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Abstract 

A signal processing method is presented for correcting imbalances in the 
phase-detection channels of a coherent, wideband radar. Several papers 
have addressed this problem by the use of the fast Fourier transform 
(FFT) as a narrowband filter (see F. E. Churchill, G. W. Ogar, and 
B. J. Thompson, The Correction of I and Q Errors in a Coherent Processor, 
IEEE Trans. Aerosp. Electron. Syst., AES-17 (January 1981), pp 131-137, 
and H. Bruce Wallace and Thomas J. Pizzillo, A Technique for Calibrating 
the Phase Detector of a Wideband Radar Using an External Target, Army 
Research Laboratory, ARL-TR-1521 (March 1998)). The present technique 
relies upon phase modulation of the transmitted waveform, then 
demodulation of the phase of the received waveform, and finally the 
integration and normalization of the waveform. There is one constraint; 
the number of phase-modulation/demodulation steps is restricted to 4 k, 
where k is an integer greater than 0. The technique is not dependent upon 
the target or the phase and gain flatness of the radar waveform. Errors 
remaining after application of this technique depend on the signal-to- 
noise ratio and errors in the phase modulator. 
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1. Introduction 
Inverse synthetic aperture radars (ISARs) transmit a wideband waveform 
to derive range information. Most systems use a linear- or stepped- 
frequency modulated waveform, generated by either analog or digital 
means, that may be processed with a fast Fourier transform (FFT) to 
create a high-resolution range profile.1 To be effective, the returned signal 
that the radar measures must be related to the transmitted signal or to an 
internal reference signal in a known fashion. While this comparison may 
be made in a wideband phase-comparison receiver, this report concen- 
trates on the use of a narrowband phase-detector system with stepped 
frequency. In this class of system, the received signal is down-converted 
into a narrowband signal and then separated into the received two coher- 
ent signal channels that are then mixed with two orthogonal local oscilla- 
tor (LO) signals. The calibration technique presented here is an improve- 
ment of the method in Wallace and Pizzillo2 and Churchill3 in that the 
calibration does not require the FFT and reduces processing time. In 
addition, it improves on the method in Wallace and Pizzillo2 in that the dc 
components are removed as part of the process and it does not generate 
correction factors; thus it eliminates errors associated with estimates in 
the corrected data. 

This report introduces our basic assumptions and develops a signal 
model based on them. This technique will then be applied to simulated 
data and performance efficiency will be considered. 

2.  Development of the Signal Model 
Figure 1 is a block diagram of the pertinent portions of the transmit and 
receive sections of the radar. A 4-GHz coherent oscillator (COHO) is split 
before being phase-modulated in the transmitter and used as the LO 
for the phase detector in the receiver. The resultant in-phase (i) and 
quadrature-phase (Q) signals define the real and imaginary parts of the 
received signal. Before the phase detector, this signal is of the form 

m+2m) 
S(f,m)=Ae^ + -MJ, (1) 

where/= [//—/„ —fa] represents the N frequency steps of a pulse com- 
pression system; 6(f) represents the relative phase that is linearly 

lD. L. Mensa, High Resolution Radar Cross-Section Imaging, Artech House, Norwood, MA (1991), 
chapter 4. 
2H. Bruce Wallace and Thomas ]. Pizzillo, A Technique for Calibrating the Phase Detector of a Wideband Radar 
Using an External Target, Army Research Laboratory, ARL-TR-1521 (March 1998). 
3F. E. Churchill, G. W. Ogar, and B. J. Thompson, The Correction of land Q Errors in a Coherent Processor, IEEE 
Trans. Aerosp. Electron. Syst., AES-17 (January 1981), pp 131-137. 
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dependent on frequency; m = [1... m ... M] is the number of phase- 
modulation steps for each frequency step; and A is the amplitude of the 
received signal that has been scattered by the target. With the exception of 
noise corruption, this is the ideal form of the signal to be processed by the 
phase detector. Additionally, if the phase detector were perfect, the meas- 
ured outputs from each channel for a point target would be represented 
by two MxN arrays that are then digitally demodulated, integrated, and 
normalized to produce two lxN row vectors: 

I(f) = [Acos (6[f1))...Acos{e(fn))...Acos (6(fN))] , and 

Q(f) = [Asin (*(/!))... A sin (0(/„)) ...A sin (<t>(fN))} 

(2) 

In reality, the radar modifies the signal when it is transmitted and re- 
ceived due to imperfections in the system components. Figure 1 shows 
circuit elements that represent these imperfections: the phase modulator 
has a fixed, differential phase error, ±Am°, associated with each step, m. 
The 90° hybrid actually shifts the LO 90° ±^, where 8° is a fixed differen- 
tial phase error. The mixers have dc offsets represented as a voltage 
source referenced to ground, and the gain throughout the phase-detector 
system is different for the I and Q channels represented by G. Because 
there is no loss in generality, all the error signals due to these imperfec- 
tions, except dc offset and the phase-modulator error, are represented as 
occurring in the Q channel. 

The measured signal is that which is actually produced by the radar 
phase detector before the digital processing. It includes the effects of each 
of the imperfections diagrammed in figure 1 as well as corruptions due to 
imperfections in the transmitted waveform, the wideband receiver, and 
any effects due to targets that are not purely pointlike. Because these are 
introduced before the phase detector, each channel is affected equally in 
both amplitude and phase. The effect on the nth component of equation 
(1) due to a measurement made from the combined, imperfect system is 



U/„) = A cos I fl(/H) + 2ZSL + Am) + V4,- ,    and 

Qm(/„) = GA sm | 0(/„) + 5 + 2ÄM + Am] + Vda? , 

(3) 

where Jm(/n) and Qm[fn) are the measured 7 and Q signals of the nth 

frequency step and the m01 modulation step, G represents the gain imbal- 
ance in the phase-detector channels (assumed to be positive and real), 8 
represents the phase imbalance introduced by the imperfect 90° hybrid, 
Am is the error in the mth modulation step, and Vdd and Vd   are the dc 
offsets. If we assume that the target of opportunity from which we would 
like to measure our calibration is a point target, we need only one com- 
plete MxN measurement to correct for all errors. This assumption is 
reasonable, provided the target response remains within one range cell 
for the duration of the measurement. The signal that is to be demodu- 
lated, integrated, and normalized is formed with equation (3) as two 
components of a complex pair: 

M-l 

s(/„)= I/-fe) 
m=0 

L(fn)+JQm(fn) (4) 

By substituting the Euler form for the trigonometric functions in equation 
(4), combining Vdci and Vd   into a single term V, and dropping the func- 
tional dependencies to simplify notation, we have 

M-l 

2 m=0 
M 

ei(e+Zm+Am M* + 2W + Am)+G e^+s+2m + Amye^g+s+2m+Amj\ + v .(5) 

Multiplying through by the demodulation factor, factoring SQ from each 
term, and rearranging we get 

M-l 

S=Aei6X 
2      m = 0 

4am l + Ge)dyAm + e-J\2e + !iTr+*m -Ge~) M \ M +*»Uve-A9 + 2ff) ■   (6) 

Next we consider our sum, term by term: 

S=4reJe 1 + GeJSV + (i _ Ge-iS)e-)20ß + Ve'^ (7) 

M-l M-l M-l 
2am 
M   are com- whereA= X Ä, y3= X c"^ + A4 andT = £ e~f 

m =0 m =0 m=0 

plex constants. If we now constrain M = 4k, k = 1,2,..., then T = 0 and 
equation (7) becomes 

S=Aeje 
2 

l + GenA + \l-Ge-nß .-/* (8) 



If the phase modulator were perfect and the Am's were 0, then the com- 
plex constant A would evaluate to the real value M and the complex 
constant ß would evaluate to 0. This would reduce equation (8) to 

S=^ll + Gei8\Ae'e . (9) 

This shows that the correct phase and amplitude of the target may be 
recovered having only been modified by a complex constant: 

C=M(i + G^<5) (10) 

Because the calibration reflector measurement is modified by the same 
coefficient, C is normalized in the same manner as all other range and 
radar constants and equation (10) reduces to the ideal signal of equation 
(2): 

S(f)=AeW) = i(f)+jQ(f) (11) 

An analysis of each of the three coefficients from equation (8), assuming a 
uniformly distributed phase-modulator error, indicates that a more 
relaxed constraint than M = 4/c may suffice depending on the sensitivity of 
the system, namely M > 2 as indicated in figure 2. These plots were 
generated with a Monte Carlo simulation of 50 data sets with the A^'s 
chosen from a uniform distribution U[-3°, 3°]. If the error due to ß is 
intolerable, one may measure the exact phase shift for each step desired 
and store these values in a lookup table so that the exact value may be 
used in the demodulation portion of this process. This ensures that ß goes 
to0forM = 4fc. 

Figure 2. Coefficients 
of equation (8) with 
uniformly distributed 
phase modulator 
errors of ± 3°. 
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3.  Example of Calibration Technique 
With Simulated Data 

First we consider a single step; that is, let M = 1 in equation (3). A full 
discussion of the spectral characteristics of an ideal complex pair as well 
as the individual effects of dc offset and gain and phase distortions on the 
spectral components may be found in Scheer and Kurtz.4 It concludes 
that a gain imbalance provides amplitude errors at the target response of 
(A/2)(l + G) and of (A/2)(l - G) at the image response. The effect due 
to nonorthogonality may be expressed as an amplitude error of 
(A/2)(l + ei§ at the target response and (A/2)(l - e~i5) at the image 
response. Extending this argument, it is easy to show that the combined 
phase and gain distortions provide the target response with an amplitude 
error of (A/2)(l + Gei5) and the image response with an amplitude error 
of (A/2)(l - Ge~Js). These are two of the terms of equation (7) in addition 
to the dc term that would be present for the case M = 1. Figure 3 shows 
the effect of a 3-percent gain imbalance, G = 1.03, a 3° phase imbalance, 
8 = 3°, and a dc offset in the I and Q channels of 10 percent. Figure 4 
shows the same data as figure 3 for the case M = 4 and no phase- 
modulation errors; that is, the Am's = 0. Both the image response and the 
dc response have been eliminated and the target response has increased 
as a result of the M = 4 multiplier. Figure 5 shows the same data as 

Figure 3. FFT of 
simulated response to 
point target with a 
3-percent gain 
imbalance, a 3° phase 
imbalance, and a 
10-percent dc offset. 
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*Y = FFT of S[fn) in equation (4). 

^James A. Scheer and James L. Kurtz, Coherent Radar Performance Estimation, Artech House, Norwood, MA 
(1993), chapter 3. 



Figure 4. Data of 
figure 3 with M = 4 
and no phase- 
modulator errors. 

figure 4 but with a uniformly distributed phase-modulation error of ±3°. 
The effect of the phase-modulation error is an image response 62 dB 
down from the target response that results from the combined errors of 
the system, ß*(A/2)(l -Ge^8). 
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*Y = FFT of S in equation (9). 

Figure 5. Data of 
figure 3 with M = 4 
and uniformly 
distributed phase- 
modulator errors of 
±3°. 
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4. Conclusions 
A method for correcting the I and Q imbalances of a wideband radar has 
been presented that requires no internal phase-calibration hardware. The 
technique relies upon phase modulation of the transmitted signal and 
then digital demodulation, integration, and normalization of a single data 
set to eliminate distortions due to gain and phase imbalances as well as 
dc offsets in the signal channels. Some image response remains after 
processing if errors in the phase modulator are not accounted for; how- 
ever, these errors may readily be resolved with the exact modulator 
values stored in a lookup table. 
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