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Abstract 

I generalize the topological structure of the concrete forms of mathematical 
morphology to the lattice-algebraical framework using the theory of contin- 
uous lattices. I show that when a complete lattice, C, exhibits the dual of the 
property that defines a continuous lattice, then C together with a certain 
intrinsic lattice topology, m(£), which is related by duality to the Lawson 
topology, has almost all the familiar properties, suitably generalized, of the 
topologized lattices that constitute the basic mathematical structure of the 
concrete forms of mathematical morphology; for instance, the complete lat- 
tice of closed subsets of the Euclidean plane topologized with Matheron's 
hit-miss topology. 

n 



Contents 

1 Introduction 1 

1.1 Technical Background     1 

1.2 Outline of Report  6 

2 Upper-Continuous Lattices 9 

2.1 Upper and Lower Topologies  10 

2.2 M-Topology  11 

2.3 Poset and Lattice Topologies in General  13 

2.4 Hit-Miss and M-topology  17 

3 Convergence Theory for M(£) 21 

3.1 Upper and Lower Limits  24 

3.2 USC and LSC Mappings  29 

3.3 Lower Limits and Frink's Convergence Topology  31 

3.4 Matheron Spaces  33 

4 Open and Closed Subset Lattices 34 

5 Conclusion 39 

References 41 

Distribution 43 

Report Documentation Page 47 

m 



1.   Introduction 

This report details the development of mathematical tools intended for 
use in designing improved or more nearly optimal algorithms for auto- 
matic/aided target recognition (ATR) in systems employing such target 
sensors as synthetic aperture and laser radars (SARS and LADARS), and 
forward-looking infrared sensors (FLIRS). It specifically concerns the de- 
velopment of such tools within the field of digital image processing and 
analysis known as mathematical morphology, a field that emerged in the early 
sixties in the Fontainebleau School of Serra and Matheron as a bottom-up, hi- 
erarchical approach to image analysis. Mathematical morphology has since 
found numerous practitioners throughout Europe, the United States, and 
South America, has been successfully applied in such diverse fields as ma- 
terials science, microscopic imaging, pattern recognition, medical imaging, 
and computer vision, and is today one of the principal systematic method- 
ologies employed in image-recognition research and practice, including 
ATR. The work reported here generalizes the topological-algebraical struc- 
ture characteristic of the concrete forms of mathematical morphology. This,- 
in turn, broadens the theoretical base of mathematical morphology and en- 
hances its power for systematic applications. 

In previous reports [1,2], I have reviewed and added to the theory that sup- 
ports and provides the applications of Euclidean mathematical morphology 
to the processing of both binary and greyscale imagery. The objects of Eu- 
clidean morphology are the closed subsets of two- or three-dimensional 
Euclidean space, where these objects are regarded as having the lattice- 
algebraical structure furnished by the set operations of union and inter- 
section, and a certain morphologically relevant topological structure called 
the hit-miss topology. Much of the recent work in mathematical morphology 
has been in generalizing its lattice-algebraical aspect. Prominent examples 
of this work can be found in Serra [3], Heijmans and Ronse [4], and Banon 
and Barrera [5]. Following a suggestion of Heijmans and Serra [6], this re- 
port seeks in the same spirit to generalize the topological aspect of mathe- 
matical morphology. To be more specific, I must first describe the object of 
generalization in some technical detail. 

1.1   Technical Background 

The more concrete theories included under the name mathematical mor- 
phology [7] feature a topology known as Matheron's [8] hit-miss topology. 



This topology is defined on the complete lattice F(5) of closed subsets of 
a locally compact, second countable Hausdorff (LCS) space, S (e.g., a Eu- 
clidean plane), where the join and meet operations of the lattice are set 
union and intersection, respectively. Letting G(5) and K(5) denote the 
classes of open and compact subsets of S, the hit-miss topology of F(5) 
is defined as follows. 

DEFINITION 1 Let FA = {F G F(5) : FDA = 0} and let FA = {Fe F(5) : 
F n A ^ 0}, where A c S is arbitrary. Then the hit-miss topology m ofF(S) is 
the topology generated by the collection {FK : K € K(5)} U {FG : G € G(S)}. 

Noting the identity nFAa = FUyS and defining the notation F{Aay = 
OFA«, we see that the typical finite intersection of sets from the above gen- 
erating class has the form 

FKl n... n FKm n FGl n... n FGk = FKlU-UKm n FGl,...)Gfc. 

Letting Ki U ... U Km = K, Matheron uses the notation F^    Gfc =FKn 
FGi,...,Gfc- 

REMARK 1 A base for Matheron's hit-miss topology is given by the collection 
of sets of the form F^ G , where K is an arbitrary compact subset of S, and 
{Gi,..., Gk) is an arbitrary (possibly empty) finite set of open subsets ofS. That 
is, the elements of the set F^ Gfc are the closed subsets of S that "hit" all the Gi 
and "miss" K. 

DEFINITION 2 IfB C F(S), then B is called a "lower set" ifF eBandEcF 
=> E eB;ifF eBandF c E => E e B, then B is called an "upper set." 

REMARK 2 The hit-miss topology can be resolved into "upper" and "lower" 
topologies as follows. Let /x(F(5)) and A(F(S)) denote the topologies respectively 
generated on F(S) by {FK : K e K(5)} U 0 and {FG:Ge G(5)} U F(5); we 
call ß(F(S)) and X(F(S)) the upper and lower topologies ofF(S). Then we have 
the following: 

1. fi(F(S)) and A(F(5)) are each contained in m. 

2. /i(F(S)) U A(F(S)) generates m. 

3. /x(F(5)) consists precisely of the m-open lower sets. 

4. A(F(S)) consists precisely of the m-open upper sets. 

Some properties of m are summarized in the following composite theorem. 

THEOREM 1 (Matheron) The hit-miss topology m is compact, second count- 
able, and Hausdorff. Convergence criteria relative to m are as follows: 



(A): A sequence {Fi} in F(5) converges to F e F(5) if and only if (1) G C S 
is open and G n F # 0 => G(~)Fi^ 9 for all but at most finitely many Fi, 
and (2) K c 5 is compact and K n F = $ => K n F{ = Q) for all but at 
most finitely many Fi. 

(B): A sequence {Fi} in F(5) converges to F e F(5) z/and on/y if (a) for each 
x € F there exist Xi € Fj /or aZZ buf af most" finitely many i such that 
X{ -* x, and (6) if {Fik} is a subsequence of {Fi}, then every convergent 
sequence Xik e Fik has its limit in F. In addition, conditions (a) and (b) are 
respectively equivalent to (1) and (2) of (A). 

Furthermore, if{Fi} is a monotone sequence in F(5), then we have that 

(C):   {Fi} is decreasing ==>■ {Fi} m-converges to Dfcli ^fc- 

(D):   {Fi} is increasing => {Fi} m-converges to Ufcli i*fc- 

The local and global upper and lower semicontinuity of mappings from a gen- 
eral topological space to F(5) are defined in terms of the upper and lower 
topologies of F(5) as follows. 

DEFINITION 3 If X is a topological space, x € X, and * maps X to F(S), 
then we say 

1. ^ is upper semicontinuous (USC) if^i is continuous relative to the upper 
topology. 

2. * is USC at xifty is fi-continuous at x. 

3. * is lower semicontinuous (LSC) if \I> is continuous relative to the lower 
topology. 

4. * is LSC atxif^ is X-continuous at x. 

Clearly, * is m-continuous (at x) if and only if * is both USC and LSC (at 
x),*isUSC <=> * is USC at every x 6 X, and* is LSC «=> *isLSCat 
every x G X. 

THEOREM 2 (Matheron) The mapping (E,F) ■—> EuF ofF(S) x F(5) 
onto F(5) is m-continuous. On the other hand, the mapping (E, F) i—► EOF 
is USC but not LSC. 

Another important feature of the hit-miss topology relates to the concepts 
of upper and lower limits. Matheron defines the upper and lower limits of 
sequences in F(5) as follows. 

DEFINITION 4 Let {F{} be a sequence in F(S) and let L{{Fi}) denote its set 
of limit points. Then the lower and upper limits of {Fi} are defined by 

LimFi = C\{F : F e £({#})} and Lim Ft = \J{F : F e L({Fi})}. 



THEOREM 3 (Matheron) If {Ft} is a sequence in F(S), then[a) Lim Ft is the 
largest F e F(5) that satisfies (a) of THEOREM 1-B, (b) Lim Ft is the smallest 
F G F(5) that satisfies (b) of THEOREM 1-B, and (c) Ft -> F relative to m if 
and only if 

Lim Fi = Lim Fi = F. 

THEOREM 4 (Matheron) Let * : X —► F(S), where X is a first countable 
Hausdorjf space. Then we have the following characterizations. 

(1):   * is USC at x <*=>• *(x) D Lim ^(xjfor all sequences {xi} in X that 
converge to x. 

(2):   * is LSC at x <==> *(x) c Lim *(XJ) for all sequences {xi} in X that 
converge to x. 

To conclude this description of Matheron's morphological topology, I intro- 
duce a two-part theorem whose first part was proved by Matheron. In the 
proof of the second part, I use the term subsequence in the unconventional 
manner of Kelley [9]. Generally, a subsequence {ik} is a strictly increasing 
function k i—► ik whose domain and range are the positive integers (or 
natural numbers). For Kelley, a subsequence {ik} is a nondecreasing func- 
tion k i—► ik that eventually goes to infinity; i.e., given a positive integer 
N, there is a k such that ik > N. Another term for such a subsequence is 
cofinal subset of {1,2,3,...}. I indicate the term subsequence in Kelley's sense 
by italics. 

THEOREM 5 If {Fi} is a sequence in F(5), then 

LimFi= f| [JFi 
n=li>n 

where the last overbar denotes topological closure, and 

LimFi= p| \jFik 

Ofc}*>i 

where {ik} ranges over the cofinal subsets of{l, 2,3,...}. 

Proof: For the first part, see Matheron [8], Proposition 1-2-3. For the sec- 
ond part, consider the following. If {Fik} has a subsequence that con- 
verges to F, then F C (Jfcli Fk by Matheron's convergence criteria 
(THM. 1-B). Since every {Fik} has a convergent subsequence, Lim 
F C fl Ufcli Fik where the intersection extends over all subsequences 
{ik}. It remains to prove the reverse inclusion. Let x € (JfeLi -^/t f°r 



every subsequence {ik}. We show that this implies that x lies in every 
subsequential limit of {Fj}. Let Fik —► F. It is sufficient to prove that 
iGF.In particular, we know that x € \J£=i Ffc. Let {xi j} in \J%L1 Fik 

have limit x. If {x\iJ;} has a subsequence x\jt € Fifc , we are done. If not, 
then {xij} along with its limit x lies entirely in Ufc^i Fik for some 
positive integer mi. Since x must lie as well in Ufclmi+i ^k> ^eTe *s 

a sequence {x2j} with limit a; that lies in (J*Lmi+i -^»fc- ^ ix2,j} has a 
subsequence X2,jt € Fjfc , we are again done. If not, then {x2,j} along 
with its limit x lies entirely in Ufc^mi+i ^h f°r some positive integer 

77i2 > Tn\. Since x € UjfcLm2+i ^»k ^ {x3j} w**h ^m^ x *^at ^es ^n 

UfcLm2+i F*k' The theorem thus follows by induction. 

The following definitions are introduced here in order to make a point 
about this theorem. 

Definition 1 A nonempty set D with a transitive and reflexive binary relation > 
is called a directed set if it has the Moore-Smith property, namely, for all a, ß € D, 
there exists a 7 € D such that 7 > a and 7 > ß. 

Definition 2 If X is a set and (D,>)isa directed set, then a function N : D —► 
X is called a net in X. The values {M(a) : a €E D} of a net M are frequently 
denoted by {xQ : a € D} or more simply by {xa}; indeed, one often speaks of the 
net {xa}. 

Definition 3 Let £ be a complete lattice, let (D, t>) be a directed set, and let 
{xa : a € D} be a net in C. Then the inferior and superior limits of{xa : a € D}, 
denoted by lim inf xa and lim sup xa, respectively, are defined by [10] 

lim inf xa = sup inf {xp : ß > a}    and    lim sup xa = inf supla:^ : ß> a}. 

THEOREM 5 shows that the definition of the lower and upper limits of a 
sequence in F(5) does not coincide with the sequence version of the defi- 
nition of the inferior and superior limits of a net in a complete lattice. The 
theorem does show that Lim Ft = lim sup Fir but it also shows that in gen- 
eral Lim Fi 7^ lim inf F,. Frink [11] has given the following net definition of 
upper and lower limits: 

Lim xa = lim sup xa     and    Lim xa = infc snp{xß : ß € C} 

where C ranges over the cofinal subsets of D. Since the directed set asso- 
ciated with a sequence is ({1,2,3,...}, >), THEOREM 5 shows that Frink's 
definition reduces in the case of sequences to that of DEFINITION 4. For 
an arbitrary complete lattice C, the class S of pairs ({xa}, x), where {xa} is 



a net in £ and x € £, such that Lim xa = Lim xa = x, defines a topology 
0(S) on £ given by 

0{S) = {U c£: ({xQ}, x) E S and x e U => xa is eventually in ZY}. 

Frink [11] named this topology the convergence topology of £. We will later 
see that the convergence topology of F(5) and Matheron's hit-miss topol- 
ogy are in fact the same. 

1.2   Outline of Report 

With the foregoing, the substance of this report can be stated with clar- 
ity. What I propose to do here is display a generalization of Matheron's 
system—as above outlined by the fully capitalized remarks, theorems, etc— 
in the form of a certain type of abstract complete lattice, what I call an 
upper-continuous (UC) lattice. This generalization was, as mentioned, sug- 
gested by [6] and is based on the dual aspect of continuous lattice theory [12]. 
This theory is used to expose a type of intrinsic complete-lattice topology— 
which I call an M-topology—that has most of the outlined properties of 
Matheron's hit-miss topology when the lattice is UC. This M-topology is 
defined on any complete lattice in terms of "upper" and "lower" topolo- 
gies as follows. 

In a complete lattice, £, the set of pairs Cß = ({xa}, x), where {xa} is a net 
in £ and re is an element of £ that satisfies lim sup xQ ■< x, defines a topology 
n(£) on £ given by 

H(£) = {U c£: ({xa}, x) e C» and x e U => xa is eventually in U). 

I call n{£) the upper topology of £. Adopting the notation j x = {x' <E 
£ : x' < x}, we may then define the lower topology and M-topology as 
follows. 

Definition 4 If £ is a lattice, then the topology generated on£by {£\ [ x : x e 
£} will be denoted A = \{£) and called the lower topology of £. The topology 
generated on a complete lattice £ by n(£) U \{£) will be called the M-topology of 
£ and denoted m = m(£). 

In any complete lattice, there is an intrinsically definable binary relation, 
namely, the dual of the "way below" relation discussed at length in Gierz 
[12] (henceforth denoted GZ), that I denote » and call the "way above" 
relation. In terms of this "way above" relation, a complete lattice £ will be 
called UC when for each x £ £we have x = ini{x' € £ : x' » x). To repeat 
then, this report will show (1) that the foregoing system of Matheron is a 
UC lattice whose M-topology is the hit-miss topology and (2) that almost 



all the outlined results for Matheron's system have generalized versions in 
an M-topologized UC lattice. As part of the latter demonstration, it will be 
shown that the M-topology of a UC lattice is precisely Frink's convergence 
topology. 

An outline of the rest of the report follows. Section 2 gives and to some 
extent repeats the basic definitions and some of the properties of (1) UC 
lattices and (2) the M-topologies of complete and UC lattices. Very little in 
the way of proofs are offered here because most of the results presented 
follow by duality from GZ. After a brief diversion to consider some general 
topological issues relative to posets and lattices (for perspective), I proceed 
to give a detailed proof of the proposition that F(S) is a UC lattice whose 
M-topology coincides with Matheron's hit-miss topology. By the end of 
section 2, it is established that an M-topologized UC lattice holds general- 
izations of REMARK 1, REMARK 2, and parts of THEOREM 1 and THE- 
OREM 2. Section 3 develops the convergence theory of M-topologized UC 
lattices. Here I offer complete and detailed proofs because, to my knowl- 
edge, a number of the results obtained are new. I obtain generalizations 
of THEOREMS 2, 3, 4, and 5, prove that the M-topology of a UC lattice 
is precisely Frink's convergence topology, and develop results that I claim 
generalize most of THEOREM 1. (The full generalization of THEOREM 2 
holds only in an M-topologized UC lattice that is not a topological lattice, 
what I call a Matheron space.) Section 4 finally establishes that the claimed 
generalization of (most of) THEOREM 1 is in fact such a generalization; it 
does this by means of interpretation in the context of Matheron's system. 

Some comment here on background theory and terminology is appropriate. 

I use the terms lattice and poset (partially ordered set) with their usual mean- 
ings. For lattice and poset theory in general, I follow Birkhoff [10]. The def- 
initions below are for reference. 

Definition 5 If B is a subset of a poset (X, <), then we say 

(1):   B is a "lower set" if x € B and y< x =$■ y € B. 

(2):   B is an "upper set" if x e B and x<y => y e B. 

(3):   B is "convex" ifx,zeB and x<yz<z =$> y E B. 

A nonempty subset V of a lattice £ is called a directed subset of CM (V, t) 
is a directed set. Here >z is the reverse of ■<. Thus, a directed subset of a 
lattice is a nonempty subset that contains an upper bound of each of its 
finite subsets. Dually, a filtered subset of a lattice is a nonempty subset <S that 
contains a lower bound of each of its finite subsets. 



Definition 6 A complete lattice £ is called join-continuous if for all x e £ and 
all filtered subsets S of£ we have x V inf S = ini(x V S) = inf{x V 6 : S € S}. 
Dually, a complete latttice £ is called meet-continuous if for all x e £ and all 
directed subsets V of £ we have x A supX> = sup(x A V) = sup{x A 5 : S € V). 

For the terminology and theory of general topology I follow Kelley [9]. 
The following remark, which succinctly states the relation between con- 
vergence and topology, is for reference. 

Remark 1 Given a set X and a class S consisting of pairs ({xa}, x) where {xa} 
is a net in X and x e X, it follows that the family of sets 

0(S) = {U C X : ({xa}, x) eSandxeU =» xa is eventually in U) 

is a topology on X such that ({xa}, x)eS implies that {xa} 0(S)-converges to 
x. This topology is eauivalently defined by letting the closed sets be those subsets 
FofX such thatx e F whenever ({xa}, x) e S and {xQ} C F. S is called a 
convergence class for 0(S) if({xa}, x) G S <^=*> {xa} (D(S)-converges to x. 



2.   Upper-Continuous Lattices 

In this section I will have frequent need to refer to results in GZ. Such refer- 
ences will be of the form GZ IV-3.1, where the roman numeral indicates the 
chapter and the decimal number indicates the chapter section and article. 

Definition 7 If Lisa lattice and x,y € £, then we say that "y is way above x" 
if for each filtered subset S of £ such that inf S ■< x, there is a 5 € S such that 
8 <y.To denote that y is way above x, we write y^>x. 

The dual definition of the "way below" relation of GZ is given below for 
comparison. 

Definition 8 If £ is a lattice and x,y € £, then we say that "x is way below y" 
if for each directed subset V of £ such that y < supP, there is a 6 e Vfor which 
x <8.To denote that x is way below y we write x <C y. (Note that <C is not the 
reverse of ».) 

We will make use of the notations x JJ.= {x' € C : x S> x'} and x -fl-= {x' € 
C : x' » x}. 

Definition 9 A complete lattice £ is said to be upper-continuous (UC) if 

x = inf {x' € £ : x' » x) = inf (a; ^)for all x G £. 

The dual definition of a "continuous lattice" in GZ is 

Definition 10 A complete lattice £ is said to be continuous if 

x = sup{x' € £ : x' <C x}for all x € £ 

Continuous lattices are meet-continuous, but meet-continuous lattices 
are not necessarily continuous (GZ 1-1.14). Dually, UC lattices are join- 
continuous, but join-continuous lattices are not necessarily UC. The follow- 
ing proposition and its corollary are immediate. 

Proposition 1 If £ is a complete lattice and u, x,y,z € £, then 

1. j/> x => y >z x, 

2. z yy » x>u ==>• z ~> u. 

3. x 3> z and y » z =4> x A y 3> z. 



4. sup £ = e » x. 

Corollary 1 In any complete lattice, » is transitive (x, y,z G £,y » x, and 
z > y => z~> x) and antisymmetric (x,y G £,y^> x, and x » y => a; = y). 

The next proposition follows by duality from GZ 1-1.19. 

Proposition 2 In a UC lattice C,y » x is equivalent to the following: For each 
filtered subset SofC such that x y inf <S, there isaS €S such that y > S. 

2.1   Upper and Lower Topologies 

Definition 11 If C is a complete lattice, then let CM = Cß{£) denote the set of 
pairs ({xa},x) where {xa} is a net in £ and x is an element of C that satisfies 
lim sup za < x. The topology (i{£) = £>(CM) will be called the upper topology 
ofC. 

The next theorem follows by duality from GZ E-1.8. 

Theorem 1 Cß is a convergence class for a complete lattice C if and only if C 
is UC. 

Definition 12 The lower topology A(£) of a lattice C is generated by {C\ I x : 
x€C}. 

Note that £\ | x = {x' G C : x' £ x}. We will often denote this set by Tx. 
The set of finite intersections of members of {fFx : x € £} is a base for a 
topology A' on \}{TX : x G £}. It is clear that A' C A(£). Suppose that £ 
has a universal lower bound o. Then o £ Tx for all x G £ and T0 = £ \ {o}. 
Thus it follows in this case that |J{-^ : x e £} = £\{o} = £' and that A' is 
the smallest topology on £' that contains {Tx : x G £}. Since £' is A'-open 
and A' C \{£), it follows that £' is A-open and {o} is A-closed. 

Lemma 1 If £ is a lattice, then {Tx : x G £} U £ is a subbase for the lower 
topology X(£). 

Proof: The finite intersections of the members of {Tx : x G £}U£ is a base for 
the unique smallest topology on £ such that Tx is open for all x G £ 
and £ is open. Moreover, every topology on £ that contains Tx for all 
x G £ also contains £. Hence the finite intersections of the members 
of {Tx : x € £} U £ is a base for the unique smallest topology on £ 
that contains Fx for all x G £, and this is precisely A(£). 

10 



2.2   M-Topology 

Definition 13 The topology generated on a complete lattice £ by p,{C) U A(£) 
will be called the M-topology of £ and denoted m = m(£). The space (£, m(£)) 
will be denoted M(£). 

Thus the finite intersections of sets of either of the two forms 

Tx = {x' G £ : x' 2< x}       and       F> = {x' G £ : y > a;'}, 

where x and y are any elements of £, is an open-set base Bm for m(£). The 
typical member of Bm has the form FXl n... n TXn f~l ^Vl n... n •T72'"1, where 
{xi,..., xn} and {yi,..., ym} are finite subsets of £. We will more briefly de- 
note Txx n... n TXn by FXu...,Xn. 

Lemma 2 If C is a complete lattice and yi,...,ym G £, tfzen .F2'1 n ... n ^rj,m = 
jrint{yi,...,ym} 

Proof: T^ n ... n I*™ = {x' G £ : yi » x',..., ym > x'} and pa[{yu-<ym} = 
{x' G £ : inf{yi, ...,ym} » x'}. By Proposition 1 we have that yi » 
x',...,ym » x' =► inf{yi,...,ym} > x'. Hence .F^1 n ... n F>m C 
jpnf{yi,...,s/m} .Suppose, on the other hand, that inf{yi,..., ym} » x'. 
Since yi >z inf{yi, ...,ym} » x' >: x' for all i = l,...,m, it follows, 
again by Proposition 1, that yi » x' for all i = 1,..., m. Hence .F"1 D 
... n ^w™ D .prffoi.-.»™}. This completes the proof. 

Corollary 2 T/ie typical member ofBm has the form 

•F  ^\ Fxi,...,xn — ?xi,...,Xn 

for some y G £ and finite subset {xi,...,xn} o/£. Conversely, if y G £ and 
{xi,..., xn} is a finite subset of C, then TXl Xn is a member ofBm. 

The typographic similarity of this result and REMARK 1 should not go 
unnoticed. We will indeed later see, with the proof of Proposition 11, that 
the base of Corollary 2 and that of REMARK 1 coincide on the lattice F(5). 
In the next remark, (1) follows from Lemma 1 and (2) follows by duality 
from GZ U-1.14. 

Remark 2 Let £ be a complete lattice. 

1. An open-set base for the lower topology A(£) is given by the collection 

{Fxi,...,xn '• zi) —, x„ G C,na nonnegative integer}. 

(Note that Te = 0 and that T% = £ by the usual convention.) 

11 



2. If C is UC, then {J^ : y € £} is an open-set base for the upper topology 

M(£). 

In the next proposition, (1) through (4) follow by duality from GZ ID-1.6, 
ni-3.16, III-3.20, and VI-2.3, respectively. 

Proposition 3 Let CbeaUC lattice. 

1. A lower set Q of C is m-open if and only ifQ is (i-open. 

2. A lower set £ of C is m-closed if and only if £ is X-closed. 

3. An upper set Q ofC is m-open if and only ifQ is X-open. 

4. An upper set £ of C is m-closed if and only if£ is ^-closed. 

That is, the lower (upper) sets in m(£) are precisely the sets of //(£) (A(£)), 
and the upper (lower) m-closed sets are precisely the /x-closed (A-closed) 
sets. The similarity of the sum of Remark 2 and Proposition 3 with RE- 
MARK 2 should be duly noted. It will indeed later be seen—again, with 
Proposition 11—that the upper topology, lower topology, and M-topology 
of the complete lattice F(5), in fact and in turn, coincide with the upper, 
lower, and hit-miss topologies of Matheron. 

The first part of the next theorem follows by duality from GZ III—1.10; the 
second part follows by duality from GZ II—1.14 and III—2.3. 

Theorem 2 Let CbeaUC lattice. Then (1) the M-topology of C is compact and 
Hausdorjf, and (2) the mapping (x, y) \—► x V y : M(£) x M(£) —> M(£) is 
continuous. 

Thus the M-topology of a UC lattice, like the hit-miss topology of F(5), 
is compact and Hausdorff (cf. THEOREM 1), and the join operation of 
a UC lattice, like the union (join) operation of F(S), is continuous (cf. THE- 
OREM 2). We now define the upper and lower semicontinuity of maps 
from a general topological space into a UC lattice by essentially repeating 
DEFINITION 3. 

Definition 14 Let Xbea topological space, let CbeaUC lattice, let f : X —> C, 
and let x € X. Then f is said to be USC (LSC) [at x) if f is continuous [at x] with 
respect to ß (A). 

The next theorem is immediate. 

Theorem 3 Let X be a topological space, let Cbea UC lattice, let f : X —> C, 
and let x e X. Then we have the following. 

(a):   / is USC (LSC) <=> / is USC (LSC) at every x. 
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(b):   / is continuous [at x] <=» / is both USC and LSC [at x\. 

Proposition 4 If X is a topological space, £ is a UC lattice, and f : X —> £, 
then f is USC if and only if f(\imxa) >z lim sup f(xa) for all convergent nets 
{xa} in X. 

Proof: According to the last definition and theorem, / is USC if and only if 
/ is /i-continuous at every x € X. Since the latter means that {f{xa)} 
is /i-convergent to /(lima;a) for every convergent net {xa} in X, and 
since this is equivalent to /(limza) y lim sup f(xa), the proposition 
follows. 

Here we see something similar to part (1) of THEOREM 4. 

2.3   Poset and Lattice Topologies in General 

In order to put the foregoing material in perspective, I will now enter upon 
a brief diversion to consider some general topological issues relative to 
posets and lattices. In the main I follow the monograph of Nachbin [13]. 
First we consider the following definition. 

Definition 15 If C is a pospace, i.e., a poset with a topology, then we say that 

(a):   £ is a topological sup-lattice if C is a sup-lattice and V : £ x £ —> £ is 
continuous. 

(b):   £ is a topological inf-lattice if £ is a inf-lattice and A : C x C —> C is 
continuous. 

(c):   £ is a topological lattice if C is a lattice and both A and V are continuous as 
above. 

As an immediate consequence of this definition and Theorem 2, we note 
the following. 

Remark 3 If C is UC, then M(£) is a topological sup-lattice. 

Let us now make a few observations that concern the notion of convexity 
in a poset and its possible compatibilities with a given poset topology. If 
(X,T, ^) is a pospace, then there are several ways in which r might be 
compatible with the convexity concept of (X, ■<). 

Definition 16 If (X, r, ^) is a pospace, then r is called 

1. Locally convex if each x e X has a convex local base. 

2. Weakly convex if the set of open convex subsets of X is an open-set base for 
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3. Convex if the open upper and open lower sets of X form an open-set subbase 
forr. 

Remark 4 A pospace (X, r, x) is locally convex if and only if given nets {xß}, 
{yß}, and {zß} in X such that Xß —► £, Zß —► £, and Xß <yß< Zßfor all ß, it 

follows that yß —> £. 

Remark 5 In a pospace, convexity =$■ weak convexity =>• /oca/ convexity. 

If (X, r, ^) is a pospace, then ^ may have one or more of the following 
closure properties. 

CP1:   If £ € X, {xß} is a convergent net in X with limit x, and £ ■< Xß V /?, 
then £ ^ x. 

CP2:   If £ e X, {xß} is a convergent net in X with limit x, and Xß ^ £ V ß, 
then a; X £. 

CP:   If {xß} and {yg} are convergent nets in X with limits x and y, respec- 
tively, and if Xß ■< yß for all ß, then x<y. 

If CP1 and CP2 hold, then -< is called a semi-closed order in X or a semi-closed 
ordering of X; if CP holds, then ^ is called a closed order in X or a dosed 
ordering of X. 

Remark 6 For am/ pospace, (X, r, ;<), we /wee the following. 

1. ■< is semi-closed if and only if{x€X:£<x} and {x e X : x < £} are 
closed subsets of X for all £ € X; hence, -< is semi-closed if and only if every 
"closed interval" of X is a r-closed subset ofX. 

2. ■< is closed if and only if the graph {(x,y) G X x X : x < y} of ■< is a 
closed subset of the product space X x X. 

3.1f< is closed, then ■< is semi-closed. 

Definition 17 A pospace (X, r, ;<) is called topological if < is a closed ordering 
of X. A topological pospace (X, r, :<) is called a compact pospace ifr is compact. 

We note that the "closed intervals" of a poset form a closed-set subbase for 
what is usually called the interval topology of the poset. 

Remark 7 The "closed intervals" of a topological pospace (X, r, ■<) are r-closed; 
hence r contains the interval topology of (X, ^). In fact, if (X, r) is a topological 
space with a merely semi-closed order -<, then r contains the interval topology of 

Propositions (Nachbin) A pospace [X,T,<) is a topological pospace if and 
only if for every x,y e X such that x ^ y there exist disjoint open neighbor- 
hoods U and V of x and y, respectively, such that U is an upper set and V is a 
lower set. 
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Corollary 3 Every topological pospace is Hausdorff. 

Definition 18 A pospace (X, r, ;<) is called normal if for every two disjoint closed 
subsets F and F' of X, where F is a lower set and F' is an upper set, there exist 
disjoint open sets U and U', where U is a lower set and U' is an upper set, such 
that FcU and Ff cU'. 

Remark 8 Let (X, r) be a topological space and let < be the partial ordering ofX 
defined byx<y «=*> x = y. Then the pospace (X, r, ;<) is normal as a pospace 
if and only if the topological space (X, r) is normal as a topological space. 

With regard to normal topological spaces, let us recall the following results 
of Urysohn. 

Theorem 4 (Urysohn) If (X, r) is a topological space, then the following are 
equivalent. 

1. (X, T) is a normal topological space. 

2. For any two disjoint closed subsets F and F' ofX, there exists a continuous 
real valued function f on X such that f = 0 on F, f = 1 on F', and 
0<f<lonX. 

3. For every closed subset F of X, and every continuous real valued function 
f on F, there exists a continuous real valued function f* on X such that 
f* = fonF. 

Characterization (2) has been generalized to normal pospaces as follows. 

Theorem 5 (Nachbin) A pospace (X, r, :<) is normal if and only if for every two 
disjoint closed subsets F and F' of X, where F is a lower set and F' is an upper 
set, there exists a continuous increasing real valued function f onX such that 

f = OonF,f = lonF',andO<f<lonX. 

Theorem 6 (Nachbin) Let (X, r, :<) be a compact pospace and let F and F' be 
closed subsets of X such that x e F and x' € F' =*■ x ^ x'. Then there exist 
disjoint open sets U and U', where U is an upper set and U' is a lower set, such 
that FcU and F' c U'. 

Corollary 4 Every compact pospace is normal. 

Theorem 7 (Nachbin) Every compact pospace is convex. 

Characterization (3) of Theorem 4 has the following generalization to com- 
pact pospaces. 
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Theorem 8 (Nachbin) If K is a compact subset of a compact pospace X, then 
every continuous increasing real valued function defined on K can be extended to 
the entirety of X as a continuous increasing real valued function. 

We now begin to remake contact with the main material of this report. 

Remark 9 If (X, r, ;<) is a compact pospace, then we have the following. 

1. The class fi(X) of open lower sets of X and the class X(X) of open upper 
sets of X are topologies on X; n(X) and X(X) are called the upper and 
lower topologies, respectively, ofX relative to r. 

2. By the convexity of(X, T, ;<), p,(X) U X(X) is an open-set subbasefor T. 

Proposition 6 (£, r, V, <) is a topological sup-lattice ==>■ (£, r, :<) is a topolog- 
ical pospace. 

Proof: Since xa\J ya — ya for all a, it follows that xa V ya -» y- Since 
{xa, ya) -» {x,y) inC x C and V is a continuous operation in C, we 
also have that 

xaVya-> xVy. 

Hence x\t y = y, and it follows that x <y. 

Corollary 5 Every compact topological sup-lattice is a compact pospace and is 
hence convex. 

In particular, if £ is a UC lattice, then M(£) is compact and a topological 
sup-lattice, is therefore a compact pospace, and is consequently convex. 
This and Proposition 3 show that the upper and lower topologies of a UC lattice 
C relative to the compact-pospace structure ofM(C) respectively coincide with the 
upper and lower topologies defined in section 2.1. 

The perspective just outlined can be deepened still further with the aid of 
the following. 

Definition 19 A sup-lattice (£, r, V, ■<) with a topology r will be said to be 
"locally joined" if every point of £ has a local base consisting entirely of open 
sub-sup-lattices of C. 

With this we obtain the theorem below, which follows by duality from GZ 
VI-3.4. 

Theorem 9 (Fundamental Compact Topological Sup-Lattice Theorem) For 
every UC lattice C, M(£) is a locally joined compact topological sup-lattice with 
a universal lower bound. Conversely, if (£,r, V, ;<) is a locally joined compact 
topological sup-lattice with a universal lower bound, then C is a UC lattice and r 
is the M-topology of this lattice. 
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2.4   Hit-Miss and M-topology 

I will now show, among other things, that the complete lattice F(5) is UC 
and that its M-topology coincides with Matheron's hit-miss topology. 

Let X be a topological space and let G(X) be the set of open subsets of 
X. G(X) is a complete distributive lattice relative to A = n, V = U, and 
^=C; indeed, the infimum of an arbitrary collection of open subsets of X 
is the interior of their intersection. Proposition 8 below (which is proved in 
GZ 1-1.4) characterizes the way below relation in G(X) when X is locally 
compact and either Hausdorff or regular. We note the following. 

Definition 20 A topological space X is called regular if for each x e X and each 
neighborhood N ofx there is a closed neighborhood F ofx such that F c N. 

Proposition 7 If X is a locally compact topological space that is either Hausdorff 
or regular, then for each x € X and each neighborhood N ofx, there is a closed 
compact neighborhood Kofx such that K c N. 

Proposition 8 If X is a topological space, if U,V e G(X), and if there is a 
compact subset K of X such that U c K c V, then U <g.V.If X is a locally 
compact space that is either Hausdorff or regular, and ifU,Ve G(X), then 

U < V <=> U c K c V for some compact K c X. 

Proof: For the first part, note that a directed open cover T> of V is also a 
directed open cover of K. Since K is compact, finitely many of the 
covering sets in V cover K. There is, therefore, an element W of V 
such that U <ZK C.W. Hence U < V by definition. 

For the second part, since we already have the implication 

U<z:V<=UcKcVfor some compact K C X, 

it is enough to prove the converse. Assume, then, that U < V and 
note that every point £ G V has a compact neighborhood K$ such 
that K^ c V. Let W^ denote the interior of K^. Then £ € W? and 

V = [j{W^ : e € V}. 

Let V denote the set of finite unions of the Wf. Then V is a directed 
set that covers V. Since U < V, there are finitely many Wf, say 
Wfc,..., WCn, such that U CW^U ... U W€n c V. Therefore 

UcK^U...UKincV, 

and K — K^ U ... U K^n is the required compact set. 
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Let F(X) denote the distributive lattice of closed subsets of a topological 
space X; again, A = n, V = U, and ^=C. This lattice is also complete; 
the supremum of a collection of closed subsets of X is the closure of their 
union. Moreover, F(X) is dual-lattice isomorphic to G(X) under the com- 
plementation mapping. More specifically, we have the following. 

Remark 10 The mapping U i—> X \U = Uc of G(X) is a bijection onto 
F(X); moreover, letting U and V be open subsets of X, this mapping satisfies 
the following. 

1. Vc C Uc <=> U C V. 

2. u u v i—>ucnvc. 

3. unv>—+uci)Vc. 

Let» denote the way above relation in F(X). Then by definition, if E, F € 
F(X), then F > E if and only if for each filtered subset {Fa} of F(X) such 
that f]a Fa C E, there is an a0 such that Fao c F. 

Proposition 9 If E,F G F{X), then F » E in F(X) 4=^> Fc < Ec in 
G(X). 

Proof: Suppose that Fc < Ec in G(X) and let {Fa} be a filtered subset of 
F(X) such that f|Q Fa C S. Put t/a = F%. Then {C/a} is a directed 
subset of GpO such that £^c c Ua U<*- Since F° < ^ ^ G(x)' th^6 

is an a0 such that Fc C Uao; hence, Fao C F. This proves <=. 

Suppose, conversely, that F > E in F(X) and let {I7a} be a directed 
subset of GpQ such that Ec c Ua u«- Put Fa = ÜS- Then {Fa} is a 
filtered subset of F(X) such that (\ Fa C F. Since F > £? in F(X), 
there is an a0 such that Fa<J C F; hence, Fc C f7ao. This proves =*> 
and completes the proof. 

We thus obtain the following corollary of Proposition 8. 

Corollary 6 IfX is a topological space, ifE, F e F(X), and if there is a compact 
subset KofX such that E c Kc C F, then F > E. If X is a locally compact 
topological space that is either Hausdorffor regular, and ifE,Fe F(X), then 

F^> E <£=> E C Kc c F for some compact K C X. 

We also obtain the following corollary of this corollary. 

Corollary 7 IfX is a locally compact Hausdorjf space, and ifE, F € F(X), then 

F > E <=> E is contained in the interior of F and Fc is relatively compact. 
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Having identified the way above relation in F(X) and the way below rela- 
tion in G(X), when X is locally compact and either Hausdorff or regular, it 
will now be shown that these lattices are, respectively, UC and continuous. 

Proposition 10 Let X be a locally compact topological space that is either Haus- 
dorff or regular. Then G(X) is continuous and F(X) is UC. 

Proof: Let V be an arbitrary open subset of X. It is clear that V D \J{U e 
G(X) : U < V}, because U < V =► U c V. Therefore let a; be an ar- 
bitrary point in V. Because X is locally compact and either Hausdorff 
or regular, and V is open, there is a closed compact neighborhood Kx 

of x such that Kx C V. Since x lies in the interior Wx of Kx, it follows 
that Wx C Kx c V, and therefore that Wx -C V. Since this implies 
that x € \J{U € G(X) :U<&V}, it follows that 

V C [j{U € G(X) : U < V}, 

and hence that V = \J{U € G(X) : U < V}. Thus G(X) is 
continuous. 

To see that F(X) is UC, let F be an arbitrary closed subset of X. Be- 
cause G(X) is continuous we have Fc = \J{U € G(X) : U < Fc}. By 
complementation and Proposition 9 we therefore obtain F = (~){E G 
F(X):£>F}. 

Definition 21 Let X be a general topological space and let A, Aa C X. As before 
we define the notations: FA = {F € F(X) : F D A = 0}, FA = {F e F(X) : 
F n A # 0}, F{AQ} = nFAa, and FfAa} =FAf) F{Aa}. 

Proposition 11 If X is a locally compact Hausdorff space, then a base for the 
M.-topology ofF(X) is given by the collection 

{Fg     Gn : K compact, Gi,..., Gn open, and n a nonnegative integer}. 

Hence ifX is second countable, then m(F(X)) coincides with Matheron's hit-miss 
topology. 

Proof: By Proposition 10, F(X) is a UC lattice. Hence it follows by Corol- 
lary 2 that a base for the M-topology of F(X) is given by 

{^Fi,...,Fn '• Fi Fi,..., Fn € F(X), n a nonnegative integer} 

Denoting Ff = Gu ..., F£ = Gn, and F° = K, we have by Corollary 7 
that E e ^Fu...,Fn *=* -S n Gi ^ 0 for alU = 1,..., n, E n K = 0, and 
K is compact. 
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If K is not compact, then ^F1:...,Fn = 0' a™1 sklce Ff = 0 for a11 

compact K, it follows that E € ^FI,...,F„ ^^ ^ € FG\,...,G„- 
Hence 

{
F

GI,...,G„ 
: ^ compact, Gi,...,Gn open, and n a nonnegative integer} 

is a base for the M-topology of F(X). This completes the proof. 
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3.    Convergence Theory for M(£) 

I begin by giving an equivalent characterization of the M-topology of a UC 
lattice (which follows by duality from GZ DI-3) that will prove useful for 
the developments of this section. 

Proposition 12 If £ is a UC lattice, x e £, and {xa} is a net in £, then xa —► x 
relative to m(£) if and only ifx = lim sup yß for all subnets {yp} of{xa}- 

The technical definition of a subnet, which will come up in some proofs, is 
as follows. 

Definition 22 Let (D, t>) and (D', >') be directed sets and let Mand N' be nets 
in X relative to D and D', respectively. We say that N' is a subnet ofAf if there 
is a function £ : D' —► D such that A/7 = N o S and for which the following 
"subnet condition" holds. 

V a € D 3 a' € D' such that ß' >' a' =► E(/?') > a. 

I also state the following summary remark whose items will be used in the 
proofs that follow without particular notice. 

Remark 11 Let £ be a lattice. 

1. IfxeC and Ax is the subset of' C whose elements are not successors of x, 
then a local base at xfor A(£) is given by {^xi,...,!« : x\,..., xn € Ax, n a 
nonnegative integer}. 

2. If{xa} is a net in C, and ifx € C, then xa —* x relative to X(C) if and only 
if for each finite subset {xi,..., xn} of C such that x ^ Xifor all i = 1,..., n, 
there exists a ß = ß(xi,..., xn) such that xa ^ Xifor all i = 1,..., nfor all 
a>ß. 

3.IfC is UC, x e C, and Ax is the subset of C whose elements are way above 
x, then a local base at xfor //(£) is given by {J^ : y e Ax}. 

4. If £ is UC, {xa} is a net in £, and x e £, then xa —► x relative to p(£) 
if and only ifVy € £ such that t/»i there exists a ß = ß(y) such that 
y^>xa\/a>ß. 

5. If £ is UC, {xa} is a net in £, and x e £, then xa —> x relative to m(£) if 
and only ifxa —» x relative to both fi{£) and A(£). 
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It will become clear in section 4 that the next result generalizes THEO- 
REM 1-A. 

Proposition 13 If C is a UC lattice, if {xQ} is a net in C, and ifxeC, then 
xa -► x relative to the M-topology of £ if and only if the following hold. 

1. V z eC such that x £ z, there exists aß = ß{z) such thatxa£zVa>ß. 

2. V y G C such that y > x, there exists a ß = ß(y) such that y > xa V 
a>ß. " 

Proof: If xa -* x relative to the M-topology of C, then (1) and (2) are clearly 
valid. For the converse, assume that (1) and (2) are valid and let U be 
an m-open set containing x. By Corollary 2, there are y, xi,..., xn G C 
such that 

X G •f"x\,...,Xn  £- W. 

Hence there are ß(y),ß{xi),..., ß{xn) such that y > xQ for all a > ß(y) 
and xa 2< xt for all i = 1,..., n and all a > ß{xi). By the Moore-Smith 
property of directed sets, there is a ß = ß(y, xi,..., xn) such that ß > 
ß(y) and ß > ß(xi) for all i = 1,..., n. Hence xa G ZY for all a>ß. This 
completes the proof. 

Corollary 8 Let CbeaUC lattice, let {xa} be a net in C, and let x G C. 

1. xa —> x relative to X(C) is equivalent to (1) above. 

2. xa —* x relative to n(C) is equivalent to (2) above. 

The following conjecture would be a generalization of THEOREM 1-B. 

Conjecture 1 Let CbeaUC lattice, let {xa} be a net in C, and let x G C. Then 
{xa} m-converges to x if and only if the following hold. 

(A):   For each f x x there exists ß = ß(£) and there exist £a X xafor alla>ß 
such that {£a} m-converges to £. 

(B):   If {yß} is a subnet of {xa}, Zß^VßV ß, and {^} m-converges to £ G C, 
then £ ^ x. 

Furthermore, (A) and (B) are respectively equivalent to (1) and (2) of Proposi- 
tion 13. 

The next proposition is as far as I could get in attempting to prove this 
conjecture. 

Proposition 14 Let £ be a UC lattice, let {xa} be a net in C, and let x G C. 
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(a): {xa} X-converges to x whenever the following holds: For each £ X x there 
exists ß = /?(£) and there exist £a ■< xa for all a> ß such that {£a} 
m-converges to £. In other words, if (A) of the conjecture holds, then {xa} 
X-converges to x. 

(b): If {xa} ^-converges to x, {yp} is a subnet of {xa}, £ß ■< yßfor all ß, and 
{£ß} m-converges to£ e C, then £ <x.In other words, if{xa} ^-converges 
to x, then (B) of the conjecture holds. 

Proof: (a) If x = o = inf C, then there is no z e C such that x -£ z and (1) 
of Proposition 13 is trivially satisfied; hence {xa} A-converges to o by 
Corollary 8. Suppose, then, that x / o, let z be such that x £ z, and 
let £ = x. Then there is a ß' and there are £a ■< xa for all a > ß' such 
that {£Q} m-converges to x. Since Tz is an m-open neighborhood of 
£ = x, there is a ß = ß(z) such that £Q € Fz for all a > ß. Also, since 
€a d: %a for all a > ß', it follows that xa € Tz (equivalently xa ■£ z) 
for all a > ß. This shows that xa —> x relative to A(£). 

(b) Before proceeding, first note that an equivalent statement of (b) 
is as follows: If {xa} fx-converges to x and £ ■£ x, then for every subnet 
{zy} of {xa} there is no net {£7} with £7 ■< z7for all 7 such that {£7} 
m-converges to £. This is the form of (b) that we will prove. Assume, 
then, that {xa} /z-converges to x and without loss of generality that 
x 7^ e. (If x = e, then (b) is trivially satisfied.) Let £ € £ be such that 
£ 2< x. There is a y G £ such that y » a: and £ r< y (for instance, e). 
Hence there is a /?(?/) such that y ^> xa for all a > ß{y). Let {27} be a 
subnet of {xa} and let {£7} be any net that satisfies £7 ^ 27 for all 7. 
Then i/>^7 eventually and {£7} cannot, therefore, m-converge to £. 
This completes the proof. 

The next proposition generalizes THEOREM 1-C and 1-D. 

Proposition 15 Let £ be a UC lattice and let {xa} be a monotone net in C. 

1. If {xa} is decreasing, then {xa} m-converges to inf{a;a}. 

2. If{xa} is increasing, then {xQ} m-converges to sup{xa}. 

Proof: (1) Suppose that inf {xa} ■£ z. Since inf {xa} < xa for all a, it follows 
for all a that xa -£ z. Hence {xa} A-converges to inf{xQ}. On the 
other hand, suppose that y » inf {xa}. It follows that {xa} is a filtered 
subset of C, because {xa} is nonempty and a monotone decreasing 
net. Since y » inf{xa}, it follows by Proposition 2 that there is a ß 
such that y > Xß-, hence, y > xa for all a > ß and it follows that {xa} 
/i-converges to inf {xa}. This completes the proof of (1). 
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(2) Suppose that sup{xQ} ■£ z. There is then a ß such that xß z< z; 
indeed, xa < z for all a implies that sup{xa} ^ z. Because {xa} is 
monotone increasing, then, it follows that xa ^ z for all a > ß. Hence 
{xa} A-converges to sup{a;a}. On the other hand, if y » sup{a;Q}, then 
it is clear that y > xa for all a. Hence {xa} /i-converges to sup{xa}. 
Thus (2) is proved and the theorem follows. 

Corollary 9 Let CbeaUC lattice and let {xa} be a net in £. 

1. {ua} = {suplx/j: ß > a}} m-converges to lim sup xa. 

2. {vQ} = {inffa^ : ß > a}} m-converges to liminf xa. 

Proof: Since a' t> a => ua< ■< ua and va < va>, we see that {ua } and {va } are, 
respectively, monotone decreasing and monotone increasing. Hence 
(1) and (2) follow. 

3.1   Upper and Lower Limits 

Definition 23 If C is a UC lattice and {xa} is a net in C, then we define the 
upper and lower limits Lim xa and Lim xa, respectively, to be the supremutn and 
infimum of the set of x e C such that x = \\myp (relative to the M-topology) 
for some subnet {yp} of{xa}. 

Lemma 3 IfCisaUC lattice and {xa} is a net in C, then 

liminf xa ■< Limxa ^ Lim xa ^ lim supxa. 

Proof:   Let {rcS(7)} be an m-convergent subnet of {xa} and, as above, put 

ua = supfa;/? : ß>a}    and   va = ini{xß : ß > a}. 

Then va ^ xa ^ ua and t>E(7) ■< xE(7) -< «s(7) for all a and 7. Thus 
we have that 

lim ^£(7) di Hm xs(7) < lim U£(7) 

where lim denotes the m-limit. Hence we obtain liminfxQ ■< 
limxS(7) ■< lim sup xa. Since Lim xa and Lim xa are, respectively, 
the infimum and supremum of the set of all such limits as limxS(7), 
we see that the lemma follows. 

Remark 12 If C is a UC lattice and {xa} is a net in C, then the set of ß-limits of 
{xa} has a least element and that least element is lim sup xa, i.e., lim sup xa = x 
is the smallest x € C that satisfies (2) of Proposition 13. 

Definition 24 If C is a UC lattice and {xa} is a net in C, then let £ = £{{xa}) 
denote the set ofx e C such that x is the m-limit of a subnet of{xa}. 

24 



Thus £({xa}) C [inf£({xa}),sup£({xa})] = [Lim xa,Lim xa] C 
[lim inf xa, lim sup xa\. The next proposition shows that the upper limit and 
superior limit are the same in a UC lattice, and will be seen in section 4 to 
generalize the first part of THEOREM 5. 

Proposition 16 If C is a UC lattice and {xa} is a net in C, then Lim xa = 
lim sup xa. 

Proof: It is sufficient to show that {xa } //-converges to sup 5. It is readily seen 
that each m-convergent subnet of {xa } //-converges to sup £: note that 
if {yß} is such a subnet, then {yß} //-converges to precisely all the 
points of the closed interval [lim sup yß, e]; then note that lim sup yß ■< 
sup £ for all the {yß } being considered. We will complete the proof by 
showing that every subnet of {xa} //-converges to sup5. 

Suppose on the contrary, then, that {yß : ß G A} is a subnet of {xa} 
that does not //-converge to sup 5. Then 3 y € C such that y ~> sup £ 
and there exists a function 

£ : A —> A : ß'.—> £(/?') 

such that S(/?') > ß' and y > y^ßl) for all ß' € A. That S satisfies 

V/3'€A37GA such that ß > 7 ==» S(/3) > ß' 

can be seen by putting 7 = /?', for then it reads 

Vß' <=A,ß>ß'=*Z(ß)>ß' 

and this is true because £(/?)[>/?> ß'. Therefore, {y^ß>) : ß' e A} is 
a subnet of {yß : ß e A} and therefore a subnet of {rrQ}. Now note 
that {y-^(ß') ■ ß' G A} has an m-convergent subnet A/", because M(£) 
is a compact space; according to what we have already shown, then, 
this subnet must //-converge to sup £. But according to the foregoing, 
y » sup £ and y ^> 2/E(/3') for all /?' 6 A; hence, y is not way above 
any of the terms of M. This contradiction completes the proof. 

Corollary 10 If C is a UC lattice and {xa} is a net in C, then Lim xa is the 
smallest x € C that satisfies (2) of Proposition 13. 

This corollary and the next theorem together will be seen to generalize most 
of THEOREM 3. 

Theorem 10 If C is a UC lattice and {xa} is a net in C, then {xa} m-converges 
to x £ £ if and only if Lim xa = Lim xa = x. 
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Proof: For UC lattices, I will henceforth indicate that {xa} m-converges to x 
by writing either lim xa = x or xa -» x. Now, it is clear that lim xa = 
x => Lim xa = x because x = lim sup xa and we always have 
Lim xQ = lim sup xa. That lima;Q = x also implies Lim xa = x fol- 
lows from the evident fact that £({xa}) is the single element x when 
lim xa = x. More briefly, xa —> x =>• 5({xa}) = {x}; hence 

Lim xa = inf {x} = x = sup{x} = Lim xa. 

On the other hand, if Lim xa = Lim xa = x, then £({xa}) is the single 
element x: (1) by compactness, {xa} always has an m-convergent sub- 
net, so that £{{xa}) is not empty, and (2) every element y e £({xa}) 
must satisfy x <y < x, which implies that y = x. Thus in this case 
we have that every m-convergent subnet converges to x = lim sup xa 

and have finally to show that all subnets of {xa} m-converge to x. 

Let {yp} be an arbitrary subnet of {xa}. If {yß} does not converge to x, 
then {yß} must have a subnet, no subnet of which m-converges to x. 
By compactness, however, every subnet of {yß} has an m-convergent 
subnet, and by what we have already shown, this subnet must m- 
converge to x. This contradiction completes the proof. 

The Moore-Smith order topology of a complete lattice C is defined via the con- 
cept of order convergence. If (D, >) is a directed set and {xa : a e D} is a net 
in C, then {xa} is said to order converge to x e C if lim inf xa = lim sup xa = 
x. The collection S0 of pairs ({xa},x), where {xa} is a net in £ that or- 
der converges to x, defines the topology 0{S0) on C called the (Moore- 
Smith) order topology. Note that <S0 is not necessarily a convergence class 
for 0(S0). We now have the following corollary of the last theorem. 

Corollary 11 The order-convergent nets of a UC lattice m-converge to their order 
limits. 

This corollary does not imply that the M-topology of a UC lattice is weaker 
than the order topology; this is a fact, however. We may therefore inciden- 
tally note the following. 

Remark 13 The M-topology of a UC lattice is at once stronger than the interval 
topology and weaker than the order topology. 

For the next main result (Prop. 17) the following lemmas will be useful. 

Lemma 4 Let CbeaUC lattice, let {xa} be a net in C, and let A({a;a}) denote 
the set ofX-limits of{xa}. Then we have the following. 

1. IfxeCisa X-limit of {xa}, then £ is a X-limit of {xa}for all £ < x. 
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2. supA({xa})G A({xa}). 

3. A({xa}) = [o,supA({:ra})]. 

Proof: (1) For all z G C such that x ■£ z, there exists a ß{z) such that a > 
/?(z) ==*• xQ 2< 2. Let C € C be such that £ £ £. Then, since a; £ £, it 
follows that there is a /3(C) such that a > ß(Q =>■ xa j< £. This proves 
(1). 

(2) For brevity put sup A({xa}) = £ and suppose that ze£ satisfies 
£ 2< z. Since 

y:<zVy€A({xa}) =►*:<*, 

let TJ € A({xa}) be such that t] -^ z. Then there is a /3(TJ) such that 
a !> ß(v) => xa 2? V- Hence £ is a A-limit of {xa}. This proves (2), and 
(3) is now obvious. 

Lemma 5 IfC is a UC lattice and {xa} is an m-convergent net in C, then 

Limxr, = supA({xQ}). 

Proof: Since A({xa}) = [o, supA({a;a})] and M({xa}) = [limsupxQ,e] is 
the set of //-limits of {xa}, it follows that A({xa}) 0 M({xa}) is 
exclusively either the single element lim sup xa or 0, depending on 
whether {xa} m-converges or not. Since xa —* lim sup xa if and 
only if [o, supA({a:a})] n [limsupxa,e] = limsupa;Q/ and since the 
latter is true if and only if supA({a;a}) = limsuprca, we see that 
sup A({xn}) = Lim xn. 

Lemma 6 Let C be a UC lattice and let {xa} be a net in C. 

1. £({xa}) C [supA({xQ}),limsupxa]. 

2. Equivalently, sup A({a;a}) ■< Lim xa. 

Proof: Note that a subnet {yß} of {xa} such that yß ->• x G £{{xa}) must 
both A- and //-converge to x. Since A({yß}) D A({xa}) and M({yß}) D 
M({xa}), it follows that 

supA({a;a}) < x ^ lim sup xa. 

Hence sup A{{xa}) ■< Lim xa and the proof is complete. 

Lemma 7 Let CbeaUC lattice, let {xa} be a net in C, and let T denote the set 
of m-convergent subnets of{xa}. 

1. supA({yß}) = lim sup t/^ = limyß for all {yß} G T. 

2. Limxa = inf{supA({yg}) : {yß} G T}. 
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3. supA({xa}) <Lvmxa < sup A{{yß}) for all {yß} G T. 

4. n(A(fe}):WeT} = A({a 

Proof: (1) is clear. (2) By definition, Lim xa = inf{lim yß : {yß} G T}. But for 
all {yß} G T we have sup A({t//?}) = limy p. Hence 

Lim a;o = inf{supA({y/3}) : {yß} € T}. 

(3) now follows from (1) and (2). For (4) we note that OiMM) : 

{yß} G T} is an m-closed lower superset of the closed lower set 
A({xa}). Suppose that there is an element £ € A({yß}) for all {yß} € 
T, but that £ £ A({xa}). Then there is a z0 such that £ 2< z0 for which 
to every a there corresponds a 7(a) > a such that x7(Q) ^ zo- Thus 
{x7(a)} is a subnet of {xa} all of whose terms preceed or equal z0. 
Since by compactness this subnet has an m-convergent subnet, we 
see that a contradiction has arisen. Thus CliHiVß}) '■ {Vß) e T) = 

A({Xa}). 

Proposition 17 If £ is a UC lattice and {xa} is a net in C, then 

Limxa = supA({a;a}). 

Proof: Again let T denote the set of m-convergent subnets of {xa}. By 
Lemma 7 

Lunxa = inf{supA({y/3}) : {yß} G T}. 

The term on the right of the above equation is the infimum of the up- 
per endpoints of the closed intervals [o,supA({y/3})] = A({yß}) aris- 
ing from the {yß} G T. Said infimum therefore lies in all these closed 
intervals and hence in their intersection. By Lemma 7 we therefore 
have that 

Limxrv = inf{supA({y/3}) : {yß} G T} 

< supf){A({yß}):{yß}eT} 

= supA({xa}), 

i.e., Lim xa d supA({zQ}). By Lemma 6, then, this completes the 
proof. 

Corollary 12 If C is a UC lattice and {xa} is a net in C, then Lim xa is the 
largest x€ £ that satisfies (1) of Proposition 13. 

Proof: By definition and Corollary 8, A({xa}) is the set of x G C that satisfies 
(1) of Proposition 13. By Proposition 17 and Lemma 4, Lim xa is the 
largest element of A({xa}). 
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We summarize Corollary 10, Theorem 10, and Corollary 12 as follows. 

Theorem 11 If C is a UC lattice and {xa} is a net in C, then (a) Lim xa is the 
largest x G £ that satisfies (1) of Proposition 13, (b) Lim xa is the smallest x € £ 
that satisfies (2) of Proposition 13, and (c) {xa} m-converges to x G £ if and only 
if Lim xa = Lim xa = x. 

This theorem will be seen with Theorem 13 to fully generalize THEOREM 3. 

3.2   USC and LSC Mappings 

For the next main result (Prop. 18), the following lemmas will be useful. 

Lemma 8 If Q is a topological space, £ is a UC lattice, and f : O —► £, then f 
is LSC relative to M(£) if and only if for each x G £ and for every convergent net 
{uja} in Q such that f{ua) ■< xfor all a, we have that f(lim.uja) < x. 

Proof:   We have that / is LSC if and only if 

/_1(-^) — W e ^ : /M £ x) is °Pen in O for all x G £. 

Thus / is LSC if and only if {u € O : /(w) ^ x} is closed in fi for 
all x G £. Finally, {u G Ct : /(a;) ;< x} is closed in fi if and only if 
for every convergent net {ua} in O such that f(ua) ■< x for all a, it 
follows that /(limwa) ^ x. 

Lemma 9 IfC is a complete lattice and {Sa : a e A} is a family of subsets ofC, 
then 

inf |J Sa = inf{inf Sa : a e A}. 

Proof:   For all a G A it is clear that inf UaSa ^ inf Sa', hence, 

inf (J Sa ^ inf {inf Sa : a G A}. 
a£A 

On the other hand, if z G Ua5Q, then x G Sao for some ao G A. 
Therefore inf Sao ■< x and we see that inf {inf Sa ■ OL G A} < x. This 
shows that 

inf {inf Sa : a G A} ■< inf I) 5a, 

and this completes the proof. 

Lemma 10 If £ z's fl ÜC lattice and {xa} is a net in C, then 
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Limxa = mf{sup{yß} : {yß} G T({xa})} 

where T({xa}) denotes the set of m-convergent subnets of{xa}. 

Proof:   Let {yß : ß e D} be any m-convergent subnet of {xa}. Then {yß : 
ß > 7} is an m-convergent subnet of {xa} for all fixed 7. Thus the set 

S = {sup{yß : ß € D}, {supf^ : £ > 7> : 7 € D}} 

is a subset of {supfo/?} : {yß} € T({a;a})}; in fact, the latter is the 
union of the subsets 5, one for each {yßj € T({xa}). By the last 
lemma we therefore have 

mi{sup{yß} : {yß} € T({xa})} =        inf       {snp{yß : /? > 7} : 7 G D}- 
w}ev({a;o}) 

Since the infimum on the right of the above is precisely Lim xa, the 
proof is complete. 

Lemma 11 If Q is a topological space, C is a UC lattice, f : Q —► C, and f is 
LSC (relative to M(£)), then f{limuja) ■< Lim f(ua)for every convergent net 
{ua} in VI. 

Proof:   For all m-convergent subnets {/(O>E(/3))} of {/(wa)}, we have for all 
/3that 

/(^E(/3)) 1 SUp{/(wE(/j#))}. 

Since / is LSC, we have for all {/(wS(/?))} that /(limwa) ^ 

sup^{/(wS(/3'))}-Hence 

/(limwa) di inf sup{/(u;s(/g/))}, 

where the infimum on the right extends over all convergent subnets 
of {f(uja)}. By the last lemma, this infimum is precisely Lim f(ua). 
This completes the proof. 

Proposition 18 If Vl is a topological space, C is a UC lattice, and f : VI —► C, 
then f is LSC if and only i//(limwa) ^ Lim f(uja) for every convergent net 
{ua} in fi. 

Proof: Assume first that /(limu;Q) r< Lim f(ua) for every convergent net 
{uja} in VI. Given x € C we restrict our attention to those of the 
{ua} such that f(wa) X x for all a. For these {ua} it follows that 
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Lim f(uja) d x because all m-convergent subnets of {f(u>a)} have 
m-limits £ < x; moreover, since /(lima;a) '< Lim f{ua), it follows 
that /(limu;a) •< x. Hence / is LSC by Lemma 8. Since the converse 
of what we have just shown is precisely the last lemma, the proof is 
complete. 

We summarize Propositions 4,16, and 18 to obtain a generalization of THE- 
OREM 4. 

Theorem 12 Let ft be a topological space, let CbeaUC lattice, and let f : ft —> 
C. 

1. f is USC if and only if f(]imua) t: Lim f{ua)for every convergent net 
{u)a} in ft. 

2. / is LSC if and only if f {lim uja) ^ Lim f(u>a)for every convergent net 
{oja} in ft. 

3.3   Lower Limits and Frink's Convergence Topology 

For the next theorem I first recall some facts about cofinal and residual 
subsets. 

Definition 25 Let (D, >) be a directed set. Then a subset C ofD is called cofinal 
if for every a G D there exists a 7 € C such that 7 > a. A subset R ofD is called 
residual if there is aß G D such that R = {a6D:a>/3}. 

Remark 14 Let (D,t>)bea directed set. If C is a cofinal subset ofD, then (C, t>) 
is a directed set; moreover, if{xa : a€D}isa net, then {xy : 7 e C} is a subnet 
of{xa : a e D}. Finally, if a subset ofD is not cofinal, then its complement in D 
is. 

Lemma 12 If D is a directed set, ifC c D is a cofinal subset ofD, and ifRcC 
is a residual subset ofC, then R is a cofinal subset ofD. 

Proof: Let a € D be given. Then there is a ß' G C such that ß' > a. Let 
R = {7 € C : 7 > A} and let ß € D satisfy ß > ß' and ß > A. Then 
ß G R and ß > a. 

Lemma 13 Let C be a UC lattice, let {xa} be a net in C, and let {yß} be a subnet 
of{xa} that m-converges to £. Then £ •< sup{xa}. 

Proof: sup{xQ} X sup{x7 : 7 > a} = ua for all a. Since {ua} m-converges to 
lim sup xa, it follows that sup£({a;Q}) = lim sup xa ^ sup{xa}. Since 
£ G £{{xa}), we are done. 
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Lemma 14 If C is a UC lattice, D is a directed set, {xa : a G D} is a net in C, 
and C denotes the cofinal subsets ofD, then 

infcec sup{x7 : 7 G C} ■< Lim xa. 

Proof:   Since Lim xa = mf{sup{yß} : {yß} G T{{xa})}, it is sufficient to 
show for each {yß} G T({xa}) that there exists a C € C such that 
sup{y/?} = sup{x7 : 7 € C}. 

Accordingly, let {yß : ß £ D'} € T({xa}). Thus there is a E : 
D' —► D that satisfies the subnet condition, yß = XE(/?)' and {yß} 
m-converges to, say, y. Let C be a cofinal subset of D'. Then {yß : 0 G 
C'} is a subnet of {xa : a G D}. Moreover, C = E(C') is a cofinal 
subset of D. It follows that {x7 : 7 G C} is a subnet of {xa : a e D} 
that has precisely the same set of terms as {yß : ß e D'}. Hence 

sup{yß :ße'D'} = sup{x7 : 7 € C}. 

Theorem 13 I/£ is a UC lattice, D is a directed set, {xa : a e D} is a net in £, 
and C denotes the cofinal subsets ofT>, then 

1. Lim xa = lim sup xa. 

2. Limxa = infcecsup{x7 : 7 € C}. 

Proof:    (1) is Proposition 16. 

For (2) we first show that inf S({xa}) ^ infCec sup{x7 : 7 e C}, i.e., 

x^yVy€ £({xa}) =^x< sup{x7 : 7 G C} V C G C. 

Assume that x < y for all y G £({xQ}) and let C be a cofinal subset of 
D. Then {x7 : 7 G C} is a subnet of {xa : a G D}, {x7 : 7 G C} has 
an m-convergent subnet {z/3}, the m-limit ^ of {z/?} lies in £{{xa}), 
x ■< f by assumption, and by Lemma 13 £ ^ sup{x7 : 7 G C}. Since 
C was an arbitrary cofinal subset of D, it follows that x < sup{z7 : 
7 G C} for all C G C. To complete the proof we must show that 
infcec sup{x7 : 7 G C} ^ inf £{{xa}). But this is precisely Lemma 14. 

This theorem generalizes THEOREM 5, and, together with Theorem 10, 
shows that the M-topology of a UC lattice is identical with Frink's [11] 
convergence topology. 

We may finally note that Theorem 2 generalizes the beginning of THE- 
OREM 1, apart from the second countability property, and a portion of 
THEOREM 2. The next proposition generalizes still another part of THE- 
OREM 2. 
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Proposition 19 If C is a UC lattice, then the mapping of C x Cto £ given by the 
meet operation (i.e., by (x, y) \—► x Ay) is USC. 

Proof: Let {xa} and {ya} be m-convergent nets in £ with m-limits x and y, 
respectively. It is sufficient to show that lim sup(xa A ya) ■< x A y. Since 
for all a we have that xa A ya ■< xa and xaAya< ya, it follows that 
lim sup(xa A ya) ■< lim sup xa = x and lim sup(xa A ya) ■< lim sup ya = 
y. Hence lim sup(a;a A ya) -<x/\y. 

3.4   Matheron Spaces 

We will finally distinguish a species of M(£)—where C is UC—that I call a 
Matheron space. We begin with a corollary of Proposition 19. 

Corollary 13 IfC is a UC lattice, then M(£) is a topological lattice if and only if 
the mapping ofCx Cto C given by the meet operation is LSC. 

If £ is UC and M(£) is not a topological lattice, then I call M(£) a Matheron 
space. Thus a Matheron space is exactly the type of M-topologized UC lat- 
tice for which a full generalization of THEOREM 2 holds, i.e., for which the 
mapping (x, y) i—► x A y is USC and not LSC. 

Because a distributive UC lattice, C, is meet-continuous if and only ifM(£) is 
a topological lattice (this follows by duality from GZ VII-2.4), we obtain the 
following final result. 

Proposition 20 If M(£) is a distributive Matheron space, then £ is not 
continuous. 
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4.   Open and Closed Subset Lattices 

I now detail the manner in which the foregoing theory of M(£) general- 
izes the more concrete topological theory outlined in the Introduction, i.e., 
Matheron's hit-miss topology. It was indeed pointed out in section 3 that re- 
sults there asserted to be generalizations of those in the Introduction would 
become clearly so only in view of material in this section. 

Our first theorem characterizes the m-convergence of nets in F(X) when X 
is locally compact and either Hausdorff or regular. It is at once a particular 
case of Proposition 13, which fact is indeed its proof, and (Prop. 12) an 
obvious generalization of THEOREM 1-A. 

Theorem 14 Let X be a locally compact space that is either Hausdorff or regular. 
A net {Fa} in F(X) converges to F £ F(X) if and only if both of the following 
hold. 

1. G dX is open and G OF =^ 0 => Gf\Fa=£ %for a residual set of as. 

2. K c X is compact and K n F = 0 =» K n Fa = 9 for a residual set of 
a's. 

Proof: Suppose first that {Fa} m-converges to F. (1) G C X is open and 
G n F ^ 0 is equivalent to Gc is closed and F £ Gc. Hence F € JFGc 
and it follows that Fa € TG* for for a residual set of a's. (2) K CjC^ 
is compact and K n F = 0_is equivalent to Kc > F. Hence F € TK° 
and it follows that Fa e TK° for a residual set of a's. For the converse, 
simply note that the conditions (A)GcI is open and G n F ^ 0 =$> 
G n Fa ^ 0 for a residual set of a's, and (B) K c X is compact and 
K n F = 0 => K n Fa = 0 for a residual set of a's, are respectively 
equivalent to (A) E C X is closed and F <£ E => Fa <£ E for a 
residual set of a's, and (B)£d is closed and E > F ==► E » Fa 

for a residual set of a's. 

Theorem 15 Let X be a locally compact space that is either Hausdorff or regular, 
let {Fa} be a net in F{X), let F e F(X), and suppose that the following hold. 

(a):   For each x € F there exist xa £ Fa for a residual set of a's such that 
xa —y x in X. 

(b):   ff {Fz(ß)} is a subnet of {Fa}, xE(/?) € FE(y9) V ß, and xs(/3) -» x in X, 
then x G F. 
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Then {Fa} converges to F relative to m(F(X)). In fact, (a) implies (1) of the last 
theorem and (2) ofthat theorem is equivalent to (b). 

Proof:   It is enough to prove the last statement. 

(a) => (1): If F is empty there is nothing to prove. If F / 0, let G C X 
be open with GnF/0 and let x G G n F. By (a) there exist xa G FQ 

for a residual set of a's such that xa —► x in X. Since a; is also in G 
we have that G is an open neighborhood of x; hence, xa G G for a 
residual set of a's and G n Fa ^ 0 for the same residual set. 

(2) => (b): If F = X there is nothing to prove. Assume, then, that 
F 7^ X, let x £ F, and let if be a closed compact neighborhood of 
x disjoint from F. By (2), there is a 7 such that K n Fa = 0 for all 
a > 7. Now let E : A —► D satisfy the subnet condition, where A is a 
directed set and D is the directed set of the a's; thus {F^) : ß G A} is 
a subnet of {Fa : a G D}. Note that the mentioned subnet condition 
is 

V a G D 3 ß'(a) G A such that ß >A ß'(a) =► S(/3) > a. 

Let 2EG3) G -FE(/3) for all ß € A and suppose that {x^ß)} converges in 
X to x. Let A' = {ß e A : E(/3) >7>. Then ATlJFs^ = 0 for all /? e A'. 
It follows from the subnet condition that {ß e A : ß >A /5'(7)} C A', 
and hence that K n FE(/3) = 0 for all /? >A ^'(7). Since {xE(/?) : /? € A} 
converges in X to x, it follows that the subnet {x^ß) : /? >A ß'(l)} 
converges in X to x. But none of the x^(ß) in this subnet lie in K and 
if is a neighborhood of x. This contradiction proves that (2) => (b). 

(b) =>■ (2): We assume that (2) is false and show that then (b) is false. 
Let K c X be a compact set with K n F = 0 such that for each a there 
is a E(Q) !> a such that ÜT n FE(a) ^ 0. Any of the maps E : D —► D 
so defined satisfy the subnet condition, for ß > E(a) => E(/5) > a. 
For each a let xa € if n F2(a). By compactness, {xa } has a subnet that 
converges to an x G if; hence x £ F and (b) is false. 

Lemma 15 If X is a topological space that satisfies the first axiom of countability, 
then each x G X has a countable local base {Gi : i = 1,2, } such that G\ D 
G2 D ... DGkD .... 

Proof: Let {[/*} be a countable local base at x for the topology of X, and let 
Gi = r\lk=1Uk for all i. Then {d : i = 1,2,...} is countable set of open 
neighborhoods of x such that 

GiDG2D ... DG)tD .... 
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Moreover, if V is an open neighborhood of x, then let n be a positive 
integer such that Un C V. Since GncUnC V, the lemma can be seen 
to follow. 

Lemma 16 Let X be a locally compact space that satisfies the first axiom of count- 
ability and is either Hausdorffor regular, let {Fi} be a sequence in F(X), and let 
F e F(X). Then, referring to the statements below, we have that (I) implies (A). 

(I):   GcXis open and GO F ^ 0 =4> GDFi^ 0 for all but finitely many i. 

(A):   For each x G F there exist xi G Fi for all but finitely many i such that 
Xi —> x in X. 

Proof:   If F is empty there is nothing to prove. If F ^ 0, let x G F, and let 
{d : i = 1,2, } be a countable local base at x such that G\ D 
G2 D ... D Gk D •••• Let Z+ denote the set of positive integers. Since 
Gk n F i=- 0 for all k = Z+, it follows from (I) that for each k G Z+ 

there exists a positive integer Nk such that 

Gk n Fi ^ 0 for all * > Nk. 

For each k € Z+ and each i = Nk, Nk + 1,..., Nk+i - 1, choose x» G 
Gk n Fj. This defines a sequence {re* : i > Ni} such that Xi € Fj for 
alH > iVi. If V is an open neighborhood of x, then there is a positive 
integer k(V) such that Gk{v) C V; moreover, XJ G Gfc(v) C V for all 
i > Nk(Vy, hence Xj —> x in X. This completes the proof. 

We therefore obtain the following obvious generalization of THEOREM 1- 
A and 1-B. 

Theorem 16 Let X be a locally compact space that satisfies the first axiom of 
countability and is either Hausdorffor regular, let {Fi} be a sequence in F(X), 
and let F e F(X). Then F{ -* F relative to m(F(X)) if and only if the following 
hold. 

(a):   For each x G F there exist Xj G Fifor all but finitely many i such that 
Xi —> x in X. 

(b):   If {Fik } is a subsequence of {Fi}, xik G Fik V k, and xik -»• x in X, then 
xeF. 

Moreover, (a) and (b) are respectvely equivalent to (1) and (2) below. 

(1):   G C X is open andGDF ^ 0 => GnFi ^ Qfor all but finitely many i. 

(2):   K C X is compact and K OF = 0 => KnFi = 0 for all but finitely many 
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Proposition 21 If X is a locally compact first countable Hausdorff space, then 
the subset ofF(X) that consists of all the one-point subsets ofX has a relative M- 
topology that coincides with the given topology ofX when each x G X is identified 
with {x} G ¥(X). 

Proof: Another way to state the conclusion is: If {xi} is a sequence in X 
and x G X, then X{ —*■ x in X if and only if {xt} —► {a:} relative 
to m(F(X)). Suppose, then, that {xi} is a sequence in X, x G X, 
and xi —* x in X. Then {xt} —* {x} relative to m(F(X)) by the 
last theorem. On the other hand, if {xt} is a sequence in X, x G X, 
and {xi} —> {x} relative to m(F(X)), then every subsequence of {x^ 
X-converges to x by (b) of the last theorem, and it follows that {XJ} 

X-converges to x. 

Theorem 15 has the following immediate corollary. 

Corollary 14 Let X be a locally compact Hausdorff space, let {xa} be a net in X, 
and let x G X. Then xa —» x in X implies that {xa} —> {x} relative to m(F(X)). 

Remark 15 Let X be a locally compact topological space, let x € X, and let \JX 

be the set of relatively compact open neighborhoods of x. \JX is a local base at x 
for the topology of X. Let X be an indexing set in one-to-one correspondence with 
Ux. Thus XJX = {GK : K e 1}. Define the relation >x in I by K >J K' <==» 
GK C GK>. Then >x is a partial ordering of I and (X, >i) is a distributive lattice. 
Furthermore, if K, K! G X, and if^eX is the index belonging to GK n GK>, then 
7 > j K and 7 > j K'; hence (J, > j) is also a directed set. 

Lemma 17 Let X be a locally compact topological space, let x G X, and let {GK : 
KEl}be as in the above remark. For each K G 2 let xK G GK and yKeGK. Then 
both {xK : K G 1} and {yK : K G 1} converge to x. 

Proof: Let U be an open neighborhood of x and let K0 G X be such that 
GKo C U. Then for all K >J K0 we have GK C GKo C U, and hence 
that xK G U. By Proposition 7, there is a «o € X such that GKo C f/. 
Thus for all K >X «0 we have GK C GK0 C U. Therefore, xKeU for all 
K>I K0. This completes the proof. 

If X is a Ti-space, then x G X is called isolated if {a:} is open. 

Proposition 22 If X is a locally compact Hausdorff space, and if X has a point 
that is not isolated, then M(F(X)) is a distributive Matheron space. 

Proof: We show that the mapping (E,F)\—► EnF of F{X) x F{X) to F(X) 
is not LSC, i.e., that there is a convergent net {{EK, FK)} in F(X) x 
F(X) for whose limit (E, F) we have EOF £ Lim EKf\FK. I claim that 
there are nets {£K} and {r]K} in X such that £K ^ 77* for all K, £K -* x 
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in X, and r)K -> x in X. Given this claim, we have {({£«}, {fyj)} -> 
({x}, {x}) in F(X) x F(X), by the last corollary, and 

{x} n {x} = {x}<£Lim {&} D K) = 0. 

To prove the claim, let x be a non-isolated point of X, let {GK : K e 1} 
be as in the last remark, and put £K = x for all K e I. For each K € J, 
let 7]K 6 GK be such that r\K ^ x. Then T]K -» x in X, by the last lemma, 
and this implies, by the last corollary, that {t]K} —► {x} relative to 
m(F(X)). This completes the proof. 

Corollary 15 If X is a locally compact Hausdotjf space, and if X has a point that 
is not isolated, then F(X) is not continuous. 
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5.    Conclusion 

This report has shown that an M-topologized upper-continuous lattice ab- 
stracts numerous aspects of the more concrete hit-miss topology introduced 
by Matheron in developing the topological fundamentals of mathematical 
morphology. It would thus now appear to be possible to attempt to en- 
rich the abstract lattice-algebraic approach to morphology of Heijmans and 
Ronse [4] by investigating the general ways that the structure of an M- 
topology can be combined with their basic structural framework, which is 
that of a complete lattice, C, with a sup-generating subset, I, on which an 
abelian group, G, acts effectively and ^-admissably (i.e., £ is G-invariant and 
G acts transitively on £) as a group of automorphisms. Success in this would 
result in an abstract mathematical system that exhibits most of the algebraic 
and topological properties of the more concrete morphologies, and would 
therefore potentially be a much more general morphological theory with 
a considerably wider range of applications than the existing theories envi- 
sion. This, inturn, would make new and more effective applications to ATR 
and computer vision problems possible. 

There are, however, two features of Matheron's system that are not present 
in the abstraction developed here. One is the apparent lack of a full gen- 
eralization of THEOREM 1.1 believe that to obtain such a generalization 
it will be necessary to introduce certain assumptions about the atomicity 
properties of the basic lattice; this is something that needs to be further 
investigated. The second arises from the fact that no assumptions have 
been made about the possible first- or second-countability properties of an 
M-topology. Indeed, throughout I have used the general topological tool 
of net convergence and have not made the simplifying assumptions that 
would render mere sequence convergence adequate for the topological ar- 
guments. It may, however, be necessary to introduce such assumptions to 
attempt to abstract the probability theoretic aspects of Matheron's system. 
Matheron's concept of a random closed set, which would have to be gener- 
alized as a random variable in an M-topologized upper-continuous lattice, 
was not considered in the work presented here. In view of the importance 
of the random variable concept for the applications potency of mathemat- 
ical morphology to such fields as ATR and computer vision, the develop- 
ment of an M-topological generalization of the random closed set concept 
would be a high-priority task for the line of research initiated here. 
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Finally, it should be mentioned that Banon and Barrera [5] have developed 
pure lattice algebra along lines that suggest that mathematical morphol- 
ogy can be profitably viewed as essentially the general theory of mappings 
between complete lattices, or at least that the latter is a useful abstract 
perspective in which to view the various concrete forms of mathematical 
morphology. The relation between this approach and that of Heijmans and 
Ronse needs to be clarified and the approaches somehow combined. This is 
accomplished in another of my reports, called Lattice-Algebraic Morphology, 
which will be issued soon. 

40 



References 

1. D. W. McGuire, The Morphological Processing of Binary Images, Army 
Research Laboratory, ARL-TR-28 (1993). 

2. D. W. McGuire, Greyscale Morphology by the Umbra Method, Army Re- 
search Laboratory, ARL-TR-595 (1994). 

3. J. Serra (Editor), Image Analysis and Mathematical Morphology Volume II: 
Theoretical Advances, Academic Press (1988). 

4. H.J.A.M. Heijmans and C. Ronse, The Algebraic Basis of Mathematical 
Morphology I. Dilations and Erosions, CVGIP, 50,245-295 (1990). 

5. G.J.F. Banon and J. Barrera, Decomposition of Mappings between Com- 
plete Lattices by Mathematical Morphology, Part I. General lattices, Signal 
Process., 30,299-327 (1993). 

6. H.J.A.M. Heijmans and J. Serra, Convergence, Continuity, and Iteration 
in Mathematical Morphology, J. Visual Communication and Image Rep- 
resentation, 3, No. 1, March, 84-102 (1992). 

7. J. Serra, Image Analysis and Mathematical Morphology, Academic Press 
(1982). 

8. G. Matheron, Random Sets and Integral Geometry, John Wiley & Sons 
(1975). 

9. J. L. Kelley, General Topology, D. Van Nostrand (1955). 

10. G. Birkhoff, Lattice Theory, 3rd. ed., Vol. 25, Amer. Math. Soc. Col- 
loq. Pubs. (1984). 

11. O. Frink, Topology in Lattices, Trans. Amer. Math. Soc. 51, 576-579 
(1942). 

12. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. 
S. Scott, A Compendium of Continuous Lattices, Springer-Verlag, Berlin 
(1980). 

13. L. Nachbin, Topology and Order, D. Van Nostrand (1965). 

41 



Distribution 

Admnstr 
Defns Techl Info Ctr 
Atta DTIC-OCP 
8725 John J Kingman Rd Ste 0944 
FT Belvoir VA 22060-6218 

Ofc of the Dir Rsrch and Engrg 
AttnR Menz 
Pentagon Rm 3E1089 
Washington DC 20301-3080 

Ofc of the Secy of Defns 
Atta ODDRE (R&AT) G Singley 
Atta ODDRE (R&AT) S Gontarek 
The Pentagon 
Washington DC 20301-3080 

OSD 
AttaOUSD(A&T)/ODDDR&E(R) R Tru 
Washington DC 20301-7100 

AMCOM MRDEC 
Atta AMSMI-RD W C McCorkle 
Redstone Arsenal AL 35898-5240 

Army RsrchPhysics Div 
Atta AMXRO-EMCS Assoc Dir Math & 

Computer Sei Div R Launer 
AttaAMXRO-PH D Skatrud 
PO Box 12211 
Research Triangle Park NC 27709-2211 

CECOM 
Atta PM GPS COL S Young 
FT Monmouth NJ 07703 

CECOM 
Sp & Terrestrial Commcta Div 
Atta AMSEL-RD-ST-MC-M H Soicher 
FT Monmouth NJ 07703-5203 

Dept of the Army (OASA) RDA 
AttaSARD-PT R Saunders 
103 Army 
Washington DC 20301-0103 

Dir for MANPRINT 
Ofc of the Deputy Chief of Staff for Prsnnl 
AttaJ Hiller 
The Pentagon Rm 2C733 
Washington DC 20301-0300 

Dpty Assist Secy for Rsrch & Techl 
AttaSARD-TT F Milton Rm 3E479 
The Pentagon 
Washington DC 20301-0103 

Hdqtrs Dept of the Army 
AttaDAMO-FDT D Schmidt 
400 Army Pentagon Rm 3C514 
Washington DC 20301-0460 

US Army CECOM RDEC Night Vision & Elec 
Sensors Dir 

Atta AMSEL-RD-NV-VISPD C Hoover 
10221 Burbeck Rd, Ste 430 
FT Belvoir VA 22060-5806 

US Army CECOM RDEC NVESD 
AttaAMSRL-RD-NV-UAB C Walters 
10221 Burbeck Rd Ste 40 
FT Belvoir VA 22060 

US Army Edgewood RDEC 
Atta SCBRD-TD J Vervier 
Aberdeen Proving Ground MD 21010-5423 

US Army Info Sys Engrg Cmnd 
Atta ASQB-OTD F Jenia 
FT Huachuca AZ 85613-5300 

US Army Materiel Sys Analysis Agency 
AttnAMXSY-D J McCarthy 
Aberdeen Proving Ground MD 21005-5071 

US Army Natick RDEC 
Acting Techl Dir 
Atta SSCNC-T P Brandler 
Natick MA 01760-5002 

US Army Rsrch Ofc 
AttaG Iafrate 
4300 S Miami Blvd 
Research Triangle Park NC 27709 

US Army Simulation, Train, & Instrmnta 
Cmnd 

AttaJ Stahl 
12350 Research Parkway 
Orlando FL 32826-3726 

Preceding Page Blank 43 



Distribution (cont'd) 

US Army Tank-Automtv & Armaments Cmnd 
Attn AMSTA-AR-TD C Spinelli 
Bldgl 
Picatinny Arsenal NJ 07806-5000 

US Army Tank-Automtv Cmnd Rsrch, Dev, & 
Engrg Ctr 

Attn AMSTA-TA J Chapin 
Warren MI 48397-5000 

US Army Test & Eval Cmnd 
AttnRG Pollard III 
Aberdeen Proving Ground MD 21005-5055 

US Army Train & Doctrine Cmnd Battle Lab 
Integration & Techl Dirctrt 

AttnATCD-B JA Klevecz 
FT Monroe VA 23651-5850 

US Military Academy 
Dept of Mathematical Sei 
AttnMAJD Engen 
West Point NY 10996 

Nav Surface Warfare Ctr 
Attn Code B07 J Pennella 
17320 Dahlgren Rd Bldg 1470 Rm 1101 
Dahlgren VA 22448-5100 

GPS Joint Prog Ofc Dir 
Attn COL J Clay 
2435 Vela Way Ste 1613 
Los Angeles AFB CA 90245-5500 

DARPA 
AttnB Kaspar 
AttnL Stotts 
3701 N Fairfax Dr 
Arlington VA 22203-1714 

PI/Director METREC 
Brown Uni Div of Applied Mathematics 
Attn DE McClure 
Attn S Geman 
182 George Stret PO Box F 
Providence RI 02912 

Conseiller scientifique 
Centre de Morphologie Mathematique 
Ecole des Mines de Paris 
AttnG Matheron 
35 Rue Saint-Honore 
77305 Fontainebleau cedex 
France 

Directeur 
Centre de Morphologie Mathematique 
Ecole des Mines de Paris 
AttnJ Serra 
35 Rue Saint-Honore 
77305 Fontainebleau cedex 
France 

Clark Atlanta Univ 
Attn Dept of Physics (CTSPS) K R Namuduri 
James P. Brawley Dr at Fair Stret 
Atlanta GA 30314 

Clark Atlanta Univ 
Wavelet Analysis Group 
AttnR Murenzi 
James P Brawley Dr at Fair Stret SW 
Atlanta GA 30314 

Departamento de Cienca da Computacao 
Instituto de Matematica e Estatistica 
AttnJ Barrera 
Cidade Universitaria "Armando de Sales 

Oliveira" 
CEP 05389-970 CX Postal 66281 
Säo Paulo Brazil 

Dept of Mathematics 
Louisiana State Univ 
AttnJD Lawson 
Baton Rouge LA 70803 

Dept of Mathematics 
Tulane Univ 
AttnKH Hofmann 
AttnMW Mislove 
New Orleans LA 70118 

44 



Distribution (cont'd) 

Fachbereich Mathematik Technische 
Hochschule Darmstadt 

AttnG Gierz 
AttnK Keimel 
Schlossgartenstr 7 
Darmstadt D-6100 
Germany 

Georgia Inst of Techl 
Schi of Elect & Computer Engrg 
AttnP Maragos 
Atlanta GA 30332-0250 

INPE 
AttnGJF Banon 
CP 515 Säo Jose dos Campos 
Säo Paulo 12 201-970 
Brazil 

Merton College 
AttnDS Scott 
Oxford OX1 4JD 
Great Britain 

The American Univ 
Dept of Mathematical Statistics 
AttnSD Casey 
4400 Massachusets Ave NW 
Washington DC 20016-8050 

Univ of Maryland 
Dept of Mathematics & Sys Rsrch Ctgr 
Attn C A Berenstein 
College Park MD 20742-3285 

Univ of Maryland 
Dept of Elect Engrg 
AttnR Chellappa 
Attn A Rosenfeld 
A V Williams Building 
College Park MD 20742-3285 

Universite Louis Pasteur Dept d'Informatique 
AttnC Ronse 
7 Rue Rene Descartes 
Strasbourg Cedex 67084 
France 

University of Texas 
ARL Electromag Group 
Attn Campus Mail Code F0250 A Tucker 
Austin TX 78713-8029 

Director Ctr for Imaging Sei 
Washington Univ Elect Engrg Dept 
Attn MI Miller 
Campus Box 1127 One Brookings Dr 
ST Louis MO 63130-4899 

CWI 
AttnHJAM Heijmans 
PO Box 94079 
Amsterdam 1090 GB 
The Netherlands 

ERIM 
AttnC Dwan 
AttnJ Ackenhusen 
1975 Green Rd 
Ann Arbor MI 48105 

Palisades Inst for Rsrch Svc Ine 
AttnE Carr 
1745 Jefferson Davis Hwy Ste 500 
Arlington VA 22202-3402 

Sanders Lockheed Martin Co 
Attn PTP2-A001 K Damour 
PO Box 868 
Nashua NH 03061-0868 

US Army Rsrch Lab 
Attn AMSRL-CI-LL Techl Lib (3 copies) 
Attn AMSRL-CS-AL-TA Mail & Records 

Mgmt 
Attn AMSRL-CS-EA-TP Techl Pub (3 copies) 
AttnAMSRL-IS J Chandra 
Attn AMSRL-IS-TA B Sadler 
Attn AMSRL-IS-TP D Torrieri 
AttnAMSRL-SE JM Miller 
Attn AMSRL-SE J Pellegrino 
Attn AMSRL-SE-SE B Weber 
Attn AMSRL-SE-SE D McGuire 
Attn AMSRL-SE-SE L Bennett 

45 



Distribution (cont'd) 

US Army Rsrch Lab (cont'd) 
Attn AMSRL-SE-SE M Vrabel 
Attn AMSRL-SE-SE N Nasrabadi 
Attn AMSRL-SE-SE P Rauss 
Attn AMSRL-SE-SE S Der 
Attn AMSRL-SE-SE T Kipp 
Attn AMSRL-SE-SR D Rodkey 

US Army Rsrch Lab (cont'd) 
Attn AMSRL-SE-SR D Rosario 
Attn AMSRL-SE-SR G Stolovy 
Attn AMSRL-SE-SR J Dammann 
Attn AMSRL-SE-SR V Mirelli 
Adelphi MD 20783-1197 

46 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

June 1998 
3. REPORT TYPE AND DATES COVERED 

Interim, October 1996 to October 1997 

4. TITLE AND SUBTITLE 

Continuous Lattices and Mathematical Morphology 

6. AUTHOR(S) 

Dennis W. McGuire 

5. FUNDING NUMBERS 

DA PR: A305 
PE:61102A 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES) 

U.S. Army Research Laboratory 
Attn: AMSRL-SE-SE (dennis@arl.mil) 
2800 Powder Mill Road 
Adelphi, MD 20783-1197 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

ARL-TR-1548 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
2800 Powder Mill Road 
Adelphi, MD 20783-1197 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

AMS code: 611102.305 
ARL PR: 7NE0M1 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

I generalize the topological structure of the concrete forms of mathematical morphology to the 
lattice-algebraical framework using the theory of continuous lattices. I show that when a complete 
lattice, C, exhibits the dual of the property that defines a continuous lattice, then L together with a 
certain intrinsic lattice topology, m(£), which is related by duality to the Lawson topology, has almost 
all the familiar properties, suitably generalized, of the topologized lattices that constitute the basic 
mathematical structure of the concrete forms of mathematical morphology; for instance, the complete 
lattice of closed subsets of the Euclidean plane topologized with Matheron's hit-miss topology. 

14. SUBJECT TERMS 

ATR, mathematical morphology 

15. NUMBER OF PAGES 
52 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 47 
298-102 


