
REPORT DOCUMENTATION PAGE
Public reportmq burden for this collection of information ii estimated to average I hour per response, including 1
aatherinq and maintaining the data needed, and completing and reviewing the collection ot information Send «
collection of information, including suggestions tor reducing this burden, to Washington Headquarters Services [
Davis Highway Suite 1204 Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork I

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

18 May 1998
3. REPORT i

FINAL

AFRL-SR-BL-TR-98-

t HIHL/ L/HltJ V.U¥tnLU

27 May 1997 - 26 May 199?

4. TITLE AND SUBTITLE

An Object-Oriented Toolbox for Distributed
Parameter Control Design With Application

to JSF —
6. AUTHOR(S)

Rajesh Bhaskaran (PI)
Kevin Long
Gal Berkooz

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Beam Technologies, Inc.
110 N. Cayuga
Ithaca, NY 14850

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR
110 Duncan Ave. Room B115
Boiling, AFB DC 20332 Orv '">

5. FUNDING NUMBERS

F49620-97-C-0025

8. PERFORMING ORGANIZATION
REPORT NUMBER

0002AA

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

0002AA

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

I rv > i

12b. DISTRIBUTION CODE

"vT^ÄSl'^rS. functional for an ^'"""l^Z^l
control desiRn and analysis of distributed parameter systems. The toolbox = ^-1».

P—our<^

^Ät£.Ä* -* a Bnite-element app^b™
r Tr PDF con rol problems (3) Interface with MATLAB providing access to MATLAB

LCate^r^ rrÄ:-:» by
g.«, —

finite-element code.

IO

14. SUBJECT TERMS

Distribution parameter systems
Control Design
Low-order controllers

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

11
16. PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01-280-5500
DTIC QUÄLET INSPECTED 9

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Beam Technologies, Inc. PROPRIETARY 2

1 Objectives

The overall goal of the Phase I effort was to develop the basic software framework for an
object-oriented toolbox for modeling, control design and analysis of distributed parameter
systems based on PDESOLVE, our C++ class library for simulating partial differential
equation (PDE) systems. Specific technical objectives are listed below:

1. Develop the capability to calculate the basic system matrices through spatial dis-
cretization of linear PDE control problems using the finite-element method.

2. Develop an interface with MATLAB to allow the user easy access to the control
methodologies in MATLAB such as LQG, Hoo and ^-synthesis.

3. Develop the capability to perform model order reduction at the PDE level by using
an appropriate eigenfunction family as the basis for the spatial discretization.

4. Develop the capability for simulating the open-loop and closed-loop response.

5. Demonstrate the Phase I product on a model PDE control problem.

2 Work Performed and Results

2.1 Approach

The approach taken in Phase I was to leverage PDESolve to rapidly develop the ability
to perform PDE-based control. PDESolve is a C++ (object-oriented) class library that
enables a high level expression of ordinary and partial differential equations, and interfaces
with real-world engineering tools such as CAD systems. PDESolve was extended with new
objects that are specific to control.

PDESolve is a new class of tool, offering mixed symbolic and numeric computing, open
C++ architecture, easy interface with engineering tools and the potential for scalable per-
formance. Existing tools such as MATLAB and Mathematica have some but not all of the
above characteristics. The reusability and flexibility that come with the object-oriented
and math-based architecture of PDESolve allows dramatically faster development of en-
gineering solutions. These solutions are often one to two orders of magnitude shorter in
terms of line count compared with programming in C or FORTRAN, and take accordingly
less time to develop. More than $4 million dollars have been invested in PDESolve and

related projects to date.

2.2 Results

In the Phase I effort, we have developed the core functionality for the control toolbox and
applied it to various PDE control problems, thus demonstrating the technical feasibility
of the proposed Phase II effort. The main accomplishments in Phase I are listed below:

1. High-level specification of PDE control problem

2. Calculation of system matrices

3. Interface with MATLAB providing access to MATLAB functionality from within
the control toolbox

DUG QUALITY KSPE0T1B 9

Beam Technologies, Inc. PROPRIETARY 3

4. Simulation of open and closed-loop response

5. Demonstrations on model PDE problems in heat and vibration attenuation

6. Model reduction at the PDE level using the modal basis

Each of the above items is discussed in detail below. This discussion is illustrated using a
simple physical example. Let U(t, x, y) be the temperature distribution in a thin, homoge-
neous plate. The objective is to regulate the temperature of the plate using a distributed
actuator u(t,x,y) that can source and sink heat. The optimal control problem can be
stated as follows: Find the control u that minimizes the performance index

J(u)= f r {\y(t,x,y)\2 + R\u(t,x,y)\2}dtdxdy (1)

subject to the PDE system

at ~ k{dx* + dy*)+U

y = U (3)
U(t,0,y) = U(t,20,y) = U(t,x,0) = U(t,x,20) = 0 (4)

/ 2 8 ^ x ^ 12' 8 ^ y ^ 12 (5)
U{Q,x,y) - < 0 everywhere else

where y(t,x,y) is the observed variable (a distributed sensor).

High-level specification of PDE control problem

We have developed the capability to specify the PDE control problem at the continuous
level. Since we use the finite-element method for spatial discretization, the problem is
input into the toolbox in the weak form which for eqs. (2)-(3) is given by

f ®£-vdtt + k [VU-VvdSl- f ^vdT- [uvdu = 0 (6)

(y - U) dÜ = 0 (7) /
Jn

where v is the test function. Since the boundary conditions are Dirichlet, the underlined
term is evaluated using Lagrange multipliers and is set to

f ^LvdT= f XvdT+ f SXUdT
Jr dn Jr Jr

(8)

5X and v being linearly independent test functions. The above weak form can be input
directly into the toolbox as shown in the code segment below.

Function U(2, Scalar); // Unknown function
Function v(2, Scalar, VARIATIONAL); // Test function
Function lambda(2, Scalar); // Constraint dofs
Function varLambda(2, Scalar, VARIATIONAL); // Constraint test func
Function uControl(2, Scalar); II Control variable
Function y(2, Scalar); // sensor variable
Real kDiffusion = 0.25;

Beam Technologies, Inc. PROPRIETARY

II Form cell complex and FE mesh using third-party mesher.
CellComplex cc = rectMeshGen(nx, ny, 0.0, 20.0, 0.0, 20.0);

FEMesh mesh(cc, 2);

// Weak formulation of the PDE.
Equations w(mesh);
w = Integral(v*(dt*U) + kDiffusion*(grad*U)*(grad*v))

- Integral(uControl*v);
//Weak formulation of the sensor equation.
Equations s(mesh);
s = Integral(v*y - v*U);

// Impose essential (Dirichlet) boundary conditions using Lagrange

// multipliers
w["x=0"] = lambda*v + varLambda*U;
w["x=L"] = lambda*v + varLambda*U;
w["y=0"] = lambda*v + varLambda*U;
w["y=L"] = lambda*v + varLambda*U;

Note the one-to-one correspondence between the weak form and its specification in the

control toolbox.
If instead of the above continuously distributed control, we had actuators at specified

locations on the plate, we would identify the actuator locations with labels while gener-
ating the geometry/cell-complex. We then apply the control term only over the region
represented by the actuator labels as shown below:

w = Integral(v*(dt*U) + kDiffusion*(grad*U)*(grad*v))
- Integral("actuator", uControl*v);

where the location of heat source/sink is identified by the label "actuator".

Calculation of system matrices

The discrete control problem on the given finite-element mesh is formed using the
ControlProblem class and the system matrices are obtained using the getMatrices
method on it as shown in the following code excerpt:

ControlProblem problem(mesh, dt, w, s, List(U,lambda), List(v.varLambda),
uControl, y);

DenseMatrix A;
DenseMatrix B;
DenseMatrix C;
problem.getMatrices(A, B, C);

The arguments passed to the ControlProblem constructor are the finite-element mesh
mesh, the time derivative dt to indicate the time direction, the weak form of the governing
equations w and s, the list of unknown functions List(U,lambda), the corresponding
list of variational functions List(v.varLambda), the control variable uControl and the
sensor variable y. Most of this is specific to LQR problems and was done to simplify the
description of the problem; a D matrix and a partition of B and C will be necessary for

general control problems.

Beam Technologies, Inc. PROPRIETARY

Interface with MATLAB

We have built an interface to MATLAB that allows easy access to all of MATLAB's
capabilities from within our control toolbox. Users can perform optimal control design
(LQG, "Hoo, /i-synthesis, C\ optimal control etc.), plant and controller model reduction,
simulate the designed controller on the discretized plant, and in general, perform arbitrary
MATLAB operations based on the system information passed along through the interface.

The software architecture of the interface is interprocess communication (IPC). The
MATLAB process and the toolbox operate as two separate processes, possibly running
on different machines. Data is passed between them via IPC and a C-language interface
provided by Mathworks Inc. Several C++ wrapper classes to the C-language interface
have been implemented, in order to simplify use and provide a consistent interface with
our data types. The resulting system allows both applications to operate on data in their
native formats, resulting in a highly efficient system.

In the heat control example considered above, the feedback gains are calculated us-
ing the lqry function in MATLAB which performs linear-quadratic regulator design for
continuous-time systems. The syntax for using the lqry function is

K = lqry(SYS,Q,R)

where SYS is the continuous-time system, K is the optimal gain matrix such that the
state-feedback law u = -KU minimizes the cost function

J(u) = f°° {y
TQy + uTRu] dt (9)

In the above, y(t) and u(t) are spatially discretized versions of y(t, x, y) and u(t, x, y). The
following code segment illustrates the calculation of the gain matrix using the MATLAB
interface:

//Start a MATLAB process on remote machine and display output on
//local machine:
MatlabShell matlab("rsh redfish matlab5 -display seneca:0.0");
//Transfer A and B matrices to MATLAB:
matlab.put(A, "A"); // Pass matrix to MATLAB, associate it with name "A"
matlab.put(B, "B"); // Pass matrix to MATLAB, associate it with name "B"
//Calculate gain in MATLAB.
matlab.evalC'sys = ss(A, B, C, 0);"); //Form continuous-time system
int nSens = C.numberOfRows(); //Number of sensors
int nAct = B.numberOfCols(); //Number of actuators
char cmdStrClOO];
sprintfCcmdStr, "K=-lqry(sys, eye('/.d), 0.1*eye('/.d)) ;", nSens, nAct);
matlab.eval(cmdStr);
matlab.evalC'save K");
//Import gain from MATLAB.

DenseMatrix gain;

matlab. get (gain, "K");

Note that in matlab. eval (...), the part within the parentheses is what the user would
normally type in within MATLAB. The output weighting matrix Q has been set to identity
and the control weighting matrix R has been set to 0.1 times identity. Alternately, an
interactive MATLAB shell can be opened using

Beam Technologies, Inc. PROPRIETARY 6

matlab.interact();
and the feedback gain calculated interactively:
> K = -lqry(sys, eye(nSens), 0.1*eye(nAct))

Simulation of open and closed-loop response

We have implemented the capability to simulate open-loop and closed-loop response using
the openLoopSolve and closedLoopSolve methods on the ControlProblem class. The
use of these methods for the heat control example being considered is shown below. Note
that the feedback gains are calculated in MATLAB as discussed earlier.

//Specify time stepping:
TimestepSpec step(initialTime, finalTime, nSteps);

// Simulate open-loop response:
Array<Function> solnOpen = problem.openLoopSolve(uO, step,

BackwardsEulerO, Filter(filterFunc));

//Ouput in MATLAB movie format:
outputAnimate("openLoop", animateTimeSeries(solnOpen));

//Simulate closed-loop response with the previously calculated gain:
Array<Function> solnClosed = problem.closedLoopSolve(gain, uO, step,

BackwardsEulerO, Filter(filterFunc));

//Ouput in MATLAB movie format:
outputAnimate("closedHeat2D", animateTimeSeries(solnClosed));

// Output L2Norm(T) vs time.
ofstream of("L2norm.dat");
for (int i=0; i<solnOpen.length(); i++) {
of « i « " " « 12Norm(soln0pen[i]) «

" " « 12Norm(solnClosed[i]) « endl;

}

The arguments to closedLoopSolve are the gain, the discretized initial condition uO,
the time-step specification step, the integration method BackwardsEuler and the output
filter Filter (filterFunc). The discretized form of the initial condition (5) is generated

with the following code:

Function uO(2, Scalar, uOFunc);
FEDiscretizer disc(mesh);
uO = disc.discretize(uO); //Discretize uO on mesh

with the function definition for uOFunc being given by

Real uOFunc(const Coordsfe x) {
if (x[0] >= 8 && x[0] <= 12 &fc x[l] >= 8 && x[l] <= 12)

return 2.;
else

return 0.;

}

Beam Technologies, Inc. PROPRIETARY

Natural BCs Natural BCs

BCs: u = 0

Figure 1: Schematic of the plane vibration demonstration problem. The control variable
is axy over the diamond-shaped region in the center.

The output filter allows any general mathematical operation to be performed on the so-
lution field at each time-step and only the result from applying the filter is stored. This
provides the user with the flexibility of storing only pertinent data (say, for example, the
solution at certain critical points).

Demonstration on model problem: LQR control of plate vibration

We next demonstrate our code on the LQR control of the vibration of a plate. We model
planar motion of a thin square plate using the plane stress approximation. The system is
controlled by a stress actuator on a square at the center as shown in Figure 1; the control
parameter is the xy component of the stress at the actuator.

The weak form with respect to a test function v of the governing equation is

/ pv • üdü + /
Jo. Jn

7v-üdü+ / cr-8edü+ / -
Jn Ja*

V
dSvx dvy

dy dx
dQ, = 0 (10)

We impose the constraint u = 0 at the surface y = 0, and assume natural boundary
conditions at all other surfaces. The plate is initially displaced in the plane as shown in
Figure 2; the initial velocity field is zero everywhere.

Time series for the open and closed loop solutions are shown in Figure 3.
Fragments of the code used to solve this problem are presented below. For brevity,

we have edited out some initialization code, the calls to the MATLAB interface, and
PDESOLVE postprocessing steps; that code is similar to that in the heat equation example
above. Note that although the dynamic elasticity equations are considerably more complex
that the heat equation, the overall structure of the code is nearly as simple as in the heat
equation example.

// geometry initialization code deleted for brevity.
// We have created a cell complex with labeled actuators.

Beam Technologies, Inc. PROPRIETARY

-0.4 -0.2 0.2 0.4 0.6 0.8 1

Figure 2: Initial displacement of the elastic plate. The initial velocity is zero.

2.5» 1 1 1 1 1 1 ' '

2 1

o°°On

°OOo** °
* * o o * u

» # *
. o * o #.

** **** %
O o t,

o O
o

o o open loop
* * closed loop

0o°OO0°0

» ° °
* ****** o °

*. V***
* 8* ** *****
» . ******

n| i i l I 1 1 ^J 1 *^-l '
0 123456789 10

Figure 3: Time evolution of L2 norm of displacement field for open loop and closed loop
solutions of the plate vibration control problem.

Beam Technologies, Inc. PROPRIETARY

FEMesh mesh(cc, 2);

DiffOp dx(l,0)

DiffOp dy(l,l)
DiffOp dt(l,2)

DiffOp dtt(2,2);

Function u(2,Tensor(2,l)); // displacement field
Function v(2,Tensor(2,l).VARIATIONAL); // test function
Function lagr(2.Tensor(2,1)); // lagrange multiplier for BCs
Function varLagr(2,Tensor(2,1).VARIATIONAL); // test function for BCs
Function z(2, Scalar); // control variable

Real damp =0.05; // damping constant

Real mu = E/(2.0*(l+nu)); // Lame' constants

Real lambda = E*nu/((l+nu)*(l-2*nu));

// form stress-strain relation

Tensor material(3,2);
material = List(List(lambda+2*mu, lambda, 0),

Listdambda, lambda+2*mu, 0),

List(0, 0, mu));

Expr strainDisp = List(List(dx,0), List(O.dy), List(dy, dx));

Expr strain = strainDisp * u;

Expr varStrain = strainDisp * v;

Expr stress = material * strain;

// set up weak form of equations

Equations w(mesh);
w = Integral(v*dtt*u + 0.05*v*dt*u + stress*varStrain) +

Integral("actuator", v*dtt*u + 0.05*v*dt*u + stress*varStrain +

z*(dx*v[l] + dy*v[0]));

// variational enforcement of dirichlet BCs

w["y=0"]= lagr*v + varLagr*u;

// assemble control problem
ControlProblem problem(mesh, dt, w, List(u.lagr), List(v,varLagr), z);

// form discrete initial conditions
Function uO(2, Tensor(2,l), initPosFunc);

FEDiscretizer disc(mesh);

uO = disc.discretize(uO);
Function vO(2, Tensor(2,l), initVelFunc);

vO = disc.discretize(vO);

Beam Technologies, Inc. PROPRIETARY 10

//
// calls to matlab deleted for brevity.
// see the first example in this section for matlab interface example code.

//

TimestepSpec step(0.0, 10.0, 60);
Array<Function> solnOpen = problem.openLoopSolve(List(uO,vO),

step, BackwardsEuler());

Array<Function> solnClosed = problem.closedLoopSolve(gain, List(uO.vO),

step, BackwardsEuler());

// postprocessing and animation calls deleted for brevity

}

Model reduction at the PDE level using the modal basis

The examples presented so far have used a finite-element discretization of the PDE. That
is acceptable for control of small demonstration problems, but for real-world PDE control
problems the number of degrees of freedom becomes prohibitively large. A useful alter-
native is to represent the system in terms of a small, dynamically meaningful set of basis
functions such as an eigenmode decomposition or a proper orthogonal decomposition. De-
termination of an appropriate set of functions through an eigenmode analysis or POD is
itself a computationally intensive problem, but once done, it allows the control designer

to work with a far simpler system.
We have implemented the infrastructure needed to perform dimension reduction via a

modal representation. In the example below, we consider control of the heat equation on a
2D square. Control is accomplished by four point source actuators inside the square. We
represent the solution by the 16 lowest frequency modes on that domain; we obtain those
modes though a finite-element analysis using PDESOLVE. Using the same finite-element
mesh to do the controls problems results in a system with 225 degrees of freedom; the
modal representation has reduced that to 16.

The changes in user code needed to switch from a full FE model to a modal represen-
tation are minimal. As shown in the code fragment below, essentially the only changes are
(a) to use a SpectralMesh rather than an FEMesh object, and (b) the boundary conditions
are built into the modes and are thus not needed in the modal calculation. The boundary
conditions were of course used in the computation of the modes.

// initialization omitted; mode computation shown below

SpectralMesh mesh(modes);

Equations w(mesh);

w = Integral(v*(dt*u) + (grad*u)*(grad*v)) + IntegralC'actuator", z*v) ;

ControlProblem problem(mesh, dt, w, u, v, z);

// matlab calls, ODE solution, and postprocessing omitted

Beam Technologies, Inc. PROPRIETARY 11

*►

£5
3

E .
« 4

z

a3

-i ' '—:—' i i ■ ■

o
o

* o

»*
* *
**

* '

o o open loop
* * closed loop (modal)
* * closed loop (FE)

* * *

'Oo °0 Oo Oo

11 * * « f t»»»«««»»».
2 3 4 5 6

time
9 10

Figure 4: Comparison of full FE and reduced-dimension models of heat equation. Plotted
are times series for L2 norm of temperature for open loop and closed loop as solved with

FE and modal methods.

In Figure 4 we show results for both the reduced-dimension model and the full FE
simulation of the point-actuator controlled heat equation example. The open-loop solu-
tions are indistinguishable in the plot. The closed-loop solutions with the two methods
compare well; the differences are explained by the inability of the truncated modal basis
to exactly represent the effect of point source terms.

We next present a code sample showing the mode computation in PDESOLVE. The
PDESOLVE code sets up a general linear eigensystem that is then solved using the
ARPACK family of iterative eigensolver routines. This, together with the control code,
totals to under one hundred lines of user code for specification and solution of a dimension-
reduced PDE control problem.

// initialization code omitted

DiffOp dx(l,0);
DiffOp dy(l.l);

Expr grad = List(dx.dy);

Function u(dim,Scalar);
Function v(dim,Scalar,VARIATIONAL);

Function invAlpha(dim, Scalar);

Function lambda(dim, Scalar);
Function varLambda(dim,Scalar,VARIATIONAL);

FEMesh feMesh(cc,order);

Equations heatModeEqn(feMesh);

Beam Technologies, Inc. PROPRIETARY 12

heatModeEqn = Integral(invAlpha*(grad*u)*(grad*v) + u*v) ;

heatModeEqn["x=0"] = varLambda*u + lambda*v;

heatModeEqn["x=L"] = varLambda*u + lambda*v;

heatModeEqnC"y=0"] = varLambda*u + lambda*v;

heatModeEqn["y=L"] = varLambda*u + lambda*v;

EigenProblem eigen(mesh, heatModeEqn, List(u, lambda),
List(v, varLambda), invAlpha, ConstrainedARPACKSym(EIG_LARGEST, 16));

Array<Function> modes(0);

Array<Real> eigenvalues(0);

eigen.solve(eigenvalues, modes);

3 Personnel Involved

Dr. Gal Berkooz
Dr. Rajesh Bhaskaran
Dr. Kevin Long

4 Publications

None.

