NAVAL POSTGRADUATE SCHOOL Monterey, California

9980611 06

THESIS

SHIP OPERATING CHARACTERISTICS AND THEIR IMPLICATIONS FOR SHIPTRACK FORMATION by Scott D. Katz March 1998 Philip A. Durkee Carlyle H. Wash Thesis Advisor:

Approved for public release; distribution is unlimited.

Co-Advisor:

REPORT I	OCUMENTATIO	N PAGE	Form Approved OMB No. 0704-0188	
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate 				
	March 1998	Maste	er's Thesis	
4. TITLE AND SUBTITLE SHIP OPERATING CHARACT SHIPTRACK FORMATION 6. AUTHOR(S) Scott D. Katz	5. FONDING NUMBERS			
7. PERFOMING ORGANIZATION NAME (S) AND ADDRESS (ES)			8. PERFORMING ORGANIZATION	
Naval Postgraduate School Monterey, CA 93943-5000			KEPUKI MURDEK	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING Agency report number	
11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.				
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.			12b. DISTRIBUTION CODE	
13. ABSTRACT (Maximum 200 words, Shiptrack occur conditions and ship favorable for shiptr producing diesel ves vessels by a 17.7 per size, and one knot h indicate that power/t power/hull cross-sect: tactically distinct (g of parameters may be shiptracks.	crence is restric operating charact ack formation, no sels are distingu- cent higher rate of igher transit speed ransit speed, powe ion, transit speed greater than 60% co useful in predic	ted to a narrow eristics. Under t all vessels prod ished from non-shi of fuel use, 8.8 pe ed. T-tests comparin er*fuel/speed, power , power plant size onfidence level). The cting the occurrence	range of environmental environmental conditions duce a track. Shiptrack ptrack producing diesel rcent larger power plant ng these two populations *fuel, tonnage/fuel use, and rate of fuel use are ese parameters and ratios e and non-occurrence of	
14. SUBJECT TERMS Shiptrack, AVHRR, T-te	est, level of signi	ficance	15. NUMBER OF PAGES 87 16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATIO OF THIS PAGE Unclassified	N 18. SECURITY CLASSIFICAT OF ABSTRACT Unclassified	ION 20. LIMITATION OF ABSTRACT UL	
NSN 7540-01-280-5500			Standard Form 298 (Rev 2-89) Prescribed by ANSI Std. 239-18 298-102	

.

Approved for public release; distribution is unlimited

SHIP OPERATING CHARACTERISTICS AND THEIR IMPLICATIONS FOR SHIPTRACK FORMATION

Scott D. Katz Lieutenant Commander, United States Navy B.S., University of Southern California, 1981 M.S., Duke University, 1983

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN METEOROLOGY AND PHYSICAL OCEANOGRAPHY

from the

Author: Author: Approved by: Philip A. Durkee, Thesis Advisor Carlyle H. Wash, Co-Advisor and Chairman, Department of Meteorology

iv

ABSTRACT

Shiptrack occurrence is restricted to a narrow range of environmental conditions and ship operating characteristics. Under environmental conditions favorable for shiptrack formation, not all vessels produce a track. Shiptrack producing diesel vessels are distinguished from nonshiptrack producing diesel vessels by a 17.7 percent higher rate of fuel use, 8.8 percent larger power plant size, and one knot higher transit speed. T-tests comparing these two indicate that power/transit populations speed, power*fuel/speed, power*fuel, tonnage/fuel use, power/hull cross-section, transit speed, power plant size and rate of tactically distinct fuel use are (greater than 60% confidence level). These parameters and ratios of parameters may be useful in predicting the occurrence and nonoccurrence of shiptracks.

vi

TABLE OF CONTENTS

I.	INTRO	DDUCTION 1		
II.	SHIP	TRACK BACKGROUND 7		
	Α.	SHIPTRACK/ALBEDO RELATIONSHIP 7		
	в.	FORMATION MECHANISM 8		
	C.	ENVIRONMENT 13		
	D.	SHIP PARAMETERS 13		
III.	DATA			
	Α.	SHIPTRACK OCCURRENCE DATA SET 15		
	в.	NON-SHIPTRACK OCCURRENCE DATA SET 17		
	Ċ.	RANDOM DIESEL DATA SET 17		
	D.	NOAA ADVANCED VERY HIGH RESOLUTION RADIOMETER . 18		
	Ε.	STATISTICAL TECHNIQUES FOR DATA ANALYSIS 18		
IV.	RESUI	TTS AND DISCUSSION 21		
	Α.	OVERVIEW OF STUDY 21		
	В.	STATISTICAL RESULTS 21		
		1. Shiptrack Producing Population vs. Non-		
		Shiptrack Producing Population 21		
		a. Ship Parameter Statistical Summary 21		
		b. Ship Operating Parameter Plots 22		
		c. T-Test Results		
		d. Regression Results 27		
		2. Shiptrack Producing Population vs. Random		
		Diesel Population 30		
		a. Ship Parameter Statistical Summary 30		
		b. Ship Operating Parameter Plots 30		
		c. T-Test Results 31		
		3. Non-Shiptrack Producing Population vs.		
		Random Diesel Population		
		a. Ship Parameter Statistical Summary 32		
		b. Ship Operating Parameter Plots 33		
		c. T-Test Results 36		
v.	CONCI	JUSIONS AND RECOMMENDATIONS		
	Α.	CONCLUSIONS 65		
	в.	RECOMMENDATIONS 68		
APPE	NDIX A	A. OPERATING PARAMETERS FOR SHIPTRACK PRODUCING		
DIES	EL VES	SSELS		
APPENDIX B. OPERATING PARAMETERS FOR NON-SHIPTRACK				
PRODUCING DIESEL VESSELS				
APPENDIX C. OPERATING PARAMETERS FOR WEATHER REPORTING				
'RANDOM' DIESEL VESSELS 73				
LIST	OF RI	IFERENCES		
INIT	IAL D	ISTRIBUTION LIST		

ACKNOWLEDGEMENTS

I would like to thank my advisors, Dr. Philip A. Durkee and Dr. Carlyle H. Wash of the Department of Meteorology, Naval Postgraduate School, for their guidance and support during the development of this thesis. Additionally, I owe a debt of gratitude to Mr. Kurt 'Danger' Nielsen of the NPS Remote Sensing Laboratory and Mr. Steve Taylor for their computer assistance. I would also like to acknowledge the support of LT Mike Kuypers and Mr. Dennis Laws of Fleet Numerical Meteorology and Oceanography Center for their assistance in data collection. LCDR Pete Smith endured sharing an office with me this past quarter - his assistance and tolerance is greatly appreciated. Finally, and most importantly, the support from my wife, Karen, and children, Stephen and Michelle, is what makes everything possible.

I. INTRODUCTION

Shiptracks are anomalous curvilinear cloud lines first the observed bv Television and Infrared Operational (TIROS) Satellites visual imagery (wavelengths between in 1965. Today shiptracks are most easily 0.3μm-0.7μm) observed using the Advanced Very High Resolution Radiometer (AVHRR) imagery (channel 3, 3.7µm) component of the NOAA Polar Orbiting Operational Environmental Satellite (POES) series (Fiqure 1). These cloud phenomena are manifested by an increase in albedo within existing stratus and stratocumulus clouds. The area of enhanced albedo forms curvilinear cloud lines, which may extend laterally for hundreds of kilometers and persist for days. Understanding the mechanisms of formation, necessary environmental conditions and ship operating parameters remains an active area of investigation due to shiptrack military applications and potential broader implications for qlobal climate changes.

Conover (1966) first described the shiptrack phenomenon using TIROS visual imagery. He proposed that ship exhaust, carried upward by buoyant forces, introduces additional hygroscopic nuclei into the stratus cloud layer. The modified stratus has an increased droplet density, which raises albedo by 25 percent over background stratus. Conover inferred the impact of the ambient environment from the occasional occurrence of large concentrations of shiptracks. He suggested that shiptracks are not the result of a rare effluent from a particular ship, but rather the existence of an atmospheric condition which makes it possible for a variety of ships to produce shiptracks. Figure 1 shows a high shiptrack concentration (in the visual

Figure 1. Comparison Of Shiptrack Depiction Using Visual imagery (AVHRR Ch. 1 (left) and near infrared imagery (AVHRR Ch. 3 (right). From Chartier (1995).

and near IR wavelengths) over a broad geographic region. Examination of shiptrack occurrence/non-occurrence, under conducive environmental conditions, affords the best opportunity to assess vessel operating characteristics and shiptrack formation. To this end, data collection on nonshiptrack producing vessels is restricted to geographic regions containing a high concentration of shiptracks. By examining these regions, questions regarding environmental conditions and mechanism of shiptrack formation are mitigated to a large degree. Non-occurrence of a shiptrack in a region of high shiptrack concentrations is attributed to ship operating characteristics and not environmental conditions or mechanisms of formation. Figure 2 is an example of a vessel traveling in a conducive environment producing a shiptrack. Figure 3 is a example of a vessel traveling in a conducive environment, but not producing a shiptrack.

The objectives of this thesis are threefold:

1. Quantify operating characteristics of vessels producing shiptracks in a conducive environment.

2. Quantify operating characteristics of vessels not producing shiptracks in a conducive environment.

3. Quantify the difference between the two ship populations using appropriate statistical techniques.

Chapter II includes background information on the shiptrack/albedo relationship, mechanisms of shiptrack formation, environmental considerations and ship operating parameters. Chapter III includes presentation of the data and techniques used to compile it. Chapter IV includes an

Figure 2. NOAA 09 1753 UTC 27 June 1994 Ch. 3 satellite imagery depicting shiptrack production in a conducive environment. Solid lines denotes merchant vessel Tai He position history based on synoptic weather reports. Ship location indicated by callsign BOAB. From Brown (1995).

Figure 3. NOAA 12 1628 UTC 27 July 1997 Ch. 3 Satellite imagery depicting a vessel (M/V Marie Maersk) transiting a conducive shiptrack formation environment, but not producing a shiptrack.

overview of the study and results. Chapter V includes the conclusions and recommendations.

II. SHIPTRACK BACKGROUND

A. SHIPTRACK/ALBEDO RELATIONSHIP

Shiptracks are curvilinear cloud lines with higher albedo than the background clouds. Cloud albedo changes, in response to modification of the physical characteristics of a cloud, are of particular concern for shiptrack formation. Change in droplet total cross-sectional area per unit volume, known as the extinction coefficient, accounts for interaction of the droplets with radiation. The extinction coefficient, Q_{ext} , is described by equation 2.1:

$$\sigma_{\text{ext}} = \int_{0}^{\infty} \pi r^{2} Q_{\text{ext}}(m, r) n(r) dr \quad (2.1)$$

where r is particle radius, πr^2 is particle cross-sectional area, Q_{ext}(m,r) is the extinction efficiency factor, m is the complex index of refraction, and n(r) is the number of particles for a given radius. $Q_{ext}(m,r)$ is a function of both composition and size of a particle and describes the effects of both scattering and absorption due to the interaction of a particle with radiative energy of а specified wavelength. Changes in the size, composition or distribution of constituents or suspended particles in the atmosphere directly affect the amount of extinction observed.

Given a fixed liquid water content and unit volume (e.g. portion of a cloud), an increase in cloud condensation nuclei (CCN) increases the total number of droplets per unit volume and decreases the mean radius of the droplets. The total cross-sectional area per unit volume is approximated by equation 2.2:

 $\sigma = (KN)^{1/3} W^{2/3} (2.2)$

were σ is the extinction coefficient, K is a constant of proportionality, N is the number of droplets per unit volume, and W is the liquid water content. For shiptrack formation, it is assumed that introduction of vessel effluent into a cloud layer increases N, decreases the radius and therefore increases the extinction coefficient. Figure 4 illustrates channel 3 reflectance vs. droplet size (after Mineart, 1988).

Cloud reflectivity can be approximated by equation 2.3:

$$R = (\chi sl) / (1 + \chi sl) (2.3)$$

where χ (~0.1) is a weak function of droplet size, s is the extinction coefficient and l is cloud thickness. Therefore, cloud reflectivity caused by an increase in droplet number is given by equation 2.4:

$$\Delta R/R = (1/(1 + \chi s1)) (\Delta s/s) (2.4)$$

where ΔR is the change in reflectivity, R is reflectivity, χ (~0.1) is a weak function of droplet size, Δs is the change in extinction coefficient, and s is the extinction coefficient. A localized increase in albedo of a stratus or stratocumulus broken or overcast layer is the primary daytime evidence of a ship passing beneath the cloud layer.

B. FORMATION MECHANISM

Conover's (1966) initial work on shiptrack observations provided the first insight into a formation mechanism and favorable environmental conditions for shiptracks. Figure 5 (after Brown, 1995) illustrates how ship effluent moves vertically through the planetary boundary layer and is

Figure 4. Channel 3 Reflectance Verses Droplet Radius. Dashed lines indicate model cloud reflectance from droplet distributions D1, D2, and D3; solid lines indicate 95 percent confidence interval for data points. EQLWC refers to equivalent liquid water content. After Mineart (1988). favorable environmental conditions for shiptracks.

Figure 5. Shiptrack Formation Mechanism. Ship Exhaust introduces hygroscopic nuclei into the marine atmospheric boundary layer (MABL). Increased Cloud Condensation Nuclei (CCN) reduces the cloud water droplet size and increases its 3.7μ m signature relative to uncontaminated clouds. Uncontaminated clouds have larger water droplets and thus greater absorption and lower 3.7μ m signature. Large arrows represent turbulent mixing in the MABL. Thin, straight arrows represent solar radiation at 3.7μ m. After Brown (1995).

entrained in the stratus cloud layer. In this conceptual model, introduction of CCN in the stratus layer increases the available nuclei for the water droplets and locally reduces the average droplet size. The relative difference between the background cloud albedo and the increased albedo associated with the shiptrack cloud is the signature of a vessel transiting beneath the cloud layer.

Porch et al. (1990) addressed the buoyancy effect of the ship's plume on marine cloud instability. They suggested that heat from the ship's power plant introduced into the Maritime Atmospheric Boundary Layer (MABL), with the associated buoyant effects, may be as important in shiptrack cloud formation as the energy release from the nucleation process.

Radke et al. (1989) made airborne measurements of shiptrack and non-shiptrack cloud parameters (Figure 6). Within shiptrack clouds they documented an increase in droplet (and particle) concentration, an unexpected increase in liquid water content, and a decrease in droplet size compared to non-shiptrack clouds. Changes in total water concentration, liquid-water content and total concentration of cloud interstitial particles of air samples with in shiptracks are result in corresponding radiative changes in the shiptrack cloud. Figure 6 depicts increase in upwelling flux density within a shiptrack cloud and an increase in the radiance ratio of visible radiation/near infrared ratio.

Chartier (1995) examined the time required for shiptrack formation. He determined that a vessel transiting a conducive environment averaged 25 minutes for shiptrack formation. The average shiptrack width was 9km and length was 296km.

Figure 6. Cloud Characteristics Associated With Shiptrack clouds and uncontaminated clouds. After Radke et al. (1989).

C. ENVIRONMENT

Conover (1966) attributed shiptrack formation to a atmospheric condition rather than а special critical Conducive characteristic of a vessel's power plant. environmental conditions for shiptrack formation are a low, convectively unstable MABL, slight supersaturation near the top of the MABL, and a MABL '...deficient in cloud forming Trehubenko (1994) documented a decrease nuclei.' in shiptrack occurrence as the MABL depth increased to 750m, above which shiptracks were not observed. Chartier (1995) attributed 85% of the variation in shiptrack characteristics to the environment required for shiptrack formation.

D. SHIP PARAMETERS

The operating characteristics of a vessel passing through a conducive environment influence, to a large degree, the formation of shiptracks. The ship parameters considered in this study are:

1. Propulsion system type, e.g. oil, steam reciprocating, gas turbine, nuclear.

2. Propulsion system power measured by the total maximum designed break horse power or shaft horsepower.

3. Fuel consumption measured by the quantity of fuel used per day.

4. Fuel type, e.g. coal, diesel oil, high viscosity fuel, intermediate fuel oil, oil fuel.

5. Age of vessel.

6. Size of vessel.

7. Classification of vessel, e.g. tanker, cargo carrier, bulk carrier, vehicle carrier, etc.

8. Transit speed.

Previous shiptrack studies focused on mechanisms of shiptrack formation, physical characteristics of the cloud phenomena and environmental considerations. Chartier (1995) briefly addressed ship tonnage as a factor affecting shiptrack formation, however, this area of research is largely unexamined. This study examines vessels operating characteristics in conjunction with the occurrence and nonoccurrence of shiptracks. Three diesel vessel populations were used for this study:

- 1. Shiptrack producing diesel vessels.
- 2. Non-shiptrack producing diesel vessels.
- 3. A random diesel vessel population.

Operating characteristics for each diesel vessel in each population were obtained from Lloyd's Register of Ships (1992). Data sets, AVHRR and statistical methods used to analyze data in this study are discussed in this chapter.

A. SHIPTRACK OCCURRENCE DATA SET

This study examines 50 shiptrack producing diesel vessels compiled by Rogerson (1995) from the 1994 Monterey Area Shiptrack (MAST) experiment. Rogerson correlated a shiptrack to a specific vessel by visual (vice automated) comparison of an observed shiptrack on AVHRR imagery (channel 3) with ship positional data obtained from periodic weather observations (Figure 7). Ship characteristic data were obtained from Lloyd's Register of Ships (1992) (Appendix A).

Figure 7. Zoomed Image with A Typical Ship-Shiptrack correlation. After Rogerson (1995).

B. NON-SHIPTRACK OCCURRENCE DATA SET

Non-shiptrack occurrence data were collected using vessel weather reports and AVHRR (channel 3) imagery collected primarily from June-September 1997 in the eastern Pacific. Within this data set, only regions with a high concentration of shiptracks distributed over а broad geographic area were considered. This restriction was placed on the data set to mitigate the affect of environmental variations, such as a significant perturbation in boundary height, frontal Within layer passage, etc. an environmentally region, homogeneous а more meaningful assessment of a vessel's operating characteristics on the occurrence/non-occurrence of shiptracks can be made.

A non-shiptrack producing vessel was identified by verifying its position (based on weather observations) and its proximity to observed shiptracks (Figure 3). Ship operating characteristics were obtained from Lloyd's Register of Ships (1992) (Appendix B).

C. RANDOM DIESEL DATA SET

A random population of diesel vessels was generated for statistical comparison with the shiptrack and non-shiptrack producing populations. Statistical comparison was used to identify vessels operating parameters, which distinguished one population from the other. The random population was generated from a subset of all vessels submitting weather observations from the eastern Pacific in June-September 1997. For a vessel to be included in the random population, its call sign must be recorded in Lloyd's Register of Ships (1992), it must be of similar classification to the other 2 populations (e.g. bulk carriers, cargo, tankers, etc.), and it must not be included in the other populations (Appendix C).

D. NOAA ADVANCED VERY HIGH RESOLUTION RADIOMETER (AVHRR)

The AVHRR instrument is a component of the NOAA Polar Orbiting Operational Environmental Satellite (POES) series satellites. Current operational POES include the NOAA 12 The AVHRR instrument measures radiant and and NOAA 14. solar-reflected energy from sampled areas of the Earth in five spectral bands (visible through infrared) with a subsatellite resolution of 1.1 km. For this study channel 3, with a band width of 3.55μ m- 3.93μ m, is used exclusively for shiptrack evaluation. Although the visible imagery (channel 1, 0.58 μ m-0.68 μ m) and infrared imagery (channels 4 and 5, 10.3µm-11.33µm and 11.5μm-12.5μm, respectively) show shiptracks, channel 3 shows the highest contrast in albedo (Figure 1).

E. STATISTICAL TECHNIQUES FOR DATA ANALYSIS

From the three population data sets basic statistical calculations were performed, e.g. average, standard deviation, mode, median, maximum and minimum. To obtain statistical relationships among the three populations, the following techniques were use to analyze the data:

1. Graphical comparison of percent occurrence vs. various vessel parameters is presented in the results.

2. The T-test comparison of population pairs is used to compare how distinct the mean values of two populations are from each other. The usefulness of the T-test statistic is measured by a level of significance, e.g. a 0.05 level of significance implies a 95 percent confidence level (statistically significant). In this study, a level of significance between 0.0 and 0.4 (100-60 percent confidence level) is considered tactically significant, i.e. may have

operational value vice purely statistical value. That is, if a T-test result for a given ship operating characteristic or ratio of characteristics falls within this range, the two populations are considered to be distinct from each other and may be used to predict the occurrence and non-occurrence of shiptracks. Conversely, a level of significance between 0.6 and 1.0 (40-0 percent confidence level) is considered tactically insignificant. If a T-test result for a given ship operating characteristic or ratio of characteristics falls within this range, the two populations are considered to be indistinct from each other and may not be used to predict the occurrence and non-occurrence of shiptracks.

In this study 12 parameters or ratios of parameters are evaluated. Parameter values are obtained from Lloyd's Register of Ships (1992) and do not represent *in situ* measurements. Parameters evaluated are:

-Transit speed: Transit speed refers to the speed, in knots, which the ship is capable of maintaining at sea in normal weather and at normal service draught.

-Fuel use: Fuel use refers to the tonnage of fuel used in one day, as stated by the vessel owner or as obtained from other reliable sources.

-Power rating: Power rating is the total maximum designed shaft power approved (break horsepower).

-Tonnage: Tonnage refers to gross tonnage, which is the capacity in cubic feet of the spaces within the hull, and of the enclosed spaces above the deck available for cargo, stores, fuel, passengers and crew.

-Power/hull cross-section ratio. The product of a vessel's maximum beam and draft yields the cross-section.

-Tonnage/fuel use ratio.

-Power/fuel use ratio.

-Speed/fuel use ratio.

-Power/speed ratio.

-Tonnage/power ratio.

-Power*fuel/speed ratio.

-Power*speed product.

3. Bivariate plots of T-test ratios listed above with regressions, associated correlation coefficients and levels of significance are analyzed.

IV. RESULTS AND DISCUSSION

A. OVERVIEW OF STUDY

This study compares vessel's operating characteristics of three diesel populations: vessels which produce shiptracks (shiptrack producers), vessels which do not produce shiptracks (non-shiptrack producers), and a random diesel vessel population. Operating parameters for each vessel from each population were compared to determine their association with the occurrence/non-occurrence of shiptracks. Ship weather reports constituted positional fixes for each vessel. AVHRR imagery (channel 3) was used to identify the occurrence and non-occurrence of shiptracks conducive environments. The in vessel's operating characteristics were obtained from Lloyd's Register of Ships (1992). From these data various statistical analysis techniques were used to determine which vessel parameters are the most useful in predicting shiptrack occurrence and non-occurrence.

B. STATISTICAL RESULTS

Table 1 summarizes ship-operating parameters for the three diesel vessel populations examined. Figures 8-19 plot vessels operating parameters vs. percent occurrence. Table 2 summarizes T-test results for 36 different population pairs. Figures 20-31 are bivariate plots with linear regressions and associated correlation coefficients.

1. Shiptrack Producing Population vs. Non-Shiptrack Producing Population

a. Ship Parameter Statistical Summary

Appendices A and B summarize specific operating

parameters for both populations being considered. Table 1 summarizes the general statistical data for each operating parameter examined. Overall, shiptrack producing diesel vessels have a 17.7 percent higher fuel use rate, an 8.8 percent larger power plant, are 1.0 knot faster and are comparable in tonnage to non-shiptrack producing diesel vessels.

b. Ship Operating Parameter Plots

Plots of shiptrack and non-shiptrack operating parameters vs. percent occurrence are distinctive in the following categories: fuel use (tons/day), power (BHP), transit speed (kts), the ratios of tonnage/fuel use, power/speed, power/hull cross-sectional area, power*fuel use, and power*fuel use/speed.

Figure 8 is a plot of fuel use vs. percent occurrence. The shiptrack population plot has a symmetrical distribution with no category containing more than 20 percent of the population. The non-shiptrack population has a dominant mode at the second lowest bin, between 30-45 tons/day, which contains 45 percent of the population. The shiptrack average is 73.0 tons/day and the non-shiptrack average is 59.3 tons/day. The T-test is used to compare fuel use for the two populations. A 0.30 level of significance is obtained indicating a 70 percent confidence level that the two populations are distinct in their rate of fuel use.

Burning fuel in a ship's propulsion plant produces effluent. Introduction of effluent into the MABL provides new CCN for cloud water droplets to form on. For fixed liquid water content within a cloud, additional CCN will cause an increase in the number of cloud water droplets and a decrease in size due to their redistribution within the cloud. This manifests itself radiometrically as a localized increase in reflectance and possible shiptrack clouds. The non-shiptrack diesel population has an average fuel use 13.7 tons/day less than the shiptrack diesel population. From this it can be inferred that the non-shiptrack population introduces less effluent, produces less CCN, and, therefore, modifies the MABL less than the shiptrack population, and is less likely to leave a shiptrack cloud signature.

Figure 9 is a plot of vessel power vs. percent occurrence. The distribution of both populations is bimodal at bins 10-15,000 BHP and 25-30,000 BHP. The lower mode accounts for 53 percent of the non-shiptrack population vice 24.5 percent for the shiptrack population. The shiptrack average is 24,906 BHP and the non-shiptrack average is 21,104 BHP. A 0.29 level of significance is obtained from the T-test.

Vessel power is positively correlated with fuel use; i.e. larger power plants use more fuel (see regression results in sub-section d. of this section). The nonshiptrack population has a smaller power plant compared to the shiptrack producers. It can be inferred that the smaller power plant uses less fuel, produces less effluent, fewer CCN and is thus less likely to leave a shiptrack.

Figure 10 is a plot of vessel transit speed vs. percent occurrence. The non-shiptrack population is distinguished by narrower range of speeds and no observations in the lowest bin (13-14.5kts) or the highest two bins (22-23.5kts and 23.6-25.0kts). The shiptrack population distribution is broader, with representation in every bin. The shiptrack average is 19.5kts and the non-shiptrack average is 18.6kts. A 0.27 level of significance is obtained from the T-test.

Vessel speed affects the concentration of effluent in a MABL. Ignoring all other factors, and given a fixed amount of effluent, a faster moving vessel introduces a lower concentration of effluent per volume of MABL than a slow moving vessel. When speed is evaluated by itself, the results are inconsistent with shiptrack/non-shiptrack

formation. The larger power plants of the shiptrack population correlate with faster transit speeds, which decreases the likelihood of shiptrack formation. Conversely, the smaller power plants of the non-shiptrack population correlate with slower transit speeds, which favors shiptrack formation. Although speed is a useful discriminator of ship/non-shiptrack diesel populations, other factors, such as power and fuel use act to mitigate the affect of vessel speed.

Figure 11 is a plot of the ratio of tonnage/fuel use vs. percent occurrence. The plots are similar for the two populations except the non-shiptrack population mode is one bin higher (450-600) and has significantly more weighting in the highest two bins. The shiptrack average is 470 and the non-shiptrack average is 665. A 0.20 level of significance is obtained from the T-test. A 0.04 level of significance is obtained by omitting outliers (see Figure 22 and discussion in sub-section d. of this section).

Although the shiptrack/non-shiptrack vessels are similar in size, the rate of fuel use is not similar. The shiptrack population correlates with greater fuel use, therefore, has a smaller ratio. The non-shiptrack population's ratio of tonnage/fuel is larger, reflecting a lower rate of fuel use.

Figure 12 is a plot of the ratio of power/transit speed vs. percent occurrence. The shiptrack population distribution is positively skewed with three modes at 501-750, 751-1000 and 1251-1500, which contain 67 percent of the The non-shiptrack population is also positively population. skewed with identical modes containing 86 percent of the population. The shiptrack average is 1,183 and the nonshiptrack average is 979. A 0.10 level of significance is obtained from the T-test.

This ratio compares power, which is positively correlated with shiptracks, and vessel speed. The shiptrack

population's higher ratio average value suggests that the rate of power increase offset the effect of higher transit speeds for shiptrack formation. The non-shiptrack ratio average is lower due to a lower power value in the ratio. Vessel speed only modestly decreases. A ship with a smaller power plant produces less effluent and is less likely to form shiptracks.

Figure 13 is a plot of the ratio of power/hull crosssection vs. percent occurrence. The shiptrack population distribution is positively skewed with a mode between 46-60, which contains 29 percent of the population. The nonshiptrack population is also positively skewed with a conspicuous mode between 31-45, which contains 33 percent of the population. A 0.25 level of significance is obtained from the T-test.

Figure 14 is a plot of the product of power*fuel use vs. percent occurrence. The shiptrack population distribution has a dominant mode between 0.5-1.0, which contains 28 percent of the population. Otherwise, each bin below 4.0 contains 4-12 percent of the population. There is no additional representation except in the last bin (greater than 6.0). The non-shiptrack population has a conspicuous mode between 0-0.5, which contains 34 percent of the population. Overall, the population is heavily weighted in the lower bins and has no representation above 3.0. The shiptrack average is 2.2 and the non-shiptrack average is 1.3. A 0.12 level of significance is obtained from the Ttest.

Vessel power and fuel use is positively correlated with shiptrack formation. More power requires more fuel, which introduces more effluent, increasing the likelihood of shiptrack formation. The shiptrack population reflects a significantly higher average ratio of 2.2 compared to the non-shiptrack population's average of 1.3.
Figure 15 is a plot of the product of power*fuel use/speed vs. percent occurrence. The shiptrack population distribution has three dominant bins between 0.02-0.08, which contain 48 percent of the population. Otherwise, all other bins each contain 4-12 percent of the population. The non-shiptrack population has a bimodal distribution with 55 percent of the population in the first two bins. The shiptrack average is 0.1 and the non-shiptrack average is 0.06. A 0.11 level of significance is obtained from the Ttest.

This ratio compares the product of power and fuel use to vessel speed. Power and fuel are both positively correlated with shiptrack occurrence. The shiptrack population has a higher ratio than the non-shiptrack population despite having a higher vessel speed. This implies that the larger product of the numerator more than offsets the higher average vessel speed compared the to non-shiptrack population.

c. T-Test Results

Table 2 summarizes the T-test results in descending order from the highest level of significance to the lowest. Using the tactically significant criteria previously defined, the shiptrack producing diesel vessel population and non-shiptrack producing diesel population are distinguishable in eight categories: power/speed, power*fuel/speed, power*fuel, tonnage/fuel use, power/crosssection, speed, power, and fuel use. This suggests that each population mean is tactically distinct from the other. Therefore, these eight categories may be useful in predicting the occurrence and non-occurrence of shiptracks. A common thread among these categories is the influence of fuel use, either directly (e.g. tonnage/fuel use) or indirectly (e.g. power/speed). Higher fuel usage is associated, to some degree, with occurrence of shiptracks.

Important information is also contained in low levels of significance. Using the tactically insignificant criteria previously defined, only one category is indistinguishable for the two populations - tonnage. Its 0.73 level of significance suggests that the two population means are virtually identical. Tonnage is the only vessel parameter examined that is completely independent of fuel use.

d. Regression Results

Bivariate plots of ship parameters with linear regressions and correlation coefficients are used to compare the shiptrack and non-shiptrack populations. Parameters compared are: power vs. speed, tonnage vs. fuel, power vs. hull cross-section, tonnage vs. power, power vs. fuel use, and speed vs. fuel use. Bivariate plots of the same parameters are used to show how ship type is distributed for both populations.

Figure 20 is a comparison of power vs. speed for shiptrack and non-shiptrack populations. The data distribution has a positive correlation and is represented well by a linear regression. The non-shiptrack regression line is slightly above the shiptrack population regression line. This indicates the non-shiptrack population is overall slightly faster per ton than the shiptrack The non-shiptrack population is also not well population. represented above 30,000 BHP.

Figure 21 is a comparison of power vs. speed for each ship type in both populations. The distribution of ship types is similar for both populations with container carriers distributed in the higher 2/3 of the plot. All other ship types are observed in the lower 1/3 of the plot.

Figure 22 is a comparison of tonnage vs. fuel for shiptrack and non-shiptrack populations. The data distribution has a positive correlation for the shiptrack population and is represented by a linear regression. The

non-shiptrack population is positively correlated; however, it can not be represented meaningfully with a linear regression. Using the non-shiptrack distribution vice regression for comparison, the majority of the individual plots are below the shiptrack population regression line. This indicates the non-shiptrack population uses less fuel per ton than the shiptrack population. Outliers in lower right quadrant of plot are ships from the same manufacturer. Omission of these data points increases the correlation to 0.89 and 0.88 for the shiptrack and non-shiptrack populations, respectively.

Figure 23 is a comparison of tonnage vs. fuel use for each ship type in both populations. Both populations have similar distributions except for vehicle carriers. The shiptrack vehicle carriers have two distinct groups. One group's tonnage is between 10,000 and 20,000 tons and fuel use rate between 40-60 tons/day, the second group's tonnage is between 40,000 and 50,000 tons and fuel use rate of approximately 40 tons/day. The non-shiptrack observations are associated with the latter group.

Figure 24 is a comparison of power vs. hull crosssection for shiptrack and non-shiptrack populations. The data distribution has a positive correlation and is represented well by a linear regression. Although the nonshiptrack regression line is slightly above the shiptrack population regression line, their slopes are similar and there are no obvious distinctions between them.

Figure 25 is a comparison of power vs. hull crosssection for each ship type in both populations. The distribution is similar for both populations. Container carriers dominate the higher end with representation from both populations.

Figure 26 is a comparison of power vs. tonnage for shiptrack and non-shiptrack populations. The data

distribution has a positive correlation and is adequately represented by a linear regression. Although the nonshiptrack regression line is slightly above the shiptrack population regression line, their slopes are similar and there are no obvious distinctions between them.

Figure 27 is a comparison of power vs. tonnage for each ship type in both populations. Both populations have similar distributions. Of note is the tight packing of shiptrack and non-shiptrack vehicle carriers near 45,000 tons and 15,000 BHP. The only occurrence of a non-shiptrack bulk carrier coincides with the lowest power vs. tonnage shiptrack occurrence.

Figure 28 is a comparison of fuel vs. power for non-shiptrack populations. The shiptrack and data distribution has a positive correlation and is exceptionally well represented by a linear regression. Although the nonshiptrack regression line is slightly below the shiptrack regression line, their slopes are similar and there are no obvious distinctions between them, however, the shiptrack population has two data points with exceptionally high values.

Figure 29 is a comparison of fuel use vs. power for each ship type in both populations. Both populations have similar distributions with container carriers dominating the upper 2/3 of the plot.

Figure 30 is a comparison of speed vs. fuel use for shiptrack and non-shiptrack populations. The data distribution positive correlation and has а is well represented by a linear regression. Although the regression lines cross each other at the higher end, the non-shiptrack population appears to use a higher rate of fuel per knot.

Figure 31 is a comparison of speed vs. fuel use for each ship type in both populations. Both populations have similar distributions with container carriers dominating the

upper 2/3 of the plot.

2. Shiptrack Producing Population vs. Random Diesel Population

a. Ship Parameter Statistical Summary

Appendices A and C summarize specific operating parameters for each of these populations. Table 1 summarizes the statistical data. Overall, shiptrack producing diesel vessels have a slightly higher fuel use rate, a larger power plant, are 0.4 knots faster and are smaller than the random diesel population. This discrepancy size between the random diesel population and the in shiptrack and non-shiptrack populations may reflect a lack larger Trans-Pacific vessels in the area examined. of Another possibility is smaller shiptrack vessels are less efficient, requiring larger power plants and fuel usage rates to achieve comparable levels of performance.

b. Ship Operating Parameter Plots

Plots of shiptrack and random diesel population operating parameters vs. percent occurrence are distinctive in the following categories: tonnage and the ratio of power/fuel use and power/tonnage.

Figure 16 is a plot of vessel tonnage vs. percent occurrence. The shiptrack population plot has a dominant mode between 40-45 tons, which contains 23 percent of the population. The distribution is skewed negatively with 0 to 16 percent of the population in each bin. The random population has a dominant mode between 40-45 tons and more weighting in the lower to middle bins. The shiptrack average is 31,133 and the random average is 34,351. A 0.31 level of significance is obtained from the T-test.

The shiptrack population vessel tonnage is lower than the random population. This factor affects various ratios and has implications for fuel and power efficiency.

Figure 17 is a plot of the power/tonnage ratio vs. The distribution between occurrence. the percent two populations is similar with modes between 1-1.5. However, 79 percent of the shiptrack population is accounted for in bins 0.5-1.0 and 1.0-1.5 compared to only 60 percent of the random population. The random population has slightly more representation in the higher ratio bins. The shiptrack average is 1.5 and random average is 1.7. A 0.14 level of significance is obtained from the T-test.

The shiptrack population has а lower average tonnage/power ratio than the random population. This reflects the shiptrack population's smaller size and larger This combination suggests shiptrack producers power plant. have less efficient power plants and require more BHP per As discussed earlier, a larger power plant introduces ton. more effluent to the MABL, which enhances shiptrack cloud formation.

Figure 18 is a plot of the power/fuel use ratio vs. percent occurrence. The shiptrack population distribution is dominated by a mode at adjacent bins at 300-315 and 315-330, which accounts for 46 percent of the population. The random diesel population has a mode between 285-300 and is well represented in the lower value bins. The shiptrack average is 332.4 and the random average is 315.1. A 0.14 level of significance is obtained from the T-test.

Both variables are positively correlated with shiptrack formation. The higher average value of the shiptrack population reflects the larger power plant compared to only a slight increase in fuel use.

c. T-Test Results

Table 2 summarizes T-test results in descending order from the highest level of significance to the lowest. Using the tactically significant criteria defined above, the

shiptrack producing diesel vessel population and random diesel population are distinguishable in three categories: power/fuel use, tonnage/power, and tonnage. The power/fuel ratio particularly eniquatic is since the level of significance associated with fuel is 0.87, and the level of significance associated with power is 0.92, both tactically insignificant. This implies that power is indistinguishable between shiptrack producers and the random population. Similarly, fuel use is indistinguishable between the two populations. The ratio of these two indistinguishable characteristics yields a very high level of significance, which is unexpected and problematic. Tonnage results provide some insight to the high level of significance associated with the tonnage/power ratio. Table 1 shows that the random diesel population's mean tonnage is higher than the shiptrack producing diesel population. The level of significance of the tonnage term probably dominates the ratio since the power term is virtually indistinguishable in these two populations.

Eight categories are tactically indistinguishable: speed/fuel, power*fuel, power*fuel/speed, speed, power/speed, fuel use, power and power/cross-sectional area. Fuel use is a common thread for each of these categories and suggests that the similarity in fuel use rates for the two populations render most categories examined of limited use.

3. Non-Shiptrack Producing vs. Random Diesel Population

a. Ship Parameter Statistical Summary

Appendices B and C summarize specific operating parameters for each of these two populations. Table 1 summarizes the general statistical data. Overall, nonshiptrack producing diesel vessels use less fuel, have a smaller power plant, are 0.9 knots slower and are smaller than the random diesel population.

b. Ship Operating Parameter Plots

Plots of non-shiptrack and random diesel population operating parameters vs. percent occurrence are distinctive in the following categories: fuel use, power, tonnage/fuel, power/speed, power/hull cross-sectional area, power*fuel, power*fuel/speed, tonnage and speed/fuel.

Figure 8 is a plot of fuel use vs. percent occurrence. Both populations are bimodal in the same bins; however, the population percentages in each mode are distinctive. The non-shiptrack population mode between 30-45 tons/day accounts for 44 percent of the population vice 27 percent for the random diesel population. Conversely, the nonshiptrack population mode between 75-90 tons/day accounts for only 22 percent of the population vice 33 percent for the random diesel population. The non-shiptrack average is 59.3 tons/day and the random population average is 69.8 tons/day. A 0.38 level of significance is obtained from the T-test.

The non-shiptrack average fuel use rate is 10.5 tons/day less than the random population. The non-shiptrack population introduces less effluent, produces less CCN, and, modifies the MABL less therefore, than the random population, thus is less likely to produce a shiptrack cloud signature.

Figure 9 is a plot of vessel power vs. percent occurrence. The distribution of both populations is similar with common modes between 10-15,000 BHP and 25-30,000 BHP. However, the non-shiptrack population has a significantly higher percent occurrence in the lower mode. The nonshiptrack average is 21,109 and the random average is 22,940. A 0.36 level of significance is obtained from the T-

test.

Vessel power is positively correlated with fuel use; i.e. larger power plants use more fuel. The non-shiptrack population has a slightly smaller power plant compared to the random population. The smaller power plant uses less fuel, produces less effluent, fewer CCN and is thus less likely to leave a shiptrack.

Figure 11 is a plot of the ratio of tonnage/fuel use vs. percent occurrence. The non-shiptrack distribution has a dominant mode between 450-600. The random population distribution mode is shifted one bin lower, between 300-450. The non-shiptrack average is 665 and the random average is 524. A 0.39 level of significance is obtained from the Ttest.

The larger tonnage/fuel ratio for the non-shiptrack vessels reflects the lower rate of fuel use compared to the random population. The non-shiptrack tonnage/fuel ratio has smaller inputs for the numerator and denominator compared to the random population. However, an even lower rate of fuel use in the denominator offsets the small numerator input resulting in a higher ratio. This suggests that fuel use is the dominant variable in this ratio.

Figure 12 is a plot of the ratio of power/speed vs. percent occurrence. The non-shiptrack distribution is relatively narrow and positively skewed. The random diesel distribution is much wider and has representation in every bin. The non-shiptrack average is 979 and the random average is 1,215. A 0.08 level of significance is obtained from the T-test.

The lower power/speed ratio of the non-shiptrack population reflects the smaller power plant compared to the random population. The non-shiptrack power/speed ratio has smaller inputs for the numerator and denominator. However, the decrease in power in the numerator offsets the smaller

denominator input resulting in a lower ratio. This suggests that power is the dominant variable in this ratio.

Figure 13 is a plot of the ratio of power/hull crosssectional area. The distributions of the two populations are similar, although the random distribution is more uniform over the entire range. A 0.38 level of significance is obtained from the T-test.

Figure 14 is a plot of the product of power*fuel use vs. percent occurrence. The non-shiptrack population has a conspicuous mode between 0-0.5, which contains 33 percent of the population. Overall, the population is heavily weighted in the lower bins, and has no representation above 3.0. The random population is similarly weighted in the lower bins, but and it is also represented in the highest bin (greater than 6.0). The non-shiptrack average is 1.3 and the random average is 1.9. A 0.25 level of significance is obtained from the T-test.

Vessel power and fuel use is positively correlated with shiptrack formation. More power requires more fuel, which introduces more effluent increasing the likelihood of shiptrack formation. The non-shiptrack population's lower average ratio of 1.3, compared to the random population's average of 1.9 suggests it is less likely to produce shiptracks.

Figure 15 is a plot of the product of power*fuel use/speed vs. percent occurrence. The non-shiptrack population has a bimodal distribution with 55 percent of the population in the first two bins, 0-0.02 and 0.02-0.04. The random population's distribution is also bimodal, with 26 percent of the population in the 0.06-0.08 bin. The nonshiptrack average is 0.06 and the random average is 0.1. A 0.20 level of significance is obtained from the T-test.

This ratio compares the product of power and fuel use to vessel speed. Fuel use and power are both positively

correlated with shiptrack occurrence. The non-shiptrack population has a lower ratio than the random population, despite having a lower vessel speed. This implies the product of the numerator is smaller and dominates the nonshiptrack ratio compared to the random population.

Figure 16 is a plot of vessel tonnage vs. percent occurrence. The non-shiptrack distribution has a dominant mode between 40-45 tons, which accounts for 20 percent of the population. Three secondary modes occur between 10-15 tons, 20-25 tons and 45-50 tons; otherwise the distribution is fairly uniform. The random population distribution has a dominant mode between 40-45 tons, which contains 23 percent of the population. Each of the other bins has 0 to 13 percent of the population. The non-shiptrack average is 31,037 and the random average is 34,351. A 0.32 level of significance is obtained from the T-test.

The non-shiptrack vessel size is smaller than the random population's vessel size. This factor will affect various ratios and has implications for fuel and power efficiency.

Figure 19 is a plot of the ratio of fuel use/speed vs. percent occurrence. The non-shiptrack distribution is narrower than the random distribution and is bimodal. The dominant mode, between 2.0-2.5, accounts for 33 percent of the non-shiptrack population. A secondary mode, between 4.0-4.5, accounts for 22 percent of the population. The random diesel population distribution is more symmetric with a mode between 3-3.5. The non-shiptrack average is 3.1 and the random average is 3.6. A 0.38 level of significance is obtained from the T-test.

The lower fuel/speed ratio average for non-shiptrack diesels is attributed primarily to their lower fuel use rates.

c. T-Test Results

Table 2 summarizes the T-test results in descending order from the highest level of significance to the lowest. Using the tactically significant criteria defined above, the non-shiptrack producing diesel population and the random diesel population are distinguishable in nine categories: power/speed, power*fuel/speed, power*fuel, tonnage, power, power/cross-section, speed/fuel, fuel use and tonnage/fuel. These two populations are distinguishable in all categories examined except speed, power/fuel and power/tonnage.

	59	RATIO	FONNAGE / 5	FUEL USE	573 R	313 4		429.3	C 00C	1960.9	50	RATIO	ONNAGE / S	UEL USE K	469.8	295.3	NA	389.3	146	1512.1		CT / HOWING				004./	C.525	NA	490.5	332.7
		POWER *	UEL USE	1E-06 I	1 9		1 0	0.4	2 F	8.8		POWER *	UEL USE T	1E-06 F	2.1	2.2	NA	1.5	0.15	6		рОмтрах то	UEL USE EL	1E-06	с г г		D. 1			
		RATIO	TONNAGE /	POWER	1.7	1.1			0.5	6.9	RODUCERS	RATIO	TONNAGE/	POWER	1.5	0.8	1.4	1.3	0.5	3.9	DUCERS	TONNAGE /	POWER	RATIO	1 7			C . T	1.4 1.0	0.71
DTRCRI.		dTHS	TONNAGE	GR	34351.0	16106.0	32629	32629	5087	77454	IA	SHIP	TONNAGE		31869.0	14053.0	37209	34500	1454	61926	PROI	SHIP	TONNAGE		31037.0	14249 1	+ • •	33405		17011
	C H H K H	OT.LAN	SPEEU/	AN THUR	3.6	1.3		3.5			ACK	RATIO	SPEED/	FUEL USE	3.4	1.3		3.3			ACK	SPEED/	FUEL USE	RATIO	3.1	1.0				·
SPORTINC	DATTO		FUWER/		315.1	48.4	396.7	205.4	205.4	396.7	SHIPTRA	RATIO	POWER/	FUEL USE	334.4	. 34.9		329.5	243	396.7	-SHIPTR/	POWER/	UEL USE	RATIO	325.0	33.1		321.1	2.84	۲ 1 1
RE	FIFT.	1101	שבט עעמי צווסד	ING / CNIOT	69.8	33.6	76	72.5	17	173.5		FUEL	USE	TUNS/ DAY	71.3	34.7		67	25.5	163.5	-NON	FUEL	USE	ONS/DAY	59.3	26.8	35.5	48.5	31	
WEATHEI	POWER	RATING	BHP	1110	22940.0	11622.0	30150	22645	4080	56960	DIESEL	PUWER	CTIC CIT		0.54162	13336.0	10089T	01.1.77	6200	06606	DIESEL	POWER	RATING	(BHP) 1	21108.9	12738.3		14890	10330	
					AVG	G'I'S	MODE	MEDIAN	MIN	MAX				0114	574 0 0 0 0 0 0 0	L L CM	MUDE	MEDIAN	NTW	VHI					AVG	STD	1 ODE	1EDIAN	NII	

Figure 8. Fuel Use for Each Diesel Population. Data is not available for every vessel in each population.

Vessel Power for Each Diesel Population.

Figure 10. Vessel Transit Speed for Each Diesel Population. Data is not available for every vessel in each population.

Figure 11. Ratio of Vessel Tonnage to Fuel Use for Each diesel population. Data is not available for all vessels.

ş

Figure 13. Ratio of Power to Hull Cross-Section for Each diesel population. Data is not available for all vessels.

Figure 14. Product of Power and Fuel Use for Each Diesel population. Data is not available for all vessels.

Figure 15. Ratio of Power and Fuel Use to Speed for Each diesel population. Data is not available for all vessels.

population. Data is not available for all vessels.

Figure 18. Ratio of Power to Fuel Use for Each Diesel population. Data is not available for all vessels.

OFSIGNIFICANCEINDESCENDING T/NT T/P 0.14 $0.08R/FUEL$ 0.08 POWER/SPEED 0.14 POWER/FUEL 0.08 POW*FUEL/SPD 0.14 POWER/FUEL 0.08 POWER * FUEL 0.31 TONNAGE/FUEL 0.25 POWER * FUEL 0.31 TONNAGE/FUEL 0.25 POWER * FUEL 0.31 TONNAGE/FUEL 0.32 POWER * FUEL 0.63 SPEED/FUEL 0.36 POWER/X-SEC 0.65 POWER * FUEL 0.36 POWER/X-SEC 0.77 POWER * FUEL 0.36 POWER/YONNAGE 0.77 POWER/SPEED 0.36 POWER/TONNAGE 0.77 POWER/SPEED 0.36 POWER/FUEL 0.86 POWER/SPEED 0.36 POWER/FUEL 0.86 POWER/SPEED 0.54 POWER/FUEL 0.86 POWER/SPEED 0.56 POWER/FUEL 0.9 POWER/SPEC 0.56 POWER/FUEL 0.9 POWER/SPEC 0.56 POWER/FUEL 0.9 POWER/SPEC 0.56 POWER/FUEL 0.9 POWER/SPEC 0.56	ORDER	NTLDN		POW* BITET / CDA	DOWED + DITET	TONNACE	DOWFD				FUEL USE	TONNAGE/FUEL	CHRED.	POWER/FUEL	POWER/TONNAGE	LATION
OFSIGNIFICANCEINDESCEN T/NT T/P T/P POWER/SPEED0.14POWER/FUELPOWER/SPEED0.14POWER/FUELPOWER * FUEL0.31POWER/TONNAGEPOWER * FUEL0.31TONNAGEPOWER * FUEL0.31TONNAGEPOWER * FUEL0.31TONNAGEPOWER * FUEL0.31POWER/TONNAGEPOWER * FUEL0.65POWER * FUELPOWER/SEED0.65POWER * FUELPOWER/SEED0.77POWER * FUELPOWER/TONNAGE0.77POWER/SPEEDPOWER/TONNAGE0.77POWER/SPEEDPOWER/FUEL0.86POWER/SPEEDPOWER/FUEL0.86POWER/SPEEDPOWER/FUEL0.86POWERPONER/FUEL0.86POWERPONAGE0.9POWER/SPEEDPONAGE0.9POWER/SPEEDPONAGE0.9POWER/SPEEDPONAGE0.9POWER/SPEEDPONAGE0.9POWER/SPEEDPONAGE0.9POWER/SPEEDPONAGE0.9POWER/SPEEDPONAGE0.9POWER/SPECDPONAGE0.9POWER/SPECDPONAGEPOWER/SPECDPONAGEPOWER/SPECDPONAGEPOWER/SPECDPONAGEPOWER/SPECDPONAGEPOWER/SPECDPONAGEPOWER/SPECDPONAGEPOWER/SPECDPONAGEPOWER/SPECDPONAGEPOWER/SPECDPONAGEPOWER/SPECD </td <td>DING</td> <td></td> <td>0 08</td> <td>0.2</td> <td>0.25</td> <td>0.32</td> <td>0.36</td> <td>86.0</td> <td>0000</td> <td></td> <td></td> <td></td> <td>1 1 1 1 1</td> <td>U.54</td> <td>0.56</td> <td>IESEL POPU</td>	DING		0 08	0.2	0.25	0.32	0.36	86.0	0000				1 1 1 1 1	U.54	0.56	IESEL POPU
OFSIGNIFICANCET/NTT/NTPOWER/SPEED0.14POWER/SPEL0.14POWER * FUEL0.31POWER * FUEL0.31TONNAGE/FUEL0.45POWER/X-SEC0.63SPEED0.65POWER/X-SEC0.65POWER/X-SEC0.65POWER/Y-SEC0.77POWER/Y-SEC0.77POWER/Y-SEC0.77POWER/TONNAGE0.77POWER/FUEL0.86POWER/FUEL0.86POWER/FUEL0.86TONNAGE0.9CONNAGE0.9	IN DESCEN	T/P	POWER/FUEL	POWER/TONNAGE	TONNAGE	TONNNAGE / FUEL	SPEED/FUEL	POWER * FUEL	POW* FITEL / SDD	SPERD	DOWRD / CDEED	FIIRL TICE		FOWER	POWER/X-SEC	P=RANDOM D
OF SIGNIF T/NT POWER/SPEED POWER/SPEED POWER * FUEL TONNAGE/FUEL TONNAGE/FUEL POWER/X-SEC SPEED POWER/X-SEC SPEED POWER/Y-SEC SPEED POWER/FUEL POWER/FUEL SPEED/FUEL SPEED/FUEL SPEED/FUEL	ICANCE		0.14	0.14	0.31	0.45	0.63	0.65	0.7	0.7	0.77	0.84	280		<u>ا</u> ک. ۷	TRACK
	OF SIGNIF	T/NT	POWER/SPEED	POW*FUEL/SPD	POWER * FUEL	TONNAGE/FUEL	POWER/X-SEC	SPEED	POWER	FUEL USE	POWER/TONNAGE	POWER/FUEL	SPEED/FUEL	CT ATAINOT	TUNNUT	K NT=NO SHIP'

51

.

Figure 20. Bivariate Plot of Power vs. Speed for Diesel vessels. Shiptrack and non-shiptrack best fit linear regressions using least squares and associated correlation coefficients are included.

Figure 21. Bivariate Plot of Power vs. Speed for Each Type of diesel vessel in the shiptrack and non-shiptrack populations.

Figure 22. Bivariate Plot of Tonnage vs. Fuel Use for diesel vessels. Shiptrack and non-shiptrack best fit linear regressions using least squares and associated correlation coefficients are included.

Figure 23. Bivariate Plot of Tonnage vs. Fuel Use for Each type of diesel vessel in the shiptrack and non-shiptrack populations.

Figure 24. Bivariate Plot of Power vs. Hull Cross-Section for diesel vessels. Shiptrack and non-shiptrack best fit linear regressions using least squares and associated correlation coefficients are included.

Figure 25. Bivariate Plot of Power vs. Hull Cross-Section for each type of diesel vessel in the shiptrack and nonshiptrack populations.

Figure 26. Bivariate Plot of Power vs. Tonnage for Diesel vessels. Shiptrack and non-shiptrack best fit linear regressions using least squares and associated correlation coefficients are included.

type of diesel vessel in the shiptrack and non-shiptrack

Figure 28. Bivariate Plot of Fuel Use vs. Power for Diesel vessels. Shiptrack and non-shiptrack best fit linear regressions using least squares and associated correlation coefficients are included.

Figure 29. Bivariate Plot of Fuel Use vs. Power for Each type of diesel vessel in the shiptrack and non-shiptrack populations.

Figure 30. Bivariate Plot of Speed vs. Fuel Use for Diesel vessels. Shiptrack and non-shiptrack best fit linear regressions using least squares and associated correlation coefficients are included.

Figure 31. Bivariate Plot of Speed vs. Fuel Use for Each type of diesel vessel in the shiptrack and non-shiptrack populations.

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The objective of this thesis is to determine if a vessel's operating characteristics can be used to forecast the occurrence/non-occurrence of shiptracks under conducive environmental conditions. Using AVHRR (channel 3) imagery, ship's weather reports and Lloyd's Register of Ships (1992), three ship populations were examined to meet this objective. Shiptrack producing diesel vessels, non-shiptrack producing diesel vessels, and a random diesel vessel population were compared to determine differences and similarities in operating parameters.

population averages, Based on diesel shiptrack producers are one knot faster, nine percent more powerful and use 18 percent more fuel per day than the non-shiptrack Compared to the random producers. diesel population, shiptrack producers are nine percent more powerful, ten percent smaller, and use five percent more fuel. Finally, the non-shiptrack population compared to the random population is 0.5 kts slower, eight percent less powerful, uses 15 percent less fuel and is ten percent smaller.

These data are consistent with the shiptrack formation mechanism discussed in section 2.b., i.e. introduction of effluent by a ship's propulsion plant into the MABL provides additional CCN within a cloud layer, locally decreasing the water droplet size and increasing its reflectance.

Analyses of imagery also suggest that the number of shiptrack producing vessels is significantly higher than the number of non-shiptrack producers. A critical controlling factor in the formation of shiptracks is the state of the MABL; however, optimal shiptrack formation MABL conditions have not been quantified. Under conditions where shiptracks

are observed, the following T-test comparisons identify parameters and ratios of parameters that may be tactically useful in estimating the occurrence/non-occurrence of shiptracks:

1. A comparison of vessel power and transit speed is tactically useful for distinguishing shiptrack and nonshiptrack diesel vessels. T-test results show that the nonshiptrack/shiptrack populations are distinct at a 0.10 level of significance. The non-shiptrack population has a lower power/speed ratio, which is obtained by increasing speed, decreasing power, or some combination of the two. As a ship's power plant size is reduced or its speed increased, the amount of effluent introduced into a volume of MABL is reduced and thus decreases the likelihood of shiptrack formation.

2. A comparison of power*fuel/speed is tactically useful for distinguishing shiptrack and non-shiptrack diesel vessels. T-test results show that the nonshiptrack/shiptrack populations are distinct at 0.11 level The non-shiptrack population has a lower of significance. power*fuel/speed ratio, which is obtained by decreasing power*fuel, increasing speed, or some combination of the Non-shiptrack vessels have smaller power plants and two. use less fuel than the shiptrack population, which yields a smaller value in the numerator of the ratio. Non-shiptrack vessels are also slightly slower than the shiptrack population, which yields a slightly smaller value in the denominator of the ratio. Because the power*fuel/speed ratio for the non-shiptrack population is lower than the shiptrack population, it can be inferred that the product of power and fuel use dominates the ratio. Because a smaller power plant requires less fuel, the amount of effluent

introduced into the MABL decreases diminishing the likelihood of shiptrack cloud formation.

3. A comparison of power*fuel is tactically useful for distinguishing shiptrack and non-shiptrack diesel vessels. T-test that non-shiptrack/shiptrack results show the populations are distinct at 0.12 level of significance. The non-shiptrack population has a lower power*fuel product, which is obtained by decreasing either power plant size, fuel use or some combination of the two. Non-shiptrack vessels have smaller power plants and use less fuel than the shiptrack population, which yields a smaller product. Because a smaller power plant requires less fuel, the amount of effluent introduced into the MABL decreases diminishing the likelihood of shiptrack cloud formation.

4. A comparison of vessel tonnage and rate of fuel use is tactically useful for distinguishing shiptrack and nonshiptrack diesel vessels. T-test results show that the nonshiptrack/shiptrack populations are distinct at 0.20 level of significance. The non-shiptrack population has a higher tonnage/fuel use ratio, which is obtained by increasing tonnage, decreasing fuel use, or some combination of the two. As the fuel required per vessel ton decreases so does the amount of effluent introduced to the MABL - resulting in no shiptrack cloud signature.

5. comparison of vessel power and hull Α crosssectional area is tactically useful for distinguishing shiptrack and non-shiptrack diesel vessels. T-test results non-shiptrack/shiptrack populations show that the are distinct at 0.25 level of significance. The non-shiptrack ratio, which population has a lower obtained is by increasing cross-section, decreasing power, or some combination of the two.

6. A comparison of vessel power rating is tactically useful for distinguishing shiptrack and non-shiptrack diesel vessels. T-test results show that the nonshiptrack/shiptrack populations are distinct at 0.29 level of significance. The non-shiptrack population has a lower power rating. A smaller power plant produces less effluent into the MABL and reduces the likelihood of shiptrack formation.

7. A comparison of fuel use rate is tactically useful for distinguishing shiptrack non-shiptrack and diesel vessels. T-test results show that the nonshiptrack/shiptrack populations are distinct at 0.30 level of significance. The non-shiptrack population has a lower fuel use rate. As the fuel use rate decreases, there is a corresponding decrease in the amount of effluent introduced into the MABL, decreasing the likelihood of shiptrack formation.

B. RECOMMENDATIONS

This study is the first dedicated examination of ship operating parameters their and affect on shiptrack formation. Data from this study suggest there are distinguishable operating parameters associated with shiptrack producers and non-shiptrack producers. Future studies will benefit from a larger database - more ships for each category and the co-location of shiptrack producers and non-producers.

				SELS.			
SHIPTRACK	LLYODS	ENGINE	NUBMER	POWER	RATIO OF	FUEL	FUEL
PRODUCING DIESELO			OF	RATING	POWER/	USE	
DIESELS VESSELS	PAGE #	DESIGN	CYLINDER	S (BHP)	FUEL USE	(TONS/DAY)	TYPE
ALLIGATOR PRIDE	15	8 OIL 2 SA		9 3410	315.8	108	
ANDERS MAERSK	22	6 OIL 2 SA	1	0 4580	0	1	DO/HVE
ANNA MAERSK	24	8 OIL 2 SA	1	0 4580	0		DO/HVE
CALIFORNIA CERES	67	8 01L 2 SA		9 3130	0 331.2	94.5	DO/HVE
CALIFORNIA GALAXY	68	7 OIL 2 SA		7 2521	0 387.8	65	DO/HVE
CALIFORNIA MERCURY	67	9 OIL 2 SA		7 2943	1		DO/HVE
CALIFORNIA ORION	. 67	9 OIL 2 SA	1	9 3240	0 328.9	98.5	DO/HVE
CANADIAN HIGHWAY	69	3 OIL 2 SA		7 1680	0 305.5	55	DO/HVE
	71	4 OIL 2 SA		2907	0 370.3	78.5	DO/HVF
CENTRUY LEADER NO 1	78	1 OIL 2 SA	1	13300	328.4	40.5	DO/HVE
CENTRUT LEADER NO 3	78	OIL 2 SA	8	13400			DO/HVE
DIRECT KINA	1 780	OIL 2 SA	٤	14140	307.4	46	DO/HVF
	1074	2VOIL4SA	10	22800	373.8	61	DO/HVE
	1543	OIL 2 SA	6	6200	243.1	25.5	UNK
GLOBAL HIGHWAY	1555	OIL 2 SA	7	15200	345.5	44	DO/HVE
	1559	OIL 2 SA	7	11550	308.0	37.5	DO/HVE
HANJIN SAVANNAH	63	OIL 2 SA	7	28350	313.6	90.4	DO/HVE
HENRY HUDSON BRIDGE	119	OIL 2 SA	9	28650	318.3	90	
HERCULES HIGHWAY	122	OIL 2 SA	8	11900	383.9	31	
HYUNDAI NO 11	· 231	OIL 2 SA	6	10800			
JO OAK	418	OIL 2 SA	7	15000	312.5	48	DOALVE
	756	OIL 2 SA	7X2	55199	337.6	163.5	
MAGLEBY MAERSK	985	OIL 2 SA	12	51920			
MARIE MAERSK	1067	QIL 2 SA	12	51920		f	INK
MERCURY	1177	OIL 2 SA	· 6	8000			INK
	1268	2VOIL4SA	14				INK
MONTERREY	1281	OIL 2 SA	6	21405			INK
NED LLOYD SINGAPORE	1404	OIL 2 SA	6	20500	288.7	71 [O/HVE
	1557	OIL 2 SA	9	40500			INK
	1566	OIL 2 SA	6	22080			INK
	1640	OIL 2 SA	9	29610			INK
	1578	OIL 2 SA	9	16800	332.7	50.5 C	O/HVE
	1640	OIL 2 SA	9	33120			INK
OUCL FREEDOM	1640	OIL 2SA	9	29810			NK
	1658	OIL 2 SA	7	14560		lu	NK
	21	OIL 2 SA	6	13050			NK
	21	DIL 2 SA	5	9500		0	0/HVF
	190 (DIL 2 SA	7	8855	316.3	28 D	O/HVF
RESIDENT ADAMS	214	OIL 2SA	12	56956	373.5	152.5 D	0/HVF
RESIDENT MONROE	216 (DIL 2 SA	. 12	43200			0/HVF
RINCE OF TOKYO	227 (DIL 2 SA	8	12400			D/HVF
AN MARCOS	530 (DIL 2 SA	7	16800	317.0	53 0	
EA-LAND INDEPENDEN	638 (DIL 2 SA	9	30150	396.7	76 00	D/HVE
TAD LINOTHE	851 0	DIL 2 SA	8	14945		UI	1K
ALUE	961 0	DIL 2 SA	4	13000		10	
	1098 C	DIL 2 SA	6	22770	330.0	69 DC	
	1269 0	DIL 2 SA	6	22080			
	1717 0	UL 2 SA	8	29440			1K
	1718	NL 2 SA	8	29474	368.4	80100	VHVE
IN SAVANNAH	1718 0	IL 2 SA	10	35200	359.2	98 DC	D/HVF
	BHP≈BREAK H	ORSEPOWER	۲ D	O=BURNING	DIESEL OIL		
ASSINGLE ACTING. THE N	NUMBER PREF	IXED INDICA	TESE THE ST	ROKE CYCLE			I
VF=FILLED FOR BURNING	HIGH VISCOS	SITY FUEL	U	NK=UNKNOW	/N		

.

APPENDIX A. OPERATING PARAMETERS FOR SHIPTRACK PRODUCING DIESEL VESSELS

APPENDIX	A.	OPERATING	PARAMETERS	FOR	SHIPTRACK	PRODUCING
		DJ	(ESEL VESSE	T.S		

SHIPTRACK	FUEL	RATIO OF	TRANSIT	TONNACE	DATIO OF		
PRODUCING	QUANTITY	FUEL/	SPEED	TONNAGE	RATIO OF	YEAR	SHIP
DIESELS VESSELS	TONS	SPEED	KNOTS	TONO	POWER/		
ALLIGATOR PRIDE	150/4917		KINGIS	TUNS	FUEL	BUILT	TYPE
ANDERS MAERSK	924/6113		21.6	41126	3.682908	1988	CONTAINER
ANNA MAERSK	924/6113			33401		1976	CONTAINER
CALIFORNIA CERES	272/21/16			33401		1976	CONTAINER
CALIFORNIA GALAXY	360/2/96	4.2	22.75	31694	2.95785	1981	CONTAINER
	112/460	3.2	20.25	36375	1.63865	1983	CONTAINER
	113/4082		22	41442		1987	CONTAINER
CANADIAN HIGHWAY	433/2914	4.4	22.5	32654	3.1914	1980	CONTAINER
CAPE MAY	344/2834	3.1	18	12737	0.924	1978	VEHICLE CARRIER
CENTRUX LEADED NO 4	208/4408	3.6	22	42145	2.281995	1986	CONTAINER
CENTRUM LEADER NO 1	146/19/6	2.3	18	45422	0.53865	1984	VEHICLE CARRIER
CENTROT LEADER NU 3	180/1993		18.25	44830		1986	VEHICLE CARRIER
DIRECT KINA	550/2177	2.5	18.5	43198	0.65044	1984	
DIRECT KIVVI	312/1208	3.1	20	20393	1.3908	1978	CONTAINER
GINGA MARU	1208	1.4	18	4888	0,1581	1972	TRAINING CO I
GLOBAL HIGHWAY	219/2239	2.4	18.5	19700	0.6688	1082	
GLORIA PEAK	181/1402	2.2	17	12816	0 433125	1902	
HANJIN SAVANNAH	254/3801	4.2	21.7	35598	2 56284	1970	GENERAL CARGO
HENRY HUDSON BRIDGE	229/4204	4.0	22.5	42407	2.50204	1987	CONTAINER
HERCULES HIGHWAY	124/1788	1.7	18.5	46875	2.3783	1987	CONTAINER
HYUNDAI NO 11	288/1306		16	14779	0.3669	1987	VEHICLE CARRIER
JO OAK	609/2592	3.1	15.5	21541	0.70	1980	BULK CARRIER
KURAMA	671/10979	7.0	23.5	57870	0.72	1983	TANKER
MAGLEBY MAERSK	UNK		24	52181	9.0250365	1972	TM CONTAINER
MARIE MAERSK	UNK		24	52181		1990	CONTAINER
MERCURY	UNK		14	11961		1990	CONTAINER
MOKU PAHU	UNK		15	1454		1989	GENERAL CARGO
MONTERREY	UNK		18	31430		1982	TUG + 37K TON BARGE
NED LLOYD SINGAPORE	467/2601	3.5	20.5	10267	4 4555	1989	BULK CARRIER
NYK SUNRISE	UNK		20.0	10307	1.4555	1974	CONTAINER
OAXACA	UNK			43209		1991	CONTAINER
OCCL FIDELITY	UNK		21.6	31430		1988	BULK CARRIER
OCEAN HIGHWAY	647/2708	27		40980		1987	CONTAINER
OOCL FAIR		2.1	18.5	13857	0.8484	1980	VEHICLE CARRIER
OOCL FREEDOM			21.5	40080		1987	CONTAINER
ORION HIGHWAY	LINK		21.5	40978		1985	CONTAINER
PACKING		<u>+</u>	18.5	44516		1984	/EHICLE CARRIER
PACPRINCE	104/1029		15.5	20627		1983	BULK CARRIER
	166/1050		15.3	24632		1986	BULK CARRIER
PRESIDENT ADAMS	100/1252	1.8	16	10774	0.24794	1979 (CONTAINER
PRESIDENT MONROE	332/7	6.3	24.25	61926	8.68579	1988	CONTAINER
	295/5296		23.25	40627		1983	CONTAINER
SANI MARCOR	246/1569		14	36611		1974	VOOD-CHIP CARRIER
	447/2528	2.8	19.25	15192	0.8904	1980 F	ORO CARGONEHICI F
	515/3478	3.5	22	32629	2.2914	1980 0	ONTAINER
TADUNORAN	UNK		15	16366		1979 F	ORO CARGONEHICI E
STAR LIVORNO	JNK		16	26171		1982 E	ULK CARRIER
	507/3087	3.6	19	35963	1.57113	1989	ONTAINER
OLUCA	JNK			31340		1988 P	
	JNK		21	37209		1990 0	
	594/4406	3.8	21	37209	2.35792	1991 0	
IM SAVANNAH	70/5912	4.4	22.5	36263	3,4496	1081	
OIL=OIL ENGI	NES	BI	-P=BREAK HO	DRSEPOWER			
SA=SINGLE A	CTING. THE NU	JMBER PREF	IXED INDICAT	ESE THE STR		-SOLIMING	JESEL UIL
HVF=FITTED F	OR BURNING	HIGH VISCOS	ITY FUEL				(6)
							IN I

NON-SHIPTPACK							
NON-OHIF TRACK	LLYODS	ENGINE	NUMBER	POWER	RATIO OF	FUEL	FUE
]	OF	RATING	POWER/	USE	
CENTRUM VESSELS	PAGE #	DESIGN	CYLINDER	(BHP)	FUEL USE	(TONS/DAY)	TYPE
CENTRUY HIGHWAY #3	780	OIL 2 SA	8	14342	349.8	41	
	1268	2 V OIL 4SA	14				
SUNBELT DIXIE	1043	V OIL 4SA	14	14000			
GEORGE WASHINGTON		OIL 2 SA	9	28645	325.5		UNK
NATIONAL HONOR	1389	OIL 2 SA	6	11200	020.0		DO/HVF
NED LLOYD VAN DIEMEN	1405	OIL 2SA	5	1/800	207.0		
LONDON VICTORY	924	OIL 2 SA	7	15000		48.5	DO/HVF
IBN BAJJAH	237	OIL 2 SA		15200			DO/HVF
CHEVRON PACIFIC	818	OIL 2 SA	6	23800	360.6	66	DO/HVF
KOMOSOMELETS PRIMO	678			11400	321.1	35.5	DO/HVF
HEIDELBERG EXPRESS	100			10330			UNK
HERCULES HIGHWAY	100		8	25560	284.0	90	DO/IFO
LOK PRAKASH	020	OIL 2 SA		11900	383.9	31	DO/HVF
PRESIDENT LINCOLN	920	OIL 2 SA	6	10500	295.8	35.5	DO/HVF
	215	OIL 2 SA	12	43200			DO/HVF
MARIE MAERSK	6/9	OIL 2 SA	9	29746	302.0	98.5	DO/HVF
	1067	OIL 2 SA	12	51920			UNK
	BHP=BREAK F	ORSEPOWE	R D	O=BURNING	DIESEL OIL		
ASINGLE ACTING. THE	NUMBER PRE	FIXED INDICA	TESE THE ST	ROKE CYCLE			
IVF=FITTED FOR BURNING	HIGH VISCO	SITY FUEL	U	INK=UNKNOV	/N		
			_				

APPENDIX B. OPERATING PARAMETERS FOR NON-SHIPTRACK PRODUCING DIESEL VESSELS.

NON-SHIPTRACK		The subscription of the su			. 00.0		
HON-OHIP TRACK	FUEL	RATIO OF	TRANSIT	TONNAGE	POWER X	YEAR	CUID.
	QUANTITY	FUEL/	SPEED		FUELY	1201	SHIP
VESSEL VESSELS	(TONS)	SPEED	(KNOTS)	(TONS)	0.000001	DI 11 T	
CENTRUY HIGHWAY #3	166/2042	2.2	18.5	46196	0.000001	BUILI	TYPE
MOKU PAHU			15	40100	0.6	1987	VEHICLE CARRIER
SUNBELT DIXIE	UNK		19.26			1986	TUG + 37K T BARG
GEORGE WASHINGTON	457/3975	30	10.25	1144/		1983	VEHICLE CARRIER
NATIONAL HONOR	UNK	0.0	22.0	42000	2.5	1986	CONTAINER
NED LLOYD VAN DIEMEN	366/2884	2.8	17	13680		1984	CARGO RORO
LONDON VICTORY	225/3409	2.0	17.5	23790	0.7	1987	CONTAINER
IBN BAJJAH	413/3806		15.5	36865		1983	TANKER
CHEVRON PACIFIC	215/1007	3.5	19	33405	1.6	1983	CONTAINER
KOMOSOMELETS PRIMORYA	213/1907	2.4	15	23709	0.4	1984	TANKER
HEIDELBERG EXPRESS			17.5	7701		1982	CARGO FISH CAPPIED
HERCULES HIGHWAY	206/3948	4.4	20.5	29939	2.3	1990	CONTAINED
OK PRAKASU	123/1788	1.7	18.5	46875	0.4	1982	VEHICLE CARRIER
PRESIDENT LINION	115/1448	2.4	15	16040	0.4	1002	
RESIDENT LINCOLN	295/5296		23.25	40627		1960	BULK CARRIER
CALIFORNIA LUNA	233/4887	4.5	22	41110		1984	CONTAINER
MARIE MAERSK	UNK		24	52194	2.9	1982	CONTAINER
	OIL=OIL ENGI			52181		1978	CONTAINER
SAESING LE ACTING THE NUMBER OF DOEBURNING DIESEL OIL							
			NUMBER PREF	IXED INDICA	TESE THE STI	ROKE CYCLE	: [
		OR BURNING	HIGH VISCOS	SITY FUEL	U	NK=UNKNOV	VN.

APPENDIX B. OPERATING PARAMETERS FOR NON-SHIPTRACK PRODUCING DIESEL VESSELS.

APPENDIX C. OPERATING PARAMETERS FOR WEATHER REPORTING 'RANDOM' DIESEL VESSELS.

WEATHER	LLYODS	ENGINE	NUMBER	POWER	DATIO OF	T		
REPORTING				POWER	RATIO OF	FUEL	FUEL	FUEL
DIESEL VESSELS	PAGE #	DESIGN			POWER	USE		QUANTITY
ALDEN W CLAUSEN	12/	264	CILINDER		FUEL USE	(TONS/DAY)	TYPE	(TONS)
ALLIGATOR COLUMBUS	157	234		0 1140	0 321.1	35.5	DO/HVF	215/1907
ALLIGATOR LIBERTY	156	254	· · · · · ·	7 0040	<u></u>	ļ		
AMBASSADOR BRIDGE	185	204		2943	1			
ANADYR	215	41/484	18 540	2862	0 319.8	89.5	DO/HVF	232/5540
AXEL MAERSK	406	204	TOEACH	0526	2		UNK	
BTNESTOR	400	254		4580	0		DO/HVF	924/6113
CALIFORNIA JUPITER	679	234		1680	0	L	DO/HVF	264/3250
CALIFORNIA I UNA	670	254		29520	2		UNK	
CALIFORNIA ZUES	679	25A		29746	5 302.0	98.5	DO/HVF	233/4887
CHESAPEAKE TRADER	816	25A		27700	348.4	79.5	DO/HVF	230/3364
CHEVRON COLORADO	917	25A		11244	1		UNK	
CONTSHIP AUSTRALIA	017	IGITIR		12500	227.3	55	OF	1519
COURIER	917	25A	6	9245	5 205.4	45	DO/HVF	187/1900
DIRECT KEA	942	2 V 4SA	14 EACH	14000	345.7	40.5	DO/HVF	346/2794
EVER GARDEN	10/4	2SA	6	15640	289.6	54	DO/HVF	
EVERIEVEL	1305	2SA	6	21600	291.9	74	DO/HVF	226/4726
GEORGIA RAINBOW II	150/	2SA	7	22260	4			
GREENLAKE	1524	2SA	5	7703			UNK	
GUS W DARNELL	1009	2SA	6	13199			UNK	
HEIDEL BERG EXPRESS	1001	2SA	5	15300			UNK	
KENNETH E HILL	100	2SA	8	25560	284.0	90	DO/HVF	206/3948
KENNETH T DEEP	5/9	25A	7	20300	285.9	71	DO	4852
I OK PRAKASU	5/9	2SA	6	11400	321.1	35.5	DO/HVF	216/1907
MACKINAC BRIDGE	920	2SA	6	10300	323.9	31.8	DO/HVF	290/1364
MAGIC	9/0	2SA	9	28650	318.3	90	DO/HVF	229/4204
MARCHEN MAERSK	985	4SA	6	8973			UNK	
MARIT MAERSK	1042	2SA	10	53565			DO/HVF	
MAYVEW MAEDOK	1082	2SA	10	53565			DO/HVF	
MCKINNEY MAEDOK	1138	2SA	12	51920			UNK	
METTE MAERSK	1141	2SA	12	51920			UNK	
MING PLEASURE	1189	2SA	10	53565			DO/HVF	
	1402	2SA	8	23690	287.2	82.5	DO/HVF	342/4519
NEPTUNE ACE	1402	2 25A	8 EACH	50881	293.3	173.5	DO/HVF	2049/8947
OMI COLOMBIA	1420	25A	6	10370			DO/HVF	223/1773
OOCL FAITH	1630	2SA	8	27300	292.0	93.5	HVF	7437
OOCL FORTLINE	1640	2SA	9	29810			UNK	
OVERSEAS INYCE	1640	25A	9	29610			UNK	
PACDUKE	1090	2SA	6	13150			UNK	
PACIFIC PINTAI		25A		11550	334.8	34.5	DO/HVF	168/290
PRESIDENT KENNEDY	215	245A	6 EACH	4080	240.0	17	DO/HVF	877/1203
PRESIDENT LINCOLN	215	V 25A	12	56960	373.5	152.5	DO/HVF	332/332
PRESIDENT WASHINGT	215	25A	12	46200			DO/HVF	295/5296
PRINCE OF OCEAN	210	2SA	12	43200			DO/HVF	295/5296
SEALAND DEFENDER		2SA		12600			UNK	
SEALAND ANCHORAGE	637	2SA	91	30150	396.7	76	DO/HVF	615/3478
SEALAND DEVELOPER	037	2SA	7	20286	294.0	69	DO/HVF	466/2012
SEALAND ENDURANCE	637	2SA	9	30150	396.7	76	DO/HVF	615/3478
SEALAND EXPLORED		2 SA	9	30150	396.7	76	DO/HVF	615/3478
SEALAND TACOMA	630	2 SA		30150	396.7	76	DO/HVF	615/3478
SHIRAOI MARU	760	2 SA		20286	294.0	69	DO/HVF	466/2012
SKAUBRYN	709	25A	- 6	11219	284.0	39.5	DO/HVF	270/3790
SOLAR WING	001	25A		15200	298.0	51	DO/HVF	442/3503
STAR GRIP	000	25A		12410	322.3	38.5	UNK	100
TAI SHING	959	25A	6	10120			UNK	
RITON HIGHWAY	1100	2SA	7	11200			DO	2291
FRA ACORDE	1325	2SA	8	11900			UNK	
VESTWOOD ANETTE	1444	2SA	6	6900			UNK	
IM ITALIA	1562	2SA	6	10980			UNK	
	1/18	2SA	8	29440	368.0	80	DO/HVF	594/4406
	HHEBREAK H	ORSEPOWER	8 D	O=BURNING	DIESEL OIL			
ME-SINGLE ACTING. THE N	NUMBER PREI	FIXED INDICA	TESE THE S	TROKE CYCL	.E			
VE-FILLED FOR BURNING	HIGH VISCOS	SITY FUEL			VN			

WEATHER REPORTINGRATIO OF FUEL/TRANSIT SPEEDTONNAGE POWER xRATIO OF POWER xYEAR POWER xSHIPDIESEL VESSELSSPEED(KNOTS)(TONS)FUEL USEBUILTTYPEALDEN W CLAUSEN.2.415237090.41981TANKERALLIGATOR COLUMBUS21.9411441991CONTAINERALLIGATOR LIBERTY.22.05421211986CONTAINERAMBASSADOR BRIDGE4.022.5422592.61986CONTAINERANADYR.20.1341511988ROROAXEL MAERSK334001975CONTAINERBT NESTOR.334001975CONTAINER22416681986CONTAINERCALIFORNIA JUPITER.22416681986CONTAINERCALIFORNIA ZUES3.721.5396782.21986CONTAINERCALIFORNIA ZUES3.721.5396782.21986CONTAINERCHESAPEAKE TRADER14.5246991982TANKERCHEVRON COLORADO3.715169410.71976TANKERCONTAINERCOURIER.2.615.75215720.61977TANKERCOURIER.2.615.75215720.61977TANKER	
NEPORTING FUEL/ SPEED SPEED (KNOTS) POWER x FUEL USE BUILT TYPE ALDEN W CLAUSEN 2.4 15 23709 0.4 1981 TANKER ALLIGATOR COLUMBUS 21.9 41144 1991 CONTAINER ALLIGATOR CUBBUS 21.9 41144 1991 CONTAINER ALLIGATOR LIBERTY 22.05 42121 1986 CONTAINER AMBASSADOR BRIDGE 4.0 22.5 42259 2.6 1986 CONTAINER AXEL MAERSK 20.1 34151 1988 RORO 34300 1975 CONTAINER BT NESTOR 386376 1979 TANKER 20.1 34151 1988 CONTAINER CALIFORNIA JUPITER 22 41668 1986 CONTAINER CALIFORNIA ZUES 3.7 21.5 39678 2.2 1986 CONTAINER CHEVRON COLORADO 3.7 15 16941 0.7 1976 TANKER CHEVRON COLORADO 3.7 15 16941 </td <td></td>	
DIESEL VESSELS SPEED (KNOTS) (TONS) FUEL USE BUIL T TYPE ALDEN W CLAUSEN 2.4 15 23709 0.4 1981 TANKER ALLIGATOR COLUMBUS 21.9 41144 1991 CONTAINER ALLIGATOR LIBERTY 22.05 42121 1986 CONTAINER AMBASSADOR BRIDGE 4.0 22.5 42259 2.6 1986 CONTAINER ANADVR 20.1 34151 1988 RORO 34300 1975 CONTAINER AXEL MAERSK 20.1 34151 1988 RORO 2.4 1975 CONTAINER GALIFORNIA JUPITER 22 41668 1986 CONTAINER CALIFORNIA JUPITER 2.2 1986 CONTAINER CALIFORNIA ZUES 3.7 21.5 39678 2.2 1986 CONTAINER CHESAPEAKE TRADER 14.5 24699 1982 TANKER CHEVRON COLORADO 3.7 15 16941 0.7 1976 TANKER <td></td>	
ALDEN W CLAUSEN 2.4 15 23709 0.4 1981 TANKER ALLIGATOR COLUMBUS 21.9 41144 1991 CONTAINER ALLIGATOR COLUMBUS 21.9 41144 1991 CONTAINER ALLIGATOR COLUMBUS 21.9 41144 1991 CONTAINER AMBASSADOR BRIDGE 4.0 22.5 42259 2.6 1986 CONTAINER ANADYR 20.1 34151 1988 RORO AXEL MAERSK 36376 1975 CONTAINER BT NESTOR 36376 1979 TANKER CALIFORNIA JUPITER 22 41668 1986 CONTAINER CALIFORNIA JUPITER 22 41168 1986 CONTAINER CALIFORNIA ZUES 3.7 21.5 39678 2.2 1986 CONTAINER CALIFORNIA ZUES 3.7 21.5 39678 2.2 1986 CONTAINER CHESAPEAKE TRADER 14.5 24699 1982 TANKER CHESAPEAKE TRADER 14.5 24699 1982	
ALLIGATOR COLUMBUS 21.9 41144 1981 TARKER ALLIGATOR COLUMBUS 21.9 41144 1991 CONTAINER ALLIGATOR LIBERTY 22.05 42121 1986 CONTAINER AMBASSADOR BRIDGE 4.0 22.5 42259 2.6 1986 CONTAINER ANADYR 20.1 34151 1988 RORO AXEL MAERSK 33400 1975 CONTAINER AXEL MAERSK 33400 1975 CONTAINER 36376 1979 TANKER CALIFORNIA JUPITER 22 41168 1986 CONTAINER CALIFORNIA JUPITER 22 41110 2.9 1987 CONTAINER CALIFORNIA ZUES 3.7 21.5 39678 2.2 1986 CONTAINER CHESAPEAKE TRADER 14.5 24699 1982 TANKER CHESAPEAKE TRADER 14.5 24699 1982 TANKER CHEVRON COLORADO 3.7 15 16941 0.7 1976 TANKER	
ALLIGATOR LIBERTY 22.05 42121 1991 CONTAINER AMBASSADOR BRIDGE 4.0 22.5 42259 2.6 1986 CONTAINER ANADYR 20.1 34151 1988 RORO 1986 CONTAINER AXEL MAERSK 20.1 34151 1988 RORO 1975 CONTAINER BT NESTOR 33400 1975 CONTAINER 241668 1986 CONTAINER CALIFORNIA JUPITER 22 41668 1986 CONTAINER CALIFORNIA JUPITER 22 41110 2.9 1987 CONTAINER CALIFORNIA JUPITER 22 41110 2.9 1986 CONTAINER CALIFORNIA ZUES 3.7 21.5 39678 2.2 1986 CONTAINER CHESAPEAKE TRADER 14.5 24699 1982 TANKER CONTAINER CHEVRON COLORADO 3.7 15 16941 0.7 1976 TANKER CONTSHIP AUSTRALIA 2.5 17.7 16336 0.4 1991 CONTAINER COURIER 2.6 15.75 21572 0.6 1977 TANKER	
AMBASSADOR BRIDGE 4.0 22.5 42259 2.6 1986 CONTAINER ANADYR 20.1 34151 1988 RORO 1975 CONTAINER AXEL MAERSK 3000 1975 CONTAINER 1975 CONTAINER AXEL MAERSK 33400 1975 CONTAINER BT NESTOR 36376 1979 TAINKER CALIFORNIA JUPITER 22 41668 1986 CONTAINER CALIFORNIA JUPITER 22 41668 1986 CONTAINER CALIFORNIA ZUES 3.7 21.5 39678 2.2 1986 CONTAINER CHESAPEAKE TRADER 14.5 24699 1982 TANKER CHEVRON COLORADO 3.7 15 16941 0.7 1976 TANKER CONTSHIP AUSTRALIA 2.5 17.7 16336 0.4 1991 CONTAINER COURIER 2.6 15.75 21572 0.6 1977 TANKER	
ANADYR 201 34151 1986 CONTAINER AXEL MAERSK 34151 1988 RORO BT NESTOR 33400 1975 CONTAINER BT NESTOR 36376 1979 TANKER CALIFORNIA JUPITER 22 41668 1986 CONTAINER CALIFORNIA JUPITER 22 41668 1986 CONTAINER CALIFORNIA JUPITER 22 41668 1986 CONTAINER CALIFORNIA JUPITER 22 4110 2.9 1987 CONTAINER CALIFORNIA ZUES 3.7 21.5 39678 2.2 1986 CONTAINER CHESAPEAKE TRADER 14.5 24699 1982 TANKER CHEVRON COLORADO 3.7 15 16941 0.7 1976 TANKER CONTSHIP AUSTRALIA 2.5 17.7 16336 0.4 1991 CONTAINER COURIER 2.6 15.75 21572 0.6 1977 TANKER	
AXEL MAERSK 20.1 34151 1988 [RORO BT NESTOR 33400 1975 CONTAINER CALIFORNIA JUPITER 22 41668 1979 TANKER CALIFORNIA JUPITER 22 41668 1986 [CONTAINER] CALIFORNIA LUNA 4.5 22 4110 2.9 1986 [CONTAINER] CALIFORNIA ZUES 3.7 21.5 39678 2.2 1986 [CONTAINER] CHESAPEAKE TRADER 14.5 24699 1982 [TANKER] CHEVRON COLORADO 3.7 15 16941 0.7 1976 [TANKER] CONTSHIP AUSTRALIA 2.5 17.7 16336 0.4 1991 [CONTAINER] DIRECT KEA 3.0 15.75 21572 0.6 1977 [TANKER]	
BT NESTOR 33400 1975 [CONTAINER] CALIFORNIA JUPITER 36376 1979 [TANKER] CALIFORNIA LUNA 4.5 22 41668 1986 CONTAINER CALIFORNIA ZUES 3.7 21.5 39678 2.2 1986 CONTAINER CALIFORNIA ZUES 3.7 21.5 39678 2.2 1986 CONTAINER CHESAPEAKE TRADER 14.5 24699 1982 TANKER CHEVRON COLORADO 3.7 15 16941 0.7 1976 TANKER CONTSHIP AUSTRALIA 2.5 17.7 16336 0.4 1991 CONTAINER DIRECT KEA 3.0 40 71572 0.6 1977 TANKER	
CALIFORNIA JUPITER 36376 1979 TANKER CALIFORNIA LUNA 4.5 22 41668 1986 CONTAINER CALIFORNIA ZUES 3.7 21.5 39678 2.2 1987 CONTAINER CHESAPEAKE TRADER 14.5 24699 1982 CONTAINER CHESAPEAKE TRADER 14.5 24699 1982 TANKER CHEVRON COLORADO 3.7 15 16941 0.7 1976 TANKER CONTSHIP AUSTRALIA 2.5 17.7 16336 0.4 1991 CONTAINER DIRECT KEA 2.0 15.75 21572 0.6 1977 TANKER	
CALIFORNIA LUNA 4.5 22 41668 1986 CONTAINER CALIFORNIA ZUES 3.7 21.5 39678 2.2 1987 CONTAINER CHESAPEAKE TRADER 14.5 24699 1982 TANKER CHEVRON COLORADO 3.7 15 16941 0.7 1976 TANKER CONTSHIP AUSTRALIA 2.5 17.7 16336 0.4 1991 CONTAINER DIRECT KEA 3.0 41 575 21572 0.6 1977 TANKER	
CALIFORNIA ZUES 4.3 22 41110 2.9 1987 CONTAINER CHESAPEAKE TRADER 3.7 21.5 39678 2.2 1986 CONTAINER CHESAPEAKE TRADER 14.5 24699 1982 TANKER CHEVRON COLORADO 3.7 15 16941 0.7 1976 TANKER CONTSHIP AUSTRALIA 2.5 17.7 16336 0.4 1991 CONTAINER COURIER 2.6 15.75 21572 0.6 1977 TANKER	
CHESAPEAKE TRADER 3.7 21.5 39678 2.2 1986 CONTAINER CHEVRON COLORADO 3.7 14.5 24699 1982 TANKER CONTSHIP AUSTRALIA 2.5 17.7 16336 0.4 1991 CONTAINER COURIER 2.6 15.75 21572 0.6 1977 TANKER	
CHEVRON COLORADO 3.7 14.5 24699 1982 TANKER CONTSHIP AUSTRALIA 2.5 17.7 16336 0.4 1991 CONTAINER COURIER 2.6 15.75 21572 0.6 1977 TANKER	
CONTSHIP AUSTRALIA 2.5 17.7 16941 0.7 1976 TANKER CONTSHIP AUSTRALIA 2.5 17.7 16336 0.4 1991 CONTAINER COURIER 2.6 15.75 21572 0.6 1977 TANKER	
COURIER 2.6 17.7 16336 0.4 1991 CONTAINER DIRECT KEA 2.6 15.75 21572 0.6 1977 TANKER	
DIRECT KEA 2.6 15.75 21572 0.6 1977 TANKER	
DIRECT REA 30 40 PROV	
CI/CD 0100000000000000000000000000000000000	
EVER GARDEN 3.6 20.5 37023 1.6 1984 CONTAINER	
EVER LEVEL 21 24804 1989 CONTAINER	
GEORGIA RAINBOW II 14 17590 1980 CONTAINER	
GREEN LAKE 18 25 46950	
GUS W DARNELL 16 5 10037	
HEIDELBERG EXPRESS 44 20 5 2000 19037 1985 TANKER	
KENNETH E HILL 4.2 16.75 29939 2.3 1989 CONTAINER	
KENNETH T. DEER 24 10.75 43428 1.4 1979 TANKER	
LOK PRAKASH 24 15 21582 0.4 1982 TANKER	
MACKINAC BRIDGE 2.0 16 16835 0.3 1989 BULK	
MACIC 4.0 22.4 42414 2.6 1986 CONTAINER	
20 5103 1990 REFER C	
MARCHEN MAERSK 23 52191 1988 CONTAINED	
MARIT MAERSK 23 52191 1988 CONTAINER	
MAYVIEW MAERSK 24 52181 1901 CONTAINER	
MCKINNEY MAERSK 24 52181 1991 CONTAINER	
METTE MAERSK 23 52191 1080 CONTAINER	
MING PLEASURE 4.0 20.5 40464 2.0 1983 CONTAINER	
NEDLLYOD DEJIMA 6.8 25.5 57327 8.8 1987 CONTAINER	
NEPTUNE ACE 17.75 44979	
OMI COLOMBIA 5.8 16 67856 2.0 1985 RORO	
OOCL FAITH 21.5 40990	
OOCL FORTUNE 21.5 40078 1985 CONTAINER	
OVERSEAS JOYCE 18.5 40017 1985 CONTAINER	
PACDUKE 24 145 4007 1987 RORO	
PACIFIC PINTAIL 13 13 13 13 13 13 13 13 13 13 13 13 13	
PRESIDENT KENNEDY 62 010 011 1987 NUC FUEL	
PRESIDENT LINCOLN 0.0 24.3 61926 8.7 1988 CONTAINER	
PRESIDENT WASHINGT 23.25 40627 1982 CONTAINER	
PRINCE OF OCEAN 23.25 40627 1983 CONTAINER	
15.5 36686 1991 WOOD CHIP	
SEALAND DEFENDER 3.5 22 32629 2.3 1980 CONTAINER	
SEALAND ANCHORAGE 3.5 20 20965 1.4 1987 CONTAINER	
SEALAND DEVELOPER 3.5 22 32629 2.3 1980 CONTAINER	
SEALAND ENDURANCE 3.5 22 32629 2.3 1980 CONTAINER	
SEALAND EXPLORER 3.5 22 32629 2.3 1980 CONTAINER	
SEALAND TACOMA 3.5 20 20965 2.3 1960 CONTAINER	
SHIRAOI MARU 3.0 13 77454 0.4 1987 CONTAINER	
SKAUBRYN 3.5 14.5 10305 0.4 1986 BULK CONT	
SOLAR WING 2.0 19 44004	
STAR GRIP 18 25 0741604 0.5 1988 VEHICLE	
AI SHING 10.20 27192 1986 BULK	
RITON HIGHWAY 15 BULK	
20.8 45783 1987 RORO	
VESTWOOD ANETTE 15788 1985 BULK	1
VESTWOOD ANETTE 15788 1985 BULK IM ITALIA 15 28805 1987 BULK	———

APPENDIX C. OPERATING PARAMETERS FOR WEATHER REPORTING 'RANDOM' DIESEL VESSELS

LIST OF REFERENCES

- Brown, A., 1995: Temporal Effects of Shiptracks on Clouds. M.S. Thesis, Naval Postgraduate School, Monterey, CA, 122pp.
- Chartier, R.E., 1995: Composite Shiptrack Characteristics. M.S. Thesis, Naval Postgraduate School, Monterey, CA, 75pp.
- Coakley, J.A. Jr., R.L. Bernstein and P.A. Durkee, 1987: Effect of Ship-Stack Effluents On Cloud Reflectivity. Science, 237, 1020-1022.
- Conover, J.H., 1966: Anomalous Cloud Lines. J. Atmos. Sci., 23, 778-785.
- Lloyd's Register, 1992: Register of Ships, 1992-93. Vol. A-G, Lloyd's Register of Shipping, London, 1654pp.
- Lloyd's Register, 1992: Register of Ships, 1992-93. Vol. H-O, Lloyd's Register of Shipping, London, 1695pp.
- Lloyd's Register, 1992: Register of Ships, 1992-93. Vol. P-Z, Lloyd's Register of Shipping, London, 1953pp.
- Porch, W.M., C.J. Kao, and R.G. Kelley, 1990: Ship Trails and Ship Induced Cloud Dynamics. Atmos. Enivron., 24A, 1051-1059.
- Radke, L.F., J.A. Coakley, Jr. and M.D. King, 1989: Direct and Remote Sensing Observations of the Effects of Ships on Clouds. Science, 246, 1146-1149.
- Rogerson, S.D., 1995: Implications of Shiptracks on Ship Surveillance. M.S. Thesis, Naval Postgraduate School, Monterey, CA, 57pp.
- Trehubenko, E.J., 1994: Shiptracks in the California Stratus Region: Dependency on Marine Atmospheric Boundary Layer Depth. M.S. Thesis, Naval Postgraduate School, Monterey, CA, 57pp.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center	2
2.	Dudley Knox Library	2
3.	Chairman, Code MR	4
4.	Professor Philip A. Durkee (Code MR/DE) Department of Meteorology Naval Postgraduate School Monterey, CA 93943-5002	4
5.	LCDR Scott D. Katz	2