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ANTENNAS AND PROPAGATION 

UDC 621.396.96'06 

ALLOWANCE FOR ANTENNA ERROR IN DETERMINING RADAR TARGET SCATTERING MATRIX 

Kiev IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: RADIOELEKTRONIKA in Russian 
Vol 26 No 3, Mar 83 (manuscript received after revision 10 Mar 82) pp 74-75 

[Article by B.A. Atayants and V.V. Yezerskiy] 

[Text]  The target scattering matrix [1] 

°11   °12 

o21  S22 
(1) 

in any polarization basis 

ei=e(VV e* :e(apb+n/2'-V' (2) 

where TJJ  and T , — basis angle of orientation and ellipticity, 
PD     Pb 

respectively — is done with antennas having two orthogonal polarizations 
which coincide with the unit vectors of the basis (2).  However, because 
of the finite accuracy with which antennas are fabricated their actual 
polarization differs from the required figure.  It is important to investigate 
the connection between discrepancies in measurements and discrepancies in 
the polarization parameters of the antennas, and to find a method to allow 

for errors. 

The voltage at the input of the receiving antenna can be found from the 

formula [2] 

V = ASB, 
(3) 

where the ~ designates transposition, and the column matrices A and B 
describe the receiving and transmitting antennas.  The elements of matrices 



A and B are the projections of the radio wave formed by the antennas in the 
radiating mode onto the unit vectors e, and e„ of polarization basis (2). 

In the general case the errors in the antenna orientation and ellipticity 
angles differ for different polarizations. We shall designate the actual 
antenna polarizations (^, T^), (^, T^), OJ^, TJ) and (^, TJ) , respectively, 

for the receiving and transmitting antennas.  Then 

^'A = y'A-%h, ^'A = *'A~TpbMA = %~\h-
n/2<    to"A = X

"A + T
pb , 

<M>B = y'B-%b> AX
'B =>*B-

T
pb, A'iß = *a-^pb-n'2'   AT

"S = T
"B + Tpb ' (4) 

Knowing the results of measuring the voltage at the output of the receiving 
antenna V,,, ^i?' ^?? ^or t*ie t^iVee  different antenna polarization 

combinations, we can obfain from (3) the following system of equations with 
respect to the unknown S.... , S1?, S„„ (assuming S-.?=S„..): 

^i=KKKi+<«ft+a2bi) ^i2+«2*^22.  ^12 = KKKt + ^1*2 + «$) 'Sa+°>2S
22,' 

^22 = ty'Al + ("1*2 + alK) Kl + <#&.,. 

The coefficients of S...., S  and S . of this system can be found by 

using the unitary matrix obtained in [3] to calculate the transformations 
of the elements of column matrices A and B: 

a'x = cos A^ cos AT^, + / sin kty'A sin (2T    4- At^),       a'2 = sin A^ cos (2T    + AT^) — 

— / cos Aty'A sin Ax'A, al— — sin Ai])^, cos (AT^ — 2T A A- j cos AtyA sin AT4, 

a2 = cos A^ cos AT^ + / sin Aijj'^ sin (AT^ — 2TLO, 

b', b', b", b" are described by analogy with (6), substituting the 

subscript B for A. 

By solving (5) for the unknowns S^, S „, S „, we obtain the following 

in general form: 



c     — X    V   4-Y    V   4-7    V 

k, n = 1,2, Xhn = (- l)k+nbl_kbl_„/Ub[b"2 - bfy (a'j>l - a2b\)\y 

where 

These expressions are not valid when the determinant of system of equations 
(5) is zero, which can occur in one of these three situations: 

a[a2 — a'2a\ = 0,   b[b"2 — b'2'b'[ =0,   a\b"2 — aj>\ = °- ^ 

It is easy to demonstrate that one of these conditions can be satisfied 
in accordance with one of these practical cases: 1) T'A

=T
"\

=
±?

{
5°, i.e., 

both polarizations of the receiving antenna are circular and coincide; 
2) T1 =T" =+45°, i.e., both polarizations of the transmitting antenna are 

B  B •      • 
is circular and coincide; 3)T'A=T'B=+45° or x"A= T'B=+45°, i.e., V±2  or Vn 

measured with the receiving and transmitting antennas having coinciding 
circular polarizations. 

It is clear that these situations contradict the original statement of 
the problem of measuring the scattering matrix by antennas with different 
polarizations, and indicate that two of the three equations in system (5) 
become linearly dependent.  Therefore, it is impossible for conditions (9) 
to be satisfied in practice. 

Expressions(7) and (8) thus make it possibly to_^calculate the scattering 
matrix elements in any polarization basis (e^ e.^)  by the results of three 

measurements of the complex voltages by antennas with polarizations which 
are different from those required. 

Let us look at three cases which are of practical importance. 

1.  Ai|>' =AiK'A,  AT'A= -AT"A, A^'B=Af'B, Ax'B= -AT"B, i.e., the antenna 

errors are the same for both polarizations and differ for the receiving 



and transmitting antennas.  It then follows from (5) that 

(10) a, =a„ a2 = — ax,        6, =&2,   62 = —Ö. 

where *  designates complex conjugation. 

2. Alp' =A^' , AIJJ" =ATJ;" , AT' =AT'  AT" =AT", i.e., the same antenna is 

used for receiving and transmitting.  Then 

a[=b[, a2 = b'2,        fli = ij",   a2='b"2. (11) 

3. Aip' =A^" =A^' =Ax" , AT' = -AT" =Ax' = -Ax"B , i.e., the conditions 

of the first two cases are satisfied, which yields 

(12) a\ = b[ = a2 = b2, a2 = b2=—a1=- — b 

Consequently, the linear relationship (7) holds between the measurements 

of V .., V1?, V„„ and the scattering matrix elements S..., S „, S^  in the 

polarization basis (e , e2).  The coefficients which enter into expressions 

(7) are in general functions of the eight complex numbers ä' , ä' , ä" , k"^ 

b' , b'9, b" , b"? (8), and they are expressed through the antenna polarization 

parameter errors (6). 

Expressions (8) can be simplified in certain cases by reducing the number of 
unknown variables to four (10), (11), or even to two (12). 

Obviously, these findings allow the a priori known measurement antenna 
parameters i|>'A, T'A> f[k,  T'^, Vß, ^T'ß, ^"B, T

M
ß and the results of the 

three measurements of V  , V  and V „ to calculate the elements of the 

scattering matrix in any polarization basis. 

This analysis.is valid for single-position radar location, i.e., when the 
equality S =S  is satisfied.  Violation of this condition makes it 

necessary to make four measurements of V.... , V _, V21 and V^  for the four 

combinations of polarizations of the receiving and transmitting antennas 
and, accoringly, to solve a system of four linear equations instead of (5). 



The final expression for the sought S   will contain four terms, rather 
than the three in (7). 
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COMMUNICATIONS 

UDC 621.391.8 

CROSS SPECTRAL-CORRELATION PROCESSING OF SIGNALS IN DIFFERENT ORTHOGONAL 

BASES 

Kiev IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: RADIOELEKTRONIKA in Russian 
Vol 26^.6 3, Mar 83 (manuscript received after revision 28 Apr 82) pp 3-7 

[Article by N.V. Bebikh and A.I. Denisov] 

[Text]  This study investigates aspects of cross spectral- 
correlation transformations in different orthogonal bases. 
A method is examined for computing the correlation function 
by the method of spectral-correlation transformation and of 
computing the spectra and correlation functions of certain 
signals; the structural diagram of a spectral-correlation 
converter is presented as well. 

Systems of non-sinusoidal functions have recently been used effectively in 
modern radio electronics.  These include systems of Walsh, Haar and other 
functions which are convenient for digital processing by computer, as well- 
as systems of Laguerre, Hermite and Karunen-Loew functions for investigating 
transient attenuating processes, etc.  The choice of a system of basis 
functions is determined by the mean square approximation error, the amount of 
computational labor involved, the noise tolerance of the system of basis 
functions and the ease of hardware implementation.  In order to provide an 
operational analysis of signals under study in the most suitable orthogonal 
basis it is helpful to have the capability to switch quickly between different 
systems of basis functions. 

The connection between spectral coefficients in two different systems of 
functions is demonstrated in general form in [1]. 

Let us represent the investigated signal by a Walsh series and^efine the 
Walsh-Fourier cross-transition matrix [M^]:' [M^l/NtSpMW] , where 

fs ] — matrix of partial sums of trigonometric functions; [W]  — transposed 
F 

Walsh matrix, with dimension NxN, N=2n, where n — order of system of Walsh 
functions. 

The elements of matrix [S_] are determined by the following formulas:  for 
r 

the odd matrix rows 



2. JOT 

5    --L      f 
2 JOTJ/W 

sin kxdx, 

2lt(m—1)/JV 

where k=l,2,..., N/2 — number of odd row in matrix; for even matrix rows 

Snm/N 

§,„, = ■—  \  cos Ixdx,' lm      2n      J 
2ji(m-l)/AT 

where k=l,2  N/2 — number of odd row of matrix; £=1,2,..., N/2 -- number 
of even row of matrix; m=l,2,..., N — number of matrix column; N=2n — 
number of digitization intervals. 

The Fourier spectrum of the signal in question can then be computed by the 
formula 

aFj = ^ amMij, 
t=i 

where a . — spectral Fourier coefficient; a^±  — spectral Walsh coefficient; 

M  — Walsh-Fourier cross-transition coefficients; or, in matrix form, [A^ = 
ij 

= [ML ]x[yL], where [A ] — column vector of spectral Fourier coefficient; 

[iLj — column vector of spectral Walsh coefficient; [M^,] — Walsh-Fourier 

cross-transition matrix. 

The number of operations required to make the cross transition between 
spectral Walsh and Fourier coefficients can be defined by the recursive 
formula 



where n=l,2,... — order of system of Walsh functions; N=2 —number of 
spectral coefficients. 

The Walsh-Haar cross-transition matrix [M^J and Harr-Fourier matrix [M^] 
can be calculated analogously: 

[MWH] = \IN [SH] X [Wf, [MHF] = UN [SF] X [Hf, 

— T 
where [Su] — matrix of partial sums of Harr functions; [H]  — transpose 

H 
of normalized Haar functions matrix, with dimension NxN. 

The number of operations required for the Walsh-Haar cross transition can 
be calculated by the formula 

n 
~.n—1 tnn 

L,ra-i + 22  (2"-1}- 

The number of operations for the Haar-Fourier cross transition is defined 
as LHF=2(Ln_1-l)+(2

n-1-l)(2n+i-l), n=2,3..., for n=l, 1^=1. 

The total number of operations required to compute the spectral coefficients 
in Walsh, Fourier and Haar bases with the help of the cross-transition 
matrices [M^,] and [M^] will be: LtQt =L1+L2+L3+L4, where L1=2

n — 

computation of partial sums of signal xn question; L2=n2
n — calculation of 

Walsh coefficients with help of fast Walsh transform; L3=LW — calculation 

of Fourier coefficients with help of Walsh-Fourier cross transition matrix; 
L =L  — calculation of Haar coefficients with help of Walsh-Haar 
4 WH 
transition matrix.  For N=16 L _ =16+64+71+156=307. 

totw 
When a system of Haar functions is used as the initial system, the total 
number of calculations will be L ^ =L,+L0+LQ+L., where L =2

n — calculation 
tot   1  Z  o  4 J- 

rl 
of partial sums of signal in question; L2=2(2

n-1) -- calculation of Haar 

spectrum with help of fast Haar transform; Lo=LHW — calculation of Walsh 

coefficients with help of matrix [L]; L4=LHF — calculation of Fourier 

coefficients by matrix.  For N=16 L ^ =16+30+71+329=446. 
t0tH 

If the spectral coefficients are calculated in Walsh, Fourier or Haar 
bases without using cross transition matrices and with the help of fast 



transforms, the total number of operations will be Ltot
_Li+L2+L3+L4' where 

L =2n — calculation of partial sums of signal in question; L„-n2 — 
1 *• 
calculation of Fourier coefficients with help of FFT algorithm (number of 
complex multiplications followed by addition and subtraction); L3=n2 — 

calculation of Walsh coefficients with help of fast Walsh transform (number 
of additions and subtractions); L4=2(2

n-1) — calculation of Haar 

coefficients with help of fast Haar transform (number of additions and 
subtractions). 

The use of cross transition matrices to calculate spectra in different 
bases reduces the amount of computation, with the greatest gain being 
achieved when a system of Walsh functions is employed as the initial basis 
system.  When implementing the device in hardware, in order to determine 
the spectral coefficients in different orthogonal bases it is best (in terms 
of hardware costs) to determine the spectral coefficients in one basis 
(e.g., a Walsh function basis), and then to switch to other function bases 
with the help of cross-transition matrices, which will consist of weighted 
resistance units and adders in terms of hardware. 

Figure 1 shows the structural diagram of the spectrum converter.  The 
spectral coefficients from the output of Walsh spectrum analyzer 1 are 
input to the inputs of the weight coefficient units — Fourier 3, Haar 4 
and Laguerre 5, the outputs of which are connected to switch 7.  A signal 
from control system 8 causes the switch to connect the proper weight 
coefficient unit to adder unit 9, which outputs the spectral coefficients 
in the proper orthogonal basis in parallel.  Converter 10 is used to obtain 
the serial spectrum. 

This device permits spectral-correlation conversion of signals.  In order 
to do this, synthesized signal distribution unit 2 and multiplier unit 6 
must also be used.  The correlation function K(T) in this case is computed 
as follows: 

N 

/C(T) = 2S^+m' 
m=0 

where m=0,l,2,..., N-l; j=l,2,3,...,N; Sj — value of synthesized signal in 

digitization interval; x=m/N — shift parameter. 

Since Walsh functions are piecewise constant over the digitization interval 
1/N, it is sufficient to determine the values of the correlation function 



at m/N points, assuming the changes between those points to be linear [2]. 
Distribution unit 2 connects to the inputs of multipliers 6 the required 
values of the synthesized signal, which are known in each digitization 
interval, as a function of the value of the shift parameter T.  The order 
of the switching is assigned by converter control system 8.  With this method 
of obtaining the correlation functions there is no need to provide a time 
offset T between the multiplied signals (like in ordinary correlators, where, 
e.g. frequency-dependent delay lines are used for this).  In the present case 
the time offset is assigned by simply changing the combination of pairs of 
factors from the values of the synthesized signal known in each digitization 
interval. 

When implementing spectral-correlation transformations by computer, it is 
best to represent the expression for the correlation function as follows: 

T N N T 

**» w=f-\x {t) yv+%)dt=rYjaj Süi \Wal (/'t} Wal {i'f + T) di' 
0 /=1     i=l    0 

where a — spectral coefficients of expansion of signal x(t) into Walsh 
l 

series; a. — spectral coefficients of expanding the signal y(t) into a 

Walsh series. 

The internal integral represents the cross-correlation function of the 
actual Walsh functions JV,(T), and is independent of the type of signals 

being investigated; therefore, it can be calculated in advance for 
different values of x. 

Then the expression for the correlation function can be obtained in this 
form: 

If we have the pre-calculated matrices [K^(T)] for various values of T 

and the column vectors of the spectral coefficients of the signals in 
question [A.], [A.], we can calculate the correlation function by the 

matrix method in accordance with this algorithm: 

1. Calculation of column vector of inner sum: [o.(T)]=[Kw(Ti>JxtA^]. 

2. Formation of auxiliary matrix [a(x)] 

1Q 



[CT(T)] = 

ffiW    o-2(
Ti) ••■crj(Ti)    I 

.MO MTm) ...<Tj(tm) 

where j=l,2,...,N — number of matrix row; m=l,2,...,N — number of matrix 
column. 

m 

d 

V17 TT.3 ~I0 

2 -Tpr 8  

out 

Fig. 1 

/ 

N 
II 

1      _ 
/f 

\ f\ 

/ 

e) 

3.  Determination of correlation function matrix 

[/C(t)] = [a(T)]X[^l- 

In the present case the matrices [K^(T)] are calculated directly during 

computation of the correlation function; the intermediate results of 
computing [K^(T)] for different values of T are not stored in memory, but 

are used immediately to calculate the current values of the inner sums of 
[cr.(x)], and each subsequent matrix [K^(x)'] is written in the location of 

the preceding one, which reduces the computer memory size. 

11 



A program for calculating the correlation function by the spectral- 
correlation transformation method has been written in "Assembler-BASS" 
language and has been implemented on an "Elektronika NTs03-T" microcomputer 
for N=16.  A standard matrix multiplication program and matrix row 
calculation subprogram were employed. 

The results of calculating the spectral-correlation characteristics of 
some functions in Walsh, Haar and Fourier bases are shown in the form of 
time diagrams in Fig. 2, where S(t) — investigated signal; a^,   aR, ap — 

Walsh, Haar and Fourier spectra, respectively; S'(t) — synthesized signal; 
K(T) — correlation function. 

Analysis of the findings makes it possible to assess the effectiveness of 
using a particular function basis for signal processing (by minimum mean 
square error, number of non-zero expansion coefficients, correlation 
coefficient, etc.,)i.e., it permits adaptation to the signals being 
investigated.  This increases the effectiveness of quick analysis of 
complex signals and of synthesizing optimal correcting and control effects 
in automatic information processing and control systems. 
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UDC 621.391.2 

POWER SPECTRUM COMPUTATION ALGORITHMS FOR PULSED RANDOM PROCESSES 

Kiev IZVESITYA VYSSHIKH UCHEBNYKH ZAVEDENIY: RADIOELEKTRONIKA in Russian 
Vol 26 No 3, Mar 83 (manuscript received after revision 14 Jun 82) pp 7-12 

[Article by T.G. Pletneva, G.N. Rozorinov and S.D. Eydel'man] 

[Text]  This study solves the problem of computing the 
power spectrum of a pulsed random process with determinate 
timing intervals in finite closed form. A computer program 
is described for calculating the power spectra of signals 
controlled by a regular Markov chain.  A decomposition 
method is proposed which can be used to compute the spectra 
of digital signals formed from packets of varying length. 

Two-level digital signals with an assigned timing frequency are employed 
widely in modern communications, hydro-acoustic and computer equipment [1]. 

When deciding which of the existing digital signals is most suitable for 
effective transmission through a given propagation medium, it is important 
to be able to find the power spectrum of the signal.  Knowledge of the 
power spectrum makes it possible to determine the amount of influence 
between bits within symbols. 

The limited bandwidth of a real data transmission channel causes the 
occurrence of high frequency and low frequency signal distortions.  These 
distortions can be reduced by selecting signals which have the desired 
spectrum shape [2], 

Two-level digital signals, which are mappings of fixed-length binary 
sequences (block codes), have attracted a great deal of attention 
recently in digital data transmission tasks.  Each symbol in the input 
binary sequence is transmitted by a pulse with duration T, or by a 
group of pulses (a "packet").  In this case the sequence of states S^ 

of the digital signal is modeled well by a process controlled by a 
finite ergodic Markov chain [3].  Signals formed from "packets" of 
different lengths are also important for practical purposes.  The study 
[3] solves the problem of computing the power spectra of signals formed 
from "packets" of the same length which are used, e.g., in digital magnetic 
recording technology. 

13 



The present study proposes a method for solving the problem of calculating 
the power spectrum when the "packets" forming the signal are of different 
lengths. 

Formulas for calculating power spectrum.  The pulsed random process in 
question consists of "packets" with duration rT, and the forms of the 
"packets" are defined (e =(e :, , £',..., e )). The process is controlled 

ly'  2y'     qy 
by a finite ergodic Markov chain with period d and transition probability 
matrix P.  We shall designate A=(A,,A2,..., A ) the probability vector 

characterizing^the stationary distribution of the Markov chain in question; 
An = lim P

dn, Ps=Pds-An, s=l,2,...; P°=I — identity matrix; 0 
n-**> 

0 

A=(A 5 ). . -     ; &..  — Kronecker's symbol; in 'V)=PSPVeUAe • Y=0,1>-.- 

,(Y). .(0) -xoot 
d-1;  mu;=A.P'e.Ae:mw=Ae Ae   ;  m=e Ae   ;   a=/ e dt;   r — number of pulses 

yv  0  y \?  yv  v v y V 

with duration T in "packet"; q — number of "packets". 

The formula derived in [3] for the averaged power spectrum of a random 
pulsed signal with "packets" of the same length controlled by an 
arbitrary finite ergodic Markov chain can be rewritten in the form 

r d-\ 

P (») = -^ V {^ P" [Re ({[/ - (Pd - A0) e^^r' + 
[l,v=l      Y=0 

Jt 

drT 

00 

■s 
h=— a> 

8 (a — 2nh/drT) A0 e«^+^-v>rar  + 

sin (dr/2 — yr — ;x + v) uT   . 
2 sin (dmT/2) c 

r[I cos ([X — v) cor]/2l mMv, 

(1) 

where [I-(Pd-A0)e
ldrUT] 1 —  the inverse matrix of I-(P -A0)e

1 ™ . 

Formula (1) provides the solution to the problem of calculating the power 
spectrum in finite closed form.  It is useful in that it allows standard 

14 



programs for calculating the Inverse matrix to be employed in computing 
the power spectrum. 

The next section examines a numerical algorithm for calculating the spectrum 
for the case of a random pulsed signal controlled by a regular Markov chain, 
which is the most important case in practical terms.  In this case the 
formula appears as 

/>(©) = 
4 I a 2 f 1 

rT      2 
— y   m^v cos ([x — v) o)T + 

H.v=l 

+ 2 2 m$ cos (sr+n-v) ©7 + 
H,v=l s=l 

£ + \jtn^cos(ii—v)(i)T 
H,v=l 

(2) 

V 

We recall that the discrete component in (2) is lacking if JU   'e/n = 0> v> 

In particular, this is the case when the matrix P is doubly stochastic 

and 2 e/u = 0, W- 

Algorithm for calculating power spectra of signals controlled by regular 
Markov chain.  Figure 1 shows the flowchart of the numerical algorithm for 
computing the spectrum in accordance with formula (2).  The following 
notation is employed: 

"^ n.v=l   s=l 

m(nSv cos (sr + jx — v) ©T; 

H.v=l 

Qs = 

H.v=l 

m<°> cos ((x ■ v)©r[- 1    .    n 
~2+~rT 

00 

h=— oo 

6 © 
2nftY 
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The following is essential in the use of this algorithm.  By using 
corollary (4.1.5.) from [4], we can demonstrate that the maximum number 
of required iterations S needed to ensure the required accuracy A of the 

m 
spectrum computations  is  determined by the formula 

S„ = tfpnA/ln(l—2e)+1], (3) 

where N — power of matrix of transitional probabilities P in which all 
elements are positive; e — smallest element of matrix P 
number of iterations is always much smaller). 

,N (actually, the 

Q2 KoHeu ) 

Key: 

1 — start 
2 — input [quantity] 
4 — formation of system 

13 store [quantity] 
14 — output [quantity] 

Fig. 1 

- if S =1, S„ =0; if S^l 1<S„ <SM M  '  ts       M     ts— M 15 - 

16 — input S 
ts 

22 — store [quantity] 
23 — output [quantity] 

(continued) 
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Key to Fig. 1 (continued) 

24 -- Is it the case that ^-S^O;  29 — Q^®:=Q^S +Q3 for all w/wt 

if not, increase S^: 31 — output [quantity] 

25 — input Stg 

26 — output [quantity] 

ts 32 — end 

After SM is determined, actions are taken to find the final probability 

vector A, i.e., the probabilistic solution of the algebraic system AP=A 
is found (e.g., by the Gauss method with selection of £he main element). 
We note that if P is a doubly stochastic matrix, then A=(l,l,..., l)/q. 
S=l is then assigned and the second term Q2 of formula (2) is computed. 

If s =S=1, Q- is stored and then CL and Q are calculated, followed by 
M       2. ± -j 

the spectrum P(w/w ) for all given 0)/^. 

~S+1 ~s~ 
If S 41,  an exhaustive search 1<S <S is made.  P  =P P is first computed, 

M ' ts— m 
and then the procedure described above is repeated cyclically. 

If the signal in question has a large transition probability matrix, Stg 

may be large.  In most practical cases the quantity S^ can be bounded. 

Then the algorithm in question can be used to calculate the maximum error 
5 for a given S  in accordance with the formula 
M      6     ts 

5M= KQ28-Q!>/Q2
B
|. (4) 

where Q^ — value of Q in previous iteration.  If the error is not 

excessive, S  is increased no further, 
ts 

In the below example of calculating the spectrum by the algorithm described 
above, the null members of the matrix P include those elements whose values 
do not exceed 10"4.  For S =1 the calculation took 1.33 minutes, and for 
S =60 — 12.06 minutes, 
ts 

Decomposition method in computing power spectra of signals formed from 
"packets" of different lengths.  The above referred to the case in which the 
"packets" from which the signal was formed were of the same length rT.  A 
whole group of signals which are promising for use in digital magnetic 
recording and which are obtained by means of group recoding of the input 
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binary information in which a particular number of zeros or ones may not 
occur in a row [5,6] do not have this property.  These signals include the 
(0,l)-code or Gabor code [5], the (4,9)-code or Franaszek code, the M^FM 
[6] and ChMP-1 signals (Fig. 2, a-d). 

0 
(4//-code 

S2 

SS/SS2 

2* 
0 

I   10 

- 0, 
US 

1  "7" 

*rr 

a) 

SHSIZ 

I 

^2/^22~\ 

S3/S32[[ 

^S/^SZ^53 

^■PJ—code 

0 

0 

0 

0 

3TT 

b) 

S3/S32 

S4/S42 

=h 

0 

I 

'      1 

2Tr 

c) 

Ss/S, 'srti 

ChMP-1 
0 

T 

Jr. 

d) 

Fig.   2 

The power spectra of these signals are successfully calculated by the 
decomposition method, which allows these signals to be put into 
correspondence with a certain Markov chain which controls the decomposed 
random process.  The possibility of this decomposition follows from the 
fact that the causal connections which determine the structure of the 
process for the class of pulsed random processes with determinate timing 
intervals in question correspond precisely to the probabilistic connection 
between its elements. 

The "packets" from which the signals in question are formed are thus 
divided into a definite number of "subpackets" of equal length, the 
probability of occurrence of which as part of its own "packet" is unity. 
The dimensions of the transition probability matrices, of course, are 
greater. 

The application of the decomposition method is illustrated by the example 
of computing the averaged power spectrum of the signal whose structure is 
explained in Fig. 2b. 
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Example of calculating power spectrum.  The (4,9)-code (Fig. 2b) is a 
promising one for use in high density digital magnetic recording.  This 
signal has a rather complex structure.  By using the decomposition method 
a (4,9)-code can be represented by 24 alternating "packets".  The "packet" 
length is T , r=6 (T =6T), q=24, and the transition probability matrix 

The matrices e,-e,. 
1 6- 

P  ,   P    are shown in Fig.   3. 

■e2 = ( I  -f   I -I  -/  -I 
I    I   -I    I  -I•    I    I  -I   ■/ I   -I  -I l   -I I   -I I   -I  -/    I    I   -I    !    ) 

1   -I  -I     I I   -1   -I I  -I I     I t -I    I    1 -I  -I    f   ) 
f3= (i -i i -i -i -i i -i -i i / -i -/ / -/ / / / -/ / /-/-//; 
?*=(/-/-/-/-/-/ / -/ -/ / / -/ -/ / / / / / -/ //-/-//) 
£'S= (/-/-/ -I -/■//-/-///-/-//// 

es~ (-/ -/ -/ -/ -/-//-/-//-/-///// 
/ -/   /   / -/ -/   I ) 
I -l   I   / -/   /   I ) 

f,- 

0 / 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 0 
0 0 
0 t 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
o o 
0 0 

ooo 
0 0 0 
0 0 0 
0 0,0 
0 I   0 
ooo 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0   0   0 0 
0 0 1/800 
0 0   0  0 0 
0 0 l/S 0  0 
0 0 0  0 0 
0 0 I/& 0 0 
1 0  0  0 0 
0 10  0 0 
0 0 l/S 0 0 
0 0  0/0 
0 0  0 0 1 
0 Of/8 0 0 

p2 

0 0 0  0 0  0 0 0 0 
/A 0 /A 0 /A 0 1/8 0 0 
0  0 0 0  0 0 0 0 0 
ift 0 1/4 0 IA 0 1/8 0 0 
0 0   0  0  0 0 0 0 0 
IA 0 IA 0 IA 0 1/8 0 0 
0 0  0 0  0 0 0 0 0 
0  0 0 0  0  0 0 0 0 
IA 0 IA 0 IA 0 1/8 0 0 
0 0   0  0  0  0 0 0 0 
0 0  0 0 0 0 0 0 0 
IA 0 IA 0 IA 0 1/8 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

Fig.   3 

It is easy to note that a transition, e.g., from "subpacket" S^_ to 

"subpacket" S „, has a probability of occurrence of unity, since both of 
them are part of the "packet" S , while the probability of a transition 
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from "subpacket" S „ (which is part of "packet" S ) to "subpacket" S . 

(which is part of "packet" S ) is 1/8.  We are easily convinced that the 

pulsed random process which is obtained is controlled by a regular Markov 
chain.  In order to use formula (1) on a computer, the values of A and w/oo 

must be added to the data above.  We shall assign A=10  , 
steps of 0.1. 

and GO/co =0-6 in 

The results of calculating the averaged power spectra are shown as plots 
in Fig. 4, where the values of P(w), multiplied by the coefficient TT

2
/2T 

are laid off along the ordinate, and the values of the normalized frequency 
co/to are laid off along the abscissa. 

, pfo)srßvrr 

Qi      0.8     1,2     Iß     2,0     2£   co/wr 

Fig.   4 

Discussion of results.  Conclusions.  It is apparent from the plots in 
Fig. 4 that the maximum spectral energy of the (0,l)-code (curve a) lies 
near the normalized frequency co/to =1, i.e., in the region of the center 

frequencies of the passband of a magnetic record-play back channel.  The 
constant component in the spectrum of the signal is small.  These 
characteristics of the spectrum allow the (0,l)-code to be recommended for 
use when the recording density does not exceed 256 bits/mm. 
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The (4,9)-code (Fig. 4b) has a very useful spectral shape from the viewpoint 
of increasing recording density.  The maximum spectral energy of the (4,9)- 
code lies in the vicinities of the normalized frequency to/w =0.25.  However, 

the spectrum of the (4,9)-code contains a constant component twice as large 
as that in the previous case, which results in substantial distortions to 
the signal as it passes through the record-play back channel. 

2 
The M FM signal (Fig. 4c) differs from the others in Fig. 4 in that there is 
no constant component at all.  The maximum value of the spectrum of the 
M^FM signal occurs at the normalized frequency w/co =0.3.  These characteristics 

of the M FM signal spectrum, which are helpful for increasing recording 
density, have resulted in its increasing use, especially for use with 
floppy disks. 

9 
It should be noted that the spectrum of an M FM signal as calculated by the 
author's method and the spectrum of the same signal cited in [7] are 
exactly the same. 

Curve d in Fig. 4 reflects the spectrum of a ChMP-1 signal.  The substantial 
level of the constant and extreme low-frequency components of the ChMP-1 
signal, which are not passed by the magnetic record-play back channel, 
cause significant distortions.  The smallest time intervals of a ChMP-1 
signal which corresponds to data zeros are practically not reproducible. 
This makes it much harder to use the ChMP-1 and similar signals in high 
density digital magnetic recording. 
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UDC 621.391.14:519.2 

USE OF DECORRELATIVE PROPERTIES OF DISCRETE SPECTRAL TRANSFORMATIONS IN 
MULTI-ALTERNATIVE RECOGNITION OF SIGNALS IN PRESENCE OF CORRELATED NOISE 

Kiev IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: RADIOELEKTRONIKA in Russian 
Vol 26 No 3, Mar 83 (manuscript received after revision 26 Apr 82) pp 45-49 

[Article by A.I. Rog and A.A. Sirota] 

[Text]  A method is presented for estimating the error 
probability in signal recognition against the background 
of correlated noise with incomplete description of the 
correlation connections of the features.  The proposed 
method is used to substantiate the possibility of 
replacing optimal decorrelation transformation by 
partially decorrelative discrete spectral transformations. 

The problems which arise in a number of practical applications, such as 
automatic recognition of pulsed signals of various forms: S1(t)=m±(t)+N(t), 

i=l,L, where m.(t) — determinate signal component; n(t) — normally 

distributed noise with correlation function CT
2
R(T), involve using decision 

rules of the form [1,2] 

k^mm[{x ~ rtii) M.    (x — m,-)]=>- x£0k. (1) 

In (1) x=(S(t ),..., S(t ,)) —vector of amplitude (feature) samples of 

signal S(t) obtained in the time interval [0,T]; m±  — vector of mathematical 

expectancies of features; M — covariation matrix of features, 

HKiJI' akra
2R(|k-£|T/N). 

The use of optimal decision rules with structure (1) involves definite 
difficulties which arise in estimating the matrix M and which also 
require a very great deal of time to implement the matrix transformations in 
(1) during the decision making stage.  It becomes necessary to examine a 
special class of quasi-optimal recognition algorithms based on a certain 
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"disregard" of the correlation between features, which in the present 
case is manifested in that a matrix K which is slightly different from 
the actual matrix M is employed in (1)• 

Let us now examine the losses which occur when this class of quasi-optimal 
algorithms is employed.  If the error probability of pairwise separation of 
signals for optimal algorithm (1) is defined by the familiar formular [2] 

P% = 0) (ay), aw = 0,5 \  (mt - m/M"1 (m£ - nij),    0) (x) = y= \  e ' dt. 

we find this probability for the quasi-optimal algorithm from the 
distribution parameters of the logarithm of the likelihood ratio of the 
two signals [2] with matrix K substituted instead of matrix M: 

In [I (*)] =7irl {m, - mj) -Umt + mfJC' (mt - m}). 

It can be shown that 

AT, {[In / (x)]/0k} = ± 0,5 (mt — m//C' (m, — m})\       k = i, j; 

D {[In / (jc)]/0ft> = (m, — mj)TIClMK~l (™; — m}), 

and the probability of error in pairwise separation in this case is 

\Tv~l 

Ptj =><*>®u),     ßy = 
2 Vfa — m-)TKrxMK'x (m, — m}) 

0     k 
The relationship between the probabilities P  and P  is determined by 

the relationship between the quantities a., and ß  which can be represented 

in the form below by introducing the difference vector a=m±-m , the vector 

b=K~1/2a" and the matrix B=K-l/2MK_:L/2: 

a„ = 0,5 K ar/C   ^K2M-XK2K   *a = 0,5VbTB lft, 

$u=>~lTK   2K   2d2\/2TK   2K   2 MK   2 K   2 a= bTbl2V brBb. 
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In order to estimate the losses occurring with the use of this class of 
quasi-optimal algorithms we examine the quantity A=a.j-ß.,<a..[l-min(ß Ja    ) 

for a given error probability for optimal algorithm P~. and corresponding 
value of a... 

Using Bekkenbakh and Kassel's inequality [3], we obtain 

l^a^^B^B-^b)^'-^-^-' (2) 

where X   ,   X    n — minimum and maximum eigenvalues of the matrix 

B=K_1/2MK-1'2.  We obtain from (2) the following formula for the losses 
occurring with incomplete allowance for feature correlation in the 
quasi-optimal recognition algorithms: 

AP = maxPli ~ <I> (aw), maxP% =, ® [<&.„ V%^^ ) . <3) 

Thus, for an algorithm which does not allow fully for sample correlation 
(K=I, where I — identity matrix) 

-»  ->_.->■  -»   -» 

k=>m'm[(x — m;) (x— /";)]=>- x£0h, (4) 

we can write the following expression for the maximum possible recognition 
error probability (P..=const): 

*s-°(««^£r)-   ■»-«^ 

where K«, K . — eigenvalues of matrix M. 

The difficulties involved in using information about the correlation of the 
initial features — signal amplitude samples — can be avoided by using 
the familiar decorrelation method.  An optimal decorrelative transformation 
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is the expansion with respect to discrete eigenfunctions of the matrix M 
using a Karunen-Loew expansion [2].  The optimal decision rule^in the 
space of the new uncorrelated features assigned by the vector y appears as 

-^    —> —»■    —>       —► 

k =>- min [(y — nfOT1 (y — nt)] =>y£0h 
(6) 

where y=Vx, f2=VMV , n.=Vm., V — optimal decorrelative transformation 

(ODT) matrix.  The main shortcoming of the ODT is the difficulty of finding 
the expansion functions and the excessive amount of time required to 
execute the ODT.  It is therefore better to try to replace the ODT with 
some other orthogonal transformation, which may have slightly poorer 
decorrelative properties but which allows the transformation procedure to 
be speeded up and simplified significantly.  Such transformations include 
Fourier, Walsh and Haar discrete spectral transformations (DST), for which 
"fast" transformation methods have been worked out.  The idea of the ODT-DST 
replacement is based on certain facts of the similarity of the structure of 
the bases of orthogonal functions of the optimal decorrelative transformation 
and of spectral transformations assigned on a discrete finite interval [4,5]. 
For N-*», for example, [5] notes that the Fourier transform approaches the 
Karunen-Loew transform asymptotically. 

The problem of estimating the effectiveness of the use of an "approximate" 
decorrelative transformation instead of the ODT is equivalent to the problem 
of estimating the losses which occur with an incomplete description of the 
correlation connections of the signal samples in quasi-optimal recognition 
algorithms.  Actually, replacing the ODT with some DST assigned by the 
matrix H actually consists of using in place of optimal algorithm (6) an 
analogous structure of a quasi-optimal algorithm implemented in the space 
of the spectral coefficients of the DST — z: 

J^minlS-T/ir1 (1-/«)]=► z 6 0fc, (7) 

where z=Hx, £.=Hm., E=diagP, P=HMH — covariation matrix of spectral 

coefficients. 

Algorithm (7) does not make complete allowance for the correlation between 
the spectral coefficients, and is quasi-optimal with respect to an algorithm 
with structure (1); however, it is realized in a spectral coefficient 
space in which the covariation matrix of these coefficients P is replaced 
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by diagonal dispersion matrix E.  We can therefore estimate the losses which 
occur when quasi-optimal algorithm (7) is used instead of optimal algorithms 
(1) and (6) on the basis of expression (3), which is fairly general.  The 
expression for the maximum possible recognition error probability for 
algorithm (7) for a given value of V..  — the error probability of algorithm 

(6) — which determines the effectiveness of the ODT-DST substitution, looks 
like 

(8) 

where xn> 
-1/2 -1/2 

v ., — eigenvalues of matrix E   PE   . 

r'J 
0,4 

0,3 

0.2 

0,1 

0 

^=\  P, 
1^ 

/ '     // 
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/ 2W 
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/ 
«*-* 

•* ^ 2F 
* fs~ _ ^^ TyUk 

0,1     0,2 0,4      0,6 TK/T 
a) 

ij 

0,4 

0,3 

0,2 

0,1 
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OJ 

0 
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c) 

Fig.   1 

Formula (8) was used as the basis for investigating the effectiveness of 
using Fourier and Walsh DST in quasi-optimal signal recognition algorithms. 
Figure 1 shows the probabilities of pairwise signal recognition errors for 
different quasi-optimal algorithms as a function of the ratio of the noise 
correlation time to the signal duration.  For comparison, the error probability 
pkl was calculated simultaneously for quasi-optimal algorithm (4), which does 

not make complete allowance for sample correlation.  Figure 1 a, b and c show 

P  and P.T as a function of the ratio of the noise correlation time to the 
ij     iJ 
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Signal duration — T./T for different values of N and types of 
0 

correlation function R(T) for a value of P..=0.01 (the dotted line in 

Fig. la corresponds to N=32, and the solid line to N=l§ for R(T)=e   '; 
In Fig. 1 b and c for R(T)=e~a|TJ ' cos oox and R(r)=e aT , respectively). 
It follows from these relationships (1— probability P^l; 2F, 2W — 

probability ¥..   computed for Fourier and Walsh transformations, respectively), 

that the losses which occur with the use of quasi-optimal algorithms with 
structure (7) in Fourier and Walsh coefficient space are significantly 
smaller than for quasi-optimal algorithms (4) realized in the sample 
space.  The decorrelative properties of the DST are particularly strong 
for small values of T /T, when the quantity P^ is practically the same 

as P...  As follows, e.g., from Fig. la, by comparison with algorithm (6), 

based on the use of the ODT, signal recognition accuracy for noise 
described by an exponential correlation function is no more than 3-5% 
lower when quasi-optimal algorithms (7) with Fourier transformation are 
employed, and no more than 5-10% lower for Walsh transformation for values 
of T. /T<0.4. 

k — 
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[Article by V.B. Dmitriyev-Zdorov and M.N. Surkov] 

[Text]  Spectrum analysis devices can be simplified significantly by 
approximating the transformation kernel with piecewise-constant functions 
with a small number of levels [1]. It is particularly attractive to do the 
approximation with the help of a periodic two-level signal: this makes it 
possible to increase dynamic range significantly and to simplify the 
analyzer structure.  The spectrum of such a periodic two-level signal must 
contain a first harmonic, after which the series of harmonics (2,3,...,p) 
is lacking, and the amplitudes of the higher harmonics (p+1, p+2,...,) 
are arbitrary. 

The objective of the present study is to synthesize a periodic digital 
signal whose spectrum does not contain harmonics 2, 3, ..., p.  We shall 
represent the two-level signal which has the required spectral structure 
in the form 

where h(T)={ '      x 

0, for other T — describes the shape of rectangular pulses 
with duration t., the spacing of which in the periodic sequence of 

l 

pulses y(t) with period T=Nt. is determined by the values of the coefficients 

E, = {0.1}. (1) 
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We represent the complex amplitude of the ith harmonic as 

Ö /=1 

For i<N the condition C.=0 is equivalent to the requirement 

2^e-/2"'W = 0. 
/=! 

(2) 

The simplest signals which correspond to the solutions of (2) are groups 
of m pulses spaced apart by N/(mi) pulse positions, i.e., by 1/m part of 
the period of the ith harmonic component (Fig. 1).  The requirement of 
(2) is satisfied for the signal shown in Fig. 1, since the left part of 
(2) can be viewed as the sum of m vectors on a complex plane (Fig. 2) with 
norm of unity and arguments 2iTn/m, n=l,2,..., m (which can be obtained by 
assuming £=nN/(mi) in (2)). 

xüHt 
N/m>*. 

Fie. 1 Fig. 2 

We note that the condition C.=0 is equivalent to having coefficients a. and 

b. of zero in the expansion of y(t) into a real Fourier series, since 2C.= 

=a.-jb. [2]. 
. .1 J x 
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The other solutions of (2) can be obtained by linear combination of the 
simple solutions; however, (1) must not be violated when this is done. 

Let U. be a group of m pulses corresponding to the solutions of equation (2) 

for a given i.  In a periodic signal this group repeats every N positions. 
In the spectrum S.(2TTf k) of such a periodic signal U.(t) the amplitude of 

the ith harmonic is zero: S.(2irf i)=0, where fn
=1/T — frequency of first 

harmonic of signal y(t).  The convolution spectrum W(t) of such signals U., 
i=2,...,p 

IP (0 - *M0 * *M0 * - * tfpW (3) 

is equal to the product of the spectra of these signals  s (2nf0k) = Y\Si(2nf0k) 
1=2 

and, consequently, the amplitudes of the harmonic components i=2,...,p in 
it are zero.  The convolution operation in (3) is the discrete convolution 

of periodic pulse sequences of the type:     _ -y ß.   Cd — i)       j = l,...,N. 

The signal W(t) is also periodic, with period T=Nt..  Obviously, the number 

of positions N within a period of this signal is a multiple of all factors 
of the type m.£, i=2,...,p. 

In general terms, this is the algorithm for constructing the sought signal 
W(t).  It should be noted that the presence in the convolution (3) of a 
certain group U., as will be shown later, makes the amplitude of the 
harmonic numbered i equal to zero, as well as a series of higher harmonics. 
This makes it possible to reduce the number of groups in the right part of 
the convolution (3) and, consequently, to reduce significantly the number of 
positions N in the period of the signal W(t), which is extremely important 
for practical purposes. 

Let us now examine the spectral structure of a T-periodic sequence of groups 
of m pulses spaced tn=T/(im) apart.  Finding the frequencies of the harmonics 

which are lacking in the spectrum of this sequence involves solving this 
equation: 

F(})(Xm-l + X'"-2 + ... + X+l) = 0,    where X=eJ ^ T/(-±m) 

31 



and corresponds to a delay operator by T/(im), while F(f) is determined 
by the shape of the pulses. 

Obviously, the equation 

Xm-1+xm-2 + ...+X+l =(Xm- 1)/(X— 1) = 0, 
(4) 

is a special case of (2) and has the solutions X=e^    , k=l,2,...,m-l. 

There corresponds to each of the solutions of (4) a series of frequencies 
which are found from the formula x=X=eJ2TrfT/<-im-).  However, X,=eJ27rk'm; 

consequently, 2irfT/(im)=2iTk/m+2Trr, r=0, +1, +2,..., whence 

f=(k + rm)i/T,   Ä=l,2...,m—1, /- = 0, ±], ±2 (5) 

We note that the factor (k+rm) in the right part of (5) can take on any 
integer values except for integer multiples of m.  Consequently, the 
presence of a group U. consisting of m pulses in the convolution (3) leads 

to compensation in the resulting signal W(t) of all of the harmonics whose 
numbers are multiples of i, except for those whose frequencies are 
represented in the form f„=f imJi, £=0,1,2   In order to construct a 

signal W(t) in which the amplitudes 2,3,...,p of the harmonics are zero 
it is necessary to perform a convolution of the type (3) which includes 
groups U. of m pulses such that i runs through all of the primes and all 
of the integer powers of m not exceeding p.  Let I(p,m) denote the set 
consisting of these values of i.  As was noted earlier, the number of 
positions N within a period of the signal W(t) must be a multiple of all 
factors of the type im.  Therefore, the minimum N is defined as N=mLCM 
{l(p,m)}, where LCM — least common multiple. 

As m increases the number of groups U. in convolution (3) becomes smaller. 

However, the resultant signal W(t) remains a two-level signal only for 
m=2 and m=3. 

The highest suppressed frequency f, =f p is in principle unbounded.  However, 

for large p(p>10) the required number of positions N in a signal period 
increases immeasurably. 

Table 1 shows the minimum N=N(p) for the case in which the signal W (t) 
is synthesized by convoluting simple two- and three-pulse signals 
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(for m=m =2 and m=m =3) and q — number of pulses in period of W (t) 
P 

TABLE  1 

p m2/m3 NJNS qj% P m2/m3 N2/N3 %l% 

2 2/3 4/6 2/3 9 -/3 1680/1890 64/243 
3 2/3 12/18 4/9 10 —/— 1680/1890 64/243 
4 21— 24/18 8/9 11 2/3 18480/20790 128/729 
5 2/3 120/90 16/27 12 -/- 18480/20790 128/729 
6 —/— 120/90 16/27 13 2/3 240240/270270 256/2187 
7 2/3 840/630 32/81 14 _/_ 240240/270270 256/2187 
8 W- 1680/630 64/81 15 —/—• 240240/270270 256/2187 

16 21- 480480/270270 512/2187 

The class of two-level signals W (t) can be used for spectrum analysis 

of signals occupying a limited frequency band f . <f<f  .  It can be 0 min   H13.X 

shown that there is no methodical analytical error if P>fmax/
f
mln

-1> 

which confirms the advisability of adapting the synthesized signal W(t) 

to the analyzed process.  One feature of this approach, in contrast to 
universal algorithms (specifically the FFT [3,4] where the transformation 
kernel is not approximated) is the fact that by increasing the number of 
discrete samples of the analyzed signal (increasing the digitization 
frequency) it is possible to eliminate the multiplication operation 
completely.  In order to obtain the expansion coefficients of the 
analyzed signal it is sufficient to add the values of the samples taken 
at the instance corresponding to non-zero levels of the digital signal 
W (t).  In calculating different expansion coefficients of the signal 
P 
in question, the samples can be added independently and in parallel. 

Increased speeds can be expected in analyzing signals with relatively 
narrow bandwidths, especially when the code word lengths in the computer 
are long.  It should also be pointed out that it is possible in principle 
to filter the analyzed signal first in order to represent it as the sum 
of narrowband components, and then to apply the analysis algorithm in question. 
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EFFECTIVENESS OF DIGITAL TRANSMISSION EMPLOYING MODIFIED WAGNER METHOD 
TO CORRECT SINGLE ERRORS 

Kiev IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: RADIOELEKTRONIKA in Russian 
Vol 26 No 3, Mar 83 (manuscript received after revision 23 Sep 82) pp 70-72 

[Article by R.E. Gut, M.Ya. Lesman and A.S. Shutov] 

[Text]  Various decoding procedures which allow for the reliability of the 
decisions made about the signal elements transmitted are employed 
extensively in digital transmission systems.  For transmission over radio 
channels these procedures are especially convenient when multi-channel 
modems are used (such as the Kineplex, MS [expansion not given], etc. [1]). 
In contrast to the approach usually taken [2],  it is best to judge the 
symbol reliability according to the estimates of the signal/noise ratio 
provided by meters which are specially added to each of the modem channels. 

The present study solves the problem of estimating the noise tolerance of 
parallel reception of signals coded with an (M, M-I) code and decoded by 
the Wagner method.  The indicators which determine noise tolerance are the 
probabilities of correct reception of a code combination and a symbol in an 
arbitrary phased channel.  Channel fading is assumed to be statistically 

uniform and independent. 

It can be demonstrated that the expressions for the mean probabilities of 
correct reception of a code combination Q, and of a symbol in an arbitrary 

jth channel Q in the case in question appear as 

Qi =d -P)M + M j j /»(&)/ (S. h) dh    f [1 -p(A)] F (S\h)dh\       dS, 
o o (0

J j 
(1) 

where p~ — mean error probability during'reception of elementary signal 
in any of M statistical uniform channels; p(h) — current error probability 
in receiving elementary signal as function of actual signal/noise ratio; 
M — number of symbols in code word (number of parallel channels); f(h) — 
density function of signal/noise ratios; f(S,h)— combined density 
function of estimate of signal/noise ratio and actual value of signal/noise 
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ratio; F(s|h) — conditional distribution function of signal/noise ratio 
estimate assuming that the actual signal/noise ratio is h^; 

<?2 = (l_-p)--i-C/(S)(FM-1(S)-[/7(S)-2Jp(A)f(/i)f(S|/!)d/i]  }dS + 
o o 

CO CO 

+ ^FM-i(S)\p(h)f(S,h)dhdS, 

(2) 

where f(S) and F(S) — unconditional density function and distribution 
function of estimate of current value of signal/noise ratio, respectively. 
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Fig.   1 Fig.   2 

Let us now specify the formulas derived above for the case of optimal 
incoherent reception of signals employing single phase-differential keying 
[2].  We shall assume that the channel fading is described by a Rayleigh 
distribution, and that the receiving location employs the devices for 
measuring the current signal/noise ratio which are described in [3], for 
which 

/ (S I h) = [1/r (v)] (4v/i2)vSv-1 exp (— 4v/i2S), (3) 
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where 2v — size of sample used to form estimate of signal/noise ratio. 

By substituting (3) in (1) and (2), we obtain the following analytical 
formulas: 

<2i- 
i + 2ft2 yw 

<?2 = 
1 + 1h\ 

2(1+A§) 

xvMdx 

2M 

[l+/l2(1_J,)]v+l 

+ 
1 

(4) 

2(l+^)[l + A2(l-^)]V 
M—\ 

O+h2
0)ll+h2

0(\~x)] 

-iM-l 

dx + 

+"M 
^VAI-Id* 

öJ [i+/»g(i-AT)r+» 
(5) 

Calculations were done in accordance with (4) and (5), some of the 
results of which are shown in Figs. 1 and 2, Figure 1 shows (1-0-) 

during reception of a code combination as a function of the sample size 
(n=2v) for M=2 (dotted lines) and M=6 (solid line) and for two values of 
h„ =10 (curves 1 and 3) and hn

2=100 (curves 2 and 4).  Figure 2 shows 
2 2 

the same for (1-Q2) with M=6 and h_ =10 (curve 5) and h„ =100 (curve 6). 

We note that when m=2 the probabilities Q1 and Q„ are the same.  Furthermore, 

the straight dot-and-dash lines in Figures 1 and 2 show the values of the 
corresponding error probabilities during code combination and symbol 
reception which are achieved in a hypothetical system belonging to the class 
in question in which precise information is available about the actual 
signal/noise ratios in each channel. 

Analysis of the findings permits the following conclusions: 

1.  The use of the modified Wagner procedure (considering the signal/noise 
ratio meters) allows the error probability for code combination and symbol 
reception in an arbitrary channel to be reduced by almost an order of 
magnitude, even in statistically uniform channels.  This procedure should 
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provide even greater effectiveness when one of the channels is affected 
by spectrally concentrated noise. 

2.  The mean error probabilities for code combination (1-Q-^) and symbol 

(1-Q9) reception in an arbitrary channel are practically the same as the 

corresponding figures for the hypothetical system with a sample size of 
n=2 =15-20. 

V 
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