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Quantum Optics of a Single Atom
H. Walther

Sektion Physik der Universitiit Miinchen and Max-Planck-Institut fiir Quantenoptik, Garching, 85748 Fed. Rep. of Germany

e-mail: Herbert, Walther @mpq.mpg.de
Received August 19, 1997

Abstract—In this paper recent experiments with the one-atom maser or micromaser are reviewed. They deal
with the dynamical behavior of the field at parameter values where the field undergoes phase transitions. Fur-
thermore atomic interferences are observed in the micromaser when the inversion of the atoms leaving the cav-
ity is measured while the cavity frequency is scanned across the atomic resonance. The interferences are due to
the nonadiabatic mixing of dressed states at the entrance and exit holes of the maser cavity. They are associated
with the dynamics of the atom-field interaction, show quantum jumps, and demonstrate bistability of the micro-
maser field. In the second part of the paper experiments on the resonance fluorescence of a single trapped
24Mg*-ion at low excitation intensity are discussed. The measurements were performed by heterodyning the flu-
orescent radiation with a sideband of the single mode laser radiation used to excite the ion, resulting in a line-
width of 0.7 Hz. Under identical experimental conditions, the antibunching in the photon statistics of the fluo-
rescent radiation was also investigated. Heterodyne detection and photon correlation measurement are comple-
mentary featuring either the wave or the particle nature of the radiation. A brief outlook on new experiments

with ultracold atoms in cavities and traps is given.

1. EXPERIMENTS WITH THE ONE-ATOM
MASER

The one-atom maser or micromaser is an ideal
device for the study of the resonant interaction of a sin-
gle atom with a single mode of a superconducting nio-
bium cavity [1-4]. In the exPeriments values of the
quality factor as high as 3 x 10'® have been achieved for
the resonant mode, corresponding to an average life-
time of a photon in the cavity of 0.2 s. The photon life-
time is thus much longer than the interaction time of an
atom with the maser field; during the atom passes
through the cavity the only change of the cavity field
that occurs is due to the atom-field interaction. The
atoms used in the experiments are rubidium Rydberg
atoms pumped by laser excitation into the upper level
of the maser transition, which is usually induced
between neighboring Rydberg states. In the experi-
ments the atom—field interaction is probed by observing
the population in the upper and lower maser levels after
the atoms have left the cavity. The field in the cavity
consists only of single or a few photons depending on
the atomic flux. Nevertheless, it is possible to study the
interaction in considerable detail. The dynamics of the
atom-field interaction treated with the Jaynes—Cum-
mings model was investigated by selecting and varying
the velocity of the pump atoms [2]. The counting statis-
tics of the pump atoms emerging from the cavity
allowed us to measure the non-classical character of the
cavity field [3, 4] predicted by the micromaser theory.
The maser field can be investigated in this way since
there is entanglement between the maser field and the
state in which the atom leaves the cavity [5, 6]. It also
has been observed that under suitable experimental
conditions the maser field exhibits metastability and
hysteresis [7]. The first of the maser experiments have

been performed at cavity temperatures of 2 or 0.5 K. In
the more recent experiments the temperature was
reduced to roughly 0.1 K by using an improved setup in
a dilution refrigerator [7]. For a review of the previous
work see Raithel ef al. [9).

In the following the experiments on quantum jumps
of the micromaser field and on the observation of
atomic interferences in the cavity [8] are reviewed.
New experiments on the correlation of atoms after the
interaction with the cavity field will be discussed also.
Interesting new experiments get possible if ultracold
atoms are used to pump the micromaser. In the case that
the kinetic energy of the atoms get comparable to the
interaction energy between atoms and field the motion
of the atoms has to be quantized leading to new inter-
esting features which are briefly discussed in this paper.

1.1 Quantum Jumps and Atomic Interferences
in the Micromaser

Under steady-state conditions, the photon statistics
P(n) of the field of the micromaser is essentially deter-
mined by the pump parameter, © = N, ;f Qr /2 [9-11].
Here, N,, is the average number of atoms that enter the
cavity during T, © the vacuum Rabi flopping fre-
quency, and %, is the atom-cavity interaction time. The
quantity {(v) = (n)/N,, shows the following generic behav-
ior (see Fig. 1): It suddenly increases at the maser thresh-
old value © = 1, and reaches a maximum for © = 2
(denoted by a in Fig. 1). At threshold the characteris-
tics of a continuous phase transition [10, 11] are dis-
played. As © further increases, (v) decreases and
reaches a minimum at ® = 2w, and then abruptly
increases to a second maximum (b in Fig. 1). This general



(v)=(n)/N
1.0
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Fig. 1. Mean value of v = n/N,, versus the pump parameter

O = Q1 [N, /2, where the value of © is changed via Ney.

The solid line represents the micromaser solution for Q =
36 kHz, t;; = 35 s, and temperature 7=0.15 K. The dotted

lines are semiclassical steady-state solutions corresponding
to fixed stable gain = loss equilibrium photon numbers [12].
The crossing points between a line @ = const and the dotted
lines correspond to the values where minima in the Fokker—
Planck potential V(v) occur.

type of behavior recurs roughly at integer multiples
of 2m, but becomes less pronounced with increasing ©.
The reason for the periodic maxima of (v) is that for
integer multiples of © = 27 the pump atoms perform an
almost integer number of full Rabi flopping cycles, and
start to flip over at a slightly larger value of ©, thus
leading to enhanced photon emission. The periodic
maxima in {v) for ® = 27, 4%, and so on can be inter-
preted as first-order phase transitions [10, 11]. The field
strongly fluctuates for all phase transitions (a, b, and
c in Fig. 1), the large photon number fluctuations for
O = 21 and multiples thereof being caused by the pres-
ence of two maxima in the photon number distribution
P(n) at photon numbers #, and n,;, (n; < n).

Reference
channeltron

P

UV-Laser beam
EOM

WALTHER

The phenomenon of the two coexisting maxima in
P(n) was also studied in a semiheuristic Fokker—Planck
(FP) approach [10, 11]. There, the photon number distri-
bution P(n) is replaced by a probability function P(v, T)
with continuous variables T = t/1_,, and v(n) = n/N,,,
the latter replacing the photon number n. The steady-
state solution obtained for P(v, 1), T > 1, can be con-
structed by means of an effective potential V(v) showing
minima at positions where maxima of P(v, 1), T > 1, are
found. Close to ® = 21 and multiples thereof, the effec-
tive potential V(v) exhibits two equally attractive min-
ima located at stable gain-loss equilibrium points of
maser operation [12] (see Fig. 1). The mechanism at the
phase transitions mentioned is always the same: A min-
imum of V(v) loses its global character when © is
increased, and is replaced in this role by the next one.
This reasoning is a variation of the Landau theory of

first-order phase transitions, with ﬁ being the order
parameter. This analogy actually leads to the notion
that in the limit N,, —» oo the change of the microma-
ser field around integer multiples © = 2x can be inter-
preted as first-order phase transitions.

Close to first-order phase transitions long field evo-
lution time constants are expected [10, 11]. This phe-
nomenon was experimentally demonstrated in [7], as
well as related phenomena, such as spontaneous quan-
tum jumps between equally attractive minima of V(v),
bistability, and hysteresis. Some of those phenomena
are also predicted in the two-photon micromaser [13],
for which qualitative evidence of first-order phase tran-
sitions and hysteresis is reported.

The experimental setup used is shown in Fig. 2. It is
similar to that described by Rempe and Walther [4] and
Benson, Raithel and Walther [7]. As before, 8Rb atoms
were used to pump the maser. They are excited from the
58,5, F = 3 ground state to 63P5,, m, = +1/2 states by
linearly polarized light of a frequency-doubled cw ring
dye laser. The polarization of the laser light is linear

1&2

PP

P
Atomic

Nb-Cavity

Field ionization

Fig. 2. Sketch of the experimental setup. The rubidium atoms emerge from an atomic beam oven and are excited at an angle of 82°
at location A. After interaction with the cavity field, they enter a state-selective field ionization region, where channeltrons 1 and 2
detect atoms in the upper and lower maser levels, respectively. A small fraction of the UV radiation passes through an electro-optic
modulator (EOM), which generates sidebands of the UV radiation. The blueshifted sideband is used to stabilize the frequency of the
laser onto the Doppler-free resonance monitored with a secondary atomic beam produced by the same oven (location B).
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QUANTUM OPTICS OF A SINGLE ATOM 3

and parallel to the likewise linearly polarized maser
field, and therefore only Am, = 0 transitions are excited.
Superconducting niobium cavities resonant with the
transition to the 61D, m, = £1/2 states were used; the
corresponding resonance frequency is 21.506 GHz.
The experiments were performed in a *He/*He dilution
refrigerator with cavity temperatures T = 0.15 K. The
cavity Q values ranged from 4 x 10° to 8 x 10°. The
velocity of the Rydberg atoms and thus their interaction
time t,,, with the cavity field were preselected by excit-
ing a particular velocity subgroup with the laser. For
this purpose, the laser beam irradiated the atomic beam
at an angle of approximately 82°. As a consequence, the
UV laser light (linewidth =~ 2 MHz) is blueshifted by
50-200 MHz by the Doppler effect, depending on the
velocity of the atoms.

Information on the maser field and interaction of the
atoms in the cavity can be obtained solely by state-
selective field ionization of the atoms in the upper or
lower maser level after they have passed through the
cavity. The field ionization detector was recently mod-
ified, so that there is now a detection efficiency of 1| =
(35 + 5)%. For different f;, the atomic inversion has
been measured as a function of the pump rate by com-
paring the results with micromaser theory [10, 11], the
coupling constant Q is found to be = (40 £ 10) krad/s.

Depending on the parameter range, essentially three
regimes of the field evolution time constant T4 can be
distinguished. Here we only discuss the results for
intermediate time constants. The maser was operated
under steady-state conditions close to the second first-
order phase transition (c in Fig. 1). The interaction time
was f;,, = 47 s and the cavity decay time T ,, = 60 ms.
The value of N,, necessary to reach the second first-
order phase transition was N, = 200. For these param-
eters, the two maxima in P(n) are manifested in sponta-
neous jumps of the maser field between the two max-
ima with a time constant of = 5 s. This fact and the rel-
atively large pump rate led to the clearly observable
field jumps shown in Fig. 3. Because of the large cavity
field decay time, the average number of atoms in the
cavity was still as low as 0.17. The two discrete values
for the counting rates correspond to the metastable
operating points of the maser, which correspond to =70
and =140 photons. In the FP description, the two values
correspond to two equally attractive minima in the FP
potential V(V). If one considers, for instance, the count-
ing rate of lower-state atoms (CT2 in Fig. 3), the lower
(higher) plateaus correspond to time intervals in the
low (high) field metastable operating point. If the actual
photon number distribution is averaged over a time
interval containing many spontaneous field jumps, the
steady-state result P(n) of the micromaser theory is
recovered.

In the parameter ranges where switching occurs
much faster than in the case shown in Fig. 3 the individ-
ual jumps cannot be resolved, therefore different meth-
ods have to be used for the measurement. Furthermore
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Fig. 3. Quantum jumps between two equally stable opera-
tion points of the maser field. The channeltron counts are
plotted versus time (CT1 = upper state and CT2 = lower
state signals).

hysteresis is observed at the maser parameters for which
the field jumps occur. Owing to lack of space these
results cannot be discussed here. For a complete survey
on the performed experiments it is referred to [7].

As next topic we would like to discuss the observa-
tion of atomic interferences in the micromaser [8].
Since a non-classical field is generated in the maser
cavity, we were able for the first time to investigate
atomic interference phenomena under the influence of
non-classical radiation; owing to the bistable behavior
of the maser field the interferences display quantum
jumps, thus the quantum nature of the field gets directly
visible in the interference fringes. Interferences occur
since a coherent superposition of dressed states is pro-
duced by mixing the states at the entrance and exit
holes of the cavity. Inside the cavity the dressed states
develop differently in time, giving rise to Ramsey-type
interferences [14] when the maser cavity is tuned
through resonance.

The setup used in the experiment is identical to the
one described before [7]. However, the flux of atoms
through the cavity is by a factor of 5-10 higher than in
the previous experiments, where the 63P;,~61Ds),
transition was used. For the experiments the Q-value of
the cavity was 6 x 10° corresponding to a photon decay
time of 42 ms.

Figure 4 shows the standard maser resonance in the
uppermost plot which is obtained when the resonator
frequency is tuned. At large values of N, (Ng, > 89)
sharp, periodic structures appear. These typically con-
sist of a smooth wing on the low-frequency side, and a
vertical step on the high-frequency side. The clarity of
the pattern rapidly decreases when N,, increases to 190
or beyond. We will see later that these structures have to
be interpreted as interferences. It can be seen that the
atom-field resonance frequency is red-shifted with
increasing N,,, the shift reaching 200 kHz for N, = 190.
Under these conditions there are roughly 100 photons
on the average in the cavity. The large red-shift cannot
be explained by AC Stark effect, which for 100 photons
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Fig. 4. Shift of the maser resonance 63P3;,~61Ds,, for fast
atoms (;,, = 35 pis). The upper plot shows the maser line for
low pump rate (N, < 1).The FWHM linewidth (50 kHz)

sets an upper limit of = 5 mV/cm for the residual electric
stray fields in the center of the cavity. The lower resonance
lines are taken for the indicated large values of Ng,.The plots

show that the center of the maser line shifts by about 2 kHz
per photon. In addition, there is considerable field-induced
line broadening which is approximately proportional to

[N, . For Nox 2 89 the lines display periodic structures,

which are discussed in the text.

would amount to about one kHz for the transition used.
Therefore it is obvious that other reasons must be
responsible for the observed shift.

It is known from previous maser experiments that
there are small static electric fields in the entrance and
exit holes of the cavity. It is supposed that this field is
generated by patch effects at the surface of the niobium
metal caused by rubidium deposits caused by the
atomic beam or by microcrystallites formed when the
cavities are tempered after machining. The tempering
process is necessary to achieve high quality factors.
The influence of those stray fields is only observable in
the cavity holes; in the center of the cavity they are neg-
ligible owing to the large atomwall distances.

When the interaction time #;,, between the atoms and
the cavity field is increased the interference structure
disappears for ¢;,, > 47 s [8]. This is due to the fact that
there is no non-adiabatic mixing any more between the
substates when the atoms get too slow.

In order to understand the observed structures, the
Jaynes—-Cummings dynamics of the atoms in the cavity
has to be analyzed. This treatment is more involved
than that in connection with previous experiments,
since the higher maser field requires detailed consider-
ation of the field in the periphery of the cavity, where
the additional influence of stray electric fields is more
important.

WALTHER

The usual formalism for the description of the cou-
pling of an atom to the radiation field is the dressed
atom approach [15], leading to splitting of the coupled
atomfield states, depending on the vacuum Rabi-flop-
ping frequency £, the photon number #, and the atom-
field detuning 8. We face a special situation at the
entrance and exit holes of the cavity. There we have a
position-dependent variation of the cavity field, as a
consequence of which Q is position-dependent. An
additional variation results from the stray electric fields
in the entrance and exit holes. Owing to the Stark-effect
these fields lead to a position-dependent atom-field
detuning 6.

The Jaynes—Cummings Hamiltonian only couples
pairs of dressed states. Therefore, it is sufficient to con-
sider the dynamics within such a pair. In our case, prior
to the atom-field interaction the system is in one of the
two dressed states. For parameters corresponding to the
periodic substructures in Fig. 4 the dressed states are
mixed only at the beginning of the atom-field interac-
tion and at the end. The mixing at the beginning creates
a coherent superposition of the dressed states. After-
wards the system develops adiabatically, whereby the
two dressed states accumulate a differential dynamic
phase @ which strongly depends on the cavity fre-
quency. The mixing of the dressed states at the entrance
and exit holes of the cavity, in combination with the
intermediate adiabatic evolution, generates a situation
similar to a Ramsey two-field interaction.

The maximum differential dynamic phase ® solely
resulting from dressed-state coupling by the maser field
is roughly 47 under the experimental conditions used
here. This is not sufficient to explain the interference
pattern of Fig. 4, where we have at least six maxima
corresponding to a differential phase of 12 m. This
means that an additional energy shift differently affect-
ing upper and lower maser states is present. Such a phe-
nomenon can be caused by the above mentioned small
static electric fields present in the holes of the cavity.
The static field causes a position-dependent detuning &
of the atomic transition from the cavity resonance; as a
consequence we get an additional differential dynamic
phase ®@. In order to interpret the periodic substructures
as a result of the variation of ® with the cavity fre-
quency, the phase @ has to be calculated from the
atomic dynamics in the maser field.

The quantitative calculation can be performed on
the basis of the micromaser theory. The calculations
reproduce the experimental finding that the maser line
shifts to lower frequencies when N, is increased [8].
The mechanism for that can be explained as follows:
the high-frequency edge of the maser line does not shift
with N, at all, since this part of the resonance is pro-
duced in the central region of the cavity, where practi-
cally no static electric fields are present. The low-fre-
quency cut-off of the structure is determined by the
location where the mixing of the dressed states occurs.
With decreasing cavity frequency those points shift
Vol. 8 1998
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closer to the entrance and exit holes, with the difference
between the particular cavity frequency and the unper-
turbed atomic resonance frequency giving a measure of
the static electric field at the mixing locations. Closer to
the holes the passage behavior of the atoms through the
mixing locations gets nonadiabatic for the following
reasons: firstly, the maser field strength reduces
towards the holes. This leads to reduced repulsion of
the dressed states. Secondly, the stray electric field
strongly increases towards the holes. This implies a
larger differential slope of the dressed state energies at
the mixing locations, and therefore leads to a stronger
non-adiabatic passage. At the same time the observed
signal extends further to the low frequency spectral
region. Since the photon emission probabilities are
decreasing towards lower frequencies their behavior
finally defines the low-frequency boundary of the
maser resonance line. With increasing N,, the photon
number n increases. As for larger values of n the photon
emission probabilities get larger, also an increasing N,
leads to an extension of the range of the signal to lower
frequencies. This theoretical expectation is in agree-
ment with the experimental observation.

In the experiment it is also found that the maser line
shifts towards lower frequencies with increasing .
This result also follows from the developed model: the
redshift increases with t,, since a longer interaction
time leads to a more adiabatic behavior in the same way
as a larger N, does.

The calculations reveal that on the vertical steps dis-
played in the signal the photon number distribution has
two distinctly separate maxima similar to those
observed at the phase transition points discussed above.
Therefore, the maser field should exhibit hysteresis and
metastability under the present conditions as well. The
hysteresis indeed shows up when the cavity frequency
is linearly scanned up and down with a modest scan rate
[9]. When the maser is operated in steady-state and the
cavity frequency is fixed to the steep side of one of the
fringes we also observe spontaneous jumps of the
maser field between two metastable field states.

The calculations also show that on the smooth wings
of the more pronounced interference fringes the photon
number distribution P(n) of the maser field is strongly
sub-Poissonian. This leads us to the conclusion that we
observe Ramsey-type interferences induced by a non-
classical radiation field. The sub-Poissonian character
of P(n) results from the fact that on the smooth wings
of the fringes the photon gain reduces when the photon
number is increased. This feedback mechanism stabi-
lizes the photon number resulting in a sub-Poissonian
photon distribution.

1.2 Entanglement in the Micromaser

Owing to the interaction of the Rydberg atom with
the maser field there is an entanglement between field
and state in which a particular atom is leaving the cav-
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ity. This entanglement was studied in several papers,
see, e.g. [16] and [6]. Furthermore there is a correlation
between the states of the atoms leaving the cavity sub-
sequently. If, e.g., atoms in the lower maser level are
studied [17] an anticorrelation is observed in a region
for the pump parameter © where sub-Poissonian pho-
ton statistics is present in the maser field. Recently
measurements [18] of these pair correlations have been
performed giving a rather good agreement with the the-
oretical predictions by Briegel et al. [19]. The pair cor-
relations disappear when the time interval between sub-
sequent atoms get larger than the storage time of a pho-
ton in the cavity.

1.3 The One-Atom Maser and Ultracold Atoms

The photon emission probability in a micromaser
changes drastically when the kinetic energy of the
pumping atoms is comparable to the atom-field interac-
tion energy. In this situation, the atomic center-of-mass
motion has to be treated quantum mechanically and the
de Broglie wavelength of the atom inside the cavity is
an important physical parameter. The interplay
between reflection and transmission of the atoms leads
to a new mechanism for induced emission [20-23]. In
the ordinary maser, stimulated emission prevails as the
mechanism for amplification of radiation; but in the
case of ultracold atoms the physics of the induced emis-
sion process is intimately associated with the quantiza-
tion of the CM motion (taken to be in the z direction).
For this reason we distinguish between the usual stim-
ulated emission maser physics and that characterized
by the present quantized-z-motion induced emission,
and call the process of Microwave Amplification via
z-motion induced Emission of Radiation (MAZER) the
mazer action.

The physical mechanism responsible for the
induced emission is the longitudinal force that the
atoms expetience upon passing into a high-Q cavity
due to the abrupt change in the atom-field interaction.
Different dressed-state components of the combined
atom-field system encounter different potentials and
experience different longitudinal forces.

A photon is emitted by an excited atom when the de
Broglie wavelength fits resonantly into the cavity.
These resonances lead to the new process. A master
equation for the mazer has been derived [20-23]. We
note that the probability for emission by an excited
thermal atom (stimulated maser emission) is very dif-
ferent from the emission probability as given by the de
Broglie resonances (induced mazer emission). The
photon emission probability depends in the special case

of ultracold atoms on 4/n+1 instead of Jun+1 as
observed for the usual micromaser. This results from
the interplay between the ultracold atoms and the
potential well of the dressed atom potential [20-23].



2. ION TRAP EXPERIMENTS

Besides the experiments performed with atoms in a
cavity the trapped ion techniques provide another way
to investigate quantum phenomena in radiation atom
interaction. In the following some new experiments and
new possibilities will be reviewed.

2.1 Resonance Fluorescence of a Single Atom

Resonance fluorescence of an atom is a basic pro-
cess in radiation-atom interactions, and has therefore
always generated considerable interest. The methods of
experimental investigation have changed continuously
due to the availability of new experimental tools. A
considerable step forward occurred when tunable and
narrow band dye laser radiation became available.
These laser sources are sufficiently intense to easily sat-
urate an atomic transition. In addition, the lasers pro-
vide highly monochromatic light with coherence times
much longer than typical natural lifetimes of excited
atomic states. Excitation spectra with laser light using
well collimated atomic beam lead to a width being
practically the natural width of the resonance transi-
tion, therefore it became possible to investigate the fre-
quency spectrum of the fluorescence radiation with
high resolution. However, the spectrograph used to ana-
lyze the reemitted radiation was a Fabry—Perot interfer-
ometer, the resolution of which did reach the natural
width of the atoms, but was insufficient to reach the
laser linewidth, see e.g. Hartig et al. [24] and Cresser
et al. [25]. A considerable progress in this direction was
achieved by investigating the fluorescence spectrum of
ultra-cold atoms in an optical lattice in a heterodyne
experiment [26]. In these measurements a linewidth of
1 kHz was achieved, however, the quantum aspects of
the resonance fluorescence such as antibunched photon
statistics cannot be investigated under these conditions
since they wash out when more than one atom is
involved.

Thus the ideal experiment requires a single atom to
be investigated. Since some time it is known that ion
traps allow to study the fluorescence from a single laser
cooled particle practically at rest, thus providing the
ideal case for the spectroscopic investigation of the res-
onance fluorescence. The other essential ingredient for
achievement of high resolution is the measurement of
the frequency spectrum by heterodyning the scattered
radiation with laser light as demonstrated with many
cold atoms [26]. Such an optimal experiment with a
single trapped Mg* ion is described in this paper. The
measurement of the spectrum of the fluorescent radia-
tion at low excitation intensities is presented. Further-
more, the photon correlation of the fluorescent light has
been investigated under practically identical excitation
conditions. The comparison of the two results shows a
very interesting aspect of complementarity since the
heterodyne measurement corresponds to a “wave”
detection of the radiation whereas the measurement of

WALTHER

the photon correlation is a “particle” detection scheme.
It will be shown that under the same excitation condi-
tions the wave detection provides the properties of a
classical atom, i.e. a driven oscillator, whereas the par-
ticle or photon detection displays the quantum proper-
ties of the atom. Whether the atom displays classical or
quantum properties thus depends on the method of
observation.

The spectrum of the fluorescence radiation is given
by the Fourier transform of the first order correlation
function of the field operators, whereas the photon sta-
tistics and photon correlation is obtained from the sec-
ond order correlation function. The corresponding
operators do not commute, thus the respective observa-
tions are complementary. Present theory on the spectra
of fluorescent radiation following monochromatic laser
excitation can be summarized as follows: fluorescence
radiation obtained with low incident intensity is also
monochromatic owing to energy conservation. In this
case, elastic scattering dominates the spectrum and thus
one should measure a monochromatic line at the same
frequency as the driving laser field. The atom stays in
the ground state most of the time and absorption and
emission must be considered as one process with the
atom in principle behaving as a classical oscillator. This
case was treated on the basis of a quantized field many
years ago by Heitler {27]. With increasing intensity
upper and lower states become more strongly coupled
leading to an inelastic component, which increases
with the square of the intensity. At low intensities, the
elastic part dominates since it depends linearly on the
intensity. As the intensity of the exciting light increases,
the atom spends more time in the upper state and the
effect of the vacuum fluctuations comes into play
through spontaneous emission. The inelastic compo-
nent is added to the spectrum, and the elastic compo-
nent goes through a maximum where the Rabi flopping

frequency Q = I'/./2 (" is the natural linewidth) and
then disappears with growing € The inelastic part of
the spectrum gradually broadens as € increases and for
Q > I'/2 sidebands begin to appear {25, 28]}.

The experimental study of the problem requires, as
mentioned above, a Doppler-free observation. In order
to measure the frequency distribution, the fluorescent
light has to be investigated by means of a high resolu-
tion spectrometer. The first experiments of this type
were performed by Schuda er al. [29] and later by
Walther et al. [30], Hartig ez al. [24] and Ezekiel et al.
[31]. In all these experiments, the excitation was per-
formed by single-mode dye laser radiation, with the
scattered radiation from a well collimated atomic beam
observed and analyzed by a Fabry-Perot interferometer.
Experiments to investigate the elastic part of the reso-
nance fluorescence giving a resolution better than the
natural linewidth have been performed by Gibbs e? al.
[32] and Cresser et al. [25].

The first experiments which investigated antibunch-
ing in resonance fluorescence were also performed by
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QUANTUM OPTICS OF A SINGLE ATOM 7

means of laser-excited collimated atomic beams. The
initial results obtained by Kimble, Dagenais, and Man-
del [33] showed that the second-order correlation func-
tion g@(7) had a positive slope which is characteristic of
photon antibunching. However, g®(0) was larger than
g@(#) for t —» o due to number fluctuations in the
atomic beam and to the finite interaction time of the
atoms [34, 35]. Further refinement of the analysis of the
experiment was provided by Dagenais and Mandel [35].
Rateike et al. [36] used a longer interaction time for an
experiment in which they measured the photon correla-
tion at very low laser intensities (see Cresser et al. [25]
for a review). Later, photon antibunching was measured
using a single trapped ion in an experiment which avoids
the disadvantages of atom number statistics and finite
interaction time between atom and laser field [37].

As pointed out in many papers photon antibunching
is a purely quantum phenomenon (see e.g. Cresser et al.
[25] and Walls [38]). The fluorescence of a single ion
displays the additional nonclassical property that the
variance of the photon number is smaller than its mean
value (i.e., it is sub-Poissonian) [37, 39].

The trap used for the present experiment was a mod-
ified Paul-trap, called an endcap-trap [40]. The trap
consists of two solid copper-beryllium cylinders
(diameter 0.5 mm) arranged colinearly with a separa-
tion of 0.56 mm. These correspond to the cap elec-
trodes of a traditional Paul trap, whereas the ring elec-
trode is replaced by two hollow cylinders, one of which
is concentric with each of the cylindrical endcaps. Their
inner and outer diameters are 1 and 2 mm, respectively
and they are electrically isolated from the cap elec-
trodes. The fractional anharmonicity of this trap config-
uration, determined by the deviation of the real potential
from the ideal quadrupole field is below 0.1% (see
Schrama et al. [40]). The trap is driven at a frequency of
24 MHz with typical secular frequencies in the xy plane
of approximately 4 MHz. This required a radio-fre-
quency voltage with an amplitude on the order of 300 V
to be applied between the cylinders and the endcaps.

The measurements *were performed using the
325,,,~3%P,, transition of the 24 Mg*-ion at a wave-
length of 280 nm. The heterodyne measurement is per-
formed as follows. The dye laser excites the trapped ion
while the fluorescence is observed in a direction of
about 54° to the exciting laser beam. However, both the
observation direction and the laser beam are in a plane
perpendicular to the symmetry axis of the trap. A frac-
tion of the laser radiation is removed with a beamsplit-
ter and then frequency shifted [by 137 MHz with an
acousto-optic modulator (AOM)] to serve as the local
oscillator. An example of a heterodyne signal is dis-
played in Fig. 5. The signal is the narrowest optical het-
erodyne spectrum of resonance fluorescence reported
to date. Thus our experiment provides the most compel-
ling confirmation of Weisskopf’s prediction of a coher-
ent component in resonance fluorescence. The linewidth
observed implies that exciting laser and fluorescent light
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Fig. 5. Heterodyne spectrum of a single trapped 24 Mg*-ion.
Left side: Resolution bandwidth 0.5 Hz. The solid line is a
Lorentzian fit to the experimental data; the peak appears on
top of a small pedestal being 4 Hz wide. The latter signal is
due to random phase fluctuations in the spatially separated
sections of the light paths of local oscillator and fluorescent
light; they are generated by variable air currents in the labora-
tory. Right side: Heterodyne spectrum of the coherent peak
with sidebands generated by mechanical vibrations of the
mount holding the trap. The vibrations are due to the opera-
tion of a rotary pump in the laboratory. For details see [42].

are coherent over a length of 400000 km. Further details
on the experiment are given in [41] and [42].

Investigation of photon correlations employed the
ordinary Hanbury-Brown and Twiss setup. The setup
was essentially the same as described by Diedrich and
Walther [37]. The results are shown and discussed in
[41] also.

In conclusion, we have presented the first high-res-
olution heterodyne measurement of the elastic peak in
resonance fluorescence of a single ion. At identical
experimental parameters we have also measured anti-
bunching in the photon correlation of the scattered
field. Together, both measurements show that, in the
limit of weak excitation, the fluorescence light differs
from the excitation radiation in the second-order corre-
lation but not in the first order correlation. However, the
elastic component of resonance fluorescence combines
an extremely narrow frequency spectrum with anti-
bunched photon statistics, which means that the fluores-
cence radiation is not second-order coherent as expected
from a classical point of view [43]. The heterodyne and
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the photon correlation measurement are complemen-
tary since they emphasize either the classical wave
properties or the quantum properties of resonance fluo-
rescence, respectively.

2.2 The Ion-Trap Laser

There have been several theoretical papers on one-
atom lasers in the past [44—47]. This system provides a
testing ground for new theoretical concepts and results
in the quantum theory of the laser. Examples are atomic
coherence effects [48] and dynamic (i.e., self-gener-
ated) quantum-noise reduction [49, 50, 47]. All these
aspects are a consequence of a pump process whose
complex nature is not accounted for in the standard
treatment of the laser. So far there is one experiment
where laser action could be demonstrated with one
atom at a time in the optical resonator [51]. A weak
beam of excited atoms was used.

A formidable challenge for an experiment is to per-
form a similar experiment with a trapped ion in the cav-
ity. Mirrors with an ultrahigh finesse are required, and
a strong atom—field coupling is needed. After the emis-
sion of a photon, the ion has to be pumped before the
next stimulated emission can occur. Similar as in the
resonance fluorescence experiments which show anti-
bunching, [33, 37] there is a certain time gap during
which the ion is unable to add another photon to the
laser field. It has been shown [47] that this time gap
plays a significant role in the production of a field with
sub-Poissonian photon statistics.

We have investigated the theoretical basis for an
experimental realization of the ion trap laser. Our anal-
ysis takes into account details such as the multi-level
structure, the coupling strengths and the parameters of
the resonator. It has been a problem to find an ion with
an appropriate level scheme. We could show that it is
possible to produce a laser field with the parameters of
a single Ca* ion. This one-atom laser displays several
features, which are not found in conventional lasers: the
development of two thresholds, sub-Poissonian statis-
tics, lasing without inversion and self-quenching. The
details of this work are reported in [52, 53]. In a subse-
quent paper [54] also the center-of-mass motion of the
trapped ion was quantized. This leads to additional fea-
tures of the ion trap laser, especially a multiple vacuum
Rabi-splitting is observed.

3. CONCLUSIONS

In this paper recent experiments with single atoms
in cavities and traps are reviewed. It is especially
pointed out that using ultracold atoms will lead to new
and interesting aspects in atom-matter interaction. The
possibility that now ultracold atoms are available bring
such experiments into reach in the near future.
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Abstract—Nonclassical radiation has been generated in an active Fabry-Perot dye microcavity excited by a
femtosecond laser. Generation of single-photon states over the forward cavity mode, with a nonclassical sub-
Poissonian distribution has been demonstrated in these conditions. By multiple excitation of the active medium
collective emission phenomena are expected because of the superradiant coupling occurring within the trans-
verse area of coherence of the microcavity. In particular, we have experimentally verified, with femtosecond
temporal resolution, the principle of relativistic causality within the process of two-dipole superradiance by
transverse interaction in conditions of strong microcavity confinement.

The generation of nonclassical light in an active
microcavity has been recently demonstrated in our lab-
oratory [1, 2]. With these experiments it has been
shown that a Fabry-Perot dye microcavity, with length
d = m\y/2 (where A, represents the wavelength of emis-
sion of the dye solution and m — 1 is the cavity order)
can behave as a generator of quantum radiation when a
very small number of active molecules is excited by a
femtosecond laser pulse. In these experimental condi-
tions single photon, states (Fock states), are emitted
over the forward cavity mode with sub-Poissonian dis-
tribution. The process of coupling of the molecular
emission to a single-mode cavity has been studied in
the context of a semiclassical Rabi approach and it has
been demonstrated that each excitation pulse is found
to be a 1 pulse for the overall dynamics [2]. Then, if a
single molecule interacts with that pulse, the excitation
does not have time to cycle more than once within the
molecular four-level system, whose quantum efficiency
of the absorption emission cycle is nearly equal to 1 [3].
This process, which leads to the emission of no more
than one photon over the forward cavity mode for each
excitation pulse, is precisely the origin of the mecha-
nism of self-regularization and determines the anti-
bunched character of the emitted radiation [4].

The single-molecule excitation process can be
reproduced n-times within the same device by multiple
focusing within the macroscopic transverse extension
1. of the same field mode [5, 6]. Let us suppose, for
example, that two equal dipoles are excited by two
identical, delayed femtosecond pulses and assume that
they are localized on the symmetry plane of the micro-
cavity at a mutual transverse distance R = |R| (Fig. 1).
Provided that R < 1, the field involved in the inter
atomic coupling belongs to the cavity forward mode
and transverse coupling between the two quantum
objects can occur via a quantum mechanical process
such as stimulated emission or superradiance. As a con-

10

sequence, the emitted, indistinguishable singlephotons
do belong to the same space-time extension of the out-
put field mode, i.e., they form a quantum Fock state [7].
The knowledge of this physical process could possibly
bring us to conceive monolithic arrays of transverse
interacting microlasers or optical active multiplexers
acting with spatially modulated coupling. As far as the’
fundamental aspects of this phenomenon are con-
cerned, one interesting question is what is the “speed”
at which the transverse interaction between the two
quantum objects is estabilished. The theory of this pro-
cess, reported in {7], in the framework of the nonrela-
tivistic quantum theory, predicts that the spontaneous
emission dynamics of the excited molecules are
strongly coupled by relativistically causal, superradiant
interactions acting with a retardation time R/c, shorter
than the coherence-time of the field emitted by the
microcavity. The explicit expression of the two-dipole
correlation amplitude is, in the case of two equal

Ar
A AT’A Gate
0
B+ Ar
0

t

Fig. 1. Correlation experiment: temporal sequence of the
femtosecond pulses.
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dipoles aligned along the X-axis, perpendicular to the
plane YZ in Fig. 1,

ke ik
D(t—R,,/c)sn{—"—’—;u-%}
R R R

x exp(ik,R)0(ct - R)

+oo 2

monl Ko tkg 1
+21 (—l)IrI{-ﬁ—-—O+——}
> R

n=1 n n

ey

x exp(ikoR,)0(ct - R,)

with ky = i—n and R, = R + (nd)2 . In this expression
0

the retardation, and then the relativistic causality, is
expressed by the appearance of the Heaviside step
functions: 6(z) = 1, for z > 0, and 6(z) = 0, z < 0. The
first term in the above expression corresponds to a
retarded direct interatom correlation over the distance
R in free space. The second term represents the interfer-
ence with alternate signs, of increasingly retarded con-
tributions leading to a peculiar quasi-oscillatory
response and corresponds to the interaction of one
dipole with the infinite reflected images of the other.
Such behavior is found to be strongly dependent on
the finesse fand on the ratio Y = R/1,, expressing for
¥ < 1 the coexistence of the atoms within the same
transverse cavity mode.

The result corresponding to the dipoles aligned
along the Y-axis is given by the expression

D(t-R,/c) = 4n2{i‘§—l3}
R R

x exp(ikoR)0(ct — R) + 47 )

> . kK ky 1 iky 1
x ¥ (=Ir) {(nd)2 LY +2{—-——}
2 P M

n

x exp(ikoR,)0(ct - R,).

Note in this second case the absence of the long-range
interaction term proportional to R~

Following these theoretical results we expect an onset
of the correlation amplitude at a temporal delay R/c.
Since in a high-finesse microcavity R < 1, can be larger
than 100 um [6], the expected retardation time is in the
sub-picosecond time scale.

The problem of transverse interaction in a microcav-
ity has been previously investigated in the time domain
in the case of coupling via stimulated emission among
two microlasers excited by a femtosecond laser [8].
The experiment we present in this work, which adopts
the same experimental layout of that work, concerns
Vol. 8 1998
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the case of two dipoles emitting spontaneously and
interacting over the transverse distance R within the
microcavity by superradiant coupling.

The 100-fs pulses generated by a 20 Hz amplified
CPM dye laser were split by two 50/50 beamsplitters
into three different optical paths, mutually delayed by
means of two step-by-step translation stages with reso-
lution of 1 wm. The two main excitation beams, prop-
erly attenuated by a set of neutral density filters, were
focused by a lens (f= 7.5 cm) on the plane of an active
microcavity in two different focal spot sizes with diam-
eter 15 um, at a mutual transverse distance R. This
could be changed by slightly adjusting the angle
between the two pump beams. The experiment was car-
ried out by varying R in the range 0-200 um, which
nearly corresponds to the maximum spatial extension
of the field mode. An asymmetric Fabry-Perot micro-
cavity, terminated by two multilayer dielectric mirrors
with reflectivities |2 =0.99998 and |r,*> =0.995 respec-
tively, was aligned in resonance with the wavelength of
emission (A, = 702 nm) of a drop of ethylene glycol
solution of Oxazine 725, squeezed between the two
mirrors. A value of the finesse f= 1000 and an equiva-
lent cavity order m = 15 were measured by preliminary
characterization of the spectral transmission of the inter-
ferometer and of its output pulse shape when operating
as a microlaser [9]. Let us look in detail at the experi-
mental procedure we followed in this work: two linearly
polarized identical femtosecond laser pulses, A and B,
excite with a variable delay ¢ two different regions of the
microcavity located at a distance R = [R| < 1, (Fig. 1).
Because of their random orientation, the excitation
probability is larger for the molecules whose dipole
moments are paralle!l to the pump polarization. For a
single molecule with dipole moment L, the excitation
probability is proportional to cos?, where B is the
angle between {1 and the pumping electric field. It has
been demonstrated that, because of the long orienta-
tional diffusion time, the excited dipoles are frozen in
their position just after femtosecond excitation, with
the result that the emitted radiation keeps the same
polarization of the pump [10]. In this way the two
ensembles of excited molecules can be considered
equivalent to two identical parallel dipoles which can
be coupled by transverse mutual interaction. By a sim-
ple rotation of the pump polarization we can investigate
experimentally the two relevant cases of dipoles ori-
ented along the Y direction (parallel to R) and the X
direction (perpendicular to R). The single-photon radi-
ation is emitted by the two systems with the character-
istic time T = 3 ns [11] on the common output cavity
mode [12], with an intrinsic indistinguishability
between the origin of the two emissions. Following the
theory, the enhancement of the total emission rate
should occur for At = W'R/c where ' = 1.43 is the index
of refraction of the active medium. Because of the intrin-
sic symmetry of the problem, the enhancement is
expected either for positive or negative values of Ar. How-
ever, because of dephasing and non radiative emission
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Fig. 2. Counting rate vs. time delay of the excitation pulses.
Dipoles oriented along the X-axis.

of the dye molecules, this effect would be washed out
if observed in a time interval of the order of the radia-
tive lifetime 7. As a consequence, a nonlinear femtosec-
ond optical gate, with single-photon sensitivity, was
assessed for this purpose by us. Following its scheme,
the microcavity single-photon signal was mixed in a
second-order nonlinear crystal (LilO,, thickness = 1 mm)
with a properly delayed laser pulse, in order to generate
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the sum frequency signal. Single UV scattered photons,
corresponding to the ultrafast gate, were measured with
a quantum efficiency of 40% and with a noise count
rate of less than 2 x 1074, mainly given by the second
harmonic of the laser pulse. In summary, by referring to
Fig. 1, a third femtosecond laser pulse creates the probe
gate in the nonlinear crystal at a fixed delay Ar' (nearly
5 ps) with respect to the first excitation pulse A.

LASER PHYSICS Vol. 8 No.1 1998
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Fig. 4. Spatial extension of the electromagnetic field mode.
(The data corresponding to R > 0 are reported also for R <0.)

The experiment was performed in the following
way: for each value of the temporal delay Az, 7000 gate
samples were collected for each of the three cases: sig-
nal given by the simultaneous presence of pulses A and
B, S,p, and signal given by the presence of only the
pulse A (S,) or pulse B (Sp). This allows us to calculate
the normalized counting rate S,g/(S, + Sp) for each
value of At. We expect S,5/(S5 + Sp) = 1 in the absence
of correlation. The experimental results relative to the
case of excited dipoles oriented in the X direction are
reported in Fig. 2 for R = 25, 50, 75 and 100 pm. Sim-
ilar results are shown in Fig. 3 for the case of dipoles
parallel to the Y-axis. The second case corresponds to a
strong inhibition of the “free-space” direct interaction
between the two systems because the two dipoles can-
not exchange directly photons emitted over the forward
cavity mode. As a consequence, any observed enhance-
ment in the emission rate must be attributed in this case
to the microcavity confinement. The experimental
results can be compared with the theoretical curves
obtained by the convolution of the correlation signal
with a Gaussian-shape excitation pulse of 0.1 ps dura-
tion. In this theoretical fit we took in account the strong
effect of dipole decoherence due to the short dephasing
time (T, = 0.1 ps) of the dye molecules at room temper-
ature [13]. The good agreement between theory and
experiment demonstrates the causality effect in the

LASER PHYSICS Vol. 8 No.1 1998

transverse interaction, especially for the case of dipoles
oriented along the X-axis, where the presence of the
long-range interaction term proportional to R~ is
responsible for the observed enhancement of the cou-
pling process. We performed other measurements in
this particular case, for R =0, 150 and 200 pm, always
confirming the causality effect. All the results are sum-
marized in Fig. 4, where the maximum correlation
amplitude is reported as a function of the spatial dis-
tance R. The experimental point fits very well with a
Lorentzian curve which gives, in a first approximation,
the spatial profile of the electromagnetic field mode.
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Abstract—Iaser cooling of impurity molecular crystals excited at the edge of the absorption line is considered.
A sample is cooled through a system of resonant phonons. The expression for the final temperature of cooling
is derived in both low- and high-frequency approximations. The kinetics of cooling is analyzed in a weakly non-

equilibrium situation.

1. INTRODUCTION

Presently, laser cooling has become a highly devel-
oped branch of science, which is of considerable
importance for fundamental science and applications
[1, 2]. However, only the laser cooling of gas media has
been investigated thus far. Several recent theoretical
[3-6] and experimental [7, 8] studies have been devoted
to laser cooling in condensed phase. Epstein et al. have
implemented cooling of heavy metal-fluoride glass
doped with trivalent ytterbium ions [7]. Clark and
Rumbles [8] have cooled a liquid solution of
Rhodamine 101 in acid-containing ethanol. Both
experiments were performed at room temperature, and
the authors of these papers attribute the cooling effect
to the excitation at the edge of the absorption line of
impurity particles. Andrianov and Samartsev [5] consid-
ered laser cooling of an isolated phonon mode in a mixed
molecular crystal through excitation at the edge of the
line and examined the possibility to cool a pure molecu-
lar crystal with the help of the exciton mechanism. Orae-
vskii [6] and Zadernovskii and Rivlin [3] have analyzed
laser cooling of free carriers in semiconductors. In this
paper, we will theoretically study laser cooling of a
molecular crystal through the impurity subsystem.

2. KINETIC EQUATIONS

Anisotropic impurity molecules are involved in
vibrational librations with respect to their equilibrium
positions in a molecular crystal. Since the direction of
their transition dipole moment is unambiguously
related to molecular symmetry axes, these librations
modulate the constant of interaction of a molecule with
the electromagnetic field, which gives rise to the so-
called indirect transitions, when a phonon is absorbed
or emitted simultaneously with a photon.

The Hamiltonian of anisotropic molecules in a
molecular crystal can be written as [9]

H = Hy+H,, (1)

where

Ho = H;+H, +H, )

14

is the main Hamiltonian and

H, = de+H£1f (3)
is the Hamiltonian of perturbation. Here,
Hy = 5,8 )

J
is the Hamiltonian of impurity molecules in the two-

level model, where j is the number of an impurity mole-
cule, @y is the frequency of an electronic transition, and
Sf is the operator of the effective spin S = 1/2 (z-projec-
tion);

k

is the Hamiltonian of the electromagnetic field in the
secondary-quantized form, where ®; is the frequency
of the k mode of the electromagnetic field and @, and

a, are the operators of creation and annihilation of
quanta from the £ mode of the electromagnetic field;

H, =Y 5Q.byb, (6)
q

is the Hamiltonian of the lattice, where € is the

phonon frequency of the ¢ mode and b:; and b, are the

operators of creation and annihilation of a phonon from
the g mode;

+
9%k

ikr; + —~ikr.
Hy = Z(qke 'Siay+qie (7
jk
is the Hamiltonian of interaction between molecules
and the electromagnetic field in the rotating-wave
approximation, where g, is the coupling constant for

the k mode, k is the wave vector of a photon from the k
mode, r is the radius vector of the jth molecule, and S;Tr
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are the operators raising and reducing the z-projection ~ describes the time dependence of operators involved
of the effective spin; and in (13).

. In the spatially homogeneous case, we can substi-
Hﬁ,f = z{hkqe'(k_q)r’S;ak(bq +by) tute operators (1)-(11) into expressions (13)—<(17) to
e (8) derive the following set of kinetic equations:
+h,’fqe_i(k—q)r’S;a:(bq+b;')} d{n;) _ {z[(nq) +1 . (n,) N (ng) ]
is the Hamiltonian of interaction between molecules dt . L Ti(kg) Ty (kq) Ti(kq)
and the electromagnetic field in the presence of lattice
vibrations, where Ay, is the relevant coupling constant. 1 (R)+N 1 1
: o o +— + Z[ + }

Using the method of nonequilibrium statistical T,(k) 2 ti(kq) (kq)
operator [10, 11], we can introduce the following q : (18)
dynamic variables D,,: the operator of the number of :
photons in the kth mode, X {ny + —— t{n) (R

+ " (k)
n, = apa; €)
the operator of the number of phonons in the gth mode, 2 (n) (RY-N <(ny-ny
+ - - ]
n, = bybg; (10) ~1'(kg) 2 T
and the operator of the collective population difference
between the working electronic levels, d{n,) - 2[(’%) +1 (ng) + (n) i|<Rz> +N
dt— Sltikg) ka) Ti(kg) 2
R, = 225;; (11)
~ 1 1
J + [ - } nd (n) (R (19
Dynamic variables represent independent integrals of zk“ 1ikq) 17 (kq) (md (ng) (R )
motion,
[D,, Hol = [D,,D,] = 0, (12) ) (RY-N (ng) -,
for all m # m'. Therefore, the kinetic equations are writ- & 71" (kq) 2 Ty
ten as
0 d(R) (np+1  (n))  (np
d<Dm> 1 et dtz = ——{2[ sq + as . + s :|
G = 72| U@, Dy HiD gty (13) LTke)  T(ke) (ko)
)

00

where the parameter € takes into account the irrevers- 1 _ 1 1
ible character of the processes under study (we should * T,(k) }( (R) +N) 2{2L§( kq) * 7( kq)] (20)
kq

let this parameter tend to zero after the integration) and

(...); denotes the averaging over the quasi-equilibrium | (n)
statistical operator X (np) + _k__}< n)(R) - Z a ¥_((R)-N),
Tl( ) kq T (kQ)
= Q0 'exp|- D (14)
Pq QO exp ZBm m |° where
m 1 21'{: ’
—— = Zlg 0 (- 2n
where 7,0 ﬁ2|8k| 0= W)
_ is the inverse time of spontaneous emission through
Q = Spexp [_2 B”’D’"} (15) direct transitions of a photon in the kth mode,
n 2
is the normalizing factor, PB,, are the inverse tempera- s—l- = "7_;|hkq|26(m0 -0 — ) (22)
tures of the relevant subsystems, and Ti(kq) h
(D,) = (D, (16) is the inverse time of spontaneous emission through

I d ith th hod of iTibri Stokes indirect transitions of a photon in the kth mode
n accordance with the method of nonequilibrium sta- ;.4 5 phonon in the gth mode,
i i

tistical operator,
1
gHot  —pHot

Hyt)=¢ Hpe' (17) 17 (kq)

2
- h_’§|hkq|26(m0 —o+ Q) (23)
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is the inverse time of spontaneous emission through
anti-Stokes indirect transitions of a photon in the kth
mode with absorption of a phonon in the gth mode, T;
is the time of flight for a photon in the kth mode, 1, is
the passage time for a phonon in the gth mode, 7, is the
mean number of photons in the kth mode determined by
the external source, and 7, is the mean number of
phonons in the gth mode determined by the interaction
with a thermostat.

Using the properties of delta functions in expres-
sions (21)-(23), we can derive the following conserva-
tion law from equations (18)—(20):

d(nk) d(n) fhwyd(R))
;h “dr zﬁg" dt 20 dt

n—n) fi,—{n,
= Ao k k+ hQ 4.4
; k Ty ; q g

In the stationary case, when all the derivatives are equal
to zero, relation (24) gives the following energy-con-
servation law:

Zﬁmknk - (nk>
k Tk

Let us suppose that excitation occurs at frequency
®;, which falls in the long-wavelength wing, and radia-
tion is emitted at the same frequency and at a higher fre-
quency ®,corresponding to the line center. Then, equa-
tion (25) 1s reduced to

(ng)

T Tf Ty

where Q, = 0y — Oy Equatlons (18)—(20) also give the
law of exc1tat10n conservation:

d{my) 1d(R) _ of—(ny
dtk+§ dr _gktkk'

Consequently, in the stationary regime under the
above-specified conditions, we have

(24)

+ Zﬁgq@ = 0.

q

(25)

i~ (26)

@7

—(n) _ (n) o
T s
which allows us to rewrite (26) in the form
Ao, - o)™ —{m _ ﬁQq”q_T—W. (29)
T q

Denoting the right-hand side of equation (29) as Py,
and introducing a quantity

P (30)

n,—(n
— ﬁO), [ < l>,
T

abs

we find that the relation between the power of cooling
P, and the absorbed power P, that follows from (29)
coincides with the relation employed without substan-
tiation in experimental study [7],

A=A
Pcool = Pabs I}h f' (31)
f
On the other hand, the quantity
i
4= 2 (32)
T

can be considered as the negative work done by an
external source on the system of resonant phonons to
extract positive heat

hQ,
Q2 = _,cq_q(nq_ <nq>) (33)
from a sample and return negative heat
fw o
0, = —T—f<”f>“‘ l<n1> (34)
f

with spontaneous radiation emission into the ambient
medium. Thus, equation (26) is reduced to the conven-
tional equation of a cooler:

A=0+0Q,. (35)

Here, the sample is a cold body, the system of reso-
nant phonons is a working body, the thermostat is a hot
body, and the work is the excitation of molecules at the
long-wavelength edge. In accordance with the formula
derived above, incident laser radiation can cool a solid
sample through the system of resonant phonons.

3. STATIONARY SOLUTIONS

Let us consider the set of equations (18)-(20) again.
If 1, is less than all the characteristic times of the sys-
tem, i.e., photons rapidly leave the sample, equation
(18) shows that {n,) = 7, , and equations (19) and (20)
are reduced to

d{n,) _ [(nq) +1

(ng) 1 }(Rz>+N

e e w0l 2
o)+ N;s<(§§>“<nqi; s,
diz]:> —(N +(R))
x{%?:[(:i;)l <n(;) 'v(lq)}}‘z“"z>
{%Jrzq:[fs(lq) as(q)y >} ZNT;%’),
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1 1 1 1
T ATk ti(g) %kqf

1 1 [ I
11(q) ?a:«f(kq)’ T5(q) Z%mq)’

1 (1 _ o lw
Tas(q) B ZT[;Y(kq), T, - ; T .

k

(39)

In the approximation of weak electron—phonon cou-
pling, we can consider a situation when all indirect
transitions occur through the states of pseudolocalized
phonons. Pseudolocalized phonons are defined as
quanta of hybrid vibrational motion emerging through
the electrostatic interaction from low-frequency optical
librations of anisotropic impurity molecules, which
modulate the constant of electron—photon coupling via
resonant acoustic phonons of the host crystal. There-
fore, such phonons will be considered as resonant
phonons that represent the states of the entire crystal.
These states are characterized by a high spectral den-
sity p and are manifested within a narrow spectral inter-
val A as narrow peaks in the long-wavelength wing of
the absorption line. Within the framework of this
approximation, we can rewrite the set of equations (37)
and (38) for time intervals greater than the formation
time of pseudolocalized phonons as

d(n) _ ((il)+l_@+l)<Rz>+N

N (#0)
1 1 N-(R) (n)y-n
+(T_s~i,—s)<n><R“’> * 2T, T
d_<_Ri> _ 1 (my+1 (n) 1
dt - [Tl + M( ,':51' + T(;s + ,cs)jl(N + <Rz(>4)1)

‘[% . ZM(l . L)<n>]<1ez> . TMM(N‘ (R),

r N as

where (1) is the number of resonant phonons, T, is their
thermalization time, and M = pA is the number of their
states.

Consider the case when excitation is implemented
through an indirect Stokes transition. Such an excita-
tion corresponds to experiments [7, 8]. In this case, the
numbers of all the photons, except for the photons with
frequency o — Q, should be set equal to zero. Then,
the set of equations (40) and (41) is reduced to the fol-
lowing set of equations:

d(ny _ ((n) +1 _@+l)<Rz> +N

dt Ts Tas T
1 I s (42)
1 (ny-n
+—(m(R) - 2T,
() (R~ 4
LASER PHYSICS Vol. 8 No.1 1998

d(R) _ _[1

dt T,

+M(@—t—l+in—>+—!—)]

T T 43)

X (N + <RZ>)_2M%<RZ>.

The stationary solution to the set of equations (42) and
(43) can be written as

(ke 1)

(R, = L (44)
st T -
2M(LV- + l)(n)s, + N_2Mn
1w LTI
i+ Jabiysen
(ny,, = —a+bn+ (;M[l\)llz) +cn’ (45)
2[b+ - ]
TST]s
where
a = _1_-(1+N)+M(l+l), (46)
T\ T T\Tg Ti
b = M(g + _.1.. + _1-), 'CY))
T\T, TSI T?s
and
o ps M ML 1Y gy
T 110 /M T T

In the approximation of low temperatures, i < 1,
expression (45) can be rewritten in the following form:

e e G
T\t T T 2a 2a

[H 0, 1), X

T T T

(n)y =
Ti T U
Thus, anti-Stokes processes manifest themselves only
in the second order in n,. Ignoring these processes, we
derive

(1,1 + M, (7, + )] 50

() = i— - —.
T, T+ MT (T, +T)+NT T,

When the source of field is not very weak, we have

(ny > 1 and 1, < 1. Then, for large times of heating,
N7, > M=, we find that

In the approximation of high temperatures, we have
i > 1, and formulas (45)—(48) yield

1(2 1) 2M(1 1 1)
po Dol el ey Bl gy
(n) —,—1_(_1!)“ o1/ u\s 1T

st = M ,ES(Z 1 1)2
pl R S
T\ 1 1)

(51

. (52)
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For 1, < 1], 1] and T, < 1] /M, expression (52) can
be simplified,

2 )

T,\M/)

Formulas (51)—(53) demonstrate that, in both low- and
high-temperature  approximations, laser cooling
decreases the number of phonons.

In the high-temperature approximation, we can con-
sider an arbitrary phonon dispersion. Summation of
equations (37) and (38) in g yields

(33)

<n>st = Ro—

d(n) _ N+(R) as 1
= [F’(T) F* (T)+—T- ﬂ
Vo) (54)
# (RYP(T) - Fol(T)] + =52 - F(T) + Fi(To
and
d(R .
D v R[RD I+
I (55)
11 17 N-(R)
+—7—,;+T—1]—2(Rz>[Fs(T)+FaS(T)+T—r]+——-——Tas ,
where
(ny = 3 ()
q
L _ I 1_y ! 1 _y_1
ﬁ_gti(q)’ T, gts(q)’ T, ;Tas(q)’
(ny s (ng
F(T)=) —*, F’(I)= =, (56)
‘ %) ’ %(q)
_ vy g (my)
)— zq:,ts(q)’ as( ) 2 as(Q)
_ o {np

Ignoring anti-Stokes processes in the stationary regime,
we can derive the following equation for the tempera-
ture 7, of resonant phonons:

F(T){20,[F(T) - F(T)1} + {v,[F(T,) - F(T,)]

+NHF(T)+— +-1—+1 = 0. 57
T Ts Ty

Equation (57) can be solved numerically through the
comparison of theoretical predictions with experimen-
tal data.

4. CONCLUSION

Thus, we have considered laser cooling of an impu-
rity crystal at the edge of the line. In our opinion, the
main advantage of laser cooling over conventional
cooling stems from the frequency and spatial selectiv-
ity of laser cooling. If impurity molecules and the host
crystal have the same vibrational structure, then
pseudolocalized phonons may arise in a crystal. Since
such phonons are characterized by a low mobility and
are spectrally isolated, they enhance the efficiency of
cooling. Such phonons can be cooled by laser radiation
with an appropriate frequency. Then, with proper ther-
mal insulation, the entire crystal can be cooled through
the states of these resonant phonons.
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Abstract—The stability analysis is presented for nonlinear spin dynamics of spin masers. The features of long-
time relaxation are studied. The possibility of achieving a stationary regime of coherent radiation is discussed.

1. INTRODUCTION

Coherent radiation from an ensemble of nuclear
spins has been observed in experiments with several
substances: from Al nuclear spins in Ruby (Al,O5) [1]
and from proton spins in propanediol (C;HO,) [2, 3],
~ butanol (C,H,OH), and ammonia (NH;) [4]. Because
of many similarities with atomic and molecular super-
radiance, coherent radiation from spins can be called
spin superradiance. At initial time, nuclear spins must
be polarized forming a nonequilibrium nuclear magnet.
The theory of spin superradiance by nuclear magnets
was developed in [5-7]. The mathematical basis of this
theory is the method of scale separation [6-8] permit-
ting an accurate solution of complicated nonlinear sys-
tems of differential and integrodifferential equations.

For describing fast transient processes of nonlinear
spin dynamics [5-7], some small relaxation parameters
can be omitted. This allows one to obtain analytic solu-
tions to evolution equations and to give the complete
classification of fast relaxation regimes with relaxation
times shorter or of the order of the spin—spin dephasing
time. However, as is known, one has to be very cautious
dealing with nonlinear differential equations. It may
happen that neglecting even quite small terms drasti-
cally changes the behaviour of solutions. Therefore, in
the present paper we aim at answering the following
questions.

(i) What qualitative changes, in the behaviour of
solutions, appear when we omit, from the evolution
equations of spin maser, the terms containing damping
parameters much smaller than the spin—spin damping
constant? Even if there are no radical changes for
nuclear magnets, this question can be of importance for
other materials for which the omitted parameters can be
not as negligible as for nuclear magnets. For example,
these parameters can be quite different for the system of
electron spins in a high-quality resonator [9, 10], or for
model systems [11].

(ii) Even if the omission of small damping parame-
ters does not change much the properties of short-time
transient processes, it, certainly, should essentially
influence long-time relaxation. What are the features of
this long-time relaxation?

19

(iii) Is it possible to realize a stationary regime of
coherent spin radiation? If so, can this stationary radia-
tion be comparable, in its power, with that of the tran-
sient superradiance?

2. EVOLUTION EQUATIONS

The system of N nuclear spins is described [12] by
the Hamiltonian

1 N N
H=33H;-nYyB-S,

i#j i=1

(1
with the dipole interactions

2
H; = llJ—3[Si - 8;-3(S; - my)(S;- n;)],

2

in which p is a nuclear magneton, S is a spin operator,
and

EL]:
rii

= =T —

ij i~ T

ry=|rg, my j

ij if s> T

The total magnetic field

B = H0+H, HO = HOez’ H = Hex (3)
consists of two parts: The first is an external magnetic
field and the second is a field of the coil of a resonance
electric circuit. The latter is characterized by resistance R,
inductance L, and capacity C. The coil, surrounding the
sample, has n turns of cross section A over a length /.
The magnetic field inside the coil,

47tn

H = ) 4)

is formed by an electric current satisfying the Kirchhoff
equation

dj
o )

t
g, _do
+R]+a[](*c)d‘c = -+ Ep,
0
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in which E; is an electromotive force and @ is the mag-
netic flux

N
4n 3 x
® = 7nAoan,2 (s,

=
where 1 is a filling factor, p is the spin density, and {-)
means statistical averaging with an initial statistical

operator p (0).

Introduce the notion for the resonator circuit natural

frequency ® and the spin Zeeman frequency wy, respec-
tively,

1
JLC

Define the resonator ringing width 7,,

(O]

H
@ = ”—ﬁ—-" ©6)

_o  ,_oL
Y3 = 2Q’ Q = R s (7)
Q being the resonator quality factor.

We shall consider the evolution equations for the
average transverse magnetization

N
1 X oy
uEI—V-Z(Sj—-zS}) (8)
j=1
and the average longitudinal magnetization
) N
=52, (S)- ©
j=1
Also, we shall need the dimensionless resonator field
- uH
= - (10)
fiys
and driving force
E
=2 (11)
nAofiy;

For the latter, we assume the standard form

CLE, (12)

f = focoswt, fo= L
nAghy;

The characteristic damping widths of the system are
the spin-lattice relaxation parameter ;, the spin—spin
dephasing parameter Y,, the inhomogeneous dipole
broadening Yx, and the resonator ringing width 7;.
These parameters are small as compared to the corre-

sponding frequencies:

Dgq, gy, gy, B

= <1.

(13)

In the quasi-resonance case, the resonator natural fre-
quency is close to the Zeeman spin frequency,
Al

— <1,
Wy

A=0-0, (14)

that is, the detuning from the resonance is small.

The existence of the small parameters in (13) pro-
vides grounds for using the method of scale separation
[6-8]. Applying this method, we classify, first, the
sought functions onto fast and slow. In our case, the
functions u and h are fast, while s and |u| are slow.
Then, the equations for the fast functions are solved
with the slow functions kept as quasi-integrals of
motion. The found solutions for the fast functions are
substituted into the equations for the slow functions.
The right-hand sides of the latter equations are aver-
aged over the time period Ty = 21w/, which is the
shortest among all characteristic times. In addition, we
average over local spin fluctuations presented by ran-
dom Gaussian fields. The averaged equations are writ-
ten for the slow functions

z=395, v =|u, (15)
and for the convenient combination
Y2
W= v o282, Ex=—5. (16)
(O
This results in the equations
d
TR A A TGRSR /2 a7
and
dw 2
T = 2Y,w - 2(8Y,W—Yo)z +2Y,7, (18)

in which ¥, and y; are the relaxation widths due to the
correlation between spins and the resonator field [7],
and

nznpuz (72“73)2
R (y,—ys) +A°

is the coupling constant describing the coupling between
the spin system and the resonator. The constant  in (17)
is a stationary magnetization along the z-axis. This could
be either an internal magnetization of the sample or a
magnetization supported by external fields and by spe-
cial methods, like dynamic nuclear polarization. In
what follows, we assume that { > 0.

The values of y, and Y, are very small as compared to
Y. In addition, at low temperature, the spin—lattice
damping parameter 7y, is also much smaller than 7,.
Thus, we have the following small parameters:

Y1

g= (19)

ey, Loy, Ve, (20)
Y2 Y Y2
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If we put Y, =¥, = ¥,= 0 in (17) and (18), then the
latter can be solved exactly [7] yielding

z = htanh(t;t—o)—l, 2D
Y2 To
2 t—1t
w = (—Y—O) sechz(—g), (22)
8Y>2 To

where Y, and £, are defined by the initial conditions

200) = 25, Ww(0) = wo = Vo —28420,  (23)
which give
1
e = Y31+ gz0)” + (8Y2) Wo, = 24
ty = Yoyl Yo—12(1 +820) | (25)
2 Yo+ Y2(1 + 820))

Here, we shall consider the influence of the terms vy, ¥,,
and yydropped in [7].

3. PHASE ANALYSIS
Equations (17) and (18) can be written in the form

dz _ dw _
a- @ s

with the right-hand sides
Fy = gy,w=7,-11(z=8) ¥z,
Fy = —2Y,w - 2(87,w —Y)2+ 27,2

F,, (26)

27)

The fixed points z* and w* are defined by the equations
Fi(z*, w*) = Fy(z*, w*) = 0. (28)

Note that, according to relation (16), if z < 0 then w > 0.
Therefore, if (28) has several solutions then one has to
select those of them that satisfy the condition

w*>0 (z*¥<0). 29

Asymptotic stability of solutions is characterized by
the eigenvalues of the Jacobian matrix

JF, dF,

dz ow
o, F,
dz dw

evaluated at the fixed points z = z* and w = w*. It is con-
venient to separate several particular cases in the stabil-
ity analysis.

(i) v; = Y, = ¥;= 0. In this case the system of equa-
tions (17) and (18) is structurally unstable, since the
fixed points are degenerate. Really, the fixed-point

LASER PHYSICS Vol.8 No.1 1998

equations in (28) possess an infinite set of solutions
z¥ e [0,), w* =0.

The eigenvalues of the Jacobi matrix (30), called the
Lyapunov exponents, are

)\11 = 0, )\,2 - _ZYZ'

The existence of a zero eigenvalue means translational
invariance along the line w = 0 and is the manifestation
of the structural instability [13, 14]. The actual limit of
z, as t — oo, can be found from (21) yielding

(a+1) -

g " &

The corresponding phase portrait is shown in Fig. 1a.
(i) y; # 0, ¥, = Yy= 0. The dynamics, as compared to

the previous case, undergoes a bifurcation because the

flux in the phase space (z, w) changes topologically.

Equation (28) gives two fixed points. But only one of

them,

limz(¢) =

100

Z* = (;, w* = 0,
is in the physically meaningful region satisfying condi-
tion (29). The Lyapunov exponents are
Ay = =27,(1 +g0).

Hence, the fixed point is a stable node. The flux is
depicted in Fig. 1b All trajectories with initial condi-
tions in the quadrants I, II, and IV tend to the stable
node; the relaxation times being [A,["! and [A,|™. The
quadrant 111 is unphysical, since there the condition that
w > 0 at z < 0 is not satisfied.

(iii) v, = ¥, = 0, ¥# 0. The fixed point is
¥ =0, w*=0.
The Lyapunov exponents are
A=Y Ay = =27,

}"l = Y1

showing that the fixed point is a stable node. The corre-
sponding phase portrait is given in Fig. lc.

(iv) v 20, ¥, = 0, ¥y # 0. This case is similar to (ii),
but with a slightly different fixed point

=L, wt= ——-———chz ,
’ Y21 +g8)

being also a stable node. Here, we have taken into
account the inequality ¥, << ;. The phase portrait is pre-
sented in Fig. 1d.

(v) ¥ =0, ¥, # 0, ¥, = 0. Then (28) gives the fixed
point
1_"_'_._, e

8 8

However, since A, < 0 and A, > 0, all trajectories are
unstable and tend to the unphysical region as is shown
in Fig. le.

¥ =
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(b)

’Yl;t'Ys:’Y]’:O w

Ji
N

W

Fig. 1. The phase portrait for the different cases.

(vi) v, #0, v, # 0, ¥,= 0. The phase portrait, given in
Fig. 1f, is topologically equivalent to that of case (iv),
provided the condition

2
Yo (1 +g6)
Y1 4g
holds true. If this inequality is not valid, we again get
an unstable situation as in case (v).

(vi) 7, 20,7, 20, ¥,# 0. This is the general and the
most interesting case. I-éor the fixed point we have

. _ Ys ‘
&= Ty
(31)
W = E(¥s +748)
Y1 +g8)°

where, to simplify the expressions, we accepted that ,,
Y; << v. For the Lyapunov exponents we find

A o= “71(1 —283',2 ),

1

Ay = =27,(1 + gC +g9d),

(32)

where

55( 1 )Ys+vf§(1+gC)
1+88)27,(1+g8)-v,

It is interesting to understand whether it is feasible
to achieve, in the stationary regime, a coherent current
power comparable to that occurring in the transient pro-
cess [7]. The current power P ~ v?. Remembering rela-
Vol. 8 1998
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T T rriig

—0.5 1 1 L
0 2 ; 4 6

Fig. 2. Radiation intensity, /, in arbitrary units, coherence
coefficient Coqp, and p, vs. time for g ~ 1 and f = 0.

tion (16), between v2 and w given by (22), we have in

the transient process v(fy) = mg = A/ vg + zé .For{ >0,
it follows from (31) that the optimal condition for get-
ting the maximal coherent power is ¥, = 0 and g = 0.

Then v¥(e0) = (Y/1,)¢% The ratio of the corresponding
powers is

P(=) _ U LY
Pliy) Yz(mo) ' )

As far as ¥, < 7, and y, < y,, expression (33) shows that
P(s0) < P(t;) even if { reaches my,.

Consider the case when the pumping electromotive
force, defined in (12), is so strong that Y, > ;. Then the
fixed point would be

Tk (LI ¢ 75 119 € PR 119
Yr ’ Y2(Ys+8Y5)

The maximal coherence is achieved for Y, = 0. Thence

Z*

. (34)

2
w¥ = LCZ
Y2V
Comparing the current powers of the stationary and
transient processes, we obtain

2 2
P _ N1 (& 35
P(t) YZY.f(nlO) ' (35)

Recall that ¥, < 7,, and here, by assumption, ¥, < Yy.
Therefore, again P(0) < P(ty). Thus, in any case, the
current power in the stationary regime is much less than
that of the transient process.
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Ccoh
100

4

Fig. 3. Coherence coefficient C,qp, radiation intensity /, and
p, as functions of time for g = 0, 0y = o, and different f;. The
solid line is for f = 0.5, the dashed line is for fy = 2, and the
solid line with crosses is for fy = 5.

Fig. 4. The same functions as in Fig. 8 forg =0, 0y = ®, and
different initial polarizations p(0) = —zg.

4. TWO-STAGE RELAXATION

Recall, first, that for the occurrence of the short-time
relaxation, as is shown in [7], it is necessary to have

P - [2. 2
nonzero initial magnetization mg = A7y + v >0. Then
transient processes happen during the time f, + T,

which is less or of the order of T, = 7y, ' Inthe presence
of the spin-lattice damping y,, there exists the long-time

relaxation process with the relaxation time T, = y,"'.
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This late relaxation process occurs at any initial magne-
tization including zero; it is either incoherent or may be
coherent but with the current power much less than the
maximal power reached in the transient regime. These
two relaxational regimes, fast transient and slow late,
are clearly seen in the presented figures.

The damping parameters 7, and yare due to the exist-
ence of the driving electromotive force (12). The latter,
as we noticed above, can create stationary coherence,
although with the power much weaker than that of the
transient regime. The role of the driving force at short
times is illustrated in Figs. 24, where I = I(¢) is the inten-
sity of magnetodipole radiation, which is proportional to
the current power P(7), the function C,y, = C_ (1) is the
coherence coefficient [15], and p, = —z(f). As is seen,
the driving force cannot extend an essential level of
coherence longer than for 4T,,. A more detailed analysis
of time dependence of radiation characteristics during
the transient regime was accomplished in [16-18].

5. CONCLUSION

The nonlinear dynamics in spin masers has been
studied by using the phase-space analysis. For consid-
ering fast transient processes occurring at times shorter
or of the order of the spin—spin dephasing time T, it is
admissible to put zero the small damping parameters ;,
Y and y,. However, these parameters are important for
c{escribing long-time relaxation. Without those param-
eters, the system of equations (17) and (18) is structur-
ally unstable. The structural stability is recovered if at
least one of the parameters Y, or 7; is nonzero. The
damping parameter ¥, alone is not able to make the sys-
tem of equations stable [see case (v)]. When all damp-
ing parameters are nonzero, the dynamical system
always possesses an attractor, a stable node. Emphasize
again that to have a stable node it is sufficient that y, and
¥, be nonzero. The presence of the parameters ¥, and 7y,
can lead to the formation of stationary coherence, even
starting from the state with zero magnetization. But the
stationary current power never becomes comparable
with that existing in the transient regime. Probably, the
most interesting effect which the driving force, provid-
ing nonzero values for Y, and y,, can lead to is the exten-
sion of the transient interval of coherence up to 47,.

Note in conclusion that coherent radiation effects
similar to those occurring in nuclear magnets can exist

in ferroelectrics coupled with a resonator [8]. It would
be interesting to analyse whether such effects can arise
in materials having both magnetic and ferroelectric
properties [19], as well as in other complex magnetic
systems such as dilute magnetic alloys [20].
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Abstract—Global remote sensing of Planet Earth over protracted time intervals is necessary if the global com-
munity wishes to adopt reasoned responses to anthropogenically induced changes in the environment. Laser
remote sensors using solid-state lasers can measure many of the Earth variables, such as the ozone levels,
needed to describe the health of Planet Earth from orbit. However, the lasers are usually highly specialized
devices, often requiring unusual wavelengths, tuning capability, dual pulse capability, as well as high efficiency
and reliability. Laser remote sensing techniques are covered along with an example of the development being
performed at NASA Langley on a specific laser system for remote sensing.

1. INTRODUCTION

Remote sensing of Planet Earth is necessary to mon-
itor its long-term health. NASA sponsored a workshop at
which parameters germane to the health of Planet Earth
were identified. These parameters were referred to as
essential Earth variables. Many of the essential Earth
variables are amenable to laser remote sensing tech-
niques. NASA is developing the requisite laser technol-
ogy in order to be able to deploy instruments to measure
many of the essential Earth variables from space.

Increasing evidence indicates that there are anthro-
pogenic induced changes in the environment. One
change is the appearance of the 0, hole, especially in
the Antarctic. While not universally accepted, the 04
hole is usually associated with chlorofluorocarbons. To
prevent further degradation in the stratospheric 05 layer,
the production of chlorofluorocarbons has been cur-
tailed. Another change is the trend toward global warm-
ing. Evidence for global warming trends have been

Temperature

1.0°C

CO, concentration

7860 1880 1900 1920 1940 1960 1980
Year

Fig. 1. History of average global temperature and CO, con-
centration.
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gathered for over 100 years. A sample of this trend
appears in Figure 1. Because of the large variability,
warming trends can be difficult to interpret.

Global warming can be correlated with increased
greenhouse gases, such as CO,. CO, levels have been
measured over the last 40 years and indicate a definite
rise; however, a causal relationship is not firmly estab-
lished. Global warming would probably trigger signifi-
cant shifts in global weather patterns and a rise in the
sea level caused by melting icecaps. A rise in the sea
level of even a half of a meter would cause widespread
coastal flooding. If reduced CO, emission is deemed to
be the appropriate response, the economic impact could
be huge. Consequently, continued monitoring of the
temperature and the greenhouse gases is prudent.

Remote sensors deployed in satellites can be a cost-
effective method of obtaining global coverage of the
essential Earth variables. In order to obtain sufficient
data globally, atmospheric variables must be measured
at least on a 250 by 250 km horizontal grid and with a
1.0 km vertical resolution. If ground stations were to be
employed in each grid, there would be over 8100 of
them. On the other hand, a single polar orbiting satel-
lite can interrogate much of the Earth on a daily basis.
In addition, a satellite can obtain accurate measure-
ments of atmospheric variables at high altitudes since
the optical signal does not have to pass through the
lower part of the atmosphere and suffer the concomi-
tant degradation.

2. REMOTE SENSING TECHNIQUES

Laser remote sensing instruments can measure sev-
eral of the essential Earth variables using a variety of
techniques. Aerosol particle density, such as water
droplets, can be measured by propagating a laser beam
through the atmosphere and collecting the photons
backscattered by the aerosol particles. Backscattered
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Wavelength requirements for remote sensing

Atmospheric constituent Possible wavelengths um
H,O 0.73, 0.83, 0.94, 2.05
CO, 2.05-2.30, 4.0-4.6
CO 2.3-24,45-50
CH, 3.1-3.7
0, 0.28-0.32, 9.3-10.0
Density/temperature 0.76

signal level is proportional to the aerosol density. By
using backscattered radiation, the receiver can be colo-
cated with the transmitter, thus providing a self-con-
tained system. Aerosol density can be measured as a
function of range using time-of-flight techniques.

Atmospheric constituents can be measured using
two tunable laser transmitters and receivers with a dif-
ferential absorption technique. The first laser is tuned
off atmospheric absorption peaks and measures the
aerosol density, as described above. A second laser is
tuned to an absorption peak of the atmospheric constit-
uent of interest. As it propagates through the atmo-
sphere, it is backscattered and received in the same
manner as the first beam but it is also attenuated by
being absorbed. By rationing the received backscat-
tered signals, the absorption and thus the concentration
of the atmospheric constituent can be measured. As
before, the concentration as a function of range can be
determined using time-of-flight techniques.

Many of the atmospheric constituents can be mea-
sured using the differential absorption technique.
H,0 vapor density is currently being measured using
a Ti : Al,O4 laser tuned to the water vapor absorption
peaks near 0.82 pum. However, stronger H,O vapor
absorption exists around 0.94 pm where it may be pos-
sible to use a Nd laser operating on the *Fs, to *Iy, tran-
sition. O, can most conveniently be measured in the
near ultraviolet, ~0.3 um, but it may also be possible to
use the infrared absorption features around 10.0 pm in
some cases. Greenhouse gases, such as CO,, CH,, and
CO as well as H,0 can conveniently be addressed in the
mid-infrared region of the spectrum, 2.0 to 5.0 pum.
Laser wavelength requirements for different applica-
tions are summarized in the table.

Wind speed can be determined by measuring the
Doppler shift of the backscattered radiation. Doppler
shifts can be readily measured using heterodyne tech-
niques. In this case, the heterodyne beat frequency is
directly proportional to the radial component of the
speed. Doppler shifts can also be measured using a filter
with a sharp edge in the transmission versus wavelength
curve. In the latter case, the transmission through the fil-
ter is linearly proportional to the radial component of the
wind speed. By making several measurements of the
radial component of the wind speed from different
directions, the wind velocity can be measured.

Distances can be measured using time-of-flight
techniques with a pulsed laser or a modulated continu-
ous-wave laser. In the pulsed case, the resolution is
related to the pulse length; the shorter the pulse length,
the greater the resolution. Ice cap thickness and tec-
tonic plate motion can be measured using ranging tech-
niques. Once a satellite is in orbit, the orbital parame-
ters can be determined quite accurately. By using laser
ranging techniques, the distance of the ground can be
determined. In turn, this can be used to measure altitude
of the ground return and hence ice cap thickness. Tec-
tonic plate motion, being so small, would probably uti-
lize two retroreflectors, one on each of the tectonic
plates. By illuminating both retroreflectors with the
same pulse and measuring the temporal difference in
their return as a function of time, tectonic plate motion
can be measured.

3. LASER REQUIREMENTS

Lasers needed for remote sensing are highly spe-
cialized devices. For differential absorption measure-
ments, the wavelength must be tuned to the correct
atmospheric absorption feature with a tolerance of
about 1.0 pm. Similarly, the linewidth must be on the
order of 1.0 pm or less. For wind speed measurements
using heterodyne techniques, the linewidth must be on
the order of 0.01 pm. For differential absorption mea-
surements, the laser transmitter must be able to produce
two pulses in rapid succession, about 300 to 400 ps
apart. Each of the pulses of the pulse pair must be accu-
rately tuned to its specific wavelength for the absorp-
tion measurement. Pulse length requirements for
remote sensing lasers can range from pici- to microsec-
onds. Short pulse lengths are required for ranging accu-
racy. On the other hand, long pulse lengths are needed
to preserve the very narrow spectral bandwidths needed
for wind sensing. Laser efficiency needs to be high
since power is at a premium on a satellite. Typically, an
electrical-to-optical efficiency in excess of 0.05 includ-
ing frequency conversion processes is needed. Reliabil-
ity for 10? shots or more is needed to achieve a 5-year
operational lifetime. Finally, the laser must be compact
and lightweight to minimize launch costs.

Development of these virtually unique laser systems
is an opportunity for the laser researcher. As an exam-
ple, the work being performed at NASA Langley in the
development of a 0.94-pm laser for the remote sensing
of H,O vapor is described. For efficiency and reliabil-
ity reasons, it is desirable to have a laser that is
directly pumped by laser diode arrays. It is well
known that Nd : YAG can operate at 0.946 um on the
4F 5, to 4y, transition and it is directly pumpable with
existing laser diodes. However, the peak emission
wavelength of Nd : YAG does not correspond to an
absorption peak of a H,O line. In addition, there is
intense completion from the much stronger transition
at 1.064 pm on the 4Fy, to I, transition. To make a
Vol. 8 1998
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Fig. 2. Compositional tuning of Nd : YGAG. Two sets of
data for the R, to Zs transitions represent the line splitting.

useful laser for remote sensing, these problems must
be solved.

4. LASER DEVELOPMENT FOR WATER VAPOR
MEASUREMENTS

Obtaining the optimum wavelength for remote sens-
ing of H,0 can be addressed by using compositional
tuning. That is, the wavelength can be tuned by select-
ing the laser material. To demonstrate this technique,
various compositions of Nd : YGAG were grown and
evaluated spectroscopically. Nd : YGAG represents
Nd : Y,4(Ga,Al, _,)sO,, where Ga is substituted for Al in
the basic Nd : YAG structure. Wavelengths of the R, to
Zs and R, to Z; transitions are plotted versus Ga con-
centration in Fig. 2. From the figure it can be seen that
any wavelength between 0.946 and 0.938 pm should
be possible on the R, to Z; transition. A similar evalu-
ation was done for Nd : GYAG where Nd : GYAG rep-
resents Nd : (Gd,Y,_,);Als0,,. In this case, not all
compositions are possible since Gd is substantially
larger than Y.

Gain coefficient length product

(a) 10713

0 0.0002 00004 0.0006 0.0008

For efficient laser performance, the strong competi-
tion of the 4F,, to *I,,, transition must be suppressed.
Since the emission cross section of the 0.946-pm tran-
sition is so much lower and the thermal population of
the lower laser level is nonnegligible, a modest gain at
0.946 m may lead to an unsustainable gain at 1.064 um.
At moderate pump energies, amplified spontaneous
emission can limit the gain while at high pump energies
parasitic lasing at 1.064 pm can occur.

Modeling showed that amplified spontaneous emis-
sion effects could be observed by measuring the gain as
a function of time. To accomplish this, a continuous-
wave 1.064-um probe beam was used to measure the
gain of a flashlamp-pumped Nd : YAG laser rod. Gain
was determined by measuring the transmitted 1.064-pm
probe power as a function of time. By dividing the
transmitted probe power signal by the transmitted
probe power signal before the onset of pumping, gain
as a function of time was measured.

Gain, after cessation of the pump pulse, decays
away faster than exponentially, as shown in Fig. 3. In
essence, this is caused by amplified spontaneous emis-
sion. A spontaneously emitted photon will induce other
excited Nd atoms to emit a photon before it escapes the
pumped volume, that is, the spontaneously emitted
photon is amplified. As the gain is decreased, the ampli-
fied spontaneous emission decreases and the decay
becomes exponential.

A model of the amplified spontaneous emission pro-
cess was derived and found to agree well with the mea-
sured decay curves. Gain, as a function of time, was
measured for various pump energies. Two of these mea-
sured curves, with the associated model curves, are
shown in Fig. 3. Agreement between curves is viewed
as highly encouraging.

Gain is limited by amplified spontaneous emission
effects. Peak gain at 1.064 pm was measured as a func-
tion of the electrical energy delivered to the flashlamp.
Results of these measurements indicate that peak gain
coefficient and length products above about 3.0 are

25.1F

0.0006 00008

0 0.0002  0.0004

Time in seconds

Fig. 3. Gain coefficient length product at 1.064 um for a 38 mm laser rod versus time for two levels of pumping. Solid line represents

the data while dashed line represents the curve fit of the model.
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Fig. 4. Performance of Nd : YAG at 0.946 um. Various out-
put mirror reflectivities.

increasingly difficult to sustain. Increases in the electrical
energy produce diminishing increases in the gain coeffi-
cient and length product. However, there does not appear
to be an asymptotic value for the gain coefficient and
length product which would indicate parasitic lasing.

A small population in the lower laser level of the
4F 4, to “Iy, transition can cause significant amplified
spontaneous emission problems. A small-signal gain
coefficient, g;, of this transition can be shown to be

80 = Ge(YNZ - (Y— I)CANs)’

where 0, is the effective emission cross section, N, is
the upper laser level population density, Cy is the con-
centration of active atoms, N is the number density of
available Nd sites, and

y= 1 —ZI/ZZ'

In the latter expression, Z, and Z, are the thermal occu-
pation factors, or Boltzmann factors, of the lower and
upper laser levels, respectively. At low levels of pump-
ing, the gain coefficient at 0.946 pm is negative because
of the thermal population of the lower laser level. Con-
sequently, at an absolute minimum, the pumping must
be strong enough to achieve optical transparency, that is,

Nyor = (Y~ DC4N, /.

At this level of pumping, the gain coefficient and length
product on the 1.064-um transition is 6,(1.064)N,orl,
where [ is the length of the laser material. If this product
exceeds approximately 3.0, amplified spontaneous
emission could seriously deplete the population density
of the upper laser level.

BARNES

To mitigate these effects, a short, small-diameter
laser rod was used. By doing this, a high level of inver-
sion could be achieved without exceeding gain length
products where amplified spontaneous emission is a
serious problem. For the experiments described above,
a 5.0 by 38.0 mm laser rod was flashlamp pumped in a
flooded cavity. Undoped YAG was bonded into the ends
of the laser rod in order to be able to hold the rod in the
cavity. By using undoped ends, the ground-state
absorption in the unpumped ends of the laser rod could
be avoided.

Laser performance on the 0.946-um transition
achieved in this arrangement was substantially better
than other performance reported in the literature. A typ-
ical laser output energy versus electrical energy is
shown in Fig. 4. With this configuration, at a tempera-
ture of 290° K, a threshold of 17 J and a slope efficiency
of 0.003 was achieved. In comparison, other research-
ers [1] achieved a threshold of 62 J and a slope effi-
ciency of 0.0013 at a temperature 248° K. With further
improvements in geometry afforded by laser diode
pumping, substantially better performance is expected.

5. SUMMARY

In summary, NASA is developing remote sensors to
monitor the health of Planet Earth. Essential Earth vari-
ables which can be monitored using laser techniques
include aerosol particles, H,O vapor, O, greenhouse
gases, wind speed, ice cap thickness, and tectonic plate
motion. However, the lasers required for these sensors are
often highly specialized devices, requiring precise tuning,
narrow linewidth, double pulse formats, as well as high
efficiency and reliability. Development of such lasers can
be an opportunity for the laser research community.

NASA Langley is developing a specialized laser for
remote sensing of H,O at 0.94 pm. For this, two devel-
opments were necessary: a compositionally tuned laser
material around 0.946 pm and a method of mitigating
the effects of amplified spontaneous emission. Appar-
ently, continuous tuning on the R; to Zs has been
achieved with Nd : YGAG from 0.938 to 0.946 um.
Using a Nd : YAG laser, a threshold of 17 J and a slope
efficiency of 0.003 has been achieved at 290° K. Thus,
both of the initial objectives have been met and work is
proceeding on combining these developments and pro-
ceeding with laser diode pumping.
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Abstract—In this paper we present the subject covered in the talk at the 6th International Workshop on Laser
Physics. After a brief review on the control of photoabsorption processes, we show numerical results for real
atoms such as Na and Ca, showing the experimentally achievable control of photoionization yield into different
ionic channels. A scheme utilizing the laser detunings instead of the laser phase is also briefly discussed.

1. INTRODUCTION The two frequency components have relations w, =
3w,, and the relative phase between them is given by ¢.
We have assumed that the two fields have the same
polarization vector and have written the above equation
in a scalar form. Technically speaking, such phase-cor-
related fields can be obtained from a single laser with
frequency ®, by tripling it through a third-harmonic
process. Then the fields with w, and ®, (=3w,) are nec-
essarily phase-correlated due to the phase-matching
condition during the nonlinear optical processes. Note
that the relative phase ¢ can be controlled by sending
both beams into another gas cell. By changing the gas
pressure, the relative phase between the fields can be
varied as a result of the different refractive indices at
frequencies w, and ;. Introducing the dipole matrices
D, and D, between |1) and |2) coupled by three- and
single-photon absorption of @, and w,, respectively, the
total transition amplitude T can be written as

The control of light-matter interactions has been the
subject of intense study in the last several years. Vari-
ous schemes have been devised for that. Those schemes
could be classified into two categories. Some of them uti-
lize the coherent property of radiation and hence such a
subject is often called “coherent control.” The others
utilize the alteration of radiation modes by changing
the boundary condition, which is termed “cavity QED.”
Among the schemes in coherent control, the most well-
known schemes include pump—probe [1], counter-intu-
itive pulse delay [2], lasing without inversion and elec-
tromagnetically induced transparency [3, 4], and the
phase control schemes [5-13]. Briefly, the pump-probe
scheme explores the system evolution in the time
domain by making use of the short pulse and the vari-
able pulse delay. In the counter-intuitive pulse sequence
the system (typically a three-level A system) is pre-
pared in a dark state followed by the adiabatic evolution L
in order to achieve an efficient population transfer to 7 = |D,+ e'¢Db| = | Da|2 + |D,,|2 +2cos¢D,D,. (2)
the initially unoccupied third state. Lasing without inver-
sion and electromagnetically induced transparency can Tt is indeed the last term containing ¢ which is respon-
be realized by creating the asymmetry between the sible for the phase control of photoabsorption pro-
absorption and emission profiles due to the laser-induced  cesses. Such a principle is still valid if the upper bound
coherence. Phase control utilizes the interference
between more than two transition paths, which can be
manipulated to be constructive/destructive by the proper 12) [c)
choice of the relative phase of two lasers.

In this paper we first overview the various schemes
for phase control and then proceed to apply the basic
idea to the Na and Ca atoms. The application of the Wy, o, o, o,
laser detuning considered in recent papers [14-16] is
also briefly discussed.

2. PHASE CONTROL: OVERVIEW : 1) 1))

The prototype scheme for phase control is presented @ (b)

in Fig. la. Two bound states |1) and |2) are coupled by Fig. 1. Prototype scheme for phase control for (a) bound-

laser fields E(#): bound and (b) bound—continuum transitions. The lower and
fw,f i(wy1+¢) the upper states are coupled by three-photon with frequency
E(r) = (g6~ +8&e ) +cc. M , and single-photon of its third harmonic @), (=30,).
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&Q/

Fig. 2. Extended scheme for phase control for bound—-autoionizing transition. The shaded box represents an atomic continuum. The
electrostatic coupling (configuration interaction) between the discrete and continuum components of the autoionizing state is
denoted by V. Starting from a general case depicted in (a), the cancellations of the direct transition to the continuum and the discrete
parts of the autoionizing state are achieved in (b) and (c), respectively, by the proper choice of laser intensities and relative phase.

state |2) is replaced by a continuum |c) (Fig. 1b) as we
have demonstrated in [8].

We now place the two schemes (Figs. 1a, 1b) on top
of each other, and obtain the scheme depicted in Fig. 2a.
Note that the upper state becomes a superposition of a
discrete state and a continuum, which is nothing but an
autoionizing state as described by Fano [17]. Therefore
an autoionizing state represents a prototype of channel
interactions for phase control [9]. It is not difficult to
imagine that such channel interactions may be signifi-
cantly controlled by the proper choice of the laser
intensities and the relative phase. Two extreme cases
are illustrated in Figs. 2b and 2c. In Fig. 2b the transi-
tion amplitude directly to the continuum part of the
autoionizing state is canceled, leading to the symmetric
Lorentzian ionization profile [9]. On the other hand, in
Fig. 2c the transition amplitude to the discrete part of
the autoionizing state is canceled, and the ionization

5>
2

S

() (b)

Fig. 3. Level scheme of phase control involving multiple
channels. (a) The final state consists of more than one con-
tinua €/, but all of them belong to the same ionic state.
(b) The final state consists of more than one continua
belonging to more than one jonic states.

profile has been shown to become flat with a window at
zero detuning [9]. It should be noted that such cancel-
lations are always possible by carefully choosing laser
intensities as long as the involved continuum is only
one [9]. In reality, depending on atoms and transition
levels considered, the upper state might not be repre-
sented just by “single-discrete and single-continuum,”
but might exhibit a more-than-one-channel behavior.
Such a case is discussed in the next section. We simply
note at this point that, even in such a more complicated
case, dramatic phase-sensitive effects can be seen as we
show later on.

3. PHASE CONTROL: MULTICHANNEL CASE

The schemes described in the previous section can
be easily extended to the multichannel case [10]. The
level diagram for such a case is given in Figs. 3a and 3b.
In Fig. 3a, the final state lies above the ground ionic
state but below the first excited ionic state. Atoms
excited to such a state are left in the ground ionic state
but may eject photoelectrons with different angular
momentum €. What can be controlled by changing the
relative phase ¢ is the ratio of the number of photoelec-
trons belonging to the different continua. Note, how-
ever, that such a ratio cannot be experimentally measured
by simply taking the angle-integrated ionization signal,
since those continua are energetically degenerate. It is
essential to measure the photoelectron angular distribu-
tion. In Fig. 3b, the final state lies above the first excited
ionic state, and atoms excited to such a state have two
ionic states to decay. In this case, it is possible to con-
trol the photoionization yields into two ionic states. The
ratio of ionization into different channels is defined as
a branching ratio, which depends on the photon fre-
quency and the number of photons involved. Therefore,
in general, the ionization to the same final state energy
gives the different branching ratios for the three ®, pho-
ton absorption and a single ®, (=3w®,) photon absorp-
No. 1 1998
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tion. There are two reasons for that. The first reason is
that the final states seen by three-photon and single-
photon absorptions involve different continua in terms
of angular momentum. Generally speaking, there exist
incoherent channels which are accessible only by three-
photon absorption because of the dipole-transition
selection rule on the total angular J. The second reason
is that near-resonant effects might occur for three-pho-
ton absorption at an intermediate state. If the near-res-
onance occurs at intermediate states, a particular ion-
jzation path may be enhanced or de-enhanced, depend-
ing on the photon frequency ®,. We note that these two
effects also exist for the case in Fig. 3a. After these con-
siderations, it should be clear that, if the atom is subject
to two fields with frequencies ®, and ®, (=3w,) and the
two fields are not phase-correlated, the branching ratio
depends on the intensity ratio of two fields. On the
other hand, if they are phase-correlated, the branching
ratio varies even at fixed intensities as a function of the
relative phase. In the former case, the ionization yield
into each channel simply becomes the incoherent sum-
mation of those by the two fields, and in the latter case
it becomes the coherent summation of those. In both
cases the branching ratio does vary, assuming that the
branching ratio by each field is different from each
other, which is usually the case. We now show a few
representative numerical results. An example corre-
sponding to Fig. 3a is presented in Fig. 4 for the Na
atom, in which the final state is embedded in two con-
tinua, i.e., p and €f. Note that the es continuum is a
coherent channel, while the €f is an incoherent contin-
uum accessible only by the three-photon absorption
from the ground state. Figure 4a shows the variation of
the ratio of ionization into the ep and €f continua as a
function of the final state energy at the relative phases
¢ = 0 (solid line) and ¢ = m (dashed line). Although the
ionization into the €f continuum is an incoherent process,
the ionization yield into it varies as a function of final
state energy due to the near-resonant effects stated
above. The resonance structure near 48000 cm™" comes
from the variation of the incoherent ionization together
with the phase-sensitive variation of the ionization into the
ep continuum. The small peak near 50000 cm™ is due to
the strong ionization through the 3s — 55 — €p path
by the three-photon absorFtion. When the final state
energy is near 51000 cm™' (51800 cm™), the photon
frequency ®, becomes close to the atomic transition
frequency to the 3p (4d) states at the one- (two-) photon
absorption (Fig. 4b), and given the chosen laser inten-
sities I, = 108 W/cm? and 1, = 10> W/cm?, the three-pho-
ton ionization becomes dominant. Therefore the phase
effect is very small at such final state energies and laser
intensities. In Fig. 5 we show a representative result
corresponding to the scheme given in Fig. 3b for the Ca
atom. Again we see the significant phase effect in terms
of the variation of the branching ratio of photoioniza-
tion into two ionic states Ca* 4s and 3d. The profile of
the phase-sensitive branching ratio exhibits a much
more complicated structure compared with that for
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Fig. 4. Numerical example for the Na atom, corresponding
to Fig. 3a. Laser intensities I, = 10® W/em? and I, =

102 W/cmz, 10-ns square pulse. (a) Variation of the branch-
ing ratio into two continua ep and €f as a function of final
state energy at (solid line) ¢ = 0 and (dashed line) ¢ = 7.
(b) Variation of the “phase-averaged” (i.e., incoherent) total
jonization yield as a function of final state energy. 5s, 3p,
and 4d in the graph indicate that the resonances occur for the
three-photon process at the second, first, and second inter-
mediate states, respectively.
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Fig. 5. Numerical example for the Ca atom, corresponding
to Fig. 3b. Laser intensities [, = 10 W/em? and I, =
10° W/em?, 10-ns square pulse. Variation of the branching

ratio into two ionic states Ca* 4s and 3d is plotted as a func-
tion of final state energy at (solid line) ¢ = 0 and (dashed
line) ¢ = 7.
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Fig. 6. Prototype level scheme for detuning control.

the Na atom (see Fig. 4) due to the more channels
involved for the case of Ca atom.

4. DETUNING CONTROL

Recently a less restrictive scheme for controlling the
photoabsorption processes has been suggested [14] and
demonstrated [15, 16]. The level scheme is described in
Fig. 6. The atom in the ground state |0) is dipole-cou-
pled to the excited states |1) and |2) by two lasers with
frequencies ®, and ,, respectively, which are chosen
to be close to the atomic transition frequency between
|0) and }1), and |0) and |2). Furthermore, if the laser fre-
quencies satisfy the condition that fi(®, + ®,) exceeds
the ionization energy, the photoionization occurs
through two paths, i.e., |0) — }1) — continuum and
[0} — |2) — continuum. Hence, an interference
effect can be expected in terms of the ionization signal.
The sign and the strength of such an interference
depend on the detunings and intensities of the two
lasers. For illustration, the ionization yield is plotted in
Fig. 7 for the Na atom as a function of detuning A, for
various values of A,. |0), |1), and |2) have been chosen
to be 355, 3p12, and 4p,, of Na, respectively. The inco-
herent ionization by absorbing two ®, photons has been
included in the calculation. We have assumed that some
atoms in the excited states |1) and |2) go back directly
to the ground state |0) by spontaneous decay, whose
rates are known to be 16 and 110 ns, respectively, for
3p and 4p of Na. We have ignored, however, the
dephasing effect due to the laser bandwidth. Note that
there is no incoherent channel in this case due to the
choice of the intermediate states 3p,, and 4p,,. It is
clear that the ionization profile is symmetric Lorentzian
(see Fig. 7a) when one of the transition paths is domi-
nant over the other at a large detuning. How much
detuning may be considered to be sufficiently large
depends on the transition strengths through two paths,
or laser intensities. In the example shown in Fig. 7,
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Fig. 7. Variation of the total ionization yield as a function of
detuning A, for various A, calculated for the Na atom. I, =

10° W/em?, I = 10* W/cm?, and the laser pulse is taken to
be 10-ns Gaussian.

|A;] = 1 em! is sufficiently large in this sense. As the
detuning A, becomes smaller (Figs. 7b—7d), the profile
begins to reveal an asymmetry, which means that the
two ionization paths are competing with each other and
the interference is taking place. In Fig. 7e the profile
becomes symmetric again since one of the paths is
exactly on resonance. When the sign of the detuning A,
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is reversed, the asymmetry of the profile is also
reversed (Figs. 7c and 7f).

5. SUMMARY

In summary, we have overviewed the schemes for
controlling the branching ratio of photoionization prod-
ucts. A few illustrative examples have been presented
for the schemes of phase control together with numeri-
cal results based on real atoms Na and Ca. We have
shown that the control of the relative phase of the laser
fields leads to the significant change of ionization pro-
file and the branching ratio. A less restrictive scheme,
which utilizes the control of detuning from the near-
resonant intermediate states, has been briefly discussed
with the illustrative numerical results for the Na atom.
We have seen the variation of the ionization profile as
the detunings are varied. ’
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Abstract—Theoretical models for consideration of spherical and cylindrical microparticle as a laser source and
a bistable element are proposed. For two types of transversal electric (TE) and transversal magnetic (TM)
modes of a microlaser under the action of radiation with the frequency of pumping, the basic system of equa-
tions for the interaction of the substance with light at the frequency of laser is given. Steady states and their
instabilities for spherical and cylindrical particles are described. Action of external signal on the steady states

and their bistability are considered.

1. INTRODUCTION

Microparticles as compact sources of coherent light
and nonlinear elements with high efficiency are very
attractive for many practical applications. The advan-
tages of microcavities due to their very high quality fac-
tor and easy fitting to the optical fiber and other ele-
ments of microsystems are evident. Such systems
simultaneously radiate on some space modes and con-
centrate very high energy in small volume and promise
good prospectives for modern microoptics and optical
communications.

Theoretical models for the description of two types
of transversal electric (TE) and transversal magnetic
(TM) modes of a spherical microlaser under the action
of the pumping radiation have been proposed by
authors in [1-3]. Their steady states and instabilities
have been described on the basis of the semiclassical
equations for the nonlinear interaction of the field with
the substance with their modification to the geometry
of particle.

We propose results of consideration of modes for
the solid-state particles-glass or plastic doped with dye
spheres and cylindrical microparticles under the action
of pumping radiation. The spatial distribution of inten-
sity is given with taking into account the morphoplogy-
dependent resonances for the components of field
expressed through the Debye potentials. Detailed con-
sideration of the solutions for the radiation inside a
spherical microparticle, for example, of the electric
field, gives for the size parameter € = 2na/A > 1 at mode
number / much higher than unity very intensive radia-
tion in two areas of the diametral zone of the sphere.
Such resonances have been intensively studied and are
known as morphology-dependent resonances [4-7].
The effects of modes pulling and pushing for their
steady states in microlaser are described. Dependence
of the quality factor for the definite mode upon its num-
ber and order for the spherical or cylindrical harmonics
for various sizes, lengths of waves, and other parame-
ters is demonstrated. Results of the stability analysis for
the spherical and cylindrical lasers are proposed.
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The action of the external radiation leads to the
appearance of bistability in the dependence of the laser
intensity upon the external signal. We show the results
of solving this problem for the definite mode in a spher-
ical particle.

2. BASIC SYSTEM OF EQUATIONS

Theoretical consideration of the laser action in a
spherical microparticle on the basis of semiclassical
equations can be done with the help of the system of
coupled equations for the interaction of light with an
active medium. Maxwell equations must take into
account the action of the substance of the active
medium. Equations for the medium interacting with
light must describe relaxation and spectral properties of
the substance for transition from the upper excited level
of the energy to the lower one at the frequency of las-
ing. For the dipole interaction of the substance with
light, we use a semiclassical system of equations for
electric field E, polarization P, and inversion of popula-
tions y for the active medium:

4nGoE 1 9°

VXVXE = ?§+;28—12(E+47tp), (1)
P . OP . 2 o  2Nwld’
52-+27—é;+(y +0,)P = TEy’ 2)
dy _ 2E (dP _ D(y—
e hmaN(ath) Dy-y). 3

Here, V is the vector differential operator, v is the
phase velocity of light in the medium of particle, D and
y are the rates of decay of populations and of polariza-
tion of the active medium, ®, is the frequency of tran-
sition in the active medium, N is the concentration of |
active particles, y, is the nonsaturated inversion of
populations achievable under the action of pumping,
and |d| is the modulus of the matrix element of the
dipole moment of transition in the molecule of particle.




MICROPARTICLES AS LASER SOURCES AND BISTABLE ELEMENTS 35

With the help of the angular momentum operator L =
(1/9)r x V, we introduce new variables

Nn=LeVXE, & =LeVXP, 4)

and for slowly varying in time (but not in space) elec-
trical field and polarization

-t i t

E = e +ete”, P =pe” +pre

(5)
with
n = I(r, )™ +cc, @ = I(r, 1) +cc., (6)

and for the angular distribution of modes in the nonlin-
ear system the same as in the linear problem for our
sphere, we write

!
II = Z Z q1(rs t)Ylm(ﬁ, (P), (7)

I m=-l

!
T =Y wrnYu,(de). ®)

I m=-1

Here, Y,,, are spherical harmonics.

Macroscopic polarization is created by all excited
modes, and inversion of populations is under the action
of all modes. To be able to understand a single-mode
problem we suppose that different angular modes are
separated in space and do not interact one with others.
Then we can consider one angular mode with a defi-
nite number [ and a definite order n. For example, let
it be the magnetic wave or the transversal electric
wave E, = 0. For this mode we can write

-igq(r,)Q(9), (9)
—iw (r, )Q(9). (10)

ey = iq(r,1)S(8), e,

Po = iw,(r, t)Sl(ﬁ)’ Po

Here,
0,(9) = P{"(cos®)/sin®,

S(®) = —P"(cos®)sind.

Then we can rewrite equations (1)—(3) for sizeless vari-
ables:

1 9( 29q, 2 2 I(l+1) . 0q;
rzar(r ar)+|:kla + > }q,—szat (n
= ipog,— 0w,
aW] . .
a7 +[y+i(0-w,)]w, +ikg, = 0, (12)
ok , 2 %
Fri D(ko—k) +iDYY;(qw/" —q/'w))/2. (13)
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Here k, = 2rm/A is the complex wave number for the
light inside a particle with complex refractive index m.
New variables correspond to previous ones:

rer/a, tetv/a, DeDa/v, Yo vya/v,
|d|q1 41t0)[d|aw,
ql<:> T w >
hAJ3YD vha/3YD
2 2
@41t(1)N|le ay
3v'h

(14)
k

0 0a/v, p4:4—$(—5a, Y] = SH(9)+ Q[ (D).

It is the basic system of equations for the single-mode
laser on the spherical microparticle. The action of
pumping is taken into account in the rate of decay of
populations of active medium D with the help of the
corresponding correlations and in the nonsaturated
inversion of populations k; [8].

For a cylindrical microparticle, for example, for the
optical fiber with radius @ much less than its length, we
can write for the magnetic wave with E, =0

e(p = "iql(r’ t)Sil’l(l(P), p(p = —iW,(I‘, t)sin(l(p),
(15)

and we obtain the next equation for the field in the
cylindrical particle:

10( 9q 22 I . 9q;
;m(r$)+(k10 ~;i)q1—21(1)'§-; (16)
= ipwa'—(l)wl.

The system (12)—(13), (16) is the basic system for a sin-
gle-mode fiber laser.

3. PUMPING OF A MICROPARTICLE

Pumping of the active medium is taken as laser
monochromatic light which normally falls on a particle
(sphere or cylinder) in the direction of the Z-axis. Its
distribution in the equatorial plane of the sphere for the
light polarized at 45° to the plane in which it falls is
given in Fig. 1 for the radius of spherical particle a =
7.56 wm with complex refraction index m — ik = 1.33 —
i x 3% 10-% and A = 0.532 pm. The relative intensity of
radiation is obtained for the field as the sum of all
spherical harmonics. It is seen that the main area with
the highest intensity is near the principal diameter in a
shadow area close to the exit out of the sphere, and the
second, less in intensity and square, area is concen-
trated near the entrance of light into the sphere.
Detailed tuning of the size parameter € = 2ma/A with
change of this value in the fourth or the fifth sign per-
mits us to get morphology-dependent resonances for
the definite number of resonance [ and the order of solu-
tion n. The relative intensity of the resonances is two or
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Intensity, arb. units

Fig. 1. Distribution of the intensity of light in the equatorial
plane of the sphere with radius a = 7.56 um at A = 532 pm.

Intensity, arb. units
2000+

(@)
1500

1000+

500

Intensity, arb. units
2000 (b)

1500+
1000+

500

5 T
-5 \] Q >
0 N

Fig. 2. Intensity of light inside a spherical particle with
radius a = 7.56 ym, m = 1.33 - i X 1078 for the mode with
1=96,(a)n=1,(b)2

more orders higher than in Fig. 1. Areas of such high
resonances are very small and their selectivity in space
is very high. As pumping light for the laser action of
microparticle situation in Fig. 1 can be the most appro-
priate due to relatively high intensity in wide area. This
light excites an upper laser level through the additional
energy levels, as it is usually considered for traditional
lasers on the basis of three of four level scheme of
energy levels [8].

4. STEADY STATES

For zero time derivatives in equations (11)-(13) we
can write the steady solutions for a single mode in the
sphere:

k = ko/(1 +7°cwlY? /8%,
o/ 1 +Y /v, Y, /707) (a7

& = 72 + (- (oa)z,

w, = —(0- 0, +i7)kqg/ 5.

Here, v, is the Ricatti-Bessel function and ¢; is the
coefficient for the field inside the particle.

For the field we can write solution of equation (17)
with the help of Green functions as a sum of solutions
of the homogeneous equation and a partial solution that
can be written through the table integrals. In another
way this solution can be written due to boundary con-
ditions on the surface of a particle. Radiation out of the
particle for r > a is

= biE(kor),
q; 1&( o”) (18)

- ¢ "~ g 2
Bi = bi+kiey [(k=p)Wi(kar)dr's ko = 5,
0

where b, is the solution of the linear problem and § is the
Ricatti-Hunkel function. Inside the particle for r < a,

a1 = W (kir), (19)

and from the boundary conditions for r = a we obtain

¢ = Bl&/(koa)
: yi(kia)

Solution of (17) and (19) gives us steady values for
the amplitude of the field ¢, and, consequently, for the
frequency of the steady state.

The distribution of the laser field inside a particle in
the equatorial plane of a spherical particle is given in
Fig. 2 for the definite mode with number / = 96 and
order n = 1 (Fig. 2a), 2 (Fig. 2b).

Solution for the cylindrical particle for definite size
is given in Fig. 3for /=70 and n=1.

(20)
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This equation can have three positive roots for a
wide area of parameters. Such bistability appears due to
the external signal, which changes the steady state. This
effect can be important for a particle surrounded with
other light sources.
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Abstract—In this paper, concepts for industrial high-power lasers in the range of 100 kW and their applications
in engineering are discussed. Considering different laser types and excitation techniques, the rf-excited fast-
flow coaxial CO, laser is identified as the most promising candidate which can fulfill the requirements for an
industrial very high power laser source. Based on an industrial 6 kW laser of this kind, the potential of this con-
cept with respect to very high beam powers is demonstrated, where a modular design is progosed. The sug-
gested 100-kW CO, laser consists of four modules, each formed by a radial blower of 15000 m"/h flow rate and
two discharge sections powered with 62.5 kW 1f each. Afterwards a flow mechanical simulation of the sug-
gested laser module is presented, which yields flow velocity, temperature, mass density, and pressure inside the
discharge section at the rated power input. Following, potential applications of 100-kW lasers are discussed,
where applications in decontamination and decommissioning, in deep penetration welding of heavy sections,
in surface treatment, in assisting of metal forming and in cleaning/paint stripping are identified as the most real-

istic applications.

1. INTRODUCTION

Since the CO, laser was introduced in 1964, the
available beam power has increased from a few milli-
watts to values above 100 kW [1] continuous-wave. In
the field of industrial applications, however, only pow-
ers up to approximately 20 kW are being used although
industrial lasers of more than twice this power are in
principle available.

When considering the distribution of lasers with
respect to output power and field of application, it can
be concluded that most of the lasers are used for cutting
at beam powers of up to about 2.5 kW. The number of
applications of beam powers up to approximately 6 kW,
e.g., in welding or surface treatment, is significantly
lower; however, it is increasing steadily. Applications
up to 12 kW can only be found for a very small number
of examples such as in heavy-section welding. Finally,
industrial lasers with powers above 12 kW are pres-
ently mostly used for research and development means,
where almost no industrial users can be found.

Due to this situation it must be looked for the rea-
sons for the existing gap between the availability of

very high power lasers and the acceptance by industrial

users. Surely, the main reason for this discrepancy is
the high expenses connected with laser applications,
which are composed of investment, operating, and
maintenance costs.

As the most important criterion for applying lasers
is the economical aspect, it must be tried to reduce the
cost of the laser source as far as possible, however,
without losing the advantages of the laser radiation for
materials processing. Studies of the cost of beam
energy have shown that CO, lasers are by far the cheap-
est beam sources, followed by Nd : YAG lasers at twice
the cost and COILs (Chemical Oxygen Iodine Lasers)
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at four times the cost [2]. Also, from the technical
point of view, the CO, laser is the best candidate for a
100-kW source, since no principal limitations for scal-
ing CO, lasers up to very high beam powers are obvious
at present. As a consequence, the most important prob-
lem which must be considered is not the implementa-
tion of the beam power itself, but the identification of a
concept which can be realized at reasonable costs.

Since the specifications demanded from the laser
source are closely connected to the envisaged process-
ing techniques, it is necessary to develop the laser
source and potential applications in parallel. Since this
approach requires investigations on a broad basis, a
EUREKA project (EU: 1390) has been launched,
where partners both from industry and from research
institutions deal with the related questions.

As all preceding estimations have demonstrated that
the CO, laser scheme represents both from the econom-
ical and the technical point of view the best approach
for a 100-kW laser source, only this one will be consid-
ered in the following sections.

2. BASIC CONCEPTS FOR 100-kW CO, LASERS
2.1. General Considerations

When high-power lasers in the range of 100-kW are
considered, the first interest concerns the efficiency of
the conversion from the power supplied to the laser into
laser radiation. If an efficiency for the conversion from
line power to laser radiation (plug efficiency) of 10% is
assumed, which is a very good value for a CO, laser,
there is the requirement for 1 MW of power supply.
Since only 100 kW are transferred to laser radiation, the
remaining 900 kW are transformed to heat and must be
removed by a cooling system.
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Industrial lasers are usually driven by electric
power, which means that the laser amplifying medium
is formed by a gas discharge, where about half of the
total power consumption, that is 500 kW, is dissipated
in this region. A fraction of 100 kW from this power is
emitted as laser radiation, where the remaining 400 kW
are heating up the laser gas and must be removed. The
currently used technique for the removal of this heat is
convective cooling by a fast gas flow. But also diffusion
cooled systems have recently shown a remarkable abil-
ity for heat dissipation [3] so that they should also be
considered. And, finally, gas-dynamic lasers have a
high potential for achieving high beam powers. How-
ever, it is difficult to control them according to the
requirements of an industrial environment. Conse-
quently, fast flow (subsonic) and diffusion cooled con-
cepts are the most promising candidates for industrial
100-kW lasers. Among these lasers it has to be distin-
guished between dc and rf excitation, where for rf exci-
tation also the range of the excitation frequency must be
considered.

2.2. Cooling Techniques

Since the removal of the heat losses from the active
region is the dominating problem in a high-power laser,
the different cooling techniques shall be treated first.

The usual technique for heat removal from the
active region used in industrial high-power lasers is
convective cooling where the laser gas passes the active
medium at a high mass flow and is cooled afterwards in
a heat exchanger. The mass flow must be established in
a way that the temperature increase of the laser gas
remains below the limit where the lasing process gets
too inefficient. In order to provide a low gas consump-
tion, the gas flow system is operated in a closed loop
where the gas is replaced only at a slow rate in order to
compensate for the decomposition and pollution of the
laser gas. -

In order to produce the high mass flow required for
sufficient cooling, either a high flow velocity at a low
cross section or a relatively small velocity and a large
cross section can be chosen. The first approach is uti-
lized in so-called fast-axial-flow lasers which are usu-
ally operating with gas discharges in circular tubes
where the gas flows in the direction of the axis of the
tubes. In this design, the optical axis of the laser reso-
nator corresponds to the axis of the flow tube, which
gives an almost perfect cylindrical symmetry of the
laser resonator and thus a high beam quality can be
achieved. The other option with large flow cross section
and low velocity is used in so-called transverse-flow
lasers. In this type, the gas flow is oriented perpendicu-
lar to the optical axis of the resonator. This kind of laser
shows the potential of realizing large active volumes
and, thus, high beam powers, where, however, no sym-
metry of the active medium can be achieved and, thus,
a poor beam quality must be expected.
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A compromise between axial-flow and transverse-
flow lasers can be achieved by using annular gain
media [4] where the gas flow is applied in axial direc-
tion. This design shows, on the one hand a cylindrical
symmetry, which provides advantages with respect to
the beam quality, on the other hand, a large cross sec-
tion of the active medium is obtained and, thus, high
mass flows can easily be applied. For this reason, this
type of laser is assumed as the most promising concept
for a 100-kW CO, laser and will be discussed in more
detail in Section 2.5.

The upper limit for the mass flow in fast-flow lasers
is reached when the flow velocity required for sufficient
cooling approaches the velocity of sound. When the
Mach number comes in the vicinity of 1, the flow
becomes highly compressible, which gives a high pres-
sure loss and, thus, a demand for blowers capable of
handling this compression. In addition, shock waves
may form which damage the discharge vessel, compo-
nents of the optical resonator, or the blower. As a con-
sequence, that high flow velocities must be avoided
although in this regime the heat dissipation is very
effective (see Section 3).

In this context, also the blower technology has to be
considered. While in older fast-flow lasers root blowers
have mainly been used, in modern systems radial blow-
ers are preferred, since they show minor vibrations and
produce less contamination of the laser gas. These
blowers contain typically one to three stages, depend-
ing on the pressure ratio they are designed for. Blowers
of this kind are available for flow rates up to 6000 m*h
at a pressure ratio of 1.4. Due to the steeply inclined
pressure—volume flow characteristics, they provide a
stable operation for the unignited case, as well as for
different power levels. Radial blowers, however, cannot
be scaled arbitrarily; it is assumed that at approxi-
mately 12000-15000 m¥h a limit will be reached [5].
For higher volume flows, axial blowers, similar to gas
turbines, must be used. The operation of such blowers,
however, is much more critical than that of radial ones,
since they show very flat characteristics and, thus, need
turbine blades which can be adjusted to the setting of
the laser for a stable operation.

Since convective cooling requires high-perfor-
mance blowers, which represent expensive parts of a
laser systems, it would be of great interest to find ways
to replace these components. For this purpose, a tech-
nique known as “diffusion cooling,” which has been
studied with low-power lasers, has recently been sug-
gested also for high-power lasers [3]. This cooling tech-
nique utilizes the heat conduction in the laser plasma
which is placed between large-area electrodes at a very
small distance in the order of 2 mm or even less. By
using an efficient water cooling system for the elec-
trodes, a temperature gradient and, thus, a heat flow
directed to the electrodes builds up which dissipates the
heat losses from the discharge region.
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Depending on the cooling technique and the
design of the active medium, four feasible concepts
for 100-kW CO, lasers are remaining: the axial-flow
laser with cylindrical discharge tubes, the axial-flow
laser with an annular medium, the transverse-flow
laser, and finally the diffusion-cooled laser. For each
concept, important consequences with respect to the
optical resonator and the excitation technique must be
considered. Since a high beam quality is one of the
essential requirements for modern laser systems which
cannot be provided by transverse-flow lasers, they will
be excluded in the following.

2.3. Excitation Techniques

Among the electric excitation techniques for high-
power CO, lasers, dc excitation is the oldest one. This
method uses high-voltage power supplies which are
connected to the electrodes of the discharge. In order to
stabilize the discharge, ballast resistors are required
which are responsible for ohmic losses and, thus, for a
poor overall efficiency of the system.

Another disadvantage of dc-excited lasers is the low
power density of 10-20 W/cm? in the plasma, which
would yield a bulky design at high output powers. In
addition, the stabilization of such discharges requires a
highly turbulent flow and, thus, a blower which is able
to produce a high pressure ratio. With radial blowers,
this can only be obtained by multistage designs, which
are more expensive than blowers designed for rf-
excited lasers (see below).

As a consequence, dc excitation is mainly used at
low to moderate powers, where advantages of the cheap
and simple design of the power supply outweigh the
poor discharge properties and the bulky size.

A newer technique for energizing the laser plasma is
if excitation. In fast-flow laser systems, this provides
high power densities up to 50 W/cm? and large plasma
volumes, yielding up to 10 W/cm? optical output. The
coupling of the «f power to the plasma is achieved by
electrodes which are situated at the outside of the dis-
charge vessel, where the electric current flows through
the dielectric discharge tube as a displacement current.
The excitation frequency must be chosen depending on
the availability of cheap, reliable, and efficient power
generators. In addition, the discharge behavior at differ-
ent frequencies must be considered. According to these
criteria, 27.12 MHz are usually preferred for the exci-
tation of fast-flow lasers.

Diffusion-cooled systems, however, must be oper-
ated at excitation frequencies in the vhf range, e.g.,
around 100 MHz, since a stable operation of gas dis-
charges at an electrode spacing of 2 mm or less cannot be
achieved at lower frequencies. In this case, the power
input into the plasma scales with the electrode area and
can yield an optical output of up to about 2 W/cm? at
2-mm electrode separation [3]. Consequently, elec-

trode layouts with large areas must be used, such as
coaxial [6] or star-shaped [7] systems.

2.4. Extraction of Laser Radiation

In dependence on the shape of the active region of
the laser, the optical resonator must be chosen properly
in order to obtain both an efficient extraction of laser
radiation and a high beam quality.

These requirements can be fulfilled best with the
conventional fast-axial-flow design, where conven-
tional resonators consisting of one spherical mirror, one
plane output coupler, and eventually several folding
mirrors can be applied. These advantageous properties
with respect to the beam extraction are obtained at the
cost of a rather complicated and, thus expensive design,
which makes this approach unrealistic for very high
beam powers.

Coaxial systems, on the contrary, show a simple
design with respect to the gas-flow system and the exci-
tation technique. Since an annular aperture of the active
medium is obtained, however, conventional resonator
designs cannot be applied any more, and new, sophisti-
cated concepts for the optical resonator must be devel-
oped. In the 6-kW range, for example, resonators with
toric end mirrors and plane out-coupling windows have
proven to give a beam quality which is excellently
suited for welding applications [8]. For very high out-
put powers, however, output couplers covering the
whole annular aperture are no more feasible, and, thus,
new solutions must be found, e.g., with internal axicons
[9] or with excentric coupling apertures [10].

Also diffusion-cooled lasers show complicated
forms of the aperture of the plasma, and, thus, the lay-
out of the optical resonator is assumed to be the crucial
point of this concept.

2.5. Coaxial Fast-Flow Laser

As mentioned above, the coaxial design is one of the
most promising laser concepts for achieving 100-kW
beam power. As already discussed, this design allows a
cylinder symmetrical layout of both the flow and the
optical system. In addition, a large cross section for the
flow can be achieved enabling high mass flows for cool-
ing means.

The operation of an industrial 6-kW laser using this
design has already been proved, and this system is com-
mercially available. A photograph of this system and a
schematic drawing are shown in Fig. 1.

The streamline design of the inner electrode and an
optimized gas circulation system help to reduce the
pressure losses within the electrode system and make it
possible to use only one turbo blower with 6000 m>h
for the 6-kW system. This radial blower has two axial
inlets and two radial outlets admitting a design accord-
ing to Fig. 1. One main heat exchanger at the exhaust of
No. 1 1998
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the discharge section removes the heat produced by the
discharge and two auxiliary coolers dissipate the com-
pression heat generated by the pump.

For the excitation of the laser plasma, two rf gener-
ators operated at a rated power of 25 kW each are used.

The optical resonator consists of one toric end mir-
ror and a plane zinc-selenide out-coupling window
and produces a beam which can be focused to a spot
diameter of less than 450 um with a 10-inch focusing
lens [8], giving excellent welds in steel up to a thick-
ness of 6 mm.

~ Theoretical calculations have shown that the coaxial
design can easily be extended to provide an optical out-
put power capacity of 100 kW [11]. In order to come
along with available blowers or with blowers which
will be available in the near future, respectively, a mod-
ular design must be realized, e.g., consisting of four
modules similar to those shown in Fig. 1, each contribut-
ing 25 kW of beam power. Each section could be oper-
ated by a radial blower of 15000 m*h, which is assumed
to be the upper limit for radial blowers. A detailed flow
mechanical treatment of a module of this kind is given
in Section 3.

3. FLUID MECHANICAL BEHAVIOR
OF A FAST-FLOW HIGH-POWER
GAS-TRANSPORT LASER

CO, lasers provide an excitational efficiency of less
than 20%, meaning that more than 80% of the pumping
power has to be dissipated. Since in CO, lasers the gas
temperature must remain below approximately 450 K
in order to avoid a thermal population of the lower laser
level and, thus, an interference of the lasing process. In
gas-transport lasers, this heat removal is achieved by a
closed-loop gas-circulation system, where the laser gas
is first heated by the gas discharge in the lasing region
and afterwards cooled by a gas—liquid heat exchanger.
In order to limit the temperature increase of the laser
gas between the inlet into the discharge section of the
laser and the outlet, the flow rate of the gas must be cho-
sen properly. For a rough estimation of the required
flow rate, it can be assumed that the laser gas mixture
with the initial mass density py, the temperature Ty, and
the specific enthalpy / is entering the discharge tube of
the diameter D at the velocity v; and, thus, the volume
flow G, = tD*vy/4.

The overall power balance of the discharge section
must consider the power input by the gas flow at the
temperature T, entering the tube; the heat input by the
gas discharge Py; and finally the heat removal by the
hot gas leaving the discharge section at the temperature
T,, the volume flow G,, and the mass density p,:

Gopoh(To) + Pyiss = Gip 1 A(T)). (1

Considering the continuity of the stationary flow, Gypo =
G P, and assuming a linear dependence of the enthalpy
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Fig. 1. Coaxial laser consisting of two discharge sections,
one radial blower (two axial inputs operated in parallel, two
radial outputs), one main heat exchanger, and two auxiliary
heat exchangers. The discharges are powered by rf generators
at 27.12 MHz. (Upper) Photograph of an industrial 6-kW
coaxial CO, laser (Developed at the Department of Laser
Technology in cooperation with the company Wild Kérnten
GmbH). (Lower) Schematic representation of the gas circu-
lation system of the coaxial laser.

() = ¢,T on the absolute temperature 7, where cp
means the specific heat at constant pressure, the
required flow rate G, for a temperature rise T; — T of
the laser gas during its passage through the discharge
section can be calculated from (1)

Pdiss

Gy = ———. 2

0 pOCp(Tl - TO) ( )
For a 100-kW CO, laser operating at optimum condi-
tions, an excitation efficiency of 20% can be assumed
meaning that 500 kW of pumping power must be
applied where Py, = 400 kW is to be dissipated by the
gas flow. In order to calculate the required volume flow
for this situation, ¢, and py must first be estimated for
the laser gas mixture, where the well-known formulas
for a mixture consisting of components with the atomic
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weights M;, the specific heat capacities c,;, and the mix-
ing ratios k (referred to the volume) are used [12]:

Zcp,.M,-k,-

¢, = A—n, 3)

Y Mk,

i

poniki

For a typical laser gas mixture of 4.5% carbon diox-
ide, 13.5% nitrogen, and 82% helium at an ambient tem-
perature of T, = 300 K and a pressure of p, = 150 mbar,
these mixmg formulas yield c, = 2500 J/(kg K) and py =
0.054 kg/m°. Thus, for a maximum temperature rise of
150 K, a volume flow of G, =20 m?/s can be calculated
from these values. This very rough calculation, how-
ever, considers only the increase of the enthalpy of the
laser gas, but neglects the rise of the kinetic energy of
the heated gas. Under real conditions this kinetic
energy has to be subtracted from the enthalpy of the gas
leaving the discharge region, which means that the tem-
perature must be lower than that one predicted by this
very simple power balance. For this reason, a smaller
volume flow than that one calculated will be sufficient.

A more realistic understanding of the properties of
the flow in the discharge section can be obtained by a
detailed treatment based on fluid mechanical consider-
ations. Since blowers of the required volume flow in the
order of 20 m%/s, however, are far from being available
on an industrial level, the system must be split up into
smaller modules which can be handled by the technol-
ogy of today or where the solutions are at least foresee-
able for the near future. Considering that blowers at a
volume flow of 10000 m3h = 2.8 m%/s will very soon
be available [5], it shall be assumed that volume flows
of 4 to 5 m%s could be realized in the medium term
which is also the time frame for realizing an industrial
100-kW laser. Thus, a design consisting of four mod-
ules, each operating at an input power of 125 kW and at
a volume flow of 5 m%s will be the basis for this setup
in a first approach. Using the symmetric setup given in
Fig. 1, each module consists of two discharge sections
which are powered by 62.5 kW rf, meaning that at an
efficiency of 20% Py, = 50 kW must be dissipated by
the gas circulation system. For each section, a volume
flow of 2.5 m%h is available accordingly. Since these
flow rates were obtained by neglecting the energy dis-
sipated by the kinetic energy of the flow, a detaﬂed
analysis of the flow will yield lower values.

In order to find a self-consistent description of the
fluid mechanical processes inside the discharge region
of the laser, a one-dimensional stationary flow of an

ideal gas with constant specific heat capacity will be
assumed. Therefore, the state quantities p, p, T and the
velocity v depend only on the axial coordinate, say, x.
Under these assumptions the flow is described by the
equation of continuity (5), the momentum equation (6),
the energy equation (7) and the state equation (8):

PV = PoVvos (5)
dp _ __f pv’
dx =~ Dyy 2’ ©
2
E___ - deiss
¥ (v 3 +vpcpT) == (N
RT
= (3)

Due to the continuity equation (5), the mass flow pv
is constant and equal to the initial mass flow pyvy at the
entrance of the discharge region.

The momentum equation (6) describes the pressure
loss because of friction with the walls of the tube,
where fmeans the friction factor and Dy, the hydraulic
diameter of the discharge tube. In the case of a turbulent
flow in a coaxial channel, the hydraulic diameter corre-
sponds with the difference of outer and inner radius of
the annular system, whereas the friction factor is given
by Blasius’ formula [13], with Re = vy ,4p/1 meaning
the Reynolds number:

f= 301265 for 5000 <Re<80000. (9
Re

The dynamic viscosity M of the laser gas mixture has
been calculated from the viscosities of the individual
components given by Sutherland’s formula [14] and
by using the mixing formula derived from kinetic gas
theory [15].

The energy equation (7) balances the kinetic energy
of the gas flow, the enthalpy, and the loss energy fed
into the gas discharge per unit volume and unit time.
The power density (dP/dV); is limited by instabilities
of the gas discharge and may reach up to 40 W/em?,
when a total input power density of 50 W/cm?® at an
excitation efficiency of 20% is assumed [16].

Finally, the state equation (8) describes the relation
between the pressure p, the temperature 7, and the mass
density p of the laser gas mixture, which is assumed to
be ideal. The mixing ratios of helium, carbon dioxide,
and nitrogen are considered according to the well-
known theory [12].

The set of equations (5)—(8) has been evaluated for
a typical coaxial discharge section as given in Fig. 2.
Eight of these sections would be capable of producing
an output of about 100 kW cw. Each of these sections
is 30 cm long and has an outer diameter of 12 cm.
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In order to get a homogeneous field distribution and a
high flow velocity, the spacing between inner and outer
tube is chosen relatively small and amounts to 16 mm.
In order to get a good efficiency of the conversion of
electric power to optical output, the power density in
an rf-excited gas discharge should approach the upper
limit of 50 W/cm? as close as possible. Since stability
problems must be expected in the vicinity of this limit,
40 W/cm? is assumed, which is considered to be a save
value. At an excitation efficiency of 20%, this means a
power density of the heat losses of 32 W/cm?, giving
50.2 kW for the whole volume, which has to be dissi-
pated by the gas flow. For the typical laser gas mixture
of 4.5% carbon dioxide, 13.5% nitrogen, and 82%
helium at an ambient temperature of T = 300 K and a
pressure of p, = 150 mbar, this gives a flow velocity of
about 400 m/s, corresponding to a Mach number of M =
0.61 at the inlet of the discharge section. With these ini-
tial conditions, the flow behavior given by Fig. 3 is
obtained.

As is demonstrated by this figure, the flow is accel-
erated up to about 700 m/s according to M = 0.90 on its
way through the discharge section. The pressure drops
from 150 to 119 mbar connected with a reduction of the
mass density from 0.054 to 0.031 kg/m>. The most
interesting result is the temperature rise from 300 to
412 K, which is much less than would be expected
according to (2), neglecting the kinetic energy carried
with the flow. Balancing the gas flow which enters the
discharge section and the flow leaving this volume
(see the table), it can be seen that, in fact, a great
amount of heating energy is transferred to kinetic
energy of the flow.

As can be concluded from this table, in the present
example, 31.8 kW is converted to heat, meaning an
increase of the gas temperature, and 18.3 kW, to Kinetic
energy, which is more than one third of the total dissi-
pated power.

Since the increase of the gas temperature must be
limited to about 150 K in order to avoid a reduction of
the efficiency of the lasing process, the predicted trans-
fer of heating energy to kinetic energy improves the
performance of the system considerably. Equation (7)
shows that the kinetic energy per unit time transported
by the flow increases with the third power of the flow
velocity, which means that the latter must be increased
as far as possible in order to get a low temperature rise
of the laser gas for a given heating input and mass flow.
A natural limit for this velocity is the velocity of sound,
which must not be approached too closely, as men-
tioned already.

4. APPLICATIONS OF 100-kW CO, LASERS

4.1. Influence of the Properties of the Laser Beam
on the Application Process

Since laser technology is usually involved with high
costs compared to conventional techniques, the advan-
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Fig. 2. Dimensions of one of the eight discharge sections of
the 100-kW laser (two sections per blower).
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Fig. 3. Simulation results for temperature T, flow velocity v
(Mach number M), mass density p, and pressure p in the dis-
charge section according to Fig. 2.

tages of laser radiation must always be utilized in some
way in order to justify the high expenses. This means,
for example, that using the laser as a simple heat source
usually is not economical. Thus, it is necessary to be
aware of the outstanding properties of laser beams
which can be applied in material processing:

Energy balance of the gas flow

Kinetic energy per unit time | 9.2 kW
Tnput Dissipated heat per unit time | 50.2 kW 504 kKW
Enthalpy per unit time (refe-| 0.0 kW
rence) ,
Kinetic energy per unit time | 27.5 kW
Output | Enthalpy per unit time (refe- | 31.9 kW |59.4 kW
rence)
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* High radiance

* Small spectral bandwidth

* Pulsability

The high radiance of iaser beams is the most obvi-
ous property which gives the possibility to achieve high
power densities by focusing the beam. At a given raw
beam diameter D and a focal length f of the focusing
optics, the smallest focal spot radius and, thus, the
highest power density can be achieved for a Gaussian
beam [17]. The ratio between this optimum value for
the focal spot radius and the larger one which is
obtained for a “real” laser beam is called the X number.
Alternatively, the M? value is in use too. With the F
number of the focusing optics, defined as the ratio f/D
between the focal length fand the raw beam diameter
D at the focusing lens, the focal spot radius wy, is given
by (10), where A means the wavelength of the laser
radiation. For a laser beam of the power P, this gives the
power density p according to (11) in the focal spot [17].
Above and beyond the focal spot, the power density is
reduced, which is described by the Rayleigh length z,.
This number gives the distance at which the power den-
sity has reduced to half of the maximum value in the
focal spot and defines the focal depth. It can be calcu-
lated by using (12)

2AF

Wy = 7K’ (10)
nk’p

p=15L, (11)
207 F?
aAF?

z, = A - (12)

K

When thinking about applications of high-power CO,
lasers in the range of 100-kW beam power with the
focused beam, usually thick workpieces are to be pro-
cessed, which requires a high focal depth and, thus,
high F numbers, e.g., ' = 10. Taking this value as con-
stant, formulas (10)-(12) show that the focal spot
radius depends on the fraction (1/K), the power density
on (K?P), and the Rayleigh length on (1/K?). In order to
obtain a high power density, it is thus not sufficient to
increase the output power, but a good beam quality
must be provided too. The focal depth, on the other
hand, increases with decreasing beam quality, which
may be helpful for penetrating thick materials.

The small spectral bandwidth may be of interest
when materials shall be treated selectively. For clean-
ing or paint stripping applications, for example, the lay-
ers which have to be removed show a high absorption
for the radiation of the CO, laser, whereas the base
material, e.g., a metal, reflects the beam very effec-
tively and, thus, is not damaged by the laser beam.

The pulsability of lasers allows one to produce tem-
perature profiles which differ considerably from those
produced by continuous-wave sources such as electric

torches, gas flames, or high-power arc lamps. This, in
general, allows one to produce temperature gradients or
rates of heating and cooling which are very steep. This
facilitates exactly localized transformation processes in
the material or small heat-affected zones, respectively.

4.2. Laser Cutting

Fusion and oxygen cutting of metals with the CO,
laser are the best introduced processes of high-power
lasers. These a;l)plications require a power density of
about 107 W/cm?. For obtaining a small kerf width, lasers
operating in the fundamental mode (K = 1) are required,
that is why lasers with an output power of 2.5 kW at
maximum are preferred.

When higher laser powers are to be applied, this
means either an increased focal spot diameter or a
higher power density. Because of technical restrictions
which cause a degradation of the beam mode at high
output powers, the power density usually even degrades
compared to lasers of lower powers meaning a consid--
erable increase of the focal spot diameter. As a conse-
quence, the thickness of the materials which can be cut
increases but the quality of the cut is reduced, meaning
nonparallel edges, formation of striations, and dross. At
smaller thicknesses of the workpieces, an increase of
the feed rate can be predicted, where the quality of the
cut, however, remains poor.

Since the quality of laser cuts is one of the econom-
ical main advantages of this technology, cutting appli-
cations of 100-kW lasers in manufacturing engineering
seem to be of minor interest.

For very high beam powers, however, additional
applications can be considered where the quality of the
cuts is of no relevance. One example for this category
are decontamination and decommissioning (D & D)
applications which are assumed to be of great interest
in the near future [18]. In the field of dismantling of
nuclear plants, it is most important to cut heavy sec-
tions of arbitrary composition. Besides, it is very
important that the laser process can be remote con-
trolled, which makes it possible that personnel need not
enter the contaminated area. Another advantage of laser
cutting in this field is the fact that there is no mechani-
cal contact between the workpiece and the tool. That is
why no tools are contaminated and, thus, less waste is
produced.

4.3. Laser Welding

The welding process most commonly used with
lasers is deep penetration welding where the pressure
of the metal vapor forms a hole in the melt, the so-
called keyhole, which enables the beam to reach deep
regions of the workpiece, thus enabling to join thick
materials. In order to form the keyhole, power densities
of 10° to 107 W/cm? are required. When approaching
this power density, however, the formation of a plasma
must be considered which reduces the coupling of the
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laser radiation to the workpiece and interferes with the
deep penetration welding effect. Consequently, it is one
of the main tasks when developing welding processes
for very high beam powers to get a proper control of the
plasma formation. This can be achieved by adding
shielding and assisting gases to the interaction zone of
laser beam and workpiece. Under the condition that no
plasma shielding occurs, much power can be coupled
into the workpiece where the keyhole gives the possi-
bility to reach deep regions of the workpiece too.

The increase of the focal spot diameter, which is a
consequence of the reduced beam quality of high-
power lasers, meaning a great drawback in the field of
laser cutting, has sometimes even an advantageous
effect on the welding process. Since the laser beam and
the edges of the workpieces have to be aligned in a way
that the beam is incident on both edges at any time, this
requires a high precision of both the preparation of the
workpieces and the handling system. With an increased
focal spot, the latter requirements are obviously easier
"~ to fulfill, which means a more simple preparation of the
welding seam and an easier alignment of the workpiece
with respect to the laser beam.

For welding heavy sections, a high focal depth,
meaning a large F number, is required. Due to (11),
this means a high value of (K?P) in order to get the
required power density, and, thus, a high value of K
has to be demanded. In the case of a 100-kW CO,
laser (A = 10.6 um) and a power density of 107 W/cm?,
for example, a K number of about 0.1 is necessary,
which is assumed to be a very good beam quality of a
laser of this kind.

Since laser welding of heavy sections is assumed to
be one of the most realistic applications of a 100-kW
laser, a high beam quality must be one of the main
design requirements.,

4.4. Laser Surface Treatment

In surface treatment applications, the defocused
beam is used which means that the applied power den-
sities are far below those required for cutting and weld-
ing; typically they amount to 10* W/cm?. In order to get
the desired metallurgical effects, the temperature gradi-
ent as well as the heating and cooling rates must be
adjusted by selecting the focal spot dimensions, the
applied power, and the feed rates properly. In this field,
the laser shows some advantages over competing tech-
niques since the processed contours are defined very
precisely. Besides, the total heat input can be very small
giving no adverse effects like distortions or extended
heat-affected zones.

With high beam powers available, the processing
speed and the focal area can be increased accordingly,
giving the possibility of high-speed processing of large
areas.
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As an example, re-annealing of railroad track with a
laser mounted on a train carriage has already been dis-
cussed and is assumed to be a way to rework old tracks.

In the field of surface treatment, the beam quality of
the laser only is of minor interest and, thus, the require-
ments for the laser source are less restrictive. Here, the
laser acts more as a source for high irradiance instead
of high radiance. The competition, therefore, by con-
ventional techniques is quite large in this field so that
only in some specialized applications will the laser be
the better choice. As a consequence, a 100-kW laser
source should primarily be designed for applications
with high beam quality, since in this regime there are
obvious advantages over conventional techniques.

4.5. New Applications

Apart from scaling the well-known applications of
laser radiation up to very high beam powers, it can be
thought about some new applications which can only
be realized with such beam powers and, thus, are not
yet developed satisfactorily. Since it is not feasible to
increase the power density of a 100-kW laser above
values which can be reached with lasers at moderate
output powers, the main useful effect of high beam
powers is the increased irradiated area and the high
total power input. This may speed up some applications
to a level where they get economical on an industrial
level.

One example in this field is cleaning and paint strip-
ping with the laser. These applications are already used
in the restoration of fine arts, where the radiation of
pulsed Nd : YAG lasers is applied via a hand-held pro-
cessing head. Paint stripping, e.g., from the fuselage of
aircrafts during regular maintenance, has recently been
introduced by using CO, TEA lasers. Especially for
applications of this kind high average power TEA
lasers have been developed [19] which are capable of
stripping 8 m?/h, where it is known that about 90 J/cm?
are required to remove the 100-pm-thick layers.

For cleaning and paint stripping applications, it is
necessary to work with pulsed lasers in order to prevent
the base material from being thermally loaded. As a
consequence, the peak power of the laser pulses must
be very high when reasonable ablation rates shall be
obtained.

When using a very high power cw laser, the power
density does reach the desired level, but measures must
be taken to reduce the interaction time with the surface
of the workpiece in order to avoid overheating. This can
be reached by using scanner optics which sweeps the
beam over a large surface area. Considering that the
interaction time and the power density are set properly,
the removal rate of 90 J/cm? would yield a paint strip-
ping capacity of 400 m?h, when 100 kW beam power
is assumed.

Further applications can be found in metal forming
technology, where the laser beam heats up the workpiece
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locally causing a transition between the range of cold
working and hot working. It is well known that heating
a metal above its recrystallization temperature reduces
the yield stress and increases the elongation at fracture,
which allows higher logarithmic deformations and
reduced mechanical forces for forming hot materials.
Compared to conventional hot working, where the
whole workpiece must be heated, the process of laser-
assisted forming provides the advantage of selective
heating of the workpiece. This can be done directly in
the forming press, saving a lot of time. Besides, adverse
effects to the material properties caused by the (slow)
heating process can be avoided. One example for an
application in this field is laser-assisted deep drawing
(LADD) [20].

Finally, laser-assisted D & D (decontamination and
decommissioning) is assumed to be a field for the appli-
cation of 100-kW lasers. Apart from cutting in D & D,
which has already been mentioned, processes like abla-
tion or glazing must be considered too. Ablation can be
used to separate the waste depending on the degree of
contamination and, thus, to provide an adequate
removal or processing, respectively. Glazing with the
laser may be a useful way to contain the waste and pre-
pare it for removal. In all cases, it is advantageous that
the processes do not involve any mechanical contact
between tool and workpiece and that they can be
remote controlled.

5. CONCLUSIONS

The coaxial fast-flow laser has proven as a good
concept for a 100-kW CO, laser. The large cross sec-
tion of the discharge section allows high mass flows at
low pressure losses, which allows the efficient use of
radial blowers. Also the rf excitation for pumping the
active medium can be achieved at a good stability and
a high power density, which is due to the cylindrical
symmetry.

Industrial applications of 100-kW CO, lasers can be
found in deep penetration welding, surface treatment,
and laser-assisted forming cleaning/paint stripping,
where, however, the cost of the laser process must be
minimized in order to be able to compete with conven-
tional techniques.
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Abstract—The nonstationary averaging technique (spatial moments technique) is used for the solution of non-
linear heat equation describing laser ablation. The temperature dependencies of material parameters and the
temporal profile of laser beam are taken into account. Nonstationary heat equation is reduced to three ordinary
differential equations for the surface temperature, spatial width of the enthalpy distribution, and the ablated
depth. Calculations have been done for laser ablation of indium, where we study the influence of the duration
and temporal profile of the laser pulse on the threshold fluence, @y, the influence of temperature dependencies
in material parameters on the overall ablation kinetics (ablated depth versus laser fluence), the duration of the

surface melt presence, etc.

1. INTRODUCTION

Laser ablation is used in many technological applica-
tions like micropatterning (for microelectronics, micro-
mechanics, etc.), pulsed laser deposition including mul-
tilayer structures with atomic thickness, like X-ray mir-
rors, formation of nanoclusters, etc. [1-4].

To optimize these applications it is important to
understand the fundamental aspects of laser—matter
interaction. The coupling mechanisms of the laser light
to the ablated sample can be very complex. They are
related to the change of thermophysical and optical
characteristics during laser heating, phase transitions,
hydrodynamic effects, absorption of radiation within
the plume, optical breakdown of vapor, plasma forma-
tion etc. Many of these effects are accompanied by
numerous instabilities [5]. It is clear that there are no
simple analytical formulas which can be easily applied
to a given experimental situation.

The situation becomes even more complex for
ultrashort (subpicosecond) laser pulses where nonlin-
ear absorption, critical phenomena, different tempera-
tures of electron gas and lattice come into play [5].
Meanwhile, shorter laser pulses are used to produce
better ablation characteristics.

To analyze numerous effects in laser ablation, both,
the experimental investigations and the theoretical sim-
ulations are needed. For the effective feedback between
theory and the experiment one should develop semian-
alytical methods of “intermediate power,” which
should be flexible, applicable for quantitative analysis
of experimental data and can be done within seconds on
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a PC. Now there is a big gap between the primitive the-
oretical analysis related to the solution of the linear heat
equation and direct numerical solution of nonlinear
heat equation (or hydrodynamics equations) by finite-
differences or finite-elements technique with the help
of powerful computers. In the first case the analysis is
oversimplified and cannot be used sometimes even for
qualitative consideration. In the second case the analy-
sis refers to some particular problems and is not flexi-
ble, one cannot apply this technique for a fast analysis
of experimental data.

The first question which should be clarified during
the analysis is related to the ejection mechanism: is it
purely thermal surface vaporization, or do other mech-
anisms (hydrodynamics, nonequilibrium excitation of
electrons, phonons, etc.) contribute to the ejection? The
lack of real quantitative analysis of experimental data
in the broad range of parameters (especially in the field
of polymer ablation) leads to many speculations and
discussions. It is especially important for short laser
pulses where new effects are expected during the tran-
sition from nanosecond to femtosecond ablation
regime. The border for these effects lies probably in the
subpicosecond range and depends on the material.

In the present paper we applied the nonstationary
averaging (moments technique) to solve the nonlinear
heat equation, where one takes into account

— arbitrary temperature dependencies of material
parameters, such as the specific heat, thermal conduc-
tivity, absorptivity, absorption coefficient, etc.;

— arbitrary temporal profiles of the laser pulse;
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— strong (Arrhenius-type) dependence of the abla-
tion velocity on the temperature of the ablation front,
which leads to a nonsteady movement of the ablation
boundary during the (single) pulse;

— screening of the incoming radiation by the ablated
product;

— influence of the ablation (vaporization) enthalpy
on the heating process;

— influence of melting and/or other phase transfor-
mations.

Not included are hydrodynamic effects, nonlinear
optical effects, optical breakdown, nonequilibrium dis-
tribution in the lattice and electron gas, and thermally
induced stresses.

Calculations have been done for laser ablation of
indium. Here, thermal properties change strongly
below and at the melting point. At the same time (apart
from absorption coefficient, which behavior is difficult
to estimate) they are almost constant at elevated tem-
peratures. Calculations have been done for the radiation
with 248 nm (KrF excimer laser) where the experimen-
tal data on subpicosecond laser ablation were published
recently [6]. We study the influence of the duration and
temporal profile of the laser pulse on the threshold flu-
ence, @y, the influence of temperature dependencies in
material parameters on the overall ablation kinetics
(ablated depth versus laser fluence), the duration of the
surface melt presence, etc. At higher fluences one can
expect the change in ablation kinetics related to hydro-
dynamic effects (for nanosecond ablation) and to the
critical phenomena (for picosecond ablation regime).

2. THE MODEL

For the analysis of laser ablation process the follow-
ing approximation is often used. It is assumed that after
a certain delay time the ablation proceeds (quasi) sta-
tionary i.e., with constant ablation velocity v. The delay
time is found from the nonstationary heat equation with
v=0[1, 5, 7, 8]. In reality, one should solve the non-
stationary heat conduction problem with v= v{(¢) for all
times. An accurate description of nonstationary effects
in ablation and nonlinearities related to temperature
dependencies of parameters represents the main prob-
lem for the theoretical analysis.

We start with one-dimensional problem which is
relevant for sufficiently short laser pulses and nonfo-
cused beams [1]. We write it in the moving reference
frame fixed with the ablation front, and in terms of
enthalpy per unit mass H:

9H 3/ 9T\ ol _
(“a—z)‘a—f””’ 1)

a_}l—— v..__..+._.
Por = PV57 52

where we introduced the notation B[T] for the right-
hand side. The density of solid p is considered as con-
stant, while the heat capacity c, heat conductivity x, and
the source term (-0//dz) may significantly depend on

temperature 7. The intensity /, within the solid shall
obey Bouguer—Beer equation:

al

= Meo =1l @
where o is the absorption coefficient and I is the inten-
sity absorbed at the surface. In some cases [1, 7], I;can
be related to laser pulse intensity I = I(f) by

I, = IA(T,)expl—o,h], 3)

where A is the (temperature-dependent) absorptivity,
and o, is the vapor absorption coefficient, recalculated
to the density of solid. The exponential term describes
the shielding of radiation by the ablated material with

thickness h(f) = ﬁ) v(t,)dt; . The surface evaporation

—-ol,

(ablation) rate v is given by [7, 8]

v = voexp[—%}, )

s

where T, is the activation temperature (in Kelvin), vy is
preexponential factor (by the order of sound velocity),
which can be considered as a constant.

The heat equation (1) should be solved together
with boundary conditions. At the surface z = O it reads
[7,9]

2T

0z

Here, L is latent heat of vaporization and H, and H
are enthalpies of vapor and solid, respectively

= pv[L-H;+H,]. 3)

z=0

T T
HAT) = [e,(TdTy, H(T) = [c(T))dTy, (6)
T T.

where ¢, and c are the heat capacities for vapor and
solid, and T, initial temperature. Index s indicates the
surface value, i.e., H = H (T}), H; = H(T), etc.

The second boundary condition 7(z — e0) — T,
and initial condition 7(¢ = 0) = T, are trivial.

Using the second relation (6) between H and T the
boundary condition (5) can be rewritten for the value of
surface enthalpy gradient:

OH| = Y(L_-H +H )=J. 7
az z=0 DS( S VS') S ()

Here, D = x/cp is thermal diffusivity, D, = D(T),
and we introduced the notation J; for brevity.

Though somewhat simplified [7, 9], this model is
still acceptable for the quantitative analysis of experi-
mental data. In the present form it contains nonlineari-
ties and nonstationary effects which can be analyzed by
numerical solution with the help of finite-element tech-
nique (see e.g., [2]). This analysis requires big compu-
tational time and is not flexible. With the moment tech-
nique [10] which we will use in the further analysis,
No. 1 1998
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this problem can be reduced to three coupled nonlinear
ordinary differential equations with a small loss in
accuracy. These equations can be solved by fast
Runge-Kutta algorithms which are a routine part of
many computational packages. Therefore, we obtain a
fast tool for the quantitative simulation of thermal
effects in laser ablation.

3. MOMENTS METHOD

The idea of “moments method” or “nonstationary
averaging” method (see, e.g., [10]) is close to Galerkin
method for approximate solution of nonlinear prob-
lems. This technique, was successfully applied, e.g., to
problems in laser thermochemistry [11]. Here, we
apply this technique for the analysis of laser ablation.
The details of the procedure and the validation of the
method’s accuracy will be discussed elsewhere [12].

The idea of the method is simple. The exact sotution
of the boundary-value problem (1)—(6) fulfills (1) iden-
tically. If we use some approximate trial solution H =
H(z, t) the identity (1) will be violated and will result
in the residue R:

JH
p_at—E—B[Tp]ER[Hp]' (8)

Nevertheless, we can use H (z, t) as an approximate
solution, if we demand that it fulfills the “conservation
laws” for the moments M,

oo

dM, ¢ _
- ["BIT(H (2, 0))dz = 0,
° . ©)
where M, = z"H,,(z, t)dz.

0

The total number of equations (9) should be equal to
the total number of unknown time-dependent functions
which characterize H,(z, 1). Equations (9) minimize
residue R along the directions z” within the functional
space.

The difference between the Galerkin and moment
methods refers to physics. There is no general algo-
rithm for the choice of the trial function. The Galerkin
method varies the trial functions in such a way that their
combination is as close as possible to the “true solu-
tion.” Some conservation law may not be fulfilled dur-
ing the procedure. The moments method suggests less
efficient approximation to the true solution, but it war-
rants that during the evolution certain conservation
laws hold. As a result, the set of equations produced by
the moment method usually has a clear physical sense.

For example, in (9), the equation for M, reflects the
time-dependent energy balance, while equation for M,
reflects the local energy balance with respect to some
characteristic length.
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We will consider two time-dependent parameters—
surface temperature Ty(f) (and associated surface
enthalpy H, = H[T,(t)]) and characteristic length I(#) for
the enthalpy distribution. These two quantities yield the
most important information about the distribution of
internal energy within the solid, which, as we believe,
governs the ablation process. According to (9) we intro-
duce two moments of enthalpy distribution:

My(t) = IH(z, t)dz,
0 (10)

o0

and M,(f) = j ZH(z, 1)dz.
0
Integration of equation (10) with (5) yields
aMy

p—" = —pvH,-pvIL—H, +H]+I, (1)
and
am - I
L =
L = —pvMy+ jK(T)dT+a. (12)
T

00

The integral in the right-hand side is typical for the
Kirchhoff transform [1]. We set the trial solution H,(z, 7)
in the following form:

1
H,(z,t) = 1—~—_—W[HX+JSI]exp[—(xz]

1 (13)
Z
——[alH, + Jsl]exp[ 1]'

This form satisfies boundary condition (13) and
obvious requirement H,(z = 0, £) = H(#). The first term
in (13) describes the change of the enthalpy distribution
with characteristic scale related to absorption of radia-
tion, while the second term describes the changes
related to heat conduction. From the physical point of
view I(t) represents the thermal length. Substitution of
(13) into (10) yields

M, =(+0o" Hs+oc_‘le,
0= ( ) (14)

M, = (l2 +lo + oc_z)Hx +(+ oc'l)oz'llls.

Now, we can substitute (14) into (11), (12) to obtain
two ordinary differential equations for T; and /. Note
that J, as well as H,, depends on surface temperature 7
via (7) and (6). It is not necessary to resolve the result-
ing equations with respect to di/dt and dT,/dt for the
numerical computations which have been done with
Mathematica software package [13].

The third equation for the thickness of ablated mate-
rial [which we need for the description of the screening
effect, see (3)] is given by

dh _
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Thus, the initial boundary-value problem is reduced
to three ordinary differential equations for T}, /, and h
which should be solved with corresponding initial condi-
tions. The study [12] shows, that this solution describes
known analytical solutions with accuracy 5-10%. It also
describes well the influence of the temperature-depen-
dent o(T), x(T), and A(T) and, to a lower extent, o(7).

4. LASER ABLATION OF INDIUM:
NUMERICAL SIMULATION

With laser ablation of metals one can often subdi-
vide the fluences used in the ablation experiments into
three regions:

(1) subthreshold ablation with ® < ®,,, where Ah o
exp[-B/®];

Time, ns

2000 2.5 20 L&

(@ ®=0.1Jcm?

|07

<

iyy
h, A; I, MW/em?2; v, cm/s

T, X; [, nm; Ay, nm
i
S
S

0
100

Time, ns

Fig. 1. Calculated dynamics of heating and ablation: (a)® =
100 mJ/cm? (subthreshold fluence) and (b) @ = 300 mJ/cm?.
The surface temperature T (solid line), thermal length [
(diamonds), and position of melt 4,,, (filled triangles) refer to
the left axis, while the thickness of ablated material /2 (open
circles), laser intensity I (filled circles), and the ablation
velocity v (solid line) refer to the right axis. The tempera-
ture dependencies of ¢(T), k(T), and W(T) are given in the
Appendix. The analytical temperature (18) is shown by dot-
ted line. Initial temperature is T,, = 300 K. The value of
absorptivity is A = 1, and the absorption coefficient is ol =
(x(Tw), IFWHM = 15 ns.

(ii) near-threshold region with ® = ®,, where
Ah < @;

(iii) region of developed ablation, ® = (3-5)®,,
where the screening becomes important. For this region
Ah < log[®]. An optical breakdown occurs at still
higher fluences and highly ionized plasma forms near
the target, which changes the ablation kinetics dramat-
ically.

In the last two regions certain approximate solutions
can be found [7, 14]. Above the threshold, the overall
kinetics of thermal ablation is not very sensitive to non-
stationary effects and material parameters. It is guided
mainly by the overall energy conservation law and by
the plasma properties at higher fluences. In this work
we will be concerned with subthreshold ablation. Here
ablation is essentially nonstationary and depends
heavily on the material properties and pulse character-
istics. This makes it difficult to write any approximate
formulas for this region. To find ablated depth one has
to calculate the integral

te

j v(t)dt.

0

Ah = (16)

This can be done easily with the help of moments
method, the calculations with which can be carried out
as fast as the calculations with approximate analytical
formulas. The advantage of the moments method is also
that we may describe with equal ease the experimental
data in the intermediate situations, where no approxi-
mations exists.

We apply the developed method to the ablation of
indium. The calculations are performed for KrF exci-
mer laser (A = 248 nm). Thermal and optical properties
used in calculations are summarized in the Appendix.
Indium has a low melting temperature, almost constant
thermal conductivity, and the specific heat above the
melting point. Ablation data have been measured for
the background temperature below and above the melt-
ing point both for ns and fs laser pulses [61. This makes
indium an attractive model system.

The hydrodynamic effects are weak for the ns pulses
near the threshold. They can become more pronounced
with higher fluences (higher recoil pressures) and mul-
tipulse irradiation [15-17]. In fact, developed hydrody-
namic effects for ns laser pulse can be seen on the SEM
photography, shown in [6]. Similar effects were found
in ns experiments for bismuth and lead [15].

We approximate the temporal profile of the excimer
laser pulse by a smooth function [1]

1) = Iotflexp[—ﬂ. 17)

The laser fluence is given by @ = Iyt,. Note, that ;=
0.4091zw1 (the duration of the pulse defined at the full
widths at half maximum). Below, this pulse is referred
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to as “excimer” pulse. The analytical solution of the lin-
ear heat equation 7,,,(f) presented for comparison in the
first figure is given by

Ton(2)

t

18

= Tw+p%jl(t—tl)exp[0c2Dt1]erch/oc2Dtldt1, (1)
0

where parameters of the material are taken at T'= T...

Figure 1 shows the calculated time dependencies of
different quantities in a single ns pulse. In Fig. 1a abla-
tion is absent, while in Fig. 1b several angstroms are
ablated. The following features are worth noting.

(i) The rate of heating slows down near the melting
point.

(ii) Melt exists extremely long after the end of the
laser pulse (At,, > 1). This is especially typical for
indium with its low 7,, and AH,, and high thermal con-
ductivity, which allows one to melt a big volume. The
flat tail in 7,(¢) dependence is due to the release of the
latent heat of solidification.

(iii) The estimations of the surface temperature
based on the analytical solution (18) of the heat equa-
tion may lead to big mistakes.

(iv) Ablation is essentially nonstationary. Ablation
velocity is by no means constant during the pulse. Ther-
mal length increases all the way during and after the
pulse and is not very sensitive to the onset of ablation.

The last fact indicates that, for the parameters used
here, ablation cannot be described by a quasi-stationary
wave. It also suggests that the ablation threshold and
rate may noticeably depend on the temporal profile and
duration of the laser pulse.

Figure 2 demonstrates that the shape of the pulse
influences the maximal temperature and the ablated
depth significantly. This is due to the fact that with met-
als and ns laser pulses, T, (near the threshold) is
determined by heat conduction. This results in higher
temperatures for more “compact” pulses, without tails,
which lead to the unnecessary energy losses to the heat-
ing of material. The most compact pulse is the rectan-
gular one. This is similar to the theoretical analysis
[18], where it was shown, that the deepest melting (with
fixed fluence and characteristic duration) is provided by
the rectangular pulse. One can see that the ablation
curves almost coincide for the rectangular pulse, and
for the excimer pulse (17), with twice as small fpywpm
(dashed line). It is interesting to note that, although the
maximal temperature for the short excimer pulse is
slightly lower, the ablated depth is higher. Indeed,
though the maximal ablation velocity is higher for the
rectangular pulse, the effective width of the v(z) is big-
ger for excimer pulse. As a result integral in (16) has
higher value for a smoother excimer pulse.

With higher fluences the maximal temperature
grows slower and the ablated depth becomes linear with
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Fig. 2. The influence of the pulse shape onto the ablation.
Three pulse shapes were used: rectangular, symmetric tri-
angular, and smooth excimer pulse (17). Dashed lines refer
to excimer pulse with fpwpm = 7.5 ns. In all other cases
tpwnm = 15 ns. Initial temperature is T, = 600 K. Other
parameters are the same as in Fig. 1. The plots for the max-
imal temperature (right axis) vs. fluence (top axis) are
shown in linear scale. The plot for the ablated thickness per
pulse is shown in Arrhenius coordinates, i.e., log(h) (left
axis) vs. inverse fluence 1/® (bottom axis).

the fluence (as long as screening and hydrodynamics
effects are negligible) due to latent heat of vaporization.
The transition to this regime (which can be considered as
an ablation threshold) occurs above @ = 0.3 J/cm? when
the amount of ablated material per pulse exceeds 100 A
This threshold significantly depends on the pulse
shape. Thus, with the same tpyyy €xperiments can
show different threshold fluences. It is important, for
example, for excimer lasers, where the pulse shapes can
vary strongly. We emphasized the importance of the
temporal shape of the laser pulse previously [1, 18, 19].

Another interesting feature of Fig. 2 is that the
“Arrhenius plot” log(h) versus 1/® is steeper than lin-
ear below the ®,,, in spite of the fact that the tempera-
ture is linear with fluence in this region. The slope of
log(h) versus 1/® dependence is influenced by the
pulse shape and duration. The reason for this is again
the widening of the temporal region with v(¢) # 0 in the
integral (16). For the analysis of the experimental data,
one also has to have in mind that with many excimer
lasers fpwim increases with the output pulse energy.

Figure 3 illustrates the influence of temperature
dependences in A(T) and o(7) onto ablation curves. As
in Fig. 2, for simplicity calculations are performed for
liquid indium. With ns pulses a2Dr, > 1, and absorption
is essentially surface. This holds even for smaller val-
ues of o at elevated temperatures (see the Appendix).
As a result, o(T) dependence makes only a minor dif-
ference for ns pulses. The difference, which can be seen
in the figure, is almost entirely due to A(T) dependence,
and is “accumulated” during the initial stage of heating,
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Fig. 3. The influence of temperature dependencies inA and
o onto the ablation. For ns pulses the solid curves refer to
the temperature-dependent coefficients. Dotted lines refer to

A = 1. For ps pulses solid curves refer to ot = 10° cm™!, while

dotted lines, to o, = 1.2 X 10° cm™. The absorptivity for ps
pulses is A = 1. Initial temperature is T, = 600 K in all cases.

Other parameters are the same as in Fig. 1.
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Fig. 4. The influence of the initial temperature T, onto the
ablation. Solid curves refer to T,, = 300 K and dotted curves,
to T,, = 600 K. Absorptivity is A = 1, and the absorption

coefficient is o = 1.2 x 10% cm™! for all curves.

when the absorptivity is significantly smaller than one
(A.7). One can also see a faster than linear increase in
the T, at low fluences, where absorptivity strongly
increases with temperature.

The analysis of the ps pulses (with a2Dr; < 1) with
the present model has a more qualitative character.
Thermal surface evaporation model can be applied to
ps pulses near and below the threshold only. This is
related to several factors. According to [5], electron—
phonon thermalization occurs within subpicosecond
range. As a result, the temperatures much higher than
the boiling temperature, and probably even the critical
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temperature T, are reached already at low fluences.
This leads to the following complications.

(i) With temperature approaching T, the distinction
between the condensed and the solid phase disappears.
This results in the decrease in the vaporization enthalpy
AH =L - H , + H, (which is equal zero at the critical
temperature). At the same time, specific heat tends to
infinity at T, [20]. Above T, only one phase exists. The
material does not have the time to fly out of the laser
beam, and provides very strong screening even at rela-
tively low temperatures. With high fluences, it is more
realistic to assume simply that all material heated above
T, is ablated.

(ii) The moment method in its present form adopted
for the brevity in this work yields rather big mistakes in
the case of short pulses 0*Dt; < 1, when o strongly
changes with temperature [12].

(iii) Besides, optical parameters of indium at high
temperatures are known only from the extrapolations.

For these reasons, we present in Fig. 3 the results for
A(T) and two constant values of o.. Temperature depen-
dence of absorptivity does not influence the ablation
curves, because with ps pulses, already at low fluences
the temperatures are so high that A = 1 [see (A.7)].
Dependence o(T), to the contrary, is very important.
The maximal surface temperature is proportional to o
in this region (calorimetric solution). This about triples
ablation threshold when o is decreased from 1.2 x 10°
to 10° cml. The temperature for a(7) dependence
given by (A.8) lies between the dotted and the solid
curve, while the behavior of the ablated depth near the
threshold is quite similar to that for o = 10° cm!, due
to high temperatures achieved in this region.

Thus, high-temperature behavior of the absorption
coefficient (which is usually not known from the direct
measurements) is extremely important for the determi-
nation of ablation threshold in the ps pulses, and unim-
portant in the ns case. The A(T) dependence, to the con-
trary, influences the ns threshold, but not the ps one.

Figure 4 shows the influence of the ambient temper-
ature onto the ablation curves. With ns pulses, the main
difference stems from two factors:

(1) Thermal conductivity of liquid phase is about
twice as small as for the solid indium. This yields a
reduction in the slope in initial part of 7(®) dependence
for T,, =600 K.

(ii) The necessity to heat over 300 more Kelvin
when heating starts from T, = 300 K. The heat of fusion
is anomalously small for indium and is less important
than these factors.

The fluences necessary for the developed ablation
from solid and liquid phases differ by some 20-25%.
The relative difference becomes more pronounced for
very small ablated depths.

This is not the case with ps pulses, where the curves
for the temperature and the ablated depth almost coin-
cide for both T... The reason is that, with ps pulses, due
No. 1 1998
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Table

Parameter Value Units
Atomic number, A 49
Atomic weight, M 114.76 g/mole
Density, p 7.3 g/em?
Melting temperature, T,, 430 K
Vaporization (boiling) temperature, T, (corresponds to saturated vapor pressure P = 1 atm.) 2340 K
Latent heat of fusion, AH,, 28.5 Iig
Latent heat of vaporization, AH, 1960 lg
The Debye temperature, Tp 108 K

to their short duration, ablated depth comparable to that
of ns pulses is achieved at higher ablation velocities,
that is, at higher temperatures. In this case 300 K differ-
ence in the background temperature is less important.
Besides, the heat conduction plays less important role
in ps pulses. It determines the cooling time of the sur-
face, 1.e., enters the ablated depth almost linearly. In ns
pulses, it determines the maximal temperature, and as a
result exponentially influences the ablated depth.

Thus, we should consider that laser ablation of
indium with nanosecond pulses seems to be purely
thermal although the temperature dependencies of
material parameters strongly influence ablation rate.
On the contrary, with subpicosecond pulses some other
effects (not included into the discussed model) play an
important role.

Effects related to the difference in electron and lat-

tice temperature [21 1! seem to be the most important as
well as the critical phenomena (heating above the criti-
cal temperature).

5. CONCLUSIONS

Numerical simulations of nonstationary effects in
thermal surface laser ablation of indium are performed
on the basis of the nonstationary averaging technique.
Nonstationary effects influence the kinetics of laser
ablation differently for nanosecond and picosecond
laser pulses. Below we summarize the results.

— There exists a big difference in characteristic tem-
peratures during the ablation by ns and ps pulses. For
ps pulses temperatures are significantly higher and
probably exceed critical temperature. This may render
surface ablation model irrelevant already near the abla-
tion threshold.

! We should mention that the moments technique was used in [21]
to estimate ablated layer thickness under simplified assumptions
(one-temperature approximation with constant material parame-
ters).
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— Experimentally measured ablation threshold for
ps pulses [6] is significantly higher than expected from
the data based on room temperature values of absorp-
tion coefficient. This is probably due to a significant
decrease in absorption coefficient with temperature.

— There exists a big difference in the ablation rates
for ns ablation of solid and liquid indium, while for ps
pulses this difference is practically absent.

— With indium, the Kinetics of ablation with ns
pulses is sensitive to the nonlinearities caused by the
temperature dependencies in thermal conductivity and
absorptivity. At the same time it is not sensitive to tem-
perature dependence in absorption coefficient. With ps
pulses, only the temperature dependence in the absorp-
tion coefficient strongly influences kinetics.

— Ablation threshold and near-threshold kinetics of
nanosecond laser ablation (unlike the picosecond one)
are sensitive to the temporal shape of laser pulse. Sub-
threshold ablated depth may deviate from the Arrhenius
dependence on fluence due to nonstationary effects,
and the slope of this Arrhenius dependence depends
noticeably on the pulse shape.
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APPENDIX: THERMOPHYSICAL AND OPTICAL
PROPERTIES OF INDIUM

(a) The table summarizes the parameters of indium
which were taken as constant in calculations. The data
were taken from [22, 23].

(b) Specific heat ¢(T). The algorithm uses the ana-
lytical integration for the enthalpy. Thus, the specific
heat (as well as the thermal conductivity) was fitted
by the functions which allow analytical integration.
The coefficients were found by the minimization of
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least-square deviation. The interpolation holds within
250-3000 K. ¢(T) is measured in J/g K and 7, in K,

] T-T
c,(T) = 025+1.19x 10 2arctan[ AT"’}
(A1)

s T-T,
1.49 X 10 Tarctan[ o ]

The temperature width of melting AT=0.017,,=43 K
was introduced to smoothen steplike changes in param-
eters near T,,. The constant specific heat approximation
with ¢, = 0.24 J/gK results in less than 4% difference in
the calculated temperature, and can be used as well.
The Debye interpolation formula [20], as well as the
Dulong—Petit law, deviates from the experimental
data. These deviations are probably caused by anhar-
monicity.

The latent heat of fusion was taken into account by
the “specific heat of melting” which was written in a
Lorentzian form

AH,, AT
en(T) = . 5 (A2)
T AT +(T-T,)
The total specific heat is given by
c(T) = c,(T) +c,(T). (A.3)

(c) Thermal conductivity k(7). The interpolation
formula was taken in the form

T Tm T
K(T) = 0.396 —0.23 (arctan[ — J _ E)
T (A4)
-4 “iIm T
+2.6%10 T(arctan [A—] - E)'

It includes jump at the melting temperature and fits
experimental data [23, 24] with sufficient accuracy
within the region from 250-3000 K.

(d) Surface evaporation rate. According to
[22],the evaporation rate is given by

300 T,
w(T) = v, /Texp[——T—],

where T, = 28000 K and v, = 4.2 X 103 cm/s. Without
loss of accuracy the value vy = 1.5 x 10° can be used in
(4) for the whole preexponential factor (its value at
boiling temperature). The activation energy is in agree-
ment with measurements on saturated vapor pressure,
which yields 7, = 29000 K [22].

(e) Optical properties of indium. The data given
in [22] yield too high value of A ~ 0.4-0.6. The ideal
films of indium prepared in ultrahigh vacuum conditions
and well annealed show a big reflectivity (see [25, 26]).
Using Drude theory we extrapolate data [23] for 298 K
to the wavelength of KrF excimer laser (A = 248 nm,
fiw = 5 eV). It yields A = 0.16 for the absorptivity and
o = 1.2 x 108 cm™! for the absorption coefficient.

(A.5)

We use the Drude formulas for the calculation of the
temperature dependencies and the relation o(1)T =
const which should be fulfilled above the Debye tem-
perature [27]. We assume that this approximation holds
for indium above 300 K.

To find the jump in the optical characteristics at
melting temperature we can use the continuity of the
Wiedemann—Franz ratio x(T)/To(T) across the melting
point [24]:

GS
G,

K

28 = 2.1.
r=r, K

T=T,

(A.6)

This yields jump in absorptivity up to A = 0.4 at
melting temperature. For the smooth interpolation of
absorptivity above the melting temperature we used

(A7)

T,-T
A(T) = 1 —O.6exp[ e }
The jump in o is small and almost does not influ-
ence the heating. It was not included in the interpola-
tion which we used:
10°

o) = Oy + OLIT[Cm

-1
) (A.8)

where o, = 0.582, o, = 7.813x 107,
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Abstract—Measurements of electron spectra of above-threshold ionization in an elliptically polarized laser
field are reported and discussed in terms of theoretical models. For low energies, the electron yields in the direc-
tion of the large component of the elliptically polarized field first decrease when the ellipticity increases and
then rise again when circular polarization is approached. A classical explanation of this effect is provided. The
same electron yields display, while they are decreasing as a function of the ellipticity, characteristic shoulders
and ripples. These features can be related to quantum mechanical interference of electrons tunneling out into
the continuum at different times within one cycle of the field. Electron yields for high energies, those that are
part of the plateau, drop very quickly with increasing ellipticity at a rate almost independent of the energy. This
is fully explained by spreading of the electronic wave function. A first example of the electron spectrum as a
function of energy and angle of emission for fixed ellipticity is presented, too.

1. INTRODUCTION

The electronic spectra recorded in above-threshold
ionization (ATI) (for a recent review, see [1]) display
many qualitative features that do not depend on the
individual atom. Typically, these are large-scale effects
that dominate the overall appearance of the spectrum.
Examples include the suppression of the low-energy
peaks in, long-pulse ATI [2], the typical differences
between ATI caused by linear versus circular polariza-
tion [3], and in high-energy ATI the plateau [4] and the
associated side lobes [5] in the angular distributions.
The plateau and its cutoff in high-harmonic generation
(HHG) is another case in point [6]. All of these phenom-
ena have in common that basically they are manifesta-
tions of simple classical physics. Quantum mechanics is,
of course, responsible for the very existence of separate
peaks and, certainly, for many of the details (as yet
poorly understood) of the spectra which do depend on
the atomic species. Part of the reason of why there is so
little visible evidence of quantum mechanics in the spec-
tra is the thus far limited means of probing the system.
In particular, one of the decisive parameters, viz. the
intensity of the incident laser field, has no well defined
value in actual experiments. Hence, any feature of ATI
that has, in principle, a sensitive dependence on the
intensity tends to be smoothed over in the data, often
beyond recognition. In this work we exploit the existence

I Also at Center for Advanced Studies, Department of Physics and
Astronomy, University of New Mexico, Albuquerque, NM, 87131
USA.

Z Also at Sektion Physik der Ludwig-Maximilians Universitét
Miinchen, Am Coulombwall 1, Garching, 85747 Germany.
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of an additional parameter which can be controlled very
well in experiments: the ellipticity of the laser field.

Ellipticity will be seen to introduce further exam-
ples of the kind of almost classical effects which are so
typical of ATL. Some other effects, also to be discussed
in this paper, can still be understood in terms of classical
trajectories provided quantum mechanical wave packet
spreading is taken into account. However, the most inter-
esting effect of ellipticity will be that it allows to track
quantum mechanical interference of different tunneling
trajectories [7]. These interferences are ubiquitous in ATI
as well as, presumably, HHG. Usually, however, they are
not visible owing to the broad intensity distribution of
the laser field. Varying the ellipticity in a controlled man-
ner brings them into the open.

The paper is organized as follows. In the next Sec-
tion, we describe the experiment and briefly review the
results. We observe characteristic ripples in the depen-
dence of the ATI rate for fixed energy and direction of
emission as a function of the ellipticity of the ionizing
field. In the third Section, we discuss several theoretical
concepts to be used later on in the analysis of the exper-
imental data. First, we investigate symmetries of the
exact matrix element for multiphoton ionization into a
given channel due to an elliptically polarized field. We
then check whether or not these symmetries are obeyed
by the KFR approximation and/or an improved approx-
imation that allows for rescattering. Second, we evalu-
ate the KFR matrix element by a saddle point approxi-
mation. The saddle points lend themselves to a semi-
classical physical interpretation: they specify the time
at which the electron is “born” in the continuum via
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tunneling and the associated tunneling time. The
expression for the ionization rate in terms of the saddle
points makes it evident that the contributions from dif-
ferent saddle points interfere, constructively or destruc-
tively. Third, we review the “simple man’s” model and
extend it in order to account for finite-range effects of
the binding potential on the angular spectrum. Finally,
we review the “Gaussian overlap model” which is use-
ful in the analysis of the ellipticity dependence of the
ATT spectra at high energies when the rescattering
mechanism is dominant. In the fourth Section, we scru-
tinize the experimental data in the light of the models
introduced earlier.

2. EXPERIMENTS

Our experimental setup consists of a femtosecond
laser system, the vacuum chamber with the electron
spectrometer, and a computer that controls the experi-
ment and collects the data. The pulses are generated in
a colliding-pulse mode-locked ring dye laser with chirp
compensation by four prisms. It delivers 50fs pulses
with a repetition rate of 100 MHz and a wavelength of
630 nm. A two-stage multipass dye amplifier pumped
by a copper-vapor laser raises the energy to about 15 uJ
per pulse at a repetition rate of 6.2 kHz. After recom-
pression in a prism sequence, 50-fs FWHM pulse dura-
tion can be achieved. The laser beam is focused with a
120 mm achromat inside the vacuum chamber. The
beam waist of the focus is about 12 um FWHM. This
leads to a peak intensity of 1.6 X 104 W/cm?.

The electron spectrometer uses time-of-flight anal-
ysis. The atoms leaving a very fine nozzle with a
diameter down to 10 pm are jonized by the laser
pulses. The photoelectrons then travel through a flight
region of 40 cm length and double shielded by cry-
operm. Finally they are detected by a microchannel
plate at right angles to the incident laser radiation with
a collecting angle of 5°. By means of a cryopump the
background pressure in the vacuum chamber is held
below 1078 Torr.

Special emphasis was given to the resolution of the
spectrometer and to its collection efficiency. The flight
times of the photoelectrons are measured by a
FAST7886 multiscaler capable of recording many elec-
trons per laser shot without dead time and with a reso-
lution of 500 ps. In addition, for each laser shot, the
fastest electron is recorded with 100 ps time resolution
by a time-to-amplitude converter the output of which is
digitized. Since time resolution is most critical for fast
electrons on the one hand and since the number of these
electrons is very small on the other, the spectrometer is
well adapted to the problem of measuring high-order
ATI spectra.

A program, partially in assembler and running on a
Pentium-PC, was written to control the time-to-ampli-
tude converter as well as the multiscaler and to collect
the data. In addition the computer controls one or two
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rotary stages with a half- or a quarter-wave plate to manip-
ulate the laser polarization. Typically we use 73 different
positions of the rotary stage and move it every 20000
laser shots. In the case of photoelectron angular distri-
butions this corresponds to an angular resolution of
2.5°. Thus the computer mimics 73 different multi-
channel analyzers. In order to minimize systematic
errors due to possible long-term drifts in the experi-
mental apparatus, the spectra corresponding to the dif-
ferent directions (or ellipticities) of the laser polariza-
tion are measured at quasi the same time, that means
the rotary stage scans its typically 73 positions several
times.

Besides the photoelectrons, the energy of each laser
pulse is also registered by a photodiode. Thus the influ-
ence of intensity fluctuations can be monitored. A mea-
surement of an angular distribution or an ellipticity dis-
tribution takes one to three hours. The gas pressure is
adjusted so that no space charge effect is visible. This
corresponds to an electron count rate of less than 10 ™!
for that position of the rotary stage that corresponds to
the strongest spectrum. About 30 x 10° electrons are
recorded for such a measurement.

For the discussion of the data it is useful to discrim-
inate between “direct” and “rescattered” electrons.
Direct electrons leave the field region without signifi-
cant interaction with the binding potential after they
have emerged in the continuum. In the context of the
classical “simple man’s” model [8], for linear polariza-
tion, their energy cannot exceed twice the ponderomo-
tive potential U,,. In contrast, rescattered electrons have
been subject to substantial interaction with the binding
potential after having made a major excursion away
from the parent ion. In the process of rescattering they
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Fig. 1. Measured ellipticity distributions for xenon at an

intensity of 0.8 x 10'* W/cm?2. Here and in the following
Figs. 2 and 3 the data are taken in the direction of the large
axis of the polarization of the field. The data are normalized
to unity for zero ellipticity. The thick solid line labelled
“theory” gives the result of the Gausian overlap model. The
inset depicts the energy spectrum for linear polarization.
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may acquire energies, again for linear polarization, as
high as 10 U, [9]. The distinction between direct and
rescattered electrons is somewhat vague, both in theory
and even for a short-range potential, and even more so
in reality, particularly in the intermediate energy range.
Still we believe it is useful in view of the physical pic-
ture it communicates. It becomes more precise within
the theoretical context discussed below.

Figures 1 to 3 display typical experimental results.
In each case, electron counts in the direction of the
large axis of the polarization ellipse are given in arbi-
trary units on a logarithmic scale as a function of the
ellipticity & of the incident laser field. The ellipticity
varies from left circular via linear to right circular. The
experimental setup is such that the intensity is held con-

stant as the ellipticity is tuned. The ellipticity distribu-
tions of direct and rescattered electrons have a very dif-
ferent appearance. The count rate of the rescattered
electrons drops very quickly with increasing ellipticity
(cf. Fig. 1). The shape of this relative decrease is largely
independent of the electron energy. Ulimately, when
the ellipticity approaches unity, the electron yields for
not too high energies rise again and reach a local max-
imum for circular polarization. Figure 2 displays yields
of direct electrons. Their count rates decrease as well as
the ellipticity rises from zero, but much more gradually
and in a nonmonotonic fashion. The overall decrease
has superimposed oscillations which move to lower
ellipticities when the electron energy is raised. In this
process the oscillations degenerate into shoulders and
Vol. 8 1998
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finally become indiscernible. The spectra of Figs. 1 and
2 were taken for xenon. Figure 3 shows spectra of direct
electrons from irradiation of argon. Essentially the
same structures are recovered, in particular the ripples
which move to lower ellipticity for increasing energy.
All of these features will be explained below and traced
to different physical origins.

Figure 4 is the only angular distribution shown in
this paper, all other results concerning emission in the
direction of the large axis of the polarization ellipse of
the field. The figure details, for a fixed ellipticity of § =
0.36 of the driving field, the angular distribution for
angles from —90° to 90° with respect to the large axis
and electron energies from 0 to 50 eV in the form of a
density plot. More examples of angular distributions
for nonzero ellipticity will be presented and discussed
elsewhere. Here we will be satisfied just with highlight-
ing a few of the most conspicuous features. The figure
covers both direct and rescattered electrons. The lack of
left-right symmetry for both is obvious. A peak struc-
ture of the spectrum is well developed except for the
lower energies at positive angles. A ripplelike structure
is visible for the low-energy electrons in the region of
negative angles. It moves towards smaller angles with
increasing energy. Emission of the plateau electrons is
maximal at an angle of about 20° with respect to the
large axis. The angular distribution with respect to its
center at this angle exhibits a marked asymmetry.

3. THEORETICAL CONSIDERATIONS

In all that follows, we will consider the monochro-
matic elliptically polarized field

E(t) = k. (&sinwr — E§cos o) (1)
1+&°
with ellipticity &. Its vector potential is
A1) = a(Xcos®t + EF sinwt) 2)

witha=E /(0~1 + &2 ). We defined the field such that
its ponderomotive potential

U, = X (A(1)")/2m 3)

is independent of the ellipticity. For later use we still
introduce the parameter

_1-¢
§_1+§2' 4)

3.1. Symmetries

In the interaction representation, the exact matrix
element for multiphoton ionization to a state with
asymptotic momentum p can be expressed as

M(p.8) = <p|Texp{—i f drH,(r)}m, ®)
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-90° 0° -80°

Angle of emission

Fig. 4. Measured angular distribution of ATI in xenon for
angles from —90° to 90° (horizontal axis) with respect to the
large axis of the incident elliptically polarized field and for
electron energies from 0 to 50 eV (vertical axis). The inci-
dent field has an ellipticity of & = 0.36, the intensity is

approximately 1.0 X 101 W/cm?. The rate of emission is
indicated on a gray scale which is renormalized for each
electron energy. That implies, the rates of emission for dif-
ferent energies cannot be directly compared.

where |0) and p) denote the initial bound state and final
scattering state with asymptotic momentum p, respec-
tively, in the given atomic binding potential V(r). H,
denotes the interaction operator with the external laser
field. In the length gauge,

Hyt) = ¢ (—er - E(0))e 6)

with the atomic Hamiltonian Hy = p?/2m + V(r). First,
we notice that the matrix element (5) is independent of
the sign of the momentum component p, which is per-
pendicular to the plane of the polarization. For the time
being, we will suppress the dependence on p, in what
follows, so that p = (p,, p,) refers to just the momentum
in the plane of the polarization. If the atomic Hamilto-
nian H, obeys parity symmetry and the initial ground
state is an eigenstate of parity, then it is intuitively obvi-
ous and easy to show that
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The equality holds, in general, only up to a phase which
we indicate here and below by writing =. In order to
prove the inversion symmetry (7) we write

M(-p,8) = <p|PTexp{—i | drH,(r)}PPu», ®)

where P indicates the parity operation in the plane of
the polarization, P?> = 1 and P|0) = 2|0). Carrying out the
parity operation in (8) flips the sign of the exponent in
the time-ordered exponential. Substituting subse-
quently T — 1t + T/2 with T the period of the field
yields another change of sign so that

PTexp{—i j dtH,(T)}P
- )]
IHOT/2TCXP{—1J.dTHI(T)} IHOT/2.

The two exponentials that sandwich the time-ordered
exponential on the right-hand side of (9) yield phases
when applied to the respective states in (8). This com-
pletes the proof of the inversion symmetry (7) of the
spectrum. In obtaining (9) we used the particular form
of the field (1) which changes its sign upon a translation
in time by half a period. In general, for example, for a
two-color field which does not exhibit an analogous
symmetry, equation (9) will not hold and, consequently,
there is no inversion symmetry (7) in the spectrum (see,
e.g. [10)).

What happens to the spectrum if we change the
sign of the ellipticity? Let P; denote reflection about
the i-axis within the plane of the polarization, e.g., =
(=P py)- Then, along the same lines as above, we "can
easily prove the symmetry

M(p,-§) = M(Pp,§)

for i = x or i = y. Now, if p is parallel to either the x-axis
or the y-axis (the two axes of the polarization ellipse)
then P,p =—p and with the help of the symmetry (7) we
prove the property

M(p,-8) = M(p,%). (11)

For general momenta, however, a change of the hand-
edness of the field (1) does change the spectrum.

The above considerations apply to the exact matrix
element. Approximations may induce additional sym-
metries or disobey symmetries of the exact matrix ele-
ment. Below we will investigate the symmetry proper-
ties both of the KFR-matrix elements [11-13] and of an
improved version [15] that allows for one additional
interaction with the binding potential so that rescatter-

10)

ing, for example, is included. The KFR matrix element,
in the form given in [14], can be represented as

MO(p, &) = i [diw,"OIVIwe(r))  (12)

with, in the length gauge, the Volkov wave function

-3/2 t(p eA(t))r —iSp(1)

v’ = (2m) (13)

In the veloc1ty gauge, the exponential exp(—ieA(f)r) in
(13) is absent. The second exponent in (13), viz.,

5,0) = 5 [dr(p - eA (D))’ (14)

(to be understood as the indefinite integral) is the action
of the charged particle moving in the field with the
time-averaged (canonical) momentum p.

The above-mentioned improved version [15] is

MV (p, &)

15
= i j dtj'dz W OIVU 1, 1) Vi (1)) (

The quantity UV(z, ') is the Volkov time-evolution
operator having the representation in position space

3/2
(V) m iS(rr, v'r)
(rtrt)—(zn(t t)) e .

The (gauge-dependent) action S(rt, r', ¢') is that of a
particle trajectory moving from the position r' at time '
to the position r at the later time ¢ subject to the vector
potential (2); for an explicit representation, see, e.g.,
[16]. It should be emphasized that M is not to be
added to M@, but is an improved approximation which
contains M©. Expressions similar to (15) can be found
in [17, 18].

First, we will inspect the symmetry properties of the

KFR matrix element Ml(,o) . Under the same conditions

as above one can ascertain that the inversion symmetry
(7) holds for both M© and M®, that is,

(16)

MOp, &) = MO(-p,&) (i=0,1), (A7
Substituting t —= —¢ in (12) we find
MO(p, &) 2 MO (p,-E)* (18)

for arbitrary momenta p. This implies that the entire
electron spectrum is, in this approximation, indepen-
dent of the handedness of the field. For the exact spec-
trum, this applies only for emission in the direction of
one or the other axis of the polarization ellipse. (Notice,
that M@ also obeys the symmetry (11); for momenta in
No. 1 1998
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the x- or y-direction, the matrix element M© is real).
Similarly, we can get

MOPp, &) 2 MO(p,&)* (i=xy) (19

for arbitrary momenta p. This leads to the prediction of
a fourfold symmetry of the spectrum in the plane of the
polarization. The independence of the helicity demon-
strated above as well as the fourfold symmetry (19) are
artifacts of the KFR approximation (12) using the
Volkov plane wave (13) for the description of the final
state. The symmetries (18) and (19) are invalidated
already if a Coulomb—Volkov state is taken in place of
the plane-wave Volkov state or, in case of a zero-range
binding potential, if the exact scattering state is used
which contains an outgoing s-wave in addition to the

“plane wave. Similarly, the improved approximation
(15) destroys the symmetries (18) and (19). This is due
to the occurrence of the two times 7 and ' in the matrix
element (15) which satisfy ¢ > #' which is not invariant
under time reversal. In general, the electron must be
able to experience the binding potential V(r) more than
once, via rescattering or the presence of a scattering
phase, in order that the artificial helicity symmetry or
the fourfold symmetry be absent.

In experiments with elliptical polarization [19] the
fourfold symmetry (19) was, indeed, found to be vio-
lated while the twofold symmetry (7) as well as the
independence of helicity for emission along the axis
(11) was found to hold. These experiments which were
carried out almost ten years ago were restricted to what
we now call the direct electrons. Various explanations
of the violation of the fourfold symmetry were given
[20-22] which can all be subsumed under effects that
are due the nonzero range of the binding potential.

3.2. A Saddle Point Approximation to the ATI Rates

For a periodic field such as (1) with T = 21/ w the
action satisfies

(20)

Sp(t+T)=S,(t) = T(il;lp2+ Up).

With the help of this periodicity property of the action
we can rewrite the lowest-order KFR matrix element
such that the temporal integration extends over just one
period:

(0) , 1 2
M7 (p, &) = —2n128(2—mp +|EO|+U,,—n(o)

T
X j dt{p — eA(1)|V|0)e
0

i|E|t iS,(r)
Iﬂle P

@1

_ 1 2 (©
=25(Z1—1p By + Up—nw)M,, ().
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In contrast to (5) the ket {p| here denotes a plane-wave
state. To a surprisingly good approximation, this matrix
element is determined by the saddle points of the phase,
specified by

9 (i(1)) = (1Bt + (1)

. (22)
2
= |Ef| +5-(p-eA() =0,
or, explicitly, for the vector potential (2), by
1
|Eo| + 5—

x[(p,— eacosmt)2 +(p,— ea!f_,sino)t)2 + pf] = 0.

Obviously, this equation has no real solutions for 7.
Any symmetry of the kinetic energy is transferred to
the saddle points. Since (cos(z))* = cos(z*) while
(sin(z))* = —sin(z*), provided ¢ is a solution of (23),
then T — #* is another solution. For general momenta,
(23) yields a quartic equation for either cos @t or sinwt,
and this is the only symmetry relating the various sad-
dle points to each other.

If p,=0o0r & =0, orif p, =0, then (23) reduces to a
quadratic equation in cos®¢ or sinot, respectively. In
the first case, the solutions are determined by

cosor = (4ml(1-EHU,)

X[ pot {&7p2 = (1-E")(2m|Eg| + p7)

2 1/2
_4mE_' CU]J} ] (p_v=0)9

where the parameter { is defined above in (4). Given
any solution ¢, T — ¢ is another solution, and the solu-
tions for # come in complex conjugate pairs. There is a
limiting value &, of the ellipticity [defined by the zero
of the second square root in (24)] with the following
property: for 0 < [&] < &, there are two pairs of solutions
situated symmetrically with respect to Rew = T/2; on
the other hand, for 1 2 €| > &, all solutions are real with
lcoswt| > 1 and, consequently, Rewt = T/2. Figure 5
displays an example of the trajectories of the saddle
points in the complex w-plane as a function of €. For
p, = 0, the analog of (24) is

(24)

sinor = (4m¢(1-€)U,)" [-Ep,
£{p2+ @m|E) + pH(1 -E) +4mCU,} "]
(p,=0).

Now with any solution ¢, 7/2 — ¢ and t* + T/2 are addi-
tional solutions. In contrast to cost from (24), the
solutions sint are real for any &. They all have Rewt =
T/4 or 3T/4. For increasing &, one moves closer to and
the other one away from the real axis, as it does in Fig. 5

(25)
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Fig. 5. Positions of the saddle points ¢g in the upper half

complex ¢-plane in the interval ©/2 < Re¢ < 3r/2, calcu-
lated from (24) for the conditions of Fig. 6 andn = 17. The
arrows indicate the motion of the saddle points for increas-
ing €. For several values of the ellipticity, insets depict the
polarization ellipse with the emission times ¢ = Redg

marked by solid dots. For 0 < & <&, there are two such posi-
tions whose contributions interfere. For £y < € < 1, there is

just one corresponding to emission at ¢ = w. Emission at
ot = 0 has its drift velocity in the opposite direction and
does not interfere with the former. For n = 17, the limiting
value is &g = 0.755. Additional insets depict, for n = 17, the

magnitude and the squared cosine of the approximation (27).
Notice that the ellipticities where the cosine vanishes or is
maximal precisely agree with the minima and maxima,
respectively, of the ellipticity distributions of Fig. 6.

for § > &, Finally, for circular polarization, there is just
one solution,

cos{(®t-9d)

-1
= (2pr2mU,) [2m(E|| + U,) + p; + p1,

which is real and whose magnitude is larger than unity.
This solution holds for arbitrary momenta. Here p; =

A pf + py2 is the component of the momentum in the
plane of the polarization and tan 8 = p,/p,.

In all three cases we notice that the component p, of
the momentum orthogonal to the plane of the polariza-
tion enters the equations such that the corresponding

kinetic energy pz2 /2m adds to the binding energy |E,|.
Hence, in this context varying p, is equivalent to tuning
the binding energy.

Having determined the saddle points for the cases of
foremost interest we are now in a position to write down
the corresponding approximation to the matrix element
(21). The result is particularly simple for a zero-range
potential for which the matrix element (p - eA(?)|V|0) is
just a constant independent of the saddle points and of p.
The original contour of integration over time in the

(26)

matrix element (21) is the real axis. For the case men-
tioned above where 0 < |§| < &,, the contour may be
deformed into the upper half complex plane so that it
passes through the two saddle points depicted in Fig. 5.
In the vicinity of the saddle points the integral may be
approximated by a Gaussian. With some nonexponen-
tial and nonoscillatory factors left out this yields

M, (&)
L @D
- exp[Re®(9s;)]cos| Im®(45;) ~ Farg sindsy) |

Here, ¢g, = arccoscos®¢ denotes one of the saddle
points determined from (24), namely the one with
Imag, >0 and 0 < Re ¢, < 7. This holds for 0 < |E| < &,.
For [§| > &, the contour is to be routed through one sad-
dle point only, the one above and closest to the real axis.
As a consequence, the cosine in (27) is absent. The
form (27) is the one given by Leubner [23]; for an alter-
native form, cf. Reiss [13].

The saddle points ¢5 = w(tz + it;) and the approxima-
tion based on them have more than formal significance.
The real part #; specifies the time within the period of
the field (1) when in the context of a semiclassical
limit the electron enters the continuum via tunneling.
Notice that the saddle points depend on the electron
energy E = p*/2m = nfiw — U, - |Ey| and also on the
direction of emission (here, in all explicit results, both
the experimental and the calculated ones, emission is
always considered in the direction of the large compo-
nent of the field, so that p, = p, = 0). If the statement is
turned around it implies that in order to acquire a cer-
tain energy and direction the electron must enter the
continuum at the appropriate time. For 0 < [§] < &,
there are two relevant saddle points and, correspond-
ingly, two such times within one period. The contribu-
tions from these two times to the matrix element

M ,(10) (&) do not add incoherently. Rather they interfere

as is iltustrated by the presence of the cosine in the
approximation (27). For &, < [§| < 1, just one saddle

point contributes to M ,(10) (€). Consequently, there is no
cosine in (27) and no interference. The imaginary part ¢,
is related to the tunneling time or the tunneling probabil-
ity in much the same way as in the situation of tunneling
in a field that is independent of time (cf. [24, 25]).

For emission in the direction of the small compo-
nent of the field (p, = 0) the saddle points are deter-
mined by (25). Their configuration is always like that
for &, <[E| < 1 and emission in the direction of the large
component (p, = 0). Hence, just one saddle point con-
tributes, and there is no interference. For emission in
any other direction in the (p,, p,)-plane, the saddle
points have to be determined from the fourth-order
equation (23). Since the relevant saddle points will, in
general, have different imaginary parts, complete
destructive interference cannot occur. This case has not
been analyzed in detail yet. Notice also, that in this case
Vol. 8 1998
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use of the zero-range potential in M© is questionable
since this generates the artificial fourfold symmetry.

3.3. The “Simple Man’s” Model Revisited

A classical model helps understanding some of the
gross features of the angular distributions. The fre-
quently cited simple man assumes that an electron
enters the continuum at some time with zero velocity
and is subsequently accelerated by the electric field (1).
If he neglects the binding potential, then the electron’s
velocity at the later time #, has the components

mx = —ea(cos®t — cosmty),
: L (28)
my = -Eea(sinmz — sinwt,).
The drift velocity of the electron in the field is the time
average of the preceding expression, indicated by the
notation {...),

m(x) = eacoswty =

(29)

. 2mU, |
m{y) = Eeasinwt, = § e Esinwtg
1+

If no further interaction with the binding potential
occurs, the electron leaves the pulse (which we
assume to be short enough that the electron is swept
over by the pulse rather than leaving it by its side) at
an angle given by

O _

tan 9 ) E tan .
In the tunneling regime, electrons are preferentially
injected in the continuum at times , when the electric
field (1) is near its maximum value, that is near ®f; =
n/2. For these electrons, (30) implies that © — 7/2,
that is, these electrons leave the field region in the
direction of the small component of the elliptically
polarized field. This at first glance counterintuitive
result is easy to understand: for these electrons the drift
velocity (29) in the direction of the large component of
the field is zero while it is maximal in the direction of
the small component. The implications for the KFR
. amplitude have been worked out in detail [27].

It is easy to realize, too, that this model produces a
fourfold symmetry for the electron’s angular distribu-
tion. We get a distribution of angles ¥ by assuming a dis-
tribution of initial times #,. This latter distribution may be
uniform (in the multiphoton regime) or biased towards
those times where the field is maximal (in the tunneling
regime). However, as long as it only depends on the
absolute value of the field (1) at the time #, the angular
distribution will be symmetric upon % — T — 0.

In order to get an idea of how the continued pres-
ence of the binding potential affects the electronic
angular distribution the simple man might extend his
reasoning as follows. Assume that the electron, at some
distance r, from its site of injection at the center of the

(30)
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binding potential, has to overcome a spherical potential
step of height e®. Assume further that the azimuthal
component of the velocity is continuous in this process
while the electron is slowed down in the radial direc-
tion. Let £, denote the time at which the electron for the
first time reaches the distance ry. Rather than by (28),
its velocity is now governed by

mx = —ea(cos®t - cos®ty) + ead, B(t—1,), an

my = —Eea(sinot — sinwty) + ealo, B(¢ -1,),

where 0(z — t,) denotes the step function. The aforemen-
tioned continuity of the azimuthal component of the
velocity requires that

Eo, _y
o, x (32)

A second condition for o, and 0., is provided by the
change in kinetic energy that occurs at the potential
step. The model is completely analogous to optical
refraction at the boundary between different media. It
includes the possibility of total refraction in case the
electron’s kinetic energy is insufficient to overcome the
step. For simplicity, we will ignore those electrons
below. If treated exactly, this model constitutes a formi-
dable problem in nonlinear mechanics; for the com-
plexities of the much simpler problem of a one-dimen-
sional infinitely deep well, compare, e.g., [26].

In a realistic situation, for sufficiently high laser
intensity. and a potential step of the order of fi® or
lower, the time difference (¢, — t;) is small compared
to unity. In this event we can get an analytical approxi-
mation for the angle of emission. A lengthy, but rather
straightforward calculation yields

tand = Etan(wty + G) (33)

in place of the above expression (30). The shift o is
determined by
3/4
1/2 2
ano = £2(4) | —; L1 S e
4U,\ro sin” 0ty + & cos” oz,

Here, we introduced the distance d = ea/1 + £22mo
to set the scale for the oscillatory motion of the electron
in the laser field (1), and U, denotes its ponderomotive
potential (3). Notice that the limit 7o — 0 in (34) is
ruled out, owing to the approximations made in the der-
ivation of (34). In this case, the electrons have no time

" to gain any energy, so they are unable to climb the

potential step.

Equations (33) and (34) no longer obey the fourfold
symmetry. For a uniform distribution of initial times 7,
it would still hold were it not for the last term in (34).
Without this term, the shift ¢ could be removed from
(33) just by resetting the clock. In the tunneling regime,
however, the times t, are weighted in relation to the
maxima of the field, and this is not possible, anyway.



3.4. The Gaussian Overlap Model

If rescattering is the origin of a particular part of the
ATTI spectrum, then an increase of the ellipticity clearly
reduces the count rate, since the returning electron’s
impact parameter increases with increasing ellipticity
so that rescattering becomes less efficient. The essence
of this is brought out by a model that assumes that the
count rate is proportional to the square of the overlap
between the wave function of the returning electron and
that of the parent ion [28, 29]. This model has worked
well in describing the decrease of high-harmonic gen-
eration near the cutoff with increasing ellipticity.

We describe the electron that has been created in the
continuum by the Gaussian wave function

2
P, (r,1=0) = (@) exp[——J (35)

ap

such that the starting width of the associated probabil-
ity distribution is a,. Provided the electron is subject
only to the field (1) the center of its wave packet follows
the classical trajectory of a charged particle in this field.
Assume that the ellipticity & is not too large. Then the
wave function of the returning electron upon its closest
approach to its parent ion at the time ¢ is

¥oin(r, 1)

= (a(r)ﬁc)‘”em[ "2+(y—yd)2+z2]_ (36)

2a(t)’
The electron misses its parent ion by the distance y,
[along the direction of the small component of the

Normalized electron yield
100

T T I Term

T T UL ALY
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Fig. 6. Calculated ellipticity distributions in the direction of
the large axis of the elliptically polarized field for a zero-
range atom with the improved Keldysh approximation (15).
The parameters are Eg = 15.76 eV corresponding to argon,
hiw=1.96 eV, and U, =3.68 eV. Yields are given for various
energies E labelled by the number n of photons absorbed
from the ground state, E = nfiw - Eg - U,
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field (1)] and the associated wave packet has acquired
the width

(37

For simplicity, we model the parent ion by a Gaussian
wave function just like (35), however, with a, replaced
by ry = 1/2x corresponding to a zero-range binding
potential with binding energy Eo = =~K2/2m. The overlap
of these two wave functions is

0(va) = [d'P (¥, (r, 1= 0)

_( 2rpa(n) V" v
12 3] AP~ 2|
ro+a(t) ro+a(t)
Now, the model assumes that the efficiency of res-
cattering is reduced by the ratio

2 2

00 =0)" - exp(—i—yi———zj. (39)
O(y4) ro +a(t)

The question remains of what to take for the initial
width a,. It has been argued [29] that this should be the
width at the exit of the tunnel of the wave packet of an
electron ionized from a bound state with binding
energy E, by a uniform static electric field F. This
yields the expression

& = i+2|Eo|
0T 3 KF

(38)

R =

(40)

With this width (and only with this width) the model
has produced excellent agreement with calculations of
harmonic generation in elliptically polarized fields near
the end of the plateau. It may seem contradictory that
we set the electronic wave packet free at the position of
the parent ion, but with a width corresponding to the
exit of the tunnel. However, this has worked very well
even in the multiphoton regime where (due to the oscil-
lating field) the electron never reaches the exit of the
tunnel (calculated for the static field). For strong fields,
on the other hand, the exit of the tunnel is close to the
parent ion’s position so that taking one or the other
makes little difference.

4. DISCUSSION

First, we report the result of a calculation using the
improved KFR expression (15) which incorporates res-
cattering effects to first order. As the atomic potential
we employ a zero-range potential with the binding
energy of 15.8 eV corresponding to argon. Figure 6
shows normalized electron yields in the direction of the
large component of the elliptically polarized field for
various electron energies as a function of the ellipticity.
The symmetry (11) holds for M as well as for M 0
provided emission in the direction of either one axis of
the polarization ellipse is considered. Therefore, Fig. 6
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only gives results for positive ellipticity. The right-hand
side of the figure shows the yields of direct electrons—
those that leave the field region without further signifi-
cant interaction with the binding potential—while the
left-hand side deals with rescattered electrons. The
behavior of these two groups is markedly different. The
transition from one to the other is quite well defined and
happens around n = 18 and n = 19 where 7 is the num-
ber of photons absorbed from the ground state, nfi® =
E+U,+|E|.

4.1. Rescattered Electrons

For these electrons, the yields drop quickly while
ellipticity increases up to a value of slightly Jarger than
0.5. Up to this point, the decrease is largely indepen-
dent of the respective energy. Thereafter, the yields rise
again, the more so the lower the energy. The calculation
of Fig. 6 agrees with the experimental data depicted in
Fig. 1. The latter also displays the result of the Gaussian
overlap model of Section 3.4 which can be seen to pro-
vide an almost perfect fit. The underlying physics is the
same as in the related cases of the ellipticity dependence
of HHG and nonsequential double ionization [28]: the
larger the ellipticity the smaller the overlap between the
wave packet of the returning electron with the parent
ion. If so, why does the decrease terminate and the rates
even start rising again, at least for some of the lower
energies, at the aforementioned ellipticity of about 0.5?
The answer is that the electrons responsible for this are
direct electrons. Since, however, the spectrum of direct
electrons very quickly drops with increasing energy (its
classical cutoff is at 2U,), the yield of these electrons
drops steeply with increasing n. For n = 19, direct and
rescattered electrons are about equally important and
the yields for linear and for circular polarization are, in
the context of this model, comparable. The energy cor-
responding to n = 19 is about 5U,, and this marks in this
case the transition into the plateau.

The energy where this transition occurs is not univer-
sal: it has varied from as high as 8U, for low intensity in
xenon [5] to 2.5U, at high intensity in helium [30].

4.2. Direct Electrons

Figures 2 and 3 show that the emission rates for the
direct electrons drop with increasing ellipticity, too, but
at a lesser rate than the rescattered electrons. Also, the
physical origin is different. For the direct electrons, it can
be found in the simple man’s model as expressed in (30):
the closer in time to the peak of the field the electrons
are born and the higher the ellipticity of the field the
larger is the angle they make with the direction of the
large component of the field. The electrons dodge the
large component and escape on the side. Since both the
measurements and the calculations deal with emission
in the direction of the large component, the rates in this
direction drop with increasing ellipticity. Figure 4
which is the only one in this paper to exhibit an angular
distribution shows where the electrons go: off the direc-
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tion of the large component as predicted by the simple
man’s model. As the ellipticity increases further the
decrease of the rates is finally reversed and the rates of
the direct electrons rise again when circular polariza-
tion is approached. This again has a simple reason: for
circular polarization all directions are equivalent; the
electron cannot dodge the field any more.

However, the most interesting feature of the experi-
mental data presented in Fig. 2 is the ripplelike struc-
ture in the ellipticity dependence of ATI yields for spec-
ified energy that moves towards lower ellipticity when
the energy increases. This structure is well matched by
the calculation of Fig. 6 which shows for the lower
energies a similar structure having the same tendency
in moving. The calculation is based upon the improved
KFR expression (15). Since, however, the relevant elec-
tron energies are quite low the zeroth-order expression
(21) should provide a good description already. For the
latter, in turn, we may resort to the saddle point approx-
imation (27). Indeed the saddle point approximation
gives an excellent fit to the latter as long as n < 17 for
the case of Fig. 6. In particular, the pronounced dips
exhibited by the result of the complete calculation pre-
cisely coincide with the zeroes of the cosine in the
approximation (27). An example is given in the inset in
Fig. 5. This makes it possible to trace the dips to their
physical origin: destructive interference of electrons
that tunnel out into the continuum at those two times #p
that are compatible with their respective energy and
direction of emission.

log;g(electron yield) [arb. units]

11 =
sl N n=

0 0.2 04 0.6
Ellipticity &

Fig. 7. Dependence of the ellipticity distributions on the
electron energy, calculated with the saddlepoint approxima-
tion (27) for the parameters of Fig. 2, e = [Egl/fim = 6.12
(xenon) and 1 = Up/ #iw = 2.29. The curves are labelled by
the number n of photons absorbed from the ground state.
The ellipticities for which the destructive interferences
occur move toward smaller values for increasing energy.
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Fig. 8. Same as Fig. 7, but the energy is kept constant (2 = 12)
and the intensity varies. The curves are labelled by the value
ofn=U,/ fiw. The negative interference for large ellipticity
does not as strongly depend on the intensity as the one for
smaller ellipticity.

log ;g (electron yield)[arb. units]
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Fig. 9. Same as Fig. 7, but the energy (n = 12) and the inten-
sity (Up/fim = 2.29) are kept constant while the binding

energy varies. The curves are labelled by the value of € =
|Egl/fw.

Figures 7 to 9 give results of calculations now based
exclusively on the KFR rate M in the saddle point
approximation (27), for the parameters corresponding
to the experiment of Fig. 2 with an estimated peak
intensity corresponding to U, = 2.29%iw. The lowest
peak given in Fig. 7 (n = 11) displays two dips both of
which move to lower ellipticities for increasing n. The
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lower one moves fast and has already degenerated into
a shoulder for n = 13 while the higher one moves much
more slowly. In order to get an understanding of the
dependence of the dips on intensity we show in Fig. 8
the peak with n = 12 as a function of the intensity. We
observe the same dependence: the dip at the compara-
tively low ellipticity reacts very sensitively to the
change in intensity as opposed to the one at higher
ellipticity. An actual experiment averages over a certain
range of intensities. Consequently, in the experimental
data the dip at the lower ellipticity tends to flatten into
a shoulder. This is indeed visible in the data. In con-
trast, the dip at the higher ellipticity survives the aver-
aging. The positions of the shoulder at low ellipticity
and the dip at high ellipticity in the data of Fig. 2
roughly agree with the result of the saddle point calcu-
lation of Fig. 7. Finally, Fig. 9 shows the dependence of
a given ATI peak on the binding energy for fixed inten-
sity. This is relevant to a comparison between this sim-
ple theory and experimental data: in a KFR description
it is not quite obvious which value to assign to the bind-
ing energy since the model does not properly take the
Rydberg series into account which effects a gradual
transition into the continuum. Hence features of a KFR
model that strongly depend on the value of the binding
energy may not be realistic [31]. Figure 9 displays the
same behavior already familiar from the dependence on
intensity and emission energy.

The motion of the saddle points can be partially
understood in terms of the simple man’s model. As dis-
cussed above, electrons enjoy the highest tunneling
probability at the peaks of the electric field. Born, how-
ever, at ®f, = /2 or 31/2 they have zero drift velocity
in the x-direction, cf. (29). In order to have a nonzero
drift momentum in this direction they must be born at a
time ¢, somewhat later than 7/2 or somewhat earlier
than 37/2, the later (or the earlier) so the higher the drift
momentum is to be. From some point on (quantitatively
determined by the zero of the second square root in (24)
there is only one choice left: the electron has to be born
at 0ty = 0 or w in order to have the maximum possible
drift momentum in the x-direction. These classical
arguments can do no more than pointing into the right
direction: classically, a given value of ¢, determines
everything, the electron’s energy and direction of emis-
sion. Hence, classically, emission in the direction of the
large field component (p, = p, = 0) enforces w#, = 0 or
7t regardless of the energy. Quantum mechanics relaxes
the rigidity of the classical model.

The interferences discussed above are not a phe-
nomenon restricted to remote corners of the ATI realm.
In fact, they are ubiquitous, though hard to observe in
actual experiments. Figure 10 shows the result of a cal-
culation of the ATI spectrum for a linearly polarized
driving field on the basis of the improved Keldysh
approximation (15). It models the recent experimental
data of Walker et al. [30]. Both the direct electrons at
energies below about 2.5U, and the rescattered elec-
No. 1 1998
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trons at higher energies show a sequence of very pro-
nounced dips. The spectrum at low energies including
the precise positions of the dips can be exactly repro-
duced by the saddle point approximation (27). Hence
they are due to the same interference mechanism as dis-
cussed so far. This is an example of interferences as a
function of the electron’s energy. Similarly, interfer-
ences can be analyzed for fixed energy and a linearly
polarized driving field as a function of the direction of
emission [32]. However, as discussed above at the very
end of Section 3.2, in this case the interference will not
be completely destructive. All of these interferences are
extremely sensitively dependent on the intensity and
will be very hard to observe in any standard experi-
ment. In fact, the data of [30] did not resolve the inter-
ferences. Finally, coming back to Fig. 10, we draw
attention to the dips within the plateau which have a
very similar appearance and should have a related ori-
gin. Since they are due to rescattering, however, their
analysis is more involved. For the closely related case
of HHG, it has been suggested that they are due to inter-
fering tunneling trajectories as well [33].

The ripples in the ellipticity dependence of the ATI
rates are strongly reminiscent of those observed in pho-
todetachment of H- in the presence of an additional
static uniform electric field [34] and, indeed, these are
caused by a similar quantum interference. In the pho-
todetachment experiment, an electron is promoted up
into the continuum by the absorption of one photon of
the laser field (whose energy exceeds the binding
energy of H™). As opposed to the simple man’s model
described above where the electron was assumed to
start its journey with zero velocity, here the electron is
set free with a noticeable energy overshoot. The corre-
sponding initial velocity is uniformly distributed. In a
one-dimensional picture, the electron may start with its
velocity going either up or down the incline formed by
the potential of the static electric field. If it moves up it
will be bent around by the field later on and then inter-
fere with the electron that started moving down right
away, constructively or destructively depending on the
magnitude of the static field.

4.3. Emission at Arbitrary Angles

We will conclude by briefly discussing a measure-
ment of angular distributions for fixed nonzero ellipticity
exhibited in Fig. 4. The lack of any left-right symmetry,
that is the absence of the fourfold symmetry (19), is
immediately obvious. It is a common feature of both
direct and rescattered electrons. Qualitatively, this
agrees with the prediction (33) of the modified simple
man’s model. A more quantitative analysis of the angu-
lar distributions is not straightforward owing to the fact
that the simple KFR approximation (12) even with a
finite-range potential does predict the fourfold symme-
try. However, one may argue that the KFR approxima-
tion may still be used to predict the existence or even
the positions of destructive interferences as they were
No.1 1998
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Fig. 10. ATI spectrum for linear polarization calculated with
the improved Keldysh approximation (15} for the parame-
ters of the recent experiment [30] in helium at£m = 1.58 eV

and 10! W/cm?. Yields are calculated in the direction of the
electric-field vector (¢ = 0°) as well as at an angle of 20°
with respect to the former. The arrows at 10U, and 9.1V,

specify the classical cutoff for ¢ = 0° and ¢ = 20°, respec-
tively. The arrow at 2.5U, marks the energy for which (for
¢ = 0°) rescattered electrons start making a significant con-
tribution, that is, where the results of (15) (for ¢ = 0° given
by the thin solid line) start to differ from those of (21).

discussed above. Then, the general quartic equation
(23) must be solved in order to determine the saddle
points, and the simple approximation (27) no longer
holds. Complete destructive interference becomes
unlikely, but remnants of its on-axis manifestation
should still exist. In fact, the lower left corner of Fig. 4
(negative angles, low energy) displays moving ripples
that may be due to this mechanism.

5. CONCLUSIONS

We have shown that using an elliptically polarized
laser field reveals several novel facets of above-thresh-
old ionization. In particular, it allows for the observa-
tion of quantum interferences in the ATI spectra. They
are due to the fact that for an electron to leave the field
region with a specific energy in a specific direction it
has to tunnel into the continuum at specific times dur-
ing the cycle of the driving laser field. Depending on
the situation, there is just one such time or there are
two. In the latter case, the electrons from these two
times interfere. If the interference is destructive, then it
leads to a pronounced dip in the spectrum. This is
observable, and has been observed in the data pre-
sented, provided it survives the average over intensity
which is inherent in the experimental data. These inter-
ferences may open up a novel quantitative and experi-
mentally feasible approach to the investigation of time-
dependent tunneling. ,
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Abstract—In this paper we discuss the role of electron—electron correlation and the associated energy sharing
mechanism for the nonsequential double ionization of He in intense laser fields in order to clarify the origin of
the unexpectedly large probabilities of the process that have been observed experimentally. The analysis is
based on the leading Feynman diagram of the process, obtained from the Intense-Field Many-Body S-Matrix
Theory, that is used here to derive a simple model formula for the total rate of the laser-induced double ioniza-
tion, by extending the diagram to all orders and summing them approximately. The theory is applied to calculate
the single and double ionization rates per neutral He atom as well as the single ionization rate per He* ion. Com-
parison of the single ionization ATI spectrum with that measured for He atom shows excellent agreement with
the present calculation and confirms the importance of the role of rescattering from the ionic core for the
high-energy tail of the spectrum. Finally, the predictions of the present model formula for the double ioniza-
tion process show a remarkably good agreement with the data for He at 780 nm and over a wide range of
intensity, obtained by Walker et al. (1994). It is shown by solving the rate-equations involving the rates of
the three processes that the origin of the ubiquitous “knee” structure in the double ionization signal (in the
transition region between the nonsequential and the sequential regimes of intensity) results from a competi-
tion between depletion of the neutral atom and the dominance of the stepwise process at very high intensities.
The basic mechanism of absorption of field energy by one electron and the sharing of this energy by the other
electron via the e—e correlation, as proposed by us earlier, is thus further confirmed by the present analysis

of the experimental data.

1. INTRODUCTION

Observation of nonsequential double ionization of
He in intense laser fields [1-8] has introduced a new
element in intense field physics, namely the role of
Coulomb correlation between the two electrons on the
probability of laser-induced double ionization of
atoms. The theoretical challenge of simultaneously
accounting for the combined influence of the nonlinear
electron—field coupling and the electron—electron cor-
relation is being currently approached by direct simula-
tion of the time-dependent Schrédinger equation on a
large space~time grid [9-11] as well as by several
model investigations (e.g., [12-14] and references cited
therein). As an alternative systematic approach to direct
integration of the response of many-electron systems to
an intense laser field, we have recently developed the
Intense-Field Many-Body S-Matrix Theory [15-17].
Using Feynman’s diagrammatic technique we have
already analyzed the lowest order term of the S-matrix
series for the double ionization process [15-17] and
could identify the leading diagram for the process [15-
18]. Furthermore, we have extended this lowest order
diagram systematically to all orders and presented a
first estimation of the total rates of laser-induced double
jonization [14]. Here, we investigate these diagrams,
propose a simple model formula for the total rates of

69

the process [19], and compare the predicted single- and
double-ionization rates per atom, as well as the single-
and double-ionization yields, and the ratio of nonse-
quential double jonization to single ionization for He,
with the experimental data.

2. ENERGY-SHARING DIAGRAM

We shall not repeat the analysis of the Intense-Field
Many-Body S-matrix series for the laser-induced double
jonization process, the details of which are given and dis-
cussed elsewhere [15-17], but present the systematic
extension of the leading diagram in the S-matrix series in
Fig. 1 (cf. [14]). This diagram includes the essential
physical steps of the energy sharing mechanism of non-
sequential double ionization, that we have identified by
analyzing the lowest order term of the S-matrix series
[15-17]. We note that a similar process has been inves-
tigated independently by Kuchiev [20]. Reading the
diagram in Fig. 1 from the bottom upwards (the
assumed direction of the flow of time) we see first that
one of the electrons, say electron (1), absorbs (virtu-
ally) a large number of photons in an ATI-like one-elec-
tron process and goes into the intermediate Volkov
states of momenta {k}, while, at the same time, the sec-
ond electron propagates in the intermediate eigenstates,



2

Fig. 1. Energy-sharing diagram for laser-induced double
ionization of He. The flow of time is assumed from the bot-
tom upwards, as indicated; straight lines stand for the evolu-
tion of the two electrons, (1) and (2). ta7y is the full one-
electron ATI-like electron—field interaction operator and
t.orr Incorporates the e—e correlation operator to all orders
(cf. Figs. 2a and 2b, respectively); k, and kj, are the final
momenta.

{j}, of the residual ion. The first-order term of the cor-
responding full one-electron t,y-matrix (cf. Fig. 2a)
involves the interaction of the active electron with the
field only, while in the higher orders it propagates in the
intermediate Volkov states and rescatters from the
potential V = (®(r,)| - ;1— + ri |®(r,)), where D(r,)
1 12

is the wavefunction of the intermediate jth state of the
He* ion. Following this ATI-like process the first elec-
tron shares its absorbed photon energy with the second
electron through the electron—electron correlation
interaction, V, = 1/r, (see Fig. 1), generalized to all
orders in the 7,,-matrix, as shown in Fig. 2b.

3. MODEL FORMULA

The analytical amplitude corresponding to the dia-
gram in Fig. 1 can be expressed as (cf. [14])

2 2
k;+ky

t
S(t, —o0) = —ijdt'exp(i——;—-t)

,.
X (P (1) Wi (0)lteon [ A G0, 1) (D)

X tai|®;(ry, 1)y exp (iEgt,),
where @ (r;, r,) is the initial state wavefunction and Ej
is the binding energy of the atom. ‘{’kca (r;) and

‘I’kcb (r,) are the Coulomb wavefunctions of momenta
k, and k,, respectively, and G%(¢', t,) is the intermediate
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Fig. 2. Diagrams showing (a) the extension of the electron—
field interaction in the tprj-matrix, including in the higher
orders the rescattering interactions of the Volkov electron
with the screened potential Vy, and (b) the generalization of
the e—e correlation interaction, V,, to all orders in the f.o.~
matrix. The other symbols have the same significance as in
Fig. 1.

ionic & Volkov Green’s function (cf. [15, 221):

G'(r,1,) = ~iO( - 1)y (2n)” j dk
{jt (2)

X @] (15, £)By (1), £ IND (15 1)@y (r 1, 1)),

where d),‘: (ry, t) is the Volkov state of the free electron

of momentum k [23].

Using the Floquet representation for the Volkov
Green’s function (cf. [15, 22, 24]), carrying out the ¢,-
and the 7'-time integrations and taking the limit  —= oo
the amplitude (1) can be written for a linearly polarized
laser field as

S(oe0, —o0) = —27i
2 2

3
k +kb)T(N) (3)

with

7™ _ i jdszcm(kw k,; Kk, j)

B = —eo {jl
U
Jn—N(aO -k; f_oﬁ)) )
X Tyri(k, j; ).

2
S (Eg=E)+U,-nw+i0

T k., K;; Kk, j) is the matrix element of the (field-free)
energy sharing process via e—e correlation (cf. 7, in
Fig. 2b) between the intermediate ionic & free electron
continuum state and the two-electron state of momenta
k, and k,; T,r(k, j; i) is the T-matrix element of the one-
electron ATI process (cf. t,7; in Fig. 2a). J,(a; b) is the
generalized Bessel function of two arguments (e.g.,
[25, 26]), E; is the energy of the intermediate jth state of

the ion, 0y = /T /w? is the quiver radius, and U, = 1/40?
is the ponderomotive energy.
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To proceed further, we first carry out the k-integra-
tion in (4) assuming the pole approximation and esti-

mate the Q-integration by the major contribution for

emission of the electron along the polarization axis €
in the ATI-like process. In former calculations [17, 18]
we found quite generally that the intermediate ground
state of the He* ion dominates greatly over the excited
intermediate states; thus, we further neglect the latter
ones. We obtain from the amplitude for the double ion-
ization process, (3) and (4):

S(°°’ —°°)

i K2+ k:
= -2mi Y Y 8((n+m)0)—EB— “2 b)
n=nom=—-oo (5)

- U
. A
X Tcorr(kw kb? kn " €, IS)J—m(aOkn’ 20))

X (=im)k, Tary(k, Il € 1s3 i)

2
. k
with f =nw - (Eg— E|;) — U, and m = N — n. The total
rates of double ionization per He atom, i.e., the total
probability per unit time, can then be expressed as (we
further neglect the mixed terms in the sum over m)

oo

n kn n ~
= ¥ ik, 11, ©)

n=n,

where

; c U
I = 3, TanlBuna(0okini 52)

nm = —oo
with

k2 2
E,n= —"zl = 5”+mm+ U,. 8

The above expression, (6), for the total rate of double
ionization, I'**, based on the diagram in Fig. 1, enables
one to carry out calculations in a relatively simple man-
ner. This is due to the fact that the contribution from
each n to the process can be calculated independently
and added together in the end. We note that formula (6)
is a quantum version of the semiclassical formula

obtained by us earlier [14]. The factor '™k, || €)is
nothing but the n-photon one-electron differential ATI
rate (per atomic electron) parallel to the polarization
axis. It can be calculated as for any effective one-elec-
tron system, e.g., (2) by exact numerical simulation, or
it can even be obtained from (b) the experimental mea-
surement of the single-electron ATI spectrum over a
sufficiently wide range of energy and intensity, or it
may be (c) estimated by approximately evaluating the
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diagram in Fig. 2a (as will be done in the present appli-

cation below). The factor r§;3, is the rate of energy

sharing between the intermediate Volkov electron and
the residual ionic electron via the e—e correlation. It
includes a sum according to the possibility of absorp-
tion or emission of m additional photons of the Volkov
electron during its propagation in the laser field. This
results in an infinite set of intermediate “incident” ener-
gies, E,,, of the “active” electron, for a final “e-2e"-
like energy sharing reaction process. I'yo(E,,,) is the
(field-free) rate of sharing of the energy E,,, by the
residual ionic electron (in the ground state of the ion)
via the e—e correlation. At the end of this energy sharing
process the ‘incident’ electron emerges with the
momentum k, and the ionic electron emerges with the
momentum k,,. This rate is weighted by the square of a
generalized Bessel function, as given by (7). I'o(E,, 1)
can also be obtained independently, either, as in the the-
ory of “e-2e” reactions (e.g., [27, 28] and references
cited therein) or, more simply, from the available
semiempirical formulas, e.g., that due to Lotz [29].

4. ATI SPECTRUM AND ‘RESCATTERING’

For the present purpose we have estimated the sin-
gle-electron ATI rates in He, I'")(k,), by evaluating the
diagrams in Fig. 2a approximately as follows: the inte-
grals over the coordinates, r, and r,, are calculated ana-
Iytically. The integrations over the intermediate
momenta in successive order are carried out by assuming
the pole approximation and taking the contribution along
the polarization axis. We note that these steps are similar
to those we have used while estimating the k-integration
in the double ionization amplitude [cf. the paragraph
below (4)]. Finally we neglect the mixed terms, corre-
sponding to an averaging over many rapidly changing

e counts, arb. units
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Fig. 3. Single-electron angle-integrated ATI rates per He atom
as a function of the electron energy at a laser wavelength of

780 nm and an intensity of 8.5 X 10" W/cm?. The theoretical
rates with (solid line) and without rescattering (dashed line)
have been scaled for the purpose of comparison to the exper-
imental data (dotted line, from [8]) at E=1.8 eV.
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Fig. 4. Theoretical rates per atom of laser-induced single (left-
hand curve) and double ionization (right-hand curve),
obtained from the present energy-sharing model formula, (6),
as a function of intensity at a laser wavelength of 780 nm.
The theoretical predictions are compared with the experi-

mental He* (“+”) and He™ yields (“x”), measured by
Walker et al. [7]. The intensities used in the calculations
have been shifted by a factor of 0.87 within the experimental
accuracy. The rates have been scaled by matching the theo-
retical result for single ionization with the experimental data

point at the saturation intensity, / = 0.8 X 1013 w/em?,

interference terms, while squaring and summing the
successive partial #,r-matrix elements.

In Fig. 3 we present the angle-integrated ATI spectrum
of laser-induced single ionization of He at a wavelength
A = 780 nm and an intensity I = 0.85 x 10> W/cm?.
The theoretical rates per atom (solid line), predicted by
the present theory, are compared as a function of the
electron energy, with the experimental data obtained by
Sheehy et al. [8] (dotted line). For the purpose of com-
parison we have taken the experimental data from [8]
and scaled the theoretical rates by matching the value at
a point, E = 1.8 eV, with the experimental signal at that
point. It is seen from the comparison that the calculated
rates and the measured signal are in a remarkably good
agreement with each other over a wide range of ener-
gies. The result further shows the qualitative difference
brought about in the spectrum by the influence of res-
cattering. This can be seen by comparing the spectrum
obtained without rescattering (dashed line) with that
obtained by including the first-order rescattering
(solid line). In fact, the results are very similar up to
about 70 eV then they differ greatly with increasing
energy: the results of the 1-rescattering calculation
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exceed the no-rescattering results at high energies by
many orders of magnitude. We point out that the contri-
bution of higher order rescattering, that can be included
relatively simply in the present model calculation, has
been estimated to be less than a per cent with respect to
the 1-rescattering result. Finally, we may note that a
change of the slope in the ATI spectrum due to the res-
cattering of the emitted electron with the residual
(ionic) core has also been observed in numerical simu-
lations in H atom [30] and some other model calcula-
tions (e.g., [14, 31-33] and references cited therein).

5. SINGLE IONIZATION AND NONSEQUENTIAL
DOUBLE IONIZATION

In this section we apply the model formula, (6), to
analyze the experimental data obtained for the single
and non-sequential double ionization of He at a laser
wavelength of 780 nm and in a domain of intensity
between about 104 and 10'® W/cm? [7]. In view of the
good agreement between the calculated results for the
ATI spectrum and the experimental data, shown in
Fig. 3, we shall use below, the 1-rescattering results

for Ik, || €). We shall also approximate I'.(E, ),
cf. (7), by the well-known Lotz formula [29] for the
“e—2e” reaction in He* ion. The total (energy inte-
grated) rates (per atom or ion) of single ionization of He
atom and He* ion, respectively, have been calculated
using the well-known KFR amplitude [25, 34, 35]; we
note that this corresponds to the no-rescattering
approximation of the present theory of ATI amplitude
discussed above.

5.1. Rates Per Atom

In Fig. 4 we present the theoretical rates per atom of
laser-induced single ionization (left-hand curve) and
double ionization (right-hand curve) of neutral He,
obtained from the present model formula, as a function
of the laser intensity at a wavelength of 780 nm and
compare them with the corresponding experimental
signals of single (“+”) and double ionization (“x”)
obtained by Walker et al. [7]. We note that the calcu-
lated rates have been shifted by a factor of 0.87 in inten-
sity, in accordance with the accuracy of the intensity
measurement in the experiment [7]. For the purpose of
comparison we have scaled the theoretical rates per He
atom by matching the single ionization rate at the satu-
ration intensity, I = 0.8 x 10> W/cm?, with the corre-
sponding single ionization data point. It is seen from
the figure that the results predicted by the present the-
ory and the measured signals for both single and double
ionization are in remarkably good agreement with each
other, right up to the saturation intensity. The difference
between theoretical rates per atom and the experimen-
tal ion yields at intensities above the saturation intensity
can be shown to be due to the depletion of the neutral
target atoms initially present in interaction volume.
Vol. 8 1998
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5.2, Ion Yields

Thus, given the excellent agreement between the
theoretical rates per atom and the experimental data in
the sub-saturation region (see Fig. 3), we can use these
results further to evaluate the He* and He** yields. To
this end, we have first calculated a spatial average of the
rates per atom, assuming a Gaussian beam profile, and
then solved the coupled rate equations of the three pro-
cesses, assuming a Gaussian pulse with a pulse length
of 160 fs. We have also scaled the rates by a constant
factor to match the single ionization rate with the
observed saturation rate for production of He* at 0.8 x
10'5 W/cm? [36]. Finally, we have taken account of the

3

usual Ii-expansion of the Gaussian focal volume
beyond the saturation points [7, 38].

In Fig. 5 we present the calculated He* ion signal
(left-hand solid curve) and the He** ion signal (right-
hand solid curve), along with the experimental He*
(“+”) and He** yields (“x”) measured by Walker et al.
[7]. From the comparison it is clearly seen that the cal-
culated and the experimental yields for both the single
and the double ionization are in remarkably good
agreement for the intensities considered in the exper-
iment. To the best of our knowledge, this is the first
time such a good agreement could be obtained for the
ion yields over the entire intensity range, from a the-
ory giving the basic rates per atom of single ioniza-
tion, as well as of nonsequential and sequential double
ionization of He.

5.3. Origin of the “Knee” Structure

Note the occurrence of the ubiquitous “knee” struc-
ture in the He** yield in Fig. 5. From the comparison of
the results with (right-hand solid curve) and without
(dotted curve) the contribution of the nonsec}uential dou-
ble ionization, it is seen that below 0.8 x 10" W/cm? the
production of He** ion arises from the nonsequential
double ionization of the neutral He atom alone. Beyond
this intensity the nonsequential double ionization is
influenced by the depletion of He atom in the interac-
tion volume, which results in a significant change of the
slope of the He** yield. In the saturation regime with
increasing intensity the nonsequential production of
He** ion competes with the single ionization of He*
jon. From the figure it is seen that the latter process
dominates at intensities above about 4 x 10! W/cm?,
which results in a second change of the slope of the
He** yield, giving rise to the “knee” structure. The
“knee” structure appears, therefore, to be due to the
joint processes of saturation of the nonsequential pro-
duction of He** ion, followed by the dominance of its
sequential production. We note that the prediction of
accurate nonsequential double ionization rates per
atom is the single most important ingredient for the
agreement obtained here between the theoretical results
and the experimental yields. '
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Fig. 5. Comparison of the calculated He" (left-hand solid
curve) and He™ yields (right-hand solid curve) with the
experimental He* (“+7) and He** yields (“X”). Note the

occurrence of the “knee” structure in the Het* yields, both
in the theoretical result and in the experimentat data, which
is not present if the contribution of nonsequential double
ionization is neglected (dotted line).
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Fig. 6. Ratio of double to single ionization as a function of
the laser intensity. The predictions of the present theory

g M

(solid line) are shown along with the experimental data (s,
from [7, 8]) and compared with that of an extended “simple
man’s model” (dashed line, from [8]) [8, 39].

5.4. Ratio of Double to Single Ionization

A sensitive test of the results of nonsequential dou-
ble ionization is provided by the He**/He* ratio as a
function of the laser intensity. In Fig. 6 we show the
predictions of the present theory (solid line) and com-
pare them with the measured ratio (“x,” from [7, 8]).
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The comparison shows that the theoretical and experi-
mental results are in reasonable agreement with each
other. The significance of this agreement becomes
obvious by the comparison with the best results of this
ratio obtained so far from an extension of the early
“simple man’s model” (dashed line, from [8]) (cf. [8,
391), which underestimates the experimental data by
more than an order of magnitude.

5.5. The Energy-Sharing Mechanism

In view of the present agreement between the pre-
dictions of the energy sharing model formula, (6), and
the experimental data over the entire range of measured
intensities (in particular, at subsaturation intensities)
we may emphasize the role of e—e correlation and the
associated energy-sharing mechanism for the nonse-
quential double ionization of He in intense laser fields
at a laser wavelength of 780 nm. As discussed above the
mechanism consists in the sharing of photon energy ini-
tially absorbed by one electron (in an intermediate ATI-
like process) by the other via the e—e correlation until
they both have enough energy to escape together from
the binding force of the nucleus. This result confirms
the conclusions of our earlier analysis of the process
[14-18, 22]. It should be noted that the nonsequential
double ionization process is a prototype of a “coopera-
tive” quantum phenomenon at its most rudimentary
form: two-particle joint escape by energy sharing via
the e—e correlation.

CONCLUSIONS

We have obtained a simple model expression for the
total rate of laser-induced nonsequential double ioniza-
tion of atoms by extending the previously identified
leading diagram for the process to all orders and sum-
ming them approximately. The model formula, (6), is
applied to analyze the nonsequential double ionization
data of He, obtained by Walker et al. [7], at 780 nm.
Comparison between the experimental data and the
model predictions shows a remarkable agreement with
both the single- and double-ionization processes over
the entire range of intensities considered in the experi-
ment, including the formation of the “knee” structure.
The analysis carried out reveals the central importance
of e-e correlation effects in the intermediate and final
states for the laser-induced nonsequential double ion-
ization process considered.

ACKNOWLEDGMENTS

We are thankful to L.E. DiMauro and P. Agostini for
kindly making available to us the numerical data on the
experimental yields of the single and double ionization
of He. We would like to thank S.L. Chin for fruitful dis-
cussions. This work has been partially supported by the
Deutsche Forschungsgemeinschaft under the Sonder-
forschungsbereich: Polarisation und Korrelation in

atomaren Stofkomplexen, SFB 216-M2, and partially
by EU HCM project Atoms in Super Intense Laser
Fields no. ERB4050PL932172.

REFERENCES

1. Augst, S., Meyerhofer, D.D., Strickland, D., and Chin, S.L.,
1991, J. Opt. Soc. Am. B, 8, 858.

2. Fittinghoff, D.N., Bolton, PR., Chang, B., and
Kulander, K.C., 1992, Phys. Rev. Lett., 69, 2642.

3. Peatross, J., Buerke, B., and Meyerhofer, D.D., 1993,
Phys. Rev. A, 47, 1517.

4. Walker, B., Mevel, E,, Yang, B., et al., 1993, Phys. Rev. A,
48, R894.

5. Kondo, K., Sagisaka, A., Tamida, T., et al., 1993, Phys.
Rev. A, 48, R2531.

6. Fittinghoff, D.N., Bolton, PR., Chang, B., and Kulander,
K.C., 1994, Phys. Rev. A, 49, 2174.

7. Walker, B., Sheehy, B., DiMauro, L.F, et al., 1994,
Phys. Rev. Lett., 73, 1227.

8. Sheehy, B., Walker, B., Lafon, R., et al., 1997, Multipho-
ton Processes 1996, Int. Phys. Conf. Ser., no. 154, Lam-
bropoulos, P. and Walther, H., Eds. (Bristol: IOP), 106.

9. Parker, J., Taylor, K.T., Clark, C.W.,, and Blodgett-Ford, S.,
1996, J. Phys. B, 29, 1.33.

10. Taylor, K.T., Parker, J.S., Dundas, D..et al., 1997, Mul-
tiphoton Processes 1996, Int. Phys. Conf. Ser., no. 154,
Lambropoulos, P. and Walther, H., Eds. (Bristol: I0P),
56.

11. Dimou, L. and Faisal, FH.M., 1996, ICOMP VII, Sep-
tember 30-October 4, Garmisch-Partenkirchen, Book of
Abstracts, Lambropoulos, P. and Walther, H., Eds., A33.

12. Watson, J.B., Sanpera, A., Burnett, K., et al., 1997, Mul-
tiphoton Processes 1996, Int. Phys. Conf. Ser., no. 154,
Lambropoulos, P. and Walther, H., Eds. (Bristol: I0OP),
132.

13. Watson, J.B., Sanpera, A., Lappas, D.G., et al., 1997,
Phys. Rev. Lett., 78, 1884.

14. Faisal, EH.M. and Becker, A., 1997, Laser Phys., 7, 684.

15. Faisal, FH.M. and Becker, A., 1996, Selected Topics on
Electron Physics, Campbell, D.M. and Kleinpoppen, H.,
Eds. (New York: Plenum), 397.

16. Faisal, FH.M., and Becker, A., 1997, Multiphoton Pro-
cesses 1996, Int. Phys. Conf. Ser., no. 154, Lambropou-
los, P. and Walther, H., Eds. (Bristol: IOP), 118.

17. Becker, A., 1997, PhD Thesis (Universitit Bielefeld).

18. Becker, A. and Faisal, EFH.M., 1996, J. Phys. B, 29,
L197.

19. This formula removes a classical trajectory approxima-
tion used earlier [14] in part of the amplitude, by a fully
quantum expression [cf. Egs. (6)—(8)].

20. Kuchiev, M.Yu., 1987, Sov. Phys. JETP Lett., 45, 404;
1995, J. Phys. B, 28, 5093; Phys. Lett. A, 212, 77. We
note, however that application of his formula to the dou-
ble ionization processes yields results which deviate sig-
nificantly from the experimental data (see [21]).

21. Talebpour, A., Chien, C.Y., Liang, Y., et al., 1997,
J. Phys. B, 30, 1721.

LASER PHYSICS Vol.8 No.1 1998




22.

23.

24.

25.
26.
27.

28.

29.

30.

CORRELATION, ENERGY SHARING, AND FORMATION OF THE “KNEE” 75

Faisal, FH.M. and Becker, A., 1996, Super-Intense
Laser-Atom Physics 1V, Muller, H.G. and Federov, M.V,
Eds. (Dordrecht: Kluwer Academic), 317.

Wolkow, D.M., 1935, Zeit. f. Phys., 94, 250.

Becker, A. and Faisal, EH.M., 1994, Phys. Rev. A, 50,
3256.

Reiss, H.R., 1980, Phys. Rev. A, 22, 1786.

Faisal, EH.M., 1989, Comp. Phys. Rep., 9, no. 2.
Jetzke, S. and Faisal, FH.M., 1992, J. Phys. B, 25, 1543;
1992, ibid., 25, 1.269.

Becker, A., Jetzke, S., and Faisal, FH.M., 1994, Hyper-
fine Interactions, 89, 83; Becker, A., 1994, Diplom The-
sis (Universitat Bielefeld).

Lotz, W., 1968, Zeit. f. Phys., 216, 241; 1970, ibid., 232,
101.

Cormier, E. and Lambropoulos, P., 1997, J. Phys. B, 30,
1.

LASER PHYSICS Vol.8 No.1 1998

31

32.

33.

34.

35.

36.

37.

38.

39.

Lohr, A., Becker, W., and Kleber, M., 1997, Multiphoton
Processes 1996, Lambropoulos, P. and Walther, H., Eds.,
(Bristol: IOP), 87.

Kaminski, J.Z. and Ehlotzky, F., 1997, J. Phys. B, 30, 69.

Lohr, A., Kleber, M., Kopold, R., and Becker, W., 1997,
Phys. Rev. A, 55, R4003.

Keldysh, L.V., 1964, Zh. Eksp. Teor. Fiz., 47, 1945
[1965, Sov. Phys. JETP, 20, 1307].

Faisal, FH.M., 1973, J. Phys. B, 6, L89.

The factor may be interpreted as a modification of the
KFR rates at the saturation intensity, arising from a non-
vanishing asymptotic Coulomb charge (cf. [37]).
Krainov, V.P, 1997, J. Opt. Soc. Am. B, 14, 425,
Cervenan, M.R. and Isenor, N.R., 1975, Opt. Commun.,
13, 175.

Corkum, P.B., 1993, Phys. Rev. Lett., 71, 1994.



Laser Physics, Vol. 8, No. 1, 1998, pp. 76-77.
Original Text Copyright © 1998 by Astro, Lid.

STRONG FIELD
PHENOMENA

Copyright © 1998 by MAUK Hayxa/Interperiodica Publishing (Russia).

Coulomb Correction to the Volkov Solution

J. Bauer® **

* Centrum Fizyki Teoretycznej PAN, Al Lotnikéw 32/46, Warsaw 02-668, Poland
** Katedra Fizyki Jadrowej i Bezpieczeristwa Radiacyjnego Uniwersytetu £6dzkiego,
Ul. Pomorska 149/153, £6d%, 90-236 Poland
e-mail: bauer @krysia.uni.lodz.pl
Received August 6, 1997

Abstract—A simple analytical approximation exists for the wave function of an unbound electron interacting
both with a strong, circularly polarized laser field and an atomic Coulomb potential [1]. This wave function is
the Volkov state with a first-order Coulomb correction coming from some perturbative expansion of the poten-
tial in the Kramers—Henneberger reference frame [2-4]. The expansion is valid if the distance from the center
of the Coulomb force is smaller than the classical radius of motion of a free electron in a plane-wave field. We
generalize this approach for any elliptic polarization. The total photoionization rate in the strong-field approx-
imation grows more for linear than for circular polarization due to Coulomb correction.

An exact analytical solution of the Schrodinger
equation, for a charged particle interacting both with an
attractive Coulomb potential and a plane-wave electro-
magnetic field, has never been found. This equation is
exactly solvable if one of the fields vanishes. Thus,
when either field dominates, the other one can be
treated perturbatively. In the present paper, we fix our
attention on the situation when the radiation field dom-
inates the Coulomb potential. This is true for the final
state of an outgoing electron in a process of a strong-
field photoionization or photodetachment. The exact
solution of the Schrédinger equation for a free, charged
particle oscillating in a plane-wave electromagnetic
field is known as the Volkov or Gordon—Volkov wave
function [5, 6]. In this equation, the field depends only
on time (the dipole approximation). The Volkov wave
function has been used in many approximate calcula-
tions concerning ionization of atoms [7-9] and other
applications (see also references in [1]). Many authors
have introduced corrections due to Coulomb potential to
the Volkov-type solutions in various ways [1, 7, 10-17].

The Coulomb correction of Reiss and Krainov [1]
has a very simple form, derivation, and physical inter-
pretation. The Volkov wave function with this correc-
tion is applicable when the laser field is strong enough
to force the unbound electron to move in an almost cir-
cular orbit at a distance much larger than atomic radius
from the nucleus. The improved wave function differs
from an ordinary nonrelativistic Volkov state only by a
simple shift in energy. But this leads to significant
changes in the description of strong-field ionization.
For typical laser frequencies, applied in experiments,
the lower applicability limit of radiation intensity
decreases considerably in the strong-field approxima-
tion (SFA). Moreover, at this lower intensity limit, the
growth of the total ionization rate due to Coulomb cor-
rection may be of even a few orders of magnitude. As
intensity grows, the difference between the Coulomb-
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corrected strong-field approximation (CSFA) and the
ordinary SFA vanishes. When intensity acquires the
lower applicability limit of the ordinary SFA, both ion-
ization rates are very close to each other. In this way,
the CSFA confirms the validity of the SFA. There is the
only weakness of the CSFA, that it is limited only to the
circular polarization. Below we show how to overcome
this limitation.

The Schrodinger equation to be solved is
[,—2 _
ot

with

1

2(—iV + %A(t))z— V(r)J‘I’(r, n=0 (1

vr) = 2 @
r

(atomic units are used throughout the paper), Z is the

charge of the nucleus, the distance between the electron

and the nucleus is » = |r|, and A(¢) is the vector potential

for electromagnetic field in radiation gauge, in the

dipole approximation, with the boundary condition

lim A(¢) = 0. The field propagates as an elliptically

t — too
polarized plane wave of frequency ® in the direction of

the z-axis,
A1)

= a(e,cos(wr)cos(£/2) x & sin(wr)sin(§/2)). 3)

In equation (3), &, and &, are real unit vectors along
the x- and y-axes. Polarization is described by the ellip-
ticity & (0< & < m/2, & = 0 for linear and & = nt/2 for cir-
cular polarization). The upper and the lower signs in
equation (3) refer to the right and the left elliptic polar-
ization, respectively. (Note that, according to (3), the
radiation intensity I = (a®/c)? in atomic units for any
polarization.) The vector potential A(¢) is a linear com-
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bination of two vector potentials, one for the right and
the other for the left circular polarization:

A(r) = heAg(t) + A A (1), 4

where A, A are real and nonnegative, and 7»,2 +AL =1
[Ax(f), A, (¢) are also given by equation (3) with E=m/2,

the plus and the minus sign, respectively]. We can

assume, without a loss of generality, that Az > A;, and,

hence, 1 = Az > 1/./2. Now we apply the KH transfor-
mation to the frame of reference whose origin moves
with the vector

7\’ t
o(1) = 2 [Ap(v)ar, 3)

given by the stronger circular component of the vector
potential. The KH transformation is a unitary one,
given by the operator

1,2 2
U = exp{—iaR(t)p + i'[&%&g—p—dt:l. 6)
c

—0a

We transform equation (1) according to the well-known
prescription for the wave functions and the operators

N A NS
(®=U%¥,and O' = UOU ). The transformed equa-

]

tion is
i(%cb(r, £ = E(-iv +3‘C—LAL(t))2 7
+ )”’;Z‘LAR(t)AL(t) +V(r- (zR(t))](I)(r, ). v
Applying the approximation
V(= og(t) = = o |aRZ(t)| == ®

we make equation (7) solvable. Instead of AzAg(1), we
could also use the weaker circular component A;A,(f)
of the vector potential (if A, # 0), in equations (5)—(7).
But, apparently, the exactness of approximation (8)
would be worse then. The solution of equation (7), with
approximation (8), is just a Volkov vector times some
function of time. Returning, through the inverse unitary
transformation, to the original wave function ¥, we
obtain

cv v A
v (r, 1) = P, t)exp(la—l;t)
1 AR TR
. ] .
= Wexp[zpr—ij(p + EA(‘E)) di+ t@tJ.

—00
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This modified Volkov solution may be applied in the §
matrix element, to calculate ionization rate in the SFA.
One can easily understand this change as a simple radi-
ation frequency, intensity, and polarization (through the
parameter Ag = cos(§/2 — n/4)) dependent decrease of
the binding energy [1]:

Z Zw’
—% - E.-.2 . (10
wn - v Y

For the linear polarization, the shift is greater (Ag =

1/./2) than for the circular one (Ag = 1). Thus, the SFA
total ionization rate grows more for the linear polariza-
tion than for the circular one, due to Coulomb correc-
tion. For the circular polarization, our calculation
reduces to that of Reiss and Krainov [1].

The author is indebted to Professor H.R. Reiss and
to Professor K. Rzazewski for interesting discussions
on the present subject. The paper has been supported by
KBN, grant no. 2 P03B 04710, and by the University of
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Abstract—We report on the effect of the relative phase of two low-frequency (LF) fields assisting the photo-
detachment of a negative atomic ion by a weak electromagnetic field, when a large number of LF photons is
exchanged. In the case in which the frequencies of the LF fields are commensurate, the photodetachment prob-
ability amplitude is obtained as a coherent sum of partial amplitudes, each of which is associated to processes
in which a different number of LF photons leading to the same final state of the ejected electron is exchanged.
As a result, photoelectron energy spectra and angular distributions are found that are strongly affected by the

relative phase the LF fields.

INTRODUCTION

It is well established that when two radiation fields
with well defined relative phase illuminate an atomic
system, provided each of the fields may excite the sys-
tem to the same final state, the transition rate may be
controlled by varying the relative phase of the driving
fields. Over the last decade, quantum control of ele-
mentary processes is different areas of physics and pho-
tochemistry, based on quantum interference, has been
object of both theoretical and experimental studies [1].

Recently we have investigated the effect of the rela-
tive phase of a low-frequency (LF) bichromatic field

1

(with z a unit vector along the z-axis) on the photode-
tachment of negative ion H- by one high frequency
(HF) photon with energy 7iw; of the order of 1 eV [2].
When o, = 20, the electron may be detached into the
same final state through different routes and, because of
the coherent interference of the respective transition
amplitudes, angular distribution were found that
exhibit polar asymmetry. The asymmetry results to be
more pronounced when the vector potential A(f) asso-
ciated to the bichromatic field has its maximal polar
asymmetry, i.e., when (A3(?)) is maximum, the brackets
denoting the temporal average over the period of the
field having the lowest frequency. The calculation were
carried out with such LF field parameters that the pho-
toelectron could exchange a little amount of the LF
photons. In this regime the total yield was found to be
weakly dependent on the relative phase 6.

The present paper is aimed at investigating the effect
of the relative phase 9 on the photodetachment of H-
when the photoelectrons may exchange a large amount
of LF photons. This occurs when the ponderomotive
energy of the bichromatic field is much larger than the
photon energies of the LF laser fields. In this regime,

E(r) = E,[sin®,¢ + sin(w,t + 8)]z
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during the photodetachment event, the bichromatic LF
field may be assumed to act as a static field. Experimen-
tal observation of photodetachment of negative ion [3]
have corroborated this assumption. It was found that a
sizeable total photocurrent may establish even if the
photon energy fiwy is lower than the electron affinity
—1I,, of the unperturbed ion, indicating that the photo-
electron may tunnel through the barrier formed by the
LF fields. In this picture, when f®j is enough smaller
than —1I,,, the largest probability of tunnelling occurs at
the peak of the LF radiation field. Therefore, in the
presence of the bichromatic field, the total photocurrent
is expected to depend on 9, as the maximum value of
the bichromatic electric field may be controlled by the
relative phase.

When the photodetachment takes place in the pres-
ence of a monochromatic field, the probability ampli-
tude describing the process results to be either an even
or an odd function of the average momentum q of the
ejected photoelectron, according as an odd or an even
number of LF photons is respectively exchanged. Con-
sequently, due to the definite parity of the probability
amplitude, the differential cross section of the process
is invariant under the transformation q — —q.

In the presence of an additional field of commensu-
rate frequency, the active electron may be ejected
through different routes; in each of them different com-
binations of number of LF photons with frequency m,
and n®; may be exchanged leading to the same final
state. The resulting transition amplitudes will result as
a coherent sum of partial transition amplitudes each of
them, being connected with one of the possible routes,
is either an even or odd function of g. Hence, the angu-
lar distribution of the electrons may result not to be
invariant under the transformation q — —q. In fact, it
can be shown that the electron angular distribution
result to be invariant under the operation q — —q,
when it is possible to find such a temporal translation T




that, putting £ = ¢ + T, A(f)) results equal to —A(=1).
Thus, the symmetry properties of the angular distribu-
tion are related to the behavior of the classical velocity
v of the electron (in fact, changing q into —q and A into
-A, v goes into —v).

Another peculiar feature that characterizes the pho-
todetachment event in the presence of a single mode
radiation field, when fiwy > —I;, is that the total cross
section as a function of ®y oscillates about the values
found when the LF field is turned off. This result may
be explained [4, 5] in terms of interference of the wave
associated to the direct motion of the ejected electron
and the one that reflects by the effective barrier created
by the LF field whose characteristic height has been
evaluated to be 2A, A being the ponderomotive poten-
tial associated to the LF field. The presence of a bichro-
matic field assisting the photodetachment does not alter
this picture. Now the electrons during their ejection are
reflected by a barrier whose effective height, being the
sum of the two ponderomotive potential pertinent to the
fields, does not depend on their relative phase. Hence,
the frequency ®y at which the wiggles in the curves
showing the cross sections as a function of the HF pho-
ton energy are expected to disappear should be inde-
pendent of the relative phase 6.

Before closing this section, we want to remark that
the effects connected with the rescattering of the
ejected electron by the residual atom will be ignored.
They have been proved to play a role in experiments of
above threshold ionization (ATI) where an abrupt
change of the slope of the ATI spectra due to the inverse
bremsstrahlung was observed to occur in the region of
highest energy where the electron population was
found to be order of magnitude below the one of the
most intense peak [6]. Below, in order to simplify our
treatment, the negative ion will be modelled by a one-
electron system that moves in a zero-range potential.

EVALUATION OF THE DETACHMENT
AMPLITUDES

Details of the theoretical treatment presented here,
based on the theory of two-color photodetachment, may
be found elsewhere [7]. Here we limit ourselves to outline
the main steps leading to the S-matrix of the process in
which the negative ion, initially in its ground state, is
detached by the joint action of both the HF and the bichro-
matic fields, the former being treated perturbatively.

In the E-gauge the Schrodinger equation of the elec-
tron moving in the presence of a static atomic potential
and the radiation fields is

[z‘ﬁ% - Ho= W) W0 1) = O, %)
where
a2
_ P
H, = o + V(r) 3)
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is the unperturbed Hamiltonian whose eigenstates and
eingenvalues are respectively denoted by ug and 12
and
W) =Wy + W, “4)
with
W(t)=eE(® -x, (G=H,L), &)

represents the interaction of the electron of the two
fields.

In (5) Ex(t) and E,(f) are, respectively, the HF and the
LF electric fields, the last one taken as in (1). The com-
plete retarded Green function associated to (2) satisfies
the following equation

[iﬁa% ~Hy- W(t)]G+(r, £, 1)
= iB8(r —1)8(t—1).

Assuming that at the time ¢ the negative ion is in its

(6)

ground state ‘I’? , at the instant ¢ > ¢, the electron wave-

function in the presence of both the HF and LF fields
may be written as [x = (r, 1]

yi(x) = Jd3r'G+(x; x)ulexp(~il{1)

Q)
(t=1).
The S-matrix of the process under consideration is
Sp = lim Wy (1) )
t = +oo
f - —o0

with ‘P(f) the wavefunction of the detached electron
moving under the only action of the short-range poten-
tial.

By expanding G* in terms of the complete retarded
Green’s function g*(r, f; r', ') associated to the Hamil-
tonian of the negative ion in the presence of the LF
field, satisfying the equation

. a + [
[lhgi—Ho— WLilg (rnt;r, 1)
= iid(r—-r)o(t-1),

and substituting this expansion into (8), equation (7)
and the one giving the S-matrix, respectively, become

9

V) = 0,100~ £ [ 48 (5 WV (), (10

Sfi = <‘V?|q)i,L>"%jdt(q)f,dWH'\V:),

—00

ey

with

®, (1) = lim [d'rg"(r, 1 0, Y, ), (120)



80 BIVONA et al.

@, (1) = tli_szd3rg+(r, ", t")w?(r, 1), (12b)

the exact wavefunctions of the electron moving in the
short-range potential in the presence of the LF radia-

tion only, that tends to ‘P? for # —» —co and to ‘I’?
for " — +oo,

In order to simplify our problem, we approximate
the electron—atom potential by the zero-range potential

Vi) = a2

that supports only a bound state with energy I, =—(b*/2m),
which in our calculations will be chosen to be —0.75 eV,
equal to the binding energy of H™. The wavefunction of
the field-free bound state is, then, taken as

172
w(r) = B[] 22ED,

where B is an empirical constant equal to (2.65)/2 [8].

Following Becker et al. [9], we choose such fre-
quencies and intensities of the radiation fields that
states different from the initial state are not populated
when the HF photon detaches the electron. Then W* of
(10) is approximated by the wavefunction of the bare
bound state

(13)

(14)

v = exp{—%lot}uo(r). (15)

Further, by neglecting the interaction of the ejected
electron with the atomic potential, @, ; may be approx-
imated by the Volkov wavefunction

@, (r,1) = exp{ilq-K, (0,1, ©,¢ + 8)]-r}

n (16)
X exp [_5?;71.[[(1 ~-K (0,7, 0,1 + 5)]2dt’,

where

¢E, eE, ‘
K, (o, B) = 0)c oSO+ ﬁmcosB (17)
1K, (0, ot + &) is the oscillating momentum
imparted to the ejected electron by the bichromatic LF
radiation field and A[q + Ky (0, @t + 8)] is the
momentum of the ejected electron.

We note that, as already said in the introduction,
effects due to inverse bremsstrahlung have been
reported in ATI experiments where the formation of so-
called rings in the angular distribution of the photoelec-
tron, as well as abrupt changes in the far wings of their
energy spectra, have been attributed to the rescattering
of the electron by the atomic nucleus. In the case our
concern, these effects are expected to play a negligible
role as the total photocurrent for each photodetachment

channel will be taken under consideration. With the
above assumptions the S-matrix becomes

2 2

S = —Zmzz&(———— - i, —nhm,

nyp

—fhoy—I+ AL)Tnl,nz(qy 3),

(18)

where T, , is the transition amplitude of the process
in which the ejected electron absorbs one HF photons
and exchanges n; photon of frequency ®, and n, pho-
tons of frequency ®,. It may be written as (hereafter
atomic units will be used)

T (4.8) = exp(in,6)
ny, a1 (Zn)z
4R (19)
x [ do. [ dB (0 BYM(g, 01 B),
where
Sy (0 B) = exp{—inla—in2B+ iA (0, B)
(20a)

sin(a + B)

_sin(o - B)}
w, W, '

1/2

. . E\E
+ip(a, B) +i—- 22[

W; — M,

M(q,0,B) = —iB(fz)

20b
. Euula + K, (0, B)] -3 (200

{b +[q+ K, (aB)]’ }
Ao, B) = |:£sm(x+£—sm[3}ﬁqz, (20¢)

22 B’
p(o,B) = sm20£+ >sin23,  (20d)

mwl 8mc02

2.2 2
A = 4 E12+ (4 E22, (208)
dmwe, 4mw,

and E, is the amplitude of the HF electric field taken as
(20f)

As the relative phase 0 enters (19) just through a factor
phase, the photodetachment cross section will not
depend on 0. Moreover, it is very easy to show that

n1 n2(q, 6) = ( 1)111+n2+1T11 n2( q, 8) Consequently’
the photoelectron angular distribution result to be
invariant under the inversion of the direction of the
electron canonical momentum.

EH = iEOHSinO)Ht.
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For 0, = 20,, the same electron final state may be
realized by the interference of all the possible transitions
in which the numbers 1, and n,, associated respectively
with processes in which photons of energies ®; and ®,
are exchanged, combine giving n; + 2n, = N. Hence, the
probability amplitudes of the process in which the elec-
tron absorbs one HF photon and exchanges the energy
Nw, with the bichromatic field may be written as the
following coherent sum:

TN = ZTN—ZnZ,nz(q$ 8) (21)

)
Proceeding in the usual way, the corresponding partial
differential and total cross sections with absorption of
photodetachment into the channel characterized by the
number N are obtained as

do(N, ¢) _ mmH62QN

2
dQ ﬁzc |TN| ’ (22)

[ do(N, 8)
G(N,8) = de———dQ , (23)

Q
with
2

5121’ = Ny + 0y + - A, 24)

the energy of the ejected electron.

From this last equation it follows that the photoelec-
tron energy spectra consist of a series of peaks evenly
separated by the energy ®,. By summing over all the
photodetachment channels the differential and total
photodetachment yields are obtained as

do(8) _ ~do(N,d)
dQ ~ dQ (25)
and
6(8) = Y o(N, ). (26)
N

By concluding this section, we observe that the transi-
tion amplitudes Ty, (21), are not invariant under the
transformation ¢ —= —q as it is a result of a coherent
sum of terms that are either symmetric or antisymmet-
ric under the transformation ¢ — —q [2]. Conse-
quently, the angular distribution of the photoelectrons,
which have exchanged an energy N®, with the bichro-
matic field, exhibits a polar asymmetry. We remark
that, when, together with the inversion of q, the relative
phase 8 is changed of T (8 —= & + ), the differential
cross section of (22) does not change, implying that the
rate of forward ejection for a phase 8 is the same as the
backward one when the phase is changed into & + .
Further for 8 = ©t/2, the differential cross section, (22),
exhibits polar symmetry as it is invariant under the
transformation ¢ — —q. Finally, we note that the dif-
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ferential cross section, (22), is invariant under reflec-
tion of & about =0 and 6 = m.

RESULTS AND COMMENTS

In this section we present selected calculations that
show the effect of the relative phase 6 on the photode-
tachment process in the highly nonlinear regime, in
which the detached electron may exchange a large
amount of energy No, with the bichromatic LF field.

To facilitate the discussion of the results, in Fig. 1
we report the temporal shapes of the oscillating electric
field and the vector potential for different values of 3.

In Fig. 2 we show the ratio R = o(n/2)/c(0) of the
total yield, (26), evaluated at 8 = n/2 and 6 = 0, as a
function of wy, for different values of the intensity ad
frequency of the bichromatic LF field. We remark that,
by varying ®,, the values of the ratio R do not change
appreciably, while considerable modifications appear
when the intensities of the LF bichromatic field are var-
ied keeping fixed the value of ®,. The poor sensitivity
of the values R to the variation of ®,; can be considered
as the consequence that the LF field acts like a static
electric field until after the ejection of the photoelec-
tron. For fiwy < —I, the ratio R depend strongly on the
relative phase and its values increase when the intensities
of the bichromatic LF field increases. For oy > -1, the
ratio R becomes almost equal to 1 for any value of ®y,
and the total photocurrent is independent of the relative
phase 3. For values of @y of the order of the field-free
affinity —I;, the values of R oscillate about the value
R = 1.'In the region oy < I the total yield at 6 = 7t/2 is
greater than the one found when & = 0. This behavior
may be interpreted as a manifestation of the fact that the
photoelectrons tunnel through the quasi-static, time-
dependent potential barrier originated by the LF field,
the ejection probability being highest at the peak of the
electric field strength. In fact as shown in Fig. 1, the
maximum of the field strength at 8 = 7t/2 is higher than
the one when & = 0 and, accordingly, the above outlined
interpretation of the photodetachment dynamics fol-
lows.

While for wy > -1 the total yield is not greatly
affected by the relative phase 9, a quite different behav-
jor is exhibited by the energy distribution of the photo-
electron. In Fig. 3 we show electron energy spectra
evaluated at different values of the relative phase 6 and
HF photon energy ®y. For wy < -1, the spectra show a
very similar shape at different values of the relative
phase 8, though the values of the cross sections are
notably affected by the relative phase. According to the
picture that the electrons are detached by tunnelling
through the barrier produced by the LF electric field,
the photodetachment probability decreases rapidly as
the energy of photoelectrons increases.

For wy > —I, the shape of the spectra is strongly
affected by the relative phase 8. We remark that consid-
erable modifications occur when the value of o is
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Fig. 1. Time-dependent electric field (full line) E(f) =
E\[sinot + sin(2w,z + 8)] and vector potential (dotted line)

A(f) = Ay[cos @1 + 0.5cos(20¢ + 8)] for different phases 6,
in units of E; and A; respectively.

changed from O to 7t/2. For 8 = /2 the energy spectrum
shows a pronounced, narrow maximum when the pho-
toelectron absorbs by the bichromatic field such an
amount of energy N, almost equal to A. At, roughly,
the same energy, the energy spectra calculated for 6 =0
show a minimum, while two maxima located, respec-
tively, at lower and higher energy appear. The energy
separation of such maxima increases by increasing ®g.
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R
4.0r

350 %
3.0t
2.5¢
20t
1.5¢
1.0}
0.5}

073 077 081 085

HF photon energy, eV

0 .
0.65 0.69

Fig. 2. Ratio R = 6(n/2)/(0) of the total yield, (26), evalu-
ated at 8 = nt/2 and § = 0, as a function of the HF photon
energy fhwy for different values of the intensity and fre-

quency of the LF field. Thick curve: ; = 0.004 ¢V; the
intensities of the LF fields are [} = I = 107 W/cm?. Thin
curve: ©; =0.003eV; ;) =, = 107 W/cm?. Dotted curve:
®; =0.004 eV; I} = I = 5 x 107 W/em?.

A further distinctive feature of the energy spectra is the
onset of a plateau whose extension is determined, at
fixed value of Wy, by the relative phase & and the pon-
deromotive shift A.

In order to better illustrate some of these features
and to get an insight into the dynamics underlying the
photodetachment event, we put (19) in the followmg
form, valid for ®, = 20;:

1 o »
Ty = 3= J' exp{—zNoc+t-§((o—0:)}M(qN, o)do (27)
with
2 la 2
(o) = (— % +A + Az)oc + ij[q + K, (a)] do,
(28)
M(qNa (X, 8) = M(qN7 (1, 20. + 8) (29)

The main contribution to the integral comes from the
points of stationary phase satisfying

1
sl + Ky(@)]" = 0y~ 1o (30)
from which it follows
gycosV + K (o)
(30a)

= £/2[(wy + I,)cos’0 — (No, — A,)sin’8],

where 6 denotes the angle between qy and z, and the
signs of the right-hand side of (17a) are respectively
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Fig. 3. (a) Photodetachment cross sections (PCS) versus the
photodetachment channel N, evaluated at g = 0.68 eV, for

two different values of the relative phase 8 of the LF fields.
The calculations have been carried out at the same value of
the LF fields amplitudes, for m; = 0.004 eV and o, = 20

The intensity of the radiation field at frequency ®; has been
taken /| = 107 W/cm,. The lines are a guide for the eye. Thin

line: 8=0; thick line 8 = 1t/2. The amount of energy the pho-
toelectrons exchange with the LF fields is given by Nw,.

(b) hwy =0.90 eV, (c) vy = 1.5 eV.

associated to the values the projection of the kinetic
momentum of the photoelectron along the z-axis takes
at 0t, = a,. For the values of wy taken under consider-
ation in the present paper, @y > I, 0, may result to be
real or complex, the integral of (15) becoming vanish-
ing small in the latter case. This certainly happens when
No. 1 1998

LASER PHYSICS  Vol. 8

DCS, arb. units
45% 107,

4.0 % 1075} @
3.5x 1076}

3.0 x 1075} A
2.5x 1076}
2.0x 1076}
1.5 % 1076
1.0 x 1076}

5.0x 1077

0
0.301

(b)
0.25

0.20
0.15
0.10f

0.05

0.49]
0.40
035}
030}
025
0.20}
0.15
0.10} ) ‘
0.05 S

Seanf -‘,..."

0 60 120 180 240 300 360
Angle, deg

Fig. 4. (a) Angular distributions of the total yield of the pho-
toelectrons evaluated at the HF photon energy fitoy = 0.68 €V,
thick line 8 = 7/2, thin line: § = 1t/4, dotted line: 8= 0. The
intensities and frequencies of the LF field are as in Fig. 3;
(b) hiwyy = 0.90 eV; () hiwy = 1.5 eV. Thick line: d=m/2,
dotted line: § = 0.

the square root (17a) becomes imaginary, i.e. when the
values of 0 fall into the angular interval defined by
(0= 1o
No,—-A,’
Therefore, in this interval, whose extension results to
be independent of the relative phase 9, the differential

tan°0 > (31



84 BIVONA et al.

photodetachment cross sections are expected to be very
small. By (30) it is also possible to estimate the cut-off
energy of the plateau that establishes in the energy
spectra. For real o, the maximum value of g is obtained
when the canonical momentum is antiparallel to K;. Its
modulus in very easily found to be

q = A/2((0H_|IO|)+KLM? (32)

where K}, is the amplitude of the quivering momentum
imparted to the electron by the LF fields. Values of ¢
greater than the one given by the above relation are
obtained only for complex o, when the photodetach-
ment amplitude probability becomes very small. Sub-
stitution of gy in (32) allows us to determine the val-
ues of N beyond which the photodetachment cross
sections fall of orders of magnitudes. Moreover, pro-
vided 2wy — [IH)"? > Ky, by replacing in (24) K,
with —K; and substituting the resulting value of g in (24),
a value of N is found that, roughly determines the lower
limit of the energy spectrum. Hence, the extension of the
photoelectron energy spectrum beyond which the values
of the cross section fall of order of magnitudes is approx-
imately estimated to be (in units of ®,)

2
ANZ‘(,T1 2((‘0H_|IO|)KLM‘

For the cross sections shown in Fig. 3c lower and upper
values of N estimated by means of (24) result to be
respectively N =—135 and 342 for 8 = /2, and N=-146
and 403 for 8 = 0, in very good agreement with the
numerical evaluation carried out by (27).

The angular distributions of the total yield of the
photoelectron are shown in Figs. 4. For three different
values of the energy of the HF photons (&g = —-0.68 eV,
0.9 eV, 1.5 eV) ad three different values of the relative
phase (8 =0; w/4; /2). We remark that the polar asym-
metry exhibited by the angular distributions reduces
when & increases from 0 to 7/2. In fact, because of the
particular choice of the temporal behavior of the
bichromatic field, when & = m/2, the photodetachment
amplitude probability into the channel characterized by
the number N transforms according to Tp(q) = i"T\(-q),
from which a photoelectron current results that is equal
in both the forwards ad backwards directions. As
already discussed in the introductions, this properties
follows from the circumstances when & = /2 it is pos-
sible to final such a temporal translation T (T = —1t/®,)
that under the successive transformations t — ¢ + T
and t — —t, the potential vector inverts its sign, as well
as the instantaneous velocity of the photoelectron,
when q — —q. By increasing oy, the polar asymme-
try reduces for any value of 9 until it practically van-
ishes. This results by the fact that when the HF energy
photon increases ad the quiver velocity of the electron
becomes a small fraction of its average velocity, ad the
photoelectron fluxes in the forwards ad backwards
directions are almost equal for every value of the rela-
tive phase 8. Moreover, for increasing ®wy, the angular

(33)

distribution of the total yield becomes almost equal to
the field free one, the effect of the phase 6 reducing to
controlling the redistribution of the photoelectrons into
different ejection channels.

In conclusion, we have proposed a photodetachment
scheme for observing interference effects caused by the
simultaneous action of a two-color low-frequency field
during the photodetachment event. Loosely speaking,
the HF field may be considered as a probe testing the
continuum embedded in the LF fields. By changing
their relative phase 8, the structure of the continuum
changes too, and considerable modifications are found
to occur in the angular distributions of the ejected elec-
trons when g < -/, as well as in their energy spectra.
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Abstract—Strong-field ionization of Rydberg atoms is studied both analytically and numerically. The analyt-
ical investigation is based on the quasi-classical (WKB) approach and is free from the often used Rotating Wave
and Pole approximations. The numerical method used allows us to solve directly the nonstationary Schrédinger
equation for a 3D hydrogen Rydberg atom in a strong linearly polarized electromagnetic field. The results of
analytical and exact numerical solutions are compared and are shown to be in a very good agreement with each
other. The effect of interference stabilization is confirmed to occur.

INTRODUCTION

Stabilization of atoms is one of the most interesting
features of strong-field ionization. The main known
mechanisms of stabilization (suppression of ionization)
are the (adiabatic) Kramers—Henneberger stabilization
[1, 2] and interference stabilization (IS) [3-5]. IS of
Rydberg atoms is known to arise due to field-induced
A-type transitions (via the continuum) between neigh-
boring Rydberg levels. Because of such transitions,
coherent repopulation of Rydberg states and destruc-
tive interference of Rydberg—continuum transitions
take place. As aresult, in the strong-field limit, the time
of ionization differs dramatically from the Fermi
Golden Rule and its dependence on the field strength
takes the form of the “death-valley” [3, 4] or “death-
plateau” [6, 7] curves. It should be emphasized that the
death-valley and death-plateau predictions correspond
to different regimes of IS and it is crucially important
to make a reasonable choice between these two predic-
tions of the earlier works. This is one of the goals of this
paper. In addition, it should be mentioned that in the
most of the earlier theoretical works the Rotating Wave
and Pole Approximations (RWA and PA) were used.
Unfortunately, in the case of strong field, these approx-
imations do not seem to be rigorously justified. This is
the reason for searching new approaches to the theory
of IS free from both RWA and PA. Such an approach,
based on the quasi-classical (WKB) approximation was
suggested in [8, 9] and is further developed in this
paper. As a result, some new features of IS are discov-
ered and the death-plateau regime of IS is obtained.

Moreover, an alternative method of investigation
used and described in this work is the direct numerical
integration of the nonstationary Schrédinger equation
for a 3D Rydberg atom in a laser field. The results of
such numerical simulations are compared with analyti-
cal predictions of our theory and a very good agreement
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is found. This fact is interpreted as a direct confirmation
of IS in its death-plateau form and helps to make choice
in favor of IS when the existing experimental data on
strong-field stabilization of atom [10, 11] are analyzed.

THE QUASI-CLASSICAL APPROACH
TO THE STRONG-FIELD SOLUTION
OF THE SCHRODINGER EQUATION

The WKB, or quasi-classical approximation, is
known to be very fruitful for theoretical description of
bound—free atomic transitions. Most often, this approx-
imation is used only to simplify the atomic wave func-
tions of initial and final field-free states entering the
matrix elements of bound—free transitions [12, 13]. In
this paper, the quasi-classical approach is used directly '
to solve the nonstationary Schrddinger equation for an
atomic electron in the presence of the Coulomb poten-
tial and laser field. Using such a method, rather simple
analytical expressions for partial probabilities of
above-threshold ionization and for the total probability
of ionization are found and the details of time-space
distribution of the photoelectron density in the contin-
uum are analyzed.

The main idea of the quasi-classical approach [5, 8,
13] can be formulated as an assumption that the field-
induced Rydberg—continuum transitions occur mainly
in the region of electron—nuclear distances r of the
order of the so-called quasi-classical length r,, where

M

atomic units are used here and throughout the paper.
This quasi-classical length is typically much larger than
unity and usually is much shorter than the size of the
Rydberg orbit r,,,, =2n%, 1, > 1, and 1, < rp at @ < 1,
® > 1/2n%. Under these conditions, the centrifugal

energy in the Schrodinger equation, estimated at r ~ 7,

r,= o2



1L, (r, D2
0.20- (@)

0.15¢
0.10}

0.05¢

0
102x2.0

T

(b)
1.5

1.0

0.5;

0 1 1 L )
103x1.2
©

1.0
0.8
0.6
0.4
0.2

1 ] I [ 1

0 2 4 6 8 10
(T

Fig. 1. The electron population in the continuum vs. the
electron-nucleus distance r for (a) 1= 0, (b) 1.57, and (c) 4T:
r is in units of 1(r) = J2 13/2/3 and 1(r) is in units of Gauss-
ian pulse duration 7.

appears to be much smaller than the Coulomb potential
energy 1/r, if only average angular momentum is
smaller than w3 > 1 [12]. This approximation gives
rise to the approximation of slow angular motion [5, 8,
9], under which the centrifugal energy is dropped at all
from the atomic Hamiltonian. As the result, the original
three-dimensional Schrddinger equation can be
reduced to the one-dimensional radial equation

l.ax(r, t; 9)
ot
19> 1 @
= [_ ia_rz - % cos(B)eO(t)rsin((ot)}x(r, 1; 0),

where y = R and R is the electron radial wave function;
in a light field both % and R depend parametrically on
the angle 0 between the field-strength vector €, and
electron position vector r, €(?) is a slow field-strength
amplitude describing how a light pulse is switched on
and off. Below, in all the intermediate formulas, to
shorten notations, cos8 is dropped from the product
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€y(H)cosB. However, in the final results this product is
written down explicitly and the following procedure of
averaging is performed.

With the wave function of the initially populated
field-free Rydberg state taken as the initial condition
for the Schrodinger equation (2), the latter can be
solved first at a frozen angle 0 (6 = const) [5, 8, 9]. Then
the results obtained are averaged over 0.

Expanding the results obtained in [8, 9] for any
instant of time ¢ the electron density of the kth ATI peak
can be written in the following form:

A/;.

PRI = S 3)
LTG0 1 + TG (011,
where Ji(x) is the cylindrical Bessel function,
P72 gt - ()] (2) | iree(t)
C(r,1)~2 3 1/300)5/3 F(E) + %’ “)
irey(t)
C(r,t)~ e (5)

I'(x) is the Euler I'-function.

The bar over p(7, 1) in (3) means that very fast oscil-
lations in r are averaged out. The variable 1(7) in (4) has
a very simple interpretation. This is the classical time of
motion for an electron in the Coulomb potential: ©(r) =
%2 2 for r < 1y

Figures la—1c show the continuum population in
dependence on 1(r) for three different instants of time ¢
for the Gaussian laser pulse of duration T. Two different
parts of the continuum population can be distinguished.
They are referred to “temporary” and “irreversible” pop-
ulation. The temporary population is formed in a wide
range of electron—nucleus distances r (0 < r < r,,). It fol-
lows adiabatically the laser pulse envelope and returns
back to bound states when the field is off. For the Gaus-
sian pulse envelope this temporary population is negli-
gibly small when the time is much longer than the pulse
duration T (Fig. 1c). In contrast, the irreversible popu-
lation remains in the continuum and never returns to
bound states even at time much longer than the pulse
duration of ionizing light field. This part of population
appears in the continuum in the range of distances r
shorter or of the order of the quasi-classical length r,
and takes the form of a wave packet of a diverging
spherical wave (Fig. 1c). The center of mass of the wave
packet of irreversible ionization is moving into the direc-
tion of larger r. It should be mentioned that temporary
part of population appears to be significantly suppressed
in the strong field limit when g, > @ (Figs. 2a-2c). As
for the irreversible population, only the shape of the
Vol. 8 1998
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wave packet is modified: the double-peak and, then,
multipeak structure is found to arise in the growing
field strength (Figs. 2d-2f).

The total probability of ionization, found when the
laser pulse has gone, i.e., at ¢ > T, follows from (3)—(5)
and has the form

1 . 22/331/6F(§)80(t)
W, = — [di|1-1; . (6)
2tK-[ 0 0)5/3

—00

where t, = 27’ is the Kepler period for the initial state.

Remembering now that, in fact, €x(?) should be
understood as €x(f)cos0 and the probability (6) has to
be averaged over 0, let us write down the final results
for a case of a square pulse of a duration T

W, =T:ixT, €))

where T'; is the averaged nonlinear rate of ionization
i ]
= 2
Ti= 5 [1 -f deo(Cx)} ®)
0

and

22/35! /61“@)80
(; = 5/3 9
o

is the field parameter proportional to the laser field
strength €,. The time of jonization #; corresponding to

the rate T; (8) can be determined as f; = L

The dependencies T;({) and #;({) are shown in

Figs. 3a and 3b. The functions I';({) and #;({) are seen
to be monotonous and to exhibit a kind of a saturation
at the asymptotic levels 1/2¢¢ and ry, respectively. The
saturation can be interpreted as the strong-field stabili-
zation of the Rydberg atom: if the pulse duration 7 is
shorter than the Kepler period #, the atom remains par-
tially nonionized, independently on the laser field
strength. The saturation-type mechanism of the strong-
field IS agrees with the death-platean regime of IS [5,
6] though the method of analysis in [5] is absolutely
different from that described above. We assume that the
saturation or death-plateau regime of IS is intrinsic fea-
ture of a strong field ionization of 3D atoms. This
behaviour can contrast with that of model 1D atoms to
be investigated separately. Below the results of analyti-
cal quasi-classical investigation are compared with
those of a direct numerical solution of the real 3D
hydrogen atom.
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THE RESULTS OF NUMERICAL SIMULATIONS

The direct numerical solution of the nonstationary
Schrédinger equation was obtained for the three-
dimensional excited hydrogen atom in a linearly polar-
ized electromagnetic field. The details of calculations
performed can be found in [14]. As an initial condition
the atom is supposed to be in an excited state, charac-
terized by some definite principal and orbital momen-
tum quantum numbers » and /. The found nonstationary
wave function obeying the Schrddinger equation was
expanded in a series of field-free atomic states. The
coefficients of expansion were interpreted as time-
dependent probability amplitudes to find an atom in
atomic states. It should be emphasized that such an
expansion is not needed to find the numerical solution
of the nonstationary Schrédinger equation; it is used
only to interpret the results obtained and to study tran-
sitions between different (n, [) states. In the case of lin-
early polarized electromagnetic field the problem is
symmetric over azimuthal angle ¢, the transitions

The probability of ionization calculated for different laser
intensities P and frequencies ® but for a given value of
parameter V = g5/®>>, V = 1.57, in the case of square pulse
of duration 7,

hw,eV | T, opt.cycl. | P, W/cm? W,
1.0 3 1.41 x 1012 0.478
2.0 6 1.41 x 1013 0.392
3.0 9 5.46 x 1013 0.345
4.0 12 1.43 x 10 0.301
5.0 15 3.0 x 10 0.245
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Fig. 5. The probability of ionization W; in dependence on
the principal quantum number of the initial state a.

changing the projection of orbital moment are forbid-
den and the corresponding quantum number m is con-
served (in our calculations it was taken to be m = 0).

The calculations were performed for different laser
frequencies in the region from 1 to 5 eV in a wide range
of laser intensities for the symmetric trapezoidal pulse
envelope €y(z) with ramps of 27 (T is the duration of an
optical cycle) and pulse plateau duration 7,

The main result of calculations is the dependence of
ionization probability on the laser intensity (Fig. 4).
The three curves of this picture are the probability of
ionization obtained from the direct numerical calcula-
tions (curve 1), from analytical theory [(6) averaged
over 0] (curve 2) and from Fermi Golden Rule for the
case of @ = 5 eV and symmetric trapezoidal pulse enve-
lope with pulse plateau duration 7, =107, A perfect
coincidence between the analytical theory and direct
numerical calculations is found in the range of intensi-
ties when the field is strong €,/ ®*3 > 1. The probability
of ionization is seen to saturate at a level, which is
much less than unity. This means that in our calcula-
tions stabilization is demonstrated to occur and to agree
with the “death-platean” regime of IS predicted by ana-
lytical theory described above. Both exact calculation
and analytical theory give the results coinciding with
Fermi Golden Rule in the low-field limit. But it should
be emphasized that the deviations from Fermi Golden
Rule appear already in the range of field strengths much
lgess than the atomic field, if only the field parameter (9)

21.

According to the analytical theory, the probability
of ionization depends on the field strength €, and fre-
quency o only via the parameter V = g,/@? [see (6)
and (8)]. This conclusion is checked and confirmed by
our numerical calculation, the results of which are
given in the table. The probability of ionization pre-
sented in this table was obtained for different laser
intensities and frequencies but for a given value of V,
Vol. 8 1998
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Fig. 6. The probability W, for an atom to be found in
bound states in dependence on time ¢ (in units of Tf) during

the laser pulse for intensity P = (/) 1013, (2)3x 10!3, and
(3) 10" Wiecm?.

V = 1.57. In this table the values of the probability W;
calculated for the square pulse are close to each other,
whereas the laser intensity is changing in two orders of
magnitude. The observed small deviations from the law
W, = const are likely to be explained by a few number
of optical cycles in the laser pulse for the case of low

frequencies.

Another important conclusion of the quasi-classical
(WKB) theory concerns the dependence W, ~ n~? for the
probability of ionization. Our numerical data (Fig. 5) fit
this law pretty well at n > 4. That is why the excited
states with the principal quantum numbers n = 4 can be
considered to be real Rydberg states in terms of agree-
ment with theory of IS.

The results of numerical calculations shown in Fig. 6
demonstrate directly the above discussed phenomenon
of the temporary population of the continuum. The
probability for the system to be found in bound states is
presented as a function of time (in optical cycles) dur-
ing the trapezoidal laser pulse for different laser inten-
sities. In addition to an actual ionization, there is a par-
tial return of population back to bound states towards
the end of the pulse. In agreement with the analytical
predictions, the temporary part of population repeats
the trapezoidal shape of the pulse and has maximal
value in the range of medium intensities when the field
is not strong (¢ < ®*?). In the strong-field limit this
returning population is suppressed and only the wave
packet of an actual ionization exists in the continuum.
The numerically calculated strong-field structure of
this wave packet is shown in Fig. 7a. Being averaged
over fast oscillations, the curve of this picture reveals
the double-peak structure of the wave packet in the case
of strong field (see Fig. 7a) in agreement with analyti-
cal theory (compare with Fig. 2f). The center of mass
of the wave packet moves into the direction of larger r
Vol. 8 1998
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Fig. 7. The space structure of the wave packet in the contin-
uum (a) in relative units and (b) the time-dependent mean
coordinate of its center of mass.

in the after-pulse regime. Such a behavior is confirmed
by monotonous increase of the mean electron—nucleus
distance for the electron in the continuum calculated in
dependence on time when the pulse is over (Fig. 7b).

In our numerical calculations, the population of
states with different principal quantum numbers n and
orbital quantum numbers / and transitions between
them can be easy investigated. Figure 8 shows the dis-
tribution of population obtained at the end of the laser
pulse over different bound (n, [) states with /=0, 1, 2
(ns, np, nd states) for low (Fig. 8a), medium (Fig. 8b),
and high (Fig. 8c) laser intensities. Transitions from the
initial 5s state to different ns and nd states, especially to
5s and 6s states, are seen to be very efficient in a strong
field. This means that A-type transitions from the initial
state to neighboring levels are proved to occur. Excita-
tions of Rydberg states of the same parity (s, d, g, ...)
as the initial one (5s) is easily interpreted as occurring
due to A-type transitions via the continuum. On the
other hand, excitation of odd (p) Rydberg states is also



T T TP

(a)

T T T TTTI0T

T T TTTTET

T

T T TTTTITT

(b)

T FTTTTIIIT

T T T TTTI7T

T FTTTTTIT T

(©

T T TTTTTT
S

T T TTTFITT

1073 1 . . .
0 2 4

Fig. 8. The probability W, for an atom to be found in (n, )
states at the end of the laser pulse for different laser intensi-
ties P: (a) P=10'3, (b) 10'4, and (¢) 3 x 10" W/cm?; the cal-
culations are performed for symmetric trapezoida! pulse
envelope with the pulse plateau duration 7, = 107 and

ramps equal to 2Tf (w=5¢eV).

seen pretty well in the results of calculations. The pro-
cess has to be interpreted as a direct one-photon absorp-
tion (emission) of a photon ® with simultaneous transi-
tion E, — E, forbidden by the energy conservation
rule. The results of calculations show that this restric-
tion is rather efficiently removed in the case of strong
fields (because of a large value of matrix element for
bound-bound transitions) and very short pulses
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states at the end of the laser pulse for different plateau dura-
tions Tp of trapezoidal pulse envelope: (a) Tp = 5Tf, (b) 20Tf;

laser intensity is equal to 3 X 10" W/em?.

(because of a wide enough spectral width). Nonreso-
nant 55 — np transitions are most pronounced in the
case of super short laser pulse (of trapezoidal envelope)
with T, = 5T, (Fig. 9a), but they are relatively small in
the case of longer laser pulse with T, = 207} (Fig. 9b).
It should be mentioned that until now such nonresonant
transitions were never taken into account or discovered
in analytical theories of IS. The contribution of different
states into the total residual probability to find an atom in
any bound state when the pulse is over can be analyzed
with the help of data presented in Figs. 10 and 11. Rela-
tive probabilities to find an atom in any bound state
with arbitrary principal quantum numbers # but given
orbital numbers ! (I = 1, 2, 3) are shown in Fig. 10 as a
function of plateau pulse duration 7. The relative pop-
ulation of nonresonantly excited p states is found to
decrease with the increase of laser pulse duration,
whereas the residual probability for d states appears to
grow monotonously. The behavior of the residual prob-
ability in the case of even orbital numbers is similar to
that obtained in earlier analytical investigations of IS
[6, 7]. Because of this similarity, the interference mech-
anism of stabilization observed by results of our numer-
No.1 1998
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Fig. 10. Relative residual probabilities of finding an atom in
bound states with arbitrary principal quantum numbersn but
given orbital numbers / = s, p, d in dependence on the pla-
teau duration T, of the trapezoidal pulse envelope; laser

intensity is equal to 3 X 10" Wiem?.

ical simulations can be considered as a strong support
of the idea about close connection between IS and
repopulation of Rydberg levels due to A-type transi-
tions.

Moreover, the dependencies of partial residual prob-
abilities for given principal quantum number n (arbi-
trary orbital numbers) on the plateau duration T, found
in our calculations are also very close to those obtained
from analytical studies of IS [3, 4]. According to [3, 4]
the populations of Rydberg states with different princi-
pal quantum numbers 7 oscillate in time. The period of
the oscillations depends on » and for n = n, is equal to

Kepler period t = 27tn§ . For other states the ratio of their
oscillation periods corresponds to the inverse ratio of
their energy deviations from the initial energy level E, .

The results obtained from numerical calculations
and presented in Fig. 11 show that for a given n the
residual probabilities W,, summed over [ are character-
ized by oscillating dependencies on the plateau dura-
tion T,,. The period of oscillations is close to the Kepler
period (=23 optical cycles) in the case of ny = 5. In the
case of n = 6 and n = 4 the oscillation periods are dif-
ferent from t and from each other but they are also of
the order of the Kepler period. Their ratio is equal to
1.85, in a good agreement with the ratio of |E,, - E, It

calculated for ny = 5, n = 6, and n = 4. Thus, there is a
close similarity between our calculations and analytical
investigations based on the consideration of A-type
transitions. Therefore, we conclude that the dynamics
of the system is mostly determined by A-type transi-
tions with an admixture of direct nonresonant transi-
tions between neighboring Rydberg levels occurring in
the case of supershort pulses. Apart from nonresonant
transitions, these results can be considered as a confir-
No. 1 1998
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Fig. 11. Residual probabilities of finding an atom in bound
states with arbitrary orbital quantum numbers / but given

principal quantum number z =4, 5, 6 in dependence on pla-
teau duration T, of the trapezoidal pulse envelope; laser

intensity is equal to 3 X 101 W/em?.

mation of the main ideas and predictions of the analyt-
ical theory of IS described above.

CONCLUSIONS

In conclusion, strong-field ionization of a Rydberg
atom was investigated both analytically and via direct
numerical solution of the nonstationary Schrodinger
equation. The existence of temporary population and
the motion of the irreversible ionization wave packet
away from the nucleus is seen both in analytical and
numerical calculations. The numerical calculations
performed demonstrate a very good agreement with the
analytical theory. In particular, the analytical and
numerical curves of ionization probability versus laser
intensity perfectly coincide in a strong field region. In
the numerical calculations A-type transitions between
different Rydberg states are prove to be a reason for the
stabilization found. Thus, the predictions of the analyt-
ical theory concerning the interference stabilization of
Rydberg atoms were confirmed.

By returning to the question formulated in the Intro-
duction about an option between the death-valley and
death-plateau regimes of IS and strong-field ionization,
we can use the results of this work to make a clear
choice in favor of the death-plateau or “saturation”
regime. This conclusion is assumed to be valid for 3D
atoms, though different regimes can be expected to
occur in model 1D atoms.

In addition, the direct numerical solution has shown
that in the case of strong and very short pulses the pro-
cess of photoionization is accompanied by very effi-
cient nonresonant transitions between Rydberg levels.
E.g., excitation of Rydberg np-states from the origi-
nally populated 5s-state appears to be highly pro-
nounced, though in terms of perturbation theory such
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transitions would correspond to a direct absorption of a
photon o forbidden by the energy conservation law. An
extremely high efficiency of such nonresonant transi-
tions found in numerical calculations is beyond the
framework of any existing analytical theories and
deserves further investigation.
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Abstract—We investigate the relativistic and the quantum mechanical corrections to the motion of an electron
wave packet in the presence of an intense static electric field. In contrast to the predictions of the (nonrelativis-
tic) Schrédinger theory, the rate of the spatial wave packet spreading can be altered when the electron’s response
to the field requires a relativistic treatment. The spreading rate in the field’s polarization direction as well as in
the transverse directions is reduced and the wave function develops an asymmetric shape. We compare analyt-
ical but approximate results for the time evolution of the position, the width, and the skewness with the predic-
tions obtained from the direct numerical integration of the Dirac equation.

1. INTRODUCTION

In atomic, molecular, and optical physics the effects
of relativity were discussed mainly in the context of the
atomic and molecular structure and the energy levels
[1, 2]. The magnitude of the relativistic corrections to
the precise energy of spectroscopic lines, however, is
rather small. In the area of heavy-ion collisions, relativ-
istic contributions are typically much larger and, espe-
cially for atoms with large nuclear charges Z, these
effects can be quite significant [3]. Theoretical studies
that include the numerical solution of the time-depen-
dent Dirac equation have aided experimental observa-
tions of signals including electron—positron pair pro-
ductions [4]. Relativistic contributions have also been
considered in the studies of the electron motion in the
operation of free-electron lasers [5].

Up to a few years ago only a limited number of works
have been devoted to the case for which a relativistic
treatment is required due to the interaction of an atom
with a strong laser field. Pioneering works by Reiss [6]
were among the first to incorporate the relativistic accel-
eration of electrons by the action of strong laser source
into a theoretical description to compute ionization rates
for the hydrogen atom. More recent studies were moti-
vated by the availability of high-intensity lasers and
some initial experimental evidence indicated deviations
from the nonrelativistic behavior [7].

Theoretical studies have shown that the ionization
rate of atoms in certain dressed states can be a decreas-
ing function of the intensity if the laser fields are suffi-
ciently strong [8-10]. Large-scale numerical simula-
tions for the ionization of hydrogen have demonstrated
that the ionization can be suppressed in realistic laser
pulses [11-13]. Later, several research groups have
confirmed this so-called stabilization phenomenon
which also motivated several experiments [14]. An
important question which is not fully understood today
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concerns the fate of stabilization in the fully relativistic
regime [15, 16].

As a first step in systematically exploring the role of
relativistic corrections in the motion of an atomic elec-
tron in strong laser fields, we have analyzed a very sim-
ple system: a free electron wave packet in a static elec-
tric field [17]. This system has the advantage that it
allows for more transparent analysis of relativistic phe-
nomena without any interfering effects due to the mag-
netic field, the atomic Coulomb field, or temporal char-
acteristics of the finite laser pulse. In this work we
report on our first results. Our approximate analytical
results were obtained from the square root Klein—Gor-
don-type Schrédinger equation and the applicability of
this approach was tested by comparing our predictions
with the results obtained from the exact numerical
wave function solutions of the Dirac equation.

Our main findings include a significant suppression
of the growth pattern of the second-order moments, i.e.,
the spatial width of the electron wave packet. Further-
more, we find that the wave packet in the direction of
the polarization axis of the field becomes practically
“frozen” in the long-time limit as electron approaches
the speed of light. The suppression of the width is also
present in the transverse directions, but to a lesser
extent. To the best of our knowledge, these characteris-
tics of relativistic wave packet spreading have not been
discussed previously. Dodonov and Mizrahi [18] have
shown that the variance of the physical coordinate of a
relativistic particle must be greater than one half of its
Compton length provided the average value of the
energy in the wave packet is much smaller than twice
the rest energy mc?. For a review on localization, super-
luminal spreading, and a discussion of the violation of
Einstein causality in this context, see [19]. In addition,
we have also analyzed the third-order moment that
characterizes the asymmetry of the wave packet and
found it becomes nonzero as a result of the steepening
of the front edge of the wave packet.
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This paper is organized as follows: In Section 2 we
introduce the physical system for our numerical calcu-
lations and motivate the use of a relativistic
Schrédinger equation for our approximate analytical
investigations. We derive and solve the Heisenberg
equations for the position operator and show that the
coupling between the three coordinate directions con-
serves the relativistic momentum but not the kinetic
velocity for the direction perpendicular to the external
field. In Section 3 we investigate the second-order
moments as a function of time and point out an interest-
ing finite long-time limit. In Section 4 we discuss the
third-order moment. Our approximate analytical results
that were obtained from the Heisenberg equations
derived from a square root Klein—-Gordon-type Hamilto-
nian have been compared with the predictions obtained
from the exact numerical solution to the Dirac equation.
These numerical solutions-allow us also to predict the
contributions due to spin and electron—positron pair pro-
duction. In the Appendix we discuss the connection of
the relativistic quantum phenomena to the dynamics of a
classical distribution of electrons. In Section 5 we offer a
direct interpretation of these results, a comment on
experiments, and conclude with a summary.

2. THE QUANTUM WAVE PACKET
IN AN ELECTRIC FIELD

2.1 Exact Numerical Approach

In the case of a constant electromagnetic field, we
may choose, without loss of generality, a reference
frame in which only the electric component is present.
The interaction of an electron with a static electric field
E in the x-direction is described by the vector potential

A(t) = —cEt = —cEte,. 2.1)
The quantum motion of the electron in such a field has
to satisfy the time-dependent Dirac equation given by

iﬁg—t‘l’(r, 1)
2.2)
= I:mc(x pP- %A(t)) + gmcz}\ll(r, 1),

where W(r, 1) denotes the well-known four-spinor and

o and ﬁ are the 4 x 4 Dirac matrices [20].

To solve this equation in time, each of the three spa-
tial variables x, y, and z has been discretized into 64~
512 space points. The spinor ¥(r, ) is then represented
numerically by a vector with typically 4 x 1283 compo-
nents. The time-dependent Dirac equation has been
solved via a generalized split-operator Fourier tech-
nique on a cray supercomputer. For details of the
numerical method, see [21].

Before we discuss our analytical results, let us men-
tion first the initial state used in the numerical calcula-

tions. We have chosen an initial quantum wave function
of the simple form:

WY(r,t=0)
5. -3/4 s (2.3)
= [2rn6"] (exp[-(r/26)7],0,0,0).

The initial spatial uncertainty of Ax = Ay = Az = ¢ was
chosen to be a tenth of the Bohr radius, 6 =5.3 X 102 m
(0.1 a.u.); this corresponds to a momentum width of
Ap,=Ap, = Ap,~5x 10 kg m/s (5 a.u.). The momen-
tum width is small enough such that contributions of
the Dirac states with negative energy (Dirac sea) are
practically negligible in the initial state. Contributions
of the negative-mass states are only relevant if the elec-
tron’s extension is smaller than the Compton wave-
length (A/mc = 2.43 x 10712 m) and quantum effects
like the Zitterbewegung play a role [22].

2.2 Approximate Analytical Description

In order to obtain some analytical results, we will
neglect the spin as well as the possibility of positron—
electron pair production. We will analyze the spinless
(relativistic) Schrodinger equation with the square root
Klein—-Gordon-type Hamiltonian [23]:

2
iﬁa%‘l’(r, t) = )\/{mzc" + cz(p - %A) }‘P(l‘, t). (24)

We then use our exact numerical solutions to the Dirac
equation to test the validity of this approximate
approach. Such a Schrédinger equation has the well-
known Volkov—Gordon solution:

Dy (r, 1) = (2m)""

t

2
X exp ~iJ.)\/[m2c4 + cz(ﬁk - %A(t’)) :!dt'/h 2.5)

xexp{ik-r}.

Volkov states, however, are spatially not localized and
therefore of no immediate practical use in studying the
temporal evolution of wave packets. The Volkov states
could be applied to find the time evolution of a wave
packet W(r, t = 0):

Y(r, 1)

2.6
= j kD (r, 1) j &X' (r, t = 0)¥(r, ¢ = 0). 26)
Using this approach we did not find it easy to judge
which characteristics of the solution depend on the spe-
cific properties of the initial-state wave function and
which characteristics are generally valid. We have not
No. 1 1998
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managed to significantly simplify the sixfold integrals

in (2.6) to obtain some useful insight without any addi-
tional approximations. It seems that in order to investi-
gate the time evolution of Volkov wave packets one has
to rely on numerical methods.

It turns out, however, that it is more advantageous to
. . . o d
analyze the Heisenberg equations of motion, e.g., ifi prhle

[r, H] for the position operator. The operator equations
can be solved fully analytically and we obtain

x(t) = x+qlEJ[mzc“+c2(p+qEz)2]

(2.7a)
- i«/[mzc4 +c 2]
qE Pl
cp,
y(1) = y+ Z2n{lp, +qEt
q (2.7b)
+ Im2c + (p+ qED) 1/ [p, + NIm’c® +p°1 1,
2(1) = 7+ EEE—Z,ln{[px +gEt
q (2.7¢)

+ «/[mzc2 +(p+ th)z]/[px + A/[mzc2 + p2] 1.

The omission of the time argument for the operators on
the right-hand side indicates the (usual) operators in the
Schrédinger picture. The symmetry between the solu-
tion in the y- and z-directions, transverse to the electric
field, is expected. The nonrelativistic limit can be easily
obtained from (2.7) for c — o leading to the solutions

_ro P, 9E
) =r+ mt + o
formally identical to the solutions for a single classical
electron trajectory. However, the time-dependent
expectation values (r)(?) differ from the solution for a
classical particle. For a more thorough comparison of
the relativistic classical and quantum mechanical pre-

dictions, see Appendix A.

As the Hamiltonian in (2.4) commutes with each of the
canonical momenta p,, p,, and p,, the momentum opera-
tors are conserved under the time evolution. The veloci-
ties, ¥, ¥, and Z, however, are not conserved. In the
long-time limit, ¥ — ¢, whereas y —= Oand Z — 0
as one can easily verify from the time derivative of
(2.7). This is interesting. Although the force due to the
electric field points in the x-direction, the motion in the
perpendicular (y, z) plane is also influenced by the field.
This is a direct consequence of the fact that the total

velocity v(f) = «/ [x2 + y2 + 2'2] cannot exceed the speed
of light c. As the velocity grows in the x-direction, the
particle must be decelerated in the transverse direc-
tions. The same argument can be also illustrated using

2. The relativistic solutions are
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the concept of the time-dependent relativistic mass

defined as m, = m/A[1 —(v/ c)2]. The Heisenberg
equations for the three relativistic momenta lead to

imrl‘ = gE. (2.8)

dt

The three components are nonlinearly coupled through
the common velocity-dependent mass m,.. As this mass

increases and approaches infinity, the two velocities y

and Z have to approach zero in order to conserve the
relativistic momentum in the transverse directions.

3. SECOND-ORDER MOMENTS: SUPPRESSION
OF WAVE PACKET SPREADING

Let us now analyze the evolution of the second-
order moments defined by Ax? = {(x — (x})?) and simi-
larly for y and z. To simplify the notation, we restrict
our analysis to those initial quantum states that are sym-
metric in their spatial and momentum representation:
Y(r, t = 0) = ¥(-r, t = 0) and ¢(p, t = 0) = ¢(—p, t = 0).
Using the operator solutions (2.7), one can find the time
evolution of the second-order moments:

Ax(6)? = Ax"+ ((Af)D, (3.1a)
Ay’ = Ay’ + ((Af), (3.1b)
Az(1) = AL+ {(Af)Y), (3.1¢)

where the variances of the functions fare given by

Af,= z}%h/(p + th)2 +mc - Jpz +mc’

(3.1d)
- («/(p + th)2 +mic?) + («/p2 +m’cH1,
Af,= CP\~|:1n|:Px +qEr+ «/(p + th)2 +mc
yY<To
9k Pyt /\/p2 +m’c o)
de

In [px +gEt+ A/(7p + th)2 + chzi‘ :I

Pt Alp* +mc?
Af = %[ln[px + th + A/(p + th)2 + m2C2:|
Z
o ot Ap?+mict

In [px +qEt+ «/(p + th)2 + mzcz} }

[2 . 22
p.HAp +mc

3.11)
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Fig. 1. Relativistic reduction of wave packet spreading. The
graphs show the temporal growth pattern of the spatial
width obtained from (3.1) Ax(¢), Ay(¥), and Az(t) together
with the nonrelativistic width Axyg(#). Superimposed on the
graphs for Ax(r), Ay(#), and Az(¢) are the width determined
from the time-dependent wave function solution obtained
from the full Dirac equation (2.2) (dashed lines). The two
graphs are indistinguishable. [E = 1000 a.u., initial quantum
state as in (2.3) witho = Ax(¢ = 0) = 0.1 a.u.]

Due to the square root of the operators in the expecta-
tion values at ¢t = 0, all higher-order moments of the
momentum contribute to determine the time evolution
of the width. One can easily see that in the nonrelativ-
istic limit these equations reduce to Axyg(?)* = Ax? +

Ap’ /m?, and similarly for y and z.

The long-time limit is of interest in the relativistic
case. The first of expressions (3.1) has an interesting
finite limit:

Ax(t — °°)2 = Ax* + %[cz(pf + p2) + m2c4]
E
7 (3.2)

2
- —21——5(4 [m’c* +cp’)) .
qFE

The spatial variances in the transverse directions
diverge logarithmically in accord with Az(r —» e0)? =

2 2
AZ + & EZ ;> lnz[qut] for the z-direction. As the
q

electron approaches the speed of light, the spreading
gets significantly reduced. The spatial probability dis-
tribution in the x-direction gets “frozen.” If we assume
that our initial wave packet is at rest such that basically
all initial velocity contributions are much smaller than c,
expression (3.2) simplifies to

2
Ax(t —= )’ = Ax’ + (pD——. (3.3)
q E

This expression has a direct interpretation. The time it
takes a non-relativistic particle that is initially at rest to

SU et al.
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Fig. 2. Spatial probability distributions. Displayed are the spa-
tial probability distributions P(x, f) = zi Idy d¥x, y, z, G

and P(z, ) = Zi J.dx ¥ (x,y. 2, 2 in the x and z direction

at time ¢ = 0.1 a.u. For comparison, the dashed lines show
the corresponding distributions obtained from the nonrela-
tivistic Schrédinger time evolution. The initial wave packet
was centered initially at r = (-3, 0, 0). The nonrelativistic

wave packet has moved tox(t = 0.1 au.)=-3 an. + EA2 =
2 a.u. (Same parameters as in Fig. 1.)

exceed the velocity of light is #* = ZLEC If we assume

that during this time the wave packet extends its width
according to (the nonrelativistic formula) Axyg(£)?* =

Ax? +{ p? Y*/m?, then we obtain expression (3.3) for the

final relativistic width with # = £*. From this reasoning
one could expect the nonrelativistic Schrodinger theory
to roughly agree with the relativistic theory for times up
to ¢t = r*. The fact that the final width is inversely pro-
portional to E is also expected. The electron approaches
¢ quicker and the time that is available for the wave
packet to spread is shorter for larger E fields.

Let us now illustrate our results graphically. For bet-
ter clarity we present our data in atomic units, for which
lgl = i =m =1 and ¢ = 137. The expectation values in

(3.1) of the form (./... ) were evaluated numerically in
the Fourier space. As an initial state we used the first
component of the Dirac state of (2.3). For the electric
field strength we chose E = 1000 a.u. (ca. 5 x 102 V/cm)
corresponding to the time r* = 0.137 a.u.

In Fig. 1 we show the evolution of the variance in
three coordinate directions according to the analytical
prediction of the relativistic Schrédinger theory (3.1).
For comparison we have also included the predictions
of the nonrelativistic (Schrodinger) theory Axyz(f) =
Aynp(®) = Azyg(t). For short times both theories agree
but when the electron approaches the speed of light, the
spreading in all three directions is severely suppressed.
The spreading in the transverse direction y and z is
reduced - significantly logarithmically, whereas the
spreading in the longitudinal x direction approaches the
final value according to (3.3) Ax(t — o) = 0.6935.
No. 1 1998
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In Fig. 1 we also compare the validity of our analyt-
ical approach for these parameters with the results
obtained from the full solution to the Dirac equation on
a numerical grid. Due to the limit in our numerical grid
size as well as the memory restrictions, we have traced
the time evolution of our Dirac wave packet to only ¢ =
0.3 a.u. We have used this wave function to compute the
spatial variances. The calculated widths are practically
indistinguishable with those obtained from the Heisen-
berg equations. The agreement between our exact Dirac
theory (dashed lines) and the (approximate) relativistic
Schrodinger theory used for our analytical analysis is
superb. Furthermore, the wave function has been pro-
jected on the negative-energy eigenstates and we found
that during the entire interaction the fraction of popu-
lation in the negative-energy Dirac sea remained neg-
ligible. In addition, the monotonic time evolution of
the first-order moment (not presented) also confirms
that effects due to the Zitterbewegung are not so
important here.

In Fig. 2 we display the spatial probability distribu-
tion of the Dirac wave packet in the x and z directions.
The distribution along the x-axis is defined as P(x, 1) =

Zi J.dy dz]¥(x, y, z, 1)’, where the summation goes

over the four spinor components and the integration
over the two complementary coordinate directions y
and z. The wave packet in the x as well as z directions
shows a significant reduction in spreading compared to
the nonrelativistic spreading (dashed lines).

4. THIRD-ORDER MOMENTS: ASYMMETRIC
WAVE PACKET SPREADING

Let us now investigate the third-order moments and
demonstrate that the spatial probability distribution
becomes asymmetric with respect to its “central” peak.
The Schrodinger theory would predict that an initially
symmetric wave packet remains symmetric as a func-
tion of time, independent of the speed of the center of
mass even when the velocity of the center approaches c.
In the relativistic case, however, we expect that a sym-
metric state becomes spatially asymmetric. The veloc-
ity of the front edge depends on the speed of the central
peak and the spreading velocity. If the central peak
approaches the speed of light, the spreading at the front
of the wave packet must be reduced in order not to vio-
late any causality as the leading part of the wave packet
cannot propagate with a velocity larger than c. This
raises an interesting question whether information can
be transported by the front edge of a wave packet.
Chiao and coworkers have investigated the possibility
to obtain “superluminal” velocities in the propagation
of wave packets in dispersive media [24].

A direct measure of the deviation from a symmetri-
cal distribution is the coefficient of skewness, defined
from the third-order moment of the spatial coordinates:
1y = ((x — ()’ Ax*. This provides a dimensionless
measure of the asymmetry of a probability density. For
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Fig. 3. Third-order moments. We show the third-order
moments of the wave packet as a function of time according
to (4.1). (Same parameters as in Fig. 1.)

reasons of symmetry we expect this coefficient to
remain zero in the direction perpendicular to the elec-
tric field. In the direction of the external force, however,
we might expect a steepening of the front edge portion
of the wave packet.

To answer this question unambiguously, we have
determined also the third-order moments from the
operator solution (2.7) as

((x= (M) @)
= 2Re[(AF(AD)H]+ ((AF,)) + (AxAfAX),

where Re[...] denotes the real part of [...], and Af, has
the same meaning as in (3.1d). As the spatial distribution
gets frozen in the x-direction in the long-time limit, the
third-order moment approaches a time-independent limit

' 2, 22
(= (Pt o) = P 4
mq E

To keep this expression as simple as possible we have
again assumed that all moments in p are initially much
less than mc.

The results of (4.1) are presented in Fig. 3. The
numerical result obtained from the time-dependent Dirac
state (obtained from Section 2.1) is plotted in the same
figure. Note that there is no visible difference between
states evolved from the square root Klein—-Gordon-type
Hamiltonian in (2.4) and the Dirac Hamiltonian in (2.2).
The negative sign in the third-order moment is a result
of the steepened edge for the spatial distribution P(x)
toward increasing x values. This is the result of an
acceleration due to the static field in that direction.
The vanishing third-order moments found for the
transverse directions indicate the spatial symmetry is
maintained during the evolution of the wave packet in
y and z. Finally, the third-order moment approaches
the constant value predicted by (4.2) with a value of
Ax3(t —» o) = —0.0351. For graphical examples of
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Fig. 4. Classical distribution functions in the long-time
limit. Displayed are the classical densities p(x,  — o0) for
three different values of the electric field strength in the
long-time limit. The predicted steepening of the propagation
front is clearly visible. The distributions were shifted to fit on
the same plot. (E = 500, 1000, and 2000 a.u.; 6, = 0.1 a.u,;
and O,= 50 a.u.)

skewed spatial densities, we refer the reader to Fig. 4
discussed in the Appendix.

5. DISCUSSION

The observed suppression of the wave packet
spreading can be interpreted if we analyze the time evo-
lution of the velocity distribution of the wave packet. In
the nonrelativistic limit this distribution remains shape-
invariant while the center of this distribution follows
the constantly accelerated motion. When the velocity
contributions approach c, the acceleration is reduced
and the distribution in velocity becomes more narrow.
Asymptotically, the distribution approaches a narrow
peak centered at ¢ for which the spread in velocity is
zero. As the dispersion in the velocity is the source for
the spatial spreading, a narrowing in the velocity distri-
bution has to be accompanied by a reduction in spatial
spreading. We should mention here that the zero veloc-
ity width accompanied with a finite width in position
space does not violate any quantum uncertainty rela-
tion. The commutator between the velocity operator
and the position operator is not constant. The product of
the two uncertainties Ax Ax therefore has no positive
lower limit. The usual uncertainty product Ap,Ax, how-
ever, grows as a function of time as the canonical
‘momentum is conserved under the time evolution.

We should also point out that the relativistic spread-
ing width reduction should not be confused with the
well-known Lorentz contraction, which occurs if the
wave packet is observed from a moving coordinate
frame. Of course, the width observed from a moving
frame is smaller compared to that observed in the
packet’s own rest frame, this effect is different than the
one reported here. In our case the reduction of the
spreading is a dynamical effect due to the presence of
an external force. Furthermore, a simple Lorentz con-

SU et al.

traction would predict a symmetric density for which
the coefficient of skewness is zero.

An important, if not the most important, question
concerns the possibility of an experimental verification
of our theoretical predictions. As mentioned in the
Introduction, laser field strengths are available that are
so strong that the electron’s motion can become relativ-
istic. The initial width of ca. ¢ = 5.3 X 10~'2 m chosen
in our numerical simulations agrees roughly with that
of the ground-state wave function of the hydrogen-like
Ne®* ion. In strong-field experiments one can think of
the role of the atom as a mere vehicle to carry the
atomic electrons into the laser focus without changing
the shape of the wave functions. As the atom
approaches higher and higher intensities of the laser
pulse, more and more of its weaker bound electrons are
stripped off. In previous work on intense field ioniza-
tion, it has been pointed out that the nonrelativistic
spreading of the wave packet can be an important ion-
ization mechanism in the superintense field stabiliza-
tion regime [25, 26]. In this regime the suppression of
spreading could lead to a reduced ionization rate. But at
the present time this is just a speculation, and our
description is too simplistic to allow for truly reliable
predictions of the complicated atom—laser dynamics in
the relativistic regime.

To summarize, our numerical solutions to the Dirac
equation for an electron in a time-independent electric
field show that the rate of wave packet spreading can be
reduced. This effect is most pronounced in the direction
of the external field but it is also manifested in the plane
perpendicular to the field. Furthermore, the wave
packet develops an asymmetric profile, which is caused
by a steepening of the wave front along the propagation
direction.
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APPENDIX A

Due to the nonlinearity induced by the relativistic
mass, the direct classical-quantum correspondence
principle does not apply and a single classical trajec-
Vol. 8 1998
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tory does not follow exactly the quantum expectation
values (x)(¢) and {(p)(¥). If the quantum motion is com-
pared with a classical statistical ensemble, however, the
relativistic quantum dynamics in a static electric field
can be described essentially in terms of classical
mechanics. As is well known, the (nonrelativistic)
quantum mechanical spreading of a wave packet has its
direct classical counterpart. In order to keep our nota-
tion as transparent as possible, we restrict our discus-
sion here to only one spatial dimension. A generaliza-
tion to the full three-dimensional motion is straightfor-
ward. The classical Hamilton function is '

H, = A[[mzc4+c2(p+th)2]. (A1)
The single trajectory depends on the initial conditions
x(t = 0) = x, and p(t = 0) = p, and has the solution
1
x (1) = X+ —%
9k (A.2)
x i’ + (po+ qE - Jm*c’ + pall.

The time evolution of the classical probability dis-
tribution p(x, p; 1) is determined by the Liouville equa-

. d
tion E‘ p(x’ p; t) = {ch p}x,p’ where {Hcl’ p}x,p =
d d d J _. .
o Hc,a—é p- 51—) Hdé} p is the Poisson brackets of sta-
tistical mechanics [27]. For the relativistic motion in a
constant E-field this equation takes the form:

005031
(A3)

= —cz(p +th)/«/anc4+ cz(p + th)z]%p(x, pit).

If we assume that the classical ensemble is initially in
the state p(x, p, t = 0) = py(x, p), the Liouville equation
can be solved easily, as the Hamilton function is only a
function of the canonical momentum:

p(x7 p: t) = PO(X—f(Ps t)a p)9 (A4)
where f(p, ) denotes the function fip, 1) = 21% X

[A/mzc4 + cz(p + th)2 - A/;12c4 + czpz].
The nonrelativistic spreading can be obtained directly
from (A.4) in the limit ¢ —» eo. In this limit fip, )

1 n_ =P, 9E 2
2qu[(p+th) 1-pl= mt+ 2mt ’

Let us now focus on the spatial density defined by
the integral of p(x, p; f) over the momentum p(x; ) =
Idp p(x,p; ) = Jdp po(x —flp, ), p). In contrast to the

nonrelativistic limit, for which one can obtain analyti-
cal results for p(x, ¢) for various initial distributions p,,
such as Gaussians, we did not find any closed-form

approaches
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solutions for the time evolution of the probability den-
sity in the relativistic case. In order to demonstrate the
relativistic suppression of spreading, we have used an
initial ensemble with Gaussian function dependency in

1
2R0,0,
exp[—(x/6,)*/2lexp[—(p/c,)*/2]. This classical ensem-
ble has all average values {(x"), and {p"), identical to
the corresponding quantum expectation values of the

wave function W(x) = [21tof T expl—(x/20,)?] if the
classical widths are related by ©, = #i/(20,). This wave

function is the one-dimensional analog of the one used
in the calculations in Sections 2—4.

coordinate and momentum: py(x, p) =

For the nonrelativistic limit the time dependence
of the spatial density can be obtained by integrating

Po(x — fp, 1), p) over p:
p(x; 1)

- o__(t;me"‘{“% ((+- g_’%tz)/cx(t))z} (A5)

with the well-known spreading relation 0(1)* = Gf +
2

(8] .
—£ 2. Please note that the more general relation
m

2

(A (1) = {(AxD), + {Ap )d £ holds for any classical
m’

distribution.

In Fig. 4 we have calculated the spatial density
numerically for the relativistic case. The initial distri-
bution was a (symmetric) Gaussian in momentum and
position with 6, =0.1 a.u. and 6, = 50 a.u. We show the
asymptotic shape of the density p(x; t —= o) for three
values of the electric field strengths E. The figure shows
that the distribution can develop a quite asymmetric
profile due to a steepening of the propagation front of
the wave packet. The central peak of the distribution
has been shifted close to zero for convenience. The
graphs demonstrate again our findings from Section 3
about the inverse relation of the final width to the elec-
tric field strength E [compare with (3.3)].

In Fig. 5 we present a direct comparison of the pre-
dictions for the one-dimensional classical ensemble
p(x; ©) with the corresponding distribution P(x, 1)
obtained from the quantum solution of the Dirac equa-
tion at time ¢ = 0.3 a.u. The classical distribution is
shown by the dashed line and it is practically indistin-
guishable from the quantum probability of the Dirac
wave function. This suggests strongly that for our
parameter regime the entire quantum evolution can be
very well described by a classical probability distribu-
tion. It also suggests that the dynamics in the longitudi-
nal direction depends only very weakly on the dynamics



15

12 13 14
Position, a.u.

Fig. 5. Quantum versus classical spatial densities. Direct
comparison of the spatial probability distribution of the
Dirac wave packet P(x, f) with that of the classical ensemble
p(x, £) taken at time ¢ = 0.3 a.u. At this time the width has
increased by roughly a factor of six, whereas the nonrelativ-
istic width has grown by a factor of 15, as is shown in Fig. 1.
Note that the full width at half maximum is ~/8In2 ©,. [The

two distributions were centered initially at r = (-14, 0, 0).
Same parameters as in Fig. 1, E= 1000 a.u,, 6, = 0.1 au,

and o, = Saul]

in the transverse directions. A one-dimensional model
is therefore expected to work well.

The close similarity between the relativistic quan-
tum and classical ensemble dynamics can be also dem-
onstrated independently of the choice of the initial
states if we compare the time evolution of the ensemble
averages with the quantum expectation values. The
equattons of motion for the classical average values

defined by (x"p™), = J' J dx dpx"p™p(x, p; t) are

d

n n n ma
5P Yot = ”dxdpx P a—tp(x,p; 1)

= ~j j dxdpx"p'"%ﬂc,%p(x, pit)
(A.6)

n- m a
= dexdpnx lp a—pHc,p(x,p; 1)

= n{x"" 1pmcz(p + th)/A/[mzc4 + cz(p + th)z])cl.

With the exception of the classical symmetry (x"p™),; =
(p™x™), these equations are identical to those obtained
from the Heisenberg equations of motions in the quan-
tum case. In other words, if a classical ensemble can be
identified whose initial average values for all moments
in x and p agree with those of the corresponding initial
quantum state, then the classical average values remain
identical to the corresponding quantum expectation
values for all times. For example, the classical spread-
ing in the longitudinal direction has an identical form to
that of the quantum mechanical case:

(AYa(r) = (A + (AF(p, 1) Ya. (AT)
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Abstract—Qualitative and quantitative results of a relativistic calculation of the S-matrix transition amplitudes
and cross sections for Mott scattering of initially polarized electrons in the presence of an ultraintense single-
mode laser field are presented. Exact Dirac—Volkov wave functions within a circularly polarized light field are used
to describe the “dressed” electron and the collisional stage with the Coulomb potential is treated in the first-Born
approximation. We discuss the influence of the laser field on the degree of polarization of the scattered electrons,
depending on its intensity, and consider effects arising in different geometries in ultrastrong fields.

Recent experiments on laser-induced processes in
ultrahigh intensity fields, namely, well beyond the
atomic field strength intensity of about 3.5 X 10! W/cm?,
obtained via short-pulse laser systems have clearly
given evidence of relativistic effects [1]. In fact, it has
been well-known since the theoretical work on free
electrons in ultrastrong electromagnetic fields [2] that,
for intensities in the range 10'8-10° W/cm?, in the
near-infrared frequency domain, the averaged quiver
energy of the electron becomes comparable to its rest
energy. Here, the relativistic mass shift, the breakdown
of the electric dipole approximation, the roles of the
magnetic field component of the laser field and the elec-
tron spin may become of significance. On the one hand,
the search for spin-specific effects has been relatively
scarce and especially under certain assumptions for
other purposes [3]. On the other hand, it is expected that
spin-dependent relativistic Mott scattering provides a
clear distinction between simple kinematics and spin—
orbit coupling effects [4]. The purpose of this letter is
to show that the modifications of the polarization
degree in Mott scattering of polarized electrons due to
the presence of an ultraintense field can provide a
remarkable signature of spin effects in electron—laser
interaction.

Concemning laser-assisted electron—atom collisions,
most experimental and theoretical studies were
restricted to the nonrelativistic regime and low-fre-
quency fields, where it has been already recognized
that, as a general consequence of the infrared diver-
gence of QED, large numbers of photons can be
exchanged between the field and the projectile-target
system. An extension of the first-Born nonrelativistic
treatment [5] to the relativistic domain was formally
derived for unpolarized electrons [6]. There have been
as well theoretical investigations of relativistic scatter-
ing in multimode fields [7]. Recently, for the mono-
chromatic case, the explicit derivation of the S-matrix
element in first-order Born approximation for Coulomb

scattering of Dirac—Volkov electrons has been used in
order to discuss the differential cross section for unpo-
larized electrons in detail [4]. These results show, nota-
bly in comparison to more simplified approaches (spin-
less particle and nonrelativistic limit), the importance
of the full Dirac approach, especially in the case of
ultraintense laser fields.

Before we present the most interesting results of our
investigation regarding laser-assisted Mott scattering of
polarized electrons, we sketch the principal steps of our
treatment. The solutions to the Dirac equation for an
electron with four-momentum p* inside an electromag-
netic plane wave are well known [8, 9]. They read for
the case of circular polarization of the field propagating

along the ¢, direction

ey = [ A 7w
Vo = (xlg) = [“2c(kp)lr“zgv

kx
- [ (pA)
X exp[— i(gx)—i d¢],
’ c(kp)

(D

where u represents a free electron bispinor satisfying
the Dirac equation without field and which is normal-
ized by nu = u*y’u = 2¢* Here the Feynman slash
notation is used, and V is the normalization volume.
The physical significance of g* = (Q/c, q) is the aver-
aged four-momentum (dressed momentam) of the
particle inside the laser field with vector potential A* =
(0, A,cos(kx), Aysin(kx), 0) with wave four-vector k*:
q* = p* — kM[A?%/2(kp)c*]. From the free bispinors u the

two helicity states of the bare electrons can be obtained

by using the projection operators

+ 1+7y°
@ = 2” )
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with ¥ = i>y'v*y’, the ¥ denoting Dirac matrices, and the
Lorentz-boosted spin four-vector s* = (|pl/c, Ep/c?|p)).

For Coulomb scattering the S-matrix element for the
transition |¢) — |q') of the dressed electrons is, in
first-Born approximation,

iZra 7
Tye, = ?Jd xy1g Ve 3)

For the high energies of the incoming projectiles in
ultrastrong fields, the first-order calculation is certainly
valid. Since the four-vector potential A* of the intense
laser field does not change in the collision process, the
Volkov electron in the final state |¢') will have the same
invariant effective mass as in the initial state |¢) and,
hence, the following condition fixing the outgoing
momentum q' holds:

NI A 2
ququ = qu%l = (1 ——4)6 . 4)
c

In the absence of the laser this equation reduces to the
elastic condition |p] = |p'| obtained in ordinary Mott
scattering using energy and mass conservation.

The differential cross section do™® for the scattering
of right-handed (positive helicity) electrons, described
by the bispinor u*, with (=) or without (+) spin flip is

2 0
@ _ Z|[ 4D A€ Y
do® = [a*xa [1+ 2—’—c(p'k)]|x|

X[ 1+ L2
[

kx
T k)]u‘”exp[— itq-q)x-if Ekdo )
0

2
lq|dQ'do
321c3c4!q| T

+i

kx
(A)
et }

Here, the density of final states |q’) in phase space
divided by time T and the incoming flux of electrons
have been used and o denotes the solid angle.

The main steps in the explicit calculation of the
cross section are as follows: The time dependence of
the phase in the matrix element (3), which arise from

the 4 factors, can be recast by using trigonometric rela-

tions and the generating function of ordinary Bessel
functions J,. The differential cross section is then
obtained under the form of a sum over Fourier compo-
nents, the order of which being associated to the net
number of exchanged photons. Each corresponding
partial cross section is then expressed via well-known
Fourier transform integrals of the potential 1/|x|. The
No. 1 1998
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appropriate expression for the square of the 8-function
occurring in this formula is obtained by the usual pro-
cedure [9]. This leads to the expression

de™ _x~de™?
dO B ; do

where q' is fixed through condition (4). The differential
cross section do™®/do for each net n-photon process is

, (6)
Q=0+nw

de™® _ Z'q] 1

do c’lql lg—q' +nK

[ﬁ'(i)you(+)]~ln(€)

4

ndy) [ Al @ w0 K @
X e +[u 2c(kp')Y°u +i Y—Zc(kp)u ]

1 {i(n+ 1)¢q] [i(n - D)ol
x5{1n+l(§)e +Jn—1(z;)e }
N
0 Ak om0 KA @
+[“ ety MY Y achpy }
1 [i(n + 1)d,] [i(n — 1)¢;]
LU (S R ART(S T
A’ () 0, (+) (in¢o)2
——————[u" kY fu 1, (C)e ,
4c’(kp)(kp")
where { = {[(pA,/c(kp) — p'A,/ c(kp")))* + [pA,/ c(kp) —
pAlckp)}'? and ¢, = arccos{[pA/(kp) -

P'A/(kph)/ cC}. We note that without laser field, (6)
with (7) reduces, after integration over the final energy
variable, to the well-known polarized (first-Born) Mott
cross section for potential scattering.

Coming back to the laser-assisted cross section, we
observe two features: The effect of the vector potential
is contained in both the arguments of the Bessel func-
tions and in prefactors in front of them. The latter orig-
inate from the Volkov terms acting on the free bispinor
in (1) and do not depend on the net number of
exchanged photons. In addition to these weight factors
the squared amplitude for each n-photon energy trans-
fer is given in terms of squares and products of Bessel
functions whose magnitudes govern the corresponding
differential cross section.

In order to calculate the different transition ampli-
tudes between polarized spin states, the standard trace
technique is used. Using the spin projection operators
(2), traces of the following form have to be evaluated:

_ (%) )2 1 5

v = ~Tr[...¥... 14y ¢
7y = Ty (1Y) ©
x (e +cD) . (A +V’ ek + ],
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Fig. 1. (a) Envelope of unpolarized differential cross sectiondo/do scaled in 1071 a.u. as a function of energy transfer Q' — O scaled
in units of the laser photon energy o for an electrical field strength of E = wc = 5.89 a.u. or vector potential A = ¢* = 18769 a.u.

(b) Degree of polarization P™ after m/2-scattering (solid line) as a function of energy transfer Q' — Q around the elastic energy peak
scaled in units of the laser photon energy  for the same electrical field strength. The incoming electrons are right-handed polarized

and their energy is W = 4¢2.

where the occurring dyadics of bispinors have been
written in terms of energy projection operators.

Let us first consider the case of a measurement
which does not distinguish between final spin projec-

tion states. This means that only the operator (1 + Y*§)

in (8) occurs. An explicit calculation of theses traces in
order to evaluate (7) shows that all additional traces
involving Y’ vanish or cancel mutually, and the unpolar-
ized cross section [4] is recovered. This corresponds to
the well-known feature of ordinary Mott scattering that
in first order, the differential cross section for unpolar-
ized and polarized beams is identical [10].

The derivation of the explicit formula for the spin-
flip do™/do and nonflip do'*/do cross sections from
(7) has led to the calculation of a large number of dif-
ferent traces over products of up to 8 y-matrices. The
final expressions are rather lengthy and will be omit-
ted here.

We are especially interested in the degree of polar-
ization of the electrons after the scattering event. This

Degree of polarization P after m/2-scattering of right-
handed polarized electrons for different kinetic energies W of
the electrons and several electric field strengths E

Win |E=0au. [E=0.05au|E=0.1auw|E=05au
100 a.u. | 0.00531 | 0.00452 0.00377 0.00205
c? 0.60000 | 0.59468 0.58931 0.52012
4c? 0.92308 | 0.92017 091716 | 0.82421

quantity is defined for right-handed electrons as

,do” _)). ©)

P(”) _ (dc(”y +) _ do.("’ "))/(do,(", +)
do

do do do

Notably in very strong laser fields a large number of
photons can be exchanged during the collision process.
In order to compare the values obtained for a particular
field strength to the ordinary Mott case, the quantity

tot do
P _( do

Mott. !

(n)
(n)dO'
) ZP do

is considered which weights the degree of polarization
of each net n-photon process by its unpolarized cross
section.

We have performed simulations in a wide range of
parameters of laser intensities and for an angular fre-
quency of ® = 0.043 a.u., corresponding to the neody-
mium laser using different scattering geometries. How-
ever, in order to illustrate the main features of our
results we will restrict here to the case of 7t/2-scattering
when the incoming right-handed electron is propagat-
ing in the plane of polarization: k - q = 0.

Under these conditions, in the table for several electric
field strength the comparable value P is compiled for
1/2-scattering into the plane of polarization, k - q' = 0,
depending on the initial kinetic energy Wy, = cpo — ¢
of the electrons. It is realized that the overall effect of
the laser field, even at relatively low laser intensities, is
to further reduce the degree of polarization as com-

pared with the effect of the spin—orbit coupling in ordi-

(10)
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nary (field-free) Mott scattering. This depolarization
effect is due to the spin precession in the field which
effectively reduces the degree of polarization.

We turn now to the scattering events in which rela-
tively small numbers of photons are exchanged which
corresponds to the central part of the spectrum of the
energy distribution of scattered electrons around the
elastic peak of net zero photon exchange. In the strong
field regime, the Bessel functions reach their principal
asymptotic limit with { > n, and the envelope of the
differential cross section exhibits regular oscillations as
plotted in Fig. 1a. The corresponding oscillations in the
degree of polarization for scattering into the plane of
polarization can be seen in Fig. 1b: Though slightly
reduced in comparison to the field-free case, the maxi-
mal degree of polarization is obtained when the contri-
bution from the first factor (=< 1) contained in the Volkov
prefactor in (1) dominates the cross section. When the
cross section becomes small, the degree of polarization
drops down as well. In this case the contribution from
the factor o<1 of the Volkov prefactor becomes compa-
rable to the contributions from the second part (<A )
associated to the spin—laser interaction.

While this is an influence of the laser field on an
energy scale defined by the laser photon energy and,
hence, small compared to the kinetic energy of the pro-
jectile, a notable effect arises when the scattering
geometry is changed with respect to the wave vector k:
In Fig. 2 the differential cross section summed over a
small window around the elastic peak is shown as a
function of & = Z(k, q'). As in the absence of a laser
field, for high energies of the projectiles the 7/2-scat-
tering is reduced by the Mott factor due to spin—orbit
coupling. However, for ultraintense fields and in the
propagation direction of the laser, meaning ¥ close to
zero, there is a strong enhancement of do/do mainly
due to the contributions arising from the second part of

the Volkov prefactor (<A ) [4]. This can be seen more

clearly in the inset. It is realized in Fig. 2 that this cor-
responds to an enhancement of spin-flip against nonflip
processes. In order to illustrate this behavior even fur-
ther, the corresponding degree of polarization is shown
in Fig. 3. Here, it can be clearly seen that around the
propagation direction k of the field the degree of polar-
ization is strongly reduced even below zero. This is a
remarkable result in comparison to ordinary Mott scat-
tering where in the limit of high projectile energies no
depolarization takes place.

In brief, our calculations show that the influence of
the external field during a laser-assisted electron—-atom
collision process is to reduce the degree of polarization
even stronger than the effect due to spin—orbit coupling
in ordinary Mott scattering. A particularly interesting
situation is the scattering into the propagation direction
of the laser where it is found that the degree of polariza-
tion can even drop remarkably below zero.

LASER PHYSICS 1998

Vol. 8 No. 1

lz)iff. cross section

7150 100 50 0 30 100
Angle ¥

150

Fig. 2. Summed differential cross sections do/do scaled in
1071 a.u. of £100 peaks around the elastic one as a function of
the angle © between the light propagation and the final
momentum for an electrical field strength of E= ¢ =5.89 a.u.
The solid line denotes the result averaged over the two polar-
ization states, the dashed one sketches the value for spin-
flipped electrons do/do, and the dotted one is the result for
the no-spin-flip process do™/do. The incoming electrons are
right-handed polarized and their energy is W = 4c%. In the
inset a magnification of the central peak around O = 0 is
shown.

Degree of polarization

1 1

50 0 50
Angle ¢

~150 =100 100150

Fig. 3. Degree of polarization averaged over £100 peaks
around the elastic one as a function of the angle O between
the light propagation and the final momentum for an electri-
cal field strength of E = wc = 5.89 a.u. The incoming elec-

trons are right-handed polarized and their energy is W= 4c?.
The scattering angle is 70/2.
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Abstract—The classical interaction of particles connected by a central potential in a superstrong laser field is
investigated. It is shown that bound charged particle or the group of particles can change their energy under the
action of such field. Transitions between bound states are treated classically; the spectrum of unperturbed bound
states is supposedly known. The energy obtained by the particles above the bound energy can provide their
decay. The introduced approach is used for the first rough description of the possible direct nuclear excitation

and decay by superstrong laser field.

1. INTRODUCTION

A classical two-particles system with the central
attracting potential shows a bound state(s) if it has an
internal motion: a simple angular revolution. Particles
fall on each other in the absence of this internal rota-
tion. On the other hand, the classical bound systems can
exist in presence of an external field if their internal
rotation is absent. For example, one can conceive a spe-
cial classical bound system “jon—electron(s)” in pres-
ence of the strong circularly polarized laser field, which
provides the electrons with the necessary rotation [1].
Such a system is bound regardless of the presence of
internal angular motion.

With the notable exception of S-state systems, most
systems in nature exhibit an angular motion. These sys-
tems are of interest not only in attractive electric force
contexts, but also in cosmology with the Newtonian
problem of revolving gravitating bodies around a
masses center. At the same time, atom and ion systems
with Coulomb interaction between nucleus and moving
electrons also fall in this category. The next level in this
description is within the nucleus where one or several
strongly bound nucleons can be excited above complete
shells. In principle, the inner-nucleons (quark) motion
can be considered in this perspective.

With the exception of the gravitational motion, a
strong polarized laser field can perturb any internal
motion of charged particles. Indeed, let us consider a
system of a particle with mass m and charge g which
revolves along the circular orbit with the radius r, and
with the frequency Q. This system can acquire addi-

tional angular momentum AM = mrg ®/2 during the

half-period of laser radiation, where ® is the angular
frequency of laser radiation. If the radiation is linearly
polarized, this particle acquires the same moment with
opposite sign during the next half-period, so that with
such a laser, no time-cumulative effects occur. Never-
theless, such accumulation is principally possible if the

! Permanent address: General Physics Institute, Russian Academy
of Sciences, Moscow, 117942 Russia

radiation is elliptically polarized, most evidently with
circular polarization where (like in [1]) an increment of
the angular moment of the revolved particle occurs uni-
formly in time. In order to simplify following calcula-
tions, we suppose here and below that the vector €2 is
parallel the wave vector of the laser field, i.e., circula-
tions with frequencies Q and ® are coaxial. Therefore,
the energy which the particle acquires during the period

of laser radiation is AEy ~ 2mr§ Q. If the effect is
accumulated like for the circularly polarized laser radi-

ation, the total energy change can be AEr ~ 2m ro QO
when 7; is the laser pulse duration. This value is not
small, if one considers that for lower quadruple nuclear
levels where Q corresponds to 100 keV, o corresponds
to 1 eV, under T; ~ 1 ps, ry ~ 5 x 1071 cm, m = my
(nucleon mass) we have that AE;~ 40 keV. This estima-
tion is very optimistic, because the system has also to
be able to absorb this energy. There are no problems in
a classical case, because the considered particle simply
changes its orbit. At the same time, all considered sys-
tems look rather quantized when this energy can
change by a jump only. Consequently, this energy
“absorption” process needs another interpretation.

The general way to describe each system is to solve
its Schrodinger equation for a general wave function. In
our case it has a time-dependent Hamiltonian and it is
not clear how to solve it even numerically. At the same
time, it is possible to search solutions of the general
Schrodinger equation for any system operator describ-
ing some measured system parameter. We need the

equation for the distance operator (7); it is
d7/dt = [H,7),

where H is Hamiltonian of the system. This equation

can be reduced using the expansion of the operator 7
over the momenta series. Then it is possible to study mean
values of this operator (the radius of particle orbit in our
case), the variance (smearing) of the particle over space,
and all higher momenta. The simplest approximation
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of the problem is to solve the equation for the operator
mean value r. It is known that this is the equation of
Newton’s second law (see, for example, [2]):

dr/dt = -9U/dr,

where U is the potential energy of the system.

Finally, the classical interpretation of the quantum
angular motion perturbation can be the following: the
perturbation is simply the appearance of the system in
an another eigenstate. The unperturbed energy spec-
trum is supposed known. The concentration of consid-
ered systems at the initial and all others states can be
changed under the influence of the laser field. The rate
of this change must be interpreted as the transition rate
and it physically means that not all particles in the inter-
action volume receive the additional energy from the
external electromagnetic field simultaneously: when
one of them is receiving energy, others are “waiting.” It
is a normal quantum mechanics approach to substitute
the distribution over time by the distribution over an
ensemble. This approach is valid if the final part of the
excited systems is small [2]. We will solve equations of
Newton’s second law taking these considerations into
account.

We suppose that the first rough description of sys-
tems connected by the central potential at the super-
strong laser field can be simply classical. It is known
that the (quasi-) classical description of systems is
enough if systems are in states with a large principal
quantum number. A cross-verification for this approach
can be obtained if the expressions for the transition
rates contain observable values only (like a transition
energy AE) and unmeasurable values (like the depth of
a potential well Uy) do not come into play.

Notice that the ability of systems to absorb energy
can differ strongly even in a classical case. In particular,
if there is some resonance in the system, the energy can
rise in time significantly. The nonresonant energy
absorption is comparably much less. The presence of
resonance in the problem can also be used as a cross-
verification of the effect existence.

2. THE FIRST- AND SECOND-ORDER
EQUATIONS FOR A SYSTEMS MOTION

If the laser field is applied to a two-body system, it
will move the system as a whole as well as give it some
additional rotation. Let the largest body (the nucleus
skeleton with completed shells) have mass M and

charge O and the excited particle mass m and charge g .
Let R and r be their respective coordinates and the
force between them F,(JR — r|). We have

MR = -F,(JR-r1]) + QE(R),
mi' = F,([R-r]) + GE(r),

where E is the vector of the laser field strength ampli-
tude and Newton’s third law is taken into account. The

6]

sign means the time differentiation. The laser wave-
length A is always much more than the characteristic
size of the system |R —r| and [R —r| ~ 108 cm is much
less than A ~ 10~* cm already for atoms. This means that
ER) = E(r). If we now shift to center-mass coordi-
nates, R, = (MR + mr)/(M + m) and we have

(M+m)Rem = (Q+3ER =r). (2)

This equation describes center mass oscillations in field
E of the equivalent body with mass (M + m) and charge

(0 + q). The second equation for Ar = R — r looks
AF = (1/WF,(|Ar) + (§/m - 0/M)E(r).  (3)

Here, W is reduced mass, L = Mm/(M + m), the g is
effective charge:

Gt = (@M - Om)/(m + M). @)

For example, for the nucleus with total number of pro-
tons Z, total number of nucleons A, the number of pro-
tons in the excited particle (this can be several nucle-
ons) g, and the total number of nucleons p, the effective
charge is

Gest = ge(1 - pZ/qA), (4a)

where e is electron charge. Normally, the maximal
value of g is achieved when the excited particle con-
tains protons only (this is nuclear example): ¢ = p. In
such case g = ge(l — Z/A) = 3ge/5 for heavy nuclei
since A ~ 2.5Z under A > 150. At the same time, g, can
also be zero and even change the sign compared to g.
For instance, p > 3, g = 1 implies g = q(1 — pZ/A)
which has already the opposite sign.

From (3) we derive that E(R) = E(r) which holds
with Ar/A accuracy. If the oscillation velocity of parti-
cle in the laser field becomes close to the light one c, the
next terms of expansion over Ar/A become nonzero
(they appear on the harmonics of main frequency ®). In
the following, we will consider systems in which equa-
tion (3) is accurate enough under present intensities of
laser field. Note that for nuclei these terms should be
taken into account if the intensity of laser radiation 7 >
10% W/cm?,

We will take equation (3) as a starting point for the
following analysis. For ease of notation we will now
denote Ar as r and g, as g respectively. We thus obtain
the original system of equations in Cartesian coordi-
nates under our suggestions (€2 || ®) for elliptically
polarized laser radiation:

Wi = —(dU/dx) + gE,,coswt,
Wy = —(dU/9dz) + gE,ysinot, (5)
nz = —(dU/9dz).
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We suppose here that the radiation has the left polariza-
tion versus the vector Q, E o, and E,, are the amplitudes
of laser wave. In accordance with [1], we turn to cylin-
drical coordinates: x = rcos¢, y = rsing. Let us denote

A = #=r0+0U/pdr, B =2i¢+rf,

(6)
C = quo/u. D = qE_\'O/l'l'
The solution of these equation will be
A = Ccoswtcos + Dsinwtsind, 7
B = Dsinwtcosd — Ccosising.

Let us linearize equation (7) for following analysis in
order to receive the zeroth, first, and second orders con-
sequent iterations over the field E,. Suppose r = ry + Ar;
¢ = ¢y + Ad, the potential energy expansion should be
taken till the quadratic terms over Ar inclusive. Then
the first equation (7a) will be

AF—(ry+ Ar)(do + A0 + &(%LZ) W é—r(a_zl—j)n .

k\as?
2” ar3 r=r

21 ®

q(ExO - E_\'O)
2p

x cos{(wt + ¢g) + Ad]

[

0

x cos[(wt — ) — Ad] +

-and the second,

2A7(do + A) + (ro + Ar)(§o + Ad)
- q(EyO - E\'O)

2n Zsinf(of + ¢g) + Ad] ©9)
CI(Exo + E_\'O) .
- Tsm[(wt—%) —Ad].

Only two terms in the first equation

ore)
oo u ar r=r0,

are not small over Ar and A¢ (they are of zero orders
over Ej); these terms describe nonperturbated classical
motion of the particle with the mass p along the orbit

with the radius ro. Thus, ¢o = Q is the frequency of this

motion, and
@ )
T Ur\ 97 Jrey,

Therefore, we have ¢o = 0 in (9b). Keeping in (8) and
(9) only linear terms over Ar and A (A under the sign

(10)
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of trigonometrical function is equal to zero here), we
have the first iteration: the linear field approximation,

3Q+m q(Ey+ Eyp)
Q_(D)cos[(Q——m)t] o

A¥ + Q3Ar, = (

q(EyO - ExO)
2u

kd

(3!2—(1)
+

01 e )cos[(Q—— w)t]

Aby + Q7 AY,

) (Q+0) +2Q(Q+0) +4Q° - Q] an
(Q+ m)2
q(Ex0 + E_vO)
2Ur,
+(Q—m)2+29(g—m)+492—9f
(Q-0)’
Q(E)'O_EXO)
2”7’0

X sin[(Q + w)¢]

x sin[( — w)¢]

2

5y
or
the polarization is linear the effect is absent [both right
parts of (11) are equal to zero]. Thus, we get the equa-
tions of the first approximation over the laser field for
perturbations Ar and A¢. If Q, does not get close to fre-
quencies multiple of (Q * 0): 2(Q + ®), 3(2 + w) etc.,
it is not necessary to make any further approximation
and the first one is sufficient. This first approximation
describes perturbations of internal orbital motion with
frequency € (10).

Next-order corrections give a sufficient physical
effect in presence of a resonance only. It is easy to see
that the system energy has second-order corrections,
which can increase in time. If we consider this correc-
tion, we obtain the second iteration equation introduc-
ing (11) into (9). Since the equations for the elliptical
polarization will be very awkward, we present the
result for the circular polarization only. The results
would be the same. We have

Ar,+ QlAr,

where Q] =3Q% + & ( ) . It is clear that when
r=rg

- cos[2(Qim)t][a—b+c+ did ]_“”’*C

(Qtw) 2

Abr+ QA = f—z(a+b+c) (12)
0
+cos[2(Qtw t]l d(Qtw +"'_——QZ_Q‘2
cosl2(0 £ o)l (@ 0) + |

+Q(a+b+c)}.



a=2Q+0)Q
X (g Eq[1+2Q/(Q+ )]

x[1+2Q/(Q+w)

+(4Q7 - 0N/ (Q £ 0)' 1)/ (W r(Q] - Q7))

_GEN1+2Q/(Q10) + (4Q] - Q°)/(Qt m)]
21 ( Q1 - Q)

b

k4

*

1 (33(/) FENL+2Q/(Qtw)]
c = —{—
2M89r*rery pi@-Q%

d = (¢’E1 +2Q/(Q+ w)
+(4Q7 - QY /(Qt )]
x {~(Q)- Q% /2 - (Qtw)’

x[1+2Q/(Q £ m)] 1)/ (12r(Q7 - QY.

Note that the presence of constant terms for Ar, and A¢,
in (12) implies a Stark’s shift of the energy, propor-

tional to Eg .

We see that both the first- and the second-order per-
turbations appear at the frequency Q; which is essen-
tially different from Q. The same can be shown for the
third- and high-order perturbations so that any resonance
can appear when Q, = Q + ®, 2(Q2 + w), 3(Q + w), etc.

3. CENTRAL POTENTIALS PROVIDING
RESONANCE EXCITATION

The resonance condition for Ar, and A, in (12) is
Q, = 2(Q £ w) = 2Q. The same conditions for higher
corrections are Q, = (3, 4, ...)2 Generally speaking,
the expression Q, = n'Q (n' is integer, n' = 1, 2, 3, ...)
provides an equation for the function U(r). Solving it,
we have

2
U=a," 2+U, (13)
where, each n' corresponds to a definite potential U. For
n' =0, Uy = oy/r? is the centrifugal-like potential. This
potential always arises if the system is not in the S-state.
Above that, the nuclear kern repulsing potential can be
described in the same manner. This potential arises in
many nuclear models as well as even in quantum chro-

ROMANOVSKY

modynamics (QCD). The potential

describes quasi-free behavior of Arg and A¢§’ : they

behave like Cartesian coordinates of free particles in
plasmas. These values renormalize total values of Ar,
and A9, and €, remains unchanged. Thus, (11) and
(12) remain unchangeable under the transition to the
coordinates system rotated with an arbitrary angular
velocity!

For n' = 1 the value U, = o;/r is a Coulomb-like
potential. Whether the potential of nuclear forces can
also have such a component is an issue which still
needs to be addressed extensively.

The value n' = 2 corresponds to the U, = o,r? oscil-
lator potential. This term always arises in the expansion
of a real limited-in-zero potential in the Taylor series
and often is general. For nuclei, the nonisotropic three-
dimensional oscillator potential is known as Nilsen’s
potential, the same potential is used in QCD too. Note,
that the Coulomb repulsing potential can be included in
this term U, if the excited particle is located “inside” or
“at the edge” of a nucleus and an electric charge is dis-
tributed more or less uniformly inside a nucleus.

Potentials with n' > 3 (U; = o317, U, = 0,714, etc.) are
“box-like” potentials that are typical for the nucleus—
nucleon interactions. It seems that the realistic approx-
imation for our problem is to take the total interaction
potential U = U, + AU when the last term can be large
enough compared with the main one and it can conve-
niently be expressed in the 0,7’ notation.

centrifugal

4. CLASSICAL TRANSITIONS RATE

The resonance in (12) is expected to occur under
Q, =2(Q2 £ w), or Q; = 2Q and at a first look, it is sim-
ply force resonance when the resonant solution Ar,
grows linearly in time,

Ar, = Ary o cos[2(Q + w)t]

= —t—-[a—b+c+

0, ]cosQ,t.

_aQ
(Q+w)

Let us use the value Ey = m rg Q for the energy of initial

state and the value E, = mr,2 € for the excited state.

The excitation mostly implies the change in the orbit
radius. It is easy to see from (9a) and (9b) that the fre-
quency change is the next order infinitesimal. The value

AE, AE = E, — Ey = m(ri — r3)Q? = 2mr,ArQ? under
E,, E, > AE, corresponds to the transition between

states with large principal quantum numbers. As men-
tioned above, this fact proves the validity of the classical

approach. The expression Ar = Ar, , or Ary Iry =
AE/2E, corresponds to this transition. The transition
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rate can be determined as Ar, /try = W. In the poten-
tial U = 0,2 + AU, we have

2.2
q Eo
r=r08u395r0

) (14)

W= 2Q,r, (a,ﬁ)

dQ
(Qtw)
(14) shows that the excitation in the pure oscillator
potential is impossible. This fact is easy to obtain with-
out any perturbation theory, because in this case the
problem becomes linear.

where we use that [a -b+ ] = 0. Expression

5. CONDITIONS OF THE SYSTEM RESONANT
PARAMETRIC EXCITATION

As we mentioned, the resonance arisen in the sys-
tem under Q, = 2(Q + ©) looks like a force (as well as
under Q, = Q + m). Physically, it is not so. Indeed, the
system has internal rotation at the frequency € i.e.,
coordinates x and y are harmonically changed. Accord-
ing to (10)~(12), we can write r = roexp(i¢). Here, ¢ =

Qt+ Ay 1+ Ad, ¢+ ... The unperturbed equation for ris

F+Q'r = 0.

At the next step we should take into account perturba-

tions A1, Adz, etc. The first-order correction Ad:
over the laser field is described by equations (11). It

does not lead to any resonance because Ad1 ~ cosQu.
The second-order correction Ad, (12) perturbs internal
rotation frequency approximately twice a period 27/
this is a condition for the arising of some parametric
resonance. The frequency of parametric changes of Ar

is equal to 2(Q2 = w) +A@, . The parametric excitation
arises in some area of detunings over the frequency €,

which is determined by the modulation depth A¢2/Q.

Let us consider two cases: the small frequency devia-
tion Q; = 2Q and large one ; # 2€2

The parametric resonance growth as a function of the
radius 7 is roexpAt. Usually At < 1, and we have r =
ro + Ar, Ar = ryAr. Under the exact parametric reso-
nance we have that A,,,, = W from (14): this W is deter-
mined for the force resonance. Note that the parametric
excitation exists under nonzero detuning too. The
detuning width is determined by the first Floquet zone
and increases with the growth of the modulation depth

A,/ Thus the parametric resonance is always

excited under enough large modulation depth ~E§ .
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Under the small frequency deviation, the parametric

resonance appears if |A¢;n aX| 2 |Q2,/2 — Q| (compare
with the force resonance condition £, = 2(Q £ ®)):

, max Q 3u

Ay = —; 2('”_3)
[QF-4(Qt )’ 1Nor /r=r,

y G EN1+20/(Q+0)]

W@ -

15)

3

The value (8—1-3]) is not known. If we take term

or .
, . (93U
U, = 0,17 as AU (see above), we obtain F =
r /r=r

0

210AU/ rg . Therefore, it follows from (15) for ; = 2Q
that

2
890m>1(a—A2U) , i(aiﬂ) ,
B\ 97" /r=1, uro\ dr r=ry

and A¢;“ " > @. Since Q, = 20, we have that the inten-
sity of laser radiation must be more than some thresh-
old value:
ucozcE0
th = 2
420mkq

121 (16a)

Here, E, is taken equal to US = mre Q2 and has the
meaning of the initial state energy. To satisfy the condi-
tion Q, = 2€), we suppose that the value k is determined
from the expression 4207k = 0.01. Under AE ~ 100 keV,
® = 1.8x 10557, g = ¢, we have I, = 4 x 102 W/cm?,
Consequently, the parametric resonance for our condi-
tion under I > I, is always excited when AU < U, and
k is small enough. The case k = O corresponds to the
oscillator potential when the excitation is no longer
possible (I, = ).
In case of strong frequency deviation

2
890m<1(a A,fj) , -1—(8_42) ,
W\ 9,2 Jrer, MFO\ OF Jrop,

=70

the laser intensity should be larger than Iy, ,

: E,AQ°
I, = ”————; Z =y (16b)
nk'q
where AQ? = ';117 (B_E?TU) , kK =n'(n - D -
0 r=ry

2)/2(n? + 2n"), and with the additional conditions that



112

AQ < Qq, 1y =5 x 1013 cm, I, ~ 10%® W/cm?. This
value of the threshold intensity is an absolute value and
it does not require condition AU < U, to be satisfied.
Nevertheless, in this case the motion becomes relativis-
tic. Note that the values (16a) and (16b) contain the
depth of potential well E, and require the following
explanation when “effective” oscillator potential is
used (see below).

As we note above, under the exact parametric res-
onance A,,, = W, taking AU as U; = o3r’, we have
(W = W, is the rate of the second-order transition)

_ 420mkq’l
27 mcQAE "

How to connect Q with AE? The ground state of a three-
dimensional oscillator has an energy 3£€Q'/2. The value
Q' describes the energy difference between equidistant
spectrum levels. At the same time, we determine €2 as the
unperturbed internal revolution frequency. Therefore, we
have to equalize € to the value Q'(NV' + 3/2), where N' is
the principal quantum number of the initial state. Of
course, our system can be in one of excited states and
N’ can be nonzero; furthermore, since )’ = AFE, € has
the value AE(N' + 3/2)/%i. Finally, we have

420mkq Bl
(N'+3/2)mc(AE)’

When N' > 1, this expression determines the rate of
transition between levels when an energy difference is
much less then both eigenvalues of the two considered
energy levels. It can be seen that this expression does
not include any nondirectly observable values like
whole levels energies E,, E|, etc. This is a cross-verifi-
cation of the developed approach as we said above.

(17

W, = (17a)

6. PHYSICAL INTERPRETATION
AND ESTIMATIONS

Expression (17) looks like the rate of photoexcita-
tion (or photoinization, if we want to describe decay
processes) by a monochromatic radiation with fre-
quency ~AE/# and even coincides with it when one
would be written in corresponding view. Since the
equations for the first-order perturbation (11), the sec-
ond-order ones (12), etc. do not change under the tran-
sition to the rotating coordinates system, we can con-
clude that the considered effect is the photoeffect for
the excited particle with charge ¢.g. The initial rotation
of this particle around the nuclear remainder is changed
in the rotating coordinates system on the rotating field,
of course, with the same angular frequency Q ~ AE/#.
Instead of the fine-structure constant for the photoef-
fect, (17) contains the value k which has the same role
like above-mentioned fine-structure constant (with
some multiplicator). The opportunity to consider this
constant k like something close to the constant of strong
interaction is not clear yet.

ROMANOVSKY

Since the laser field directly modulates the shape of
the revolved particle orbit, the nuclei transitions can be
connected with the collective excitations. The excita-
tion with a frequency close to Q produces a single per-
turbation of the orbit of charged particles within a
period since the period of the nonperturbed motion is
comparable with that of the perturbation, i.e., the sys-
tem can be thought as receiving an additional dipole
moment. Therefore, it should be interpreted as the giant
resonance, which is conceivable since its width is very
high. Energies of the giant resonance are 10-20 MeV as
a rule; therefore, it is hard to expect any observable
induced dipole moment.

The excitation at frequency close to 2€2 changes the
orbit twice a period and the orbit looks like the shape of
quadruple oscillations in this case. The characteristic
energies are much less here (0.1-1 MeV); therefore, it
is impossible to exclude the occurrence of the resonant
excitation. The rate of these transitions is described by
formulas (17) or (17a). It is possible to speak about
octopole transitions in principle. They should clearly
arise when the oscillator term is less than U;. The rate
of this transition will be ~E> and (AE)?, but its value
will be very small because AE > 1 MeV for octopole
transitions in nuclei.

In order to receive quantitative estimations of the
yielded value, it is necessary to calculate in first place how
many particles can be in the volume of interaction, i.e., the
measure of the volume for very large I (=10'® W/cm?).
It is known that the radiation with such intensity is self-
channeled in plasmas [3] and each gaseous medium
becomes plasma in a field of such intensity during a few
periods of laser radiation. The diameter of channel
when the radiation is propagated is ~8-10 wavelengths
and its length L can reach 50 diffraction lengths L, [4]

Since L;=2n rf /A, r,is the channel radius here, 7, ~ 4\,
we have that L; = 16mA. For L/L; it holds L/L;= G <
50 (see [4]); therefore, the volume of interaction V,, is

Vi = nr L,G = 256nGA’.
This gives V;,, = 4.02 x 10*A% under G = 50. Only heavy

int
nuclei have quadruple excitations with transition ener-
gies AE ~ 0.1-1 MeV. Therefore, the density of initial
gas target can not be very high, because rapid ioniza-
tion leads to an appearance of a lot of free electrons.
The density of these electrons can exceed the critical
density n, for this laser wavelength and stop the laser
radiation propagation. Practically, the initial gas den-

sity should be about atmospheric one.

The second question arises about how bound elec-
trons which remained in the ion, screen the nucleus
from the action of laser radiation. Taking the radius of
ions as r; ~ 1071° cm, the electron density inside the ion

n, will be n, ~ 10/r; ~ 103 cm3. For Nd laser, it gives
dumping factor “into the ion” ~A(n,/n.)"? ~ 10 cm,
which is more than ion size. This estimation was done
No. 1 1998

LASER PHYSICS  Vol. 8




NUCLEAR EXCITATION AND DECAY AT THE SUPERSTRONG LASER FIELD 113

for free electrons and the radiation penetration depth
for bound electrons is expected to be larger. Thus, for
estimations of the field amplitude acting on the nucleus,
we can take its amplitude in the vacuum right before the
target.

The present level of laser pulse radiation intensities
permits us to expect quadruple nuclear excitations if the
nonharmonic part of the nuclear potential is small
enough to hit to the resonance peak [see (16a)]. We
think, therefore, that it would be good to use in first
experiments nuclei with more or less equidistant spec-
tra of the lowest quadruple states. As criterion, we take
the differences between (2+ — 0+4) and (4+ — 2+)
transitions: real k here is simply the ratio {E(4+ —
2+) — EQ+ — O {/{E(4+ — 24) + E2+ — 0+)}.
Note here that all our considerations were done for bare
nuclei. Experimentally, the superstrong laser radiation
leads to a rapid ionization of atoms, as we mentioned
above. Each electron in an atom gives some contribu-
tion to the nuclear potential which can be proportional
to Ar, (Ar)%, etc. The term proportional to Ar influences
the difference Q; — 2Q. The effective energy shift is
high enough especially for S-electrons. This shift can
give an optimal “hit” to the parametric resonance even
for large k. But in general this issue needs to be
addressed in another work.

Also it would be experimentally better if the normal
state of media with these nuclei were gaseous. The
nuclei of normally gaseous media which fulfill this
lowest unharmonic criterion are “°Ar, 32Xe, and '3*Xe.
Note that the best nucleus from the used criterion point
of view is 128Te, which is normally a metal.

Let us estimate the probability of the excitation of
the 2* state of argon nucleus “°Ar, AE = 1432 keV, k =
0.01. Here, we should suppose N' = 0O for which the
application of the developed theory would be limited.
Nevertheless, it is reasonable to expect that the corre-
sponding results will represent the real situation at least
half-quantitatively. Taking the nuclei density n, = 2.67 X
10'9 cm3, the total number of particles in the volume of
interaction N = V,,n, becomes 1.3 x 10'2, The time of

excitation ¢, = W;l. Taking into account the shell

structure of this argon nucleus, we have to suppose
that the excited particles contain no more than 2 pro-
tons, o = 1.1e, m = 1.9my (nucleon mass). We have

1y, ~2.1%10"/1[Wicm®],

where [ is measured in watts per square centimeter.
Taking I = 10'® W/cm? and 1; = 1 ps, we have total num-
ber of excited argon nuclei per shot:

NS = N1/t = 0.6x10°.

We supposed here that the total Nd-laser pulse energy
~1 J and about the half of laser pulse energy hits the
channel.
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For the same excitation of 32Xe, we have AE =
668 keV, k = 0.03. There are four protons above the
complete proton shell and there are not enough (only
4 neutrons) in the neutron one. We suppose that the
excited particles contain 4 protons, g = 2.36e, m =
3.9m, (nucleon mass). We have

finy, =6.5% 10"/ TW/em®).
For the above-mentioned [ and 7;,
Nle;;:(e = NT[/tlszxe =2.0x 106.

For the same excitation of 3#Xe, the corresponding
values are AE = 847 keV, k = 0.05. There are four pro-
tons above the complete proton shell and there are not
enough (only 2 neutrons) in the neutron one. We sup-
pose that the excited particles contain 4 protons, ge =
2.39¢, m = 3.9my (nucleon mass). We have

ey, ~ 6.1 x 10" /I[W/em’].
For the above-mentioned / and 7;
N, = NT/tuy = 1.2 10°.

For the same excitation of Te, we have AE =
742 keV, k = 0.007. This nucleus has the lowest unhar-
monic ratio from all even—even nuclei. There are two
protons above the complete proton shell and there are
not enough (only 6 neutrons) in the neutron one. We
suppose that the excited particles contain 2 protons,
Getr = 1.19¢, m = 1.97my (nucleon mass). We have

fon, ~ 6.5 10"/1[W/em®].
For the above-mentioned / and T;
exc 5
lexTe = NT,'/tuxTe = 1.8x10".

Each excited nucleus emits one y-quantum with the
corresponding energy; therefore, the total number of
y-quanta should coincide with N°*, The angular distri-
bution of emitted quanta is expected to be 1 + cos?d,
where ¥ is the angle between the observation line and
the wave vector.

Let us estimate rates of transitions to a continuum,
i.e. decay-like processes. Formulas (17) and (17a) are
not directly applied to them. As it usually occurs for
decay processes, the particle which is leaving the sys-
tem has the eigenstate near the continuum. It is far from
the potential well bottom and the potential shape here
is far from the oscillator one. Indeed, this particle feels
the shape of the potential well between this initial
bound state with energy E, and the continuum E; = 0
only. It means that we can change real potential well

U,, with the effective oscillator one U ;’ﬁ = a;ff - U,.
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We can require that U5 should be equal to U,, under
ry and ry:

U (r)) = Uylry) = E,

eff

and U, (r;) = U,(ry) = E; = 0.

These two equations determine Uy . If we take U, =

2
n

o, 7 2 U, (see above), we have for n > 2 that

Uy =n'Uy/2(E, - Ey) = n'Uy/2AE. (18)

The effective principal quantum number N' can be
determined as

N = U}/ AE. (18a)

The effective unharmonic ratio k¥ can be determined as

the difference between U;ff and U, at the point (r; +
ry)2, divided by the value U,, at the same point. We
have

k (18b)

n

w38, _3)
T 4U,

From the classical point of view, the particle slips in
the “potential well” and simply leaves the well under
the definite “amplitude of oscillations.” It means that
the shape of the potential well should be close to the
oscillator one in order to satisfy the resonance condi-
tion (15). For the decay processes this is not so unusual
because the excited system should obtain the energy
which is equal to or larger than AE. Thus, we can use
values N' and k% for the computation of the transition
rates to unbound states from the bound ones.

Let us estimate now the probability of the deuteron
decay. The nuclei density can be taken about n,/2, n,, =
5 x 102 cm, Np = 2.6 x 1013, The deuteron has just
one bound state near the top of the potential well. The
depth of a deuteron potential well E, is ~30 MeV, the
difference between the ground state E; and the contin-
vum E, is E;, — E; = AE =2.23 MeV. Taking n' = 7 (see
above), we can write the following approximations for

Ejy ~105MeV and N' = 47. The value & for deuteron
is about 0.032, g = ¢/2, m = my/2. The total decay
time 5, is

tp = 3.6x10"/I[Wiem®].

Taking I = 10'® W/cm? and 7; = 1 ps, we have the total
number of decayed deuterons about 0.73 x 10° (per
shot). Free neutrons can be traced during the experiment.

At the subnucleon level, there is another type of
transition to the almost continuous spectrum. This is
the transition “nucleon-barion resonance.” From the
QCD point of view, it is, very roughly, the one-quark

excitation. Thus, it is conceivable to compute transition
rates using the developed classical approach. For the
bottom A-resonance the value AE is equal to 232 MeV,
Uy — AE = myc? = 940 MeV, q.q ~ e/3 from (4). We have
from (18a) and (18b) that the value &*T =~ 0.085 and N' =
18 (see what mentioned above for deuterons). Taking
hydrogen as a target gas, nuclei density n, can be up to
n./2. If we take constituent mass of a quark as [ ~ 2m,/9,
we obtain

1, ~ 1.06 x 10/ I[W/cm’]

and N5 ~ 25 per laser shot. At the same time, if we set
the current mass to 1, we obtain that Ny is 60 times as

large: Ni° ~ 1.5 x 10,

Experiments could be aimed at tracing extremely
hard (232 MeV) y-quanta. The probability of the y-emis-
sion is about 1/100 per one A-barion decay. Similarly,
n-mesons (~99% decays) could be traced as well.

7. OBSTACLES TO EXPERIMENTAL
VERIFICATION

Within the same kind of nuclear excitation, other
processes may lead to the emission of y-quanta. There
are two such processes: the direct Coulomb excitation
of quadruple transition by nuclei-nuclei impacts,
where high-energy nuclei arise at the laser channel and
repel each other [5S]. The second process is the
bremsstrahlung due to relativistic electron—ion colli-
sions [6].

Each laser channel provides the strong transversal
outflow of stripped atoms. The characteristic velocity
of this flux is [5] v:

v = (4nnQ* /M) *r./ J2e.

Here, M; is mass of ion (practically, it is the mass of the
nucleus under investigation), Q is ion charge, n is ions
density in the channel, e is the base of natural logarithm.
During the pumping pulse, this flux will provide the qua-
druple excitation of nuclei located near the “wall” of the
channel, the depth of the ring of possibly excited nuclei
d is vt; The expected force of an ionization of atoms in
the channel is about 10, so that v ~ 10° cm/s for 13*Xe.
The value d is about 10 um. The number of nuclei
which are Coulomb-excited during the pumping pulse

is N™ ~ dr? V, n®6(E2)/(d + r,), o6(E2) is the cross

section of the Coulomb excitation of the first quadruple
level. The value 6(E2) is about 10~100 mb for such v

[7], and N° is no more than 400. The angular distribu-
tion of the photons emitted by Coulomb-excited nuclei is
expected to be more or less isotropical. Thus, the direct
Coulomb excitation of quadruple transition by nuclei—
nuclei impacts cannot compete with our process.
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Two part of plasma electron component can provide
the hard bremsstrahlung. The first one arises when elec-
trons are repelled from the channel at the pumping
pulse front due to the ponderomotive force. The maxi-
mal energy of such electron is about the maximal oscil-
lating energy of the electron at the electromagnetic
wave as typically for the ponderomotive force. For 1-J,
1-ps pulse of Nd-glass laser this maximal energy is about
100 keV. Thus, this part of electrons cannot provide any
bremsstrahlung in an energy band of 0.5-1.5 MeV for
considered nuclei.

At the same time, it is known that there is the strong
acceleration of electrons in the wake of the superstrong
laser pulse; observed energies E, were up to several MeV
[6]. The total power of bremsstrahlung P is

P = “dVdmnnev,eldc(m)ﬁm.
Vo

Here, v, is relative velocity of collided particles (elec-
tron and ion), n, is electron density, o(®) is the
bremsstrahlung cross section, ® is the quanta fre-
quency. If we want to know the total power at the fre-
quencies band between ®, and ®,, we need to calculate
the frequency integral over these limits. The considered
case is relativistic, v, = ¢. Setting the frequency range
to [0.9m, 1.1m], the total energy of bremsstrahlung
becomes E = Pt;< 1 erg. All radiation propagates in the
cone with an angle % ~ m,.c?/E,, from the laser propaga-
tion direction, where m, and E, are the unperturbed
electron mass and electron energy, respectively. The
value % is no larger than several degrees. It is easy to
separate this radiation from the investigated one by a
space filter. So, we can avoid the competition with the
investigated nuclear excitations processes using time
and space separations.

A number of free neutrons also can appear due to the
deuteron—deuteron impacts by the (D + D — n + *He)
reaction. The cross section of this process Gp is about
100 mb. The number of neutrons which appear by deu-
teron—deuteron collisions during the pumping pulse is
Ny=dr> Vy20p/(r, + d)~. Here, we took into account the
decrement of the projectiles flux due to the cylindric sym-
metry. If we take n = n,/2, v will be ~0.35 x 10 cm/s,
d ~ 35 pm, and the total number of free neutrons is no
larger than 3 x 10%. This value is comparable with the
expected quantity of free neutrons in the laser-stimu-
lated decay process. Indeed, neutrons appearing due to
collisions are much hotter than the latter, thus providing
an effective criterion to verify the result of the experi-
ment.

Since the energy of particles emitted by the channel
cannot achieve several hundreds MeV, it is impossible
to expect any A-barion excitations except as above con-
sidered.
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8. CONCLUSION

The regular classical perturbation procedure was
applied to the system of a body in a central potential
which is excited by a superstrong laser field. The exci-
tations of a nucleon in the nucleus potential, a quark in
the QCD potential and the nuclei decay were roughly
estimated. The transition rates of excitations were
introduced in the classical theory and determined. The
transitions to the excited states and to the continuous
spectra are the same from the classical point of view;
therefore, the developed theory could be applied to
decay processes.

Necessary levels of laser intensities are routinely
realized at present. The classical approach can be
checked experimentally for the validity of quantitative
estimations. Nuclear excitations to the bound state were
interpreted as induced quadruple ones. They can be
realized for large enough numbers of particles in the
volume of interaction. Of course, not every nuclear
quadruple transition can be excited because a precise
“hit” to the parametric resonance peak is needed. We
suppose that it would be better to take nuclei with more
or less equidistant spectra for low excited states for the
first experiments. The nuclear decay and subnuclear
excitations also look possible and a high experimental
yield can be expected. The realization of such laser-
induced nuclear and, may be, subnuclear excitations
and decays can be an attractive alternative for some
experiments in high-energies physics on a large-scale
accelerator facility.
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Abstract—The method of numerical simulation is employed to investigate the dissociation dynamics of ele-

mentary molecular systems (H;r and D; jons) in an intense infrared laser field. The approximation of n terms

is developed for the description of the dynamics of a molecular system in a strong electromagnetic field. The
results of calculations carried out within the framework of the approximation of # terms are compared with the
results of the exact numerical solution of the relevant two-body problem. The dependence of the dissociation
probability on radiation intensity and frequency is discussed. A quasi-static model is proposed for the dissoci-
ation of molecules in an infrared field. This model employs the basis of field-dressed states. It is demonstrated
that the quasi-static model provides a physical explanation for the dependence of the dissociation probability

on the intensity and frequency of laser radiation.

1. INTRODUCTION

Currently, direct numerical integration of the time-
dependent Schrodinger equation for a quantum system
in the field of an electromagnetic wave is one of the
main methods for studying the dynamics of atomic and
molecular systems in high-intensity laser fields [1-3].

The complexity of molecular systems relative to
atomic systems gives rise to a variety of phenomena
that occur in molecular systems under the action of
laser fields due to the difference in frequencies charac-
teristic of natural vibrations of electronic and nuclear
subsystems in a molecule. Therefore, direct numerical
solution of the problem concerning the action of an
ultrashort laser pulse on an elementary molecular sys-

tem—molecular hydrogen ion H, —is of undeniable

interest [4-6]. However, such simulations require too
much computation time even with modern computers,
which prevents this approach from being used at the
moment for the systematic computation of the behavior
of even elementary molecules in high-intensity laser
fields. Therefore, we encounter an urgent problem of
developing approximate models that would allow an
adequate description of the action of a strong electro-
magnetic field on molecules.

In this paper, the method of numerical simulation is
employed to investigate the dissociation of various

molecular hydrogen ions (H, and D;) in a strong
infrared (IR) laser field. The results of calculations car-
ried out with the use of various models are compared
with the results obtained by direct numerical integra-
tion of the time-dependent Schrddinger equation for a
molecular system in the field of an electromagnetic
wave. The dependences of dissociation probabilities on
the intensity and frequency of laser radiation are inves-

tigated for H, and D, ions within the framework of

the model of n terms. A quasi-static model that provides
an adequate description of the dissociation of mole-
cules in a low-frequency IR field is proposed.

2. MOLECULAR HYDROGEN ION:
STATIONARY STATES

In this paper, we restrict our consideration to a one-
dimensional model of a molecular system where an
electron moves only along the axis of the molecule and
nuclei can be involved only in vibrational motion [6].

In the frame of reference related to the center of
mass, the Hamiltonian of a molecule H,, has the follow-
ing form:

2
HO__———XLa_[\,Z"‘Ve(x,R)'*'e/Ra (1)

where x is the coordinate of the electron; R is the dis-
tance between the nuclei; p = EM is the reduced mass
of the molecule; M is the mass of the proton; and & is a
factor that takes the values of 1/2 and 1 for H, and D,
molecules, respectively. Similar to [6], the expression
for the electron potential energy V,(x, R) was chosen in
the form
2 2
e 3 e

JR/2-x) + 0> N(R/2+x)+0’

where o = 0.943q, is the parameter of smoothing and
a, is the Bohr radius.

Using the adiabatic approximation based on the
smallness of the parameter m/M, we can construct a
complete set of functions describing the stationary
states of the Hamiltonian H,, in the form [7]

D,.(x, R) = 0,,(R)9,(x, R), 2

Ve(xs R) ==
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where @,(x, R) (n = 1, 2, 3, ...) is the electron wave
function and ¢,,(R) is the nuclear wave function that
belongs to the nth electronic term and that can be found
from the solution of the equation

[_ﬁfa_z

2R "Sf)(R)]q’"v(R) = E,.0,,(R). (3

Here,

2
() € (n)
V@ (R) = Z+EP(R) )
is the effective potential energy of nucleus interaction
that takes into account the electron energy of the system

E” @R and v=0, 1,2, ... is the vibrational quantum
number.

Figure 1 displays several Vé'flf) (R) dependences for

low-energy terms. The table presents several energies
E,, for the ground electronic term (n = 1). The total

nv

numbers of vibrational states in the discrete spectrum

for this term are equal to 19 and 25 for H, and D;,
respectively.

3. INTERACTION WITH THE FIELD
OF AN ELECTROMAGNETIC WAVE

In the dipole approximation, the interaction of a
molecular system with the field of an electromagnetic
wave is written as

W = —De(t)coswt, 5)

where D is the operator of the dipole moment, €(¢) is the
amplitude of the electric field in the wave slowly vary-
ing in time, and ® is the frequency.

In the frame of reference related to the center of
mass, the dipole moment of the nuclear subsystem is
identically equal to zero for homonuclear molecules,
and the electric field acts only on the electronic sub-
system of a molecule:

D =d, = —ex. 6)

Therefore, transitions between different vibrational
states are forbidden within the same electronic term,
and vibrational states can be populated only through
multiphoton transitions via other electronic states.

In calculations, we assumed that the amplitude of
the electric field in the wave is described by

t
g—, O<t<71y
T o
f
e(t) = 9 80, TfSt<T+Tf (7)
t—(T+7
eo(l-———(——f—)), T+TSE<T+27T,
3
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Fig. 1. Effective potential interaction energies of nuclei in a
model molecular hydrogen ion for the electronic states with
i=1,2,3,and 4.

2L

where T,is the duration of the leading and trailing edges
of the pulse and 7 is the duration of the plateau at the
top of the pulse.

The energy of the quantum of electromagnetic radi-
ation was chosen within the range 7w = 0.12-0.96 eV
in such a manner that the durations 7,and T were multi-
ple of the field period T = 21t/ w. Specifically, for fiw =
0.12 eV, which corresponds to the energy of a CO,-
laser quantum, we set T,= 27 and T =5T.

In the one-dimensional case, the dynamics of a
molecular system in the field of an electromagnetic
wave is described by a two-particle wave function
W(x, R, 1), which can be found from the solution of the
time-dependent Schrodinger equation

n P ERD [, De()cosorT¥(x, R,1). (®)

As demonstrated in [6], the wave functions that describe
the stationary states of a system in the absence of the
field can be approximated with a high accuracy by wave
functions derived in the adiabatic approximation (2).

Energy levels E|,, (eV) of model H; and D; ions that
belong to the ground electronic term of a molecule

+

14 H, D,

0 ~1.355 ~1.373
1 -1.236 -1.288
2 ~1.120 ~1.204
3 ~1.009 -1.123
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Therefore, the initial condition for (8) was chosen in
the form

¥(x,R,1=0) = ¢, ,(R)p,(x, R), €))

which corresponds to the ground electronic state of a
molecule and the vibrational state with number v. It
was usually assumed that v=0.

In [8], we employed the method of direct numerical
integration to find the solution to equation (8) subject to
initial condition (9) for laser pulses in the visible and IR
frequency ranges. It was shown that dissociation pro-
cesses compete with ionization in the visible range,
whereas for IR radiation, there exists a range of laser
intensities where the ionization probability of a molec-
ular system is negligibly small as compared with its
dissociation probability.

In studying the action of IR radiation on H, and D;

in this paper, we will restrict our consideration to the
range of intensities where we can ignore the ionization
process.

As mentioned above, exact solution of this problem
requires much computation time. Therefore, it is of
interest to consider various approximate models. We
investigated two approximate models that describe the
dissociation process in a molecular system in an IR
field—approximation of n terms, which takes into con-
sideration n electronic states of a molecule unperturbed
by the field, and a quasi-static model, which is based on
the assumption that the electronic subsystem of a mol-
ecule is adjusted in accordance with the instantaneous
strength of the electric field in the wave. We will dis-
cuss the efficiency of the considered models based on
the comparison of model predictions with the results of
exact simulations [8].

4. RESULTS AND DISCUSSION

4.1. Approximation of n Terms: Comparison
with the Results of Exact Simulations

Let us expand the total wave function W(x, R, t) of a
molecule in the set of electronic terms { @,(x, R)} unper-
turbed by the field:

W(x R, 1) = ) 04(R )g,(x, R). (10)

Then, using the adiabatic approximation for expansion
coefficients o,(R, t), we can readily derive the following
set of equations [7]:

., 00, 7o’ 0

iht = [— TS + Veff(R)}oc,. + Zajw,.j, a1

j#i

where W;; = —d(R)e(t)cos of; dj; is the matrix element
of the electron dipole moment of the system, which
parametrically depends on the nuclear coordinate; and

Vi}z is the effective potential energy of interaction

between the nuclei for the ith electronic state of a mol-
ecule, which is described by expression (4).

The set of functions {oy(R, £)} is a manifold of
nuclear wave functions that correspond to nonstation-
ary states for various electronic terms of a molecule.
The last term in (11) describes transitions between dif-
ferent electronic states in a molecule (transitions from
one term to another) under the action of the field of the
electromagnetic wave. If summation in (10) includes
integration over the states of the electronic continuum,
then the set (11) is identical to the initial equation (8)
within the range where the adiabatic approximation is
applicable. Truncating the set (11) and restricting our
consideration to a moderate number of electronic terms
in expansion (10), we can appreciably simplify the
problem under study. Analysis of ionization and disso-

ciation of H, and D, molecules performed in [8] has

demonstrated that, for intensities ~1013 W/cm?, the ion-
ization probability of a molecule is low as compared
with its dissociation probability in the IR frequency
range. Therefore, we can ignore transitions to the elec-
tronic continuum in (11).

Initial conditions to the set (11) equivalent to condi-
tion (9) are written as

{al(Rat =0) = ¢,,(R)

: (12)
(R, t=0)=0, i=273,4,...

In the absence of the ionization process, the normaliza-

tion condition

YWwi=1
is satisfied, where

W, = j oy (R, 1)|*dR (13)
is the probability to find a molecule in the ith electronic
term.

Thus, within the considered approximation, the
solution to the exact two-particle Schrédinger equation
on a two-dimensional net can be replaced by the solu-
tion to a set of n one-dimensional equations, which
allows us to considerably simplify the problem in the
case of moderate n. Evidently, the number of terms that
should be taken into account is determined by parame-
ters of laser radiation. To find the number of expansion
terms that should be kept in (10), in [9], we have calcu-

lated the dynamics of an H, molecule in the field of a
CO, laser (iw = 0.12 eV) in the range of intensities P =
4 x 10'2-2 x 103 W/cm? within the framework of the
approximation of n terms (n = 2, 3, ...) using the tech-
nique described in [6, 8]. Comparison of the results of
two-body simulations with the data obtained within the
framework of the approximation of n terms in the con-
sidered range of parameters has demonstrated that no
less than four terms should be taken into account in (10).
No. 1 1998
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The dissociation probability was calculated in accor-
dance with the formula

WD = I_ZW]V’ (14)

where summation is performed over all vibrational
states of the ground electronic term. We employ this
formula based on the results of exact simulations,
which have shown that the excitation probabilities W,
for the states in the discrete spectrum are negligibly
small for an excited bound term. This finding is a con-
sequence of the Franck—Condon principle and the large
difference in the distances between the nuclei for these
terms (see also [8]).

Figure 2 displays the Wj(P) dependences for the

studied H; and D, systems in the case when the quan-

tum energy is i = 0.12 eV. As can be seen from the
presented plots, the increase in the mass of nuclei low-

ers the dissociation probability of D, as compared

with the dissociation probability of H, due to the lower

velocity of the nuclear wave packet for a decaying
molecular term.

We should also point to a characteristic step in the

Wp(P) dependence revealed for the H, system. The

origin of this step will be discussed in the following
section within the framework of the quasi-static model
of dissociation.

Now, let us discuss the dependence of the dissoci-
ation probability on the frequency of laser radiation.
We have investigated this dependence within the
range A® = 0.12-0.96 eV assuming that the shape and
the duration of the laser pulse remain unchanged, so
that the edges and the plateau of the laser pulse
included integer numbers of optical cycles of laser radi-

ation. The results of such calculations for Hy with P =

1.4 % 10'3 W/cm? are presented in Fig. 3. The dissocia-
tion probability rapidly grows within the range of quan-
tum energies fi® 2 0.5 eV, which may be due to the
decrease in the order of the multiphoton transition
between the ground and the first excited electronic
states of a molecule. We should also note that Wj
slightly increases in the frequency range i < 0.2 eV.
Since, for homonuclear systems, electromagnetic tran-
sitions are forbidden within the same term in the dipole
approximation, the population of these states should
occur through multiphoton transitions via excited
terms. However, for fim = 0.12 eV, the number of pho-
tons coupling two lower terms of a molecule with an
equilibrium distance between the nuclei is on the order
of 30. Such a high nonlinearity order of multiphoton
excitation and dissociation processes indicates that we
should employ an alternative approach to describe tran-
sitions between electronic terms in a molecule in the
presence of a low-frequency field.

Vol. 8 1998
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Fig. 3. Dissociation probability for an H; molecule as a

function of the quantum energy of the electromagnetic field
for P = 1.4 x 1013 W/em?.

4.2. The Quasi-Static Model of Dissociation
of Molecules in an IR Field

We should note at the outset that the expansion of
the wave function ¥(x, R, f) of a molecular system in a
set of molecular terms unperturbed by the field is not
the only possible method of simplifying the general
problem (8). From the mathematical point of view, we
can perform such an expansion using any complete
orthonormalized set of functions. The choice of the
basis set of functions is dictated by mathematical con-
venience and physical expediency. A concept of field-
dressed states [10] is preferable for the description of a
molecule in intense fields within the optical frequency
range. This concept permits one to successfully account
for various specific features of above-threshold dissoci-
ation observed in experiments [11-13].
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In a low-frequency IR radiation field, the perturba-
tion of electronic terms of a molecule can be described
within the framework of the quasi-static approxima-
tion, which implies that the frequency of the laser field
is small as compared with the characteristic frequency
of electronic motion in a molecule [9].

Indeed, for an H; molecular system in the presence

of an external field, the frequency of electronic motion
is determined by the inverse of the time T, characteriz-

ing the flow of the electron density from one nucleus to
another and back in the process of variation of the field
in the electromagnetic wave. Provided that

1, <T = 2n/0, (15)

we can assume that the state of an electron is deter-
mined by the instantaneous strength of the electric field
in the wave and is governed by the solution to the sta-
tionary Schrédinger equation

[H,-d,e(t)cosot]o”(x, R, 1)
= EL(R, 19, (x, R, 1),

where H, is the electron Hamiltonian of the molecule.
The solution of equation (16) is represented by a set

of states {(p,(f) (x, R, )} and the corresponding set of

(16)

energies { E ,(,E) (R, 1)}, which parametrically depend not
only on the nuclear coordinate but also on time.

Thus, we found quasi-stationary states (p,(f) (x, R, D).

We will assume that the electric field in the wave is suf-
ficiently weak, so that the decay time of the state is
large as compared with the pulse duration. In the case
under consideration, this condition is satisfied, because
we can neglect the ionization of a molecule.

The total wave function of the system W(x, R, f) can
be expanded in the set (16):

¥R = Y o (R DG R, (17)

i

where oc (R t) is the nuclear wave function of a mol-

ecule that belongs to the ith term restructured by the
slowly varying field €(f)cos®t. Substituting expansion
(17) into equation (8) and using the Born—Oppenhe-
imer adiabatic approximation, we can derive the fol-

lowing set of equations for the functions ocfe) (R, D)
99,
iy ﬁza(8)< €)| n >
_ [ A 8
21 LoR

Here, V( (R, ) = /R + E(E) (R, 1) is the electronic
term of a molecule distorted by the low-frequency field.

(8)

(18)
VR, t)} ©
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Thus, we derived a set of equations that describe the
motion of a nuclear wave packet in an effective poten-
tial modified by a slowly varying electric wave field.
The second term on the left-hand side of (18) describes
field-induced transitions between the modified terms.

In calculating the lower modified molecular term in
the presence of fields with moderate strengths, we can
neglect the mixing of all the states of the electron
Hamiltonian of a molecule except for the two lower
states. In a quasi-static field, the energies of these states
are given by [14]

EQR 1) = 5(E(R)+ Ex(R))
(19)

1 JAER) /2" +IWi(R 1)

where AE(R) = Ex(R) — E(R), W), = d»(R)e(f)cos ot,
and E,(R) and E,(R) are the energies of the electronic
states of the molecule in the absence of the field.

Then, taking into account that {(@'"]9¢\"/d1) = 0
and using (18), we derive a set of two equations for
nuclear functions that belong to two terms modified in
the low-frequency field:

a (9)
i a +ih Q07
7% 9 (©
- [_ pat (R, t)](x (R, 1),
9ot @0
it 8t2 —zﬁlea(E)
) .
- [ 2uaa + VR, t)Joc( (R, 1).
The quantity
le=< R, 1) “’2> < X > 1)

determines the probability of transition from one term
to another under the action of a laser field.

To find the complete set of terms Veff (R, 1), we
should solve (16) for different moments of time ¢. The
characteristic behavior of two lower terms distorted by
the field of an electromagnetic wave is illustrated in
Fig. 4.

The adjustment of the electron function in accor-
dance with the instantaneous strength of the wave field
leads to the repulsion of nuclei during both half-cycles
of the optical field [15, 16]. Physically, this repulsion
can be accounted for by the fact that, in the case of adi-
abatically slow variation of the electric wave field, the
electron density has enough time to flow from one
nuclear center to the other within a half-cycle of the
optical field. Taking into account that the probability of
electron tunneling through the internal potential barrier
No. 1 1998
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arising in the case when the distance between the nuclei
is large is

W;~AE/f,
condition (15) can be rewritten as

AE(R) > ko, (22)
In other words, the quantum energy should be less than
the minimum separation between the terms. If condi-
tion (22) is not satisfied, field variation cannot be con-
sidered as adiabatically slow, and an electron has no
time to tunnel from one center to the other. In such a sit-
uation transitions between the field-modified terms
may occur, and the force that pushes the nuclei apart
from each other vanishes upon the averaging over the
optical cycle [15, 16].

Calculation of the quantity Q,, with the use of
explicit formulas for the electron wave functions

(pfe) (R, t) and (pée) (R, 1) performed in [9] with allow-
ance for the smooth variation in the amplitude of the
wave field, |¢| < we, yields

1 AE(R)/2

Qu(R,1) = = 2 ;
(AE(R)/2) +|W(R, 1)| (23)
X |d,(R)| we(f) sinwt.
In the case of weak fields and moderate R,
AE(R) = |d\5(R)|e, (24)

the probability of transitions between the modified
terms is low,

|di2(R)|E(2)
AE(R)

and the dynamics of nuclear motion can be described
within the framework of the model of a single modified
term. The condition when transitions between the mod-
ified terms can be ignored was determined in [9]. If ine-
quality (24) holds true, then this condition is written as

AE(R)
|d2(R)|€

wsinw?, (25)

QIZ(Ra t) = -

ho < AQ (26)

Here, £Q is the vibrational quantum of a molecule. For
CO,-laser radiation with P ~ 10'* W/cm?, this condition
is satisfied upto P = 5 A.

For large R, two lower electronic terms of a mole-
cule in the absence of an external field are always
degenerate. In this case, the quantity Q), infinitely
increases at the moments of time determined by the
condition cos®t = 0 even in weak fields. Indeed, intro-
ducing the notation

& = |d12|€COS(Dt
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Vi ev

Fig. 4. The structure of two lower electronic terms in an H;

molecule in the presence of the field of an electromagnetic
wave: (1) the ground term and (2) the first excited term.

and taking into account that

: o _
llg"lom = nd(§),

we find from (23) that

lim Q.u(R, 1) = Tae)%e. @7

dt

Therefore, the approximation of a single modified term
is insufficient for the description of nuclear motion for
large R. However, for CO,-laser radiation, transitions
between modified terms are significant only for such
values of R that correspond to virtually noninteracting
H and H*, which implies that, if condition (26) is satis-
fied, then the dissociation probability can be calculated
without allowance for transitions between modified
terms.

Approximation where nonadiabatic transitions, i.e.,
summands responsible for term mixing in (20), are
neglected is an analogue of the Born-Oppenheimer
approximation, which makes it possible to decouple
equations for nuclear motion in the absence of the
external field. The main advantage of the considered
approach is that it provides an opportunity to replace a
set of equations for nuclear wave functions (13) by a
single equation.

At the same time, in calculating the energy spectra
of protons emerging from dissociation within the
framework of the quasi-static model, we should take
into account nonadiabatic transitions between modified
terms. Indeed, due to transitions between the terms,
which occur within each half-cycle of the field at the
moments of time when g(¢) = 0, the system may reside
with equal probabilities in each of the terms for large R,
so that the force that pushes the nuclei apart from each
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Fig. 5. Energy spectra of protons emerging from the disso-
ciation of H, for Aiw=0.12eV and P = 1.8x 10'3 W/em%:

(a) approximation of a single modified term and (b) simula-
tion with allowance for transitions between two lower mod-
ified terms.

v ev

Fig. 6. The ground term of an H; molecule distorted by the

field of an electromagnetic wave with an intensity of (/) 5.0 X
1012, (2)1.2x 1013, and 3 2x 1013 W/cm?. The presented
data correspond to the amplitude value of the electric field
in the wave.
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other vanishes upon time averaging. However, within
the framework of the model of a single term, the aver-
age force acting between the protons differs from zero
for any R, which substantially distorts the energy spec-
tra of dissociation fragments. This effect is illustrated
by Fig. 5, which presents the spectra of protons calcu-
lated for im=0.12 eV and P = 1.8 X 10'* W/cm? within
the framework of approximation of a single modified
term (Fig. 5a) and with allowance for transitions
between two lower modified terms (Fig. 5b).

As mentioned above, the dependence of the dissoci-
ation probability on the radiation intensity for the sys-
tem under study can be understood within the frame-
work of approximation of a single modified term. Fig-
ure 6 presents the results of calculations for the ground
electronic term of a molecule in the field of an electro-
magnetic wave performed with the use of (19) for dif-

ferent radiation intensities P = ceg /8. In the range of
relatively low radiation intensities, P < 9 x 1012 W/cm?,

the curve Vé;f) (R, p) features an area of classical finite

motion, which indicates that quasi-stationary vibra-
tional states of a molecule may exist in the radiation
field. These states decay due to the tunneling through
the potential barrier. If intensities P = 1.0 x 10'* W/cm?
are reached within a certain part of the optical cycle, the

potential barrier vanishes, and the curve V;:f) (R, 1) fea-
tures a plateau (curve 2), i.e., an area where the force

acting between the nuclei, F = -d Viflf) /0R, is approxi-
mately equal to zero. With the further growth in radia-
tion intensity, the plateau vanishes (curve 3), which
gives rise to the appearance of the repulsion force
within the entire range of internuclear distances R.

Wp
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Fig. 7. Dissociation probability of H; (1, 3) in the ground

(v=0) and (2) vibrationally excited (v= 1) states as a func-
tion of the intensity of laser radiation: (, 2) approximation
of four terms and (3) simulation within the framework of the
quasi-static approximation.
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Figure 7 shows the dissociation probability for H,
calculated as a function of radiation intensity within
the framework of the considered quasi-static model
with allowance for four terms. As can be seen from the
presented plots, in the range of intensities P < 1.5 X
1013 W/cm?, these curves qualitatively agree with each
other. The proposed quasi-static model allows us to
account for the main specific features of the Wjy(P)
dependence. Specifically, in the range of intensities P <

1013 W/cm?, an H, molecule dissociates due to the tun-

neling of the nuclear wave packet through the potential
barrier (see curve / in Fig. 6). The probability of this
process drastically increases with the growth in the
radiation intensity. Within the range of intensities P ~
1.0-1.5 x 10'3> W/cm?, the nuclear wave packet falls

within the plateau in the Vif'f) (R) curve, and the disso-
ciation probability is a weak function of radiation
intensity. With the further growth in the radiation inten-
sity, the dissociation probability increases again due to

the growth in the repulsion force F'=—d ng) /OR during
the laser pulse.

+ . . . . .
If an H, molecule resides in an excited vibrational

state at the initial moment of time, then one can expect
that tunneling will occur in the range of lower radiation

intensities. The role of plateau in the Véflf) (R) curve will

also diminish due to the broadening of the nuclear wave
packet. These specific features of the Wy(P) depen-
dence were revealed in calculations carried out for the
vibrational state v = 1 (see curve 2 in Fig. 7).

The considered quasi-static model also permits us to
understand the specific features of the Wp(fiw) depen-

dence for H, in the range of low frequencies (i 2
0.12 eV). Specifically, the increase in the oscillation

frequency of the potential Vé;f) (R, ©) with the growth in
the quantum energy % reduces the time interval within
which the nuclear wave packet stays in the area of infi-
nite motion and, as a consequence, lowers the dissocia-
tion probability. Thus, the lowering of the frequency of
the driving field increases the dissociation probability
of the system under study.

As the radiation frequency increases above fie ~
0.25 eV, which corresponds to the minimum in the
W,(fw) curve, the condition (26) of applicability of the
quasi-static approximation is violated, and the consid-
ered model becomes inapplicable.

At the same time, in the case of D, , the quasi-static

model that takes into account a single electronic state of
a molecule does not provide agreement with the results
of exact simulations because of a slower motion of nuclei
in this molecule and the violation of the condition (26) of
applicability of the quasi-static approximation.

LASER PHYSICS Vol. 8 No.1 1998

5. CONCLUSION

In this paper, we have considered the dissociation of
molecular hydrogen ions in an intense IR laser field.
The results of calculations carried out within the frame-
work of the approximation of n terms have been com-
pared with the results of exact numerical two-body sim-
ulation. The dependences of the dissociation probabil-
ity on the intensity and frequency of laser radiation are
determined. A quasi-static model of dissociation is con-
sidered. It is demonstrated that, in the range of low fre-
quencies, this model provides a physically adequate
description of the interaction between a laser wave field
and a molecular system and allows one to understand
the specific features of the dependence of the dissocia-
tion probability on the intensity and frequency of laser
radiation.
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Abstract—To investigate the role of electrons during the Coulomb explosion of few atoms systems exposed to
the strong subpicosecond laser field, we have developed hydrodynamic time-dependent Thomas—Fermi model.
The electron gas is assumed to obey the hydrodynamic equations of motion whereas the nuclei are moving clas-
sically. We solve the equations of our model both for diatomic molecules and small linear atomic clusters.
Assuming that the linear system can rapidly get aligned along the linearly polarized laser field, we restrict the
motion of the electrons to the one direction—the axis of the molecule or cluster. For diatomic molecules we iden-
tify the mechanism underlying the so-called kinetic energy defect (energies of the dissociating fragments are
lower in comparison to those obtained from the simple Coulomb explosion picture). For small clusters we find
qualitatively new phenomena not present in the case of molecules. Hot electrons are generated in the cluster via
inverse bremsstrahlung effect, their energy is transferred to the ions through the scattering on the outermost
layer of atoms which leads to the disassembly of the cluster.

1. INTRODUCTION

Recent experiments on clusters exposed to the
strong laser field [1-8] have revealed a new phenomena
qualitatively different from those encountered for
diatomic molecules. The emission of intense X-ray
radiation from “hollow” atoms [1] has been observed,
as well as production of highly charged ions [1-6], gen-
eration of hot electrons [5, 8] and atomic ions [4, 5] or
the effect of nonuniform energy distribution among the
same charge state ions [5]. The different response of
diatomic molecules and clusters is caused by the pres-
ence of collective phenomena. They play an important
role in many-atom systems like clusters. Some of them
have been recently recognized in experiment. For exam-
ple, in experiments with large clusters (>1000 atoms) [2]
the effect of heating electrons by photoabsorption during
the electron—ion collisions has been found to be very effi-
cient. The energy of hot electrons is then transferred to
the ions leading to the explosion of clusters and produc-
tion of atomic ions with energy up to 1 MeV [5].

At the same time, experiments with diatomic mole-
cules show the kinetic energy of atomic fragments
below 100 eV [9-11]. In this case, the fragments energy
are consistent with a simple Coulomb explosion, how-
ever at internuclear distances larger by 20-50% than
the equilibrium separation. This observation led to sev-
eral tentative explanations [10, 12, 13]. The “stabiliza-
tion” mechanism has been proposed in [10] whereas
the “electron localization” followed by enhanced ion-
ization of molecular ion at some critical distance has
been suggested in [12]. Our calculations do not support
any of those ideas. Instead, we find rather that the
escaping ions are decelerated by electronic charge
remaining in the space between ions [13].

The post-explosion screening effect leads to the val-
ues of kinetic energy defect in agreement with experi-
ment [10]. However, for clusters yet another mecha-
nism is present. The electrons are heated in early stages
of cluster explosion when the density of cluster ions is
high. The energy of hot electrons is transferred to the
ions. So, the cluster explosion is governed by the com-
petition of both deceleration and acceleration of the
ions by the electrons. It is discussed in Section 3.

2. BASICS OF THE MODEL

The hydrodynamic time-dependent Thomas—Fermi
model is based on the assumption that the oscillations
of the electron cloud in multiatom system can be
described as a motion of a fluid characterized by the
mass density p(r, £) and velocity field v(r, #) which obey
the following equations [14]:

PED v [o(r, )v(r, 1)] =

ot
av(‘; D 4 [v(r, 1) - VIv(r, 1) (1)
- p( )

First of them is the continuity equation, it expresses the
conservation of mass. The second one is a classical
equation of motion for an infinitesimal element of fluid.
Since we deal with the electrons we consider, besides
the usual force originated from the gradient of the pres-
sure, the electric force due to all nuclei, the laser field
and all electrons treated in mean-field approximation.
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Fig. 1. Potential energy curves for Cl, and Cl"2L2 , as com-

puted with the parameters A = 0.3, b = 1.22, ¢ = 1.65 a.u.
Inset: Internuclear distance as a function of time for free
oscillations of Cl, for small internuclear excursions away

from an equilibrium separation.

To solve a set of equations (1) it is necessary to
know the constitutive relation between the pressure and
the density. A first approximation to this relation was
derived by Thomas and Fermi [15]. Electrons are con-

sidered as a locally uniform noninteracting gas at zero

temperature, then from Fermi-Dirac statistics the fol-
2

lowing equation appears: P(r) = %(31t2)2’3-——87‘ p(r).
G

The Pauli exclusion principle is the only quantum con-
tribution to this model.

Since we assume the linear system is getting rapidly
aligned with the electric field of a linearly polarized
strong laser field [16, 17], we confine the motion of the
electrons to one direction—along the polarization vec-
tor. So, we actually solve a one-dimensional version of
equations (1):

dp(x) , O -
T*‘B-J—C[P(X)V(x)] =0 -
ov(x) ov(x) _ 1 d ed
ot +v(®) ox p(x)axp(x)+m8x®(x)'

However, we found that the three-dimensional semi-
classical relation between the pressure and density does
not work well in one dimension. Experimentation with
possible forms for energy of one-dimensional gas, jus-
tified by Hohenberg—Kohn theorem [18], led us to the
following constitutive equation: P(x) = Ap*(x). The
value of constant A turns out to be independent of the
atomic number and is about 0.3 in atomic units. This
value yields reasonable stationery properties of a model
molecule such as binding energies and equilibrium sep-
arations.

The electric potential is calculated from the integral
formula (instead of Poisson equation):

N

Ze
D(x,1) =
E{bzﬂx—xi(r)]z}‘”
w (3)
—’%I p(x, 1) > 5dx' + eE(t)x,

[+ (x-x)"]

—o0

where x(1), i =1, ..., N are positions of the nuclei, b and
¢ are smoothing parameters necessary to eliminate

I6((§netic energy of the ion, eV gharge
[ (@ i (b)
61 1 Molecular ion
40+ ‘ i i
= 80 1|
L o 41 idhiag i
g 60 AHERANE R (i
20k & 40 | Atomic ion
R 20 2r
L il Grid
’ "
i 1 I 1 ‘l‘ 1 ] ] 1
0 20 60 0 20 40 60
Time, t/T

Fig. 2. Evolution of the molecular features for a peak intensity of 1.3x 10'6 W/cm? and the wavelength equal to 610 nm with the
field ramped to maximum intensity in 10 optical periods, as marked by the arrow. (a) Kinetic energy of the atomic ion fragments vs.
time; inset shows internuclear distance vs. time. Note that Coulomb explosion begins near the peak intensity; deceleration of the
fragments sets in around ¢ = 20 optical periods. (b) Distribution of net electrical charge (includes both nuclear and electronic com-
ponents). Grid: net charge of the system on our spatial grid, which is contained in a box of length 200 a.u.
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singularity at coinciding points which is common for
one-dimensional problems [19]. External laser field is
treated in dipole approximation. Again, parameters b and
c are taken to produce reasonable static structure. It can
be shown [20] that A = (e/m)*In(c/b). Since A=0.3 a.u. it
means that there is only one free parameter in the model
just like in well known one-electron calculations [19].

Figure 1 shows Born—Oppenheimer curves for chlo-
rine molecule, calculated from static version of (2) [20]
with parameters: b = 1.22 a.u., ¢ = 1.65 a.u. which
yields R, = 3.8 a.u. and D = 0.11 a.u. We checked also
the vibrational motion of the molecule when the exter-
nal field is not present. The inset in Fig. 1 shows the free

Max. kinetic energy, a.u.

T fo g0

Time, t/T

Fig. 3. Maximum kinetic energy of the electron fluid vs. time
for Xe;, and Xe, for a peak intensity of 1.4 X 101 W/em? and

the wavelength equal to 800 nm. Electron heating is more
effective in the larger cluster.

Kinetic energy, eV

600 1
400 2
200 3
4
O i 1 1 1 ]
0 20 40 60

Time, t/T

Fig. 4. Kinetic energy of the atomic ion fragments vs. time
for Xeg irradiated at I = 1.4 x 10! W/cm?, A = 800 nm. The
energies are those of ions moving to the left; to each of these
there corresponds a similar ion moving to the right. Note the
stepwise character of the explosion, with ions being
launched from the extremities of the cluster, the first to leave
being most energetic.

oscillations of the internuclear distance with period
equal to 34 fs.

3. LASER-INDUCED EXPLOSION
OF MOLECULES AND CLUSTERS

To investigate the effects of an intense subpicosec-
ond laser pulse on many-atom systems, we start with
chlorine moiecule [10]. The laser pulse of wavelength
equal to 610 nm is turned on with a sin?(n#/2t) ramp.
We consider short pulses with ramp time T = 10 optical
periods (20 fs).

Figures 2 summarize the dynamics of the system for
a peak pulse intensity /= 1.3 X 10'6 W/cm?. First, Fig. 2a
shows the Coulomb explosion of a molecule. It starts
soon after the intensity is high enough to strip off
loosely bound electrons. The kinetic energy of the
atomic fragments increases rapidly (within a few opti-
cal periods) up to the value of about 120 eV consistent
with the energy of the simple Coulomb explosion of
channel (4, 4) at the equilibrium separation and simul-
taneously higher than observed in experiment [10].
However, as we can see in Fig. 2a, the energy of the
fragments is decreasing after about 20 optical periods.

Figure 2b explains what happens. We plot the
“atomic ion” and “molecular ion” charges as a function
of time, where the “atomic charge” value is the charge
within 3 a.u. of either ion and molecular ion is the sum
of two atomic ions charges and the charge between
them. Since the final charge of each ion is +4 and for a
“molecule” it is +5 than there is a negative charge of
three units in the space between ions. These electrons
screen the mutual repulsion of the ions leading to the
kinetic energy defect of about 20 eV [10]. Thus the
deceleration of the Coulomb explosion caused by the

Kinetic energy, eV
1000 - lf(())rce, a.u.

800

600

400

200

0 1 1 1
4 5 6 7 8 9 10

Time, t/T

Fig. 5. Time dependence of the kinetic energy of (main fig-
ure, in eV), and the total force acting on (inset, in a.u.), the
outermost ion of a Xe, cluster for laser intensity of 5.6 X

10! W/cm?. Note the discrete jumps in energies near inte-
gral multiples of the optical period.
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Fig. 6. Distribution of kinetic energy of the electron fluid in
the case of Fig. 5 at times of (a) 7.7, (b) 7.8, and (c) 7.9 of
optical period. Positions of the outermost ions are marked
by the vertical dashed lines. Note that when the electrons
scatter on the “left” outermost jon, simultaneously hot elec-
trons go out to the right from the cluster to scatter, in the
next half of laser period, on the “right” ion.

electronic charge kept in the space between ions is an
underlying mechanism for kinetic energy defect.

For cluster, however, the situation changes dramati-
cally [21]. Figure 3 compares the maximum electron
energy for Xe,, and Xe, clusters for peak laser inten-
sity of 1.4 x 10'> W/cm? and wavelength of 800 nm.
The energies of electrons are much higher in the case
of 12-atom cluster. This electron heating occurs in the
early stage of explosion (<30 optical periods) when the
density of the ions is still high. We interpret this as an
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Fig. 7. Final kinetic energy of the most energetic ion vs.
number of atoms in the cluster: (a) the time-dependent Tho-
mas-Fermi model of the present paper; (b) simplified Cou-
lomb explosion model, i.e., instant removal of electronic
charge. Laser parameters are the same as for Fig. 4. Note the
huge increase of the kinetic energy over that obtained for the
diatomic system. Inset: Demonstration of the crucial role of
the electrons during the initial explosion of the Xeq.

effect of photoabsorption during the electron—ion colli-
sions (inverse bremsstrahlung).

The energy of hot electrons is transferred to the ions.
This mechanism is particularly efficient for the outer
jons. Figure 4 shows the energies of four ions ejected in
left (or right) direction by explosion of Xeg cluster. We
see that the explosion is not instantaneous nor uniform.
The ions are fired one by one with those ejected first
being more energetic. So, as opposed to the explosion
of diatomic molecules, for clusters we have a wide spec-
trum of kinetic energies for the same charge state ions.
Such an observation has been reported recently [5]. The
curves representing more energetic ions in Fig. 4 do not
exhibit the decreasing part characteristic for diatomics
(Fig. 2a). It means that the ion heating mechanism
dominates the screening effect present for molecules,
only for most inner ions the screening is still important.

The details of how the energy of the hot electrons is
transferred to the ions are explained in Figs. 5 and 6.
Figure 5 is a closer inspection of the kinetic energy of .
the most energetic ion (left one) but for peak intensity
5.6 x 10!5 W/cm? (the inset shows the force acting on
it). It is seen that the energy of the ion increases in a
stepwise character by approximately 100 eV in a half of
optical period. The mechanism of this tremendous
acceleration can be recognized in Fig. 6 which shows
the snapshots of spatial distribution of electron kinetic
energy (the positions of outermost ions are marked by
dashed lines). It is seen that hot electrons travel through
and out of cluster to the right. When the field changes
its direction, these electrons will be forced to scatter on
the outermost “right” ion just like they scatter on the
“left” outermost ion at times 7.7-7.9 optical periods
(Fig. 6) leading to the huge increase of the energy of the
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“left” ion (Fig. 5). This is the way how the cluster is dis-
rupted.

Finally, Fig. 7 reveals another aspect of the role of
electrons in course of laser-induced explosion of many-
atom systems. We compare the results of our model
with the simple Coulomb explosion model, in which
six electrons (since the final charge states of the ions in
our calculations is +6 for I = 1.4 x 10> W/cm?) are sud-
denly stripped off every Xe atom. From the main figure
we see that in both cases the final energies of most ener-
getic ions are comparable but the way how the energy
is gained differs significantly. For “real” clusters the hot
electrons are able to move the ions to their final states
in an extremely efficient way. At the same time a simple
model drives as a very slow process.

4. CONCLUSIONS

By using the hydrodynamic time-dependent Tho-
mas—Fermi model we identify various mechanisms
present during the Coulomb explosion of multiatom
systems. We find that for diatomic molecules a post-
explosion screening effect is dominant and responsible
for kinetic energy defect. For clusters, however, the
generation of hot electrons is much more important.
The consequence of this is an efficient transfer of
energy to the ions by the scattering of electrons on the
outermost ions which leads to the stepwise explosion of
clusters.
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Abstract—In this paper we present a Floquet-Bloch analysis of photoemission of electrons and high harmonic
generation from a crystal surface subjected to intense laser fields. We also investigate harmonic generation from
single and double quantum-well structures by direct numerical solution of the associated time-dependent
Schrédinger equation. The results of simulations of the photoelectron emission spectra show a whole set of new
phenomena including above-threshold surface-emission bands of photoelectrons separated exactly by the pho-
ton energy, and modulation of the envelope of the spectrum. Simulation of the emission spectrum of high har-
monics from an electron beam reflected from the surface in the presence of a laser beam at grazing incidence
show a sequence of emission “hills” associated with strong enhancements of the high-harmonic signals. The
results of photoemission and high harmonic generation spectra are interpreted in terms of modification of the
band-structure of the crystal by the laser field. Finally, efficient harmonic generation from quantum-well struc-
tures are shown to be possible; it is suggested that this can provide a source of generating coherent radiation in

far-infrared, at as yet unavailable wavelengths.

1. INTRODUCTION

Photoelectron emission of high currents (e.g., [1])
and spectrum of high-harmonic radiation (e.g., {2]),
from a crystal surface subjected to intense laser fields
have recently been the objects of vigorous investiga-
tion. They are motivated both by the desire to under-
stand the behavior of crystals and surfaces in intense
laser fields as well as by the need to obtain pulses of
high electron currents of very short durations and/or
high harmonic radiations with high efficiency. In par-
ticular, it had been found that the interaction of short
laser pulses with metal surfaces generates nanosecond
or picosecond pulses of highly directional electron
beams [3, 4]. It is expected that such electron sources
can find applications in electron beam lithography and
high resolution electron microscopy [5], as well as in
free-electron laser devices [6]. Also, a number of exper-
iments have been carried out recently for high-har-
monic generation from solid targets [2], in the intensity
range between 10° and 107 W/cm?. Such coherent
sources of radiation can have application in many
domains of atomic, molecular, and solid state physics.
Theoretical studies of high harmonic generation in con-
densed matter media are also initiated recently [7-12].

Nonlinear interaction of laser pulses with crystal
surfaces have been analyzed in the past often within
some version of the free-electron Sommerfeld model
[13]. For the usual one-photon processes, the free-elec-
tron mode! is of some significance, but in the case of
multiphoton processes such models appear to fail, e.g.,
to give many orders of magnitude higher currents

observed experimentally [3, 4] or the high emission
probability of harmonics observed [2].

2. FLOQUET-BLOCH THEORY
AND EXPRESSIONS FOR PHOTOELECTRON
EMISSION AND HIGH HARMONIC
GENERATION SPECTRA

We have recently developed a fully nonperturbative
Floquet-Bloch theory [11, 12] of interaction of intense
laser fields with periodic (or crystalline) electronic
structures. In this paper we present results of Floquet—
Bloch analysis of above-threshold surface-emission of
photoelectrons and production of high harmonics by
reflecting an electron beam of moderate energy from a
crystal surface, subjected to an intense laser field.

WR(xa r) WT(X’ t)
———
Wl(x9 t) f(
— - Z
Crystal Vacuum

Fig. 1. A schematic description of a crystal with its surface
State of an electron inside the crystal and that in the vacuum
are indicated. The laser field is assumed to propagate parat-

lel to the surface, along ﬁz , with the polarization vector per-

pendicular to it, along £ x-
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In Fig. 1, we show schematically the basic model of
the surface and the alignment of the laser field. The
laser field is assumed to be propagating parallel to the

surface, k., with the polarization vector perpendicular

to it, €;. An electron initially in an occupied band-state
V(x, £) inside the crystal (and driven by the laser field)
is shown to move toward the surface on the right hand
side. After reaching the surface it is either reflected or
transmitted with wavefunctions Wg(x, ) or yix, 1),
respectively. (We note that in the case of the generation
of high harmonics by reflecting an electron beam, the
incident state has to be taken to approach the surface
from the right but is not shown here explicitly). In the
presence of an intense laser field these states can be
most conveniently described by the associated Flo-
quet-Bloch states [12] having definite expectation val-
ues of the momenta. The Floquet-Bloch states are gen-
eralizations [12] of the usual Bloch states in the
absence of the laser field. They are of the form (in
atomic units) [19, 20]:

~iEg(k)}t jkx
™ g (x, 1), (1

where B =1, 2, 3, ... is the band index, Eg(k) is the Flo-
quet-Bloch eigenenergy, dp(x, £) is a periodic func-
ttons of both x and ¢ with periods 2n// and 27/, respec-
tively.

\VBk(x’ 1) =e

The associated field modified band structure can be
represented either in terms of the “mean energy spec-
trum,” obtained from the expectation value of the
energy operator in the Floquet-Bloch state or in terms
of the Floquet-Bloch quasienergy spectrum. The most
significant properties of these spectra is the appearance
of minigaps at specific k-values for which avoided
crossings between the Floquet replicas can take place
due to the fulfillment of a (multiphoton interband) res-
onance condition, to be discussed below.

The crystal wave function including the surface may
be constructed conveniently making use of the Flo-
quet-Bloch wave functions. Thus, the reflected wave-
function, yg(x, 1), for example, can be given by a linear
combination of the Floquet-Bloch states having nega-
tive expectation values of momenta and the corre-
sponding “closed-channel” states [14]. Similarly, the
transmitted wavefunction in the vacuum, y(x, ), is
given by a linear combination of the well-known
Volkov states with positive momenta, e.g. [15], and the
corresponding closed-channel states that decrease
exponentially in the vacuum, away from the surface.
The condition of continuity of the total wave function
propagating in the crystal and in the vacuum, as well as
its space derivative at the surface (for all time t) allows
one to determine the desired transmission probability,
PB, k; v), where (B, k) denote the initial band index
and the Bloch momentum, respectively, and v denotes
the final velocity of the photoelectron in the vacuum.

The transmission probabilities, Py permit us to define

[16] the photoelectron spectrum, di(‘:/) ,
ds m,vve(k
) WpB v, @
b4k Ey(0)

where the summation is over all initially occupied Flo-
quet-Bloch states with positive momenta that fulfill the
energy conservation condition

E= %mevz = Ep(k)mod o. 3)

vg(k) is the expectation value of the velocity of the elec-
tron in the initial states (B, k), m, is the electron mass,

ky is the Fermi momentum, and 1/| Eg (k)| is the density

of the occupied initial states. Thus, the current emitted
per unit surface area is given by

i = enjd—i(:)dv, 4
0

where e is the charge of the electron and  is the density
of conduction electrons.

The high harmonic emission spectra of interest are
obtained from the Fourier transform of the expectation
value of the current density. The expression for the rate
of emission at the frequency € then takes the form [12]

dw _ 2 3 2 2 2
o = 3¢ 2 SQ-No)N°o’|$(E), (5
NelZ

where $,(E,) is the Nth Fourier component of the cur-
rent, . is the fine structure constant and E; is the energy
of incident electrons. The expectation value of the cur-
rent operator consists of two terms. Outside the crystal
it is calculated with a wavefunction that is a sum of the
incoming Volkov wave of energy E; and the Volkov
waves reflected from the surface, with all possible pos-
itive energies E; + n. Inside the crystal the expectation
value of the current operator is determined by the wave-
function which is a sum of all possible Floquet-Bloch
states propagating from the surface into the crystal.

3. BAND STRUCTURE IN INTENSE FIELD

For the numerical simulations to be discussed
below, we have used the parameters of the crystal
potential such that a Fermi energy of 5.53 eV and a
work function of 5.1 eV, corresponding to that of gold,
are reproduced by the model [12]. We shall not go here
in the details of the method of computation of the Flo-
quet-Bloch band-structure and their general symmetry
properties but refer the reader to our previous work
[12], for the details.

No. 1 1998
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In Fig. 2 we show the mean energy spectrum for a
Nd : YAG laser of frequency ® = 1.169 eV and intensity
1=3x 1075 a.u. (1.053 x 10'2 W/cm?). The most inter-
esting features seen in Fig. 2 are the rather sharp mod-
ifications of the band structure near a multiphoton res-
onance between a pair of bands. As we shall see below
such interband resonances predominantly determine
the above-threshold surface-emission spectrum, nigh
harmonics spectrum, as well as the energy-spectrum of
electrons reflected from the surface.

In Fig. 3 we show the unperturbed band structure
(left panel) and compare them with the principal branch
of the Floquet-Bloch bands associated with it (in the
presence of the field). Notice in particular the appear-
ance of a number of mini-gaps in the field modified
band structure in this figure; they are due to avoided
crossings between the Floquet replicas occurring at an
interval of the photon energy. Physically they corre-
spond to the influence of multiphoton resonances
between pairs of bands of the “crystal + field” system.
Another quantity that also characterizes the field mod-
ified band structure is the expectation value of the
energy operator in the Floquet-Bloch states (or the
mean energy spectrum), shown in Fig. 2 above. It
shows also the influence of multiphoton resonances on
the mean energy of the system by modifying the mean
energy spectrum strongly for those quasi-momenta, &,
which satisfy the resonance condition.

4. PHOTOELECTRON EMISSION SPECTRUM

In Fig. 4 we present the photoelectron emission spec-
trum, simulated for the case of interaction of the surface
with a Nd : YAG laser at a wavelength A = 1064 nm, and
an intensity I = 5 X 10° W/cm?. The prominent feature
of the spectrum seen here is the appearance of a whole
sequence of individual energy-bands of the photoelec-
trons, marked by strips (white strips) of “zero current,”
the edges of which are separated exactly by the photon
energy (1.169 eV). These bands, in the present case of
surface photoemission, are direct analogs of the above-
threshold ionization (ATI) peaks, well-known in the
case of atomic ionization (e.g. [17, 18]). Note that the
individual members of such “above-threshold surface-
emission (ATSE)” spectra also exhibit sharp lines of
high electron currents that are reminiscent of the sharp
atomic resonance lines which are known to character-
ize the individual atomic ATI peaks [18]. We have
found that in the present case they arise from interme-
diate miltiphoton resonances between pairs of Floquet—
Bloch bands of the crystal. It can be seen from Fig. 4
that in the low energy part of the spectrum (up to about
4 eV), the envelope of the ATSE spectrum decreases
linearly (in logarithmic scale). This is consistent with
the usual power-law behavior (with respect to the pho-
ton order) expected from the perturbation theory. How-
ever, for larger energies (e.g., between Sup to 9 eV) we
observe formation of a broad bump in the envelope of
the spectrum. This effect becomes more prominent
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Fig. 2. The single valued spectrum of the mean band energy
‘éﬁ(k) (in eV) for the laser intensity 1.053 x 10'2 W/em? at
o=1.169eV.
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Fig. 3. On the left-hand side we present the field free band
structure for the one-dimensional crystal. The dots appear-
ing in the band structure in this (and in the subsequent) fig-
ures are due to limited density of points in the computations;
they may be connected smoothly by interpolation, if
desired. This band structure is compared on the right-hand
side with the principal branches of the Floquet-Bloch bands
in the presence of the field.
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with increasing intensity and the envelope of the ATSE
spectrum becomes characterized by a modulation due
to the appearance of broad minima and maxima. Such
modulations can be seen clearly in the ATSE spectrum
in Fig. 5 which is obtained for a higher intensity / =
3.51 x 10" W/cm?. This is clearly a nonperturbative
phenomenon which we attribute to the existence of
energy-gaps in the band-structure of the crystal. Thus,
a comparison of the positions of the modulation min-

Emission spectrum dS(v)/dv
10°8

10—12
10716
10720
1072

1028

4 6 8 10
E=12m?, eV

0

Fig. 4. Calculated “above-threshold surface-emission
(ATSE)” spectrum for the Nd : YAG laser frequency, ® =
1.169 eV, at an intensity I = 5 x 10  W/cm?. Note the pres-
ence of a sequence of energy-bands separated exactly by the
photon energy. Observe also the sharp resonance-like lines
of high currents in the individual emission-bands and the
hint of a broad maximum of the envelope between 5 to 9 eV.

Emission spectrum dS(v)/dv
1

-4
1077
10—8
1018 i

10——16 . ‘

10—20 | | f | |
0 5 10 15 20 25 30
E=12m*, eV

Fig. 5. The same as in Fig. 4 but for a higher intensity I =
3.51 x 10! W/em?. Notice a broad minimum and a maxi-
mum at the envelope of the spectrum indicating a modula-
tion of the envelope of the spectrum as a function of the
energy.

ima in these spectra with the calculated position of the
band-gaps show that the former occur exactly and only
in the vicinity of the latter. We also find that such mod-
ulations of the ATSE spectra require merely the exist-
ence of band-gaps of the crystal and is independent of
whether the unperturbed crystal is a metal, as discussed
here, or a semiconductor or an insulator. The modula-
tion effect, therefore, is a universal phenomenon that
should be observable in all above-threshold surface-
emission spectra, independent of the conduction prop-
erties of the unperturbed surface.

5. HIGH-HARMONIC GENERATION
FROM A CRYSTAL SURFACE

In the following sequence of figures we present the
results of simulation of the high harmonic generation
spectra, W, in terms of the squared Fourier components

of the current, |$(E)[>, multiplied by the factor
:%OL3N2(,02 [cf. (5)]. For the sake of concreteness we

assume that crystal electrons interact with the laser
field in the first 20 layers (of the order of the skin-depth
for gold) of the surface.

Figure 6 shows the calculated spectrum at the inten-
sity I =2 x 1075 a.u. (7.02 x 10! W/cm?) for the case of
electrons incident perpendicularly on the surface from
the vacuum with energy E; = 25.8 eV. Note that both
odd and even harmonics are generated in the present
system, as one expects from the lack of inversion sym-
metry. Already for such a moderate intensity we
observe the formation of a bump in the spectrum for up
to N = 17 which is due to a strong interband resonant
transition in the crystal and the interference between
the corresponding Floquet-Bloch states as well as
between the Volkov states in the vacuum. For higher ¥
we observe the appearance of plateaus (well-known in

Power spectrum, arb. units
10—6 -

1078
10710
10712
10714

10—]6

18 1 L r L 1 1
10710 20 30 40 50 60
N

Fig. 6. The harmonic spectrum generated by a beam of elec-
trons of energy 25.8 eV impinging on the gold surface.
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Reflection probability
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]0—14 L

10—18 | ! ! 1 1 | ] 1]
-20 =10 O lON 20 30 40 50

Fig. 7. The reflection probabilities of electrons of energy
25.8 eV reflected from the gold surface.

atomic physics) extending up to N = 32 in the case of
the first plateau, and up to N = 52 for the second one.
The resonant origin of these structures is clearly seen in
Fig. 7 presenting the reflection probabilities of imping-
ing electrons. We see that each plateau can be related to
a resonant peak in the reflection probability spectrum
and the bump in the harmonic spectrum is associated to
the inelastic reflection process with the absorption of
10 laser photons. The first structure in the harmonic
spectrum that extends up to N = 17 is due to both reso-
nant transitions and interference of states of energies
between E; — 7w and E; + 100. The origin of the remain-
ing two plateaus can be explained in a similar way.

In view of the resonance coupling mechanism
between the band of the incident electrons and the
empty bands, one expects that the high harmonic spec-
tra may be also controlled by suitably tuning the energy
of the incident electrons. In Fig. 8 we show the spectra
calculated for the incident electron energy E; = 22.3 eV.
At this energy and ] =2 x 1075 a.u. (7.02 x 10" W/cm?)
there appear now two well-separated hills in the har-
monic spectrum which are followed by a second-and a
third plateau; this is in contrast to the appearance of the
bump in the corresponding case of Fig. 6. The expla-
nation of such a difference can again be provided by
the analysis of the reflection probabilities presented in
Fig. 9. The first hill is due to the resonant transitions
between the states with energies ranging from E; — 9®
to E; + 50 with the very narrow and well-separated
peak for E; — 9 in the spectrum of reflection probabil-
ities. The appearance of the second hill in the harmonic
spectrum is caused by the second (very narrow) well-
separated resonant peak for energy E; + 14w. The
remaining two plateaus seen in Fig. 8 are, as in the pre-
vious case, due to broad resonant peaks in the spectrum
of reflection probabilities centered around energies E; +
24w and E; + 47w, respectively.
No. 1 1998
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Power spectrum, arb. units
]0—6 "

10—8 L
]0—10_
10—12 L

10—14 L

10—16_

010 20 30 40 50 60
N

Fig. 8. The harmonic spectrum generated by a beam of elec-
trons of energy 22.3 eV impinging on the gold surface.
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Fig. 9. The reflection probabilities of electrons of energy
22.3 eV reflected from the gold surface.

We may end this section by observing that the mul-
tiphoton resonant coupling creates a large amplitude
for the corresponding Fourier component in the Flo-
quet—Bloch state. This in its turn leads to large ampli-
tudes in the current density oscillating at various differ-
ence frequencies associated with the product of the res-
onant- and the non-resonant Fourier amplitudes. These
oscillations are then radiated into the higher harmonic
modes with large signals constituting the “hills.”

6. HARMONIC GENERATION
FROM QUANTUM-WELLS

Quantum-well structures can nowadays be fabri-
cated in the laboratory [21]. They provide a kind of
“macroscopic atoms” and it is of interest, therefore, to
investigate how these structures may be used to gener-
ate harmonics of incident laser fields, particularly in the
far-infrared frequencies.
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Fig. 10. Potential energy of an Aly3Gag ;As/GaAs single
quantum-well with width 160 A and height 287 meV. The
bound state energies (in meV) are: E| = 15.13, E, = 6041,
E5=134.55, and E4 = 232.101.
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Fig. 12. High harmonic generation power spectrum for the
single and the double QW structures at a CO, laser field

wavelength A = 10640 nm and with intensity /= 1 GW/em?.

In Figs. 10 and 11 we show, respectively, a single-
and a double-well structure with comparable character-
istic dimensions. Note that unlike the model potentials
used often with unrealistic infinite walls, these wells
have finite heights which can lead not only to excitation
but also to propagation of the electrons in the contin-
uum above them.

The harmonic generation spectra in this case are
obtained by Fourier transform of the dipole expectation
value computed from the simulated total time-depen-
dent wave function of the system interacting with the
field, and evolving from their respective unperturbed

FAISAL et al.
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Fig. 11. Potential energy of an

Al 3Gag 7As/GaAs/Aly 3Gag 7As  double quantum-well
with individual well-width 60 A, barrier-width 40 A, well-
depth 287 meV, and barrier-height 287 meV. The bound
state energies (in meV) are: E| = 62.57, E; = 66.80, E3 =
229.98, and E,; = 252.78.
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Fig. 13. The same as in Fig. 12, but for a larger intensity =
5 GW/cm?.

ground states. For the purpose of simulations we have
used a typical CO, laser frequency, ® = 0.117 eV, at
selected intensities in the region of GW/cm?.

In Figs. 12 and 13 we show the calculated harmonic
generation spectra for the single-well and compare
them with that obtained from the double-well of com-
parable total extension. It is seen that at a given inten-
sity the double well structure permits a stronger signal
for the corresponding harmonic than that for the single
well-structure. Moreover the number of harmonics of
significant emission intensity are also, in general,
greater for the double quantum-well than for the single
Vol. 8 1998
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quantum-well, These results show that quantum-well
structures could be used to generate harmonics of infra-
red radiation quite efficiently, and preferably from a
double-well of comparable total dimension than a cor-
responding single-well. Also, as expected, the number
of high harmonics generated is found to increase signif-
icantly with increasing incident intensity.

7. CONCLUSION

To conclude, we have presented a Floquet-Bloch
analysis of interaction of intense Nd : YAG laser light
with an ideal crystal surface, and direct simulations of
the time-dependent Schrodinger wavefunctions for
quantum-well structures interacting with intense CO,
laser fields. Numerical simulations of the photoelectron
spectrum, corresponding to a model gold surface sub-
jected to the Nd : YAG laser field, reveal a sequence of
“above-threshold surface-emission (ATSE)” bands of
photoelectrons, that is a direct analog of the so-called
above-threshold-ionization (ATI) spectrum, well-
known in atomic physics. Thus, the edges of the present
ATSE bands, are found to be separated exactly by the
energy of the laser photon; the individual bands are fur-
ther characterized by sharp lines of high currents that
are analogous to the so-called atomic resonances that
are known to appear inside an ATI peak. At high inten-
sities, the envelope of the ATSE spectrum is found to be
modulated by broad minima and maxima as a function
of emission energy.

High harmonic generation in the presence of an elec-
tron beam incident perpendicular to the surface in the
presence of an intense laser field (that is propagating par-
allel to the surface with its polarization vector parallel to
the electron beam) is investigated. It is found that the har-
monic radiation spectrum is characterized by the pres-
ence of “resonance hills” which arise from the interme-
diate multiphoton interband resonances between pairs of
Floquet-Bloch bands in the presence of the field. The
efficiency of generation of high harmonics is particularly
high for the harmonics appearing on the “hills.”

Finally, harmonic generation, in the infrared region,
from single and double quantum-well structures are
investigated. It is found that a double quantum-well of
the same overall dimension, is more efficient for the
purpose than the corresponding single quantum-well.
This is expected to provide an efficient source of coher-
ent radiation in the far-infrared region of spectra.
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Abstract—The unconventional scheme of an optical undulator IR free-electron laser which realizes the Doppler
conversion of frequency down is investigated. Analytical nonperturbative theory of this down-conversion FEL in
the nonlinear strong-signal low-gain Compton regime is developed. Electromagnetic field distribution and elec-
tron beam evolution inside the interaction region are investigated and FEL saturation intensity is determined.

One of the actual aspects in the theory of interaction
of high-power laser radiation with free electrons is the
problem of an optical undulator free-electron laser
(FEL). Optical undulator FEL is considered now as a
promising coherent and rather compact X-ray source.
In the IR spectral domain, the new unconventional
“down-conversion” scheme of the optical undulator
FEL is suggested [1, 2]. In this paper, we develop the
nonlinear strong-signal kinetic theory of the down-con-
version FEL in the low-gain Compton regime.

Conventional FEL schemes are based on stimulated
scattering by relativistic electron beam (REB) of a
counterpropagating electromagnetic pumping wave
(see Fig. 1a). As a result of the Doppler conversion of
pumping frequency “up,” an amplification of the signal
wave occurs at the wavelength (y > 1)

A, = A/4Y°, (1)

where Y= (1 - Bzz )12 is the “longitudinal” relativistic
factor, cf, is the electron velocity along the beams
propagation direction, and A, is the pump wavelength
(in the case of a static undulator with A,, the period for
equivalent wave is A; = 2A,,). According to relation (1),
conventional IR FELs, which operate usually at undu-
lator periods A,, = 2-10 cm, must be driven by high-
energy (tens and hundreds MeV) electron beams being,
therefore, high-cost large devices of rather low gain
(the gain of an FEL scales as ~y%). To overcome these
disadvantages a number of alternative FEL concepts
are now under development. One of the possible alter-
natives is the optical undulator IR FEL which is based
on the Doppler conversion of pumping wave frequency
down.

In the “down-conversion” FEL the high-power elec-
tromagnetic pumping wave and the REB penetrate in
the same direction (Fig. 1b). The signal amplified is
then counterpropagating and its wavelength is deter-
mined by reversed to (1) relation (y > 1):

A, = 47°A,. 2

Assuming high-power Nd-laser (A; = 1.06 um) radia-
tion as a pump and y = 5, we have A, = 100 pm. Thus,
that it is possible to cover all the IR spectral domain
using low-voltage high-current electron accelerators is
the unquestionable advantage of the scheme, which can
result in relatively compact low-cost device.

In fact, the scheme in question is based on the sym-
metry of stimulated emission and absorption processes
in the scattering of pumping wave by an electron beam.
Relations (1) and (2) result from the condition of reso-
nant interaction between the REB and the wave of pon-
deromotive potential, formed by the pump and signal
waves. An amplification of high-frequency field com-
ponent is attained when the electron velocity some
exceeds the resonance one. In the reversed situation,
when electrons are slightly breaking away from pon-
deromotive wave, an absorption of high-frequency and
an amplification of low-frequency field components
arise. In the latter case the energy stored in high-fre-
quency pumping wave is distributed between the beam
electrons and low-frequency signal.

Linear theory of the down-conversion IR FEL in the
low-gain Compton regime was given in [2]. It was
found that this scheme has some specific features
which are quite different from those of conventional
FELs. As a result of lasing, in the down-conversion
FEL the beam electrons have to be accelerated instead
of decelerating in the conventional devices, because the

(
e-beam

a)
A
A

® g
— > e-beam
A ’

Fig. 1. The interaction geometry in (a) up-conversion and
(b) down-conversion FEL.
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energy of pumping wave is shared between the ampli-
fied signal wave and the electron beam. It was found
that the beam quality restrictions are substantially less
severe than that in conventional FELs. Due to all men-
tioned advantages, the down-conversion FEL looks like
rather promising IR source.

In this paper we develop the nonperturbative strong-
signal nonlinear theory of the down-conversion FEL in
the low-gain Compton regime. We will use the well-
known procedure which allows us to treat FEL dynam-
ics in terms of quasi-Bloch equations [3]. We consider
the 1D problem which corresponds to the collinear
interaction geometry and small transverse beam emit-
tance. A homogeneous REB is propagating along the
positive z-axis direction at a velocity cf3,. Neglecting
the influence of REB self-induced fields and harmonic
generation effects, the electromagnetic field potential is
the superposition of pumping (i) and signal (s) wave
potentials,

A=A +A, 3)

For definiteness sake, we choose pump and signal to be
the plain waves of circular polarization:

Az, 1) = e A(z)expli(wit—k;z)} +cc.,
Az, 1) = e_A(z)exp{i(o+kz)} +cc

Here the wave amplitudes are slowly varying functions,
(ki, sAi, x)_ldAi, s/dZ <.

We consider the quasi-steady-state problem, so that
the pulse durations of beam current T,, pump T, and
signal T, are assumed to be large compared to the elec-
tron time of flight,

Ty, Ty T5 > L/ B, 5

where L is the length of the interaction region (i.e., the
length of the optical undulator).

Under assumptions indicated above the dynamics of
electrons is described by the one-dimensional kinetic
equation [3, 4]

f  pof _ €9 ,2,,0f

ot i myoz myaz(A /z)ap' ©
Here fiz, p, t) is the REB distribution function, p =
mycP, is the longitudinal dynamical momentum of an
electron (in the reasonable optical fields the shift in
electron mass is insignificant, dm/m ~ e?A%/m*c* < 1).
It is assumed that the boundary condition for equation
(6) is the steady-state momentum distribution at the
entrance of undulator,

f(z=0,p,1) = Fo(p). (M)
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We will use the resonance approximation, contain-
ing in (6) only the terms corresponding to the synchro-
nism of electrons and ponderomotive wave,

B,=w/ck, (8)

where ® = 0; — @, and k = k; + k, are the frequency and
the wavenumber of the ponderomotive wave, respec-
tively.

Kinetic equation (6) should be solved jointly with
the wave equation

9’A 9’A _ 4n

- __jtr’
a 2 _28t2 c
Z C2 (9)
_ne a’_p
.]rr - 'ncjf(Z’p’ t)A Y ’

describing the evolution of the signal and pump waves.
Here, n, is the density of electrons in the beam, and the
following relation for transverse electron velocity, v;, =
eA/(myc), is assumed, which is valid when the beam
transverse emittance is small enough.

It is easy to show that material equations and wave
equations can be solved separately under the condition

19,
fi9z’

1 aAi,s

ks e
A 02

(10)

i.e., the gain in wave amplitudes is much slower than
the growth rate of the oscillating part of the distribution
function. As we neglect the higher harmonic genera-
tion, we seek the solution to (6) in the form of the sum
of steady-state and oscillating at the frequency of the
ponderomotive potential components (¢ = ®f — kz):

f(z, p, 1)

= folz, P) + Fi(z pYexp(io) + Frexp(-i0). (1D

Here and below the asterisk denotes the sign of com-
plex conjugation. After substitution of (11) in the
kinetic equation (6), the latter can be reduced by the
well-known procedure to the system of quasi-Bloch
equations [3]:

0fy _ ke R,
0z pc’ ap’
oR, a ke, 12, 12050
5 KR, = —ZP—CzMil |A P (12)
oR,
32——”R1 = 0.
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Here the new functions, iR, = A¥ Af, — A;Af f{ and

R, = AF¥ASf, — A,AF T, are introduced, and p =
mYy®/pc — k is the parameter of detuning of an electron
from exact resonance with the ponderomotive wave. By
analogy with the conventional Bloch equations, the
functions fy, R, , can be regarded as the functions of
medium excitation and imaginary and real parts of
medium polarization, respectively. The natural bound-
ary conditions to equations (12), corresponding to (7),
are (z=0)

fo = Fo(p),

The wave equation (9) is then reduced to the follow-
ing form:

R, =R, =0, (13)

8|As]2 2mne’ I a’p
0z mc’k, by’
) (14)
d|Aj 27n,e’ dp
= J‘Rl_.
0z mc’k; Y

One can see that the pump wave amplitude decreases
much slower than the signal amplitude, d|4;|*/dz =
4y 10]A,)?/9z. Note also that equations (14) lead
immediately to the photon number conservation law,
which is natural for Compton scattering,

B
ho;0z

1 9l
= Fo9e (15)

where I; ; are the pump and signal intensities, respec-
tively.

In the small-signal approximation, the stationary part v

of the electron distribution function remains constant in
the lowest order of perturbation theory, fy(p, z) = Fo(p). It
is easy to find the power gain coefficient [2], which is,
of course, of the same form as that for the up-conver-
sion FEL [4], but the relation between wavenumbers
k;  is determined by (2) rather than (1),

161
az

2
471: romn L d _1_(_5_1_1_1_1:]_)
= I,[dp (EQAW )

Here ry = €?/mc? is the classical radius of an electron,
1 = UL/2 is the parameter of detuning from resonance.
The formal analogy of (16) with the corresponding
result of [4] for up-conversion FEL scheme is caused
by the symmetry of stimulated energy exchange dis-
cussed above.

o =

(16)

The maximum gain is in the regime of dominant
homogeneous broadening of line, which can be real-
ized when the initial energy spread Ay/y and the mean
angle spread due to the beam emittance (A©®?) of beam
electrons satisfy the inequality, as it follows just from
analysis of the integrand in (16) [2],

(A©%)
2 7y

Ay 4y’

<3N’ a7
where N = L/}, is an effective number of periods of the
optical undulator. The optimum oscillation conditions
are at the detuning parameter 1} = ©t/2, and we have for
the gain per pass

G = L~%r0nL ]

(18)

It is worth of emphasizing that the beam quality
restrictions in the down-conversion FEL (17) are not so
drastic as in the up-conversion scheme, Ay/y< 1/2N. It
is rather crucial advantage of the scheme under discus-
sion: it becomes possible to use undulators with larger
number of periods (compared to up-conversion
devices), which results in higher gain, G ~ N°

Let us consider the strong-signal nonlinear opera-
tion regime, when, with an increase in signal ampli-
tude, perturbations of the electron distribution function
become large and should be accounted exactly. Under
condition (10), one can derive from (12) the following
equation for the function R, in dimensionless variables
x=z/Ly=ul

2
'R
PR, i, < R

ax ay

19

Here the characteristic length [ = 2V*y’B(a,a,)"*k~! and
normalized amplitudes a; ; = e|A; ,|/mc? are introduced.
This equation can be solved by separation of variables,
and y-dependent eigenfunctions are the functions of
parabolic cylinder (Weber functions) [5]. It is conve-
nient to represent solution to (19) in the form

> 2
R, = Z B,exp (——}L)Hn(l) sin(A,x),
n=0 4 ﬁ

where the eigenvalues are 7&3 =4(n + 1/2). Here H,(u)
are the Hermite polynomials generated by the function
exp(—u?) [5], the boundary conditions (13), R, = 0 at
x =0, are taken into account.

Coefficients B, can be determined using the second
equation in the system (12), considered at the point x = 0.
For definiteness, we assume the Gaussian distribution

(20)
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function of beam electrons entering the interaction
region,

(21)

Fo(p) = 2

26,

1 (p- Po)2
)

Using the Meler formula [5]

3 L(2) mcom,o

n=0

2 2, .2
1 exp{nyz—(x ;—y )z }’
1-7 -2z

we find
_2AflAjo 1
Go2"ntA,

n A/'{C

2 , 120 —5° il

X exp ——}—)— (1+o0 ) (l 62) 2
4(1+o) 1+0

=S 22 )

(22)

Hn— ] [—i-_}}’
J2(1-6%

where the introduced parameters are y, = \W(po)l, and 0 =

Ookl( J292p,)! is the normalized momentum spread of
electrons in the beam.

The growth rate of signal amplitude is guided by
(14), which, after substitution of the solution (20), (22),
becomes of the following form:

2 2
2r
da, _ J2mn,e aiexp{ Yo :

dz mczksy

2

o 1 (1 )
S Y S R
r§)22n' 1+G 2(1-0")
sinh,,x sink,,,,x
xl: }\'211 ;\'2n+2 :l

The exponential gain function 0(z), o = a;1 da,/ 0z,
calculated according to (23) at different signal ampli-
tudes, is represented in Fig. 2. Calculations are made in
the case of pumping by high-power Nd-laser radiation,
A; = 1.06 um, I, = 10'* W/cm?, FEL is driven by high-
current REB with the current density of 5 kA/cm? (the
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0.4}

0.3+

0.2

Fig. 2. The exponential gain o(z) = a;I da,/ oz at different
signal intensities: () I, = 3.3 x 10* W/em?; (2) I; = 8 x
10* W/cm?; and (3) saturation, Is = 3.3 x 10° W/cm?2. The
pump intensity is [; = 10" W/cm? (A; = 1.06 pm); the elec-

tron beam parameters are n, = 10'2 em3, v=33,0=0.2;
initial beam detuning is W(pg)L = .

corresponding electron density is n, = 10'2 cm™), ¥ =
3.3, and for the normalized momentum spread ¢ = 0.2,
The wavelength of signal amplified is then A, = 40 pm,
according to relation (2). Also, the optimum injection
condition 1} = /2 is assumed, which corresponds to the
maximum linear gain per pass, G = 0.5. When the signal
is rather small, i.e., the characteristic length / exceeds
optical undulator length L, the amplitude growth rate is a
monotonically increasing function of the coordinate z.
With an increase in amplitude, even the lowest space
modes in (23) begin oscillate, resultmg in a decrease in
the signal growth rate. In saturation, ot(z) exhibits fast
oscillations of sign and has rather low amplitude.

To determine the saturation intensity, one should
integrate (23). This procedure becomes very easy if we
assume that the parameters y, and ¢ are constant.
Really, one can estimate using the data in Fig. 2 that
maximum variations in a, do not exceed a few percent
in the regime close to saturation. Thus, one can write

0,(0)—a(x) = 2P2TE

2 2
a;lexp ———i—z—
mc kyy 4(1+0")

reope)

X H2n+ 1[ Yo )I:Sln (7\42,,)C/2) Sln (}\12,,+2X/2):|

N2(1 - 0'4) )\'211 )"Zn+2

Thus, we derived an analytical formula which
describes the distribution of signal amplitude within the
undulator in the strong-signal nonlinear FEL oscillation

5 —112

><(1+0) 24)




0

-0.05+ X

Fig. 3. The normalized signal amplitude, & = (a,(0) -
ay(x))/ ay(0) for different detunings yo = W(pg)l, (1) yo =1 and
(2) 0.75, as a function of the dimensionless coordinatex = z/1.
The pump intensity is [; = 10" W/cm? (A; = 1.06 pm); the
electron beam parameters are 1, = 102 cm3,y=33,0=02.

-3 -2

Fig. 4. The evolution of the electron beam normalized distri-
bution function /27 Gfy, y = W(p)l, in the undulator, for the
parameters ;= 10! Wiem? (A; = 1.06 um), I, =0.1 MW/cm?,
n,= 102 cm™3, and y = 3.3, 0 = 0.3; initial beam detuning
is W(p)L = m: (I) initial distribution, z = 0; (2) exit distribu-
tion,z=L=2cm.

regime. Examples of this distribution are shown in
Fig. 3 at two different values of initial beam detunings
from the exact resonance with the ponderomotive
wave. Beam and pump conditions are chosen the same
as those used in Fig. 2. There is a characteristic point in
Fig. 3 where A (0) — A (x) becomes equal to zero, x = 4.2,
We have found that this is a universal value which is
constant in a rather wide range of beam detunings and
energy spreads yg, ©. It is easy to understand that it is
the point that corresponds to saturation at given undu-
lator length L (or, on the other hand, it determines the
saturation length at given signal intensity),

21/472[3'
kJjaa,

L=42] =42 (25)

SMETANIN

Really, it is an equilibrium point: if the signal amplitude
slightly exceeds the value determined by this relation,
x > 4.2 at the undulator edge and, according to Fig. 3,
we have that the total per pass absorption exceeds
amplification of the signal wave, resulting in a decrease
in the signal amplitude, and, consequently, in the value
of x. In the opposite case x < 4.2, we have an amplifica-
tion of the signal and an increase in x, respectively.
Note, this point corresponds to the “absolute” satura-
tion regime: in reality, however, since every FEL oscilla-
tor has definite losses (the mirror reflectivity R < 100%,
for example) the saturation emerges at lesser signal
intensities, when the gain compensates the roundtrip
losses.

At the above conditions (Y = 3.3, I, = 10 W/cm?,
A; = 1.06 pm), assuming the undulator length L ~ 2 cm,
we find from (25) that the saturation intensity is [, =
3.3 x 10° W/cm?.

It is interesting to note that this value is close to the
estimate from the condition of complete beam trapping
by the ponderomotive wave [2]: saturation occurs when
the electron energy spread Ay* caused by lasing gives
the spread in detuning parameter of the order of line
bandwidth AUL/2 ~ T,

I, = gy B (NG, (26)
and, with the above parameters, we find that this value
is =2.5 x 10° W/cm?, if we use the above-estimated
value of small-signal gain per pass G =0.5.

It is easy to understand, just considering an elemen-
tary Compton scattering event, that as a result of lasing
in the down-conversion FEL beam electrons become
accelerated, instead of deceleration in conventional up-
conversion schemes: the energy of the absorbed pump
mode quantum #; is shared between the emitted 7,
quantum and the electron. Also, the electron beam
energy spread enhances. To describe these processes,
we integrate the first equation in the system (12) using
solution (20), (22) and find for the steady-state compo-
nent of the distribution function

4 o y2 yé
. p) = Fo(p) - —— Y

n-1

- 1(1—&)7{%1—&)
x —— -—
22";1! 1+6° 2\{+6°

n=0

Yo \ ( Yo ﬂ
XH,, || —=={-nH, || ——=
{Jul—oﬁ} lJml—c%

x[%”nﬂ%)“nfh_l(-}—z)}sﬁ_(;%zz_)_

1998

27)

LASER PHYSICS Vol. 8 No. |




DOWN-CONVERSION IR FEL: NONLINEAR THEORY 141

Note that the dimensionless detuning y depends on the
momentum of an electron as y = i = (kI/Y2)(p, — p)/p,,
where p, is the momentum, which corresponds to the
exact synchronism between an electron and the ponder-
omotive wave. The distribution functions at the entrance
(1) and at the exit (2) of the undulator are represented in
Fig. 4. Beam and pump parameters are chosen the same
as in above calculations, ¢ = 0.3; also, the optimum with
respect to linear gain condition, W(po)L = 7, is assumed.
In these calculations, the signal intensity is ~1/4 of satu-
ration intensity, i.e., I, = 8 x 10* W/cm?. One can see that
the characteristic energy spread, i.e., the characteristic
width of the distribution function, increases in ~3 times
due to lasing processes. The maximum point for the
exit distribution is y = —1, i.e., electrons become accel-
erated (Ay = —2) in the down-conversion FEL, and the
mean energy gain per electron is 8y/y ~ 2y*/kl ~ 0.3%.

In conclusion, we developed in this paper the
strong-signal nonlinear nonperturbative theory of the
down-conversion optical-undulator IR FEL. We

LASER PHYSICS Vol.8 No.1 1998

derived analytical formulas describing evolution of the
field amplitude and the electron beam distribution func-
tion inside the interaction region. The FEL saturation
intensity is determined.
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Abstract—We discuss results obtained at the Stanford Linear Accelerator Center in the interaction of 46.6 GeV
electrons crossing through the focus of a terawatt laser at A = 527 nm. Under those circumstances the field seen
in the electron rest frame approaches the critical field of QED. Multiphoton Compton scattering with the
absorption of as many as 4 photons from the laser field as well as e*e™ pair production in the collision of a high
energy Y with several laser photons were observed. This is the first evidence for strong QED interactions and
the data agree with the theoretical predictions. Furthermore this is the first observation of inelastic light-by-light

scattering involving only real photons.

Progress in laser technology has made possible the
creation of intense electromagnetic fields in the labora-
tory, which in turn has opened up the science of nonlin-
ear optics. However these fields are several orders of
magnitude weaker than the critical field of QED at
which vacuum polarization effects become important:
The critical field [1] was introduced sixty years ago and
is defined such that in one electron Compton wave-
length X, = #i/mc an electron gains energy equal to its
rest mass

2 3 .
E =T% =13x10"°V/cm (1)
eh

with m, e the mass and charge of the electron.

To reach the critical field we take advantage of the
high energy electron beam at the Final Focus Test Beam
(FFTB) [2} at the Stanford Linear Accelerator Center
(SLAC). The electrons have energy € = 46.6 GeV and
thus a Lorentz factor Y= 6/mc? = 9.1 X 10*. When these
electrons traverse the focus of the laser they see in their
rest frame an electric field

E* = 2yE, )
where E is the laboratory field. This is equivalent to an
increase of the laser intensity by a factor of ~10'°, We

used a Nd : glass laser system [3] operating at 0.5 Hz and
which delivered at the second harmonic (A = 527 nm) as

much as 1 J of energy in 1.6 ps, focussed to 25 mm?.
This corresponds to an intensity [ = 2.5 x 10'® W/cm?
and thus to an electric field (root mean square value) at
the focus

E.. = JZJ = 3x10"° V/cm, 3)

where Z, is the vacuum impedance. According to (2)
the field in the rest frame reaches E* = 5.6 X 101 V/cm,
nearly half the critical value. This is the first experiment
ever to have explored QED in this regime [4, 5].
To describe QED in the strong field region two
dimensionless invariants are introduced. The first is
2 W
2 e <A A )
n = i) 5 I, @)
m
where A, is the 4-vector potential of the incident field.
In a given reference frame 1 can be expressed in terms
of the rms electric field and the frequency of the wave
 as

n=_—-. &)

The parameter 1 is classical, since it does not contain #.
As ® — 0 approaches unity, multiphoton effects
become prominent in the interaction of electrons with
the field. Note that 1 diverges as @ — 0.
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2
The second invariant is formed as / ((F,,, p')y ) Imc

where F,, is the field tensor and p" the 4-momentum of
the incident electron. We then define

E* Ef
Y= = = 2yET, (6)

Ec mec¢

Y is a measure of the c.m. energy available in the colli-
sion (in units of the electron mass) multiplied by the
multiphoton parameter 1. When Y approaches unity
vacuum polarization effects become prominent and
spontaneous pair production takes place. This effect
has long been predicted and is referred to as the “spark-
ing” or “break-down” of the vacuum [6]. Note that Y is
independent of the frequency and thus can be defined
for a static field as well. The effect of the Lorentz boost
of the electric field is clearly apparent in the definition
of Y.

Here we report on the measurement of multiphoton
Compton scattering [4, 7]

e +nw— e+, @)

where n is the number of absorbed laser photons, and
on pair production in multiphoton light-by-light scat-
tering [5, 8]

Y+ nw — e*e. (8)

While reactions (7) and (8) are related by crossing sym-
metry, experimentally they are quite different: high
energy electrons are directly available in the incident
beam whereas the high energy Y’s needed for reaction
(8) to proceed are produced by Compton backscattering
as indicated by (7). These high energy y’s must inter-
act within the laser focus to produce the e*e” pair. Fur-
thermore while reaction (7) can proceed for any value
of n > 1, in this experiment, reaction (8) can only pro-
ceed for n = 4; this is because fi = 2.35 eV and the
maximum y-ray energy (for n = 1) is E, = 29 GeV. Pair
production by a virtual photon, i.e. the trident process

e +nw— el +ete, 9

has a much lower probability for occurring under the
conditions of our experiment than the two-step process
of (7) followed by (8).

We refer to reaction (7) as Compton scattering
because in the electron rest frame the laser photon
energy is of the same order as the electron mass and the
electron undergoes significant recoil. The geometry of
the experiment is shown in Fig. 1, where the laser beam
crosses the electron beam at an angle o = 17° and the
(back)scattered photon angle 6 is measured from the
electron direction.

We use units where # = ¢ = 1 and where appropriate,
make approximations due to the large value of Y= €/m
with € the electron energy. The kinematical variables
are defined as

pl»l, p'l»"
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Fig. 1. The scattering geometry.
nkH
kM
qu
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Fig. 2. Representation of nontinear Compton scattering: an
electron in a strong field (represented by the double line)
absorbs a number of photons and emits a high energy .

4-momentum of the electron before and after scatter-

ing. These take the values (€, 2), (€', p') in the labo-
ratory frame.

ke k®
4-momentum of a photon before scattering and of the

>
scattered photon. These take the values (o, k) and (@', Ii' )
in the laboratory frame.

The scattering process is expressed by

(10)

Here 7 is the number of absorbed photons. The effec- -
tive mass of the electron in the strong field is taken into
account by replacing p* by ¢* (and p* — ¢'*),

pt+nkt = pt+ k™

2
B p,o Mmoo
=p +-——k . 11
This is illustrated in the diagram of Fig. 2 where the
double lines indicate that the electron is not free but
interacting with the field and the incoming wavy lines
indicate the number of photons absorbed from the field.
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The laboratory energy of the scattered photon is
given by
o = 2ny’e(l + Bcosa))/(2y2(1 —Bcosh)
(12)

2nwy n2 } )
1 - .
+[ +1+Bcosoc [+ cos(0-a)]
Fory=1,B=0and n=1,7m%=0, (12) reduces to the
familiar Compton condition.

At high incident electron energies the backscattered
y-rays are emitted at angles of order (1/7) and therefore
we express the differential cross section as a function of
the y-ray energy. By introducing the invariants

2pk
X = -, =1- 7 (13)
m’ Y pk
which in the laboratory frame take the values
ngﬁzg(l + cosal), yzg, (14)
m E

the Klein—Nishina single photon cross section [9] can
be written in the invariant form

cig_znrg
do _ 20y
e , a9
1 4y 4y :'
1- - .
x| a-n+ 55 TS BT

where ry = e2/m = 2.82 X 10713 cm is the classical elec-
tron radius. Integration of (15) yields the total Compton

(1/N,) dN/dE, 1/GeV
107!

1072
n =1 plural
1073 scattering .

10
1073
A

107 ‘
10
107 I

] [
0 10 20 30 20 30
Electron energy, GeV

Fig. 3. Recoil electron rates for linear, nonlinear and plural
Compton scattering for incident green light (A = 527 nm)
and standard laser and electron beam parameters for this
experiment. The cross section from [11] for circularly polar-
ized light was used in the simulation. The solid line is the
sum of all possible processes. Then =2, n=3,andn =4
processes are shown separately as well.

cross section as a function of collision (cm) energy

2 2
(16)
x[(l——z—l—%)ln(1+x)+-1-+§—;2].
X x 2 % 2(1+x)

The transition probability for reactions (7) and (8)
has been calculated in [10, 11]. The incident wave is
treated classically and the modified electron wavefunc-
tions are used to obtain the Born amplitude for the
emission (or absorption) of the high energy y-ray. For
circularly polarized incident photons the results can be
expressed as a cross section in closed form

oo

do _ ~do, ~2mrf 4
21'3; = Z dy - 2 U _ann(Z)

n=1 n=1
a7
u’ 2 2 2
+(2+_)[Jn—l(z)+Jn+1(z)_2‘,n(z)]},
1+u
where the following notation has been introduced
_ kK& _ 2kq _
u = ]—E—q—' u = ;7 u, = nu,
and
z = 20Ju(u,— )1/ (140" ()

J.(2) are ordinary Bessel functions of order n. As
N2 — 0 only the n = 1 term contributes and (17)
reduces to the Klein—Nishina cross section (15). To
obtain results that can be compared with experiment it
is essential to account for the variation of 12 throughout
the region of the laser focus either by numerical inte-
gration or by a Monte Carlo technique. Therefore the
theoretical predictions of (17) are compared with our
experimental results in terms of the rate of scatters
rather than cross section.

The laboratory energy of the scattered electron can
be found from (12) and has its minimal value when the
laser photon backscatters. This gives rise to a kinematic
edge which depends on the number of absorbed pho-
tons and the effective mass of the electron

__ €
1+nx/(1+70%)

For green laser light (A = 527 nm) and 46.6 GeV elec-
trons the kinematic edges are given below (for n? = 0)
n=1 %,>17.6GeV,
n=2 %,>10.8 GeV,
n=3 €,>7.8GeV,
n=4 ¢€,>6.1 GeV.

By observing electrons with momenta beyond
(lower than) the n-photon kinematic edge one identifies
events corresponding to the absorption of at least n + 1
photons. Since the cross section for absorption of n

Cgedge(”a n =
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Fig. 4. Schematic layout of the experiment.

photons varies as 1" and in this experiment 1| ~ 0.3 the
different multiphoton orders can be distinguished. This
is shown in Fig. 3 which gives the expected electron
yield as a function of scattered electron momentum for
the conditions of this experiment for 1 = 0.25 [laser
wavelength 527 nm, laser energy 400 ml, effective
focal area 30 pm? and pulsewidth (FWHM) 2 ps].

There is one complication in this argument in that an
electron can appear below the nth kinematic edge if it
undergoes n + 1 separate scatterings in the laser focus.
We refer to this process as “plural scattering” and it has
exactly the same kinematics as the multiphoton process
of the same order. The simulation indicates that for our

experimental configuration the rate of plural scattering
is 3—-10 times lower than for the corresponding mul-
tiphoton process. This problem does not arise when for-
ward y-rays are observed with energy exceeding the
corresponding kinematic edge.

A schematic layout of the experiment is shown in
Fig. 4. The laser beam was focused onto the electron
beam by an off-axis parabolic mirror of 30 cm focal
length with a 17° crossing angle at the interaction point,
IP1, 10 m downstream of the FFTB Final Focus.

The laser was a 1.5 ps, 527 nm, 500 mJ chirped-
pulse-amplified Nd : glass terawatt system with a rela-
tively high repetition rate of 0.5 Hz achieved by a final
laser amplifier with slab geometry [3]. The laser-oscil-
lator mode locker was synchronized to the 476 MHz
drive of the SLAC linac klystrons with an observed jit-
ter between the laser and linac pulses of 2 ps (rms) [12].
The spatial and temporal overlap of the electron and
laser beams was optimized by observing the Compton
scattering rate in the electron calorimeter (ECAL)
detector during horizontal, vertical, and time scans of
one beam across the other.

The electron beam parameters were varied during
the course of the experiments. Typically the beam was
operated at 10-30 Hz with an energy of 46.6 GeV and
emittances €, = 3 x 10" m-rad and €, =3 x 10~ m-rad.
The beam was tuned to a focus with G, = 25 pm and
o, = 35 pum at the laser—electron interaction point.

The electron bunch length was expanded to 7 ps (rms)

Eca} rate Data vs. MC rows 1 of Ecal (corrected), Ecal scans
10~
. 1n0.14-0.16 10.16-0.18
107 o® °*
5 o*° 00030
107 ¢*°*° gaS
.9’“i ®
107° A J
o *
107 gﬁ" @O
10—8 L 1 ! L 1 t I L
107
1n0.18-0.20 1n0.20-0.22
107 ®
88 o? o’
107 66,5%999 oo
o8
8
6 (]
10 : f‘;
107 fﬁ 3
10—8 I L L L i I ) 1
4 6 8 10 124 6 8 10 12

e—~Momentum, GeV

Fig. 5. The scattered electron rate normalized to the total Compton rate (I/NY)(dN/dE) is plotted as a function of electron momen-
tum, for 46.6 GeV incident electrons and A = 527 nm. The solid dots are the data and the open circles are the prediction of the sim-
ulation. Data are shown for eight different laser intensities.
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to minimize the effect of the time jitter between the
laser and electron pulses. Typical bunches contained
7 x 10° electrons. However, since the electron beam was
significantly larger than the laser focal area only a small

1/Ny x dN/de, 1/GeV

T 1T

20.5 GeV
18.0GeV 4
a A

1074

T TTTTHIT

105

1079

n=73
16.5 GeV

111 1 L 1]

10]6

T FTEIm T TTTTmr

n=4
12.5 GeV

I I I I i 1

1017
Laser intensity, W/cm?

1077

LLLL

Fig. 7. The scattered electron rate normalized to the total
Compton rate (1/N7)(dN/a'E) plotted as a function of laser
intensity at fixed electron momentum. The incident electron
energy was 46.6 GeV and the laser wavelength A = 1054 nm
(IR). The solid and open circles are data for two photon
absorption; the triangles are for the n = 3 process and the
open squares for the n = 4. The simulation for each process
is shown as bands representing the 30% uncertainty in the
laser energy and the 10% uncertainty in the measurement of
the gamma flux. The slope of the bands is characteristic of
the order of the nonlinear process.
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Fig. 6. As in Fig. 5 but for higher laser intensities.

fraction of the electrons crossed through the peak field
region.

A string of permanent magnets after the collision point
deflected the electron beam downwards by 20 mrad.
Electrons and positrons of momenta less than 20 GeV
were deflected by the magnets into two Si-W calorime-
ters (ECAL and PCAL) as shown in Fig. 4. The calo-
rimeters measured electromagnetic shower energies

with resolution 6/E = 25%//E[GeV] and deter-
mined the position of isolated showers with resolution
of 2 mm,

Momentum spectra of the scattered electrons are
shown in Figs. 5 and 6 for incident linearly polarized
green light at different laser intensities. To reduce the
uncertainties in the overlap in space and time between
the electron beam and the laser pulse the data are nor-
malized by the total flux of forward y’s. The forward y’s
are due mainly to n = 1 scattering and were measured
by a Cerenkov monitor. Typically there were 107 high
energy Y's per pulse. The solid circles are the data and
the open circles the simulation, showing good agree-
ment over several decades. The data shown begin
beyond the n = 2 kinematic edge and span the n = 3 and
n = 4 region.

A systematic study of Compton scattering was car-
ried out for both IR and Green and the results are sum-
marized in Figs. 7 and 8 where the normalized electron
yield is shown at fixed momentum as a function of laser
intensity for the two incident wavelengths. The data
exhibit the exponential dependence on laser intensity
No. 1 1998
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Fig. 8. As in Fig. 7 but for laser wavelength A = 527 nm
(green). Data are shown for two and three photon absorp-
tion.

(1/N)(dN/dE) o I~ D expected for nonlinear pro-
cesses. The shaded area represents the results of the
simulation when the uncertainty in the laser intensity is
taken into account. While the agreement is reasonable
for n =2, the n =3 and n = 4 data have larger errors and
show more scatter as well as deviating from the simu-
lation. This is due to the difficulty in measuring these
low rates in the presence of the background created
from the high rate of recoil electrons due to lower n
Compton scattering.

To measure the spectrum of the forward y’s a thin
converter was placed in the 0° line and the electrons and
positrons were momentum analyzed by a spectrometer
with CCD read out planes as shown in Fig. 10. In view
of the high rate no attempt was made to reconstruct the
¥'s but the electron or positron spectrum reflect the
spectrum of the parent y’s. Preliminary results are
shown in Fig. 11, and are well matched by the simula-
tion. The n = 1 kinematic edge can be seen, as well as
events arising from n = 2 scattering.

We now turn to positron production. As already men-
tioned, a high energy y produced by backscattering (7),
rescatters within the laser focus to produce the pair (8).
Thus the minimum number of photons absorbed from
the field in order to produce a pair is n = 5 and this sup-
presses the event rate. At the same time positrons pro-
duced by the electron beam scraping upstream of the
interaction region contribute in the background.

This background is reduced by careful tuning of the
electron beam. The positron spectrum is symmetric
around E,/2 ~ 14 GeV and extends by +10 GeV on
either side. The accompanying electron could not be
identified because of the much larger number of Comp-
ton electrons scattered into the same momentum range.

Positrons were detected in the positron calorimeter
(PCAL) and identified by comparing the momentum
deduced from the impact point to the energy recorded
by the calorimeter. The response of the PCAL to
positrons originating at the interaction point was stud-
ied by inserting a wire into the electron beam at the
Vol. 8 1998
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Fig. 9. Layout of CCD spectrometer for measuring forward ys.
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Fig. 10. Momentum spectrum of converted electrons from
the forward Y’s as measured by the CCD spectrometer.

location of the laser focus to produce e*e™ pairs. These
data were used to develop an algorithm to group contig-
uous PCAL cells containing energy deposits into “clus-
ters” representing positron candidates. The clusters
were characterized by their position in the horizontal
(Xp0s) and vertical (¥p) direction and by the total
energy deposited E,. The vertical position gives the
momentum P, and in Figs. 11a and 11b we show the
ratio Eq,/ Py, VS. Ypos and Xpoo vs. Yoo Only clusters
within the signal regions bounded by the solid lines
were accepted.

To measure the background rate data were taken
when the laser was off. Figure 12a shows the observed
yield for laser-on positrons and laser-off positrons
(shaded area) as a function of momentum. The laser-off
rates have been normalized to the same number of trig-
gers as the laser-on events. In Fig. 12b the subtracted
momentum spectrum is shown and compared with the
expected distribution. A total of 106 £ 14 positrons were
found after all cuts were imposed. The signal-to-noise
ratio increases and the comparison with the theoretical
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spectrum improves, when only data corresponding to
high laser intensity are selected as in Figs. 12c and 12d.

Because of the highly nonlinear nature of this pro-
cess, fluctuations in the laser intensity have a dramatic
effect on the e*e rate. Deducing the laser intensity for
each shot from measurements of the laser energy, pulse
width and focal spot area is not sufficiently precise.

Ratio E /Py Cluster Yy, mm
2r <. ,

{ i
Zio 010
Cluster X5, mm

0 50 100
Cluster Yo, mm

Fig. 11. Cluster densities from positrons produced by a wire
inserted at IP1. The solid line shows the signal region for
positron candidates. (a) Ratio of cluster energy to momen-
tum vs. vertical impact position above the lower edge of
PCAL. The low ratios at the center of PCAL are caused by
a 1.5-mm-wide inactive gap. (b) Cluster position in PCAL.
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Fig. 12. (a) Number of positron candidates vs. momentum
for laser-on pulses and for laser-off pulses scaled to the
number of laser-on pulses. (b) Spectrum of signal positrons
obtained by subtracting the laser-off from the laser-on dis-
tribution. The curve shows the expected momentum spec-
trum from the model calculation. (c¢) and (d) are the same as
(a) and (b) but for higher laser intensity ( >0.216).

Instead we used two fixed monitors which measured
n =2 and n = 3 recoil electrons. For 1| <€ 1 these rates
are related to the n = 1 rate through

Ny=kNm?* N;=kNm?,

with k,, k; fixed constants which can be determined from
the simulation of the experiment. Thus the ratio of any
two of the three rates N;, N,, N; determines the laser
intensity 1%. We used all three rates in a self-consistent
way resulting in an 11% error in the determination of 1.

In Fig. 13 we show the yield (R .) of positrons/laser

shot as a function of 1. The line is a power law fit and
gives R, o n? with n = 5.1 £ 0.2 (stat) = 0.5 (syst).

Namely the positron production rate varies as the fifth
power of the laser intensity as expected for multiphoton
reactions involving five photons (for n? < 1). The
detailed simulation shows that on the average six pho-
tons are absorbed from the laser field but that the expo-
nent n for the two-step process varies only slightly with
1 and has a mean value # = 5.3 in our range of 1. The
two points at the lowest values of 1 while statistically
consistent with the fit, indicate the presence of back-
ground at the level of 2 x 1073 positrons/laser shot.

The two-step process of reaction (7) followed by
reaction (8) can be calculated exactly [11]. For reaction
(9) there exists no complete theoretical calculation and
we have used instead Weiszéicker—Williams approxi-
mation for the virtual photon flux of the incident elec-
tron and then treated it as real photons scattering
according to (8). The results are shown in Fig. 14 where
we plot the positron yield normalized by the total num-
ber of forward Comptons. This procedure reduces sig-
nificantly the uncertainties due to fluctuations in the
spatial and temporal overlap of the electron and laser
beams. The results of the simulation for the two-step
process corrected for reconstruction efficiency (0.93)

No of positions/no of Compton scatters

- Data 1
10°8L ... Breit-Wheeler —+

F —-— Trident 4
107k
1010, 2

g R4

C . 7/

11 | ‘ 1 L Z

106.09 0.10 0.20 0.30

1 at laser focus

Fig. 13. Dependence of the positron rate per laser shot on
the laser field-strength parameter n}. The line shows a power
law fit to the data. The shaded distribution is the 95% confi-
dence limit on the residual background from showers of lost
beam particles after subtracting the laser-off positron rate.
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Fig. 14. Dependence of the positron rate on the laser field-
strength parameters 1} when the rate is normalized to the
number of Compton scatters inferred from the EC37 moni-
tor. The solid line is the prediction based on the numerical
integration of the two-step Breit—-Wheeler process, (4) fol-
lowed by (2). The dashed line represents the simulation for
the one-step trident process (3).

and overlap correction (0.88) are shown by the solid
line. The agreement with the data both in slope and
absolute value is remarkably good. The dashed line rep-
resents the contribution from the direct (trident) pro-
cess calculated as discussed above. It’s contribution is
negligible as compared to the two-step process.

It is also interesting to consider the pair production
process classically as occurring from the spontaneous
breakdown of the vacuum rather than from photon-pho-
ton scattering. In this case we can treat the incident field
as static since the wavelength as seen in the electron rest
frame is longer than the electron Compton wavelength

1A 107 em = 2.5x,,

Y2r®
with the Compton wavelength representing the range in
which the e*e™ pair is produced. For a static field the
rate of pair production can be calculated as a tunneling
process [1, 6] with the result

-n/T
R._cce .
e e

(20

This expression is compared to the data in Fig. 15
where the positron rate/shot is fitted to an exponential
of the form exp(—0./Y). Using the rms electric field in
the definition of (6) one finds o.=2.34 £ 0.13 0.4 with
x% = 1.1/DF. However since the incident field was lin-
early polarized, using the peak value of the field would
give an exponent O, = 3.3 close to the prediction of
the classical calculation for a static field. The simula-
tion indicates that as Y approaches unity (20) ceases to
be valid for a time-dependent field.

The results reported are the first observation of QED
in strong fields. They are found to be in agreement with
the theoretical prediction. They also represent the first
observation of inelastic light-by-light scattering involv-
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Fig. 15. Number of positrons per laser shot as a function of
1/Y. The solid line is a fit to the data of the form R , _ o
e e

exp(-0/Y) and yields a0 =2.3.4 £ 0.13 + 0.4.

ing only real photons, and can be interpreted as a dem-
onstration of the breakdown of the vacuum by a strong
electromagnetic field. The interesting issue of the effec-
tive mass of the produced pairs could not be addressed
in this experiment,

ACKNOWLEDGMENTS

We thank the SLAC staff for its extensive support of
this experiment. The laser system could not have been
completed without support from members of the Labo-
ratory for Laser Energetics at the U. of Rochester. T. Bla-
lock was instrumental in the construction of the laser sys-
tem and its installation at SLAC. We also thank U. Haug,
A. Kuzmich, and D. Strozzi for participation in recent
data collection, and A. Odian and P. Chen for many use-
ful conversations.

REFERENCES
1. Heisenberg, W. and Euler, H., 1936, Zeits. f. Phys., 98,

718; see also Sauter, F., 1931, Zeits. f. Phys., 69, 742.

Balakin, V. et al., 1995, Phys. Rev. Lett., 14, 2479.

Bamber, C. et al., 1997, Laser Phys., 7, 135.

Bula, C. et al., 1996, Phys. Rev. Lett., 76, 3116.

Burke, D.L. et al., 1997, Phys. Rev. Lett. (in press).

Greiner, W. and Reinhardt, ., 1992, Quantum Electrody-
namics (Berlin: Springer), p. 285.

7. Kotseroglou, Th., 1996, Ph.D. Thesis (Univ. Rochester),
UR-1459.

8. Electron-positron production in photon—photon scatter-
ing was first calculated by Breit, G. and Wheeler, J.A.,
1934, Phys. Rev., 46, 1087.

9. Klein, O. and Nishina, Y., 1929, Zeits. f. Phys., 52, 853.

10. Nikishov, A.L and Ritus, V.I., 1964, Sov. Phys. JETP, 19,
529, 1191; 1965, 20, 757; see also Reiss, H.R., 1962,
J. Math. Phys., 3, 59.

11. Narozhny, N.B. et al., 1965, Sov. Phys. JETP, 20, 622.
12. Kotseroglou, Th. et al., 1996, Nucl. Instrum. Methods
Phys. Res., Sect. A, 383, 309.

AU ol



Laser Physics, Vol. 8, No. 1, 1998, pp. 150-158.
Original Text Copyright © 1998 by Astro, Ltd.

STRONG FIELD
PHENOMENA

Copyright © 1998 by MAHUK Hayxa/Interperiodica Publishing (Russia).

Laser-Modified Electron Velocity Distributions and Harmonic

Generation in a Homogeneous Plasma

G. Ferrante, P. I. Porshnev*, S. A. Uryupin**, and M. Zarcone

Istituto Nazionale di Fisica della Materia and Dipartimento di Energetica ed Applicazioni di Fisica, Viale delle Scienze,

Palermo, 90128 Italy
* Physics Department, Byelorussia State University, F. Skorina av. 4, Minsk, 220050 Byelorussia
** P. N. Lebedev Physical Institute, Leninsky pr. 53, Moscow, 117924 Russia
Received October 20, 1997

Abstract—The kinetic equation of the electron velocity distribution function (EDF) of a dense, fully ionized,
two component plasma interacting with a strong, linearly polarized, high frequency laser field is solved by a
two-dimensional (2D) procedure in a wide range of the problem parameters. The time evolution of an initially
isotropic EDF is investigated in a time interval of hundreds of the external field cycles. For fields of intermediate
strength, a plasma dominated by electron-ion collisions acquires an oblate EDF (i.e., elongated along the exter-
nal field polarization), which slowly evolves towards an isotropic shape. For stronger fields, instead, the plasma
acquires a prolate EDF (i.e., elongated along the poles, perpendicular to the external field polarization), which
is found to evolve to an oblate shape before tending towards isotropization. In the case of very strong fields, full
isotropization for the considered dense plasma model is expected to require thousands of fields cycles. For the
same dense plasma model, high order harmonic generation is investigated within the same kinetic equation,
basing on nonlinear field dependence of the high-frequency conductivity. To the aim of developing an analytical
theory of harmonic generation, the kinetic equation is solved within the small-anisotropy approximation. The
cases are considered when the plasma, embedded in the field, possesses an anisotropic, two-temperature EDF
(a bi-Maxwellian), and when possesses a Maxwellian EDF, formed by the dominant role of the electron-elec-
tron collisions. Different harmonic spectra are reported, showing an interesting interplay among efficiency of

generation, symmetry of the EDF, heating process and external field polarization direction.

1. INTRODUCTION

In this Report we address two related aspects of strong-
field laser—plasma interaction; namely (1) the question of
how the electron velocities are modified in a plasma
interacting with a strong laser field, and (2) that of the
basic characteristics of high-order harmonics generated
in such a plasma, due to the nonlinear field-dependence
of the high-frequency conductivity.

Concerning the first question, it is expected that a
plasma interacting with a strong laser field will exhibit
an electron velocity distribution function (EDF) gener-
ally differing from a Maxwellian. In fact, depending on
the duration of the interaction, laser polarization,
importance of the different types of collisions and
mechanisms of interaction, etc. the electron parallel
and perpendicular (with respect to the field polariza-
tion) degrees of freedom may be heated by the field on
the average in a different way. As a result, the plasma
electrons may exhibit on the average higher velocities
in a given direction than in others. With reference to the
velocity space, the corresponding EDF during the inter-
action will be no more isotropic (as the Maxwellian is),
but will exhibit some kind of anisotropy. Further,
depending on electron—laser interaction duration and
on different collisions responsible for relaxation, an
anisotropic EDF is generally expected to relax more or
less slowly towards a Maxwellian or some other isotro-
pic distribution. Considering that during the laser

plasma interaction, the plasma electron velocities may
be substantially altered, it is evident that many plasma
processes and characteristics too may result altered.
Due to its basic relevance, the question of the EDF
shape in a strong laser field has been addressed by sev-
eral authors both theoretically [1-13] and experimen-
tally [14-18]. Further, interesting plasma physics
aspects of the kind considered here are currently inves-
tigated within the context of tunnel ionization of gases
[19-21].

Below we report new results on the evolution of the
EDF of a fully ionized, classical plasma, interacting
with a linearly polarized intense laser field.

Concerning the harmonic generation we investigate
some aspects of this nonlinear process in a dense fully
ionized plasma, and relate the characteristics of the har-
monic spectra to the EDF shapes and to the different
stages of their time evolution.

2. PLASMA MODEL AND PROCESS
PARAMETERS

The calculations and results reported below are
obtained within a “standard” dense plasma model. In
fact, we use the model of a two-component, nonrelativ-
istic, fully ionized homogeneous classical plasma,
where electron—-ion (e-i) and electron—electron (e—€)
collisions control the shape of the EDF. When the
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unbalanced ion charge Z is large, the e—e collisions
may be neglected. As a condition to neglect e—e colli-
sion, we use

@- o

vr Z

with v = eE;/mw the amplitude of the quiver electron

velocity and vy= /T,/m the thermal electron velocity.
No plasma instability is taken into consideration. The
most pertinent to the present calculation is the Weibel
instability [22], which is briefly discussed below, after
presentation of the numerical results.

A key physical parameter in our calculation is the
ratio

_ _VE
R(1) = —r (2)

with v and vy defined above. In (2), we explicitly
express the fact that due to laser heating through colli-
sions, the thermal velocity evolves with time, and with
it the ratio R(f) too. Because of it, we introduce also the
initial thermal velocity v{(0) and the initial ratio

_ _VE :
R(0) = 5. (3)

Significant alteration (anisotropy) in the EDF shape
is expected when R, is appreciably larger than one.

An other important parameter is the ratio

= Yv)
§ =5 “

with v(v) the electron—ion collision frequency given
below and o the laser frequency. Below we will con-
sider only cases when & < 1; in other words we are con-
sidering a high-frequency external field and/or a
weakly collisional plasma.

3. SHAPES OF THE ELECTRON VELOCITY
DISTRIBUTION FUNCTION
AND THEIR EVOLUTION

Here we report a specific contribution to the analysis
of the EDF behavior and evolution without the limita-
tion of the small-anisotropy assumption. The emphasis
is on the changes of the EDF shape with time. We
address the case of a uniform fully ionized plasma with
a value of the ion charge Z that allows us to disregard
e—e collisions. As a distinctive feature of our calcula-
- tions is the purpose of accounting for an arbitrary
degree of anisotropy in the shape of the EDF, we solve
a two dimensional (2D) partial differential equation. It
is done using a modified version of the alternating
direct method. The evolution of the EDF in a uniform,
No. 1 1998
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fully ionized plasma dominated by Coulomb collisions
is described by the equation [23]

Jd e d _
{37+;1ELCOS(O)”8—V}f(V’ ) =1,+1,, %)
where
_ 9 of (v, 1)
Iei - anDjl(v’ t) aV[ ’ (6)
Dyu, 1) = vV 8y-viwds (D
and
1, = I —a-jdvv (lv—v'l)[(v—v')28~
ee 2Nean ee\i jl

, ) 3 ®
—(v;— Vj)(Vl— Vl)][a—vl— a—v,jlf(V, N, e,
!

where v; is the jth component of the electron velocity,
V(v) = 4rZe*N,InA/(m*v?), the electron—ion collision
frequency V,, = V(v)/Z the electron—electron collision
frequency, N, the electron density, and InA is the Cou-
lomb logarithm which in the present work is taken in
the modified form suggested by Silin [23] suited to deal
with interactions between plasmas and fast oscillating
fields. 8; is the Kronecker delta symbol. The laser field
is assumed to be monochromatic and linearly polarized
along the z direction with the cosine form [see (5)]. In
some cases from (5), using the spherical harmonic
expansion and averaging over the field period, a well-
known equation for the isotropic part of the EDF is
obtained. Here, intending to study the plasma proper-
ties without any assumption about the angular depen-
dence of the distribution function, we must solve (5)
directly. We cannot average over the field period since
we do not know in advance the “fast” time dependence
of the distribution function. It is only under the small-
anisotropy assumption that the anisotropic part of the
EDF oscillates together with the field, thus allowing the
isotropic part to be averaged over the period and the
“slow” time dependence extracted. This simplified pro-
cedure will be used below, when treating harmonic gen-
eration. In the case under consideration here, averaging
over the field period is possible only after solving (5).
As suggested by the symmetry of the problem, the nat-
ural coordinate system for our case is cylindrical.
Moreover, in view of the numerical modeling to be
developed below, it is convenient to define the follow-
ing equation to remove the velocity gradient of the dis-
tribution function:

U = V+ Vgsinof, 9)

where v and u are, respectively, the electron velocity in
the rest frame, and in a reference frame oscillating with
the same frequency as the external field. Assuming that
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Fig. 1. Schematic representation of the shapes the EDF
exhibits in the oscillating frame as a result of the interaction
with a strong laser field. The quantity a(z) is defined in (11).

the condition (1) is fulfilled and neglecting e—e colli-
sions, in the coordinates (u, , u,), with u, and u being,
respectively, the velocity component parallel and per-
pendicular to the direction of the external field polariza-
tion, equation (5) becomes

Su,u, ( ¢ a(p)
——5 u — ——
3

¢ _ 4d 20
tatl auz

ulﬁ ) aTJ‘ 2 2
(uJ. + u, )
(10)

+

U =—-us—
u ot “3u,

3| dul ( 90 a<p)
2 ’
Lt +uy’

where ©(u, 7) = fu + vsint, 1), ¥ = . Equation (10) has been
made dimensionless: the velocity components are taken in
unit of v,, time in unit of @™, besides u, = u, + sin.

The results of numerical modeling will be given
through the values of the quantity

an

20 [a0ow, nd’u

= 3 , (x=2z1).
j<p(u, Nd u

(12)

a(r)
1.2
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Fig. 2, Evolution of the quantity a(f), formula (11), vs. the
number of field periods for different initial value of the ratio
Ry = vg/ v{(0), with v and vy being, respectively, the peak
quiver velocity and the thermal velocity. a(¢) is a measure of
the anisotropy (in the velocity space) of the electron velocity
distribution function (EDF); a(¢) = 1 corresponds to an iso-
tropic EDF; a() > 1, to an oblate EDF, i.e., elongated in
direction of the electric field polarization; a(f) < 1, to a pro-
late EDF, i.e., elongated perpendicularly to the electric field
polarization. To the curves /-5 correspond, respectively, the
values Ry = 3.2, 4.1, 5.0, 7.4 and 10.3. For brevity we omit
the single values of all the process parameters entering to
form vg, v7{(0) and 8, (4). In all the cases considered, their
choice obey the limitations under which the kinetic equation
is solved.

The quantity a(z) is a direct measure of the degree of
anisotropy exhibited by the plasma EDF. If the EDF is
isotropic (in the velocity space) and, accordingly, on
the average the absolute values of the velocities in all

direction are equal, we have that 2&3 () = ﬁi (t) and

a(?) = 1. If the EDF is prolate, i.e., elongated in the direc-
tion perpendicular to the laser electric field polarization

we have that 2&3 < i_ti (9). Thus values a(f) < 1 are a

measure of anisotropy of the EDF having prolate shape.
Conversely, values a(f) > 1 are a measure of anisotropy
of oblate shape, i.e., the EDF is elongated in the direc-
tion parallel to the laser electric field polarization (see
also Fig. 1).

Of course, there are other equivalent ways to mea-
sure the EDF’s anisotropy (see below). The particular
choice of a(r) as a measuring quantity stems from the
circumstance that a(f) results in a natural way in a
recently proposed procedure aimed at obtaining
approximate analytical EDF in the case of relatively
strong anisotropy [8].
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Selected calculations of a(f) as function of the num-
ber of field periods are reported in Fig. 2, for different
initial values R, of the ratio R(f), equation (2).

As a rule, below the results are presented for chosen
initial values of particular characteristic parameters of
the process, like, for instance, the ratio R and 8. These
parameters, in their turn are defined through several
plasma and external field parameters, which may be
numerically combined in many ways to give a desired
value of R and §. In presenting the numerical results,
only the dependency on the most significant and cumu-
lative parameter will be given, omitting to list the val-
ues of the lumped parameters. In the largest part of the
calculations however, the glasma density is N, = 8 X
102 cm3, § is equal to 10~} X 1074, the laser frequency
o=182x105s"

Figure 2 shows that for R, up to values slightly
larger than 4, an initially isotropic EDF [a(z = 0) = 1]
first rapidly (in few tens of periods) evolves towards an
oblate shape, and then slowly relaxes to a smaller
degree of anisotropy, but still keeping the oblate shape.
The larger the initial value Ry, the longer times are
required to pass through the stages of deformation and
relaxation. For initial values R, appreciably larger than
4, a(¢) exhibit a completely different behavior: now, an
initially isotropic EDF, first, rapidly evolves towards a
prolate shape; then, under the action of laser heating
and collisions, changes to an oblate shape; finally,
reaches the maximum degree of deformation in the lat-
ter shape, entering a stage of slow relaxation toward a
less oblate shape. Again, the larger the initial value Ry,
the longer time intervals are required to pass through
the different stages of evolution. Here we must note that
2D calculations are computer time consuming, and our
calculations follow the evolution of the EDF only up to
about 150 periods. Accordingly, in some of the reported
cases our calculations do not allow us to follow exhaus-
tively all the stages of evolution. However, we believe
that the overall physical picture, as it comes out from
the reported results is sufficient clear and self-explana-
tory. On the other hand, our results may well be consid-
ered representative of the electron plasma behavior
when interacting with very short laser pulses.

We observe also that while the different curves
when a(f) is greater than 1 (oblate shape) do not exceed
the value of a = 1.17, the curves of the prolate shape do
not show to be limited from below. It is a clear indica-
tion that the longitudinal and parallel effective collision
frequency undergo, under the action of the external
field, different changes, depending on the field inten-
sity. The same holds true for the heating of the longitu-
dinal and parallel degrees of freedom. We now discuss
briefly the Weibel instability in relation to our calcula-
tion.

From the theory of plasma instabilities is known that
in all cases when the mean kinetic energy in some
direction exceeds the energy in a perpendicular direc-
tion, an aperiodic electromagnetic instability is able to
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develop, which is just the Weibel instability [22]. In
principle, it applies to our case too, where we have a
laser forming an evolving anisotropic velocity distribu-
tion. However, it is not immediate to answer the ques-
tion to which extent the Weibel instability may interfere
and alter the picture given here concerning the EDF
shape evolution. The existing plasma instability analy-
sis deal, as a rule, with rather different physical situa-
tions (counterstreaming beams, inhomogeneous plas-
mas, collisionless plasma, very strong anisotropies,
very long times of interaction and so on), and are of no
particular use to our case, which, instead would require
a separate, detailed investigation. However, consider-
ing that in our case the collisions are rather a efficient
relaxation mechanism; that the plasma is dense and the
times of evolution small; that the Weibel instability ulti-
mately must act to reduce the anisotropy as do the col-
lisions; and that the EDF degree of anisotropy in our
case is never very high, we expect that this instability,
if present, does not play any significant role in the
reported relaxation picture of the EDF, and on this basis
is here ignored. By the way, the Weibel instability in the
context of powerful laser—plasma interaction is consid-
ered by one of the present authors in a separate Report
presented in this Conference [24]. Besides, in the dif-
ferent context of plasmas produced by tunneling ion-
ization, the role of the Weibel instability has been con-
sidered recently in [19] and found to be important for
EDF isotropization (a much less dense plasma without
collisions, however, and much longer ‘observation’
times wetre considered).

4. HARMONIC GENERATION

Now we address the high harmonics generation in a
plasma acted upon by an intense laser field. The plasma
model is the same of that outlined in Section 2. For use-
ful summaries and discussions of the several issues
characteristic of the physics of harmonic generation see
[25-31].

A dense plasma as a nonlinear medium where to
observe high order harmonic generation has been consid-
ered in the early eighties [32, 33] and recently [34, 35].

Among the different physical mechanisms able to
lead to harmonic generation in a dense plasma, a well-
known one is the nonlinear field-dependence of the
high-frequency conductivity in a strong e.m. field.

Silin first seems to have addressed the item of har-
monic generation considering the just quoted mecha-
nism [36]. Under the condition R > 1, and assuming the
initial EDF to be a Maxwellian, Silin predicted effec-
tive odd-harmonics generation with linearly polarized
fields. Very recently, this same physical process has
been revisited by the present authors [37], basing on the
consideration that there is now a lot of evidence, both
theoretical [1-13, 19, 20] and experimental [14-19],
that in a plasma embedded in a strong laser field, the
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EDF may significantly differs from a Maxwellian (as
shown, by the way, in Section 3).

Below we report on the harmonic generation in a
dense plasma taking into account plasma electron heat-
ing due to inverse bremsstrahlung absorption of an
intense high-frequency electromagnetic wave, using
the information of the numerical modelling on the EDF
shapes of the previous section. However, instead of car-
rying out a further numerical modelling of the har-
monic generation process, we take advantage of the
information of the previous section and of analytical
results obtained previously by one of the present
authors [4], to develop an almost completely analytical
theory, up to simple formulas which well approximate
the harmonic spectrum. In particular, below, we con-
sider two cases, which exploit two different physical
situations: (A) the case, when the nonstationary EDF
acquires a prolate shape, i.e., elongated perpendicular
to the laser electric-field direction. Analytical deriva-
tions [4] show that such a prolate shape is bi-Max-
wellian (anisotropic, two-temperature) in the first
stages of the laser-plasma interaction. Furthermore,
results of numerical modelling, not reported here [38],
show that in the later stages of its evolution, a prolate
EDF is still well approximated by a bi-Maxwellian.
Accordingly, for this case, we calculate harmonic spec-
tra using a bi-Maxwellian EDF. (B) the case, when due
to the high intensity of the laser field the e—i collisions
are considerably weakened, while the e—e ones remain
unaffected by the field. When the e—e collisions
becomes dominant, their randomizing effect yields a
Maxwellian. Below, we calculate harmonic spectra for
this case too. In both cases, R, > 1.

The starting point is the expression yielding the
electron current density j:

d. o, J

54 = Z-LEELcosmH ejduu—;ﬂ)(u, 1,
defined by the EDF function ¢(u, f), solution of the
kinetic equation (10), with the e—e collision term
accounted for. In (13) w,, is the Langmuir frequency of
the electrons and the physical quantities appearing in
(10) and (13) have their usual dimensions and units.
Similarly to the previous section, we assume that the
frequency ® is much larger than the effective electron
collision frequency, but the kinetic equation is now
solved following the procedure suited for small
anisotropy. The distribution function is written in the
form @ = @ + 8¢. ¢ is the averaged over the field
period large part of the EDF,

13)

2n/®

§ =5 | doun,

0

(14)

which changes slowly with time. 3¢ is a rapidly oscil-
lating small addendum, |5¢| < @.

Case A

If the intermediate intensity conditions
Zvry P vg> vy (15)

hold, an anisotropic two-temperature EDF results hav-
ing the form of the bi-Maxwellian [4]

NmA/_ ( 12)’ 16)

2nJ_nT“/_

with T, and T, duly defined longitudinal and transverse
effective temperatures. Under the conditions (15) and
for the times for which (16) holds, T, and T, increase
linearly with time

F =

T(t) = mv§(0)+1—?;mvév(vE)t, (17)

T, () = mv§(0)+%mv§v(v5)tln[ Ve ] (18)

v(0)

As v > vi{0), from (17) and (18) we see that for
t>0, T, > T, in other words, the field modified EDF
acquires a prolate shape, i.e., elongated towards the
poles, perpendicularly to the electric field direction.
Here, it is appropriate to mention that the EDF is valid,
by derivation, only for very short times, but the numer-
ical modelling shows [38] that instead it is approxi-
mately valid for all the stage in which the prolate shape
is maintained. Now the solution given by (16)—(18) is
used to determine the current density from (13). After
same algebra, for the current density along the z-axis j
we obtain the expression

372 1

2
W,

aﬁj— ar —FE, coswt — enva(vE)(Tl) dej:dxx

(TZ—TL)} (19)

JmT

2
X exp[-—% + ixyA/;vE51nwt]
1

This result is now written in the form of an expansion
over the harmonics of high-frequency field

X [vEsinmt+ ixy

2

a _ W,
34 = 4nELcos(ot
- (20
—wz (2n + 1)0,E, sin[(2n + 1)ot],
n=0
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where G, is the conductivity at the frequency (2n + 1)w.
It has the form

o - O Ze'NA
" N T T, (2n+1)

1
T- 2
X Idxxz[l - xz(fi - 1)} exp(—Z—?— vi)
o L L
oY (n1x2v2)_1 (mx2vz)
n 4T_L E n+1 4T_1_ E s

where I,(z) is the modified Bessel function.

We now use the derived expression for the high-fre-
quency current, (20) and (21), to investigate the gener-
ation of high-order harmonics of the radiation field and
some of their characteristics. From Maxwell’s equa-
tions and from (20) is readily seen that the generated
harmonics are polarized along the z axis and propagate
in the (xy) plane. It is, thus, natural to write the field of
the (2n + 1)th harmonic in the form

21

E,(r, 1) = Re{E,exp[i(2n + 1)(kr—@0)]}, (22)

wherek -r=0,E,=(0,0,E,),n=0,1,2, .... Then,
taking into account the dispersion equation for the fun-
damental wave ®? = @_, + k% and (20), from Max-
well’s equations we get

E itwo, (2n+ 1
y  _m00,2n+ 1) n=1,2,...

£ - (23)

ol nn+1)

Using the definition I, = cE,f /8r, the ratio of the

radiation intensities at the frequencies (2n + 1)w and ®
is found in the form

2

I, . 1v(vg)
7= J,,[———(D } , (24)
with
o 1
I = T_c{n(n+ 1)..‘dZA/2
‘ (25)

2

X [1 + éj_(l —A)}eXp(—z)[ln(z)—I,,+1(z)]} .

The quantities €, and A appearing in (25) are defined as
€

81 = T+ tindey) (26)
(1+21)
A= —— 227 21
(1 +1indegy) 27
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with
o2
80 = 2E ’ (28)
4vr(0)
and
4
T = (%’)v(vE)z. (29)

g, is basically the ratio of the quiver kinetic energy to
the average transverse kinetic energy, while A is a mea-
sure of the degree of anisotropy of the field-modified
EDF, and corresponds to the ratio of the longitudinal
temperature T, to the transverse one T',. From their def-
initions and (17) and (18), it is apparent that €, and A
are decreasing functions of time; €, decreases thanks to
the heating due to inverse bremsstrahlung; A decreases
because, according to (17) and (18), in the early stages
of interaction in the given regime, the field energy flows
preferentially into the transverse degrees of freedom.
The decrease of A means that the degree of anisotropy
of the prolate EDF is increasing. Obviously, for the
behavior of €, and A hold true the same considerations
given above after (17) and (18). In the limit 2¢; > n?
(25) becomes approximately

2
_ (2n+1)( 2, )]
In= [21tn(n+1) = +1-4)]

showing that the intensity of harmonics of relatively
low orders depends weakly on both transverse and lon-
gitudinal effective temperatures.

(30)

Case B

If the plasma is acted upon by a very intense laser
field, such that v > vy and v > Zvyhold, the e col-
lisions dominate over the e—i ones, and the resulting
EDF is found to be approximately Maxwellian [4] (in
the oscillating coordinate system).

The expressions pertinent to this case are readily
obtained from those of the previous case, taking into
account that for an isotropic EDF T, =T, =1,A=1and
£, changes into € given by

£ = S : 31)

[1 + §1(1n480 + 1)}

having the meaning of the ratio of quiver kinetic energy
to the average full electron kinetic energy.

Using A = 1 and €, equation (25) allows us to inves-
tigate as well the high-order harmonics generation in a
plasma with a Maxwellian EDE.

5. HARMONIC SPECTRA

Equations (24)—(31) are now used to calculate the
harmonics spectra under different physical conditions.
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Maxwellian EDF

In Fig. 3 we report the results of calculations of the
intensity of the harmonic spectrum for four initial val-
ues of the parameter &, (31), namely 400, 100, 25, and
4. Considering the physical meaning of € and that it is
a decreasing function of time, the four spectra reported
in Fig. 1 may be looked at in two equivalent ways:
either as spectra corresponding to different initial € (as
they, actually, are), or as shapes of the same spectrum,
recorded at different times, related to the values of &.
Thus, the spectra reported in Fig. 3 considered together
account as well for their time evolution. The initial
value €, = 400 is equivalent to R(0) = 40 (curve 1),
while the initial value €, = 100 of curve 2 to R(0) = 20.
Considering that the initial temperature double in a

102}
1074F
10—6 L

1078}

8§10 12 14 16 18 20
n

10 1 1 1
107% 24 ¢

Fig. 3. The intensity J,, of the harmonics (2n + 1)w for a
plasma with Maxwellian electron distribution for 4 different
initial values of the parameter €, (31). The series of data,
forming the four spectra may be viewed also as shape of the
same spectra, recorded at different times, € being a decreas-
ing function of time. € = 400 (curve I); 100 (curve 2); 25
(curve 3); 4 (curve 4). The lines intersecting the data are
meant to help visualization.
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Fig. 4. The harmonics intensity J,, vs. n for a plasma with a
two-temperature electron distribution function. &) =25,A=1
(curve I); &} = 10, A = 0.66 (curve 2); £, =4, A=052
(curve 3).

time approximately equal to T, = [V(vg)gyIndeg}!, the
spectrum 2 corresponds to the evolution of the spec-
trum / after a time during which the electron tempera-
ture has increased four times. Similarly, the spectra 3
and 4 correspond to the increase of temperature,
respectively, of 8 and 20 times as compared to that of
the spectrum /.

Bi-Maxwellian EDF

Figure 4 reports calculations similar to those of
Fig. 3 for the following sets of parameters: €, =25, A=
1 (curve I); £, =10, A =0.66 (curve 2); &, =4, A=
0.525 (curve 3). As before the three reported spectra
may be viewed as a given spectrum in three subsequent
stages of its time evolution. The harmonics spectrum
for the anisotropic heating is found to exhibit sensible
differences as compared with that of isotropic heating.
In particular, in the stage of anisotropic heating (when
the energy flows preferentially from the field to the
transverse degrees of freedom of the plasma electrons)
a sizable inhibition of the high-order harmonics is
found as compared to the case of isotropic heating. This
effect is shown also in Fig. 5, where harmonics spectra
corresponding to isotropic and anisotropic heating are
compared, the other physical conditions being largely
the same: €, = 4, A = 0.525 (curve 2, bi-Maxwellian
EDF); € = 5.26, A = 1 (curve 1, Maxwellian EDF).

6. CONCLUDING REMARKS

We have reported on 2D calculation concerning the
EDF in a completely ionized, homogeneous plasma in
the presence of a strong high frequency laser field. The
basic result is that the EDF is, in general, no more iso-
tropic if the electron—ion collision are dominant. The
EDF becomes elongated along the laser electric field
direction in the case of fields of intermediate strength,
and is found to relax slowly towards an isotropic shape.

Jn
10°
1072
104
1076
1078
10710
10—12

-14
10 0

T T T AL T T T T 1T 17

Fig. 5. The harmonic intensity J,, vs. n for the same time
moment T and two different electron velocity distributions:
Maxwellian distribution with € = 5.26, A = 1 (curve 1), bi-
Maxwellian distribution withe) =4, and A =0.52 (curve 2).
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(a) Oblate EDF u, || Ep
Laser energy = u parallel degrees — Harmonic
gy of freedom generation
\
u, perpendicular
» deérees of freedom
(b) Prolate EDF u, || Ey
u) parallel degrees Harmonic
Laser energy I pof freedor% = gencration

u, perpendicular
= deérees of freedom

Fig. 6. Schematic representation of the laser energy flow
during the laser-plasma interaction, in the cases when an
initially isotropic electron distribution function (EDF)
evolves towards an oblate shape (a), or towards a prolate
shape (b). The double arrow indicates a relatively more effi-
cient process of harmonic generation and of heating of
selected electron degrees of freedom. The energy flow path-
ways are controlled by the collisions. The case of an EDF
remaining isotropic is expected to be intermediate with
respect to cases A and B, because the laser heats in the same
way parallel and perpendicular degrees of freedom.

For stronger fields, the EDF becomes elongated along
the poles, perpendicular to the electric field direction.
Then evolves towards an oblate shape, and from the lat-
ter towards isotropization. The key to understand the
overall behavior of the EDF is the mechanism of elec-
tron—ion collisions. Characterizing such collisions by
means of an effective collision frequency, we have that
for fields of intermediate-strength the “parallel” colli-
sion frequency is larger than the “perpendicular” one.
As a result the electron parallel degrees of freedom are
heated more efficiently, and an EDF elongated along
the electric field results. The opposite takes place for
stronger fields, because the parallel collision frequency
suffers a drastic reduction. The further EDF evolution
is bound to the overall electron heating and transfer of
energy among parallel and perpendicular degrees of
freedom through collisions.

We have also calculated harmonics spectra under
the conditions of isotropic and anisotropic heating, and
found that the emitted harmonics are remarkably
intense.

In the case of isotropic heating, the increase of elec-
tron temperature with time reduces the intensity of
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high-order harmonics; thus the harmonics spectrum
becomes increasingly poorer of high-order harmonics.
In the case of anisotropic heating, which is very likely
to take place in real experimental conditions, we have
found that generation of high-order harmonics is signif-
icantly inhibited by the circumstance that, during the
radiation—plasma interaction, the energy from the field
flows preferentially into the electron degrees of free-
dom perpendicular to the radiation electric field direc-
tion, which is the same of the generated harmonics. We
believe that the dependence of harmonics spectra on the
heating characteristics be a general property of har-
monic generation in a plasma, when the dominating
mechanism is the inverse bremsstrahlung absorption.
However, we expect that this property may manifest itself
and act in different and even opposite ways, than those
considered by us (initial stage of a strong anisotropic
regime of prolate type) to be the only one (see, Fig. 6).
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Abstract—We present the results of our recent theoretical investigations [1, 2] on quantum cyclotron resonance
(T < hiwy, Aw < 0y, T is the temperature, oy = eH/m*c is the cyclotron frequency, Aw® = ® — Wy is the fre-
quency detuning, m* is the effective mass, and @ is the frequency of the electric field) in semiconductors with an

. . . . . .2
isotropic energy spectrum of charge carriers scattered by small-size centers with a small radius r, << 2=cfi/eH,

where [ is the magnetic length. The proposed approach does not imply the use of perturbation theory in the inter-
action of carriers with scatterers. It is demonstrated that the contour of the absorption line in quantum cyclotron
resonance (QCR) is described by a universal formula of T-approximation, which is applicable for any frequency
detuning, temperature, and magnetic field strength that meet the QCR conditions. The developed theory
allowed us to eliminate significant discrepancies that have existed for a long time between theoretical predic-
tions and the results of experiments on QCR due to neutral impurities with the use of FIR lasers with discharge
(H,0 and D,0 lasers, 220-119 wm) pumping as sources of electromagnetic waves. Theoretical temperature—
field and concentration dependences for the QCR line half-width (T, H, N) (N is the concentration of impu-
rities) obtained in this paper for the scattering due to small-size neutral donors are compared with the relevant

experimental data.

1. Cyclotron resonance (CR) in semiconductors is a
powerful tool that allows one to obtain the data con-
cerning the parameters of semiconductors, including
the effective mass of charge carriers, dispersion rela-
tions, the type and the concentration of defects, interac-
tion potential, etc. All the data on these parameters are
extracted from the experimental results processed in
accordance with the temperature—field and concentra-
tion dependence of the CR absorption curve. This curve
becomes especially well defined at low temperatures
(T < fiwyy), in the domain of quantum cyclotron reso-
nance (QCR), where phonon mechanisms of scattering
are strongly suppressed. In weakly compensated semi-
conductors, the scattering of carriers due to ionized
impurities is also suppressed under these conditions
(because of the low concentration of such impurities).
In such a situation, the interaction of charge carriers
with neutral defects plays the main role.

Until the publication of our papers [1, 2], it was pos-
sible to theoretically investigate QCR for any mecha-
nisms of electron-hole scattering only within the
framework of the Born approximation (BA). This
approximation provides a good agreement between
theoretical predictions and experimental data in the
case of phonons and ionized impurities. The Erginsoy
formula (EF) [4] is successfully used for the descrip-
tion of the scattering of electrons by neutral impurities
in semiconductors in nonquantizing magnetic fields. In
particular, the EF permits a correct estimation of the
CR line half-width 8w [5]. The problem of QCR

description remained unsolved for several years.
Attempts to adapt the EF to QCR within the framework
of BA! were not successful—the calculated quantity
Sm was greater than the measured line half-width by
more than an order of magnitude and displayed a qual-
jtatively different dependence on H and T (see [3] and
Figs. 1, 2).

We have solved (see [1, 2]) a set of kinetic integrod-
ifferential QCR equations for a translation-invariant
Wigner density matrix and a single-center correlator in
the case when electrons are scattered by neutral centers
with a potential U and radius r, meeting the inequalities

(a) U] < B2/m*r2, (b) r2 <[’ (1)

without using perturbation theory in the interaction of
charge carriers with scattering centers. The derived
solution makes it possible to describe the absorption
QCR line with a universal formula of T-approximation
(8)-(10), which is valid for any T, Aw, and H under
QCR conditions. We revealed a change in the depen-
dence Sw(H, T) within the range where the values of H
and T correspond to the resonant scattering of an elec-
tron from magnetic-impurity (MI) states and the half-
width of the QCR line reaches its maximum.

2. Suppose that a gas of noninteracting electrons is
placed in a uniform quantizing magnetic field H||z and
a resonant electric field E(f) = Eexp{i(w—id)¢},E L H,
8 = +0, in the presence of the potential of chaotically
distributed impurities. Assuming that the concentration
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Fig. 1. Temperature dependence of the half-width of the
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Lines / and 2 represent the results of calculations performed
with the use of formula (12). The dots and the circles corre-
spond to the results of experiments carried out in [3]. Two
upper curves show the results of calculations in accordance
with the EF [3].

of impurities N is small, we can write the following
equation for the density matrix p(1, 2, {R;}, ?) in the
coordinate representation:

inp(1,2,{R;}, 1) = {H, —H¥ + eE(t)(r,-1,)

+2[U(r1 -R) - U(r2—R,~)]}p(1, 2,{R}, 1, @

Hi,=HQ,2),
H = p2/2m+1/2m,(p, +e/cA(r, 1),

,2=r,,

where A is the Hamiltonian of an electron in the uni-
form magnetic field, A is the vector potential of the
magnetic field, and R, is the radius vector of the ith
scattering center. Applying a standard technique, we
can use this equation to derive a closed set of equa-
tions for the single-electron density matrix p(1, 2, 1)
averaged over the arrangement of scatterers in the
coordinate representation and a single-center correla-
tor g(1, 2, R, 1),

p(1,2,0=V " [[[4'Rp(1,2,{R;}, 1),
8(1, 25 R7 t)EP(I, 2, R: t)_p(ls 2’ t)

(Vis the volume, N is the number of scattering centers,
and p(1, 2, R, 7) is the density matrix averaged over the
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Flg 2. The half-width of the QCR line in n-GaAs as a func-
thl’l of the magnetic ﬁeld forT=42Kand (/) N=7.5X%
4 and )15 x 10! cm™, Lines 7 and 2 represent the
results of calculations performed with the use of formula
(12). The dots and the circles correspond to the results of
experiments carried out in [3]. Two upper curves show the
results of calculations in accordance with the EF [3].

arrangement of all the centers except for one),

ihp(1,2,1) = [Hi - HY + eE(t)(r; -r)1p(1, 2, 1)

-R)-U(r;-R 1,2,R, 1),
+N[dR(U(r ~R)-U(r2-R)Ig(1. 2R 1),
ifg(1,2,R, 1) = [H - HY + eE(t)(r; - 1,)]
xg(1,2,R, ) +[U(r; ~R) = U(r,~R)Ip(1, 2,1).

The function p does not feature translation invariance
and can be represented as a product of the translation-

invariant density matrix p (r, —r,, #) and a phase factor
exp{i®(r,, r,)}, which is determined by the gauge of
the vector potential of the magnetic field [6].

Next, we will use the translation-invariant density
matrix F(K, z, ¢) in the mixed representation,

F(kz1) = d'xexp(k0)p 20, (4
-ri={xz}, xL1H
Analogously, we introduce a single-center correlator in

the mixed representation (z; , — R, =z, , ):

G(s1, 8y 21,200 1) = (21) "

i( )~ il? [s,, 81
dezpldzpz btk g(pla p29 le Z25 t)e o Hs
g(rl”R7r2_Rat) (5)
= exp{—icp(rl’ r2)}g(r17 I, R’ t)
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Definition (4) implies that the kinematic momentum
.k = p + e/c - A is chosen as a variable, which makes
the problem under study translation-invariant [6] and
radically simplifies calculations. In contrast to [6], we
perform Fourier transformation in (4) only in trans-
verse variables, which allows us, upon the separation of
transverse and longitudinal variables in the set of equa-
tions for F and G, to employ the functions of longitudi-
nal (along H) motion of the single-center problem in
the coordinate representation. We linearize the set of
equations for F(k, z, t) and G(sy, 5, 21 — R, 25— R, 1)
in E assuming that F = F* + F' and G = G° + G', where
F',G'~E.

In the absence of impurities, the function FO(k, z) in
a quantizing field H was derived in [6]:!

F'lk,2) = n'n exp(-k’I)®(2), 6)

where n, is the concentration of electrons and @(z) is
the one-dimensional equilibrium density matrix. In the
presence of impurities, FO(k, z) varies due to transitions
of electrons to upper Landau bands stimulated by
impurities. However, if the coupling of Landau levels
due to a single center (1a) is weak and the concentration
of centers is low, the dependence F(k, z) remains
unchanged. Then, keeping only the terms that corre-
spond lto the resonant approximation, we find the func-
tion F':

F'(k,2) = —(en,E/nh)e *kexp(-k' 1) f(z). (1)

Now, it is convenient to employ the momentum rep-
resentation: ®(z) = ®(p) and f{z) = f(p). Then, we can
solve the integral equation for the function fp) in the
case of small-size centers (1a) with a small radius (1b)
(see [1, 2]):

f@© =3 e

A® +1(g, Aw) — it (€, Aw)’

2
1'|—i‘l:_1 = %Z%VLA&m*

(®)

oo 9
de, 2 - -

X {78_—1|T,,,(p>| [(e,~ €, +i8)" (e, ~i8) "],
where &, = € + fiAw; Hx,, =&)p Tp, = jf:dﬁU(g) X
Xp,(E)exp(ipE/ i) are the matrix elements of the oper-

ator of scattering in the presence of the potential U(z);
{X,} is the set of the wave functions of the continuous

spectrum of the Hamiltonian H = Hy +U®R), A =
p22m* and U(z) = I ﬁ;pde(p,z) is the one-

1 We restrict our consideration to the case of nondegenerate elec-
trons.
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dimensional potential of the impurity averaged over
the transverse motion of an electron in the magnetic
field; and € = p?/2m* is the energy of the longitudinal
motion of an electron.

Absorption is proportional to the integral

wde
Aw,H,T) = |—=I . 10
0(Aw, H,T) { - mf(e) (10)

As it follows from (8)—(10), provided that inequali-
ties (1) are satisfied, the QCR line is described by a uni-
versal formula of T-approximation, and the inverse of
the relaxation time of the current T-! and the frequency
shift 1 are determined by the operator of single-center

scattering 7' and the frequency detuning Ac.

Setting Aw = 0 in (9) and replacing ¥, by plane
waves, we arrive at BA expressions [7, 8].

3. In the case of small-size impurities (U <

h2 [ m* rf ), there are no bound electron states due to

impurities when H = 0. A nonzero magnetic field gives
rise to a spectrum of magnetic-impurity states [9] clas-
sified in accordance with the momentum projection m.
This spectrum converges to the continuum as ~(r,/ b,
The depth g of the ground level with m = 0 beneath the
bottom of the Landau band (0, 1) defines the energy of
a weakly bound electron state in a one-dimensional
2

potential U(z) (e = —% Aoy and o = f,/1, where fy is

the Born amplitude of scattering of an electron by a
potential U(r)) [1]. This depth also determines the
matrix elements of the scattering operator: | T, (p)* =
fiey/mm*D(g), where D(g) = (1 + €,/e)! is the trans-
mission coefficient of an electron with energy € through
one-dimensional potential U(z). Evaluating integrals in
(9), we can easily find the parameters of the QCR line:

Yr=€y/Tand d = #i/Try < 1, 1y =2t =gy, AW =
0) = 4nhiN|f3|/m*. The dimensionless frequency detun-

ing x = AwT, is employed as a natural argument of func-
tion (10).

The chain of equations for F and g was decoupled in
such a manner (see [1, 2]) that the longitudinal electron
energy is defined with an accuracy up to /T ~ &7 =
#ilt,T < 1. Therefore, in the vicinity of the resonance,
we can set A®w = 0 in (9).

For zero frequency detuning, we have n(Aw = 0) =
0, and the inverse of the relaxation time of the current
is proportional to the product of the density of initial
electron states in the lower Landau band and the coeffi-
cient of transmission of an electron through the relevant
one-dimensional potential. Replacing the electron
energy in (€, A® = 0) by thermal energy, we obtain an
estimate for the half-width of the QCR line as a
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function of temperature and the strength of the mag-
netic field:

So(H, T) ~15'v7 " D(¥y). (11)

It can be seen that 8w is proportional to the product

of the density of initial electron states ~y;/2 and the

coefficient D(yy) of transmission of an electron through
the relevant one-dimensional potential. Within the
range of high temperatures (yr < 1, the BA domain),
the half-width of the QCR line is 8w ~ H/T2, Within
the range where Y > 1, we have dw ~ TV2/H. Hence,
within the range of temperatures and strengths of the
magnetic field corresponding to the resonant scattering
of an electron from MI states (Y; ~ 1), the QCR line
half-width 8w changes its behavior as a function of H
and T. For T = g, i.e., in the case of resonant scattering,

8 reaches its maximum, d0™* = 1/271, " Setting D=1
in (11), we obtain the result that coincides with the BA
prediction [7, 8]. Since the transmission coefficient sat-
isfies the inequality D(y;) < 1 and increases with a
growth in 7, it is obvious that, for any 7, the BA gives
an overestimated value for 8w, and the discrepancy
between the results of exact analysis and Born approx-
imation increases with a decrease in temperature.

4. The data on QCR in n—GaAs for T=1.74.2 K,
H = (1-8) x 10* G, and N (neutral donors) = (7.5-100) x
10 cm™3 have been presented in [3]. According to [3],
we have r, =107 cm, so that inequality (1b) is satisfied

for virtually all H: r> /P = 0.1-1.2. The quantity

[U|m* rf /#2 can be estimated in the following manner.

Under conditions of experiments described in [3], the
spin of a donor electron is parallel to the spin of an
electron involved in scattering (triplet scattering). For
triplet scattering, we have U < 0. However, bound

states are absent when H =0 [10]; i.e., IUlm*rf /h? <1,
(In singlet scattering, a bound state exists in the form
of a D—center [11].) Consequently, we can assume that
condition (1a) is satisfied.

Calculations with the use of the Born amplitude f3
predict the values of 8o that differ from the relevant
results of measurements by a factor no greater than two.
As shown in [9, 12], when we abandon the approxima-
tion of weak coupling, we should replace fz by the
exact scattering amplitude f. For triplet scattering, we
have f = f, = 1.768r, [10]. Using this relationship, we
can apply (11) to obtain the following estimate for do:

Sw = 5.77x 10 HN.J1/T

-1
x(1+38x10°H>x1/T) s

We employed (12) to calculate the dependences dm(H,
T, N). The results of these calculations agreed well with
the experimental data. We also used r, as a fitting

(12)
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parameter by setting a correspondence between 8
and a definite point in one of the experimental curves
from [3]. This procedure also provided a satisfactory
agreement between 8®,,,(H, T, N) and 0®yeo(H, T, N)
(see Figs. 1-4).
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Abstract—Two-photon free—free transitions in elastic laser-assisted electron-hydrogen collisions are studied
in the domain of high scattering energies and low or moderate field intensities, in the third order of perturbation
theory, taking into account all the involved Feynman diagrams. Based on the analytical expressions of the tran-
sition amplitudes, the differential cross sections for two-photon absorption/emission are computed at impact
energy E; = 100 eV. The effect of field polarizations on the angular distribution and on the frequency depen-

dence of the differential cross section is analyzed.

1. INTRODUCTION

Recently, a series of experimental [1] and theoreti-
cal [2] works have been devoted to the study of free—
free transitions in laser-assisted elastic electron—atom
collisions at low scattering energies.

It is the aim of this work to investigate free—free
transitions in a different regime, that of high scattering
energies and low or moderate field intensities such that
the use of perturbation theory might provide a sensible
description of the process. We focus our attention on
the study of free—free transitions that involve the
absorption/emission of two different photons by the
compound projectile—target system in an external radia-
tion field. The target is the hydrogen atom in the ground
state. The process can be formally represented by

H(Els) + e~(ki7 El) (1)
t[y(€), @) + V(& 0)] — H(E}) + e (ky, Ef),

where Ey, k;, are the initial (final) energy and
momentum of the projectile; ®;, € denote the fre-
quency and the polarization vector of the photon j (j =
1, 2). The upper sign corresponds to the absorption of
both photons, the lower one corresponds to their stimu-
lated emission.

The process (1) has been previously investigated for
two identical photons. Kracke et al. [3] have studied the
differential cross section of two-photon free—free tran-
sitions at high scattering energies (50-500 eV) for pho-
ton energies below the ionization threshold of hydrogen
(o < 20 eV). They have used in their work the lowest
order perturbation theory, taken into account all the
involved Feynman diagrams. For strong fields, the
laser—particle interaction must be treated beyond the
perturbation theory. In this context, Dorr et al. [4]
developed the Born-Floquet theory, in which both
laser—projectile and laser-target interactions are treated
exactly. This approach is valid in the domain of high

scattering energies since it involves the first Born
approximation to treat the projectile—target interaction.
We refer to this paper for a comprehensive analysis of
other previous works.

In Section 2 we present the formalism we have used
to evaluate transition matrix elements for two-photon
absorption/emission: the projectile—target interaction
as well as the interaction between the electrons and the
electromagnetic field have been treated perturbatively.
We have evaluated the analytic expressions of the cor-
responding transition amplitudes in the third order of
perturbation theory, including the twenty-four Feyn-
man diagrams. The third section is devoted to the dis-
cussion of the numerical results. We report here our
results concerning the influence of the state of polariza-
tion of the two photons on the differential cross section .
of the scattered electron. We claim that this effect is sig-
nificant in the domain in which the dressing of the tar-
get is important: at small scattering angles in general
and, in particular, close to atomic resonances.

2. BASIC EQUATIONS
The time evolution of the electron—hydrogen system
in the presence of an electromagnetic field described by
the vector potential
A(r) = €Ay cos(01) + €,Apco8(0,1),  (2)

is governed by the Hamiltonian

2 2
~p 1P 1 1.1
¥ = 5 r+2+|r~R| R+c[p+P]&€(t) 3
=Hy+ V+W(),

where r, p are the position and momentum operator of
the bound (atomic) electron and R, P are the position
and momentum operator of the free (projectile) elec-
tron. V=—R"! + [r — R|™! denotes the e-H interaction in
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the direct channel and W(¢) = ¢! [p + P1sd(¢) denotes the
interaction of the charge particles with the field, treated
in the velocity gauge, using the dipole approximation.
The 2-term was eliminated through a unitary transfor-
mation.

In the first nonvanishing order of the perturbation
theory, the S-matrix elements corresponding to two-
photon processes are given by

+oo fi
$% = - [ dn, [dnO W)W, @
~ iHgt —iHgt ) )
where W(f)=e ~ W()e . Inthe previous equation

lx; ) and |x; ) describe the initial and final states of the
colliding system (electron—atom)

) = 1¥)+ G (B)HVI¥D, 5)

|X;> =¥+ G—(%f) Vl\{lf>’ (6
where

G (%) = [€-H,-V+id] (7

and § a positive infinitesimal number. ¥, » are the
asymptotic states corresponding to the colliding system
in the absence of the interaction V

|\P1> = |Wls>lKi>’ (8)
"Pf> = |W1s)|Kf>- 9

Here |v,) denotes the ground state of a hydrogen atom
and |K; p are plane waves. The initial and final energies
of the electron—atom system are

K
%1 = El.r+_l’ (10)
2
k2
%f=E1s+-2£i(0)1+O)2). (11)

The transition-matrix element involving two differ-
ent photons, both absorbed or emitted, is given by

1% = 201+ P )CjIA - (P +P)
(12

X G (8t 0,)A,- (p+ P,

where P, is the permutation operator between the vec-
tor potentials A; = €A (G = 1, 2), which describe the
two components of the field (2). In (12) the upper sign
corresponds to absorption, the lower one to stimulated
emission. It is possible to write this matrix element as
the sum of three terms, each of them connected with
No. 1 1998
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specific Feynman diagrams, as we shall discuss later in
this section. These terms are

—the electronic term
1 -

Tp=7(1+ PQIA, - PG (8,2 0,)A, - Ply),(13)

—the mixed term

1 -
T = 701+ P)(1+Ppe)(slA - PG
(14)
X (€;+ 0)A, - Plx),

where Pp is the permutation operator between p and

P, and
—the atomic term

Ty= %(1 + @12)<X;IA1 : PG+(C€>.’ T m)A, 'P|X:>-
(15)

Since we restrict ourselves to the domain of high scat-
tering energies, we use the first Born approximation to
treat electron-atom scattering, which implies

7Y = ¥ + Go () VI¥, (16)

) =M+ Go(€n)VI¥y), )
where

GE(8) = [€-Hy+id]". (18)

In this way, the evaluation of the transition matrix ele-
ment is made in the third order of perturbation theory:
the second order in the electric field and the first order
in the scattering potential, V.

2.1. Electronic Term

The electronic term is connected to six Feynman
diagrams in which only the projectile exchanges two
different photons with the field (2). Only three of these
diagrams are represented in Fig. 1a, the other three are
obtained by interchanging ®; and ,.

In the standard way, after integration over the pro-
jectile coordinates, the electronic term in (13) may be
written as

1,1
Ty = _"2]_22(31 ~q)(&; - QW F(@y),
4m; 0,

19)

where [;is the intensity of the component j of the field (2),
q is the momentum transfer of the projectile and F(q) is
the form factor operator

F(a) = —lexplig-r)~ 11
2n°g
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Fig. 1. Feynman diagrams for two-photon processes in
laser-assisted electron—atom scattering: (a) electronic dia-
grams, (b) mixed diagrams, and (c) atomic diagrams. The
projectile is represented by a single line, the bound electron
by a double line.

We remind that this is the only term which gives
contributions to the weak field intensity limit of
Bunkin-Fedorov formula [5]. That approach describes
the target by a potential and neglects the atomic dress-
ing. In order to take into account the atomic dressing
we include in our calculation the other eighteen Feyn-
man diagrams, corresponding to the mixed and atomic
terms.

2.2. Mixed Term

The mixed term is connected to twelve Feynman
diagrams, in which each electron (free and bound)
absorbs/emits one photon from each component of the
field (2). Only six diagrams are represented in Fig. 1b,
the other six are obtained again by interchanging w,
and ®,.

In order to evaluate the mixed term we took advan-
tage of the analytic form of the vectors

(W100(Q)) = -G(2)pIV,5),

which were previously studied in [6]. Here G(€2) is the
Coulomb Green function. After integration over the pro-

CIONGA, BUICA

jectile coordinates, the mixed term in (14) is written as

11 .
Ty =+ A/1_2 {82 q[<W1s|F((I)|€1 : Wloo(Qf»

T Tdem,] o,

+ (&1 - Wi (QDIF(Q)IV, )]
g -q . 20)
+ T}[(‘«Iﬁle(Q)lsz * Wig0(€22))

+(g, - Wloo(Q;F)|F(Q)|‘I’15>] },

where the parameters Qf , are given by

+
Q, = Ejtw,.

In (20) the upper signs correspond to absorption and the
lower ones correspond to stimulated emission of both
photons.

The atomic matrix elements in (20), which appear
also in one photon processes, have been evaluated ana-
Iytically [7]. Based on this result it is possible to write
down the general structure of the mixed term as

Ty = JLL(E - qQ)(& QT (o, 0y q), (21

where the radial part, T 4(m;, ,; ), is expressed in
terms of hypergeometric functions.

2.3. Atomic Term

The atomic term is connected to six Feynman dia-
grams in which two different photons are exchanged
between the bound electron and the field (2). Only three
diagrams are represented in Fig. 1c, the other three are

_obtained by interchanging ®; and ,.

Our analytic formula for the atomic term is com-
puted using the tensors

oy, 100(Q, Q) = GC(Q')PiGC(Q)Pijls),

studied in [8]. After integration over the coordinates of
the projectile, the atomic term in (15) is written as

3
JI
= A2 S g e

T 40,0
192 77,

A

X (W, 100(QDIF (@)W, 100(€2))
+ (W1, 100()IF (@)W, 100(Q]))

+ WL F (@)W 100(Q7, Q) (22)
+ WL F(Q)Iwy 10(Q, Q7))
+{wy;100(Q7, QDIF (@)W,

+ <le, 100(9'1, Q;)IF(q)IWU)]-
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Here the parameter Q' takes the values
Q = By £ (0 +0y)

and Qiz were defined above. In (22) the upper signs

correspond to absorption and the lower ones corre-
spond to emission of two different photons.

We have evaluated analytically the atomic matrix
element in (22); based on this results one can write the
general structure of the atomic term as

Ty = A/II_IZ[(el - q)(&;- )Ty (0, 03 q) 23)

+(&;- £,) Ty (®, 0y 91,

where the radial parts, T (@), ©,; ¢) and Ty (w,, ©,; g),
are expressed as series of hypergeometric functions [9].

For the sake of simplicity, the equations (19)—(23)
have been written using linear polarizations. We point
out that for photon emission, one must take the com-
plex conjugate of the polarization vector.

Finally, the differential cross section for the absorp-
tion/emission of two different photons in laser-assisted
elastic electron-hydrogen collisions can be written as

do

k
£ = (2n)4z§|TP+ Ty+T4%, (24)

dQ
where the electronic, mixed, and atom structure given
in (19), (21) and (23).

3. RESULTS

We have computed the differential cross section for
two-photon free—free transitions in laser-assisted elas-
tic electron—hydrogen collisions at scattering energy
E; = 100 eV. We have chosen to report here the case of two
laser sources having the same frequency, o, = 0, = ®, but
different polarizations. The investigated photon ener-
gies are smaller than the ionization energy of hydrogen.
The results are valid for low and moderate field intensi-
ties, bellow 10'® W/cm?. In all the cases that we have
studied the initial momentum of the projectile, k;
defines the Oz-axis.

We discuss here the effect of the state of polarization
of the photons on the frequency dependence of the dif-
ferential cross section and on the azimuthal angular dis-
tribution of the scattered electrons, for scattering angles
in the domain where target dressing effects are impor-
tant. In general, this domain corresponds to small scat-
tering angles, as it has been pointed out by Kracke ez al.
[3], who studied the monochromatic case.

3.1. Frequency Dependence

In Fig. 2 we present the differential cross section for
two-photon absorption in (24), normalized with respect
to the field intensities, /,1,, as a function of the photon
frequency, in the range 0 < ® < 6.8 eV. The scattering
angle, 8 = 5°, is in the domain where the dressing
No. 1 1998
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Fig. 2. The differential cross section for two-photon absorp-
tion, normalized with respect to field intensities 1)/, as a
function of the frequency of the photons. Ij, I, and
do™P4dQ are in a.u. The energy of the projectile is E; =
100 eV; k;]|Oz and the scattering angle is 8 = 5°. The polar-
jzation vectors are linear: {0z and &;||Ox. Solid line rep-

resents the differential cross section in (24), dotted line the
electronic contribution and dot-dashed line the mixed con-
tribution.

effects are important. Our calculations were per-
formed for linear polarizations. We have chosen €,|{0z
and €, L g, the polarization vectors defining the scat-
tering plane.

The differential cross section (solid line) exhibits a
series of resonances, located between 6 and 6.8 eV.
These resonances occur at photon frequencies such that
20 = |E;, (1 — 1/n?) for n > 2, where n is the principal
quantum number. They correspond to poles in the radial

integrals T4 and I which appear in the atomic term.
The resonance corresponding to n = 2, i.e., ® = 5 €V,
does not exist for orthogonal polarization: the con-
nected pole appears in (23) only in the radial integral

J 4, which muitiplies the scalar product €; - €, which
vanishes. To emphasize the origin of these resonances
we have plotted also in Fig. 2 the electronic (dotted)
and mixed (dot—dashed) contributions, which were cal-
culated when only T, and T),, respectively, were taken
into account in (24).

We believe that this series of resonances is particu-
larly interesting from the experimental point of view.
Indeed, two-photon processes may be easier to detect at
photon energies close to one of these resonances
because they do not correspond to resonances of the
lower order processes, namely one-photon absorp-
tion/emission. '

A second series of resonances, not shown in Fig. 2, is
located between 10 and 13.6 eV. They occur for photon
frequencies such that o = |E|(1 - 1/n%), where n 2 2.
This time the resonances correspond to poles which

exist in three radial integrals: J 4, T3, and Ty
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plotted in the same conditions as the differential cross section.

In Fig. 2 the differential cross section (solid line) has
also a series of minima. The first minimum is due to the
fact that, in this geometry, the differential cross section in
(24) is proportional to |(g, - q)I* = |k; — k;cos8f, which is
vanishing at 6 = 5°. The other minima are due to interfer-
ences between the electronic, mixed, and atomic terms.

3.2. Azimuthal Angular Distribution

We have found out that the azimuthal angular distri-
butions of the scattered electrons are significantly mod-
ified in the case of complex polarization vectors if vir-
tual transitions to continuum are energetically allowed,
i.e., 20 > |E;,|. To illustrate this remark we discuss two
distinct cases. In the first case the photon frequency
corresponds to KrF laser, @ = 5 eV. One has 20 < |E| |

and the radial integrals J 4, I and Ty are real. On
the contrary, in the second case, when the frequency of
the photons corresponds to the second harmonic of KrF,
one has 20 > |E|,| and the corresponding radial integrals
are complex. Each of these frequencies corresponds to
atomic resonances. For each of these frequencies, we
present the differential cross section of two-photon
absorption at a fixed scattering angle, 6 = 20°, as a func-
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Fig. 3. The differential cross section for two-photon absorption, normalized with respect to field intensities /;1,, as a function of the
azimuthal angle ¢. [}/, and do™*/dQ are in a.u. The energy of the projectile is E; = 100 eV, k;)|Oz and the scattering angle is 8 = 20°.

The frequency of the photons is =5 eV, €] = e,, and &, = (e, + ie,)/ /2 . The electronic, mixed, and atomic contributions are also

tion of the azimuthal angle ¢. Two different choices of
the polarization vectors were investigated.

1.8, = e,and &, = (e, +ie,)/2

In this case one laser beam, which direction defines
the Ox axis, is linearly polarized with the polarization
vector parallel to the initial momentum of the projec-
tile, €]|0z. The other laser beam, of the same fre-
quency, defines the Oy-axis and is circularly polarized,
&, = (e, +ie) 2.

For this choice of polarizations the electronic and
the mixed terms in (19, 21) have the same ¢-depen-
dence, namely of the form oo + ifcos¢). As a conse-
quence, the electronic and the mixed contribution to the
differential cross section are symmetric with respect to
the reflection in the planes xOz and yOz for both fre-
quencies, ® = 5 eV in Fig. 3 and ® = 10 eV in Fig. 4.

The atomic term (23) has a different ¢-dependence,
given by

(25)

The atomic contribution has the above mentioned
reflection properties only in Fig. 3, where ® = 5 eV.

2 .
Ty~T g +0 Ty +iopTy cosd.
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Fig. 4. Same as Fig. 3, but@w = 10 eV.
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Fig. 5. Same as Fig. 3, but &, = (e, + ie,)/ /2 and &, = (e, + ie,)/ 2.

LASER PHYSICS Vol. 8 No.1 1998

169



(L) do“21dQ

270

3000
2000
1000

-1000
~2000
~3000

rTm—rr 7 7t 1 1 1§ 1.7

Atomic contribution

In Fig. 4, where @ = 10 eV, the atomic contribution has
only one symmetry plane. Indeed, ¢ — —¢ is a sym-
metry operation for the quantity in (25), therefore xOz
is a symmetry plane. yOz is no more a symmetry plane

because both Ty and J 4 are complex and the modu-

lus square of the quantity in (25) is not symmetric to the
change ¢ = /2 - & — /2 +&.

At small scattering angles in general and in particu-
lar close to resonances, where the dressing effects are
important, there are interferences between the atomic
and the mixed contributions. They impose the ¢-depen-
dence of the differential cross section (24), given by

do 2
0" Ty +0’T | +ioBT cosd| ,

where T, = T3 + T 4 + Ty and T is the radial part

of the electronic term (19). In particular, only J; has
a pole when @ = 5 eV, therefore the atomic contribution
in Fig. 3 is almost ¢-independent (a circle) and it is
dominant in the differential cross section. The situation
is different in Fig. 4 because three radial integrals, & 4,

J4 and T4, have poles when @' = 10 eV.

At large scattering angles the electronic term is
dominant and it imposes the angular distribution of the
differential cross section.

(26)
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Fig. 6. Same as Fig. 5, but @ = 10 eV.

We note also that the change from right to left circular
polarization implies a simultaneous change of the sign of
the last term in (25)—(26), which is equivalent to a rota-
tion by 7 of the curves in Figs. 3 and 4. This rotation is
visible in the angular distributions only if the radial inte-
grals have complex values, i.e., when 20 > |E||.

2.8 = (e,+ie,))/2and €, = (e, +ie,)/ 2

In this second case both polarization vectors are
right circularly polarized. The direction of the first laser
beam defines the Oy-axis, the other one the Ox-axis.

The electronic and the mixed terms have again the
same ¢-dependence, given by

o (sing — cosd) + i(a’ + B sindcosd).

For both frequencies, ®, =5 eV in Fig. 5 and 0, = 10eV
in Fig. 6, the first (0 = w/4) and the second (¢ = 31/4)
bisector of the angle xOy are symmetry axes of the elec-
tronic and the mixed contributions to the differential
cross section.

The atomic term (23) has a different ¢-dependence,
namely

T,~oPTy (sind—cosd) an

+i(TY + 7Ty + BT, sindcosod).
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The atomic contribution has the two previous symme-
try axes only when @ =5 eV (Fig. 5); when @ =10 eV
the atomic part has only one symmetry axis: along the
second bisector (Fig. 6). Since the atomic term is
always important for the chosen value of 0, it will deter-
mine the symmetry properties of the differential cross
section.

The study of two photons with left circular polariza-
tions implies the change of the general sign in the sec-
ond line of (27). The corresponding curves are rotated
by = around the Oz-axis. Due to the number of symme-
try axis, this rotation is relevant only for the atomic
contribution and the differential cross section in Fig. 6,
where 20 > |E||.

4. CONCLUSIONS

Our investigations show that the differential cross
sections for two-photon free—free transitions are
strongly influenced by 