
A HYBRID ANALYTICAL/SIMULATION MODELING APPROACH FOR

PLANNING AND OPTIMIZING MASS TACTICAL AIRBORNE OPERATIONS

by

DAVID DOUGLAS BRIGGS
M.S.B.A., Boston University, 1993
B.S., Northeastern University, 1985

THESIS

Submitted in partial fulfillment of the requirements

for the degree of
Master of Science

College of Engineering
University of Central Florida

Orlando, Florida

A COO

MDiatr;,~i'
Spring Term

1995

This Document Contains Missing
Page/s That Are Unavailable In

The Original Document
uric QUALITY I1TPECTED 8

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
MAY 1995 TECHNICAL REPORT THESIS

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A HYBRID ANALYTICAL SIMULATION MODELING APPROACH FOR
PLANNING AND OPTIMIZING MASS TACTICAL AIRBORNE OPERATIONS

6. AUTHOR(S)

DAVID D. BRIGGS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

USMA OPERATIONS RESEARCH CENTER
WEST POINT, NEW YORK 10996

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.SPONSORING / MONITORING
UNIVERSITY OF CENTRAL FLORIDA, ORLANDO, FL AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
THESIS WORK

1 2a. DISTRIBUTION / AVAILABILITY STATEMENT 1 2b. DISTRIBUTION CODE

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. ABSTRACT (Maximum 200 words)
A hybrid analytical/simulation model is developed to represent and solve the problem of mass tactical airborne operations
in an efficient manner. The net result of the hybrid model is an application enabling users to properly load aircraft
according to the mission and user specifications. The first portion is a mathematical model of the deployment which
generates the impact points of each entity under ideal conditions. This analytical model is represented by a transportation
network, and then optimized using a weighted transportation algorithm. The results of this solution are used in an
integrated simulation model that introduces the inherent variability. The simulation returns to the user the expected, best,
and worst arrival times, and the build up of power over time. The net result of the hybrid model is a tool that allows for
effective planning given the available information, as well as simulation results that predict the outcome of the plan. This
hybrid approach allows a very large problem to be solved efficiently, and provides analysis of probable outcomes for
planning.

14. SUBJECT TERMS 15. NUMBER OF PAGES
158

OPTIMIZATION, HYBRID MODELS, AIRBORNE OPERATIONS 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280-5500).1 •Standard Form 298 (Rev. 2-89) USAPPC V1.00""NSN7540-01-2805500 rCLJ ' - Prescribed by ANSI Std. Z39-18 298-102

ABSTRACT

A hybrid analytical/simulation model is developed to represent and solve the problem of

mass tactical airborne operations in an efficient manner. The net result of this hybrid

model is an application enabling users to properly load aircraft according to the mission

and user specifications. The first portion is a mathematical model of the deployment

which generates the impact points of each entity under ideal conditions. This analytical

model is represented by a transportation network, and then optimized using a weighted

transportation algorithm. The results of this solution are used in an integrated simulation

model that introduces the inherent variability. The simulation returns to the user the

expected, best, and worst arrival times, and the build up of power over time. The net

result of the hybrid model is a tool that allows for effective planning given the available

information, as well as simulation results that predict the outcome of the plan. This

hybrid approach allows a very large problem to be solved efficiently, and provides

analysis of probable outcomes for planning.

TABLE OF CONTENTS

LIST O F TA B LE S ... v

LIST O F FIG U RE S .. vi

CHAPTER 1 - INTRODUCTION .. 1

CHAPTER 2 - LITERATURE REVIEW 6
Early Modeling of Complex Systems 6
Types of Hybrid Modeling and Applications 7

CHAPTER 3 - DEVELOPMENT OF THE MODEL 17
M athem atical M odel 18
Sim ulation M odel ... 28

CHAPTER 4 - APPLICATION TO MASS TACTICAL
AIRBORNE OPERATIONS 31

A nalytical M odel .. 31
Transportation Algorithm 38

H ybrid M odel Interface ... 41
Sim ulation M odel .. 43
Exam ple Scenario .. 50
Overall Solution Procedure 54

CHAPTER 5 - HYBRID MODEL VERIFICATION,
VALIDATION, AND ANALYSIS OF RESULTS 55

Analytical M odel Verification 55
Number of Simulation Replications Required 58
Validation of Analytical Model Assumptions 61
Analytical versus M anual Solution 66

CHAPTER 6 - CONCLUSIONS AND SUMMARY 70

REFERE N CE S .. 75

111.*

A P PE N D IC E S ... 79
A. Visual Basic Optimization Model Code 80
B. M ODSIIM II Simulation Code 100
C. Sim ulation Distribution Data 123
D. Net Solve and Excel Solutions 133
E. Experimental Design ANOVA Table 139
F. Simulation Runs and Hypothesis Testing 150

iv

LIST OF TABLES

1. Initialization Param eter V alues 33

2. Ground Speed Determination Criteria 35

3. Sim ulation Statistical D ata .. 46

4. Example Scenario Initialization Parameters 51

5. M anifest Sum m ary Table ... 52

6. Analytical Solution Method Verification and Comparison 57

7. Replication Experim ent Results 61

8. Comparison Scenario Initialization Parameters 63

9. Paired t-Test 90% Confidence Intervals 65

10. Analytical vs. Manual Paired t-Test Analysis 68

v

LIST OF FIGURES

1. Current Practice Drop Zone Representation 3

2. Analytical and Simulation Models Used for Validation 8

3. Class I Hybrid Model 10

4. C lass II H ybrid M odel... 12

5. C lass III H ybrid M odel 13

6. Class IV H ybrid M odel 14

7. Proposed Class IV Hybrid Model Application 18

8. M ilitary Grid Reference System 20

9. Transportation N etw ork .. 25

10. Initialization Param eters Screen 32

11. Objective Information Input Screen 34

12. Analytical Optimal Solution Display 41

13. Simulation Object Model 45

14. Sim ulation M odel Outputs 50

15. Replication Results and Simulation Summary Table 53

16. Graph of Distances to Each Objective from Impact Location 66

vi

CHAPTER ONE
INTRODUCTION

A complex system can be defined as a system with a large number of attributes

and often has multiple external influences acting upon it. Also, these large scale

problems are not static, and evolve continually over time which makes their

representation a difficult task for analysts and operations research model builders. The

most difficult of complex problems are those that contain a behavioral element in the

decision making process demonstrating the presence of conflict of interest between

multiple goals [Verumi, 1978].

Analytical and approximate models have been developed for solving a multitude

of complex problems over time. A benefit of mathematical models is that they can be

used to find an optimal solution. However, through generalization and simplifying

assumptions, these analytical or approximation models may be inadequate for proper

representation of a planning system. This becomes especially evident when other than

first-come-first-served practices are used in queuing, non-exponential service times are

present, machine failures are common, and routing procedures that are possibly

Markovian are present. Thus, simulation modeling presents itself as an excellent

alternate tool for planning because it allows for the modeling of highly complex systems,

but is limited to being descriptive in nature [Shanthikumar, 1981].

2

One approach for solving complex problems is to isolate portions of the system

and model them separately. These models must realistically interact with one another

and be able to share requisite data. In order to benefit from the advantages of both

analytical and simulation modeling, it may be desirable to combine their methodologies

into a hybrid model [Sargent, 1994]. Hybrid modeling is the development and

integration of more than one type of representational model, that as a whole can be used

to solve or portray a complex problem that would otherwise be too difficult to solve

using conventional modeling techniques.

The purpose of this research is to demonstrate how a hybrid analytical/simulation

model can be used recursively in order to minimize the disadvantages of mathematical

modeling, while gaining new insight through the simulation model [Ignall, 1979]. This

approach will be used to solve the complex application of loading paratroopers, by unit,

optimally onto aircraft and then determine the expected results once they have arrived

onto the ground. The solution to this problem provides the optimal way (in a

deterministic sense) to load an aircraft for a particular operation to meet the

commander's objectives of rapid assembly towards pre-designated points on the ground.

The problem being addressed in this research is an important problem because

inadequate planning for mass tactical airborne operations into combat results in the loss

of battle synchronization, poor mission efficiency, and ultimately the loss of human life.

While history has recorded paratroopers as shock troops for their quick effects on the

3

enemy, unsatisfactory planning of an operation can quickly lead to disaster. Thus,

planning for these complex missions is critical for success. The research addressed here

is important for the field of industrial engineering because it illustrates the use of two

models used in unison to solve a complex problem that would otherwise be inadequately

solved with just one type of modeling.

The current and accepted air plan practices for all U.S. Army airborne units is

found in the 82nd Airborne Division's Airborne Standard Operating Procedures (ASOP).

According to the ASOP, the manifest order should be determined by drawing a schematic

of the intended drop zone (DZ), and then drawing a line every 75 yards perpendicular to

the line of flight, starting at the personnel point of impact (PPI, where the first jumper

will land). Visual estimates are made to determine the closest objective area to each line,

as seen in Figure 1. This rough estimation is then used for unit assignment and

consequential personnel assignment. The process as specified is laborious, and very

rarely carried out in practice.

D irectionI I I I I I I I I I I I I I I

F i h) I I. I I I . Ji lI I I I I I I I Il l

Figure 1. Current Practice Drop Zone Representation

4

In the operation of a mass tactical airborne mission, the one portion the unit

commander has direct impact on is what personnel will load onto an aircraft, and in what

order they will be loaded. The seating assignment of the personnel, of course, directly

impacts where each individual trooper lands. In the ground tactical plan, each trooper (as

part of a unit of troopers) is assigned an objective that he must move towards

immediately after hitting the ground. Therefore, a good air plan is crucial in the

execution of the ground tactical plan.

In order to solve this assignment problem, a purely deterministic model, "as if the

world were perfect" scenario, will be established and solved to obtain the optimal

loading plan. The solution is obtained by minimizing the travel time of paratroopers

between the point of impact and their objectives. The solution is then fed into a

simulation model that introduces the inherent variability. The sources of variability

include aircraft speed, direction and altitude, along with jumper exit intervals, wind drift,

descent rate, paratrooper impact recovery, orientation and ground speed to the objectives.

The output of this simulation includes the expected mission completion times, maximum

and minimum assembly times as well as the variances of the combat power percentages

over time for each ground objective.

A hybrid analytical/simulation was selected for this problem because without the

variability, the analytical model only provides a solution under optimal conditions (a

starting point). A simulation model is necessary because the world is not perfect, and the

5

commander would like to know what he can expect to have happen.

The organization of this thesis is as follows: Chapter two reviews the foundation

and characterization of hybrid modeling. Chapter three describes the mathematical

representation of the problem and presents the simulation model. Chapter four discusses

the computer application and integration of the hybrid model. Chapter five presents the

trial results of simulation runs, efficiency and accuracy comparisons to present methods,

and some beta version testing of the software package. Finally, chapter six offers

conclusions that can be drawn from this research.

6

CHAPTER TWO
LITERATURE REVIEW

Early Modeling of Complex Systems

In the late 1600's, the German mathematician Liebniz believed that truth was

analytical, and that a system could be defined completely by a formal or symbolic

procedure. This Leibnizian Approach is the foundation of early system analysis and

model building. Leibniz also proposed the methods of decomposition and aggregation

for the analysis of large scale systems in order to reduce the dimensionality of the

problem at hand [Verumi, 1978].

A large-scale system, as defined by Verumi [1978] is a system in which the

number of attributes necessary to describe or characterize the system are too many, the

laws relating the properties of the attributes to the behavior of the system are generally

statistical in nature, and the system is not static and evolves over time. The behavioral

element at the decision making stage also is a major portion of the overall performance

of the system.

Decomposition of complex systems is the most straightforward method for

analyzing them. Ideally, a complex system can be broken into sub-problems or models

and solved in relative isolation. It is the coordination and reintegration of these sub-

7

models that often proves to be the greatest challenge. Problems that are best suited for

the Leibnizian approach are ones that have a well defined structure and clearly definable

underlying assumptions [Verumi, 1978].

Analytical and simulation models can be considered as two end-points of a

spectrum for solving problems. Sometimes it is desirable to combine these modeling

approaches in order to solve complex problems. This is referred to as hybrid modeling

[Sargent, 1994]. Sargent [1994] defines hybrid modeling as:

"A hybrid model is a mathematical model which combines identifiable simulation
and analytical models".

"Hybrid modeling consists of building independent analytical and simulation
models of the total system, developing their solution procedures, and using their
solution procedures together for problem solving".

Types of Hybrid Modeling and Applications

Ignall, Kolesar and Walker [1978], demonstrated that analytical models are

generally preferred by analysts instead of large simulation models. However, in many

cases the simplified conditions assumed by the analytical model do not hold true in the

real world. A more realistic analytical model often grows so large and unwieldy that it

cannot be solved by itself, thus simulation models can be developed to represent the large

complex systems.

Ignall [1978] examined the scheduling and routing of fireman and policeman in a

large simulation model, and then was able to derive from the simulation runs, a closed

8

form algebraic solution for scheduling. The derived analytical solution method

functioned equally as well in developing a schedule when compared to course-of-action

alternative analysis used in the simulation model. Refer to Figure 2 which shows the

parallel relationship between analytical and simulation models used for validation

[Shanthikumar, 1983].

Schwetman [1978], demonstrated that by combining a discrete-event simulation

and mathematical model, he could achieve a better solution than the large scale

simulation-only model, at a significantly reduced computational cost. By utilizing

ANALYTIC SIMULATION
MODEL MODEL

I soo o_ oo o
SOLUTION SOLUTION

PROCEDURE PROCEDURE
EI. USED TO VALIDATE•

SOLVING

Figure 2. Analytical and Simulation Models Used for Validation
[Shanthikumar, 1983]

9

analytical models in place of portions of the simulation model, he could reduce

computational complexity and cost, without sacrificing accuracy. The example used by

Schwetman was to divide computer resources into long and short term where the long

term requirements were simulated (e.g. arriving jobs, partitioning and establishment of

control points). The short term computer resources (e.g. CPU, input and output devices)

were modeled using a mathematical model. The net benefit was that the simulation

adequately represented those aspects that covered minutes, hours, and days, while the

mathematical model handled the tasks that took less than one second. One key benefit in

presenting his hybrid model was that it represented the overall system accurately, and

appeared to "look" like a realistic computer system. The final benefit of Schwetman's

hybrid model was that with a significantly reduced computational requirement, many

more scheduling alternatives could be examined.

Shanthikumar and Sargent [1983], and Sargent [1994], present four classes of

hybrid models:

1. Class I - Models that alternate over time between independent analytical and
simulation models,

2. Class II - Models in which the simulation and analytical model operate in
parallel,

3. Class III - Models in which the analytical model is subordinate in some way
to the simulation model and,.

4. Class IV - Models in which the overall system is represented by the
simulation model, but requires some or all of its inputs from the analytical
model.

10

The following describes these models in detail and presents the application of

each class as cited in the literature.

Class I Hybrid Models

A Class I hybrid model is one whose performance over time is derived by

alternately using independent analytical and simulation models [Shanthikumar, 1984].

Both models emulate a portion of the overall system, derive a solution procedure

independently, and together the independent solutions are brought together for solving

the problem. In this approach, both parts of the model function independently. This

process is shown in Figure 3.

An example of a Class I type model is a machine shop, with alternating control

• _SYSTEM

ANALYTIC SIMULATION
MODEL MODEL

SOLUTION SOLUTION
PROCEDURE PROCEDURE

r 3INTERFACED M
SOLUTION

PROCEDURE

:USED OR ROBLEM SOLVING

Figure 3. Class I Hybrid Model [Shanthikumar, 19841

11

and busy phases. Analytical representations are readily available to model the customer

arrival patterns, while the operation or busy time can be more effectively modeled with a

simulation model. One model can handle each phase, with the other one starting after the

first is complete, and vise versa. The overall methods and times are collected and

processed together for problem solving [Shanthikumar, 1984].

Class H Hybrid Models

Class II hybrid models can also be decomposed into an analytical and simulation

model. The overall model, however, requires that the two models interact through the

solution procedure and to operate in parallel with one another [Sargent, 1994]. Figure 4

shows how each model contributes to the solution procedure and how the two models

interact.

In general, the Class II integrated solution method can be much more difficult to

implement than the Class I model. Most combined simulation models (having both

continuous and discrete portions) can be classified as Class II because the continuous

portion often uses a numerical solution method to solve its differential or difference

equations, and can therefore be termed the analytical portion [Shanthikumar, 1983].

These two separate models then run continuously, in parallel, with updated solution

parameters from one model passing through the solution procedure, updating the other

model. As an example, consider a single server queue with a mixed renewal function

12

ANALYTIC SIMULATION
MODEL -.-- MODEL

SOLUTION PROCEDURE

USED FOR PROBLEM
SOLVING

Figure 4. Class II Hybrid Model [Shanthikumar, 1984]

and a Poisson arrival process. The analytical model can derive characteristic sample data

that is used by the simulation to form the characteristic server times of the next customer,

which then impacts the next customer in the queue coming out of the analytical model,

and so on. Each model, in turn, requires data from the other to carry out its processes

and to complete its information cycle. These two sub-models are tightly interwoven and

are highly dependent [Shanthikumar, 1983].

13

Class HI Hybrid Models

The Class III hybrid model uses both the simulation and analytical model as

models of the total system. The simulation model of the total system, or major

subsystem, is used to obtain estimates of the input parameters for the analytical model of

the entire system [Sargent, 1994]. The analytical model is therefore subordinate to the

simulation model, and totally dependent on the outputs of the simulation runs for

initialization data, as seen in Figure 5. The analytical model output is then used for

problem solving.

An example of a Class III model is a computer CPU queuing system. A

simulation model is used to generate the inter-arrival rates and sizes of jobs, which can

then be input into as analytical model to optimize the scheduling and execution patterns

ANALYTIC SOLUTION SIMULATION
MODEL PROCEDURE MODEL

SOLUTION
PROCEDURE

=' USED FOR
PROBLE SOlVING

Figure 5. Class ILL Hybrid Model IShanthikumar, 1984]

14

required for the system. Both models contain the functionality of the system, with the

simulation model providing inputs for the analytical model [Shanthikumar, 1983].

Class IV Hybrid Models

Class IV models are similar to Class III models, except that the simulation model

derives its inputs from the solution procedure of the analytical model [Sargent, 1994].

Class IV models are represented by a simulation model that receives some or all of its

input values from the outputs of the analytical model [Sargent, 1994]. In other words,

the analytical model provides the initial position or start-up data for the simulation model

of the entire system. This process can be seen in Figure 6.

As an example of a Class IV hybrid model, a CPU management system uses an

ANALYTIC SOLUTION _ SIMULATION
MODEL PROCEDURE MODEL

I ,
SOLUTION

PROCEDURE

Figure 6. Class IV Hybrid Model [Shanthikumar, 19841

15

analytical function to determine the throughput times of scheduled jobs. This solution is

then passed to the simulation model which controls the arrival and departure of jobs, and

also collects the overall system performance measures [Schwetman, 1978].

Min [1990], demonstrated an adaptation of the Class IV hybrid modeling

technique that integrated a large knowledge based hybrid model with flexible

manufacturing systems. Min's hybrid model combined a constraint satisfaction problem

(analytical model), a rule-based simulation model, and heuristic rules. The technique

first generates a solution using the constraint satisfaction problem (CSP) within certain

heuristic restraints. The rule-based simulation then evaluates this proposed solution.

Finally, a choice rule selects the best solution set and modifies the CSP search space.

Intelligent simulation, in this sense, can therefore be classified as a type of hybrid model,

with a rule-based, artificial intelligence (AI) or expert system performing instead of, or in

addition to, the analytical model along with the simulation model.

Regardless of the type or class, hybrid modeling has been shown to be useful in

gaining insight into system behavior, validating analytical models and solving large scale

complex problems [Ignall and Kolesar, 1979, Hanssman, 1980]. The approach applies

fundamental OR/MS theory by decomposing the large problem into functionalities, and

then applying the best representation/solution tool to solve it.

16

In this research, a Class IV hybrid model has been selected for representing and

solving the complex problem of airborne manifesting. Chapter 3 presents the

methodology that combines the analytical and simulation models for solving this

problem.

17

CHAPTER THREE
DEVELOPMENT OF THE MODEL

In this research, a Class IV hybrid analytical/simulation model will be used to

solve the problem of airborne manifesting. The goal is to determine the best way to load

the aircraft, according to the commander's objectives and intent on the ground. The

commander's objective is to minimize the required travel time for each jumper from his

point of impact to his given assembly point, in order to support the accomplishment of

the overall mission. The first component of the model is a mathematical model that

provides an optimal loading strategy by minimizing the total travel time for a given

operation. This model will be solved with the assumption that everything occurs exactly

as planned. To better reflect reality, the output of the analytical model (i.e. the optimal

loading strategy) is input into a discrete event simulation, which is the second component

of the model, in order to give commanders feedback on what they may expect to happen

on the ground. The simulation model introduces the inherent variability of airborne

operations such as wind conditions, drift, aircraft location and speed, delays between

jumper exits, and other instances of variance. The simulation allows for the comparison,

validation and verification of portions of the analytical model. Figure 7 demonstrates the

proposed approach.

18

MATHEMATICAL NETWORK SOLUTION SIMULATIONII MODEL TRANSPORTATION I OUIN SMLT

INITIAL MODEL PROCEDURE MODEL
CONDITIONS (Manifest)

0. ANALYTICAL MODELAND USER /

DATA

Z~EXPECTEED
OVERALL •IMPACT Plus

SOLUTION Additional

PROCEDURE Insight

Figure 7. Proposed Class IV Hybrid Model Approach

Mathematical Model

The mathematical model represents the distributions and dispersal of jumpers out

of each aircraft, their eventual position on the ground and the relative distance to each

objective. In order to formulate this model, a collection of initial assumptions are made

which is the basis for the perfect world model:

1. All aircraft are traveling at constant 125 knots per hour.

2. All aircraft are flying along the exact heading as specified.

3. The flight formation is in-line trail, which means each aircraft in a serial

follows directly behind the aircraft ahead, with no displacement left or right.

4. Each aircraft begins dropping jumpers at the Calculated Air Release Point

(CARP) and that the CARP was correctly computed to have the first jumper

19

from the primary jump door impact directly on the Personnel Point of Impact

(PPI).

5. The interval time between aircraft in a serial of aircraft is minimal (usually

less than 10 seconds).

6. Time under the parachute canopy is equivalent for all jumpers and is minimal.

7. Ground elevation is uniform (i.e. the world is flat).

8. Jumpers exit uniformly at one second intervals from each door.

9. The assistant jumpmaster's door begins exiting jumpers exactly one-half

second after the primary door begins.

10. All aircraft are cross-loaded equally (i.e. units are equally dispersed over all

of the available aircraft in order to minimize risk if an aircraft is lost).

11. Distances are calculated on a straight line basis of travel.

In order to calculate where each jumper should impact on the ground, the Military

Grid Reference System (MGRS) was used to determine location. The x-coordinate is a

false Easting value expressed in meters, increasing from left to right. They-coordinate is

the Northing component, and increases from bottom to top. A ten digit system is used (5

for each x and y) that records the locations accurately to one meter (see Figure 8).

Angles are measured from grid north and increase clockwise. All measurements are in

meters. This procedure creates a synthetic 2-dimensional xy plane to be used in both the

20

10 11 12 13 14 15

+ B 80

79

N
0A 78Or A=t7

t+
hh

77

n
g

Easting

Figure 8. Military Grid Reference System (MGRS)
Through interpolation, point A is located at grid 12500 77500,

point B is at 13850 79900.

deterministic and simulation model.

The first jumper exiting from the primary door impacts on the Personnel Point of

Impact (PPI) and gains the PPI's x and y coordinates. Each subsequent jumper's x and y

position must then be calculated incorporating the heading, or Direction of Flight. The

following is the formula for determining x and y coordinates for jumpers one though n on

the primary door:

X, = Xn,_ + [sin(DoF) * 68.58 meters]

Yn = Yn- 1 + [cos(DoF) * 68.58 meters]

21

where:
Xn= the Easting coordinate for jumper n

Yn= the Northing coordinate for jumper n

DoF=: the direction offlight in degrees from true north
68.58 meters is equal to 75 yards which is the distance traveled in one second at 125 knots.

The first jumper from the non-primary door ideally exits one half second after the

primary door. His location is then found using the formulas below, with jumpers 2

through n using the formula above and substituting Xland YI's location for X-.1 and Y,,1..

X 1, X + [sin(DoF) * 34.29 meters]

Y, =Ypp, + [cos(DoF) * 34.29 meters]

where:
34.29 meters is the distance traveled in 1/2 second at 125 knots per hour

Once the impact location for each jumper is determined on the ground, the

distances to each possible objective can be calculated from each impact point. This is

done simply by using Pythagorean's Theorem as follows:

Distance= [(XoBJ Xn)+(YoB-y])21

where: XoBJ and YoBJ are the x andy location of each objective andX, and Y. are the impact
locations for each jumper.

Once all the distances from the impact points to the corresponding objective

locations have been determined, they are converted to time factors using the maximum

sustainable speeds from the heat stress model found in the Dismounted Infantry

Movement Rate Study [Hayes, 1994].

Note that in a given mission, several objective locations exist that the paratrooper

22

must head toward upon impact. These locations are, of course, not of the same

importance level. The objectives are generally classified into three categories:

1. Mission Essential - Those missions that absolutely must be accomplished for

the overall success of the operation.

2. Mission Support - Units that directly support the execution of the mission

essential force.

3. Secondary Mission Support - Those units assigned missions that are not

critical to the essential or primary support missions.

The relative importance of each objective was assessed using a pair-wise

comparison of the criteria, by the command and staff of the 2nd Battalion, 325th

Airborne Infantry Regiment, who served as the client for this project. The relative

importance of these objectives were determined to be 5.2, 2.3, and 1.0 for mission

essential, mission support, and secondary mission support respectively. These factors

will later be used in the formulation of the mathematical model.

Several optimization methodologies were considered in finding an optimal

solution for this problem. If one views the original virtually unbounded problem of

minimizing the overall travel distances from origin points that displayed wide random

placement, it can be readily seen that this problem can be NP (Non-Polynomial)

complete. To solve NP complete problems, such as a decision problem, a polynomial

transformation must be done in order to change the problem into a polynomial form.

23

Application of heuristics also can be used to down scale the size of this type of problem.

[Evans, 1992].

This problem easily lends itself to network representation, and can be viewed as a

network assignment problem utilizing integer values (personnel, aircraft and objectives).

In order to determine the optimum manifest of the aircraft, the problem is modeled and

solved as a transportation network assignment problem.

The transportation (or distribution) problem pre-dates most linear programming

as an optimization method, and is a standard application for industry having multiple

sources, destinations, and capacitated routes. In the standard interpretation of the model,

there are m supply points (or origin nodes) and n demand nodes. From the supply nodes,

there are a specified number of items needing transport. At the demand nodes there are a

specified number of requirements to be met. Arcs are drawn and costs computed from

each supply node to each and every possible demand node in the system. The overall

formulation for this network minimization problem is as follows [Wagner, 1975].

m n

Minimize Y 1C.X
i=1 j l

n

subject to: •X _< S1 for i =1,2,3 , m (supply)
j--l

n

nY. > Dj forj = 1, 2, 3 , n (demand)
i=1

x. 0 for all i andj

24

where:
Cli : the arc transportation cost from node i to nodej
X,: the amount of material transported down from node i to nodej.
Si : the supply values at supply node i
Dj: the demand values at demand node j
m: number of supply nodes
n: number of demand nodes

Because the basic feasible solution must be composed of an integer solution, and

all manipulation in the transportation tableau is done through addition and subtraction,

the resulting solution will be integers. This transportation model not only avoids the

inherent complexity of integer programming, but offers a dynamic solution process that

has a level of complexity less than that of linear integer programming [Armacost, 1991].

Dummy objective nodes are created in those instances where the quantity of the supply

nodes (i.e. the total number of aircraft in the serial) exceed the number of troopers

allocated to the designated objectives. For the application problem in this research,

these dummy slots will be used for parachute fillers, effectively placing non-essential

personnel in positions that are not required by jumpers with mission essential or support

missions to be accomplished for the commander.

To formulate the manifest plan as a transportation problem, the seating capacity

of the aircraft on both the left and right door are used as an array of source nodes, with

the supply value at each node equal to the total number of aircraft (or chalks) in the

serial. The demand nodes are the different objectives or assembly areas, with the

demand value equal to the number of personnel in the subordinate unit assigned to seize

25

that objective, times negative one (demand nodes are always negative, denoting a need to

be filled). The time-distance coefficients are the costs of the arcs connecting the supply

nodes (jumper position) with the demand nodes (different objectives). These costs are

the weighted travel times computed between each jumper location and each objective.

This network is shown in Figure 9.

The network nodes and arcs reduce the total number of variables. For an example

with 120 jump positions and 6 objectives, using integer programming, 720 variables

would be required, with a majority of them being zero. In the corresponding

transportation model the requirements of 126 nodes must be satisfied through the

Jumper Positions Objective Positions
(Supply Nodes) (Demand Nodes)

Supply Left Right Demand

Chalks Cost Arcs (Time/Distance)

Cha Objective Requirement
Chalks

- Objective Requirement

FuObjective Requirement

Figure 9. Transportation Network

26

selection and utilization of the 720 possible capacitated arcs. While costs and penalties

must be computed for the usage of each arc, all are not used.

For software implementation, the transportation method is coded using Microsoft

Visual Basic for Windows. The main reason for using this software is that once

compiled, the application is free-standing and royalty free. See Chapter 4 and Appendix

A for the Visual Basic code.

In order to formulate and solve the network, the program constructs an m by n

cost matrix where m is the number of total jumpers for one aircraft, and n is the number

of objectives. An identically sized array of integer values is constructed to represent the

solution values. Constraints are placed on the number of jumpers assigned to each

objective as well as the number of chalks. The transportation algorithm continues until

all constraints have been met, and no further improvements can be made by having non-

basic variables enter (i.e. optimality has been achieved).

There are several approaches for generating an initial basic feasible solution for

the transportation problem. The methods compared in this research include the North

West Corner Rule, Vogel's Approximation Method, and the Minimum Cost Method.

The North West Corner Rule is a greedy algorithm that begins in the upper left hand

corner of a tableau, allocates as much as possible to each cell or arc, and then moves

right and down sequentially filling as much as it can, yielding the required m + n - 1

basic variables (m = columns, n = rows). The Minimum Cost Method finds the overall

27

smallest coefficient value, allocates as much as possible to that cell, and then searches for

the next smallest coefficient, eliminating rows and columns as they are satisfied for

supply and demand respectively.

The Vogel Approximation Method (VAM) operates by computing row and

column penalties, finding the largest for the coefficients (i.e. with the highest cost for

non-selection), and selects the smallest value in that row or column for allocation. The

algorithm then eliminates the satisfied row or column, recomputes row and column

penalties, and starts again.

Among the three approaches for finding the initial feasible solution, VAM is the

most complex [Winston, 1991]. However, VAM yields an initial basic solution that is

very close to the optimum and often yields the optimum solution. Because of the

proximity of the initial feasible solution to the optimal solution, VAM requires the fewest

iterations of the transportation simplex to find the optimum. The North West Corner

Rule on the other hand, requires the least time to compute the initial solution, but takes

the most iterations of the simplex to reach optimality. The North West Corner, on the

average, takes three times as many pivots as VAM for the same size of problem [Glover

et al., 1974]. The Minimum Cost Method falls between the previous two methods in

overall complexity. Vogel's Approximation Method has been selected for finding the

initial feasible solution in this research.

28

Simulation Model

To introduce the inherent variability that occurs in airborne operations, the

optimal solution obtained from the analytical model is fed into a simulation model in

order to give the commander a realistic range of expectation for actions on the ground.

The range of variability is examined in terms of actions in the aircraft, actions in the air

(after exiting the aircraft) and actions on the ground. This introduction of variability

directly addresses the assumptions made in order to formulate the optimization model.

One source of variability comes from the fact that the aircraft may not be flying

the exact heading as indicated in the pre-flight briefing. Experience has shown that the

plane can deviate approximately 5 degrees in either direction and aircraft speed can range

from 110 knots to 130 knots, with a mean of 125. The calculation of the CARP is done

by offsetting the estimated throw (the approximately 210 yards that a jumper is thrown

forward upon exit prior to canopy envelopment) back against the direction of flight. This

figure is further offset 200 yards against the wind direction for each 5 knots of wind, in

order to compensate for drift. The CARP is therefore a relatively rough estimate of

where troopers should begin to jump so that they will land on the PPI. It is the job of the

navigator in each aircraft to announce the CARP so that the co-pilot can turn on the

green light to start the jump. Note that a delay of one second at 125 knots, translates to

75 yards (or 68.58 meters).

Once the green light is lit, the number one jumper on the primary door must exit

29

immediately, with each subsequent jumper ideally following the previous jumper at a

uniform one second interval. The assistant jumpmaster's door should begin exiting

jumpers approximately one-half second after the primary door begins. This jump

interval can be perceived as an inter-arrival rate. The actual data and distributions used

by the simulation model are from the last round of C-141 testing done in October 1994

by the TEXCOM Airborne and Special Operations Test Directorate.

The actual drop altitude also plays an important role in the amount of inherent

drift of the parachute. For every 100 feet above the ground under an inflated canopy,

each parachute can drift 4.2 yards in any direction. This drift can be accentuated if the

lead aircraft in a serial is flying above or below the requisite 800 ft Above Ground Level

(AGL). Trail aircraft in a serial also tend to fly an average of 50 feet above the aircraft

in front to avoid hitting paratroopers in the sky. The actual historical data of deviations

is not required to be maintained by the U.S. Air Force's Air Mobility Command, thus

variances were obtained from area experts' best estimates, and conversations with six.

navigator/pilots. A portion of the jumpers may also be injured, either in the air or upon

impact. However, because this data must be based solely on the estimates of a user,

under the given circumstances, it was determined to be an non-influential factor for this

model.

Once a jumper impacts the ground, he must immediately get his weapon into

operation, roll up his parachute and air items, and begin moving toward his objective.

30

The approximate time for each trooper to accomplish this maneuver is 7.5 minutes, with

a standard deviation of 2.0 minutes. A portion of these jumpers, approximately 5%, will

be lost enroute to their objective anywhere from 10 to 60 minutes. On the way to his

objective the trooper will travel at the maximum sustainable rate given the temperature,

humidity, available light, surface and grade conditions (as defined in Dismounted

Infantry Movement Rate Study [Hayes, 1994]).

The inputs for the simulation model include the manifest listing by subordinate

unit designation of each aircraft in the serial generated from the mathematical model,

using the transportation problem algorithm. Other inputs of the simulation model include

starting location, number and type of aircraft, aircraft heading and environmental

conditions. The outputs of the simulation are the build-up of combat power over time at

each of the objective areas. Critical percentages achieved (e.g. 50%, 75%, 90%, etc.) are

tagged and their corresponding code-words generated during each replication.

Minimum, maximum, and mean distances and arrival times will be recorded for the

commander's review.

Both the optimization and simulation application are discussed in more specific

detail in Chapter 4.

31

CHAPTER 4
APPLICATION OF HYBRID MODELING

TO MASS TACTICAL AIRBORNE OPERATIONS

A Class IV hybrid analytical/simulation modeling approach has been selected to

solve the problem of manifesting for mass tactical airborne operations. In order to solve

this problem, a mathematical model of the system was first developed and optimized

using a transportation network. The results of the optimization are then interfaced with a

object-oriented simulation model that introduces variability and allows for additional

experimentation. The outputs of the hybrid application are the optimum aircraft

manifest, given the commander's requirements, and what the commander can expect on

the ground as a result of his plan.

Analytical Model

The overall analytical model is coded in Microsoft's Visual Basic 3.0 for

Windows. Visual Basic was selected as the shell because of the readily useable graphical

user interface (GUI). Windows is already widely used by the target client, the U.S.

Army, and it has the ability to launch and communicate with other Windows

applications. Finally, a Visual Basic application is stand alone, generates its own

Windows setup disks, and is essentially free to the client for distribution and use.

32

In order to setup the mathematical model, the values of several input variables

must be entered by the user. Figure 10 illustrates the first window that the user

encounters in order to provide the initial parameter values. The names and definitions of

these initialization parameters are shown in Table 1.

File Edit Help

Number of Chalks:

Type of Aircraft: C-1 41 B

®C-130

Length of DZ 42
(in secondsl
Direction of
Flight (degrees)

PPI Location 70300 91950 I
(10 digits)

PPI Altitude 237
(meters)

Number of
Passes Planned F]

Jumpers per Door
per Past 20

Number of
Objectives/ Ej Racetrack

Assembly Areas Time (Min):

Fiu Help 1e

Figure 10. Initialization Parameters Screen

33

Table 1. Global and Initialization Parameter Values

Parameter Name Data Type Definition
Number of Chalks Integer Number of aircraft in a serial
Length of DZ (in sec.) Real Time length of useable drop zone
Direction of Flight Real (Degrees) Direction vector of the aircraft
PPI Location Real/Real Expected first impact point location
Number of Passes Integer How many times the aircraft will

over-fly and drop jumpers

Jumpers per Door Integer Number of exits on a pass
Number of Objectives Integer Number of demand nodes
Racetrack Time Real Amount of time it takes to line up

the aircraft and begin the next pass
X Location Array Integers The Northing location values,

array sized 1..Jumpers per Door

Y Location Array Integers The Easting location values,
array sized 1..Jumpers per Door,

From the initialization parameters, the global arrays and matrices are formed

using the following procedures. First the personnel point of impact (PPI) location is used

as a starting point, and the distributions of impact points along the heading are computed

using the continually updating the position equations described in Chapter 3. These

impact points Easting and Northing location values, which are numbered from one to the

number of jumpers in a pass, are stored in two X and Y arrays for both sides of the

aircraft. Together these arrays are the projected components of ground impact locations

of each jumper or supply nodes. Requirements for number and length of passes will be

used once the distances are converted to travel time. The user is then queried as to the

total number of jumpers in each aircraft (i.e. whether it is full to its type-capacity, or

34

not). The number of designated objectives, sets up the next portion of the problem,

displaying a number of screens that request information on each objective.

Each objective is characterized by a unique name, an assigned unit, a defined

location, and the number of paratroopers in that unit that are given a mission to seize.

Secondly, in order to adequately weigh the overall importance of each objective, a

commander's assessment is made of mission priority and type. A sample input screen is

displayed in Figure 11. Finally, the user must specify the environmental conditions

under which the mission is to be carried out. These conditions are shown in Table 2, and

Obiective Name: [ij SWORD - - ,' ,' ?

Unit Assigned ITM A/2-325 AIR ý

Force Designated [#PAXF [7

Objective Location 69100 92700
(10-digit) 190

Objective Altitude 241

Commander's iiss-io n E- ini~a-i
Priority: 0 Mission Support

0 Other Support Missions
Drop Zone
Conditions:

Est Temperature lWarm-> Above 76F l

Relative Humidity 175% and higher i
Cloud Cover INight

Ave. Grade From ILevel
DZ to OBJ:

Terrain Type: IHard DirtI

Figure 11. Objective Information Input Screen

35

Table 2. Ground Speed Determination Criteria

Parameter Possible Value Ranges
Ambient Temperature Cool, below 50 2 F

Mild, 50 2 to 75 2 F
Warm, greater than 75 _ F

Relative Humidity 25% or less
26-74%
75% or more

Cloud Cover Night
Clear Sky
Partly Cloudy
Cloudy

Average Grade from DZ to OBJ Level (+/- < 10%)
Slopes Up (>10%)
Slopes Down (>10%)

Type of Terrain Asphalt
Hard Dirt

I Loose Sand

contained in a fixed five-dimensional array as a look-up table within the application

itself. These environmental factors return a maximum sustainable speed, in meters per

second, and are obtained from the Dismounted Infantry Movement Rate Study [Hayes,

1994], that models core temperature and human performance under stress. The entire

database of movement speeds was much too large for practical use (18,900 entries), so a

representational portion of the significant forces are used in this model, with 324 possible

combinations of the five parameters available. A factor not used in this model is risk

level. Due to the nature of these type of operations, a high level of risk was assumed

throughout.

36

Once the user enters the required information, the model utilizes the data to

calculate the distances from each of the impact point's x and y locations from the global

array to the x and y location of each objective, and enters the values into a distance array

for that objective column. The distance coefficient array is sized by two times the

number of jumpers in a pass, by the number of objectives.

Each of the other objectives' data is then input in sequence using identical

objective information screens, with the temperature, humidity and cloud cover

parameters remaining fixed, having already been determined in the first objective screen.

After all of the objective data has been entered, and the distance array for the first

pass is formed, the distance coefficients must be weighted and converted to time. The

coefficients are multiplied by the mission criticality weighting factor, 5.3 for Mission

Essential and 2.3 for Mission Support, and then divided by the computed ground speed

in meters per second. This returns a weighted travel time in seconds, from each impact

point to each objective, and is stored in an array sized by two times the number of

jumpers per pass times the number of passes, by the number of objectives.

Time is used as the coefficient unit for the network because additional passes, and

the requisite time to complete each flight back around to the drop zone (i.e. racetrack),

must be considered in order to adequately evaluate the consequences. This allows the

weighing of alternatives between distances (now time) and the additional racetrack time.

As an example, the tradeoff can be made by the algorithm to either drop a jumper on an

37

earlier pass farther from his objective, or on a later pass closer to that objective.

Once the first pass time coefficients are computed, the array expands to add the

additional passes, adding the racetrack time (in seconds) to each additional pass's

weighted travel times. Because the last pass of most operations is uneven, the overall

size of the array is reduced to reflect that capacity, by eliminating those positions not

required in the last pass. A set of duplicate sized, two dimensional, blank array of

integers are formed that serves as the variable matrix for the solution procedure. The

following transportation problem equation and constraints are utilized:

Minimize Y EC.X
i=1 jp

n

subject to: ,x. < Si for i = 1, 2, 3...., m
j--I

n

Lx.=Dj forj= 1,2,3 n
i=1

x. 0 for all i andj

where:
Cif : the weighted travel time coefficients

X,,: the number ofjumpers that will utilize that ij path.

Si: the number of chalks in this mission

Dj: the requirements at each objective
m: number ofjumpers in a single aircraft
n: number of objectives

Next the algorithm constraints must be considered. Each row in the variable

array must sum to the number of chalks in the mission (i.e. the quantity in the supply

38

nodes), and each column (objective) must sum to the troop requirement at that demand

node. These constraints are stored in two separate, one dimensional constraint arrays,

with a duplicate array that functions as the working sum, being less than or equal to the

constraints as the solution is developed. The row sum array is one dimensional and sized

one to the number of objectives plus one, the column array is also one dimensional and

sized one to the total number of jumpers in one aircraft. Also added here is a dummy

column (or demand node), that serves to take up the slack between the total force

requirements of each column and the total capacity of the aircraft. The coefficients of

the dummy column are zeroes, as to not affect the optimal solution, and allow the

placement of excess, non-essential personnel into a position not required more by a

mission oriented jumper. Now that the transportation network has been established

dynamically by the user tool, according to the parameters of the user, the solution

procedure can begin. First an initial basic feasible solution must be found.

Transportation Algorithm

Once a basic feasible solution has been determined (using Vogel's Approximation

Method) and stored in a basic feasible solution (BFS) array, the search for the optimal

solution begins. This is done by utilizing the MODI method. U, and V, multipliers are

computed during each iteration of the algorithm for each row and column respectively.

These multipliers are computed such that:

39

Uj + V, = C., for each basic variable x,

where:
i andj represent row and column position

u= the row penalty value

Vj = the column penalty values
Cy. = the weighted travel time coefficients for that cell

The first u row multiplier is assigned a value of zero (arbitrarily), and then all

subsequent values can be computed by subtracting its compliment from its weighted time

coefficient c. Each non basic variable must then be assigned a benefit cost for inclusion

into the basic matrix (array). These values are determined by tabulating:

cq = U+ Vq - Cpq , for each non basic variable Xpq

with p and q representing row and column position, respectively

The cell with the largest, non negative Upq value is selected for inclusion into the

basic. To find the leaving basic variable, a search is conducted up and down, and on

both sides of the entering variable to find the largest possible level of improvement.

From this, the smallest variable value is selected, and the corresponding adjacent values

adjusted creating a closed loop. This loop allows a value to be changed, and then the

ramifications of that new value are re-computed in all cells that were affected. The

algorithm then begins again by recomputing the row and column penalties, and continues

until there are no longer any positive -pq values [Taha, 1992]. The working solution

array is then copied into a final solution array, that is the optimal solution.

Once the optimal solution is reached, the next step is to present the solution to the

40

user in an understandable manner. Note that this solution is a manifest listing of where

jumpers are to be assigned. This is done by searching the final tableau array row by row,

with the left door listing coming from the odd numbered rows, and the right door from

the even rows. Each row is searched for non-zero values. If the variable is equal to the

number of chalks, each aircraft is assigned a jumper belonging to that objective's column

designation. For variables less than the chalk number, the aircraft up to that value are

assigned, and then the remaining non-zero basic variables are assigned in that row for

aircraft beyond the last number, up until the number of chalks is satisfied for that

position. Null values are assigned a unit designation string of a space-key character, and

are employed by the user for non-essential personnel fillers. All these transformed

values, in the form of unit strings, are placed into a grid for display and review by the

user in the application, and can also be printed out for preparation of the actual manifests.

See Figure 12 for a sample final "optimum" manifest screen.

This screen also serves as the interface for launching the simulation model, which

is the second portion of the hybrid model.

41

Opima Maifs I Simlto Opion

Optimal LRI Posn Pass IChalkI 12 13 14 15
Manifest by L 6 1 TM Support TM Support TM Support TM Support Ti
Position and
Chalk Number: L 7 1 TM Support TM Support TM Support TM Support T1-

L 8 1 TM Support D/2-325 AIR D/2-325 AIR D/2-325 AIR D
L 9 1 D/2-325 AIR D/2-325 AIR D/2-325AIR D/2-325 AIR D
L 10 1 D/2-325AIR D/2-325AIR D/2-325AIR D/2-325 AIR D
L 11 1 D/2-325AIR D/2-325AIR D/2-325AIR D/2-325AIR D
L 12 1 D/2-325AIR D/2-325AIR D/2-325AIR D/2-325 AIR D
L 13 1 TM Assault TM Assault TM Assault TM Assault
L 14 1 TM Assault TM Assault TM Assault TM Assault T
L 15 1 TM Assault TM Assault TM Assault TM Assault T
L 16 1 TM Assault TM Assault TM Assault TM Assault T
L 17 1 TM Assault TM Assault TM Assault TM Assault T
L 10 1 TM Assault TM Assault TM Assault TM Assault T
L 19 1 TM Assault TM Assault TM Assault TM Assault T
L 20 1 TM Assault TM Assault TM Assault TM Assault T

L 21 1

OPTIONS:

V 23 0 0 0 7 0 0 7 7

24 0 0 0 7 0 0 7 7
Vie•"• i"A[[•i'25 4 0 0 3 0 0 7 7

[26 7 0 0 0 0 0 7 7

Figure 12. Analytical Optimal Solution Display. In this example the left door,
position 6, first pass of aircraft number 1 is occupied by a jumper from TM Support.

Hybrid Model Interface

In order to include the inherent variability into the problem, the analytical model

solution is provided as the input for the simulation model. This is done in the user

application by establishing a series of text files, which are the initialization parameters

for the simulation model. The components that size and determine the parameters of the

analytical model are carried out in the simulation model as well. The data elements

communicated from the analytical to the simulation model are as follows:

42

"* Type and number of chalks (i.e. aircraft)

"* Personnel Point of Impact X and Y location

"* Aircraft heading in degrees

"* Number of jumpers per pass

"* Number of passes

"* Total number of jumpers on each door

"* The racetrack time (i.e. go around again time)

"* X and Y locations of each objective

"* The objective names, units and force assigned

"* The ground speed over given terrain to each objective

"* A left door manifest by unit

"* A right door manifest by unit

For data accuracy, the different elements for the objectives are stored in separate

text files. One file contains the names, another the units responsible, and other files store

the locations, force requirements, and relative maximum speed over the specified terrain.

Each line of data is read by the simulation model at initialization, and dynamically re-

sizes the model accordingly. It is here that an object-oriented simulation shows its

greatest advantage, being re-sized without recompiling, and existing in a runtime form.

The global variables of the analytical model become the global variables of the

simulation.

43

Simulation Model

CACI's MODSIM II for Windows, object-oriented simulation software, was

selected as the implementation package for this application for several reasons:

1. Once compiled, the runtime executable file runs in Windows 3.1 and is

royalty free.

2. It can readily import the optimal manifest and initialization parameters

generated by the optimization package in Visual Basic.

3. It is object-oriented, and can track the several hundred entities and their

actions with less memory requirements than other packages.

The simulation model uses an inherited stream object that both reads and writes

from text files, and sets each entry equal to a variable value. The global values are the

attitude and orientation of the aircraft, the X and Y locations of the objectives, as well as

the force requirement and designation assigned to each of the objectives. The

initialization parameters are identical to the Visual Basic application (i.e. the

mathematical model). Both the left and right door manifests are read and stored in

corresponding two-dimensional arrays for position by chalk number. Thus the entire

simulation model is sized and initialized, without any additional user input. All required

data is read from the analytical model application. A unique communication object is

responsible for transmitting all global variable data to every software module within the

simulation model.

44

The objects generated by the simulation model represent the real life objects in

the operation. First, both a left and a right door are created as a type of queue object.

These door objects "fly" side by side, but disperse jumpers independently. The aircraft

door objects are stored in an array of objects for easy selection, designation, and tracking.

The jumpers are created from number one through the aircraft capacity and are given a

unit designation according to their position in the manifest array. The jumpers are then

added to their corresponding chalk door queue. At jumper initialization, the random

number object that generates the random numbers for that object is also initialized and

accompanies it throughout the simulation. The door objects dispense the jumpers in a

first come, first served (FIFO) order. Finally, the objectives and their characteristics are

generated as statistical objects for monitoring, and are also stored as an array of objects.

Figure 13 shows the object model diagram for the primary objects used in the simulation.

45

AircraftObj ParatrooperObj ObjectiveObj
(Queue Object) MyX, MyY, (RStatObj)

CurrentX, CurrentY, MySpeed,SpeedVar, MyObjX, MyObjY
StartX, StartY, DoorToObjTime : REAL ArrivalTime,
PassTime : REAL Chalk INTEGER ShowTime : REAL
NumberOfJumpers, MyUnit STRING 100, 90, 75, 50 :SREAL
ChalkNum, report, JumpCounter
PassNum : INTEGER ASK ObjInit AssignedJumpers : INT

ASK IDSelf MyName,
ASK Objinit TELL Jump MyUnit :STRING
ASK StartUp ASK FindMyObj
TELL DropEm TELL GotoMyObj ASK Objlnit________________ASK MakeAssignments

ASK CountJumpers

"Leffloor fRightDoor Jumper _MyObj OBJECTLROffset:REAL OJC RA

TELL DropEmR

RightDoorObj

Figure 13. Simulation Object Model.
Format [Rumbaugh, 1991]

The main purpose for running the simulation model, is to introduce the inherent

variability present in the problem. This includes the accuracy of the aircraft crew in

selecting the Calculated Air Release Point (CARP), hitting the Personnel Point of Impact

(PPI) location accurately, flying at the specified speed and direction, and attaining the

required altitude. Subsequently, the jumper start times, jump interval between left and

right door, same-door jumper interval spacing, and rates of fall are subject to variance.

Upon impact with the ground, each jumper independently de-rigs (gets out of his harness

46

and places his weapon into operation), prepares equipment, orients towards his objective,

and moves to that objective, all with observable distributions. Each instance includes an

amount of variance that is used in the simulation model, and is shown in Table 3. The

distributions were selected by entering the raw data into BestFit vl. 12, and ranking the

MODSIM available distributions using Kilmogorov-Smirnov test parameters. To

illustrate, jumper interval had the best fit among all the available distributions using a

gamma distribution, which makes sense because it can be viewed as a queue's inter-

arrival time. See Appendix C for additional statistical data on how the distributions are

selected. Note that whenever historical data did not exist, or was inaccessible, estimates

from experienced field experts were used.

Table 3. Simulation Statistical Distributions

Behavior Distribution Selected Shape Parameters
Aircraft Speed Gamma alpha = 496.0

(Knots) beta = 0.25
Direction of Flight Triangular -10, 0, +10 degrees

StartX, StartY Triangular -240, 0, +240 meters
Left/Right Door Offset Normal mean = 1.54381 sec.

sigma = 0.259065

Jump Interval Gamma alpha = 11.04
(seconds) beta = 9.43e-2

Deployment Altitude Normal mean = 679.3 ft.
sigma = 23.49

DriftX, DriftY Triangular +/- DeployAlt *
3.841/100 meters

Fall Time Normal mean = 39.2 second
sigma = 4.9

Ground Speed Variance Normal mean = 1.0
sigma = 0.25

De-rig Time Normal mean = 7.0 minutes
sigma= 1.5

47

Once the simulation model is initialized and all objects are created, the simulation

can commence. First, each aircraft is assigned a start point around the CARP. Then for

each pass, the aircraft, in chalk order, begin to drop the jumpers. The drop is

accomplished by removing the first jumper in the queue, and "telling" it to jump. The

aircraft door object then "flies" for a jump interval duration, updates its location, and

then discharges the next jumper, and so on. The non-primary right jump door, begins its

operations after the offset interval has been flown. Subsequent chalks begin 8 to 10

seconds after the previous chalk. The difference between primary and alternate door

initiation averaged 1.611 seconds, as opposed to the planned 1/2 second, with a standard

deviation of 0.329 seconds. The delta between jumpers exiting the aircraft has a mean

of one second (1.02) with a standard deviation of 0.327 seconds. Each aircraft

discharges the number of jumpers designated for each pass in sequence until the aircraft

objects are empty and disposed of.

At jump time, each jumper object receives the current x and y location and

altitude from the aircraft, calculates the amount of induced throw and drift, and waits the

required fall time. After the fall time has been delayed, the jumper automatically looks

for his objective by matching his "MyUnit" name, with the objective's "MyObjUnit"

name from the objective name array, and stores the matched objective number. The

objective number is used in the ensuing method, when the jumper object computes the

distance and time required to reach his objective. The distance for each jumper is

48

calculated by selecting the objective x and y locations from the arrays and using

Pythagorean's Theorem. The distance is then divided by the speed from the objective

speed array, multiplied by a random path factor (to compensate for straight line distance

and broken terrain) and converted into time in seconds by dividing by the estimated

speed over the given terrain. The jumper object then waits the determined de-rig time,

followed by his movement time, and then reports to his objective.

The objectives are persistent statistical objects and maintain the eventual output

data throughout each replication of the simulation. Once the jumper reports to the

objective, the objective records its arrival time as established by the simulation clock.

The jumper object is then disposed of. The instance of each arrival is counted and then

the counter value is divided by the required number of jumpers, yielding a current

percentage value of the reported jumpers over those assigned. This percentage is the

combat power for that object at that moment in time. When this combat power reaches

50, 75, 90, and 100 percent, the times are recorded for future output and analysis. The

build up of combat power is an essential statistic for commanders in order that they make

timely decisions. For example, an enemy strong point may only be able to be secured if

a certain minimum combat power is present. The actual percentages used by airborne

units are translated into codewords in order that they may be broadcast over an unsecure

means if necessary. These codewords are used as a quick means of updating the

commander on his subordinate units present condition.

49

Also note that all jumpers with a null entry (space key) for unit are disposed of

immediately upon exiting the aircraft, as their statistics are not relevant to the purpose of

the simulation. However these null jumpers must still occupy the manifest "space" in

order to accurately displace those jumpers that are tracked.

After the replications of the simulation are complete, the combat power build-up

statistics are recorded and displayed to the user. These statistics include the expected

time (mean), and the best and worst instances of reaching those levels at each objective.

All replication results and the simulation statistics are viewed within the simulation

window inside the original Windows application. See Figure 14 for a sample of the

simulation results in the window. The complete MODSIIM simulation code is included in

Appendix B. In the next chapter, the verification and validation of the hybrid model, as

well as a preliminary comparison to present methods is discussed.

50

Optimal Manifest I Simulation Option

Optimal L/1R P2n1aaC1'2"325334 5 P5*T1T5

File Edt12-325 TIpositi. 1-325 T
Chalk fle__"Et

-2
12-325 TI

«<<<< SIMULATION SUMMARY REPORT >>>>>>> 1-325 T
---- --- --- --- --- ---- --- --- --- --- 2-325 TI

(All Statistics in minutes) 1-325 T

"0BJ SWORD .. TM A/2-325"" 25.AIR

CbtPwr MEAN MIH MAX STD DEU
50 %: 19.076653 18.108468 20.618392 0.863628
75 %: 26.621491 24.207948 28.642177 1.413464
90 %: 32.139949 28.962341 35.043909 2.078217
100 %: 45.906291 36.756470 54.064355 6.797174

"0"J CORHDOG. TM C/1-325"

CbtPwr MEAN MIN MAX STD DEU
RunS 5 %.: 9.397027 8.728110 11.125770 0.732119 EXIT

75 -%: 17.260028 13.937005 21.217424 2.030429
90 %: 25.882974 20.990932 31.575015 3.902180

Vie 100 %: 32.388237 25.252084 36.416856 3.069895

'OBJ RED DOG" . TF 1-32; AIR"

Figure 14. Simulation Model Outputs

SExample Scenario

An example scenario is developed in order to present the initialization of data

elements through the solution procedure. The output of the analytical model is the

optimal manifest listing, given the conditions, and the output of the simulation model is

the expected results. The scenario to be used in this example is a relatively common

battalion-sized training mass tactical operation taking place on Sicily Drop Zone, Fort

Bragg, North Carolina. Five C-141 aircraft are used, dropping 120 paratroopers each on

a single pass. Paratroopers are assigned one of six objectives. The initialization

51

parameters that must be entered by the user can be seen in Table 4. The environmental

factors are uniform for each objective in this scenario.

Once the parameters have been entered, the transportation network is formed and

solved. After the last objective data input screen has been completed, the optimal

Table 4. Example Scenario Initialization Parameters

Data Element Value
Number of Aircraft 5
Type of Aircraft C-141
Length of DZ 62 seconds
Direction of Flight 210
PPI Location 70500 92000
PPI Altitude 237 meters
Number of Passes Planned 1
Jumpers per Door per Pass 60
Number of Objectives 6

Objective 1 Data:

Name HEPI
Unit Tm Support
Location 70400 91900
Assigned 76
Objective 2 Data:
Name OBJ TOWER
Unit Tm A/2-325
Location 69750 91800
Assigned 108
Objective 3 Data:
Name OBJ SNOW
Unit Tm B1/2-325
Location 69300 91100
Assigned 96
Objective 4 Data:

Name OBJ FALCON
Unit Tmi C/2-325
Location 67350 91250
Assigned 116
Objective 5 Data:
Name OBJ GREEN
Unit Tm Breach
Location 69900 90100
Assigned 104
Objective 6 Data:
Name OBJ BLOCK
Unit D/2-325
Location 68900 88000
Assigned 76

52

manifest by position and chalk number is presented. The manifest summary is shown in

Table 5, where the chalks are on the left, with the units across the top, and the positions

are designated for both the left and right door. From this screen, the user may either

review the time coefficients on another screen, view the final tableau solution, or chose

to simulate the generated manifest. To start the simulation, the user simply has to press

the "Run Simulation" button from the options. Once the simulation has been selected, a

shell window is opened and the simulation is executed within this window.

Table 5. Manifest Summary Table

Chalk Unit:
Number Tm Support Tm A/2- Tm B/2-325 Tm C/2-325 Tm Breach D/2-325

325
1 1..8 9..18 19..28 39.40 41..50 29..38 53..60
2 1..8 9..18 19..28 39..50 29..38 53..60
3 1..8 9..18 19..28 39..50 29.38 53..60
4 1..8 9.18 19..28 39..50 29..38 53..60
5 1..6 7..20 21..26 39..50 27..38 55..60

The simulation first reads all its initialization parameters from the text files, and

generates all the aircraft, objectives and jumpers with the proper attributes. The

simulation then reports the build-up of combat power times at each objective for each

replication. A summary table is printed after all the replications have been run that

displays the maximum and minimum observed values, the mean and the standard

deviation for each objective and percentage value. See Figure 15 for a replication report

and the final report format. Upon completion of the simulation, the user then records the

data and exits the model.

53

***** REPLICATION # 7 *******************

HEPI Tm Support

Fifty k at 19.143202 minutes
Seventy-Five % at 24.633778 minutes

Ninety * at 32.614718 minutes
One Hundred k at 38.989558 minutes

OBJ TOWER Tm A/2-325

Fifty * at 16.869004 minutes
Seventy-Five k at 20.491448 minutes
Ninety % at 24.930677 minutes
One Hundred % at 52.932072 minutes

<<<<< SIMULATION SUMMARY REPORT >>>>>>>

(All Statistics in minutes)

HEPI Tm Support

CbtPwr MEAN MIN MAX STD DEV

50 %: 18.760304 16.982364 19.767932 0.984173
75 %: 25.340387 22.938504 29.756289 2.015537
90 k: 31.396025 28.075022 37.838250 3.159528
100 k: 46.158146 35.010089 67.689267 12.552859

OBJ TOWER Tm A/2-325

CbtPwr MEAN MIN MAX STD DEV
50 %: 16.798304 15.264813 18.769980 1.070444

75 t: 19.833139 18.205923 22.440894 1.410844
90 %: 24.101669 21.225262 28.083705 2.358728

100 %: 37.742733 29.494214 52.932072 7.927012

Figure 15. Replication Results and Simulation Summary Table

Overall Solution Procedure

In this hybrid model, the analytical model develops a best-case solution for this

class of problem. The simulation model not only serves to validate the analytical model,

54

but more importantly, answers the second original question, "What can the commander

expect to happen on the ground?", when the variability is included in the model. Chapter

5 analyzes the accuracy of the hybrid model output, as well as utilizes the simulation

model to compare the analytical solution versus the existing manual method.

CHAPTER 5
HYBRID MODEL VERIFICATION,

VALIDATION, AND
ANALYSIS OF RESULTS

In order for the developed hybrid analytical/simulation model to gain acceptance

by the user, the analytical model must be verified to ensure that it is returning an optimal,

or close to, optimum solution compared to other solution methods. Secondly, the

simulation model is used to validate the original assumptions made in the formulation of

the analytical model (i.e. theperfect world conditions as described in Chapter 3). Lastly,

the analytical model is validated by comparing the simulation results of the computer

application package versus a manual, likely scenario.

Analytical Model Verification

In order to ensure that the Visual Basic application and the transportation network

is returning a valid solution, the results of a sixty variable problem was compared to two

other solvers. First, the problem was modeled and solved as a transportation network,

with twenty source nodes (jumper location, with supply equal to the number of aircraft,

i.e. five), three demand nodes (three objectives with 31, 29, and 26 jumper requirements)

and a total of 100 jumpers. The arc costs were taken from a representative coefficient

array of distances between the projected jumper impact locations and each obj ective.

This problem was modeled and solved using Net Solve, a commercial network solver.

56

Microsoft's Excel 5.0's Problem Solver in the linear/integer programming mode was

selected as a third method to solve this problem for comparison. Shown in Table 6, the

total costs obtained from the Excel and the Net Solve solutions were the same, but their

associated solution variable matrix varied slightly. The analytical model solution also

reached an optimal solution with an identical total cost as the other two methods. The

solution obtained from the analytical model agreed exactly with the Excel solution. The

slight difference between the Net Solve and the analytical model solution matrices can be

rationalized by examining the methodologies of eliminating the rows and columns from

contention in the formulation of the initial basic feasible solutions. Net Solve uses the

North West Comer Rule, while the analytical model uses Vogel's Approximation

Method.

57

Table 6. Analytical Solution Method Verification and Comparison

I Ioce rr Optimal Seating Assignment from
Sample - Excel Integer Program Solution

Al B I C Nul A B C Null
1 8061 6581 7211 015
2 695 80 6491 0- -
3 600U L 951 6051 0 3 5

4 5324 1010 5971 0 4
1500 24 6261 5 5

513 139 6881 0 64 1
7i b56b6 15b4l 7741 0 75

8 650 1 7 0 -77- -

9 755 184t] 9921 0 9
1 U 8741 19 11 0 1

11 100 214• 1245i 0 11 14
12 1134 229• 134 0,1

1 12b4 244• b1515 o 3
14 14U0I 259 1651 0,1

15 155CI 2742 1795I 0 . 55

1fG 16924 2892 19371 0 1 16 5
V7 183q 3042 20811 0 17 5

18 1981 319z 222,= 01 0 1 4
19 212E 334z 237(1 0 5

20] 227',-3=9- 251, 0,2 5

Cost: IU bOTM

Optimal Seating Assignm ent from Optim a/ Seating iAssignm entfro-m
NetSolve Transportation Solution AXnal7yti-calodel Solution

A B C Null A B C Null

3 535

64 1 64 1

........ 9

10 5 10•
11 5 11 1 4

. . M 1 5

13 513'- 5

q --5m-

15 1 4 15 5
16 5 6 5
17 617 b

~ 19 5 19 05

20 5 2 0 05

OSt 14Cost

58

In terms of overall computational complexity, due to Net Solve's methodology

for achieving an initial basic feasible solution, Vogel's method used by the analytical

model application will be less complex for most problems. For the presented sample

problem, the analytical model took 22 iterations to find an initial solution, and required 6

additional iterations of the transportation problem algorithm to reach the final solution.

This process took 6.5 seconds of CPU time on a single 486DX2 processor, at 66 MHz.

Excel problem solver required 92 transformations and 13.53 seconds of CPU time to

solve the problem. Net Solve's number of iterations could not be recorded, and CPU

time was 3.0 seconds (however, Net Solve's setup time was significantly longer than

either of the other solvers, and its outputs could not readily be integrated into a

simulation model). The savings in computational complexity and time by the analytical

model is because the analytical model fully exploits the structure of the transportation

network problem by using Vogel's Approximation Method and because it ignores the

null jumpers (or the corresponding dummy objective node) until after the solution has

been reached. Reference Appendix D for outputs of the Net Solve and Excel solutions.

Number Of Simulation Replications Required

In order to gain valid feedback from the simulation model, and be able to

statistically compare strategies with a degree of accuracy, the proper number of

simulation runs (or replications) required had to be determined. Due to the nature of this

59

type of problem, with virtually an unbounded number of possible combinations of

variables, the most likely factors were chosen to become effects in an experimental

design that helped determine the required number of replications that yields statistically

valid results. The experimental design model also conveys the relative importance of

each of these effects, as well as their interaction (if any).

The important factors range from a simple case of a few objectives located

relatively close together, to the extreme cases of many more objectives, and diverse

ranges to each objective. The design and the conduct of the experiment are explained in

the next section. The goal of this process is to examine the standard error of the mean at

each objective, and determine if it is within 10% of the mean for those conditions. The

equation for standard error is the standard deviation of the sample divided by the square

root of the number of replications run. Each of the four experimental runs was iterated

through until the standard error was within the required 10% of the mean.

At the point that the 10% condition is met, the research can then draw

conclusions as to the required number of replications that must be represented in the

simulation in order to be statistically valid for use in comparisons.

A two-factor Fisher experimental design was chosen to observe the standard error

of the mean. The two factors and their high and low levels are:

1. Number of Objectives (3-Low, 8-High)

60

2. Relative Distance of Objectives from the aircraft line of flight (within 500 meters-

Low, 1000 meters or greater-High)

The experiment runs and results can be seen in more detail in Appendix E. The

experiment was conducted as a full factorial, with four runs. The measure of

effectiveness for the sample scenarios is the build-up of 90% combat power at each

objective, with each objective weighted equally. Ninety percent was selected as the most

critical build-up percentage used by the commander for decision making, and avoids the

outliers that are prevalent in the one hundred percent counter.

What was found in the experiment is that the standard error of the mean at all

objectives was within 10% of the individual means for the fifty and seventy-five, and

ninety percent power levels after seven replications. The data collected can be seen in

Table 7. With as few as seven replications, the conclusion is made that this is the

minimum required to represent the overall variability inherent in the system.

The experimental model derived from the simulation runs with the seven

replications was analyzed and the main effects (the number of objectives and the relative

distance) were very significant. There appeared to be virtually no two-way interaction.

Because this was a full factorial design, the interaction effects were not confounded with

either of the main effects. See the SPSS ANOVA table in Appendix E for the

experimental effects of the model.

61

Table 7. Replication Experiment Results

EXP #1 EXP #2
Rep # OBJ ONE OBJ TWO OBJ THREE Rep # OBJ ONE OBJ TWO OBJ THREE

1 25.302 27.390 22.402 1 40.398 54.043 29.799
2 22.897 30.728 23.61 2 36.81 60.759 40.295

3 24.534 22.685 25.81 3 41.24 44.726 34.13
4 22.067 23.080 25.390 4 38.372 45.885 34.767
5 23.17 24.337 25.422 5 40.006 49.085 35.666

6 21.78 23.490 29.026 6 35.858 44.206 37.602
7 21.90 27.17 28.10 7 36.267 55.268 36.91

means: 23.0956 25.5553 25.681 means: 38.4240 50.5674 35.5963
std dev 1.364 2.9684 2.318 std dev 2.167 6.281 3.273

Std Error 0.515 1.121 0.8762 Std Error 0.819 2.3742 1.237

10 % 2.3096 2.5555 2.568 10 % 3.8424 5.0567 3.5596

EXP #3
Rep # OBJ ONE OBJ TWO OBJ THREE OBJ FOUR OBJ FIVE OBJ SIX OBJ SEVEN OBJ EIGHT

1 17.35 12.88 21.48 13.60 13.99 18.93 18.38 22.852

2 19.02 14.95 19.25 14.18 14.07 19.35 16.14 25.16
3 19.08 14.01 19.19 12.50 15.94 15.39 19.79 23.687

4 20.479 14.18 17.39 13.75 16.62 15.26 17.22 22.874
5 18.13 13.31 15.47 16.22 15.64 16.23 18.68 25.466
6 17.85 12.11 17.07 14.78 16.21 16.96 19.68 22.935
7 19.30 13.80 20.983 13.16 15.00 16.86 20.423 27.16

means: 18.749 13.61 18.695 14.031 15.359 17.002 18.620 24.3066
std dev 1.049 0.931 2.170 1.206 1.032 1.606 1.520 1.667

Std Error 0.3965 0.352 0.8203 0.456 0.3904 0.6073 0.5748 0.6302

10% 1.874 1.361 1.869 1.403 1.535 1.700 1.862 2.4307

_EXP #4
Rep # OBJ ONE OBJ TWO OBJ THREE OBJ FOUR OBJ FIVE OBJ SIX OBJ SEVEN OBJ EIGHT

1 32.866 39.81 25.837 25.308 40.634 27.657 40.426 43.264

2 34.325 41.67 32.753 25.356 41.89 27.936 44.273 43.785
3 34.258 36.276 29.13 21.37 33.565 33.00 42.362 43.81

4 35.452 36.232 27.364 26.11 37.743 40.054 36.930 39.769

5 35.245 33.71 29.707 27.889 34.888 30.596 37.324 36.033

6 28.260 40.478 27.263 24.852 37.81 34.497 39.329 45.294

7 31.91 42.18 27.553 26.080 36.13 29.450 45.897 56.377
means: 33.188 38.6253 28.515 25.281 37.5259 31.884 40.9344 44.0479

std dev 2.510 3.218 2.2639 1.981 2.9854 4.3944 3.4088 6.2830

Std Error 0.9488 1.216 0.8557 0.749 1.128 1.660 1.288 2.3747

10 % 3.318 3.8625 2.851 2.5282 3.7526 3.188 4.0934 4.4048

Validation Of Analytical Model Assumptions

In order to bound the original problem and derive an analytical solution

procedure, several assumptions were made in Chapter 3. The simulation portion of the

hybrid model can be used to test the validity of many of these original assumptions,

mainly those dealing with the aircraft heading, proper PPI accuracy, and operation

62

initialization timing. For this validation, a sample problem is presented, solved by the

analytical model, and then simulated with 7 replications in the simulation model. The

results of this solution method and the corresponding optimal manifest are compared to

simulation results in which the initialization parameters have been altered to reflect

degradation of aircraft related assumptions (also using the same manifest each time).

For this validation procedure, the same example scenario is used for each

comparison. The ranges of allowable variance before the optimal solution would require

significant change in the manifest order is directly attributable to each possible scenario.

The following scenario is presented as a relatively simple example that can demonstrate

the sensitivity of the solution method to large degrees of variance. Table 8 shows the

scenario initialization parameters. Appendix F contains all simulation run summary

tables as well as hypothesis testing for the three instance shown here. A pairwise t-test is

used to directly compare the jumper arrival times at their appointed objectives of the new

scenarios against the standardized case presented. Note that the simulation is re-

initialized for each scenario run and a common random number string is used for each

identical portion of the scenarios [Law, Kelton, 1991]. The equations for a paired t-test

mean, variance and the confidence interval are as follows:

n

mean: Z(n)- n
Z = the delta between the baseline and the test
n = number of the sample
j = the counter

63

n

n[Zj -Z(n)]
variance: Var[iZ(n)] = j= -n 1)

confidence interval: Z(n) ± t_1,1_a 12 JVar[Z(n)]

The tests conducted are to see if zero falls within the confidence interval, if so,

the hypothesis that the two scenarios are the same cannot be rejected. Therefore, if zero

is in the interval for the deviation, the amount of deviation induced is insignificant to the

model. The following are the three analytical model validation experiments.

Table 8. Comparison Scenario Initialization Parameters

Number of Aircraft 1
Aircraft Type C-130
PPI Location (grid) 70500 92000
Direction of Flight 202 Degrees
Number of Objectives 3
Objective #1 (Mission Essential)

Unit Tm Assault
Name OBJ DAGGER
Location 69800 91900
Requirements 20

Objective #2 (Mission Support)
Unit Tm Secure
Name OBJ KNEFE
Location 69500 91000
Requirements 20

Objective #3 (Other Support Mission)
Unit Tm Support
Name OBJ SWORD
Location 70000 90000
Requirements 20

Environmental Conditions (includes all
objectives)

Temperature Mild
Humidity 50%
Cloud Cover Night
Grade Level
Surface Hard Dirt

64

Late Operation Initiation

One of the most likely events that can happen in an airborne operation is that the

aircraft crew can over-fly the CARP by several seconds, delaying the lighting of the

green light that allows jumpers to exit. By comparing the build up of 75% combat power

at each objective from the simulation runs, the analysis is made that there is no

significant alteration in mean assembly times until more than 2.0 seconds has elapsed.

This 2.0 seconds also translates to 140 meters on the ground. Therefore the original

assumption is valid, with this scenario set-up, as long as the green light is lit within 2.0

seconds of its designated calculated air release point. See Table 9 for the confidence

intervals.

Lateral Deviation in CARP

Lateral deviations can occur when the aircraft flies the intended heading, but does

not fully line-up on the designated CARP. This lateral drift can also occur when there is

a strong unforcasted cross-wind, perpendicular to the direction of flight. By altering the

PPI location in subsequent simulation runs by up to 150 meters, the original manifest

remains valid with a 90% level of confidence. This 150 meter lateral shift is also

equivalent to an unforcasted 4.0 knot wind shift, which is one-third of the allowable

ground wind speed to conduct parachute operations (e.g. jumps will be waived-off if

winds exceed 12 knots). The confidence interval from the pairwise t-test is found in

Table 9.

65

Direction of Flight Variation

According to current practice of U.S. Air Force Air Mobility Command pilots, a

pass will be aborted if they fly more than 5 degrees left or right of the designated

direction of flight. In the comparison of the control optimal solution results and running

different alterations of heading, it was found that heading could indeed vary up to 5

degrees, and still not significantly affect the solution results with a 90% level of

confidence. The confidence interval established for each of the three cases can be seen in

Table 9.

Table 9. Paired t-Test 90% Confidence Intervals

Trial Upper Bound Lower Bound
Late Green Light 0.365751 -0.00461
Shifting the PPI
by 150 meters 0.066851 -0.58368
5 Degrees Off
Direction of Flight 0.149303 -0.23161

Now that it has been demonstrated that the verifiable analytical model original

assumptions were indeed valid, a direct comparison is made using a manual solution for a

real scenario and the computed analytical/optimal solution manifest.

Analytical vs. Manual Solution

A full test scenario is developed and solved by the analytical model returning a

solution manifest, which is then compared against a manually prepared manifest solution.

66

Distances to Each Objectiv
Distance (meters)

........................... :: :: :: : :: :: :: :

400

3500-

3000 ' -HP

2500 .i:.... ... " OBJ TOWEF

2 0 ,

2000OBJ FALCON

1500 "OBJ:GREEN

.. jOBJ BLOCK
1000

500

:0IHH 1 3 ::4
0 0 0 000

Jum per Position

Figure 16. Graph of Distances to Each Objective from Impact Locations

The scenario for this comparison is established with five C-i141 aircraft and, six

objectives. The objectives are assigned importance factors by the commander and can be

found in the summary Table 10. The distance coefficients from the projected impact

points to each of the objectives is graphed in Figure 16. As seen in the graph, it is up to

both the manual and analytical model to find the shortest travel distances and place as

many jumpers as possible in those positions in the manifest.

The manual solution includes the insertion of headquarters personnel into lead

exit positions, as well as a different distribution of jumpers in the aircraft, primarily

focusing on the mission essential objective. A breakdown of each manifest can be seen

in Appendix F. Both solution scenarios were run through the simulation model with

67

seven replications each, again using a common random number string for each instance

of variance. The jumper arrival times at each objective was then collected and directly

compared using a pairwise t-test.

It can be said with 90% confidence, that the analytical model resulted in a

superior solution than the manual method, as well as saving a great deal of time. This is

reflected in the results shown in Table 10. Three of the six objectives were seized faster

using the analytical method, two were quicker by the manual method, with one

objective's test inconclusive (i.e. zero in the confidence interval). Using the qualitative

points established by the commander's priorities in the scenario, the analytical model

scores 6.9 total points versus 6.2 for the manual method. The reason the manual solution

prevails for two of the objectives is that emphasis had been placed upon minimizing the

travel distance for the mission essential task, rather than for the entire operation as done

by the analytical model.

68

Table 10. Analytical vs. Manual Paired t-test Analysis

Paired 90% Confidence
OBJECTIVE Delta Variance Interval Conclusions: Points

Mean
OBJ HEPI 10.161 0.404 11.207 9.115 Analytic 2.3

Superior
OBJ TOWER -2.193 0.091 -1.696 -2.690 Manual 5.2

Superior
OBJ SNOW -0.127 0.099 0.391 -0.644 Not 1.0

Conclusive
OBJ FALCON -4.842 2.571 -2.205 -7.480 Manual 1.0

Superior
OBJ GREEN 12.797 0.179 13.493 12.101 Analytic 2.3

Superior
OBJ BLOCK 0.801 0.183 1.505 0.097 Analytic 2.3

Superior

While this is in fact just one example operation, the conclusion is drawn that for

other possible combinations, this hybrid model solution should remain valid. There may

exist extreme values for mission priority, large mix of objective relative distance, as well

as jumper unit mix, and some may not yield a solution that is what the commander would

want. It is in these rare cases that the commander would analyze the simulation output

and find the combat power build-up statistics are unsatisfactory for one or more mission

critical objective. It is then left to the user to prepare a manual manifest, and iterate

through the simulation model, until a suitable solution is found, or discover that the

parameters must be changed to accomplish the mission. In this same scenario, a

sensitivity analysis of weights was conducted. The analysis concluded that if the mission

weights were changed to 12.0 for mission essential, and 4.0 for mission support, that the

69

analytical solution was equal to or surpassed the manual solution for every objective.

For each instance of comparison and experimentation, the analytical portion of

the hybrid model was shown to yield a relatively robust optimal solution (i.e. could

accept a degree of variability). The simulation portion of the model also proved quite

advantageous in comparing multiple strategies and conditions. Overall the hybrid

analytical/simulation model appears valid for this class of problem.

70

CHAPTER 6
CONCLUSIONS AND SUMMARY

This chapter summarizes the research presented in previous chapters and

discusses its significance to the area of hybrid modeling.

Mass tactical airborne operations represent a large complex problem that had not

yet been targeted for optimization because it was thought to have too many parameters

and too many instances of independent variance. The aim of the commander is to load

his aircraft in such a way that the minimum amount of time is required to seize all

assigned objectives. The personnel loading portion of the air plan, or manifest, is

directly attributable to where each jumper should impact the ground. The manifest is a

by unit listing of who occupies what seat in which aircraft. The jumpers will exit in

exactly the order loaded. It is the aim of this research to apply a hybrid

analytical/simulation model to this problem in order to minimize the total travel distance

and time required of each paratrooper. Secondly, the simulation model provides the

commander feedback as to what to expect upon mission execution.

The procedure followed by this model first establishes the mission parameters in

a mathematical model. This math model disregards the possible variations and presents a

perfect world model where the aircraft flies at the exact specified heading, speed and

altitude, the Calculated Air Release Point (CARP) is properly computed to compensate

71

for wind conditions, the jumpers exit on time, and at a uniform interval. Upon exiting

the aircraft, it is assumed the jumper would be thrown to his exact impact location.

Distances between impact points and the specified objectives are straight-line only (i.e.

the world is flat with no obstacles, and no one gets lost). The mathematical model

projects the assumed impact points of each jumper along a vector parallel to the line of

flight originating at the designated personnel point of impact (PPI). The distances

between the impact points and each designated objective are calculated using

Pythagorean's theorem, which is then divided by a speed estimate, in meters per second,

that translates the distances to time in seconds. Each time value associated with a

particular objective is then multiplied by a commander's importance constant.

The preceding perfect world model is modeled as an assignment network, and

solved very efficiently using a transportation problem algorithm. The impact locations

become the supply nodes, and the objectives become demand nodes with an assignment

requirement. The supply and demand nodes are connected using capacitated directional

arcs. The solution method for transportation problems deals strictly with discrete

integer values (i.e. jumpers and aircraft), without having to deal with the complexities of

integer programming. Vogel's Approximation Method is used to calculate an efficient

initial basic feasible solution, and the transportation algorithm iterates until an optimal

condition is achieved. The outputs of the analytical solution procedure is the optimum

72

manifest listing by chalk and unit of every paratrooper that will participate in that

mission.

While this analytical model yields an excellent starting solution, the world is

indeed not perfect and paratroopers and aircraft are subject to great amounts of induced

variability. At this point a simulation model is required to introduce this variance back

into the overall model. The simulation model is object-oriented and initialized using the

identical parameters that established the analytical model. No additional user inputs are

required to start the model. An object-oriented simulation model was selected as it is

able to efficiently track the characteristics of a large number of objects simultaneously.

The object-oriented model very closely follows the actual actions found in these type of

operations.

In the simulation, aircraft stray off their predetermined heading, altitude and

speed, and may even delay green light procedures. Jumpers are subject to wind drift and

varying rates of descent. Upon impact, each jumper must de-rig his equipment

individually, locate his objective, and move towards it at an individual rate of speed.

The objective objects in the simulation collect the build-up of combat power

statistics over time. After each replication, the objective build-up times are presented,

and upon completion of the replications, a summary table is output. The summary table

provides an analysis of each objective, the best and worst observed arrival percentages,

as well as the standard deviation. The simulation model not only provides a framework

73

for comparison of alternatives and analytical model testing, but most importantly

provides the commander a range of expected values that can be used in his overall

command estimate process.

The entire hybrid model was coded in two separate software languages, Visual

Basic 3.0 for Windows for the analytical/mathematical model, and MOD S1IM II obj ect-

oriented simulation software for the simulation model. All parameters are input in the

Visual Basic shell, the manifest optimized, with all required entries automatically

extracted for use by the simulation. The simulation then returns its output through the

original window. The entire hybrid application is stand alone and royalty free.

From this research, it has been shown that a hybrid analytical/simulation model

can be used to represent and solve a complex problem. The solution presented in the

example scenario was indeed superior to one generated by the manual method, with a

substantial overall savings in time and effort as well. The closed form analytical model

can be solved quickly, and used in conjunction with the simulation model to present an

overall solution procedure.

There also seems to be an added benefits of the application of analysis to the

problem, other than solving for the optimal manifest. The greatest indirect benefit is that

the process forces the airborne commander to examine, in detail, the priorities for his

assault units and objectives. These qualitative questions are now directly answered by

the individual responsible for the actions on the ground, and directly translates toward the

74

air manifest in the process. This research also demonstrated the value of including

simulation models into a form of decision support system.

The overall solution is very robust, and provides a means for feedback and

analysis. Hybrid modeling techniques are a reminder that an analyst should not just limit

themselves to a single model representation, but possibly seek an optimal set of models

for a system, given the conditions.

REFERENCES

Adomian, George, "Solution of Complex Dynamic Systems", Simulation, Vol. 54,
No. 5, May 1990, pp. 245-25 1.

Armacost, Andrew, S. Mehrotra, "A Computational Comparison of the Network Simplex
Method with the Dual Affine Scaling Method", OPSRESEARCH, Vol. 28, No. 1,
1991, pp. 18-35.

Cavanaugh, K J, "Multilevel Approach to Minimum Cost Network Flows", Naval
Postgraduate School Master's Thesis, September 1992.

Evans, James R., E. Minieka, Optimization Algorithms for Networks and Graphs,
Marcel Dekker Inc., 1992.

Fang, Shu-Cherng, S. Puthenpura, Linear Optimization and Extensions: Theory and
Applications, Prentice Hall, New Jersey, 1993.

Fredrickson, Greg N. "A Note on the Complexity of a Simple Transportation Problem",
SIAM Computing, Vol. 22, No. 1. February 1993, pp. 57-61.

Gilmer, John B., J. Adams, "Managing Uncertainty in Simulation", 62d Military
Operations Research Symposium, June 1994.

Glover, Fred, D. Karney, D. Klingsman, N. Napier, "A Computation Study on Start
Procedures, Basic Change Criteria, and Solution Algorithms for Transportation
Problems", Management Science, Vol. 20, No. 5, January 1974, pp. 793-813.

Hanssman F., G. Dinif, W. Fischer, and S. Ramer, "Analytical Search Model for
Optimum Seeking Simulations", OR Spektrum, Vol. 2, 1980, pp. 91-97.

Hayes, Theodore R. "Dismounted Infantry Movement Rate Study" Simulation
Technologies Letter Report 94-00 1, April, 1994.

Ignall, Edward J, P Kolesar, W E Walker, "Using Simulation to Develop and Validate
Analytical Models: Some Case Studies", Operations Research, Vol. 26, No. 2,
March-April 1978, pp. 237-253.

76

Ignall, Edward J, P Kolesar, "On Using Simulation to Extend OR/MS Theory: The
Symbiois of Simulation and Analysis", Current Issues in Computer Simulation,
1979, pp. 223-233.

Law, Averill M., W. D. Kelton, Simulation Modeling and Analysis, McGraw-Hill Inc.,
New York, 1991.

Keeler, Gerald Joseph, "A Hybrid Approach for Source Apportionment of Atmospheric
Pollutants in the Northeastern United States", University of Michigan Ph.D.
Dissertation, 1987.

Kimbleton, S., "A Heuristic Approach to Computer Systems Performance
Improvement", AFIPS, Vol. 44, 1975.

Kirkwood, Craig W. "An Algebraic Approach to Formulating and Solving Large
Models for Sequential Decisions Under Uncertainty", Management Science,
Vol. 39, No. 7, July 1993, pp. 900-913.

Min, Moonkee, "A Knowledge-Based Hybrid Modeling Approach to Planning Problems
in Flexible Manufacturing Systems", University of Michigan Ph.D. Dissertation,
1990.

Pascoe, Geoffery A. "Elements of Object-Oriented Programming", Byte, August 1986,
pp. 15-20.

Patel, Himanshu M. "Technique Solves Transportation Problem", Industrial Engineering,
March 1988, pp. 16-23.

Paskaramoorthy, Ratnam, "Hybrid Modeling of Elastic Wave Interaction with
Inhomogeneities on an Elastic Medium", University of Manitoba Ph.D.
Dissertation, 1990.

Rachev, S. T., L. Ruschendorf, "Solution of Some Transportation Problems with Relaxed
or Additional Constraints", SIAM Journal of Control and Optimization, Vol. 32,
No. 3, May 1994, pp. 673-689.

Romero, R, A. Monticelli, "A Hierarchical Decomposition Approach for Transmission
Network Expansion Planning", IEEE Transactions on Power Systems, Vol. 9,
February 1994, pp. 373-80.

77

Ruiz-Mier, Sergio, and J Talavage. "A Hybrid Paradigm for Modeling of Complex
Systems", Simulation, Vol. 48, No. 4, pp. 135-141.

Rumbaugh, James, M. Blaha, W. Premerlani, F. Eddy, W. Lorenson, Object-Oriented
Modeling and Design, Prentice Hall, New Jersey, 1991.

Sargent, Robert G. "A Historical View of Hybrid Simulation/Analytical Models",
Proceedings of the 1994 Winter Simulation Conference, 1994, pp. 383-386.

Schwetman, H D, "Hybrid Simulation Models of Computer Systems", Communications
of the ACM, Vol. 21, No. 9, September 1978, pp. 718-723.

Shanthikumar, J G, R G Sargent, "A Hybrid Simulation/Analytical Model of a
Computerized Manufacturing System", Operational Research '81, 1981,
pp. 901-915.

Shanthikumar, J G, R G Sargent, "A Unifying View of Hybrid Simulation/Analytical
Models and Modeling", Operations Research, Vol. 31, No. 6, November-
December 1983, pp. 1030-1052.

Taha, Hamdy A., Operations Research: An Introduction, MacMillan Press, New York,
1992.

Tzong, Tsair-Jyh, "Hybrid Modeling of Soil-Structure Interaction in Layered Media",
University of California, Berkeley Ph.D. Dissertation, 1984.

Vemuri, V. Modeling of Complex Systems, Academic Press, New York, 1978.

Wagner, Harvey M. Principles of Operations Research, Prentice-Hall, Englewood Cliffs,
New Jersey, 1975.

Waikar, Avinash, M. Helms, G. Graves, "A Framework for an Al-Based Hybrid
Simulation System", The Industrial Robot, Vol. 20, No. 3, March 1993,
pp. 20-26.

Whitaker, David, OR on the Micro, John Wiley & Sons, Chichester, 1984.

Winston, Wayne L., Introduction to Mathematical Programming, PWS-Kent Publishing
Company, Boston, 1991.

78

82d Airborne Division Airborne Standard Operating Procedure (ASOP), Vol. 1,
Edition IV, March 1990.

APPENDICES

APPENDIX A

VISUAL BASIC OPTIMIZATION MODEL CODE

81

Sub Form Load ()
defines the values for the Speed Array Look up table
source of data is STI LR94-001
speed expressed in meters per second.
Note: Would like to do this more efficiently, but have not

figured out how
ReDim Speed(3, 3, 4, 3, 3) 'temp,humidity,cloud,grade,terrain

Speed(l, 1, 1, 1, 1) = 2.2 'Table D-2
Speed(l, 1, 1, 2, 1) = 2.4
Speed(l, 1, 1, 3, 1) = 1.5
Speed(l, 1, 1, 1, 2) = 2.1
Speed(l, 1, 1, 2, 2) = 2.3
Speed(l, 1, 1, 3, 2) = 1.4
Speed(l, 1, 1, 1, 3) = 1.45
Speed(l, 1, 1, 2, 3) = 1.65
Speed(l, 1, 1, 3, 3) = .85
Speed(2, 1, 1, 1, 1) = 1.95 'Table D-4
Speed(2, 1, 1, 2, 1) = 2.15
Speed(2, 1, 1, 3, 1) = 1.3
Speed(2, 1, 1, 1, 2) = 1.85
Speed(2, 1, 1, 2, 2) = 2.05
Speed(2, 1, 1, 3, 2) = 1.2

Majority of Table Ommitted to Save Space

Speed(3, 3, 4, 2, 1) = .65 'Table G-34
Speed(3, 3, 4, 2, 1) = .85
Speed(3, 3, 4, 3, 1) = .25
Speed(3, 3, 4, 1, 2) = .6
Speed(3, 3, 4, 2, 2) = .8
Speed(3, 3, 4, 3, 2) = .25
Speed(3, 3, 4, 1, 3) = .4
Speed(3, 3, 4, 2, 3) = .6
Speed(3, 3, 4, 3, 3) = .15

End Sub

Sub HelpOl Click ()

framel.Visible = True

End Sub

Sub InputObjClick ()
GDoF = Heading.Text
GPPIX = PPIX.Text
GPPIY = PPIY.Text
GPPIAlt - PPIAlt.Text

ReDim Objectives(l To GNumObj + 1)' establishes size of objective struct

82

'Creation of X and Y Grnd Location Arrays
ReDim GXLoc(l To GJumpPass * 2)
Dim XL As Integer
Dim ThrowX As Single
For XL = 1 To GJumpPass * 2

GXLoc(XL) = GPPIX + (Sin(GDoF) * ThrowX)
ThrowX = ThrowX + 34.29

Next XL

ReDim GYLoc(I To GJumpPass * 2)
Dim YL As Integer
Dim ThrowY As Single
For YL = 1 To GJumpPass * 2

GYLoc(YL) = GPPIY + (Cos(GDoF) * ThrowY)
ThrowY = ThrowY + 34.29

Next YL

Sets default GNumJumpDoor at ACType values
If GACType = 1 Then GNumJumpDoor = 60
If GACType = 2 Then GNumJumpDoor = 30
If GACType = 3 Then GNumJumpDoor = 50

sets GNumJumpPass equal to number in the pass if only one pass
If GPasses = 1 Then GNumJumpDoor = GJumpPass

disables done and help buttons on manifest form
InputObj.Enabled = False
HelpOl.Enabled = False

write neccesary info to info.txt file
Open "c:\manifest\INFO.txt" For Output As #1

Write #1, GDoF
Write #1, GPPIX
Write #1, GPPIY
Write #1, GChalks
Write #1, GACType
Write #1, GPasses
Write #1, GJumpPass
Write #1, GRace 'return '0' if not used
Write #1, GNumObj

Close #1

Goes to the Verify Number of jumpers screen
If GNumObj >= 1 Then

Form4.Visible = True

End If

End Sub

Sub JumpPass Change ()
GJumpPass = JumpPass.Text
If GJumpPass > DZLength + 1 Then

83

MsgBox "You have specified more jumpers per pass than can safely
exit, given the drop zone length", 48

End If
End Sub

Sub NumObjChange ()
GNumObj = NumObj.Text
InputObj.Enabled = True

End Sub

Sub OptionlClick C)

GACType = 1
End Sub

Sub Option2_Click ()
GACType = 2

End Sub

Sub Option3_Click ()
GACType = 3

End Sub

Sub PassesChange)'
GPasses = Passes.Text
If Passes.Text > 1 Then Labelll.Visible True
If Passes.Text > 1 Then Textl.Visible = True

End Sub

Sub TextlChange C)
GRace = 10'default
GRace = Textl.Text

End Sub

Begin Form ObjInfo

Sub ForceChange C)
Objectives(l) .MyObjForce = force.Text

End Sub

Sub FormLoad C)
Combol.AddItem "Cool-> Below 501F1" 'temperature ranges
Combol.AddItem "Mild-> 51OF to 75011

Combol.AddItem "Warm-> Above 760F"1

Combo2.AddItem "25 % and less" 'humidity
Combo2.AddItem "50 %"

Combo2.AddItem "75 % and higher"

Combo3.AddItem "Night" 'cloud
Combo3.AddItem "Clear Sky"
Combo3.AddItem "Partly Cloudy"
Combo3.AddItem "Cloudy"

84

Combo4.AddItem "Level" 'grade
Combo4.AddItem "Slopes Up"
Combo4.AddItem "Slopes Down"

Combo5.AddItem "Asphalt" 'terrain
Combo5.AddItem "Hard Dirt"
Combo5.AddItem "Loose Sand"

size the distance array and the time array
ReDim GDistances(GJumpPass * 2, GNumObj + 1)
ReDim GTime(GNumJumpDoor * 2, GNumObj + 1) 'Net Coefficients

' define size of objective force array
ReDim GJumperSum(l To GNumObj + 1) 'to include dummy

I define size and fill supply array GSupply
ReDim GSupply(l To GNumJumpDoor * 2)
Dim fill As Integer
For fill = 1 To GNumJumpDoor * 2

GSupply(fill) = GChalks
Next fill

I fills dummy portion of the array with zeroes
Dim X As Integer
For X = 1 To GJumpPass * 2

GDistances(X, GNumObj + 1) = 0
Next X

End Sub

Sub NextObjClick ()
I assign this objectives distance weight coefficient

Dim weight As Single
If MsnEssnl.Value = True Then

weight = GME: GMECount = GMECount + 1
ElseIf MsnSpt.Value = True Then

weight = GMS: GMSCount = GMSCount + 1
ElseIf OSptMsn.Value = True Then

weight = GOSM: GOSMCount = GOSMCount + 1

Else frame3.Visible True
End If

Objectives(1) .MyWeight = weight

' add force required to the GJumperSum array and to sum GForce
GJumperSum(l) = Objectives(1).MyObjForce
GForce = GForce + GJumperSum(l)

I Calculate Speed as Required
If Combol.Text = "Cool-> Below 50°F" Then GTemp = 1
If Combol.Text = "Mild-> 51°F to 75011 Then GTemp = 2
If Combol.Text = "Warm-> Above 76 0 F" Then GTemp = 3
If Combo2.Text = "25 *- and less" Then GHumidity = 1

85

If Combo2.Text = "50 %-" Then GHumidity = 2
If Combo2.Text = "75 1 and higher" Then GHumidity = 3
If Combo3.Text = "Night" Then GCloud = 3
If Combo3.Text = "Clear Sky" Then GCloud = 1
If Combo3.Text = "Partly-Cloudy" Then GCloud = 4
If Combo3.Text = "Cloudy" Then GCloud = 2

1 Unique to each Objective
Dim slope, terrain As Integer
If Combo4.Text = "Level" Then slope = 2
If Combo4.Text = "Slopes Up" Then slope = 3
If Combo4.Text = "Slopes Down" Then slope = 1
If Combo5.Text = "Asphalt" Then terrain = 1
If Combo5.Text = "Hard Dirt" Then terrain = 2
If Combo5.Text = "Loose Sand" Then terrain = 3

Objectives(1).MySpeed = Speed(GTemp, GHumidity, GCloud, slope, terrain)

'compute distances from each position to my objective and places in the
distance matrix

Dim MyX, MyY As Long
MyX = Objectives(l).MyObjX
MyY = Objectives(l).MyObjY

Dim a, b As Integer
b = 1 ' this objectives number in sequence
For a = 1 To GJumpPass * 2

GDistances(a, 1) = weight * Sqr((GXLoc(a) - MyX) ^ 2 + (GYLoc(a) -

MyY) A 2)
GTime(a, 1) = GDistances(a, 1) / Objectives(1) .MySpeed

Next a

output information to obj****.txt files
Open "c:\manifest\ObjName.txt" For Output As #20

Write #20, Objectives(b).MyObjName
Close #20
Open "c:\manifest\ObjUnit.txt" For Output As #21

Write #21, Objectives(b) .MyObjUnit
Close #21
Open "c:\manifest\ObjX.txt" For Output As #22

Write #22, Objectives(b) .MyObjX
Close #22
Open "c:\manifest\ObjY.txt" For Output As #23

Write #23, Objectives(b) .MyObjY
Close #23
Open "c:\manifest\ObjForce.txt" For Output As #24

Write #24, Objectives(b).MyObjForce
Close #24
Open "c:\manifest\ObjSpeed.txt" For Output As #25

Write #25, Objectives(b).MySpeed
Close #25

86

goto next obj form if required
If GNumObj > 1 Then

Obj2.Visible = True
Else form2.Visible = True
End If

End Sub

Sub ObjAltChange (
Objectives (1).MyObjAlt = ObjAlt.Text

End Sub

Sub ObjI-eip Click (
frame2.Visible =True

End Sub

Sub ObjNameChange (

Objectives (l).MyObjName = ObjName.Text

End Sub

Sub ObjXChange (

Objectives(l) .MyObjX = ObjX.Text

End Sub

Sub ObjYChange (

objectives(l).MyObjY = ObjY.Text

End Sub

Sub ReturnToLastClick (
Objlnfo.Visible = False

End Sub

Sub Unit -Change (

Objectives(l) .MyObjUnit = Unit.Text

End Sub

Begin Form Obj2 (NOTE :THIS IS INDICITIVE OF FORMS Obj3 thru Obj8)

Sub FormLoad ()
Combo4.Addltem "Level" 'grade
Combo4.Addltem "Slopes Up"
Combo4.Addltem "Slopes Down"

87

Combo5.AddItem "Asphalt" 'terrain
Combo5.AddItem "Hard Dirt"
Combo5.AddItem "Loose Sand"

End Sub

Sub NextObjClick ()

assign this objectives distance weight coefficient
Dim weight As Single
If MsnEssnl.Value = True Then

weight = GME: GMECount = GMECount + 1
ElseIf MsnSpt.Value = True Then

weight = GMS: GMSCount = GMSCount + 1

ElseIf OSptMsn.Value = True Then
weight = GOSM: GOSMCount = GOSMCount + 1

End If

add values of text boxes to the user defined objective type array

Objectives(2).MyObjName = ObjName.Text
Objectives(2) .MyObjUnit = Unit.Text
Objectives(2).MyObjForce = Force.Text
Objectives(2).MyObjX = ObjX.Text
Objectives(2).MyObjY = ObjY.Text
Objectives(2).MyObjAlt = ObjAlt.Text
Objectives(2).MyWeight = weight

I Unique to each Objective; calculates MySpeed
Dim slope, terrain As Integer
If Combo4.Text = "Level" Then slope = 2
If Combo4.Text = "Slopes Up" Then slope = 3
If Combo4.Text = "Slopes Down" Then slope = 1
If Combo5.Text = "Asphalt" Then terrain = 1
If Combo5.Text = "Hard Dirt" Then terrain = 2
If Combo5.Text = "Loose Sand" Then terrain = 3

Objectives(2).MySpeed = Speed(GTemp, GHumidity, GCloud, slope, terrain)

I add force required to the GJumperSum array
GJumperSum(2) = Objectives(2).MyObjForce
GForce = GForce + GJumperSum(2)

'compute distances from each position to my objective and places in the
distance matrix
Dim MyX, MyY As Long
MyX = Objectives(2).MyObjX
MyY = Objectives(2).MyObjY

Dim NumJumpers As Integer
NumJumpers = GJumpPass * 2

Dim a, b As Integer
b = 2 ' this objectives number in sequence

88

For a = 1 To NumJumpers

GDistances(a, 2) = weight * Sqr((GXLoc(a) - MyX) A 2 + (GYLoc(a) -

MyY) - 2)

GTime(a, 2) = GDistances(a, 2) / Objectives(2).MySpeed
Next a

Output(Append) obj info to the obj****.txt files
Open "c:\manifest\ObjName.txt" For Append As #20

Write #20, Objectives(b).MyObjName
Close #20
Open "c:\manifest\ObjUnit.txt" For Append As #21

Write #21, Objectives(b) .MyObjUnit
Close #21
Open "c:\manifest\ObjX.txt" For Append As #22

Write #22, Objectives(b).MyObjX
Close #22
Open "c:\manifest\ObjY.txt" For Append As #23

Write #23, Objectives(b).MyObjY
Close #23
Open "Ic:\manifest\ObjForce.txt" For Append As #24

Write #24, Objectives(b) .MyObjForce
Close #24
Open "Ic:\manifest\ObjSpeed.txt" For Append As #25

Write #25, Objectives(b).MySpeed
Close #25

goto next obj form if required
If GNumObj > 2 Then

Obj3.Visible = True
Else form2.Visible = True
End If

End Sub

Sub ObjXChange ()
GObj2X = ObjX.Text

End Sub

Sub ObjYChange ()
GObj2Y = ObjY.Text

End Sub

Sub FormLoad ()
warning code under developement
do not use other than for this research project
may (and most definitely does) contain internal bugs
is the sole property of its developer:

CPT David D. Briggs

display message if to many forces are designated
If GForce > GChalks * GNumJumpDoor * 2 Then

89

MsgBox "The total forces as specified exceeds the paratroops
available", 48
End If

I places in the number of null jumpers in the force array (GJumperSum)
GJumperSum(GNumObj + 1) = (GChaulks * GNumJumpDoor * 2) - GForce

FILLS OUT THE REMAINDER OF GTime Array FOR SUBSEQUENT PASSES
First Pass Information has already been entered

Dim s, t, u, v, w, X, y, count As Integer ' counters

If GPasses > 1 Then 'Only Multiple Passes
For w = 2 To GNumJumpDoor \ GJumpPass ' just the even

passes
For X = 1 To GJumpPass * 2

For y = 1 To GNumObj
GTime(GJumpPass * 2 * (w - 1) + X, y) = GTime(X, y) +

(GRace * 60 * (w - 1))
Next y

Next X
Next w
t = GNumJumpDoor * 2 Mod (GPasses - 1) * GJumpPass * 2' returns the

number in the uneven pass
s = (GNumJumpDoor * 2) - t ' last even jumper
For u = 1 To t

For v = 1 To GNumObj

GTime(u + s, v) = GTime(u, v) + (GRace * 60 * (GPasses - 1))
Next v

Next u
End If

PART I - DEVELOP INITIAL BFS FOR TRANSPO PROBLEM

Dim ColumnSumo, RowSum() As Integer
ReDim RowSum(GNumJumpDoor * 2) ' Sum of Each Row ->GSupply()
ReDim ColumnSum(GNumObj + 1) ' Sum of Each Column ->GJumperSum()
Dim least As Single ' floating least position in a column
ReDim GTranspo(GNumJumpDoor * 2, GNumObj + 1, 5)
BFS = 1 ' Initial Basic Feasible Solution
working = 2 ' Work in progress
benefit = 3 ' Benefit Coefficients
updated = 4 ' Updated Solution
final = 5 ' Final solution
ReDim GSolution(GNumJumpDoor * 2, GChalks)
Dim MyMark As Integer

I copy the GTime Matrix to a Coeff Matrix
Dim aa, bb As Integer

ReDim Coeff(GNumJumpDoor * 2, GNumObj + 1)

90

For aa = 1 To GNumJumpDoor * 2
For bb = 1 To GNumObj + 1

Coeff(aa, bb) = GTime(aa, bb)
Next bb

Next aa

'****** DATA DISPLAY PROCEDURE******

set # Cols = Number of Chalks + 4 for posns
gridl.Cols = GChalks + 4

1Fill in Headers on grid
gridl.Row = 0
gridl.ColWidth(0) = 1 null

gridl.ColWidth(l) = 400 Left/ Right

gridl.ColWidth(2) = 500 count
gridl.ColWidth(3) = 500 pass

gridl.Col = 1
gridl.Text = L/v

gridl.Col = 2
gridl.Text = "Posn"
gridl.Col = 3
gridl.Text = "Pass"

Ienters posn and pass data
Dim 1, lcount, r, rcount As Integer
For 1 = 1 To GNumJumpDoor

gridl.Col = 1
gridl.Row = 1
gridl.Text = 11

gridl.Col = 2
lcount = lcount + 1

gridl.Text = lcount
Next 1

For r = GNumJumpDoor + 1 To GNumJumpDoor *2
gridl.Col = 1
gridl.Row = r
gridl.Text =1R1

gridl.Col = 2
rcount = rcount + 1
gridl.Text = rcount

Next r

gridl.ColWidth(4) = 900
gridl.Col = 4
gridl.Row = 0
gridl.Text = "Chalk:l"1

Dim a, ac As Integer

91

a = 4 'sets off the position and far left columns

For ac = 2 To GChalks

gridl.Col = ac + 3
gridl.ColWidth(ac + 3) = 900
gridl.Text = ac

Next ac

'display which pass on gridl
Dim pass As Integer
gridl.Col = 3
For pass = 1 To GPasses - 1

For Row = 1 To GJumpPass
gridl.Row = Row + ((pass - 1) * GJumpPass)
gridl.Text = pass

Next Row
For Row = 1 To GJumpPass

gridl.Row = Row + GNumJumpDoor + ((pass - 1) * GJumpPass)
gridl.Text = pass

Next Row
Next pass

I last pass display procedure
For Row = ((GPasses - 1) * GJumpPass) + 1 To GNumJumpDoor

gridl.Row = Row
gridl.Text = GPasses

Next Row
For Row = ((GPasses 1) * GJumpPass) + 1 To GNumJumpDoor

gridl.Row = Row + GNumJumpDoor
gridl.Text = GPasses

Next Row

'grid2 DISPLAY REQ *

Grid2.Cols = GNumObj + 1 + 2 + 1
Grid2.Rows = (GNumJumpDoor * 2) + 3
'headers
Grid2.Row = 0
Grid2.ColWidth(0) = 500
For count = 1 To GNumObj + 3

Grid2.ColWidth(count) = 500
Next count

**** Temporary End of Display Portion *

Vogel's Approximation Method

'NOTES:
'step 1 tested 10 JAN 95 9:55am

92

Dim row, column, MyMark, MyMarkCol, MyMarkC, x As Integer
Dim BigCol, BigRow, RowCol, CrossOut, WhichCross As Integer
Dim penalty() As Single
Dim penaltyC() As Single
Dim least, NextLeast, Biggest, TCost As Single
Dim GTime2() As Single
ReDim GTime2(GNumJumpDoor * 2, GNumObj)
ReDim penalty(GNumObj)
ReDim penaltyC(GNumJumpDoor * 2)
Dim RowCrossOut() As Integer 'keep track of crossed out rows
Dim ColCrossOut() As Integer 'keep track of crossed out columns
ReDim RowCrossOut(GNumJumpDoor * 2)
ReDim ColCrossOut(GNumObj)
Dim iteration, FindCol, FindRow, LastUnCol, LastUnRow As Integer
Dim FoundRow, FoundCol, ColSatisfied As Integer

'resest the coeff array as reqd
For column = 1 To GNumObj

For row = 1 To GNumJumpDoor * 2
GTime2(row, column) = GTime(row, column)

Next row
Next column

'resets the coeff to those available

For column = 1 To GNumObj
For row = 1 To GNumJumpDoor * 2

Coeff(row, column) = GTime2(row, column)
Next row

Next column

'HERE IS THE LOOP START POINT
ColSatisfied = 0'start with none satisfied
'For iteration = 1 To 19
Do

'Step 1. Search columns for column penalty between smallest costs

'For column = 1 To GnumObj
column = 0 'reset for this loop
Do

column = column + 1 'counter
If ColCrossOut(column) > 0 And column = GNumObj Then

Exit Do 'bypass if crossed out, exit if last
ElseIf ColCrossOut(column) > 0 Then
" column = column + 1 'will force skip of this col

End If

93

least = 999999
NextLeast = 999999
row = 0

Do 'find least in col
row = row + 1
If RowCrossOut(row) > 0 And row = GNumJumpDoor * 2 Then

Exit Do 'on the last row, and it has been croossed out
ElseIf RowCrossOut(row) > 0 Then

row = row + 1: 'skip that row

End If
If Coeff(row, column) < least Then

MyMark = row: least = Coeff(row, column)

End If
Loop Until row = GNumJumpDoor * 2

Coeff(MyMark, column) = 999999 'pull from
contention

row = 0

Do 'find next least in col
row = row + 1

If RowCrossOut(row) > 0 And row = GNumJumpDoor * 2 Then

Exit Do 'on the last row, and it has been croossed out
ElseIf RowCrossOut(row) > 0 Then

row = row + l'skip that row

End If
If Coeff(row, column) < NextLeast Then

NextLeast = Coeff(row, column)
End If

Loop Until row = GNumJumpDoor * 2

penalty(column) = NextLeast - least

Coeff(MyMark, column) = GTime2(MyMark, column) 'returns coeff
value !!!

Loop Until column >= GNumObj

'Next column

'which col had greatest penalty 'works 17 MAR
Biggest = 0

For column = 1 To GNumObj
If penalty(column) > Biggest Then

Biggest = penalty(column): BigCol = column

End If
grid3.row = 0
grid3.Col = column

grid3.Text = penalty(column)
Next column

'la. Search rows for row penalty between smallest costs
'For Row = 1 To GNumJumpDoor * 2

row = 0 'reset for this search
Do

row = row + 1

If RowCrossOut(row) > 0 And row = GNumJumpDoor * 2 Then

Exit Do

94

ElseIf RowCrossOut(row) > 0 Then
row = row + l'skip this row

End If

least = 999999
NextLeast = 999999
column = 0
Do

column = column + 1 'column counter
If ColCrossOut(column) > 0 And column GNumObj Then

Exit Do
ElseIf ColCrossOut(column) > 0 Then

column = column + 1 'skip that column
End If
If Coeff(row, column), < least Then

MyMarkC = column: least = Coeff(row, column)
End If

Loop Until column >= GNumObj

Coeff(row, MyMarkC) = 999999 'pull from contention

column = 0 'reset counter
Do 'find next least in col

column = column + 1 'column counter
If ColCrossOut(column) > 0 And column GNumObj Then

Exit Do
ElseIf ColCrossOut(column) > 0 Then

column = column + 1 'skip that column
End If
If Coeff(row, column) < NextLeast Then

NextLeast = Coeff(row, column)
End If

Loop Until column >= GNumObj

If RowCrossOut(row) > 0 Then
penaltyC(row) = 0

Else
penaltyC(row) = NextLeast - least

End If

Coeff(row, MyMarkC) = GTime2(row, MyMarkC) ' reset the value !!!.!
'Next Row
Loop Until row >= GNumJumpDoor * 2

'which row had greatest penalty 'works 17 MAR
Biggest = 0
grid3.Col = 0
row = 0'reset for this search
Do

row = row + 1
If RowCrossOut(row) = 0 Then LastUnRow = row 'keep track of last

uncrossed row
If RowCrossOut(row) > 0 And row = GNumJumpDoor * 2 Then

Exit Do
ElseIf RowCrossOut(row) > 0 Then 'find next empty row

95

For FindRow = row + 1 To GNumJumpDoor * 2
If RowCrossOut(FindRow) = 0 Then

row = FindRow: FoundRow = 1: Exit For

End If
Next FindRow 'IMPLIMENT FOR COL ALSO I

End If

grid3.row = row
grid3.Text = penaltyC(row)
If penaltyC(row) > Biggest Then

Biggest = penaltyC(row): BigRow = row
End If

Loop Until row >= GNumJumpDoor * 2

'find biggest penalty between rows and column
Print penalty(BigCol), penaltyC(BigRow)
If penalty(BigCol) > penaltyC(BigRow) Then

CrossOut = BigCol: RowCol = 10 'will allocate to col
Else CrossOut = BigRow: RowCol = 20 'will allocate to row
End If

'find smallest cost in that cross out line and allocate all to it
Select Case RowCol
Case 10 'will allocate to this col

least = 999999 'find smallest value in that col
row = 0
Do

row = row + 1
If RowCrossOut(row) > 0 And row = GNumJumpDoor * 2 Then

Exit Do 'MAY NOT NEED THIS HERE
ElseIf RowCrossOut(row) > 0 Then

row = row + 1: Print 'skip this row
End If
If Coeff(row, CrossOut) < least Then

least = Coeff(row, CrossOut): MyMarkRow = row
End If

Loop Until row >= GNumJumpDoor * 2
'allocate everything to it
reqs = GJumperSum(CrossOut) - ColumnSum(CrossOut)
seats = GSupply(MyMarkRow) - RowSum(MyMarkRow)
allocation = 0
If reqs And seats > 0 Then

If seats > reqs Then seats = reqs:
GTranspo(MyMarkRow, CrossOut, 1) = seats:
allocation = 1

Else GTranspo(MyMarkRow, CrossOut, 1) = 0 'assign basic value
End If

'bookkeeping

96

If allocation = 1 Then 'update sums
ColumnSum(CrossOut) = ColumnSum(CrossOut) + GTranspo(MyMarkRow,

CrossOut, 1)
RowSum(MyMarkRow) = RowSum(MyMarkRow) + GTranspo(MyMarkRow,

CrossOut, 1)
End If

'Cross out column or row
If GJumperSum(CrossOut) = ColumnSum(CrossOut) Then 'cross col if

full
WhichCross = 1

Else WhichCross = 2 'cross row out other wise (nulls will take up
slack)

End If
Select Case WhichCross
Case 1 'cross out column

ColCrossOut(CrossOut) = 1
ColSatisfied = ColSatisfied + 1

Case 2 'cross out row
RowCrossOut(MyMarkRow) = 1

End Select

Case 20 'allocates to a row
least = 999999
column = 0 'reset
Do

column = column + 1
If ColCrossOut(column) > 0 And column = GNumObj Then

Exit Do: Print "exit case 20 part 1"
ElseIf ColCrossOut(column) > 0 Then

column = column + 1: Print "exit case 20 part 2" 'skip that
column

End If
If Coeff(CrossOut, column) < least Then

least = Coeff(CrossOut, column): MyMarkCol column
End If

Loop Until column >= GNumObj
'allocate everything to it
reqs = GJumperSum(MyMarkCol) - ColumnSum(MyMarkCol)
seats = GSupply(CrossOut) - RowSum(CrossOut)
allocation = 0
If reqs And seats > 0 Then

If seats > reqs Then seats = reqs

GTranspo(CrossOut, MyMarkCol, 1) = seats
allocation = 1

Else GTranspo(CrossOut, MyMarkCol, 1) = 0
End If
'bookkeeping
If allocation = 1 Then 'update sums

ColumnSum(MyMarkCol) = ColumnSum(MyMarkCol) + GTranspo(CrossOut,
MyMarkCol, 1)

RowSum(CrossOut) = RowSum(CrossOut) + GTranspo(CrossOut,
MyMarkCol, 1)

97

End If

'Cross out column or row
If GJumperSum(MyMarkCol) = ColumnSum(MyMarkCol) Then 'cross col if

full
WhichCross = 1

Else WhichCross = 2 'cross row out otherwise (nulls will take up
slack)

End If
Select Case WhichCross
Case 1 'cross out column

ColCrossOut(MyMarkCol) = 1
ColSatisfied = ColSatisfied + 1

Case 2 'cross out row
RowCrossOut(CrossOut) = 1

End Select
End Select

reset all temporary values
BigCol = 0
BigRow = 0
MyMarkRow = 0
MyMarkCol = 0
CrossOut = 0
For column = 1 To GNumObj

penalty(column) = 0
Next column
For row = 1 To GNumJumpDoor * 2

penaltyC(row) = 0
Next row

For column = 1 To GNumObj
gridl.Col = column
For row = 1 To GNumJumpDoor * 2
gridl.row = row
gridl.Text = Coeff(row, column)
Next row

Next column

I LOOP FROM THIS POINT BACK, m+n-I times
Loop Until ColSatisfied = GNumObj
'Print in grid3 the biggest penalty and where it Is (Col)

'compute associated transportation cost for BFS
I and place in a file
For Row = 1 To GNumJumpDoor * 2

For column = 1 To GNumObj + 1
TransCost = TransCost + (Coeff(Row, column) * GTranspo(Row,

column, 1))
Next column

Next Row

Open "c:\manifest\Trancost.txt" For Output As #1
Write #1, TransCost

98

Close #1

'display manifest matrix after computation done by LoadPlan.FRM
of GTranspo(row, column, 1)

'must search row by row for non-zero values,
mark the location, and translate into display locations

Dim position, counter, chalk As Integer
ReDim GSolution(GChalks, GNumJumpDoor * 2)

For Row = 1 To GNumJumpDoor * 2
counter = 1 'resets the value at the ist column

For column = 1 To GNumObj + 1
If GTranspo(Row, column, 1) <> 0 Then

For chalk = counter To GTranspo(Row, column, 1)

GSolution(chalk, Row) = Objectives(column).MyObjUnit
Next chalk

counter = GTranspo(Row, column, 1) + 1

End If
Next column

Next Row

'**** display the solution in gridl

For Row = 1 To GNumJumpDoor * 2 Step 2 'displays all left door
For column = 1 To GChalks

gridl.Col = column + 3
gridl.Row = (Row + 1) / 2
gridl.Text = GSolution(column, Row)

Next column
Next Row

For Row = 2 To GNumJumpDoor * 2 Step 2 'displays all right door
For column = 1 To GChalks

gridl.Col = column + 3
gridl.Row = GNumJumpDoor + (Row / 2)
gridl.Text = GSolution(column, Row)

Next column
Next Row

'output to the left.txt file to be read in MODSIM II simulation
Open "c:\manifest\left.txt" For Output As #5
For column = 1 To GChalks

gridl.Col = column + 3
For Row = 1 To GNumJumpDoor

gridl.Row = Row
Write #5, gridl.Text

Next Row

99

Next column
Close #5

'output to the right.txt file to be read in MODSIM II simulation
Open "c:\manifest\right.txt" For Output As #6
For column = 1 To GChalks

gridl.Col = column + 3
For Row = GNumJumpDoor + 1 To GNumJumpDoor * 2

gridl.Row = Row
Write #6, gridl.Text

Next Row
Next column
Close #6

End Sub

Sub Command8 Click ()
'LAUNCH SIMULATION

Dim X
X = Shell("c:\manifest\simulatn.exe", 1)

this works I
End Sub

APPENDIX B

MODSIM II SIMULATION CODE

101

DEFINITION MODULE abn;

Contains modules and objects for use in
Mass Tactical Airborne Simulation Project,
as part of thesis conceived by David D. Briggs

ORIGINAL PROGRAM DATE: 10 FEB 95

LAST REVISION: 25 MAR 95 1100

CHANGES MADE ON LAST VERSION: verify aircraft location X
verify distance calculation X

add report collector object X
multiple replications X

Final report format X
multiple passes

wind shift X
Output jumper times to array X

PREVIOUS LATEST VERSION REVISION DATE: 23 MAR 95}

FROM SimMod IMPORT StartSimulation, SimTime;
FROM RandMod IMPORT RandomObj, FetchSeed;
FROM GrpMod IMPORT QueueObj;
FROM StatMod IMPORT SREAL, RStatObj;
FROM IOMod IMPORT StreamObj, FileUseType(Input), FileUseType(Output);
FROM GrpMod IMPORT QueueObj;
FROM MathMod IMPORT SIN, COS;

TYPE
ReadFrom = OBJECT {makes all input values global)

LPasses, LChalks, LJumpPass, LRace,
LNumObj, LNumJumpDoor,
StringCount, RealCount, IntCount :INTEGER;
UDoF, UACSpeed, LWindDirDelta, LWindSpeedDelta, UWindSpeedDelta,

UWindDirDelta,
LDoF, LPPIX, LPPIY, LACSpeed, Llnterval :REAL;
LObjName, LObjUnit :STRING;
ASK METHOD InitGlobalINT(IN LPasses, LChalks, LJumpPass, LRace,

LNumObj, LNumJumpDoor :INTEGER);
ASK METHOD InitGlobalREAL(IN LDoF, LPPIX, LPPIY, LACSpeed,

Llnterval, LWindSpeedDelta, LWindDirDelta :REAL);
ASK METHOD InitArrays;
ASK METHOD InitObjectives;
ASK METHOD InitArrayString(IN LObjName, LObjUnit :STRING);

102

ASK METHOD InitArrayReal(IN LObjX, LObjY, LObj Speed :REAL);
ASK METHOD InitArraylnt(IN LObjForce :LNTEGER);,
ASK METHOD PrintGlobals;
ASK METHOD ReadManifest;
ASK METHOD UpDateNextPass(IN UDoF, UACSpeed, UWindSpeedDelta,

UWindDirDelta :REAL);
END) OBJECT;

ParatrooperObj =OBJECT
MyX, MyY, MyXLoc, MyYLoc, MySpeed, MyFa~lTime, SpeedVar,
DoorToObj Time: REAL;
Chalk, MyObjNum :INTEGER;
MyUnit :STRING;
ASK METHOD Objlnit;-
ASK METHOD Th)Self(IN Unit: STRING);
TELL METHOD Jump (IN MyX, MyY, MyFa~lTime: REAL);
ASK METHOD FindMyObj;
TELL METHOD GotoMyObj;

END OBJECT; {ParatrooperObj }

ObjectiveObj =OBJECT (RStatObj)
MyObjX, MyObjY, {MyObj Speed)
ArrivalTime, ShowTime : REAL;
hundred, ninety,
seventyfive, fifty SREAL;
JumpCounter, report: INTEGER;
AssignedJumpers, ObjNum., RunningCounter :INTEGER;
MyName, MyUnit :STRING;
MyArrivalTimes :ARRAY INTEGER OF REAL;
ASK METHOD Objlnit;-
ASK METHOD MakeAssignments(IN MyNum :INTEGER);
ASK METHOD CountJumper(IN ShowTime :REAL);
ASK METHOD ResetObjective;
ASK METHOD PrintArrivalTimes;

END OBJECT; {ObjectiveObj)

AircraftObj = OBJECT (QueueObj)
CurrentX, CurrentY, ACStartX, ACStartY,
CurrentAlt, NextAC :REAL;
Numb er~flumpers,
Chalk, ChalkNum, PassNum :INTEGER;-
PassTime,MeterSec : REAL;

103

ASK METHOD ObjInit;
ASK METHOD StartUp(IN ACStartX, ACStartY :REAL); {initializes the start

point}
{TELL METHOD Fly; moves AC, calcs new x y, for interval sec.)

TELL METHOD DropEmL(IN ChalkNum :INTEGER); {causes jumper to
exit, update locations)

{must calc departure time, x and y's}
OVERRIDE
ASK METHOD Removeo :ANYOBJ;

END OBJECT; {AircraftObj)

RightDoor = OBJECT (AircraftObj)
LROffSet :REAL; {places buffer to start after leftdoor)
LRDelay :REAL;

ASK METHOD StartUpR(IN ACStartX, ACStartY, LROffSet :REAL);
TELL METHOD DropEmR(IN ChalkNum :INTEGER);

END OBJECT;

ReportCollect = OBJECT
ASK METHOD Objlnit;

ASK METHOD RepReport(IN repNum :INTEGER);
ASK METHOD FinalReport;

END OBJECT;

VAR
CARPXCoord, CARPYCoord,
JumpAltitude, acNum,
x, m :INTEGER;
Heading, DoF, WindSpeedDelta, WindDirDelta,
PPIX, PPIY, Serial, RSerial :REAL;
ACType, Passes, X, Y, Z, OCount, JCount, LCount, RCount,
Chalks, JumpPass, repNum,
Race, NumObj,
NumJumpDoor :INTEGER;
NullString :STRING;
LeftJump,
RightJump ARRAY INTEGER, INTEGER OF STRING;
ObjName :ARRAY INTEGER OF STRING;
ObjUnit :ARRAY INTEGER OF STRING;
ObjX :ARRAY INTEGER OF REAL;

104

ObjY :ARRAY INTEGER OF REAL;
ObjForce :ARRAY INTEGER OF INTEGER;
ObjSpeed :ARRAY INTEGER OF REAL;
MyObj :ARRAY INTEGER OF ObjectiveObj;
LeftDoorObj :ARRAY INTEGER OF AircraftObj;
RightDoorObj :ARRAY INTEGER OF RightDoor;
FIFTY :ARRAY INTEGER OF SREAL;
SEVENTYFIVE :ARRAY INTEGER OF SREAL;
NINETY :ARRAY INTEGER OF SREAL;
HUNDRED :ARRAY INTEGER OF SREAL;
ACSpeed, Interval, Altitude,
DoorInterval :REAL;
Rand, ACRand, ACRand2, RandJ, RandO :RandomObj;
Jumper, JUMPER :ParatrooperObj;
OutStrm :StreamObj;

END MODULE;

105

IMPLEMENTATION MODULE abn;
{ See and ensure updating of notes in the definition Module abn

NOTES: Verified aircraft and jumper location updates 13 MAR 95
Verified distance and wait times 13 MAR 95

LAST MODIFICATION DATE: 15 MAR 95
LOCATION: ISTS

PREVIOUS VERSION DATE 28 FEB 95
}

FROM SimMod IMPORT StartSimulation, SimTime;
FROM RandMod IMPORT RandomObj, FetchSeed;
FROM GrpMod IMPORT QueueObj;
FROM StatMod IMPORT SREAL, RStatObj;
FROM IOMod IMPORT StreamObj, FileUseType(Input), FileUseType(Output);
FROM MathMod IMPORT SQRT, COS, SIN;
FROM GrpMod IMPORT QueueObj;

OBJECT ReadFrom; {makes all input values global}

ASK METHOD InitGlobalINT(IN LPasses, LChalks, LJumpPass, LRace, LNumObj,
LNumJumpDoor :INTEGER);

VAR
EmptyString :STRING;

BEGIN
OUTPUT("Reading Input Parameters);

Passes:=LPasses;
Chalks:=LChalks;
Race:=LRace;
NumObj :=LNumObj;
NumJumpDoor:-LNumJumpDoor;
JumpPass:= LJumpPass;
NEW(OutStrm);

END METHOD;

ASK METHOD InitGlobalREAL(IN LDoF, LPPIX, LPPIY, LACSpeed, LInterval,
LWindSpeedDelta, LWindDirDelta :REAL);

BEGIN
DoF:=LDoF;
PPIX:=LPPIX;
PPIY:=LPPIY;

106

ACSpeed:=LACSpeed;
Interval: :LInterva1;
WindSpeedDelta:=LWindSpeedDelta;
WindDirDelta:=zLWindDirDelta;

END METHOD;
ASK METHOD InitArrays;

BEGIN
NEW(ObjName, 1..NumObj);-
NEW(ObjUnit, 1. .NumObj);
NEW(ObjX, 1..NumObj);
NEW(ObjY, 1..NumObj);-
NEW(ObjForce, 1. .NumObj);
NEW(Obj Speed, 1..NumObj);
NEW(Leftlump, 1..NumJumpDoor, 1.. Chalks);-
NEW(RightJump, 1..NumJumpDoor, 1.. Chalks);-

END METHOD;
ASK METHOD InitArrayString(IN LObjName, LObjUnit :STRING);

BEGIN
INC(StringCount);
ObjName[StringCount] :=LObjName;
ObjUnit[StringCount]: =LObj Unit;

END METHOD;
ASK METHOD InitArrayReal(IN LObjX, LObjY, LObj Speed :REAL);

BEGIN
INC(RealCount);
ObjX[RealCount] :=LObjX;
ObjY[RealCount] :LObjY-,
Obj Speed[RealCount] :=LObj Speed;

END METHOD;
ASK METHOD InitArraylnt(IN LObjForce :INTEGER);

BEGIN
INC(IntCount);
ObjForce[IntCount] :=LObjForce;

END METHOD;
ASK METHOD InitObjectives;

VAR
count:INTEGER;,

BEGIN
NEW(MyObj, 1..NumObj);

FOR count: 1 TO NumObj
NEW(MyObj [count]);
ASK MyObj [count] TO MakeAssignments(count);

END FOR;
END METHOD;

107

ASK METHOD PrintGlobals; {*TEM[P*)
BEGIN

OUTPUT(" # Chalks = ",Chalks);
OUTPUT(" # Passes= ",Passes);
OUTPUT(" # OBJ = ",NumObj);
OUTPUT(" PPIX, PPIY", PPIX, " ", PPIY);
OUTPUT(" SPEED, DoF = ", ACSpeed, "", DoF);

OUTPUT;)
END METHOD;

ASK METHOD UpDateNextPass(IN UDoF, UACSpeed, UWindSpeedDelta,
UWindDirDelta :REAL);

BEGIN
ACSpeed:=UACSpeed;
DoF:=UDoF;
WindSpeedDelta:=JWindSpeedDelta;
WindDirDelta:=UWindDirDelta;
OUTPUT;
{OUTPUT("New serial speed and direction ", ACSpeed," Knots ", DoF,"

degrees");
OUTPUT;)

END METHOD;
ASK METHOD ReadManifest;

VAR
C, J INTEGER;
Strm2 StreamObj;

BEGIN
NEW(Strm2);
ASK Strm2 TO Open("Left.txt", Input);
FOR C:=I TO Chalks

FOR J:=1 TO NumJumpDoor
ASK Strm2 TO ReadLine(LeftJump[J,C]);

END FOR;
END FOR;
ASK Strm2 TO Close;
DISPOSE(Strm2);

NEW(Strm2);
ASK Strm2 TO Open("Right.txt", Input);
FOR C:=1 TO Chalks

FOR J:=1 TO NumJumpDoor
ASK Strm2 TO ReadLine(RightJump[J,C]);

END FOR;
END FOR;

108

ASK Strm2 TO Close;
DISPOSE(Strm2);-

END METHOD;
END OBJECT;

OBJECT ParatrooperObj;
ASK METHOD Objlnit;

BEGIN
INC(JCount);
NIEW(RandJ);-

END METHOD;

ASK METHOD IDSelf(IN Unit: :STRTNG),-
BEGIN

MyUnit: Unit;
END METHOD; {reads its unit from the generator)

TELL METHOD Jump(IN MyX, MyY, MyFaIlTime :REAL);, (include drift etc.}
VAR

DeRig, TheTime :REAL;
BEGIN
M~yX-Loc:=M~yX;
MyYLoc:=MyY;
TheTime:=SimTimeo;,
WAIT DURATION MyFa~lTime;
END WAIT;
DeRig:= ASK RandJ Normal(450.0, 108.0); {Verified)
WAIT DURATION DeRig;,
END WAIT;
ASK SELF TO FindMyObj;
TELL SELF TO GotoMyObj;
END METHOD;

ASK METHOD FindMyObj; {Also computes DoorToObjTime}
VAR

XandY, XDist, YDist, MyObjDistance :REAL;
BEGIN
FOR x:=1 TO NumObj (Determine which Objective to go to)

IF MyUnit = ObjUnit~x]
mn=X

END IF;
END FOR;

109

IF STRLEN(MyUnit) <= 1 {clear out the nulls immediately)
DISPOSE(SELF);
{OUTPUT("Null Jumper Disposed of..

END EF;

MyObjNum:=m; {solidify which obj in the array)
XDist:=MyXLoc-Obj X[m];
YDist:=MyXLoc-Obj Y[m];

SpeedVar:= ASK RandJ Triangular(0. 1, 0.75, 0.99);-
XandY:=(MyXLoc-ObjX[m])* (MyXLoc-ObjX[m])+(MyYLoc-

ObjYlim]) *(M~yY~{oc-ObjY[m]);
MyObjDistance:=S QRT(XandY);-
DoorToObj Time:= MyObjDistance /(Obj Speed[m] *Speed Var);
END METHOD;

TELL METHOD GotoMyObj;
VAR

ShowTime :REAL;
BEGIN
WAIT DURATION DoorToObjTime; {verified passed 13 MVAR 95)
END WAIT;
ShowTime :=SimTimeo;
ASK MyObj [MyObjNum] TO CountJumper(ShowTime);-
DISPOSE(SELF);
END METHOD;

END OBJECT;

OBJECT Obj ectiveObj;
ASK METHOD Objlnit;

BEGIN
INC(OCount);
NEW(RandO);
report:=l;

END METHOD;-
ASK METHOD MakeAssignments(IN MyNum :INTEGER);

BEGIN
ObjNum: MyNum;-
AssignedJumpers :=ObjForce[MyNum];
MyName:=ObjName[MyNum];
M~yUnit:=ObjName[M~yNum];

110

NEW(MyArrivalTimes, 1 .AssignedJumpers* 10); {# in * replications)
ENT) METHOD;-

ASK METHOD CountJumper(IN ShowTime :REAL);
VAR

CurrentPercentage, JCounter, AJumpers :REAL,
BEGIN {includes the individual derig var here)
ArrivalTime:= ShowTime;
INC(JumpCounter);
17NC(RunningCounter);-
MyArrivalTimes [RunningCounter] :=ArrivalTime/6 0.0;,
JCounter:=FLOAT(JumpCounter);
AJumpers :=FLOAT(AssignedJumpers);
CurrentPercentage:=JCounter/AJumpers;
{ OUTPUT(" relative combat power CurrentPercentage);
OUTPUT;)
CASE report

WHEN 1:
IF CurrentPercentage >= 0.50

fifty: =SimTimeo;
{OUTPUT("FJLFTY PERCENT AT ",MyName, "AT TIME ",fifty);)

FIFTY[ObjNum] :fifty;-
[NC (report);

END IF;-
WHIEN 2:

IF CurrentPercentage >= 0.75
seventyfive:=SimTimeo-,
{OUTPUT(" SEVENTY-FIVE PERCENT AT ",MyName, "AT TIME

",seventyfive);}

SEVENTYFIVE[ObjNum] :=seventyfive;
INC(report),;

END IF;
WHIEN 3:

IF CurrentPercentage >= 0.90
ninety: =SimTimeo;
{OUTPUT("NINETY PERCENT AT ",MyName, "AT TIME "

ninety);)
NINETY[ObjNum] :=ninety;
INC(report);

END IF;
WJ{EN 4:

IF CurrentPercentage 1.0
hundred: =SimTimeo;
I-INIDRED[ObjNum] : =hundred;

{OUTPUT("HUM)RED PERCENT AT ",MyName, "AT TIME "

hundred);)
END IF,

END CASE;
END METHOD;

ASK METHOD ResetObjective;
BEGIN

report:=1;
JumpCounter:=0;
fifty:=O.0;
seventyfive:=0.0;
ninety:0O.0;
hundred:=O .0;

END METHOD;-

ASK METHOD PrintArrivalTimes; { done after all stats)
VAR

count :INTEGER;
BEGIN

ASK OutStrm TO Open(MyName, Output);
ASK OutStrm TO WriteString(MyName);
ASK OutStrm TO WriteString("; ");

FOR count:~=1 TO AssignedJumpers*7
ASK OutStrm TO WriteReal(MyArrivalTimes [count], 6, 3);

ASK OutStrm TO WriteString(";");
END FOR;
ASK OutStrm TO Close;

END METHOD;

END OBJECT;

OBJECT AircraftObj;
ASK METHOD Objlnit;

BEGIN
NEW(ACRand);
NEW(ACRand2);

END METHOD;

ASK METHOD StartUp(IN ACStartX, ACStartY :REAL);
VAR

BEGIN
INC(acNum);
CurrentX:= PPIX + ACStartX;

112

CurrentY:= PPIY + ACStartY;
END) METHOD;

TELL METHOD DropEmL(IN ChalkNum :INTEGER);
VAR

RandNumGen RandomObj;
TimeTolmpact REAL;
DriftX, DriftY, TempX, TempY, Interval, WindX, WindY, WindDriftDist,
Drifti, FallTime,
JumperX, JumperY,
DeploymentAlt, Temp 1, Temp2, Temp3, Temp4, Temp5, Temp6:REAL;-
J :INTEGER-,
unit :STRING;

BEGIN
NextAC:=:ASK ACRand2 Normal(8.45, 1.4);-
IF ChalkNum > 0

Serial:=Serial+NextAC;
WAIT DURATION Serial; {Time between A/C in a serial)

END WAIT;-
END IF;

FOR J:=~ 1 TO JumpPass
NEW(Jumper);
unit:= LeftJump[J, ChalkNum],
ASK Jumper TO lIDSelf(unit);
DeploymentAlt:= ASK ACRand Normal(679.3, 23.49);
Drifti 1:=(DeploymentAltl 100. 0) * 3.84 1;
DriftX:=ASK ACRand Triangular(-Driftl, 0.0, Drifti);
DriftY:=ASK ACRand Triangular(-Driftl, 0.0, Drifti);-
FallTime:=ASK ACRand Normal(3 9.2, 4.9);
WindDriftDist:=FallTime*(WindSpeedDelta*0. 5141);
WindX:~=WindDriftDist* SIN(WindDirDelta* 0.01745);,
WindY:=WindDriftDist*COS(WindDirDelta*0 .01745);
Jump erX:=CurrentX+DriftX+WindX;ý
JumperY:=CurrentY+DriftY+WindY;
{OUTPUT(JumperX, " ", JumperY, " ", FailTime);)
TELL Jumper TO Jump(JumperX, JumperY, FallTime);

{FLY for interval seconds)
Interval:=ASK ACRand Gamma(1 .040956, 11.04); {time between

jumpers)
MeterS ec: =AC Speed * 0.5 141; {convert speed to m/s)

CurrentX:=CurrentX + Interval*MeterSec* SIN(DoF *0.01745);
CurrentY:=CurrentY + Interval *MeterSec*CO S(DoF *0. 01745);
{ OUTPUT("LEFT jumper location ", JumperX, ",JumperY, ,

FallTime); @@@)

113

WAIT DURATION Interval;,
END WAIT;

END FOR;
INC(PassNum);
IF ChalkNum = Chalks {Reset for each pass/replication)

Serial: 0.0;
END IF;

END METHOD;

ASK METHOD Removeo : ANYOBJ;
BEGIN

JUMPER:= INHERITED Removeo,
RETURN JUMPER;-

END METHOD {Remove)-,

END OBJECT;

OBJECT RightDoor;-

ASK METHOD StartUpR(TN ACStartX, ACStartY, LROffSet :REAL);
VAR

AdjX, AdjY, TravelDist :REAL;-
BEGIN
LRDelay :=LROffSet;

TravelDist:= 125.0 * 0.5 141 * LROffSet;
AdjX:=SIN(DoF*0.0 1745)*TravelDist;
AdjY:=COS(DoF*0.01I745)*TravelDist;
CurrentX:=PPIX + ACStartX + AdjX;-
CurrentY:=PPIY + ACStartY + AdjY;
f{OUTPUT("Adjusted impact Right Door: ",CurrentX, ",CurrentY); }

END METHOD;

TELL METHOD DropEmR(IN ChalkNum: INTEGER);
VAR

RandNumGen :RandomObj;
TimeTolmpact :REAL;
DriftX,' DriftY, TempX, TempY, Interval,
Drifti, FallTime, WindX, WindY, WindDriftDist,
JumperX, JumperY,
DeploymentAlt :REAL;
J :INTEGER,-

114

unit :STRING;-
BEGIN

WAIT DURATION LRDelay; {delay in time)
END WAIT;

{OUTPUT("right door Waited duration ",SimTimeo," LRDelay);}
NextAC:=ASK ACRand2 Normal(8.45, 1.4);

IF ChalkNum. > 0
RSerial :==RSerial+NextAC;
WAIT DURATION RSerial; (Time between A/C in a serial)

END WAIT;
END IF;

FOR J:= 1 TO JumpPass

NEW(Jumper),;
unit:= RightJump [J,ChalkNum];
ASK Jumper TO lDSelf(unit);
DeploymentAlt:= ASK ACRand Normal(679.3, 23.49);
Drifti 1:=(DeploymentAltl 100. 0) * 3.84 1;
DriftX:=ASK ACRand Triangular(-Driftl, 0.0, Drifti);
DriftY:=ASK ACRand Triangular(-Driftl, 0.0, Drifti);
FallTime:=ASK ACRand Normal(3 9.2, 4.9);
WindDriftDist:=FallTime*(WindSpeedDelta* 0.5141);-
WindX:==WindDriftDist* SIN(WindDirDelta*0.0 1745);
WindY::=WindDriftDist*COS(WindDirDelta*0.0 1745);
Jump erX:=CurrentX±DriftX+WindX;
JumperY:=CurrentY+DriftY+WindY;
(OUTPUT(" RIGHT jumper location ", JumperX, ""JumperY, "

FallTime);-
TELL Jumper TO Jump(JumperX, JumperY, FallTime);-

{FLY for interval seconds)
Interval:=ASK ACRand Gamma(1 .040956, 11.04); (time between

jumpers)
MeterS ec:=AC Speed * 0.5 141; {convert speed to m/s)

CurrentX:=CurrentX + Interval *MeterS ec* SIN(DoF * 0. 01745);
CurrentY:=CurrentY + Interval*MeterSec*COS(DoF *0.01745);
{OUTPUT("RIGHT Flying New CurrentX: ",CurrentX," Y

CurrentY);)
WAIT DURATION Interval;
END WAIT;-

END FOR;
INC(PassNum);
IF ChalkNum = Chalks (Reset for each pass/replication)

RSerial := 0.0;-

115

END IF;
END METHOD;

END OBJECT;

OBJECT ReportCollect;
ASK METHOD Objlnit; {size the global collection arrays}

BEGIN
NEW(FIFTY, 1..NumObj);
NEW(SEVENTYFIVE, 1..NumObj);
NEW(NINETY, 1..NumObj);
NEW(HUNDRED, 1..NumObj);

END METHOD;

ASK METHOD RepReport(IN repNum :INTEGER);
BEGIN

OUTPUT("*******************************)

OUTPUT("***** REPLICATION A ", repNum, "

OUTPUT;
FOR X:= 1 TO NumObj

OUTPUT(" ",ObjName[X], "",ObjUnit[X]);
OUTPUT(" ------------------------
OUTPUT("Fifty % at ", FIFTY[X]/60.0, " minutes");
OUTPUT(" Seventy-Five % at ", SEVENTYFIVE[X]/60.0, "minutes");
OUTPUT("Ninety % at ", NTNETY[X]/60.0, " minutes");
OUTPUT("One Hundred % at ", HUNDRED[X]/60.0, " minutes");

OUTPUT;
ASK MyObj[X] TO ResetObjective; {Resets the objective data)

END FOR;

OUTPUT;
END METHOD;

ASK METHOD FinalReport;
VAR

mean50, min50, max50, sd50,
mean75, min75, max75, sd75,
mean90, min90, max90, sd90,
meanl00, minl00, maxl00, sdlO0 :REAL;

BEGIN
OUTPUT;
OUTPUT;
OUTPUT("-- ----------------------

116

OUTPUT("<<<< SIMULATION SUMMVARY REPORT »»>>");'%
OUTPUT(----------------------------------
OUTPUT(" (All Statistics in minutes) ")
OUTPUT;

FOR X:= 1 TO NumObj
mean5O:= ASK (GETMONITOR (FIFTY[X], RStatObj)) Mean;
min50:= ASK (GETMONITOR (FIIFTY[X], RStatObj)) Minimum;
max50:= ASK (GETMONITOR (FIFTY[X], RStatObj)) Maximum;
sd50:= ASK (GETMONITOR (FJFTY[X], RStatObj)) StdDev;
mean75:= ASK (GETMONITOR (SEVENTYFIVE[X], RStatObj)) Mean;
min75:= ASK (GETMONITOR (SEVENTYFIVE[X], RStatObj)) Minimum;
max75: ASK (GETMONITOR (SEVENTYFLVE[X], RStatObj)) Maximum;
sd75:= ASK (GETMONITOR (SEVENTYFIVE[X], RStatObj)) StdDev;
mean9O:= ASK (GETMONITOR (NI7NETY[X], RStatObj)) Mean;
min90:= ASK (GETMONITOR (NINETY[X], RStatObj)) Minimum;
max90:= ASK (GETMONITOR (N11\ETY[X], RStatObj)) Maximum;,
sd9O:= ASK (GETMONITOR (NINETY[X], RStatObj)) StdDev;
meanl100: =ASK (GETMONITOR (HUNDRED [X], RStatObj)) Mean;
minlOO:= ASK (GETMONITOR (HIJNDRED[X], RStatObj)) Minimum;
maxlOO:= ASK (GETMONITOR (HUNDRED[X], RStatObj)) Maximum;,
sd100:= ASK (GETMONITOR (HUNDRED[X], RStatObj)) StdDev;

OUTPUT(ObjName[X], " ", ObjUnit[X]);-
OUTPUT(-- I)

OUTPUT(QCbtPwr MEAN MIN MAX STD DEV");
OUTPUT("50 %: ",mean50/60.0, ", min5O/60 .0, ", max50/60.0,"

sd50/60.0);
OUTPUT("75 %: mean75/60.0, ", min75/60 .0, ", max75/60.O,"

sd75/60.O);
OUTPUT("90 %: ",mean90/60.0, " min.9O/60 .0," ", max90/60.0, "

Md90/60.0);
OUTPUT("100 %: ",meanl00/60.0, " ,minlOO/60.0,", maxlOO/60 .0,"

sdlOO/60.0);
OUTPUT;
ASK MyObj [X] TO PrintArrivalTimes;-
OUTPUT;

END FOR;-

END METHOD;

END OBJECT;

END MODULE.

117

MAIN MODULE Thesis;

{as of 23 MAR 95

NOTES: All objects are being created, with the jumpers
adding themselves to the proper aircraft door VERIFIED 28 FEB}

FROM SimMod IMPORT StartSimulation, SimTime, StopSimulation,
ResetSimTime;
FROM RandMod IMPORT RandomObj, FetchSeed;
FROM GrpMod IMPORT QueueObj;
FROM StatMod IMPORT SREAL, RStatObj;
FROM ResMod IMPORT ResourceObj;
FROM IOMod IMPORT StreamObj, FileUseType(Input);
FROM abn IMPORT ParatrooperObj, AircraftObj, RightDoor, ObjectiveObj,
ReadFrom, repNum, ReportCollect;
FROM GrpMod IMPORT QueueObj;

VAR Strm : StreamObj;
TextLine :INTEGER;
Heading, DoF, StartDeltaX, StartDeltaY, WindSpeedDelta, WindDirDelta,
PPIX, PPIY, LR, NextAC :REAL;
ACType, Passes, X, Y, Z, J, C, OCount, JCount, LCount, RCount,
Chalks, JumpPass, Race, iterations,
NumObj, NumJumpDoor, Ch : INTEGER;
LeftJump, RightJump :ARRAY INTEGER, INTEGER OF STRING;
ObjName :ARRAY INTEGER OF STRING;
ObjUnit :ARRAY INTEGER OF STRING;
ObjX :ARRAY INTEGER OF REAL;
ObjY :ARRAY INTEGER OF REAL;
ObjForce :ARRAY INTEGER OF INTEGER;
Obj Speed :ARRAY INTEGER OF REAL;
MyObj :ARRAY INTEGER OF ObjectiveObj;
FIFTY :ARRAY INTEGER OF SREAL;
SEVENTYFIVE :ARRAY INTEGER OF SREAL,
NINETY :ARRAY INTEGER OF SREAL;
HUNDRED :ARRAY INTEGER OF SREAL;
ACSpeed, Interval, Altitude, DoorInterval :REAL;
Rand, Rand2, ACRand :RandomObj;
LeftDoorObj :ARRAY INTEGER OF AircraftObj;
RightDoorObj :ARRAY INTEGER OF RightDoor;
Jumper, JUMPER :ParatrooperObj;
unit,YN :STRING;
SendEm :ReadFrom;
ReportObj :ReportCollect;

118

BEGIN {Starts off with reading all initialization parameters from
the requisite .txt files}

NEW(Strm);
ASK Strm TO Open("info.txt",Input);
ASK Strm TO ReadReal(Heading);
ASK Strm TO ReadReal(PPIX);
ASK Strm TO ReadReal(PPIY);
ASK Strm TO ReadInt(Chalks);
ASK Strm TO ReadInt(ACType);
ASK Strm TO ReadInt(Passes);
ASK Strm TO ReadInt(JumpPass);
ASK Strm TO ReadInt(Race);
ASK Strm TO ReadInt(NumObj);
ASK Strm TO ReadInt(NumJumpDoor);
ASK Strm TO Close;
DISPOSE(Strm);

NEW(Strm); {Reads the text files and inputs into 2 dimensional array}
NEW(LeftJump, 1..NumJumpDoor, 1..Chalks);
ASK Strm TO Open("Left.txt", Input);
FOR Y:=I TO Chalks {verified 8 FEB}

FOR X:= 1 TO NumJumpDoor
ASK Strm TO ReadLine(LeftJump[X, Y]);

END FOR;
END FOR;
ASK Strm TO Close;
DISPOSE(Strm);

NEW(Strm); {ditto}
NEW(RightJump, 1..NumJumpDoor, 1..Chalks);
ASK Strm TO Open("Right.txt", Input);
FOR Y:=I TO Chalks {verified 8 FEB}

FOR X:= 1 TO NumJumpDoor
ASK Strm TO ReadLine(RightJump[X, Y]);

END FOR;
END FOR;
ASK Strm TO Close;
DISPOSE(Strm);

{reads and establishes points for Objectives}
NEW(ObjName, 1..NumObj);
NEW(ObjUnit, 1..NumObj);

119

NEW(ObjX, 1..NumnObj);
NEW(ObjY, 1. .NumObj);-
NEW(ObjForce, 1. .NumObj);
NEW(ObjSpeed, 1..NumObj);

NEW(Strm);
ASK Strm TO Open(" ObjNamne. txt", Input);-
FOR X:= 1 TO NumnObj

ASK Strm TO ReadLine(ObjName[X]);-
END FOR;
ASK Strm TO Close;
DISPOSE(Strm);

NEW(Strm);
ASK Strm TO Open(" Obj Unit~txt", Input);
FOR X:= 1 TO NumnObj

ASK Strm TO ReadLine(ObjUnitIIXl);
END FOR;
ASK Strm TO Close;
DISPOSE(Strm);-

NEW(Strm);
ASK Strm TO Open(" ObjX.txt", Input);
FOR X:= 1 TO NumnObj

ASK Strm TO ReadReal(ObjXIIX])-,
END FOR;
ASK Strm TO Close;
DISPOSE(Strm);

b4EW(Strm);
ASK Strm TO Open(" ObjY.txt", Input);
FOR X:= 1 TO NumnObj

ASK Strm TO ReadReal(ObjY[X]);
END FOR;
ASK Strm TO Close;
DISPOSE(Strm);

NEW(Strm);
ASK Strm TO Open(" ObjForce.txt", Input);
FOR X:= 1 TO NumnObj

ASK Strm TO Readlnt(ObjForceIIXl);
END FOR;-
ASK Strm TO Close;
DISPOSE(Strm);

120

NEW(Strm);,
ASK Strm TO Open(" Obj Speed. txt", Input);
FOR X:= 1 TO NumObj

ASK Strm TO ReadReal(ObjSpeed[X]);
END FOR;
ASK Strm TO Close;,
DISPOSE(Strm);

{ ~ ~ END Entrance Parameter Input***********}

OUTPUT("Beginning MODSIIM Mass Tactical Airborne Simulation
OUTPUT;

(Generate the AC)
NEW(LeftDoorObj, 1.. Chalks); {allocate the space)
NEW(RightDoorObj, 1.. Chalks);

FOR X: 1 TO Chalks
NEW(RightDoorObj [X]);
NEW(LeftDoorObj [X]);

END FOR;

NIEW(Rand);
(calculates the observed variances in the serial)
ACSpeed:= ASK Rand Gamma(125.75, 496.0); {VALID)
DoF: = Heading + ASK Rand Triangular(- 10. 0, 0. 0, 10. 0);
Wind SpeedDelta: =ASK Rand Normal(5 .0, 2.0);-
WindDirDelta:=ASK Rand UniformReal(0.0, 360.0);
DISPOSE(Rand);

{Make all Main Variables Global and accessible to all modules)
NEW(SendEm);
ASK SendEmn TO InitGlobalINT(Passes, Chalks, JumpPass, Race, Num.Obj,

NumJumpDoor);,
ASK SendEmn TO InitGlobalREAL(DoF, PPIX, PPIY, ACSpeed, Interval,

WindSpeedDelta, WindDirDelta);
ASK SendEm. TO InitArrays;
FOR X:= 1 TO NumObj

ASK SendEm TO InitArrayString(ObjName[X], ObjUnit[X]);-
ASK SendEmn TO InitArrayReal(ObjX[X], ObjY[X], ObiSpeedliXi);
ASK SendEmn TO InitArraylnt(ObjForce[X]);

END FOR;
ASK SendEm TO ReadManifest;
ASK SendEmn TO InitObjectives;
ASK SendEm TO PrintGlob als;

121

{Activate the report collector)
NEW(ReportObj);

FOR iterations := 1 TO 7 {Initially 10 reps)

INC(repNum);
ResetSimTime(0.0); {resets for each replication)
{Conduct aircraft position initialization)
NEW(Rand2);
ASK Rand2 TO SetSeed(repNum);
FOR Ch:= 1 TO Chalks

StartDeltaX:=ASK Rand2 Triangular(-240.0, 0.0, 240.0);
StartDeltaY:=ASK Rand2 Triangular(-240.0, 0.0, 240.0);
LR:= ASK Rand2 Normal(1.54381, 0.259065);
ASK LeftDoorObj [Ch] TO StartUp(StartDeltaX, StartDeltaY);
ASK RightDoorObj [Ch] TO StartUpR(StartDeltaX, StartDeltaY, LR);

END FOR;

{ GREENLIGHT !!}

FOR C:= 1 TO Chalks
TELL LeftDoorObj [C] TO DropEmL(C);
TELL RightDoorObj [C] TO DropEmR(C);

END FOR;

ACSpeed:= ASK Rand2 Gamma(125.75, 496.0); {Update for next pass)
DoF:= Heading + ASK Rand2 Triangular(-10.0, 0.0, 10.0);
WindSpeedDelta:=ASK Rand2 Normal(5.0, 2.0);
WindDirDelta:=ASK Rand2 UniformReal(0.0, 360.0);
ASK SendEm TO UpDateNextPass(DoF, ACSpeed, WindSpeedDelta,

WindDirDelta);
{NEXT PASS !!!!! }
StartSimulation;
ASK ReportObj TO RepReport(repNum); {gives replication stats)
{ Stop Simulation;)

END FOR;

ASK ReportObj TO FinalReport;

OUTPUT;
OUTPUT("In order to get a hard copy of the above results,");

122

OUTPUT("Select File above, and place a check next to");
OUTPUT("'stdout.txt' to send a copy of the output");
OUTPUT("to a file called c:\manifest\stdout.txt");
OUTPUT(" or you can highlight a desired section and copy/cut/paste");
OUTPUT("directly to a word processor or the notepad...");
OUTPUT;
OUTPUT("Enter any character and press return when complete...");
INPUT(Z);

END MODULE.

APPENDIX C

SIMULATION DISTRIBUTION DATA

124

Aircraft Speed (Knots per Hour)
Observed vs. Selected Distributions

Companison of Input Distirbution and Beta(1.65,2.34) 26.00 + 1.15e+2
0.11

0.05 input

1.15 100 1.31 1.86 1.41

Values in I Or2

Companison of Input Distribution and Triang(1 .1e+2, 1.25e+2, 1.41e+2)

0.11

0.05 ~input
0 .0 5

T ria n g

0.00 nu

1.15 1.20 15 11 16 14

Value. in 10^2

Comparison of Input Distribution and Nornmah1.96e+2,0.73)

0.11
--- --

0. 05 input

Z. M NGamal0 .0 01 .1 5 2 0 1 2 5 1 3

1.4
Vaiaen

in......

125

to .0) w- C'
:*I i-.. a !wP - 100 W

- c t ;'NP N Do 00 00 00s, .2 to-
i 0i :0 X0 10400 0 0 , 4C)]9 X=

+o
C-

0wi

.......
....(N :. :

..
(00 J, o iow: :,t w iK) .ox)r

0D 10 10 p) 40] :Da

'm4.):, 00X ;000 0 0 ~ U) 0o 0m1

:+ -0 ;.O 1.(~ L 0-(C)- 10 CD .-

.10)

:E

(N po r")o) PO W " 4V -) 0 t- ;b0x)- i
:+ '-0flt f-- i.-)))))))) ~ ~

n'* c) o ia
:4) -D((N 0Dw00000o . 00 0 ýo IJ -o

i 00 0 0 0(16 40 (N 0 .

e'J

+c

UQ

.,t ic ro 000'-

t0o II. W 4)
C.-

..

*C0O~ W ~0.. : (?D O
iE caia l ~ -i

126

Time Between Jumper Exits on Single Door (in seconds)
Observed vs. Selected Distributions

Comparison of Input Distribution and Gamrna(1 1 .04.9.43e.-2)

1.6

08 ~¶ Input

Gamma

.~4 018 1.1 1.5 1.W.

Comparison of Input Distribution and Triang(0.43,1 .05,2.20)

1.6

S Input

0.8 ofTriang

01.4 0.8 1.1 1.5 1.8 2.2

Comparison of Input Distribution and Normal(1 .04,033)

1.6

S Input

Normal

04 08 1 1 .5I 1.8 2.2

Comparison of Input Distribution and Beta~i .92,3.67) *1.77 + 0.43
1.6

0.8 ýhýi:
1:Beta

0. 08 11 1.5 1.8 2.2

127

CN ~ COi 0) i)

0CL .0G GOGo ~
xt

..

ATM'T T77* w o (0

0)0

IN i)

toq0o 1 kNN£ 0C(00W co 11U
£0 :0 KO-1:Lo m Lr 0(N

m 0) U6)-r Do 00'on0 0i 0

... ~~~~~~~~~~~~~...:

'0- vN) ~ C ~ (N U N0
U)(U)mN to .5-q- ýN0£ b) :I- i3-

:10 CD -,r:):OI D C*)K M U o

m *00 co 0- mN:j0' -- L Mt

0 O m CU' 0 'M U)) V

.0)1
,Cn

.((N c 0U - 0) (N£00 0) M Uc)NKOK -)
ro 4) t T-) q-:mV) c ,. j P w;q 0) w)C 0r~ n ro 10

j 0 ;oto:0 q . i (N5 .0~ K0- N ~ (N 0) 0
ý(0 ;m 0 ()N oN00:qW COW(0 ON ;00 0 C

0Y -0 :0 'I C)~ 00 00 (0O r4 ;r0-q '

020

to ~ ~ ~ L Iot f ,

ro .q 0)

.~ 22 "o
..

128

Time Between Left and Right Door First Jumper Exit (in seconds)
Observed vs. Selected Distributions

Conpannon of Input Distibution and Nornail(.54,0.26i in Seconds

1.8

0.9
Input

Normal

0 0
. ..

....

10 12 14 16 18 20...

1.0 1.2 14 1.6 1.8 2.0

Comparison of Input Distribution and Gramma(3.84,4.43e-2.)

1.8

0.9 ~:~: Input

0.q.0 1 4.2T 1.6 1.8 2'0

Comparison of Input Distribution and Betma(1 ..47,1.-23) 10

1.8

0.9 Input

oq ,0 1.2 1.4 1.6 ---1 ..8 2.0

129

:m~~(<0(N OV f-t

wN N 0 jo

ý0i0

.....

(Ccofl 0 n i *0

0 0 C) to 0 N 0 (N 0

ID-

(N .tC~l KOi(0r 1
bCtC)"C :: I) 100

0)(~ U) r< 0k 0 j

-C

iE

.4 io N~ fN 4) N (q0t

~to 4- i00 Oo
.000e

(N J**

V-)C

F-0
(N ,-

K* i oo to to o

ý.J0 P4 M V n
--t -.t :p W- o

00I

..

~ E 1 1 W
&Lia-o 3

130

Jumper- Under- Canopy Altitude Above Ground (in Feet)
Observed vs. Selected Distributions

Comparison of Input Distribution and NormalI(6.79e +2,23,49)

0.020

0.010 .Input

0.010

ValuesNin 10

0.00ý 3 .16 5 . 6 :7 ...6 8 . 7 .0 7 .2
Values in 10A2

Comparison of Input Distribution and Be ami.8m151(8.70e20. + 7 2e+

0.020

0.010 ~Input

0.0003 6 7 6 0 7

Values in 1OA2

131

.:)~ Iro M V) i 10 n
a)o to'c~-,- iWm-t4WU)~

In m ro;C .)-O O N0 . C . ý

co M

i(0Na
:+

N0

o~I ;~o- .m0 *o .0 10 .
cof-t '-)'0(DIto K C 0)- -t- m- .0 0

+o 4o))6(r- to Oi N-
N i: (LOJop

iE

+ i'00E~O - ~
ca~

ro m * *

ccci: CDU NC C n 1 : .

CD

..

tojr oi6jM 'oiV
i: i K - N N1 0 nt

im ~ O0) -MOU)00'j 0) i- '

'00

U.~~~ ~~ + 0kU 'CO Ua+
1-- 0 (%4 U

io

N*N('(D V)~ Wa) JC'JOLo M) 0jCi

:fb Ko Co- W - '-Cl- o'('
:,4'j ic) U)CCCC(

i :)

_- I
.....~r

~io)

132

Jumper Lateral Urltt Galculations

Throw DrftAIt (1001 Truncated Delta
78 724 7724 7 0.24

130 672 72 6 0.72
81 72 11 7 0.21

115 3687 687 6 0,87
125 677 6.77 6 0,77
143- - 59 65. 6 _

90 7 7.2 7 0.12
176 2 .26 6 _

147 655 6.55 6 - 0.55 -

106696 6 0.96

153 649 6.49 6 0.49
18 694 6.94 6 09

125 677 6.77 6W 0.77
119 68683 603

128 674 6.74 J 0.74
144 658 6.58 6 0.5_
1-41 6 6.61 6 0.61

14 68 6.58 _.5

139 76a3 6.63- 6 0.63

100~ ~ 702 7.02 7 0.02

1 79297 2.5T8 drifft n yar s
Drn t 2.80 0.91441

26.0766 darit in meters
rn erencec- I nangular (-Zi,u,+Zb)

APPENDIX D

NET SOLVE AND EXCEL SOLUTIONS
ANALYTICAL MODEL VERIFICATION

134

NETSOLVE -- VERSION 1.3.1 -- JUNE 1991

>LIST NODES

NAME SUPPLY

1 5.00

10 5.00

11 5.00

12 5.00

13 5.00

14 5.00

15 5.00

16 5.00

17 5.00

18 5.00

19 5.00

2 5.00

20 5.00

3 5.00

4 5.00

5 5.00

6 5.00

7 5.00

8 5.00

9 5.00

A -31.00

B -29.00

C -26.00

>LIST EDGES

FROM TO COST LOWER UPPER

1 A 806.00 0.00 999999.00

1 B 658.00 0.00 999999.00

1 C 721.00 0.00 999999.00

10 A 874.00 0.00 999999.00

10 B 1996.00 0.00 999999.00

10 C 1116.00 0.00 999999.00

11 A 1000.00 0.00 999999.00

11 B 2145.00 0.00 999999.00

11 C 1245.00 0.00 999999.00

12 A 1133.00 0.00 999999.00

12 B 2295.00 0.00 999999.00

12 C 1379.00 0.00 999999.00

13 A 1269.00 0.00 999999.00

13 B 2445.00 0.00 999999.00

13 C 1515.00 0.00 999999.00

14 A 1408.00 0.00 999999.00

14 B 2595.00 0.00 999999.00

14 C 1654.00 0.00 999999.00

15 A 1550.00 0.00 999999.00

15 B 2744.00 0.00 999999.00

15 C 1795.00 0.00 999999.00

16 A 1692.00 0.00 999999.00

16 B 2894.00 0.00 999999.00

16 C 1937.00 0.00 999999.00

17 A 1836.00 0.00 999999.00

17 B 3044.00 0.00 999999.00

135

17 C 2081.00 0.00 999999.00

18 A 1981.00 0.00 999999.00

18 B 3194.00 0.00 999999.00

18 C 2225.00 0.00 999999.00

19 A 2126.00 0.00 999999.00

19 B 3344.00 0.00 999999.00

19 C 2370.00 0.00 999999.00

2 A 695.00 0.00 999999.00

2 B 804.00 0.00 999999.00

2 C 649.00 0.00 999999.00

20 A 2272.00 0.00 999999.00

20 B 3493.00 0.00 999999.00

20 C 2515.00 0.00 999999.00

3 A 600.00 0.00 999999.00

3 B 952.00 0.00 999999.00

3 C 605.00 0.00 999999.00

4 A 532.00 0.00 999999.00

4 B 1101.00 0.00 999999.00

4 C 597.00 0.00 999999.00

5 A 500.00 0.00 999999.00

5 B 1249.00 0.00 999999.00

5 C 626.00 0.00 999999.00

6 A 513.00 0.00 999999.00

6 B 1398.00 0.00 999999.00

6 C 688.00 0.00 999999.00

7 A 566.00 0.00 999999.00

7 B 1547.00 0.00 999999.00

7 C 774.00 0.00 999999.00

8 A 650.00 0.00 999999.00

8 B 1697.00 0.00 999999.00

8 C 877.00 0.00 999999.00

9 A 755.00 0.00 999999.00

9 B 1846.00 0.00 999999.00

9 C 992.00 0.00 999999.00

>TRANS

TRANSPORTATION PROBLEM: MINIMUM COST IS 101540.00

FROM TO LOWER FLOW UPPER COST

11 A 0.00 5.00 999999.00 1000.00

12 A 0.00 5.00 999999.00 1133.00

13 A 0.00 5.00 999999.00 1269.00

14 A 0.00 5.00 999999.00 1408.00

15 A 0.00 1.00 999999.00 1550.00

16 A 0.00 5.00 999999.00 1692.00

17 A 0.00 5.00 999999.00 1836.00

1 B 0.00 5.00 999999.00 658.00

2 B 0.00 5.00 999999.00 804.00

3 B 0.00 5.00 999999.00 952.00

4 B 0.00 5.00 999999.00 1101.00

4 B 0.00 5.00 999999.00 1249.00

6 B 0.00 4.00 999999.00 1398.00

10 C 0.00 4.00 999999.00 1116.00

15 C 0.00 4.00 999999.00 1795.00

18 C 0.00 1.00 999999.00 2225.00

6 C 0.00 1.00 999999.00 688.00

7 C 0.00 5.00 999999.00 774.00

136

8 C 0.00 5.00 999999.00 877.00

9 C 0.00 5.00 999999.00 992.00

SENSITIVITY ANALYSIS FOR EDGE COSTS

NODE DUAL

1 2567.00

10 1399.00

11 1270.00

12 1137.00

13 1001.00

14 862.00

15 720.00

16 578.00

17 434.00

18 290.00

19 290.00

2 2421.00

20 0.00

3 2273.00

4 2124.00

5 1976.00

6 1827.00

7 1741.00

8 1638.00

9 1523.00

A 2270.00

B 3225.00

C 2515.00

EDGE REDUCED COST RANGE

FROM TO STATE COST LOWER CURRENT UPPER

1 A LOWER 1103.00 -297.00 806.00 999999.00

1 B BASIC 0.00 -999999.00 658.00 1431.00

1 C LOWER 773.00 -52.00 721.00 999999.00

10 A LOWER 3.00 871.00 874.00 999999.00

10 B LOWER 170.00 1826.00 1996.00 999999.00

10 C BASIC 0.00 -999999.00 1116.00 1119.00

11 A BASIC 0.00 -999999.00 1000.00 1000.00

11 B LOWER 190.00 1955.00 2145.00 999999.00

11 C LOWER 0.00 1245.00 1245.00 999999.00

12 A BASIC 0.00 -999999.00 1133.00 1134.00

12 B LOWER 207.00 2088.00 2295.00 999999.00

12 C LOWER 1.00 1378.00 1379.00 999999.00

13 A BASIC 0.00 -999999.00 1269.00 1270.00

13 B LOWER 221.00 2224.00 2445.00 999999.00

13 C LOWER 1.00 1514.00 1515.00 999999.00

14 A BASIC 0.00 -999999.00 1408.00 1409.00

14 B LOWER 232.00 2363.00 2595.00 999999.00

14 C LOWER 1.00 1653.00 1654.00 999999.00

15 A BASIC 0.00 1550.00 1550.00 1551.00

15 B LOWER 239.00 2505.00 2744.00 999999.00

15 C BASIC 0.00 1794.00 1795.00 1795.00

16 A BASIC 0.00 -999999.00 1692.00 1692.00

16 B LOWER 247.00 2647.00 2894.00 999999.00

16 C LOWER 0.00 1937.00 1937.00 999999.00

17 A BASIC 0.00 -999999.00 1836.00 1836.00

17 B LOWER 253.00 2791.00 3044.00 999999.00

17 C LOWER 0.00 2081.00 2081.00 999999.00

18 A LOWER 1.00 1980.00 1981.00 999999.00

137

18 B LOWER 259.00 2935.00 3194.00 999999.00

18 C BASIC 0.00 -999999.00 2225.00 2226.00

19 A LOWER 146.00 1980.00 2126.00 999999.00

19 B LOWER 409.00 2935.00 3344.00 999999.00

19 C LOWER 145.00 2225.00 2370.00 999999.00

2 A LOWER 846.00 -151.00 695.00 999999.00

2 B BASIC 0.00 -999999.00 804.00 1359.00

2 C LOWER 555.00 94.00 649.00 999999.00

20 A LOWER 2.00 2270.00 2272.00 999999.00

20 B LOWER 268.00 3225.00 3493.00 999999.00

20 C BASIC 0.00 -999999.00 2515.00 2517.00

3 A LOWER 603.00 -3.00 600.00 999999.00

3 B BASIC 0.00 -999999.00 952.00 1315.00

3 C LOWER 363.00 242.00 605.00 999999.00

4 A LOWER 386.00 146.00 532.00 999999.00

4 B BASIC 0.00 -999999.00 1101.00 1307.00

4 C LOWER 206.00 391.00 597.00 999999.00

5 A LOWER 206.00 294.00 500.00 999999.00

5 B BASIC 0.00 -999999.00 1249.00 1336.00

5 C LOWER 87.00 539.00 626.00 999999.00

6 A LOWER 70.00 443.00 513.00 999999.00

6 B BASIC 0.00 1311.00 1398.00 1461.00

6 C BASIC 0.00 625.00 688.00 758.00

7 A LOWER 37.00 529.00 566.00 999999.00

7 B LOWER 63.00 1484.00 1547.00 999999.00

7 C BASIC 0.00 -999999.00 774.00 811.00

8 A LOWER 18.00 632.00 650.00 999999.00

8 B LOWER 110.00 1587.00 1697.00 999999.00

8 C BASIC 0.00 -999999.00 877.00 895.00

9 A LOWER 8.00 747.00 755.00 999999.00

9 B LOWER 144.00 1702.00 1846.00 999999.00

9 C BASIC 0.00 -999999.00 992.00 1000.00

138

000 6050 000 0000000

ý2 0000C~

L-

m

00

<0000000000~u. Ut L)ýt ~;o4 L) ýLf lnU UOLo) U) Lo00

....

o 0)ooa oL U)~ 0 o 0)o o o o to(N

i. J

lo~-- - -- -InN na0

APPENDIX E

DETERMINATION OF NUMBER
OF SIMULATION RUNS

140

In order to acquire a requisite degree of accuracy from the simulation model, the

number of replication runs per scenario had to be determined. The rule of thumb used

was that the standard error of the mean (• StdDev + # Re plications), should be

within 10 percent of the simulation mean. In order to test that the selected number of

replications was sufficient, a 2 factor, Fisher experimental design was developed.

Experiment

The factors and their levels are explained below.

1. Number of Objectives (3-Low, 8-High)
2. Relative Distance from Line of Flight to the Objectives (Low <500 meters,

High >1000 meters)

Four experimental runs were designated as being,

1. 3 Objectives, Close Together
2. 3 Objectives, Far Apart
3. 8 Objectives, Close Together
4. 8 Objectives, Far Apart

Each experimental run was iterated through the simulation model, and the number

of runs varied until all combat power percentages from 90% and lower achieved the

desired results with standard error of the mean less than 10% of the mean. The one

hundred percent rate was not used because it is there that any outliers would reside.

Results

It was found that after just seven replications, that all parameters fell within the

required 10% of the mean.

The following pages contain a spreadsheet roll-up of the comparison data, as well

as the simulation run summary tables.

141

EXPERIMENT 1 (3 Objs, Close Together)
mean std dev 10% mean Std Error Mean Difference

S50% 2.299 1.98 2.2= 0.748369657 -. 2853
75% 2 3 2.9248 1.277519919 -

go% 35.638 -3-. 3.563-8 1.375790682 -- 2.18
100% T6.791 18.71 6.6391 7.07171529 0.392615

2 50% 25.353 2.58 2.5353 0.97514834 -1.56015
75% 33.686 3.18 3.3686 1.201927024 -2T6667
90% 42038 3.32 4.2038 1.25484205 -2.94896

100% 13.441 2ST1 10.3441 9.505806496 -0.83829
50% 23.577 2.92 2.3577 1.103656261 -1T2404
75% 31.371 358 1371 1.353112813 -178399
90% 41020 37 4.102 1.417366774 -2.68463

100% 87.698 17.00 8.7698 6.425396041 -2.3444

EXPERIMNT 2 (30_bjs, Far Apart)_
mean std dev 1% me-an Std Error Mean Difference

U 50% 40.21T-- 2.8 44.02T 1.012944788 -3.00806
7 5% 61.56 3.1 .156- 1.477841089 -4.67816
90% 7UT.140 - 3. 7.UT1 1.251062406 -576294

100% T44.498 44.49 14.449 16.8156394 2.583
2 50o 52.718 4.TT2 - .27T8 1.557213629 -3.7T4

75% 9 3 77 . 2.180855009 -4-7624T
90% 87.640 7.08 8.764 2.67409864 -6.0899

100% 195.980 32.73 19.598 12.36888738 -7=11
50 35.876 3.51 37 1.3266553 -2.26094
75% 48-.69-5 4. -4.8695 1.757534799 -311197
90% 57.298 6-.33 5.7298 2.390625292 -3.33917

100%T 13.1 30.951 13.451 11.69724451 -T.75376

(Bold Italics Signify exceeds I0O9/)

142

EXPERIMENT 3 (8 Objs, Close Together)
mean std dev 10% meanT Std Error Mean Difference

50% 15.223 1.T 1 1.5223 0.684115696 -0.838
75% 20.927 4.43 270927 1.674382615 -41832
9%--- 2439W0 4.40 2.4 1.661909 -0809

100% 2848 3.95 2n8468 1.492959668 -1.3584
2 5% 63 1.1 0.638 0.438438789 u-T056

75% 8.690 1f4T 0.869 0.542379019 -0326
90% 1T13 .415 156 .1415 0.588490684 -0.55301

100% 14.487 1.40 -1.4487 0.528394333 -0.92031
3 50% 16,151 2.92 1.6151 1.103656261 -0.51144

75% 21.130 - 3.22 7211 1.218179497 -

90% 28.950 6.37 2.895 2.406121835 -0.48888
100% 50.828 25.6 9.694032804 -611233

4 - U5% 7.29 1=20 0.7529 0.455069226 -029783
75% 10.470 1.74 1,047 0.656146325 -0.3
90% 1.554 1.282546846 -0.27285

100% 24-725 11.58 24725 4.376450633 1.9039D 1
50% ,527 190 0.8527 0.71737657 -013532
75% 1T.790 2.67 1,7I9 1.00803125 -017097
90% 1712 4.05 1.712 1.530000187 -0.1412

100% 25.602 1.45 2.5602 3.950862636 1.390663
W 50% 11.91 3.29 1.f916 1.243125152 07051525

75% 15.228 3.46 1.5228 1.308513006 -0.21479
90% 20370 .81 2.07 1.4415565 -0.5954W

T00% 2.1TT2 .T79 2.8112 1.432107388 -1.37909
7 5% 1.71 207 171 0.780496

75% 18.106 2.74 1.806 1.034110798 -0.77649
90% 21 266 1.327033265 -1T07

100% 47 42 4.440326629 -017f227
5.52 1 0.575261928 .36934

75% 24.283 1.19 2.4283 0.450533652 -1.7777
90% 344046 1.720872246 -1.66M

100% 6 Itl 3cs5 8.077856717 exees807

(Bold Italics Signify exceeds 100%)

143

mean std dev 10% mean Std Error Mean Difterence
50% 15223 1.81 1.5223 0.684115696 -. 83818
75% 20.927 4.43 2027 1.674382615 -0.4T13
90% 24.900 4. 2 1.661909788 -. 82809

100% 28.468 3.5 2.8468 1.492959668 -1.35384
2 50% 6.38 1.16 0.638 0.438438789 -0.19956

75% 8.9 144 0869 0.542379019 -T3262
90% 11.415 1.56 1T4T15 0.588490684 -0.53

100% 14.487 1.40 1.4487 0.528394333 -0.92031
35% 16151 2.92 1.6151 1.103656261 -T51144

75% 2T.130 3.22 21TT3 1.218179497 - 482
90% 2M. 950 637 2896 2.406121835 48888

100% 50.828 25.65 5828 9.694032804 .123
4 5% 7.529 =20 07529 0.455069226 -0.29783

75% 10.470 T.74 1047 0.656146325 - 085
9% 15.54 3.39 1.5554 1.282546846 -0272=

T0o% 24.725 1158 2.4725 4.376450633 1 S.903
5 50% 8.527 . 527 0.71737657 -0.13532

75% 11.790 2.7 1.7 1.00803125 -0.17G97
90% 16.712 --- 4-.05 1.6712 1.530000187 -0.1412

10%o 25-6=2 T0.45 2-502 3.950862636 1.f39O
S5%o 11.916 329 .19 1.243125152 0.051525

75% 15.228 .46 .5228 1.308513006 -0.2T429
90% 2.370 3.81 2037 1.4415565 -059

T10% 28.112 379 2.812 1.432107388 -T37909
7 50% 13.371 2.07 1.337T 0.780496637 -0.556

75%[1.1TO6 2.74 .T81U6 1.034110798 -0.77649
90%53 1.327033265 = 1397

100%o 42.41 11T75 4.26 4.440326629 0.17U2
50% 19.446 1.52 1.944b 0.575261928 -1.3693

o1T19 2428 0.450533652 -1.97777
9o% 34.0 4-55 -- 3-.4D46 1.720872246 -168373
100 -65.85U 21.37 6.585 8.077856717 T49286

(Bold Italics Signify exceeds 10%)

144

experiment run #1
three objectives, close together

<<<<< SIMULATION SUMMARY REPORT >>>>>>>

(All Statistics in minutes)

"OBJ ONE" "AAA"

CbtPwr MEAN MIN MAX STD DEV
50 %: 20.299183 17.563965 23.297879 1.983177
75 %: 29.248033 24.121691 34.262161 3.384608
90 %: 35.638321 31.330072 42.191993 3.646340
100 %: 66.791143 45.646914 102.461469 18.715339

"OBJ TWO" "BBB"

CbtPwr MEAN MIN MAX STD DEV
50 %: 25.353038 22.682515 30.309705 2.580599
75 %: 33.686861 30.114739 39.037380 3.184983
90 %: 42.038775 36.622607 46.809389 3.322664
100 % 103.441486 82.537711 153.174786 25.135060

"OBJ THREE" "CCC"

CbtPwr MEAN MIN MAX STD DEV
50 k: 23.577606 18.194399 26.219224 2.923911
75 %: 31.371785 25.887346 35.332681 3.581196
90 %: 41.020454 35.554298 45.998704 3.754633
100 %: 87.698490 50.367149 107.928840 17.001104

experiment run #2
three objectives, far apart

<<<<< SIMULATION SUMMARY REPORT >>>>>>>

(All Statistics in minutes)

"OBJ ONE" "AAA"

CbtPwr MEAN MIN MAX STD DEV
50 %: 40.218070 37.506394 44.682011 2.685986
75 %: 61.544415 55.109418 66.124016 3.913103
90 %: 70.144510 66.104679 76.196656 3.307076
100 %: 144.498574 94.590266 212.851862 44.492560

145

"OBJ TWO" "BBB"

CbtPwr MEAN MIN MAX STD DEV
50 %: 52.718545 48.398425 58.961249 4.128783
75 %: 69.433122 63.385890 81.167963 5.775218
90 %: 87.640244 80.696023 99.466124 7.075481
100 %: 195.981259 142.703197 238.420424 32.725932

"OBJ THREE" "CCC"

CbtPwr MEAN MIN MAX STD DEV
50 %: 35.875864 29.948320 40.933414 3.510423
75 %: 48.694676 39.263221 54.436277 4.655325
90 %: 57.298803 45.112577 67.398113 6.325739
100 %: 134.510260 87.038972 171.173906 30.948834

experiment run #3
eight objectives, close together

<<<<< SIMULATION SUMMARY REPORT >>>>>>>

(All Statistics in minutes)

"OBJ ONE" "AAA"

CbtPwr MEAN MIN MAX STD DEV
50 %: 15.223775 12.158681 17.632476 1.814161
75 %: 20.927171 14.770610 27.033183 4.433034
90 %: 24.901000 19.399812 30.866300 4.397522
100 %: 28.468146 23.068756 34.629598 3.954194

"OBJ TWO" "BBB"

CbtPwr MEAN MIN MAX STD DEV
50 %: 6.386609 4.288305 8.013062 1.156419
75 %: 8.692678 6.833973 11.477626 1.435960
90 %: 11.415266 8.311717 13.158111 1.557283
100 %: 14.487829 11.939651 16.702840 1.398893

"OBJ THREE" "CCC"

CbtPwr MEAN MIN MAX STD DEV
50 %: 16.151042 12.652192 20.827993 2.901987

75 %: 21.130546 16.762091 25.821051 3.223696

90 %: 28.950406 20.935689 37.839606 6.366919
100 %: 50.828219 22.460834 99.286355 25.648783

146

"OBJ FOUR" "DDD"

CbtPwr MEAN MIN MAX STD DEV
50 %: 7.529433 5.871306 9.047550 1.201224

75 %: 10.474001 8.061830 13.407667 1.736637
90 %: 15.554296 11.801359 21.281656 3.393352
100 %: 24.725152 15.990805 51.007608 11.579073

"OBJ FIVE" "EEE"

CbtPwr MEAN MIN MAX STD DEV
50 %: 8.527428 6.130111 12.139355 1.898984
75 %: 11.797495 8.778640 17.184188 2.667364
90 %: 16.712477 10.414687 21.705893 4.048730
100 %: 25.602238 14.132604 42.876734 10.453538

"OBJ SIX" "FFF"

CbtPwr MEAN MIN MAX STD DEV
50 %: 11.916645 9.261768 17.262338 3.284402
75 %: 15.228856 11.879630 20.876659 3.462195
90 %: 20.379718 16.428834 27.238586 3.814633
100 %: 28.112873 22.625618 33.647948 3.789684

"OBJ SEVEN" "GGG"

CbtPwr MEAN MIN MAX STD DEV
50 %: 13.370435 10.028754 15.055701 2.065499
75 %: 18.106706 14.836333 23.144314 2.736766
90 %: 26.369231 19.670571 29.073175 3.508981
100 %: 42.641170 30.244348 67.781304 11.748696

"OBJ EIGHT" "HHH"

CbtPwr MEAN MIN MAX STD DEV
50 %: 19.446705 17.132884 21.718480 1.522292

75 %: 24.283712 22.629760 26.262374 1.192376
90 %: 34.046928 28.900672 42.998962 4.553989

100 %: 65.850399 38.757492 100.178069 21.372503

147

experiment run #4
eight objectives, far apart

<<<<< SIMULATION SUMMARY REPORT >>>>>>>

(All Statistics in minutes)

"OBJ ONE" "AAA"

CbtPwr MEAN MIN MAX STD DEV
50 %: 32.802135 28.324900 37.595003 2.780911
75 %: 46.672803 35.908702 58.096387 8.412596
90 %: 55.361943 47.963138 64.550912 5.482680
100 %: 60.202796 53.988963 67.962869 5.646248

"OBJ TWO" "BBB"

CbtPwr MEAN MIN MAX STD DEV
50 %: 48.147732 40.837361 57.296749 5.448646
75 %: 63.220517 56.601906 70.952540 4.930249
90 %: 81.503128 71.469409 94.194432 7.616252
100 %: 129.150222 72.382758 228.939093 52.596934

"OBJ THREE" "CCC"

CbtPwr MEAN MIN MAX STD DEV
50 %: 26.547709 23.928680 31.116420 2.460109
75 %: 35.709220 27.075498 42.690487 5.581574
90 %: 44.110891 36.175440 51.038894 4.259537
100 %: 49.372585 42.678869 56.750381 4.015753

"OBJ FOUR" "DDD"

CbtPwr MEAN MIN MAX STD DEV
50 %: 28.887835 22.630624 38.696752 5.098526
75 %: 38.749143 29.957251 44.090861 4.692637
90 %: 48.084083 37.258670 69.484634 9.596734
100 %: 71.157467 38.694891 153.813965 36.531628

"OBJ FIVE" "EEE"

CbtPwr MEAN MIN MAX STD DEV
50 %: 47.367622 44.674345 52.520944 2.627210
75 %: 60.884863 57.010442 67.913748 3.415511
90 %: 74.839564 69.738619 83.952084 4.983582
100 %: 99.381919 73.271258 143.107550 21.281400

148

"OBJ SIX" "FFF"

CbtPwr MEAN MIN MAX STD DEV
50 %: 38.036085 31.235435 49.549798 6.113140
75 %: 49.135257 44.091707 55.313266 4.383204
90 %: 62.875188 52.834356 76.887946 7.195424
100 %: 92.214859 60.928166 189.657111 42.533834

"OBJ SEVEN" "GGG"

CbtPwr MEAN MIN MAX STD DEV
50 %: 45.410632 41.475602 48.446228 2.050644
75 %: 58.094243 52.904528 63.190122 3.668135
90 %: 74.594274 65.237435 88.782497 7.230258
100 %: 119.161357 68.408433 190.663211 45.486253

"OBJ EIGHT" "HHH"

CbtPwr MEAN MIN MAX STD DEV
50 %: 52.946910 46.472994 58.591117 3.488680
75 %: 72.845813 61.163892 84.776236 6.990516
90 %: 93.407914 82.047960 109.061772 7.754103
100 %: 137.291634 105.484729 234.666018 40.647613

149

29 Mar 95 SPSS for MS WINDOWS Release 6.1
Page 1

Data written to the working file.
4 variables and 154 cases written.
Variable: OBJ Type: Number Format: F11.2
Variable: DISTANCE Type: Number Format: F11.2
Variable: RESPONSE Type: Number Format: F11.2
Variable: OBJECTIV Type: Number Format: F9.3

** * ANALYS I S OF VARIANCE ***

OBJECTIV objective
by DISTANCE

OBJ

UNIQUE sums of squares
All effects entered simultaneously

Sum of Mean
Sig
Source of Variation Squares DF Square F
of F

Main Effects 10380.341 2 5190.171 167.324
.000

DISTANCE 8934.668 1 8934.668 288.042
.000

OBJ 1445.674 1 1445.674 46.607
.000

2-Way Interactions 3.758 1 3.758 .121
.728

DISTANCE OBJ 3.758 1 3.758 .121
.728

Explained 12921.789 3 4307.263 138.860
.000

Residual 4652.797 150 31.019

Total 17574.586 153 114.867

154 cases were processed.
0 cases (.0 pct) were missing.

APPENDIX F

SIMULATION RUNS AND
HYPOTHESIS TESTING

151

VALIDATION OF INITIAL ASSUMPTIONS

In order to validate the original assumptions made by the analytical

model, the simulation model was used as a platform to test their validity. Three test

were conducted and compared to a baseline simulation run. All jumper arrival times

were collected and compared against the baseline for each test. The statistical method

utilized to determine if the induced changes had a significant effect was a paired-t test.

The paired t test was selected because it is more robust than the z test because

independence between the data streams does not have to be assumed, nor does the

variances have to be assumed equal. The formulas used for the mean, variance and

confidence interval are as follows:

nzi

mean Z(n) = -- n with Z being the delta between the baseline and the test

n = number of the sample
j = the counter

n

Y [Zj -

variance Var[Z(n)] = s n1
n(n -1)

confidence interval Z(n) ± tn_1,1_a/2 A[Var[Z(n)]

The three runs were conducted using a 90% confidence interval (alpha = 0.10),

and the test results showed that if zero remained in the interval, that the variations were

relatively insignificant. If zero is not in the interval, then the effect was significant.

152

Shifting of the PPI Location by more than 150 meters laterally:
(equivalent to unforcasted 5 knot cross-wind)

U.U:6bbl 7.0368 Oerall
0.063693 --IT=2 Dagger
0.0T11 7 _-1.017 KRnife
0.f14040 -0.18078 Sword

Turning on Green Light 2 Seconds Late (equivalent to 150 meters)

0.365751 -0.00461 Ov1erall

011TTT10 -0-.3774 Dagger
0.9449 -67=08 Kn~ife

Shift in Direction of Flight by 5 degrees

I 0'149;3°31 -o.2316110verall

The initial baseline simulation summary tables, as well as the three experiments

are included below:

BASELINE DATA FOR PARAMETER COMPARISONS

<<<<< SIMULATION SUMMARY REPORT >>>>>>>

(All Statistics in minutes)

DAGGER Tm Assault

CbtPwr MEAN MIN MAX STD DEV
50 %: 16.613037 13.032731 19.784089 1.946222
75 %: 19.922472 14.874712 24.092071 2.545627
90 %: 23.930910 16.958924 28.331914 3.695188
100 %: 31.510434 19.818276 47.742606 8.473805

KNIFE Tm Secure

CbtPwr MEAN MIN MAX STD DEV
50 %: 16.201435 14.073770 18.682875 1.749613
75 %: 19.451268 15.663541 23.570423 2.943065
90 %: 22.998035 17.251743 26.645862 3.271955
100 %: 31.201911 26.028330 35.556528 3.201599

153

SWORD Tm Support

CbtPwr MEAN MIN MAX STD DEV
50 %: 15.838115 13.319718 18.149162 1.696988
75 %: 18.063340 14.787694 21.956413 2.263400
90 %: 21.165166 17.989184 24.450185 2.606980
100 %: 32.997018 20.390402 50.754493 10.959171

CHANGE IN DIRECTION OF FLIGHT

by 5 degrees

<<<<< SIMULATION SUMMARY REPORT >>>>>>>

(All Statistics in minutes)

DAGGER Tm Assault

CbtPwr MEAN MIN MAX STD DEV
50 %: 17.030831 13.304015 20.514785 2.085511
75 %: 20.449224 15.083081 25.139837 2.794134
90 %: 24.689810 17.514951 29.627069 3.786888
100 %: 32.101909 20.111357 49.575960 8.863965

KNIFE Tm Secure

CbtPwr MEAN MIN MAX STD DEV
50 %: 17.227929 14.844812 19.797962 1.878559
75 %: 20.807543 17.102138 25.598799 3.076524
90 %: 24.498609 18.409583 28.901120 3.311140
100 %: 33.964872 29.378827 41.442003 3.829729

SWORD Tm Support

CbtPwr MEAN MIN MAX STD DEV
50 %: 14.545943 12.613244 17.261585 1.769113
75 %: 16.845795 14.734352 21.089179 2.025344
90 %: 19.306523 15.937919 23.577724 2.688693
100 %: 28.412991 17.271131 45.888063 9.639580

154

LATE GREEN LIGHT - 2 Seconds
150 meters on the ground

<<<<< SIMULATION SUMMARY REPORT >>>>>>>

(All Statistics in minutes)

DAGGER Tm Assault

CbtPwr MEAN MIN MAX STD DEV
50 %: 16.907175 13.837262 20.344117 2.091180
75 %: 19.705693 15.342740 24.058521 2.527990
90 %: 24.141380 17.287803 29.766695 3.972132
100 %: 30.769142 18.981200 48.568852 8.925679

KNIFE Tm Secure

CbtPwr MEAN MIN MAX STD DEV
50 %: 15.644027 13.167811 18.456912 1.750206
75 %: 18.426222 15.350288 23.222247 2.604989

90 %: 21.775327 16.139604 26.113457 3.066720
100 %: 29'.362203 25.221552 35.666572 3.472683

SWORD Tm Support

CbtPwr MEAN MIN MAX STD DEV
50 %: 15.580000 12.679087 17.436743 1.641355
75 %: 17.805949 14.092808 20.497389 2.039780
90 %: 20.235041 15.642598 23.652487 2.518216
100 %: 32.560633 21.435744 49.243243 10.468685

120 METER ALTERATION IN PPI
5 knot unforcasted crosswind

<<<<< SIMULATION SUMMARY REPORT >>>>>>>

(All Statistics in minutes)

DAGGER Tm Assault

CbtPwr MEAN MIN MAX STD DEV
50 %: 17.011799 13.986819 19.978353 1.695954
75 %: 20.753806 15.278547 24.280021 2.617668
90 %: 25.052353 18.211756 29.531282 3.401935
100 %: 34.262483 21.997361 50.507182 8.566131

155

KNIFE Tm Secure

CbtPwr MEAN MIN MAX STD DEV
50 %: 17.134291 14.386569 20.355092 2.049114
75 %: 20.935112 16.185310 26.815133 3.499616
90 %: 25.432129 18.817393 29.685246 3.684252
100 %: 34.821895 26.483244 39.747294 4.032667

SWORD Tm Support

CbtPwr MEAN MIN MAX STD DEV
50 %: 16.261273 14.000717 18.939151 1.871534
75 %: 18.802796 16.042364 23.376504 2.314660
90 %: 22.086457 16.784713 25.222171 3.114058
100 %: 34.122766 20.814483 55.344388 11.407534

156

Analytical Solve-r l'dlnifest :Both Left and Rig-ht Door

Jumper Chalk Number
Position One Two Three Four Five

2 I-mszup-p-ort iTm5u-pp-OrT im-sup-port- Im'Support m-SU-Ppofft
T rm-Su-pp-on r-mS-u--ff- -m-su-pp-o-rt Im support rm support
W-T Tim support TM suppor TM support TM Supportf- Urnsupport
5 iTm-Sup-por-T im-Su-ppo-ffT m-Su-ppo-rt- Imsupport T WS-up portf
W -'-TmSu-pp-o-rfT -m-S-up-of im-Su-p-port rmsupport Imrnsupport
T-g T-m-Supr -U----TMS u p po rt m-S-u-p-p-6 ImSupport Tm-7-up-o-5

7 im-Su-pp-offT m-lS-up-off-TmSu-pp-ort- Imsupport Tm--A72MY-

10l m - m m - TM3 3 Am-2 I-;Z ,/-Z

SfW12 r AV35 Tr /-25 Il2~2 MW37JD I /Z5 I rnA/2:325

14 Ur AZ325 AI325 i A/~2325 T flAIZ325 I AJZ-25~
TM AIr32 mr A1-42 Tm A235 1-2 mI-

16 Ur A-235~ Tm A/2-325 I M WZjb I3 flIZ323 I rnA12:325

is ThTA2IZT-325 I TA2-25 I flAJ2I 5 T A325~
19 1 M~2 b/2-325 T1 12-325 I M /2325~ r7~5
20- TTJ22 TM AB12323 I MB12-325 Ih MI23 ~b/2-325
21 trn B12:35~ TMh1B123Z5 TIM 12-JO I 512-325- hr2

22 n rB12-32 I M biz5 I M 12-"D I Th12-325 T1 Mb2325
23 B~2 1 l-Sz nb12325 TM 523 h-1325 B -32 hb/72-32

2b TB12-323 1B22 IMS2§2 thIB123z3 I u325

~27 fl B2:325 I BTM32-325 M ITb1237o I ThB2-325 1 M 12:325

28 Tm-B123U5- Tm 512-325 flW-B72--ZS 1~31235 flWUB212Y5
29 1 mn reach I m Breach TM Breach Tim-11re-a-chf ImnB reach

30 mr Breach Tm Ureach TM Breach Tim Breach Imsn reachi
31 TmBreach I m treach Iim Breach ImrnBreach I rnBreach
32T Im- re-a-c Imrh Im breachl fmBreach M reac
33 Im Breach TMn Breach T M- re-a-cf If M Breach imn Breach
34 ~ Imrec imBreach I m Breach Imrn13reach rn readh
53 TM Breach TMn Breach TM Breach IFim Breach rn readh

36 im-B-reachf TM Breach TMBreach Tm--Wreach- Imr B reach
37 Imreac Breach I n[3reach I m Breach i~ec
38 TMBreach Im Breach m Breach rn -Breacfi YrnBreach

39 'mr B reach TM1;2735 I MI GZ23b rn GC72-5 r Gw1-252
4U Tim B reach TM I-2 f1C2-32015 Gr-25 TIE12-325

41 T 02-25 TM IZ25~ TM C2-325

44 Tm-C2-32'5--T U1-35 I GIZ-szs n I-2 TMCz-J5

157

ManuallyDefivedManflest: Both Left and Right Door

Jumper Chalk Numb r
Position One Two Three Four Five

I I.. I Mr- 1 1

2 TM-A72425-- TM A12-325 'T-m-ArL425-- Tm A/2-325 Trn A12,325

'J- T-mATZ,72Y- Tm A/2-325 "Tm A/2-325 Tm A/2-325 TM A12-325

4 - TM--A-/2MS- TM A/2-325 M Tm A/2-325

5 -T--ArL,-12'5-- TmA/2-325 TM-AIZ423- Tm A/2-325 Tm A/2-325

-G--T-m-A7Z,-fZ5-- Trn A/2-325 Tffi-AMM 5- Tffi-Aff,125-- T m A12 -3 2 5

---- V TmA/2-325 -Tm--A7Z,125- Tm A/2-376'- Tm--ArZM5- TM A/2-325

8 Tm Support Tm Support Tm support Trn Support Tm S -pport

9 TmWS"uppo ýTrnqupport T-m-S-u p-p-o-ft- T m S u p p o rt TM Support

TU- T-m--S'u-p po rt Im support M uppo T-m-Z-up--p-o-ff-- Tm Support

I-f- Thm-WIZ425- UmA/2-325 M TM A/2-325

12 1 M A/Z-325 Tm-792:37F- Tm A12-325 M Tm A/2-325
ImAIZM5--T-m--M2-j25 M Tm A/2-325

14 T-M-ATZZ25-- Tm A/Z ý325 "Tm- A72:32Y m Tm A/2-325
uppo M uppoM MMW-T-M-S-Up-p-off- M uppo T"-m7S-up-pDo--ff-TM Support Tm support

16 ThISUPPOrt Tm Support Trn Support TM Support Tm A72-325

17 Tm Support Tm,9upport -ITM support TM Support
-ffff4Z5---jTm--ff MZZ5

18 M M TM M

T9- Tm A/2-327 TM M TM 13/2-325

TVM--ffa4Z5-- Tmil3u/2pý3P2051 T-m-M,123- Tm-SW-T25-- T-m-B72:32-5-

21 TM BIZ-325 'Tm--B7ZZVZ5- T m 8 12 -3 2 5 'T-m-B72:32Y- TM 1312-325

22 Tm B/2-325 .Tm 13/2:325 Tm 1312-325 .Tm B/2-325 TM 13/2-325

23 Tm-HrZMV- Tm B/2w325 TM 1312:ý TM-UrI,'FZ5- TM 1312-32 5

24 T-mIV2:32'5-- I m 13/2-325 T-m-B72ZrI5- TM 13 12 ZZ5-- TWOMMY-

25 TM Support Trn support T -m Slu-p-p o- ff Trnsupport Tm Support

26 Tm Support -Tm--S-u-p`p0-ff--TmSupport Tm support Tm Support

27 T-m-872:32'5-- TM 13/2:325 T-m-B77z2f- T-m-B7ZIZ5-- TM E112-325

28 Tm-072:ý TM El/2:32f-- T-m-ET2--:325 T-M-W7ZM5-- TM B12-325

29 T-m-SrZ,125--Tm--M-325 TM 1312,-TZS-- TM-SIZ42Y- TM 1312-325

30 Tm C/2-325 Tm C12-325 Tm C/2-325 Tm C12-325

31 TM C/2-325 Tm C12-325 Tm C/2-325 I m /2-325

3T-Tm--C77Z2V- TM G12:325 M Tm C/2-325 Tm-C72:1ý

33 TM C72:32-5-- T-m-C72:325- m TM C/2ý325 Tm C12-Z25

34 T-m-C72:32-5-- rm C12-325 M I M UIZ-4z* Tm C[2-325

35 T-m-C72ZVZ- TmC/2-325 -?TMFC/2-325 Tm C/2-325 Tm V2-325
IT C/7-3Z5 I I 07MO I m G/2-325

36 - Tm- -C 12 -3 2 5 Tm CIZ::325 M M

37 - T-m-C7742Y- TM C12:325 Tm-FC77423- Tm C/2-325 - Trn C12-325

38 TM MMY- T-m-C72:325-- Tm-C72475-- Tm-C72,-fZF-

39 Tm C/2-325 Tm C/2-325 Tm C72--325 TM C12-325 Tm C72-325

40 Tm C12-325 Trn C/2-325 TM C/2-325 Tm CIZ-325 Trn C12-325

41 Tm C12-325 m reac M

42 TM Breach T-m-Wre-a-cK- T-M-B-re-a-cff - Tffi-ff-reia-c-fi- Tm--B-re-a-cW-

4T-T-m-gr-each TM Breach .Tm--S-r-ea-c-fi- Tm-Wre-a -ch- Tm B rea ch

-- 44-- Tm B -rea-cff-- TFS Reacfi- Thl 13 rea c h T-m-Breach Tm Breach

45 T-M-S-re-acff- TM Breach m reac m reac

46 TmSr-e-ac-ff- TM Breach Tm--B -re-a-cff- Tm--0 -re-5-c ff Tm 8 re a c h

47 T-m-B-fe-ach- TM Breach -TWS-re-a-c-fi- m reac Tm Breach

--- 48-- TmBreach - reach TM Breach m reach T-m-Elf-ea-Efi-

--- 49----- TFUr-e-a-ch- Tm Breach TM Breach Tm Breach Tm Breach

50 TM-S-re-ac-W-- Tm Breach m reac m reac Tm Breach

51 m reac TM Breach TM Breach m reac Tm reach

52 D72:375-- D/Z -3 2 5 D7Z,12Y- D/2-325

53 U/2-325 _WZM D/2-325 D12-325

54 - 012-325 U/2-325 D/2-325 D12:3Z5 D/2-325

55 - MZZ25-- D/2-325 U72--325- D7ZZ25- DrZZMY

5 - Ur6 L425- L)/2-3ZS- DTZ42F- D7Z--SZS-57 D/2-325 D72--32F D12,325

58 U/2-325 012-325 DIZ-325 jUIz-jz*

158

means Var 90% Confidence Interval Conclusions: Points

OBJEPI 10.16 0.44 T1.219115 AnalayticSuperior 2.3

OBJTOWER 2 -2.69 Manual Superior 52

OBJSNOW -13 0 0 Not Conclusive 1

OBJ FALCON -44 2571 -2.2 -7. Manual Superior 1

OBJGREEN 12.80.79 1349 12.1 - Analytic Superior 2.3

OBJBLOCK 0.T01 3 1.505 Analytic Supenor 2.3

n= 25

SQualitative

Analytic 6.9
"MVanual 67

