and does not rely solely on matching key
words in the text. For example, a third-grade teacher can ask for resources specifically targeted for the
appropriate grade-level. What distinguishes this resource catalog from conventional digital libraries is
that it is a highly-dynamic mix of "automated"—e.g., captured by resource discovery—and "user driven"
collections, a live and evolving entity to which users contribute new resources. User contributions may
be may be original works, interesting resources found on the net that are not already in the collection, or
even comments on existing resources via annotations.

Support for user-annotation of resources in the collection is one of the most unique and interesting
aspects of this catalog. Annotations become a searchable portion of the catalog, permitting one teacher to

148

benefit from the experience of others, and even to search directly on aspects of the annotations. Users are
encouraged to contribute, and are provided tools for producing, both structured (e.g., rankings) and
unstructured (e.g., free-text) annotations
Matchmaking extends the concept of a resource beyond conventional online multimedia resources to
include human resources, people who are available as mentors, experts, or potential collaborators. A
teacher can now contact an expert on comets who will answer questions posed by her inquisitive third
graders. Users can register their interests and their willingness to act in various mentoring and/or
collaborative relationships; other users can then search for "people" resources to assist them in planning
or executing classroom activities. Matchmakers come in two flavors: reactive and proactive. Reactive
matchmakers respond to a specific user request, while proactive matchmakers observe the online
behavior or interest of users and try to arrange matches. For example, a proactive matchmaker might
notice that ten users are teaching Space in their third grade class, and "suggest" via e-mail that they start
a discussion group or consider participating in a collaborative activity on this topic.
Resource Composition provides customized presentation of web resources, interfaces to the intelligent
agents, or results from search queries. When the user queries the resource catalog, the results are
presented in an appropriate fashion based on user preferences. The object is to organize the resources
into a form that suits the functional and aesthetic requirements of the individual user, rather than to the
typical output of search engines: simple and uninformative hit lists based on titles, keywords, or source
location. The teacher interested in images of Jupiter, finds resources which are image-rich, as well as
short summaries of what each resource provides, and comments from other users on how they used that
resource.
In a similar fashion, interfaces to the intelligent agents (e.g., catalog search) are customized for ease of
use and comfort-level to the particular user, based on profiles that include both information about the
user (e.g., teacher or student status) and expressed preferences (e.g., brief or detailed summary results).
For example, teacher and student interfaces might have a different "look," K-3 interfaces might differ
from high school level interfaces, and so on.
The Session Manager and Presentation Manager are works in progress, designed to address the
challenging problem of persistence within a WWW "session," and are discussed briefly in Section 10.4
on future directions.
The Collection Agent serves as a repository for information on system performance and utilization, fed
by messages from all appropriate agents in the system, and even from HTTP server logs. Once raw data
has been collected by the collection agent, this data is persistently stored for later use by other evaluation
agents in the system. The Evaluation Agent operates on this data, providing a wide range of usage and
performance statistics; these can then be used to track and evaluate relevant aspects of system and user
behavior, and to tune both performance and appropriateness.
The Knowledge Server represents a class of agents that provides the other agents with persistent
information; in the system described here, persistent information is needed about users, and about
resources in the catalog. A Knowledge Server mediates between the applications and external persistent
stores, providing an object-based view of the raw external data, in terms of the domain ontology. The
current Knowledge Server is implemented in Common Lisp using the Lockheed Martin Interface Module
(LIM) and the Loom knowledge representation language; a replacement, to be written in the Java
language, is currently in the design stage.
The other agents represented in the architecture are components of the underlying infrastructure. The
Agent Name Server (ANS) keeps track of agent registration, and permits agents to locate and address
other agents by name (rather than, say, IP addresses and ports). The Configuration Management Agent
(CM Agent) monitors the status of all agents in a defined agent configuration/system, and provides the
ability to reconfigure that system and start, stop, suspend, or resume agents in the system.

149

10.2.3 Inter-Agent Communication Language

This system, like many other software systems, is structured as a collection of independent processes,
distributed across multiple hosts linked by a network. The Knowledge Query and Manipulation Language
(KQML) is used as the communication protocol among the agents [Finin 95, Finin 94a, Finin 94b,
Mayfield 96]. KQML is a language and a protocol that supports extensible network programming,
specifically for knowledge-based systems and intelligent agents [Neches 91, Patil 92].
Lockheed Martin's implementation of KQML, used in this current work, contains two primary layers.
The outer layer, called a router, provides message routing functionality to its associated application
agent, and handles the establishment of all communication links to other agents in the system. The inner
layer, called a KRIL (KQML Router Interface Library), provides a library of application-level interface
routines. The router module makes use of the Agent Name Server (ANS—cf. Section 10.2.2) to
determine addresses for agents and services within the system. Routers function independent of message
content. Each agent has a separate router process; he router handles all incoming and outgoing message
traffic for its associated agent.

The router is a separate module from the application, and it is necessary to provide a programming
interface between the application and the router. This application program interface is called the KRIL.
While the router is a separate process with no understanding of the content of the KQML message, the
KRIL is embedded in the application and has access to the applications methods for understanding the
content of the KQML message—in this specific case, the objects that are passed among the agents. In
addition, the KRIL has access to the application objects that must be transmitted from one agent to
another. The KRIL is responsible for encoding these application objects into the communication objects
that are carried in the body of KQML messages, and, conversely, for recomposing these communication
objects into appropriate domain objects when a message arrives at the receiving agent. The KRIL will
also compose the complete KQML message, ready for transmission. Using a set of verb-like tags, called
performatives, such as ask-one, ask-all, register, and advertise, these syntactically correct
messages are created in the KRIL and are then handed to the router to be dispatched to appropriate
agents in the system.

10.2.4 Shared Communication Ontology

In order for an agent to be able to "understand" the content of a message, it must be stated in terms that
make sense to the agent: the nomenclature used by the sending agent must be comprehensible to the
receiver. In human speech, we take for granted that references to objects, conditions, and other
terminological entities are comprehensible to all parties in a conversation—that all parties share a set of
concepts that have essentially the same characteristics in the minds of all participants. A shared
communication ontology is a formalization of this notion, ensuring that when one agent refers to, say, a
"resource", this evokes the same feature set, in terms of both structure and behavior, to the receiver as to
the sender.

A key feature of our architecture is that it specifies the common ontology in a representation that
subsumes the models of the individual agents. The practical implications of this are

any model required by any agent can be expressed in the common ontology;
• translations from the common ontology's formal representation are lossless with respect to the

agents' models;
consequently, the agents are not constrained to employ the same modeling language—or, in fact,
the same programming language.

As a result, it is possible to build hybrid systems consisting of modules developed in different languages,
on different platforms, using different representations or views of a common set of objects; the Intelligent

150

Resource Agent system includes modules in C, C++,Common Lisp, Perl, and HTML, all interacting freely
with one another without regard for representation details, language, or platform.
In our current system, while the internal program data structure representations used by different agents
may be encoded differently due to language differences, it is typically the case that the agents' models
are either isomorphic to, or proper subsets of, the communication ontology. This is neither necessary nor
necessarily desirable, and in this application we have begun to introduce a separation between the
application ontology manipulated by the agents themselves and the communication ontology used for
inter-agent communication.
We view the ability to translate bi-directionally between the communication ontology and a collection of
application ontologies as being critical to the long-term success of distributed agent architectures, since it
places few—if any—restrictions on the kinds of applications that can participate as agents. An example
of this principle is embodied in the Knowledge Server which is a mediator agent that provides access to
databases in which persistent data for the catalog, among other things, is stored. The Knowledge Server
is able not only to translate the flat structure of the relational model into the hierarchical structures of the
communication ontology, but also to perform translations of encodings and modalities. For example, a
database field that contained a string naming a specific MIME type (e.g., "image/gif') could be mapped
to a conceptual type in the ontology that represented that MIME type (e.g., an object of type GIFimage.
An encoding of this object, described in terms the communication ontology, would then be sent via a
KQML message to the requesting agent. The significance of this observation is that other agents can be
written in terms of the underlying ontology—a GIFimage object—rather than a specific text string—
"image/gif.

10.3 Implementation

10.3.1 Intelligent Resource Agent Architecture

The current system consists of the following components:
a Common Lisp-based knowledge server mapping from a Loom knowledge base to an Oracle
database

• a collection of intelligent resource agents, primarily implemented in C++, that communicate with
both the knowledge server and each other
a communication infrastructure that supports inter-agent communication, which includes the router
and KRIL functionality used by each agent, a number of utility agents, such as the ANS, that
provide assistance for message traffic, and encoding/decoding routines that allow the transmission
of application-level objects from one agent to another

Agents wishing to communicate with other agents are thus presented with a true object-oriented model of
the communication acts, and are insulated from the details of KQML message composition and encoding.

151

The programmer API for database access consists of a handful of methods, for those agents requiring
external data; these methods further encapsulate the KQML protocol so that requests for data are stated
in terms of actions on objects of the desired type. All of the KQML and database functionality is defined
at the level of abstract classes; objects requiring KQML transmission, or both KQML transmission and
database access, are derived from these abstract classes and inherit the requisite behavior.

)

11

[KWC String]^

AskOllaQueryString

[EvdCmd]

Key:

Lang uag eProficiency List

GradeList]

Figure 2: Shared domain ontology

In all present cases, as illustrated in Table 1, theC+f classes are structurally similar to the Loom concepts
defined in the shared domain model—the application model is nearly isomorphic to the communication
ontology. The C++ class definitions include not only the structural elements and the inherited KQML
and/or database behavior, but also a standard set of methods for encoding and decoding C++ objects to
and from a canonical ASCII representation used to represent objects in transmitted messages. While the
form of this representation is actually arbitrary, as long as it can encode the application data structures
unambiguously, it must be standardized among all agents in order for them to be "plug-compatible".
Given the close correspondence between the Loom domain model and the C++ object definitions for the
application model, we chose to provide for automatic generation of the C++classes from the Loom KB:
both the data members and a working subset of the required function members (methods) are generated

152

by a Common Lisp function that walks the Loom KB and processes concepts corresponding to
externally-useful objects.
The C++class architecture for our Intelligent Resource Agent system is depicted in Figure 2.
Communication acts, and methods on application-level objects, are mixed to create hybrid methods that
incorporate the power of both communication-based and object-based acts. Using these classes, a
domain-relevant class such as Resource, which implements a resource object in a resource catalog, can
be defined in terms of its unique defining attributes, and inherit its communication and data base aspects.

A critical point to observe about Figure 2 is that it depicts not only the structure of the knowledge-base
objects used to represent the abstract ontology, but also the structure of the application-level objects in an
object-oriented language, in this case C++. That is, the agents manipulate objects that are isomorphic, in
terms of structure and taxonomy, to the underlying domain ontology. Table 1 shows a knowledge base
definition, in the Loom language, side-by-side with the corresponding portion of the C++ class definition
used when exchanging information about educational standards.

Each C++ class derived from kqmlClass defines a pair of C++ methods—Encode () and
Decode () —to create and interpret (respectively) a canonical text representation that is used as the
content language for KQML transmission; it also inherits a set of methods corresponding to a subset of
the KQML performatives (communication primitives). In addition, some agents define higher-level
methods that encapsulate the appropriate translation and encoding of application-level objects, KQML
message formation, transmission, and reception; and decoding and creation of C++objects. In fact, from
an agent's perspective, it is manipulating instances of the application ontology classes, in some cases
unaware that some of the objects it is manipulating have been retrieved from remote locations.

10.3.2 Application to K-12 Education

Figure 3 shows the interplay of key intelligent resource agents to assist our teacher in finding the

Composition

I wonder if anyone has
done any interesting
projects with space that I
can adapt for my 3rd grade
science unit?

Catalog Mediator

MÄRQR

User Model Figure

3: Resource agents work together to gather customized resources for the user and present them in an
appropriate manner.

153

appropriate resources for her third-grade science class. The teacher makes a specific request through the
form catalog form interface on her WWW browser, insulating her from the details of the underlying
query language. The catalog mediator—implemented as a Common Gateway Interface (CGI) program—
interprets the form submission, initiates the search based on her selections. The catalog mediator checks
the collections created by the discovery agent, filters the results through the catalog, and then passes the
resulting resource information to the composition agent. The composition agent queries the user server
for information relevant to presentation of results, and returns a customized HTML page—based on the
original query, the resulting resources, and the user information—to the catalog mediator. Finally, the
page is displayed to the teacher, via the catalog mediator, in the client area of her WWW browser. Along
with some excellent photo archives from the Hubble telescope, the teacher finds a wonderful Mission to
Mars activity sponsored by NASA.

Early prototypes of this technology are currently in use with teachers in the DARPA sponsored CAETI
(Computer Aided Education and Training Initiative) Department of Defense Educational Activity
(DoDEA) test bed via the Online Learning Academy (OLLA), a World Wide Web (WWW) environment,
which supports the use of telecomputing in the classroom [OLLA 96]. OLLA is currently deployed in
four school complexes (akin to school districts) and in pilot classroom use with about twenty elementary
school teachers. The intelligent resource agent architecture, and scenarios such as the one above, have
been successfully demonstrated from within the OLLA infrastructure. The proactive matchmaker
intelligent resource agent is the first of the intelligent resource agents to be deployed with OLLA (housed
at the Franklin Institute Science Museum), connected by HTTP access, and in use by educators world-
wide.

10.4 Conclusions and Future Directions

The intelligent resource agent architecture provides the basis for a scaleable and robust agent
infrastructure. The key ideas include appropriate modularization of agents into reasoned software
processes. In the area of information resource utilization on the WWW, we have demonstrated that the
intelligent resource agent architecture is one effective way of providing tailored information services for
specific applications, i.e., K-12 education and the effective use of internet resources.
Future development of this system includes refinement of the existing intelligent resource agents, as well
as the addition of several new agents. Since we are working within the confines of the WWW,
customization within a session has been challenging. To this end, Session Manager and Presentation
Manager agents are under development. The Session Manager maintains persistence within a session,
and the Presentation Manager controls customization of interfaces within a session. Both of these
components will involve communication among processes on the client, as well as distributed
client/server interactions.
In addition, we plan to continue with the general agent infrastructure that we demonstrated successfully
within this application. We have begun to define aspects of communication ontologies under this project.
Communication ontologies hide from application-level processes both the communication acts and the
information exchange distribution necessary to achieve application-level goals. This is accomplished by
including in an object's definition both the methods to be invoked on that object and the communication
act necessary to satisfy the successful execution of each method. For CORBA-based implementations,
this can be directly implemented via remote method invocation supported in CORBA. However, we
envision significantly more stylized information exchange, including status and data item updates, as
well as volunteering of newly developed information. A convenient and flexible information exchange
mechanism is a key to the continued success of these systems.
We are just beginning to exploit this approach in an architecture for Information Resource Agents. We
will further explore this approach and use both a formal definition of an ontology and a practical
software implementation approach.

154

10.5 References

[Finin 95] T. Finin, C. Thirunavukkarasu, A. Potluri, D. McKay, and R. McEntire, On Agent Domains,
Agent Names and Proxy Agents, Proceedings of the ACM CIKM Intelligent Information Agents
Workshop, Baltimore, December 1995.
[Finin 94a] T. Finin, D. McKay, R. Fritzson, and R. McEntire. "The Knowledge Query and Manipulation
Language for Information and Knowledge Exchange", Proceedings of the Third International
Conference on Information and Knowledge Management (CIKM'94), November 1994.

[Finin 94b] T. Finin, D. McKay, R. Fritzson and R. McEntire, "KQML - A Language and Protocol for
Knowledge and Information Exchange." Proceedings of the 13th International Distributed Artificial
Intelligence Workshop, July 1994.
[McKay 96] D. McKay, J. Pastor, R. McEntire and T. Finin, An architecture for information agents, in
"Advanced Planning Technology", (ed. Täte, A.), The AAAI Press, Menlo Park, CA., USA, May 1996,
ISBN 0-929280-98-0.

[Mayfield 96] J. Mayfield, Y. Labrou, and T. Finin, Evaluation of KQML as an Agent Communication
Language, in Intelligent Agents Volume II ~ Proceedings of the 1995 Workshop on Agent Theories,
Architectures, and Languages. M. Wooldridge, J. P. Müller and M. Tambe (eds). Lecture Notes in
Artificial Intelligence, Springer-Verlag, 1996.

[Neches 91] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W. Swartout. "Enabling
Technology for Knowledge Sharing". AI Magazine, 12(3):36-56, Fall 1991.

[OLLA 96] OnLine Learning Academy (OLLA) Users Manual. Lockheed Martin. 1996.

[Pastor 94] J. Pastor and D. McKay, "View-Concepts - Persistent Storage for Planning and Scheduling",
Proceedings of the ARPA/Rome Lab 1994 Knowledge-Based Planning and Scheduling Initiative
Workshop, Tucson, February, 1994.
[Pastor 92] J. Pastor, D. McKay and T. Finin, "View-Concepts: Knowledge-Based Access to Databases".
First International Conference on Information and Knowledge Management, Baltimore, November 1992.

[Patil 92] R. Patil, R. Fikes, P. Patel-Schneider, D. McKay, T. Finin, T. Gruber, R. Neches. "The
DARPA Knowledge Sharing Effort: Progress Report". In B. Nebel, C. Rich, and W. Swartout, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the Third International
Conference (KR'92), San Mateo, CA, November 1992. Morgan Kaufmann.

[Wiederhold 95] G. Wiederhold "Mediation in Information Systems; in Research Directions in Software
Engineering", ACM Comp.Surveys, Vol.27 No.2, June 1995, pages 265-267.

[Wiederhold 92] G. Wiederhold, "Mediators in the architecture of Future Information systems", IEEE
Computer, March 1992, pages 38-49.

«U.S. GOVERNMENT PRINTING OFFICE: 1998-610-130-61209

155

DISTRIBUTION LIST

address*»«» number
of copies

RAYMOm A. LIUZZI PHD
AfRL/IcTB
525 3R1GKS ROAD
ROME» NY 1?441-45Q5

10

LOCKHEED MARTIN
593 LANCASTER AVENUE
°.l, BOX 4001
eRMER, PA 1^355-1808

AP3L/IFOIL
TECHNICAL LIBRARY
26 £LcCTt?3NIC PKY
ROMS NY 13441-4514

ATTENTION: OTIC-OCC
OEFiINSc TECHNICAL I UFO CENTER
5723 JOHN J. KINGMAN ROAD, STE 0944
FT. 3ELVQIi?f Vfl 22060-6213

ADVANCED RESEARCH PROJECTS AGENCY
3701 NORTH FAIRFAX ORIV-
ARLINGTON VA 22203-1714

RELIABILITY ANALYSIS CENTH&
2 0-1 MILL ST.
5QM£ NY 13440-8200

ATTN: GWEM NGUYEN
GIDEP
P.3. BOX 3000
CQ30NA CA 917.13-8000

OL-1

AFIT ACADEMIC LIB»ARY/L3"=
2950 P STREET
AREA 3, SLOG o42
WRIGHT-PATTERSnw AF3 JH 45433-7765

ATTN: GILBERT G. KUPc^HANi
AL/CFHI, SLOG, 243
2255 H STR5£T
WRTGHT-PÄTTÜPSDN AF-l OH 45433-7822

ATTN: TfcCrtMICML DOCUMENTS CENTER
OL AL HSC/HRG
2698 G STR=cT
WRIGHT-PATTEPSON AF3 QH 45433-7604

AIR UNIVERSITY LIBRARY CAUL/LSAO)
600 CHENNAJLT CIRCLE
MAXWELL AF» AL 36112-6424

U3 ARMY 5SDC
P.O. 30X 1500
ATTN: CSSD-IM-Pä

HUNTSVTLLE AL 35807-3801

TECHNICAL LIF.R4RY 00 2 74(f>L-TS >
SPAWaRSYSCFM
53 5 69 HULL STREET
SA^ 0I=GO CA 92152-5001

NAVAL AIR WARFARE CENTER
WEAPONS DIVISION
CODE 4SLOO0O
1 AOMIMISTPATIQfsj CIRCLE
CHIi^A LAK£ CA 93555-6100

SPACE & NAVAL WARFARE SYSTFMS CMD
ATTN: »MW 16 3-1 (R. SKIANO)!?M 1044A
53560 HULL ST.
SAN DI = GO, CA 92152-5002

DL-2

SPACE 6 NAVÄL WARFARE SYSTEMS
COMMAND, EXECUTIVE DIRECTO? CPD13A)
ATTN: HP. CARL ANORIANI
2451 CRYSTAL DRIVE
ARLINGTON VA 22245-5200

COMMANDER, SPACE * NAVAL WARFARE
SYSTEMS COMMAND (CODE 32)
2451 CRYSTAL 03IVE
ARLINGTON VÄ 22245-5200

CO«?t US ARMY MISSILE COMMAND
REDSTONE SCIENTIFICINFORMATION CTR
ATTN: ftHSMI-RD-CS-R» DOCS
REDSTONE ARSENAL AL 35S33-5241

ADVISORY GROUP ON ELECTRON DEVICES
SUITE 5 00
1745 JEFFSRSON DAVIS HIGHWAY
ARLINGTON VA 22202

REPORT COLLECTION, CIC-.14
«15 P3 64
LOS ALAMOS NATIONAL LABORATORY

LOS ALAMOS NM 87545

AEOC LIBRARY
TECHNICAL REPORTS FILE
100 KINDEL DRIVE, SUITE C211
ARNOLD A~>3 TN 37339-3211

COMMANDER
USAISC
ASHC-IMO-L,
FT HUACHUCA

BLDO 61301
AZ 85613-5000

US DEPT OF TRANSPORTATION LIBRARY
FB10A, M-4 57, RM 930
800 INDEPENDENCE AVE, SW
WASH DC 22591

AWS TECHNICAL LI3RARY
950 BUCHANAN STRcETf RM.
SCOTT AFB IL 62225-5118

427

DL-3

AFIWC/MSY
102 HALL 3LV0, STE 315
SAN ANTONIO TX 73243-7016

SOFTWARE ENGINEERING INSTITUT;1

CARNEGIE M5LLQM UNIVERSITY
4500 FIFTH AVENUE
PITTSBURGH PA 15213

NSA/CSS
Kl
FT HSAOc HO 20755-6000

ATTN: OM CHAIJHAN
DC!'1C WICHITA

271 WEST THIRD STRFET N3<?TH
SUITE 6000
WICHITA KS 67202-1212

PHILLIPS LABORATORY
PL/TL (LIBRARY)
5 WRIGHT STRrZT
HANSCOM AF3 «!A 01731-3004

ATTN: CILCEN LADUKE/Ü460
MITRE CORPORATION
202 BURLINGTON SO
BEDFORD MA 01730

OUSDCP)/OTSA/OUTD
ATTN: PATRICK G. SULLIVAN, JR..
400 ARfqy NAVY ORIVc
SUITE '.00
ARLINGTON VA 22202

SQFTWARc ENGR'G INST TECH LI3RARY
ATTN: MR OENNIS S^ITH
CARNEGIE MELLON UNIVERSITY
PITTSÖURSH PA 152 13-33TQ

USC-IST
ATTN: OR ROBERT M- BALZE?
4676 AOiVSIRALTy WAY
MARINA DFL REY CA 90292-6695

OL-4

KESTREL INSTITUTE-
ATTN: OP COPO^LL GREEN

1831 PAGE «ILL SOAD

PALO ALT'! CA 94304

ROCHESTER INSTITUTE IF TECHNOLOGY
ATTN: P?OF J. A. LÄSKY
1 LQM3 MEMORIAL HRIVE
P.O. 3~X 9387
ROCHESTER MY 14613-57QÖ

WESTINSHOUSE ELECTRONICS CORP
ATTM: MP DENNIS 3IELAK.
ELECTRONICS SYSTEMS GROUP
P.O. BOX 746f MAIL STOP 432
BALTIMORE MO 21203

SFIT/EN6
öTTN:TOM HARTSUM
irfPAFR OH *5433-6E'83

THE ^ITR= CORPORATION
ATTN: KP EDWARD H. 3ENSLEY
3U?LINGT0N RD/MAIL S^QP A350
BEDFORD «A.01730

UNIV 3C ILLINOIS» USBANA-CHAMPAIGN
ATTN: OR MEHOI HA^ANDI
0:PT 3" COMPUTER SCIENCES
1304 W. SP5ING~IELD/24C DIGITAL L*3
URBANA IL 61Sü1

HOMEYWr:LL, INC
ATTN: MP PERT HARRIS
FEDERAL SYSTEMS
7900 WCSTPÖRK DÄIVE
MCLEAN Va 22102

S3-TMAPE ENGINEERING INSTITUTE
ATTN: m WILLIAM E. HEFLEY
CA2NEGTE-MELL0N UNIVERSITY
SEI 2 21 a
PITTSBURGH PA 15213-38990

UNIVERSITY Oc SOUTHERN CALIFORNIA
AT
T
N: OP W. LEWIS JOHNSON

INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY/SUITE 1001
HASINA DEL R-Y CA 902^2-6695

r>L-5

CQLUMälÄ UNIV/DEPT COMPUTER
ATTN: DR GAIL E. KAISER
450 COMPUTER SCIENCE BLQG
500 WEST 120TH STREET
NEW YORK Nr 10027

■SC3ENC?

SOFTWARE PRODUCTIVITY CONSORTIUM

ATTN: MR RQBERT LAI

2214 ROCK HILL küAD
HERNOQN VA 22070

SFIT/ENG
ATTN: DR GARY 3* LAMüNT'
SCHOOL OF ENGINEERING
OEPT ELECTRICAL £ COMPUTER
WJ>AFB Ort 45433-6583

ENG?

NSA/OFC OF RESEARCH
ATTN: MS MARY ANNE OVERMAN
9800 SAVAGE ROAD
^T GEORGE G. ME ADE MD 20755-6003

ATST 3ELL LABORATORIES
ATTN: MR PEJE^ G. SEL<=R'
»00« 3C-441
50 0 MOUNTAIN AVE

ODYSSEY RESEARCH ASSOCIATES, INC,
ATTN: MS MAUREEN STILLMAN
301A HARRIS S. DATES O^IVE
ITHACA NY 14350-1313

TEXAS INSTRUMENTS INCORPORATED
ATTN: DR DAVID L. WELLS
P.O. BOX 655474, MS 2 3>1
DALLAS TX 75265

TEXAS A f. M UNIVERSITY
ATTN: DR PAULA MAYER
KNOWLEDGE 3ASE0 SYSTEMS LABORATORY
0£pT Öc INDUSTRIAL ENGINEERING
COLLEGE STATION TX 77843

KESTREL DEVELOPMENT CORPORATION
ATTN: DP RICHARD JULLIG
3260 HILL VIEW AVENUE
PALO ALTO CA 94304

DL-6

OAPPA/ITO
AHM: DR KIRSTIE 3ELLHAN
3701 H FAIRFAX DRIVE
ARLINGTON VA 22203-1714

NASA/JOHNSON SPACE CENTER
ATTN: CHRIS CULSfRT
HAIL CODE PT4
HOUSTON TX 77053

SAIC
ATTN: LANCE MILLER
MS Tl-S-3
PQ 8QX 1303 (OP 1710 GOOORXQGE OP)
MCLEAN V* 22102

STERLING IWO INC.
KSC OPERATIONS
ATTN: MARK MAGINN
SEECHES TECHNICAL CAMPUS/ST 26 N.
POME NY 13440

NAVAL POSTGRADUATE SCH30L
ATTN: 3ALA PAMESrt
CODE AS/PS
ADMINISTRATIVE SCIENCES ÜEPT
MONTEREY CÜ 93943

HUGHES AIRCRAFT COMPANY
ATTN: GERRY 3ARK5DALE
P. Q. 30V 3310
SLDG 613 MS E215
FULLERTON CA 92634

SCHLUHSEPS^
COMPUTER

ATTN: OP.
8311 NORTH
AUSTIN» TX

■R LABORATORY *0P
SCIENCE
GUILLERMQ ARAMGH
FM620
73720

MOTOROLA» INC.
ATTN: MP. ARNOLD PITTLEP
3701 ALGONQUIN ROAD, SUT5 601
ROLLING MEADOWS,- IL 60G08

06CISI0N SYSTEMS DEPARTMENT
ATTN: PROF WALT SCACCHI
SCHOOL 0" BUSINESS
UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CA 90089-1421

OL-7

SOUTHWEST Ri
ATTN: BRUCE
6220 CULE3RA
SAM ANTONIO,

SEARCH INST
REYNOLDS
ROAD
TX 7J

ITU"

228-0510

NATIONAL INSTITUTE 0^
AND TECHNOLOGY

ATTN: CHRIS 0A8R0WSKI
ROOM A266, SLOG 225
GAITHS8URG MO 2J8 99

STANDARD:

EXPERT SYSTEMS LA30RATQRY
ATTN: STEVEN H. SCHWARTZ
NYNEY SCIENCE Z TECHNOLOGY

500 WESTCHESTER AVENUE

WHITE PLANS NY 2C604

NAVAL TRAINING
p n n c o ■

SYSTi
3 P ,

-Mt!

ATTN: ROBERT 3REÄUX/C00E
.12350 RESEARCH PARKWAY
ORLANDO =L 32326-3224

CENTER
252

CENTER FOR EXCELLENCE IN COMPUTER'
AIDED SYSTEMS ENGINEERING

ATT«: PERRY ALEXANDER
2291 IRVING HILL RCAO
LAWRENCE KS 66049

DP JOHN SALASIM
OARPA/ITO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

OR 3ARRY B'OEHM
DIR, USC CENTER FOR SW ENGINEERING
COMPUTER SCIENCE OEPT
UNIV OF SOUTHERN CALIFORNIA
LOS ANGELES CA 90039-0781

OR STEVE CROSS
CARNEGIE MELLON UNIVERSITY
SCHOOL OP COMPUTER SCIENCE
PITTSBURGH PA 15213-3851

OR MARK MAY3URY
MITRE CORPORATION
ADVANCED INFO SYS TECH; G041
3U&LINT0N ROAD, M/S K-329
BEDFORD «A 01730

DL-3

M* SCOTT FDUSE
ISX
4353 PARK TERRACE DRIVF
WESTLAKE VILLAGE C 31361

MR GARY EDWARDS
IS*
433 PARK TERRACE ORIVS
WSSTLÄKc VILLAGE CA 91361

OREO WALKE 8
33N SYSTEMS S TECH CORPORATION

10 MOULT-IN STREET
CAM3RI0GF. f1A 02233

L £ E H R ^ A W
CIMFLEX TEKNOWLEDGE
1310 EM3ACAÜER3 ^ 0 A 0
P. 3. BOX 1C119
i>ALO ALTO CA 94303

OR. DAVE GUNNING
0ARP4/IS0
3701 i^HRTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DR. GARY K0Q3
DARPA/ITO
3701 NQSTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DR. ROBERT LUCAS
OAR PA/I TO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

OR. DAVID GUNNING
DAPPA/ISD
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

AFIT ACADEMIC LIBRARY/LDcE

29S0 P STREET
AREA 3t 3LDG 642
WRIGHT-PATTERSON AF3 QH 45433-7765

OL-9

US ARHY. STRATEGIC DEFENSE COMMA*!
CSSD-IM-PA
P.O. BOX 1500
HUNTSVILLe AL 35307-3^01

NAVAL AIR WARFARE CENTER
6000 t. 21ST STREET
INDIANAPOLIS IN 45219-2139

COMMANDER, TFCHNICAL LIBRARY
47470QÖ/CÖ223
NAVAIRW.ARCENWPNDIV
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6001

CDR, US ARMY 'MISSILE COMMAND
PSTC, 3LOG. 4434
AMSHI-PO-CS-Pf QOCS
REDSTONE ARSENAL AL 35393-52*+!

REPORT COLLECTION, CIC-14
MS P364
LOS ALAMOS NATIONAL LIBRARY
LOS ALAMOS NM 87545

AIR WEATHER SERVICE TECHNICAL
LHR4RY CFL 4414)
359 3'UCHANAN STREET
SCOTT AFB IL 52225-5113

AFIWC/MSO
102 HALL ÖLVD, STE 315
SAN ANTONIO TX 73243-6016

PHILLIPS LABORATORY
PL/TL CLT8PAPY)
5 WRIGHT STREET
HANSCG« AF3 MA 01731-3004

AEDC LIBRARY
TECHNICAL REPORTS FILE
100 KINQCL ORIVE, SUSITE C211
ARNOLD APT TN 37389-3211

DL-10

SPACF £ NAVAL WARFARE SYSTFMt
COMMAND <P«W 178-1)
2451 CRYSTAL QP.IVE
ARLINGTON VA 22245-5200

D». DOUGLAS OYFR
D&^PA/TSn
370 1 NORTH FAIRFAX DRIVE
ARLIMGT3N, VA 22203-1714

DL-11

