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of liquefaction. The main objective of this fesearcil project was to compare the behavior
of stratified and homogeneous sand-silt-gravel composites at the macroscopic level during
seismic liquefaction conditions for various silt and gravel contents. A preliminary
experimental program was undertaken in which a total of fifty stress-controlled undrained
cyclic triaxial tests were performed. Two methods of sample preparation were used for
each soil type. These methods included moist tamping (representing uniform soil
conditions) and sedimentation (representing layered soil conditions). The silt contents
ranged from O to 50 percent, and soils with 10% and 30% gravel contents were tested.
The confining pressure in all test series was 100 KPa. The following primary conclusions
were obtained as a result of this study.

1. The liquefaction resistance of layered and uniform soils are not significantly different,
despite the fact that the soil fabric produced by the two methods of sample preparation is
totally different. This finding justifies applying the laboratory tests results to the field
conditions for the range of variable studied.

2. The increase in silt content (percent passing No. 200 sieve) causes the liquefaction
resistance of sand-silt-gravel mixtures to increase for both uniform and layered soil
conditions.

More research is needed to confirm these findings for a wide range of variables
including confining pressures, gravel contents, and anisotropic soil conditions. In
addition, investigation of microstructural features of stratified soils and their relations to
the dynamic macro behavior will help to provide further understanding of behavior of

layered soils.
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MICROSTRUCTURE FEATURES AND DYNAMIC MACRO-BEHAVIOR
OF A MULTIPHASE PARTICULATE MATERIAL

1. INTRODUCTION

Most previous research on liquefaction have been focused on uniform clean sands, or
sands with little fines. However, A number of case histories have indicated that gravels and
gravely soils can also liquefy (e.g., Harder and Seed, 1986; Wang, 1984; Tamura and Lin,
1983; Youd et al., 1985; Andrus et al., 1986; and Evans and Harder, 1993). As a result,
evaluation of liquefaction potential of gravels and gravely soils has become a high priority in the
geotechnical seismic engineering community. In recent years, the liquefaction behavior of
gravels has been experimentally studied in the laboratory by several researchers (e.g., Nicholson
et al., 1993a and 1993b; Evans, 1992; Evans et al. 1992; Seed et al., 1989; Hynes, 1988; and
Benerjee et al. 1979). The liquefaction behavior of sand-gravel composites have been studied by
Evans and Zhou (1995), Siddigi (1984), Wang (1984) and Haga (1984). Evans and Zhou (1995)
concluded that the liquefaction resistance of sand-gravel composites increased significantly with
increasing gravel content. They also proposed a methodology to estimate the cyclic strength of
the composiie soil by testin;g, the sand fraction alone.

To date an understanding of the liquefaction behavior of stratified contractive undrained
sand-silt-gravel composites is lacking. In this study, the behavior of such soils was systematically
investigated considering the effect of gravel and silt content. Stratified soils exist in the field
where various soil types have been deposited through water by nature (alluvial, lacustrine,
marine deposits) or by man (hydraulic fills). It is known from past observations that these types

of soil deposits often experience liquefaction.




2. STATEMENT OF THE PROBLEM -
2.1 Background

Almost all laboratory seismic liquefaction studies have dealt with homogeneous soil
conditions only, although stratified fine soils exist for various soil deposits. A limited study of
behavior of layered silty sands was performed by Dobry and his coworkers (Vasquez-Herrera
and Dobry, 1989). After examination of the results for two different sample preparation
methods, namely moist tamping (representing homogeneous soil conditions) and sedimentation
(representing stratified soil conditions), they concluded that the behavior of layered and
homogeneous soils are not significantly different in terms of the triggering relationships, despite
the fact the sand fabric produced by these two methods was totally different. This observation
has been summarized by Marcuson, Hynes, and Franklin of U.S. Army Waterways Experiment
Station (Marcuson, et al., 1990).

In addition, the behavior of layered sand-silt soils have been recently studied using
centrifuge model tests (Fiegel and Kutter, 1992) through research projects sponsored by National
Science Foundation and the Naval Civil Engineering Laboratory. The layered soil model
consisted of fine sand and was overlain by a relatively impermeable silt. Pore-water pressures,
accelerations, and settlements were measured during the tésts. Results from the model tests
involving layered soils suggested that during liquefaction a water interlayer or very loose zone of
soil may develop at the sand-silt interface due to the difference in permeabilities. In the layered
tests, boils were observed on the surface of silt layer. These boils were concentrated in the
thinnest zones of the overlaying silt layer and provided a vent for the excess pore-water pressure
generated in the fine sand. No liquefaction flow failure was noted during centrifuge tests studies.
2.2 Objectives of the Proposed Study

The primary objective of this study was to compare the behavior of stratified and
homogeneous silt-sand-gravel composites during seismic liquefaction. Silt content in the range

of 0 to 50 percent, and two different gravel content (10% and 30%) have been considered.
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3. EXPERIMENTAL PROCEDURES
3.1 Soils Tested and Variables Studied

To accomplish the objectives of this study, silt, sand, and gravel were obtained from
commercial sources. The maximum size of gravel particles was 10 mm (3/8 in). The ratio of the
specimen diameter (2.8 in) to particle size (3/8 in) is approximately 7.5. A ratio of 6 to 8 is
usually required for accurate test results. Two series of gravely soils with different sand and silt
contents were used. Series 1 and 2 consisted of soils with 30% and 10% gravel, respectively.
The silt content for these series (percent passing No. 200 sieve) ranged from 0 to 50 percent.
The soils properties for the soils used during this study are shown in Tables 1a and 1b. The silt-
sand-gravel mixtures were prepared by mixing appropriate amounts of Ottawa 20-30 sands,
gravel, and low plasticity silt. The silts had a liquid limit of approximately 35, and a plasticity
index of about 13. The grain size distribution curves for the soils are shown in Figures 1a and
1b. The target relative density was 50%. In this study, soil specimens were isotropically
consolidated under a confining pressure of 100 Kpa. The term “liquefaction” as used in this
report refers to the state in soils where the effective pressure has decreased and reached zero,
shifting all of the confining pressure to the pore water. Because the gravel content was relatively
low, no membrane correction was considered as part of this study (Evans, et al., 1992).
3.2 Equipment |

For the purpose of performing the stress-controlled cyclic triaxial tests, the Automated
Triaxial Testing System, developed by C. K. Chan, was used (Li, et al., 1988). A schematic of
the Automated Triaxial Testing System at the University of the District of Columbia is shown in
Figure 2, and a photograph of a soil sample after liquefaction is shown in Figure 3. This system
is capable of performing both static and dynamic testing. In the automated system the computer
programmed electronic signals for frequency and magnitude of loading are applied to an electro-

pneumatic transducer that then controls pneumatic amplifiers for the application loading. Two




Table 1a. Properties of Soils Tested — Series 1

Group Percent Percent Percent G, Ds Ci  Ymax Ymin (pcf)
Gravel  Silt * Sand (mm) (pef)

1A 30 0 70 2.63 0.70 1 116.2 107.0

1B 30 25 45 2.63 0.70 60 133.8 101.7

1C 30 50 20 - 262 0.60 310 127.2 76.6

Percent finer

*Silt : LL=35 PI=13

100
oo ||
N
60 \" Group 1C
S
N\
40 N
Group 1B
\ \
20 \\ N
| AN
\ Group 1A "“~~;\
0 [ 1l [
10 1 0.1 0.01 0.001 0.0001

Grain Diameter (mm)

Figure 1a. Grain Size Distribution for Soils Tested — Series 1




Percent finer

Table 1b. Properties of Soils Tested — Series 2

Group Percent Percent Percent G; Dso Cu  Ymax Ymin (pef)
Gravel  Silt * Sand (mm) (pef)
2A 10 0 90 2.64 0.70 1 110.1 101.0
2B 10 25 65 2.63 0.70 60 1214 90.8
2C 10 50 40 2.63 0.60 310 1173 73.7
*Gilt : LL=35 PI=13
100 \
N\
et
80
60 Group 2C
\\
40 N
Group 2B
20 D \\
| n g
Group 2A T #
0 . .
10 1 0.1 0.01 0.001 0.0001

Figure 1b. Grain Size Distribution for Soils Tested — Series 2
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Figure 2. Schematic of the Automated Triaxial Testing System at the University of the District
of Columbia




Figure 3. Photograph of Soil Specimen After Liquefaction




control channels allow the independent and synchronized adjustment of the axial load and
chamber pressure. The computer controls the whole system, receiving and storing the real time
data in its memory and issuing control signals to conduct the required tests. The software
includes a number of applications, such as back pressure saturation, consolidation, shear loading,
and cyclic loading.

3.3 Methods of Sample Preparation

Two methods of sample preparation were utilized for each soil type. These methods
included moist tamping (representing homogeneous soil conditions) and the wet pluviation
(representing layered soil conditions). The methods are described below. |

The first method was the moist tamping using an undercompaction procedure (Ladd,
1977; Ladd 1978) which simulated a homogeneous soil condition. The procedure incorporated a
tamping method of compacting moist soils in layers. Each successive layer was compacted to an
increased percentage of the required unit weight of the specimens. The procedure consisted of
pouring increasing amounts of soils (by weight) for constant height successive layers. Using this
method, the compaction of each succeeding layer could further densify the sand below it, and
therefore a uniform specimen was obtained. To avoid densification, water was added to give the
sample strength through capillary stresses. The soil mixtures were usually poured in layers and
tamped using specified weights.

The second method involved the use of wet pluviation (sedimentation) procedure to
simulate layered soil conditions. Using this method, the mold with a stretched membrane was
filled with deaired water. Soil layers (typically seven layers) were then constructed by pouring
equal weights of soil and waiting for at least one hour for sedimentation. Because of the different
settling rates of coarse and fine grains, the most coarse-grained portion settles at the bottom and
grades to fines at the top within éach layer. Specimens with varying void ratios could be

prepared by this method.




4. RESULTS
4.1 Effect of Silt Content

The effect of silt content on the liquefaction behavior is shown in Figures 4 through 7.
The liquefaction resistance of silty sands generally increased with increasing silt content for both
uniform and layered soils conditions and for different gravel contents. For homogeneous soils in
series 1 (30% gravel), a change in silt content from 25 to 50 % caused a 23% increase in the
cyclic stress ratio causing liquefaction in 10 cycles. The same change in silt content caused a
16% increase in homogeneous samples of series 2 (10% gravel). The results of this study is in
general agreement with previous results for uniform soils that the presence of fine contents
generally increases the liquefaction resistance (e.g., Chang, 1987; Kaufman, et al 1982; and
Yeh, 1981). As the silt content increases, sand particles are increasingly surrounded by silt, and
the sand-grain-to-sand-grain (or gravel) contact decreases. As a result, the specimen behavior
becomes somewhat more similar to silty soils. It should also be noted that although the effect of
increase in silt content is to increase the liquefaction resistance, for the whole system, taking into
account such factors as redistribution of void ratios, and pore water pressure migration, the silt
content effect may be different from that of a given specimen. The results of this study also
indicate that the effects of silt content are similar for both homogeneous and layered soils.
4.2 Comparison Between Layered and Uniform Soil Conditions

Examples of comparison between the liquefaction behavior of layered and uniform soils are
shown in Figure 8 through 13 for series 1A through 1C (30% gravel content) and 2A through 2C
(10 % gravel content). The comparison is shown in Figures 14 through 15, as a function of silt
content. The results generally indicated that the liquefaction resistance of layered and uniform
soils was not significantly different, despite the fact that the soil fabric produced by the two
methods of sample preparation was totally different. This behavior was observed under a wide
range of silt contents. For soils of series 1 (30% gravel), the difference in resistance to

liquefaction between layered and uniform soils decreased as the number of cycles increased. For
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soils of series 2 (10% gravel), the net difference in resistance was almost constant resulting in
parallel (Stress Ratio vs. Number of Cycles) curves. The highest difference in cyclic stress ratio
causing liquefaction after 10 cycles was approximately 20%, and was observed in soils of Group
1A (30% gravel, 70% sand).

Examples of pore water pressure buildup curves for the layered and uniform soil conditions
are shown in Figure 16 and 17, and the complete data for these examples are shown in Appendix
II. As shown in Figures 16 and 17, the pore water pressure buildup curves for the two methods
of sample preparation are similar. The pore water pressure buildup characteristics and
liquefaction resistance of the silty sandy gravely soils are not significantly affected by the fabric
of soil specimen. In layered soils, the permeability in horizontal direction is significantly higher
than the vertical permeability. This also implies that excess pore water pressure will extend faster
in the horizontal direction than a vertical direction. In addition, results using centrifuge model
tests suggest that during liquefaction a water interlayer or very loose zone of soil may develop at
the sand-silt interface due to the difference in permeabilities. Nevertheless, this similarity
between behavior of homogeneous and layered soils was observed for a range of silt and gravel
contents. It should also be noted that although the uniform and layered specimens may have
similar pore water pressure buildup characteristics, the one than can expel more water to the
surrounding soils is more hazardous if we consider the entire soil system. Additional research is
therefore required to shed further light and to clarify the amounts of water generated by
reconsolidation of the uniform and layered complex system of these silty sandy gravely soils.
Furthermore, investigation of microstructural features of stratified soils and their relations to the
dynamic macro behavior will help to provide further understanding of behavior of the layered
soils. New research should cover a wide range of variables including confining pressures, gravel

contents, and anisotropic soil conditions.
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5. CONCLUSIONS

A preliminary experimental program to study the behavior of layered soil conditions was
undertaken in which a total of fifty stress-controlled cyclic triaxial tests were performed on sand-
silt-gravel composites. The following primary conclusions were obtained as a result of this
study.
1. The liquefaction resistance of layered and uniform soils are not significantly different, despite
the fact that the soil fabric produced by the two methods of sample preparation is totally
different. This behavior was observed for silt content ranging from O to 50 percent, and gravel
content of 10 and 30 percent. This finding justifies applying the laboratory tests results to the
field conditions for the range of variable studied.
2. The increase in silt content (percent passing No. 200 sieve) causes the liquefaction resistance
of sand-silt-gravel mixtures to increase for both uniform and layered soil conditions.

More research is needed to confirm these findings for a wide range of variables including

confining pressures, gravel contents, and anisotropic soil conditions.
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APPENDIX II

EXAMPLES OF DATA: UNIFORM CONDITION. SOIL 2A:
10% GRAVEL, 25%SILT, 65% SAND.
EFFECTIVE CONFINING PRESSURE = 100 KPa; Dr = 50%
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EXAMPLES OF DATA: LAYERED CONDITION. SOIL 2A:
10% GRAVEL, 25%SILT, 65% SAND.
EFFECTIVE CONFINING PRESSURE = 100 KPa; Dr = 50%
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