
NAVAL POSTGRADUATE SCHOOL
Monterey, California

CO

THESIS
SECURITY ISSUES FOR THE SOFTWARE EVOLUTION

MODEL

by

Anastasios X. Rambidis

March 1998

Thesis Advisor: Bert Lundy
Thesis Co-Advisor: Luqi

Approved for public release; distribution is unlimited.

JmC QUALITY INSPECT Q

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 1998

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
SECURITY ISSUES FOR THE SOFTWARE EVOLUTION MODEL

6. AUTHOR(S)
Rambidis, Anastasios X.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

None

10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis examines the security requirements of the software evolution model and identifies possible security mechanisms

called "control classes" that are applicable to the model. Then, based on combinations of "control classes," proposes a suitable
security level for each of the model's databases. Furthermore this thesis deals with the possibility of using Pretty Good Privacy as a
method for protection of software data stored in databases.

The software evolution model captures all the necessary changes in requirements early during the development process in
order to help in minimization of project cancellation, delivery delays and extra costs for fixing errors. The protection of software
data against unauthorized accesses and modifications is a primary consideration for the software evolution process. In this way, we
can develop a secure environment on which the software evolution can rely for accomplishing its goal.
14. SUBJECT TERMS
Database Security, Security Policies, Pretty Good Privacy, Software Evolution Model

15. NUMBER OF
PAGES 116

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI-CATION
OF ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form
298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

SECURITY ISSUES FOR THE SOFTWARE EVOLUTION
MODEL

Anastasios X. Rambidis
Lieutenant, Hellenic Navy

B.S., Hellenic Naval Academy, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1998

Author:

Approved by:

Bert Lundvi Thesis Advisq

r
 V
Luqi, Thesis Co-Advisor

Dan Boger, Chairman
Department of Computer Science

in

IV

ABSTRACT

This thesis examines the security requirements of

the software evolution model and identifies possible

security mechanisms called "control classes" that are

applicable to the model. Then, based on combinations of

"control classes," proposes a suitable security level

for each of the model's databases. Furthermore this

thesis deals with the possibility of using Pretty Good

Privacy as a method for protection of software data

stored in databases.

The software evolution model captures all the

necessary changes in requirements early during the

development process in order to help in minimization of

project cancellation, delivery delays and extra costs

for fixing errors. The protection of software data

against unauthorized accesses and modifications is a

primary consideration for the software evolution

process. In this way, we can develop a secure

environment on which the software evolution can rely

for accomplishing its goal.

VI

TABLE OP CONTENTS

I. INTRODUCTION 1

II. THE IMPORTANCE OF SECURITY FOR A RELIABLE
SOFTWARE EVOLUTION MODEL 5

A. IDENTIFYING THE WAY TOWARDS THE SOLUTION OF
THE SOFTWARE DEVELOPMENT PROBLEM 5

B. SOFTWARE EVOLUTION AND THE MODEL 7

1. Definition 7

2 . The Need for the Software Evolution

Model 7

3 . Description of the Model 9

C. IS SECURITY A NECESSITY FOR THE MODEL? 17

III. BACKGROUND ON SECURITY 21

A. PROPERTIES OF A SECURE SYSTEM. 21

B. DATABASE SECURITY 22

1. Storing the Data 22

2 . Access Controls 27

a. Discretionary Access Controls27

b. Mandatory Access Controls 28

3 . The Multilevel Database Concept 29

4. Encrypting Data for Storage 31

IV. REQUIREMENTS AND SECURITY LEVELS FOR
ACCOMPLISHING A SECURE SOFTWARE EVOLUTION MODEL.33

Vll

A. SECURITY REQUIREMENTS FOR THE SOFTWARE

EVOLUTION MODEL 33

1. Organizational and Administration

Requirements 33

a. Protection Against Improper

Access 34

b. Integrity 34

c. Confidentiality 35

d. Availability 3 6

2 . Operational Requirements 36

a. User Authentication 36

b. Inference Control 3 6

B. INTRODUCING SECURITY LEVELS 37

C. CLASSIFICATION OF SECURITY LEVELS 41

1. Defining Security Control Classes 42

2 . Definition of the Security Level 44

D. IS THE HIGHEST SECURITY LEVEL THE BETTER
SOLUTION FOR THE SOFTWARE EVOLUTION MODEL?.46

V. SECURITY POLICY AND TECHNIQUES 49

A. A SUCCINCT APPROACH TO THE SECURITY
PROBLEM 49

B. MODEL' S SECURITY POLICY 49

1. Personnel Database 50

a. The Process 54

2 . Hypertext Database 57

viii

3 . Reusable Components Database 63

4 . Working Revisions Database 69

5 . Design Database 70

6 . Software Base 76

7 . Project Management Database 80

VI. ENCRYPTION USING PGP 85

A. HOW PGP WORKS 85

B. PGP EXPERIMENTS 87

C . PGP VULNERABILITIES 94

VII. CONCLUSION AND RECCOMENDATIONS 99

LIST OF REFERENCES 101

INITIAL DISTRIBUTION LIST 103

IX

ACKNOWLEDGEMENTS

First and foremost, I must acknowledge the

positive attitude and understanding I have received

throughout my studies for the degree of Master of

Science in Computer Science from my wonderful wife Zoi.

Her endless support and patience was always a helping

hand for me through the difficult phases of this work.

I also wish to express my deepest gratitude to the

Professors Bert Lundy and Luqi whose scientific

guidance was important for the completion of this work.

XI

Xll

I. INTRODUCTION

Security is an important issue when dealing with

software development processes such as software evolution.

The primary goal of a software evolution model is to

capture all the necessary requirements for changes early

during the software development process. In this way, we

will succeed the minimization of:

a. Software projects cancellation due to requirements

misunderstanding

b. Delays on the deliveries of products

c. Total cost for fixing errors identified after the

delivery of the product.

In order for this model to accomplish its goals, we

need to make sure that only authorized users properly

manipulate all the software data. To succeed this

requirement, we have to consider establishing security

mechanisms, which will provide adequate protection of data.

Therefore, careful attention to security aspect is required

for ensuring a well-defined security policy.

■ The software evolution model involves a number of

different databases where software-related data is stored.

For that reason, this thesis mainly concentrates on

identifying the security needs of each database and

suggests some mechanisms that will provide control on the

users accessing the databases and the actions that they

perform on the data.

The databases could be part of a distributed system

that can be accessed locally or over a network. Thus, the

security of the software evolution model needs to address

protection of data while it is stored and while it is

transmitted over the network.

In this thesis we deal with the protection of data

while it is stored in the databases. First, we define four

"control classes" that are applicable for the protection of

databases. Then, we define four "security levels" as

combinations of the "control classes." Finally, for each

database, we propose a security level based on the control

classes that need to be used. Some other parameters such as

data accessibility, data classification and data

sensitivity are also taken into consideration.

Also, we exploited some of the features of PGP (Pretty

Good Privacy) version 5.0 considering it as a method for

encrypting data stored in a database. It turns out that

doing encryption by record instead of by field saves a lot

of space in the database.

Chapter II explains the necessity of security for the

software evolution process. It also explains briefly the

usefulness of software evolution and describes the software

evolution model. Chapter III provides some information on

security properties and presents some issues for data

storage. Chapter IV lists the security requirements and

contains the definitions for "control classes" and

"security levels." Chapter V presents a security policy for

each database of the software evolution model, suggesting

an appropriate security level. Chapter VI contains some

information about PGP, along with the results of the

experiments we did using the PGP version 5.0 for Windows

95. Finally Chapter VII summarizes this research and

presents recommendations for future work.

II. THE IMPORTANCE OP SECURITY FOR A RELIABLE SOFTWARE
EVOLUTION MODEL

This chapter focuses on the importance of security for

an effective software evolution model, explains the need

for "software evolution" and describes the model.

A. IDENTIFYING THE WAY TOWARDS THE SOLUTION OF THE
SOFTWARE DEVELOPMENT PROBLEM

Many examples in the past have shown that the complete

determination and understanding of a customer's

requirements is very important for delivery of a product on

time. The software evolution model is a valuable tool for

software engineers to avoid delays and extra cost during

the development of a software product. This model allows

software-related data to be retrieved from data

repositories, modified according to software product needs

during development and saved back to the data repositories.

It is important to keep all the software data in reliable

databases so that no data is lost or modified by

unauthorized personnel.

Ensuring protection of these databases against inside

and outside intruders is the major purpose of this thesis.

Protection of data is a critical step towards the

completion of a reliable model on which software

development will rely for solving software problems

identified in the past.

A reliable and secure model will provide a reliable

method to the software-engineering world for improving

software development and maintenance efficacy, which would

yield millions, perhaps billions of dollars in savings.

In the past, poorly understood requirement

specifications have led to a 31% cancellation rate for

software development projects according to a 1994 Standish

Group survey [Ref. 1] . The same group reports that from a

sample of 6,516 IT application projects only 27% of

development projects were successful according to a survey

conducted in 1996. 40% of the projects failed and 33% were

late and over-budget.

Software-engineers encountered these software

development problems because of the lack of a reliable tool

that can capture and handle the requirement changes before

the last phase of software life cycle.

By identifying the existing dangers to the model's

security and suggesting some security solutions, we will

provide the means for a steady and secure basis on which

the software evolution model will be built for solving the

frequent problem of software project failure.

Since the software evolution model and its security-

are not independent, we explain the software evolution

issue and introduce a simple version of the model before we

refer to the security issue of the model.

B. SOFTWARE EVOLUTION AND THE MODEL

1. Definition

Software evolution is a set of software-related

activities and relations between them that affect the state

of a software system. The difference with the older term

"maintenance" is that software evolution refers to system's

changes throughout the development of a software system

while the maintenance refers to changes made after the

initial development.

2. The Need for the Software Evolution Model

A look back to the past reveals many cases where

inadequate capabilities for software evolution led to the

failure of large projects. For example we could mention the

construction of the baggage handling system for the Denver

airport which cost $20 million for requirements changes

[Ref. 2] or the $83 billion that the US invested on failed

projects in FY 1995 [Ref. 1] . A well-constructed software

evolution model could help to reduce the waste of money on

software projects by overcoming the large backlog of

requested changes, long delays, failure to complete changes

and high error rates during the development of a software

project.

Currently the development of huge software projects

makes it necessary to use a high level tool which could

handle the complexity of real software systems. This tool

needs to have advanced capabilities, so that it monitors

the dependencies between activities and records how a

change in an activity can affect the others, in which order

and at what level. Since a change or a series of changes in

the activities of complex software systems could result in

the redesign of critical parts of the envisioned system,

the tool should provide decision support based on the

interrelations between the system's activities. The

designer would then be able to identify in advance how the

envisioned system will be affected by limited or extended

changes due to redefined requirements.

The effectiveness of the tool is closely related to

complete understanding of software evolution. For this

reason the definition and implementation of a data model

that simulates the difficult and complex procedures of

software evolution would be very helpful.

An abstract version of this model is presented in

[Ref. 3], [Ref. 4]. Salah Badr [Ref. 5] has done further

development of the model. A redefined concept of the

software evolution model is under research at the Naval

Postgraduate School, to approach more accurately the

procedures that take place during the development of

complicated, real time software projects and solve known

problems with previous models. From now on, this thesis

refers to this redefined model.

3. Description of the Model

The software evolution model consists of a partially-

ordered set of steps referring to the activities that take

place throughout the software development and maintenance.

A graphical representation of the model is shown on Figure

1.

After the designer has constructed a prototype based

on the initial customer requirements, a demonstration of

the prototype allows the customer to evaluate its behavior.

The customer compares demonstrated scenarios with the

expected behavior of the product and identifies any

problems.

The prototype's demo results in a collection of

remarks, labeled "criticisms" in Figure 1. The origin of

From Prototype Demo

FTTNmONS

• Evaluation
• Assignment
• Developement
• Decomposition
• Documentation |
• Merging

Figure 1. The Software Evolution Model

10

these remarks are mainly the customer(s) who ordered the

product. Comments from other people affected by the

proposed system are useful and must be considered,

especially at the later phases and demos of the product

development.

A project analysis group (usually a part of the whole

software development group) under the supervision of the

project manager discusses the gathered criticisms and

categorizes them according to what parts of the project

they address. The next action of the group is to raise some

new "issues" related to each category of criticisms.

The next step is very critical for the future progress

of the envisioned system toward its completion. The project

group examines thoroughly the raised "issues," in order to

decide if these "issues" create the need for new

"requirements" or modification of already existing ones.

The project group involved in this step of the software

evolution model is different than the group of people

involved in the previous two steps, and is always under the

co-ordination of the project manager. Project designers and

analysts are people whose technical support is helpful for

the evaluation of the gathered "issues." Their

11

participation and support in this requirements decision

step is absolutely necessary.

After the requirements have been determined, the

specifications for the new requirements must be created,

along with the necessary modifications of specifications

related to older requirements that have been changed.

The result is an updated set of specifications, which

are going to affect the design of the system. These changes

can be related to one or more parts of the original design

plan. The size of alterations that have to be accomplished

depends on how close the new requirements are to the old

requirements.

After all the identified changes of specifications are

categorized according to the procedures they affect, their

implementation starts. This process is just before the very

important last step, which is construction of the new

prototype for further testing and demonstrations to the

customer.

The last step of the process, "Computer-aided Software

Evolution" is a complex process whose correct functionality

is one of the main ingredients that determine the final

acceptance of the product.

12

This phase cannot be considered as a stand-alone

process. It is the main brain of the model and the main

recipient of all the control signals coming from all the

previous phases as shown in Figure 1 by the dotted lines.

The outcome of the processes taken place here is to a high

degree directly or indirectly dependent on those activities

happening in the previous steps. So, a continuous

interchange of informative signals is necessary between

this phase and all the other ones. Some of the functions

that take place during this vital step are evaluation,

assignment,, development, decomposition, documentation, and

merging [Ref. 6] . The explanation of these terms is beyond

the scope of this thesis.

The described model shown in Figure 1 contains six

databases, which intercommunicate with various steps of the

model. This is a two-way communication, which allows the

users to retrieve and update the data.

There is a "hypertext database" which contains all the

data related to the first three steps. All the collected

criticisms, the raised issues and the derived requirements

are saved mainly as text files in this database for further

discussion and future reference. When data stored in this

database is required, it can be retrieved via cited unique

13

identifiers (alphanumeric symbols) or a search can be

conducted in the "hypertext database" using a keyword or a

set of keywords. This search returns the results, if there

are any, in categories according to the degree of

relationship to the search criteria. The functionality of

this database is determined by the fact that data related

to the first three steps of the model needs to be

manipulated often until the final version of the delivered

product.

Trying to collect data from different sources and

organizing them for analysis, comparison and evaluation is

always more complicated and time consuming than retrieving

them from a common repository. So the existence of one

"hypertext database" serves the purposes of quick

manipulation of hypertext data and convenient review and

analysis.

Another useful database is the "reusable component

database." The characteristic name of this database reveals

its functionality. Components of previously developed

software products are kept here ready to be used in future

products. These components can be used with no changes or

can be modified to meet the requirements of every new

developed product. The second case is what is happening

14

most of the time. This is not a problem since it is not

necessary for the project group to build new components

from the beginning for each new project. This depends

mainly on the similarity of the different requirements

between the various projects. But in the case of similar

requirements it saves money and time.

The "working revisions" database stores the temporal

changes done to the specifications and their

implementation. People working on specifications and their

implementation do many changes till they finally decide how

they want the specifications to look like and which is the

better way to implement them. This process needs a lot of

time to be completed, so there is a requirement that every

day changes are kept in a database for being reworked the

next day.

The "design database" is the place where the final

form of specifications and their implementations are saved.

Furthermore it is the place where all the documentation

about the project and the source code (the actual software

versions) are stored. Some of the documents it contains are

the analysis report, the data flow diagram, and the module

description, the testing plan and the test results.

15

The rest of the databases are interchanging data with

the last step of the model and each of these has its own

importance and functionality.

The contents of "personnel database" are not part of

the design of the system itself, but the information it

stores is critical for the security protection of the

model. Data kept in this database is related with the

people working for a project and could contain information

such as Name, Address, Classification Level, Social

Security Number, Tasks, and Database Access Privileges.

The "project management database" is managed

exclusively by project managers and stores data that

concern the projects that they lead. Schedules with

deadlines for each phase of the project, schedules for

tests or demos, and confidential information for personnel

involved in the project might be some of the data contained

in this database.

During the development of a software product it is

important to have handy all the tools that might need to be

used. The purpose of the "software tools database" is to

provide the means that will make the designing of the

product less time consuming and more efficient.

16

C. IS SECURITY A NECESSITY FOR THE MODEL?

The critical question that needs to be answered is the

following: "do we have to consider security requirements

for our model?" Since this question is very general, we

should think about the security aspects of functionally

vital parts of the model and whether they affect the answer

to the above question. There are many definitions of

"security," but the following is easy to understand.

"Security" is a set of procedures that must be

followed and a set of constraints that must be met in order

to assure that the data, whenever it is stored or in

transit over a network, preserves its privacy and

integrity. Data can be read, augmented, modified, or

deleted only by those who are authorized to do so.

Having in mind the software evolution model and the

definition of "security," let's try to focus on some facts

about the model.

The data itself is very critical for the model to

function properly. Unauthorized modification of data can

lead to unexpected complications, delay to the delivery of

the final product and extra cost in terms of money and

manpower. So, it is evident that the protection of data is

of high importance and value.

17

There are so many people involved in the development

of a system, that it is difficult to monitor them all the

time. Attempts for disclosure of confidential data by

unauthorized personnel, or improper retrieval and

manipulation of data from authorized personnel are

activities that must be avoided using some access control

mechanisms.

Another factor that should be considered is the

ability of persons not involved in the project, to access

critical data and retrieve it or modify it. This

possibility must be examined thoroughly, so that protection

mechanisms can be developed and applied to the model.

In addition to these considerations we should also

consider the protection of data which is transferred over a

network. We need to make sure that the data arrives at its

intended destination and we need to have mechanisms that

verify its authenticity and integrity.

For all these reasons mentioned so far, we are

convinced that there is an imperative need to determine a

minimum set of security requirements which will help in the

determination of security rules. Based on these rules we

should recognize those security mechanisms and techniques

18

that better can be applied to protect the model against

harmful activities.

We will discuss some useful security issues before we

proceed to the security levels and requirements of the

model.

19

20

III. BACKGROUND ON SECURITY

A. PROPERTIES OF A SECURE SYSTEM

Different researchers have proposed various security-

properties and used their own notation and formalism.

McLean in [Ref. 7] claims that properties of

confidentiality, integrity and availability can constitute

in a creation of a secure system. O'Halloran introducing

noninference in [Ref. 8] attempts to separate the low-level

activity from the high level activity. Noninterference

introduced by Goguen and Meseguer [Ref. 9], [Ref. 10]

captures the attractive notion that system security is

preserved whenever high level users are prevented from

influencing the behavior of low-level users. McLean in

[Ref. 7] also refers to separability as an example of

perfect security because it does not allow any interaction

between high level and low level events.

Zakinthinos in [Ref. 11] talks about the Perfect

Security Property and defines it by indicating what

elements must be present in the low-level equivalent bunch

for a low-level observation. He also states that a system

satisfies a security property if and only if all the

21

low-level equivalent bunches satisfy the security property

predicate P.

Building a secure system is a difficult composite task

that is based on the designing of secure atomic components.

Zakinthinos in [Ref. 11] identifies component independent

properties that allow a designer of a secure system to

interconnect components with a specific property and not be

concerned about the property not holding. He also refers to

component dependent properties that do not satisfy the

previous statement. For these components he presents

criteria that allow the system designer to know if the

composition will preserve the property or not.

B. DATABASE SECURITY

Castano, Fugini, Martella, Samarati in [Ref. 12] give

a simple definition for database. It is a collection of

permanent data managed by the Database Management System

software. According to them, databases must be reliable,

protect data and programs from unauthorized modifications

and disclosures and provide system continuity.

1. Storing the Data

There are two options for storing the data. One option

is having different databases based on the sensitivity of

the data they contain. The other option is having the same

22

database for all the data, no matter what the

classification of data is. The bigger the number of

classification the most difficult the data management. We

choose two levels, "high" and "low" for simplicity.

No matter which of the two options we choose, we need

to classify also the people using the databases. The

classification of people should be similar to the

classification of data stored in databases.

The basic architecture used in these databases is

shown on Figure 2. The "trusted filter" is the most

important component because it manages the data of

different classifications and passes labeled data to the

DBMS. Separation of data at different Security levels can

be achieved using one of the following techniques.

a. Physical. It separates spaces for data and computing

resources

b. Temporal. It separates times for use computing

resources

c. Cryptographic. It uses separate keys to access data

at different levels.

d. Logical. It uses an algorithmic separation of data

within a shared resource.

23

Based on the basic architecture, a number of variant

architectures have been developed, each one having its own

advantages and disadvantages. Their differences are related

TRUSTED
FILTER USER DBMS DATA

Figure 2. Basic Architecture for Databases
Classified by the Data they Contain
From Ref.[13]

with the way different classified users are accessing

different classified data through different filters set-

ups. Filters could be completely separated (Figure 3),

interconnected (Figure 4) or fully integrated (Figure 5).

Also different classified data could be physically

separated (Figure 6) or sharing the same resource but

logically separated by a security kernel (Figure 7), or

physically separated with synchronization (Figure 8).

HI GH

4_ TRUSTED
FILTER USER _fe DBMS «-► DATA

LOW

4—
M

—>
TRUSTED
FILTER

DBMS «-► DATA USER w

Figure 3. Database Architecture with Separate Filters From
Ref.[13]

24

HIGH

USER FILTER DBMS DATA
HIGH ■ HIGH

DATA
LOW

>

USER FILTER
LOW

DBMS

LOW

Figure 4. Database Architecture with Interconnected Filters
From Ref.[13]

USER
HIGH

FILTER

HIGH

LOW

DBMS

HIGH

DATA

USER
LOW

LOW
^

Figure 5. Database Architecture with Fully Integrated
Filters From Ref.[13]

25

HIGH

USER FILTER
HIGH

USER FILTER
LOW

LOW

Figure 6. Database Architecture with Data Physical
Separated and Communicating Filters From
Ref.[13]

USER
HIGH FILTER

DBMS HIGH

DATA

LOW USER
LOW FILTER DBMS

«^ • J

Figure 7. Database Architecture with Data Logical Separated
From Ref.[13]

26

HIGH

HIGH
DATA
LOW

USER DBMS

FILTER

HIGH

LOW DATA
LOW

v J

DBMS
USER -

LOW

Figure 8. Database Architecture with Data Physically-
Separated and Synchronized From Ref.[13]

2. Access Controls

There are discretionary and mandatory access controls

which according to [Ref. 14] include not only the

mechanisms that are required to check whether a request

issued by a particular user is allowed or not, but also all

those mechanisms that are necessary to enforce the

corresponding decision. Access controls are imposed by

access rules, which are determined by the chosen security

policies. Figure 9 is a top-level access control system.

a. Discretionary Access Controls (DAC)

Each user (subject) who creates an object is

identified as the "owner" of it and usually he is the only

27

person that at his discretion can allow or disallow access

privileges regarding this object to other users. These

privileges can be changed any time.

Access
Request

Access
Denied

Access
Permitted

Request
Modification

Figure 9. Access control system From Ref.[12]

b. Mandatory Access Controls (MAC)

In contrast with discretionary access controls,

only the security manager (who is not the system

administrator in highly trusted systems) is allowed to

grant or revoke access rights.

MAC defines subject (users or programs running on

behalf of users) and object security classes. An object

classification defines how sensitive the information

contained in object is, while a subject classification is

28

related with the degree of trust that can be assigned to

that subject.

The combination of the two access control

policies would be the better selection for a well-protected

system. DAC seems to be weak in terms of losing control on

privilege propagation from the owner or other authorized

persons. MAC with subject and object security classes

overcomes this weakness and prevents information flow

towards objects of lower classification. Combining the two

policies, we succeed authorization control in addition to

access control.

3. The Multilevel Database Concept

All data stored in such databases are required by

mandatory policies to be classified. This requirement is

accomplished by associating access classes with a relation

as a whole, with individual tuples (rows) in a relation,

with individual attributes (columns) in a relation, or with

individual elements (attribute values) in a relation.

The notation R (Ai, Ci, ...,An, Cn, TC) , is used in [Ref.

15] to declare a state-variant multilevel relation scheme.

Ai, i=l,2,..., n, is the attribute over some domain, Ci is a

classification attribute for Ai and could take any value

from a predefined access class set such as {unclassified,

29

confidential, secret, top secret} and TC is the

classification attribute of the tuple.

Entity integrity is a very critical property of

relational databases. The same property must be applied on

multilevel relational databases. For accomplishing entity

integrity the multilevel relation must satisfy the

following constraints:

a. The attributes forming the primary key must have the

same access class in any given tuple.

b. The access class for the primary key must be

dominated by the access classes of all other non-key

attributes in the tuple.

The problem with the multilevel databases is that we

might need to have simultaneous existence of multiple data

objects with the same name, where the multiple

instantiations are distinguished by their access classes.

This phenomenon is known as "polyinstantiation" .

An attempt to try model polyinstantiated tuples and

elements was introduced in [Ref. 16], where the full

primary key is defined for a multilevel relational scheme.

This key is equivalent to a primary key in the relational

model, but now its apparent primary key, its key class, and

30

all classification attributes for remaining multilevel

attributes distinguish each tuple.

The concept of using security classifications in a

relation was the subject of many studies, which lead to the

implementation of different security models. The main

difference among the various models is how they deal with

the problem of polyinstantiation. More details of these

models can be found in [Ref. 12].

4. Encrypting Data for Storage

When a user encrypts and stores some data but then

cannot decrypt it, it is impossible to go back in time and

re-encrypt it. For this reason encryption applications for

data storage should have some mechanisms to prevent

unrecoverable errors from creeping into the ciphertext.

Schneir in [Ref. 17] reports the following problems with

encrypting computer data for storage:

a. A cryptanalyst can perform a plaintext attack to the

data that might also exist in a disk, or in another

computer, or on paper.

b. In database applications, pieces of data smaller

than the block size of most algorithms, it is

possible to cause the ciphertext to be considerably

larger than the plaintext.

31

c. The speed of I/O devices demands fast encryption and

decryption, and will probably require encryption

hardware. In some applications, special high-speed

algorithms may be required.

d. Keys are required to be safely stored, may be for

long periods.

e. Key management is much more complicated, because

different people need access to different files,

different portions of the same file, and so forth.

Encrypting each file with a separate key and then

encrypting the keys with another key known by the users

would be a solution to the problem of key management.

Different users can have different subsets of the file-

encryption keys encrypted with their key. This method

allows multiple users to have different views of the

encrypted data.

There are two options when encrypting databases. One

is to encrypt the whole database and the second one is to

encrypt records. The first option is problematic and

inefficient since a user needs to decrypt the whole

database in order to access a single record. The second

option is more efficient for decryption but could be

susceptible to a block-replay kind of attack.

32

IV. REQUIREMENTS AND SECURITY LEVELS FOR ACCOMPLISHING A
SECURE SOFTWARE EVOLUTION MODEL

In this chapter we determine the security requirements

for the software evolution and we define some security

levels being applied to the model's databases.

A. SECURITY REQUIREMENTS FOR THE SOFTWARE EVOLUTION MODEL

We need to identify the security purposes and criteria

we want in our model. Generally, we can express security

requirements as constraints on states we are allowed to

possess and constraints on transitions from one allowed

state to the other. To define the security requirements for

our model, we need to identify any constraints on the

model's state. These constraints could be considered

composite and expressed as the total of atomic constraints

applied to each of the databases [Ref. 18].

We categorize the security requirements that need to

be applied to the model in organizational and

administration, and operational.

1. Organizational and Administration Requirements

Security considerations must take into account, any

software or hardware involved in data flow into and out of

the model's databases. In addition, we need to establish a

33

well-defined security policy, which provides guidance on

the following issues.

a. Protection Against Improper Access

Access control is the major issue for avoiding

unauthorized access to data related with the software

evolution model. The process of granting permission through

the access control must ensure that unauthorized users are

recognized and rejected while authorized users are allowed

to proceed. Depending on the desired level of protection,

we need to decide what access control mechanisms we will

use. They could be simple or complex such as the access

mechanisms applied to multilevel databases.

b. Integrity

. It concerns protection of software data against

unauthorized modification. It also includes protection

against viruses, errors, and failures that could damage the

data. Users expect to store some data in a repository, and

retrieve it unchangeable unless an authorized modification

has been conducted. The system should be able to inform the

user if any data was corrupted.

Another aspect of integrity we need to apply to

our model is related with the preservation of data

consistency during concurrent transactions or the

34

modification of data, which is enforced to take values

within an allowable range.

The issue of integrity is very important for the

model since any unauthorized modification of data such as

customer requirements could lead to a version of software

product that is far away from customer expectation. Thus, a

delay to the delivery of the product plus extra money will

be required for doing the necessary corrections.

Also, the data consistency allows the people

working for a software product to have the confidence that

the piece of information, retrieving from a repository is

the latest updated data.

c. Confidentiality

This requirement prevents unauthorized disclosure

and thus constitutes integrity preservation.

For the model this requirement ensures that all

the information related with a recent or older version of

the software product is kept within the software

development group. Otherwise information flowing outside

could be used from another unauthorized party which could

result in unexpected situations.

35

d. Availability-

Software data should be available any time a user

requests it. Denial of service should be avoided by using

mechanisms, which ensure system fault tolerance and

redundancy in data, hardware and software.

Furthermore, for better protection of data

related to software evolution model, the project manager

should assign the task of database administrator to a

trustworthy person whose duties and responsibilities should

be clearly stated in advance. Also, people involved should

be carefully selected and educated for security awareness.

2. Operational Requirements

a. User Authentication

People involved in the process of a software

project should be identified as authorized users of the

system. This authorization could be limited to some data

stored in particular databases of the model. Usually

authentication is succeeded through an interactive process

between the user and the system.

b. Inference Control

This control is necessary for establishing a

secure model. It refers to information regarding data

obtained by indirect detection. A user infers information

36

that is not allowed to access by using some other

information that he is authorized to access.

Statistical information about the software data

of a project in addition to missing data (protected data

not allowed to be seen) in records returned from a

requested query could also constitute a dangerous inference

channel.

Two other aspects for model's security

requirements involve the need for auditing and data

recovery. Recording all the users' activities on the data

provides the flexibility of future analysis of access

sequences to the software data when a compromising of data

is monitored or reported. Also, it is desired to define a

data recovery procedure which will be able to overcome a

fatal data loss.

B. INTRODUCING SECURITY LEVELS

The different types of data stored in the databases of

the software evolution model, its sensitivity along with

the dangers associated with the model and the resource

implications of various means of avoiding or minimizing

those dangers, implies the consideration of different

security levels. These are related with the number of

different security steps that a user must go through for

37

accessing the data and the complexity of security

mechanisms and access controls. The more the security steps

of the process accessing the data, the higher the security

level. The greater the complexity of the security technique

used for database protection, the higher the security

level.

The following factors, are closely related with the

need for security levels:

a. Data accessibility: how often and how many users

access the data

b. Data sensitivity: how critical for the model is the

data we wish to protect or

c.Data and users classification: data is grouped in

categories based on how valuable the data is. Users

are grouped in categories according to the higher

classified category of data allowed to access.

We think that data accessible by a large number of

people needs to be protected at a higher degree than data

accessed only by a small group. The activities of small

numbers of users accessing a database can be easily

monitored and recorded. So, in this case we could

accomplish protection of data without composite security

techniques and small cost in terms of money.

38

In addition, if its users frequently access data, the

possibility of being compromised is greater than data

rarely used. So, if we know in advanced that data is

accessed on a rare periodic basis, for example only once a

month, then we can use a simple method for protecting it.

For better understanding of how data accessibility is

related with the requirement for security levels, we will

use two databases of our model as an example. On one hand,

only the project managers of the developed software are

allowed to access our project manager database. Therefore

for this database we do need consider neither different

classification levels for the data and its users nor

complicated access controls. Consequently, the required

security level for this database could include some

discretionary access control in addition to password and

login verification mechanisms.

On the other hand, "hypertext" database is accessible

by a large group of people (designers, analysts, project

managers) with different tasks and responsibilities. For

this database it would be appropriate to establish some

type of classification of data and its users so that all

users can access data related only to their classification.

In this way classification controllers confine the

39

activities of the user on the databases and we ensure

better monitoring and protection of the data. People

interacting with this database can manipulate only some of

the data which is required to perform their tasks. The

security mechanisms are more complicated and cost more

money for implementation. So, in this case the security

level should be higher than that applied to project manager

database.

The degree of data sensitivity would be also related

to the determination of different security levels. The

"reusable components" or the "design" databases contain

very critical information for the whole process of software

evolution. Any lost or unauthorized modification of data

could be disastrous for the developed system. Therefore, it

would be highly recommended a well designed security method

for protection of the data stored in these databases. It is

obvious, that in this case the required security level will

be accomplished . by applying more restrictions and more

controls than those for "personnel" database where loss of

a record for example can not affect the progress of a

project.

Of course, most of the times the realistic case we

meet is a combination of the factors we are referring to in

40

this section. For example, data sensitivity plus frequent

data accessibility could both apply to the reusable

component database. A compromising of a password for

accessing this database would be a disaster if the only

protection were a login and password control mechanism.

Certainly, we do not want this to happen. Consequently, we

have to enforce highly secure methods to avoid undesired

circumstances, which may be not applicable or necessary for

the other databases of the model.

To conclude, different security requirements for each

database along with the different characteristics of data

it stores, lead us to the need of introducing security

levels, which will be used as a basis for differentiating

the security mechanisms applied to databases.

C. CLASSIFICATION OF SECURITY LEVELS

In order to formulate the different security

requirements of databases, first we will define four

"control classes." They are atomic security mechanisms that

either can stand-alone or combine between them in order to

establish an overall security policy. Sets of these control

classes will be used for the definition of four different

levels of security, each one characterized by a number. We

will name these levels as security level 0, 1, 2, and 3.

41

The decision for the security level of each database will

result from considerations related with the quantity (how

many) and the identification of the proper control classes

that provide adequate protection of data. Some other

factors as data accessibility or data classification are

also taken into consideration.

1. Defining Security Control Classes

All users requesting to access any of the databases

are required to pass through a number of "control classes."

The number of "control classes" is different for each

database depending on its characteristics. We will try to

define "control classes" under a general framework for

secure databases, so that they are applicable to any

database.

a. Control class one: System requires from the user to

enter a login name and password, which are checked

against the information saved in the system for the

particular user. In this control class, the security

mechanisms of the system perform identification and

authentication of a user. Security mechanisms can be

improved at this control class, by the use of

security add-on packages or security special-purpose

42

hardware, which add new security features to the

system.

b. Control class two: A discretional security model

based on the DAC mechanisms, checks the access

privileges that a particular user has in order to

allow him to proceed to certain actions on the data.

Access privileges define a user-role based security

policy where the "role" declares to the system what

actions should allow the user to exercise in the

application. User's role is predefined in the

system.

c. Control class three: Users are required in this

control class to access the database via a

multilevel security model. A user depending on

his/her responsibility framework or in other words

his/her task(s) will get just the part of

information that he/she needs to perform his/her

task(s). Alternatively, access to data is governed

by classifications of subjects and objects in a

system. Mandatory access control (MAC) mechanisms

are used to enforce this security policy.

d. Control class four: Users are required to access the

database via a security model, which enforces the

43

use of an encryption mechanism. These mechanisms

could include a wide range of encryption/decryption

algorithms from very simple to very complicated and

highly secure. User has to decrypt those views of

the data that are encrypted in order to reveal their

contents. Also he is enforced by the security policy

of the system to encrypt some or all of the entered

data.

2. Definition of the Security Levels

We are using combination of the control classes for

defining security levels. The abbreviation SL stands for

Security level

a. SL 0 is referring to systems where no protection is

required. Stored data is accessible by the public

and neither access control mechanism nor any

security technique is required for this level.

Everybody can access and manipulate the data without

any restriction. None of the control classes we have

defined is applicable to this level.

b. SL 1 provides minimum protection to a system. Only

control class one is applicable to this level, which

forces a user to go through identification and

authentication procedures for retrieving the data.

44

c. SL 2 makes a system more difficult to be accessed by-

unauthorized outsiders or insiders. A combination of

control classes one and two or one and three are

applicable to this level. This level provides

increased protection to a system and controls the

possibility of improper access from unauthorized

insiders or outsiders. Alternatively, for succeeding

high protection a combination of control classes

one, two and three or one, two and four could be

used where for the control class four an encryption

method using a small size key could be used to

protect the data integrity and secrecy.

d. SL 3 is the maximum protection that can be applied

to a system. A combination of control classes one,

two and four (using a larger in size

encryption/decryption key than that in SL 2) or one,

two, three and four are applicable to this level.

User identification mechanisms, trusty access

controls and highly secure encryption techniques

enforce all the users of the system to use their

authorization properly.

Table 1 shows all the security levels with the

applicable combinations of control classes for each one.

45

The "X" declares that the control class of its row is

included in the definition of the security level of its

column.

SL 0 SL 1 SL 2 SL 2 SL 2 SL 2 SL 3 SL 3

Control

class ONE X X X X X X X

Control

class TWO X X X X X

Control

class TREE X X X X

Control

class FOUR X X

Table 1. Security Levels Defined by Combined Control
Classes

D. IS THE HIGHEST SECURITY LEVEL THE BETTER SOLUTION FOR
THE SOFTWARE EVOLUTION MODEL?

The first thing coming in someone's mind would be

"what is the security level that we have to apply on the

model for better protection?" Of course, the answer does

not take a lot of thinking, "the highest possible level."

But the highest security level is not always feasible

46

or sometimes it is not necessary. First we have to consider

some other parameters in order to select the right security-

level . These parameters are related to the cost of

succeeding the desired security level, the complexity of

the security technique we will use, the desired speed of

accessing the data and finally the type of information we

need to protect. The classification of data is one of the

main factors, which determines the suitable security level

for a system. If the information is critical, the required

security level should be higher than the case where the

data is unclassified.

In addition to the parameters mentioned before, there

is another factor that might affect the choice of the

security level for a system, its users. Imagine a system

that is very secure, although the protected data are not

highly classified. The users of this system need to proceed

through a relatively big number of procedures in order to

access a piece of information. Such a system is difficult

to use and could not be easily acceptable by its users.

To conclude, we think that the selection of the

highest security level for a system is not always the right

decision. The system's preservation of efficiency,

flexibility and functionality could be a good feedback to

47

our decision to keep or modify a selected security level

for a particular system.

48

V. SECURITY POLICY AND TECHNIQUES

A. A SUCCINCT APPROACH TO THE SECURITY PROBLEM

What we have to face in our model case is a collection

of sensitive and insensitive data that must be manipulated

by people with different responsibilities who might not all

be trustworthy.

The key to the methodology of accessing while

protecting vital data and information should be first to

identify the users. Then we must define their rights and

establish their responsibilities. Everybody should follow

the security rules, without any exception [Ref. 19].

The approach we chose for satisfying the security

needs of the model is not unique. Since the software

evolution model consists of six different databases, the

security of the model resides mainly on the security of

these databases.

B. MODEL'S SECURITY POLICY

In this section we establish a security policy for

each database of the software evolution model. The security

policy selection is related to the decision of how many and

which security control classes are required for the

protection of each database. We will discuss each database

49

separately and identify its security needs. Finally, we

propose an appropriate security level for each database.

1. Personnel Database

For the functionality and security of the model we

need to include in each person's record the following

pieces of information.

a. Task(s) : A person can work on more than one project

and also can have different task(s) for each

project. This information is needed, because as we

will see later on access control to some of the

databases is based on the task(s) of each individual

in the project.

b. Skill Level: This information, in case of a security

attack to the system, might be useful for the system

administrator to identify some possible suspects.

c. Database Access and Action Privileges: Each

individual should know in advance which database he

is allowed to access for manipulation of data.

Furthermore, it is desirable to specify for him a

set of privileges that are related with the actions,

which he can perform on the data stored in

databases. These pieces of information can be used

from the access control mechanisms of the databases

50

to grant or deny permission to a user. So, it is

critical to ensure that the entered information for

each individual is protected from unauthorized

modification.

d. Login name, account number, and password. The system

uses them for identifying and authorizing each user

and allowing him to proceed. All the passwords must

be encrypted and kept in a different file (not as a

separate field in a person's record).

In addition to the above critical attributes we need

to identify the potential users of this database. Project

managers are mainly the people that need to manipulate the

data stored in "personnel" database. Project managers

should be able to read, write/modify, and execute data

related with "skill level" and "task(s)." Modifications of

these entries by people other than the project managers are

prohibited.

For the entries to "database access" and "action

privileges" fields we suggest two methods. The first allows

only the security administrator to assign for each

individual a "database access" and "action privileges" for

each database upon approval of the project manager. Project

managers only may read these entries. If there is a need

51

for modification of these settings, they can request it to

the system administrator, the only person authorized to do

modifications to the values of "database access" and

"action privileges" attributes.

This method allows the system administrator to control

and monitor the users accessing the databases and their

transactions.

The second method allows the project manager to do any

necessary modifications to the "database access" and

"action privileges" entries without a previous notification

to the system administrator. This option is more flexible

and avoids any delays because the same person (project

manager) processes any modifications resulting from changes

done to the task(s) entries.

In the case that the second method is chosen, every

time a change to "database access" and/or "action

privileges" fields is performed, a notification message

from the DBMS is forwarded to the system administrator.

Keeping the number of people allowed to access the

"personnel database" small implies fewer chances for

unauthorized users to disclose secret info such as "login"

name, "password" or pass phrase.

52

For this reason, we suggest that we should not allow

individuals (except project managers) access to the

"personnel" database. Any change to "login" name or

"password" that individual needs to do, because he suspects

a compromise of them, should be through the system

administrator.

Any unauthorized modifications to the values of the

attributes we have discussed could lead to a series of

undesirable situations causing delays to the progress of

the software project. For example such modifications could

result in having unqualified people do specific tasks, or

assigning jobs to persons that were not supposed to deal

with, or people with low skill level be assigned to do

tasks, which require higher skill levels. Also, it could

result in having people retrieve data from databases that

are not allowed.

A security level 2, defined by access control

mechanisms as well as encryption to some of the data fields

of the personal records, could provide enough protection

against attempts for compromising data integrity. Secrecy

of data is not so critical as integrity since disclosure of

information' kept in this database can not constitute a

53

threat for the scope of software evolution model, since it

is difficult to affect the progress of a software project.

The security level we propose is based on a

combination of control classes two and four that a user

must go through every time he wants to manipulate some

data. Control class one must always be the first control

class that an individual has to successfully pass through

no matter what the security level is. The sequence of

control classes is shown on Figure 10.

a. The Process

A user enters his password and identification

name (login name) in order to pass the control class one

and proceed to the control class two, which includes the

access control mechanisms. He enters a query and DBMS

returns the corresponding records. The user, although he

has the records he needs, cannot read the values of data

that are encrypted. In order to be able to read the

encrypted fields he needs to successfully pass through

control class four. The encryption controller checks the

validity of information that is required from the user and

if there is a match with the respective information saved

in the system, it should reveal the values of the fields

54

Personnel Data

fl tt

Encryption/Decryption Control Mechanism

A

7 L

ViewW

^ J

View A

j

f

ViewB

^

J '—-^ k
i L

a

Role A RoleB RoleW

A

Discretionary controls

.

Password check mechanism

Login name control

A

User

Figure 10 Sequence of Control Classes for Personnel
Database

55

for reading. If a user needs to modify an encrypted

field/record, he has to decrypt it and then re-encrypt it.

Among different encryption techniques we

considered Pretty Good Privacy (PGP) for the "personnel"

database. PGP is a well-known security software package

combining the speed of conventional single-key encryption

with the convenience and higher security of public key

cryptosystems. All the users of the database should have a

private key in addition to a public key. The public key is

available to everybody and is saved to a public ring. The

private key is kept secret and only the individual user of

the database knows it.

Furthermore, the system using the PGP "sign"

feature, forces the user to digitally sign any new entry or

modification he did in addition to the performed

encryption. This authentication scheme is needed especially

for transmitting data over a network.

We did some experiments using PGP and we found

out that encrypting by record rather than by field is more

effective since it requires less space for data storage.

Actually we found that increasing the number of fields the

PGP ratio is increased, meaning that encrypting by record

is even more efficient when the number of record fields is

56

increased. More details on our experiments are included in

Chapter VI.

Users can reentry at most three times the required

identification and authentication data. We believe that

this number is enough to handle some misspelling or typo

errors. The same number of attempts applies also to PGP

control mechanism. A larger number would allow an

unauthorized user to experiment a greater possibility of

guessing the required entry (login name, password or pass

phrase). After the third attempt, the system locks and

sends a notification message to the system administrator.

A detailed graphical representation of security level

2 sequence of events is shown in Figure 11. A potential

"personnel" database is shown in Figure 12 while the

retrieval of data could be simulated as in Figure 13.

2. Hypertext Database

It is the place where all the criticisms, issues and

requirements are stored. Any loss or unauthorized

modification of them could lead to a version of the

software product that does not meet the customer

requirements and needs, and thus, it should be reconsidered

for improvement. This reconsideration implies extra cost in

terms of time and money.

57

User
User accesses

the system

System requires a
login name

I
User enters his

login name

System checks the
entry against saved

info

If match

If not
match

If not match
and attemnt > 3

System requires a
password

User enters his
pass phrase

T

System checks
entry against its
saved pass phrase

System
requires a

pass phrase

If not
match

If match

PGP control
is engaged

and sends System locks
e-mail to system

administrator

User enters his
password

System checks the
entry against the
saved password

file

If match

If not
match

If not match
and attemot > 3

If data encrypted

If not match
and

attempt > 3

System
reveals the

data

System returns
view(s) of the

data

If action
defined
in role

Action
granted

Action
revoked

System checks
attempted action

against saved role for
the user

If action
not

defined in
role

User can request to
perform actions on

some or all of the data
depending on his role

Figure 11. Graphical Representation of Security Level
2 for Personnel Database

58

C
la

ss
if

ic
at

io
n

L

ev
el

u.
Ü

Ü

CO

CO
»-

(0 « w
2 • CO m

■2 °
n <
Q

A
1

A
i

A
i

W
o

rk
in

g
 o

n
P

ro
je

ct
s

A i
A A i

•

>>
—
CO

O
O
o
to
CM

O
O
O
CO
CM

O
O
o
o
CO

c

<

o
o
o
Q.

o
o
o
CM

0.

en
o
o
o
CO

0.

s i
c
c c

I.
<D

©

O

2

ES
<D
o
-3

CO

2
o

a

z
(0
co

CO
t
CO
in
i

co
en •
in

CO

CM
CO
■*

i
CO
03

1

CM
CO

I-»
CO
en
o •
CO
r-. •
CO
CM
T-

0
X> rt
6 w u
>» *■>
a: S Xi
0> u o *

J3 4>

o
Z

a,
u
A

i
o c
a, s3

CO
c
o

l CO
a Ü

(0 «*-
IB o
1- CD

a.
CO

CO *-»
c

eo
1

CD

E
je CD
<o V.

as 3

1- CT
CD

DC

CO
■

c
CM CD CO

1

«0

E
CO

CD

3

(0

0>

«
3

CT

03

«e a>

l- cc
CO O)

<n CO
c
o

c
^

E
w
u

CO E zz E

(0
«
1-

<D
3
CO

w

Ü

co
o E

CO

*^ (0 k. o O) %— ^
Ü

CD o
o Q. V.

CO a.

u < 03 Ü < 00 Ü < co Ü

0
O o o o o o o o o

o i— u. L_ l_ L. X- w 1- 1—

w a. a. 0. Q. a. a. a. a. 0.
0.

CO CO CO ,- T- T- 1^ r^ 1^
<* "tf ■* CM CM CM co co co
CO co CO CO CO co O) c» O)

z io IO 10 ■* t t o o o

(0 00 CO co CO CO co CO co co
(0 c» O) 05 o> 0) O) r- 1^ N.

to lO to ,- ^ T- CO CO co
■"* ■* ■* CM CM CM CM CM CM
CO CO co CO CO co T— T— T—

a
4) UJ X X

.— (0
«

as 5 X

1
4-*
a
a cc X X

o 111
f a>

(0
(B 5 X X

(0

! <»
! co

<0
a cc

i 0> m UJ X X

i5
Q)
(0

' (0
CO

ja £ X

0)
! 0)

,— (0

i n a
i£ a DC

CO <
Q 0)

(0

UJ X

JQ 5 X

—- CB
a cc X

CO
^

N-
•>* CM- CO
CD CO O)

<i in Tj- o
i 0)

(0

1

CO
1

CO
1

CO
; O) a> !•*■

m T— CO
I <tf CM CM
I CO CO ^-

I

1

o

o
a.

A
1

CO

ffi
>-

A
1

co
CD

>

A
1

CO

CD

>-
(A I
•* 1

°I
o I
im }

03

o
m.

a.

o
z

o
2

A
I

CO
CD

>
a |
c I
O !

?i

<

o
0.

A
1

co
CD

>-

o
2

o

o

j

s

z
CO
(0

CO

CO
w

1

CO

1

in

CO

CM
CO
■>*

CO

1
T™

CM
CO

CO

o
1

CO

1

CO
CM

a)
m
to

■8
(d
Q

a)
ö a o

(U
ft

CN
H

Di
•H
En

59

p-
(Q
C
p.
CD

P1

So
fl>
rr
p-
CD
<
P-

<Q

Ö
P>
er
0)

Ml
H
O

•0
CD
l-{
CO
O
13
S3
(D
P1

Ö
P>
rr

&
SD
to
(D

00 ►o

23

M

M

»

a

•o o
O **
LJ. H-
<p 2
O 1Q
rr
to O

>
fd n
i-> o
o 0
o c
o 3
H» rr

3
C
3

tr1

o
CD

o

CD H-
—i ,U

3
0)
3
CD

CO
-p>.
Ul

1
CO
00

1
Ol
Co
-Ft
CO

co
CO
3

TJ
3
>

►d

o
CD
O
rr

o
13.

o"
co"
3
CO

►3
p)
CO

r
H1

►3
0)
CO

r
to

GO
>-1

?3
•XI «
•1 ><
n> F o

on »-*

CO

Ul
1

CO
CO

1
Ol
o>
CO

CO
CO
2

1

C

3
1 >
j.

r

13

O

CD
O
rr

>

i-S
0

CD
n
rr

to

60

The mechanism that controls which type of data a

particular user should view, checks the login name and then

tries to identify which task(s) are related with the

entered login name using the task(s) information saved in

"personnel" database. The system allows a user to access

and retrieve only those relations, which are related with

his predetermined task(s).

The actions a particular user can perform on data

stored in "hypertext" database are controlled by the action

privileges, which are kept in "personnel" database and set

by the system administrator with the co-ordination of the

project manager. "Databases access" relation of Figure 12

shows an example of how action privileges are set for the

whole database. But certainly, we can set different action

privileges for each of the criticisms, issues or

requirements relations of the "hypertext" database. These

settings must also be kept in "personnel" database.

Generally, we might have to consider that it is not

necessary to allow users of "hypertext" database to make

changes to the "criticisms," since we need to make sure

that they keep . their originality. For the "issues" and

"requirements" we have to consider some modifications of

the already existing ones in addition to the newly created

61

after the prototype demo. For this reason we need to

include the "write" action privilege in "issues" and

"requirements" relations of "hypertext" database.

Some other things that we have to consider for this

database is the large number of people accessing the

database and the frequency of access.

Since clients will be able to run a prototype demo of

the software product from a remote location using a network

we need to consider the possibility that criticisms will

arrive to the project group very frequently, maybe every

day or every hour. So updates of the "hypertext" database

need to be done very regularly. Consequently, may be it is

not efficient to wait for a number of criticisms to be

collected and then proceed to the procedure of raising

"issues" and creating "requirements."

Thus; the sequence criticisms-issues-requirements is

executed in a wide range of frequency repetition depending

on the project manager's policy. This means that a very

high frequency of transactions with the database cannot be

excluded.

A security level 2, defined by enforcing

identification and authorization control in addition to

multilevel access control mechanism implied by MAC security

62

policy ensures data integrity. Confidentiality of stored

data is not of the same importance for this database since

disclosure of hypertext data could not affect the software

development process at the same degree with modification of

some data.

The suggested security level is based on a combination

of control classes one, two and three. The user is required

to pass through the sequence of control classes shown on

Figure 14 to access the data.

The graphical representation shown on Figure 15

presents the sequence of events taken place every time a

user requests access to the hypertext data.

3. Reusable Components Database

The components stored in this database are of high

importance for the software evolution procedure because

they can be reused as they stand or serve as a base for

building new ones. This provides great flexibility and

saves time and money. It saves time because we can retrieve

from the database ready to be used components in order to

build and implement our specifications. It saves money

because we do not need to assign people to build the

components always from nothing. Doing only the necessary

63

Hypertext data

—1 zs

Multilevel access control based on task(s)
definition

T>

View A

Role A

View B

Role B

View W

Role W

Discretionary Controls

£
Password check mechanism

Login name control

User

Figure 14. Sequence of Control Classes for Hypertext
Database

64

User

J User accesses
the system

System requires a
login name

User enters his
login name

System checks the
entry against saved

info

If match

Knot
match

System
reveals the
respective

view(s)of the
data

A message is returned
to the user and e-mail

is sent to system
administrator

If match

If not match
and attempt > 3

If not
match

Task(s) control
mechanism is

engaged <:
-N
V

System requires a
password

System locks and sends
e-mail to system

administrator

Task(s)
entries in
Personnel
Database

User enters his
password

i
System checks

the entry against
the saved

password file

If match

If not
match

If not match
and

attempt > 3

If action
defined
in role

System checks
attempted action

against saved role
of the user

If action not
defined in role

£3 Personnel
Database

User can request to
perform actions on
some or all of the
data depending on

his role

Figure 15. Graphical Representation of Security Level 2
for Hypertext Database

65

modifications might be enough for satisfying the current

needs.

Because of the importance of these components we need

to make sure that people dealing with them are trustworthy

and take the necessary precautions for avoiding loss and

careless or improper manipulation of these components.

Some of the components could be used for the

development of highly classified systems. Thus, it is also

very critical to preserve the secrecy of them.

For security purposes we need to classify the

components according to the severity of damages they can

cause if unauthorized people manage either to disclose or

modify them. In this case, it is essential to classify also

the users of the database according to the highest degree

of classified data they are allowed to access.

It is very difficult to investigate when an authorized

user made dishonest use of his authorization. But we can at

least prevent all the users from having access to the whole

data by assigning classification levels to them and the

stored data.

In addition to this, having an encryption/decryption

step on top of the classification control mechanism would

provide extra strength to the data protection. This way,

66

even though someone can disguise himself as another person

with higher classification level, he would not be able to

view the data unless he has also compromised the secret key-

needed to perform the decryption of data.

A security level 3 would provide the highest

protection against unauthorized transactions. This security

level is based on a combination of control classes one,

two, three and four. But enforcing this combination might

be very complicated and difficult for the users to adapt

it. Sometimes, complicated security systems are not easily

accepted by people and instead of providing the highest

protection, it turns out that they are vulnerable to

security attacks because their users disregard difficult to

implement practices.

Thus, a second option which combines control classes

one, two and four might be more applicable to our model,

since it effectively provides data protection without

adding a lot of complexity to the system and consequently

it is easier usable by the people. Either the data is

stored or in transit over a network, a strong

encryption/decryption method such as the PGP could ensure

that the properties of secure data are met.

67

The problem with using this combination is that if you

have no classification of data, a user having compromised

the necessary key, as soon as he decrypts the data, can

view it no matter what its classification.

So, users of this database should be trusted and

carefully selected. Also they need to be especially careful

with handling of encryption/decryption keys. For better

monitoring and control of their transactions we keep an

audit.

A solution that could solve some of the problems is to

have the components categorized in "low" and "high"

sensitivity. Having encrypted only the "high" sensitivity

components and allowing only specific users to access them,

we could accomplish an effective control over the

activities performed on this database.

The sequence of control classes corresponding to the

second option we discussed is similar with that shown on

Figure 10.

For the process of accessing the data, the steps are

exactly the same with that appeared on Figure 11. The

important difference is the key size that encryption

mechanism uses for encryption/decryption. For this database

a longer key is required. For example, if we are referring

68

to PGP, the use of a key with 2047 bits could result in a

highly protected system. The trade-off is that the process

will last considerably longer.

4. Working Revisions Database

This database provides to its users the convenience of

saving data to a temporal location where it is easily

retrieved. It is important to ensure that the saved data

remains unmodified till the next time the owner of the data

decides to reuse it. This means that integrity of data is a

critical issue for this database and thus we need to use

security mechanisms for protecting it. Confidentiality of

data is not so important at this point since the

specifications and their implementation are not final.

The frequency of access to the database is high since

users need to store and retrieve their work many times per

day. The number of people accessing the database depends on

project needs and can vary according to the task(s)

assigned by the project manager.

A security level 2 defined by identification and

authorization procedures along with a discretionary access

control mechanism could provide adequate protection of

temporarily saved data. Thus control classes one and two

69

are the least secure combination that we have to consider

and their sequence is shown on Figure 16.

The process of accessing this database is simple and

relatively quick compared to those we have seen so far to

other databases. A detailed step by step access procedure

is shown on Figure 17.

5. Design Database

All the data kept in this database including source

code and implementation are very critical. So, the

preservation of data secrecy and the protection of data

integrity are the main issues for this database.

Sensitivity of data related with the various projects

can vary from "very low" to "very high." This sensitivity

variation creates the need for categorizing the data

according to its importance. Data that its disclosure can

not be dangerous at all or cannot cause undesirable

situations is categorized as "unclassified." All the other

data are considered "classified." For classified data, the

levels often considered are Top Secret (TS), Secret (SC) ,

and Confidential (CF). People (subjects) should also be

categorized to similar with data (objects) classification

levels. They are allowed to access objects that are

classified up to their level.

70

View A

Role A

Working Revisions Data

7V

\7

View B

f
Role B

C \

View W

A >

Role W

Discretionary Controls

A

Password check mechanism

Login name control

/v

User

Figure 16. Sequence of Control Classes for Working
Revisions Database

71

User

I
User accesses

the system

System requires a
login name

User enters his
login name

System checks the
entry against saved

info

If match

If not
match

System returns
view(s) of data

If not match
and attempt > 3

System locks and sends
e-mail to system

administrator

System requires a
password

User enters his
password

X
System checks the
entry against the
saved password

file

If match

If not
match

If not match
and

attempt > 3

If action
defined
in role

Action
Revoked

System checks
attempted action

against saved role
of the user

If action not
defined in

role

<=>. 0
User can request to
perform actions on
some or all of the
data depending on

his role

Personnel
Database

Figure 17 Graphical Representation of Security Level 2 for
"Working Revisions" Database

72

In addition to classification levels we should use a

set of compartments, as they are known. This set is not

ordered as it happens to the classification levels which

can be considered elements of a hierarchically ordered set

where TS > SC > CF > UN.

The security policy, which enforces the classification

of subjects and objects is based on MAC security mechanisms

and uses the following principles formulated by Bell and

LaPadula [Ref 21] :

a. Only read-downward. A subject is only allowed to

read objects if the access class (classification

level plus set of categories) of the subject

dominates their access class.

b. Only write-upwards. A subject is allowed only to

write to objects if their access class dominates the

access class of the subject.

For better understanding of how the classification

levels and the compartments are combined for accomplishing

secure multilevel access we will use an example. Assume

three clearances (classification levels) : Top Secret,

Confidential and Unclassified and a set of categories

consisted of two elements or "compartments." The

compartments are NATO and Nuclear.

73

Figure 18 presents a graph whose circles represent

labels of "clearances" and "compartments." Arrows represent

allowable transitions. The circle where the arrow points at

is more secure than the circle from which the arrow starts.

A transition is allowed when the circle where the arrow

starts from has a label that satisfies the following:

Figure 18. Allowable Flow from a Least Secure Label to a
Higher Secure Label

74

a. Its classification level is the same or dominated by

the classification level of the circle where the

arrow points at, and

b. Its compartment is the same or a subset of the

compartments of the circle that is pointed by the

arrow.

A subject (person) cannot do something to an object

(relation, tuple, file, application) unless an arrow or

sequence of arrows points from the subject circle to object

circle in the graph or unless the circles have same labels.

The Security Administrator assigns clearances and

compartments to each project team member according to his

task(s). These settings are kept in the personnel database.

They should be updated every time a person starts working

on a new project or stops working on an old one. If a

person is working on more than one project, which they have

a different classification level, then the system

administrator should assign to him the highest respective

classification levels.

Since the design database stores mainly the source code

and documentation for different versions of a software

product, we might consider that the need for "write" action

privilege should be prohibited for everybody.

75

The number of people accessing the database is limited

and includes mainly the project managers and some

designers. The frequency of accessing the data is probably

low since most of the time this data is needed when a demo

is prepared or when a new version of a product is ready and

needs to be stored.

A combination of control classes one, two and three is

probably the better selection that satisfies the security

needs of this database. As a result, the security level 2

is proposed for acquiring an adequate protection of data

confidentiality and integrity.

The sequence of control classes that a user has to go

through is shown on Figure 19. Figure 20 presents a

detailed step by step procedure of security controls a user

experiences each time he wants to retrieve or store data in

the design database.

6. Software Base

This is a database frequently accessed by the project

members since it contains useful tools usable throughout

the development of a software project. Those tools should

be available to all the people involved in various

projects.

76

Design data

U tf
Multilevel access control based on Classification

Levels and Compartments

tr
Unclassified

View A

r >
Unclassified

ViewB

Unclassified

ViewW

^Nw <)

t \ t \ x t
Role W

Role A Ro] .e B

Controls Discretionary

tf
Password check"'mechanism

Login name control

Ü
User

Figure 19. Sequence of Control Classes for Design Database

77

User
User accesses

the system

System requires a
login name

i
User enters his

login name

System checks the
entry against saved

info

If match

If not
match

System reveals view(s) of data up to user's
clearance as it is defined in personnel

database

Classification
level/Compartment

control mechanism is
engaged

If not match
and attempt > 3

System requires a
password

System locks
and sends
e-mail to
system

administrator
 A

User enters his
password

System checks
the entry against

the saved
password file

If match

If not
match

If not match
and attempt > 3

A-
V }

Respective
entries in
Personnel
Database

Unclassified
data view

Action
granted

If action
defined
in role

Action
Revoked

System checks
attempted action

against saved role
of the user

t

If action not
defined in

role

<^>

User can request to
perform actions on
some or all of the
data depending on

his role

a
Personnel
Database

Figure 20. Graphical Representation of Security Level 2
Design Database

for

78

An identification and authorization procedure would be

enough for preventing unauthorized users to access the

data. But since any try for intentional damage of data from

authorized but untrustworthy users cannot be controlled

only using identification/authentication mechanisms, we

need to consider also some DAC limitations. For protection

of data integrity, "write" action is not allowed to anyone.

This does not create confinements on the process of

software evolution since the stored tools themselves have

no relation with newly developed data.

On the other hand, the unavailability of those tools

could have a practical impact on the progress of a software

project since they are necessary for some steps of the

evolution process. Therefore, we have to make sure that we

establish mechanisms, which are able to overcome any denial

of service. We can accomplish it by using some redundancy

in terms of software and hardware.

We believe that a security level 2 defined as a

combination of control classes one and two is appropriate

for preserving integrity and availability of tools.

The sequence of control classes and the access procedure

is the same with those presented for "working revisions"

database and shown on Figures 16 and 17 respectively.

79

7. Project Management Database

The scope of this database is to help the project

managers to maintain pieces of information such as

scheduled. deadlines for assigned task(s), scheduled jobs,

maintenance and meetings, future demos (when, where,

participants) and proposed test plans.

Thus, any loss or improper modification of data is not

going to affect dramatically the evolution process. Of

course, if for example there is an unauthorized change in

deadlines of specific task(s), that may cause some delays

if the change remains unnoticeable to the project manager.

Again, this is controllable and sooner or later the project

manager will realize any suspicious changes.

In addition to project managers, may be some designers

need also to maintain their data in project management

database.

Generally the total number of people that need to have

access to this database is limited. The frequency of

accessing the database is high.

A data disclosure or modification cannot create

serious threats for the smooth continuity of evolution

process. It might cause some temporal delays but it is

difficult to affect the delivery of the product. Lack of

80

availability should not be a problem since some temporal

arrangements can give solutions to such cases.

Therefore, there is no need for data protection more

than security level 1, which uses only an identification

and authentication procedure (control class one). Figures

21 and 22 show the control classes and the access procedure

steps respectively.

If we need to consider a higher protection of this

database the highest security level that we should suggest

is 2, which adds some control on the allowable actions

performed by the users. In this case the sequence of

control classes would be as in Figure 16 and the access

procedure will be the same with that on Figure 17.

81

Project Management
Data

tr
Password check mechanism

Login name control

/\

User

Figure 21. Sequence of Control Classes for Project
Management Database

82

User
User accesses

the system

System requires a
login name

User enters his
login name

I
System checks the
entry against saved

info

If match

If not
match

If not match
and attempt > 3

System requires a
password

System locks and sends
e-mail to system

administrator

User enters his
password

System checks
the entry against

the saved
password file

Knot
match

If match

If not match
and attempt > 3

User can perform
actions on data

Figure 22. Graphical Representation of Security Level 1
Project Management Database

for

83

84

VI. ENCRYPTION USING PGP

This chapter provides some basic pieces of information

on how Pretty Good Privacy (PGP) works and presents the

results of some tests we did using the freeware version 5.0

of PGP for Windows 95. It also contains some discussion on

the vulnerabilities of PGP.

A. HOW PGP WORKS

PGP uses IDEA [Ref. 17] for data encryption, RSA [Ref.

17] for key management and digital signatures and MD5 [Ref.

17] as a one-way hash function. PGP's random public keys

use a probabilistic primality tester, and get their initial

seeds from measuring the keystroke timing and the actual

keys struck of the user. It generates random IDEA keys

using an algorithm, which is based on the one specified in

ANSI X9.17 [Ref. 17] with IDEA instead of DES as the

symmetric algorithm. A hashed pass phrase instead of a

password is used for encryption of user's private key.

The actual operation of PPG consists of five services:

authentication, confidentiality, compression, e-mail

compatibility, and segmentation. Table 2 presents a brief

description for each of the PGP's functions.

85

•-3
P> er
fD

to

CO
P

p>

*<
o
l-h

hd
O
*ü

CO
(1)

<
O
(D
IQ

n
o

po
fD
l-h

to
o

CO
fD
IQ
3
fD

rt
P>
rr
F-
0

in
CD

CQ

fD
P
rr
0)
rr
F-
O
P

P>

P.

to ■£

& i-h

* g
CO

o
P.
P>
rr
fD

3
P)

H-

I
3
3
(D
CO
CQ
P>
IQ
(D

n
o
I
P>
rt
H-
V
F-
H
F-
rt

o
o

fD
H
CO
F-
O
P

M
I

3
F-

o
o
%
fD
CO
CO
F-
O
0

50
P>

F-

CO
rr

F-
P

CQ

P
CO
F-
p

tQ

P>
p.
F-
X

I
en
£*

O
O
P
<
fD
H
CO
F-
O
P

3

tr
(D

o
o
9
rt
fD
P

rt
O

P)

0»

M
F-
O
P>
rr
F-
O

CO

P>
P

a>
P
o
n
s
rt
(D

>
co 3
O (D
H to
H CO

a>
CQ
fD

>-3
o

o
<
F-
&
CD

rt

P>
P
CO
•O
P)
f1
(D
P
O

Hi
O

(D
I
3
P)
F-

C0
rt
O

P>
CQ
fD

o
F

rt
F
pi
P
co
3
F
CO
CO
F'
O
P

>
3
fD
CO
CO
p>

CQ
(D

3
p>

0*
fD

O
O

I
F
fD
CO
CO
fD

CO
F-

CQ
P
P)
rt
P
n
(D

N
H

F-
P
O
F"
P
Pi
(D
P.

F-
rr
P*

rt
PJ

CD

3
fD
CO
co
P>

CQ
(D

F-
IQ
(D

® rr
co
(D
P
Oi
fD
F

CO

•o
F
F-
<J
Pi
rr
CD

fD

Ö
F-

cQ
F-
rr
P)

o
F ^
fD >
P>
rr tr
fD p)
Qj CO

P'
P
CQ O

O
p.

IQ fD

rt
fD

P
CO
F-
P
IQ

JÖ
CO
>

H-
rt
P*

ui

o
l-h

P)

^ 3
P' fD
H- CQ
CO CQ

P)
3 «Q
fD fD
CQ
10 H-
P> CQ

CQ
fD

fD
P
O
H

§
rt
H-
O
P

CO
>

S a

s
fD
CQ
CQ
P>
IQ
fD

H
o

JO
to

P)
P
Pi

H-
P n

rt co
p- H-

CQ
fD
CQ

fD

P1 n
fD H
0"0

fD

H-
CQ

IQ
ro
P
fD
n
p)
rt
(D
P.

fD
P

Hj- rt ii

2. fD
H p

fD *° a

- Cf
M C
P- CO
n H-

P
**iQ
fD

- CO

^ 3
s: fD
H- CO
rt co
if P)

CQ
p) fD

O H-
P CQ
fD

I fD
rt p

n
n

fD <°

m CQ rt
S fD fD
2 CQ p.

B.J2,
ß O

P
CO
H-
P

3 fD
ff^H

M

P
P
O
rt
F-
O
P

CQ
O

H-
rt

co

a
CQ
fD
p

Ö
fD
CO
n
H-
•0 rr
H-
O
P

86

B. PGP EXPERIMENTS

The idea introduced here is to use the PGP for storing

data in a database. In this way we can achieve privacy of

data critical for the development of a software product and

also enforce authentication of people manipulating the data.

For being able to say if this idea would work for our model,

we did some experiments using the Freeware Version of PGP

5.0 available from M.I.T site [Ref. 22].

For our test purposes we used a potential "personnel"

database from the software evolution model. This database

consists of 10 records and we assumed that a number of six

fields (attributes) are the least required. Also for our

tests we used maximum 15 characters for the first name, 20

for the last name and 16 characters for the task. If we

represent the unclassified, confidential, secret and top-

secret clearances with the codes UN, CF, SC, TS respectively

we can use two characters for the field named "Security

level." For the social security number we considered a

standard length of 11 digits and characters while for the

salary we used 4 or 5 digits.

Having in mind that each character or digit needs a

byte to be stored, the numbers appeared in Table 3 are

expressed in bytes. All the rows with the black numbers are

87

er
(D

•Ö

H-

CG

13
Q
13

O

SU

13
O
rf
(D

rr
F-
PJ

13
(D

en
O

a>

a
rr
Ö) cr
pj
en
CD

H-
rr

CO
F-

Id
F-
(D
M
P*
CO

*l

ON ON ON ON ON ON ON ON ON ON a
ON Ul ON Ul ON

I—» to
Ui
UI

l—* Ui
NO

1—*
© 4* Ui 4=*

00
4^ 4^

00
4^ UI o u> 4* ON

to 1
3

■6

r1

a ON to
O

ON ON ON ON ON ON ON ON ON 1
ON
UI

ON
UI NO

ON
4- 00

ON ~J UI NO o Ui to
-O. Ul

to
ON UI

to
ON 4* Ui 4^ Ui ' 3

■B

[/)
t
"J :

ON ON ON ON ON ON ON ON ON ON
4^ to 4^ tO 4^ to 4^ to 4* to ■£. to 4*> to 4^ to 4^ to 4* to «^
-J ~J 00 -O ON 00 -O ON 00 ON

'

aa
ON ON ON ON ON ON ON ON ON ON

s 4^ Ui 4*. Ui 4^ Ui ** Ui ■£> Ui 4*. Ui 4^ Ul ■*>. 4^ 4* 4* 4* 4S»
NO NO NO -~J NO ^-> NO <l 00 00

ON
ON
I—*

ON

ON
ON Ul

as
ON

t—*
Ui

ON
ON

t—*
Ui

ON
ON Ui

ON
ON Ui

ON
ON Ul

ON
ON Ui

ON
UI
4*

00
ON
Ui
4=-

00
H
SB
OB
7?

ON
UI
4^

ON
UI
4^

ON
UI
Ui

H-» ON
UI
UI

ON
UI
UI

ON
UI
4* 1—*

ON
UI
UI

H-1

ON
UI
4*

ON
Ul
Ul

►—I
ON
Ul
4^

H-1
*—1 3

s ON ON ON ON Ui -fc» 4*. 4^ u> u> H o
N© O l>i 1—» u> Ui U) to u> to v*

£ e.
OB

s
W a 3
V« LO w U) U) U) U> U) U) U) U)

iryptio
y field

hi
O

H» NO NO NO NO NO NO NO NO NO 00
NO U) U) U) to to o H-» o O NO
Wl ~J -J 00 00 NO NO to 00 to Ui

I B

o
ll
JA ON
9\ NO -J ^J -J -J ON ON ON ON ON ON 3 n
K) -J. t—* i—* O o NO NO 00 00 00 ^» re *-

>. Ui 4 VO 00 NO to NO 00 1—' NO

ption
cord

88

the plaintext (not encrypted field) of our entries. After

each row with the black-colored numbers there is another one

with red-colored numbers, which are the respective

ciphertext (encrypted field) of the entries after using the

PGP. For all the tests we used PGP for encryption and

authentication, so from now on when we are talking about

encryption this term will include authentication as well.

The two last columns of the table show that encrypting

a whole record takes less space than encrypting each field

of the record separately. So, for our first record which is

32 bytes in size, a space of 679 bytes is required for

encrypting with PGP while a space of 3895 bytes is necessary

for storing the same record encrypting each of its fields

separately.

We define it as WPGP ratio" the ratio of required space

between encryption by field and encryption by record. For a

total of 10 records we noticed that the "PGP ratio" is 5.62

meaning that it is required 5.6 times less storage space if

we use encryption by record. This ratio becomes considerably

bigger when we increase the number of fields in a record

from six to eight as shown in Table 4. In this case the PGP

ratio is 7.11. For an increase of 86.22% in the actual size

89

i-3

if
H
CD

•a
i-1

■<
H-

l£»

>u
Q •o
O

0)

•o o
rr
fD

rr
H-

CD

en
o
£S

CD
H

a
rr
S»
tr
Ö)
01
CD

H-
rr
£T

Cd
H-

5" rr

*x]
H-
CD
H
D.
01

ON
ON
I—»

Ui

ON
ON Ul

ON
ON to

ON
UI
Ul

ON
Ul
NO ©

ON
4*
-O.

Ul
ON
4*
00

4^-
ON
4^
00

4*.
ON
Ul
©

Ul
ON
4*.
ON

to c

ON
ON
Ui

to
©

ON
ON
Ui

t—*

NO
ON
ON
4^

I—»
00

ON
ON
ui

1«» ON
ui
NO ©

ON
UI
to

-J
ON
Ui
to

ON
ON
Ui
to

ON
ON
4*. Ui

ON
4^ Ul

I-1

«9

c

ON
4*
<1

to
ON
4*
•^1

to
ON
4^
00

to
ON
*>
-O.

to
ON
4*
ON

to
ON
4^
00

to
ON
4^ to

ON
4*
ON

to
ON
4^-
00

to
ON
4*
ON

to ST 8

•5"

ON
4*
NO

Ul
ON
4^
NO

Ul
ON
4*. Ul

ON
4^
<1

Ul
ON
4^
NO

Ul
ON
4^ Ul

ON
4*
NO

Ul
ON
4" 4*

ON
4^
00

*.
ON
4^
00

4*

at

5

ON
ON t—i

ON
ON
ON 1—»

Ui

ON
ON Ul

ON
ON
I—* Ul

ON
ON
t—»

Ui

ON
ON t—»

Ui

ON
ON Ui

ON
ON Ul

ON
UI
4*

00
ON
Ul
4*

00
H

1

ON
Ul
4*

ON
Ul
4^

1—»
ON
Ul
Ul

ON
Ul
Ul

ON
UI
Ui

ON
Ul
4*. 1—»

ON
Ui
Ui

ON
Ui
4^

ON
Ui
Ui

ON
Ui
4^

C/)
OS
SI

ON

-o
Ul
©

ON
-O Ul
©

ON

^1
Ul
©

ON

-o
Ul
©

ON
-o.
<t

Ul
©

ON

^1

Ul
©

ON

-o
u>
©

ON Ul
©

ON Ul
©

ON
-J
-o

Ul
©

~:
OB
OB

ON
ON
©

1—>
ui

ON
ON
© ui

ON
ON
©

1—»
Ul

ON
ON
©

Ul
ON
ON
©

ON
ON
©

I—»
Ul

ON
ON
© u>

ON
ON
© Ul

ON
ON
© Ul

ON
ON
© Ul

83
sr B

©

e.
OB

Ol
Is»
Ul
Ov
Ul

o

to

t—»

©
©
ON

t—»

©
4=>

NO
ON

00
00

00
ON

00
Ul

-a
ON

-o
Ui

H
o
in-

&

O

©
ii

5-»

Ul
to
<1
4^

Ul
to

4*

Ui
to

Ui

Ui
to
ON
UI

Ui
to
ON
ON

Ui
to
4^
ON

Ui
to
4^
NO

Ui
to
4*
Ui

Ul
to
Ul
NO

Ul
to
Ul
to

W
D
A

S: 5. a. ©
B

-o.
ON

-o.
Ui

-J
Ul
4>-

Ul
to 4*

-4
U)
4^

-o.
u>
u>

Ul to
-J
to

W
B
A

8'S
& B

a-

90

of a plaintext database (no encryption is performed) we

have an increase of 44.459% in the size of database if we

encrypt by field while there is only an increase of 6.13%

if we encrypt by record.

The results from Tables 3 and 4 are showing that it is

much better to encrypt the whole record using PGP since it

requires less storage space. The large number of fields

that might exist in the database is not a problem for

encrypting the whole record with PGP, since the more the

fields of the record are, the more we save in storage

space.

Continuing we describe some other tests we did with

PGP. For different sizes of plaintext we measured the

respective sizes of ciphertext and the time needed for

completing the encryption. Table 5 has different sizes of

plaintext records up to 1240000 bytes, which in our opinion

is a representative upper bound for data (mostly text type

entries) stored in databases of software evolution model.

The other two columns give the size of the record after the

encryption along with the required for the encryption time.

Figure 23 shows a graphical representation of Table 5.

We noticed that the time for the encryption remains

considerably low, no matter how big the plaintext size is.

91

Plaintext Ciphertext Time

75 721 1.70
76 721 1.64
85 731 1.67
88 734 1.70
96 744 1.64
106 754 1.62
112 761 1.65
240 802 1.71
400 822 1.84
1000 839 1.83
2000 873 1.8
4000 933 1.79
8000 1053 2.04
32000 1662 2.22
564000 265112 4.91
1240000 1210000 10.33

Table 5. Encrypting Different Sizes of Records with PGP

This is important especially when you are dealing with huge

records since it does not take much time to complete an

encryption.

It is useful to have a closer look at the ciphertext

sizes and see how they vary as the plaintext size is

increased. For this reason, we constructed Table 6 and its

graph as it is shown on Figure 24 (values up to 8000 bytes

or plaintext size) where some more details about ciphertext

size variation are appeared.

Assume that an intruder is trying to compromise a file

and knows that the file he is looking has a size between 50

and 2 00 bytes. Even if he has all the ciphertexts, he can

92

■c
co

O

1

!

«O CO
« k <o O + o + CO

■^5
^ ^ ~~.

HI Ui o

in in
*N » o o •> m + + o>

N
V

^

LU
CO

Hi
CO

•*r

T
O
O
O
CM
co

CM
co
CO

CM
CM
CM

m o o CO
in

■*

:

*" o CO
o CM

CM 8 o co
CO
o>

0)
I-;

c
■» *~
o o CO

l~-
co

CO
*~ o CM ■""

k

O
o o o

0>
CO
CO

«0
CO

*~ *
!

o CM ^_
00

CM
o
CO

CM ,_ in
r^- CO

l~-
;

CO ^r CM
co O in

c

c

T_
i^

■""

in CO
o>

•» CO
CO CO

o

E

:

:

:

i^
■**

CO in
CO CO

i~-

CM CO
i^ CM CO

in CM
1-

o

o n o o o o o o V o r o o o o o V » o o a n o o o o o o o o o o S S
CJ r o o o o o j=
■<r r> O CO CD T CM CO a.

Q.

\

O H

soas)9Uij) JO (s9^q))X8viai|di3 jo azis

CD
&

•H
tH

Ö
O

•H
4->

S u
o
Ö
m
■ö

co
CD
N

-H
CO

4->
X
CD
4J
U
CD
X\

-H
o

° u
Ö
o

-H
•U
(Ö
U
fi
<D
CO
CD
S-l

o
u
CD
Pi

M-J
o
CO
CD
N
H

Ct! CO

o
■H
u
CO
>

ü
-iH

ft

n o

CN

cu

CD
-H

93

Plaintext Ciphertext Time

75 721 1.70
76 721 1.64
85 731 1.67
86 733 1.65
88 734 1.70
96 744 1.64
104 752 1.68
106 754 1.62
110 751 2.04
112 761 1.65
240 802 1.71
400 822 1.84
1000 839 1.83
2000 873 1.8
4000 933 1.79
8000 1053 2.04

Table 6. Encryption Times (in sees) and Ciphertexts for
Various Record Sizes

not say just by monitoring the ciphertext sizes which ones

correspond to the range of plaintext sizes he is looking

for, since larger file does not mean necessarily larger

ciphertext if we are encrypting with PGP.

C. PGP VULNERABILITIES

In this section we discuss some security drawbacks

related with PGP.

a. Compromised pass phrase and secret key. Avoid making

your pass phrase a single word. An easy to remember

but hard to guess pass phrase can be easily

constructed by some creatively nonsensical sayings

94

E

x

ID
x:
Q.

Ö

{
X

\

o CO ■*

1 (0 o m o
o o
oo CM

o CO
CO

0)
1 1 m o

o
h- 1 o> ""

•* o
o
o
CM

CO

oo

00

CO
o
o CO

CO
00

""
o oo "-'

o CM ■<r iV CM o CM
oo

oq

o CM x-
1 ♦ ̂~ ■* o r-~

,,

CM oo T_

o CM
(O

m

T~ r^ "-

o ■*

II < O) in
I--

q
CM

<o •* CM
II - oo o in <o

■* CM 00
II ' t^ o m

i^
<£>

^r T
II • <D (D

O) i^
<£>

■*t O
II < m oo

oo CO r-;

co m
II <

II <

-* (O
oo CO

1^
(O

CO in
00 CO

1^
(D

■*

II < CM CM to

o ■ < m CM f^

' ._
oooooooooo ^J

X
o o o o o oo o o X
ooooooooo <u

a)
.c

OJoor-<Din,*cocM'<- _c a>
JO .S- E
a. b |i-

B
-H

a
o

■H

Q,
>,
U o
Ö
w

TJ

(tf
4J

(Ü
j.)
U
Qi

a
-H

4->

<u
J->
a

-H
(Ö

■H
ft
M-l
O

ß
o
•H

td
4->

ro
(U

<u
pi

us
o

-H

a

CQ

Cn
ti
to

.. XJ

soes) sain J° (sajAqJpcapeqdp jo azis

Q)

-H
Pn

95

or very obscure literary quotes. A pass phrase is so

much better than a password since it can not be

easily guessed.

b. Public key tampering. When you use someone's public

key make sure that it has not been tampered with. If

you need to keep a copy of your public and secret

key rings in a floppy disk for backup purposes, make

sure that it is placed in a safe location.

c. "Not quite deleted" files. Even if you overwrite the

plaintext data on the disk, it may still be possible

for a resourceful and determined attacker to recover

the data. Faint magnetic traces of the original data

remain on the disk after it has been overwritten.

You can overwrite the original plaintext file after

encryption by using the PGP -w option.

d. Viruses and Trojan Horses. A specially-tailored

hostile computer virus or worm that might infect PGP

could be designed to capture your pass phrase or

secret key or deciphered messages and covertly write

the captured information to a file or send it

through a network to the virus's owner. PGP has no

defenses against viruses, so you must make sure that

his computer environment is virus-free. Also, try to

get PGP from a reliable source in order to avoid a

Trojan Horse version of PGP, which behaves like PGP

96

in most respects but does not work the way it's

supposed to.

e. Tempest attacks. This involves a remote detection of

the electromagnetic signals from your computer. It

could compromise all of your passwords, messages,

etc. The technology used for protection against this

attack is called "Tempest" and provides a shielding

for your computer system.

f. Exposure on multi-user systems. On such systems

there are greater risks of your plaintext or keys or

passwords being exposed. PGP cannot protect the data

while it is in plaintext form on a compromised

system. Nor can it prevent an intruder from using

sophisticated measures to read your secret key while

it is being used.

g. Traffic analysis. It is related with an attacker who

is trying to infer some useful information by

observing where the messages come from and where

they are going, the size of the messages and the

time of day the messages are sent. PGP alone cannot

provide protection against this attack.

h. Protecting against bogus timestamps. It involves

dishonest users creating bogus timestamps on their

own public key certificates and signatures. In other

words altering the date and time setting on his own

97

system's clock, a dishonest user can generate his

own public key certificates and signatures appearing

to have been created at a different time. A solution

to this attack would be a trustworthy Certifying

Authority that could create notarized signatures

with a trustworthy timestamp.

i. Cryptanalysis. PGP is safe to use if your privacy is

not going to be violated by a determined and highly

resourceful attacker. Both RSA and IDEA algorithms

are secure and very difficult to be cracked unless

some vast supercomputer resources are used.

98

VII. CONCLUSION AND RECCOMENDATIONS

In this thesis, security considerations, including

requirements and policies, for the software evolution model

was examined. Since the model consists of a number of

different databases with different needs for data

protection, each database was examined separately as a

component of a complex software system.

One critical fact about security is that no data

security system is perfectly impenetrable. In order to

decide which method is the proper one for a system, one has

to ask himself if the information he is trying to protect is

more valuable to his attacker than the cost of the attack.

This should lead him to protecting himself from the cheapest

attacks, while not worrying so much about the very expensive

attacks.

Based on the functionality of each database, we

recommend that different security policies should be

applied. Thus, we defined some Control Classes as the means

that could be applied to databases for providing data

protection against unauthorized activities. Sets of these

Control Classes were used for defining "Security Levels"

which reflects the security policy that should be considered

for each database. The selected security policy should

provide adequate protection to the stored data without

99

making the operation of the database very complicated and

inflexible.

In this research we deal with only the protection of

data while it is stored in a repository. The envisioned

scheme of the software evolution model where the users will

be able to send, receive and retrieve data using a wide area

network creates the need for addressing the network security

issue. Future work could concentrate on the protection of

data while in transit over a network. Furthermore, it would

be productive if in the future we could select some

different known security models that can meet the criteria

for Security Levels we defined and see how they work on

actual databases.

In addition to the determination of a Security Level

for each database, we did some experiments using PGP for

encrypting records. The results are useful for further

consideration on how to use PGP for protecting databases.

For better documentation on the PGP issue, we believe

that more detailed experiments should be done using

computers with increased capabilities. Use of the PGP on an

actual database in the future would be helpful for

extracting more concrete conclusions.

100

LIST OF REFERENCES

1. Robert P. Cooke, Jr, "Technology Transfer of the
Computer-Aided Prototyping System," Thesis, Naval
Postgraduate School, September, 1996.

2. W. Gibbs, "Software Chronic Crisis," Scientific
American, Sep. 1994, pp. 36-95.

3. Luqi, "Software Evolution Via Rapid Prototyping," IEEE
Computer 22, 5 (May 1989), pp. 13-25.

4. Luqi, "A Graph Model for Software Evolution," IEEE
Trans. On Software Eng. 16, 8 (Aug. 1990), pp. 917-927.

5. S. Bodr, "A Model and Algorithms for a Software
Evolution Control System," Ph.D. Thesis, Computer
Science Department, Naval Postgraduate School,
Monterey, CA., December 1993.

6. V. Berrins, ed., "Software Merging and Slicing," IEEE
Computer Society Press Tutorial, 1995.

7. John McLean, "A General Theory of composition for Trace
Sets Closed Under Selective Interleaving Functions,"
Proceedings of the 1994 IEEE Symposium on Security and
Privacy, pp. 79-93, IEEE Press, May 1994.

8. Colin O'Halloran, "A Calculus of Information Flow,"
Proceedings of the European Symposium on Research in
Computer Security, Toulouse, France, 1990.

9. Joseph A. Goguen and Jose Meseguer, "Security Policies
and Security Models," Proceedings of the 1982 IEEE
Symposium on Research in Security and Privacy, pp. 11-
20 IEEE Press April 1982.

10. Joseph A. Goguen and Jose Meseguer, "Unwinding and
Inference Control," Proceedings of the Symposium on
Security and Privacy, pp. 75-86, IEEE Computer Society,
May 1984.

11. Aris Zakinthinos, "On the composition of Security
•Properties," Ph.D. Thesis, Department of Electrical and
Computer Engineering University of Toronto, 1996.

12. Silvana Castano, Mariagrazia Fugini, Giancarlo Mortella
and Pierangela Samarati, "Database Security," Addison-
Wesley, Publishing, 1995.

101

13. Synthia Irvine, Classnotes from the "Advanced Topics in
Computer Security," course of the Naval Postgraduate
School, 1997.

14. Klaus R. Dittrich and Dirk Jonscher, "Current Trends in
Database Technology their Impact on Security Concept,"
Database Security, VIII (A-60), 1994 IFIP.

15. Elisa Berlino, Suchil Johodia and Pierangela Samarati,
"Database Security .-Research and Practice," Information
Systems Vol. 20, No 7, pp. 537-556, 1995.

16. Dorothy E. Denninng, Teresa F. Lunt, Rager R. Schell,
Mark Heckman, William Shockley, "A Multilevel
Relational Data Model," IEEE 1987.

17. Bruce Schneir, "Applied Cryptography," John Wiley &
Sons, Inc., 1996.

18. George Pangalos, "Security guidelines for database
Systems development," Database Security, VIII (A-60),
IFIP 1994.

19. Jeffrey Gene Kaplan, M.D., M.P.S., "Protecting
Sensitive Medical Information," Database Security, VI,
Status and Prospects (A-21), IFIP, 1993.

20. Williams Stallings, "Network and Internetwork Security.
Principles and Practice", Prentice-Hall, Inc. 1995.

21. D.E. Bell and L.J. LaPadula, "Secure computer Systems:
Unified Exposition and Multics Interpretation,"
Technical Report, The Mitre Corp., 1976.

22. M.I.T. Distribution Site for PGP,
http: / /web.mit. edu/network/pgp.html

102

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2 . Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5121

3 . Chairman, Code CS 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5121

4. Prof. Bert G.M Lundy, Code CS/LN 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5121

5 . Prof . Luqi, Code CS/LQ 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5121

6 . Embassy of Greece 1
Naval Attache
2228 Massachusetts Ave., NW
Washington, DC 20008

7. Anastasios X.Rambidis 2
73,Sofokli Venizelou
12131 Peristeri
Athens
Greece

103

