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1 Objectives 

The overall goal of the Phase I effort was to develop the basic software framework for an 
object-oriented toolbox for modeling, control design and analysis of distributed parameter 
systems based on PDESOLVE, our C++ class library for simulating partial differential 
equation (PDE) systems. Specific technical objectives are listed below: 

1. Develop the capability to calculate the basic system matrices through spatial dis- 
cretization of linear PDE control problems using the finite-element method. 

2. Develop an interface with MATLAB to allow the user easy access to the control 
methodologies in MATLAB such as LQG, Hoo and ^-synthesis. 

3. Develop the capability to perform model order reduction at the PDE level by using 
an appropriate eigenfunction family as the basis for the spatial discretization. 

4. Develop the capability for simulating the open-loop and closed-loop response. 

5. Demonstrate the Phase I product on a model PDE control problem. 

2 Work Performed and Results 

2.1 Approach 

The approach taken in Phase I was to leverage PDESolve to rapidly develop the ability 
to perform PDE-based control. PDESolve is a C++ (object-oriented) class library that 
enables a high level expression of ordinary and partial differential equations, and interfaces 
with real-world engineering tools such as CAD systems. PDESolve was extended with new 
objects that are specific to control. 

PDESolve is a new class of tool, offering mixed symbolic and numeric computing, open 
C++ architecture, easy interface with engineering tools and the potential for scalable per- 
formance. Existing tools such as MATLAB and Mathematica have some but not all of the 
above characteristics. The reusability and flexibility that come with the object-oriented 
and math-based architecture of PDESolve allows dramatically faster development of en- 
gineering solutions. These solutions are often one to two orders of magnitude shorter in 
terms of line count compared with programming in C or FORTRAN, and take accordingly 
less time to develop. More than $4 million dollars have been invested in PDESolve and 

related projects to date. 

2.2 Results 

In the Phase I effort, we have developed the core functionality for the control toolbox and 
applied it to various PDE control problems, thus demonstrating the technical feasibility 
of the proposed Phase II effort. The main accomplishments in Phase I are listed below: 

1. High-level specification of PDE control problem 

2. Calculation of system matrices 

3. Interface with MATLAB providing access to MATLAB functionality from within 
the control toolbox 

DUG QUALITY KSPE0T1B 9 
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4. Simulation of open and closed-loop response 

5. Demonstrations on model PDE problems in heat and vibration attenuation 

6. Model reduction at the PDE level using the modal basis 

Each of the above items is discussed in detail below. This discussion is illustrated using a 
simple physical example. Let U(t, x, y) be the temperature distribution in a thin, homoge- 
neous plate. The objective is to regulate the temperature of the plate using a distributed 
actuator u(t,x,y) that can source and sink heat. The optimal control problem can be 
stated as follows: Find the control u that minimizes the performance index 

J(u)= f  r {\y(t,x,y)\2 + R\u(t,x,y)\2}dtdxdy (1) 

subject to the PDE system 

at    ~   k{dx* + dy*)+U 

y   =   U (3) 
U(t,0,y)   =   U(t,20,y) = U(t,x,0) = U(t,x,20) = 0 (4) 

/ 2   8 ^ x ^ 12' 8 ^ y ^ 12 (5) 
U{Q,x,y)   -   <  0 everywhere else 

where y(t,x,y) is the observed variable (a distributed sensor). 

High-level specification of PDE control problem 

We have developed the capability to specify the PDE control problem at the continuous 
level. Since we use the finite-element method for spatial discretization, the problem is 
input into the toolbox in the weak form which for eqs. (2)-(3) is given by 

f ®£-vdtt + k [ VU-VvdSl- f ^vdT- [ uvdu = 0 (6) 

(y - U) dÜ = 0 (7) / 
Jn 

where v is the test function. Since the boundary conditions are Dirichlet, the underlined 
term is evaluated using Lagrange multipliers and is set to 

f ^LvdT= f XvdT+ f SXUdT 
Jr dn Jr Jr 

(8) 

5X and v being linearly independent test functions. The above weak form can be input 
directly into the toolbox as shown in the code segment below. 

Function U(2,  Scalar);  // Unknown function 
Function v(2,  Scalar, VARIATIONAL);  // Test function 
Function lambda(2, Scalar);  // Constraint dofs 
Function varLambda(2, Scalar, VARIATIONAL); // Constraint test func 
Function uControl(2, Scalar);  II Control variable 
Function y(2, Scalar); // sensor variable 
Real kDiffusion = 0.25; 
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II Form cell complex and FE mesh using third-party mesher. 
CellComplex cc = rectMeshGen(nx, ny, 0.0, 20.0, 0.0, 20.0); 

FEMesh mesh(cc, 2); 

// Weak formulation of the PDE. 
Equations w(mesh); 
w = Integral(v*(dt*U) + kDiffusion*(grad*U)*(grad*v)) 

- Integral(uControl*v); 
//Weak formulation of the sensor equation. 
Equations s(mesh); 
s = Integral( v*y - v*U); 

// Impose essential (Dirichlet) boundary conditions using Lagrange 

// multipliers 
w["x=0"] = lambda*v + varLambda*U; 
w["x=L"]  = lambda*v + varLambda*U; 
w["y=0"]  = lambda*v + varLambda*U; 
w["y=L"]  = lambda*v + varLambda*U; 

Note the one-to-one correspondence between the weak form and its specification in the 

control toolbox. 
If instead of the above continuously distributed control, we had actuators at specified 

locations on the plate, we would identify the actuator locations with labels while gener- 
ating the geometry/cell-complex. We then apply the control term only over the region 
represented by the actuator labels as shown below: 

w = Integral(v*(dt*U) + kDiffusion*(grad*U)*(grad*v)) 
- Integral("actuator", uControl*v); 

where the location of heat source/sink is identified by the label "actuator". 

Calculation of system matrices 

The discrete control problem on the given finite-element mesh is formed using the 
ControlProblem class and the system matrices are obtained using the getMatrices 
method on it as shown in the following code excerpt: 

ControlProblem problem(mesh, dt, w,  s, List(U,lambda), List(v.varLambda), 
uControl, y); 

DenseMatrix A; 
DenseMatrix B; 
DenseMatrix C; 
problem.getMatrices(A, B, C); 

The arguments passed to the ControlProblem constructor are the finite-element mesh 
mesh, the time derivative dt to indicate the time direction, the weak form of the governing 
equations w and s, the list of unknown functions List(U,lambda), the corresponding 
list of variational functions List(v.varLambda), the control variable uControl and the 
sensor variable y. Most of this is specific to LQR problems and was done to simplify the 
description of the problem; a D matrix and a partition of B and C will be necessary for 

general control problems. 
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Interface with MATLAB 

We have built an interface to MATLAB that allows easy access to all of MATLAB's 
capabilities from within our control toolbox. Users can perform optimal control design 
(LQG, "Hoo, /i-synthesis, C\ optimal control etc.), plant and controller model reduction, 
simulate the designed controller on the discretized plant, and in general, perform arbitrary 
MATLAB operations based on the system information passed along through the interface. 

The software architecture of the interface is interprocess communication (IPC). The 
MATLAB process and the toolbox operate as two separate processes, possibly running 
on different machines. Data is passed between them via IPC and a C-language interface 
provided by Mathworks Inc. Several C++ wrapper classes to the C-language interface 
have been implemented, in order to simplify use and provide a consistent interface with 
our data types. The resulting system allows both applications to operate on data in their 
native formats, resulting in a highly efficient system. 

In the heat control example considered above, the feedback gains are calculated us- 
ing the lqry function in MATLAB which performs linear-quadratic regulator design for 
continuous-time systems. The syntax for using the lqry function is 

K = lqry(SYS,Q,R) 

where SYS is the continuous-time system, K is the optimal gain matrix such that the 
state-feedback law u = -KU minimizes the cost function 

J(u) = f°° {y
TQy + uTRu] dt (9) 

In the above, y(t) and u(t) are spatially discretized versions of y(t, x, y) and u(t, x, y). The 
following code segment illustrates the calculation of the gain matrix using the MATLAB 
interface: 

//Start a MATLAB process on remote machine and display output on 
//local machine: 
MatlabShell matlab("rsh redfish matlab5 -display seneca:0.0"); 
//Transfer A and B matrices to MATLAB: 
matlab.put(A,   "A");  // Pass matrix to MATLAB,  associate it with name  "A" 
matlab.put(B,   "B");  // Pass matrix to MATLAB, associate it with name "B" 
//Calculate gain in MATLAB. 
matlab.evalC'sys = ss(A, B, C,  0);");  //Form continuous-time system 
int nSens = C.numberOfRows(); //Number of sensors 
int nAct = B.numberOfCols(); //Number of actuators 
char cmdStrClOO]; 
sprintfCcmdStr,  "K=-lqry(sys,  eye('/.d),  0.1*eye('/.d)) ;", nSens,  nAct); 
matlab.eval(cmdStr); 
matlab.evalC'save K"); 
//Import gain from MATLAB. 

DenseMatrix gain; 

matlab. get (gain, "K"); 

Note that in matlab. eval (...), the part within the parentheses is what the user would 
normally type in within MATLAB. The output weighting matrix Q has been set to identity 
and the control weighting matrix R has been set to 0.1 times identity. Alternately, an 
interactive MATLAB shell can be opened using 
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matlab.interact(); 
and the feedback gain calculated interactively: 
> K = -lqry(sys, eye(nSens), 0.1*eye(nAct)) 

Simulation of open and closed-loop response 

We have implemented the capability to simulate open-loop and closed-loop response using 
the openLoopSolve and closedLoopSolve methods on the ControlProblem class. The 
use of these methods for the heat control example being considered is shown below. Note 
that the feedback gains are calculated in MATLAB as discussed earlier. 

//Specify time stepping: 
TimestepSpec step(initialTime, finalTime, nSteps); 

// Simulate open-loop response: 
Array<Function> solnOpen = problem.openLoopSolve(uO, step, 

BackwardsEulerO, Filter(filterFunc)); 

//Ouput in MATLAB movie format: 
outputAnimate("openLoop", animateTimeSeries(solnOpen)); 

//Simulate closed-loop response with the previously calculated gain: 
Array<Function> solnClosed = problem.closedLoopSolve(gain, uO,  step, 

BackwardsEulerO, Filter(filterFunc)); 

//Ouput in MATLAB movie format: 
outputAnimate("closedHeat2D", animateTimeSeries(solnClosed)); 

// Output L2Norm(T) vs time. 
ofstream of("L2norm.dat"); 
for (int i=0; i<solnOpen.length(); i++) { 
of « i « " " « 12Norm(soln0pen[i]) « 

" " « 12Norm(solnClosed[i]) « endl; 

} 

The arguments to closedLoopSolve are the gain, the discretized initial condition uO, 
the time-step specification step, the integration method BackwardsEuler and the output 
filter Filter (filterFunc). The discretized form of the initial condition (5) is generated 

with the following code: 

Function uO(2,  Scalar, uOFunc); 
FEDiscretizer disc(mesh); 
uO = disc.discretize(uO); //Discretize uO on mesh 

with the function definition for uOFunc being given by 

Real uOFunc(const Coordsfe x)  { 
if ( x[0]   >= 8 && x[0]   <= 12 &fc x[l]  >= 8 && x[l]   <= 12) 

return 2.; 
else 

return 0.; 

} 
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Natural BCs Natural BCs 

BCs: u = 0 

Figure 1: Schematic of the plane vibration demonstration problem. The control variable 
is axy over the diamond-shaped region in the center. 

The output filter allows any general mathematical operation to be performed on the so- 
lution field at each time-step and only the result from applying the filter is stored. This 
provides the user with the flexibility of storing only pertinent data ( say, for example, the 
solution at certain critical points). 

Demonstration on model problem: LQR control of plate vibration 

We next demonstrate our code on the LQR control of the vibration of a plate. We model 
planar motion of a thin square plate using the plane stress approximation. The system is 
controlled by a stress actuator on a square at the center as shown in Figure 1; the control 
parameter is the xy component of the stress at the actuator. 

The weak form with respect to a test function v of the governing equation is 

/ pv • üdü + / 
Jo. Jn 

7v-üdü+ / cr-8edü+ / - 
Jn Ja* 

V 
dSvx     dvy 

dy       dx 
dQ, = 0 (10) 

We impose the constraint u = 0 at the surface y = 0, and assume natural boundary 
conditions at all other surfaces. The plate is initially displaced in the plane as shown in 
Figure 2; the initial velocity field is zero everywhere. 

Time series for the open and closed loop solutions are shown in Figure 3. 
Fragments of the code used to solve this problem are presented below. For brevity, 

we have edited out some initialization code, the calls to the MATLAB interface, and 
PDESOLVE postprocessing steps; that code is similar to that in the heat equation example 
above. Note that although the dynamic elasticity equations are considerably more complex 
that the heat equation, the overall structure of the code is nearly as simple as in the heat 
equation example. 

// geometry initialization code deleted for brevity. 
// We have created a cell complex with labeled actuators. 
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Figure 2: Initial displacement of the elastic plate. The initial velocity is zero. 
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Figure 3: Time evolution of L2 norm of displacement field for open loop and closed loop 
solutions of the plate vibration control problem. 
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FEMesh mesh(cc, 2); 

DiffOp dx(l,0) 

DiffOp dy(l,l) 
DiffOp dt(l,2) 

DiffOp dtt(2,2); 

Function u(2,Tensor(2,l)); // displacement field 
Function v(2,Tensor(2,l).VARIATIONAL); // test function 
Function lagr(2.Tensor(2,1)); // lagrange multiplier for BCs 
Function varLagr(2,Tensor(2,1).VARIATIONAL); // test function for BCs 
Function z(2, Scalar); // control variable 

Real damp =0.05; // damping constant 

Real mu = E/(2.0*(l+nu)); // Lame' constants 

Real lambda = E*nu/((l+nu)*(l-2*nu)); 

// form stress-strain relation 

Tensor material(3,2); 
material = List( List(lambda+2*mu, lambda,     0 ), 

Listdambda,    lambda+2*mu, 0 ), 

List(0, 0, mu)); 

Expr strainDisp = List(List(dx,0), List(O.dy), List(dy, dx)); 

Expr strain    = strainDisp * u; 

Expr varStrain = strainDisp * v; 

Expr stress    = material * strain; 

// set up weak form of equations 

Equations w(mesh); 
w     = Integral(v*dtt*u + 0.05*v*dt*u + stress*varStrain) + 

Integral("actuator", v*dtt*u + 0.05*v*dt*u + stress*varStrain + 

z*(dx*v[l] + dy*v[0])); 

// variational enforcement of dirichlet BCs 

w["y=0"]= lagr*v + varLagr*u; 

// assemble control problem 
ControlProblem problem(mesh, dt, w, List(u.lagr), List(v,varLagr), z); 

// form discrete initial conditions 
Function uO(2, Tensor(2,l), initPosFunc); 

FEDiscretizer disc(mesh); 

uO = disc.discretize(uO); 
Function vO(2, Tensor(2,l), initVelFunc); 

vO = disc.discretize(vO); 
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// 
// calls to matlab deleted for brevity. 
// see the first example in this section for matlab interface example code. 

// 

TimestepSpec step(0.0,  10.0, 60); 
Array<Function> solnOpen = problem.openLoopSolve(List(uO,vO), 

step, BackwardsEuler()); 

Array<Function> solnClosed = problem.closedLoopSolve(gain, List(uO.vO), 

step, BackwardsEuler()); 

// postprocessing and animation calls deleted for brevity 

} 

Model reduction at the PDE level using the modal basis 

The examples presented so far have used a finite-element discretization of the PDE. That 
is acceptable for control of small demonstration problems, but for real-world PDE control 
problems the number of degrees of freedom becomes prohibitively large. A useful alter- 
native is to represent the system in terms of a small, dynamically meaningful set of basis 
functions such as an eigenmode decomposition or a proper orthogonal decomposition. De- 
termination of an appropriate set of functions through an eigenmode analysis or POD is 
itself a computationally intensive problem, but once done, it allows the control designer 

to work with a far simpler system. 
We have implemented the infrastructure needed to perform dimension reduction via a 

modal representation. In the example below, we consider control of the heat equation on a 
2D square. Control is accomplished by four point source actuators inside the square. We 
represent the solution by the 16 lowest frequency modes on that domain; we obtain those 
modes though a finite-element analysis using PDESOLVE. Using the same finite-element 
mesh to do the controls problems results in a system with 225 degrees of freedom; the 
modal representation has reduced that to 16. 

The changes in user code needed to switch from a full FE model to a modal represen- 
tation are minimal. As shown in the code fragment below, essentially the only changes are 
(a) to use a SpectralMesh rather than an FEMesh object, and (b) the boundary conditions 
are built into the modes and are thus not needed in the modal calculation. The boundary 
conditions were of course used in the computation of the modes. 

// initialization omitted; mode computation shown below 

SpectralMesh mesh(modes); 

Equations w(mesh); 

w = Integral(v*(dt*u) + (grad*u)*(grad*v)) + IntegralC'actuator", z*v) ; 

ControlProblem problem(mesh, dt, w, u, v, z); 

// matlab calls, ODE solution, and postprocessing omitted 
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Figure 4: Comparison of full FE and reduced-dimension models of heat equation. Plotted 
are times series for L2 norm of temperature for open loop and closed loop as solved with 

FE and modal methods. 

In Figure 4 we show results for both the reduced-dimension model and the full FE 
simulation of the point-actuator controlled heat equation example. The open-loop solu- 
tions are indistinguishable in the plot. The closed-loop solutions with the two methods 
compare well; the differences are explained by the inability of the truncated modal basis 
to exactly represent the effect of point source terms. 

We next present a code sample showing the mode computation in PDESOLVE. The 
PDESOLVE code sets up a general linear eigensystem that is then solved using the 
ARPACK family of iterative eigensolver routines. This, together with the control code, 
totals to under one hundred lines of user code for specification and solution of a dimension- 
reduced PDE control problem. 

// initialization code omitted 

DiffOp dx(l,0); 
DiffOp dy(l.l); 

Expr grad = List(dx.dy); 

Function u(dim,Scalar); 
Function v(dim,Scalar,VARIATIONAL); 

Function invAlpha(dim, Scalar); 

Function lambda(dim, Scalar); 
Function varLambda(dim,Scalar,VARIATIONAL); 

FEMesh feMesh(cc,order); 

Equations heatModeEqn(feMesh); 



Beam Technologies, Inc. PROPRIETARY 12 

heatModeEqn = Integral(invAlpha*(grad*u)*(grad*v) + u*v) ; 

heatModeEqn["x=0"] = varLambda*u + lambda*v; 

heatModeEqn["x=L"] = varLambda*u + lambda*v; 

heatModeEqnC"y=0"] = varLambda*u + lambda*v; 

heatModeEqn["y=L"] = varLambda*u + lambda*v; 

EigenProblem eigen(mesh, heatModeEqn, List(u, lambda), 
List(v, varLambda), invAlpha, ConstrainedARPACKSym(EIG_LARGEST, 16)); 

Array<Function> modes(0); 

Array<Real> eigenvalues(0); 

eigen.solve(eigenvalues, modes); 

3 Personnel Involved 

Dr. Gal Berkooz 
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None. 


