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A Statistical Analysis of Construction Equipment Repair Costs 
Using Field Data & The Cumulative Cost Model 

Zane W. Mitchell, Jr. 

(ABSTRACT) 

The management of heavy construction equipment is a difficult task. Equipment managers are 
often called upon to make complex economic decisions involving the machines in their charge. 
These decisions include those concerning acquisitions, maintenance, repairs, rebuilds, 
replacements, and retirements. The equipment manager must also be able to forecast internal 
rental rates for their machinery. Repair and maintenance expenditures can have significant 
impacts on these economic decisions and forecasts. The purpose of this research was to identify a 
regression model that can adequately represent repair costs in terms of machine age in cumulative 
hours of use. The study was conducted using field data on 270 heavy construction machines from 
four different companies. Nineteen different linear and transformed non-linear models were 
evaluated. A second-order polynomial expression was selected as the best. It was demonstrated 
how this expression could be incorporated in the Cumulative Cost Model developed by Vorster 
where it can be used to identify optimum economic decisions. It was also demonstrated how 
equipment managers could form their own regression equations using standard spreadsheet and 
database software. 
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CHAPTER 1:   INTRODUCTION 

The management of heavy construction equipment is a difficult task. The equipment manager is 

called upon to serve as leader, resource manager, accountant, engineer, arbitrator, policy maker, 

and seer. The goal of this research is to identify and describe decision support tools that the 

equipment manager can use to reduce some of the uncertainty in decisions made concerning heavy 

equipment. By doing this, it is hoped that some of the seemingly "crystal ball" based decisions 

occurring in the day-to-day management of equipment operations can be replace with modern, 

statistically sound techniques. Valuable insight into the way that construction equipment 

deteriorates with use can also be obtained. 

The purpose of this chapter is to provide the reader with an introduction to the topic of the 

dissertation. The problem will be introduced and defined. The hypotheses, objectives, 

methodology, scope, limitations, and assumptions of the research will be briefly discussed. 

Finally, an outline of the dissertation will be presented. 

1.1     THE TOPIC 

It is important that the reader have an understanding of basics concerning the management of 

heavy construction equipment. This section will provide an introduction to the principles and 

vernacular of the field. The discussion will funnel from the general to the specific. Three areas 

that are of particular concern to this dissertation are: Construction Equipment, Equipment 

Economics, and Equipment Data. 

1.1.1    Construction Equipment 

The function of heavy earthmoving equipment is to move or assist in the moving of soil and rock 

from point A to point B. The purchase of this equipment constitutes a particularly large 

investment on the part of the buyer. One cannot get into the business of owning this type of 

equipment without substantial cash reserves and/or financial backing.     Most machines cost at 
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least $100,000—the largest pieces of equipment can cost millions of dollars. Owners of this 

equipment have a vested interest in insuring that it is properly used, maintained, and managed. 

Firms that use heavy earthmoving equipment fall into two major categories: mining companies 

and construction companies. Although the applications these machines perform within these two 

types of companies may seem similar, the conditions are very different. Mining machines perform 

the same task under pretty much the same conditions—day in and day out. Operations and 

managenvit of the equipment usually take place in the same geographic location. Things are 

different in the contraction industry. The machines can be called upon to do varied tasks in 

different locations under dissimilar conditions. Construction equipment can sit idle in a storage 

yard if its owner has not won the bid for any projects for it to work on—this usually does not 

happen in mining ventures. Most construction firms have some sort of centralized equipment 

management function, but actual operations are widely scattered—in some cases spanning the 

entire country. This research will focus on construction equipment. Parallels may be drawn to 

earthmoving machines that are used in mines, but that is not the purpose of this study. 

, Construction equipment is not a fixed asset—its value is consumed in the production of work. 

The ultimate goal of this work is to make a profit for the owner—if there is no profit, there is no 

point in owning the equipment. There are a finite number of passes that an excavator can make 

and a finite number trips a dump truck can make and still make profits for their owners. Machines 

are routinely bought, operated, and sold during the normal course of business. 

There is an endless cycle of decisions that must be made with respect to equipment ownership. 

The equipment manager must decide how much and how often regarding routine preventive 

maintenance. Preventive maintenance is defined as those routine, periodic actions undertaken to 

minimize repair costs or extend the life of the machine—oil changes are a good example. Repair 

decisions occur on the next level. When the machine or one of its components breaks down 

during the normal course of business, it must be fixed to regain operational status. Rebuild 

decision« ^oncern major mechanical refurbishments that extend the life of the machine. When a 

machine is nearing the end of its profitable life, the equipment manager must make a replace 

decision. Most of these decisions are multi-faceted. They will be explained in greater detail in 

Chapter 3. 
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The decl-, _>ns described above are of an economic nature. They fall under the purview of making 

the investmem as profitable as possible. There are two other classes of decisions that are often 

made concerning heavy equipment. The first class contains those decisions of an operational 

nature—how to get the most production out of the equipment. The second class is that of 

mechanical decisions—how to ensure the reliability of the equipment. This dissertation will focus 

primarily on equipment economics. 

1.1.2   Equipment Economics 

As mentioned above, there are three phases in the life cycle of an earthmoving machine: buy, 

operate, and sell. The buy decision comes once in the life of each machine—the equipment 

manager snould strive to buy as infrequently as possible due the tremendous capital expense 

involved. Operate decisions occur on a frequent basis after the purchase of the machine—the 

goal is to operate the equipment as cheaply as possible maintaining suitable productivity. The sell 

decision may be evaluated more than once, but is only taken to "yes" one time in the life of each 

machine—the machine should be sold at as high a price as possible. 

Taken individually, the three separate economic decisions might not be too difficult to 

comprehend and process. But, there is a complex dynamic between the three. Each can have a 

tremendous impact on the others. Even though it is very expensive to buy new machinery, 

operating costs are very low early in a machine's life. As operating costs increase, the sell 

decision should start to be considered. There is no simple answer. 

The buy and sell decision combine to help define owning costs. Owning costs are those costs that 

accrue or have accrued just to have the potential of using a machine. Other inputs besides buy 

and sell are costs such as insurance or taxes. Owning costs are best characterized on a calendar 

basis—they accrue whether or not the machine is used. The longer a piece of equipment is kept, 

the cheaper the average owning cost per period becomes. Conversely, if the machine is kept a 

short period of time, the average cost of ownership per period can be relatively large due to the 

fact that new machines loose value very quickly in the early periods. 
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The use of piece of equipment generates a constant stream of operating costs. These are costs 

that occur on a day-to-day basis in the course of running a machine. If the machine sits idle, 

operating costs can go to almost nil. If the machine is used heavily, operating costs can climb 

quite high. These costs are best-defined using some metric that characterizes units of work. 

Typicali>, diey are tracked by hours of operation. Some operating costs are frequent and small, 

such as fuel and maintenance. Other expenditures occur on a more periodic basis and can be 

fairly big—like tires, repairs, and rebuilds. Average operating costs are low when a machine is 

new. As it ages average operating costs tend to climb. 

The decrease in owning costs with the concurrent increase in operating costs gives rise to the 

notion of economic life. There is, theoretically, an optimum age at which to replace a machine. 

This age is the age at which point the combination of average owning and operating costs is 

minimized. To properly analyze economic life, one must be armed with detailed knowledge of the 

composition and behavior of owning and operating costs. Owning costs are not that difficult to 

understand and quantify. They are composed of purchase price, resale price, licenses, insurance, 

taxes, and interest. Operating costs are complex and very data intensive. There is a constant 

stream of data associated with the operating cost of each piece of equipment. If this stream is 

properly tracked and analyzed, it can be a reliable input into the economic modeling process. 

1.1.3   Equipment Data 

Nearly all firms that use heavy equipment have some means of tracking its costs and usage. 

Specific data formats vary greatly from company to company, but there are some key elements of 

data that are kept in one form or another by nearly all companies. The initial data associated with 

the purchase of a machine is usually quite easy to record and extract. The purchase price is 

known before the machine is purchased and all other owning costs are tracked by the accounting 

function of the firm. 

All periodic operating costs are normally recorded in one form or another—this is a necessary 

part of doing business. In order to run a business well, expenses must be tracked in order to 

subtract them from revenue when tax time comes. If expenses aren't well tracked the company 

could pay more taxes than it should and hence make less profit than it should.  Usually parts and 
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labor involved with repairing a machine are tracked in separate accounts. Some firms break 

expenses down into further subdivided accounts that correspond to the major components of the 

machines.  Expenses are usually recorded when they occur but are reported on a monthly basis. 

Most firms also track "hours" worked for each machine.   The definition of "hours" varies from 

company to company and will be discussed in more detail in Chapter 4.   Also, there is usually 

some measure of the reliability of the machine that is tracked.   Often, this is in the form of down 

hours, which is the time during which the machine was unavailable for production because of a 

mechanical problem. 

Data collection methods are as varied as the companies that use them.    Some use detailed 

computerized  work-order  systems  that  track  every  expense  related  to   a  machine,   which 

components or sub-components were repaired, who performed the repairs, and how long it took. 

These work orders are sent to the main computer as they are closed out.  Other companies rely on 

weekly faxes from field mechanics to let them know the quantity of parts and labor costs that 

should be charged to each machine.   Some require that actual hour meter readings are taken on a 

periodic basis—others rely on hours of use that are reported from each job superintendent on a 

weekly basis. 

Eventually, all these data find their way into large accounting databases. This is the root of most 

problems that equipment managers have with their data management systems. The systems were 

designed for accountants, not equipment managers. Mainframe computers that have huge storage 

capacities usually host these programs. Access to the databases is strictly controlled. Typically, 

2-3 years worth of data associated with every aspect of the company is maintained on the 

mainframe computer. Older data are archived on tape reels or (more recently) CD-ROMs for 

later retrieval if needed. 

Data retrieval is accomplished via an interface with the host computer.  One must be conversant in 

the language of the mainframe computer or have at their disposal someone who is.   As mentioned 

above, the databases were designed with accountants in mind—not equipment managers.    All 

costs are pigeonholed into tidy accounts, but sometimes these accounts can contribute little to the 

effective management of construction equipment.   If the data that are needed have been placed in 
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archives someone must go to the storage location and retrieve them. Sometimes the costs 

associated with obtaining archived data are higher than the benefits that can be obtained by using 

them. 

Once they are recovered, using the data for other than standard accounting-type functions usually 

requires a great deal of spreadsheet gymnastics. Often, accounting reports come in two 

extremes—the very generalized report that is so general trends are hard to spot and the very 

detailed accounting code report that is detailed to the point that the data make little sense. But, 

the chain of expenditures that comprises operating costs can usually be reconstructed with varying 

degrees of effort. The topic of this dissertation is how to better use the data products available in 

the course of making economic decisions concerning heavy equipment. 

1.2     THE PROBLEM 

It has been shown that the economic decisions equipment managers are faced with can be quite 

complex.   There is an interactive effect between owning costs and operating costs that cannot be 

ignored when searching for an optimal solution.   Operating costs are important to consider, both 

in their timing and in their magnitude.   The periodic usage andccounting data maintained by 

construction companies can be used to produce a stream of data that defines operating costs. 

This understanding aside, there is still considerable debate about the life and cost of construction 

equipment. The economic models proposed in the literature are very simplistic, very old, and very 

broad in scope. Additionally, the statistical bases for most of these models are unknown. These 

models are seldom, if ever, used in practice. 

Most equipment managers are very knowledgeable about the management of equipment, but 

don't truly know how to make the most of the information they have. Unfortunately, data does 

not equate to information. Many equipment managers can make little use of the vast resource of 

data that is at their disposal. They are "data rich but information poor" (Kapoor, 1996). Instead 

of applying sound economic theories and using statistical trends to their full capabilities, they rely 

more upon rules-of-thumb and good judgement.  This is not meant as an affront to experience and 
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good judgement.   Some equipment managers are quite successful in the economic decisions they 

make on a daily basis—economic models are seldom a suitable replacement for common sense. 

The point of this dissertation is that it can be done better.   Tools can be developed and employed 

which will improve the economic decision making capabilities of equipment managers.   This topic 

is relevant—it contributes to knowledge and it addresses real world problems. 

1.3 THE CHALLENGE 

There are really two challenges associated with improving the decision-making tools that are in 

place for equipment managers. The first challenge is a theoretical one. A sound conceptual 

model must exist that can be applied across a spectrum of economic decisions. The second 

challenge is to develop a statistically sound methodology to support the model. The methodology 

should allow construction companies to employ the data they already collect to quantify variables 

in the model. 

The first challenge has been largely met.    ThdCumulative Cost Model proposed by Vorster 

(1980) is a valid economic model that can serve this purpose.   It can be manipulated to provide 

numeric and easy to understand graphical solutions to nearly every economic decision that 

equipment  managers  must  make.     This  model  is  described  in-depth  in chapter  3  of this 

dissertation. 

The second challenge will form the bulk of the contribution that this dissertation makes to the 

body of knowledge. Specifically, a methodology will be developed that will enable equipment 

managers to quantify variables which describe how operating costs vary over time. 

1.4 HYPOTHESES 

This dissertation will test three different hypotheses.    These hypotheses are interrelated—they 

build upon each other.   The validity of the first is a precondition for the validity of the second just 

as the validity of the second is a precondition for the validity of the third.   It is a building block 

approach to a complex problem.   Figure 1-1 shows how each of the three hypotheses relate to 

each other. 
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1.4.1 Hypothesis #1 

A  mathematical  relationship  exists  between  repair costs  and age  of heavy  earthmoving 

equipment. 

This relationship can be described in a relatively simple form, such as: 

Cr=d + bx + CX    +dx  ...eX Equation 1-1 

Where: 

Cr = cumulative cost of repairs 

a, b, c, d = numeric coefficients 

x = age of machine 

e = base of natural logarithms 

The equation listed above is an example.   The true equation will be developed in the dissertation 

and may be of a different form. 

1.4.2 Hypothesis #2 

It is possible to approximate the true equation for the relationship between cost and age by using 

linear regression techniques on existing data. 

Actual data from construction firms that use earthmoving equipment will be used in a rigorous 

statistical analysis to determine which regressor terms are important to describing the behavior of 

costs with age.   Terms that are not important will be eliminated.   The study will be limited to 

linear models or non-linear models that can be transformed into linear models. 
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Regression 
Equations 

—t— 
Relationship Between 

Age and Cost 

Hypothesis #3 

Hypothesis #2 

Hypothesis #1 

Figure 1-1: Objectives of the Dissertation 

1.4.3    Hypothesis #3 

It is possible to incorporate repair cost regression equations into the Cumulative Cost Model 

(CCM). 

The CCM cannot be properly used until its basic components are defined. By combining the 

regression repair cost equations with other known economic costs associated with owning and 

operating equipment, equations for heavy equipment can be obtained. 

1.5     RESEARCH OBJECTIVES 

There are four objectives that will be attained to accomplish this research: 

1.   Data pertaining to maintenance and repair of heavy construction equipment will be collected 

and normalized. 
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2. A statistical methodology will be developed which: 

—uses the field data collected 

—shows which regressors are important when defining repair costs in terms of machine age 

—determines the values of those regressors that are significant 

3. A methodology for incorporating the regression equations into the CCM will be developed 

and described. This will make it possible to describe the algebraic expression for the 

Cumulative Cost Index  (CCI) where : 

Y Gross Expenditures 
CCI =—  Equation 1-2 

Purchase Price0 

The line described by the above equation is also thGross Expenditure Line (GEL) of the 

CCM in terms of the CCI. 

4. It will be illustrated how the CCM can be used to aid in the decision making process 

concerning equipment economics. 

The first objective is a routine requirement. The second objective—to develop and test a 

methodology—is the primary objective of the research. The third and fourth objectives—to 

implement the methodology in the CCM are secondary objectives. 

The dissertation will not define industry standard norms for the values of the regressor variables. 

Some comparisons will be drawn concerning whether different companies have similar equations 

and whether different equipment types and sizes have different equations.   It will be shown how 

the methodology can be converted to practice. 
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Phase 1: 
Preparation 

Analyze 
Data 

Phase 2: 
Analysis 

Phase 3: 
Synthesis 

Figure 1-2: Flow of the Research 

1.6  METHODOLOGY 

The methodology that will be used tcaccomplish the objectives listed above can be divided into 

three distinct phases comprising five distinct tasks.   The phases ^preparation, analysis, and 

synthesis.   The tasks aie:gather and process data, develop test methodology, analysis, develop 

usable methodology, and incorporated into CCM.   These phases, tasks, and how they relate to 

each other are depicted in Figure 1-2. 
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1.6.1    Preparation 

There is a certain amount of ground work that must be accomplished before any analysis can 

really get underway. Two steps that must be accomplished: first, the data must be gathered and 

processed to put it into a form suitable for analysis and, second, a test methodology must be 

defined for the use of this data. 

In gathering and preparing the data, it is important to acknowledge up front that this isfaeld 

study. Since this research is based on a field study rather than a laboratory study it must be 

recognized that there will be a certain amount of "noise" present in the data.   Had the study been 

conducted under laboratory conditions, much of the spurious information could have been 

eliminated.   A tradeoff is made when choosing a field study over a laboratory study.   The field 

study should yield a model that is closer to the way things are in reality, but variables over which 

the researcher has no control over can have an influence on the data.   The laboratory study would 

have yielded a model in which all parameters could have been controlled-everything that had an 

impact on the data could have been quantified.    However, the laboratory study may not have 

yielded models that are reflections of the way things really happen. 

There  are  structural and  statistical issues  concerning  the data that  require resolution  and 

explanation, these will be covered in Chapter 4.    This step cannot really preed without the 

granting of access to the data from the desired companies.    Once permission is obtained, the 

origins and limitations of the data will be investigated. 

The test methodology must be sufficiently rigorous to give a good statistical feel for how well the 

various models perform on the field data. This test methodology will be discussed in detail in 

Chapter 5. 

The above two tasks are highly inter-related.   The test methodology must be designed so that it 

can make the best use of the field data that is available.   On the flip side, sound statistical practice 

should not be abandoned to come up with a methodology that is appropriate for sub-standard 

data.   If a company's data do not meet some minimum structural requirements, they will not be 

considered in the primary analysis. 
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1.6.2 Analysis 

Although there is only one major task that is a portion of this phase of the research (analysis), it 

can be further divided into two sub-tasks: preliminary analysis and secondary analysis. 

Before any analyses can take place, the data must be placed into the proper format.    This 

formidable task will be described in Chapter 6. 

The preliminary analysis will be concerned with finding out what regression equations best 

characterize the growth of costs with respect to increase in age.   This will be done through a 

variety of different regressions and tests on the prepared field data.   This part of the analysis will 

be discussed in Chapter 7. 

The secondary analysis will be to draw inferences concerning the results obtained in the 

preliminary analysis. Are there differences between different types of equipment within a 

company? Are there differences among similar types of equipment between companies? Is there 

one set of parameter values that fits every machine in every company? These questions will be 

answered in Chapter 8. Additionally, comparisons will be made to hypothetical results that would 

have been achieved using other methods of cost forecasting described in literature. 

1.6.3 Synthesis 

The purpose of the synthesis is to take the analysis to a different plane.  There are two major tasks 

in the synthesis phase of the research: defining a usable methodology and incorporation into the 

CCM. 

The usable methodology must be defined such that equipment managers can develop cumulative 

cost curves using commonly available applications for personal computers. The process will be 

described in general and developed in detail for one spreadsheet program. The usable 

methodology should approximate the results of the experimental methodology. For companies 

that do not have good data collection processes, a database and data collection scheme will be 

described.  These topics will be discussed in detail in Chapter 9. 
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The final task in the methodology is the incorporation of the curves into the CCM. Suggestions 

for combining the operating cost curves with other costs will be provided. The use of the CCM 

to solve equipment related problems will be demonstrated.  This will also be covered in Chapter 9. 

The usable methodology must be developed so that it produces equations that are compatible with 

the cumulative cost model. The incorporation and usage of the equations within the CCM is 

highly dependent upon their accuracy. 

1.7     SCOPE & LIMITATIONS 

1.7.1 Scope 

In order to achieve the objectives listed in section 1.5, four different companies were visited and 

data was gathered on their equipment fleets. An equipment fleet is defined as a group of 

machines of the same size and type within the same company. The data were analyzed, equations 

were produced that related the direct costs of maintenance and repair to cumulative hours of use, 

and appropriate comparisons were made. A complete methodology was documented for use by 

construction companies for the replication of this process and the production of their own 

equations. The methodology for incorporating these equations into the cumulative cost model 

was also documented. 

1.7.2 Limitations 

This dissertation will not address every aspect of the maintenance and repair cost estimating 

problem.   It will only investigate the relationship between repair costs and machine age.   As such 

only two variables will be part of the regression equations: machine age in hours and direct costs 

expressed within the CCI.  Other important aspects, such as quantifying the cost of downtime will 

not be covered. 

This work is also limited in that it will analyze historical data from a relatively small number of 

companies.   The companies have been chosen to provide a cross-section of heavy construction 

firms in the United States.   This does not necessarily mean that every firm type, size, geographic 
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region, or management style is represented. Every construction company is unique. The study is 

limited to the construction industry—mining applications will not be investigated. 

Not all equipment categories will be modeled. Equipment categories describe their general 

function, or type. Not all classes within each category will be modeled. Classes describe the 

weight, horsepower, or size of equipment within its category. The categories and classes that will 

be analyzed are machines that are fairly common throughout the industry. The CCI values will be 

calculated for machines that are like types. Like types are not exactly similar. To allow for 

differing purchase prices, the GEL will be expressed in terms of the CCI as expressed in equation 

1-2.  Only one definition of CCI will be used. 

Industry standard parameters will not be developed. Inferences will be drawn concerning some 

equipment types and sizes but these will be observations and are not intended to be definitive. 

1.8     ASSUMPTIONS 

The following assumptions were made at the beginning of this project. All are reasonable and 

define the context within which this work should be taken. Detailed explanations of the 

assumptions follow the listing. 

1. The data are representative of construction equipment in general and the given type or group 

in particular. 

2. The data were collected in a reliable manner. 

3. Each company is striving for the same level of service from their equipment. 

4. The cumulative hours of use on the machines is the only regressor variable. 

5. The response variable, cumulative maintenance and repair cost, follows a normal statistical 

distribution centered about the regression equation over the range of cumulative hours 

worked that is investigated. 
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6. The variance of the response variable is assumed constant throughout the lifespan of the 

equipment in those cases where not enough data are present to justify a variance analysis 

study. 

7. The cumulative repair costs on a given machine are zero when there are zero cumulative hours 

of use on the machine. 

The data are representative of the equipment in genera/Statistics is not an exact science.   No 

statistical tool can consistently predict exact results for specific observations.  The best that can be 

hoped for is a model that will estimataaverage repair costs for a group of machines consistently 

over the lifespan of these machines.  Trends of individual machines can be analyzed, but it must be 

recognized that it is possible for individual machines to fall outside the confidence intervals 

developed for classes of machinery.   Any inferences drawn or conclusions made rest upon the 

assumption that the models developed can be applied to all machines that are similar to a given 

type or group. 

The data were collected in a reliable manner In a perfect world, researchers would have enough 

money and time to operate their own fleets of equipment in carefully monitored environments to 

control every aspect of their experiments.    This type of experiment is not possible within the 

scope of this research.   However, a number of companies have shown a willingness to provide 

access to the data that they have collected.     In essence, the experiment has already been 

completed.    It must be assumed that the data collected by the companies are complete and 

accurate.   It is not possible to go back in time and verify all expenditures—the records that exist 

have to be trusted.  The trustworthiness of these records will be verified by visiting the companies 

involved. 

Each company is striving for the same level of service from their equipment. It is reasonable to 

assume that each of the companies investigated is in business to make a profit. Given that they 

are in business to make a profit, they should each be striving for essentially the same level of 

service from the equipment that they own. This does not mean that each company has the same 

equipment maintenance policy.   It simply means that they each adhere to some minimum standard 
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of preventive maintenance.   This is what will allow a comparison of classes of equipment between 

different companies. 

The cumulative hours of use on the machines is the only regressor variable There are many 

variables that can be factors in estimating maintenance and repair costs.   The regression analyses 

being performed are done assuming that all of these other factors are constant for all the machines 

in the group being studied.   This simplification is necessary in order to be able to accomplish the 

analyses.    It is certainly a reasonable assumption for machines from the same company that 

worked the same region of the country.   It may not be as reasonable for comparing machines that 

came from different companies. 

The response variable, cumulative maintenance and repair cost, is normally distributed 

throughout the range of cumulative hours worked that is investigated. Normality of the data is 

an assumption that must be valid in order to perform normal hypothesis testing and construction 

of confidence intervals. Many of the fleets that we will be analyzing are relatively small. They are 

so small that tests for normality of data may be inconclusive. The normality assumption is 

reasonable—many processes that occur naturally come close to being normally distributed 

(Schulman, 1996). 

The variance of the response variable is assumed constant in those cases where not enough data 

are present to justify a variance analysis study As will be discussed later in this document, it is 

expected that the data to be analyzed will have variance that increases with increasing cumulative 

hours worked.   Simply put, this means that all new machines will have almost the same hourly 

repair costs but old machines will have repair costs that can differ quite a bit from machine to 

machine.   Accurately quantifying this variance function can be very difficult with small data sets. 

The nature of regression analysis is such that applying the wrong variance correction factors can 

be much worse than applying no correction factors at all.   Because of this, with small fleets we 

will assume constant variance. 

The cumulative repair costs on a given machine are zero when there are zero cumulative hours 

of use on the machine.   This assumption is reasonable and necessary.   If for some reason a brand 
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new machine had required repairs before its first job, the cost of these repairs should have been 

covered by the manufacturer or by insurance. 

1.9     ORGANIZATION OF THE DISSERTATION 

This dissertation is organized into four distinct but interrelated parts. Figure 1-3 depicts these 

four parts as they relate to each other and the chapters of the dissertation. 

1.9.1 Part I: Understanding the Challenge 

Part I provides the frame of reference and context for the dissertation. It consists of the first two 

chapters of the dissertation. 

• Chapter 1 is the introduction. 

• Chapter 2 is the literature review. The literature review is fairly extensive in that it covers 

both the history of economic replacement models and the estimation of maintenance and 

repair costs and. This chapter is crucial to the research that is undertaken—without context it 

has little meaning. 

• Chapter 3 is a detailed discussion of the cumulative cost model.   The basic model to be used 

in this study is presented and explained. 

The outcome at the completion of this block will be an understanding of the aspects of equipment 

management, economic forecasting, and economic modeling that are pertinent to this research. 

1.9.2 Part II: Defining The Work 

Part II focuses on the model building and analysis definition aspects of this dissertation. The 

statistical analyses should produce valid results if conclusions based on those results are to be of 

merit. 
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Figure 1-3: The Organization of the Dissertation 

• Chapter 4 provides the reader with a detailed understanding of the data involved with this 

study. 

• Chapter 5 provides the statistical theory and methodology used to analyze the data. 

This section will provide the understanding needed for the statistical analysis to preed. 

1.9.3   Part III: The Work 

This section of the dissertation describes the work undertaken to perform the statistical analysis 

and produce the results obtained.   It consists of three chapters: 
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• Chapter 6 highlights the data gathering operation. 

• Chapter 7 describes the analyses that took place. 

• Chapter 8 analyzes the results with respect to actual performance and other forecasting 

methods. 

The outcome of this section of the dissertation will be an understanding of the nature of 

regression equations relating repair cost to equipment age.     It contributes to the body of 

knowledge by defining and testing a statistically sound methodology for determining the equation 

for the Gross Expenditure Line (GEL) of the CCM. 

1.9.4   Part IV: The Benefits 

This is the portion of the project upon which the rest of the project is judged.   Part IV synthesizes 

the results obtained in Part III. 

• Chapter 9 provides detailed instructions on how to use the GELs derived in Chapter 8 in the 

CCM to make strategic decisions concerning heavy equipment. This chapter also explains how 

companies can apply the cumulative repair cost equations described in Chapter 8 to define the 

GELs for their own equipment 

• Chapter 10 summarizes and recaps the dissertation.  Areas for further study are described. 

The outcome of this section will be the dissertation's contribution to the body of knowledge 

concerning equipment economics. 

1.10   SUMMARY 

This chapter was meant to serve as an introduction and a road map of the work that follows. It is 

the first step in link to understanding the challenge.  There are probably many questions remaining 

in the reader's mind about the specifics of this research.    These questions will hopefully be 

answered in the following chapters. 
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The next chapter is the Literature Review.    In that chapter, the reader will be given detailed 

background information on replacement economic models and repair cost forecasting.   It is the 

second and pivotal chapter of the sccüorUnderstanding the Challenge.   Comprehension of the 

basic theories involved is critical to full understanding of the impact of this research. 



CHAPTER 2:   LITERATURE REVIEW 

This chapter provides an understanding of the basic aspects of the problems involved with making 

economic decisions by reviewing work that has already been accomplished in this arena. 

This chapter will follow the following format: 

• The historical development of engineering economic analyses that led to the genesis of 

the cumulative cost model (CCM) will be discussed. 

• The literature that exists concerning the forecasting of equipment repair costs will be 

documented. 

• The literature concerning the forecasting of maintenance and repair costs will be 

discussed. 

2.1     ECONOMIC REPLACEMENT THEORY 

Decisions about heavy equipment should be made based on sound economic principles, not 

emotions or intuition (Douglas, 1975).   Economic replacement theory models attempt to answer 

the question: "What is the optimum economic life of this piece of equipment?"  The goal is to find 

an optimum length of service for a given machine.  After this time has expired, there is at least one 

other alternative (replace, retire, rebuild, etc.) which is more economical than keeping the machine 

in its present state.   The models attempt to find the optimum length of service by using a variety 

of techniques based on the science of economics. 

There are three basic theories in the field of economic replacement that are relevant to an 

understanding   of  this   dissertation.      They   are: the   cost   minimization   model,   the   profit 

maximization model, and the repair limit model.   There are many other names for equipment 

22 
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replacement models in the literature (Jaafari and Matteffy,  1991), but most of them can be 

categorized as an offshoot of either cost minimization or profit maximization.   Cost minimization 

and profit maximization theories developed on parallel paths beginning in the 1920's.   Repdimit 

theory is relatively new—it was first published in the 1960's. 

Throughout this section, the terms "Defender" and "Challenger" will be used (TerborgH,949). 

The Defender is the machine that is currently under study by the company.   The Challenger is a 

new machine that could serve the same purpose as the Defender. 

2.1.1    Cost Minimization 

The theory of cost minimization can be explained quite well graphically.   As mentioned in Chapter 

1, most costs associated with a machine can be placed in one of two categories: ownership costs 

and operating costs.   The averagecosf of ownership for a given machine should decrease the 

longer it is kept.   This is because most of the capital costs involved with owning a machine are 

incurred as soon as it is purchased.   As time goes on, the initial purchase price is spread over a 

longer time span and thus the average cost decreases.   The averaged of operating a given 

machine should increase the longer it is kept.   For example, when the machine is new repair costs 

should be relatively small and infrequent.    As a machine is operated, repairs become more 

frequent—and sometimes more costly.   Cost minimization strives to find a balance point between 

decreasing ownership costs and increasing operating costs.   The specific components of owning 

and operating costs will be discussed in detail in Chapter 4. The cost minimization model is 

depicted graphically in Figure 2-1. 

There are three curves depicted: average ownership cost, average operating cost, and average 

total cost. 

P -S 
Average Ownership Cost = -0 '- Equation 2-1 

YE 
Average Operating Cost = *"°   " Equation 2-2 
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Average Cost per period at age Lt Equation 2-3 

Where: 

Po = initial purchase price 

Ep = expenditures for the period 

St = salvage value at time t 

Lt = machine age at time t 
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Figure 2-1: The Cost Minimization Model 

Average costs are calculated by taking the cumulative costs incurred up to a given point in time 

and dividing these costs by machine age. Average cost curves are developed for ownership costs 

and for operating costs. The sum of these two curves, the average total cost curve, slopes 

downward initially when operating costs are low and the average cost of capital is decreasing. 

The minimum value of average total cost is T*, the point where the slope of the curve is zero. 

The optimum economic life, L*, is that period which ends when the sum of owning and operating 
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costs reaches a minimum. Note that the abscissa is labeled "age." Age is a generic term that is 

well suited to the diverse situations that can present themselves when conducting economic 

replacement analyses. This concept will be fully developed in Chapter 4. 

2.1.2   The Profit Maximization Basic Model 

An alternate method to the solution of replacement problems is profit maximization (Hotelling, 

1925). Figure 2-2 is a graphic depiction of the profit maximization model. Again, three lines are 

depicted on the chart. They are the average total cost, the average revenue, and the average 

profit. The average total cost line is as described in Section 2.1.1. The average revenue is the 

average amount of income generated by the asset. Average profit is determined by subtracting 

the average cost from average revenue. This results in a curve that is nearly a mirror image of the 

average cost curve. The optimum economic life occurs at the apex of the average profit curve. If 

average revenue were constant, the average profit curve would be an exact mirror image of the 

average cost curve and the profit maximization economic life would be the same as the cost 

minimization economic life. However, the amount of revenue generated by an asset often declines 

with use as the machine suffers from both deterioration and obsolescence as it ages. For this 

reason, the economic lives for profit maximization and cost minimization are not always the same 

(Douglas, 1975). The equations associated with this model are: 

y R 
Average Revenue =     °  p Equation 2-4 

y'/?  — (P+V'E -S) 
Average Profit at time Lt = ^_? °    ™   p  Equation 2-5 

Where: 

Rp = revenues for the period 



Literature Review 26 

Figure 2-2: The Profit Maximization Model 

The minimum average annual cost, T*, and the optimum economic life for cost minimization, L* 

are also depicted in Figure 2-2. It can be seen that in the case of declining revenues, the optimum 

life for profit maximization (Profit Life) will be less than L*. The converse is also true. 

2.1.3   The Repair Limit Theory 

A different way of looking at the economic replacement decision was presented in Drinkwater and 

Hastings' repair limit theory (1967.) The repair limit was defined as follows: 

'The repair limit is a limit on the amount of money which can be spent on the repair of a 
vehicle at any particular job. The values of the repair limit are dependent on the type, age, 
and in some cases on the location of the vehicle." 

Repair limit theory is not applied until a machine has broken. The concept behind repair limit 

theory is that there exists some amount, rot, below which it economically sound to repair the 

machine. If the estimated cost of the repair is greater than rot, the repair should not be 

undertaken and the machine should be discarded or replaced. 



Literature Review 27 

The following quantity represents the future cost per year if the machine is repaired (Drinkwater 

and Hastings, 1967): 

r  +   m  ( t) 
 ■—■  Equation 2-6 

8 (O 

where: 

r = the cost of the repair in question 

m(t) = the expected total cost of future repairs from time t forward 

g(t) = the expected remaining life of the machine from time t 

t = the time in the machine's life at which point the repair limit evaluation is taking place 

If a failed machine is scrapped then the future cost per year is 9, which is found by determining 

the average future annual cost of the replacement system. The replacement system is either a new 

copy of the Defender, or a Challenger that is different. The quantity obtained in equation 9 is 

compared to 0. 

If 

r  +   m  ( t) 

8 (O 
<   0 Equation 2-7 

The machine should be repaired and returned to service as soon as possible. If the inequality is 

not true, then the machine should be scrapped and replaced. The repair limit is that value of r for 

which both sides of the inequality would be equal. Solving for r, the repair limit becomes 

(Drinkwater and Hastings, 1967): 

rQ(t) = (0x g(t))-m(t) Equation 2-8 

This is graphically depicted in Figure 2-3 (Drinkwater and Hastings, 1967). Drinkwater and 

Hastings also introduced a cumulative cost curve to graph economic replacement models.   Line 
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OAD is cumulative repair cost vs. age of the machine. The quantity OA represents the original 

capital cost. The curve AQPD represents the cumulative repair costs over time. The slope, 0, 

represents the average cost of similar machines against which the machine of interest is to be 

judged. This straight, sloping line is tangential to the cumulative cost curve at the point P. The 

average cumulative repair cost at any point on the cumulative cost curve is given by the slope of 

the line drawn from that point to origin of the plot. 
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Figure 2-3: The Repair Limit Model (after Drinkwater and Hastings, 1967) 

the origin.  At a point in the machine's life, L, the line QW represents the repair limit.  Beyond 

age LP the repair limit is zero. The following relationships are depicted on the figure: 

g(t) = Ltp-Lt Equation 2-9 

m(t) = Y-Yt Equation 2-10 
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Repair limit theory is limited in that the model supports only one type of decision. The theory 

cannot be applied until a machine breaks down. Repair limit theory was revisited by Mahon and 

Bailey (1975) but the basic concept remains unchanged. 

2.1.4   Summary 

Three different economic models have been reviewed in this section. The output of each is 

distinct. One seeks to minimize costs, one seeks to maximize profits, and the third seeks to define 

a function that specifies a repair spending cap at any given point in a machine's life. None of the 

three is particularly well-suited to accommodating the rationale and mechanics of the others. 

Despite the differences, all three attempt to answer the same question: "What is the optimum time 

to sell?" 

A model exists that can be used to emulate the mechanics of all three of the above mentioned 

models. The Cumulative Cost Model combines the important concepts developed in each of these 

theories into one package. Chapter 3 will provide an in-depth discussion of this model as 

developed by Vorster (1980). 

2.2     IMPORTANT WORKS CONCERNING REPLACEMENT THEORY 

Section 2.1 provided a basic understanding of the mechanics of economic replacement theory. 

This section is meant to expand upon that understanding with discussions of particularly 

influential works in the arena. 

2.2.1   Taylor 

Taylor published the paper that forms the nucleus of most modern day economic replacement 

theory in 1923. He defined useful (economic) life of a machine as the period of time that 

minimizes the unit cost of production for that machine. If a machine is sold before or after that 

period has expired, the average unit cost of production will be greater than the optimum unit cost. 

The equations developed by Taylor for average unit cost, x, over n years are: 
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ol + o2+...on+wn 
x = —-—  Equation 2-11 

Yx+Y2+...+Yn 

Wn=C-Sn Equation 2-12 

where: 

Oi, O2, On = operating expenses for the 1st, 2nd, and nth year (includes labor, repairs, fuel, etc.) 

Yi, Y2, Yn = number of units of output for the 1st, 2nd, and nth year 

Wn = cost of the machine new less the salvage value of the machine at the end of the nth year 

C = cost of the machine new 

Sn = salvage value of the machine in the nth year 

To determine the minimum unit cost, equation 6 is applied over each successive year of operation 

of the machine. The value of x will first decrease then increase. The point at which the value of x 

has reached its minimum defines the economic life of the machine. 

Taylor also presented a parallel analysis called "unit cost plus (interest)" that allowed for the 

calculation of minimum unit cost while accounting for interest (the time value of money.) This 

method defined useful (economic) life as the period that at ends at the point in time where "unit 

cost plus" is minimized. It is interesting to note that Taylor developed these analyses in an 

attempt to better describe depreciation—defining the concept of economic life was merely a 

means to that end. 

Taylor's analyses were formed with the intent of replacing the Defender with an identical 

machine—no provisions were made for comparing the Defender to a different machine. 

Replacement of the Defender would take place when the minimum unit cost (or cost plus) was 

realized. Taylor implied that his equations could be used for different replacement alternatives 

(Challengers), but did not articulate how this could be done (Preinreich, 1940). 
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2.2.2   Hotelling 

Hotelling (1925) was the first proponent of profit maximization. He proposed profit 

maximization not as a replacement for cost minimization, but as an alternative to cost 

minimization. The quantity that Hotelling sought to maximize was the value of the output 

(revenues) minus the cost associated with producing that output and plus the salvage the value of 

the machine. He called this the value of the machine. Hotelling used discounted cash flow 

techniques to determine this value. A good discussion of discounting techniques can be found in 

"Principles of Engineering Economy" (Grant, et. al., 1990). Hotelling's equation for value in a 

constant interest scenario is as follows: 

V (t) = ] [xY (T) - 0(r)]v'-dt + S(n)v-' Equation 2.13 
t 

where: 

t = the time of interest 

1 = integration variable representing time 

V(t) = the value of the machine at time t 

n = the useful life of the machine (this corresponds with L* as described in Section 2.1.2) 

x = the theoretical selling price of a unit of output 

Y(x) = output rate of the machine (function of time) 

O(T) = operating costs of the machine (function of time) 

v = 1/(1 + i) where i is equal to the interest rate 

S(n) = salvage value of the machine (function of the useful life) 

Hotelling refined Taylor's approach in a number of ways. He introduced the use of integral 

calculus in lieu of algebraic summation to streamline calculations. Hotelling was the first to 

discuss obsolescence of machines—although he was particularly vague about how to calculate 

obsolescence cost.   Like Taylor, Hotelling developed his methodology in the hopes of better 
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defining the concept of depreciation—determining the useful life of the machine was only 

described in as much as it furthered that goal. 

2.2.3   Preinreich 

Preinreich (1940) revisited Taylor's and Hotelling's theories; he also made some important 

contributions of his own. As with the previous articles, Preinreich was concerned with industrial 

equipment in general and did not write specifically of construction equipment. However, unlike 

Taylor and Hotelling, Preinreich overtly addressed the issue of equipment replacement instead of 

discussing it under the auspices of depreciation. In his words: 

"Replacement is the basic problem, because it actually affects the composition and 
productivity of a plant. Calculations of depreciation are mere figures entered into 
books, the significance of which depends entirely on the use to which they are 
put." 

Preinreich recognized that replacement problems are not always as simple as one machine being 

replaced by another of the same type. He categorized the scope of replacement decisions in five 

distinct categories: 

1. Single machine 

2. Finite chain of replacement machines 

3. Infinite chain of replacement machines 

4. Numerous parallel chains 

5. A large plant composed of a number of smaller machines that are replaced as they 

wear out 

The one category of these five that had the biggest impact on the field was that of the infinite 

chain of replacements. In an infinite chain, the assumption is made that there will be a future need 

for a specific machine and that all of the replacements for this machine will have similar lives and 

economics associated with them.   This means that the economic life of the current Defender is 
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impacted upon by the economics of future Defenders (or Challengers.) Preinreich also briefly 

explained how to account for a technologically improved machine (the Challenger.) However, his 

method did not provide the means to make a decision between a Challenger and a Defender—his 

method assumed that the Defender was obsolete and the Challenger was the only replacement 

option. 

2.2.4   Terborgh 

George Terborgh (1949) took cost minimization a step further. Terborgh better defined the 

concepts of deterioration and obsolescence in addition to the aforementioned Defender/Challenger 

concept. Deterioration is the measure of decreased performance of the Defender in relation to a 

brand new Defender as the equipment gradually wears out. Obsolescence is a measure of the 

lower performance of a brand new Defender in relation to a brand new Challenger. Deterioration 

and obsolescence taken together form the inferiority gradient. The inferiority gradient is 

essentially Terborgh's version of operating costs as described in Section 2.1.1. 

This sum of the operating inferiority and the capital cost is averaged each year of the machine's 

life—the point at which this sum is minimized is known as the adverse minimum. This point 

corresponds with T* as defined in Section 2.1.1. The period of time that passes between the 

machine's purchase and the adverse minimum is the optimum economic life and corresponds with 

L*. If a machine is currently older than its optimum economic life, the new adverse minimum 

becomes the average sum of the inferiority gradient and cost of capital for the current year. 

Simply put, after the adverse minimum has been reached the best time to replace a machine is the 

present. 

To compare the Defender and the Challenger, the adverse minimum for each is calculated. The 

machine with the lowest adverse minimum is the one that should be chosen. Terborgh intended 

that the analysis be accomplished on a yearly incremental basis. Provisions for an analysis with a 

horizon of greater than one year into the future are described, but not fully developed. Terborgh 

revisited and expanded upon this method in 1958 and 1967 (Grant, et. al, 1990.) The revisions 

consisted of applications other than the replacement decision and a change of methodology to a 

comparison of internal rates of return instead of adverse minimums. 
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Terborgh was the first author to articulate the idea of units of production for mobile equipment. 

Previous authors defined production in very generic terms. Terborgh defined production in terms 

that can be applied to the construction industry. "Cost per acre cultivated" can easily be 

translated to cost per cubic yard excavated. "Cost per mile" is similar to cost per meter hour. 

2.2.5   Douglas 

Douglas (1975) wrote the first book dedicated specifically to construction equipment 

management. He provided descriptions of three different ways to arrive at a replacement 

decision: intuition, cost minimization, and profit maximization. Intuition, he said, is the most 

prevalent method for making replacement decisions. The use of this method has no basis in 

economic principles; instead it relies on the judgement and experience of the person making the 

decision. Good judgement and a wealth of experience are very desirable characteristics in an 

equipment manager. There are certainly some wizened equipment managers in the industry that 

can consistently make the right choices based on their "gut feel." Analytical methods can 

complement the intuitive abilities of the best equipment managers. Douglas downplays the 

validity of decisions reached using intuition. He explained that many equipment managers who 

make decisions based on intuition are more influenced by the initial purchase price of an item than 

by the long-term operating costs and reliability. 

The second method Douglas describes is cost minimization. Economic life is defined as described 

in Section 2.1.1 for the basic cost minimization model. Replacement normally occurs at the point 

in time where the average cumulative cost of the Defender exceeds the minimum average 

cumulative cost of the Challenger. Although Douglas fully develops an example problem using 

the cost minimization method, he makes the statement "this (the cost minimization method) is an 

easy way out and considered by some to be more scientific than the method described above 

(intuition)." Douglas understood the mechanics of cost minimization, but he did not think very 

highly of it. He was concerned that those who applied cost minimization theory were not 

accounting for all costs. 

The final method Douglas describes is profit maximization. Annual costs are subtracted from 

annual revenue to calculate annual profits as described in Section 2.1.2. The average cumulative 
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profit for each year of analysis is then calculated. When maximizing profits, the optimum 

economic life is defined as that year in which average cumulative profit is maximized. Figure 2-2 

shows this graphically. 

Douglas described three different methods for executing the profit maximization technique. The 

preferred method employed a computer program developed by Douglas specifically for that 

purpose. Another method enlisted the aid of a slide rule or calculator to help with mathematical 

calculation. Douglas estimated that it would take almost two years for one person to go through 

all the calculations to solve one problem manually. Douglas' third method employed look-up 

tables to ease the burden of some of the manual calculations. According to Douglas, an 

experienced user could make it through a problem in around two hours using his tables. 

Douglas recommended profit maximization over cost minimization and intuition. He implied that 

a profit maximization policy is better for business than a cost minimization policy. He went 

further to say that a cost minimization policy should be used only when profits cannot adequately 

be determined. 

2.2.6   Collier and Jacques 

Many other authors have attempted to refine the cost minimization/profit maximization model 

over the years. Most of these refinements have focused on the mechanics of the calculations 

involved and the definitions of the costs involved. 

Collier and Jacques (1984) developed the "Geometric Gradient-to-Infinite-Horizon Method." 

This method explains in detail how to handle the time-value-of-money calculations for many 

different cost categories. Cost categories used by the Geometric Gradient-to-Infinite-Horizon 

Method repair cost, maintenance cost, tire cost, downtime cost, obsolescence cost, accessory 

cost, taxes and insurance cost, decline in salvage value, and overhaul cost. The types of costs will 

be described in Chapter 4. Using this method, many of these expenditures are defined in terms of 

geometric gradients. 

Equations are developed to find the net present value of all the life cycle costs associated with the 

existing Defender, the first replacement Challenger, and all future replacement Challengers. These 
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costs are summed to find an overall net present value. When this combined net present value is 

minimized, the optimum replacement strategy has been found. Two components are varied in the 

net present value equations. These are the remaining life of the Defender, N, and the assumed life 

of the Challenger, L. The minimum net present value is found through an iterative process that 

tests all reasonable combinations of values for N and L. The iteration process easily lends itself to 

computer applications. Jaafari and Mateffy (1991) further refined this method and developed a 

computer program to implement it. 

All in all, the three basic economic theories presented in Section 2.1 are still valid today. The 

focus of most of the literature over the years has been that of bringing practice closer to theory. 

The reality is that the theory has not been brought into practice. Much has been written, but little 

has been applied. Some basic concepts are in use, but no one model has gained industry-wide 

acceptance. A goal of this research is to develop a format that is more easily understood and 

applied by practitioners of equipment management. 

2.3     ECONOMIC FORECASTING 

There are two main aspects to every forecasting problem, the forecasting aspect itself and a 

planning aspect (Makridakis, et. al., 1989). According to Makridakis, a forecast is simply a 

prediction of what will happen—it is an input into the planning process. A plan is something a 

decision-maker devises with the intent of shaping future events into a favorable outcome. The 

forecast can be key to the success or failure of the plan, but it is not an end in itself. To 

understand why it is important to have an accurate way of predicting equipment costs, it is 

necessary to first have an understanding of what these forecast costs can be used for. 

The economic models and their enhancements described in Sections 2.1 and 2.2 make up the 

planning portion of the decision making process that was described in the introduction of this 

chapter. The second body of knowledge that must be understood to fully comprehend this 

dissertation is that of economic forecasting. Economic forecasting is "the study of historical data 

to discover their underlying tendencies and patterns" (Hanke et. al., 1995). This section will 

discuss the mechanics of forecasting in general.    This will lay the groundwork for detailed 
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discussions of forecasting as it relates to maintenance and repair costs. Section 2.4 will delve into 

the particulars of applications developed specifically for equipment management. 

Although forecasting has been a science for over a century, the advent of computers has really 

made forecasting a mainstream activity. It is only recently that personal computers have made it 

possible for managers at nearly every level of business to analyze data and make forecasts. In the 

past, these functions were relegated to mainframe computers—before that to the statisticians and 

bookkeepers. 

2.3.1 Uses of Economic Forecasts 

Forecasts can be used as business planning tools, process control devices, and communications 

vehicles (Wilson et. al., 1994). The bulk of what was discussed in Section 2.1 concerns itself 

mainly with the business planning aspects of forecasting. It is important that maintenance and 

repair costs can be adequately forecast to develop the cost curves from which strategic decisions 

can be made concerning fleet management and make-up. 

Another benefit of having accurate maintenance and repair forecasts is the fact that they can be 

used to identify "problem" machines. If a machine has had a particularly bad repair history, 

something should be done to rectify the problem—this is the process control side of forecasting. 

Additionally, maintenance and repair forecasts make up a portion of internal rental rates for 

heavy equipment. These rates are used by project estimators to prepare bids and by project 

managers on the job. In this capacity, forecasts serve as a communication vehicle. The 

predictions of the equipment manager/committee are communicated to the rest of the company 

for use in different functional areas. 

2.3.2 Types 

The types of forecasting available to today's managers are quite numerous. They are best 

categorized for the purposes of this discussion as qualitative and quantitative methods. 
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2.3.2.1 Qualitative Methods 

Qualitative methods can most closely be associated with the intuitive approach to replacement 

economics described in Section 2.2.5 by Douglas. The person making the forecast does so on the 

basis of judgement and intuition (Makridakis et. al, 1989). Intuitive approaches have been used 

for forecasts along the entire continuum of time horizons ranging from the immediate to the long 

term (Makridakis et. al., 1989). 

A more formalized qualitative method that also has a place in the equipment management arena is 

the Jury of Executive Opinion (Wilson et. al., 1994). The jury is composed of all the company's 

top executives that have a stake in the outcome of the forecast. By combining their specialized 

knowledge and experience, the jury can (hopefully) derive a better forecast than any one 

individual of the jury could have. This method is best suited to forecast time horizons of three 

months to two years (Makridakis et. al., 1989) but can be applied to other time horizons as well. 

The mechanics of running the jury can vary (Wilson et. al, 1994). Often, the jury physically 

meets in one place, discusses the issues involved, and makes the forecast. Sometimes, especially 

when dealing with conflicting personalities, one person individually visits each of the jury 

members, takes in the information, and makes a decision. Some construction companies employ 

the Jury of Executive Opinion method when setting their internal rental rates—the jury goes by 

other names, but the concept remains the same. 

Qualitative methods do not require an in-depth understanding of mathematical methods on the 

parts of the participants. Individuals and firms that use qualitative methods tend to like them. 

Eighty-two percent of the firms familiar with forecasting techniques use the Jury of Executive 

Opinion (Makridakis et. al., 1989). Qualitative techniques are most valuable when there is a lack 

of hard data that can be used for quantitative techniques or when the time horizon of the forecast 

is far into the future (Kim, 1989). 

There are disadvantages to these techniques also. Chase summarized these disadvantages: "(1) 

they are almost always biased; (2) they are not consistently accurate over time; (3) it takes years 

of experience for someone to learn how to convert intuitive judgement into good forecasts" 

(Chase,  1991).    Makridakis (1989) stated that people are generally overoptimistic in the 
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preparation of subjective forecasts. He also pointed out that it is generally more expensive to 

employ qualitative techniques than quantitative methods. This is primarily due to the amount of 

time that executives have to put into making forecasting decisions. 

These disadvantages aside, there is always some amount of subjectivity involved when making a 

forecast. As will be seen in Chapter 6, determinations must be made as to which statistical model 

is the best for a given situation. These determinations are qualitative decisions on the part of the 

researcher and, when implemented by industry, will be qualitative decisions on the part of the 

maintenance manager. 

2.3.2.2 Quantitative Methods 

Quantitative methods are better suited to the prediction of maintenance and repair costs (Kim, 

1989). In general, there are volumes of data available on these costs and used properly these data 

should be able to provide a reasonably accurate forecast. Quantitative methods that could be 

applied to equipment management include naive, moving average, exponential smoothing, time- 

series analysis, and regression (Makridakis et. al., 1989). 

"Naive " when used in reference to numerical forecasting techniques refers to the simplicity of the 

forecast—not the abilities of the forecaster. The approaches can be quite simplistic (Hanke et. al, 

1995). The quickest of naive forecasts merely assumes that the future value will be equal to the 

present actual value. Other na'ive forecasts include using the trend for the last two actual values 

to predict the future value or multiplying the current actual value by a subjective growth factor 

(e.g. the future value will be 1.05 times the current value). Naive forecasts are best suited to 

short term forecasting horizons (less three months). 

Moving averages are also well suited to short-term forecasts. They are slightly more quantitative 

than the naive methods. The benefit of using a moving average over a naive method is the partial 

elimination of errors induced by randomness (Makridakis et. al., 1989). Random events can cause 

one value to unusually higher or lower than it would normally be. These random events could 

throw off Naive forecasts. Moving averages attempt to mitigate randomness by basing the 

forecast on an average of values for a specified period of time.   The number of observations 
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included in the moving average is n. The n most current observations are averaged to produce 

the number that the forecast will be based upon. 

±* 
Moving Average = LJL— Equation 2-14 

n 

Where: 

t = the present time 

n = the number of observations in the average 

x = the value of the forecasting parameter 

As with the naive methods, the moving average can be applied as-is or multiplied by a qualitative 

growth factor. Moving averages play a significant role in the software product Fleet Information 

System (FIS) by M. Vorster and M. Kapoor. Equipment managers are supplied with moving 

averages for repair costs and downtime, among other things. In addition to reducing the impact 

of randomness, the moving averages in FIS help to reduce the seasonal and cyclical nature of the 

construction industry. 

Exponential smoothing is yet another tool available for short-term forecasting. It is similar in 

concept to the moving average except that the more recent observations are given greater weight 

in determining the forecast. A weighting factor, a, is chosen such that 0 < a <1. As 

a approaches 1, greater weight is assigned to the most current observations. The equation for 

simple exponential smoothing is (Hanke et.al., 1995): 

y,+1 = aYt + (1 - a)Yt Equation 2-15 

Where: 

7r+1 = the smoothed forecast 

a = the smoothing parameter 

Yt = the current actual value 

Y, = the forecast for the current value 
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There are other exponential smoothing techniques available that are more complex but better 

suited for the analysis of data with trends or seasonally. The basic concept remains the same. 

Time-Series Analysis comprises a variety of techniques whereby patterns in streams of data are 

identified as they relate to the passage of time. Once the patterns have been identified, they are 

applied through the forecasting horizon to come up with a forecast future value. Time-series 

techniques are especially good at characterizing trended, seasonal, and cyclical data streams. The 

most popular time series techniques in use today are time-series decomposition and the auto- 

regressive integrated moving average (ARIMA, or Box-Jenkins) techniques. Typically, time- 

series methods are best suited to short-term forecasts (Makridakis, 1989). 

Time series decomposition consists of attempting to identify the separate components that make 

up a stream of data. A time series decomposition equation takes the form (Wilson et. al., 1994): 

Y = TxSxCxI Equation 2-16 

Where: 

Y = forecast variable 

T = long-term trend in the data 

S = seasonal trend in the data 

C = cyclical trend in the data 

I = random variations 

The Box-Jenkins methodology is an iterative process in which the data are compared to a series of 

models to determine which model provides the best fit. The model that provides the best fit is the 

one that is chosen to complete the forecast. The underlying assumption is that future values of 

the forecast variable are related to the past values of the forecast variable. There is no causative 

relationship between the forecast variable and time. In reality, most data are affected by time 

somewhat so the data must be transformed so that it does not show a time specific trend. A good 

discussion of the Box-Jenkins methodology can be found in Time Series Analysis: Forecasting 

and Control (Box et. al, 1994). 
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Regression techniques are appropriate for up to medium range forecast horizons (up to two 

years)(Makridakis et. al., 1989). In nearly all texts, a distinction is made between regression 

models based on trends and regression models based on cause. Regression of a trend over time is 

the formulation of an equation that expresses the forecast variable as a function of time. 

Regression of a cause is the formulation of an equation that expresses the forecast variable as a 

function of one more things that cause the forecast variable to fluctuate. The mechanics of 

regression are the same for both cases and will be discussed at length in Chapter 4 of this 

dissertation. It is important to note that in the study undertaken for this dissertation, time is the 

cause of the fluctuations in the response variable. 

Advances in computer software and hardware have put easy-to-understand regression tools at the 

fingertips of today's managers. Basic regression can be accomplished within the confines of many 

spreadsheet programs. Regression is hungrier for data than the other quantitative methods 

mentioned, but maintenance managers typically have an abundance of data. 

Although quantitative methods of forecasting have been shown to be consistently more accurate 

than those of qualitative methods (Makridakis et. al., 1989), they do have their shortcomings. 

One of the biggest of these is the fact that they depend on past events to predict the future. The 

extrapolative capability of any of the quantitative methods for long-rang forecasting is 

questionable. All quantitative methods require a data source. Some require a good deal more 

data than others do. All quantitative methods also require the use of some analytical capabilities 

both by the forecaster and by the forecast user. 

This being said, there is more than enough equipment data available to support a quantitative 

solution. The fact that the forecast desired is one appropriate for a medium-range time horizon 

eliminates all methods besides ARIMA and regression. The difference between regression and 

time-series analysis regarding our problem is almost philosophical in nature. Regression seeks to 

define the behavior of a response variable in relation to some causative event. ARIMA seeks to 

define that behavior as a function of simply the passage of time. What is being sought in this 

research is a linkage between the age of a machine (in cumulative hours of use) and its cumulative 

repair cost. This is a causative relationship. Although hours of use are definitely a measure of the 
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passage of time, our interest in them is more as a measure of the amount of work performed. 

Work causes a machine to have more expensive or more frequent breakdowns; time is simply the 

best way we have of measuring this cause. Regression will be the methodology of choice. 

Chapter 5 will cover the details of how regression will be used. 

2.4     MAINTENANCE AND REPAIR COST FORECASTING 

There are many methods in use today to forecast equipment repair costs. Most of them are 

empirical, not data driven. This topic has been revisited sporadically over the past fifty years by 

many of the leading authorities in the construction field. What follows in this section is a 

recounting of these methods along with their strong and weak points. 

2.4.1   Straight-line Methods 

Most of the equipment maintenance and repair cost estimation techniques described in literature 

use a constant repair cost over the life of the machine. If a plot of cumulative repair cost vs. 

cumulative hours of use is formed for any of these methods, the plot reveals a straight line. The 

slope of the line is the hourly repair cost.   This is depicted in Figure 2-4. 

Two different methods proposed by Nichols utilize constant hourly repair costs over the life of the 

machine (Nichols, 1976). In the first of these, repair costs per hour are estimated as a percentage 

of the straight-line depreciation of the machine. This is particularly useful when a machine is 

actually depreciated by the straight-line method because ownership cost calculations are 

simplified. Straight-line depreciation is rarely used in practice today. 

A second constant repair cost method described by Nichols estimates hourly repair cost as a 

percentage of purchase price. This percentage is determined by using numbers published by the 

Associated General Contractors of America. Peurifoy et. al, recommend a similar method with 

the percentage determined by company-specific historical records (Peurifoy, et. al., 1995). 
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Figure 2-4: Repair Cost as a Percentage of Depreciation 

In the Handbook of Heavy Construction, E. A. Cox also recommends estimating equipment repair 

costs as a percentage of purchase price (Cox, 1971). Cox modifies this approach slightly by 

including multiplication factors for type of service (easy, medium, or severe). The Caterpillar 

earthmoving equipment manufacturing company recommends an approach nearly identical to that 

proposed by Cox (Caterpillar, 1995). Caterpillar adds an additional factor for machines that will 

be used for more than 10,000 hours, but this factor is applied over the entire lifespan of the 

machine. Terex (Terex, 1981) and Fiatallis' (Fiatallis, 1981) approaches are only slightly different 

from Caterpillar's. The U. S. Army Corps of Engineers modifies this approach by adding factors 

to account for regional price variations and inflation (EP 1110-1-8, 1995). 

The value of the constant repair cost models is their simplicity. They are very straightforward and 

easy to apply. They may, however, be an oversimplification of a process that should be 

represented by a more complex model. Additionally, changes in equipment design, manufacturing 

processes, and quality may have had an impact on these models. 
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2.4.2   Terborgh 

One of the pioneers of modern equipment management, George Terborgh, recognized nearly fifty 

years ago that the relationship between repair costs and accumulated hours of use was non-linear 

(Terborgh, 1949). Data that Terborgh analyzed showed a trend for repair costs per unit of output 

that increased more rapidly during the early part of a machine's life. Costs tended to reach a 

static value after many hours or years of service. Because the curvature of the repair rate curves 

seemed so slight, Terborgh suggested the curve could be replaced with a straight line. 

It should be noted that Terborgh studied many different classes of equipment, from textile 

machinery to farm implements. Unfortunately, he did not study heavy construction equipment— 

the closest category was farm implements. These implements ranged in age from new to twenty 

years old. The data on this equipment were collected in 1936. Some of the machines studied 

were built as early as 1916. The accumulated hours on the machines at the twenty year point 

were extremely low when compared to what heavy construction equipment would accumulate in 

that time frame. 

The average hours of cumulative use for the twenty-year-old farm machinery was 1,000—some 

pieces of construction equipment accumulate more than twice that many hours in just one year. 

Some of the farm machinery studied had been in service for twenty or more years. Construction 

equipment is seldom kept more than ten years. Since Terborgh was plotting repair cost per unit 

of output and this research is more concerned with cumulative repair costs, a transition needs to 

be made. The straight line that Terborgh mentioned in reference to growth of repair costs would 

translate into a quadratic line if it were a plot of cumulative repair costs. His slightly curved line 

would translate in some function higher than a quadratic (possibly a cubic or exponential). 

As an exercise, a hypothetical cumulative repair cost curve was constructed using numbers 

obtained from Terborgh's data on farm implements. To aid in the construction of the curve, it 

was assumed that the acreage output per hour remained constant at one acre per hour over the life 

of the implement. This curve obtained is depicted in Figure 2-5. It can be seen that the curve 

shows a definite upward trend and can also be seen that there is indeed a slight curvature to the 

plot.   A simple multiple regression was performed on the data to yield a quadratic equation. 
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Although the "x" term seems to be more significant than the "x2" term, the fact that the "x2" term 

is present lends credence to the idea that there is curvature to cumulative cost curves and that 

some type of optimization should be possible. 

Figure 2-5: Cumulative Repair Cost 

Since heavy construction equipment works more hours over a much shorter time than the farm 

implements of Terborgh's study, Terborgh's graphs may not accurately reflect how construction 

equipment behaves. Another problem with Terborgh's study is that it directly compared new 

machines with machines that were twenty years old. Many advances in technology were 

implemented between 1916 and 1936 (most notably the assembly line). There are also inflation 

considerations that were not addressed. It is promising, however, that non-linear trends were 

identified as part of the way equipment ages over 60 years ago. 

2.4.3   Nichols 

Herbert Nichols proposed a detailed method of estimating repair costs in his book, Moving the 

Earth (Nichols, 1976). An hourly repair cost is obtained by multiplying factors for type of 

equipment, total hours of use, years of useful life, temperature, work conditions, maintenance 

quality, type of use, operator style, luck, equipment quality, and pace of work. These factors are 

multiplied together and then multiplied by l/10,000th of the purchase price of the machine to 
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obtain an hourly cost. Nichols' repair cost multipliers increase almost linearly as a function of 

cumulative hours of use (Figure 2-6). These factors are designed to be used by all types of 

construction equipment. They are not tailored for any particular category or group of equipment. 

But, they are scaled when the type of equipment multiplier is applied. This essentially increases or 

decreases the slope of the line shown in Figure 2-6. 

1  2  3  4  5  6 7  8  9 10 11 12 13 14 15 16 17 18 19 20 

Thousands of hours of use 

Figure 2-6: Repair Multiplier vs. Cumulative Use (Nichols, 1976) 

As a precursor to Nichols' discussion of his repair factors, Nichols recommended that company- 

specific data be used as a primary means of estimating repair costs—but he failed to explain how. 

Of all the methods of predicting equipment repair and maintenance costs documented in literature, 

Nichols' repair factor method stands alone as one that attempts to account for the increasing rate 

of repair costs with increasing accumulated hours of use. 

2.4.4   Nunnally 

S. W. Nunnally proposed a method of estimating repair costs that is similar to the sum-of-the- 

years digits method of depreciation accounting (Nunnally, 1993). In sum-of-the-years'-digits 

depreciation accounting, the depreciation in a given year is calculated by the following formula: 
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D = 
(N-m + l)(P-S) 

N(N + 1) 
Equation 2-17 

Where: 

D = depreciation 

N = total number of years in the economic life of the machine 

m = the current year in the life of the machine 

P = the initial purchase price of the machine 

S = the salvage value 

When using the sum-of-the-years' -digits method of depreciation, the amount of depreciation 

claimed is large at first and tapers off as the machine gets older. This accounting procedure is 

more beneficial to companies than constant depreciation when figuring taxes (it is, however, no 

longer an acceptable method of tax accounting in the United States). 

The method put forth by Nunnalfy gives a function that is essentially the inverse of the 

depreciation function described above. It is given by the equation: 

C = 
m 

N(N + 1) 
Lifetime Repair Cost 

Hours Operated 
Equation 2-18 

Where: 

C = the hourly repair cost 

With this formula, it can be seen that the cost will increase with an increase in m, the current year, 

instead of decrease. The lifetime repair costs are expressed as a percentage of original purchase 

price. This percentage is based on operating conditions (favorable, average, or severe). These 

factors range from 40% for a dragline operating in favorable conditions to 105% for a scraper 

operating in severe conditions. Nunnalfy provides a table that gives these percentages for each 

category of equipment.  The hours operated in the equation are the total hours that a company 
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expects to operate a given machine during its life. This should not be construed to mean that 

Nunnally's theory accounts for accumulated hours of use—it does not. This theory assumes that 

the total accumulated repair costs at the end of a machine's life will be the same, regardless of 

whether it has worked 1,000 hours or 10,000 hours. The repair cost multiplier (the first fraction 

in the formula given above) increases incrementally each year of a machine's life (Figure 2-7). 

This figure was made for a hypothetical machine that had an expected economic life of six years. 

0.30 

£ 0.10 
a 

0C 0.05 

2 3 4 

Years of Service 

Figure 2-7: Repair Cost Multiplier vs. Years of Service (Nunnally, 1993) 

Assuming the above machine cost $250,000, the cumulative repair costs of the machine can be 

charted (Figure 2-8). The function charted appears to be quadratic, but it fails to take into 

account the accumulated hours of use on the machine. The accumulated repair costs at the end of 

each year would be same, regardless of how many hours the machine had worked. A dilemma 

results when applying Nunnally's method across years in which production varies. Because of the 

way equation 2-18 works, a machine could conceivably have a lower hourly repair cost as it ages. 

All it would take would be an exceptionally low usage rate in an early year followed by an 

exceptionally high usage rate. This scenario is realistic in the world of heavy construction. If a 

company fails to win jobs in one year and succeeds in bidding many jobs the next, they could be in 

a position where the machines are relatively idle one year and working double shifts the next. 
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Common sense dictates that forecasting models are not followed blindly, but the point is made 

that there are many assumptions made in empirical models. 

Figure 2-8: Cumulative Repair Cost vs. Years (Nunnally, 1993) 

Nunnally made an attempt to account for the increasing nature of repair costs as machines age. 

Nunnally, however, defined machine age in terms of the passage of time on a calendar. Calendar 

time may not be the best way to characterize the growth of repair costs for earthmoving 

equipment. 

2.4.5   Kim 

In his dissertation, Yong Hwan Kim developed a statistical method of estimating repair costs 

based on the combined failure distributions of major components (1989). The study was 

conducted on a large fleet of U.S. Army trucks. The trucks ranged in age from 8 to 24 years old. 

Twenty critical components on the trucks were selected and distributions for their failure times 

were developed. By combining failure curves for the critical 20 components, Kim developed a 

time-series model of the average repair costs for these trucks. This model was statistically 

consistent with the actual repair costs incurred by the army during those times. Kim found that 

for equipment with very long life spans, repair costs increase monotonically up to a point, after 
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which they decrease slightly and then level out. In the late years of an Army truck's life, it will 

have a relatively constant repair rate per year. Kim concluded that his methods were applicable to 

all long-life machinery. 

The direct applicability of this study to the construction industry is questionable. Most Army 

mechanized equipment wears out due to physical aging, not due to use. Interviews with the U.S. 

Army's TACOM (Tank Command) confirm this (Mitchell, 1997). The trucks in Kim's study 

accumulated an average of less than 2,000 miles of travel per year. Assuming an average speed of 

40 M.P.H., these trucks were in operation less than 50 hours per year—this is not even close to 

the number of hours construction equipment is used (typically at least 1,000 hours per year). 

Additionally, Kim's trucks are subject to relatively static load conditions and are driven mostly on 

smooth surfaced roads. Most units of construction equipment are subject to dynamically 

changing load conditions and are operated on rough surfaces. Another problem with the 

applicability of Kim's research to the construction industry was the assumption of a steady state 

of component replacement with an infinite life of the frame and other systems supporting those 

components. This does not hold true for construction equipment. 

2.4.6   Observations 

Numerous methods of estimating equipment repair costs are described in literature. The cover a 

broad spectrum, ranging from over-simplistic empirical formulas to a difficult to employ time 

series method based on individual component failure. No data-driven approach was described 

that could easily be applied to data already collected by construction firms. 

2.5     SUMMARY 

This purpose of this chapter was to present a literature review that will set the stage for a fuller 

understanding of the chapters that lie ahead. First, literature on economic replacement models 

was reviewed to provide a broad context for the need for cumulative repair cost equations. Cost 

minimization, profit maximization, and repair limit theories were discussed. Following the 

discussion of economic theories in general, important contributions and enhancements that have 
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been published over the years were discussed. This provides the background needed to 

understand the Cumulative Cost Model which will be discussed in Chapter 3. 

After discussing economic theories, forecasting methodologies were described. First the general 

tenets and methods of forecasting were put forth, then some methods intended specifically for 

machinery were discussed. This provides the background needed to understand the development 

of the test methodology (Chapter 5). It will also give the background to understand comparisons 

made to other forecasting methods which will be accomplished in Chapter 8. 



CHAPTER 3:   THE CUMULATIVE COST 

MODEL 

Chapter 2, the Literature Review, provided the background needed to understand the theories 

involved with the Cumulative Cost Model (CCM). This chapter will discuss this model and its 

uses in detail. The CCM is the model best suited for economic decision making within the 

equipment management environment. 

3.1     THE BASIC MODEL 

An explanation of why the CCM was chosen as the primary economic model is in order. The 

three economic replacement models discussed in Chapter 2 allow for some type of numeric 

solution to economic replacement problems. The numeric solution is very important because the 

issue at hand is the development of an economic replacement policy that will provide the greatest 

financial benefit to the companies involved. 

The economic replacement models discussed can also be graphically depicted. Many authors fail 

to communicate the importance of a graphical solution. Some neglect to discuss it altogether. 

Graphical solutions enable the decision-maker to better conceptualize the problem at hand. Costs 

(and revenues if applicable) are depicted as curves on a two-dimensional chart. Drawing tangents 

to the applicable lines depicts the optimization functions. By having clearer problem definitions, 

equipment managers can understand exactly what the optimization process does for them. 

The cumulative cost model provides a valid numerical solution and an intuitive graphical depiction 

of the problem being analyzed. It also provides things that the other models do not (Vorster, 

1980). With the cumulative cost model, it is possible to depict and understand changes in total 

costs, average costs, and marginal costs. The cumulative cost model is the only one of the 

economic replacement models that incorporates both classic economic replacement theory and 

53 
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repair limit theory. The cumulative cost model can be used to minimize costs or to maximize 

profits—it is not implicitly tied to one method or the other. It is also possible to explicitly show 

the three basic steps of buy, operate, and sell at any point in the machine's life. The cumulative 

cost model allows for more than one definition of economic life for heavy construction equipment. 

Figure 3-1: The Cumulative Cost Model vs. Cost Minimization (Vorster, 1980) 
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Figure 3-1 (Vorster, 1980) is a geometric comparison of the cumulative cost model and the cost 

minimization model. It can be seen that both of the models can be used to show the optimization 

function. Both optimum points are defined by geometric tangents to the cost curves. The cost 

minimization method uses a horizontal tangent to the total average cost curve to define T*, the 

minimum average annual cost and L*, the optimum economic life. The cumulative cost model 

uses a tangent to the cumulative cost curve drawn that has its intercept fixed at the origin. This 

tangent defines the same optimum point that the horizontal tangent defines for the cost 

minimization model. T* and L* have the same meaning as in the cost minimization model, but T* 

is defined a little differently. Instead of being the vertical coordinate of the optimum point, T* is 

the slope of the tangent line drawn to the optimum point. 

The average operating cost, Tt, for a given time, t, can be found graphically for each of the two 

models by drawing lines. For the cost minimization model, Tt is found by drawing a vertical line 

from the ordinate at the time of interest that bisects the average total cost curve. A horizontal line 

is then drawn from the point of bisection to the abscissa. The point where this horizontal line 

joins the abscissa is Tt. For the cumulative cost model, a straight line is drawn directly from the 

origin to the point where the vertical line corresponding to the time of interest bisects the 

cumulative cost curve. The slope of this line is Tt 

The abscissa of the CCM is age. Units are not specified at this point to highlight the flexibility of 

the model. Age can take the form of calendar age, age in cumulative hours of use, or age in units 

of production. The definitions of these various ages will be presented in Chapter 4. 

The ordinate of the cumulative cost model is cumulative cost, normally expressed as either the 

sum of or net present value of all transactions to date. All owning and operating costs can be 

depicted in the CCM. Costs will be discussed in more detail in Chapter 4. 
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Figure 3-2: The Cumulative Cost Model-Detail 

Figure 3-2 shows a simplified version of the cumulative cost model in detail for four periods. 

Straight lines are used in place of curves for the purposes of illustration only. It can be seen that 

the entire life cycle of the machine is depicted on this graphic. The four periods shown indicate 

four times the sell decision was contemplated. The fourth time, the machine was sold. Line 

OPRS, which is the Gross Expenditure Line (GEL), goes sharply upward at time zero to reflect 

the initial purchase of the machine. It then rises slowly as costs are incurred over the life of the 

machine. It finally drops abruptly when the machine is sold or when a sale is contemplated. Line 

OS is the Net Expenditure Line (NEL). The following definitions apply to some of the other line 

segments: 

OP = original capital cost (P0) 

PQ = expenses for the period (SEP) 

RS = Salvage value at time t (St) 

St = Net expense for the period {Po + SEP- St} 

OS = Uniform recovery line (URL) 
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3.2     THE CCM IN DEPTH 

The CCM can be discussed in greater depth now that the basics are known. Figure 3-3 fills in the 

details lacking in Figure 3-2 and provides the basis for the following definitions: 

P, Ri, R2, Rt = Gross Expenditure Line (GEL) 

O, Si, S2, S, = Net Expenditure Line (NEL) 

OSi, OS2, OSt = Uniform recovery lines (URLs) 

Tan tOS, = URL gradient at time t, or the average cost to time t (Tt) 

T* = minimum value for URL gradient, or the optimum average cost 

L* = optimum economic life 

UflL 
(Uniform Recovery Line) 

1 

NEL 
(Net Expenditure Line) 

Age 

Figure 3-3: The Cumulative Cost Model (Vorster, 1980) 

The NEL is equal to the GEL minus the salvage value of the machine at time t. Salvage value is 

sometimes referred to as residual value—it is the amount of money that the machine could be sold 

for at a particular point in time. The reason for the "hump" in the NEL is the rapid decline in 

salvage value early in the life of an asset. As the residual value decreases, the NEL converges 

with the GEL. According to Drinkwater and Hastings (1967), the residual value of a machine at 
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Figure 3-4: Definitions for Economic Life 

any given time should approximate the repair limit at that time. It can also be seen that the 

minimum Tt is reached when the uniform recovery line (URL) is tangent to the NEL. This is the 

gradient T* that was discussed earlier. The cumulative age defined by the bisection of the NEL 

by the URL is L*. 

There are two definitions of economic life that are of importance in the cumulative cost model: 

1. The Defender's minimum cost life, DMCL: defined as that period which ends when the 

average annual cost of a Defender reaches a minimum. This is equivalent to L* for the 

Defender. 

2. The equal marginal cost life, EMCL: defined as that period which ends when the marginal cost 

of keeping the Defender one more period systematically exceeds the minimum average annual 

cost which can be expected from an equivalent Challenger. 
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Figure 3-5: Detail of Figure 3-4 

These definitions are depicted graphically in Figure 3-4. This figure also shows how successive 

machines can be depicted on one figure. This helps the equipment manager better visualize 

exactly what happens to a given asset as time progresses. The Challenger is depicted on the 

figure with its own age and cumulative cost axes. These axes must be of the same scale as those 

of the Defender. The graph depicting the Challenger is then laid on top of the Defender's graph 

with the point of interest on the NEL of the Defender serving as the locus for the origin of the 

Challenger's graph. The Challenger's graph can be depicted at any point along the Defender's 

NEL. The point corresponding to the EMCL was chosen for Figure 3-4 to aid in the visualization 

of economic life. 

3.3     USING THE CCM 

Using the CCM is not difficult.    Geometric or conceptual solutions are easy and intuitive. 

Numerical solutions are more involved and rely on a knowledge of the equations that define the 
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NEL and GEL. Optimizing the equations is a matter of simple calculus as will be demonstrated in 

Chapters 8 and 9. However, the quality and validity of the results obtained from the CCM cannot 

exceed the accuracy of the algebraic expressions used to describe the NEL and GEL. 

The first curve that must be defined is the Gross Expenditure Line. The GEL should reflect all 

components of owning and operating cost if perfect accuracy is desired. These components were 

discussed briefly in Chapter 1 and will be discussed in more detail in Chapter 4. With a few 

notable exceptions, it should not be too difficult to construct the GEL up to the present is a 

company keeps good cost accounting records. The matter is, however, complicated by the 

consequential costs of obsolescence and deterioration which are well accepted but difficult to 

quantify (Vorster and de la Garza, 1990). Using the GEL will be described in Chapter 9. 

Defining the NEL is extremely difficult. Although it is simply GEL less the salvage value, salvage 

value is dependent upon many factors. These include, but are not limited to: the hours on the 

machine, the calendar age of the machine, the timing of the machine's major rebuilds, the 

machine's exterior appearance, the region of the country in which the sale is to be made, the time 

of year in which the sale is made, and the market conditions which affect the demand for the 

particular type of machine being sold. 

However, as cumulative hours increase the residual values decrease and the NEL converges with 

the GEL. After a machine reaches a certain age, its residual value is not that great and is not 

influenced as much by the factors listed above. A method for approximating the NEL will be 

discussed in Chapter 9. 

3.4     DECISIONS SUPPORTED BY THE CCM 

One of the main reasons the CCM is so attractive lies in the scope of decisions that it supports. 

Most of the models discussed presented a solution for only one type of decision: like-for-like 

equipment replacement. An example of this would be the replacement of an aging scraper 

(Defender) with a new scraper (Challenger). The Challenger typically will have some sort of 

advantage, be it longer expected life or improved production, which causes it to be more 
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economical than the Defender. The goal of the economic replacement model is to find the 

optimum point in time to replace the Defender with the Challenger. 

A survey of equipment managers (Mitchell, 1997) was undertaken to determine which type of 

economic replacement decisions they make most often. Although like-for-like replacement had 

the highest rating (36%), it was clear that a model that supported other types of decisions would 

be useful. The scope of decisions supported by the cumulative cost model are listed below: 

1. Purchase: This is the initial purchase of a piece of equipment for a fleet. The purpose of the 

purchase is not to replace an existing asset. The purpose is to expand opportunities, increase 

production capacity, or perform a task that the current fleet cannot perform. Usually, a 

decision must be made between two or more alternative machines, each with one or more 

associated methods of finance. 

2. Maintain: Maintain decisions are those that pertain to the money invested in preventive 

maintenance (PM) in an effort to minimize repair expenditures or extend the life of a machine. 

Decisions on the types and timing of PM should be made by the equipment manager for each 

type of machine owned. 

3. Repair: Repair decisions are those decisions concerning whether or not to repair a machine 

that has failed while in service. Repairs do not extend the life of a machine—they merely 

bring it back to an operational state. Most firms that own equipment delegate repair decisions 

to the field with some caveats. These caveats usually take the form of a price ceiling above 

which the decision to repair or not is deferred to the next higher management level. 

4. Rebuild: Rebuild decisions are distinguished from repair decisions in that a rebuild extends the 

service life of a machine. The rebuild can be accomplished on the whole machine or just on 

critical components like the drivetrain. Usually, rebuilds represent a significant investment in 

the machine. Capital spent on rebuilds can be partially recovered through depreciation. 

Rebuild decisions can be made at any time and are not driven by the fact that the machine has 

failed. 
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5. Like-for-like replacement: This decision was explained above. While it is the capital decision 

that equipment managers most often face, it is by no means the only type of capital decision 

that they must make. This is the only capital decision addressed by most authors in the 

literature. 

6. Production capacity replacement: Production capacity replacement was the second most 

frequent capital decision problem among the respondents to our survey. In this type of 

replacement problem, one general category of equipment is replaced with another general 

category of equipment to have no net change in production capacity. An example of this is 

the replacement of scrapers with articulated dump trucks because the articulated dump 

truck/excavator combination is seen to be more versatile and cost effective than the 

scraper/push dozer combination. Production capacity replacement problems are usually more 

subjective than like-for-like replacement problems. Collateral costs can be more heavily 

involved when making a decision to switch equipment types. 

7. Retire: Retire decisions are made when it is desirable to remove a machine from service. The 

proceeds from the retirement sale can either be removed from the equipment division 

completely or reinvested in unrelated equipment types. Old equipment is sold, the money is 

made available for new purchases, and the equipment manager is once again faced with a 

purchase decision. 

Although it may be possible to modify the usage of other models to accommodate some of the 

decisions listed above besides like-to-like replacement, no single model except for the CCM can 

support all of the above decision types. 

The remainder of this section will discuss exactly how the CCM can be used to support all of the 

above decisions. Additionally, the mechanisms for using the CCM to determine impact on profit 

will be covered. 

3.4.1   Purchase 

The decision to purchase a new piece of equipment that is not a replacement of something already 

in the company's inventory is a strategic decision that should be made by the company's top 
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management. The company should have well-developed strategic goals and select its core fleet 

composition based on those goals. After the decision to purchase has been made, the cumulative 

cost model can aid in the identification of the best suitable candidate for the job. Usually, there 

will be two or more machines that must be evaluated. Each of those machines will have a number 

of financing options (e.g. purchase, lease, lease/purchase, etc.) A decision will be made on not 

only which machine to purchase, but how to finance it as well. 

The first step in the process is to obtain reliable information concerning historical resale 

values, operating costs, and financing options from the manufacturers of the prospective 

machines and the lending institutions with whom the firm does business. The information 

on operating costs and financing options will be used to estimate the GEL for each 

alternative using cumulative hours of use as the abscissa. The data on historical resale 

values will be subtracted from the GEL to derive the NEL. It is important to note that if a 

lease option is being evaluated the GEL and the NEL will be one in the same. Once the 

NEL has been derived, a tangent URL from the origin is drawn ( 

Figure 3-6). 

This tangent point defines the ending of the DMCL as defined above. The slope of this URL, T*, 

is the minimum average cost per hour for owning and operating the machine. Future machines 

should have the same T*, the replacement should be made when the DMCL is reached. All other 

things being equal, the alternative with the smallest T* should be the machine and finance method 

chosen. If there are mitigating circumstances (i.e. one machine has a higher productivity than the 

others do), appropriate collateral costs can be assessed to the weaker machines. 

RULE: When making a purchase decision, alternatives should be evaluated in terms of their 

minimum URL gradient. All other things being equal, the machine with the lowest minimum 

URL gradient (T*) should be selected. 
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3.4.2   Maintain 

Figure 3-6: The Purchase Decision 

Almost all heavy equipment companies have some sort of preventive maintenance policy. It is 

very easy to quantify the direct costs associated with a given policy and their timing. The cost of 

the maintenance is easy to calculate because the items accomplished are spelled out in the policy. 

The intervals between maintenance visits are also specified in the policy. A difficult thing to 

quantify is the results of a given policy. These quantities and their timing can be determined from 

manufacturer's data or from actual field data obtained by testing various policies. 

To compare policies, URL's for identical machines under different maintenance policies are 

compared. Graphically and conceptually, there is little difference in the mechanics between this 

procedure and the one described above relating to machine purchase. The only difference is that 

instead of comparing different machines, the manager is comparing different maintenance policies. 

The NELs and URLs for each policy are drawn and T* for each policy alternative is determined. 
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The policy that provides the lowest T* is the one that should be chosen for the machine of 

interest. This policy may not be the best policy for the rest of the fleet. 

RULE: When making a maintain decision, preventive maintenance policy alternatives should be 

evaluated in terms of their minimum URL gradients. All other things being equal, the policy 

with the lowest minimum URL gradient (T*) should be selected. 

3.4.3   Repair 

The format of the cumulative cost model is similar to that of the repair limit model developed by 

Drinkwater and Hastings (1967). The basic concept of repair limit theory is that there exists some 

dollar amount, the repair limit, below which it economically sound to repair the machine. If a 

machine breaks down and the estimated cost of the repair is greater than the repair limit, the 

repair is too expensive and the machine should be retired or replaced. 

According to Hastings (1969), in a perfect market the optimum repair limit of an item is equal to 

its resale value. In terms of the cumulative cost model, this is the difference between the GEL and 

the NEL. This was depicted graphically in Figure 2-3. The line segments RiSi, R2S2, and RtSt 

represent the repair limit at the respective points in the machine's life. To apply repair limit 

theory, obtain a good estimate of the cost of repair, re. Compare this estimate to the difference 

between the GEL and the NEL at the appropriate point in the machine's life. 

The application of repair limit theory to every minor repair that takes place on a machine would 

be counterproductive. A valid strategy would be for the equipment manager to periodically 

evaluate the repair limits of all the machines in the fleet. From this evaluation, monetary limits 

could be set for field repairs. These limits would be somewhat less than the repair limits. If the 

cost of the repair is less than the field limit, the field mechanics can perform the repair without 

approval from the equipment manager. If the cost of the repair is greater than the field limit, the 

equipment manager should evaluate the repair in terms of the actual repair limit. 

RULE: When making a repair decision, the machine should be replaced or retired if re > (GEL- 

NEL). If re < (GEL-NEL), the machine should be repaired. 
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3.4.4   Capital Rebuild 

Rebuilds are undertaken to extend the life of the equipment in question. Although a rebuild may 

extend the physical life of a system, it will not necessarily make the average operating cost 

cheaper. There are two general rebuild scenarios: planned rebuild and rebuild due to failure. At 

any point in time there are three options available to the equipment manager concerning a planned 

rebuild: the machine should continue to operate in its current condition, the machine should be 

rebuilt, or the machine should be replaced. The option that yields the lowest URL gradient is the 

one that should be chosen. If the machine has failed, the option of continuing the operation of the 

machine is not available. 

Deciding which URL gradients to use can be a bit tricky when making a rebuild decision. If the 

Defender's DMCL has not expired, the URL gradient used for the comparison should be T* for 

the Defender before the rebuild. Otherwise, the current URL gradient should be used. In the case 

of a failed Defender, the URL gradient of the Defender is not used. 

The URL gradient for the rebuilt Defender is found by drawing a line tangent to the NEL of the 

rebuilt Defender (Figure 3-7). This gradient will be referred to as T*rebuiid- The NEL for the 

rebuild Defender is a continuation of the NEL for the Defender. The point at which the rebuild is 

accomplished will show a sudden vertical increase in the NEL to account for the initial cost of the 

rebuild. The NEL should then resume a flattened and gradually increasing path. It is important to 

note that T*rebuiid is determined using the origin in relation to the original purchase of the machine, 

not the displaced origin with respect to the timing of the rebuild. The URL gradient to use for the 

Challenger is T* for the Challenger. These three URL gradients (or two in the case of a failed 

machine) are then compared. The option with the lowest URL gradient is the one that should be 

chosen. 

RULE: To make a positive rebuild decision, two conditions must be satisfied: first, T*rebuUdofthe 

rebuilt Defender must be less than the URL gradient (or T* if DMCL has not expired) of the 

Defender before the rebuild and second, T*rebuild for the rebuilt Defender must be less than the 

T* of the Challenger. 
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Figure 3-7: The Rebuild Decision 

3.4.5   Like for Like Replacement 

If a decision has been made to replace the Defender, the best time to do it is at the point when it 

becomes cheaper to own and operate the Challenger. To continue to operate the Defender 

beyond that point results in additional costs that would not have been incurred had the 

replacement action occurred sooner. Unnecessary costs are also incurred if the Defender is 

replaced too soon. 

The model associated with like for like replacement decisions is depicted in Figure 3-8. The slope 

of the URL represents the average hourly operating cost. Graphically, the Defender is operated 

until the URL of the Challenger is tangent to the Defender's NEL. Algebraically this occurs when 

the marginal cost of the Defender is equal to T* of the Challenger. When the EMCL has expired, 

the Defender should be sold and the Challenger should be purchased. 

RULE: When making a like-for-like replacement decision, the Defender should be replaced 

when its marginal cost systematically exceeds T* of the Challenger. 
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Figure 3-8: Like-for-Like Replacement 

3.4.6   Production Capacity Replacement 

The production capacity replacement decision is the most complex of the capital decisions that 

will be discussed. The analysis becomes more of a method comparison than a one-to-one 

economic competition. However, the decision can still be likened to the classic Defender vs. 

Challenger. The old method is the Defender; the new is the Challenger. The machine age that 

makes the most sense to use in this type of analysis is machine age in units of production. This 

makes the slope of the URL equivalent to the average unit production cost. The graphic model 

will be identical to that used in the like-for-like replacement decision (Figure 3-8) with the 

exception of the units on the abscissa. Before starting the comparison, it is essential that the 

equipment manager possess good production data on both the Defender and the Challenger. 

What complicates this type of decision more than the others is the team nature of generating units 

of production. When a production capacity replacement decision is made, more than just one 

type of equipment is affected and decisions should be based on cost and production for systems 

rather than for individual units. An example of a production system would be an excavator with 

its assigned articulated dump truck and all of the other equipment necessary to maintain the haul 
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roads and compact the fill. When making a production capacity replacement decision the NEL's 

that are compared must be expressed not only in terms of the costs directly associated with the 

prime movers in question, but also with indirect costs that reflect the team nature of the 

production effort. 

To accomplish this, URL's for the assisting units must also be calculated in terms of machine age 

in units of production assistance. Assisting units include not only the dozers and the excavators, 

but any graders, compactors, water trucks, or other equipment associated with the production. 

The appropriate optimum average cost per unit of assistance is then added to the NEL of each of 

the production machines. After this is done, the comparison can be made and a decision obtained. 

RULE: When making a production capacity replacement decision, replace the Defending 

System with the Challenging System if the URL gradient for the Defending System is greater 

than T*for the Challenging System. 

3.4.7   Retire 

The retire decision is the final decision to discuss. This takes place when the equipment 

manager has made a decision to sell a given piece of equipment and not replace it. On the 

surface, this problem seems fairly straightforward. There is no Challenger to forecast costs 

for. There is no fleet of equipment that must be taken into consideration. If there are no 

other external influences, the decision model is quite simple. The cumulative cost model 

should be developed using machine age in cumulative hours of use. The DMCL for the 

machine should be determined. The machine should be sold when the DMCL has expired. 

If the DMCL has already passed, the machine should be sold immediately. Graphically, 

the evaluation is identical to that which was used for the evaluation of alternatives in the 

initial acquisition decision ( 

Figure 3-6). 
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A complicating factor is the fact that the residual value of the machine could be put to work 

elsewhere in the company, contributing to profitability. The equipment manager can take this into 

consideration by including a collateral cost that accounts for the difference in revenue generating 

potential between the Defender and other investment opportunities. 

RULE: A machine selected for retirement should be removed from service when its URL 

gradient reaches a minimum. 

3.4.8   Profit Maximization: The Retire Decision 

It was mentioned earlier that the cumulative cost model could also be used assist in decision 

making on the basis of profit maximization. This is done by superimposing a Total Revenue Line 

(TRL) on the model (Figure 3-9.) The TRL represents the cumulative revenues generated by the 
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Figure 3-9: Retire (Profit Maximization) 

given piece of equipment. The slope of the TRL, Rr, represents the average revenues generated 

per unit of age. The angular difference between the TRL and the URL at a specific point on the 
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NEL equates to the marginal profit generated per unit of age at that point in the machine's life. It 

follows from this that the Profit Maximization Life (PML) is that period which ends when the 

angular difference between the TRL and the URL is the greatest. 

For illustration purposes, the retire decision will be revisited using profit maximization 

methodology. If the machine is retired very early in its life, profits would be negative. Point B is 

the breakeven point—average profit would be equal to zero at this point. The breakeven life is 

represented by BL. For simplification purposes, the slope of the TRL in this example is constant. 

Since the slope of the TRL is constant, the URL that yields the greatest angular difference will be 

the one associated with T*. Since the slopes of both the TRL and URL are constant, the 

optimum marginal profit per unit of age, P*, is also the average profit per unit of age. Also, since 

the TRL is constant the PML is equivalent to the DMCL as described earlier in the discussion of 

theory. 

RULE: The optimum lifespan for retiring a machine based on profit maximization occurs when 

the angular difference between the slopes of the TRL and the URL is maximized. 

3.5     SUMMARY 

In this chapter, the Cumulative Cost Model was presented and discussed in detail. It was shown 

that the model is ingenious, intuitive, and flexible in the scope of decisions that it supports. 

Although the cumulative cost model has tremendous practical and academic potential, the key to 

its successful implementation is the accurate definition of the NEL. The assumption has been 

made that the NEL is concave. This is the basis of the optimization function. If the NEL is not 

concave—if the average owning, operating, and collateral costs on a machine do not increase with 

age, the cumulative cost model (and most other models presented to date) are invalid. The 

equations that make up the NEL must be fully developed and defined to ensure the cumulative 

cost model yields valid results. This dissertation is the start of that process. 

This concludes Part I of this dissertation, Understanding the Challenge. The topic has been 

introduced, the literature has been reviewed, and the basic model has been defined.  The reader 
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should now be ready to understand Part II, Defining the Work. Part II commences with Chapter 

4 wherein the structural and statistical issues concerning the data will be discussed. 



CHAPTER 4:   THE DATA 

The first step of Defining the Work for this dissertation is gaining an understanding of the 

characteristics of the data to be analyzed. After the data is understood, a methodology can be 

developed and the analyses can be performed. A hypothetical data set has been formulated to 

illustrate many of the peculiarities of repair cost data. This data set is depicted in Table 4-1. The 

data set consists of five machines. The machines are of two different types, were purchased at 

different times, and have differing data collection methods. This data set consists of cumulative 

hours of use and cumulative repair costs for the machines. It will be used throughout this chapter. 

There are two general categories of issues concerning the data. They are structural and statistical 

issues. The structural issues pertain to getting the data into a usable format. The statistical issues 

pertain to making this study statistically valid. 

4.1     STRUCTURAL ISSUES 

There are number of structural issues with the data that must be addressed prior to formulating 

any plan for analysis. These include: 

• Use of field data 

• Differing machines 

• Differing times 

• Data collection periods 

• Machine age 

• Cost 

• Data pairing 

• Confidentiality 

73 
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Table 4-1: Illustrative Data Set 

Machine #A1 Machine #A2 Machine #A3 Machine #B1 Machine #B2 

List 
Price 

$ 150,000 $125,000 $157,000 $ 350,000 $ 350,000 

Month 
Cum. 
Hours 

Cum. 
Cost 

Cum. 
Hours 

Cum. 
Cost 

Cum. 
Hours 

Cum. 
Cost 

Cum. 
Hours 

Cum. 
Cost 

Cum. 
Hours 

Cum. 
Cost 

JAN 0 $0 4634 $34,126 

FEB 192 $135 $34,618 

MAR 202 $636 4969 $34,746 

APR 202 $1,453 $35,485 

MAY 202 $1,921 5294 $36,230 

JUN 554 $2,844 $36,377 0 $0 0 $0 

JUL 705 $3,825 $37,307 128 $1,030 139 $720 

AUG 764 $4,268 $37,984 324 $40,325 287 $2,315 

SEP 818 $5,024 $38,903 453 $41,651 442 $4,309 

OCT 829 $5,937 $39,664 0 $0 586 $43,591 602 $4,573 

NOV 914 $6,198 5817 $39,757 113 $888 754 $44,117 750 $6,351 

DEC 950 $6,631 $39,779 245 $1,644 883 $45,377 878 $6,501 

JAN 1112 $6,886 $40,096 266 $2,089 1064 $46,199 1011 $7,442 

FEB 1176 $7,834 $40,532 424 $2,399 1243 $46,704 1194 $8,944 

MAR 1230 $8,787 $40,623 534 $3,167 1436 $48,378 1365 $10,190 

APR 1263 $9,600 $40,663 641 $2,075 1581 $49,836 1558 $11,327 

MAY 1444 $10,464 6186 $41,488 837 $2,294 1770 $49,873 1753 $11,517 

JUN 1574 $11,381 $42,140 990 $2,817 1898 $50,414 1872 $13,323 

JUL 1767 $11,637 $42,624 1187 $3,653 2085 $50,530 1979 $14,763 

AUG 1955 $12,629 285 $42,887 1215 $4,247 2269 $51,427 2091 $15,719 

SEP 2147 $13,463 $43,186 1321 $4,335 2409 $51,606 2221 $15,924 

OCT 2310 $13,838 $43,875 1367 $4,455 2552 $52,874 2415 $16,448 

NOV 2352 $14,053 $44,399 1564 $4,794 2661 $54,774 2517 $17,127 

DEC 2508 $14,887 635 $45,077 1720 $5,188 2764 $55,256 2675 $17,363 

JAN 2564 $15,088 $45,308 1871 $5,964 2950 $56,032 2871 $19,248 

This section will discuss each of these issues as they pertain to this research. The structural issues 

are reflections of things that must be done to the data to get it to the condition where it is suitable 

for analysis. 

4.1.1   Field Data 

The fact that this study will be based on field data was introduced in Chapter 1. It is not possible 

to obtain laboratory data that is suitable for this study.   Field data should provide a realistic 
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picture of how repair costs escalate over time. The downside of field data is that it can contain 

"noise". Things can happen that distort the reliability and contribution of the data associated with 

a particular machine. The more machines that are part of the study, the less of an effect these 

distortions will have. 

The data were collected by a wide variety of people in a wide variety of organizational positions. 

Each company had its own unique set of data collection procedures. In some cases, the data 

would pass through multiple hands in hard copy format before its entry into the accounting 

databases. Each company involved was visited and their data collection processes were 

investigated. The purpose of these visits was to validate the accuracy of the collection effort. 

Although occasional glitches in the data were encountered, the collection of cost data by all of the 

companies involved was deemed reliable. The collection of data concerning hours of use was a 

different matter. Some companies only tracked billable hours for their machines in their 

databases. They did not track the actual hours of usage. For these companies, a solution was 

devised that used their oil change records. This solution will be further discussed in Section 4.1.3. 

Despite the fact that all of the companies had reliable cost data collection methods, there were still 

some observed errors in the data that were obtained. The most common error was that of 

negative repair costs for a given month. This is illustrated in area "A" of Table 4-2. When the 

question of negative costs was posed the companies involved, the answer obtained was that the 

negative charges were due to either overcharges or mistaken charges that occurred in an earlier 

month. To fix this error, the negative charges were removed from the preceding month (or 

months) and the negative charge was eliminated from the data set. This is illustrated in area "A" 

of Table 4-3. The reason for doing this was to eliminate the false fluctuations in cumulative repair 

cost induced by adding and subtracting charges that should not have been there in the first place. 

Another error, though not as common as negative charges, was that of replaced hour meters. 

This was obvious in that either the cumulative cost at time zero was not zero or the cumulative 

hours associated with a given machine went down with the passage of time. This is illustrated in 

area "B" of Table 4-2. The fix for this problem was to first confirm that the meter had been 

replaced. After confirmation of meter replacement was obtained, the cumulative hours at time of 
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Table 4-2: Data Problems 

Mo/«hinA #^7 Machine^#B1 Machine #B2 
List 
Price 

^ZT$ 150,000 $125,000 $157,00CT^> *«-<D> $ 350,000 

Month 
Cum. 
Hours 

Cum. 
Cost 

Cum. 
Hours 

Cum. 
Cost 

Cum. 
Hours 

Cum. 
Cost 

Cum. 
Hours 

Cum. 
Cost 

Cum. 
Hours 

Cum. 
Cost 

JAN 0 $0 4634 $34,126 

FEB jga—- --4135 $34,618 

MAR /ZQ2 $636\ 4969>— -434,746 

APR 202 $1,453 $35^ (v^ s—> 
MAY \_202 $1,921^y 5294 $36,230> ^J) ir. 
JUN 55T—- —*2$44/ $36,377 \M S^ "loNj pvr> $0 

JUL 705 $3,825/ $37,307 f    128 $1,030 \      139 $720 

AUG 764 $4,2681 $37,984 ^   324 $40,325^ 287 $2,315 

SEP 81üff? ^5,024 \ $38,903 $4i>egT 442 $4,309 

OCT 829\^>5,937 * $39,664 i f     o $0 586 $43,591 602 $4,573 

NOV 914 $6,198 \5817 $39,75j/ 113 $888 754 $44,117 750 $6,351 

DEC 950 $6,631 _J3X^79 245 $1,644 
(\s 

$45,377 878 $6,501 

JAN 1112 $6,886 $40,096 266 _$2,089 i 
i/ly 

$46,199 1011 $7,442 

FEB 1176 $7,834 $40,532 /%24 $2,39>^"   1243 $46,704 1194 $8,944 

MAR 1230 $8,787 „Jj>40,623 534 $3,167   J     1436 $48,378 1365 $10,190 

APR 1263 $9,600 $40*!^g \_ 641 $2,075^ 1581 $49,836 1558 $11,327 

MAY 1444 $10,464 / 6186 $41,488\ _S3£Ö4 1770 $49,873 1753 $11,517 

JUN 1574 $11,381   [ $42,140 \      990  ^_ .^$2,817 1898 $50,414 1872 $13,323 

JUL 1767 $11,637   \ $42,624 J ^ 11R"^ J± ^,653 2085 $50,530 1979 $14,763 

AUG 1955 $12,629 \ 285 $42,887/ "l215V^ ̂ 4,247 2269 $51,427 2091 $15,719 

SEP 2147 $13,463 $4J^6 1321 $4,335 2409 $51,606 2221 $15,924 

OCT 2310 $13,838 $43,875 1367 $4,455 2552 $52,874 2415 $16,448 

NOV 2352 $14,053 $44,399 1564 $4,794 2661 $54,774 2517 $17,127 

DEC 2508 $14,887 635 $45,077 1720 $5,188 2764 $55,256 2675 $17,363 

JAN 2564 $15,088 $45,308 1871 $5,964 2950 $56,032 2871 $19,248 

replacement were used as the baseline. This fix is illustrated in area "B" of Table 4-3. In cases 

where the cumulative hours at time of replacement were not available, the machine was eliminated 

from the data set. 

A third problem, which was only encountered twice, was that of machines damaged in accidents. 

Some companies account for accident repairs under separate codes, but others include them as 

part of general repairs. The accidents were noticeable by very large charges that could not be 

identified as rebuilds or major component overhauls. This is illustrated in area "C" of Table 4-2. 
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Table 4-3: Structural Solutions 

Machine #A1 Machine #A2 Machine #A3 Machine #B1 Machine #B2 

List 
Price 

$150,000 $125,000 $157,000 $ 350,000 $ 350,000 

Month Cum. 
Hours 

Cum. 
Cost 

Cum. 
Hours 

Cum. 
Cost 

Cum. 
Hours 

Cum. 
Cost 

Cum. 
Hours 

Cum. 
Cost 

Cum. 
Hours 

Cum. 
Cost 

JAN 0 $0 4634 $34,126 

FEB J9>— —443,5 $34,618 

MAR /*202 $636\ 4969 $34,746 

APR  ( $35,485 (cv 
MAY 5294 $36,230 

~^UNy 
/^y 

JUN 55^*"3 f$2!844 $36,377 S^~ 0 $0 

JUL 705 \   $3,825 $37,307 *    128 $1,030  1 139 $720 

AUG 764^- Lv$4,268 $37,984 ^ 324 $1,122J 287 $2,315 

SEP 818(J; £   >.024 $38,903 -4e^$8 442 $4,309 

OCT 829 ^-] [-^$5,937 $39,664 0 $0 586 $4,388 602 $4,573 

NOV 914 $6,198 5817 $39,757 113 $888 754 $4,914 750 $6,351 

DEC 950 $6,631 $39,779 245 $1,644 8f\ \ $6,174 878 $6,501 

JAN 1112 $6,886 $40,096 266 „^52,089 AA   i / $6,996 1011 $7,442 

FEB 1176 $7,834 $40,532 y^424 $2^39>y ^1243 $7,501 1194 $8,944 

MAR 1230 $8,787 „140,623 534 $2,075 1436 $9,175 1365 $10,190 

APR 1263 $9,600 $40>^3 ^ 641 $2,075^ 1581 $10,633 1558 $11,327 

MAY 1444 $10,464 / 6186 $41,488\ B9S»_ m^it^4 1770 $10,670 1753 $11,517 

JUN 1574 $11,381   J $42,140 ] 990 $2,817 1898 $11,211 1872 $13,323 

JUL 1767 $11,637 $42,624 | ^1187 / 

^1215 V, 
r>>L_ 2085 $11,327 1979 $14,763 

AUG 1955 $12,629 \6471 $42,887/ IJ^47 2269 $12,224 2091 $15,719 

SEP 2147 $13,463 $43^6 1321 $4,335 2409 $12,403 2221 $15,924 

OCT 2310 $13,838 $43,875 1367 $4,455 2552 $13,671 2415 $16,448 

NOV 2352 $14,053 $44,399 1564 $4,794 2661 $15,571 2517 $17,127 

DEC 2508 $14,887 6821 $45,077 1720 $5,188 2764 $16,053 2675 $17,363 

JAN 2564 $15,088 $45,308 1871 $5,964 2950 $16,829 2871 $19,248 

In one case a charge of almost one-tenth the value of the machine was made in the first 500 hours 

of operation—a period when most repairs are covered under warranty. The fix to this problem 

was the elimination of the repair charges due to the accident. This is shown in area "C" of Table 

4-3. Some smaller repairs due to abuse probably were not eliminated. This should be noted as a 

shortcoming of some of the data. 
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4.1.2   Differing Machines 

As mentioned in Chapter 1, units of construction equipment can vary in many regards. This is 

why a cumulative cost index (CCI) will be used in this research instead of raw dollar figures. 

There can be both physical and usage differences between different machines. The physical 

differences are those that can be seen just by looking at the machine. These can be categorized in 

terms of equipment class, group, and brand. The usage differences are less apparent. Differences 

that fall into this category are those that relate to the application the machine normally performs 

and those that relate to the company that owns the machine. 

The classes, or types, of construction equipment available vary considerably in what the design 

intent of the machine is. The various classes of equipment are well understood. A good 

discussion of the different classes of equipment and their uses can be found in Peurifoy, et. al. 

(1995). The sample data set has machines from two different classes. There are three machines 

from the "A" class and two from the "B" class (see Table 4-1). 

Within the general classes of equipment, there are also size groupings. Track-type tractors, for 

example, can vary in weight from 15,000 lbs. to over 200,000 lbs. (Caterpillar Performance 

Handbook, 1996). The differences in purchase price can be just as extreme. Construction 

companies typically track their equipment by size groupings within the given types. The size 

groupings are at the discretion of the equipment manager. Typical groupings are those based on 

horsepower, weight, bucket size, and loaded capacity. Different companies group equipment 

differently. In this dissertation, groupings will be applied consistently across companies. It will 

be ensured that the equipment groups investigated include machines of the same size for each of 

the different companies. 

Construction equipment also varies by manufacturer. There can be wide variations in purchase 

price, quality, and reliability among machines that are of the same type and in comparable size 

groups but from different manufacturers. This research will not separate equipment my 

manufacturer. 

An attempt will be made to standardize the differences of equipment, at least in terms of price, by 

using the cumulative cost index (CCI).  A method of comparing unlike pieces of equipment was 
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needed for the purposes of this study. Repair costs, as well as initial purchase price, can differ 

considerably between the different classes and groups of equipment. They can vary within a 

group of equipment depending on manufacturer. It is desirable to be able to compare how repair 

costs accumulate across different classes of equipment. One of the end products of this study will 

be a tool that can forecast repair costs in terms of dollars per hour. For the purposes of economic 

modeling within the constraints of the cumulative cost model, it is important that the quantities 

reflected be associated with cumulative costs—not instantaneous cost per hour. 

A convenient way to compare repair costs of unlike machines is to index them to the initial price 

of the machine. Unlike machines and their repair costs can then be compared and equations can 

be developed. The formula that will be used to calculate the response variable is: 

CCI = A^ll ! '1 1 Equation 4-1 
PP0 

Where: 

CCIt = cumulative cost index at time t 

Pt = cost of parts at time t 

Lt = cost of labor at time t 

Ot = other maintenance costs at time t 

PP0 = new list price of the machine 

Parts, labor, and other maintenance costs are cumulative costs. The CCI will provide the 

common ground by which comparisons can be made between non-identical machines. The CCI 

will form the ordinate of the Cumulative Cost Model for the purposes of the initial analyses. It 

should be noted that the minimum value for the cumulative cost index is one. Also, it should be 

noted that the cumulative cost index should not decrease with increasing machine age. It can 

increase or remain constant but a decrease is not normally possible. 

The instantaneous hourly repair costs of a machine can be back calculated from the cumulative 

cost index equations by taking the derivative of the regression equation evaluated at the point in 
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time of interest. Alternatively, the repair costs for a job can be estimated by calculating the 

cumulative cost index at the start and end points of the job and taking the difference of the two. 

Techniques for these two manipulations will be described in Chapter 8. 

The CCI is not a perfect standardization index. But, it should allow some means by which unlike 

types and groups of equipment can be compared. It could also serve as a means by which 

different makes of machine could be compared. Comparisons of differing manufacturers are not 

an objective of this study. In fact, many construction companies make such comparisons very 

difficult by the ways in which they compose their fleets. Although there are similarities among 

brands, it is easier and cheaper to train mechanics and stock spare parts if all machines in a 

particular class come from one manufacturer. This is certainly the case in nearly all of the fleets 

observed for this dissertation. 

4.1.3   Machine Age 

The abscissa of the cumulative cost model has been genetically referred to as "age" up to this 

point. "Age" is a very general term though. What is important is how the machine has aged. 

For this reason, the abscissa of the model will be referred to as machine age. There are three 

types of machine age that are worthy of discussion at this point. These are machine age in 

calendar terms, machine age in units of production, and machine age in cumulative hours of use. 

In textbook economic replacement problems and in most equipment replacement models, the units 

of the abscissa would be calendar age. This is convenient because it is relatively easy to measure 

a machine's age in calendar terms. One needs merely to subtract the original purchase date from 

the current date and the result is the machine's calendar age. Many of the costs associated with 

heavy equipment are not best depicted by the passage of calendar time. Specifically, machine 

repair and maintenance costs do not accrue as a result of the passage of time (in most cases). 

A separate problem with the use of calendar time as the abscissa is the cyclical nature of the 

construction business. Weather, the economy, and a company's success in bidding projects are 

each important factors in determining whether or not a machine is used. 
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An additional concern with the use of calendar age is that as a machine nears the end of its useful 

life, a company will use it less and less (Terborgh, 1949). When a machine is new, it will be used 

quite a bit more than when it is old. On a calendar basis, a new machine might have more repair 

costs incurred than an old machine—but have substantially more production associated with the 

accumulation of those repair costs. 

Machine age in units of production is the measure of how much work a machine has actually 

accomplished. There are a number of difficulties associated with defining machine age in units of 

production. First is the difficulty of defining exactly what a unit of production is for a particular 

machine. For some machines, this is an easy task. Units of production for a haul unit could be 

the movement of some volumetric measure over some linear distance. For some equipment, it is 

very difficult to define exactly what a unit of production would be. A motor grader tasked with 

the maintenance of a haul road is a good example. Production could be defined in a number of 

ways—none of which are wrong. It could be in terms of earth that is physically moved. Or, 

production could be measured by the utility that results from the haul units being able to travel at 

greater speed the haul road. 

The actual quantification of production units can also be a difficult task. In some cases, modern 

technology has made it very easy to ascribe specific units of production to specific machines. The 

Vital Information Management System (VIMS) by the Caterpillar company provides an 

outstanding tool for measuring the actual production of new haul units (Kannan, 1997) using 

electronic sensors. For other types of equipment, measuring production is usually a more 

difficult, manual process. Many companies track job productivity, or the productivity of a team 

of machines, but do not track the productivity of individual units. 

Machine age in cumulative hours of use is the final type of aging that will be discussed. The 

distinction between calendar age and usage age was alluded to in Chapter 2. Few parts on a 

machine wear out or break over time even if the machine does no work. An example of one part 

that does is the rubber hose. Given enough time, a rubber hose can deteriorate to the point that it 

is unusable just from environmental exposure. What is more often the case, at least in companies 
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that work their machines regularly, is that parts on a machine break as a function of how much 

work that machine has done. 

Machine age in cumulative hours of use can be likened to odometer readings on automobiles. 

This age is a measure of how many hours the machine physically operated. Age in cumulative 

hours of use dampens many of the cyclical variations in operating cost. 

Machine age in cumulative hours of use provides a linkage to units of production. The linkage is 

not perfect, however. At times, machines may be running in idle. They may be travelling to and 

from the job site. Age in cumulative hours of use is blind to these situations. In that respect, it is 

not a perfect measure of the "hard" work that usually causes wear and tear on parts. 

Considering all three of the machine ages defined above, machine age in cumulative hours of use 

was chosen as the abscissa for our model. It strikes a balance between the availability of data and 

the applicability of results. The difference between calendar age and age in cumulative hours of 

use can be observed in the illustrative data set (Table 4-1). There is an abundance of data 

concerning calendar age, but most machines do not break down primarily as a result of calendar 

aging. Machine age in units of production provides of a very good measure of how much work 

the machine has accomplished—there is a dearth of available data, however. The data for 

machine age in cumulative hours of use is not always easy to get—but it is available. There will 

be some bias between the cumulative hours of use and the actual productive hours of use, but it is 

felt that this bias is acceptable considering the alternatives. 

There are three types of hours that could be tracked by construction companies. Billed hours are 

those hours for which a company charges a particular job for the use of a machine. These hours 

may or may not be an accurate reflection of how much work the machine has actually 

accomplished. Sometimes, jobs are charged for using a piece of equipment for 40 hours per week 

whether the machine is actually used 40 hours or not. In other cases, the billed hours are those 

hours that are reported by the site superintendent. Sometimes these numbers are intentionally 

under-reported to make the job appear more profitable. 



The Data 83 

Clock hours are the number of hours that a machine was actually running. They are a 

measurement of time. One way to track clock hours is by worksheets that equipment operators 

fill out on a daily basis. The amount of time they spent in their machine would be the clock hours 

for that machine. 

Meter hours are those hours taken from a meter that is a mechanical part of the machine. 

Sometimes the meter is hooked to the engine, sometimes it is hooked to the transmission. Engine 

meters provide some measure of how many revolutions the engine has had. Transmission meters 

track the number of revolutions of the transmission. The distinction between the two is that 

engine meters run when the machine is in neutral gear, and transmission meters run only when the 

machine is in gear. The output of the meter is scaled to approximate "hours" of use, but the 

output is actually a measurement of how many mechanical revolutions there were of the engine or 

the transmission. Meter hours will be the measurement of choice for this study. They are not a 

perfect measure for how much work a machine has done, but are a better measure than either of 

the other two methods. 

Not all companies track the accumulation of meter hours on their machines as a matter of policy. 

This can lead to some problems in the data collection effort. These problems are not 

insurmountable, though. Many companies that do not track their meter hours explicitly have the 

data available through other sources. Most companies participate in oil-sampling programs to one 

extent or another. The points in machines' lives at which these oil samples are taken are usually 

recorded in terms of a calendar date and in terms of meter hours. By associating the calendar date 

of the oil change with monthly cost data, cumulative costs for a given number of cumulative hours 

can be determined. This procedure will be described in greater detail in Section 4.1.7. 

4.1.4   Differing Times 

Two time effects on the cumulative cost index (CCI) of a given piece of machinery are cumulative 

hours worked and calendar age. The first effect, that of cumulative hours worked, is the effect 

that is most important to this research. The second, that of calendar age, is not the primary focus 

of this research but should not be blatantly set aside as unimportant. The impact of inflation can 

be a major concern when trying to make an informed business decision regarding cash flows that 
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take place over any appreciable length of time. Most companies keep equipment in their fleets for 

at least five years. During that time, the economy could be subjected to any number of twists and 

turns. Inflation is "the decrease in purchasing power of the medium of exchange caused primarily 

by governments which spend more than they can obtain through taxation or through borrowing 

from savers" (Schultz, 1976). 

The machines in this study ranged in age from 1987 models to 1996 models. The machines were 

purchased at different times and operated over different periods. In actual dollars, 1987 machines 

were considerably cheaper to purchase than 1996 machines—in constant dollars, the list prices 

changed very little. Area "D" of Table 4-2 provides an illustration of this. The three different 

machines were purchased at different times—the initial list prices vary accordingly. In actual 

dollars, a repair made in 1996 cost more than a repair made in 1988—in constant dollars, the 

repairs cost essentially the same. All expenditures will be adjusted for inflation by indexing to a 

common base. The chosen base year was 1987 because this was the date of the earliest data. 

4.1.5   Data Collection Periods 

Data collection and reporting periods vary from company to company. Most companies collect 

and report their cost data on a least a monthly basis. Some do it on a weekly basis. Companies 

that explicitly keep track of meter hours do so on either a weekly or monthly basis. Companies 

that do not track meter hours usually track billed hours concurrently with their cost reporting. 

Because of these variations in collecting and reporting techniques, some companies will have 

more data points available for their machines than other companies for similar ranges of 

cumulative hours. In the illustrative data set (Table 4-1), Machine #A1 and Machine #A2 had 

their data pairs collected using different methods. It can be seen that there are considerably more 

data points available for Machine #A1 than Machine #A2. 

Another aspect of data collection periods is that the cumulative hours of use within reporting 

periods can vary considerably for any given machine and from machine to machine. Once again, 

this can be seen by comparing Machine #A1 with Machine #A2 in the illustrative data set. What 

this means is that even within a given company different data points will represent different 

accumulations of hours.   The problems with this are more of a statistical nature than of a 
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structural nature. This will be addressed in greater detail in Section 4.2.3. It is important to note 

here that the data structure will differ from company to company and from machine to machine. 

A third aspect of data collection periods is that different ranges of machine age are available for 

each machine. Once again a comparison of type "A" machines illustrates this. The data available 

for Machine #A2 start at over 4000 cumulative meter hours and cover the range up to around 

7000 meter hours. The data available for Machine #A1 start at zero and cover a range up to 

around 2500 hours. The data for Machine #A3 start at zero and only go up to 2000 meter hours. 

Three different machines with three different ranges of cumulative hours. 

4.1.6   Cost 

Many different costs have been proposed for inclusion in economic models. They range from 

straightforward, tangible costs such as fuel consumed to complicated, intangible costs such as the 

cost of obsolescence. These costs can be broken down into three broad categories: direct costs, 

provisional costs, and collateral costs. These are reflected in Table 4-4. 

Direct costs are those costs that are simply quantified, clear, and directly related to owning, 

operating, maintaining, and repairing an individual item of equipment. They occur regularly 

within a given accounting period. Direct costs affect a company's operating budget. They are 

offset by the revenue stream generated by the piece of equipment in the work that it performs. 

Direct costs are incurred constantly over the life of the machine. The initial purchase price (Po) is 

the first capital outlay that should be considered. Then come the direct costs associated with 

operating a piece of machinery (Ep). These costs include: fuel, oil, tracks and tires, preventive 

maintenance, repairs, licenses, taxes, and insurance. 

Provisional costs are internal charges made to cover the anticipated cost of discrete events that 

occur a limited number of times during the life of the machine. Inflows into the provisional cost 

"money pot" come from charges for future expenditures. The costs of major repairs or rebuilds 

on a piece of equipment are normally handled by charging a provisional hourly rate and 

establishing a repair reserve which is balanced across a particular unit, group, or fleet. 
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Table 4-4: Cost Categories 

Cost Category Owning Costs Operating Costs 

DIRECT COSTS 

Continuous Infli 

Licenses 

Insurance 

Tax 

Fuel/Oil/Lubricants 

Tires & Tracks 

Ground Engaging Tools 

Repair Parts & Labor 

Continuous Outflow 

PROVISIONAL COSTS 
Continuous Inflow 

Level 

IS Important 

Infrequent Outflow 

(Once or Twice in Life) 

Depreciation* 

Provision for Replacements* 

*inflows 

Rebuilds 

COLLATERAL COSTS 
Imaginary Inflow??? 

Inflation 

Cost of Capital 
Level 

Unknown 

Imaginary Outflow??? 

Downtime 

Failure 

Obsolescence 

Low Productivity 

Technology 

Versatility 

Amortization is another type of provisional cost which allows for the fact that the resale value of a 

machine decreases from Po to St with the passage of time. It is given by the equation: 

A, = Po-St Equation 4-2 

Where: 

t = the time of interest 

A = the amortization at time t 

Po = the initial purchase price 

St = the salvage value of the machine at time t 
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Collateral costs are more difficult to quantify and are not a part of every model in the literature. 

Collateral costs include obsolescence costs, associated resource impact costs, lack of readiness 

costs, service level impact costs, and alternative method impact costs. Obsolescence costs are 

those cost that "occur" as a machine ages technologically. New technologies that provide 

increased productivity, reliability, or versatility contribute to obsolescence costs. Obsolescence 

costs can take the form of higher repair or production costs for units that do not have the new 

technology. They can also be manifest in the form of bids for jobs that are lost because of these 

higher costs. 

Collateral costs also occur when a machine breaks down. There are four sub-component costs 

associated with lack of availability and downtime (Vorster and De La Garza, 1990). Associated 

resource impact costs concern the effects of the failure on other components of the team. Lack of 

readiness costs accrue as a result of resources that could be used not being in a state of repair 

such that they can be used. Service level impact costs measure the decreased productivity of a 

fleet of equipment when a portion of that fleet has failed. Alternative method impact costs occur 

when a different method of production must be used due to the failure of a given component of 

the original production team. The prediction of the timing of most collateral costs is difficult, but 

the quantification of collateral costs can be even more involved. 

Determining which costs to include in a model is a very complex process. Most equipment 

managers should be comfortable with the calculation of direct costs and provisional costs. 

Collateral costs can be difficult to estimate—all equipment managers may not be comfortable with 

them. 

The costs that will be isolated for this study are those associated with equipment maintenance and 

repair. The components of owning and operating cost that seem to be most appropriate to 

maintenance considerations and this study are parts, labor, lubrication, and other miscellaneous 

maintenance costs. Tires, undercarriage components, and ground engaging tools are often 

tracked in accounts separated from general repairs to the machine and generally have much 

shorter lives than the equipment they are associated with. The useful lives of these "expendables" 

are highly dependent upon local conditions and operator skill.  Bucket teeth on excavators will 
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last longer when used in common earth than when used to load rock. Operators who allow the 

tires to spin or skid on their machines will go through tires much more quickly than those who do 

not. To make the models developed less condition-sensitive, costs for these three items will not be 

considered. This is not to say that these costs are either unimportant or small. Tires and tracks 

especially can cost tremendous amounts of money. The costs associated with these items are 

worthy of investigation by themselves and are beyond the scope of this study. 

Falling under the general heading of cost is the issue of initial purchase price. Different companies 

can be charged different amounts for the same machine. Trade-in and lease allowances can cloud 

the real cost of purchasing equipment. For the purposes of this study, list price will be used for all 

machines—regardless of what companies paid for them. This is another standardization measure 

that should increase the reliability of the GEL. 

4.1.7   Data Pairing 

Regression analysis requires both a value for the regressor (cumulative hours of use) and the 

response (CCI) for each point that will be part of the analysis. One of the problems with the data 

was that the data pairs were not always in the same database or even in the same computer. Also, 

sometimes one or both numbers in the data pair were missing. Some companies did have 

integrated databases that could provide meter hour and cost information in the same query—these 

were the exception rather than the rule. Other cost databases contained detailed entries about 

costs and the dates on which they occurred, but contained no information concerning the meter 

hours of the equipment on those dates. 

Meter hours were obtained from different sources in these cases. Some companies maintain 

separate preventive maintenance databases that contain tracking information on meter hours 

versus the timing of oil changes. Another source for meter hour information was oil sampling 

databases. Many companies participate in oil analysis programs whereby samples of oil are 

analyzed on a periodic basis to provide warning of impending failure of specific components. 

When these samples are taken (usually during all preventive maintenance oil changes), the date 

and meter hours of the machine are recorded. For one company, the oil sampling database was 

not easily accessible.   In this instance, meter hours on specific dates were obtained by going 
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through the maintenance receipts for each machine to be analyzed. This is a fairly laborious and 

time-intensive process. 

To combine the data from the two different sources, calendar date was used as the common point. 

Costs from months in which oil changes took place were associated with the meter hour readings 

from those particular months. One problem with this was that cost data were reported in end-of- 

the-month increments and the oil changes did not necessarily take place at the end of the month. 

Oil changes that took place on or prior to the 15th of the month in question were assumed to have 

taken place at the beginning of the month. Oil changes that took place after the 15th of the month 

were assumed to have taken place at the end of the month. There is a certain amount of error 

induced by this assumption. The CCIs associated with oil changes that took place early in the 

month is probably understated because all cost that had taken place up to that oil change were not 

necessarily included. By the same token, the CCIs associated with oil changes that took place late 

in the month are probably overstated because they could include expenditures that occurred after 

the oil change. These errors should be offsetting in the long run. 

Of utmost importance is that there be no more than one data pair per month (since the cost data 

were tabulated on a monthly basis) and no more than one data pair per oil change. To allow more 

data pairs would be to artificially fabricate data. 

4.1.8   Confidentiality 

Construction contracting is a very competitive business. Much of the work that companies do is 

obtained through the competitive bidding process. Jobs can be won or lost by very small margins. 

When approached for data, many companies were concerned that they could lose their 

competitive edge or trade secrets by participating in this study. Some of the firms that 

participated in this study actually compete against each other in the same markets. Their data 

were obtained only through their trust that this dissertation would not give their competitors 

insight into the way that they run their businesses. 

Respecting the privacy concerns of firms involved, this study will not divulge the names of the 

companies that provided data. Although their management policies and practices are known and 
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understood, they will not be discussed in other than general terms. No raw data will be presented 

either in the body of or the appendices to this dissertation. Any examples or illustrations that use 

actual costs instead of the CO will be composed of hypothetical data sets, not real ones. 

4.1.9   Summary 

As evidenced by the discussion in this section, data in its raw form will not be appropriate for 

analysis. There are many characteristics of the data that must be either addressed or 

acknowledged. Some of these characteristics are of the data taken as a whole, some are between 

companies, and some are within companies. Using the techniques described above and 

understanding the implications of the structural issues, raw data sets will be transformed into data 

sets that are suitable for statistical analysis. There are other issues that must be addressed before 

the analysis can proceed. These are of a statistical nature and will be discussed in Section 4.2. 

4.2     STATISTICAL ISSUES 

The statistical issues concerning the data to be studied are varied. For this study to have 

statistical merit, these issues should be understood and addressed. Where assumptions are made, 

justifications should be provided. Where there are shortcomings, they should be acknowledged. 

When performing statistical analyses, there are a number of assumptions that are made about the 

data that enable hypothesis testing concerning the data to be valid. Violations of those 

assumptions do not necessarily invalidate hypothesis testing, but they can induce a little more 

uncertainty into the results obtained. It would be ideal if it could be said for certain that the data 

used violate no assumptions. This ideal may not be achievable. Linear regression makes the 

following assumptions concerning the data to be analyzed: they are independent and that the error 

terms have constant variance which is normally distributed about a mean of zero (Myers, 1990). 

There are additional problems associated with the data structure that have statistical ramifications: 

relative dominance, repeated points, and varying intervals. 
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4.2.1 Data Independence 

The independence of data assumption requires that the residual error associated with one data pan- 

in the regression are not related to the errors of other data pairs in the regression. Since the CCI 

and cumulative meter hours are both cumulative measures, each observation of meter hours vs. 

CCI is somewhat dependent upon the previous observation for a given machine. It logically 

follows that the errors associated with these dependent data points may be dependent themselves. 

The dependence or independence of the data has no bearing on the quality of fit of the curve. 

Least-squares regression is a mathematical technique. It develops a solution that minimizes the 

squared distance to the regression line of all the points fed into it—whether they are independent 

or not. This could conceivably have an effect on hypothesis testing and in the reliability of any 

confidence intervals developed as a result of the analyses. 

A study was conducted by Mahon and Bailey (1975) on British military vehicles. The purpose of 

the study was to test the feasibility of implementing a replacement policy based on repair limit 

theory. As part of that study, the independence assumption was tested on repair intervals and 

costs. It was concluded that repairs that occurred more than one year apart could reasonably be 

assumed to be independent. Repairs that were less than one year apart could not be assumed to 

be independent. If this were to be applied to construction equipment, one year's worth of usage 

would equate to approximately 1700 hours for an average machine. 

4.2.2 Variance 

The variance assumption requires that the distribution of the error terms be constant throughout 

the range of values of the predicted response. The distribution must also be normal with a mean 

value of zero. What this means is that there should be no increase in the variability of the CCI 

with an increase in meter hours. It will be demonstrated that this is not true. New machines do 

not break down that often and the costs of the repairs are not that high. Typically the CCIs 

remain very tightly grouped for new machines. As machines get some hours on them, they begin 

to break down. Some break down more than others do. The CCIs machines with higher 

cumulative hours of use had greater variance than those with lower cumulative hours.  This will 
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be demonstrated in Chapter 7. Violation of the variance assumption could have an effect on the 

reliability of hypothesis testing and confidence intervals. 

4.2.3 Relative Dominance 

The problem of relative dominance is that some machines may have more data pairs than other 

machines. This could be due to differences in usage, dates of purchase, or data collection styles. 

Machines that have more data pairs can have more of an influence on the final regression equation 

than those with fewer pairs can. In the illustrative data set, Machine #A1 has greater relative 

dominance than Machine #A2 (Table 4-1). 

In some ways, this could be considered good—in other ways, bad. The good part is that the 

machines for which the most is known have the biggest impact on the regression. The bad part is 

that there is no way of knowing that the machine that is permitted to have an extra influence on 

the regression is an "average" machine. If it has uncharacteristically high or low CCIs for the 

number of meter hours it has, it could skew the regression and render estimates of T* and L* less 

reliable. 

4.2.4 Repeated Points 

This is the simplest statistical issue to address and solve. The problem is that for any given 

machine, there may be long periods of time where it is idle. There are two primary reasons for 

this. First, the machine could be in the shop for major repairs. In this case, the cumulative meter 

hours would remain constant and the CCI would climb as the repairs are made. The other 

possible scenario is one in which the company just doesn't have any work for the machine. In this 

case, both meter hours and the CCI would remain constant. This is illustrated in area "E" of 

Table 4-2. 

In both cases, since the machine is idle counting more than one point for the same cumulative 

hours is essentially fabricating data. It would be inferring that something happened when in fact, 

nothing happened-—the machine was idle. The implication of using these repeated points is that a 

machine that is unemployed or hard broken could have as great an influence on the regression as a 

machine that is gainfully employed. This problem is not the same as cumulative hours increasing 
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with no corresponding increase in CCI—that scenario would simply mean the machine had a good 

month. 

4.2.5   Data at varying intervals 

This problem is similar to relative dominance. Some machines work more hours in a given month 

than other machines. Machines normally work in the range of 100-150 hours per month. But, in 

bad months they could work zero hours (described above) and in good months they could work 

as much as 400 hours. For companies that track meter hours on a monthly basis this means that 

machines that work very little could have as great an impact on the regression as machines that 

work a great deal—only one data pair per month is allowed regardless of how many hours the 

machine worked. 

For companies that do not track meter hours with their cost data the problem is different, but the 

effect is the same. Usually oil changes occur at some set interval, every 300 hours is a good 

estimate. Sometimes the oil change comes late—as late as 500 hours between changes. The oil 

changes rarely come earlier than they should. Other times, the records available on a given 

machine can indicate a gap of 1000 or more hours between oil changes—in these cases what 

probably happened is the documentation of the oil change did not make it to machine's file in the 

main office. This is illustrated in area "F" of Table 4-2. This can have the same effect as 

described for differing monthly production. One machine could have a very small interval of 

cumulative hours between data pairs while another could have a very large interval of cumulative 

hours between points. The machines with the most points have the greatest impact on the 

regression. 

4.3     POSSIBLE SOLUTIONS 

It has been shown that there are many statistical issues concerning these data. Yet, the data can 

still be analyzed and can still yield meaningful results. This section will discuss how. 
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4.3.1 Address Independence 

The only way to ensure absolute independence of the data pairs is to use only one data pair for 

each machine in the study. The point that makes the most sense to use is the final, or most recent, 

point. This will ensure that the regression covers the greatest range of hours. This solution not 

only solves the statistical problem of independence, it simultaneously clears up any problems 

relating to relative dominance, repeated points, and varying intervals. Each machine is only 

represented once. This is illustrated by area "A" of Table 4-5. 

From a practical standpoint though, a lot of information is lost by the application of this 

procedure. This is especially true for companies with small fleets and for companies that have 

fleets of machines that are of the same age. In the small fleet case, the regression might have to 

proceed with only three or four data points. If the points aren't evenly spaced along the ordinate, 

the resulting curve may not truly represent how the CCI grows. In the case of a fleet of near- 

singular age, the "curve" would be a straight line between the origin and the mean value of the 

CCI for the points clustered around one small range of cumulative hours. Either of these 

situations is bad—the curve may not represent the way that CCI increases with increased meter 

hours. 

4.3.2 Address Variance 

Non-constant variance can be confirmed by looking at the residual plots from the regressions. 

The way to solve for non-constant variance, if it is present, is to perform weighted regression. 

Weighted regression will be described in greater detail in Chapter 5. In essence, the points in the 

regions of cumulative meter hours with the greatest variance would be assigned a weight that 

gives them less relative importance in the calculation of the least squares solution. 

The problem with this is that there must be enough data to accurately assess what the weights 

should be. If improper weights are used, the "cure" could be worse than the "disease". 

According to Myers (1990), the weights should be derived using a minimum of 9 observations at 

each interval of interest. If less than 9 observations are present, it may not be possible to 

accurately describe the variance. Nine observations does not mean there should be a minimum of 
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Table 4-5: Regression Data Pairs 

Machine #A1 Machine #A2 Machine #A3 Machine #B1 Machine #B2 

List 
Price 

^15o!^0 $ 125,000 $157,000 $ 350,000 $ 350,000 

Month tfum. 
/lours 

Cdkn. 
Cott 

Cum. 
Hours 

Cum. 
Cost 

Cum. 
Hours 

Cum. 
Cost 

Cum. 
Hours 

Cum. 
Cost 

Cum. 
Hours 

Cum. 
Cost 

JAN '     0 $0 \ 4634 $34,126 

FEB 1 192 $135 \ $34,618 

MAR/ 202 $636    \ 4969 $34,746 

APR/ $35,485 

MAy |    5294 $36,230 

jurf 554 $2,844 $36,377 0 $0 0 $0 

JU 705 $3,825 $37,307 128 $1,030 139 $720 

AU 3 764 $4,268 $37,984 324 $1,122 287 $2,315 

SE > 818 $5,024 $38,903 453 $2,448 442 $4,309 

OC r 829 $5,937 $29-564 0 $0 586 $4,388 602 $4,573 

NC \/ 914 $6,198 **- -Cj0 113 $888 754 $4,914 750 $6,351 

DE % 
950 $6,631 $»l)toTr*7y 245 $1,644 883 $6,174 878 $6,501 

JA i 1112 $6,886 $40,096 266 $2,089 1064 $6,996 1011 $7,442 

FE » 1176 $7,834 $40,532 424 $2,399 1243 $7,501 1194 $8,944 

MA i 1230 $8,787 $40,623 534 $2,075 1436 $9,175 1365 $10,190 

APf 1263 $9,600 $40,663 641 $2,075 1581 $10,633 1558 $11,327 

MA| 1444 $10,464 1   6186 841,488 837 $2,294 1770 $10,670 1753 $11,517 

Mt\ 1574 $11,381 $42,140 990 $2,817 1898 $11,211 1872 $13,323 

JUL\ 1767 $11,637 / $42,624 1187 $3,653 2085 $11,327 1979 $14,763 

AUG\ 1955 $12,629/ 6471 $42,887 1215 $4,247 2269 $12,224 2091 >"V719 

SEP ) 2147 $13,463/ $43,186 1321 $4,335 2409 $12,403 2221 

OCT [    2310 $13,83y $43,875 1367 $4,455 2552 $13,671 24^ VrtJ^48 

NO V _ ™14,ujfe $44,399 1564 $4,794 2661 ""$15,571"" ^$17^127 

151 c \2508 $u/57 6821 $45,077 1720 $5,188 2764 $16,053 2675 $17,363*' 

sjAN_ 3^64 $1^088 $45,308 1871 $5,964 2950 $16,829 2871 $19,24»* 

nine machines in each data set. It means, for example, that at 2500 cumulative hours of use there 

must be observations for nine machines. With the data that was available, weighted regression 

was not advisable. 
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4.3.3   Address relative dominance 

A way that relative dominance could be addressed besides using only the final data pair for each 

machine is through using average values of the CCI at discrete, evenly spaced intervals. To do 

this, an interval would be chosen based on how many data are available. For some companies, 

data might be available to support 100-hour intervals, for others (especially those that do not 

explicitly track meter hours) it might be a higher number. Data pairs for each machine will be 

interpolated for the selected intervals. This is illustrated for Machine #A1 in Table 4-6. The 

mechanics of this will be described in Chapter 6. What is important to emphasize here is that 

there can only be one interpolated data pair between any two actual data pairs. The 

interpolation of more than one data pair between data pairs would be the fabrication of data. So 

the interval selected must support the interpolation rule. For the data available for this study, 

500-hour intervals worked best. The average value of the interpolated data pairs is then 

computed for each 500-hour interval. The regression is accomplished on the data pairs that 

represent these averages. 

This only eliminates some of the relative dominance problem. But, it completely eliminates the 

problem of data intervals and repeated points. The reason only some of the relative dominance 

problem is removed is that some machines may take part in the determination of more average 

values than other machines do. Although not a perfect solution to the relative dominance 

problem, it is deemed adequate. This option would also partially solve the independence issue. 

Since the data pairs would not necessarily be based on data from the same machines, some of the 

independence problem would be solved. 

This method does create some additional problems, though. Confidence and prediction intervals 

for such a regression will not have the same meaning as those for other regressions. The 

prediction intervals will describe a range of possible values for an average machine, not a specific 

machine. Additionally, measures of regression performance such as R2 must necessarily be better 

because the regression equation is based on values that have had a good deal of their variability 

removed. 
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Table 4-6: Interpolated Data Pairs 

Machine #A1 Machine #A1 
List Price $150,000 $150,000 

Month 
Cum. 
Hours 

Cum. 
Cost 

Cum. 
Hours 

Cum. 
Cost 

JAN 0 $0 

FEB 192 $135 

MAR 202 $636 

APR 
MAY 
JUN 554 $2,844 500 $2,566 

JUL 705 $3,825 

AUG 764 $4,268 

SEP 818 $5,024 

OCT 829 $5,937 

NOV 914 $6,198 

DEC 950 $6,631 

JAN 1112 $6,886 1000 $6,710 

FEB 1176 $7,834 

MAR 1230 $8,787 

APR 1263 $9,600 

MAY 1444 $10,464 

JUN 1574 $11,381 1500 $10,860 

JUL 1767 $11,637 

AUG 1955 $12,629 

SEP 2147 $13,463 2000 $12,823 

OCT 2310 $13,838 

NOV 2352 $14,053 

DEC 2508 $14,887 2500 $14,845 

JAN 2564 $15,088 

4.3.4   Address Repeated Points 

This is relatively easy to accomplish. Data pairs that have repetitive values for cumulative meter 

hours are identified. All but one of them is eliminated. But which one to keep? It depends on 

how one looks at the problem. It does matter which point is selected because in the case of 

broken machines, the raw CCIs of the repeated points may be different. Even if the raw CCIs are 

the same (such as when the machine is just idle), the CCIs adjusted for inflation will differ. The 

question of which point to use is almost of a philosophical nature. The first point is the one that 

was chosen as the one that makes the most sense to use.  The CCI for a machine should include 
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all repair costs up to the point where those hours were reached. Costs incurred after the meter 

hour reading was reached should be ascribed to the next CCI interval. This solution is 

demonstrated in area "E" of Table 4-3. 

4.3.5   Address Data Interval 

Differences in data intervals can be addressed by using the data set described under "address 

relative dominance". Instead of taking the average of the points at the specified interval, all points 

at each specified interval would be used in the regression. This solution also partially solves the 

problem of independence, partially solves the problem of relative dominance, and eliminates the 

problem of repeated points. 

Independence is partially addressed because the number of hours between data pairs is increased 

in most cases. Relative dominance is only partially solved because some machines could still have 

greater representation than others could in the regression. 

4.4     DEDUCTIONS 

There is no perfect solution. The nature of our field data does not permit one. A laboratory 

experiment is not feasible. Structurally, a number of manipulations must be done to transform a 

raw data set into one that is suitable for analysis. This will be done to all data sets. Statistically, 

there is no one clear-cut solution to the problem. To compensate for this and to attempt to find 

the best possible solution to the problem, the following analyses will be performed: 

1. Regression of all data pairs except for repeated points.  This method provides the maximum 

number of data points. It is illustrated in area "B" of Table 4-5. 

2. Regression of data pairs at 500-hour intervals 

3. Regression of average data pairs at 500-hour intervals 

4. Regression of final data pairs—statistically, this is the purest solution 
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All four data sets will undergo the same analysis for each of the 17 fleets. After the results of the 

regressions are analyzed, a recommendation as to which method is the best can be made. 

4.5     SUMMARY 

This chapter has looked at the nature of the data to be analyzed in considerable depth. Issues 

relating to structure and statistics were discussed. Solutions were proposed for structural and 

statistical problems. A plan of attack was proposed for how to determine which statistical 

methodology is best suited for determining cost growth equations. A summary of the structural 

and statistical issues and their solutions is provided in Table 4-7. 

Table 4-7: Issues and Solutions Summary 

Structural Issue Solution 

Field Data Use it and recognize limitations 
Differing Machines Cumulative Cost Index 
Machine Age Cumulative Hours of Use 
Differing Times Inflation Index 
Data Collection Periods Acknowledge the Problem, Address in Stats 
Cost Include only Direct 0 & 0 costs 
Data Pairing Oil Sampling Databases 
Confidentiality Do not release specifics 

Statistical Issue Solution 

Data Independence Data sets 2, 3, and 4 to varying degrees 
Variance Use weighted regression if possible 
Relative Dominance Data sets 2, 3, and 4 to varying degrees 
Repeated Points Do not use them 
Varying Intervals Data sets 3 and 4 to varying degrees 

As was evident in section 4.2, due consideration of statistical matters was necessary in the 

discussion of the data. This is the inter-relationship between Chapter 4, 'The Data", and Chapter 

5, "Test Methodology". Formulating the data sets was dependent upon statistics just as 

developing the statistical methodology will be dependent upon the nature of the data sets. 



CHAPTER 5:   TEST METHODOLOGY 

The second and final step of Defining the Work is to define the methodology that will be used for 

analyzing the data. The reader should now understand the nature of the data and the issues 

surrounding it. It is now necessary to explain how the analyses will be accomplished within the 

constraints of the data. 

This chapter is presented in three major parts. The first part defines and explains the concept of 

regression and the particulars of the types of regressions that will be done for this dissertation. 

After this concept is explained, some data adjustments and checks that are necessary will be 

discussed. Finally, the analysis procedures will be explained. 

5.1     REGRESSION 

This section flows from a very generalized discussion on the modeling process to detailed 

statistical explanations of some of the techniques that will be employed in the analyses to be 

accomplished. 

5.1.1   The Process 

According to Box, et. al, model development is an iterative process (1994). The first stage that 

must be accomplished is the postulation of a general class of models. This is done by considering 

the various methods available and making a choice of which class of models is most appropriate 

for the needs at hand. 

Two general divisions of models are deterministic models and stochastic models. Deterministic 

models can consistently yield an exact forecast. For the economic data that will be analyzed, this 

is not possible. The process is a stochastic process. In other words, there are probabilities 

involved that impact the accuracy of the forecast (Box, et. al, 1994). 

100 
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Some review and clarification on why regression was chosen as the model for this research is in 

order. Subjective models were ruled out because the goal of this research is to make better use of 

the data that are available to equipment managers. Subjective methods are not very data- 

intensive. Moving averages and exponential smoothing do not do an adequate job of describing 

non-linear trends or of forecasting beyond medium range. They also do not yield an equation of 

the type that would be useful in the cumulative cost model. 

The desired equation type is: 

CCI = f(x) Equation 5-1 

Where: 

x = Cumulative Hours of Use 

Time series methods were not the best choice for the data or the goals of this dissertation. The 

theoretical basis of time series models is that observations of a phenomenon are taken at specified 

intervals of time. The values of this phenomenon fluctuate, but the passage of time is not the 

cause of the fluctuations. The dissertation is attempting to describe the causal basis of the 

accrual of hours of use on a machine in determining the amount of money that must be spent to 

maintain and repair that machine. Time is the cause of the fluctuations. 

The causal regression-based methodology was selected as the best choice for this modeling 

problem. This methodology can handle nearly all data patterns, can be used for forecasts across 

the spectrum of planning horizons, and requires only a moderate level of mathematical ability on 

the part of the user. 

The type of regression that will be used is least squares regression. Least squares regression is 

the most commonly used and best-understood regression method available. The goal of this type 

of regression is to minimize the residual sum of squares. Residuals are the differences between 

what the response variable actually is and what the response variable is predicted to be. In this 

case, the response variable is the Cumulative Cost Index (CCI).    The regressor variable is 
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cumulative meter hours. For a good discussion of least squares regression, refer to Myers' 

Classical and Modern Regression with Applications (1990). 

An illustration of what regression does is given in Figure 5-1. The figure does not represent 

actual data, the lines are exaggerated for illustrative purposes. The three staircase-like lines 

represent the growth of CCI for three separate machines. A step function is what actual CCI lines 

look like. Although the equations under development model cash flows as continuous streams, in 

reality cash flows are discrete and periodic.    Since the accumulation of hours is in reality a 

Ü 
Ü 

Machine #1 
Machine #2 
Machine #3 
Poly. (Regression) 

500 1000  1500  2000  2500  3000  3500 

Cumulative Hours 

Figure 5-1: Regression 

continuous function, the CCI remains constant until another cash flow occurs at which time the 

cumulative cost line makes another step upward. The curved line that runs through the middle of 

the data is the regression line. This line is a prediction of how an average machine should perform 
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5.1.2   The Models 

With the decision to use regression as the modeling technique made, the functions to be modeled 

can be chosen. The general form an equation derived from using linear regression is as follows: 

y = ßQ+ßlXl+ß2X2+...ßnXn+£ Equation 5-2 

Where: 

y = response variable 

ßo = intercept 

ßi, ß2....ßn = coefficients 

Xi, X2, x„ = regressor variables 

£ = residual or error term 

For this research, the term ßo will always be equal to one—this will be explained further in the 

discussion later on regression through the origin. Although it was mentioned in the assumptions 

in Chapter 1 that there is only one regressor, cumulative meter hours, more than one function of 

that regressor will be evaluated. The functions of the regressor to be evaluated are: x, x2, x3, and 

e\ The reason these four terms were chosen was they each can describe the monotonically 

increasing line that defines the CCI in relation to cumulative meter hours. To evaluate these four 

terms, the following models will be tested: 

1. y = ß0 + ßix + e 

2. y = ßo + ßix + ß2x
2 + e 

3. y = ß0 + ßix +ß2x2 +ß3x
3 + e 

4. y = ßo + ß4e
x + e 

5. y = ßo + ßix + ß2x
2 + ß4e

x + £ 

6. y = ß0 + ß3x
3 + £ 

7. y = ßo + ßix + ß3x
3 + £ 
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8. y = ßo + ßix + ß4e
x + e 

9. y = ßo + ßix + ß3x
3 + ß4e

x + 8 

10. y = ßo + ßix + ß2x
2 + ß3x

3 + ß4e
x + 8 

ll.y=ßo +ß2x
2 +ß3x

3 + e 

12.y=ßo +ß2x
2 + ß4e

x +e 

13.y=ßo +ß2x
2 +ß3x

3 +ß4e
x +e 

14. y = ßo + ß3x
3 + ß4e

x + 8 

15.y=ß0 + ß2x
2 + e 

These fifteen models will be tested by running the regression where y = CCI and x = cumulative 

meter hours. One of the requirements of linear regression is that the behavior of the ß terms be 

linear with respect to the regressors. There are, however, some non-linear models that are also 

of interest. These models can be transformed into linear models by using logarithms. By 

transforming the data an equation of the following type can be found: 

ln( v) = ln( / ( JC)) + £ Equation 5-3 

Problems arise when the equation is converted to its original form: 

v = /(JC) x e Equation 5-4 

The difference between Equation 5-4 and Equation 5-2 is that the residual (or error) term is 

multiplicative instead of additive. This creates additional statistical concerns. By transforming 

the error structure, additional violations of the statistical assumptions could arise. Specifically, 

the homogeneity of variance and the normal distribution of the errors assumptions may not hold. 

The following four models were selected because they are non-linear models that predict a 

monotonically increasing response with increases in the regressor and because they come close to 

approximating linear behavior (Ratkowsky, 1990). The first model is a classic non-linear 

descriptor of growth originally proposed by Freundlich to describe some naturally occurring 

processes relating to chemistry (1926).  The logarithmic transformations are listed to the side of 
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each model. The presence of "1" in these models compensates for the fact that at zero cumulative 

meters hours the CCI should equal 1. 

16.y=l+axß ln(y-l) = ln(a) + ßln(x) 

17.y=l+xß ln(y-l) = ßln(x) 

18.y=l+eß(x) ln(y-l) = ßx 

19. y = 1 + aeß(x) ln(y-l) = ln(a) + ßx 

5.1.3   Regression Through the Origin 

By definition, the Cumulative Cost Index (CCI) should equal one when a piece of equipment has 

zero cumulative hours on it. It is possible for the CCI to be other than one, but improbable. 

There should be no cumulative repair costs on a machine with zero hours—if there are they are 

probably the result of an accident and would be accounted for as described in Chapter 4. What 

this means in terms of the regression is that the intercept term should be fixed at "1". This was 

mentioned in the previous section. 

Regression through the origin is one way the intercept term can be made constant. Many 

statistical packages do not allow the researcher to specify a desired intercept point in regression, 

but they will allow the regression to proceed with no intercept term. This is equivalent to forcing 

the regression through the point on the Cartesian x-y plane of (0,0). Since our desired intercept is 

the point (0,1), a value of one must be subtracted from each CCI before using it in the regression. 

The regression equation obtained from SAS® will be modified after completion of the regression 

to reflect an intercept term (ßo) of one. Adding the intercept parameter after the regression has 

been accomplished will not affect the validity of the regression. The curve that is fit will have the 

same properties, it will just be translated one unit in the positive "y" direction. 

Tests will be accomplished to determine whether or not regression through the origin is an 

acceptable alternative. Using the intercept model a 90% confidence interval for the average value 

of y will be constructed for the case where x = 0. If the value "0" falls in that confidence interval, 

regression through the origin is an acceptable way to fit the curve (Hahn, 1977). 
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One of the pitfalls of regression through the origin is the dilution of the applicability of the 

coefficient of determination, R2. In regression through the origin, R2 is measured around the 

value zero. In standard regression with an intercept term, R2 is measured about the mean of the 

fits (Myers, 1990). The two values are not readily comparable—the R2 statistic as normally 

calculated is not a valid way to compare intercept vs. no intercept models. It can be used to 

compare competing no intercept models, but it should be used with the caution that the statistic is 

telling the researcher something a little different than the normal R2. The numerical values of this 

statistic will always be higher in regression through the origin and may mislead the researcher to 

think that the model is better than it really is. To accommodate this problem, a corrected sum of 

squares will be used to compute the various measurements of effectiveness. The corrected sum of 

squares was proposed by Myers (1990). A detailed discussion of the corrected sum of squares 

and a comparison of it to the sum of squares for the intercept case are available in Myers (1990, 

33-34). 

2000 4000 6000     8000 

Cum. Hours 

10000 12000 

Regression 
line 

Confidence 
band 

Prediction 
band 

14000 

Figure 5-2 - Confidence Bands for Regression Through the Origin 

Confidence intervals are also affected by using regression through the origin (Hahn, 1977). 

Confidence intervals for models with an intercept term typically have an hourglass shape about the 

regression line. The minimum width of the confidence interval of the response variable occurs at 
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the average value of the regressor variable. In the case of regression through the origin, the 

minimum confidence interval width occurs at the origin, where its width is zero. The confidence 

interval lines then gradually diverge from the regression line with increasing values of the 

regressor (Figure 10). It is important to note that the increasing width of the confidence interval 

could correspond with the increase in variance that was discussed in Chapter 4. The prediction 

intervals follow suit—they are further from the regression line than the confidence intervals, just 

like in normal regression. 

Regression through the origin will be accomplished using the NOINT option of PROC REG in 

SAS. The NOINT option will not be used for all of the transformed non-linear models to be 

investigated. The reason for this is that the intercept term becomes part of the function of the 

regressor after the equation is transformed to its original form from its logarithmic form. 

5.1.4   Data Options 

In Chapter 4 it was concluded that four types of data sets would be analyzed for each fleet of 

equipment that is a part of this study. The first data set will be composed of all available data 

pairs except those that are repeated. The second data set will be composed of readings from each 

machine in the fleet interpolated to 500-hour intervals. The third data set will be composed of 

average data pairs derived from the average of interpolated values at those discrete intervals. The 

fourth and final set to be analyzed will be composed solely of the final data pair associated with 

each machine. 

Because there is an abundance of data but not always an abundance of machines of varying 

cumulative hours of use, three data sets will be investigated that do not fully address the issue of 

data independence. 

The first set of data points, all data pairs except for those that are repeated only addresses the 

statistical issue of repeated points—the other issues are not addressed at all. This type of 

regression utilizes 100% of the data than can "legally" be used. This data set produces the worst 

violations of the independence of data assumptions of the four sets considered. There is an 

additional way to use all of the data points available that was considered for this study called 
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growth curves. The data in this study could not be used in this methodology because cradle-to- 

grave data is needed on every machine to be analyzed—this was not available. 

The second data set, data pairs at 500-hour intervals for all machines in the fleet, addresses some 

of the shortcomings of the first data set. Relative dominance, independence, and data interval are 

all addressed to varying degrees. 

The average values of data pairs at specified intervals, the third data set, will not provide a 

solution that is as statistically pure as the first. The issues mentioned above are addressed a little 

better in this method than in the second, but they are still not fully solved. A new problem that 

comes up with this data set is that the confidence intervals generated by such an analysis do not 

provide the same information that they do in other three data sets used. This is because some of 

the variability is removed from the data before it is analyzed. 

Regression on the final data pairs for each machine is the fourth and most statistically pure 

method of analysis for this dissertation. Intuitively, it may seem odd that using only one data 

point for each machine is an appropriate method when so much data are available on each 

machine. As was explained in Chapter 4 there are issues concerning the data that make this 

method more preferable than others do. This type of regression eliminates the concerns regarding 

independence, relative dominance, repeated points, and data intervals. 

The reason that regression of only the last observation for each machine should work is that, 

barring influential observations, each final point should fall in the vicinity of the true model 

(regression line). If there are enough points spread over the range of values of the cumulative 

hours of interest, it should be possible to develop a statistically sound regression equation from 

those points. 

5.2     PREPARATION OF DATA 

Despite all the data filtering, manipulation, and analysis that was described in Chapter 4, there are 

still a few things that must be done to the data before the actual analyses can proceed. The data 

must be scaled, some of them must be reserved for cross-validation, and the variance should be 

assessed. 
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5.2.1   Data Scaling 

Data scaling was found to be necessary after a few trial regressions. The problem is that if the 

raw value for cumulative hours of use is used as the regressor, some of the coefficients obtained 

through regression are of such a small magnitude that they are difficult to use and comprehend. 

Furthermore, because the coefficient obtained for the ex term was such a small number (or 

because ex was such a large number) the statistical computer program would only give error 

messages when regressions with the ex term were included. Some graphs should facilitate the 

understanding of this issue. 
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Figure 5-3: Regressor Values: Raw Data 
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For the three figures that will be discussed, the x-axis covers a range from zero to 16,000 

cumulative meter hours. This range is reasonable to look at—most of the machines in this study 

fall within this range. The y-axis scale has been varied to better focus on what the curves are 

doing. From Figure 5-3 it can be seen that the values of ex and x3 climb very steeply when the 

raw values of meter hours are used. The ex curve is so steep that it appears as if it is climbing 

directly vertical. The x line is so shallow in relation to the other curves that it appears almost 

horizontal. The relationships between the curves are so greatly varied that they are hard to 

visualize. 

Figure 5-4 depicts what happens to the curves if cumulative meter hours divided by 10,000 is 

used as the regressor. The relationships between the four curves are well defined. It can be seen 

that x2, x3, and ex all increase monotonically. Regressions that are run using meter hours divided 

by 10,000 do not cause the computer to have errors. There is a different problem associated with 

this amount of scaling, though. From the figure, it can be seen that the nature of the relationship 

between x, x2, and x3 changes dramatically at a value of "1". The change in this relationship is 

important because it is expected that the optimum life of most machines will fall between the 

5,000 to 15,000 cumulative meter hour range. If the nature of the equation changes dramatically 

in the middle of the range of interest, problems could arise. 
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Figure 5-5 is a depiction of what happens to the parameters when cumulative meter 

hours/1000 is used. The relationships between the curves are still reasonably well defined. 

The problem area depicted in 

Figure 5-4 is shifted to an earlier point in machine life. It is not expected that many construction 

machines will reach their optimum lifespan prior to 1,000 hours of use. The crossover 

relationship between x3 and ex at around 4,500 hours is acknowledged. This crossover is not 

expected to have as great an impact on the usability of the equations because, as mentioned 

above, it is expected that most optimum lifespans will fall in the range of 5,000 to 15,000 hours of 

use. 

Cumulative meter hours divided by 1000 was chosen as the best solution to the data scaling 

problem. The computer programs used did not generate error messages when these data were 

input. There are changing relationship between the variables, but they occur outside of the range 

of values that are of primary interest. 

5.2.2   Data Splitting 

To validate the predictive capabilities of the models developed, a cross-validation procedure will 

be used when possible. This will require that the data be split into estimation and prediction data 

sets. Ideally, these two data sets should be of equal size. To split the data into two equal sized 

sets, the number of observations (machines) "n" should be (Snee, 1977): 
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n>2p + 25 Equation 5-5 

In this inequality, "p" is the number of parameters in the model. For the data to be analyzed in 

this study, the maximum value of "p" will be four (x, x2, x3, and ex). To have equal sized 

prediction and validation data sets there should be a minimum of 34 observations in the full data 

set. Few of the full data sets to be analyzed will have this many observations. For the data sets 

that do not have 34 machines, the estimation data set will consist of 17 machines. This is the size 

the estimation data set would have been if 34 observations had been present. It is important that 

there be at least 17 machines in the estimation data so there are sufficient degrees of freedom 

remaining in the regression. The prediction data set will consist of the remaining machines. 

The machines to be split off to the prediction data set will be selected using the following process: 

1. Random numbers between 0 and 100 will be generated by computer and assigned to 

each machine. 

2. The machines will be rank ordered by their random numbers. 

3. The first 17 machines (or one-half the number of machines, whichever is greater) will 

form the estimation data set. 

4. The remaining machines will form the prediction data set. 

Once the prediction data set has been formed, a scatterplot of its data pairs will be compared to 

one of the estimation data set. Although it is important that assignment to the prediction data set 

be random, it is perhaps equally important that the prediction data set provide an appropriate test 

of the model developed. With random assignment, it is possible (albeit improbable) for the 

prediction and estimation data sets to lie at completely opposite ends of the spectrum of 

cumulative hours of use. In this case, the test on the predictive capabilities of the model would lie 

in a region that is based entirely on extrapolation. This is not desirable. To have a good cross- 

validation, the prediction and estimation data sets should be similar, but different (Birch, 1996). 

The estimation data set should include points that cover the full range of cumulative hours of use. 

The prediction data set should cover this range as well—this is the "similar" part. The prediction 
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data set should contain points that appropriately "stress" the model developed by the estimation 

set. This is the "different" part. If the scatterplots show that the two data sets are not similar but 

different, the splitting process will be repeated until a favorable data split is achieved. This adds a 

bit of subjectivity to the process, but this subjectivity is necessary to ensure a cross-validation that 

has meaning. 

Intuitively, the prediction data set becomes a less significant test of predictive capabilities as it 

gets smaller. If there are less than five machines (approximately 20% of the data), the prediction 

data set is probably too small. In this case, a measure of predictive capabilities called the PRESS 

residuals will be used for validation—this will be described in Section 5.3.3. 

In summary, if the number of machines in the data set is greater than 22, the data set will be split 

into an estimation data set and a prediction data set for cross-validation of the model. If there are 

less than 22 machines in the data set, a different procedure using the PRESS statistic will be used 

to validate the model and data splitting is not necessary. 

5.2.3   Variance Characterization 

A variance characterization will be accomplished on each equipment fleet to be analyzed. This 

characterization will be done using data pairs from each machine in the fleet interpolated to 500 

hour intervals. This is the same set of data pairs described in Chapter 4 that was used to 

formulate the set of average data pairs that will be one of our four regression options. 

Something that is expected of all the data sets is the presence of heterogeneous variance. The 

reason for this is that heavy equipment tends not to break down that often during the early stages 

of economic life. As economic life progresses machines that are subjected to harsher operating 

conditions, sub-par operators, etc. should tend to have higher CCIs than similar machines that are 

well-taken care of. The spread between the CCI of a very good machine and the CCI of a very 

poor machine should become greater as hours on those machines accumulate. 

Normal regression assumes a homogeneous variance of the response variable throughout the 

range of regressor variables. If the variance is heterogeneous, adjustments to the model may be 

necessary. These adjustments can be accounted for by using weighted regression. 
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To decide whether or not the variance is homogeneous, the hourly data set will be processed 

using the PROC MEANS procedure of SAS. This procedure will yield sample means and 

variances for the response variable with respect to the regressor variable. Another data set will 

then be formed pairing these sample variances with their respective values of regressor variables. 

Sample variances that are based on less than nine observations should be eliminated from the data 

set (Myers, 1990). If the majority of the sample variances are based on fewer than nine 

observations, weighted regression will not be used. According to Myers, using weights that are 

not correct can be worse than not weighting at all. 

Once the new data set composed of variances and meter hour values is constructed, it will be 

analyzed using the PROC REG procedure of SAS. This procedure will perform a simple linear 

regression of the variance versus the regressor. The model will be of the form: 

y = ß0 + ßix Equation 5-6 

Where y = o2. 

The following hypothesis test will then be performed: 

H0: ß,= 0,Hi:not H0 

This test will be performed at a p-value of 0.05. If Ho is accepted, no adjustments for variance are 

required. If Ho is rejected, the variance is not homogeneous and adjustments may be made to the 

analysis to account for this. 

The goal of weighted regression is to minimize the effects of heterogeneous variance. In normal 

least squares regression, the "squares" that we are trying to make "least" are given by: 

SSI*™*.=l(y-yi)2 E<*uation 5-7 

Where: 

SSresiduai = the residual sum of squares 
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yi = observed value of CCI 

yt = predicted value of CCI 

In weighted regression, this equation becomes: 

SSRESWAL = X Wi (yi - y if Equation 5-8 

Where: 

W =   /    2 Equation 5-9 
/ Oi 

This gives greater importance to the data points associated with lower variance and less 

importance to those of high variance. In practical terms, this means that the points that are most 

subject to the least variance are receiving greater "weight" in the regression. 

To accomplish weighting in SAS, we must first define ö2 in terms of the regressor variable. This 

will be done by substituting the function of x given by equation 5-6 into equation 5-9. The 

weights are thus defined as a function of cumulative meter hours. Regression is then 

accomplished by adding the WEIGHT statement to PROC REG in SAS. 

Although none of the data sets analyzed were large enough to reliably use weighted regression, a 

sensitivity analysis of the results to weighting will be performed and described in Chapter 7. 

5.3     ANALYSES 

This section will explain the specific statistical analyses to be performed on the data. The quest 

will be not only for an adequate model, but also for a parsimonious model (Tukey, 1961). With 

so many models under consideration, more than one will probably yield an adequate solution. The 

differences in performance between some models may be negligible. In cases like these, it is 

sometimes wisest to choose the simplest model—the one with the fewest terms that describes 

what is happening to the researcher's satisfaction.   Extra terms should not be included in the 
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model for small gains in performance. Errors in the value of "x" will be compounded in a more 

complex models since each of the parameters is a function of "x". Because of this compounding 

of errors, a simple model that adequately fits the data may be a better choice than a more complex 

model that is marginally better. 

The steps in analyzing the data will be: 

1. Preliminary analysis—will provide general idea of which models are best 

2. Intermediate analysis—will pick the best models from the group using a more detailed 

study 

3. Final analysis (if necessary)—selects the one best model and data set for this study 

4. Model validation—the performance of the model will be judged 

5. Influential points—the data will be examined to ensure that no one machine has had an 

undue influence on the regression 

6. Comparisons—general comparisons between companies, types of machines, and sizes 

of machines will be accomplished 

5.3.1   Preliminary Analysis 

The preliminary analysis will be performed on all models to be entertained for each fleet of 

equipment in the study. Since there are so many models involved (17 fleets, 3 data sets for each 

fleet, 19 models for each data set, totaling 969 regression models), a filtering process is necessary 

to bring the number of models considered down to a reasonable number. Models that obviously 

provide either poor fit or poor predictive capabilities will be eliminated from consideration at this 

level. 

A macro developed in SAS Interactive Matrix Language (IML) will be used to perform filtering at 

this level. The NOINT macro (Noble, 1997), was modified to fit the purposes of this study. This 

macro and its modifications can be found in Appendix B.   This macro will be used to obtain 
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measures of effectiveness on the first 15 models (all requiring regression through the origin). The 

output of this model provides parameter estimates for each model considered and rank-orders 

each model by each of five measures of performance. These five measures of performance are R2, 

adjusted R2, Mean Square Error, Cp, and R2
PRESS- 

Not all five of the measures of performance will be used in the model selection process. The 

measures of performance to be evaluated are adjusted R2 and R2
PRESS- Raw R2 will not be used 

because it assesses no penalty for models that have more regressors than others do. By nature, 

regressions that have additional regressors tend to explain more of the response behavior than 

those that have fewer regressors do. Mean square error will not be used because it is inversely 

proportional to adjusted R2, the two measures provide essentially the same information except 

adjusted R2 is somewhat standardized and can be used to compare different models more easily. 

Cp will be looked at for the linear models, but will not serve as a primary determinant of model 

performance. This is because the use of the Cp statistic requires an accurate estimate of model 

variance to provide a truly meaningful measure of performance. Additionally, the Cp statistic 

cannot be used to compare the non-linear models to the linear models or vice-versa. Detailed 

explanations of these measures of performance can be found in Myers (1990). 

Adjusted R2 provides a measure of model fit, i.e. how well does the curve fit the data pairs. The 

higher the value is, the better the fit is. R
2
PRESS provides a quick measure of model predictive 

capabilities. The higher the value is, the better the predictive capabilities are. Both of these 

statistics are somewhat standardized—they can be used to assess performance differences 

between different models. 

To compare the many types of data sets and many types of models, a non-parametric technique 

called the Kruskall-Wallis test will be used. A good explanation of this test can be found in Ott 

(1993, 792-795). Non-parametric tests were chosen because at this level a parametric test would 

not have as much meaning. The relative rankings of the various models are more important than 

the actual values of their measures of performance. 

First, an assessment of which of the four data set types provide the best measures of performance 

will be made. Relative differences will be noted.  Following this, preliminary assessments will be 
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performed on the linear and non-linear models. The best model (or models) in terms of 

performance balanced with the parsimony principle will be selected for each group (linear and 

non-linear). The statistics from the best linear and non-linear models will be combined into one 

smaller group. Non-parametric tests will be performed on this filtered grouping to determine if 

there is any significant difference in the performance of the models. The best model(s) will make 

the transition to the intermediate analysis. 

5.3.2   Intermediate and Final Analyses 

The intermediate analysis will be performed using the PROC REG procedure of SAS. The 

specific codes employed are given in Appendix C. The purpose of the intermediate analysis is to 

further filter the list of models obtained in the preliminary analysis. The intermediate analysis may 

or may not determine a clear-cut winner. If no obvious winner is apparent, the model that best 

predicts realistic equipment lives will be the one chosen in the final analysis (this process will be 

described in Chapter 7). 

The most important insight that is gained using the intermediate analysis over the preliminary 

analysis is the significance of model parameters. Although a model that contains all possible 

regression terms may provide the best fit and predictive capabilities, the parameters themselves 

may not contribute greatly to the characterization of the response variable. Significance of the 

model parameters will be ascertained using the following decision criteria: 

p-value < 0.20--acceptable ; p-value > 0.20--unacceptable 

This test will be performed on all parameters of the models that make it to this stage of the 

proceedings. Failures to meet the decision criteria will be noted. Models that consistently have 

parameters that are not significant will be eliminated. 

Additionally, the residual plots will be analyzed. This will give a good feel as to the nature of the 

variance of the errors. Ideally, the errors will be normally distributed about a mean value of zero. 

If there is any non-homogeneity of variance, it may be recognizable from the residual plots. 
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Confidence intervals will be analyzed for the coefficients of the regression. Assessments will be 

made as to what range of L* and T* values could be expected from a given model. 

It must be stressed that model selection is an art as well as a science. Quantitative measures of 

performance are not always the sole determinant of which model is the best. Qualitative 

measures, such as parsimony, play as great a role in selecting a model that will give desirable 

performance characteristics. 

5.3.3   Model Validation 

Two types of model validations will be employed in this study. The validation technique 

employed depends upon the number of machines in the data set to be analyzed. 

CROSS-VALIDATION: For data sets that had 22 or more observations, data splitting and cross- 

validation are used to determine the prediction capabilities of the model. The way this will be 

done is as follows: 

1. Using the procedures outlined above, determine the regression model using PROC REG in 

SAS using only the estimation data set. 

2. Insert the "x" values for the prediction data set into the estimation data set. Instead of 

entering the actual "y" values, enter "." instead. This tells SAS to predict "y" values for the 

prediction data set, but not to use the "x" values to alter the equation. Run PROC REG again 

to get the predicted y values for the prediction data set. 

3. Using these values, compute the correlation coefficient between the actual "y" values and the 

predicted "y" values. Use the following equation: 

(    ~N Syy 
ny>y)-   nr~*   r^~ Equation5-10 

4. The population correlation is p. The number of machines in the prediction data set is n2. Test 

the hypothesis: 
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H0: p = 0   vs.   Hi: p > 0 

using a p-value of .20. Use the test statistic: 

n2-2 „       .       
t = r^jZ^T => 1

H-I Equation 5-11 

5. If Ho is rejected, the cross-validation was successful. The model should be regenerated using 

all of machines after a successful cross-validation. This adds more samples to the model that 

is developed and, theoretically, the model should be a truer representation of the population. 

If the cross validation was not successful, try fitting the model with fewer regressors and 

repeat the procedure. 

PRESS validation: Validation using the PRESS statistic is more subjective than the analytical test 

described above for cross-validation. If the PRESS procedure is used, there were not enough 

machines in the data set to warrant data splitting. If the R2
press of the model being evaluated 

compares favorably with the R2
press of a reference fleet that underwent a successful cross- 

validation, the inference will be made that the models have similar predictive capabilities. If the 

R2
Press of the model in question is worse than that of the reference fleet, its predictive capabilities 

are could be worse than that of the reference fleet. If the R2
press is better, the predictive 

capabilities may be better than those of the reference fleet. 

5.3.4   Influential Points 

Identifying influential observations is a science unto itself. There are many different statistics that 

can be compared to get a picture of which data points are outliers, which are points of high 

leverage, and which are points of high influence. The S AS computer program will generate these 

statistics with the code indicated in Appedix C. These statistics include Rodent» hü (hat diagonals), 

DFFITS, and DFBETAS. 

All of these statistics will be generated and evaluated. RstUdent is a good measure of whether or not 

a point is an outlier. The hu's can be used to determine if a point has high leverage. DFFITS and 

DFBETAS statistics provide measures of a data point's impact on the fit and coefficients of the 
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model. The "DF" prefix stands for difference. Each of these statistics measures the difference 

that results if the point of observation is removed from the data set. This is similar to the logic 

used in calculating the PRESS statistic in that they are all single point elimination schemes. The 

"S" suffix stands for standardized. The difference between what would happen with and without 

the point of interest is divided by the appropriate standard error to yield a standardized statistic. 

DFFITS will identify those points that have a large influence on the "FIT" of the regression. 

DFBETAS will identify those points that have a large influence on the coefficients (Betas) of the 

regression equation. 

For all of these statistics rules-of-thumb exist for determining what is significant. These rules 

should be used in context. In other words, it is important to look at relative differences in these 

statistics. The question "Do these observations stick out as odd when the group is viewed as 

whole?" must be answered. Rules-of-thumb are not substitutes for good judgement. 

If a point is indeed suspected of causing undue influence on the regression, that point will be 

examined in detail. This examination will involve taking a closer look at the machine in question. 

Was it purchased used? Was it involved in an accident? Was it abused? Data points will not be 

eliminated to develop tidy equations. They will be investigated fully before any decision to 

disregard them is made. 

An interesting thing about regression through the origin is that, by definition, the data points that 

are located the furthest away from the origin will have greater impact on the regression than those 

that are located very close to the origin. In practical terms this means that some of the points that 

are identified as highly influential are so because of the design of the experiment, not because the 

machine in question is a lemon. 

5.3.5   Comparisons 

Comparisons will be performed to ascertain if each or any of the following factors have a 

discernable impact on the end performance and results of the regression equations: 

•    type of equipment 
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• size of equipment 

• company operating the equipment 

Performance comparisons will be drawn using the non-parametric techniques described in Section 

5.3.1. The measures of performance that will be evaluated are adjusted R2, and R
2
PRESS- 

Generalized conclusions concerning the performance of regression models concerning the above 

three areas will be drawn. These performance assessments will be of the form: "It seems that all 

but one of the companies involved in the study have regression equations that yield acceptable and 

similar measures of performance." 

The second type of comparison, that of parameter values, will be a little more involved. The 

mechanism for doing this will be the cross-validation procedure described in Section 5.3.3. The 

following is a list of cross-validations that will be performed: 

1. Machines of the same class and group that are of different companies will be used as 

prediction data sets for each other's equations. 

2. Machines of the same class but of different groups within the same company will be 

used as prediction data sets for each other's equations. 

3. Machines of unlike class and group within the same company will be used as 

prediction data sets for each other's equations. 

4. All machines of each particular class and group will be recombined to form large data 

sets. These data sets will be split using the procedures described in Section 5.2.2. The 

intermediate analysis will be performed on these equations to determine measures of 

performance after which the cross-validation procedures will be performed. 

5. All machines from each company will be recombined to form large data sets. These 

will be subjected to the same analyses as those in step 4. 

The general conclusions drawn from these comparisons will be of the type: "It seems that 

company of ownership may be a factor when deriving regression equations to characterize the 

growth of maintenance and repair costs." 
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5.4     SUMMARY 

This chapter has presented and in-depth discussion of the statistical analyses to be performed. 

The mechanics of these analyses were briefly presented, some more manipulations of the data 

were discussed, and the actual analyses that will be accomplished were documented. Combined 

with the material presented in Chapter 4, this concludes Defining the Work. The stage is now set 

for the analyses to take place. 

Part III, The Work, is comprised of Chapters 6, 7, and 8. Chapter 6 will discuss how the data 

were prepared for analysis. Chapter 7 will describe the model selection process. Chapter 8 will 

present the results of regresssions and comparisons. It will also compare the data-based 

cumulative cost equations to other forecasting methods that were described in Chapter 2. 



CHAPTER 6:   DATA PREPARATION 

This chapter chronicles the gathering and preparation of the data used to support this dissertation. 

Specific characteristics of the data were provided in Chapter 4. The recommendations from that 

chapter are implemented here. This chapter is the first in Part III of the dissertation—"The 

Work". A basic flowchart of the work to be accomplished is provided in Figure 6-1. 
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Statistical Analysis 
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Data Set for each 
Fleet: 

1292 Total 

Analysis of Results 

Analyze 1 equation 
based on 1 Data Set 

for each Fleet: 
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Figure 6-1: Part III Flowchart 
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This chapter explains how a multitude of data on 270 machines from four companies was 

processed and filtered to form 68 data sets—four for each of seventeen fleets that were of like 

type, size, and company. This data is then input into the statistical analysis (Chapter 7) which 

flows into the Analysis of Results (Chapter 8). 

The following issues will be discussed in this chapter: 

• Data extraction 

• Manual corrections 

• Inflation database 

• Oil sampling databases 

• Creation of SAS® data sets 

• Final product 

A flowchart representing the data preparation process is given in Figure 6-2. It may be helpful to 

refer back to this chart throughout the chapter to understand the context of each step of the 

preparation process. 

Costs 

Hours 

J -►I Extract 
—*— 

> Correct Inflation 

Oil 
Sampling 

CCIs 

FORM DATA SETS 

Data 
Pairs 

I 
All Points 

Final Pts. 

500-HR 
Intervals 

All Points 

-► Averages 

Figure 6-2: Data Preparation Flowchart 
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6.1     DATA EXTRACTION 

Before any formatting could be accomplished, the data had to be obtained. Each company 

provided their data in a different format. The three main formats of data obtained were: 

• PC-formatted 

• Mainframe formatted 

• Manually obtained 

The PC-formatted data were by far the easiest to manipulate and assimilate. These were files that 

came in a format that could be opened and used directly by standard PC-based data manipulation 

programs. Some of data came in spreadsheet format (Excel or Quattro). These required the least 

amount of work because they were already in the format needed for preliminary manipulations. 

Other data came in database format (Access or Paradox). These data were extracted from the 

database files into Excel format. In some cases, this proved to be less total preliminary work than 

that required for the data that came in spreadsheet format because queries could be generated to 

extract the data in exactly the spreadsheet format desired. 

The Mainframe formatted data posed a different challenge. Not all companies involved in this 

study do their data manipulation on PCs. They run all reports and generate all printouts from 

their mainframe computers using applications programmed specifically for their company. The 

way the mainframe data were transferred to the PC was through the generation of ASCII print 

files (.prn)—the mainframe computer was told to print its reports to files instead of printers. 

These files could then be opened on a PC—but the data were not parsed. They could not be 

directly used by spreadsheet programs—all of the data on a given line would be imported to one 

column of a spreadsheet. Although there are some converters available that allow for the parsing 

of ASCII data within the spreadsheets, the data must have originally been in a neat tabular format 

for these converters to work. This was not always the case. 
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Table 6-1: Example Raw Equipment Data 

COST PAY COST Beg END              # G/L 

EQUIP CODE ITEM TYPE DATE DATE            PERIOD AMOUNT 

9273 - DOZER 

42 ENGINE 

KOM 

RELATED 

(Continued) 

REPAR            (Continued) 

2 INPUT W/E 05/04/96 TO 06/01/96 PR00-0000 22.69 

2 INPUT W/E 05/04/96 TO 06/01/96 PR00-0000 16.08 

2 INPUT W/E 05/04/96 TO 06/01/96 PR00-0000 16.84 

2 INPUT W/E 09/07/96 TO 09/28/96 PR00-0000 2.43 

2 INPUT W/E 09/07/96 TO 09/28/96 PR00-0000 1 

2 INPUT W/E 09/07/96 TO 09/28/96 PR00-0000 2.84 

2 INPUT W/E 10/05/96 TO 11/02/96 PR00-0000 2 

2 INPUT W/E 10/05/96 TO 11/02/96 PR00-0000 4.86 

2 INPUT W/E 10/05/96 TO 11/02/96 PROO-OOOO 5.72 

3                 44472 #######             35490 

TOTAL FOR CODE 42 ENGINE RELATED                772.53 

43 HYDRAULICS 

1 020197-FIELD PR15 PR 15-0237 35431 ####### 

1 INPUT W/E 01/06/96 TO 02/03/96 PROO-OOOO 16.8 

2 020197-FIELD PR15 PR15-0238 35431 ####### 

2 020197-FIELD PR15 PR15-0239 35431 ####### 

2 020197-FIELD PR15 PR15-0240 35431 ####### 

2 INPUT W/E 01/06/96 TO 02/03/96 PROO-OOOO 3.83 

2 INPUT W/E 01/06/96 TO 02/03/96 PROO-OOOO 2.38 

2 INPUT W/E 01/06/96 TO 02/03/96 PROO-OOOO 1.72 

TOTAL FOR CODE 43           HYDRAULIC 104.74 

As can be seen from Table 6-1, the data were not necessarily in a format that was easily collated. 

In this example, two costs codes for a dozer are shown: code 42 (engine) and code 43 

(hydraulics) Each line in the report does not have the same format. At evenly spaced intervals, 

the headers are shown (normally the page breaks for printed output). Following that, the 

equipment number and type are shown. After that, all applicable cost codes associated with that 

piece of equipment during the time frame of the report are shown. The cost codes are further 

broken down into line items. Some of the line items contain cost data, some do not. A range of 

dates for the expenses are shown instead of specific dates for the expenses.  The entry after the 
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last line item is a subtotal for that cost code. A grand total for all costs codes is listed at the end 

of each piece's portion of the report. The subtotals and grand totals were not useful because they 

could not be attributed to a specific month. 

The reports also contained cost data that was not a part of this study. Usually, more than one 

report had to be used to get all of the data on any one machine. The process of extracting the 

useful data was greatly simplified through the use of a computer program by the DataWatch® 

Corporation called Monarch®. Templates can be built in Monarch® to recognize line formats. 

The cost data can be extracted, associated with a specific machine, and subtotaled by cost code 

for each month. The unwanted cost data can then be filtered out by cost code and an Excel® 

spreadsheet containing only the desired data can be exported. 

The final format of data used for this research was that which was manually obtained. These data 

were the hardest to get. In some cases, folders containing records and receipts for each machine 

were gone through one page at a time. These data took the longest to extract. The data were 

recorded by hand and then entered into an Excel® spreadsheet at a later date. Although great care 

was taken to ensure numbers and dates were accurately recorded and entered, the potential exists 

that a small portion of the data could have been missed in the scans of the folders, incorrectly 

written down, or incorrectly entered into the spreadsheets. Although there could also have been 

transcription errors in the electronically obtained data, the chances of an error in the chain are 

increased with manually obtained data. Manually obtained data were the least desirable, but in 

some cases were the only ones available. 

6.2    MANUAL CORRECTIONS 

After getting all the data into spreadsheet format, the data that was important to the study had to 

be filtered and collated. Cost accounts relating to maintenance and repair (including capitalized 

rebuilds) were extracted and summed for each month. In some cases, the output from the 

company was in terms of cumulative costs, in some cases it was in terms of incremental monthly 

costs. The same held true for the hours of use data. Some were in the format of cumulative 

hours; some were in the format of incremental hours. Although cumulative cost and cumulative 

hours of use are the data needed for generating the data sets, at this stage the incremental costs 
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and hours were more important. Data that were in their cumulative forms were converted to their 

incremental forms for this portion of the preparation. 

As mentioned in Chapter 4, there were a number of problems with the data that had to be 

recognized and corrected by hand. The easiest way to do this was by forming two matrices for 

each of the fleets analyzed. One matrix consisted of machine numbers, incremental cost, and 

dates (see Table 6-2). The other matrix was composed of machine numbers, incremental hours, 

and dates (see Table 6-3). 

Table 6-2: Incremental Costs 

Equip. # 
Month 

Feb Mar Apr May Jun Jul Aug 
00102 49.00 30.00 111.00 10120.00 55.00 122.00 153.00 

00207 164.00 98.00 120.00 149.00 128.00 108.00 130.00 

00208 45.00 116.00 (110.00) 143.00 191.00 5438.00 20.00 

00210 52.00 (25.00) 92.00 24.00 46.00 122.00 114.00 

00213 156.00 220.00 88.00 93.00 (1.50.00) 36.00 92.00 

00303 0.00 0.00 32.00 72.00 84.00 148.00 164.00 

00321 0.00 0.00 0.00 12.00 161.00 116.00 125.00 

00342 0.00 0.00 0.00 0.00 0.00 104.00 165.00 

For both costs and hours, there were two important scans to do. The first, and most obvious was 

to scan for "red". The spreadsheet was configured so negative numbers would show up in red. 

Negative numbers for either incremental cost or incremental hours should not be possible. As 

mentioned in Chapter 4, the negative numbers for cost usually signified an improper charge had 

been placed against the machine in a previous month. The negative number is the company's way 

of correcting that improper charge. In these cases, the correction described in Chapter 4 (get rid 

of the negative number and reduce the expense for the prior month or months) was applied. 

Negative numbers for hours did not occur as often. All occurrences of negative hours highlighted 

a meter change for the given machine. When a new meter is installed, the cumulative hours on 

that meter are zero. When the incremental hours are calculated using existing cumulative hours, a 

negative number can result (some companies account for this in their databases—others do not). 
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Table 6-3: Incremental Hours 

Equip. # 
Month 

Feb Mar Apr May Jun Jul Aug 
00102 49 30 111 121 55 122 153 

00207 164 98 120 1200 128 108 130 

00208 45 116 110 143 191 14 20 

00210 52 77 92 24 46 (6149) 114 

00213 156 220 gg 93 44 36 92 

00303 0 0 32 72 84 122 164 

00321 0 0 0 12 161 116 125 

00342 0 0 0 0 0 104 165 

For the meter changes, if it could not be determined how many hours the machine had actually 

worked the month of the meter change, the billable hours were used for that month. 

The second scan that had to be done on the table was for unusually large numbers. When 

exceptionally large repair costs were encountered, the reason for the large number was 

investigated. For some companies, this was simply a matter of looking at the data in its raw form 

to see where the costs came from. For companies that provided raw combined costs instead of 

costs by individual cost code, the equipment managers or equipment receipt files had to be 

consulted to determine why the large expense incurred. If the large expense was not related to 

maintenance and repair or if it was just a mistake, it was subtracted from the incremental costs for 

that month. This is the also the way in which corrections for wrecked or abused machines were 

made. 

6.3     INFLATION DATABASE 

The database Microsoft Access® was used to apply the inflation correction factors discussed and 

detailed in Appendix A. The data were put in a standardized format so that the data from all of 

the companies could reside and be manipulated within the same database. The database made the 

process of associating inflation indices for given months with the costs for those months easier 

than the process would have been had it been done exclusively in a spreadsheet. Some of the 

formatting had to be consistent across all tables in order for the database to work. 
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The date fields had to be standardized among the companies. The format selected was: yy-mm 

where yy consists of the final two digits of the year and mm consists of the month's number (1- 

12). A second data field that needed to be standardized was that of equipment number. This was 

more of a table check than a data manipulation issue. It had to be ensured that the formatting of 

this data field was consistent for the all company-specific tables that contained it. For instance, if 

the field was labeled as text field with 8 characters in on table, it could not be labeled a double 

precision numeric field with 6 characters in another table. 

Five tables were used for the companies that collected cumulative hours for each month; four 

tables were used for those companies that did not collect cumulative hours on a monthly basis. 

Two of these tables were common to all companies. These were the tables of inflation indices, 

their format is depicted in Table 6-4. Table 6-4a depicts the indices used for adjusting the 

purchase price of equipment, Table 6-4b shows the indices used for adjusting repair costs. The 

method for obtaining the indices is described in Appendix A. 

Table 6-4: Cost Indices 

a 

PurchaseDate PIndex 

87-01 1 

87-02 1.000818 

87-03 1.00491 

87-04 0.995908 

97-09 1.344517 

97-10 1.350245 

Month Rindex 

87-01 1 

87-02 1.002069 

87-03 1.006343 

87-04 1.00382 

97-09 1.391823 

97-10 1.396592 

There were also three possible company-specific tables. The first of these tables was used for 

every company. It contained data that was specific to each machine that did not change with the 

passage of time or with usage.   There was one line entry for each machine in the company that 
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was to be analyzed. An example of this table is depicted in Table 6-5.  The data included in this 

table are the equipment number, type, class, purchase month, and list price. 

Table 6-5: Equipment Static Data 

EQNU 
M 

EQNAME EQCLASS PMONTH PP 

225 Artie, Volvo A35 ar 93-06 402000 

226 Artie, Volvo A35 ar 93-06 402000 

307 - DOZER, CAT D-6HXL dl 94-06 197420 

308 - DOZER, D5H XL dl 92-06 177860 

324 - DOZER, CAT D-6H dl 87-06 165790 

356 - DOZER, CAT D-6H dl 87-01 165790 

728 - DOZER, CAT D-8N d3 89-06 311550 

746 - DOZER, CAT D-8 d3 93-06 353490 

747 - DOZER, CAT D-8N W/ RIPP d3 93-06 353490 

802 - DOZER, CAT D-8N W/RIPPE d3 94-06 363930 

The next two tables were fairly similar to each other. They are depicted in Table 6-6. Each table 

contains one line for each machine for each month that data are available. The first of the two 

tables contains the equipment number, the month, and the incremental monthly cost. For the first 

month's data on each machine the cumulative monthly cost is used instead of the incremental 

monthly cost. For example, the $154,916.40 monthly expenditure for machine number 225 in 

December of 1995 is the cumulative cost of maintenance and repairs up to that point in the 

machine's life. The $18,174.02 that is shown for the same machine in January of 1996 is the 

monthly cost for that month. The hour data that are depicted in Table 6-6b are cumulative hour 

data. The cost and hour data were kept separate at this juncture because they were already in a 

separated format (Section 6.2) for manual corrections and it was easier to import them into the 

database separately. Not all companies had tables that reflected the hours of use—the 

incorporation of their hourly data will be discussed in Section 6.4. 
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Table 6-6: Cost and Hour Tables 

a 

EQNU 
M 

MONTH MCOST 

225 95-12 154916.4 

225 96-01 18174.02 

225 96-02 602 

225 97-03 1925.11 

225 97-04 864.06 

225 97-05 463.68 

226 95-12 19453.15 

226 96-01 58.01 

EQNU 
M 

MONTH HOURS 

225 95-12 18339.25 

225 96-01 18471.25 

225 96-02 18631.25 

225 97-03 21080.75 

225 97-04 21104.75 

225 97-05 21271.75 

226 95-12 5216 

226 96-01 5352.5 

Once the data have been arranged into tables and imported into the database, the tables can be 

linked as a query to yield an output of the type desired. Sample output is shown in Table 6-7. 

Table 6-7: Output from Inflation Database 

EONUM EQCLASS HOURS PIndex Rindex Mindex PP/Pindex MCost/Rindex MCost/Mindex 

23789 aw 16654 1.023732 1.337708 1.18072 110245.7 62248.31 70524.83 

23789 aw 16732.5 1.023732 1.346301 1.185016 110245.7 840.9633 955.4213 

23789 aw 16732.5 1.023732 1.351025 1.187378 110245.7 2984.208 3395.497 

23789 aw 16848 1.023732 1.354263 1.188997 110245.7 1104.867 1258.439 

23789 aw 17008 1.023732 1.357591 1.190661 110245.7 926.6489 1056.564 

23789 aw 17080 1.023732 1.359705 1.191718 110245.7 1376.401 1570.421 

23789 aw 17208 1.023732 1.36101 1.192371 110245.7 662.3685 756.0484 

23789 aw 17344 1.023732 1.363574 1.193653 110245.7 2206.319 2520.398 

23789 aw 17494.5 1.023732 1.365238 1.194485 110245.7 7453.022 8518.442 

23789 aw 17704.5 1.023732 1.367712 1.195722 110245.7 1025.326 1172.806 

23789 aw 17905.5 1.023732 1.371085 1.197408 110245.7 1623.05 1858.464 
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The query was ran for each company. Most of the fields in Table 6-7 have already been discussed. 

An important exception is Mindex. Mindex was used in the formulation of the first data pair for 

each machine. It is the average inflation index for the period of time from machine purchase to 

the calendar point in time for which the first cumulative repair cost data are available. For some 

machines, these two points are essentially the same and the Mindex is not needed. 

Three calculated fields were: PP/Pindex, RC/Rindex, and RC/Mindex. These calculated fields 

were the inflation-adjusted cost data used in computing the CCI. This query was ran for each 

company as a whole and output was directed to the spreadsheet. The four table query for 

companies that did not have cumulative hourly data easily available was similar to this five table 

query with the exception of the omission of cumulative meter hours. The way in which these 

meter hours were obtained is discussed in Section 6.4. 

6.4     OIL SAMPLING DATABASES 

Three of the four companies involved in the study did not explicitly keep track of the cumulative 

meter hours on their machines. These companies did participate in periodic oil sampling 

programs, however. Data from the oil sampling databases and equipment receipt files provided 

the date linkage between cumulative hours of use and cumulative costs. The data obtained from 

equipment receipt files were taken from preventive maintenance reports and oil sample analysis 

printouts that were in the machine's individual files. Additional points were also available if there 

were any repair work orders that gave meter hour readings along with the date the repair was 

performed. The data obtained directly from oil sampling databases had to be processed and 

filtered using Monarch®. Before Monarch could be used, the coding process used by the analysis 

facility that produced the data had to be understood. Raw oil sampling data are depicted in Table 

6-8. 

The oil sampling reports consisted of strings of data. The vehicle identification portions of the 

data strings depicted in Table 6-8 have been omitted to save space. Area "A" of the table shows 

the portion of the data string that signifies the date the sample was taken. The string "951206" 

signifies that the sample was taken on 6 December, 1995. Area "B" shows the region of the data 

string that contains the cumulative meter hours for the piece of equipment at the time of the 
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sampling. In this case, the machine had 2124 hours at the time of the sample. The purpose of this 

example was to show how difficult it is to extract the data from this file if the exact location of the 

data is unknown. It is important to note that more than one data string is generated with each 

round of oil sampling. This is because more than one test is accomplished when the samples are 

submitted. After the date/cumulative meter hour data pairs were extracted from the data strings, 

duplicate pairs were eliminated. 

Table 6-8: Raw Oil Sampling Data 

96022253 960215000215200000NU00030429000800170071000200200004000000000000000000000000000000558NNN 

96022252 960215000215200000NN00060038000100030011000100170001000000000000000000000000000000878NNN 

96022251 96021500021520^~>Sy00030035000100030004000200330001OO00OO0OOOO0OOOOO0OOOOOOOOOO0OOOONNN 

95120975 95120600021^LA.  1^0740006000100040008000100040001000000000000000000000000000000213NNN 

95120974 9SJaaöpCwR2402124NN00020076000400300112000100120003000000000000000000000000000002368NNN 

9512097\951206^0212402124NIf T> 165000400080033000100130002000000000000000000000000000000000NNN D 
95120972 951206000412402 j|4tfYK_^014000100010006000100120001000000000000000000000000000000046NNN 

95120971 95120^0021240^204 YY00030017000100020004000100180001000000000000000000000OOOO0O00000ONNN 

96062170 960614000156500000NN00100011000100080021001000040001000200000000000000000000000000000NNN 

96062169 960614000156500000NN00010001000100010004000100010001000200000000000000000000000000206NNN 

The date/cumulative meter hour data pairs were then associated with date/cumulative cost data 

pairs. This is depicted in Table 6-9. It is important to note that cumulative costs were needed for 

this pairing. This ensured that no incremental costs were eliminated/lost. Associating the hour 

data with the cost data was a manual process. If a data point from the oil sampling database 

occurred on or before the 15th of the month, it was assumed to have occurred at the beginning of 

the month. If it occurred after the 15th of the month, it was assumed to have occurred at the end 

of the month. Cost data for a particular month are the cumulative costs for the end of the month. 

In Table 6-9, the first data pair from the oil sampling database was not usable to generate a point 

for use in the analysis. The oil change occurred at the beginning of April, 1996. It should have 

been associated with cost data from the end of March, 1996. It could not be, so it was not used. 

It can be seen that every month of cost data did not have an associated oil change to justify a data 

point. The last two oil samplings in Table 6-9 are also of interest. Both readings were taken at 

points in their respective months such that they both should have been associated with the cost 

data from December 1996.   It is not possible to associate two hour readings with one month's 
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worth of cost data. In this particular case, the hour reading from the 6th of January were used 

because it was taken on a date that was closer to the 31st of December than the other one. This 

was the other aspect of ensuring data points were not fabricated. No more than one month was 

associated with any given oil change and not more than one oil change was associated with any 

given month. 

Table 6-9: Oil Sampling Data Pair Association 

CostE »ata Association Oil Sampling Data 

Cum. Cost Month Hours Date Hours 

25000 Apr-96 04/01/96 12,857 

25500 May-96 13104 05/22/96 13,104 

27457 Jun-96 08/16/96 13,344 

30005 Jul-96 11/07/96 13,592 

30125 Aug-96 13344 12/22/96 13,878 

30125 Sep-96 01/06/97 13,978 

30700 Oct-96 13592 

30770 Nov-96 

31015 Dec-96 13978 

32500 Jan-97 

32900 Feb-97 

6.5     SPREADSHEET MANIPULATIONS TO END PRODUCT 

The final task in the process of forming the analysis data pairs was accomplished in the 

spreadsheet program. Although a number of these manipulations could have been done in the 

database program, some flexibility is lost when attempting to use the database program for data 

splitting. In a spreadsheet, it is much easier and faster to make observations and necessary 

adjustments if the prediction and validation sets are not "similar but different" on the first attempt. 

The first additional manipulation in the spreadsheet program was to add five additional columns to 

the output depicted in Table 6-7. These columns are depicted in Table 6-10. 
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Table 6-10: Additional Columns 

138 

EQ# CRC CCI HOURS 

/1000 

CCI-1 

23789 70524.83 1.639706 16.654 0.639706 

71365.8 1.647334 16.7325 0.647334 

74350.01 1.674403 16.7325 0.674403 

75454.87 1.684425 16.848 0.684425 

76381.52 1.69283 17.008 0.69283 

77757.92 1.705315 17.08 0.705315 

78420.29 1.711323 17.208 0.711323 

80626.61 1.731336 17.344 0.731336 

88079.63 1.798939 17.4945 0.798939 

89104.96 1.80824 17.7045 0.80824 

90728.01 1.822962 17.9055 0.822962 

The first additional column, "eq#", may seem to be a repeat of "EQNUM" from Table 6-7. The 

subtle difference is that only the first data string associated with each machine has an entry in the 

"eq#" column. The logic for doing this was "IF (EQNUM(current line) = EQNUM(previous line) 

THEN = "", ELSE = EQNUM(current line)". The data were sorted by equipment number then 

date before this was accomplished. 

The second column in Table 6-10 was cumulative repair cost. This was calculated using the 

following logic: "IF (eq#(current line)= "", THEN = crc (previous line) + Mcost/Rindex(current 

line), ELSE = Mcost/Mindex(current line). This ensured that data with the proper inflation 

corrections were used. 

The CCI was then calculated using Eq ?? from Chapter 1. The fourth and fifth columns, 

hours/1000 and CCI-1 were the format of the data needed for SAS. At this juncture, the 

procedures for incorporation of cumulative hours from oil-sampling databases were employed if 

necessary. 

If the data set was sufficiently large, the data-splitting technique described in Section 5.2.2 was 

used on the data following incorporation of the oil-sampling data (if applicable). The data 

splitting process was repeated if necessary to come up with suitable estimation and prediction data 
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sets. The prediction data were then set aside for future cross-validation. The data were then 

ready to be broken down into the SAS data sets. 

6.5.1   Data Set #1: All but repeated points 

The first data set, that of all available data points was formed by eliminating the repeated points 

from the estimation data set. This was done by adding two columns to the spreadsheet in Table 

6-10. The columns were identical to "hours/1000" and "cci-1" except that data pairs that had 

repeated values of "hours/1000" were eliminated. This is illustrated in Table 6-11. These two 

columns were then sorted in order of ascending hours/1000 with the blank spaces removed. They 

were then ready for SAS analysis. 

Table 6-11: All But Repeated Points 

Unfiltered Data Data for SAS 

Hours/1000 CCI-1 Hours/1000 CCI-1 

16.654 0.639706 16.654 0.639706 

16.7325 0.647334 16.7325 0.647334 

16.7325 0.674403 

16.848 0.684425 16.848 0.684425 

17.008 0.69283 17.008 0.69283 

17.08 0.705315 17.08 0.705315 

17.208 0.711323 17.208 0.711323 

17.344 0.731336 17.344 0.731336 

17.4945 0.798939 17.4945 0.798939 

17.7045 0.80824 17.7045 0.80824 

17.9055 0.822962 17.9055 0.822962 

6.5.2   Data Set #2: 500-hour intervals 

The second data set formed was that of data pairs at 500 hour intervals. Three additional 

columns were added to Table 6-10. This is illustrated in Table 6-12. The column "Rounded 

Hours" contains the cumulative hours rounded to the next lowest 500 hour interval. The first 

entry for each machine was marked as a negative number to signify that it would not be used as a 

data point (the only scenario where the first point could be used would be one in which the 

cumulative hours at that point fell exactly on a 500 hour interval. Interpolations were performed 
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between the data pairs associated with the first occurrence of each rounded 500 hour interval and 

the data pairs that immediately preceded them. As mentioned earlier, the data set depicted is not 

complete—there were usually more than two interval data pairs associated with each machine. 

Once again, after all the calculations were done, the data were sorted and the blanks were 

removed. 

Table 6-12: Interval Data Set 

Unfiltered Data 
Rounded 

Hours 

Data for SAS 

Hours/1000 CCI-1 Hours/1000 CCI-1 

16.654 0.639706 -16.5 

16.7325 0.647334 16.5 

16.7325 0.674403 16.5 

16.848 0.684425 16.5 

17.008 0.69283 17 17 0.69241 

17.08 0.705315 17 

17.208 0.711323 17 

17.344 0.731336 17 

17.4945 0.798939 17 

17.7045 0.80824 17.5 17.5 0.79918 

17.9055 0.822962 17.5 

6.5.3   Data Set #3: Average of 500-hour intervals 

The third data set formed consisted of the average values for each 500-hour interval represented 

in the interval data set. These averages could have been found in a number of different ways. It 

was found that a good way to do this was to use the pivot table feature in Microsoft Excel. The 

pivot table yielded the average values in a format that was already sorted with the blanks 

removed. 

6.5.4   Data Set #4: Final data points 

The final data set formed consisted of simply the last data pair for each machine. Once again, the 

data were sorted in ascending order and the blanks were removed. This was the final step of data 

preparation. 
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6.6    DESIRED END PRODUCT 

With all the data manipulations an filtering described, it is important to now understand what the 

end product is. The data will be entered into SAS in two columns. The columns are the data 

pairs that were described in Chapter 4. A depiction of what the analysis data sets will look like is 

available in Table 6-13. 

Table 6-13 : Desired Data Sets 

Data for Company "A" Off-Road Trucks 
All Points Intervals Ave. of ntervals Final 'oints 

Hours/ 
1000 CCI-1 

Hours/ 
1000 CCI-1 

Hours/ 
1000 CCI-1 

Hours/ 
1000 CCI-1 

7.011 0.624695 0.5 0.006842 0.5 0.003927 0.967 0.007021 

7.035 0.635745 0.5 0.002504 1 0.008361 1.083 0.006019 

7.203 0.646613 0.5 0.004825 1.5 0.014133 2.172 0.018362 

7.504 0.651539 0.5 0.001847 2 0.020078 2.28 0.029484 

7.573 0.653004 1 0.011799 2.5 0.031891 3.559 0.043702 

7.613 0.653004 1 0.006977 3 0.036653 4.251 0.059629 

8.175 0.585759 1 0.009102 3.5 0.066682 6.113 0.200166 

8.228 0.585909 1 0.017643 4 0.117545 6.234 0.26857 

8.28 0.585953 1 0.00595 4.5 0.186013 7.45 0.242082 

8.338 0.587091 1.5 0.01735 5 0.193697 7.613 0.653004 

8.388 0.590269 1.5 0.021579 5.5 0.22411 7.89 0.546645 

8.452 0.594843 1.5 0.01124 6 0.238062 8.034 0.354451 

8.51 0.596139 1.5 0.005462 6.5 0.275317 8.193 0.507619 
8.628 0.600877 2 0.031894 7 0.31547 9.532 0.671237 

8.715 0.604324 2 0.017498 7.5 0.415183 

8.751 0.607374 2 0.011302 8 0.3771 

9.305 0.645429 2 0.018463 8.5 0.427801 

9.514 0.6463 2 0.015884 9 0.484845 

9.532 0.671237 2.5 0.058791 9.5 0.550709 

The first column for each of the four data sets consists of the cumulative meter hours divided by 

1000. The second column is composed of the Cumulative Cost Indices (CCIs) associated with 

each of those hour meter values minus one (to facilitate regression through the origin). There are 

a total of eight columns for each machine. The first two columns are all of the data pairs available 
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for each machine except the duplicate data pairs. The second set of two columns are interpolated 

data pairs at 500 hour intervals for each machine. The third set of two columns are the average 

indices of those interpolated points. The fourth set of columns consists of only the final data pairs 

for each machine in the fleet. A total of 17 tables in format of Table 6-13 were produced in the 

course of the data preparation. 

6.7     SUMMARY 

This chapter was the first of three in Part III of the dissertation—"The Work". . This chapter was 

devoted to describing the data preparation process. It is the smallest chapter of the three in this 

part, but it represents the biggest time investment. It was important to be very meticulous at this 

stage of the research. If the data were unreliable due to improper formatting, conclusions based 

on them would be unreliable. The statistical analysis is also more streamlined and manageable 

when the data are all formatted the same way. 

Chapter 7 will take the data prepared in this chapter and analyze them thoroughly. The best 

model and the best data set will be chosen. Model validation for the selected model and data set 

will be presented. Chapter 7 will also provide a number of comparisons and sensitivity analyses. 



CHAPTER 7:   ANALYSIS 

The purpose of this chapter is to document the selection of the best statistical model for 

describing the CCI in terms of cumulative hours of use on construction machinery. Chapter 6 

explained how the four data sets for each of the 17 fleets of equipment were formed—these data 

sets will now be used to appropriate regression equations. The selection of the overall best 

statistical model and the selection of the best of the four data sets will be the end product of this 

chapter. 

In this chapter, the following main areas will be discussed/developed: 

• Preliminary analyses 

• Intermediate analyses 

• Model selection 

• Data set selection 

• Statistical performance 

7.1     PRELIMINARY ANALYSES 

The overall purpose of the preliminary analyses was to eliminate some of the 19 models that were 

under consideration. The preliminary analyses also were designed to give preliminary readings of 

how well the models performed. There were three aspects of the preliminary analyses in this 

research that were inter-related but are best discussed separately. They are the analyses pertaining 

to: 

• linear models 

• non-linear models 

• data set selection 

143 
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Comp. #1 
Fleet #1 

Comp. #1 
Fleet #2 

Comp. #2 
Fleet #1 

1 i    i    til ( 1 ) (1 ) ( 1 ) ( 1 i ( 1 ) ( 1 )    i    (1 

17 different fleets 

X 
4 data sets 
for each fleet 

X 

8  1(8 

19 regressions for 
each data set 
in each fleet 

101   (10)   f 10 j   (10)   (10)   (10)   (10)   (10)   (10)   (10)   (10)   (10] 

^0 00 0) 00 00 00 (") 00 00 00 00 0* 
"IM 00-00 (n) MM  00 (12) nn MM MM MM MM 

M3)   (iM   (iM   MM   MM   MM   MM   MM   MM   00   00   00 

/U\   (u)   M4J   M7)   ru)   M4)   M4)   M7)   M4)   (H]   M4j   (l? 

Q 00 00 00 00 00 00 00 00 00 00 00 
MM 00 00 00 00 00 00 00 00 00 00 00 
") 00 00 00 00 00 00 00 00 00 00 00 

MM   Ml)   MM   MM   MM   MM   Ml)   MM   MM   MM   MM   M8 

1292 
regressions 

19 19)   (19)   (19)   (19)   (19)   (19)   (19)   (19)   (19)   (19 19 

Figure 7-1: Preliminary Regressions 
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This section will discuss these three analyses and present the results. An overview of the nature 

of the task can be seen in Figure 7-1. There are a total of 1292 regression models at this stage of 

the analysis. The 19 different models were originally introduced in Chapter 5. They are presented 

again here as an additional reference: 

20. y = 1 + ßlX + £ 

21.y=l + ßix + ß2x
2 + e 

22. y = 1 + ßix + ß2x
2 + ß3x

3 + e 

23.y=l + ß4e
x +£ 

24. y = 1 L + ßix + ß2x
2 + ß4e

x + 8 

25. y = 1 [ + ß3X3 + 8 

26. y = ] [ + ßlX  + ß3X3 + 8 

27.y=l i + ßix + ß4e
x + 8 

28. y= 1 [ + ßix + ß3x
3 + ß4e

x + e 

29. y = 1 L + ßix + ß2x
2 + ß3x

3 + ß4e
x + e 

30. y = 1 [   +ß2X2  +ß3X3 + 8 

31.y=l [ + ß2x
2 + ß4ex + 8 

32. y = 1 [ + ß2x
2 + ß3x

3 + ß4e
x + 8 

33.y=] l + ß3x
3 + ß4e

x + e 

34. y = ] L + ß2x
2 + e 

35. y = . + ccxß                 transformed to: In(y-l) = = ln(a) + ßln(x) 

36. y = . + x^                   transformed to: ln(y-l) = = ßln(x) 

37. y = [ + eß(x)                transformed to: In(y-l)= = ßx 

38. y = 1 + aeß(x)             transformed to: ln(y-l) = = ln(a) + ßx 
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The first fifteen models are linear models—the coefficients are linear even though the regressors 
(x, x2, x3, and ex) may not be. The last four models are non-linear models—at least one of the 
coefficients is in a non-linear form. 

7.1.1   Linear Models 

As mentioned in Section 5.1.2, there were 15 linear models considered for expressing CCI in 

terms of cumulative hours of use. These linear models represent all possible combinations of the 

regressors: x, x2, x3, and ex except for the model that has no regressors in it. It was expected that 

some of the models would yield adequate results and that some would not. 

The preliminary analysis was performed by subjecting the four data sets from each of the 

seventeen groups of equipment under consideration to the NOINT macro in SAS PROC IML. 

Sample output from the NOINT macro is depicted in Table 7-1. Fifteen regressions were 

performed each time the NOINT macro was used. 

Table 7-1: Sample NOINT Output 

X X2 X3 EXP_X MSE RSQ ADJRSQ CP RSQPRESS SETNUM COMPNUM EQTYPE 

0.00499 0.00019 0.01099 0.84125 0.84031 0.16 0.83855 2 3 

0.0096 0.00776 0.01101 0.84101 0.84007 0.67 0.83868 2 3 

0.00468 0.00023 -6E-07 0.01102 0.84132 0.83991 2 0.8381 2 3 

-0.0024 0.00564 0.00015 0.01102 0.84128 0.83986 2.1 0.83829 2 3 

-0.0082 0.00754 4.6E-07 0.01103 0.84108 0.83967 2.51 0.83819 2 3 

-0.0003 0.00479 0.00022 -6E-07 0.01105 0.84132 0.83943 4 0.83781 2 3 

0.01415 0.0006 -2E-06 0.01107 0.84062 0.8392 3.49 0.83762 2 3 

0.00642 1.6E-06 0.01108 0.84 0.83906 2.8 0.8374 2 3 

0.01745 0.00052 0.01111 0.83947 0.83852 3.93 0.83697 2 3 

0.00665 0.01114 0.83854 0.83806 3.9 0.83677 2 3 

0.00084 -6E-06 0.01163 0.83197 0.83097 19.82 0.82898 2 3 

0.00073 0.01261 0.81728 0.81675 48.9 0.81531 2 3 

0.04442 9.3E-06 0.0142 0.79479 0.79358 98.53 0.78956 2 3 

0.05428 0.0189 0.72619 0.72538 241.79 0.7236 2 3 

2.8E-05 0.05714 0.17206 0.16962 1415.17 0.13897 2 3 

The first four columns are the parameter estimates. The next five columns are measures of 

effectiveness. "SETNUM" is a number from one to four that identifies the data set in use. 

"COMPNUM" identifies the company and "EQTYPE" identifies the fleet. The NOINT macro 

was used 68 times—four times (once for each data set) for each of the seventeen fleets. The 

output from all 68 of these SAS runs was then combined in an Excel spreadsheet.  An algorithm 
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was written in Excel to assign the appropriate model number (1-15) based on the presence of 

values in the first four columns. The Excel file was then brought back into SAS for Kruskal- 

Wallis analysis of the rankings of adjusted R2 and R2
press values. For both of these analyses, a 

higher mean score signifies a better model. 

The rankings for adjusted R2 for all of the models are shown in Table 7-2. High values signify a 

model with better performance. The model numbers correspond to those listed in Chapter 5. The 

p-value of the test was less than 0.0001. Based on these rankings, the best performing single 

parameter model was x2 (#15), the best two parameter model was x, x3 (#7), the best three 

parameter model was x2, x3, ex (#13), and the full model (#10) performed the better than any of 

the partial models. 

Table 7-2: Linear Adjusted R2 Rankings 

Model # 
Mean 
Score 

10 662.669118 

13 642.838235 

9 632.286765 

3 622.830882 

5 621.176471 

7 601.316176 

11 590.941176 

2 585.455882 

12 572.764706 

14 525.455882 

8 520.941176 

15 502.544118 

6 433.132353 

1 404.014706 

4 161.161765 

The rankings according to R2
press are depicted in Table 7-3. Once again, the p-value of the test 

was less than 0.0001. When ranked by R2
press, the best performing models were x2 (#15) for single 

parameter models; x, x2 (#2) for two parameter models; x, x2, x3 (#3) for three parameter models. 

The full model (#10) performed well, but was not the top performing model. 
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Table 7-3: Linear R press Rankings 

Model # Mean 
Score 

2 632.625 

7 625.75 

11 619.286765 

3 612.727941 

10 600.933824 

13 572.727941 

15 569.823529 

9 567.147059 

5 560.757353 

12 524.610294 

6 497.588235 

1 494.183824 

8 490.316176 

14 488.316176 

4 184.647059 

An aid for visualizing the rankings in the above two tables is provided in Table 7-4. Models that 

are in the upper left corner of this matrix are the models that performed well in both measures of 

effectiveness. Models selected for further consideration are depicted with non-filled circles, 

models eliminated from consideration are depicted with blackened circles. The cutoff line was 

drawn at roughly a 45 degree angle to separate most of the models selected from the rest of the 

pack. The models above the cutoff line were: 2, 3, 7, 10, and 13. An exception was made to the 

cutoff line to include two single parameter models. Model 15 (x2) was included because it was 

the best-performing single parameter model. Additionally, the single parameter model 1 (x) was 

chosen for further study for comparison purposes. 
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Table 7-4: Comparison Matrix for Linear Models 

K2 
•^ press 

Rank 2 7 11 3 10 13 15 9 5 12 6 1 8 14 4 

It 

< 

10 O 

13 O 
Cutoff Line 

9 • 

3 O 

5 • 

7 O 

11 rm 

2 O^ 

12^ • 

14 • 

8 • 

15 O 

6 • 

1 O 

4 • 

7.1.2   Non-Linear Models 

The non-linear models did not lend themselves well to the use of the NOINT macro. This is 

because some of the non-linear models had an intercept term and some did not (this intercept term 

is eliminated after all the log transformations are made).  So, each of the four non-linear models 
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were analyzed separately for each of the 68 data sets (17 x 4). The SAS results were collated and 

filtered in Monarch before being brought back into SAS for non-parametric analysis. 

Table 7-5: Non-Linear Adjusted R2 Rankings 

Model # Mean Score 
16 191.6418 
18 174.6418 
19 91.23881 
17 80.47761 

Table 7-6: Non-Linear R2
press Rankings 

Model # Mean Score 
16 186.4179 
18 168.1045 
17 93.73134 
19 89.74627 

Table 7-7: Comparison Matrix for Non-Linear Models 

R2 xv
 press 

Rank 16 18 17 19 

as 

< 

16 O 

18 • 

19 • 

17 • 

The results for the Kruskal-Wallis tests pertaining to adjusted R2 and R2preSs for the non-linear 

models are shown in Table 7-5 and Table 7-6. These results are combined in Table 7-7. Model 

16 (y = 1 + ocxp) had the best ranking for both of these measures of effectiveness. When all four 
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non-linear models were analyzed together, the p-values were less than 0.0001 for both measures 

of effectiveness. 

Model 18 (y = 1 + ep(x)) seemed to perform reasonably well compared to model 16 for both types 

of R2. The Wilcoxon rank sum test (same as Kruskal-Wallis except there are only two levels) was 

performed on the rankings of model 18 vs. model 16. The tests were significant with p-values of 

0.0232 for adjusted R2 and 0.0381 for R2
press. Based on this, model 16 will be the sole non-linear 

model that will undergo the detailed analysis. 

7.1.3   Data Sets 

The data sets were evaluated at this point more as a matter of interest than as a filter to cut down 

on the number of intermediate analyses. It was felt that it would be good to get a preliminary 

look at how well each data set performed when viewed from a macro level for all possible models. 

Each of the seventeen fleets was represented by four different data sets. The four data sets as 

presented in Chapter 4 were: 

• Data set 1: all data pairs except for repeated points 

• Data set 2: data pairs interpolated to 500 hour intervals 

• Data set 3: average values of data pairs interpolated at 500 hour intervals 

• Data set 4: only the final data pair for each machine 

The results of the Kruskal-Wallis tests concerning the data set types are given in Table 7-8 and 

Table 7-9. The p-values for both tests were less than 0.0001. 

Table 7-8: Data Set Adjusted R2 Rankings 

Set# Mean Score 

3 680.088235 
4 527.564338 
2 495.931985 
1 474.415441 
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Table 7-9: Data Set R2
press Rankings 

Set# Mean Score 

3 691.387868 
1 580.645221 
2 560.505515 
4 345.461397 

Table 7-10: Comparison Matrix of Data Sets 

R2 
•"■ press 

Rank 3 1 2 4 

3 O 

4 O 

2 O 

1 o 

These results are presented graphically in Table 7-10. Looking strictly at the numbers, it appears 

that set number 3 is clearly the best—but the statistical concerns with the different data sets must 

be considered before making a definitive decision on which data set is the best. If data set 3 is 

eliminated, the other three data sets have similar performance (with the exception of data set 4 for 

"■ press-) 

7.2     INTERMEDIATE ANALYSIS 

The intermediate analysis provides the basis for the further narrowing of model and data set 

choices. As a recap, the following 8 models were selected for the intermediate analysis during the 

preliminary analysis stage: 

Model#l:y=l + ßix + e 
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• Model #2: y = 1 + ßix + ß2x
2 + e 

• Model #3: y = 1 + ßix + ß2x
2 + ß3x

3 + e 

• Model #7: y = 1 + ßix + ß3x
3 + 8 

• Model #10: y = 1 + ßix + ß2x
2 + ß3x

3 + ß4e
x + 8 

• Model #13: y = 1 + ß2x
2 + ß3x

3 + ß4e
x + 8 

• Model#15:y=l + ß2x
2 + s 

• Model #16: y = 1 + axß        -transformed to-- ln(y-l) = ln(a) + ßln(x) 

Represented on this list are the best one, two, and three parameter linear models for each of the 

two measures of effectiveness that were considered in the rough analysis. The full linear model 

and the best non-linear model are also on the list. The only model on the list that is not there due 

to its performance is model #1. Model #1 is included so that the simplest definition of CCI in 

terms of cumulative hours of use can be evaluated as it relates to the other models. 

The intermediate analysis took part in two stages. Stage one concerned the significance of the 

parameters in the models. Stage two revisited the measures of performance. 

7.2.1   Stage 1: Parameter Significance 

Parameter significance is a very important part of model selection. If the parameters involved in a 

model are not statistically significant, it is doubtful that the model associated with those 

parameters is the best one to describe the phenomenon under study. The eight models listed 

above were again analyzed using SAS®. This time instead of using a macro from within PROC 

IML, the regressions were performed using the PROC REG option—this provided more detailed 

information on each of the regressions. Figure 7-2 shows the regressions to be accomplished at 

this stage of the analysis—a total of 544. 
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Comp. #1 
Fleet #1 

Comp. #1 
Fleet #2 

Comp. #2 
Fleet #1 

17 different fleets 

X 
4 data sets 
for each fleet 

X 
8 regressions for 

each data set 
in each fleet 

544 regressions 

Figure 7-2: Stage One Intermediate Analysis Regressions 

The average p-values for each the parameters in each of models listed above are given in Table 

7-11. Recall that lower p-values indicate higher parameter significance. Recall that in Chapter 5 

the decision criteria of p-value less than or equal to 0.2 was given for acceptance of the parameter 

as part of the model. On average, models 3, 10, and 13 do not meet this decision criteria. This 

leaves only the one and two parameter models. This is not entirely surprising. As parameters are 

added to a model, the significance of the parameters already in the model tends to decrease (p- 

values go up). Of the two parameter models, model 16—the non-linear model—has the lowest p- 

values for its parameters. Models 2 and 7 meet the standard and are acceptable, but are not quite 

as good model 16. The parameter significance for the single parameter model x was slightly 

better than that of the model x2—but both were well within the tolerances specified. 

Summarizing, models 3, 10, and 13 are eliminated from contention at this point. Models 1, 2, 7, 

15, and 16 are still under consideration. 
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Table 7-11: Average p-values For Parameter Significance 

ex intercept ln(x) X x2 x3 

Model 1 0.003033824 

Model 2 0.167873529 0.075336765 

Model 3 0.330389706 0.226152941 0.252830882 

Model 7 0.121214925 0.076108955 

Model 10 0.277932836 0.346692537 0.330731343 0.2461.59701 

Model 13 0.279404478 0.172791045 0.223204478 

Model 15 0.006252239 

Model 16 0.027734328 0.056825373 

Table 7-12: p-values by Data Set 

PARAMETER 
MODEL SETNUM ex Intercept ln(x) X x2 x3 

1 1 0.0001 
. 2 0.000247 

3 0.000494 

4 0.011294 

2 1 0.045671 0.042053 

2 0.121706 0.060482 

3 0.117112 0.008482 

4 0.387006 0.190329 

7 1 0.080482 0.027253 

2 0.115329 0.053847 

3 0.128088 0.0158 

4 0.163444 0.21575 

15 1 0.000112 

2 0.001759 

3 0.004265 

4 0.019663 

16 1 0.003841176 0.043382 

2 0.035352941 0.055582 

3 0.036358824 0.064647 

4 0.0358625 0.064119 

The performance of the various data sets regarding p-values was also evaluated at this point. 

Table 7-12 depicts the p-values of each of the five models still under consideration broken down 

by data set. For the four different data sets, the only one that did not consistently provide p- 

values that met the criteria was data set number four—the data set consisting of solely the final 

data pair for each machine. This is due to a smaller number of points available for the regression. 
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The smaller number of points makes the tests concerning data set 4 less powerful. The other 

three data sets provided acceptable average p-values for all five models still under consideration. 

Data set 1 (all but repeated data points) provided the lowest p-values for all models still under 

consideration. Data set 2 (500-hour intervals) provided slightly better p-values than data set 

number 3 (averages of 500-hour intervals) in most cases. Data set 4 is eliminated from 

consideration at this point due to its failure to meet the decision criteria in all cases combined with 

its performance regarding R2
press (Section 7.1.3). 

7.2.2   Stage 2: Measures of Performance 

It is important to take a more detailed look at adjusted R2 and R2
press now that a number of models 

have been eliminated from consideration. The models left at this point are: 

• Model #l:y= 1 + ßix + e 

• Model #2: y = 1 + ß^ + ß2x
2 + e 

• Model #7: y = 1 + ß,x + ß3x
3 + e 

• Model#15:y=l + ß2x
2 + 8 

• Model #16: y = 1 + ccxp        -transformed to- ln(y-l) = ln(oc) + ßln(x) 

Also, data set number 4 was eliminated. The regressions undertaken for this stage of the analysis 

are depicted in 

Figure 7-3. There are a total of 255 regressions to analyze at this stage. To take a closer look at 

the actual performance, SAS® was used to calculate the mean values for each of the measures of 

performance for each model. Then parametric tests were performed to discern the differences 

between the five models. The SAS output for these tests is given in Figure 7-4 and Figure 7-5. 

Fisher's Least Significant Difference test was the statistical test used. A good discussion of this 

test appears in Ott (1993, pp. 807-836). 
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Comp. #1 
Fleet #1 

Comp. #1 
Fleet #2 

Comp. #2 
Fleet #1 

17 different fleets 

X 
3 data sets 
for each fleet 

X 
5 regressions for 
each data set 
in each fleet 

255 regressions 

Figure 7-3: Stage Two Intermediate Analysis Regressions 

Fisher's Least Significant Difference (LSD) places sample means into groups that can be 

considered to have similar mean values. For adjusted R2, there were two groupings. Group "A" 

contained models 2, 7, 16, and 15 (in that order). Group "B" contained models 15 and 1. The 

adjusted R2 values for group "A" were better than those for group "B". Model 1 had significantly 

worse performance than the two-parameter models. Model 15, although included at the bottom 

of group "A", did not fit the data nearly as well as the two parameter models. A model that has 

an adjusted R2 of less than 0.5 (on average) is probably not as good as one that has an adjusted R2 

of better than 0.75 (on average). 

It is important to note that the standard deviation of model 15 was nearly 5 times that of the best 

performer, model 2. Model 1, the other single parameter model, also had a high standard 

deviation. The reason that the standard deviation can be greater than the normal range of R2 

(0.00-1.00) is that Myers' definition for adjusted R2 for models without intercepts allows for 

negative values (Myers, 1990). In common sense terms, this implies that the one-parameter 

models can do a decent job in some instances—but do a poor job in others. One parameter does 

not allow the model sufficient freedom to provide a good fit in all cases. The standard deviations 
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of the two-parameter models are all very similar—and quite a bit smaller than those of the single 

parameter models. The tighter standard deviations imply that two parameters provide the models 

with enough flexibility to fit the data in most cases. The Fisher groupings tell only part of the 

story. The single parameter models just don't do as good a job at fitting the data as the two- 

parameter models. 

Level o1 F -ARSQ 

MDL N Mean SD 

1 51 0.43397137 1.01984163 

2 51 0.76335765 0.26321169 

7 51 0.76254608 0.27343780 
15 51 0.49652647 1.27446186 
16 51 0.76166863 0.30416548 

T tests (LSD) for variable: ARSQ 

Alpha= 0.05 df= 250 MSE= 0.580179 
Critical Value of T= 1.97 

Least Significant Difference= 0.2971 

T Grouping 

A 
A 
A 
A 
A 
A 

B      A 
B 
B 

Mean N MDL 

0.7634 51 2 

0.7625 51 7 

0.7617 51 16 

0.4965 51 15 

0.4340 51 1 

Figure 7-4: Adjusted R Output 

The results concerning R2
press were similar. Once again, the single parameter models had less 

suitable mean values than the two-parameter models. The single parameter models also had 

significantly greater variability than the two-parameter models. The "A" group for Fisher's LSD 

test was identical for the "A" group described above for adjusted R2. The "B" group included the 

single parameter models, but also included model 16. Model 16 had a mean R2
press that was less 

than models 2 and 7. The standard deviation for model 16 was also 50% greater than the 

standard deviation of the other two two-parameter models. 
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General Linear Models Procedure 

Level of  RSQPRESS  

MDL N Mean SD 

1 51 0.40481549 1.06850533 
2 51 0.74405745 0.28206933 

7 51 0.73817059 0.29623492 

15 51 0.47509941 1.31228486 
16 51 0.70721221 0.44113279 

T tests (LSD) for variable: RSQPRESS 
Alpha= 0.05 df= 250 MSE= 0.645142 

Critical Value of T= 1.97 
Least Significant Difference= 0.3133 

T Grouping 

A 
A 
A 
A 

B     A 
B     A 
B      A 
B 
B 

Mean N MDL 

0.7441 51 2 

0.7382 51 7 

0.7072 51 16 

0.4751 51 15 

0.4048 51 1 

Figure 7-5: R2
press Output 

On the basis of performance regarding adjusted R and R press, both of the single parameter models 

are eliminated from consideration at this stage. It is important to note that model 15 (x2) 

performed better than model 1 (x). This helps to confirm that the growth of repair costs with 

accumulated hours is not a constant. A model that allows some curvature fits and predicts better 

than one that allows no curvature. 

7.3     MODEL SELECTION 

Three acceptable regression models were identified for further investigation in the intermediate 

analysis. These three models were: 

• Model #2: y = 1 + ßix + ß2x
2 + e 

• Model #7: y = 1 + ßix + ß3x
3 + e 

• Model #16: y = 1 + axß        --transformed to-- ln(y-l) = ln(a) + ßln(x) 

The most appropriate of these three models will be selected in this section based upon a statistical 

issues and a comparison of the results obtained using the models.    The regressions to be 



Results 160 

performed for the initial stages of this analysis are depicted in Figure 7-6—there are 153 for this 

stage of the analysis. 

Comp. #1 
Fleet #1 

Comp. #1 
Fleet #2 

Comp. #2 
Fleet #1 

2      3 

17 different fleets 

X 
3 data sets 
for each fleet 

X 
3 regressions for 
each data set 
in each fleet 

153 regressions 

Figure 7-6: Regressions for Final Model Selection 

7.3.1   Statistical Issues 

A recap of how each of the three models fared concerning parameter significance and measures of 

performance is in order. Table 7-13 contains the average parameter significance for each of the 

three models for 17 fleets of equipment with three data sets each. Table 7-14 contains the 

average adjusted R2 values and the average R2
press values for each of the three models. This table 

also contains the standard deviations for the measures of performance. 

Table 7-13: Parameter Significance 

MODEL 
PARAMETER 

INTERCEPT In(x) X x2 x3 

2 0.0948 0.0370 

7 0.1079 0.0323 
16 0.0251 0.0545 
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Table 7-14: Measures of Performance 

Model Radi R2I >ress 

Mean S Mean S 

2 0.7633 0.2632 0.7440 0.2820 
7 0.7625 0.2734 0.7381 0.2962 
16 0.7616 0.3041 0.7072 0.4411 

As can be seen from Table 7-13, the parameter significance for each of the three models improved 

slightly over what was presented in Section 7.2.1. The reason for this is the elimination of data 

set number 4 (final data pairs only). Model 2 is slightly better than model 7 for significance of "x" 

while model number 7 still retains a slight edge in parameter significance for the second 

parameter. Model number 16 is still better on average than the other two models, but not by the 

same margin as in Chapter 6. Although the first parameter for model 16 is clearly the most 

significant in the study, the second parameter is no longer the second best. All p-values were 

substantially better than the minimum requirement of p-value < 0.20 though, and none of the three 

models can be ruled out solely on the basis of p-values for parameter significance. 

In terms of adjusted R2 and R2
press, model 2 performed slightly better than models 7 and 16. The 

differences for R2
press were more than those for adjusted R2, but not by so much that any one of 

the three models could be ruled out. However, the standard deviations for both measures of 

effectiveness were both higher for model 16—around 50% higher for R2
press. But, once again, the 

measures of effectiveness are similar and acceptable—none of the three models can be ruled out 

solely on the basis of these measures. It can be said at this point that any one of these three 

models would probably do an adequate job of describing the CCI in terms of cumulative hours of 

use. But which one is best? 

When working with models that use powers of the same regressor variable to describe the 

response variable, it is a generally accepted practice that all powers of the regressor variable up to 

the highest value in the model be included in the model. This is not to say that it is wrong to use a 

model such as model 7—it just is not as tidy a solution as would be desired. All other things 

being equal, model 2 is a better choice than model 7. Model 2 conforms with generally accepted 
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practice. But, all other things are not exactly equal. Model 2 performs better than model 7 for 

both measures of performance (albeit by a small margin). If the p-values presented in Table 7-13 

are averaged for each model the results are: 

• Model 2:   0.0659 

• Model 7:   0.0701 

• Model 16: 0.0398 

Again, the difference between model 2 and model 7 is very slight, but model 2 edges out model 7. 

On this basis, model 7 is eliminated from contention. Model 2 is simpler, and it is ever so slightly 

better. 

It is difficult to choose between model 2 and model 16 on the basis of simplicity or on the basis of 

straight statistical output presented thus far. Both models are simple to use and clean. Model 16 

is better in terms of parameter significance and model 2 is better in terms of measures of 

performance. The statistical issues presented in Chapter 5 can provide some basis for the 

selection. The added concern of multiplicative versus additive error terms is a strike against 

model 16—and makes model 2 a little more attractive. 

7.3.2   Preliminary Results 

Comparisons of some of the actual results (L*) produced by the two models were accomplished. 

These results are depicted in Table 7-15. The results are in thousands of hours. For the purposes 

of this analysis, the results obtained using data set 3 were used (best performance without regard 

to statistical issues). The L* values in the table that are zero indicate fleets where the regressions 

produced curves that were not concave (no optimum solution). This will be addressed further in 

Chapter 8. 

A specific problem areas for model 16 was the large dozers. Although some portion of a large L* 

can be attributed to collateral costs which were not included (this will be discussed further in 

Chapter 8), some of the L*'s produced using model 16 were exceptionally large. Specifically, the 

two fleets with lifespans of over 60 years are cause for concern. There was also a good deal more 
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variability in the results produced by model 16. Using model 2, the three fleets of articulated 

trucks analyzed had L* values that fell within 6000 hours of each other. The L* values for the 

same fleets found using model 16 covered a range of over 20,000 hours. The same can be said of 

mid-size dozers. Model 2 does have the same shortcoming regarding mid-size excavators—but 

this shortcoming was expected due to differences in the fleets analyzed and will be further 

addressed in Chapter 8. It is the opinion of the researchers that the L* values produced by model 

2 are more consistent with experience than those produced by model 16. 

Table 7-15: L* Model 2 vs. Model 16 

FLEET L* Model 2 L* Model 16 
Articulated Trucks 17.39 11.54 

Articulated Trucks 15.63 31.83 

Articulated Trucks 11.98 17.94 

Dual-engine Scrapers 36.61 57.88 

Large Dozers 32.67 63.79 

Large Dozers 44.75 92.86 

Large Dozers 0.00 45.56 

Large Dozers 0.00 0.00 

Mid-size dozers 10.15 6.03 

Mid-size dozers 11.13 15.10 

Mid-size dozers 18.80 26.33 

Mid-size Excavators 22.99 30.65 

Small Excavators 51.18 45.03 

Small Excavators 11.39 16.22 

Track Loaders 22.10 28.22 

Wheel Loaders 23.89 22.42 

Wheel Loaders 0.00 0.00 

Model 2 is superior to model 16 in measures of performance, statistical simplicity, and actual 

results produced. Model 16 is better than model 2 regarding the significance of model 

parameters. Based on these considerations, model 2 is chosen as the best model for the purposes 

of this research. Although models 7 and 16 would probably provide adequate performance, it is 

felt that model 2 is superior when all things are considered. 
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7.4     DATA SET SELECTION 

The second selection that must be made to complete the analysis is that of which data set is the 

best. After the selection of model 2 as the best model in Section 7.3, the remaining regressions to 

be analyzed are reflected in Figure 7-7. The 1292 regressions that the analysis started with have 

been pared down to 51. 

Comp. #1 
Fleet #1 

Comp. #1 
Fleet #2 

Comp. #2 
Fleet #1 

1 r ) r ) 1 r ) r \ 1 r ) r 1 

(2)(2)(2)     (2)(2)(2)     (2)(2)(2) 

.   . 17 different fleets 

X 
... 3 data sets 

X 
.   .  1 regression 

51 regressions 

Figure 7-7: Regressions for Data Set Selection 

7.4.1   Parameter Significance 

Once again, parameter significance is a concern. The parameter significance for the three data 

sets as they relate to model 2 are depicted in Table 7-16. All three data sets met the criteria of p- 

value < 0.20 for both parameters. Data set 1 had the best average p-values and the lowest 

average variability. Data set 3 was second best and data set 2 was the third best. It is important 

to note that for all three of the data sets, the parameter significance for x2 was better than that for 

x. The importance of this will be demonstrated in Chapter 8. Results obtained from this model 

are more sensitive to the values associated with x2 than they are to the values associated with x. 

It should be mentioned that the results obtained for these p-values are relatively predictable. It 

makes sense that data sets 1 and 3 did better than data set 2. Data set 1 had a lot of redundancy 
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(nearly repeated points) in its data pairs. Data set 3 had a certain amount of variability removed 

when the 500-hour interval values were averaged. 

Table 7-16: Parameter Significance for Data Sets for Model 2 

Data Set Data X x2 Total Average 

1 
Average of PVALUE 0.045670588 0.042052941 0.043861765 

StdDevofPVALUE 0.084678346 0.145816233 0.117426441 

2 
Average of PVALUE 0.121705882 0.060482353 0.091094118 

StdDevofPVALUE 0.167332664 0.1938043 0.18097597 

3 
Average of PVALUE 0.117111765 0.008482353 0.062797059 

StdDevofPVALUE 0.232983033 0.02046681 0.17193222 

7.4.2   Measures of Performance 

Measures of performance should also be compared to select the best data set.   Results from 

Fisher's LSD comparisons of adjusted R2 and R2
press are presented in Figure 7-8 and in Figure 7-9. 

General Linear Models Procedure 

Level of 

SETNUM     N 

17 

17 

17 

Mean 

0.72466000 

0.72365941 

0.84175353 

-ARSQ- 

SD 

0.25353625 

0.26825152 

0.26545459 

T tests (LSD) for variable: ARSQ 

Alpha= 0.05 df= 48 MSE= 0.068902 

Critical Value of T= 2.01 

Least Significant Difference= 0.181 

T Grouping 

A 

A 

A 

A 

Mean N SETNUM 

0.84175    17 3 

0.72466    17 1 

0.72366 17 2 

Figure 7-8: Adjusted R Values for Data Sets 
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General Linear Models Procedure 

Level of  RSQPRESS  

SETNUM    N Mean SD 

1        17 0.71629471 0.26056798 

2       17 0.69856529 0.28777808 

3       17 0.81731235 0.29866926 

T tests (LSD) for variable RSQPRESS 

Alpha= 0 05 df= 48 MSE= 0 079972 
Critical Value of T= 2 01 

Least Significant Difference = 0.195 

T Grouping Mean N SETNUM 

A 0.81731 17 3 

A 
A 0.71629 17 1 

A 
A 0.69857 17 2 

Figure 7-9: R2
press Values for Data Sets 

Although there was only one grouping for both adjusted R2 and R2press, data set 3 definitely had 

better performance than the other two models. Data sets 1 and 2 had values approximately 0.1 

below the values for data set 3 for both measures of performance. Data set 1 performed slightly 

better than data set 2. Once again, this is not a surprise. 

7.4.3   Statistical Issues 

A short review of the statistical issues concerning each data set is in order. All three data sets 

seem to produce adequate results. The statistical concerns regarding the data sets will have an 

impact on which data set is ultimately chosen. 

Data set 1 is composed of all data pairs except for those that are repeated. Data set 1 has issues 

regarding the independence of data pairs, relative dominance, and interval between data pairs. 

Data set 2 partially addresses all of these issues, but does not completely solve the problems of 

independence and relative dominance. Data set 3 goes further to eliminate the independence 

problems and the relative dominance problems—but other problems are introduced. By using 

average values, the measures of performance are artificially skewed to appear better and any 

confidence intervals generated are not valid in the same sense as those produced by the other 2 

data sets. 

i 
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Of the three data sets, data set 2 seems to be the best choice statistically. It is not as statistically 

pure as data set 4 (which was eliminated for failure to produce acceptable p-values for parameter 

significance), but it does eliminate at least so of the data dependence and relative dominance of 

data set 1 without creating additional concerns due to the use of average values. 

7.4.4   Sensitivity of ß's to Data Set 

To aid in the decision-making process, an analysis of the sensitivity of the ß values to data set was 

accomplished. As a start to this analysis, Fisher's LSD was performed on the ß values for the 

three different data sets. The results of these comparisons are depicted in Figure 7-10 and in 

Figure 7-11. 

General Linear Models Procedi re 

Level of  X- 

SETNUM    N Mean SD 

1        17 0.00998818 0.02550438 

2       17 0.00853806 0.02455123 

3       17 0.00775206 0.02483338 

T tests (LSD) for variable: X 

Alpha= 0.01 df= 48 MSE= 0 000623 

Critica] Value of T= 2 68 
Least Significant Difference= 0.023 

T Grouping Mean N SETNUM 

A 0.009988 17 1 

A 
A 0.008538 17 2 

A 
A 0.007752 17 3 

Figure 7-10: Comparison of ß Values for x 

Fisher's LSD test was performed at the 99% confidence level for these two tests. It can be seen 

that the differences in the average ß values are slight—all three data sets were grouped together. 

The variances for the ß values for each parameter were nearly identical for all three data sets. The 

data sets are, after all, different permutations of the same data. It is encouraging that the mean 

values for the ß for x2 were nearly identical. The ß values for x2 have a much greater impact on 

the results of the regression than those for x. As will be demonstrated in Chapter 8, the ß value 

for x2 is the sole determinant of L* for a given fleet of equipment. 
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General Linear Models Procedu re 

Level of X2- 
SETNUM    N Mean SD 

1        17 0.00259902 0.00335241 

2        17 0.00269420 0.00336620 

3        17 0.00274414 0.00349645 

T tests (LSD) for variable X2 
Alpha= 0.01 df = 48 MSE= 0 000012 

Critical Value of T= 2 68 
Least Significant Difference= = 0.0031 

T Grouping Mean N SETNUM 

A 0.002744 17 3 

A 
A 0.002694 17 2 

A 
A 0.002599 17 1 

Figure 7-11: Comparison of ß Values for x2 

The ß values were also compared by determining the percentage difference for the ß values for 

each of the two parameters for each of the 17 fleets for each data set. Data set 1 was used as the 

baseline. On average, the ß values for x differed by 5% within each fleet. The ß values for x2 

differed by only 4%. A 4% difference in ß for x2 equates to approximately a 500 hour difference 

in the value of L* for a fleet of machines with a baseline L* of 10,000 hours. This is not that 

great of a difference. 

7.4.5   The Selection 

There is a good deal more judgment involved in the decision of which data set to select than there 

was in the selection of the best model. All three of the data sets still in contention provided 

adequate p-values for parameter significance. Data set number 3 clearly provided the best 

measures of performance, but the measures of performance for data sets 1 and 2 were adequate. 

Data set number 2 addresses most of the statistical problems of data set 1 without introducing 

new ones like data set 3 does. 

The bottom line is that all three of the data sets produce nearly the same results. Because of this, 

data set 2 is chosen as the best data set to use.   Data set 1 had too many unresolved statistical 
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issues. Data set number 3 created too many new statistical issues—its improved performance in 

adjusted R2 and R2
press came at a price. Data set 2, although not statistically pure, is the best 

choice under these circumstances. Figure 7-12 provides a stark contrast to Figure 7-1 which 

appeared in the beginning of this Chapter. The large number of regressions in the beginning, 

1272, has been brought down to 17. 

Comp. #1 
Fleet #1 

Comp. #1 
Fleet #2 

Comp. #2 
Fleet #1 

© © © 

.  17 different fleets 

X 
, . 1 data set 

X 
.  1 regression 

17 regressions 

Figure 7-12: Final Model and Data Set Selected 

7.5     STATISTICAL PERFORMANCE 

With the model and data set selection complete, the model's statistical performance can now be 

summarized. Areas that will be discussed are measures of performance, model validations, and 

confidence levels for ß's. 

7.5.1   Measures of Performance 

Seventeen fleets were evaluated. Adjusted R2 and R2
press values for each of the seventeen fleets are 

given in Table 7-17. Although the average values for these measures of performance are 

reasonable, the range of values was quite great. Fleet 4 provided the best fit and prediction with 

values of over 0.95 for both. Fleet 11 performed horribly with an adjusted R2 of near zero and an 

R2press of less than zero. The reasons for this will be addressed in Chapter 8. It is encouraging 

that more than half of the fleets had both measures of performance over 0.80. These values 

could have been made substantially better through the elimination of outlying machines. 



Results 170 

However, it is a fact that some machines perform better than average and some perform worse 

than average. It was felt that machines should not be eliminated from the data sets simply because 

their repair records were worse or better than others were. 

Table 7-17: Measures of Performance for Final Model 

fleet Adj. R2 W2 " press 

1 0.52872 0.4051 

2 0.87843 0.86282 

3 0.88819 0.87788 

4 0.9699 0.95012 

5 0.85091 0.84178 

6 0.84961 0.81754 

7 0.6193 0.57946 

8 0.93471 0.93192 

9 0.80783 0.79892 

10 0.94522 0.93949 

11 0.0022 -0.0671 

12 0.93954 0.93757 

13 0.93092 0.92341 

14 0.43345 0.40437 

15 0.63228 0.61946 

16 0.75986 0.74905 

17 0.33114 0.30382 

average 0.723659 0.698565 

7.5.2   Model Validation 

Six of the 17 fleets contained enough machines to perform the cross-validation test described in 

Chapter 5. All six of these fleets passed the cross-validation with p-values of well within the 0.20 

limit. Data splitting and the cross-validation process are intended to show how well the models 

predict values for machines that were not part of the original set of machines for which the 

equation was developed.  Not all fleets had enough machines (more than 17) to allow for data 
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splitting. To get some sense of how well these fleets perform as far as prediction is concerned the 

R2
Press values for the fleets that successfully cross-validated will be compared to those of the fleets 

that were not large enough. 

R2
Press is also a measure of how well a model predicts values for points that are not in the data 

set—the data are split out one observation at a time instead of a group of machines at once. The 

average R2
press for the cross-validation fleets was 0.73. The high value was around 0.93 and the 

low value approximately 0.40. This compares favorably with the average R2
press for all fleets 

combined, which was around 0.70. From this, it may be inferred that many of the fleets that were 

not cross-validated would probably have had successful cross-validations had enough machines 

been present. 

7.5.3   Confidence Intervals for ß's 

Confidence intervals for the ß values for each of the 17 fleets were constructed. The levels of the 

intervals were 95%, 90%, and 80%. After the intervals were constructed, the high and low 

confidence limits were constructed as percentages of the values of ß. These percentages were 

averaged to come up with the percentages presented in Table 7-18. The averages were 

constructed for three different levels of adjusted R2: less than 0.80, 0.80-0.90, and 0.90-1.00. The 

reason this was done was to see if the confidence intervals decreased with better fitting models. If 

one were looking for the 80% confidence interval for ßi (x) for a fleet that had an adjusted R2 

value of 0.78, the interval would be ßi plus or minus 50%. 

Table 7-18: Confidence Intervals for ß's 

Parameter adjrsq 95% conf. 90% conf. 80% conf. 

X 

0.90-1.00 127% 106% 82% 

0.80-0.90 124% 102% 79% 

<0.80 78% 65% 50% 

x2 
0.90-1.00 34% 28% 21% 

0.80-0.90 51% 43% 33% 

<0.80 161% 134% 104% 

For ßi (x), the results obtained were almost counter-intuitive.  As the quality of fit of the model 

decreased, the confidence intervals decreased. For ß2 (x2), the confidence intervals did what was 
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expected. As the quality of model fit decreased, the size of the confidence interval increased. 

This makes sense. A better fitting model should yield less uncertainty. Perhaps the reason for the 

disparity regarding ßi is the fact that x and x2 are inter-related. If the uncertainty for one of the 

parameters goes down, it is possible that uncertainty for the other would go up. 

7.5.4   Residual Plots 

The plots of the residuals (error terms) versus the regressor values (cumulative hours of use) were 

studied to see if there was merit to the assumption made in Chapter 4 that the variation in the 

residuals would be non-constant, increasing with increasing values of the regressor. Viewing the 

plots validated this assumption. A typical residual plot is shown in Figure 7-13. 
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Figure 7-13: Typical Residual Plot 

As can be seen in this figure (and the residual plots for most of the other 16 fleets), the residuals 

seem to be evenly distributed on either side of zero throughout the range of values for the 

regressor. But, they also show increased dispersion with increasing values of the regressor. This 

indicates that the variance is, in fact, not constant. Weighted regression would have helped 

eliminate this problem. Unfortunately, none of the fleets analyzed were large enough to make 

weighted regression viable. 
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In to get an idea of what kind of effect weighted regression would have on the results, a weighted 

regression was performed on the fleet that came the closest to having enough data pairs across the 

spectrum to adequately describe the variance function. The maximum number of points at any 

one level was seven. The average number of pairs was 3 per level for the levels that were 

represented. This is well short of the nine that are recommended (Myers, 1990). 

The results indicated that weighting does have a noticeable impact, but not so great an impact as 

to render the non-weighted results unacceptable. The resulting ß coefficients from the weighted 

and non-weighted regression are shown in Table 7-19. 

Table 7-19: Weighted Regression Results 

Pi ß2 L* T* 

Weighted 0.00881 0.002543 19.82941 0.10967 

Non-weighted 0.013697 0.0021 21.82179 0.105349 

Difference 55% 17% 10% 4% 

From this table, it can be seen that there was a rather large difference (55%) between the 

weighted and non-weighted ßi term. The difference for ß2 was only 17%. The differences in 

measures of performance and parameter significance between the two regressions were negligible. 

L* and T* values are also listed in this table. The instructions for calculating each of these will be 

presented in Chapter 8. The difference in L* between the two regressions is around 2, or 2000 

hours. In calendar terms, this is around 1 year of operation. The difference in T* is 0.0044—this 

equates to approximately $0.44 per hour difference in average repair costs per cumulative hour of 

use for the fleet. 

7.6     SUMMARY 

In this chapter, the vast amount of data that supports this dissertation was thoroughly analyzed. 

The models and data sets under consideration were filtered at many different levels. The chapter 

started with 1272 possible regressions and ended up with seventeen. One model of the nineteen 

under consideration was chosen as the best. One data set of the four under consideration was 

chosen as the best. 
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The final model selected was: 

CCI = 1 + ßix + ß2x
2 + e 

This model should be evaluated using the data set composed of data pairs for each machine 

interpolated at 500-hour intervals. 

The final portion of this section of the dissertation will be presented in Chapter 8—Results. While 

this chapter focused primarily on the statistical aspects, Chapter 8 will attempt to put the results 

into context. 



CHAPTER 8:   RESULTS 

The purpose of this chapter is give context to the results obtained from the regression model 

selected. Chapter 7 discussed the analysis in detail, but only began to touch on the presentation of 

the results. The results are the bottom line of this research. Repair costs associated with 

construction equipment accumulate and grow with cumulative hours of use. Defining this 

relationship with equations is one of the main purposes of this dissertation. 

In this chapter, the following main areas will be discussed/developed: 

• The results and nature of the equations will be discussed 

• Sensitivity analyses will be performed on various model components and results 

• Comparisons of various fleets will be made 

• Comparisons to other forecasting methods will be made 

8.1     THE RESULTS 

As implied in Chapter 7, the results of this research were quite promising. In most cases, the 

parameters for the equations were highly significant and the measures of performance were more 

than adequate. The question that must now be answered is "are the results meaningful?" To 

address this question, this section will focus on the following areas: 

• The equations 

• L* 

• T* 

• L* vs. T* 

8.1.1   The Equations 

The equations developed for each of the fleets involved in this study were of the form: 

175 



Results 176 

CCI = 1 + ßix + ß2x
2 Equation 8-1 

Where: 

CCI = cumulative cost index 

x = cumulative hours of use /1000 

ßi> ß2 = coefficients determined by regression 

There are two main components that are a part of this equation: the ßix component and the ß2x
2 

component. These components are shown in Figure 8-1. It is postulated that the ßix component 

should represent the fixed element of repair costs—it provides a baseline measure of how well a 

company controls essential expenditures on a given fleet of machines. A very low ßix component 

could indicate that the company does not spend a lot of money on maintaining and repairing the 

machine as a part of day-to-day business. A high component could indicate that the company 

does spend a steady amount of money on the fleet throughout the life of the machines. 

Ü 
Ü 

NOT TO SCALE 

nn\   -i 

Cum. Hours of Use 

Figure 8-1: The Two Cost Components 

The ß2x
2 component represents how well the company controls the growth of costs.   A large 

component signifies that costs grow rather quickly.    A small component indicates that the 
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company does a good job of keeping cost growth down. The growth of costs is the determinant 

of L* for the fleet—this will be discussed in greater detail in section 8.1.2. 

Table 8-1: Rankings of Values of Cost Components 

FLEET fcx ß2x
2 

Wheel Loaders 17 l 
Large Dozers 16 2 
Large Dozers 15 3 

Small Excavators 14 4 
Large Dozers 13 5 

Dual-engine Scrapers 10 6 
Large Dozers 7 7 

Mid-size Excavators 8 8 
Track Loaders 5 9 
Mid-size dozers 12 10 
Wheel Loaders 11 11 

Articulated Trucks 9 12 
Articulated Trucks 6 13 
Articulated Trucks 4 14 
Small Excavators 1 15 
Mid-size dozers 2 16 
Mid-size dozers 3 17 

An interesting observation is that there is a tendency for fleets with lower ßix components to have 

higher ß2x
2 components. The values of the coefficients for x and x2 for each of the fleets were 

rank ordered from 1 to 17, lowest to highest. The results of these rankings are posted in Table 

8-1. Although there are a couple of exceptions, for most of the fleets a high ranking in the x 

component resulted in a low ranking in the x2 component. From this it could be inferred that 

companies that invest in maintenance and repair throughout the lives of their machines experience 

lower cost growth, and hence longer economic lives for their equipment than those companies 

that do not invest in the early maintenance and repair of their fleets. 

The values of the coefficients were plotted to determine if the relationship between them could be 

quantified. This plot is shown in Figure 8-2. The regression line that is plotted in the figure 

highlights the relationship between the two coefficients. The line is a 2nd order polynomial with an 

R2 value of 0.785. This is fairly significant. This topic should be revisited in an expanded study 

of equipment data.  One fleet was eliminated from the data to come up with this plot—the first 
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fleet listed in Table 8-1. This fleet was highly influential on the regression and caused the curve to 

reach a minima and curve abruptly upward. 

-0.03    -0.02    -0.01        0        0.01      0.02     0.03 

ß1 

Figure 8-2: Plot of ßi vs. ß2 

In Table 8-2 the coefficient values for each of the fleets are presented. The first important thing 

to look for is the sign of the ß2 coefficients. If these coefficients are negative, an optimum 

solution for economic life and repair costs cannot be determined from the equation. This is 

illustrated in Figure 8-3. Line "A" represents what was postulated at the beginning of this 

dissertation. The slope of the cumulative cost curve increases with increasing cumulative hours. 

Because of this, the optimum values L* and T* can be found both geometrically and 

mathematically (this will be demonstrated in sections 8.1.2 and 0). Line "B" represents a curve 

with a negative ß2 coefficient. On a curve such as this, the "optimum" is not reached because the 

tangent cannot be drawn. The machines theoretically have an infinite L*. 

Three of the seventeen fleets had negative coefficients for x2. Two of these fleets were large 

dozers. The slight negativity of the curve could be explained by management styles of the 

company involved. The dozers are used in less stressful applications as they accumulate hours— 

this helps to cut down on the growth of costs. An explanation of how optimization for fleets like 

these is still feasible will be offered in section 8.1.4. 



Results 179 

Table 8-2: ß values for the 17 Fleets 

Type Bi ß2 
Articulated Trucks -0.00246 0.004753 
Articulated Trucks 0.006392 0.004496 
Articulated Trucks -0.0115 0.005175 

Dual-engine Scrapers 0.007391 0.000491 
Large Dozers 0.005168 0.001169 
Large Dozers 0.012567 0.000446 
Large Dozers 0.020905 -0.00063 
Large Dozers 0.022861 -0.00113 

Mid-size dozers -0.01252 0.009651 
Mid-size dozers -0.01256 0.007659 
Mid-size dozers 0.009023 0.002529 

Mid-size Excavators 0.006304 0.001893 
Small Excavators -0.01978 0.007303 
Small Excavators 0.018518 0.000389 
Track Loaders -0.00471 0.001963 
Wheel Loaders 0.00881 0.002543 
Wheel Loaders 0.09075 -0.0025 

Figure 8-3: Effect of Negative ß2 Term 
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The problems with the third fleet, wheel loaders, require an explanation of the data used for the 

regression. The fleet was one of the smallest analyzed at 6 machines. The range of operation for 

which data were available for these machines was between 13,000 and 24,000 cumulative hours 

of use. No data were available for the earlier ranges of operations. Typically, the early ranges of 

operations have low repair costs. When the data pairs with these low costs are placed in the same 

regression with data pairs of higher hours and higher costs, an upwardly curved line results. 

Because of these two problems, small sample size and incomplete range, the equation developed 

for this fleet may not be reliable. Not surprisingly, this fleet also had the worst measures of 

performance as discussed in Chapter 7. The adjusted R2 value was 0.0022 and the R2
preSs value 

was-0.0671. 
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Figure 8-4: Effect of Negative ßi Term 

A second thing that should be looked at in the parameters is the sign of the ßi term. If this term is 

negative, there will be a certain range of cumulative hours for which the equation will predict 

negative repair costs—which is not possible. This is illustrated in Figure 8-4. Line "A" 

represents an equation with a positive ßi term; line "B" represents an equation with a negative 

ßi term. There were six fleets that had negative values for ßi. 
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It can be seen that line "B" dips slightly below the CCI=1 line during the early hours of 

cumulative use for the fleet. The line then recovers above CCI=1 and predicts positive repair 

costs. The average number of hours for these six fleets to get to positive repair costs was 1,800 

hours. The longest it took for one of these fleets to get to positive repair costs was 2,700 hours. 

Although it is not ideal to have negative repair costs predicted for any portion of a machine's life, 

the range of use affected by this problem is small and not critical. Many of the repairs that take 

place during that range are covered by warranty. As will be demonstrated in section 8.1.2, the 

ßi term has no impact on L*. But, most of the fleets with negative ßi terms had large ß2 terms 

(see Table 8-1) which do have an impact on L*. 

8.1.2   L* 

The optimum length of time to operate a fleet of equipment based on optimizing for the lowest 

average costs is L*. This is depicted in Figure 8-5. It is defined by a tangent line drawn from the 

origin to the cumulative cost curve. Graphically, it is very easy to understand L*. 

Mathematically, the solution is also fairly straightforward. 

o 
o 

NOT TO SCALE 

-L* > 
Cum. Hours of Use (x) 

CCI = 1 

Figure 8-5: L* and T* 
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Using Figure 8-5, the derivation of L* will be performed: 

The equation for the cumulative cost curve is defined by equation 8-1: 

CCI = 1 + ßix + ß2x
2 

The equation for the tangent line is: 

y = mx Equation 8-2 

Where: 

m = slope of the tangent line 

y = vertical component along the CCI axis 

Set these equations equal to each other at the tangent point: 

mx = 1 + ßix + ß2x
2 Equation 8-3 

Differentiate with respect to x: 

m = ßi + 2ß2x Equation 8-4 

Substitute equation 8-4 into equation 8-3: 

(ßi + 2ß2x)x = 1 + ßix + ß2x
2 Equation 8-5 

Simplify equation 8-5: 

ß2x
2 = 1 Equation 8-6 

Solve for x: 

x =   ,— Equation 8-7 

L* is the length of time from the purchase of the machine to the tangent point defined in equation 

8-7. The solution is simple and clean. L* is solely a function of the growth of costs. L* values 

for the fleets analyzed are given in Table 8-3. Note that only 14 fleets are represented on this 

table. The 3 fleets that could not be optimized were removed from the table. The fleets are listed 

in order of decreasing L*~the units for L* are cumulative hours/1000. The L* values in this table 

seem reasonable for many of the machines. If the values are in error, they seem to be in error on 

the high side versus the low side. This is possibly due to the absence of collateral costs. This will 
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be addressed further in section 8.1.4. Three possible exceptions are the first three in the table. 

The large dozers and dual-engine scrapers are long-lived machines, but it is doubtful that their 

optimum overall costs occur at 45,000 hours of use—this topic will be addressed further in 

section 8.1.4. 

Table 8-3: L* and T* for Fleets Analyzed 

B 

Fleet L* CCI @ L* T* 
Small Excavators 50.70853 2.939021 0.057959 

Large Dozers 47.35137 2.595065 0.054804 
Dual-engine Scrapers 45.13396 2.333585 0.051704 

Large Dozers 29.24527 2.15114 0.073555 
Mid-size Excavators 22.98517 2.144898 0.093317 

Track Loaders 22.57331 1.893589 0.083886 
Mid-size dozers 19.88461 2.179419 0.109603 
Wheel Loaders 19.82941 2.174697 0.10967 

Articulated Trucks 14.91375 2.095329 0.140496 
Articulated Trucks 14.50433 1.964276 0.135427 
Articulated Trucks 13.90096 1.840153 0.132376 
Small Excavators 11.70171 1.768505 0.151132 
Mid-size dozers 11.42674 1.856434 0.162464 
Mid-size dozers 10.17936 1.872565 0.183957 

A general observation is that the fleets of smaller machines usually had smaller L* values than 

similar large machines. All of the mid-size dozers had shorter L*'s than the larger dozers. This 

could be due to many causes. Smaller machines sometimes serve as jacks-of-all-trades, doing a 

wide variety of jobs. Large machines are usually employed in a more static situation. The frames 

and components on larger machines have more metal in them and should hold up to greater 

stresses. If a small machine is used in an application for which a large machine should be used, 

the small machine will probably (in addition to having less productivity) have more breakdowns 

because the machine is at the upper end of its limits instead of being right in its designed operating 

range. Yet another reason that small machines reach L* sooner could be the cost of labor. Parts 

for larger machines cost proportionally more than parts for small machines. But, the labor 

charges involved with changing the parts are relatively constant. There could be additional labor 

because the larger parts are heavier and could require expensive equipment to manipulate, but this 

could be balanced out by the fact that larger machines allow more room for mechanics to work. 

More room to work can enhance the mechanics' productivity. 
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An important exception to this rule was one fleet of small excavators (see "A", Table 8-3) that 

had a much larger L* than the other fleet of small excavators—"B". This fleet (like the fleet of 

wheel loaders with the negative p2 term) had a very large gap in coverage of the spectrum of 

cumulative hours of use. There were only two machines with data pairs below 8,500 hours and 

no machines with data pairs in the range 8,500 to 18,500 hours. This is a critical range of 

hours—especially for smaller machines. The lack of data in this range could have produced 

unreliable results. 

8.1.3   CCIandT* 

The cumulative cost index (CCI) is the main result of the regression equations developed. The 

CGI at L* for each of the fourteen fleets which could be optimized is reflected in Table 8-3. 

Although is appears that machines with high L* values have higher CCI values at L*, the range of 

values for these CCIs is small compared to the range of values for L*. L* has a mean value of 

23.88 with a standard deviation of 13.99. The corresponding CCI values had a mean of 2.13 with 

a standard deviation of 0.32. This tightness of this distribution indicates that it may be possible to 

derive an empirical rule for CCI at L*. It seems that the number 2 would be a good starting point 

for this empirical rule. When the initial purchase price of the machine has been spent on 

maintenance and repair (CCI = 2), the machine is very close to L*. Further research is 

warranted to validate this rule. 

The lowest average cost for a fleet is achieved when L* is reached. This cost is T* (see Figure 

8-5). The equation for calculating T* is simply the CCI at L* divided by L* (the slope of the 

tangent). The equation for this is: 

r* = i + P.i  +P2L     =ß+ 2jß- Equation 8-8 
L* 

T* values for the fourteen fleets with non-negative ß2 terms are given in Table 8-3. The units for 

T* as presented are l/(cumulative hours of use/1000). The dollar portion of units is not present 

because the CCI is a ratio of dollars to dollars. There appears to be a definite relationship 

between L* and T*. This will be explored in the section 8.1.4. 
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8.1.4   L* vs. T* Curve 

The L* vs. T* relationship is depicted in Figure 8-6. A regression line of the form y = axb was fit 

to the curve. The line fit with an R2 value of 0.9755. By definition, T* is related to L* (see 

equation 8-8). Since L* is in the denominator, T* should decrease with an increase L*. But, 

there is not a direct inverse proportionality to the relationship because the equation for CCI is in 

the numerator. The ßi coefficient has an effect on T* in the numerator. Conceivably, this 

coefficient could produce T* values that would be randomly scattered around the plot with very 

little correlation. But, it was demonstrated in section 8.1.1 that there is a reasonably strong 

relationship between ßi and ß2. This relationship manifests itself in a very strong relationship 

between T* and L*. 
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Figure 8-6: L* vs. T* plot 

At this point, some observations about the L* vs. T* plot are in order. First, it seems like there is 

a continuum of L*/T* values along which most fleets will lie. A broader study with more data 

could further solidify and define this relationship. 
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Second, it seems like the L* values which were lower reflect the actual nature of when equipment 

is replaced more accurately. Perhaps the reason for this is the lack of inclusion of collateral costs. 

Very few construction companies that buy and operate new machines have machines with as 

much use as 45,000 hours. There must be some reason other than the growth of repair costs for 

selling these machines before they accumulate 45,000 hours. The answer probably lies in a 

combination of the collateral costs described in Chapter 4. The costs associated with more 

frequent and longer breakdowns make it less economically feasible to keep such machines in a 

production fleet. 

Two of the fleets which were eliminated due to negative ß2 terms and one of the fleets which had 

a very high L* were large dozers. The company that operates these machines starts them out in 

very stressful applications, such as ripping. As the machines grow older and become less reliable, 

they are relegated to less stressful applications, such as pushing scrapers. This deflates the growth 

of repair costs because the nature of the machines' uses changes. It is postulated that if the 

collateral costs for these machines were tabulated and incorporated into the regression equations, 

the two fleets eliminated would re-enter the fold and the fleet with the high L* would have a 

lower L* based on the inclusion of the additional costs. 

Another aspect of this observation is that it seems that collateral costs would play a less 

significant role in the determination of true L* for the fleets that have smaller L* values due solely 

to repair costs. In these cases, it may be possible to neglect collateral costs when making 

decisions concerning economic life. It seems that this assumption may hold true for fleets that 

have L* values of less than 20 (20,000 hours). 

8.2     SENSITIVITY ANALYSES 

It is important to determine how sensitive the results presented in section 8.1 are to various 

aspects and variables in the study. The sensitivity analyses to be presented are: 

• L* to ß terms 

• T* to ß terms 
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8.2.1   L*toß's 

One of the primary uses of the cumulative repair cost equations within the cumulative cost model 

will be to determine economic life. If a machine is bought or sold at the wrong time, money can 

be lost. L* is equivalent to the DMCL as defined in Chapter 3. As ß2 varies, L* will vary. 

Variations in ßi have no effect on L*. This sensitivity analysis will look at hypothetical machines 

that have predicted L* values of 10, 15, 20, 25, and 30. This covers a wide range of the results 

obtained during this research. The results are depicted in Table 8-4. 

Table 8-4: Sensitivity of L* to ß2 

L* Initial 
New L* due to increase in ß2 

5% 10% 25% 50% 75% 100% 

10 9.759001 9.534626 8.944272 8.164966 7.559289 7.071068 

15 14.6385 14.30194 13.41641 12.24745 11.33893 10.6066 
20 19.518 19.06925 17.88854 16.32993 15.11858 14.14214 
25 24.3975 23.83656 22.36068 20.41241 18.89822 17.67767 
30 29.277 28.60388 26.83282 24.4949 22.67787 21.2132 

New L* due to decrease in ß2 
5% 10% 25% 50% 75% 100% 

10 10.25978 10.54093 11.54701 14.14214 20 oo 

15 15.38968 15.81139 17.32051 21.2132 30 oo 

20 20.51957 21.08185 23.09401 28.28427 40 oo 

25 25.64946 26.35231 28.86751 35.35534 50 oo 

30 30.77935 31.62278 34.64102 42.42641 60 oo 

It can be seen that negative changes in the coefficient ß2 can have a much greater impact on L* 

than positive changes. This is encouraging because the coefficients for growth of cost are 

probably slightly underestimated due to the absence of collateral costs. Positive and negative 

changes of 10% or less are not that bad. The maximum that L* is off for changes of 10% is 1.62, 

or around 1,600 hours of use. Most machines work this much in less than a year. Above 50% 

change, the results are probably unacceptable. The maximum that L* is off at 50% is 12.42, or 

approximately 12,500 hours—this could represent 5 or more calendar years for some types of 

fleets. 
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8.2.2   T*toß's 

It is important to look at the sensitivity of T* because the T* values can be used to help forecast 

maintenance and repair costs. If the forecasts are off, the company could find itself with excess 

money that could have been invested elsewhere, or, worse still, with not enough money to pay the 

bills. Unlike L*, T* is sensitive to both ß terms. This sensitivity analysis will look at T* values 

ranging from 0.05 to 0.15. For analyzing ßi, ß2 was held constant at 0.0016 (L* = 25). For 

analyzing ß2, ßi was held constant at 0.01. The selection of these fixed constants was determined 

so that they corresponded to a realistic point that could be a part of the plot of the coefficients in 

Figure 8-2. The results of this analysis are depicted in Table 8-5. 

Table 8-5: Sensitivity of T* to ß Terms 

T* Initial 
New T* due to increase in ßi 

5% 10% 25% 50% 75% 100% 
0.05 0.0515 0.053 0.0575 0.065 0.0725 0.08 
0.10 0.101 0.102 0.105 0.11 0.115 0.12 
0.15 0.1535 0.157 0.1675 0.185 0.2025 0.22 

New T* due to decrease in ßi 
5% 10% 25% 50% 75% 100% 

0.05 0.0485 0.047 0.0425 0.035 0.0275 0.02 
0.10 0.099 0.098 0.095 0.09 0.085 0.08 
0.15 0.1465 0.143 0.1325 0.115 0.0975 0.08 

New T* due to increase in ß2 

5% 10% 25% 50% 75% 100% 
0.05 0.050987 0.051952 0.054721 0.05899 0.062915 0.066569 
0.10 0.102222 0.104393 0.110623 0.120227 0.129059 0.137279 
0.15 0.153457 0.156833 0.166525 0.181464 0.195203 0.20799 

New T* due to decrease in ß2 

5% 10% 25% 50% 75% 100% 
0.05 0.048987 0.047947 0.044641 0.038284 0.03 0.01 
0.10 0.097721 0.095381 0.087942 0.07364 0.055 0.01 
0.15 0.146455 0.142816 0.131244 0.108995 0.08 0.01 

Putting T* into perspective may help with the understanding of this analysis. A T* of 0.05 

corresponds to to an average of 5% of the purchase price of the machine being spent every 1000 

hours of operation. For a $100,000 dollar machine, this corresponds to an average cost of $5.00 

per hour of operation.   With a T* of 0.15, that same machine would have an average cost of 



Results 189 

$15.00 per hour. So, a change in T* of 0.01 corresponds to a $1.00 per hour increase in the 

average cost of a $100,000 machine to get to L*. 

Increases in ßi result in increases of T*. Decreases in the coefficient result in decreases of T*. 

The same was true for changes in ß2. These increases and decreases become more pronounced as 

the percentage of change goes over 10%. Below 10% change, the magnitude of the increases and 

decreases are small. Above 25%, the magnitudes can result in noticeable differences in the T* 

values (more than $1.00 per hour change for a $100,000 machine). 

8.3     COMPARISONS 

A number of comparisons will now be made to determine what, if any, conclusions and 

generalizations can be made concerning how the equations of the different fleets relate to one 

another. The comparisons will be of both an objective and subjective nature. Only the 14 fleets 

that had positive ß2 values will be used in the comparisons. Statistical procedures will be used 

where appropriate. Generalizations will be used when they are needed. The results presented in 

this section are by no means definitive. They are open to interpretation. The comparisons to be 

performed fall into three major categories: 

• comparisons of different fleets within the same companies 

• comparisons of similar fleets across different companies 

•    Comparisons of fleets of the same category but differing size 

The specific comparisons made are shown graphically in Figure 8-7.   There are four company 

comparisons, four similar fleet comparisons, and three size comparisons. 
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Figure 8-7: Comparisons 

8.3.1    Company 

There were four different companies represented in the 17 fleets that were analyzed. The 

companies had differing management styles and differing data collection methods. Each of the 

companies had more than one fleet in the study, so a comparison within each company is possible. 

A reasonable test to compare regressions is direct substitution and validation. Mechanically, the 

procedure is identical to the cross-validation procedure described in Chapter 5. All fleets except 

for one within each company will be regressed together and the comparisons will be made. The 

process will be repeated so that each fleet within a company is cross-validated against the rest of 

the fleets in the company. This is a total of 14 tests—one for each fleet. All of these cross- 

validations were 99% significant or better. This implies that the company from which the fleet 

came is important. 
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Since the cross-validations were successful, an additional test that was done was a regression on 

all available machines within each company. The results of these regressions are shown in Table 

8-6. 

Table 8-6: Comparison Regressions 

Comparison L* T* 
company A 14.37696 0.137379 
company B 17.96923 0.118976 
company C 28.47859 0.081543 
company D 70.18624 0.039822 

medium dozers 23.8705 0.11172 
artics 13.43402 0.145268 

small excavators 58.12382 0.055321 
large dozers 129.8581 0.028842 

excavators: size 12.27387 0.146417 
dozers: size 21.29589 0.109068 
artics: size 11.82294 0.153669 

There was substantial variation in the L* and T* values between the different companies. Some 

of this could be attributed to the types of machines analyzed, but companies A, B, and C all had 

relatively the same types of equipment involved in this study. Company D had substantially larger 

machines than the other three companies had. The L* for company A was approximately 50% of 

the L* for company C. 

For company A, the L* and T* forecasts using the company model worked out well for one fleet. 

For the other fleet, the forecast L* was 4000 hours off and the forecast T* was off by over $5.00 

per hour per $100,000. For company B, L* was off by more than 5000 hours for 4 of the 6 fleets 

analyzed. T* fared better—-3 of the 6 fleets were within $3.00 per $100,000 of their forecast T* 

values. Due to the wide range of L* values for company C's individual fleets (19.88 to 50.70), 

none of the three fleets in this company were within 5000 hours of the forecast L* for the 

company. Two of the three fleets in company C were within $2.00 per $100,000 for their T* 

values. 

The results obtained using company D's fleets were perplexing. The forecast L* for the company 

Was 25,000 hours greater than the largest individual L* of the three fleets analyzed. The forecast 

T* for the company was more than $1.00 per $100,000 cheaper than the cheapest individual fleet. 
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Although a relationship among the fleets of a particular company is supported by the successful 

cross-validations, it is believed that this relationship is not strong enough to warrant using one 

equation for each company. When equations are fit to the combined data, the results are different 

than those obtained using individual fleets. It is not possible to say which is right and which is 

wrong based strictly on numbers. If the fleets are looked at by company on an L*/T* plot (see 

Figure 8-1), it appears that there is a loose relationship among the fleets of the various companies. 

It is stronger for some companies than it is for others. It is recommended that equations for 

individual fleets be used over company-wide equations if a choice exists. 
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Figure 8-8: L* vs. T* Companies 

8.3.2   Machine Type 

There were four different types of fleets that had multiple representation in the 14 fleets that had 

acceptable ß2 values. These were: medium dozers, articulated trucks, small excavators, and large 

dozers. The two fleets of large dozers came from the same company. One fleet was composed of 

slightly larger machines than the other, but they were used for essentially the same applications. 

Once again, the cross-validation process was used.  The results were significant at better than a 

90% level for all comparisons (note that this is not as significant as the tests performed on the 
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companies). Once again, regressions were performed on all the available machines within each 

fleet type to form one combined regression equation. The results of these regressions are shown 

in Table 8-6. 

The results for the medium dozers, small excavators, and large dozers were of the same nature as 

those obtained for company D—disappointing. The forecast L* was 4000 hours greater than the 

largest individual L*. It was more than 10,000 hours greater than the L*'s for two of the three 

fleets involved. The T* value was within $1.00 per $100,000 for one fleet, but more than $5.00 

per $100,000 off for the other two. The L* values for small excavators and large dozers were 

also excessively high—the T* values were excessively low. 

The results obtained for the articulated trucks were more promising. Both fleets were within 

1500 hours of the forecast L* and within $1.00 per $100,000 for the forecast T*. But, the errors 

were once again in the same direction. This time the combined model gave lower forecasts for L* 

and higher forecast for T*(unlike for the other three equipment types discussed above). 

Viewed graphically (Figure 8-9), the disparities among some of the equipment types are apparent. 

Large dozers and small excavator data points are widely separated. But, the medium dozer data 

points were not separated by as great a distance as the combined regression implied. The 

articulated truck fleets are obviously closely grouped. The third fleet of slightly larger articulated 

trucks is also shown for comparison purposes. There is a very tight grouping between these three 

fleets. 

Once again, equations developed for individual fleets are recommended over equations developed 

for equipment types. The three poorly performing models outweighed the one that performed 

quite well. The model for the articulated trucks shows that the idea of standardized regression 

equations for equipment types should not be discarded. Further research with more data may 

allow for the reliable formulation of such equations. 
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Figure 8-9: L* vs. T* for Equipment Types 

8.3.3   Machine Size 

Three comparisons of machine size were made. They were for dozers, articulated trucks, and 

excavators. The cross-validation tests for all three of these size comparisons were successful at 

greater than 95% confidence. Regression equations were formed to evaluate the tangible results 

of the combination equations. The L* and T* values for these equations are shown in Table 8-6. 

For the dozers, the predicted L* for the combined data fell directly in between the L* values for 

the large and medium fleets. All of the medium dozer fleets had L* values less than the combined 

value and all of the large dozer fleet had L* values greater than that of the combined fleet. The 

exact opposite was true of T*—the medium dozer T* values were greater than the combined value 

and the large dozer T* values were less than the combined value. The exact same relationships 

were true of the comparison between the small and medium excavators. The combined L* and T* 

values for the these two size comparisons did not fit any of the individual fleets very well. 

For the articulated trucks, the results were a little different. The combined L* and T* values were 

lower and higher, respectively, than each of their individual fleet counterparts. This leads to an 

interesting observation.    For equipment sizes where the L* and T* differences between the 
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individual fleets is noticeable, the L* and T* components of the combined equations tended to 

seek middle ground. When the L* and T* components of the individual fleets were closely 

related, the components of the combined fleet skewed off in one direction. 

When looked at graphically, the differences between the excavators and the dozers are obvious 

(Figure 8-10). The articulated truck fleets are very close together. A generalization that can be 

made is that larger equipment tends to have large L* and small T* values. 
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Figure 8-10: L* vs. T* for Size Comparisons 

The combined equations for equipment size should not be used for forecasting L* and T*. There 

are obvious differences between some of the sizes of equipment which are not apparent when 

using the cross-validation procedure. 

The cross-validation test simply determines whether or not it is feasible that a given set of points 

could be part of a specified regression equation. Since all of the equations point in roughly the 

same direction, some with more slope than others, all of the data pairs should fall along that path. 

Figure 8-11 shows the data that are part of this study.  They all follow roughly the same trend. 
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The regression equation composed of all the data combined had an R2 value of around 0.80. The 

L* was approximately 30 (30,000 hours) and the T* was 0.0816. This L*-T* pairing falls almost 

squarely on the L* vs. T* continuum depicted in Figure 8-6. But, an all-encompassing equation 

does not provide an adequate forecast of when machines will reach the point when average repair 

costs are optimized. One equation can provide a rule of thumb, but equipment managers need to 

have more precise forecasts in order to buy, operate, and sell their construction equipment in the 

manner that will be the most economically advantageous to their companies. 
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Figure 8-11: Scatterplot of Data Set 2 

8.4     PERFORMANCE VS. OTHER METHODS 

The final portion of this chapter will investigate the differences between the equations developed 

in this study and some of the other repair cost forecasting methods described in literature. The 

three methods that the cumulative repair cost equations will be evaluated against are: 

• The Nichols Method 

• The Nunnally Method 

• Straight Line Methods 
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8.4.1   Nichols 

As discussed in Chapter 2, Nichols (1976) proposed a method of estimating equipment repair 

costs that made use of a wide variety of different factors. There are factors for type of equipment, 

total hours of use, years of useful life, temperature, work conditions, maintenance, type of service, 

operators, experience, equipment quality, and work pressure. Nichols' factors for hours of use 

separate his method from the others presented in literature as one that directly accounts for 

different average repair rates for machines that are kept for different cumulative hours. 

Table 8-7 : Nichols' Factors 

Category Description Factor 

Type of Equipment End Loader, 4WD 1.0 
Total Hours of Use 20,000 3.0 
Years of Useful Life 13 1.76 

Temperature Normal 1.0 
Work Conditions Average 1.0 

Maintenance Average 1.0 
Type of Service Contractor 1.0 

Operators average 1.0 
Experience Average 1.0 

Equipment Quality Average 1.0 
Work Pressure Average 1.0 

To compare this method with the equations developed, the fleet of wheel loaders with an L* of 

approximately 20 (20,000 hours) will be used. The average inflation-adjusted purchase price of 

these machines was approximately $100,000. The machines worked approximately 1500 hours 

per calendar year—this equates to a calendar lifespan of 13 years. This yields the factors given in 

Table 8-7. 

Multiplying these factors together yields a combined factor of 5.28. This is multiplied by 

1/10,000 the purchase price of $100,000 to come up with an average repair cost of $52.80 per 

hour. Using the regression equation, T* for this fleet was 0.10967 which equates to $10.96 per 

hour average costs to get to L*. This $10.96 includes the average cost of ownership. This cost 

must be subtracted out in order have only the average repair cost. To do this, simply divide the 

purchase price by the number of hours of operation. In this case, $100,000/20,000 hours or $5.00 

per hour.   This means that the average repair costs are $5.96 per hour.   These average repair 
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costs differ from those of the Nichols method by nearly a factor of 10. These costs are not 

comparable. 

The L* of 20,000 was based on extrapolation for this particular set of data. To compare these 

two methods in a non-extrapolated region, an assumption will be made that the owner sells the 

loaders at an average cumulative hours of use of 10,000. This equates to a 6.7-year calendar life 

at 1500 hours per year. The factors that change for the Nichols' method are "total hours of use" 

which drops to 1.6 and "years of useful life" which drops to 1.07. The average repair cost based 

on these numbers is $17.12 per hour. Using the equation for CCI for this fleet, the CCI at 10,000 

hours of use is 1.342, which yields an average cost of $13.42 per hour. This drops to $3.42 once 

the ownership costs are factored out. These numbers are more comparable, but the Nichols 

method still delivers forecast average repair costs that are too high. Perhaps the reason for this is 

the age of the Nichols text. The most current edition was published in 1976. The first edition 

was published in 1955. There have been numerous breakthroughs in equipment quality and 

reliability since the 1950's. It is felt that the Nichols' method could still provide reasonable 

figures for repair costs if the factors were updated. 

8.4.2   Nunnally 

Nunnally's method as presented in Chapter 2 attempts to estimate repair costs as a percentage of 

purchase price in a manner similar to the way that depreciation is figured (1993). The same fleet 

of wheel loaders described in the previous section will be used for this comparison. 

The first costs that will be compared are the average lifetime costs of the repairs. Using the 

Nunnally method, the average lifetime repair costs are found by multiplying the purchase price by 

a repair cost factor. This number is then divided by the number of hours of operation. For wheel 

loaders, the factor is 0.60. Multiplying this by $100,000 and dividing by 20,000 hours provides a 

forecast average repair cost of $3.00 per hour. Although a little on the low side, this figure is 

much closer to the $5.92 per hour figure derived using the cumulative cost equations. 

It may be more realistic to compare the repair costs near the point at which the repair costs reach 

0.60 times the purchase price, or at CCI =1.6.   This will allow the comparison to made at the 
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point that Nunnally's method is geared towards. Solving for x in the CCI equation, a CCI of 1.6 

occurs at approximately 13,750 hours. Using Nunnally's method, the average repair costs are 

$4.36 per hour. Using the CCI equation, the average repair costs are also $4.36. Since the 

average repair costs are equal at this point, it provides a good basis for a comparison of how the 

two methods arrive at this point. 

To do this, Nunnally's equation was adapted to provide a CCI instead of hourly repair costs. This 

equation is as follows: 

CCI = \     YearDlgxt— * Lifetime Repair Cost Multiplier I + Previous Year's CCI Equation 8-9 
[£ Year's Digits J 

The results were calculated at 1500 hour intervals (approximately one year's operation). They are 

shown in Table 8-8. Nunnally's method provides CCI forecasts that are incredibly close to the 

values obtained using the cumulative cost equation. The values are so close that one can barely 

differentiate between the two data streams when they are plotted. When a regression line was fit 

to Nunnally's points, the line lied nearly on top of the cumulative cost curve. 

The difference between the cumulative cost curve and Nunnally's curve is that the cumulative cost 

curve is based on actual data. Nunnally's curve was made to fit the cumulative cost curve by 

providing it with a point that was common to both equations. Nunnally provides no methodology 

to come up with this point. There is no description of how to find the optimum values for either 

life of cost. The Nunnally equation does provide a very accurate facsimile of the cumulative cost 

curve if it is given information related to the optimum cumulative hours of use. 

8.4.3   Straight-line 

A number of straight-line methods were described in Chapter 2. For comparison purposes, only 

one of these will be looked at—percentage of straight line depreciation. Peurifoy et. al. (1996) 

recommend using an annual repair cost that is based on a percentage of straight-line depreciation 

that is determined from historical records. The same wheel loader fleet will be used for this 

comparison. 
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Table 8-8: CCI Values For Performance Comparison 

Hours/1000 CC Curve Nunnally Straight-Line 

0 1 1 1 
1.5 1.018937 1.013333333 1.087598 

3 1.049317 1.04 1.175196 

4.5 1.091141 1.08 1.262793 

6 1.144408 1.133333333 1.350391 

7.5 1.209119 1.2 1.437989 

9 1.285273 1.28 1.525587 

10.5 1.372871 1.373333333 1.613184 

12 1.471912 1.48 1.700782 

13.5 1.582397 1.6 1.78838 

15 1.704325 1.733333333 1.875978 

16.5 1.837697 1.88 1.963575 
18 1.982512 2.04 2.051173 
19.5 2.138771 2.213333333 2.138771 
21 2.306473 2.4 2.238771 

The L* value and the CCI value that corresponds with this fleet will be used to calculate the 

straight line depreciation percentage. Assuming that the loaders have no residual value when they 

are disposed of, the baseline depreciable value is $100,000. This makes the annual depreciation 

$5128. The depreciation in terms of CCI is given by the equation: 

CC/ = 1 + 
year's digit x (CCI@L * -1) 

total number of years 
Equation 8-10 

This can be converted to a percentage of depreciation by the following equation: 

Percentage = (CCI @ L * -1) x 100 Equation 8-11 

In this case, repair costs are approximately 115% of annual depreciation. The CCI line for 

staight-line depreciation is shown is shown in Figure 8-12. Although the two lines end up at the 

same point, they arrive at that point in fairly different fashions. The straight-line method 

overestimates the CCI until the lines intersect.   This overestimation of the CCI is due to an 
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overestimation of repair costs early in the lives of the machines. After approximately 9,500 hours 

(where the two lines have equal slopes), the straight line method underestimates repair costs. 

These variances from the actual way that the repair expenditures occur could have an impact on 

the cashflow planning for the company concerned 
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Figure 8-12: Cumulative Cost Curve vs. Straight Line 

8.5     SUMMARY 

In this chapter, the results of this study were discussed in detail. In the first section, the numbers 

obtained were evaluated as to how realistically they portray reality. In most cases, the equations 

did provide models that made sense. Equations for the derivation of L* and T* were presented. 

It was suggested that it may be possible to come up with an average CCI at which most machines 

have reached their optimum average cost. A very strong relationship between L* and T* was 

demonstrated. It was theorized that collateral costs may not have that great an impact on fleets 

with low L* values—but collateral costs may play an important role in the determination of L* for 

those fleets with higher L* values. These fleets are usually heavier, production-oriented 

machines. 

Sensitivity analyses were performed to discern the effect that changes in ß values have on L* and 

T*. The regression equations of the different fleets were compared to each other on the basis of 
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company, equipment type, and equipment size. Although the results obtained were not 

conclusive, it seems that the company that owns the fleet has an impact on the equations. It was 

also shown that it may be possible to derive industry-standard equations for some types of 

equipment with a more comprehensive study. It also was suggested that heavier, larger machines 

of the same type have longer L* values and smaller T* values than their smaller counterparts. 

Finally, the results obtained were compared to results that would have been obtained through the 

application of three other methods in literature. Although the Nichols method proved to have 

possibly outdated factors, the Nunnally method provided excellent replication of the cumulative 

cost curve once it was provided with a target CCI. The straight-line method was shown to 

overestimate the repair costs for newer machines and underestimate the repair costs for older 

machines. 

With the results fully discussed, Part III of this dissertation, The Work, comes to a close. This 

part covered the methodologies for preparing the data, the analysis of the data, and the results 

obtain from that analysis. Part IV of the dissertation looks to the future with suggestions for the 

use and implementation of the models derived. 



CHAPTER 9:   INTEGRATION 

The first three parts of this dissertation presented the problem, defined the work, and described 

the analysis and results that followed. This part focuses on the future. Methods for using and 

defining the cumulative cost model will be described for those who will use it. The dissertation 

will be summarized and areas for future research will be proposed. This chapter concentrates on 

some items that will, hopefully, bring the CCM and the cumulative repair cost equations into 

mainstream usage. 

This chapter will flow as the dissertation did. The first two sections will describe bringing the 

theoretical cumulative cost model into usable spreadsheets. The second two sections will focus 

more on the details of properly defining the ß terms. Specifically, the topics will include: 

• 

• 

• 

A spreadsheet solution to the rebuild decision 

A preliminary analysis of the NEL 

A usable methodology whereby companies can develop their own equations 

A proposed framework for the development of industry benchmarks 

9.1     AN EXAMPLE: THE REBUILD DECISION 

Chapter 3 of this dissertation provided rough explanations of how to use the CCM as an aid in 

making economic decisions concerning the buying, operation, and selling of construction 

equipment. This section will focus on one of those decisions that can be supported with the 

equations developed in this research. 

Equipment management decisions described in Chapter 3 that do not relate to the buying and 

selling of equipment can be organized in a continuum to better understand their nature. These 

decisions have certain attributes that distinguish them from each other. The decision—attribute 

continuum is depicted in Table 9-1. 

203 
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Table 9-1: Decision Continuum 

Attribute 

Decision 

Maintain Repair Major Repair Rebuild 

Regular Y Y Y N N N N N N N N N 

Frequent Y Y Y y y y N N N N N N 

Costly N N N n n n y Y Y Y Y Y 

Failure N N N Y Y Y Y Y Y N N N 

The four major decision types depicted are: maintain, repair, major repair, and rebuild. Major 

repair was not defined as a decision type in Chapter 3, but there are subtle differences between 

repairs and major repairs that will be discussed here. The four attributes depicted are regularity, 

frequency, cost, and failure requirement. The letter "Y" signifies that the decision type posseses 

the attribute in question. The letter "N" denotes the opposite. Lowercase "Y"s and "N"s signify 

the degree to which the decision type possesses (or does not possess) that attribute is less than 

other decision types. 

Maintain decisions occur on a regular basis, normally scheduled at certain intervals of cumulative 

hours. They occur frequently and are relatively inexpensive. They do not occur as a result of 

failure of a machine—in fact they are undertaken to prevent equipment failures. Repair decisions 

occur frequently, but not regularly—repairs are generally unscheduled because they are a reaction 

to some type of failure on the machine. Repairs can be more expensive than routine maintenance, 

but are still relatively inexpensive compared to the remaining two decision types. 

Major Repairs occur infrequently. They are costly repairs that take place due to a major failure 

of some component of the piece of equipment. Although some major repairs are very costly, 

some are not quite as expensive, thus the lowercase "y" for part of the cost continuum. Rebuilds 
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also occur infrequently. They are generally expensive. Rebuilds do not occur as a result of 

failure. If failure has occurred, the "rebuild" is in actuality a major repair. 

The rebuild decision is interesting and pertinent. It is a bit more involved than the initial purchase 

decision which can be made simply by comparing the T* values of the various alternatives. There 

are many factors that must be considered. 

The rebuild decision as presented in Chapter 3 was based on comparisons of the NEL of the 

machine being evaluated and NEL of its rebuild. The NEL was not defined in this research. For 

the purposes of a rebuild, evaluation of the GEL should yield results similar to those that would 

be obtained by evaluating the NELs. Both of the GELs will be displaced vertically a similar 

distance from their respective NELs. There will be some error in the solution due to the fact that 

the solution is based on angles, not vertical displacement. The magnitude of this error should be 

small if the machine is not sold prematurely because as machines age their GELs approach their 

NELs—which means that the angular difference between a T* to the GEL and a T* to the NEL 

will be small. 

There are three important questions that relate to the rebuild decision: 

• When? 

• How much? 

• What is gained? 

It is postulated that a rebuilt machine possesses the same cumulative cost curve (GEL) as it did 

before the rebuild. The curve is simply shifted vertically and horizontally on the cumulative 

höurs/CCI plane. This is illustrated in Figure 9-1. The "When?" is the machine age at which the 

rebuild is evaluated. In the figure, this age occurs at cumulative hours/1000 of 8. This determines 

the horizontal reference point for the shifted GEL. The "How much" is the percentage of the 

purchase price that the rebuild will cost. In the figure, that percentage is illustrated as a vertical 

difference between the two GELs at the evaluation age. 
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Rebuild vs. Not 
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Figure 9-1: Three Aspects of Rebuild 

The "What is gained?" is the amount of life that is purchased when the rebuild is accomplished. 

At the end of a rebuild, the machine should behave like a younger machine. The person 

performing the rebuild should be able to give an estimate of the form "This 8000 hour machine 

will perform like a 4000 hour machine after the rebuild is accomplished." In this case, 8000 minus 

4000 equals a gain in life of 4000 hours. This shifts the starting point of the GEL for the rebuilt 

machine 4000 hours to the right. 

The GEL for the machine before the rebuild is curve that starts at age = 0 and CCI = 1. The 

dotted lines signify the T* and L* for this machine. The GEL for the machine after the rebuild 

starts at a point above and to the right of the non-rebuilt GEL. Once again, the T* and L* are 

shown by dotted lines. The single non-dashed vertical line indicates the point at which the GEL 

for the rebuilt machine intersects the GEL for the non-rebuilt machine. The average cost per 

period for the rebuilt machine is cheaper than that of the non-rebuilt machine after this point. This 

does not, however, mean that the rebuild is the best option to take.   This is determined by 
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comparing the T* of the rebuilt machine to the T* of the machine before the rebuild. If T*rebuiid < 

T*, then the rebuild may be the best option. T*rebuiid must also be less than T*Chaiienger (if 

purchasing a new machine is feasible). 

A software tool was developed to compare T*ret,Uiid with T*. The tool was developed in 

Microsoft® Excel®. The file can be accessed by clicking on the button below if this dissertation is 

being read electronically from Virginia Polytechnic Institute and State University (Virginia Tech). 

Alternatively, the file can be obtained by contacting the Virginia Tech University Libraries. 

LINK TO REBUILD.XLS 

A screen view of the spreadsheet is depicted in Figure 9-2. The user inputs are: 

• x coefficient (ßi) 

• x2 coefficient (ß2) 

• Age at rebuild 

• Cost of rebuild 

• "Age" after rebuild 

The coefficients are input exactly as they are calculated. The age items are input as hours/1000. 

The cost is input as a fraction of purchase price. A $40,000 rebuild on a $100,000 machine 

would be input as "0.4". As the user inputs these figures, the following tasks are automatically 

accomplished by the spreadsheet: 

• Both original and rebuild GELs are computed and plotted 

• Both original and rebuild L* and T* are computed, plotted, and displayed 

• The "breakeven" line is computed and plotted 

• T* values are compared and user is informed of outcome 

The calculations for L*rebuiid and T*rebuiid are a little less straight-forward than the those of the 

machine before the rebuild. The formulas for these calculations are provided in Appendix F. The 

"breakeven" line is a vertical line drawn from the x-axis to the intersection of the two GELs.. The 
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user is given a recommendation in the form of a "Rebuild" or a "Don't Rebuild" as the first entry 

in the results box. 

INPUT: 

X coefficient: 

X-squared coefficient: 

-0.01252 

0.009651 

Age At Rebuild (hours/1000) 

Cost of Rebuild ($Rebuild/$PP) 

"Age" After Rebuild (hours/1000) 

RESULTS: 

Prognosis:    Don't Rebuild 

L*/T* 
L* Rebuild/T* Rebuild 
Age at Breakeven 

10.18 0.183959 

14.81 0.198192 
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Figure 9-2: Rebuild Spreadsheet 

An example will help with the understanding of this spreadsheet. For the example, the fleet of 

mid-size dozers with the smallest L* value will be used. The coefficients are entered into the 

spread sheet first. Then, the user inputs the other three variables. These inputs should be based 
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on a valid rebuild estimate or based on the equipment manager's experience with similar 

rebuilds.For the first case, the equipment manager assumes a rebuild age of 8,000 hours with a 

cost of 50% of the purchase price. The machine will seem like a 4,000-hour machine after the 

rebuild. 
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Figure 9-3: Case #1 Rebuild 

As can be seen in Figure 9-3, the T* of the rebuilt machine is greater than that of machine before 

the rebuild, so it is probably best not to accomplish the rebuild with the given parameters. In 

order for the rebuild to be chosen, the cost must decrease or the age after the rebuild must 

decrease. The equipment manager could also increase the age at rebuild. In any case, the GEL 

for the rebuilt machine must be shifted either down or to the right in order to flatten the angle on 

the T* line. 

Assume that by performing some of the rebuild in-house, the cost of the rebuild can be brought 

down to 35% of the initial purchase price. The new cost is input, the curve is shifted down, but 
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the prognosis is still "Don't Rebuild" because although the T* values are close, the machine 

before the rebuild still has a slight edge. 

If the rebuild can be delayed until 9000 hours, the T* of the rebuilt machine is slightly less than 

that of the machine before the rebuild. The prognosis is "Rebuild". This is shown in Figure 9-4. 
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Figure 9-4: Case #2 Rebuild 

The fact that T*rebuiid is less than T* is graphically evident in Figure 9-4. The user should also rely 

on the numerical values for T* that are calculated and check the prognosis reading. The value of 

this spreadsheet tool is that the equipment manager can attempt any number of combinations of 

the three parameters and see the results both graphically and numerically. Before making a final 

decision on the rebuild, the equipment manager must remember to compare T*rebuiid to T* of any 

challengers that may provide better economy than the original machine. 
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9.2     PRELIMINARY STUDY OF THE NEL 

Up to this point, this dissertation has focused almost exclusively on the development and 

interpretation of the GEL. Although the GEL provides an approximation of the NEL as machines 

age, as pointed out in Chapter 3 the NEL should be the true basis for economic decisions when 

possible. 

To get an idea of the differences between the NEL and GEL, a cursory study of residual values 

was accomplished on articulated trucks. Actual selling prices and trade-in values were obtained 

for 14 articulated trucks in two companies. These prices/values were compared to the purchase 

prices of the machines to obtain an expression for the residual value in terms of cumulative hours 

of use. This was accomplished using regression analysis. 

A starting point for the analysis was obtained during a conversation with the academic 

coordinator for the Association of Construction Equipment Managers (Vorster, 1998). A rule of 

thumb that has been used by equipment managers for obtaining residual values is given by: 

Residual Value =   , = x Purchase Price Equation 9-1 
V^hours 

V    1000 

The residual value is equal to the reciprocal of the square root of cumulative hours/1000. For a 

4000 hour machine, the residual value is 0.5 times the purchase price. The data were fit to the 

model: 

Residual Value = ßl -j= + £ Equation 9-2 
Vx 

Where: 

ßi = coefficient 

x = cumulative hours of use 

e = error term 
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,2 The data fit this model with an adjusted R value of over 0.99. The coefficient value was 1.03 

which had a p-value of less than 0.0001. This particular data fit the residual value rule-of-thumb 

quite nicely. Based on this analysis, equation 9-1 was used to compute the residual values for this 

exercise. The equation used to generate the NEL is as follows: 

CCI= 1 + ßxx + ß2x
2—= Equation 9-3 

yjx 

An Excel® spreadsheet was developed to plot the GEL, NEL, their tangents, and their optimum 

lives. This spreadsheet can be accessed by clicking on the button below or by contacting the 

Virginia Tech libraries. 

LINK TO NEL.XLS 

This spreadsheet (Figure 9-5), like the rebuild spreadsheet, requires the user to input the 

coefficients for x and x2. As these coefficients are input, the spreadsheet calculates the GEL and 

NEL lines. Tangents to these lines are drawn and vertical lines from the tangent points are drawn 

to delineate the points at which L* is reached. 

The tangent to the GEL was found as described in Chapter 8. The tangent to the NEL was found 

through an iterative process. The slope of the tangent line was defined in terms of equation 9-3. 

The first derivative of the resulting equation was taken to define the point of minimum slope by 

the following equation: 

p2x
2 - 1.5x-°5 - 1 = 0 Equation 9-4 

This equation was solved iteratively for x to yield L* for the NEL. A series of iterative solutions 

were performed for varying values of ß2 to formulate a regression equation for the solution of L* 

for the NEL. This equation is: 

L*„ei = 0.3548 ß2 ~ °-6209 Equation 9-5 
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INPUT: 

X coefficient: 
X-squared coefficient: 

0.008 

0.0045 

RESULTS: 

L7F Based on GEL: 
LVT* Based on NEL: 

14.9137 0.1421 

10.1705 0.1212 

GEL vs. NI 

3.5 

2.5 

Ü      2 

1.5 

0.5 

10 15 

Cum. Hours/1000 

20 25 

Figure 9-5: NEL Grapher 

This equation is only valid if equation 9-2 is valid. As an example, one of articulated truck fleets 

is presented in Figure 9-5. The coefficient values are input by the user. The spreadsheet 

automatically produces the graph and the results for L* and T*. Both L* and T* are lower for 

the NEL. The L* is lower because the residual value grows smaller with accumulated hours 

which forces the NEL to gradually converge with the GEL. The T* is lower because the average 

cost per period is reduced when the loss in residual value is spread out over the life of the 

machine. The differences between the values were significant.  L*gei was nearly 50% larger than 
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L*nei. For this particular fleet, that equates to around two calendar years of operation—a figure 

that cannot be ignored. 

Using the GEL instead of the NEL will have differing impacts depending upon the decision being 

made or the information being retrieved. To forecast repair costs, the GEL as calculated in this 

dissertation is the best line to use. The average repair costs per hour at a specific cumulative 

hours of use can be found by taking the first derivative of the cumulative repair cost equation at 

the point in question. Depending upon which type of decision is being made, using the GEL may 

or may not be a good decision. The pros and cons relating to the different decisions are described 

below: 

• Purchase: NEL should be used. A machine that holds its residual value well but costs 

more up front might lose out to a cheaper machine that loses its value quickly if the 

GELs are the basis for the decision. 

• Maintain: Use of the GEL should provide the proper decision since alternative 

maintenance strategies do not relate directly to residual values. The L* and T* values 

computed may be slightly higher than what will actually be experienced, but they will 

be higher by the same relative amounts for each strategy analyzed. 

• Repair: Must have both the GEL and the NEL to evaluate repair limits. The NEL 

may be obtained through historic data and the current residual value of the machine 

under evaluation. For forecasting repair costs, the GEL should be used. 

• Rebuild: The GEL should provide the proper decision for reasons discussed in section 

9.1. Once again, actual L* and T* values may be lower than those which are forecast. 

The errors become compounded if there is a suitable challenger involved. 

• Replacement: If the machines/production teams lose their residual value at similar 

rates, the GEL may provide the proper decision but high L* and T* values. If the loss 

of value rates differ, the NEL should be used. 
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• Retire: The NEL should be used. If the GEL is used, it may direct the user to keep 

the machine longer than the optimum economic life. This was demonstrated in this 

section. 

9.3     FIELD IMPLEMENTATION 

Implementation of the ideas presented in this dissertation by construction equipment companies is 

a goal that this research team hopes to achieve. The cumulative repair cost equations are not 

exceedingly difficult to derive using available data already at the equipment manager's disposal. 

The equations can give the equipment manager a better forecasting tool for repair costs 

throughout the life of the fleet and at individual points of interest. It was already demonstrated 

that the use of the repair cost equations can help in making rebuild decisions. By using a rule-of- 

thumb or historical data, the NEL can be approximated and other economic decisions can be 

made. Also, through implementation the model's strengths and weaknesses can be evaluated. 

This section will discuss the following: 

• Data collection 

• Data analysis 

• Use of the equations 

9.3.1   Data Collection 

As was demonstrated in this dissertation, many companies already have at their disposal all that 

they need to derive cumulative repair cost equations. In some cases, the data are not that easy to 

come by or manipulate—but they are there just the same. Many techniques for handling difficult 

situations relating to the data were discussed in Chapter 4. This section will not serve as a review 

of those techniques. They are available to the user if they are needed. What this section will do is 

describe a data collection methodology that can work to support the derivation of cumulative 

repair cost equations. The resulting database will provide a good way that a company can utilize 

existing data to come up with the equations. 
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The data structures described are not intended to serve as a substitute for a complete equipment 

management database. The databases are only described insofar as they support the derivation of 

cumulative repair cost equations and the implementation of the CCM. An excellent description of 

a complete equipment management database design can be found in Chapter 10 of Computer 

Applications in Construction (Paulson, 1995). 

There are a certain amount of static, non-changing data associated with each machine. These data 

are given in Table 9-2. 

Table 9-2: Static Data 

Machine # Type Size Purchase Date Purchase Price 

The formatting of the machine number is at the discretion of the company—it serves simply to 

identify the machine as unique. The type of machine shows the general classification (dozer, 

articulated truck, etc.). The size indicates the machine's size category within its type. This can be 

done by bucket size, horsepower, weight, etc. The purchase date and purchase price are 

necessary for the formulation of the CCI. The data required for this table should be relatively 

easy to acquire if they are not already in the company's accounting database. 

The second table required is that of maintenance and repair data. The table is given in Table 9-3. 

The machine number is as described above—it provides the linkage between the two tables. The 

account relates to the type of repair. Only four accounts are needed—but more accounts could 

help with other aspects of equipment management. The necessary accounts are Tires & Tracks, 

Ground Engaging Implements, All other Maintenance and Repair, and Abuse. Costs can be 

broken down into more than two categories, or they can be combined into one category. It is 

usually good practice to track parts and labor separately. The date is simply the date upon which 

the repair took place. The meter hours are the cumulative meter hours as read by the mechanic 

when the repair or maintenance action was performed (if the company tracks this information). 
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Table 9-3: Repair Table 

Machine # Account Parts Cost Labor Cost Date Meter Hours 

The meter hours field is where this table may differ slightly between companies. Most companies 

already have databases that provide everything except for meter hours. The solution that would 

work the best for the cumulative repair cost equations is to have the mechanics record the meter 

hours at the completion of every work order. The meter hours will then be input into the 

computer by the same person that keys in the work orders. The calendar date/cumulative hours 

marriage will be complete and a data table and some manipulation will be eliminated. If the 

company cannot implement a process whereby the meter hours are recorded with maintenance 

and repair actions, another table is needed. This table is depicted in Table 9-4. This table can be 

supplied with data from a variety of different sources. The oil sampling database (if used by the 

company) can provide a quick way to get this data, but is not the ideal situation. Sometimes oil 

samples are not recorded or oil changes are accomplished late. In these cases, some of the 500- 

hour interval data pairs can be lost. A better way to do this (which has been implemented with 

some success in the field) is through direct recording of the cumulative meter hours for each 

machine on a periodic basis. Some companies do this every time that the equipment is refueled. 

Others require either the mechanics or the job superintendents to provide the meter hours on all 

machines in their charges on a regular basis (weekly readings work well.) The cumulative meter 

hours should be recorded on at least a monthly basis. 

Table 9-4: Date/Hours Table 

Machine # Month Hours 

The final data table required to develop equations is the inflation table (Table 9-5). It is felt that 

the Consumer's Price Index (CPI) provides an adequate measure of inflation as it affects all 

sectors of our society—it is also very easy to obtain.  The CPI will be used to adjust the costs 
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incurred to current dollars. If the user so chooses, the inflation table can be ignored. The user 

does this with the knowledge that the L* and T* values obtained using non-adjusted data will 

differ from the actual costs incurred. It was shown in Appendix A that the effects of inflation are 

not negligible. The effects are especially apparent if comparing old machines to newer machines. 

Unadjusted data will have a cumulative repair cost line that is above that of the adjusted data. 

This could make it look like older machines have a higher T* than they actually do. Data for the 

CPI can be obtained over the internet from the Bureau of Labor and Standards website using the 

instructions provided in Appendix A. 

Table 9-5: Inflation Index Table 

Date CPI 

The inflation indices are the last of the data necessary to construct cumulative repair cost 

equations. The next section, data analysis, will explain how to use these database tables to derive 

the cumulative repair cost equations. 

9.3.2   Data Analysis 

The usable methodology for forming cumulative repair cost equations differs in many ways from 

the experimental methodology used in this dissertation. The usable methodology is much simpler. 

It is designed for implementation using only two PC-based software programs—a spreadsheet and 

a relational database. Microsoft® Excel® and Access® were the programs for which this 

methodology was tailored. Other competitive packages should be able to provide similar results. 

The general steps for accomplishing this analysis are flowcharted in Figure 9-6. 

It is important to note that skilled programmers could combine some or all of these steps into one 

operation. The purpose of breaking the analysis into five steps was for ease of understanding. 

The user should feel free to streamline the process when they are capable. 
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The first step in the analysis is to generate a summary report of monthly repair expenditures for 

each machine in the fleet to be analyzed. The fields in this summary report are shown in This is 

done in a database program. The report is filtered so the summaries are generated only on the 

fleet of interest. The repair table must be linked with the static data table to perform this filtering. 

The monthly expenditures should include all maintenance and repair cost accounts with the 

exception of Tires and Tracks, Ground-Engaging Tools, and Abuse. The monthly expenditures 

should be in their incremental form. This is necessary for the application of inflation indices. If 

the expenditures are generated in their cumulative form, additional manipulations must be 

accomplished to get them to the incremental form. Purchase dates and purchase prices are 

included with the report since the static data table was linked for the filtering. 

Form Summary Monthly Cost Report 

1 
Perform Inflation Adjustment 

I 
Form Cumulative Cost Indices 

1 
Form Data Set 

1 
Generate Equation 

Figure 9-6: Analysis Flowchart 
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The date/hours table can also be linked into this report. When the hours are linked, they should 

be divided by 1000 to get them ready for the analysis. 

Table 9-6: Summary Report 

Machine # 
Purchase 

Date 

Purchase 

Price 

Cumulative 

Hours/1000 

Repair 

Month 

Incremental 

Repair Costs 

The second step of the process is to perform the inflation adjustment. In the experimental 

methodology, all costs were indexed to 1987. The reason for this was that no machines were 

older than 1987 models and the data were received at differing time—it was more efficient to use 

an index month in the past than one in the present. For field users, however, the results will be 

more useful if they are expressed in terms of current monetary units rather than units of some time 

in the past. The equation that should be used to index the costs for inflation is as follows: 

Indexed cost = (cost * index of current month)/ (index of month incurred) Equation 9-6 

This equation will increase the values of previous expenditures in order to express them in current 

day dollars. Apply this equation to all monthly incremental costs and to the purchase prices. The 

output table should be nearly identical to Table 9-6 with the exception that the purchase price and 

incremental repair costs will be indexed for inflation. 

The third step in the process is to form the cumulative cost index for each monthly entry. This 

can be done in either the database or the spreadsheet program. This is, however, a good point to 

transition to the spreadsheet program. To form the cumulative cost index, the indexed monthly 

repair Costs must be converted from their incremental to their cumulative form. This can easily be 

accomplished in the spreadsheet. The index is then calculated for each month using equation 4-1. 

The fourth step is the final formation of the analysis data set. The user should now have a list of 

cumulative hours and CCIs for each machine on a monthly basis. Each machine should follow the 

next with no spaces between machines. The monthly CCI basis must be converted to one data 

pair for every 500 cumulative hours.   This is done through the process of interpolation.   An 
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automated method of doing this is depicted in Table 9-7. The code in column D creates a number 

called "Floor" which is the cumulative hours/1000 rounded down to the nearest 0.5. Column E, 

"Interval", eliminates repeated values of column D and replaces them with blanks. Column F, 

"CCI", interpolates between the CCI values of the current line and the previous line. 

Table 9-7: Excel® Codes for Interpolation 

A B c D E F 

1 
Mach. 

# 

Hours 

/1000 
CCI Floor Interval CCI 

2 mach.# 
hours/ 

1000 
CCI 

=IF(A2=Al,FLOOR(B2, 

0.5),(0-FLOOR 

(B2.0.5))) 

=IF(D2=0,"",IF(D2< 

0,"",IF((D2+D1)=0," 
M 

IF(D2=D1,"",D2)))) 

=IF(E2="","",C2- 

(B2-E2)*(C2- 

C1)/(B2-B1)) 

The final step in the analysis, the actual formation of the equations is fairly straight-forward. 

1. Select columns E and F from the spreadsheet depicted in Table 9-7. 

2. Copy the columns and paste them in columns G and H using the EDIT—PASTE SPECIAL- 

VALUES. This command pastes the values (not the formulas) of the cells in columns E and F 

into columns G and H. 

3. Next, select columns G and H and use the command DATA—SORT—BY(Column G)— 

ASCENDING. This will eliminate the empty cells and provide a neat list for graphing. 

4. Select only the cells that contain data pairs in columns G and H this time. Now, use 

INSERT—CHART—XY(Scatter)—SUBTYPE (points only). Click the NEXT button three 

times to scroll through various screens, then click FINISH. A scatterplot graph of the 

cumulative hours vs. CCI should be on the screen. 
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5. Select the data series (the points) on the chart. When the series is highlighted, press the right 

mouse button. Select ADD TRENDLINE. A pop-up box will appear with various trendline 

types. Select POLYNOMIAL, 2nd ORDER. Click the OPTIONS tab within the ADD 

TRENDLINE dialog box. Select SET INTERCEPT = 1 (the default value is zero). Select 

DISPLAY EQUATION ON CHART and DISPLAY R-SQUARED VALUE ON CHART. 

Click the OK button. 

6. The regression line, equation, and R2 values will now be displayed on the chart. Copy down 

the equation for future reference. 

The analysis is now complete. The displayed R2 value is not the same adjusted R2 used during the 

experimental analysis. It will, however, provide some measure of the fit of the curve. The 

displayed R2 value will be higher than the actual adjusted R2. 

9.3.3   Use of Equations 

With the analysis complete, the user can apply the equations in two different ways. The equations 

can be used as part of the CCM or they can be used as forecasting tools on their own merits. The 

use of the equations within the CCM was discussed in sections 9.1 and 9.2. The user can also 

calculate L* and T* using the equations described in Chapter 8—this is also related to the CCM. 

The use of the equations as forecasting tools has been alluded to, but not discussed in detail. Two 

applications of how to forecast average costs using the equations will be discussed. The first 

example is finding the average repair cost in dollars per hour for machines that are of a specific 

age within an analyzed fleet. This is done by evaluating the first derivative of the CCI equation at 

the point of interest. The first derivative is given by the equation: 

CCI/1000 hours = ßi + 2ß2x Equation 9-7 

The ß components are taken from the cumulative repair cost equation. The "x" value should be 

expressed in hours/1000. The resultant is a number with the units of $/$/1000 hours. To convert 

this to a repair cost per hour, multiply by 1000, then multiply by the purchase price. This cost can 

be used to adjust internal rental rates based on the average age of the fleet.  Alternatively, it can 
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be used as a yardstick against which machines of similar age can be judged. If the machine has 

lower average repair costs, it is performing better than average. The converse is true if it has 

higher than average repair costs. 

A second type of forecast that can be performed with the equations is a period forecast. If the 

equipment manager would like to get an idea of how much it will cost to operate an average 

machine of age "x" a number of hours equivalent to "z". To do this, evaluate the CCI equation 

for "x" and for "x + z". Subtract CCIX from CCIX + Z. The difference is the average period cost in 

terms of CCI. To convert this to dollars use the following formula: 

CCI     - CCI 
Cost, = —  x Purchase Price Equation 9-8 

1000z H 

9.4     INDUSTRY BENCHMARKING 

The first three sections of this chapter have dealt with ideas that the cumulative repair cost 

equations can be used for now. This final section looks towards the future. In Chapter 8, it was 

pointed out that it may be possible to develop equations that are representative of a general type 

and size grouping of equipment if sufficient data were available. This section provides a roadmap 

for obtaining, analyzing, and evaluating such data. 

Although it would eventually be desirable to develop industry-wide benchmarks for every type 

and size of equipment, the concept must first be proven on a small scale—one general category 

and class of equipment. Due to the similarities between the fleets of articulated trucks evaluated 

during this dissertation, it is recommended that the proof on concept be focused on 25-ton 

articulated haul units. If the project proves successful, other categories and classes of equipment 

can be evaluated. 

Even a small-scale project would require the backing of an organization that possesses greater 

resources than any single university. It is recommended that a non-academic champion be 

selected to help assure the project's success. An organization that has a wealth of equipment 

management experience and resources is the Association of Construction Equipment Managers 

(ACEM). The group counts among its members some of best equipment management specialists 
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in the industry. These equipment managers represent a wide cross-section of construction 

companies—from multi-national conglomerates to small, regional firms. These companies have 

tremendous data resources at their disposal. 

The data should be collected over a number of years. There should be sufficient data to develop a 

curve that covers the full range of accumulated hours over which these machines would be 

expected to operate—ideally full coverage would be available from 0-20,000 hours. An even 

wider range of data would be better, but data up to 20,000 hours should provide a very good idea 

of how these machines accumulate repair costs. This may require tracking the sales of machines 

so that more than one company's data is involved. In addition to maintenance and repair costs, 

selling prices, hours, and condition of used equipment should also be collected for a parallel study 

of residual values. The data should be in a standardized format. Each company should collect 

and report the data in the same fashion, if at all possible. The drive for standardization would be 

made easier if all the participating companies could agree on a standard—the ACEM would 

provide a logical forum for this. 

After the data are collected, they should be analyzed using the same model and data set type that 

were selected during this dissertation. However, weighted regression should be used to eliminate 

any influence of non-standard variance. This was not possible in the limited study conducted for 

this dissertation. One-half of the data should be set aside for model validation. 

After the equation is developed, it should be given the widest dissemination possible to determine 

its validity (provided that the equation developed has suitable p-values and measures of 

performance). Feedback and validation should be actively sought from companies that own and 

operate this type of truck but were not a part of the study. This feedback and the equation's 

performance in the field should be evaluated. 

If the feedback on the equation is positive and it provides satisfactory field performance, the study 

should be expanded to incorporate all categories and classes of equipment. This should be done 

gradually, if necessary. It will take years and could prove to be expensive. When the final 

industry-wide benchmarks for all equipment are published, the work will not be over. Equipment 

manufacturers are constantly improving the performance/reliability/economy of their products. 
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New products and improvements to old products should be evaluated to determine their impact 

on existing equations. 

If the feedback or performance of the equation is poor, the study would not have been in vain. It 

would have the served the purpose of promoting company-specific equations for each fleet of 

equipment and will have provide an opportunity for equipment managers to discuss operations 

and compare ideas with other equipment managers. 

9.5     SUMMARY 

This chapter discussed a wide range of ideas concerning the use and furtherance of the cumulative 

repair cost equations presented in this dissertation. It provided some logical uses for the fruits of 

the labor contained herein. 

Two aspects of incorporating the cumulative repair cost equations into the cumulative cost model 

were presented with accompanying software tools. The rebuild decision is an economic decision 

that can probably be made without the use of the NEL. The methodology for doing so was 

presented. A preliminary study of the NEL as it relates to the GEL was presented. Actual resale 

data were used to provide partial validation for a generic rule-of-thumb for the estimation of 

residual value. 

The chapter then refocused to the cumulative repair cost equations themselves. A methodology 

whereby construction companies can develop and use their own, company-specific equations was 

presented. Finally, a proposed expanded study of one category and class of equipment was 

outlined and discussed. The study is based on the somewhat promising results obtained when 

comparing articulated trucks. The ultimate purpose of the study would be to provide industry 

wide benchmarks on all types and sizes of construction equipment. 

This concludes this dissertation's contribution to the body of knowledge. The final chapter will 

summarize and revisit all that has been accomplished. 



CHAPTER 10: CONCLUSION & 

RECOMMENDATIONS 

A vast amount of material has been presented within the pages of this document. This chapter 

serves the purpose of attempting to tie it all together. This will be done by providing an overview 

of the dissertation, discussing the dissertation's contributions to the body of knowledge, 

identifying the applications and benefits of this research, and presenting some avenues for future 

research. 

10.1   DISSERTATION OVERVIEW 

A recap of what has been covered should help when placing the contributions into perspective. 

The dissertation was organized into four main parts. Figure 1-3 depicts these four parts as they 

relate to each other and the chapters of the dissertation. 

10.1.1 Part I: Understanding the Challenge 

Part I provided the frame of reference and context for the dissertation. 

In Chapter 1, the topic and research was introduced. The hypotheses were put forth. The 

objectives, scope, limitations, and assumptions were presented. An outline of the dissertation was 

provided. 

Chapter 2 provided valuable background information to aid in the understanding of economic 

modeling and the forecasting process. The chapter first investigated economic replacement 

theory. The two optimization theories, cost minimization and profit maximization were described 

and contrasted. Repair limit theory was also discussed. The works of Taylor, Hotelling, 

Preinreich, Terborgh, Douglas, and Collier & Jacques were discussed as they relate to economic 

modeling. The uses and types of economic forecasts were presented. Numerous methods of 

forecasting maintenance and repair costs on heavy equipment were described. 

226 
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Chapter 3 was a detailed discussion of the cumulative cost model (CCM). The CCM was 

introduced by Vorster (1980). It combines the useful functions of economic replacement theory 

and repair limit theory in one model. The model can provide both numeric and graphical solutions 

to a number of equipment management problems. The decisions supported by the CCM include, 

but are not limited to: purchase, maintain, repair, capital rebuild, like-for-like replacement, 

production capacity replacement, and retire. The use of the model in making these decisions was 

discussed in detail. Decision rules were identified for each type of decision. 

10.1.2 Part II: Defining The Work 

Part II addressed the work to be accomplished by providing further details on the nature of the 

data and the analysis definition aspects of this dissertation. Chapter 4 gave an in-depth look at the 

data available and its idiosyncrasies. Chapter 5 followed with a detailed description of the test 

methodology. 

The data used in this study were not perfect or ideal as pointed out in Chapter 4. They were field 

data obtained from real companies. There were structural and statistical issues concerning this 

data. The structural issues of field data, differing machines, machine age, differing times, data 

collection periods, cost, data pairing, and confidentiality were discussed. The bottom line with 

the structural issues was that different companies do things differently. To compare results on a 

like basis, the data needed to be placed into the same format for every fleet analyzed. This would 

allow for the formulation of CCI values that were consistent with other companies. Statistical 

issues discussed included: data independence, non-constant variance, relative dominance, repeated 

points, and varying intervals. Solutions to the structural and statistical issues were proposed. The 

four different data sets used in this dissertation were introduced. 

Chapter 5 commenced with a discussion of the types of regression to be performed. This study 

was limited to linear regression models and non-linear models that could be transformed into 

linear models. For the linear models, regression through the origin was used. This forces the 

GEL to pass through the point (0,1) on the age/CCI axis system. A total of 19 different models 

were identified for consideration. Four were non-linear transformed, the rest were linear. The 

data were scaled to allow for a better relationship between the raw components of the models (x, 
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x2, etc.). For fleets with more than 34 machines, data splitting was proposed as a validation 

technique. The analysis had to be broken down into phases since there were so many models and 

data sets under investigation. The preliminary phase used non-parametric techniques. The latter 

phases used parametric evaluations. SAS® was introduced as the primary research tool to be used 

for the data analysis. 

Parti Understanding the 
Challenge 

1. Introduction 
2. Literature Review 
3. The Cumulative Cost Model 

1 r 
Part II Defining The Work 4. The Data 

5. Statistical Methodology 

1 r 
Part III The Work 

6. Data Gathering 
7. Analysis 
8. Results 

1 r 

Part IV The Benefits 9. Integration 
10. Conclusion & Recommendations 

Figure 10-1: The Organization of the Dissertation 
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10.1.3 Part III: The Work 

This part of the dissertation was where most of what was actually done was described. The 

complicated process of preparing the data for analysis was covered in Chapter 6. These prepared 

data were analyzed statistically in Chapter 7. Assessments were made about the usefulness of the 

results obtained during Chapter 8. 

Preparing the data for analysis required a greater time investment than the analyses themselves. 

Chapter 6 described how multitudes of data on 270 different machines were extracted from the 

company databases. A number of manual corrections had to be made on the data after they were 

obtained. Obvious errors (such as negative repair costs for a given time period) had to be 

corrected. The data then had to be corrected for the effects of inflation. This was done using 

indices available from the Bureau of Labor and Standards. Since many of the companies involved 

did not explicitly track machine age in cumulative hours of use (the regressor variable), a method 

was devised to associate cumulative hours of use from oil-sampling database with the cumulative 

costs in the accounting databases. After this was accomplished, the four data sets for each of the 

17 fleets were prepared. 

In Chapter 7, the process of analyzing these data within the framework of the methodology 

defined in Chapter 5 was described. Eleven of the nineteen models under consideration were 

eliminated during the preliminary analysis using non-parametric techniques. The eight remaining 

models contained the best one, two, three, and four-parameter linear models in terms of both 

measures of performance (adjusted R2 and R2press). The best transformed non-linear model was 

also included. Three of those eight models and one of the four data sets were eliminated upon 

examination of the average p-values for inclusion of parameters—their average p-values were 

greater than the 0.20 specified in Chapter 5. The models eliminated at this stage were those with 

more than two terms. The second stage of the intermediate analysis involved comparisons of the 

measures of performance for the different models. The two single-parameter models were 

eliminated due to measurably worse performance. The three remaining two-parameter models 

were compared on the basis of measures of performance, parameter significance, statistical issues, 

and preliminary results. The linear model that contained terms of x and x2 was the model 

selected. The data set that contained data pairs interpolated at 500-hour intervals was selected as 
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the most appropriate. Cross-validations for this model were successful. Confidence intervals for 

the ß terms were calculated. A preliminary study of the effects of weighted regression was 

accomplished. 

In Chapter 8, the validity of the results obtained using the model selected in Chapter 7 was 

examined. A study of the equations revealed that there is an inverse relationship between the ßi 

and ß2 coefficients. This could indicate that companies that invest in continuous maintenance and 

repair over the life of the machine should have smaller ß2 components. It was shown that 

optimum life, L*, is solely a function of the ß2 term. T* is a function of both parameters. It was 

proposed that there might be an empirical relationship between CCI and L*. For the fleets in this 

study, two was the average CCI at the point that the fleets reached L*. There is a curvilinear 

relationship between L* and T*. Large machines in heavy production roles tended to have larger 

L* values and thus, lower T* values (in terms of CCI). Smaller machines in multi-purpose roles 

tended to have smaller L* values and larger T* values. It was observed that the smaller L* values 

were more in line with conventional thinking on when to replace machines. It was proposed that 

some of the inaccuracies in L* and T* for the larger equipment could be accounted for if 

collateral costs were included. Sensitivity analyses were performed to see how L* and T* vary 

with changes in parameter values. Comparisons of all fleets in the same company, similar fleets in 

different companies and similar types of fleets with differing sizes were performed. The statistical 

tests did not support any definitive conclusions about any of these comparisons. Some 

observations were made, but further testing should be done to support any conclusions. The 

performance of the regression equations in relation to three repair cost forecasting methods 

proscribed in literature was presented. 

10.1.4 Part IV: The Benefits 

The final part of the dissertation focused on the uses and contributions of the work performed. 

Chapter 9 provided a linkage between the equations developed and the CCM. It also provided 

information on how companies can derive their own equations. Chapter 10 recapped all that was 

accomplished. 
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The first tool presented in Chapter 9 was an application to assist users in making a capital rebuild 

decision. It was pointed out that there are three dimensions to such a decision: when the rebuild 

will be accomplished, how much it will cost, and how much machine life will have been gained 

when the rebuild is complete. These three dimensions were accounted for in a spreadsheet 

application that computes the GELs for the machine prior to the rebuild and after the rebuild 

based on user-supplied information. L* and T* values for both GEL curves are calculated and a 

decision can be made. The second tool described had the function of plotting the NEL in relation 

to the GEL, permitting the user to make comparisons. The calculations to compute the NEL 

were based on an empirical rule for residual value that was validated using actual resale and trade- 

in values for articulated haul units. The results indicate that there is a significant difference 

between the L* and T* values computed on the basis of the two different curves (NEL and GEL). 

After the two tools were presented, detailed instruction on how companies can develop their own 

equations were provided. This process can be accomplished within the capabilities of 

spreadsheet and database programs readily available for personal computers. Equations were 

presented that will allow the user to forecast average hourly repair costs and average period repair 

costs for fleets of a specific age. Finally, a framework for the development of industry benchmark 

equations was proposed. 

Chapter 10 was the conclusion. The dissertation was summarized, the contributions were noted, 

and ideas for future research were presented. 

10.2   CONTRIBUTIONS 

This dissertation has provided important contributions to the body of knowledge concerning 

construction equipment economics. The contributions will be discussed briefly in terms of the 

hypotheses presented at the beginning of this dissertation. A more detailed review of the specific 

contributions will follow. 

10.2.1 Hypotheses 

This dissertation tested three different hypotheses. These hypotheses are interrelated—they build 

upon each other. 
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• Hypothesis #1: A mathematical relationship exists between repair costs and age of heavy 

earthmoving equipment. 

In fact, there were many suitable mathematical relationships between repair costs expressed 

within the cumulative cost index and age expressed in cumulative hours of use. Chapter 2 

showed that many authors have attempted to quantify this relationship by various means 

(Nichols, Nunnally, etc.). Chapter 7 showed that there were many different suitable 

regression equations. 

• Hypothesis #2: It is possible to approximate the true equation for the relationship between 

cost and age by using linear regression techniques on existing data. 

Chapter 7 of this dissertation presented the results of a detailed regression analysis to select 

the best regression equation for this purpose. The equation selected was: 

CCI = 1 + ßix + ß2x
2 Equation 10-1 

It was determined that this equation used with a data set consisting of the CCIs of each 

machine interpolated to 500-hour intervals provided the best solution to the task. 

• Hypothesis #3: It is possible to incorporate repair cost regression equations into the 

Cumulative Cost Model (CCM). 

This was proven to in Chapter 8 where it was shown how the L*, T*, and average hourly 

repair costs could be determined using the equations developed. Chapter 9 took the 

incorporation one step further by providing two tools that directly permit the visualization and 

quantification of the impact of the growth of repair costs within the CCM. 

All three hypotheses were addressed. Significant evidence for their acceptance was provided. 

10.2.2 The Contributions in Detail 

In this section, the contributions will be discussed chapter by chapter. 
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Chapter 1 contributed a better understanding of the problems facing equipment managers. It also 

introduced the concept of a Cumulative Cost Index (CCI). The CCI is an invaluable tool in the 

comparison of machines that are not identical. 

Chapter 2 combined pertinent information from the body of knowledge in a concise form that has 

sufficient breadth and depth to serve as an aid in the understanding of economic modeling and 

forecasting as they pertain to construction equipment. 

Chapter 3 provided a fresh perspective on the Cumulative Cost Model (CCM) as developed by 

Michael C. Vorster. The myriad uses of the model were codified with understandable decision 

rules. 

Chapter 4 contributed a detailed study into the nature of and problems with field data on 

construction equipment repair costs. 

Chapter 5 presented an in-depth, statistically sound methodology for the development of 

regression equations using a state-of-the-art statistical software package (SAS®). 

Chapter 6 showed how to process raw field data on construction equipment to a format that is 

suitable for analysis. A number of innovative techniques were presented. A process was 

identified whereby cumulative meter hour data could be associated with cumulative cost data 

through the use of oil-sampling databases. 

Chapter 7 provided the single most significant contribution of this work—the selection of a 

regression model and recommendation of a data set for the quantification of the CCI in terms of 

cumulative hours of use. 

Chapter 8 investigated the nature of this equation as applied to the data that were part of the 

study. There were a number of important contributions in this chapter. It was proposed that the 

ßi component of the equation represents a static cost accumulation that is, in essence, a fact of 

life relating to the ownership of equipment. The ß2 component, on the other hand, represents a 

dynamic cost growth accumulation—that could possibly be a reflection of how well a company 

manages its maintenance and repair strategy. 
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It was shown that there is a significant relationship between the two ß terms in the equation. The 

relationship is inverse—a relatively low value for one coefficient usually resulted in a relatively 

high value for the other coefficient. This relationship resulted in an even more significant 

relationship between the optimum life (L*) and optimum average cost per period (T*) values for 

differing fleets.   There is an L* vs. T* continuum along which all fleets in the study were located. 

The L* values which were lower seemed to provide more realistic estimates of optimum life than 

the higher L* values. It was proposed that collateral costs could be the discriminator. Collateral 

costs may not be that significant in the determination of L* for fleets of smaller, general purpose 

type equipment. Collateral costs may have a large impact on the L* values for fleets of larger, 

production-oriented equipment. 

There is a strong relationship between CCI and L*. Most machines reach L* with a CCI value of 

approximately two. In general terms this could mean that a machine approaches the end of its 

economic life when 100% of the purchase price of the machine has been invested in repairs on 

that machine. 

It was shown that the equations for estimating repair costs proposed by Nunnally (1993) do a 

good job of fitting CCI curves if they are given a starting point. The benefit of the cumulative 

repair costs curves developed in this dissertation is that no seed value is required. Optimizations 

can be performed without guessing at a starting point. 

Chapter 9 provided two spreadsheet applications for the direct use of the cumulative repair cost 

equations within the CCM. One of these applications was an aid to making the rebuild decision. 

The other was a preliminary investigation of the Net Expenditure Line (NEL) based on historic 

residual values. A detailed guide on how companies can develop their own cumulative cost 

equations was provided. A framework for the establishment of industry-standard equations was 

presented. 
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10.3 APPLICATIONS AND BENEFITS 

This research was pertinent and has produced some direct applications than can be applied in the 

construction industry. Construction firms that use heavy equipment should consider developing 

and employing their own cumulative cost equations. The equations can be developed within the 

constraints of existing data collection systems. All that is required is a personal computer with 

standard software (spreadsheet and database.) The regressions can be accomplished within the 

spreadsheet program—expensive scientific tools like SAS® are not required to develop equations. 

The equations can be used to directly estimate average to date, average incremental, or average 

period repair costs or repair cost accumulation rates for specified fleets of equipment. The 

equations can also be employed within available applications of the CCM. 

The benefits of using these equations include a better understanding of how repair costs 

accumulate as machines age. Equipment managers will be able to produce better estimates of 

average repair costs for their fleets of equipment. Better estimates can translate into less 

uncertainty about profit for the company under the competitive bidding process. Applications 

within the CCM can help the equipment manager maintain an optimum fleet of equipment. The 

CCM can help an equipment manager make decisions concerning acquisitions, maintenance, 

repairs, rebuilds, replacements, and retirements. 

10.4 RECOMMENDATIONS FOR FUTURE RESEARCH 

Throughout the course of this research, a number of areas were identified that could provide 

fruitful results if investigated further. 

Definition of the NEL. A comprehensive study of residual values for construction equipment 

should be undertaken. Regression equations that can express residual value in terms of 

cumulative hours of use would provide a very important contribution to the cumulative cost 

model. All decisions cannot be made solely on the basis of the GEL. 

Further Define GEL. The GEL might be further defined and made more accurate through the 

inclusion of more cost categories. All possible costs should be investigated as to the impact they 
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have on the determination of L* and T*. The quantification of collateral costs has proven to be a 

difficult and subjective task. It may be possible to reverse-engineer the collateral cost portion of 

the true GEL. This could be done with the help of experienced equipment managers. It would be 

necessary to assume that experienced equipment managers are able to incorporate collateral costs 

into the decision making process without solid, balance-sheet type numbers in front of them. If 

L*actuai for a number of fleets can be provided by these equipment managers, the ß terms within 

the equations can be adjusted to make L*predicted = L*actuai- As a starting technique, ßi should be 

held constant while varying ß2. It is felt that collateral costs grow at an increasing rate with the 

accumulation of hours. 

Define Industry-Standard Benchmarks. The means for doing this were presented in Chapter 9. 

Industry-standard benchmarks would be invaluable if they can be developed. They could provide 

a basis against which to judge actual performance of a companies fleets or, more importantly, its 

maintenance and repair policies and strategies. The benchmarks could also lead to more concrete 

generalizations about concerning type and size of equipment. Additionally, such benchmarks 

could be employed by companies that do not have adequate decision support systems as aids to 

their decision making process. 

Investigate other attributes. The attributes investigated during this study were equipment size, 

company, and type. It may be useful to study new vs. used equipment, brand "A" vs. brand "B" 

equipment, or the impacts of geographic location. 

Fully develop tools for applications within the CCM. Prototypes of two of these tools were 

provided in Chapter 9. The tools for the rest of the equipment management decisions possible 

within the CCM should also be developed. The tools should be combined in one application that 

allows the user to access many different types of analyses with the touch of a button. 

Further investigate important relationships. Relationships that merit further study are: CCI 

values at L*, the L* vs. T* continuum, and the ßi vs. ß2 continuum. 

Investigate other applications. The techniques developed for this research may be applicable to 

other industries besides construction. The mining industry, in particular, should be investigated. 
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10.5   CLOSURE 

This dissertation has taken an in-depth, focused look at one central issue: quantifying the effect of 

machine age on the growth of repair costs. This issue was addressed through the use of 

regression analysis techniques. A suitable solution was found within the research objectives, 

scope, and limitations delineated at the beginning of this document. 

The equations that quantify this effect have meaning beyond just a strict mathematical 

relationship. They provide a bridge that enables current data collection techniques to be used 

within the context of the cumulative cost model. This will eventually permit the direct application 

of economic theory to daily equipment management practices. 
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Appendix A: Inflation Corrections 

There are two general ways to account for inflation in economic calculations. They are known as 

current value accounting and price level accounting (Fabricant, 1976). Current value accounting 

attempts to incorporate general cost indices and specific appraisals to come up with a somewhat 

subjective value of the current market worth of specific goods or services. Current value 

accounting is market driven—the same assets could have very different current values in different 

markets (regions of the country). Price level accounting quantifies changes in the value of goods 

or services by incorporating fluctuations in the general purchasing power of the dollar. Price level 

accounting is the most appropriate and feasible method to use for this study. 

The general formula to calculate inflated costs is (Jones, 1982): 

p(t + At) = pit) • [1 + /] Equation 0-1 

Where p(t + At) is the price of goods or services at some time in the future, p(t) is the current 

price of goods or services, and f is the inflation factor for the given period of time. Unfortunately, 

f is not easy to define and can be different for different commodities. A better computational form 

of the inflation equation is given by the equation (Jones, 1982): 

P(h) = p(t,) ■ —f- Equation 0-2 

Where I(t) is an index that is specific to time t. In this equation, ti denotes the date that a 

transaction occurred—this will be called the transaction date. The other time parameter, t2, 

denotes the time to which the transaction will be indexed, or the base date. These indices can be 

computed or obtained from existing sources. The US Bureau of Labor and Statistics computes a 

variety of statistics that are of great value when trying to estimate inflation rates (Business, 1982). 

Among these are the often-mentioned Consumer Price Index and Producer Price Index. The 

Consumer Price Index is based on the general prices of consumer goods. It is a good estimator 

for labor costs as many unions try to tie their wage increases to increases in this index. The 

Producer Price Index attempts to capture changes in the cost of producing goods. The Producer 
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Price Index is further broken down into broad classes of manufactured goods, the most 

appropriate of which is "Construction Machinery and Equipment." The periodical Engineering 

News Record (ENR) also publishes quarterly indices for general construction costs and equipment 

costs. 

The best index to use for this study could be a composite one. In his book, Construction 

Equipment Policy, James Douglas recommends a composite index that contains mixes of indices 

for machinery price, prime rate of bank loans, labor, parts cost, petroleum, and overhead 

(Douglas, 1975). These indices are weighted, then applied to the overall operating cost to come 

up with an inflation correction. A similar composite index can be developed that is tailored to this 

research. 

Adjusted Cost Indices 

®CPI 

©Equipment 

A Construction 

A ENR 20 

• Combined 

Mar-86    Aug-87   Dec-88   May-90   Sep-91    Jan-93    Jun-94    Oct-95    Mar-97 

Date 

Figure A-l: Standardized Cost Indices (Bur. Labor & Stds., ENR) 

All of the factors that Douglas recommends should not have to be taken into account for this 

research. Overhead and bank loans are not as important to this research as they would be to 

research that is looking at the entire equipment equation. An index that would seem to make 

sense for this research would be one that incorporates the cost of construction equipment and 
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labor. The initial purchase price of the machine could be indexed using solely an index for 

equipment. The repairs that take place would be indexed to the cost of equipment and labor in 

appropriate ratios. 

Using data from one of the fleets in this study, estimates for the appropriate percentages of these 

items were developed. Labor was 45% of the repair costs and parts were 55% of the repair costs. 

The indices chosen to represent these two categories were obtained from the Producer Price 

Index Series series "construction machinery" (ID # PCU3531) and the Consumer Price Index 

series "all urban consumers" (ID # CUUR0000SA0) (Bureau of Labor and Standards, 1996). 

These data are easily obtainable through the internet. The main internet address of the Bureau of 

Labor and Standards is http://www.bls.gov. The series are obtained from their statistical division. 

The current website for the indices is http://146.142.4.24/cgi-bin/surveymost?bls. The website 

has an interactive menu for selecting the information desired. 

Data from the Engineering News Record, while developed specifically for the construction 

industry, does not differ significantly from that obtained from the Bureau of Labor and Standards 

(Figure A-l) and is not readily available in electronic format. 

The indices shown in Figure A-l include the Consumer Price Index, Producer Prices Index for 

construction machines, ENR top 20 U.S. cities construction index, the Bureau of Labor and 

Standards' construction cost index, and the combined index proposed earlier in this paper. 

In their raw form, the indices had ranges from 0.9 to 530 depending on which index and which 

time period was being looked at. The reason for this is the indices had different base dates. The 

base date is the point where the index is equal to one—everything else is indexed to that date. To 

give a common start point for comparison purposes, all indices were adjusted to reflect January 

1987 as the base date. Data from January 1987 to the present were plotted. This range of values 

covers the range of interest for the data used in this study. The two construction indices remain 

very close throughout the range of interest. The CPI increases at a rate slightly faster than most 

of the other indices, but all remain fairly closely grouped. 
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It should not matter which point in time is chosen as the base date—as long as all the transactions 

for the fleet are indexed to the same date. The reason it does not matter is that the numerator and 

the denominator of the CCI equation are both indexed to the same base date. The CCI is a 

unitless number. 

The effect of inflation is substantial. Most of the indices show almost a 30% increase over the ten 

years of observation. This would mean that a repair that cost $100 in 1987 would cost around 

$130 in 1997. A correction of 30% must be applied to the later costs incurred. If it is not 

applied, it will not be possible to determine what happens to equipment repair costs in terms of 

real spending power. 

The indices are applied to the data using Equation B above. The initial list price is adjusted once 

using the equipment index. The incremental monthly repair costs are adjusted using the combined 

index for the month in which they occurred. A problem arises when the cumulative repair data 

available on a machine starts at some time other than the initial purchase date. For the machines 

that fall into this category, the first value of cumulative repair cost is indexed to the halfway point 

of the range calendar months preceding it. This is not ideal, but some index must be applied to 

this figure. After the indices are applied, the CCI's are calculated and the equations can be 

developed. 

The effect of the application of these indices should normally be a de-emphasis of the quadratic 

trends of the regression lines developed. This means that the ß2 term should be smaller than it 

would have been had the inflation correction not been made. Smaller ß2 terms correlate directly 

to larger L* values. The T* values for the adjusted line should be smaller. 

Using one of the data sets from one of the fleets, trial regressions were performed to ascertain the 

numerical and graphical significance of the effects of inflation. Figure A-2 shows plots of the 

data, adjusted for inflation and not adjusted for inflation. The regression lines for each set of data 

are also depicted. The regression line for the adjusted data is flatter than that of the unadjusted 

data. The values obtained from this regression indicated a 16% increase in L* and a 15% 

decrease in T* when the data were adjusted. 
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Inflation should not be ignored in this, or any other, economic forecasting model. The inflation 

indices during the time frame of interest for this study are not trivial. It has been demonstrated by 

example what kind of effect inflation has on results obtained. The impact is certainly measurable. 
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Appendix B: NOINT Macro 

Shown below is the SAS® NOINT macro used in this research. It was originally developed by 

Robert Noble through the Virginia Tech Statistical Consulting Center. It was modified slightly by 

Zane Mitchell to adjust the PRESS statistic in the original macro to an R2
press statistic. 

options ls=200; 

data d1; 
input x y; 
cards; 

(Data in two columns go here) 

%macro nointreg(data=d1); 
%let data=d1; 
proc iml; 

compnum=5; 
eqtype=83; 
setnum=3; 
use &data; 
read all into data; 
x = data(|,1|); y = data(|,2|); 
x = x || (x##2) || (x##3) || exp(x); 
ssep = (y - x*inv(x**x)*x"*y)' * (y - x*inv(x'*x)*x'*y); 
s2 = ssep/(nrow(y)-4); 

result = • | | • | | • | | ■ | | . | | . | | . | | . | | . | | . | |. | | •; 
do v1 = 0 to 1; 
do v2 = 0 to 1; 
do v3 = 0 to 1; 
do v4 = 0 to 1; 
check = v1 + v2 + v3 + v4; 
if check <> 0 then do; 
z=](nrow(x),1,1); 
if v1 = 1 then z = z || x[,1]; 
if v2 = 1 then z = z || x[,2]; 
if v3 = 1 then z = z || x[,3]; 
if v4 = 1 then z = z || x[,4]; 
z = z[,2:ncol(z)]; 

/* parameter estimates, ... */ 
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b = inv(z' * z) * z* * y; 

h = z*inv(z' * z)* z" ; 

y_hat = h*y; 

/* sums of squares */ 

sse = (y - z*b)" * (y - z*b); 

uss = y"*y; 

ess = uss - nrow(y) * (sum(y)/nrow(y))**2; 

ssr = ess - sse; 

/* degrees of freedom */ 

dftot = nrow(y); 

dfreg = ncol(z); 

dferr = dftot - dfreg; 

/* regression stats */ 

mse = sse / dferr; 

rsq = 1 - sse/css; 

adjrsq = 1 - mse*dftot/css; 

cp = sse/s2 - (nrow(y) -2*ncol(z)); 

press = 0; 

do i = 1 to nrow(z); 

press = press + ((y[i,1]-y_hat[i,1])/(1-h[i,i]))**2; 

end; 

rsqpress = 1 - press/ess; 

/* create output vector */ 

temp = . | | . | | . | | .; 

bloc = v1||v2||v3||v4; 

parm = 1; 

do i = 1 to 4; 

if bloc[1,i] = 1 

then do; 

temp[1,i]=b[parm,1]; 

parm=parm+1; 

end; 

end; 

result 

result//(tempi|mse||rsq||adj rsq||cp||rsqpress||setnum||compnum||eqtype); 

end; 

end; 

end;end;end;end; 

result = result[2:nrow(result),]; 
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create statout var {x x2 x3 exp_x mse rsq adjrsq cp rsqpress setnum compnum 
eqtype}; 

append from result; 
close statout; 

proc sort data=statout; 
by mse; 

proc print data=statout noobs; 
var x x2 x3 exp_x mse rsq adjrsq cp rsqpress setnum compnum eqtype; 
title 'Results Sorted by MSE or adjusted R-square'; 

run; 

title; 
run; 
%mend; 

%nointreg(data=d1); 
quit; 
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Appendix C: SAS® code 

The following code was used to perform the intermediate analyses: 

OPTIONS NODATE LS=120; 

TITLE ''; 
DATA FLEET; 

INPUT CUMHOURS CCI; 
X = CUMHOURS; 
X2 = X**2; 
X3 = X**3; 
EX - exp(x); 
LX = log(x); 
Y = CCI; 
LY= log(Y); 
CARDS; 

(Data in two columns go here) 

j 

TITLE ■1'; 
TITLE2 '1'; 
TITLE3 '1'; 
PROC REG; 

MODEL Y = X /NOINT P CLM CLI SS2 SS1 R INFLUENCE; 
MODEL Y = X X2 /NOINT P CLM CLI SS2 SS1 R INFLUENCE; 
MODEL Y = X X2 X3/N0INT P CLM CLI SS2 SS1 R INFLUENCE; 
MODEL Y = X X2 X3 EX/NOINT P CLM CLI SS2 SS1 R INFLUENCE; 
MODEL Y = X X3/N0INT P CLM CLI SS2 SS1 R INFLUENCE; 
MODEL Y = X2 X3 EX/NOINT P CLM CLI SS2 SS1 R INFLUENCE; 
MODEL Y = X2/N0INT P CLM CLI SS2 SS1 R INFLUENCE; 
MODEL LY = LX /NOINT P CLM CLI SS2 SS1 R INFLUENCE; 

QUIT; 
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