
REPORT DOCUMENTATION PAGE 
AFRL-SR-BL-TR-98-      — 

Public reporting burden (or this collection ofin(orma(ion is estimated to average 1 hour per response, lr                                                         V. C   */ 
data sources, gathering end maintaining the data needed, and completing and reviewing the collection                                    ..,„-„,3 u,.=. umutu esaimaie 
or any other aspect of this collection of Information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate tor Information 
Operations and Reports, 12t5 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Protect (0704-0188), Washington, DC 20SD3. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

May 1996 

a REPORT TYPE AND DATES COVERED 

Final Technical Report, 1/15/95 -1/14/98 

4. TITLE AND SUBTITLE 

TIME SENSITIVE CONTROL OF AIR COMBAT OPERATIONS 

5. FUNDING NUMBERS 

F46920-95-1-0134 

&AUTHOR(S) 

Alexander H. Levis 

a PERFORMING ORGANIZATION 
REPORT NUMBER 

GMU/C3I-201-R 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Center of Excellence in Command, Control, Communications, 
and Intelligence 

George Mason University 
Fairfax, Virginia 22030-4444 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES) 

AFOSR/NM 
Air Force Office of Scientific Research 
Boiling Air Force Base, DC 20332-6448 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12.a DISTRIBUTION/AVAILABILITY STATEMENT 

1a ABSTRACT (Maximum 200 words) 

12-b DISTRIBUTION CODE 

~?n A 

Research on the replanning problem in Air Combat operations is reported. The approach is based on an extension of temporal logic 
in which both intervals and time points are considered. The Point-Interval Temporal Logic (PITL) axiomatic formulation leads to 
algorithms that unify the temporal statements to form a Point Graph with an underlying Petri Net. Petri Net based algorithms are then 
used to analyze the graph to determine its properties. An inference engine is then used to determine whether replanning solutions 
exist. Two versions of the approach have been implemented. TEMPER 1 is used for a qualitative analysis of the temporal statements 
(sequencing of events) while TEMPER 2 accommodates time stamps and interval durations for a quantitative analysis. Both 
algorithms deal with the Single Time Line, Single Future case. Two examples are presented to illustrate the approach. 

14. SUBJECT TERMS 

Discrete Event Systems, Temporal Logic, Colored Petri Nets, Collaborative Planning 

17. SECURITY CLASSIFICATION 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 

UNCLASSIFIED 
NSN 7540-01-280-5500 

1a SECURITY CLASSIFICATION 

UNCLASSIFIED 

15. NUMBER OF PAGES 
102 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 

no 

Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 



May 1998 GMU/C3I-201-R 

CENTER OF EXCELLENCE IN C3I 
GEORGE MASON UNIVERSITY 

Fairfax, VA 22030 

TIME SENSITIVE CONTROL OF 
AIR COMBAT OPERATIONS 

FINAL TECHNICAL REPORT 
Contract No. F49620-95-1-0134 

for the period 
15 January 1995 to 14 January 1998 

Submitted to: 
Prepared by: 

DR. NEAL D. GLASSMAN 
AFOSR/NM Alexander H. Levis, 
Mathematical and Computer Sciences Directorate Principal Investigator 
Air Force Office of Scientific Research 
Boiling AFB, DC 20332-6448 May 3, 1998 

DTIC QUALITY INSPECTED Q 



TABLE OF CONTENTS 

1. INTRODUCTION 5 

1.1 Project Objectives 5 

1.2 Project Description 5 

2. MODELING OF TIME SENSITIVE AIR COMBAT OPERATIONS USING 
COLORED PETRI NETS 7 

2.1 Introduction 7 

2.2 Use of Eagle Vision in Air Combat Operations 8 

2.3 Configuration Description 10 

2.4 Colored Petri Net Model Description 11 

2.5 Conclusion 22 

3. ADAPTATION OF RESULTS FROM TEMPORAL LOGIC 23 

3.1 Introduction 23 

3.2 Mathematical Model 24 

4. TEMPORAL LOGIC / PETRI NET METHODOLOGY: TEMPER1 35 

4.1 Single Time Line Single Future (STSF) 35 

4.2 System Verification 40 

4.3 The TL/PN Inference Engine (TIE) 47 

4.4 The Algorithm 51 

4.5 A Simple Example 54 

4.6 TEMPER 1: Software Implementation of the Algorithm 56 

5. TEMPORAL LOGIC / PETRI NET METHODOLOGY: TEMPER2 64 

5.1 Introduction 64 

5.2 TEMPER2 66 

6. APPLICATION: COLLABORATIVE AIR TASK PLANNING 82 

6.1 Air Task Planning 82 

6.2 Air Task Planning Scenario 83 

6.3 Summary 99 

7. CONCLUSION 10° 

REFERENCES .     101 

-2 



LIST OF FIGURES 

Figure 1 Operations of Eagle Vision 9 

Figure 2 Centralized Configuration 11 

Figure 3 Colored Petri Net Model Structure 12 

Figure 4 Global Declaration Node 13 

Figure 5 Higher Level Page 15 

Figure 6 Model of the Wing 17 

Figure 7 Model of the Communications Network 18 

Figure 8 Model of the Squadron 19 

Figure 9 Model of the Ground Control Station 21 

Figure 10 Model of the Satellite 22 

Figure 11 Temporal Relations 27 

Figure 12 Measure of Relative Length of Two Intervals 28 

Figure 13 Algebraic Description of Temporal Relations between Intervals 30 

Figure 14 String Representation of Temporal Relations 37 

Figure 15 Point Graph Representation of Temporal Relations 46 

Figure 16 Redundancy in PG representation 52 

Figure 17 An Overall View of the Methodology 59 

Figure 18. TEMPER 1 Graphical User Interface 59 

Figure 19 Point Graph Generated by TEMPER 1 60 

Figure 20 Unified Point Graph Generated by TEMPER 1 60 

Figure 21 Re-Arranged Unified Point Graph 60 

Figure 22 Connectivity Matrix 61 

Figure 23 "Q&A" Box 61 

Figure 24 "Q&A" Error Message 62 

Figure 25 Correct Query Entry 62 

Figure 26 TEMPER 1 Response to Query 62 

Figure 27 TEMPER 1 Window When Save&Exit Is Executed 63 

Figure 28 TEMPER 1 Reminder Window Prior To Quitting 63 

Figure 29 TEMPER 1 Window When Re-Starting A Problem 64 

Figure 30 Topology of Temporal Systems 65 

Figure 31 Timed Point Graph Representation of a Temporal Situation 69 

-3- 



Figure 32 Unified PG Representation for Example 17 71 

Figure 34     '    Branch Folding 74 

Figure 35 Join Folding 74 

Figure 36 Inconsistent Case Found During Folding Process 76 

Figure 37 Unified PG for Example 17 76 

Figure 38 Partially Folded TPG for Example 17 77 

Figure 39 Timed Point Graph for Example 18 76 

Figure 40 Black Hole Effect 78 

Figure 41 Inconsistent Path Lengths 79 

Figure 42 Point Graph Generated by TEMPER 85 

Figure 43 Unified Point Graph of SOF Capability 85 

Figure 44 Incidence Matrix Created by TEMPER 86 

Figure 45 Ordinary Petri Net Representation of Incidence Matrix 86 

Figure 46 Point Graphof SOF Availability and Mission Requirements 88 

Figure 47 Unified Point Graph of SOF Windows of Capability and the 

Mission Window of Opportunity 89 

Figure 48 Incidence Matrix Output of TEMPER 89 

Figure 49 Ordinary Petri Net Representation of Incidence Matrix 90 

Figure 50 Unified Point Graph EC Assets With individual Time Scales 92 

Figure 51 Point Graph of Combined SOF and EC Windows of Capability 94 

Figure 52 Unified Point Graph 95 

Figure 53 TEMPER generated Incidence Matrix 95 

Figure 54 Point Graph of the Final Solution to the Planning Problem 97 

Figure 55 Unified Point Graph of the Final Solution 97 

Figure 56 Incidence Matrix of the Final Solution 97 

Figure 57 Alternative Point Graph of Final Planning Solution 98 

Figure 58 Petri Net of the Incidence Matrix of the Final Planning Solution 99 

Figure 59 Petri Net Converted to Final Plan 99 



1. INTRODUCTION 

1.1 Project Objective 

The objective of this project, as described in the proposal, is threefold: 

• Model time sensitive air combat operations using discrete event system models (such as 

Colored Petri Nets) which have been extended to include explicit representation of the 

times and intervals associated with events; 

• Adapt results from temporal logic theories as the mathematical basis for determining 

windows of capability and windows of opportunity and graft this formalism to the 

discrete event formulation; 

• Develop algorithms for manipulating windows of capability as a means of influencing 

the appearance and duration of windows of opportunity, and algorithms for exploiting 

such windows 

1.2 Project Description 

Two key characteristics of air combat operations are that many discrete events occur that 

change the "state" of the system, and that the interaction of these events establishes time intervals 

during which certain actions are possible. One can conceptualize the dynamic problem of the 

planner as the creation of advantageous windows of capability, and that of the controller or 

dynamic batüe manager as the exploitation of those windows, i.e., the creation of windows of 

opportunity. The window of capability is formed by the dynamics of the discrete event system 

(which are affected by the plans generated by the planning cell - the ATO) while the window of 

opportunity depends, in addition, on the admissible actions - the systems available to the 

controllers during a window of capability. 

The model used for the mathematical representation of the dynamics of discrete event systems 

is Hierarchical Colored Petri Nets (CPN). This CPN model incorporates a formal model of time 

that supports the correct modeling of concurrent and asynchronous operations. It is also a flexible 

model in the sense that one can augment it to incorporate an axiomatic model of temporal logic. A 

particular temporal logic model was selected, Allen's logic, and enhanced it to include constructs 

necessary for the control of discrete event systems and for incorporating it in the CPN formulation. 

-5- 



Then, using this combined model, a series of algorithms for the determination of windows of 

capability and windows of opportunity were derived. The temporal relations have been expressed 

explicitly in the CPN model (with the use of logical subnets that represent the time relationships) 

so that net algorithms based on the structure of the net can be used to analyze the behavioral 

properties of the model. Once the model has been verified, these relationships can be folded 

resulting in an equivalent simpler net, but with more complex annotations. 

Two versions of the algorithm, TEMPER, have been developed. In the first one, only 

sequencing information is used to determine the appropriate windows. In the second version, time 

information (time stamps and durations) is included . A final step in this three year effort would 

have been to develop algorithms for exploiting the windows of opportunity as the means of 

determining the set of controls or actions. However, this work has been started but not completed 

during this reprting period. The general problem of multiple time lines and multiple time futures 

that arises when botyh time points and time intervals are used requires further work. When the 

third version of the algorithm is obtained, then the model can be exercised to test various 

alternatives and estimate values for the measures of performance. 

The work carried out in the three year period was organized into the following tasks: 

Task 1: Model time sensitive air combat operations using Colored Petri Nets 

Model time sensitive air combat operations using Colored Petri Nets which have been 

extended to include explicit representation of the times and intervals associated with events. 

Focus on the planning operations at the theater level (all echelons) and at the control of air 

operations by AW ACS and CRC controllers. Use the CPN model as the testbed for testing 

the algorithms for control strategies developed in Task 3 and for illustrating the relevance of 

the basic research effort to Air Force operational problems. 

Task 2: Adapt results from temporal logic theories 

Adapt results from temporal logic theories and construct the Petri net of an axiomatic system 

appropriate for determining windows of capability and windows of opportunity. Use 

theorem proving techniques and the rule base verification and validation methodology of 

Zaidi and Levis (1997) to develop fast, efficient algorithms. 

-6- 



Task 3: Develop algorithms for manipulating windows of capability 

Approach the problem of time sensitive control of discrete event systems by developing 

algorithms for manipulating windows of capability as a means of influencing the appearance 

and duration of windows of opportunity, and algorithms for exploiting such windows. 

Task 4: Document and disseminate the results of the research 

Document the results of the research in the form of theses, technical reports, and journal 

papers. Present the results of the work in technical meetings. Submit progress and other 

reports to AFOSR in accordance with grant requirements. 

Because this work has been carried out by Graduate Research Assistants pursuing the Master 

of Science and Ph. D. Degrees, the tasks were divided into individual projects that are appropriate 

for theses at the master's and Ph.D. levels. Individual students were assigned to each project under 

the supervision of the principal investigator who acted also as the thesis advisor. On occasion, 

projects are assigned to postdoctoral fellows or research faculty. 

2.   MODELING   OF   TIME  SENSITIVE   AIR   COMBAT   OPERATIONS   USING 
COLORED PETRI NETS 

The modeling of time sensitive Air Combat Operations led to two subtasks in an effort to 

create a test bed for evaluating the results from temporal logic. Furthermore, to illustrate the 

applicability of the methodology described in Task 2, an example addressing the problem of 

collaboration for air combat operations planning has been developed; this example is described in 

Section 6. 

2.1. Introduction 

A simple model of Air Combat Operations has been developed that can be used to test the 

concnepts of windows of opportunity and windows of capablity. This model focuses on the 

reception and distribution of the ATO by a Wing, detailed mission preparation by Squadrons, and 

the incorporation of external up-to-date images provided by satellite. This last feature is made 

possible by the use of an Eagle Vision system (MATRA CAP Systemes, 1994) at the wing level. 

Eagle Vision consists of a transportable station and antenna, that can be deployed anywhere and 

designed to provide satellite imagery directly to units on the field. Reception of images at the lower 

-7- 



levels of planning and execution can trigger dynamic replanning of the missions, one of the 

concepts for which the testbed is being designed. 

2.2 Use of Eagle Vision in Air Combat Operations 

Eagle Vision was a project sponsored by the Foreign Comparative Testing Program in the 

Office of the Secretary of Defense, which procures off-the-shelf systems from non-US companies 

for performance evaluation in response to Department of Defense requirements. The aim of Eagle 

Vision is to provide a near real-time SPOT satellite imaging capability under battlefield, 

commander control for use in mission planning and rehearsal, topographic evaluation, and 

intelligence analysis. The Eagle Vision system consists of a Data Acquisition Segment (DAS) 

provided by MATRA CAP Systemes in France, and a Data Integration Segment developed by the 

Environmental Research Institute of Michigan (ERIM). The Eagle Vision DAS is a transportable 

station capable of tracking remote sensing satellites, acquiring and processing the telemetry, and 

delivering images on Computer Compatible Tape (CCT). Originally designed for SPOT, the 

station can process Landsat data and can be upgraded for receiving ERS-1 data. 

Wings and squadrons may need detailed and up-to-date information about the targets, such as 

Battle Damage Assessment (BDA), to plan the missions in detail. Knowing whether the enemy 

has recently set up new defense capabilities for a specific target may be of critical importance for 

the successful completion of a mission. Eagle Vision can provide detailed satellite images at the 

wing/squadron level. Its main feature is that it substantially reduces the delay associated with the 

feedback loop concerning the status of targets. During the Gulf war, images were processed and 

analyzed in CONUS before being forwarded to the warfighters in the theater of operations, often 

too late to be of any operational use. Installing Eagle Vision close to the theater of operations shifts 

the analysis of images to the warfighters who can focus their efforts on the targets and areas of 

interest to them. 

Figure 1 shows schematically the operation of a deployed Eagle Vision system. The Eagle 

Vision has the capability to transmit by fax any request for images to a Ground Control Station 

(GCS) that controls the operations of the satellite. From this request, the operator at the GCS 

generates a programming command that specifies which picture to take and where/when to send it. 

This command is radio transmitted to the satellite when it is in transmitting range of the GCS. The 

satellite is then tasked according to this command. When the satellite is above the area of interest, it 

rotates its observation lens to take the picture which is then ready to be transmitted to the Eagle 

-8- 



Vision on the surface of the Earth. If the Eagle Vision is close enough to the area of interest, the 

image can be downloaded just after being taken. This configuration is called direct connection 

(prise directe). If the Eagle Vision is far from the area of operations, the satellite must wait to come 

in transmitting range before sending the data. 

Figure 1 Operations of Eagle Vision 

The satellite system supporting the Air Combat Operations system has been designed to be 

able to take a picture (either photo, infra-red or radar, and to download it to an Eagle Vision station 

within 24 hours: the squadrons receiving the ATO at the beginning of the second day (mission 

preparation phase) of the Air Combat Operation process must be able to generate a request for 

satellite imagery and to get a response before the third day begins, which is the execution phase. 

The satellite system consists of two satellites located on the same orbital plane with an offset of 

half a period. The satellites have the same orbital characteristics as the SPOT satellites (altitude 832 

km, inclination angle of the orbital plane of 98.7°) but have enhanced technical capabilities to 

satisfy the requirements of providing images within 24 hours. Such enhanced capabilities include 



multi sensing (photo, infra red, radar), sufficient resolution of images, increased maximal lateral 

rotation of the sensor lens, and capability to download data on Earth at any time. 

2.3 Configuration Description 

Two configurations of Eagle Vision have been modeled, but only one is described here. The 

selected configuration is a centralized one where an Eagle Vision is installed at the Wing. The 

alternate configuration is to install an Eagle Vision at each squadron. The reason behind the 

selection of the centralized configuration is that the wing seems to have sufficient authority and 

responsibility to initiate dynamic replanning of missions. An Eagle Vision installed at the wing 

level would require the existence of a local database of satellite images that could be accessed by 

the different squadrons. This may create several problems. The first one is an access problem. The 

operator at the squadron level would have to browse the database to get the images he wants. 

Because of the large amount of data, this process would be time consuming. A rigorous access 

protocol should be defined to allow all squadrons to get the data they want in a reasonable amount 

of time. A related problem is the support communications network that will be needed to allow the 

transfer of large amounts of data from the wing to the squadrons. There will not be any problem if 

the wings and the squadrons are close to each other and are linked by a fiber optics local area 

network. However, this problem could be critical if the wing and the squadrons are distant from 

each other and have to rely on radio or satellite communications to transfer data. 

As shown on Figure 2, requests to get an image of a given area from the satellite will be sent 

by the squadron to the Eagle Vision operator at the wing level. This operator will have to sort the 

requests, identify the redundant ones, and resolve possible conflicts. Once this is done, the Eagle 

Vision operator will forward the request to the appropriate Ground Control Station (GCS) so that 

the satellite is tasked accordingly. The Eagle Vision operator will have a role similar to the anchor 

desk of the Copernicus Architecture (Perdu et al., 1994), that establishes the interface between non- 

organic sensors and the tactical operators on the battlefield. When the satellite has taken pictures 

and is in transmission range of the Eagle Vision, the images are downloaded to the wing, and are 

then forwarded to the squadrons that requested them. 

■10- 



2.4 Colored Petri Net Model Description 

Model Structure 

The Colored Petri Net model has been developed using Hierarchical Colored Petri Nets so that 

independent modules specified in the form of substitution transitions can be constructed and 

connected on the upper level page. The resulting model structure is depicted on Figure 3. Five 

independent model pages have been constructed to model the different parts of the Air Combat 

Operations using Eagle Vision. These model pages are described further in this section. 

Figure 2 Centralized Configuration 

Global Declaration Node 

The Global Declaration Node of the model is displayed in Figure 4. It contains the declaration 

of the color sets and variables used in the model. The first part specifies the tokens exchanged 

between the object instances. The second part defines the characteristics of the satellite. 

-11- 



In the first part, the color set "Coord" is a real color set used for the position of the points of 

interest on the surface of the Earth and for the initial parameters of the position of the satellites. 

Comms Wing 

Upper 
Level 

Squadron 
Ground 
Control 
Station 

Satellite 

Figure 3 Colored Petri Net Model Structure 

"Position" is a product color set of the color set "Coord" to indicate the latitude and longitude of 

the points of interest. The color set "MissionNb" is used to indicate the ID number of the mission 

to be carried out; "mnb" is a variable defined for this color set. The color set "Config" has only 

two colors, "cent" and "decent," for centralized and decentralized, and is used for the specialization 

of the class Squadron, "conf' is a variable defined for this color set. The color set "Squad" (with 

variable "sqnb") is an integer color set used to identify the squadrons. The wing is identifed by the 

color 0. "SquadData" is a composite color set which specifies the data related to each squadron. It 

is the product of the color set "Squad" (id number of the squadron,), and the color set "Position" 

which specifies where the images should be downloaded, that is the location of the wing. The color 

set "TimePoints" with variables "tl" and "t2" is used to specify some points in time and is 

mainly used for the collection of time-related data. The missions to be carried out by the squadrons 

are specified using the color set "Mission." It is a product of the color sets indicating the id 

number of the mission (color set "MissionNb"), the position of the target (color set "Position") 

the squadron that will carry out this specific mission (color set "Squad") and when it has to take 

place (color set "TimePoint"). "ATO" is the list of missions and is specified as a list of color 

"Mission." The color set "Request" is used to represent the requests for images by the squadrons. 

It is a product color set indicating which squadron generated the request (color set "Squad"), the 

location of the image to be taken (color set "Position") and, where the image should be 

downloaded (color set "Position"). The command sent by the Ground Control station to the 

satellites is modelled with the color set "SatCmd" (variable "sc") which is a product color set 

indicating the locations of the images to be taken and where to download the data. "DataCol" is the 

-12- 



timed version of the color set "SatCmd" and is used for data collection indicating when specific 

events ocured. 

color Coord = real; 
color Position = product Coord*Coord; (* (Latitude.Longitude) *) 
color MissionNb = int; (* ID number of the mission *) 
var mnb: MissionNb; 
color Squad = int; (* ID number of the squadron 0 = Wing*) 
var sqnb: Squad; 
color SquadData = product Squad * Position; 
color TimePoint = int; (* point in time *) 
vart1,t2 : TimePoint; 
color Mission = product MissionNb*Position*Squad*TimePoint; 
color ATO = list Mission; 
var mis: ATO; 
color Request = product Squad*Position*Position; 
color SatCmd = product Position*Position; 
var sc: SatCmd; 
color DataCol = SatCmd timed; 
color SortReq = product Position * Position; 
color Image = product Position * TimePoint; 
var im1 : Image; 
color MsgType = union mss:Mission + rq:Request + im:lmage; 
var mt: MsgType; 
color CommRes = with Res timed; 
color Size = int; 
var sz : Size; 
color Msg = product Squad * Squad * MsgType * Size timed;   (* addressee, adresser.Type and Content, size *) 
color UT = with ut timed; 
var oslat.oslon, nslat,nslon,ilat,ilon,rlat,rlon, slat,slon,glat,glon,fi,teta : Coord; 
var ipos.rpos : Position;. 
fun tan(x) = sin(x)/cos(x); 
fun arcsin(x) = if x=0.0 then 0.0 else 2.0 * (arctan((1.0-(sqrt(1.0-(x*x))))/x)); 
val K=37800.0; 
val Re = 6370.0; 
val h = 832.0; 
valpi = 2.0*arcsin(1.0); 
vala = 98.7*pi/180.0; 
val T = 2.0*pi*exp(1.5*ln(Re+h))/K; 
val ws = 2.0*pi/T; 
val wt = 2.0*pi/1440.0; 
fun rem(x:real,y:real) = let val z = x/y in x - (real(floor(z))*y) end; 
fun atan2(0.0,y) = if y>0.0 then pi/2.0 else if y=0.0 then 

0 else -pi/2.0 
1 atan2(x,y) = let val ata=arctan(y/x) in if x >0.0 then ata else if y>0.0 then pi+ata else ata-pi end; 

fun posit(t,fi:real,teta:real) = 
(rem(180.0+(180.0/pi*(atan2(cos((ws*t)+(pi*fi/180.0)),(sin((ws*t)+(pi*fi/180.0)))*cos(a))-((wt*t)+ 
(pi*teta/180.0)))), 360.0)-180.0, 180.0/pi*arcsin((sin((ws*t)+(pi*fi/180.0)))*sin(a))); 

fun newposit(tt,fi,teta) = posit(real(tt),fi,teta);  

Figure 4 Global Declaration Node 

-13- 



The color set "Image" (variable "iml") is also a product color set to indicate the location of 

the center point of the image and the date at which the image was taken. The type of messages 

exchanged between the wing and the squadrons is specified with the color set "MsgType" 

(variable "mt"). It is a union color set to indicate that the message can be either a mission (color set 

"Mission"), a request (color set "Request"), or an image (color set "Image"). The enumerated and 

timed color set "CommRes" represents the resources of the communications network connecting 

the wing and the squadrons. The integer color set "Size" is used to specify the size of the message. 

Finally, the color "Msg" is used to represent the message and is the product of four color sets. The 

first color set "Squad" specifies the addressee of the message, the second color set "Squad" 

specifies the sender; the color set "MsgType" is used to specify the type and the content of the 

message, and "Size" the size of the message. "UT" is a timed color set used in the "Satellite" page 

to trigger the computation of the coordinates of the satellites in each time step of the execution. 

Finally, several "Coord" and "Position" variables are defined to be used in different parts of the 

model. 

The second part specifies the different functions and parameters that deal with the orbital 

mechanics of the satellite. K is the constant equal to VGM where G is the universal constant of 

gravitation and M is the mass of the Earth. ^ is the radius of the Earth in km., h is the altitude of 

the satellite, pi is the constant n (3.1415), a is the inclination of the orbital plane of the satellite in 

radians, T is the period of revolution of the satellite, ws is the angular speed of the satellite, and wt 

is the angular speed of the rotation of the earth. The function rem(x,t) returns the remainder of the 

division of x by y; atan2 is the quadratic arctangent. Finally, the functions "posit" and "newposit" 

implement the trajectory of the satellite around the Earth. Note that this model can be used to study 

different types of satellites having a circular orbit around the Earth: only the values of the constants 

h (altitude) and a (inclination) need to be modified. 

Model of the Upper Level 

The model of the upper level is shown on Figure 5. Every transition on this page is a 

substitution transition that refers to different instances of the page of the same name. These 

transistions correspond to objects that are different instances of the classes represented by the page 

described further in this section. The wing receives the ATO once a day and transmits the mission 

to the different squadrons through the communications represented by the substitution transition 

"Local Comms." The place of color set "Local Comms" specifies the number of communications 

-14- 



resources available. The model considers four squadrons. The data specific to the squadrons are 

specified by the initial markings of the places of color set "SquadData." These data are (1) the ID 

number of the squadrons, (2) the configuration ("cent") in which the instance is used and, (3) the 

location where the data should be downloaded. In the centralized configuration, the Eagle Vision is 

installed at the wing level and the four squadrons have the same downloading location: the wing 

located at 46.75° East and 24.6° North. The squadrons address their requests for images to the 

wing through the same communications network. 

Position Position 

Position 

17-58.0.6.25W 
1'(0.0.43.5)+ 
1729.75.-23.0H- 
1 •(24.75.67.25) 

r(1.(4B.0.29.3). 1.100). 
fg,f44,45,33,3).2.99), 
(3(48.0.30.2S).3.102). 
(4.(44.0.30.5).3.99). 
(5(42.0.35.75).4.100)1 

ATO o 

Ground 
Control 
Station 

(180,0,0.01 

Position 

Figure 5 Higher Level Page 

The wing sorts the requests and sends them to the Ground Control Stations by putting the 

appropriate tokens in the place of color set "SortReq." The model considers four Ground Control 

-15- 



Stations distributed on the surface of the Earth, as indicated by the four tokens of the the initial 

marking of the place of color set "Position" forming a self loop with the substitution transition 

"Ground Control Station." These four ground control stations are the ones used for SPOT and are 

located in Kourou in French Guyana (58.0 W, 6.25 N), in Aussaguel in France (0.0, 43.5 N), in 

Hartebeesthoek in South Africa (23.75 E, 23.0 S) and in Kiruna in Sweden (24.75 E, 67.25 N). 

Satellite commands are sent to the satellites when they are in transmitting range of the Ground 

Control Stations by putting tokens in the places of color set "SatCmd." The model considers two 

satellites, the characteristics of the trajectories being specified by the initial marking of the places of 

color set "Position": the places connected both to the transitions "Satellite" and "Ground Control 

Station" indicate the current position of the satellite while the places forming only a selfloop with 

the substitution transition "Satellite" indicate the initial parameters of the trajectory (longitude of 

the orbital plane at time t = 0 and location of the satellite on the orbital plane at time t = 0). Pictures 

are taken by the satellite according to the commands and are downloaded to the wing by putting 

tokens in the place of color set "Image," input to the substitution transition "Wing." 

Model of the Wing 

The model of the wing is displayed on Figure 6. The wing is responsible for three main 

activities. The first one is to dessiminate the ATO received from the higher planning level. The 

ATO is received by the Wing when a token appears in the port place of color set "ATO." The 

transition "Receive ATO" fires and the missions are sent to the different squadrons when the 

transition "Distribute ATO" fires: for each mission defined in the ATO, a token "Msg" is 

generated addressed to the squadron responsible for the execution of this particular mission. 

The second activity performed by the Wing is the handling of requests for images generated 

by the squadrons. A request is received when a "Msg" token of type request appears in the input 

port place of color set "Msg," enabling the tranition "Process Request." When this transition fires, 

a "SortReq" token is generated in the output port place of color set "SortReq" and the request is 

also kept in memory to forward received images to the squadrons. 

The third activity is the handling of images. A data base of images represented by the place of 

color set "Image" and named "DB" is updated when the Eagle Vision at the wing level receives 

images from the satellites (a token appears in the input port place of color set "Image") by firing of 

the transition "Receive Image." This image Database is accessed by the squadrons when an image 

query token appears in the input port place "Msg," enabling the transition "Receive query for 

-16- 



Image DB." The response to the query takes the form of an image message represented by a token 

"Msg" of type Image generated in the output port place of color set "Msg." If there is no image, 

the image has the form (ipos,0) and the size of the message is 10. If an image is available (the time 

Image 

(ipos.tl) 

Receive 
Image 

(ipos,t2) 

SortReq 

Q 
^   (ipos.rp (ipos.rpos) 

Process 
Request 

(ipos,ift1>t2thent1 elset2) 

(sqnb,ipos.rpos) 

( 

(sqnb,ipos.rpos) 

t1>0 

ATO 

o 

Forward 
new image 

Receive 
ATO 

(0,sqnb,rq (sqnb,ipos,rpos),10) 

Msg 

(0,sqnb,im (ipos,0),10) 

Receive query 
for Image DB 0,im (ipos,t1),1000) 

(sqnb,0,im (ipos.tl), 
if t1>0 then 1000 else 10j 

Distribute 
ATO 

Msg 

(mnb,ipos,sqnb,t1 )::mls    (Sqnb,0,mss (mnb,ipos,sqnb,t1 ),100) 

Figure 6 Model of the Wing 

attribute is larger than 0), the size of the message is 1,000. Finally, the transition "Forward new 

image" fires when an image being requested has been put in the image database: a token "Msg" of 

type image is generated in the output port place of color set "Msg" addressed to the squadron that 

generated the request for this particular image. 

Model of the Communications Network 

The page model of the communications network connecting the wing to the squadrons is 

shown in Figure 7. This is a simple model that addresses the competition for scarce 

communications resources and induces a delay for the transmission messages. 

-17- 



The model is symmetrical: the top part models the transmission of messages from the wing 

to the squadrons, while the bottom part models the transmission of messages from the squadrons 

to the wing. A message appearing in either of the input port places of color set "Msg" requires a 

number of resources which is a function of its size as modeled by the arc expressions connecting 

the place of color set "CommRes" to the transitions: if the size of the message is less than or equal 

to 10, one resource is required, otherwise two resources are necessary. The delay to transmit the 

messages is modeled in the time region of the transition. It takes 1 unit of time (corresponding to 1 

minute) to transmit a message the size of which is smaller than 11,2 units of time for messages 

with size between 11 and 100, and 5 units of time for messages larger than 100. After the delay, 

the token "Msg" is generated in either of the output port places and the resources are given back. 

cP (sqnb,0,mt,sz) 

©+(if(sz<=10)then1 
else if (sz<=100) then 2 else 5) 

(sqnb,0,mt,sz) 

ifsz<=10 
then 1'Res 
else 2'Res 

ifsz<=10 
then 1'Res 
else 2'Res 

CommRes 

O 

O 
Msg (0,sqnb,mt,sz) 

ifsz<=10 
then 1'Res 
else 2'Res 

if sz<=10 
then 1'Res 
else 2' Res 

(0,sqnb,mt,sz) 

@+(if (sz<=10)then1 
else if (sz <=100) then 2 else 5) 

oS9 

Figure 7 Model of the Communications Network 

Model of the Squadron 

The generic model of the squadron is shown in Figure 8. This model is instantiated four times 

to represent the four squadrons of the Air Combat Operations System. The data specific to each 

instance are defined with the token contained in the input port place of color set "SquadData." The 

first data of color set "Squad" is the ID number and is used for the reception and the generation of 

messages. The second data is the coordinate of the wing, where the images should be downloaded 

and is used for the formulation of requests. 

-18- 



The squadron receives a message when the transition "Receive Message" fires. Only the 

messages addressed to a particular squadron enables the transition of this particular page/class 

instance. The messages received by a squadron can be of two types: either a mission, or an image. 

When a mission message is received, the transition "Prepare mission" fires enabling the transition 

"Assess need for ext. data." Each squadron has a local image database by images sent by the wing 

as a response to a query of the wing image database or to a request for satellite observation. The 

mission preparation can be completed only if recent images are present in the image database, that 

is if the time stamp of the image is larger than 0. The firing of the transition "Assess need for ext. 

data" can result in different markings. If there are recent images in the local database, no token is 

generated and the mission preparation can be completed. If there is no image in the local database 

then the wing image database has to be queried first: the firing of the transition "Assess need for 

ext. data" results in a token being generated in the image of color set "Image" input to the 

transition "Query Wing Image DB." The firing of this transition results in the creation of a query 

message which is sent when the transition "Send Message" fires. 

<ipos.t2) 

Mission 

(mnb,ipos.t1,thie()) 

t2>0 

Image 

(mnb,pos.sqnb,t1) 

Mission 

(mnb.pos.sqnb.11) 

(sqnb.0.mss (mnb,ipos.sqnb.t1).sz) 

SquadData 

(sqnb.rpos) 

SquaoOata 5 (sqnb.rpos) 

Figure 8 Model of the Squadron 

-19- 



As mentionned earlier, image messages from the wing are received when tokens appear in the 

input port place of color set "Msg." These image messages are either responses to query to the 

wing database or the response to requests for satellite observation. The firing of the transition 

"Receive Message" generates a token in the place of color set "Msg" that enables the transition 

"Receive Answer to query." If the image received is recent, the local image database is updated 

and the transition "Complete Mission Preparation" can be enabled and fires. In the image is not 

recent, a request for satellite observation needs to be formulated and the firing of this transition 

"Receive answer to query" results in a token being generated in the place of color set "Image" 

input to the transition "Formulate requests." 

Model of the Ground Control Station 

The model of the Ground Control Station is shown on Figure 9. Requests are received by the 

Ground Control stations when a token appears in the input port place of color set "SortReq," 

enabling the transition "Process Request." The firing of this transition results in a "SatCmd" token 

being generated, one for each satellite. This satellite command is sent when the satellite is in 

transmission range of the ground control station. This is implemented by the guard function the 

transitions "Send command" which can fire only when the difference of the latitudes and 

longitudes of the satellites and ground control station position are less than 20°. There is a 

transition "Send Command" for each satellite. The model is constructed so that for each request, 

only one satellite command is sent to each satellite. The model does not predict the trajectories of 

the satellites to infer which ground control station will be able to send first the commands to the 

satellite. 

Model of the Satellite 

The generic model page of the satellite is presented in Figure 10. The model page is 

instantiated twice to consider the' two satellites necessary for the full observation of the Earth in 

less than 24 hours. The data specific to each satellite is specified by the initial marking of the page 

of color set "Position" at the top right side of the page and that forms a self loop only with the 

transition "Move." The place of color set "Position" on the left of this transition contains the 

current position of the satellite. The transition "Move" is enabled every unit of time when the token 

"ut" contained in the place of color set "UT" becomes available. When the transition "Move" 

fires, the old position of the satellite is withdrawn from the left place of color set "Position" and is 

-20- 



replaced by the new position computed on the output arc expression "newposit(time(),fi,teta)" 

which computes the position at the current time (function time(), and uses the parameters fi and 

teta of the trajectory obtained from the right place of color set "Position." fi is the position on the 

orbital plane at time t = 0, teta is the longitude of the intersection of the orbital plane and the 

equatorial plane at time t = 0. The friring of this transition results also in the time stamp of the 

token "ut" increased by 1, so that the transition can be enabled when the simulation time advances. 

Position 

SatCmd 
(ipos.rpos) 

(slat,slon) SatCmd 

Send 
Command 

(ipos.rpos) o 
SortReq 

[(abs(slat-glat)<=20.0) 
andalso 
(abs(slon-glon)<=20.0)] 

SatCmd 

[(abs(slat-glat)<=20.0) 
andalso 
(abs(slon-glon)<=20.0)] 

Figure 9 Model of the Ground Control Station 

The satellite command sent by one of the ground control stations is received by the satellite 

when a token of type "SatCmd" appears in the input port place of color set "SatCmd," enabling 

the transition "Receive Request." The command specifies two things: the location of the center of 

the image to be taken as represented by the variable ipos or (ilat, ilon), and the location of the Eagle 

Vision where the image should be downloaded. The picture is taken only when the satellite is in 

observation range of the desired coordinates as implemented by the guard function of the transition 

"Take Picture." The transition "Take Picture" fires only when the difference of the longitudes and 

latitudes of the satellite and the area of interest positions is less than 5.1°. When the transition fires, 

-21- 



a token image is generated in the place of color set "Image" with a time stamp equal to the current 

time of the simulation and the SatCmd token is reproduced in the input place "SatCmd" to the 

transition "Send Picture." This transition is enabled when the guard function indicating that the 

difference of the longitudes and latitudes of the satellite and Eagle Vision positions is less than 20° 

evaluates to true. This guard function models the fact that the satellite needs to be in transmission 

range of the Eagle Vision to download the data. When the transition "Send Picture" fires, the 

token Image is generated in the ouput port place of color set "Image." 

UT 

nil 

Position newposit(time(),fi,teta) 
Position 

SatCmd 

O^ Receive 
Request 

SatCmd ((jiat.ilon) 
sc o rpos) Take 

Picure 

((ilat,ilon)/masre 
timeQ)   /">\(ipos,t1 

[(abs(slat-rlat)<=20.0) 
andalso 
abs(slon-rlon)<=20.0)l 

Send 
Picture 

[(abs(slat-i!at)<=5.1) 
andalso 
(abs(slon-ilon)<=5.1)] 

(ipos.tD 

Imape 

2.5 Conclusion 

Figure 10 Model of the Satellite 

The current model includes the reception and distribution of the ATO, the process of mission 

preparation and the transmission of external information. The model is deemed sufficient to serve 

as a testbed for the results of the other tasks. 

-22- 



3.  ADAPTATION OF RESULTS FROM TEMPORAL LOGIC 

3.1. Introduction 

This section presents an approach for the modeling and subsequent analysis of the temporal 

aspects of discrete-event systems. A system's temporal aspects might be represented in terms of 

properties that hold for certain time intervals, processes taking some time to complete, and/or 

events/occurrences requiring virtually no time to take place. In order to model a system's temporal 

aspects one needs, therefore, to have a formalism capable of handling both interval and point 

descriptions of various components of the system. 

An extension of Allen's interval logic (Allen, 1981a, 1981b, 1983, 1984; Allen and Hayes, 

1985a, 1985b; Galton, 1990) that incorporates both descriptions of time, point and interval, is 

presented. The new formalism, called point-interval logic, extends the axiomatic system of interval 

logic by adding new axioms to it. A Petri net model is shown to model this axiomatic system of 

the point-interval logic. This Petri net based approach transforms the system's specifications given 

by temporal statements of point-interval logic into Petri net structures. A temporal inference engine 

(TEE) based on this Petri net representation infers new temporal relations among system intervals, 

identifies temporal ambiguities and errors (if present) in the system's specifications, and finally 

identifies the windows of capabilities defined by the user. The real strength of this inference engine 

is that it performs all these functions in linear time, completely avoiding the combinatorial nature 

of the problem inherent in the inference engines of its kind. 

The presentation is organized as follows. Section 3.2 presents the definitions of different 

notions and terms used in the approach together with an introduction to point-interval logic. The 

section also presents an analytical model for the temporal relations. A transformation of this model 

to an equivalent Petri net representation is presented in Section 4. The structure of Petri net 

representing temporal relations among intervals is shown to reveal inconsistencies and 

incompleteness present in the system. The graph-based inference engine, TIE, is presented in 

section 4.3. Section 4.4 contains the results of the approach and the algorithm. Section 4.5 applies 

the result of the methodology to a simple problem, while Section 4.6 describes TEMPER 1, the 

software implementation of the methodology. 

23 



3.2. Mathematical Model 

Definition 1:  Interval 

An interval is denoted by a symbol, i.e., a letter or a digit, and is defined as 

X = [sx, ex], where ex > sx. 

In this definition sx denotes 'start of x' and ex 'end of x'. The two bounds are abstract notions 

and may not have numerical values assigned to them. The intervals considered in this paper 

are all closed intervals. 

Definition 2:  Interval Length 

The length of an interval X = [sx, ex], denoted by IX!, is defined as IXI = ex - sx 

Definition 3: Point 

An interval X with IXI = 0 is a point interval; x = [px, px] is a point interval or point. 

In a system description a point may be used to signify an occurrence or an event. 

Definition 4: Sup-interval and Sub-interval 

Let X= [sx, ex] and Y = [sy, ey] are two intervals. The sup-interval 'X»Y' is defined as [sx, 

ey] only if ex = sy — the two intervals are consecutive intervals. 

Similarly an interval X = [sx, ex] can be represented in terms of a series of consecutive 

intervals, called sub-intervals of X; X = xl»x2« ...• xn, where xl= [sx, a,], x2 = [a, aj, ..., xn 

= [a,,., ex] and Ixil > 0. 

Definition 5: Length of Sup-interval 

Let X»Y be a sup-interval with sub-intervals X and Y, the length of the interval IX»Yl is given 

as IX»Yl = IXI + IYI 

Definition 6: Temporal Relation Ri 

The temporal relation Ri is a truth functional binary relation defined as: 

Ri: I x I -»(T, F} 

where      I is the set of intervals and, T and F are the Boolean values, true and false 

Definition 7: Temporal Relation Ri 

The temporal relation Ri is a binary relation defined as:     Ri: I x I -» I* 

where I is the set of intervals; and I* is the set of intervals, sup-intervals, and sub-intervals 

formed by the intervals in I. 

-24- 



The relation X Ri Y holds if and only if X Ri Y is true. 

Definition 8: Composite Interval 

Let X = [sx, ex] and Y = [sy, ey] are two intervals, where sx = sy and ex = ey, then they are 

jointly represented by a composite interval [X; Y] = [sx;sy, ex;ey]. By definition [X, X] = 

[X] or simply X. 

Definition 9: Composite Point 

Let X = [px] and Y = [py] represent a single point on the time line, i.e., px = py, then the 

composite point is represented as [X;Y] = [px;py]. 

Point-interval Logic 

The point-interval logic presented in this section is an extension of Allen's interval logic. The 

formalism considers a single time line. Any two intervals with non-zero lengths on this time line 

are related by one of the seven relationships presented in Figure 11, case I. The underlying 

assumption of the interval logic is the non-zero lengths of time intervals. The present approach 

relaxes this assumption and allows intervals with zero lengths — points. Case II, Figure 11, 

presents two possible temporal relations between two points. Finally, case m, Figure 11, presents 

the possible set of temporal relations between a point and an interval. From now on, the term 

interval is used to refer both intervals and points if not explicitly stated otherwise. 

Definition 10: Set of Temporal Relations, R 

R represents the set of temporal relations Ri and is given as: 

R = {Before, Meets, Overlaps, Starts, During, Finishes, Equals} 

Proposition 1 

The temporal relations presented in Figure 11 are mutually exclusive and exhaustive, i.e., 

1) if (X Ri Y), Ri € R, then there does not exist an Rj e R, such that (X Rj Y) holds true. 

2) for any two intervals X and Y there must exist an Ri € R such that either (X Ri Y) or 

(Y Ri X) holds true 

(with the exception of Equals relation where (X Equals Y) = (Y Equals X).) 

-25- 



Properties ofRi 

The relationship that exists between two intervals is independent of the actual lengths of the 

individual intervals. However, some of the relations in R do imply a measure between the relative 

lengths of the intervals being compared. This information about the relative lengths of intervals can 

be exploited by a specification and analysis system, based on temporal logic, to elicit the implicit 

temporal information present in a system of temporal statements, i.e., length of an interval X can 

be calculated with the help of known temporal relations among other intervals in the systems and 

X, and with the known lengths of some of these intervals. Similarly, the information about the 

relative lengths of intervals can be used to identify inconsistencies and errors present in the system 

specifications. However, the methodology does not take into consideration either the actual or 

relative lengths of intervals present in a system. Based on the definition of temporal relations 

shown in Figure 11, Figure 12 presents the measure of relative lengths of two intervals. 

Other properties of the individual relations Ri are: 

1. Before 

a) Irreflexive, i.e., X Before X. 

b) Antisymmetric, i.e., either X Before Y or Y Before X is true but not both. 

c) Transitive, i.e., X Before Y    Y Before Z -» X Before Z. 

2. Meets 

a) Irreflexive 

b) Antisymmetric 

c) Nontransitive 

3. Overlaps 

a) Irreflexive 

b) Antisymmetric 

c) Transitive 

4. Starts 

a) Irreflexive 

b) Antisymmetric 

c) Transitive 

-26- 



CASE I— X and Y both intervals with non-zero lengths: 
X = [sx, ex], Y = [sy, ey] with sx < ex and sy < ey 
1. X Before Y ex<sy 

2. X Meets Y ex = sy 

3. X Overlaps Y sx < sy 

sy <ex 
ex<ey 

4. X Starts Y sx = sy 

ex<ey 

5. X During Y sx > sy 

ex<ey 

X Finishes Y sy < sx 

ey = ex 

7. X Equals Y sx = sy 

ex = ey 

CASE II—X and Y both points: 

X = [px] and Y = [py] with sx = ex = px and sy = ey = py 

1. X Before Y 

X Equals Y 

px<py 

px = py 

CASE HI— X is a point and Y is an interval: 
X = [px] and Y = [sy, ey] with sx = ex = px and sy < ey 

1. 

2. 

3. 

4. 

5. 

X Before Y 

X Starts Y 

X During Y 

px < sy 

px = sy 

sx < px < ey 

X Finishes Y px = ey 

Y Before X ey < px 

j*   X 

X 

ex     sy 

x 

x 

X 

X Y 
px py 
• • 

[X;Y] 
• 

X 

X 

Y    eY 

X    Y 

Y    X 

X 

Figure 11 Temporal Relations 

-27- 



X Starts Y IXI < IYI 

X During Y IXI < IYI 

X Finishes Y IXI < IYI 

X Equals Y 1X1 = = IYI 

Figure 12 Measure of Relative Length of Two Intervals 

5. During 

a) Irreflexive 

b) Antisymmetric 

c) Transitive 

6. Finishes 

a) Irreflexive 

b) Antisymmetric 

c) Transitive 

7. Equals 

a) Reflexive 

b) Symmetric 

c) Transitive 

Analytical Model 

An analytical representation of temporal relations among intervals is shown in Figure 11. 

According to this representation a temporal relation between two intervals can be described as a set 

of algebraic inequalities among points representing start and end of these intervals. Figure 13 

presents a general description of this model. 

Two points, pi and p2, on a single time line can be related to each other by one of the 

following four relations: 

(i)       pl>p2 

(iii)      pi < p2 

(ii)       pi = p2 

(iv)      pl?p2 

(? represents 'unknown'. This is added to incorporate incomplete information) 

-28- 



X = [sx, ex], Y = [sy, ey] with sx < ex and sy < ey 

X Before Y sx < ex < sy < ey 

X Meets Y sx < ex = sy < ey 

X Overlaps Y sx < sy < ex < ey 

X Starts Y sx = sy < ex < ey 

X During Y sy < sx < ex < ey 

X Finishes Y sy < sx < ex = ey 

X Equals Y sx = sy < ex = ey 

Figure 13 Algebraic Description of Temporal Relations between Intervals 

With these four possibilities and the analytical model of Figure 13, a temporal relation Ri 

between two intervals X and Y, denoted as Ri(X, Y) can be represented as a 4-digit string made of 

elements from the alphabet {<,=,>,?}, where the first (left-most) digit represents the relation 

between sx and sy, second digit between sx and ey, third digit represents relation between ex and 

sy, and fourth between ex and ey. The representation does not take into account the point or 

interval nature of X and Y. The information about the nature of intervals is assumed to be known; 

however, this 4-digit representation can be extended to accommodate this feature as well. Figure 

14 shows this string representation for each temporal relation. 

The description of a temporal relation Ri (known or unknown or partially known) between 

two intervals X and Y, therefore, require only 8 bits (for a computer implementation.) This byte 

representation of a temporal relation between two intervals, and the nature of the intervals (which 

requires 1 bit for each interval) are all that is required to store (and maintain) complete, or 

partially/totally incomplete information about the two intervals. Even if one needs to store temporal 

relations between all possible combinations of intervals from a set of n intervals, it will take n + 

n(n - l)/2 bytes to store all this information. Temporal inconsistencies can be identified by 

checking inconsistent patterns of this 8-bit representation. 

-29- 



Ri(X, Y)        sx Vs sy sx Vs ey ex Vs sy   ex Vs ey 

X Before Y < < <              < 

X Meets Y < < =              < 

X Overlaps Y < < >               < 

X Starts Y = < >(or =)      < 

X During Y > < >               < 

X Finishes Y > <(or =) >               = 

X Equals Y = <(or =) >(or=)      = 

X unknown Y ? ? ?                ? 

Figure 14 String Representation of Temporal Relations 

Axioms of Point-Interval Logic 

Point Axioms 

Let pi, p2, and p3 be points defined on a single time line. The following four (1-4) axioms 

can be used to infer the temporal relation between two points on the time line. The 

remaining combinations of temporal relation among three points (L.H.S. of the axioms) 

result in an unknown, ?, relation between the two points at the R.H.S. of the axioms; this is 

described by the axiom 5, where underscore, _, is used to denote any of the four temporal 

relation, {<,=,>,?}. 

1. (pi <p2)A(p3<pl)->(p3<p2) 

2. (pl<p2)A(p3 = pl)-*(p3<p2) 

3. (pl<p2)A(p3 = p2)-4(p3>pl) 

4. (Pl=p2)A(p3 = pl)->(p3 = p2) 

5. (pl_p2)A(p3_pl)-»(p3?p2) 

Together with the 4-digit representation of a temporal relation and the nature of the intervals 

involved, point axioms implement the axiomatic system of the point-interval logic. The following 

examples illustrate some of the axioms of point-interval logic. 

-30- 



Example 1 

Let X, Y and Z be three intervals, with following known relations among them: 

(i) X Before Y 

(ii)       Y Before Z 

The corresponding string representations are given as follows: 

sx Vs sy sx Vs ey ex Vs sy ex Vs ey 

XBeforeY < < < < 

sy Vs sz sy Vs ez ey Vs sz ey Vs ez 

Y Before Z < < < < 

The application of point axioms to these two strings yields: 

sx Vs sz sx Vs ez ex Vs sz ex Vs ez 

< < < < X Before Z 

The example implements the following axiom of point-interval logic: 

(X Before Y) A (Y Before Z) -> (X Before Z) 

Example 2 

Let X, Y and Z be three intervals, with following known relations among them: 

(i) X Overlaps Y 

(ii) Y Overlaps Z 

The corresponding string representations are given as follows: 

sx Vs sy   sx Vs ey   ex Vs sy   ex Vs ey 

X Overlaps Y < < > < 

sy Vs sz    sy Vs ez   ey Vs sz    ey Vs ez 

Y Overlaps Z < < > < 

The application of point axioms to these two strings yields: 

-31- 



sx Vs sz    sx Vs ez    ex Vs sz    ex Vs ez 

< < ? < 

The resulting string corresponds to one of the following relations between X and Z: 

(a) X Before Z (obtained by replacing '?' by '<') 

(b) X Meets Z (obtained by replacing '?' by '=') 

(c) X Overlaps Z (obtained by replacing '?' by '>') 

The corresponding axiom of the point-interval logic can now be described as: 

(X Overlaps Y) A (Y Overlaps Z) -> (X Before Z) y (X Meets Z) y (X Overlaps Z) 

The logical operator V is defined as follows: 

A, y A2 y... y A, = (A,Ä2... \) v (A.A^.A,,) v (AlA2...\.]AT) v (Ä1Ä2...ÄB.,An) 

where A is Not (A). 

Inference Engine 

One may visualize an inference engine based on the axiomatic system presented in the 

previous section. Suppose we have a known temporal relation between two intervals X and Y. 

Now, if a new temporal relation between two intervals Y and Z is discovered (or supplied by the 

user), the inference engine constructs an analytical representation of the temporal relation between 

X and Z with the help of known relations among X, Y and Z, and the point axioms presented in 

the previous section. The resulting string representation of the relation between X and Z is pattern 

matched with the string representations of Figure 14 to infer possible temporal relation(s) between 

X and Z. However, the construction of the analytical representation of an unknown relation 

between two intervals, X and Z, from the known temporal relation among system's other intervals 

can be accomplished via a combinatorially large number of ways. The following example 

illustrates this issue: 

Example 3 

Let a system be described in terms of the following statements: 

-32- 



1) W Meets X 

2) X Meets Y 

3) W Before U 

4) Y Finishes U 

The inference engine is required to infer temporal relation between intervals W and Y. In the 

example statements, there are two possible alternatives to calculate the unknown relation; a) 

with the help of known relations (W Meets X), and (X Meets Y), infer the temporal relation 

between W and Y; b) with the help of known relations (W Before U), and (Y Finishes U), 

infer the temporal relation between W and Y. Both alternatives imply the same temporal 

relation between the two intervals: (W Before Y). 

The example illustrates the fact that an inference engine based on the axiomatic system of the 

point-interval logic has to search all possible combinations of the known temporal statements in 

order to explore the right combination(s) of statements that yields the result. The inference required 

to calculate an unknown relation may not be a single step inference (as illustrated in the example, 

where two statements are used to infer a third one.) Consider a situation where an unknown 

relation between X and Y is required to be inferred, and the known statements are: (X RO II), (II 

Rl 12),..., (Ii Ri Ij),..., (In Rn Y). In such a situation, a chain of inference is required to derive the 

unknown relation between X and Y. The search for all such combinations of statements that (may) 

yield the required result among all possible combinations of known statements makes the 

inference process computationally intensive. (The combinations that may yield the required result 

are referred to as feasible combinations.) One may suggest that an inference engine does not have 

to search for all feasible combinations of statements; the search can be halted as soon as the first 

such combination is encountered, and a required relation is inferred. An inference engine with this 

approach can only be applied to a system of temporal statements which is known to be consistent 

apriori. A formal definition of consistency in temporal logic follows in the next section. The 

following example illustrates the issue: 

Example 4 

Let a system be described in terms of the following statements: 

1) W Meets X 

2) X Meets Y 

-33- 



3) Y Meets Z 

4) Z Meets W 

The inference engine is required to infer temporal relation between intervals W and Y. One 

may infer (W Before Y) with the help of statements 1, and 2. However, if statements 3 

and 4 are considered, the inference mechanism infers (Y Before W), which is in 

contradiction to the previous inference. Both inferences are correct so far as the inference 

mechanism is considered, however, the error is caused by the inconsistency present in the 

input statements. 

An inference engine for the point-interval logic, therefore, requires an exhaustive enumeration 

of the result through all feasible combinations of statements, provided no knowledge of system's 

correctness is available apriori. An inference engine that outputs the result as soon as it finds the 

first feasible set of inputs can only be employed to a known consistent system of temporal 

statements. This, in turn, requires a front-end verification mechanism for the inference engine that 

verifies the system's correctness prior to applying the axioms of the point-interval logic. A detailed 

discussion and solution to this problem is presented in the next section. 

-34- 



4.  TEMPORAL LOGIC / PETRI NET METHODOLOGY: TEMPER1 

4.1      Single Time Line - Single Future (SLSF) 

The complete formal axiomatic system presented in Section 3.2 for the point-interval logic can 

now be used to model temporal aspects of a system. This section presents a graph based approach, 

termed Temporal Logic/Petri Net (TL/PN) formalism, for the implementation of the axiomatic 

system of point-interval logic. The TL/PN approach transforms the system's specifications given 

by temporal statements into a graph structure. The graph-based temporal inference engine (TIE) 

identifies temporal ambiguities and errors (if present) in the system's specifications, infers new 

temporal relations among system's intervals, and finally identifies the windows of capabilities 

defined by the user. The temporal inference engine, TIE, of the TL/PN methodology performs all 

these tasks by completely avoiding the combinatorial nature of the inference mechanism discussed 

in the previous section. 

In the present approach all input statements are connected together with an implicit 

conjunction; they are all valid simultaneously. Therefore, they represent a system's temporal 

description on a single time line: for any point on this time line there will exist only one future. 

Petri Net Representation 

The analytical model of a temporal relation Ri presented in Figure 13 is transformed to a Petri 

Net (PN) representation by the following approach: 

A point 11 is represented as a transition, labeled [t 1 ]. 

• Two points tl, t2 with tl = t2 are represented as a single transition, labeled [tl;t2]. 

• Two points tl, t2 with tl < t2 are represented as two transition, [tl] and [t2], with a 

/mfcfrom[tl]to[t2]. 

Definition 10: Link 

A place P is said to constitute a link from [ti] to another [tj] if the following holds: 

*P={[ti]}andP*={[tj]} 

where *P and P* represent the pre- and post-set of the place P. 

-35- 



Example 5 

Let tl and t2 be two points on a single time line with tl < t2, the Petri net representation of 

the temporal relation between the two points is shown as: 

[tl] [t2] 

D*o*0 
For the sake of simplicity the PN is transformed to a simpler graph representation with 

each transition in the PN represented as a node (vertex) and a link between two transitions 

as an arc (edge) between the two nodes representing the transitions. The temporal relation 

of the example is now represented as: 

© *@ 
The example presents a much simpler graphical representation for the temporal relation 

between two time points. However, the insistence on using the Petri net formalism for modeling 

temporal statements is due to a future extension of TL/PN methodology capable of incorporating 

alternative inputs. A discussion on this issue is delayed for a later section. From now on, instead of 

using the Petri net representation, the simple graph representation is used for illustration purposes. 

The new graph representation is termed as Point Graph (PG) representation. 

Definition 11:   Point Graph 

A point graph PG (V, E) is a directed graph with each node or vertex v e V representing a 

point on a time line and each edge e,2 € E, between two vertices vl and v2, representing a 

temporal relation '<' between the two vertices — (vl < v2). 

A temporal relation Ri between two intervals X and Y can now be represented by an 

equivalent Point graph representation, as shown is Figure 15. 

The TL/PN approach takes statements in the point-interval logic and transforms each 

individual statement into an equivalent PG representation. The PG representing the entire system 

of temporal statement is then constructed by unifying individual PGs to a (possibly) one connected 

graph. The unifying process employs a very simple approach which merges two nodes into a 

single node if the labels of the two nodes contains at least one point in common. The following 

definition presents a formal description of this unification process. 

-36- 



CASE I— X and Y both intervals with non-zero lengths: 
X = [sx, ex], Y = [sy, ey] with sx < ex and sy < ey 

(ÜJ "4Ü}—►(ED—HE} 1. X Before Y 

2. X Meets Y 

3. X Overlaps Y 

4. X Starts Y 

5. X During Y 

6. X Finishes Y 

7. X Equals Y 

(jsxj H[ex;sy]l »([ey| 

E3—HE}—^(üi—HEI 

irsx;svi)—-KEÜ])—-•*(& 

—HE}—^O—HE} 

(Ej) ►E) Hrex;ev11 

I rsx;sv1 ] Hfex;evl] 

CASE II—X and Y both points: 
X = [px] and Y = [py] with sx = ex = px and sy = ey = py 

1. 

2. 

X Before Y 

X Equals Y 

Gü)—HEjp 

lrpx;pvl) 

CASE HI— X is a point and Y is an interval: 

X = [px] and Y = [sy, ey] with sx = ex = px and sy < ey 

1. 

2. 

3. 

4. 

5. 

X Before Y 

X Starts Y 

X During Y 

X Finishes Y 

YBefore X 

(ESD—HEi 

^1—HE} 

(EJ)—-irpxievii 

—«-(E}—Hfpxl 

Figure 15 Point Graph Representation of Temporal Relations 

-37- 



Definition 12:   Unification 

Let vl = [pi;...;pn] and v2 = [pj;...;pm] be two nodes in a PG representation. If there exist a 

point pk such that pk e [pi;...;pn] and pk e [pj;...;pm], then the two nodes are merged into 

a single node vl2 such that: 

vl2 = [pi;...;pn]u[pj;...;pm] 

*vl2 = *vl u*v2 

vl2* = vl*uv2* 

The following example illustrates the unification process. 

Example 6 

Let a system be described in terms of the following statements: 

1) W Meets X 

2)          X Meets Y 

3)          W Before U 

4)           Y Finishes U 

The point graph representation of individual statements is given as: 

1) W Meets X 

2) X Meets Y 

f[sw]] H[ew;sx]j H[ex]) 

l[sxj) ^[ex;sy]J ^[[eyj 

3) W Before U fiw) **few\—-Qua KÜÜJ 

4) U Finishes Y B ►(üüj **([eu;eYl) 

Unifying these individual statements yields: 

r 
(gwj)—»([ew;sx]) H[ex;sy]) ►JsüJ Hfeu-eyl) ;yjj ^1isu|] ^iieuie 

-38- 



Example 7 

Let a system be described in terms of the following statements: 

1) X Overlaps Y 

2) Z Overlaps Y 

The PGs representing these statements are: 

1) X Overlaps Y (ÜJ KEJ HÜ3 "KÜ3 

2) Z Overlaps Y @—HE3 HED HEÜ3 

After unifying the individual nets, the unified net looks like: 

Definition 13:   Ordering 

A relation R on a set A is an ordering, if and only if 

• R is reflexive 

• R is antisymmetric 

• R is transitive 

Definition 14:  Total Ordering (Chain) 

An ordering R on a set A is a total ordering or chain if and only if given any (x, y) e A2, 

either  x R y or y R x. 

If an ordering is not a total ordering, it is called partial ordering. 

Definition 15:   Cover 

By y covers x is meant that x R y and that there is no element z, z * x, y such that x R z R y. 

Definition 16:   Connected Chains 

A chain XQ < x, <... <xn will be connected if x{ covers x^ for all i. 

Proposition 2 

-39- 



The set of nodes, V, in a unified PG is ordered (possibly partially) by the relation '<' 

(depicted as arcs in PG representation.) 

A path between two nodes in a PG may not be a connected chain as is the case in Example 7. 

However, identification of connected chains in a PG may be a desirable feature for a computer 

implementation of this methodology. Filtering out all the chains that are non-connected may result 

in a smaller graph with no loss of information. This issue is left for a future treatment of this 

subject. 

4.2 System Verification 

The PG representation of a system's temporal aspects organizes the information contained in 

temporal statements into a graphical structure. This section presents an analysis of this graphical 

representation. The analysis applies certain graph-theoretic concepts on the structure of point 

graphs, identifies their structural properties, and finally interprets the results obtained in terms of 

the temporal aspects of the systems under consideration. 

As mentioned in Section 3.2, the inference engine of the point-interval logic requires a 

consistent system specification in order to infer temporal relation among system intervals. A 

verification methodology is presented in this section, which makes use of the structural properties 

of the PG to detect inconsistencies, if present in the system description. 

Inconsistency in Temporal Logic 

Definition 17: Inconsistency (Allen, 1981) 

A set of statements (inferences) is said to be inconsistent if they can not all be true at the 

same time. 

Definition 18: Inconsistency in Point-interval Logic 

A system's description contains inconsistent information if for some intervals X and Y both 

X Ri Y and X Rj Y, i * j, or X Ri Y and Y Rj X (with the exception of Ri = Rj = Equal) 

hold true. 

In the point representation of intervals, the inconsistency is defined as follows: 

-40- 



Definition 19: Inconsistency in Point-interval Logic 

A system's description contains inconsistent information if for some points tl and t2 

(representing start and/or end of intervals) the following hold true: 

tl <t2andtl =t2 or tl < t2 and tl > t2 

Proposition 3 

A set of temporal statements is inconsistent if and only if the PG representation of the set 

contains self-loops and/or cycles. 

Proof 

Proof of the Proposition follows from the definition of inconsistency (Definition 18) and the 

construction of PGs. 

Definition 20:  Self-loop 

In a Petri net, a place is said to constitute a self-loop if it is both an input and output place of 

the same transition. 

In a point graph an arc forms a self-loop if it originates and ends in the same node. 

A consistent set of temporal statements is, therefore, characterized by Proposition 4: 

Proposition 4 

A set of temporal statements is consistent if and only if the PG representation of the set is an 

acyclical graph. 

The following examples illustrate the results presented in Proposition 3. 

Example 8 

The PG representing the statements in Example 4 is shown as follows; the cyclic structure of 

the PG reveals the inconsistency present in the system. 

([ew;sx]} 

|[ez;sw]J [[eljsy]] 

1ey;sz] Y 

-41- 



Example 9 

For a system's description given as follows, the corresponding unified PG will be: 

1) W Meets X 

2) X Meets Y 

3) W Meets Y 
2) X Meets Y rpr^ \        »     , ,  

l-swJ    »f[ew;sx;sy;exj] »•[ [ex] 

The presence of self-loop identifies an inconsistency present in the system. 

The self-loops present in a PG representation can be easily identified by individually scanning 

all the nodes in the graph. The discussion so far has characterized inconsistency in a set of 

temporal statements and has illustrated the ways in which an inconsistent set of statements reveals 

itself in the PG representation. The following are some graph-theoretic results that help calculate 

the cycles inside a point graph. 

Proposition 5 

The underlying Petri net of a connected point graph is a Marked graph. 

Proof 

The proof follows from the definition of Marked graphs and the construction of point 

graphs. 

Definition 21: Marked Graph 

A Marked graph is a connected Petri net in which each place has exactly one input and one 

output transition. 

Proposition 5 allows the application of following results on PG representation. 

Theorem 1 (Hillion, 1986) 

The S-components of minimal support S-invariants of a marked graph are exactly its directed 

elementary circuits. (Note: For the definitions of S-component, and minimal support, refer to 

Zaidi (1992).) 

Definition 22: S-Invariant 

Given an incidence matrix C of a Petri net, an S-invariant is a n x 1 non-negative integer 

vector X of the kernel of CT, i.e.,     CT X = 0 

-42- 



Definition 23: Connectivity Matrix (Zaidi and Levis, 1995) 

A point graph with n directed arcs and m nodes can be represented by a n x m matrix J, the 

Connectivity matrix. The rows correspond to arcs, the columns correspond to nodes. 

• Jy = 1 if the directed arc in i-th row originates from the j-th node. 

• Jjj = -1 if the directed arc in i-th row terminates in the j-th node. 

• Jij = 0 if the directed arc in i-th row is not connected to j-th node. 

Proposition 6 

The connectivity matrix of a PG is exactly the incidence matrix of its underlying Petri net. 

Proof 

Proof follows from the definitions of connectivity and incidence matrices,  and the 

construction of a point graph from a Petri net. 

Now, using results from Proposition 6 and Theorem 1, the cycles present in a PG can be 

identified as follows: 

Proposition 7 

A point graph contains cycles if and only if it has non-zero S-invariants calculated with the 

help of connectivity matrix. 

Once cycles are detected in a PG by calculating non-zero S-invariants, the nodes responsible 

for these cycles can be easily identified. This will, in turn, identify intervals involved in these 

cycles. This information can be used to correct the system of temporal statements. 

Incompleteness 

The PG model constructed for a system also helps identify the missing temporal relation 

among system intervals, thus provides means for elicitation of a complete specification of 

system's temporal aspects. A complete system specification is characterized by the following 

definition. 

Definition 24: Completeness 

A system's description is complete if for all intervals X and Y, there exists a temporal 

relation Rie R which is either provided explicitly or can be inferred through the axiomatic 

system. 

-43- 



The application of Definition 24 on the PG representation of a system intervals gives rise to 

the following definition of completeness. 

Definition 25: Completeness in the PG Representation 

A system's description is complete if for all nodes X and Y in its PG representation, there 

exists a relation '<' between them. 

Proposition 8 

A system's description is complete if and only if the PG representing the system is an 

acyclical structure with: 

a) exactly one source node and one sink node, and 

b) one connected chain from the source node to the sink node that contains all the nodes in 

the system description. 

Example 10 

Let a system be described in terms of the following statements: 

1) U Meets V 

2) V Meets W 

3) W Meets X 

The PG representing the system is shown as: 

f[süH—HSED H[ev;sw]J Htew;sxfl ►fiexD 

According to Definition 25 and Proposition 8, the system specification is complete. A matrix 

establishing a temporal relation between any pair of two intervals of the system is shown 

below: 

u V W X 

u Equals Meets Before Before 

V — Equals Meets Before 

w — — Equals Meets 

X — — — Equals 

-44- 



Example 11 

Let a system be described in terms of the following statements: 

1) U Meets V 

2) W Meets V 

The PG representing the system is shown as: 

[eu;ew;sv]] HfevU 

The PG represents an incomplete system specification since no temporal relation can be 

established between intervals U and W from the given input. 

Although the PG in Example 11 does not establish a temporal relation between intervals U 

and W, the application of axioms on this representation yields that the only temporal relations that 

can hold between the two interval are 'Equals' and 'Finishes'— a fact also apparent in the PG 

representation because both U and W have the same end points. Introduction of any other relation 

between the two intervals will inevitably introduce loops in the PG representation, thus forcing 

inconsistencies in the system. 

The TL/PN formalism, therefore, can be used to identify incompleteness and then to elicit a 

complete specification of a system's temporal aspects by filling in the missing relations in a 

consistent manner. 

Redundancy 

Redundancy in a system of temporal statements refers to the presence of multiple copies of 

the same relation. 

Definition 26: Redundancy 

A system's description contains redundant information if one or all of the following cases 

are present: 

a) Multiple copies of a temporal relation, X Ri Y, between two intervals, 

b) X Ri Y both explicitly and implicitly (can be inferred by axioms) given. 

-45- 



Some of the redundant cases, as characterized by the definition, are automatically removed in 

the PG representation of the system; relations appearing as multiple arcs between two adjacent 

nodes are filtered out in the construction of PG representation. A relation between two nodes x and 

y in PG representation, represented by an arc from x to y, also introduces a redundancy if y does 

not cover x. Example 6 presents such redundant cases. Figure 16a reproduces the PG in Example 

6. An equivalent representation of the PG in Figure 16a is shown in 16b, where the redundant 

relations among nodes are filtered out. 

The redundant cases illustrated in Figure 16 increase the size of the PG representation, and 

therefore require more storage than an equivalent PG representation without these cases. On the 

other hand, from a computational point of view, the presence of such cases may not directly affect 

the system performance in an adverse manner. However, an approach, although expensive in 

terms of computational requirements, is presented that can be used to filter out such redundancies. 

(jswp HtewTsx]! ^[ex;sy]l ►fjsü) Hreu;eyll 

^ fc«/ 

(a) PG of Example 6 

(jswj)—M[ew;sxJl H[ex;sy]) ►QsüB Hfeu;eyl) 

(b) PG without redundant arcs 

Figure 16  Redundancy in PG representation 

The approach first constructs a virtual external node, PO, in the PG representation and draws 

arcs from it to all external node. A connectivity matrix J is then constructed for this new PG. The 

S-invariants are calculated the source nodes in the PG. Similarly, arcs are drawn from all the sink 

nodes in the PG to this for J. The calculated S-invariants correspond to all the directed paths from 

source nodes of the PG to sink nodes (assuming there are no internal loops in the PG 

representation.) The maximal T-supports of the calculated S-invariant correspond to all the 

connected chains in the PG. A point graph formed by these connected chains (excluding the 

external node) would yield an equivalent representation of the PG with out redundant arcs. 

-46- 



Definition 26: T-support 

If X is an S-invariant, the set of input and output nodes of the arcs whose corresponding 

components in X are strictly positive is the T-support of the invariant, noted <XT>. 

The T-support of an S-invariant is said to be maximal if and only if it is not contained in the 

T-support of another S-invariant but itself. 

4.3 The TL/PN Inference Engine (TIE) 

Once a consistent (error free) description of a system is derived and represented in terms of a 

PG structure, the calculation of unknown temporal relation among system intervals and windows 

of capabilities becomes a mere search problem in the net. The advantage of TL/PN formalism is 

that it not only verifies system correctness prior to any inference making, but also overcomes the 

combinatorial problem, discussed in Section 3.2, associated with inferring new temporal relations. 

Definition 27:  Window of Capability 

A window of capability associated with intervals X,, X2, ..., Xn is defined to be a composite 

interval [xl;x2;...;xn] where xi is a sub-interval of Xj for i = 1,2,..., n. 

The TL/PN inference engine (TIE) infers temporal relation between two intervals X (= [sx, 

ex]) and Y (= [sy, ey]) by constructing the string representation (Figure 14) of the temporal 

relation between the two intervals by searching for the directed paths between the nodes 

representing the intervals in the PG representation and using the facts that 'sx < ex' and 'sy < ey'. 

The search for the directed paths between two nodes in a PG requires the use of two algorithms 

called FPSO and FPSI (Zaidi and Levis, 1997), two variants of an earlier FindPath algorithm (jin, 

1986). The FPSO(p) algorithm, when applied to a node p in a PG, collects all the nodes that have 

directed paths to p. The Ff5/(p)algorithm, on the other hand, collects all the nodes to which p has 

a directed path. The existing implementation of the two algorithms uses a depth-first search 

strategy to calculate the result. The search terminates as soon as it encounters the desired node x 

during its search or encounters all the sink nodes without hitting the desired node. Tables 1 and 2 

present the formal descriptions of the two techniques. The notation x—»p, used in the tables, 

represents the binary relation that a directed path exists from node x to node p. 

-47- 



Table 1 FindPath-to-Sources (FPSO) Algorithm 

For a PG = (V, E) 
pe V 

where 
FPSO(p) = S 

S = {x 1 x e V, x- -»p} 

Vxe S, x<p 

Table 2 FindPath-to-Sinks (FPSI) Algorithm 

For a PG = (V, E) 
pe V 

FPSI(p) = S 
where 
S= {x I x € V, p—»x} 
Vxe S, p<x 

The following examples illustrate the mechanism of TIE in calculating the unknown temporal 

relation between intervals and windows of capabilities associated with system intervals. 

Example 12 

Consider the system of temporal statement introduce in Example 3: 

1) W Meets X 

2) X Meets Y 

3) W Before U 

4) Y Finishes U 

The PG representing the set of temporal statements is: 

(fswp—H[ew;sx]) fc-fTsuP »fesy]) Mfeu;ev1) 

The inference engine is then asked to calculate the temporal relation between the intervals W 

and Y, represented as "?-R(W, Y)" in TIE formalism. The inference engine tries to build the 

-48- 



string representation for i?(W, Y) by first searching for the relation between points 'ew' and 

'sy'. Since sy e FPSI(ew), TIE calculates 'ew < sy'. Using the fact that 'sw < ew' and 'sy 

< ey', the entire string representation is calculated to be: 

sw Vs sy        sw Vs ey        ew Vs sy        ew Vs ey 

< < < < 

The string corresponds to 'W Before Y'— returned by TIE. 

Table 3 presents example queries and their return values as implemented in the inference 

engine TIE for the calculation of temporal relation between intervals. 

Example 13 

Consider the temporal system in Example 12. Let the window of capability associated with 

intervals U and X is desired to be calculated, denoted as '?-window(U, X)'. The inference 

engine processes this query by the following algorithm: 

?-window(U, X) 

IF (?-U Overlaps X) THEN return [sx, eu] 

ELSE IF (?-X Overlaps U) THEN return [su, ex] 

ELSE IF (?-U Starts X) THEN return [su;sx, eu] 

ELSE IF (?-X Starts U) THEN return [sx;su, ex] 

ELSE IF (?-U During X) THEN return [su, eu] 

ELSE IF (?-X During U) THEN return [sx, ex] 

ELSE IF (?-U Finishes X) THEN return [su, eu;ex] 

ELSE IF (?-X Finishes U) THEN return [sx, eu;ex] 

ELSE IF (?-U Equals X) THEN return [su;sx, eu;ex] 

ELSE return [] 

For the example system the inference engine will return [su, ex] as the window of capability 

associated with intervals U and X. 

Note that this algorithm should include the definition: 

with ?-window([], X;) = [] (where [] corresponds to 'no' in TIE formalism) 

-49- 



Table 3 Queries for Calculating Temporal Relations 

Example Queries Return Value Comments 

?-R(X, Y) XRiY 

where Ri's e Ru {unknown} 

The inference engine returns a 
specific Ri if it finds one, 
otherwise it outputs all possible 
relations that might exist without 
creating an inconsistency, given 
incomplete information available. 

?-XRiY YeslNolPlausible 
The inference engine returns 'yes' 
if the input statement can be 
inferred by TEE, 'no' if the 
inferred statement is in 
contradiction to the input, and 
'plausible' if the input statement is 
one of the possibilities that can 
exist in the set of temporal 
statements without introducing 
inconsistencies. 

?-R([pl,p2], [P3,p4]) XRiY 

where Ri's e Ru {unknown} 

This query presents a generalized 
format of the first query. This 
syntax helps a user in constructing 
custom intervals by selecting 
arbitrary points in the PG as start 
and end of these user-defined 
intervals, with 'pl^p2' and 
'p3<p4'. 

?-[pl,p2]Ri[p3,p4] YeslNolPlausible 
This query presents a generalized 
format of the second query. Using 
this syntax a user can construct 
intervals by selecting arbitrary 
points in the PG as start and end 
of these user-defined intervals, 
with 'pl<p2' and 'p3<p4'. 

A recursive definition for the calculation of window of capability associated with n intervals 

follows: 

-50- 



?-window(Xl, X2,..., Xn) = ?-window(?-window(Xl, X2,..., Xn-1), Xn) 

Table 4 presents the general form of queries and their return values as implemented in the 

inference engine TIE for the calculation of windows of capabilities. 

Table 4 Queries for Calculating Windows of Capabilities 

Example Queries Return Value Comments 

?-window(X„X2, ...,Xn) [pi, pj] e I* 

or [] (no) if none exists 

The inference engine returns an 
interval if it finds one, 
otherwise it outputs [] or no. 

?-window([pl, p2],...,[pn-l, pn]) [pi, pj] e I* 

or [] (no) if none exists 

This query presents a 
generalized format of the first 
query. Using this syntax a user 
can construct intervals by 
selecting arbitrary points in the 
PG as start and end of these 
user-defined intervals, with 
'pl<p2' and 'pn-l<pn'. 

4.4 The Algorithm 

The TL/PN methodology can be organized in the steps listed below: 

Assumption: System has only one time line with a single future (SLSF). 

Step 1:    Input statements in point-interval logic (i.e., X Before Y.) 

Step 2:    Construct a unified Point Graph. 

Step 3:    Verify system correctness by applying the S-invariant algorithm to the connectivity 

matrix of the PG. Report the inconsistent cases and halt. 

Step 4:    Invoke Q&A (Question and Answer) system of TIE for calculating temporal 

relation and windows of capabilities. 

-51- 



An overall view of the TL/PN methodology is presented in Figure 17. The shaded box labeled 

as 'Language Translator' has not been addressed yet.. The current approach requires the user to 

interact directly with the system using the strict syntax of point-interval logic. 

PITLstetemerts 

ha PI 
Language 
Processor 

Reported Errors 
|c  

Unified 
Point Graph 

Represent atbn 

/"verification-Phase I 

(Qualitative 
Verification) 

QuBres/Answers 

Folded 
Point Graph 

Representation 

Verificatbn-Phasel 

(Quantitative 
Veriication) 

Ccnsstent and 
possibly ccm pete 
system descripticn 

Temporal 
Inference 

Engine Engr 
(Til 

Figure 17  An Overall View of the Methodology 

The syntax of point-interval logic requires statements to be given in a very strict and 

unintuitive form. Every two intervals in a system must be described by one of the 13 mutually 

exclusive temporal. Once a system's description is provided in this tight syntactical form, a PG 

model can be constructed by the approach presented in an earlier section. It was felt that the 

syntactical requirements of the input to such a methodology are highly unintuitive and require a lot 

to be done by the user before a PG model is built and analyzed for correctness and calculations of 

windows of capabilities. A front-end user interface, therefore, requires a 'Language Translator' that 

takes English-like statements as input and extracts information about intervals and the temporal 

relationships among them in terms of statements of interval logic. For this purpose a context-based 

grammar is required. The following example illustrates the issue. 

Example 14 

Let a system has the following two statements given in a descriptive form: 

-52- 



(1) Resource Rl allocated to P at 6:00/dayl. 

(2) Resource Rl allocated to Q at 7:00/dayl. 

If a translator is given these statements in the sequence shown above, the translator, on 

receiving the first statement, extracts the following temporal statements with accompanying 

semantics associated with each interval symbol used: 

(1) Resource R1 allocated to P at 6:00/day 1. 

Temporal Statements Semantics 

X Starts Y Interval Symbol: X 
Interval Semantics: Allocated(Rl, P) 
Type: Event 
Time: 6:00/dayl 

Interval Symbol: Y 
Interval Semantics: Holds(Rl, P) 
Type: Property 
Start Time: 6:00/dayl 
End Time: unknown 

Similarly on receiving statement 2: 

Temporal Statements Semantics 

W Finishes Y Interval Symbol: W 
Interval Semantics: Released(Rl, P) 
Type: Event 
Time:7:00/dayl 

Interval Symbol: Y 
Interval Semantics: Holds(Rl, P) 
Type: Property 
Start Time: 6:00/dayl 
End Time: 7:00/dayl 

W Starts Z Interval Symbol: W 
Interval Semantics: Allocated(Rl, Q) 
Type: Event 
Time: 7:00/dayl 
Interval Symbol: Z 
Interval Semantics: Holds(Rl, Q) 
Type: Property 
Start Time: 7:00/dayl 
End Time: Unknown 

-53- 



This example illustrates a number of issues, mainly: 

Context: 

The context of the statements introduces a number of additional temporal relations among 

intervals, which are not explicit in the input statements. For example, the statement *W 

Finishes Y' can not be extracted if the context of interval Y is unknown—which comes 

from the first statement. The order in which these statements are input also affects the way 

these output statements are extracted. The only way out of this problem is a context-based 

grammar that can translate input statements into statements in point-interval logic. 

User Interaction: 

In the example, it is assumed that the resource Rl is a unique single entity which can be 

assigned to Q only if taken from P first. If this were not the case the output of such a 

system would not contain 'W Finishes Y\ It is, therefore, required that such a translator 

could resolve these ambiguities with human interaction. A translator would require explicit 

information about perishable, multiple, etc. resources to understand the context associated 

with intervals. 

The issue of a 'Language Translator', as a part of TL/PN methodology, is left for a future 

treatment of the subject. The rationale for discussing it here is to provide the reader an overall view 

of the methodology and the issues involved. 

4.5 A Simple Example 

Suppose a system's description is given as follows: 

1) Resource 1 allocated to P at 06:00/Day 1. 

2) Resource 1 freed by Q at 11:00/Day 1. 

3) Resource 1 moved from P to Q at 09:00/Day 1. 

4) Resource 2 moved from Q to P at 07:00/Day 1. 

5) Resource 2 freed by P at 10:00/Day 1. 

Step 1: 

The temporal aspects of the system are formally represented in terms of statements of point- 

interval logic given as follows: 

-54- 



1) (X Starts Y) 

where X = [6 6] is a point specifying the event of allocating Resource 1 to P, and Y is the 

interval during which P is in possession of Resource 1. 

2) (U Finishes Z) 

where U = [11 11] is s point specifying the event of Resource 1 being taken from Q, and Z 

is the interval during which Q is in Possession of Resource 1. 

3) (W Finishes Y)     (W Starts Z) 

where W = [9 9] is a point specifying the event of reallocation of Resource 1 from P to Q, 

and Y and Z are the intervals specified before. 

4) (V Finishes K)     (V Starts R) 

where V = [7 7] is a point specifying the event of reallocation of Resource 2 from Q to P, K 

is the interval during which Q is in possession of Resource 2, and R is the interval during 

which P is in possession of Resource 2. 

5) (S Finishes R) 

where S = [10 10] is an empty interval specifying the event of Resource 2 being taken from 

P, and R is the interval during which P is in Possession of Resource 2. 

6) (X Before V)     (V Before W)     (W Before S)     (S Before U) 

Step 2: 

The point graph constructed by unifying the PGs obtained for individual statements is shown 

below. 

[px;sy]) H[ek;sr;pv]) H[pw;ey;sz]] H [er;ps] 1 Hpu;ez] ] 

Step 3: 

The net has no self loops or cycles, therefore, has no temporal inconsistency. Note that the 

system description is incomplete since the node [sk] does not have a directed path to/from the node 

labeled as [px;sy] in the PG representation of the system. 

-55- 



Step 4: 

Now if it is required to know the precise period (interval) during which Resources 1 and 2 are 

both in the possession of P— window of capability associated with intervals Y and R— the 

inference engine is asked the following query: 

?-window(Y, R) 

Since (?-Y Overlaps R) returns a value 'yes', the found window of capability is: [sr, ey] or 

[ek;sr;pv, pw;ey;sz] in the composite representation. 

4.6 TEMPER 1: Software Implementation of the Algorithm 

The algorithm presented in Section 4.5 has been implemented in the framework of 

Design/CPN as a suite of programs written in Meta Language (ML). ML is a functional program 

developed in Edinburgh which is imbedded in the editor/simulator Design/CPN. This suite is 

called TEMPER 1 (TEMPoral programmER, version 1) 

LEXICAL STRUCTURE 

Key Words (case sensitive): Before, Meets, Overlaps, Starts, During, Finishes, Equals. 

User-defined Identifiers: 

Points: Any string of alphanumeric characters starting with a lower-case alphabetic character. 

<point> —> <lower-case-letter><letterldigit>* 

Examples:   x, y. point, point 1, event 1, etc. 

Intervals: Any string of alphanumeric characters starting with an upper-case alphabetic 

character. 

<interval> —> <upper-case-letterxletterldigit>* 

Examples:   X, Y. Interval, Process 1, etc. 

SEMANTIC/SYNTACTIC STRUCTURE OF INPUT STATEMENTS 

•    <interval> <R> «dnterval 

where <R> —> Beforel Meetsl Overlapsl Startsl Duringl Finishesl Equals 

Example:   Process 1 Before Process2 

-56- 



• <point> <R1> <interval> 

where <R1> —> Beforel Startsl Duringl Finishes 

Example:   eventl Starts Process2. The statement 'event2 Overlaps Processl' is semantically 

incorrect, since a point (eventl) can not 'Overlaps' an interval (Processl). 

• <interval> <R2> <point>0 

where <R2> —> Before 

Example:   Processl Before event2. 

• <point> <R3> <point>0 

where <R3> —> Beforel Equals 

Example:  eventl Before event2 

SEMANTIC/SYNTACTIC STRUCTURE OF QUERIES 

• ?- D([<slelpxinterval>, <slelpxinterval>], [<slelpxinterval>, <slelpxinterval>]) 

Example: ?- D([sProcessl, eProcess2], [peventl, peventl]) 

Note: The point representation of intervals used in the queries provides user to construct user- 

defined intervals by specifying any start and end points, i.e., [sX, sY] is an interval with starting 

point sX (start of some other interval X) and ending point sY (end of some other interval Y). 

Similarly, [px, py] be an interval constructed with the help of two existing points in the system. 

The only condition to be satisfied is that the end point should be greater than the start point. If a 

user specify an interval with the help of two arbitrary points not satisfying the condition, the 

TEMPER 1 query processor would generate an error "Inconsistent interval specification". A point, 

on the other hand, is represented as [px, px], [sX, sX], or [eX, eX]. 

A SAMPLE RUN OF TEMPER1:   CASE 1: WORKING ON A NEW EXAMPLE 

• Invoke "Design/CPN™". 

• Open TEMPER 1. A page with the diagram shown in Figure 18 appears. 

• Import or write input temporal statements in a text box. 

-57- 



Input Statements 

x Starts Y 
u FinishesZ 
w Finishes Y 
wStartsZ 
v Finishes K 
v Starts R 
s Finishes R 
x Beforev 
v Beforew 
w Befores 
sBeforeu 

• Select box labeled "Start Upl", and type "command -" (or invoke Start ML from Aux menu). 

• Select box labeled "Start Up2", and type "command -". 

This will load all the required functions in the memory. 

From now on, selecting a box and invoking "command -;" will be referred as "Execute" the box. 

• Execute box labeled "Input". The box will start flashing. Take the cursor on top of the text box 

(any) with input temporal statements, the box will start flashing, click on it. The language 

processor will run a syntax/syntactic/semantic check and report errors (if any). 

• If no errors are found in the input, Execute box labeled "Draw PGs". 

This will draw point graphs for each input statements. (Figure 19) 

• Execute box labeled "Self Loops?". If self loops are reported, correct them and restart. 

• If no self loops are found, Execute "Unify PGs". If this box is executed in the presence of 

errors, the processor will automatically remove the self loops. This will construct a unified PG 

representing the input set of temporal statements (See Figure 20). 

• Generally the Point Graph generated by TEMPER 1 will need to be cleaned up. Use the cursor 

to select and rearrange the Point Graph as shown in Figure 21. Design/CPN provides several 

"Align" functions that can assist in this process. 

-58- 



Start Up-1 Input Statements 

„     ..       Start Up-2 
If working on a r 

previously 
saved problem 

1 
^H       (""'Finding Self 
*»J        L Loops' 

i If starting a 
new problem 

Input    \7 

x Starts Y 
u Finishes Z 
w Finishes Y 
w Starts 2 
v Finishes K 
v Starts R 
s Finishes R 
x Before v 
v Before w 
w Before s 
s Before u 

Yes 
(Correct   ^- 

the errors) 

T 
rrors 

4 
-Errors? 

No 

Draw PGs fr 

No 
(Correct them and   Self Loops? 
delete the graphs 

drawn so far) 

re thi 

I 
val (node_labels, 
node ids) = 

-^Erit? 

Ignore them? ^-Yes 4~SeIf Loops? Save & Exit 

No 

Unify PGsj£ 

Yes 

.1 
val continue = 
PRIM Oatl IccrYag 

rjthe id no, of 
"anodes in the 

the -^Exit? 

A 
Connectivity Matrix rj 

val translist = 
Hraato nnrialigt 

S-Invariant I 
("MISSING!!") 

Yes 
-  (Correct   ^- 
the errors) 

-Errors? 
T 
rrors 

No 

val query = ""; 
val query = There are no real syntax checks at your 

input queries. 
Please try to avoid mistakes! 

Figure 18 TEMPER 1 Graphical User Interface 

-59- 



[px;sY]. 

[sZ]  

[sY] — 

[pw;sZ] 

[sK]_ 

[pv;sR] 

[sR] — 

[px]_ 

[pv] — 

[pw] — 

[ps] — 

■{>[eY] 

-^[pu;eZ] 

->[pw;eY] 

->[eZ] 

->[pv;eK] 

-£>[eR] 

->[ps;eR] 

->[pv] 

->[pw] 

->[ps] 

-|>lpu] 

Figure 19 Point Graph Generated by TEMPER 1 

[px;sY] £>[pw£Z;eY] 

[pu;e ] 

Figure 20 Unified Point Graph Generated by TEMPER 1 

[px;sY] ^ [pw;sZ;eY] 

-|>[pv;sR;eK] D>[ps;eR] -[>[pu;eZ] 

Figure 21. Re-Arranged Unified Point Graph 

-60- 



• Execute box labeled "Connectivity Matrix". A text box will appear on the screen with the 

connectivity matrix (or incidence matrix) of the unified PG (Figure22). 

• The box labeled "S-invariants" does not contain any code and can not be executed. The text box 

containing the connectivity matrix can be exported out as text and be used as input to the S- 

invariant algorithm developed by the System Architectures Laboratory. The reported S- 

invariants identify errors in the input, which should be corrected and the processing restarted. 

number of places: 8 number of transitions: 6 

Trans= [px;sY] [pw;sZ;eY] [pu;eZ] [sK] [pv;sR;eK] [ps;eR] 

[px;sY]<[pw;sZ;eY] 1 -1 0 0 0 0 

[pw;sZ;eY]<[pu;eZ] 0 1 -1 0 0 0 

[sK]<[pv;sR;eK] 0 0 0 1 -1 0 

[pv;sR;eK]<[ps;eR] 0 0 0 0 1 -1 

[px;sY]<[pv;sR;eK] 1 0 0 0 -1 0 

[pv;sR;eK]<[pw;sZ;eY] 0 -1 0 0 1 0 

[pw;sZ;eY]<[ps;eR] 0 1 0 0 0 -1 

[ps;eR]<[pu;eZ] 0 0 -1 0 0 1 

Figure 22 Connectivity Matrix 

•    If no errors are found, Execute box "Q&A". A dialog box will appear with a default query 

syntax in it (Figure 23). 

Select to 

Enter the Query: 

Cancel   II    OK GO 
Figure 23 "Q&A" Box 

61- 



Insert your query and click OK.  If TEMPER 1 detects an error in the query, the following 

error message will appear (Figure 24). In this example, there is no Interval "X". 

o Unknown Identifier (Lemcal 
error) in the query 

CD 
Figure 24 "Q&A" Error Message 

Click OK and re-insert the correct query as shown in Figure 25. 

Select to 

Enter the Query: 

?- A([sV, eK], [sZ, eZl)| 

Cancel   I    OK CSD 
Figure 25 Correct Query Entry 

TEMPER 1 responds with the result of the query as shown in Figure 26. 

Figure 26 TEMPER 1 Response to Query 

Execute "Q&A" every time a query is required to be processed. 

-62- 



• Execute box "Save&Exit" before quitting (even if you are quitting in the middle of your 

problem solving). TEMPER1 will provide the window shown in Figure 27. If you click 

"Yes" TEMPER 1 will save all parameters needed to continue working on the problem at a 

later time. 

MMMMMMMMMMHMMMMMr 

A 
mould you be 
working on this 
problem in future? 

GD( Ves 

Figure 27. TEMPER1 Window When Save&Exit Is Executed 

After Selecting "Yes", TEMPER1 provides the reminder window shown in Figure 28.  Click 

OK and quit Design/CPN. 

JtijjjjfcjJMHHilUii^ 

© The required parameters are 
saued. Please saue your work 
and quit. 

I OK 

- —,.,,-,-,  

Figure 28. TEMPER Reminder Window Prior To Quitting 

Case 2: WORKING ON A PREVIOUSLY SAVED EXAMPLE 

•    Execute "Start UP1" and then "Start UP2". 

-63- 



•    Execute box to the left of "Start Up2" and follow the instructions.   TEMPER 1 provides a 

window indicating were you stopped working on the problem (Figure 29). 

^mmmmmmmtmmm 

© Vou left after drawing the 
unified PG, proceed from Q&R 

( 
OK 

Figure 29. TEMPER1 Window When Re-Starting A Problem 

5.   TEMPORAL LOGIC / PETRI NET METHODOLOGY: TEMPER2 

5.1 Introduction 

This section presents an extension the point-interval approach of Section 4 by adding 

provisions for dates/clock times and time distances for points and intervals. Therefore, the 

approach sort of combines Dechter's (Dechter et. al. 1991), Kahn and Gory's (1977), and Allen's 

approaches into a single formalism. The major contribution of this section is the formal tool, called 

TEMPER2, which automates the inference mechanism of PITL. The tool is based on a graphical 

representation of the temporal inputs, which not only implements the axiomatic system of PITL, 

but also verifies system integrity before inference making. Some of the recent approaches that try 

to combine the qualitative and quantitative aspects of time are due to Kautz and Ladkin (1991), 

Meiri (1991), and Yao (1994). A final note on TEMPER2's inference engine is that it infers 

temporal relationships among system intervals/points, calculates time distance among points, and 

identifies time stamps associated with points, without being engaged in a combinatorially 

expensive computation. Unlike the approaches of Allen, Kahn and Gory (Kahn and Gory 1977, 

-64- 



Allen 1981) which make use of reference intervals to avoid memory problems, TEMPER2 

manages to organize the temporal information with relatively no burden on available storage. 

The point interval formalism presented here considers a system's temporal specification on a 

single time line with a single future. The future of a system is determined by a) the set of events 

which culminates into the future, and b) the time sequence associated with the occurrence of these 

events - the definition is similar to the notion of a 'chronicle' by McDermott (1982). A Single 

Timeline Single Future (STSF) system, therefore, has only one set of events with only one time 

sequence associated to it - a single chronicle. The time sequence may not be fully specified due to 

incompleteness in the system specification; there could be events with unspecified temporal 

relations among them. An STSF system with a fully specified time sequence is shown in Figure 

30a. 

A Multiple Timelines Multiple Futures (MTMF) system, on the other hand, is characterized 

either by a single set of events with associated multiple time lines each yielding a different future - 

type 1, or by multiple set of events with different single/multiple time sequences each representing 

a total world-history - type 2. Figure 30b presents the two cases of MTMF systems. The treatment 

of MTMF systems by PITL is beyond the scope of this paper and is left for a future treatment of 

the subject. Readers who are interested in a detailed discussion on several other topological issues 

of time are referred to Newton-Smith (1980). 

e1   e2     e3 en 
—•—• • •  

(a) Single Timeline Single Future System 

e3 

e3'       e4' e5' 

/ * * e1   e2/ e3       24 e5 
•—iL—• ^- • 

\e5" 

Type 1 Type 2 

(b) Multiple Timelines Multiple Futures System 

Figure 30 Topology of Temporal Systems 

65- 



The inference mechanism of PITL, described in Section 4, constructs the analytical 

representation for the pairs of intervals with unknown temporal relations. The resulting string 

representation of the relation(s) is pattern matched with the string representations of Figure 14 to 

infer possible temporal relation(s) between the intervals. An inference engine for PITL, therefore, 

requires an exhaustive enumeration of the result through all feasible combinations of available 

statements, provided no knowledge of the system's correctness is available a priori. An inference 

engine that outputs the result as soon as it finds the first feasible set of inputs can only be applied 

to a known consistent system of temporal statements. This, in turn, requires a front-end 

verification mechanism for the PITL statements. This was described in Section4.. 

An extension to the PITL formalism allows assignment of actual lengths to intervals, time 

distances between points, and time stamps to points representing the actual time of occurrences. 

The approach extends the lexicon of PITL by adding the following two functions to it: 

Functions: 

length: interval length function that assigns a non-zero positive real number to a system 

interval, e.g., length[X] = d, where X = [sx, ex] 

time: time stamp function that assigns a real number to a system point, e.g., time[pl] = t. 

A discussion on the inference mechanism for the extended PITL system is presented in the 

next section. 

5.2 TEMPER2 

This section presents the TEMPoral programmER (version 2) (or TEMPER2), which 

implements the inference mechanism of PITL. The TL/PN approach transforms the system's 

specifications given by temporal statements into a graph structure. The approach then identifies 

temporal ambiguities and errors (if present) in the system's specifications by first verifying the 

system for qualitative temporal relations and then checking the quantitative temporal relations for 

errors. Once the system is verified for correctness, the temporal inference engine (TIE) infers 

temporal relations among system's intervals, identifies the windows of interest to the user, 

calculates lengths of intervals and windows, and infers actual time of occurrence of events. The 

temporal inference engine, TIE, of the TL/PN methodology performs all these tasks by completely 

66- 



avoiding the combinatorial nature of the inference mechanism. The following sections present a 

detailed account of all the modules shown in Figure 17. 

A. Language 

The input to TEMPER2 are statements in PITL. The following Context-free Grammar, 

CFG(V, T, S, P) represents lexical and syntactical structure of the TEMPER2 inputs. 

Set of non-terminals; V =     {<temper-input>, <temporal_statement>, <interval>, 

<temp_relation>, <point>, <temp_relation_l>, 

<temp_relation_2>, <temp_relation_3>, <letter>, 

<lower_case_letter>,<upper_case_letter>, <digit>, <sp_ch>} 

Set of terminals; T = {Before, Meets, Overlaps, Starts, During, Finishes, Equals, length, time, 

[, ], a, b,..., z, A, B,..., Z, 0, 1,2,..., 9, (,), _, !, @, $, %, &, *} 

Start Symbol; S = <temper-input> 

Set of Productions; 

P = {<temper-input> -> <temper-input> <temper-input> ktemporal_statement> 

<temporal_statement> —> <interval> <temp_relation> <interval> 

I <interval> <temp_relation_l> <point> 

I <point> <temp_relation_2> <interval> 

I <point> <temp_relation_3> <point> 

I length[<interval>] 

I time[<point>], 

<interval> -»<upper_case_letter> (<letter>kdigit>ksp_ch>)* 

I [<point>, <point>], 

<point> -» <lower_case_letter> (<letter>kdigit>ksp_ch>)* 

I s<interval> I e<interval>, 

<temp_relation> -» Beforel Meetsl Overlapsl Startsl Duringl Finishes! Equals, 

<temp_relation_l> -> Before, 

<temp_relation_2> -» Beforel Startsl Duringl Finishes, 

<temp_relation_3> -> BeforelEquals, 

-67- 



< lower_case_letter > —> albL.lz, 

<upper_case_letter> -> AIBI...IZ, 

<letter> -> < lower_case_letter >l<upper_case_letter>, 

<digit>-»0IH2L.I9, 

<sp_ch> -»(l)l_l!l@l$l%l&l *} 

In TEMPER2 language, a point is represented by a string of alphanumeric and special 

characters which starts with a lower-case alphabetic character, e.g., x, y, point, point 1, and event 

are all identifiers representing points. Similarly, an interval is represented by a string of 

alphanumeric and special characters with its first characters being a upper-case alphabetic character, 

e.g., X, Y, Interval, Processl, etc. This lexical structure of points and intervals allows the language 

processor of TEMPER2 to identify semantic errors in the input. A statement 'processl Overlaps 

Process2' will result in an error, since the identifier 'processl' represents a point and semantically 

a point (an interval with zero length) can not overlap an interval. Similarly 'length[event]' will be 

an erroneous statement because of identifier 'event' being defined as a point. However, 'Processl 

Overlaps Process2' and iength[Event]' will be acceptable temporal statements. The input to 

TEMPER2 will consist of one or several such acceptable temporal statements connected together 

with an implicit conjunction. The following is an example of an error-free input to TEMPER2. 

Example 15 

event 1 Starts Processl 

time[peventl]= 1000 

length[Processl] = 10 

event2 Finishes Processl 

event2 Starts Process2 

length[Process2] = 20 

B. TL/PN Methodology 

The language processor of TEMPER2 performs the lexical and syntactic/semantic analysis on 

the input statements and reports the errors if found. Once the input is debugged, the TL/PN 

approach takes each individual statement in the input and transforms it into an equivalent Timed 

Point Graph (TPG). The TPG representation of a system's temporal aspects organizes the 

-68- 



information contained in temporal statements into a graphical structure. This section presents an 

analysis based on this graphical representation. The analysis applies certain graph-theoretic 

concepts on the structure of Timed Point Graphs, identifies their structural properties, and finally 

interprets the results obtained in terms of the temporal aspects of the systems under consideration. 

Definition 28:   Timed Point Graph 

A Timed Point Graph, TPG(V, E, D, T) is a directed graph with: 

V: Set of vertices with each node or vertex v e V representing a point on a time line. Two 
points x and y are represented as a composite point [x;y] if both are mapped to a single 
point on the time line. 

E: Set of edges with each edge eI2 e E, between two vertices vl and v2, also denoted as (vl, 
v2), representing a temporal relation '<' between the two vertices — (vl < v2). 

D: Edge-length function (possibly partial): V -»9t (set of real numbers) 

T: Vertex-time-stamp function (possibly partial): E -* 9* 

Figure 31 presents a two node Timed Point Graph with time stamps and arc length, and the 

corresponding temporal situation represented by the TPG. The figure also presents a 

correspondence between the time stamps and edge lengths: a TPG with only time stamps can be 

represented by an equivalent PG with edge length expressions and vice versa by using a reference 

time stamp for the conversion. 

f TIME STAMP^] 

4500 

("TIME STAMP J 

4600 

[pl] 
100 

[p2] 

INTERVAL 
LENGTH 

Time stamp (time of occurrence) of p1 is 4500 time units. 

Time stamp of point p2 is 4600 time units. 

The time distance between two points p1 and p2 is 100 time units; 
time[p2] - time[pl] = length[[pl, p2]] 

Figure 31   Timed Point Graph Representation of a Temporal Situation 

69- 



The following examples present the temporal-statement-to-TPG translation process. 

Example 16 

Consider the TEMPER input presented in Example 15. The TPGs representing each 

statement are constructed as follows: 

1) event 1 Starts Process 1 

Since the identifiers 'event 1' and 'Process 1' correspond to a point and an interval respectively, 

the algebraic inequality representing the statement is given as: peventl = sProcessl < 

eProcessl. The PG can now be constructed as: 

[ [peventl ;sProcess 11) ►[[eProcessTD 

time[peventl] = 1000 

The statement puts a time stamp of '1000' time units on the node with 'peventl' as one of 

labels associated with it. 

1000 
[[peventl ;sProcess 11) »-[[eProcessll] 

length[Processl] = 10 

This statement assigns a length of '10' time units to the edge from 'sProcessl' to 'eProcessl'. 

1000 10   
[ [peventl ;sProcess 11) »'([eProcessl ]) 

event2 Finishes Process 1 

The inequality representing this temporal statement is: sProcessl < eProcessl = pevent2. The 

corresponding TPG will therefore be:    (fsProcesslp »[[pevent2;eProcül]) 

Similarly, Timed Point Graph representing the last two statements, 'event2 Starts Process2' 

and iength[Process2] = 20' can be constructed as: 

20 
[[pevent2;sProcess21] »-[[eProcess2l 

-70- 



The TPG representing the entire system of temporal statement is then constructed by unifying 

(Definition 28) individual PGs to a (possibly) single connected graph. Figure 32 shows the unified 

TPG for the temporal statements in Example 17. Note that the unifying process only looks at the 

labels of the nodes to identify equalities, and does not take into consideration the arc lengths 

assigned to edges in the TPGs. 

Definition 28:   Unification 

(a) For all vi and vj € V, s.t. time[vi] < time[vj], construct a directed edge from node vi to vj with 

length[[vi, vj]] = time[vj] - time[vi]; 

(b) Let vi = [pi;...;pn] and vj = [pj;...;pm] be two nodes in a TPG representation. If there exists a 

point pk such that pk e [pi;...;pn] and pk e [pj;...;pm] or time[vi] = time[vj] then the two 

nodes are merged into a single composite node 'vi;vj' such that: 

vi;vj = [pi;...;pn] u [pj;...;pm] 

*vi;vj = *vi u *vj 

vi;vj* = vi* u vj*       (where *vi and vi* represent the pre- and post-set of node vi.) 

time[vi;vj] = time[vi] = time[vj] 

1000        10         20 
[[peventl:sProcessll) mpevent2;eProoess 1 ;sProcess2TJ ^•Q"eProcess2T) 

Figure 32  Unified PG Representations for Example 17 

System Verification - Phase 1 

The inference engine of PITL requires a consistent system specification in order to infer 

temporal relation without enumerating all possible combinations of known temporal relations. 

Definition 17 has presented a general definition of inconsistency, while Definition 29 characterizes 

all possible cases of inconsistency in a PITL system. 

Definition 29: Inconsistency in PITL 

A system's description contains inconsistent information if 

(a) for some intervals X and Y both X Ri Y and X Rj Y, i * j, or X Ri Y and Y Rj X (with the 

exception of Ri = Rj = Equal) hold true. 

-71- 



or 

(b) for a point pi, the system calculates two different time stamps. 

or 

(c) for some points pi and p2, pi < p2, the system can determine two different lengths for the 

interval [pl,p2]. 

Some of the inconsistent cases, of the type defined in Definition 29b, are trivially detected 

during the unification process: whenever the system tries to merge two nodes with different time 

stamps into a single node, it signals an error. 

Once a unified Timed Point Graph representation is achieved, the graph is checked for other 

inconsistent cases defined by Definition 29a. Such inconsistent cases are characterized by 

Proposition 3, namely, that a set of temporal statements is inconsistent if the PG representation of 

the set contains self-loops and/or cycles. 

Definition 5: TPG Self-loop 

In a TPG, an arc forms a self-loop if it originates and ends in the same vertex. 

A necessary condition for a consistent set of temporal statements has been given by 

Proposition 4; it also applies in the case of TPGs. Once cycles are detected in a TPG by calculating 

non-zero S-invariants, the nodes responsible for these cycles can be easily identified. This will, in 

turn, identify intervals involved in these cycles. This information can be used to correct the system 

of temporal statements. 

C. Folded Point Graph Representation 

Phase I of the verification process identifies temporal errors present in the system caused by 

the qualitative input to TEMPER (as desribed in Section 4 for TEMPER1). The unification 

process itself identifies some of the erroneous time stamps during the course of unifying 

individual TPGs. This section presents an analysis, done on the unified TPG, that looks at the edge 

(arc) length expressions md folds the unified TPG into a folded Timed Point Graph. The folding 

process establishes new temporal relations among system intervals, inferred through the 

quantitative analysis of the known temporal relations specified by interval lengths and time stamps. 

The quantitative input provided to TEMPER may in turn have inconsistencies in it. Therefore, a 

-72- 



second phase of system verification is carried out to ensure the correctness of the temporal system 

before the inference engine is invoked to process queries. A detailed account of the folding process 

is provided as follows. A correspondence between time stamps and edge length expressions has 

been presented earlier (Figure 31), therefore, the approach and results are illustrated with TPGs 

with edge length expression only. The results can be easily applied to graphs with time stamps 

using the equivalence. 

Definition 31:  Branch (Join) Node 

A vertex v 6 V in a Point Graph is termed a Branch (Join) node if it has multiple outgoing 

(incoming) edges connected to it. 

Figure 33 shows a pictorial representation of a branch and a join node in Timed Point Graphs. 

(a) Branch (c) Join 

Figure 33  Branch and Join Nodes in Timed Point Graphs 

Definition 32: Branch Folding 

A branch node vi e V is said to be folded if, for all vj and vk in the post-set of vi, with: 

• length[[vi, vj]] < length[[vi, vk]], the edge from vi to vk , denoted as (vi, vk), is replaced 

by an edge (vj, vk) with Iength[[vj, vk]] = length[[vi, vk]] - length[[vi, vj]], and the vertex 

vk removed from the post-set, or 

• length[[vi, vj]] = length[[vi, vk]], the two vertices vj and vk are merged into a single 

vertex with composite label 'vj;vk', and length[[vi, vj;vk]] = length[[vi, vk]] (= length[[vi, 

vj]])- 

The methodology applies the branch-folding process to all the original and newly created 

(formed during the folding process) branch nodes in the unified net. Figure 34 illustrates the 

process by folding a unified TPG. 

-73- 



(fsXlv sJO          8^ r(S)\ 
J^rsYfc^ J^tfeY 

gp^ 'S           ^ HezlK^ 

eZ^n-MfeY) 

(a) Unified PG (b) PG After Branch Folding 

Figure 34 Branch Folding 

The branch folding process, when applied to all the branch nodes of a graph, yields a partially 

folded TPG having nodes with at most one outgoing edge with edge length expression. Since all 

the edges in the TPG may not have edge lengths associated with them, the branch folding may not 

result in a branch-node-free TPG. Readers may have noted the fact that some of the inconsistent 

cases, identified in Definition 29, can be detected during the branch folding process; however, a 

discussion on this issue is delayed for detailed treatment in the next section. 

The TPG so obtained is further treated by a join folding process which applies a similar 

process to all the joins in the graph. 

Definition 33: Join Folding 

A join node vi € V is said to be folded if, for all vj and vk in the pre-set of vi, with: 

• length[[vj, vi]] < length[[vk, vi]], the edge (vk, vi), is replaced by an edge (vk, vj) with 

length[[vk, vj]] = length[[vk, vi]] - length[[vj, vi]], and the vertex vk removed from the 

pre-set, or 

• length[[vj, vi]] = length[[vk, vi]], the two vertices vj and vk are merged into a single 

vertex with composite label 'vj;vk\ and length[[vj;vk, vi]] = length[[vk, vi]] (= length[[vj, 

vi]]). 

Figure 35 illustrates the process on the TPG of Figure 34. 

eZ-eXj-HfeY) 
sXj 

5    JE} 
(fsZK5 

treZ;eX-)-»(feY] 

(a) Branch-Folded PG (b) PG After Join Folding 

Figure 35  Join Folding 

74- 



A single application of join folding after a single application of branch folding is all that is 

required to fully fold the graph. Proposition 9 ensures the fact that single applications of branch 

folding followed by join folding are enough to fold the graph completely (the term 'completely' is 

used relative to the quantitative information available in the TPG.) 

Proposition 9 

Let a TPG be folded by branch folding, then a subsequent application of join folding does 

not create any new branch nodes that can be folded by the branch folding process. 

Proof 

The branch folding process results in a TPG having nodes with at most one outgoing edge of 

specified length. The join folding process does not add any new edges to the nodes with lengths 

expressions. The join folding might result in a new branch node only when it merges the two 

vertices, vi and vj, into a single composite vertex 'vi;vj'. This merging, in turn, takes place along 

the outgoing edges of the original vertices vi and vj with edge lengths. The process (Definition 33) 

replaces the two edges (vi,.) and (vj, .) by a single edge (vi;vj,.) having the same edge length as 

that of the replaced ones, leaving the newly created vertex with only one outgoing edge of specified 

length. 

A similar result can be obtained for the branch folding process in terms of join nodes if the 

TL/PN methodology applies the join folding before branch folding. 

System Verification - Phase II 

As mentioned earlier, the folding process establishes new temporal relations, among system 

intervals, inferred through the quantitative analysis of the known temporal relations specified by 

interval lengths and time stamps. The possible inconsistencies present in the quantitative input to 

TEMPER2 may hinder the folding process or result in erroneous structures of folded graph. 

Definition 29 identifies the set of possible inconsistencies that might find their way into the 

temporal system modeled by PITL. The type of inconsistency defined by Definition 29b may 

reveal itself during the folding process: if during folding a TPG the process finds multiple edges 

between a branch(join) node and a vertex in its post-(pre-)set, where these edges have different 

lengths associated with them, then the process halts and reports an error. A pictorial representation 

of such an erroneous case is presented in Figure 36. 

-75- 



Figure 36  Inconsistent Case Found During Folding Process 

During Phase I of the verification process, the unified TPG is checked for acyclicity. The 

inconsistency, however, can result in creation of new cycles in the graph during the folding 

process. The following example illustrates the issue. 

Example 17 

Let a temporal system be described by the following set of TEMPER statements: 

event 1 Starts Process 1 

Process 1 Meets Process2 

event 1 Before event2 

Process2 Before event2 

Process2 Before event3 

The corresponding unified TPG is shown in Figure 37 

lengthfProcessl] = 3 

length[Process2] = 3 

length[[peventl, pevent2]] = 1 

length[[eProcess2, pevent3]] = 3 

f[peventl;sProcessl])^——»( [eProcesslgProcess2f)-^ »{[eProcessiff^ H [pevent3] 

Figure 37  Unified PG for Example 17 

The graph has an acyclical structure and, therefore, contains no inconsistent cases that can be 

identified at the first phase of the verification process. 

The branch node labeled 'peventUsProcessl' has two outgoing edges with edge lengths and it 

can be folded by the branch folding procedure. The resulting folded graph, with a cycle, is given in 

Figure 38. 

-76- 



[peventl g Process 1 ]] 

rpevoit2] 

[eProcessl;sProcess2] {-5 »j [eProcess2] j-g H [pevent3] 

Figure 38  Partially Folded TPG for Example 17 

The folded graph in the previous example can not be further folded and an approach similar to 

the one in Proposition 3 can be applied to identify the cycles present in the folded TPG. The TL/PN 

methodology, therefore, constructs a Connectivity Matrix of the folded TPG and calculates the S- 

invariants of the graph. The resulting non-zero S-invariants identify the cycles (inconsistencies) in 

the temporal system. (Proposition 7) Unlike the case in Example 17, the creation of cycles during 

the folding process can have serious effects on the graph. Once a cycle is created during the folding 

process, it tends to attract the remaining vertices in the TPG towards itself. And if the TPG has 

edge lengths on all its edges the folding process ends up with a folded TPG which has a single 

cycle with all its vertices collapsed into it. The phenomenon is termed 'Black Hole Effect' for the 

obvious reason. Example 18 illustrates the effect. 

Example 18 Black Hole Effect 

Let the temporal system presented in Example  17 be augmented with  an  additional 

statement: 

length[eProcess2, pevent2] = 2 

The PG with this added information is shown in Figure 39. 

[[peventl ;sProcessl]) [ [ePrccess 1 gProcess2] \-j H [ePrccessZfH *j [pevent3]  ] 

Figure 39  TPG for Example 18 

The methodology now finds a branch node (eProcess2) with two outgoing edges that can be 

folded. The graph after folding the node is shown in Figure 40, part a. 

The branch folding proceeds with folding the other branch node (pevent2). The resulting 

branch-folded TPG is given in part b of Figure 15. 

-77- 



In the previous two iterations of the branch folding procedure, readers must have noticed the 

fact that the cycle present in the original TPG has caused the vertex labeled as 'pevent3' to wrap 

around the cycle until it becomes a part of it. A final application of join folding will have a similar 

effect; the node labeled as 'pevent;sProcessl' will collapse into the black hole and become a part of 

it, as shown in Figure 40, part c. 

f[peventl;sProcessl]J [ [eProcessl;sProcess2] \-$ H [eProcess2]) [  [pevent3] 

(a) 

[rpeventl;sProcessll 

[pevent21 

[ fpevent31 

(b) 

[[peventUsProcessll. 

[ [eProcessl;sProcess2T 

(c) 

Figure 40  Black Hole Effect 

The intensive computational effort required to fold a TPG, and a subsequent loss of it due to 

the black hole effect demand an earlier detection of cycles during the folding process itself. The 

folding procedure is, therefore, tailored to identify cycles by assigning dummy time stamps to 

78- 



vertices being folded: reassignment of a time stamp to an already marked vertex prompts the 

presence of a cycle. 

The folding process folds all the vertices in a PG which are connected together through 

quantitative temporal relations. A PG with a total Edge-length (D) and/or Vertex-time-stamps 

function (T) will be folded into a PG having each vertex with at most one incoming and outgoing 

edge connected to it; the folding process will remove all the branch and join nodes. However, for a 

PG with partial D and T functions, the folded graph might still have branch and join nodes. The 

folding process reveals all the quantitative inconsistency in the system; however, some of the 

inconsistent cases might still be hiding due to the lack of specified edge lengths and/or time stamps 

on some of the edges and vertices of the graph. A folded TPG with leftover branch and join nodes 

should be checked for multiple directed paths from any branch node to any other join node. The 

length expressions corresponding to each such path are equated to each other and the resulting set 

of equations is checked for feasibility. A set of infeasible equations signals an inconsistent case 

present in the system. The following example illustrates the issue. 

Example 19 

Let a temporal system contains the following TEMPER2 statements as part of its system 

specification: 

X During Y length[X] = 5 length[Y] = 4 

The obvious inconsistency present in the statements neither reveals itself as a cycle nor 

gets identified during the folding process. However, the error is detected by equating the length 

expressions corresponding to the two directed paths from vertex 'sY' (branch node) to 'eY' 

(join node) in Figure 41. 

dl^   \d2 

4 

dl+5 + d2 = 4, dl, d2>0 

Figure 41   Inconsistent Path Lengths 

The TL/PN methodology employs the following steps to carry out this analysis on a folded 

TPG. The approach makes use of the two search procedures, the FPSI and FPSO algorithms, 

-79- 



described earlier (Tables 1 and 2). The FPSO(\) algorithm, when applied to an edge v in a TPG, 

collects all the nodes that have directed paths to v. The FPSJ(v)algorithm, on the other hand, 

collects all the nodes to which v has a directed path. The steps of the methodology are given as 

follows: 

1) Construct VB, the set of all branch nodes in the TPG. Select a node vi e VB and calculate 

PGj by applying FPSI(vi). Remove from VB all the branch nodes present in TPGj. 

2) Construct V^, the set of all join nodes in TPGj. Select a node vj e Vh and calculate TPGtf 

by applying FPSO(\j). Remove from V,j all the branch nodes present in TPGy. 

3) Merge vi and vj into a single node and calculate S-invariants for the Connectivity Matrix J 

of the modified TPGr. The calculated S-invariants correspond to all directed paths from vi 

to vj. Equate the lengths corresponding to the calculated S-invariants and check the 

equations for feasibility. If found infeasible, report the error, else iterate through step 2 until 

there are no elements left in the set V^. 

4) Go to step 1 until there are no elements left in the set VB. 

The analysis of the equations constructed as a result of the approach helps bound some of the 

unknown edge lengths in terms of lower and/or upper limits to their values. The calculated S- 

invariants can also be used to remove non-connected chains in the folded TPG. 

D. Temporal Inference Engine (TIE) 

The output of TL/PN methodology is a consistent (error free) description of the temporal 

system represented in terms of a TPG structure. The Temporal Inference Engine (TIE) 

implements the inference mechanism of PITL to infer the temporal relations among system 

intervals, time distances among points, length of user-specified intervals, and time stamps 

associated with points, through a simple search in the TPG. 

TEE infers temporal relations between two intervals X (= [sX, eX]) and Y (= [sY, eY]) by 

constructing the string representation of the temporal relation (Figure 14) between the two intervals 

by searching for the directed paths between the vertices representing the intervals in the PG 

representation. The search for the directed path between two vertices in a TPG uses a depth-first 

search with arc lengths as the heuristic measure; the depth-first search engine first explores the 

outgoing edge of the current vertex with a length expression. The search, therefore, finds the path 

-80- 



between two vertices which has (possibly) all its constituent edges with length expressions. The 

sum of all these lengths gives the total distance between the two vertices (points). Similarly, if the 

time stamp of one of these points in known, the time stamp of the other can be calculated by 

adding or subtracting the distance (path length) between the two. 

The advantage of the TL/PN formalism is that it not only verifies system correctness prior to 

any inference making, but also overcomes the combinatorial problem associated with inferring 

new temporal relations; TIE's search engine stops as soon as it finds the first directed path 

between two vertices under consideration and does not explore all paths between the two vertices 

to ensure consistency. 

TEMPER2's inference engine takes user queries, interprets them, and by invoking the search 

engine calculates the answers to the input queries. A list of different types of queries that can be 

processed by TIE is given in Table 5. 

Table 5 Queries for Calculating Temporal Relations 

Query Structure Comments 

?-R(<interval>kpoint>, <interval>kpoint>) The inference engine returns a specific Ri 
if it finds one, otherwise it outputs all possible 
relations that might exist without creating an 
inconsistency, given incomplete information 
available. 

?-<interval> <temp_relation> <interval> 

?-<interval> <temp_relation_l> <point> 

?-<point> <temp_relation_2> <interval> 

?-<point> <temp_relation_3> <point> 

The inference engine returns 'yes' if the 
temporal relation can be inferred by TIE, 'no' 
if the inferred relation is in contradiction to the 
actual relation, and 'plausible' if the input 
statement is one of the possibilities that can 
exist in the set of temporal statements without 
introducing inconsistencies. 

?-length[<interval>] The inference engine returns a real value if 
the length can be computed, returns 
upper/lower limit(s) to the value for the length, 
and 'unknown' if none can be computed. 

?-time[<point>] The inference engine returns a real value if 
the time stamp for the point can be computed, 
returns upper/lower limit(s) to the value for the 
time stamp, and 'unknown' if none can be 
computed. 

81- 



6.   APPLICATION: Collaborative Air Task Planning 

This section illustrates how the graph-based temporal inference engine (TIE) that is used in 

TEMPER 1 and 2 (Sections 4 and 5) could be applied to Air Task Planning. The section first 

describes the situation and planning problem and then illustrates how the application of TEMPER 

can be used to solve that problem. 

6.1 Air Task Planning 

We assume a military planning situation where there are several planning agents, each with 

specialized knowledge about a class of air assets for which the agent develops plans. Each agent 

has responsibility to manage the plans for his assets to ensure that all plan adhere to physical and 

temporal guidelines. In addition to their individual responsibilities, the agents collectively have the 

responsibility to create coordinated plans using combinations of the assets to accomplish missions 

that are assigned to the team of planners. To accomplish these responsibilities, the agents 

communicate with each other, sharing information needed to build plans that will both satisfy the 

mission requirements and the individual responsibilities of each agent. 

Each agent has local information about the schedule and capabilities of the resources for 

which he is responsible. The schedule indicates time intervals when each asset is and is not 

committed to a mission. 

The team of planners receives a set of missions to be accomplished. Each mission has 

requirements that specify the type of action, the time, and the location where the mission is to be 

performed. The action can be a simple, single action, single asset mission, or an action that will 

involve several tasks that can be accomplished by several assets of different types. In the latter 

case, the mission may require that specific temporal relationships be maintained between the 

actions of different assets for the overall missions is to be successful. 

Whenever the team of agents receives a new mission that requires multilple assets for which 

to develop a plan, the team must determine if a combination of uncommitted assets can be found 

that will satisfy the mission requirements. To do this, the agents exchange requests and 

information. Each agent must use a temporal reasoning process to determine if the assets it is 

responsible for can support the mission requirements.  The capabilities of TEMPER can. provide 

-82- 



this temporal reasoning process. This dialog between agents and the use of the temporal reasoning 

via TEMPER can be illustrated with a simple scenario. 

6.2 Air Task Planning Scenario 

Assume that a team of two agents is required to develop an air tasking plan for a Search and 

Rescue (SAR) mission. One agent develops plans for Special Operations Forces (SOF) assets 

and the other agent develops plans for Electronic Surveillance assets, denoted EC assets. The 

SAR mission requirements are that a SOF asset must ingress to a target area, service that target by 

picking up a stranded airman, and egress the area, and return to its home base. The mission must 

be accomplished no later than a specified R hour. In this example R equals 1700 hours on day 23. 

Because of certain international considerations, the SOF asset must accomplish its mission 

covertly. This means that the SOF mission must occur concurrently with a mission by an 

electronic surveillance asset that has the ability to determine if the SOF mission has been detected, 

and if so, issue a warning to the SOF asset. 

Each agent has data on the availability of its assets to perform the mission. The SOF agent 

has computed the time required for the SOF assets to complete the mission, and has three assets 

that are capable of performing the mission because they have uncommitted time windows 

(windows-of-capability) that are large enough to accomplish the task. SOF1 is available from 

1200 to 1500, SOF2 is available from 1445 to 1800, and SOF3 is available from 1000 to 1330. 

The SOF agent needs to determine which of these assets can meet the temporal mission 

requirement that the mission be completed by 1700 hours. To do this, the asset availability 

information of the three SOF assets must be encoded for use in TEMPER. This is accomplished 

in a two step interval linking procedure . In the first step, the starting and ending time points that 

define each window-of-capability interval are used to create a pair of temporal relationship 

statements. For example, the SOF1 interval is encoded with the two statements "sofls Starts 

SOF1" and "sofle Finishes SOF1". For all inputs, the name of an interval is capitalized and the 

corresponding time points are in lower case. By convention, for time points associated with 

intervals, the suffix "s" denotes start of an interval and "e" to denote the end of an interval. In step 

two, additional statements are created that define the temporal relationships between these intervals 

using their starting and ending points. While there are several ways to do this, the following 

technique insures that TEMPER will always be able to unambiguously answer queries about the 

relationship between the intervals. The procedure is to map all of the time points to the real line to 

-83- 



create a total ordering of the time points. Then a set of statements of the form (pi Before pi+i) are 

made where i is the index of the total ordering. In the case where pi = pi+i then the statement (pi 

Equals pi+l) is used. Thus, if n is the total number of time points, there will be n-1 such 

statements. In the SOF example there are six time points that define the three intervals. By sorting 

on the time of the time points, the simple path connecting adjacent points on the real line can be 

denoted as "sof3s Before sofls Before sofs3e Before sof2s Before sofle Before sof2e". This 

simple path can be divided into five pair-wise temporal statements. The input to TEMPER is 

created by combining the statements created in step one and step two as shown in Table 6. The 

first six entries are created in step one and the remaining five entries are created in step two. 

TEMPER uses this input to produce the Point Graph shown in Figure 42. 

Table 6. Input representing the availability of SOF Assets and Mission Requirements 

sofls Starts SOF1 

sofle Finishes SOF1 

sof2s Starts SOF2 

sof2e Finishes SOF2 

sof3s Starts SOF3 

sof3e Finishes SOF3 

sof3s Before sofls 

sofls Before sof3e 

sof3e Before sof2s 

sof2s Before sofle 

sofle Before sof2e 

84- 



[psof1s;sSOF1] 

[SS0F1]  

->[eSOF1] 

-^•[psof1e;eSOF1] 

[psof2s;sSOF2] 

[SS0F2]  

->[eS0F2] 

[psof3s;sSOF3] 

[SS0F3]  

[psof3s]  

[psofls]  

[psof3e]  

[psof2s]  

[psofle]  

-^•[psof2e;eSOF2] 

-^•[eSOF3] 

-^■[psof3e;eSOF3] 

■£> [psofls] 

-^[psof3e] 

->[psof2s] 

■>[psofH 

-J>[psof2e] 

Figure 42 Point Graph Generated by TEMPER 

TEMPER then creates the unified point graph which, after some manual rearranging of the 

vertices, appears as shown in Figure 43. A few enhancements have been added manually to the 

graph for clarity. First, the three arcs that represent the time each asset is available have been 

bolded and labeled. A time scale has been added with the time points corresponding to the starting 

and ending times for the intervals during which each asset is available to perform the mission. 

Notice that the lighter arcs represent the simple path created in step two of the procedure for 

interconnecting the intervals. 

SOF1 
[psof1s;sSOF1] 

^[psof2e;eSOF2] 

[psof3s;sSOF3] 

1000 1200 

Time Scale 

Figure 43. Unified Point Graph of SOF Capability 

85 



TEMPER also produces the Incidence Matrix shown in Figure 44. This matrix specifies the 

ordinary Petri Net shown in Figure 45. Note that the structure of the net is similar to the structure 

of the unified point graph of Figure 44. 

number of places: 8 number of transitions: 6 

Trans=       [psofls;sSOFl]   [psofle;eSOFl]    [psof2s;sSOF2]   [psof2e;eSOF2]    [psof3s;sSOF3]   [psof3e;eSOF3] 

[psofls;sSOFl]<[psofle;eSOFl] 1   -1   0   0   0   0 

[psof2s;sSOF2]<[psof2e;eSOF2] 0   0   1-10   0 

[psof3s;sSOF3]<[psof3e;eSOF3] 0   0   0   0   1-1 

[psof3s;sSOF3]<[psofls;sSOFl] -10  0  0   10 

[psofls;sSOFl]<[psof3e;eSOF3] 10   0   0   0-1 

[psof3e;eSOF3]<[psof2s;sSOF2] 0   0-1001 

[psof2s;sSOF2]<[psofle;eSOFl] 0-11000 

[psofle;eSOFl]<[psof2e;eSOF2] 0   1   0-1   0   0 

Figure 44 Incidence Matrix Created by TEMPER 

Figure 45. Ordinary Petri Net Representation of Incidence Matrix 

The SOF agent now adds the temporal relationships between the mission requirements and 

the SOF asset availability intervals. Since the mission requirement is that the mission be 

completed by 1700, he adds the relationship between the mission ending time, "me", and the 

nearest SOF asset availability points, the end of the first asset's availability, SOFle, and the end of 

the second asset's availability, SOF2e. The new input to TEMPER is shown in Table 7. 

86 



Table 7. Integrating SOF Asset Availability and Mission Requirements 

sofls Starts SOF1 
sofle Finishes SOF1 

sof2s Starts SOF2 
sof2e Finishes SOF2 

softs Starts SOF3 
sof3e Finishes SOF3 
sof3s Before sofls 
sofls Before sof3e 
sof3e Before sof2s 
sof2s Before sofle 
sofle Before sof2e 
sofle Before me 

ms Starts M 
me Finishes M 

me Before sof2e 

Again executing the TEMPER Algorithm results in the Point Graph of Figure 46, the Unified 

Point Graph of Figure 47, the Incidence Matrix of Figure 48. The Petri Net of Figure 49 can be 

constructed from the Incidence Matrix. Notice that the Unified Point Graph and the Petri Net 

contain the graphs of Figures 43 and 45 as sub-nets with the new mission requirement connected 

to the time points given in the input. 

The SOF agent queries TEMPER to find the temporal relationship between each SOF asset 

and the mission. Because the mission requirement is that the mission be completed by R hour 

(1700 hours), the query is structured to compare the end of the M interval with the end of each 

SOF interval. These queries and their results (shown in Table 8) lead to the determination that 

SOF1 and SOF3 are capable of completing the mission prior to the mission completion time, 

while SOF2 is not. 

-87- 



[psof1s;sSOF1] 

[SS0F1]  

[psof2s;sSOF2] 

[SS0F2]  

[psof3s;sSOF3] 

[SS0F3]  

[psof3s]  

[psofls]  

[psof3e]  

[psof2s]  

[psofle]  

[psof 1 e]  

[pms;sM] 

[sM]  

[pme] • 

-£>[eSOF1] 

-J>[psof1e;eSOF1] 

^>[eSOF2] 

-|>[psof2e;eSOF2] 

-|>[eSOF3] 

-£>[psof3e;eSOF3] 

-j>[psofl! 

-^[psof3e] 

■£>[psof2s] 

-[> [psofle] 

-|>[psof2e] 

-{>[pme] 

->[eM] 

-£>[pme;eM] 

-[>[psoi2e] 

Figure 46  Point Graph of SOF Availability and Mission Requirements 

Table 8. Result of Queries to TEMPER by SOF Agent 

Query Response 

?- A([eM, eM], [eSOFl, eSOFl]) eSOFl Before eM 

?- A([eM, eM], [eSOFl, eSOFl]) eM Before eSOF2 

?- A([eM, eM], [eSOFl, eSOFl]) eSOF3 Before eM 

88- 



Required Mission Completion Time (1700) 

[sM;pms] ^[pme;eM] 

[psof1s;sSOF1] 

[psof3s;sSOF3] 

^fpsof1e;eSOF1] 

/ 
[psof2s;sSOF2] 

A 
^[psof3e;eSOF3] 

1000 1200 1330   15001530  17 

^[psof2e;eSOF2] 

1830 

Time Scale 

Figure 47 Unified Point Graph of SOF Windows of Capability and the Mission Window of 
Opportunity 

Number of places: 11 number of transitions: 8 

Trans= [psofls;sSOFl] [psofle;eSOFl] [psof2s;sSOF2] [psof2e;eSOF2] [psof3s;sSOF3] [psof3e;eSOF3] [pme;eM] [sM;pms] 

[psof 1 s;sSOFl ]<[psof 1 e;eSOFl ] 

[psof2s;sSOF2]<[psof2e;eSOF2] 

[psof3s;sSOF3]<[psof3e;eSOF3] 

[psof3s;sSOF3]<[psof 1 s;sSOFl ] 

[psofls;sSOFl]<[psof3e;eSOF3] 

[psof3e;eSOF3]<[psof2s;sSOF2] 

[psof2s;sSOF2]<[psof 1 e;eSOFl ] 

[psofle;eSOFl]<[psof2e;eSOF2] 

[psof 1 e;eSOFl ]<[pme;eM] 

[sM;pms]<[pme;eM] 

[pme;eM]<[psof2e;eSOF2] 

1 -10 0 0 0 0 0 

0 0 1-10 0 0 0 

0 0 0 0 1-10 0 

-10 0 0 10 0 0 

10 0 0 0-100 

0 0-100100 

0-1 10 0 0 0 0 

0 10-10000 

0 10 0 0 0-10 

0 0 0 0 0 0-11 

0 0 0-10010 

Figure 48 Incidence Matrix Output of TEMPER 

-89- 



Figure 49. Ordinary Petri Net Representation of Incidence Matrix 

As a result of the query of TEMPER, the SOF agent can extract from Table 9, the portion of 

the of the temporal relationships that meets the mission requirements, that is the statements that 

define the windows of capability for SOF1 and SOF3. 

Table 9. Point/Interval Relationships Defining Windows of Capability for SOF Assets That 
Can Meet Mission Requirements 

sofls Starts SOF1 

sofle Finishes SOF1 

sof3s Starts SOF3 

sof3e Finishes SOF3 

sof3s Before sofls 

sofls Before sof3e 

sof3e Before sofle 

The SOF agent sends the final set of Point/Interval relationships and the start and end times 

for each interval that define the SOF asset windows of capability that meet the SAR mission 

requirements (the first four entries in Table 7) to the electronic surveillance agent as a tasking. This 

tasking contains the requirement that the EC assets must perform a supporting mission such that 

90 



the SOF mission interval will occur During the EC Asset mission. Note that the electronic 

surveillance agent is being asked to support only one of the two potential SOF missions. 

In this scenario, assume the Electronic Surveillance agent has three assets available during the 

following intervals: EC1 0900 to 1300, EC2 1430 to 1800, EC3 1130 to 1530. Using the interval 

linking procedure described for the SOF agent, this availability is encoded as a TEMPER input as 

shown in Table 10. The corresponding Unified Point Graph is shown in Figure 50. 

Table 10 Point/Interval Relationships Defining Windows of Capability input for EC Assets 

eels Starts EC 1 

ecle Finishes EC 1 

ec2s Starts EC2 

ec2e Finishes EC2 

ec3s Starts EC3 

ec3e Finishes EC3 

eels Before ec3s 

ec3s Before ecle 

ecle Before ec2s 

ec2s Before ec3e 

ec3e Before ec2e 

The Electronic Surveillance agent creates a new input to TEMPER by taking the interval 

specifications for the EC assets (the first six entries of Table 8) and adding to them the list from 

the SOF agent. This produces the list in Table 11. Using the times for all of the staring and 

ending points, the agent uses Step Two of the interval linking procedure described for the SOF 

agent to combine and link all EC and SOF intervals. This results in Table 12. 

91- 



[pec1s;sEC1]i ^^(pec1e;eEC1] 

i[pec2e;eEC2] 

[pec3s;sEC3] ^fpec3e:eEC3l 

H r 
0900 1130  1300   1430  1530 

Time Scale 

1800 

Figure 50. Unified Point Graph EC Assets With individual Time Scales 

Table 11. Combine EC and SOF Availability Intervals 

eels Starts EC 1 

ecle Finishes EC 1 

ec2s Starts EC2 

ec2e Finishes EC2 

ec3s Starts EC3 

ec3e Finishes EC3 

sofls Starts SOF1 

sofle Finishes SOF1 

sof3s Starts SOF3 

sof3e Finishes SOF3 

When given Table 12 as an input, TEMPER will produce the Point Graph of Figure 51. 

After unifying the point graph of Figure 51, and with some manual re-arranging of the 

vertices, the unified point graph of Figure 52 is created from the one created by TEMPER. As 

before, a time scale has be added for clarity and the arcs have been highlighted to denote the 

intervals of availability of each of the assets.   The effect of step two of the interval linking 

92 



procedure shown with the plain arcs. As before, the result is that the graph contains a simple path 

from the earliest time point vertex to the latest time point vertex that traverses all vertices. This 

ensures that TEMPER can answer unambiguously any query. 

Table 12 Combined SOF and EC Temporal Relationship Input 

eels Starts EC 1 

ecle Finishes EC 1 

ec2s Starts EC2 

ec2e Finishes EC2 

ec3s Starts EC3 

ec3e Finishes EC3 

sofls Starts SOF1 

sof le Finishes SOF1 

soOs Starts SOF3 

sof3e Finishes SOF3 

eels Before sof3s 

sof3s Before ec3s 

ec3s Before sofls 

sofle Before ecle 

ecle Before sof3e 

sof3e Before ec2s 

ec2s Before sofle 

sofle Before ec3e 

93- 



[psof1s;sSOF1]' 

[SS0F1]  

[psof3s;sSOF3] ■ 

[SS0F3]  

[peds;sEC1]' 

[sEC1]  

[pec2s;sEC2] • 

[sEC2]  

[pec3s;sEC3] ■ 

[sEC3]  

[pec 1s]  

[psof3s] • 

[pec3s] - 

[psofls]- 

[pecle]- 

[psof3e] • 

[pec2s] - 

[psofle]- 

[pec3e] - 

-£>[eSOF1] 

-^[psof1e;eSOF1] 

-^[eSOF3] 

-^>[psof3e;eSOF3] 

->[eEC1] 

-^[pec1e;eEC1] 

->[eEC2] 

-^[pec2e;eEC2] 

-{>[eEC3] 

-^ [pec3e;eEC3] 

-^ [psof 3s] 

-[>[pec3s] 

■O [psofls] 

-[>[pec1< 

-^ [psof3e] 

-[>[pec2s] 

-> [psofle] 

-J>[pec3e] 

-J>[pec2e] 

Figure 51 Point Graph of Combined SOF and EC Windows of Capability 

94- 



[psof1s;sSOF1] ll'ijlulpsof 1 e;eSOF1 ] 

[peds;sEC1]    

|Mi„|,[pec2e;eEC2] 

[pec3s;sEC3]  i ■ immir um Mull j]|ii[pec3e;eEC3] 

0900  1000   1130 1200 1300  I  1430 1500 1530 
1330 

1800 

Time Scale 

Figure 52. Unified Point Graph 

As before, TEMPER creates an incidence Matrix (Figure 53) that represents a Petri Net of the 

set of temporal relationships. 

number of places: 14 number of transitions: 10 

Trans=   [psofls;sSOFl]   [psofle;eSOFl]   psof3s;sSOF3]   [psof3e;eSOF3]   [pecls;sECl[pecle;eECl]    [pec2s;sEC2] 
[pec2e;eEC2]    [pec3s;sEC3]    [pec3e;eEC3] 

[psofls;sSOFl]<[psofle;eSOFl] 

[psof3s;sSOF3]<[psof3e;eSOF3] 

[pec 1 s;sEC 1 ]<[pec 1 e;eEC 1 ] 

[pec2s;sEC2]<[pec2e;eEC2] 

[pec3s;sEC3]<[pec3e;eEC3] 

[pecls;sECl]<[psof3s;sSOF3] 

[psof3s;sSOF3]<[pec3s;sEC3] 

[pec3s;sEC3]<[psof 1 s;sSOFl ] 

[psof 1 s;sSOFl ]<[pec 1 e;eEC 1 ] 

[pecle;eECl]<[psof3e;eSOF3] 

[psof3e;eSOF3]<[pec2s;sEC2] 

[pec2s;sEC2]<[psofle;eSOFl] 

[psofle;eSOFl]<[pec3e;eEC3] 

[pec3e;eEC3]<[pec2e;eEC2] 

1-100000000 

001-1000000 

00001-10000 

0000001-100 

00000000 1 -1 

00-10100000 

00100000-10 

-1000000010 

10000-10000 

000-1010000 

000100-1000 

0-100001000 

010000000-1 

0000000-101 

Figure 53. TEMPER generated Incidence Matrix 

-95 



The Electronic Surveillance agent is now ready to determine which assets can satisfy the task 

requirement that the SOF mission occur During the EC mission. Six queries of the form ?- 

A([sECl, eECl], [sSOFl, eSOFl]) to test the relationship between the two SOF assets and the 

three EC assets intervals (windows of capability) yields the following results (Table 13): 

Table 13 Result of EC Agent Query To TEMPER 

Query Response 

?- AtfsECl, eECl], [sSOFl, eSOFl]) EC1 Overlaps SOF1 

?- A([sEC2, eEC2], [sSOFl, eSOFl]) SOF1 Overlaps EC2 

?- A([sEC3, eEC3], [sSOFl, eSOFl]) SOF1 During EC3 

?- A([sECl, eECl], [sSOF3, eSOF3]) EC1 Overlaps SOF3 

?- A([sEC2, eEC2], [sSOF3, eSOF3]) SOF3 Before EC2 

?- A([sEC3, eEC3], [sSOF3, eSOF3]) SOF3 Overlaps EC3 

Only the third query yields the temporal relationship During as required by the mission, thus 

the solution to the planning problem is to use SOF1 from 1200 to 1500 hours and EC3 from 1130 

to 1530 hours. Based on this result, the Electronic Surveillance agent can finalize the plan selecting 

the set of temporal statements that pertain only to the availability intervals for SOF1 and EC3. The 

result of the query, SOF1 During EC3, is added to these statements to create the input in Table 14. 

Table 14 Final Input to TEMPER 

sofls Starts SOF1 

sofle Finishes SOF1 

ec3s Starts EC3 

ec3e Finishes EC3 

SOF1 During EC3 

-96 



TEMPER creates the Point Graph , the Unified Point Graph , and the Incidence Matrix of 

Figures 54, 55, and 56, respectively. 

[psof1s;sSOF1]. 

[SSOF1]  

[pec3s;sEC3] • 

[sEC3]  

[sEC3]  

->[eSOF1] 

-^•[psof1e;eSOF1] 

->[eEC3J 

-^[pec3e;eEC3] 

->[sSOF1]. ->[eSOF1]. -|>[eEC3] 

Figure 54 Point Graph of the Final Solution to the Planning Problem 

[sSOF1;psof1s] 

/ 

-£>[eSOF1;psof1e] 

\ 
-J> [eEC3;pec3e] [sEC3;pec3s]  

Figure 55. Unified Point Graph of the Final Solution 

number of places: 4 number of transitions: 4 

Trans= [sSOFl;psofls] [eSOFl;psofle] [sEC3;pec3s] [eEC3;pec3e] 

[sSOFl;psofls]<[eSOFl;psofle] 1-10 0 

[sEC3;pec3s]<[eEC3;pec3e]     0 0 1-1 

[sEC3;pec3s]<[sSOFl;psofls] -1 0 1 0 

[eSOFl;psofle]<[eEC3;pec3e] 0 1 0 -1 

Figure 56. Incidence Matrix of the Final Solution 

Alternatively, the agent could have used the interval linking procedure to produce the 

following input to TEMPER (Table 15). 

-97- 



Table 15. Final Query to TEMPER Using Interval Linking Procedure 

sofls Starts SOF1 

sof le Finishes SOF1 

ec3s Starts EC3 

ec3e Finishes EC3 

ec3s Before sofls 

sof le Before ec3e 

Given this input, TEMPER would create the Point Graph of Figure 57. This will result in the 

same Unified Point Graph and Incidence Matrix shown in Figures 55, and 56, respectively. 

[psof1s;sSOF1]  [>[eSOF1] 

[sSOF1 ] ^ [psof 1 e;eSOF1 ] 

[pec3s;sEC3] 

[sEC3]  

[pec3s]   

[psofle] 

->[eEC3] 

-^ [pec3e;eEC3] 

->[psof1s] 

-£>[pec3e] 

Figure 57. Alternative Point Graph of Final Planning Solution 

The Petri Net specified by the final planning solution Incidence Matrix is shown in Figure 58. 

The places and the transitions are labeled with the names given in the Incidence Matrix. By 

changing the labels, this Petri Net can be transformed into a more understandable executable model 

of the final plan and shown in Figure 59. Note that the arcs connecting the two asset time-lines 

now represent synchronizing coordination between the assets.   This synchronization has been 

■98- 



made explicit by indicating that EC3 notifies SOF1 when it has started its mission. SOF1 should 

not start its mission until this message is received. SOF1 sends a message to EC3 when it is 

finished its mission, telling EC3 it is okay to end the electronic surveillance mission. 

[sSOF1;psof1s] O $ [eSOF1;psof1e; 

[sSOF1 ;psof 1 s]<[eSOF1 ;psof 1 e] 

[sEC3;pec3s]<[sSOF1 ;psof 1 s] 
[eSOF1;psof1e] 
<[eEC3;pec3e] 

[sEC3;pec3s] O 
5 

^   [eEC3;pec3e] 

[sEC3;pec3s]<[eEC3;pec3e] 

Figure 58. Petri Net of the Incidence Matrix of the Final Planning Solution 

S0F1 Completion 
Message 

Finish EC3 

Performing EC3 Task 

Figure 59. Petri Net Converted to Final Plan 

6.3 Summary 

We have shown how a temporal reasoning system such as TEMPER can be used to support 

the development of military plans by a group of planning agents. We presented a simple 

algorithm that will generate the input to the TEMPER program given a set of time intervals that 

specify the windows of capability of assets needed for a mission and the interval during which the 

mission is to be performed (the mission window of opportunity). Each interval is defined by a 

starting point and an end point and their associated times. This procedure produces an. input to 

TEMPER which in turn produces a unified point graph that will yield unambiguous answers to 

99 



queries about the temporal relationship between intervals, points and intervals, and points. These 

queries can be used to test and find solutions to mission temporal requirements. We illustrated 

how a team of planners can collaborate using this capability to generate plans given a mission 

requirement. The illustration was elementary. Clearly real world planning situations will require 

much more interaction between planning agents. Furthermore the example did not address the 

issues of selecting between competing alternatives at either the agent level or at the team level. 

However, one of the main attributes of any planning alternative will be the temporal relationship 

requirements that are maintained between assets as they perform their tasks. 

7.   CONCLUSION 

The TL/PN formalism provides a basic engine for system description and modeling. The Petri 

net model of the system is not merely a different representation of the same information present in 

the statements of point-interval logic, but it provides an analytical tool for temporal reasoning, 

validation, verification, and calculation of windows of capabilities. 

The current approach offers: 

(1) A general, complete and sound formalism of point-interval logic. This extends the 

approach of Allen's logic. 

(2) An inference engine (TIE) that infers the temporal relationship among intervals without 

running into combinatorial problem. 

(3) A verification mechanism for the temporal formalism that identifies inconsistencies and 

incompleteness in the system of temporal statements. 

The input statements to the methodology are all connected together with logical AND. 

Therefore, they represent a system's description on a single time line. Due to incompleteness we 

may not map these intervals on a single line, but a complete system will have all its intervals on a 

single time line (a PG with one connected chain.) For any point on this time line there will exist 

only one future. 

The present approach has been extended to take into consideration the lengths of intervals and 

the actual time (clock time) of occurrence of events. The inference engine has been extended to 

answer queries regarding actual time or length of an event. 

100 



The major extension to this approach currently under way is to consider system description 

with multiple time lines and multiple futures (MTMF). The temporal statements in such a system 

could also be presented with logical OR. The TIE will then be extended to plan events (sequences 

of events) that lead to a particular future state of the system. Here one possible future state 

(possibly partially specified) can be reached through several time lines. The constraints (mission 

requirements) will determine the feasible time line(s) to be selected among these alternatives. The 

approach can be extended to incorporate statements like "Process P takes at least 10 minutes to 

complete" not currently handled by the approach. The third version of the algorithm, TEMPER3, 

is expected to address the MTMF problem. 

REFERENCES 

Allen, J. F. (1981a) A general model of action and time. Technical report, University of Rochester, 

TR97 

Allen, J. F. (1981b) An interval based representation of temporal knowledge. In Proc. 7th IJCAI, 

Allen, J. F. (1983), Maintaining knowledge about temporal intervals. CACM, 26 (11), 832-843. 

Allen, J. F. (1984), Towards a general theory of action and time. Artificial Intelligence, 23, 123- 

154. 

Allen, J. F. and P. J. Hayes (1985a). A Common-sense Theory of Time. Proc. 9th Int. Joint Conf. 

on AI, pp. 528-531. 

Allen, J. F. and P. J. Hayes. (1985b)A commonsense theory of time: the longer paper. Technical 

report, University of Rochester. 

Dechter, R., I. Meiri, I., and J. Pearl (1991). Temporal Constraint Network. Artificial Intelligence, 

vol. 49, pp. 61-95. 

Galton, A. (1990) Logic for information technology. John Wiley & Sons, Chichester. 

Hillion, H. P. (1986) Performance evaluation of decisionmaking organizations using timed Petri 

nets. LIDS-TH-1590, Laboratory of Information and Decision Systems, MIT. 

101 



Jin,  V.  Y.   (1986)   Delays  for  distributed  decisionmaking   organizations.   LIDS-TH-1459, 

Laboratory for Information and Decision Systems, MIT, Cambridge. 

Kahn, K., and Gory, G. 1977. Mechanizing Temporal Knowledge. Artificial Intelligence, vol. 9, 

pp. 87-108. 

Kautz, H. and Ladkin, P. (1991). Integrating Metric and Qualitative Temporal Reasoning. Proc. of 

AAAI-91, pp. 241 -246, Anaheim, CA. 

Meiri, I. (1991). Combining Qualitative and Quantitative Constraints in Temporal Reasoning. 

Proc. of AAAI-91, pp. 260-267, Anaheim, CA. 

MATRA CAP Systemes (1994). Eagle Vision Data Acquisition Segment Technical Brief. 

S01/PhR-ef/94/061 CD22. Space Observation Division.. 

Perdu D. M., S. L. Hearold & A. H. Levis (1994). Effectiveness of Two Modes of Information 

Pull in the Copernicus Architecture, A. H. Levis & I. S. Levis (Editors), The Science of 

Command and Control: Part III, Coping with Change, pp 57-74. Fairfax, VA: AFCEA 

International Press. 

Yao, Y. (1994) A Petri Net Model for Temporal Knowledge Representation and Reasoning. IEEE 

Transactions on SMC, vol. 24, no. 9, 1374-1382. 

Zaidi, A. K. (1992) On the generation of multilevel distributed intelligence systems using Petri 

nets. Technical report, GMU/C3I-112-TH, Center of Excellence in C3I, George Mason 

University. 

Zaidi, A. K. and A. H. Levis (1995) On Verifying inferences in an Influence diagram. In Proc. 

1995 First International Symposium on Command and Control Research and Technology, 

National Defense University, Washington, DC, June 19-23, 1995. pp. 443-451. 

Zaidi, A. K. and A. H. Levis (1997) Validation and verification of decision making rules. 

Automatica, Feb, 1997 

oiJA) öl r*t. 
n m P#«3J'äOJ '.iä,-"• ■"     • "'"■       -102- ^^ 

to") H3mv»'oimHn£% iSaS'Siv 


