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PREFACE 

This final report covers the work accomplished during the period from May 

1, 1997 to December 31, 1997 under the Air Force Office of Scientific Research 

(AFOSR) contract F49620-97-1-0301. 

Knowledge of the powder size distribution is essential to characterize a 

collection of powders (either experimental samples or commercial products), 

and informative to optimize the processing parameters in many powder 

related manufacturing techniques, both conventional and novel. Sieving 

analysis is a well-established technique to characterize the powder size 

distribution. Nevertheless, accurate information on the powder size 

distribution necessitates an appropriate procedure to interpret the 

experimentally obtained sieving data. To that effect, the conventional 

procedure was scrutinized in the present study. It was demonstrated that the 

conventional procedure is inherently flawed in several aspects. Along with 

several implicit, hard-to-be-justified assumptions associated with it, the 

conventional graphical representation procedure also failed to address the 

reliability of the results. To resolve these problems, a new procedure was 

formulated. Application of the formulated procedure to several sets of 

sample sieving data reveals that it is capable of extracting the total weight of 

powders from experimental data, of determining the nature of the size 

distribution, of establishing the characteristic parameters, and 

simultaneously, of determining the reliability of the results. It is anticipated 

that the accomplishment achieved in the present study will generate 

significant impact on the understanding and the development of powder 

related processing technologies, including conventional powder metallurgy, 

conventional spray atomization, and novel spray processing techniques such 

as spray atomization and deposition, plasma spray forming, and thermal 

spray forming. 
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CHAPTER 1. INTRODUCTION 

Experimental data on powder size distribution analysis may be tabulated or 
graphically presented. It is widely acknowledged that the most accurate 
representation of powder size distribution data is in tabular form, in which 
experimental data are listed as shown in Table 1. It is also realized, however, 
that graphical representation of experimental data has many advantages over 
tabulated results, as discussed in detail in references [1] and [2]. Moreover, 
unless it is graphically presented, the tabulated experimental data provides 
limited insight into the nature of the size distribution of powders, limited 
information on size distribution, hence hinders our ability to control the 
processing parameters. Therefore, interpretation of experimental data in 
powder size distribution analysis, such as sieving data, generally involves 
graphical representation. 

Table 1. Cumulative weight undersize as z i function of powder size [10]. 
opening 
(Urn) 212 180 150 125 106 90 75 63 53 45 38 
weight 
undersize 

(g) 129.8 128.7 125.7 117 103.8 87.3 66.5 48.5 31.6 18 7.2 

The reliability of graphical representation results depends on the suitability of 
the procedures used to obtain and to present the experimental data. A 
standard procedure has been established to obtain the experimental data in 
powder size distribution analysis (MPIF standard 05 and ASTM standard 
B214-92). The procedure to present and then interpret the experimental data, 
on the other hand, is far from complete. The purpose of this paper is to 
demonstrate that there are several serious shortcomings associated with the 
conventional procedure, and to formulate a new procedure for presenting the 
experimental data. 



CHAPTER 2. OVERVIEW 

It is helpful to describe, at first, the graphical representations generally 

employed in practice, and the most widely used logarithmic-normal size 

distribution, before proceeding to address the problems associated with the 

conventional procedure in graphical representations. 

2.1. Graphical representations 

Graphical representations of experimental data in powder size distribution 

analysis include [1]: 

1). histograms presenting frequency of occurrence versus size range, 

2). size frequency curve presenting frequency of occurrence as a function 

of powder size, equivalent to a smoothed-out histogram, 

3). cumulative plot presenting percent of powders greater (or less) than a 

given powder size as a function of powder size, and 

4). probability paper plot essentially the same as cumulative plot, except 

that the percentage is presented on a probability scale. 

2.2. Logarithmic-normal distribution 

A logarithmic-normal distribution is closely related to the graphical 

representation of sieving data. It is commonly found that collections of 

atomized powders obey log-normal size distribution statistics. Accordingly, 

there are normally two main objectives of a graphical representation: to 

determine whether the sieving data obeys log-normal distribution or not, 

and, if it does, to determine the parameters characterizing a log-normal 

distribution. 

For powders obeying a log-normal distribution in terms of a weight-size 

relationship, the probability density, P(D), corresponding to powder size D is 

given by [1-3]: 

P(D)=l'xp[J±Rd^l, (1), 
D o~42n 2o 

P(D)dD = 1 (2), 



where Dm is the mean mass powder diameter, a is the standard deviation. 

The probability density, P(D), corresponding to a powder size D is defined as 

P(D)=AWp/AD (3), 

where AWp is the weight percentage of powders with size falling in the range 

between D and D+AD. 

It is evident from equation (1) that powders obeying log-normal distributions 

may be characterized by two parameters, the standard deviation, G, and the 

mass mean droplet size, Dm. In practice, another three parameters are also 

frequently utilized to characterize the powder size distribution. The three 

parameters are the characteristic powder sizes, die, dso, and du, under which 

16, 50, and 84 wt.% of powders, respectively, are smaller than the stated sizes. 

These two characterizing methods are equivalent to each other, since 

Dm = d50 (4), 

and G = ln(d50/d16) = ln(d84/d50) (5). 

Graphically, die, dso, and dg4 may be determined from a cumulative plot or a 

probability paper plot, and a and Dm may be determined from a size-frequency 

plot. It is worth noting that the magnitudes of these characteristic parameters 

may be determined graphically either with or without rigorous curve fitting 

involved. Without curve fitting, however, the nature of powder size 

distribution is generally unknown. In this case, the characteristic parameters 

determined are of no physical significance. In addition, even when the 

nature of size distribution is pre-known, curve fitting is necessary to 

minimize the extensive experimental errors normally associated with sieving 

analysis. Therefore, graphical determination of these parameters should be 

proceeded by curve fitting of experimental results. 

2.3. Curve fitting in graphical representations 

All of the graphical representations involve the weight percentage, rather 

than weight, as evident from section 2.1. Conversion of experimentally 

determined absolute weight into weight percentage necessitates the 

knowledge of the total weight of the powders under analysis. As will be 

shown in sections 3 and 4, this parameter is generally unknown. Actually, it 

is this fact that complicates the procedure of graphical representation.  In this 



section, the total weight of the powders is temporarily assumed to be a known 

parameter for the convenience of discussion. In this case, both the weight 

and weight percentage are readily used in graphical representations and curve 

fitting. 

2.3.2. Histogram and size frequency curves 

In these two plots, curve fitting may be established using equation (1). In 

sieving experiments, however, the direct experimental data are weight (or 

weight percentage) in a size range, or cumulative weight (or weight 

percentage) of powders under a given size, as shown in Table 1. In order to 

obtain the probability density, P(D), equation (3) has to be used. However, this 

may introduce extensive additional errors into the experimental data by 

either of the following two ways. First, if the size interval, AD, in equation (3) 

, is selected as the same as that in sieving analysis (for example in Table 1, 

they are 32, 30, 25, ,8, and 7 [im in decreasing sequence), AD is generally 

too large to be used to accurately calculate P(D) through equation (3). If the 

size interval, AD, in equation (3), is selected to be a smaller value, on the 

other hand, such as in the range of 2~2 |a,m, subjective interpolation between 

the experimental data points would definitely be involved, introducing 

unexpected errors. Therefore, curve fitting in either histogram or size 

frequency curve plots would not be considered in the present study. 

2.3.2. Cumulative plot 

Using equation (1), the cumulative percentage, Cp(D), under size D may be 

calculated as: 

Cp(D)% = fp(D)dD 

1 .   (InD-lnDJ2 

r-L=exp[-[lnU-ln
2
U^ JdlnD J~ o42n 2a2 

j lnD-lnD,„ 

-==/  ^  exp[-t2]dt 

-I In D-ln Dm 

= 1   °   exp[-t2/2]dt (6). 
2K 

J
~° 

In sieving analysis, powders may be directly characterized by cumulative 

weight under size as a function of powder size. When the total weight of the 

powders is known, then the cumulative weight percentage under size as a 

function of powder size, Cp(D), may be readily obtained.    Accordingly, 



equation (6) may be employed to curve fit the experimental data. 

Unfortunately, the form of equation (6) is so complex such that no attempt 

was found in the literature to use it to curve fit the experimental data. 

2.3.3. Probability paper plot 

By defining a function y=norm(x), for which y and x satisfy 

x% = n=fy exp(-t2/2)dt (7), 
2K • 

equation (6) may be rearranged as 
lnD-lnDm  ^ = norm(C„) (8), 

<7 

or log D = log Dm+0.434a -norm(C) (8'). 

In a probability paper plot, the abscissa is the powder size, generally in 

logarithmic scale, logD, while the ordinate is the cumulative weight 

percentage undersize in probability scale. It is worth noting that the 

probability scale is calculated using y=norm(x), or equation (7), i.e., x=50 

corresponds to y=0; x=60 corresponds to y=0.25; x=90, y=1.28; x=100, y=oo; x=40, 

y=-0.25; x=0, y=-°°; and so on... [4], as shown in Figure 1. Therefore, equation 

(8), which indicates that logD is a linear function of norm(Cp), predicts a 

straight line for powders obeying log-normal distributions when the 

cumulative percentage undersize, Cp, is graphed versus the powder size, D, in 

a probability paper plot. This feature is well-known and extensively utilized 

to determine whether a collection of powders obeys a log-normal distribution 

or not, although its origin is not necessarily always well understood by the 

user. 

-0.84    -0.25   0.25    0.84 
y       -2.33             -1.28    T -0.52T    0   ' 0.52 '      1.28               2.33 
 1 1 1 1—|—|—|—| 1 1 1  

x (%)     1 10     20 30 40 50 60 70   80     90 99 

Figure 1. Probability scale y=norm(x). 



CHAPTER 3. PROBLEMS ASSOCIATED WITH 

GRAPHICAL REPRESENTATION PROCEDURE 

In this section, the problems associated with graphical representation 

procedures will be discussed. Essentially, all of these problems originate from 

the fact that the total weight of powders is generally unknown, which is 

closely related to the removal of coarse/fine powders in practical atomization 

experiments. 

3.1. Removal of coarse/fine powders 

It is evident from section 2.1 that all of the graphical representations involve 

weight percentage (or frequency), rather than the absolute weight. However, 

experimental data generally involve absolute values. Therefore, the first step 

of graphical representation is to convert the absolute weight, in the case of 

sieving experiments, into weight percentage. This necessitates the knowledge 

of the total weight for the powders under analysis. Unfortunately, this 

parameter is generally unknown in a lot of pratical situations. This may 

appear unusual; however, any detailed examination of the powder size 

distribution analysis will indicate that this is generally beyond the capability 

of typically used experimental arrangements. Suffice it to point out here that 

the powders subjected to experimental size distribution analysis, such as 

sieving, are different from the powders formed because of dust separation by 

cyclones or/and removal of coarse particles. To make this point more clear, 

let us consider a dispersion of powders observing log-normal distribution, as 

shown in Figure 2. Dust separation by cyclones and removal of coarse 

particles truncate the two tails from the bell shape distribution in Figure 2 by 

introducing two size-limits, Dm!M, the lower limit, and Dmax, the upper limit. 

While the total weight of the truncated distribution may be readily measured 

experimentally, the total weight of powders used for conversion from weight 

into weight percentage in a graphical representation of sieving data should be 

that of the entire powders, rather than the truncated one. Nevertheless, it is 

impossible to experimentally measure the total weight of the entire 

distribution of powders, since, by definition, the powder size ranges from zero 

to infinity for a log-normal distribution. 
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Figure 2. Schematic graph showing probability 
density, P(D), as a function of the powder size for a 
collection of log-normally distributed powders. 
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Removal of coarse/fine powders, or the difficulty in determining the total 

weight of powders experimentally, is not the problem associated with size 

distribution analysis. Actually, it is consistent with the basic concept to 

explore the real size distribution from limited experimental data [1]. The 

question is how to analyze the experimental data to minimize the effect of the 

intrinsic experimental difficulties on the final results. This is crucial to 

ensure that the final results are reliable and of significance. The conventional 

graphical representation procedure, however, hardly addressed this issue, as 

shown below. 

3.2. Substitution by truncated distribution 

In a conventional procedure, the weight of a truncated distribution is 

generally employed as a substitution, for the purpose of conversion from 

weight into weight percentage, of the total weight of the powders. This 

substitution might be an acceptable approximation when the weight of the 

tails is insignificant relative to that of the entire distribution. As the tails 

become comparable to the central portion in terms of weight, the error 



resulting from this approximation may be large. The problem is complicated, 
however, by the fact that the relative contribution of the tails to the entire 
distribution, i.e., the criterion for the accuracy of the approximation, generally 
remains unknown until the total weight of the entire powders is determined. 

The conventional procedure is also flawed as a result of another factor. By 
assuming the weight of a truncated distribution as the total weight of the 
entire distribution, the experimentally obtained absolute weight may be 
readily converted into weight percentage. However, a natural result of this 
assumption is that the cumulative percentage undersize corresponding to 
Dmax is 100%. Since it is impossible to graph 200% in a probability paper plot, 
this data point is then ignored. This treatment is difficult to be justified, but 
widely employed. 

3.3. Reliability 
In the literature, an implicit concept that is widely used involves the 
assumption that, if the data points obey a log-normal distribution, then the 
results are reliable. To examine its validity, the experimental data in Table 1 
were analyzed using the conventional procedure, with the results shown in 
Figures 3(a) through (d). The upper limit of powder size, Dmax, was chosen to 
be 212,150, 90, and 63 \im in Figures 3(a), 3(b), 3(c), and 3(d), respectively. The 
magnitude of Dmjn was temporarily set to be zero for all cases, as normally 
treated in conventional procedures. Accordingly, the size range of the 
truncated distributions are 0~222 |im, 0~150 Jim, 0~90 |im, and 0~63 \im for 
Figures 3(a) through (d), respectively. Moreover, from Table 1, the weight of 
these truncated distributions are 129.8,125.7, 87.3, and 48.5 g for Figures 3(a) 
through (d), respectively. The data were graphed on probability paper plot 
and curve fitted, with the fitting coefficient, along with the characteristic 
parameters, summarized in Table 2. It is evident from Figure 3 and Table 2 
that introducing different upper limits of powder size, Dmax, does not affect 
the nature of the size distribution; the data consistently followed log-normal 
distribution. The characteristic parameters, however, vary extensively with 
Dmax, rather than remain unchanged, as evident from Table 2. It is important 
to recall that the ultimate purpose of size distribution analysis is to determine 
the real size distribution, and the characteristic parameters for the real size 

8 



distribution of the powders under analysis are unique. Therefore, at least 
some of the results in Table 2 provide misleading information as to the 
characteristics of the real size distribution. This conclusively reveals that data 
points obeying log-normal distribution alone cannot ensure the reliability of 
the results obtained. 

1000 

5 10 2030 50 7080 90 95  99  99.999.99 
Percentage 

(a) 

s loo 

5  10 20 30   50   7080 90 95     99     99.9 99.99 
Percentage 

5  10 2030   50   70 80 90 95      99     99.999.99 
Percentage 

(b) 

5 10   2030   50   7080   90 95 
Percentage 

(c) (d) 
Figure 3. Probability paper plots for data in Table 1, using conventional 
procedure, with various Dmax introduced: (a) Dmax=212 Jim; (b) Dmax=150 
fim; (c) Dmax=90 urn; and (d) Dmax=63 |im. 

Table 2. Characteristic parameters and fitting coefficients 
obtained using the conventional procedure for data in 
Table 1 with different Dmax(\im) introduced. 

parameters dl6 
(N 

dso (Dm) 
(Jim) 

d84 
(jim) 

o fitting 
coefficient 

>-^max=^-'-^- 48.26 72.21 108.05 0.403 99.703% 

LJinax= J-^U 47.37 71.09 106.69 0.406 99.713% 

Umax=yv 42.88 59.59 82.81 0.329 99.952% 

LJmax=vJ 38.40 48.47 61.19 0.233 99.996% 



3.4. Difficulty in determining reliability 

Since there are several difficult-to-be-justified assumptions associated with 

the conventional procedure, no attempt will be made here to solve, or to 

prove it is impossible to solve, the reliability problem under the framework 

of conventional graphical representation procedure. Suffice it to point out 

that the problem is complicated by the intrinsic difficulty in using a 

probability paper plot. This may be briefly described as follows. Considering 

the bell shape for a log-normal distributed collection of powders in Figure 2, 

as Dmax increases, the results are expected to gradually approach that of the 

real size distribution, becoming more and more reliable. This feature might 

enable one to judge the reliability of the results obtained. Unfortunately, this 

idealized situation is rarely realized in a probability paper plot. As Dmax 

deviates from the mean mass diameter, Dm (which means Dmax increases), the 

experimental error in the data points will be more and more exaggerated, 

such that a minor experimental error associated with the data points 

corresponding to large D values would completely change the final results [5]. 

This could only be avoided by having the data points "weighted" (i.e., 

evaluating the importance of the data points) before graphical representation, 

as discussed in detail in reference [5]. Calculation and assignment of the 

"weight" for each data point, however, requires a knowledge of the weight 

percentage corresponding to each data point, which necessitates a knowledge 

of the total weight of the powders [5]. In the conventional procedure, the total 

weight of the powders is substituted using the truncated distribution. The 

appropriateness of this substitution is, in turn, determined by the reliability of 

the results obtained. 

3.5. Artificial distribution 

The effect stemming from removal of coarse/fine powders on the final 

results was addressed by Irani [1, 6] from another point of view. According to 

Irani [1, 6], because of the removal of coarse/fine powders, the data points in a 

probability paper plot asymptotically approach a line parallel to the abscissa 

(the probability scaled axis), rather than fall onto a straight line as expected. 

To eliminate or minimize the effect of removal of coarse/fine powders, Irani 

[1, 6] suggested that the total weight should be a value greater than the weight 

of the corresponding truncated distribution.    To determine this value, a 

10 



reiteration method is employed: assuming a total weight, converting weight 
into weight percentage based on the assumed total weight, then graphing the 
converted weight percentage on a probability paper plot versus powder size, 
and assuming a new total weight and so on, until the data graphed on the 
probability paper plot satisfactorily fall onto a straight line. 

This method, however, has three drawbacks. Firstly, as discussed in section 

3.3, data points falling onto a straight line alone does not ensure that the 
results are reliable. Although the discussion in section 3.3 is under the 
assumption that the total weight of powders may be substituted by that of the 
truncated distribution, it is generally true that data points obeying log-normal 
distribution alone does not assure the reliability of the results, as will be 
shown in section 4.4. Secondly, the intrinsic difficulty associated with 
probability paper plot cannot be solved using this method, and hence still 
affects this method. Finally, this method failed to formulate any equations in 
determining the total value of powders from curve fitting the experimental 
data, rendering the entire procedure dubious. 

11 



CHAPTER 4. PROPOSED APPROACH 

As evident from the above discussion, along with several implicit, hard-to- 

be-justified, assumptions, the conventional graphical representation 

procedure failed to address the reliability of its results. In the following 

sections, a new procedure will be formulated. The proposed procedure is 

capable of extracting the total weight of powders from experimental data, of 

determining the nature of size distribution, of characterizing the characteristic 

parameters, and simultaneously, of determining the reliability of its results. 

4.1. Effect of removal of coarse powders 

In this section, with Dm/M being temporarily set to be zero, only the effect of 

Dmax will be considered. The effect of introducing the lower limit of powder 

size into the distribution will be discussed in section 4.2. 

4.1.1. Mathematical formulation 

Equations (l)-(8) correlate powder size with probability (equation (1)), or 

cumulative weight percentage under size (equations (6) and (8)). 

Experimental data, however, are absolute weight and powder size (refer to 

Table 1). This necessitates development of equations directly correlating the 

powder size with the absolute weight. The development of these equations 

may be readily accomplished by incorporating the total weight of powders 

into the analysis in equations (l)-(8). 

Assuming the total weight to be Wf, the cumulative weight percentage 

undersize D may be calculated as 
Cp(D)% = Wmder(D)/Wt (9), 

where Wunder(D) is the cumulative weight undersize D. When Dmin = 0, 

Wunder(D) is equivalent to the experimentally obtained cumulative weight 

undersize, Wfnder(D). Substituting equation (9) into equation (8) yields 

logD = logDm + 0.434(7 ■ norm(100 W^er(D)}     (1Qy 

Similarly, substituting equation (9) into equation (6) gives: 

12 



w, 
■I JnD-lnDm 

'under(D) = Wt -j= f^ exp(-t2 /2)dt (11). 

When the total weight is known, equations (10) and (11) are essentially 

equivalent to equations (6) and (8). In this case, development of equations 

(10) and (11) is of little significance. When the total weight is unknown, 

however, these two sets of equations are totally different. While equations (6) 

and (8) may not be utilized to curve fit the experimental data (absolute value), 

equations (10) and (11) can. More importantly, equations (10) and (11) enables 

extraction of the unknown total weight of powders, Wt, by curve fitting the 

sieving experimental data. 

4.1.2. Selection of governing equation for curve fitting 

In the last section, two equations were developed to correlate the powder size 

with the cumulative weight undersize: equation (10) which curve fits D as a 
function of Wfnder(D); and equation (11) which curve fits W„nder(D) as a 

function of D. Mathematically, equation (10) is equivalent to equation (11). 

However, experimental data is unavoidably associated with some errors, 

making these two equations different from each other in terms of curve 

fitting. In the present study, equation (11) is uniquely selected to be the 

governing equation in curve fitting because of the following two reasons. 

Firstly, in curve fitting, if the governing equation is selected to be y=f(x), then 

it is generally assumed that the independent variable, x, is known to be 

without error [7]. All the errors are in the dependent variable y [7]. In a 

sieving experiment, the powder size D is generally predetermined, i.e., free of 

error. The experimental error normally arises from the measurement of the 
cumulative weight undersize W^nder(D). Accordingly, compared with 

equation (10), equation (11), which expresses W^^D) as a function of D, is 

more suitable to be employed as the governing equation. 

Secondly, in curve fitting, it is generally assumed that the errors associated 

with the dependent variable, y, are random [7]. In a sieving experiment, the 

error arising from the measurement of the cumulative weight undersize may 

be reasonably taken to be random. Therefore, selecting equation (11) as the 

governing equation is consistent with the above assumption in curve fitting. 
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If equation (10) is used, on the other hand, W^^iD) would be taken as 

without error. Instead, any errors arising from W,fndei.(D) would be evaluated 

in terms of D. This makes the error no longer random, as elucidated as 

follows. It is evident from Figure 1 that, as x% deviates gradually from 50%, 

y=nortn(x) increases (positive) or decreases (negative) more and more rapidly. 

Suppose there is a deviation Ax in the independent variable x, the 

corresponding deviation in y would depend on the value of x. Let the 

deviation in y be Ay I 50 for x%=50%, it would become 15Ay 150 if x%=99% (or 

2%), and 28Ay I 50 if x%=99.5% (or 0.5%), and so on, progressively [5]. The 

situation discussed here applies to equation (10) by simply substituting 

(logD-logDm)/0.434a as y, and 100W^nder(D)/Wt as x. If any errors 

originating from 100W^nder(D)/Wt, or from W^nder(D), are evaluated in terms 

of (logD - logDm)/0.434a, or D, the results would be dependent on the 

magnitude of 100W^nder(D)/Wt. The larger 100W^nder(D)/Wt, the larger the 

error. Accordingly, if the errors in 100W„nder(D)/Wt or W^nder(D) are random, 

the evaluated errors in terms of (logD - logDm)/0.434a, or D, would no 

longer be random. In this case, the experimental point should be "weighted" 

(i.e., evaluating the importance of the data points) before curve fitting [5, 7]. 

Calculation and assignment of the "weight" for each data points, however, 

requires the knowledge of the weight percentage corresponding to each data 

point, which necessitates the knowledge of the total weight of the powders [5]. 

Unfortunately, the latter, i.e., the total weight of the powders, is a variable to 

be determined, making the assignment of the weight impossible. 

Finally, a remark should be made regarding the conventional probability 

paper plot. Since one axis of this plot is in probability scale, which is 

y = norm(x), the error would be analyzed in terms of D , or 

norm[100W^nder(D)/Wt], rather than 100W^nder(D)/Wt, or WE
mdJD). 

Accordingly, curve fitting in probability paper plot always encounters the 

problem associated with equation (10). This is the reason behind the intrinsic 

difficulty in the probability paper plot approach mentioned earlier. 

4.1.3. Realization of curve fitting 

It is evident that equation (11) is, at least, as complex as equation (6). The 

practical usefulness of equation (11) relies on the availability of a quick and 
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effective method to curve fit the experimental data using this equation. This 

may be realized in a KaleidaGraph software (version 3.0 or above). In the 

KaleidaGraph, there are two normal distribution related functions available: 

y=nortn(x) and y=inorm(x). Function y=norm(x) was discussed earlier. 

Function y=inorm(x) is related to equation (11) as follows: 

inorm(x) = -r^f^<xiexp(-t2 /2)dt (12), 

which transforms equation (11) into: 

wLer(D) = -^-Wtinorm[-lnA] (13). 

Governing equation (13) may be defined under the General Curve Fitting 

menu in KaleidaGraph Window.   To ensure the definition being complete, 

the partial derivative of equation (13) relative to Wt, a, and Dm, should be 

given. This may be readily accomplished if one notices that 

dinorm(x)     100       .   x   . ,„ .. 
rexp(-—) (14). 

dx -42n 2 

4.1.4. Applications 

Six sets of sieving data (Tables 1 and 3) from different sources were analyzed 

using the formulated procedure, with special attention to its capability of 

providing reliable results. 

Figure 4 shows the results for the data in Table 1 with Dmax=212 |a,m, which is 
the Dmax employed in the experiment. It is evident there that the 

experimental data obeys the log-normal distribution. The total weight 

extracted is 232.0 ± 1.0 g, with a=0.449 ± 0.010 and Dm=74.0 + 0.6 |im (Table 4). 

The results, including Wt, o, d^o (Dm), the standard errors associated with each 

of them, and the fitting coefficient, obtained for the data in Table 3 with Dmax 

equal to the value employed in each experiments, which are 600,425,125, 250, 

and 250 urn for the data in columns A, B, C, D, and E of Table 3, respectively, 

were also provided in Table 4. 

It is of interest to note that the total weight, Wt, extracted (Table 4) for the data 

in columns A and B, which are 1661.1 and 227.6 g, respectively, are smaller 

than the experimentally measured cumulative weight undersize Dmax, which 

are 1667.6 and 129.52 g for columns A and B in Table 3, respectively. This may 
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be understood as follows.  According to Figure 2, as the powder size increases 

to be much larger than Dm/ the cumulative weight undersize, W^ncler(D), is 

expected to approach, but always remain smaller than, Wf.   However, the 

experimental data is always associated with some errors, which makes 

W^nder(D) smaller or larger than the value it is supposed to be in the idealized 

Table 3. Experimental sieving data to be analyzed. 
opening 

(|im) 
Cumulative Weight Undersize (g) 

A B C D E 

600 1667.6 — 

425 1656.3 129.52 — 

300 1642.6 — 

250 1630.7 128.25 100 101 

180 1578.0 127.11 — 

150 1509.9 126.63 — 

149 59.0 95.6 

125 1392.7 126.13 678.6 — 

106 1172.2 125.56 619.7 — 

105 41.1 87.3 

90 775.84 124.66 561.5 — 

75 608.76 121.82 512.3 — 

74 27.9 75.8 

63 374.38 111.12 341.7 24.5 70.9 

53 277.54 86.27 243.5 — 

45 142.95 68.961 195.1 — 

44 12.2 52.9 

38 67.67 44.876 56.8 — 

source [11] [12] [13] Run 73N 
[14] 

Run 69N 
[14] 

situation. Consequently, when W^nder(D) is very close to W t/ any minor 
experimental error may raise W^nder(D) to exceed Wt . It is worth noting that 

this type of experimental error could never be tolerated by equation (10), as 
explained as follows. The first step of curve fitting using equation (10) is to 
calculate norm[100W^nder(D)/Wt] as a function of the independent variable 

16 



WLr(D). Function norm[100W„nder(D)/Wt], by definition, requires 

wLer(D)/Wt to be smaller than 1, i.e., W^JD)<Wt. When WE
undJD)>Wt 

overflow would occur, and the curve fitting would be terminated. This 
further demonstrates that equation (10) is only of theoretical significance. 

140 

M120 - 

£100 

s 
P  80 
W) 

£   60 
0> > 
« 40 - 
3 
s 
5  20 

0 0 

Experimental data 
y=1.32inorm[2.23In(x/74)] 

200 100 150 
Powder Size (|im) 

Figure 4. Cumulative weight undersize versus powder size plot 
for the data in Table 1 using the newly formulated procedure. 
The Dmax is set to be equal to that employed in the experiment. 

250 

Table 4. Characteristic parameters and fitting coefficients 
obtained using equation (13) for data in Tables 1 and 3 
with Dmax(\im) equal to that employed in experiment. 

parameters Wt 

(g) 

d 50 (Dm) 
(Jim) 

G fitting 
Data Umax coeff. (%) 

table 1 212 132.0   ±1.00 74.0 ±0.6 0.449  ±0.010 99.971 

A, tab. 3 600 1661.1 ±23.6 86.5 ±1.6 0.435  ±0.024 99.754 

B, tab. 3 425 127.6   ±0.8 43.7 ±0.4 0.351   ±0.017 99.778 

C,tab.3 125 696.5   ±43.0 61.3 ±2.9 0.411   ±0.057 99.363 

D, tab. 3 250 1301.3 ±2358.7 4431.3 ± 13022 2.014  ±0.703 99.907 

E, tab. 3 250 103.0   ±1.2 42.3 ±0.7 0.866  ±0.044 99.932 
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Table 5. Characteristic parameters and fitting coefficients obtained 
using equation (13) for data in Tables 1 and 3 with different 
Dmaxdua) introduced. Dmin is assumed to be zero in all cases. 

parameters Wt 

(g) 

error 

(%) 

dso (Dm) 
(Jim) 

error 

(%) 

a error 

(%) 

fitting 
Data L^max coeff. (%) 

212 132.0 0.8 74.0 0.8 0.449 2.2 99.971 

table 1 150 134.8 1.6 75.1 1.3 0.462 2.9 99.971 

90 118.7 8.9 69.6 5.3 0.418 8.4 99.937 

63 74.3 11.3 56.0 4.7 0.304 9.4 99.981 

600 1661.1 1.4 86.5 1.8 0.435 5.5 99.754 

300 1660.3 2.2 86.5 2.3 0.435 6.7 99.702 

table 3 180 1719.9 5.5 88.7 4.5 0.458 10 99.621 

col. A 125 2955.8 41 129.8 31 0.646 21 99.681 

90 1195.8 26 75.6 15 0.444 20 99.718 

63 454.2 15 49.9 5.8 0.246 20 99.826 

425 127.6 0.6 43.7 0.9 0.351 4.8 99.778 

250 127.3 0.7 43.6 0.9 0.348 4.9 99.793 

table 3 150 127.0 1 43.6 1.1 0.346 5.8 99.776 

col. B 90 129.5 3.2 44.0 2 0.363 10 99.73 

63* 166.6 40 51.1 26 0.497 40 99.76 

53* 99.5 oo 39.3 oo 0.270 oo 100 

table 3 125 696.5 6.2 61.3 4.7 0.411 14 99.363 

col. C 90 667.3 20 59.7 12 0.387 29 98.89 

63* 367.3 30 46.2 12 0.232 59 98.075 

table 3 250* 1301.3 180 4431.3 290 2.014 35 99.907 

col. D 149* 147.1 73 198.9 94 1.129 36 99.781 

73N 105* 61.0 38 77.4 35 0.688 36 99.698 

table 3 250 103.0 1.2 42.3 1.7 0.866 5.1 99.932 

col. E 149 102.4 3 42.1 2.9 0.852 9.5 99.903 

69N 105 97.3 5.9 40.4 4.7 0.762 16 99.897 

In order to investigate the capability of determining the reliability of the 
results, a method similar to that in section 3.3 was employed, i.e., introducing 
different Dmax. The results are summarized in Table 5. As evident from Table 
5, the characteristic parameters obtained are, in general, a function of Dmax. 
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This again raises the question: when would the results be reliable. It is 
evident from Table 5 (the fitting coefficient column) that introducing 
different Dmax does not affect the nature of size distribution, i.e., in all cases, 
the data points obey log-normal distribution. This suggests that, under the 
newly formulated procedure, the reliability of the results may not be 
determined by the nature of size distribution either, similar to the situation 
encountered under the conventional framework as discussed in section 3.3. 
However, there are two ways to evaluate the reliability of the results under 
the newly formulated procedure. 

The reliability of the results may be evaluated, to some extent, by the 
standard errors associated with the characteristic parameters determined. 
When the standard error is very large, such as 30% or above, it is highly 
unlikely that the results are reliable. When the standard error is very small, 
such as 2% or less, it is reasonable to take the results as reliable. With this 
criterion, several sets of results, which were marked by asterisks, in Table 5 
may be readily determined to be unreliable. Nevertheless, it is impossible to 
provide a number to unambiguously judge the results: when the error is 
above it, the result is unreliable; otherwise, reliable. Accordingly, when the 
standard error is moderate, such as 5-15%, it is difficult to conclusively 
determine the reliability of the results using this method. 

A more effective but somewhat time-consuming way relative to the method 
mentioned above is associated with the intrinsic feature of the log-normal 
size distribution. For a collection of powders obeying log-normal distribution, 
as Dmax increases further and further, the cumulative weight would finally 
tend to flatten off (refer to Figure 4). Once this region is reached, any further 
increases in Dmax would have only slight effect on the cumulative weight. 
Consequently, the results obtained are expected to be close to each other 
thereafter. Accordingly, if the results, which are Wt, o, and dso (Dm) in the 
present study, corresponding to the introduced Dmax were plotted as a 
function of Dmax, it is anticipated that all of the curves representing each of 
the characteristic parameters would flatten off at certain Dmax = D^. If D^ 

is smaller than the Dmax employed in the experiment, the flattened regions 
may be observed; and hence the results obtained may be reliable.  Otherwise, 
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the flattened regions would be absent, and the results would be thought 
unreliable.  With this criterion, the reliability of the results may be evaluated. 

60   80   100  120   140  160   180  200  220 

D   (Jim) 

700 

50   100   150  200  250  300  350  400  450 
D   (urn) 

max    vr^ 

Figure 5. The characteristic parameters (normalized) obtained under 
different introduced Dmax for data in Table 1 (a), columns A (b), B (c), C 
(d), D (e), and E (f) of Table 3. 
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Figure 5 (continued). The characteristic parameters (normalized) obtained 
under different introduced Dmax for data in Table 1 (a), columns A (b), B (c), 
C (d), D (e), and E (f) of Table 3. 
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Figures 5(a) through (f) show the obtained results as a function of Dmax for the 
six sets of data under analysis. For the convenience of graphical 
representation, all of the results, for any given set of data, were normalized by 
their corresponding maximum magnitude. For example, the maximum 

extracted total weight for the data in column B of Table 3 is 166.6 g, 
corresponding to an introduced Dmax of 63 \im. Accordingly, in Figure 5(c), all 
Wt values were normalized by 266.6 g. It is evident from Figure 5 that, except 
those in Figure 5(e), all of the curves exhibit a flattened out region as Dmax 

increases. Moreover, for each specific set of data, the Dmax at which the curve 
begins to flatten is almost the same for all of the three parameters, Wt, a, and 
d-50 (Dm). For example, in Figure 5(c), all of the three parameters tend to be 
relatively insensitive to the change of Dmax after Dmax increases to 90 |im and 
beyond. The extended flattened regions in Figures 5(a)-(c) suggest that the 
data corresponding to these figures, which are the data in Table 1, columns A, 
and B of Table 3, respectively, are highly sufficient to yield reliable results. 
The limited flattened regions in Figures 5(d) and (f) implies that the results 
obtained with Dmax equal to that employed in experiment are almost reliable. 
In these cases, even though it is not mandatory, more data points, i.e., larger 
Dmax employed in the experiment, would be helpful to gain more confidence 
on the results. The absence of a flattened region in Figure 5(e) indicates that 
the data in column D of Table 3 are not sufficient to give any reliable results. 
Finally, it is of interest to note that before the flattened region was reached, 
the results may monotonously increase (Figure 5(a)) or decrease (Figure 5(c)), 
or vibrate back and forth (Figure 5(b)). 

It is worthwhile to point out that the intrinsic feature of a log-normal size 
distribution employed to determine the reliability in the above section 
remains to be the same in the conventional procedure. However, in the 
conventional procedure, the intrinsic difficulty associated with the probability 
paper plot makes the utilization of this feature almost impossible, as 
discussed earlier. As a simple example, the data in column B of Table 3 were 
analyzed using the conventional procedure. The results were shown in 
Figure 6. No flattened regions similar to that in Figure 5(b) were observed in 
Figure 6. As Dmax increases, the curve corresponding to Wt did flatten off. 

The curves corresponding to a and dso (Dm), however, did not flatten off as 
that of Wt did. Instead, a keeps increasing, while dso (Dm) gradually decreases. 

22 



09 
U 

es 
s- 
cd 

OH 

TJ 
0) 
N 

"c3 
E 
S- 
o 
Z 

1.2 

1.0 

0.8 

0.6 

0.4  - 

0.2  - 

0.0 
50 100 200 250 300 

Powder Size (um) 
350 400 450 

Figure 6. The characteristic parameters (normalized) obtained, 
using the conventional procedures, for the data in column B of 
Table 3 as a function of Dmax. 

When the results obtained are determined to be unreliable, such as the case 

corresponding to the data in column D of Table 3, a larger upper limit of 

powder size, Dmax, should be used in the experiment. However, sometime 

this may be very challenging to be achieved in sieving experiments. The fact 

that the largest opening in the U.S. standard sieving set is 600 |xm limits the 

availability of sieves with openings larger than 600 |i.m. Moreover, selection 

of the upper limit of powder size, Dmax, in real experiments is generally based 

on another consideration. In many situations, the spherical powders formed 

are mixed with irregularly shaped particles such as splats and coalesced 

particles. It is unsuitable to consider these particles as spherical powders. 

While complete separation of spherical powders from splats and coalesced 

powders is almost impossible, it is noticed that the presence of these particle is 

sparse when the powder size is not too large, and may be neglected. When 

powder size increases, presence of these particles becomes more frequent. In 

some cases, before the powder size increases to 600 |im, presence of splats and 
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coalesced powders becomes so frequent that it can no longer be neglected 
compared with the total quantity of powders. Accordingly, a value smaller 
than 600 \im, for example 300 |im, is set to be the upper limit of powder size, 
below which presence of splats or coalesced powders can be neglected. 
Following this criterion of selection of Dmax, it may be unacceptable in some 
practical situations to raise Dmax to a value larger than the previously selected 
one, even though the newly selected value is smaller than 600 \im. In these 
cases, alternative existing characterization techniques, such as light 
-scattering, should be employed, or innovative techniques should be explored 
if meaningful results are anticipated. 

100.0 

•ä 90-ü|- 

0123456789 10111213141516171819 20 2122 23 24 25 
D p, Stokes Equivalent Diameters (jum) 

Figure 7. Collection efficiency of a cyclone as a function of powder 
size for (a) XQ120 cyclone and (b) XQ465 cyclone under identical 
conditions: gas flow rate (Q), gas density (kg), gas absolute viscosity 
(jig), and particle specific gravity (kd) [9]. 

4.2. Effect of dust separation by cyclone 
As mentioned earlier, the size distribution of the powders formed initially is 
generally affected by dust separation, for example in cyclones, which remove 
some very fine powders.   The effect of dust separation by cyclone on the 
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distribution of the powders is somewhat different from that of the removal of 

coarse powders. In the removal of coarse powders, the effect is discrete. For 

example, if the powders are topped using a 425 urn sieve (35 mesh), powders 

with size larger than 425 |j,m would be removed, while those with size 

smaller than 425 urn would be left unaffected. In dust separation by cyclone, 

the effect is continuous, as shown in Figure 7. Powders with powder size 

smaller than 1 |xm would be almost completely removed. As the powder size 

increases, the powders would be partially removed, and the percentage being 

removed would gradually decreases to zero. This continuous feature greatly 

complicates the problem. To make the problem tractable, a discrete removal, 

similar to removal of coarse powders, will be assumed. This may be an 

acceptable assumption if the collection efficiency curve is very steep, such as 

in Figure 7. 

4.2.1. Governing equations 

When powders smaller than the lower limit of powder size, DmfM, are 

removed, the experimentally obtained cumulative weight undersize, 
Wfnder(D), is nominal (refer to Figure 2). In this case, WE

nder(D) is the 

cumulative weight of powders with size in the range from Dmin to D, rather 

than from 0 to D.  Therefore, 
Wunder(D) = Wu

E
nder(D) + Wunder(Dmin) (15), 

where Wunder(Dmin) is the cumulative weight under size Dmin. The 

cumulative weight under size Dmin, Wunder(Dmin), may be further explicitly 

expressed, in terms of Dmin, as follows: 

/ J* Dmin-I« Dm 

w„ 
1 '"Dmin-'KDm 

runder(Dmin) = Wt -j= j_ exp(-f2 /2)dt 

= — WJnorm[-ln(^)] (16). 
100   ' e      Dm

,J 

With equations (15) and (16), equations (10) and (13) would take the following 

form 

log D = log Dm + 0.434(7 ■ normllOO W^er(D) + Wmder(Dmin) ] 

= logDm + 0.434G x 

norm{100Wmder(D) +inorm[-ln(^-)]} (17), 
Wt a      Dm 
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and 

W*nder(D)=-^Wtinorm[±ln(-?-)]-Wunder(Dmin) 

— Wtlinorml-lni—jJ-inorml-lni^^)]}       (18), 
100 a    Dm o     Dm 

respectively. 

In selection of the governing equation for curve fitting from equations (17) 

and (18), arguments similar to those in section 4.1.2 apply here. Moreover, 

equation (17) is much more complex than equation (18) in terms of computer 

manipulation. Accordingly, equation (18) is uniquely selected as the 

governing equation. Its usage in a computer is similar to that discussed in 

section 4.1.3. 

4.2.2. Evaluation of the effect ofDmin 

The lower limit of powder size, Dmjn, is determined by design of the cyclone 

[8]. It may range from 2 urn to 200 urn, depending on the details of the design 

[8]. To illustrate its possible effect, Dmin=5,10, and 30 urn will be considered in 

the present study. 

The experimental data in Table 1 and in columns A, B, C, and E of Table 3 

were analyzed using equation (18), with Dmjn in it set to be 5,10, and 30 um, 

and Dmax equal to the ones employed in each experiment. The results, along 

with those in Table 4 which correspond to the case with Dmjn=0 urn, were 

summarized in Table 6. Data in column D of Table 3 were excluded from 

further studies because of the incorrect selection of Dmax, as discussed earlier. 

It is evident from Table 6 that the effect of Dm;M on the final results varies with 

the magnitude of Dm;n itself, and with the powder collections under study. 

For the data in Table 1 and in columns A, B, C of Table 3, Dmjn has little effect 

on the final results when it is less than 10 um. As Dmz„ increases to 30 um, 

distinct effects were observed for all of these data, with the most prominent 

effect on the data in column B of Table 3. For the data in column E of Table 3, 

Dmin has slight effect on the final results when it is 5 urn. As it increases to 20 

urn, the effect becomes much more pronounced. When it is set to be 30 urn, 

the results are completely different from those corresponding to Dmjn=0. 
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Moreover, the standard errors associated with the determined parameters are 
so huge that the results appear to be of little significance. 

Table 6 only demonstrates the possible effect of Dmin on the final results 
obtained. In practice, to evaluate the effect of dust separation by cyclone, the 
true Dmin corresponding to the cyclone should be evaluated and used in 
equation (18). Moreover, similar to the removal of coarse powders, if the Dm;n 

given by the cyclone has extensive effect on the final results such that the 
results obtained by assuming Dmin=0 is no longer reliable, DmjM should be 
adjusted to a lower value by using a different cyclone. This may be very 
difficult in many situations because of the cost of cyclone. An alternative but 

also costly method is to employ new techniques, such as in-situ 
characterization techniques. 

Table 6. Characteristic parameters and fitting coefficients obtained using 
equation (18) for data in Tables 1 and 3. Dmax is the same as that 

employed in experiment. Dmjn is assumed to be 0, 5,10 and 30 )im. 
parameters Wt 

(g) 

error 

(%) 

dso (Dm) 
(|im) 

error 
(%) 

a error 

(%) 

fitting 
Data '-'min coeff. (%) 

table 1 0,5,20 132.0 0.8 74.0 0.8 0.449 2.2 99.971 

30 137.1 1 72.6 0.8 0.475 2.7 99.973 

table 3 0,5,10 1661.1 1.4 86.5 1.8 0.435 5.6 99.754 

col. A 30 1675.1 1.6 86.0 1.9 0.439 6.3 99.737 

table 3 0,5,10 127.6 0.7 43.7 0.9 0.351 4.8 99.778 

col. B 30 204.5 15 34.7 9.2 0.456 13 99.617 

table 3 0,5,10 696.5 6.2 61.3 4.8 0.411 14 99.363 

col. C 30 777.2 12 59.2 4.7 0.477 21 99.412 

0 103.0 1.2 42.3 1.7 0.866 5.1 99.932 

table 3 5 103.8 1.4 42.0 1.8 0.871 5.2 99.933 

col. E 10 110.4 2.6 39.5 2.9 0.906 5.9 99.939 

30 1.2 x10s 4000 0.04 4500 2.095 308 98.241 

27 



CHAPTER 5. SUMMARY 

The procedure conventionally employed to interpret the experimental 
sieving data was examined. It was demonstrated that the conventional 
procedure is flawed from several standpoints. Along with several implicit, 
hard-to-be-justified, assumptions associated with it, the conventional 
graphical representation procedure also failed to address the reliability of its 
results. To resolve these problems, a new procedure was formulated. 
Application of the formulated procedure to several sets of sample sieving 
data reveals that it is capable of extracting the total weight of powders from 
experimental data, of determining the nature of size distribution, of 
characterizing the characteristic parameters, and simultaneously, of 
determining the reliability of its results. 
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